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Gdańsk University of Technology 
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Preface 

Science is a tool for peace—Pope Francis, 10/09/2022 

This book is indented as a textbook for undergraduate, postgraduate as well as 
doctoral students, which offers an extended introduction to the problems associ-
ated with wave propagation in elastic solids solved by the use of the Finite Element 
Method (FEM). In a unique way, it guides the reader through the history of the 
physics of acoustics, computers and numerical analysis software, to end up with a 
bit more advanced topics related to the specific language of FEM, which is explained 
to my best intentions in a manner as simple and accessible as possible in the case of 
such topics. 

This book is a summary of my scientific work, which I have been carrying out 
over the past 10 years. However, my adventure with science dates back to the times of 
my childhood and the inspiration I had from my father to investigate and learn about 
the surrounding world, how it works and why so. Following this path of questioning 
things and trying to understand the relations and mechanisms ruling the world, I was 
attracted towards physics and mechanics. This is the main reason why my steps led 
me to the Gdańsk University of Technology, where I studied Applied Mechanics at 
the Faculty of Applied Physics and Mathematics and where I received my master’s 
degree in 1994. 

Yet in 1993, as a junior research assistant, I started my scientific career at the Polish 
Academy of Sciences in Gdańsk. My interest in modelling physical phenomena, 
especially by the use of FEM, dates back to the beginning of this career, which is 
placed some 25 years back. Since that time my scientific work has been gradually 
more and more focused on FEM as a numerical technique, rather than its simple 
application to solve more or less complex scientific or engineering problems, mostly 
in dynamics. In 2012, I left the Polish Academy of Sciences to join a research group 
at the Gdańsk University of Technology, where I have been continuing my scientific 
research ever since in the Department of Biomechatronics. 

At this point, I would like to mention two kinds of research problems that kept 
my scientific attention for a little bit longer. Firstly, these were problems related to
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damage detection in composite structures, which was the subject of my Ph.D. thesis 
prepared under the supervision of Prof. Wiesław Ostachowicz, which I defended in 
1998. Secondly, these were problems related to the modelling and application of 
intelligent materials for dynamic control, which was the subject of my D.Sc. thesis, 
which I defended 11 years later in 2009. This latter could never happened without 
meeting Professor Matthew Cartmell from the University of Glasgow in Scotland, 
who was my scientific guide there for several years from 2000 and who remains my 
friend to this day. I should say, however, that my scientific work at that time had one 
thing in common, which was the application of FEM. Gradually, my scientific work 
moved a little bit to high-frequency, non-stationary dynamic problems, which are best 
represented by problems related to the phenomena associated with the propagation 
of elastic waves. 

My deep interest in modelling various scientific and engineering problems, espe-
cially by the use of FEM, resulted in the development of new types of finite elements, 
especially useful for damage modelling in composite materials. This phase of my 
research activities is quite well documented by numerous scientific research papers 
I co-authored, which were published with the great help and support of Prof. Marek 
Krawczuk, another friend of mine, as well as Prof. Wiesław Ostachowicz. Precise 
modelling of wave propagation phenomena in elastic solids required, however, the 
employment of a new class of finite elements, which were developed based on numer-
ical techniques employed in fluid mechanics. In this respect, I also received a lot of 
help and inspiration from yet another colleague of mine, Prof. Grzegorz Zboiński, 
who should be mentioned here. All of this led to the formulation of the Time-domain 
Spectral Finite Element Method (TD-SFEM) in the realm of elastic solids, in contrast 
to the Frequency-domain Spectral Finite Element Method (FD-SFEM) existing at 
that time, which is based on the application of the fast Fourier transform (FFT). The 
results of this work are also well documented not only by many research papers 
published together with my colleagues from the Polish Academy of Sciences, but 
also by a common monograph entitled Guided waves in structures for SHM. The 
Time-domain Spectral Element Method, which I had the privilege and honour to be 
one of the authors. 

In the following years, my scientific work concentrated on further development of 
TD-SFEM and resulted in the formulation of new interesting theories enabling one for 
more precise modelling of the wave propagation phenomena in various engineering 
structures, especially for damage detection purposes. On the other hand that led me to 
many interesting observations related to the numerical properties of TD-SFEM itself, 
as a more and more popular computational tool amongst scientists, researchers and 
engineers. As a consequence of that, a new numerical approach was proposed, based 
on the application of cubic splines, the idea of which dates back to the inspiration I 
received from the lectures given by Prof. Zbigniew Kosma, which I attended when I 
was still a student. This novel numerical approach, still under development, combines 
the superior properties of the cubic spline approximation with the excellent flexibility 
of FEM. Nowadays this area of research remains the main subject of my interests 
and is also mentioned in this book.
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Finally, I would like to say that to a great extent this book is for me a kind of 
nostalgic journey through all these years of my scientific work until the present day. 
I hope very much that it will be the same fascinating journey for every reader as it 
was for me as the writer. 

Gdańsk, Poland Arkadiusz Żak
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Chapter 1 
Introduction 

People have been investigating and trying to explore the world around them since 
the most ancient times. In their early attempts to understand and to systematise 
the phenomena they encountered every day, the observations they made, together 
with their reflections on those observations led centuries ago to the emergence of 
philosophy in ancient Greece. This was a spark igniting human minds that later, over 
the upcoming centuries, had disciplined the human way of thinking and reasoning 
forging that which nowadays we call science. 

Ancient Greek philosophers suspected that music results from a mysterious con-
nection between various waves and sounds, behind which lay hidden air vibrations or 
disturbances—see Fig. 1.1. It was Pythagoras, a great Greek philosopher and math-
ematician, who said that “... there is geometry in the humming of the strings, there is 
music in the spacing of the spheres ...”. Since music was a particularly beloved and 
omnipresent field of art for ancient Greeks, accompanying their marriages, funerals, 
religious ceremonies as well as poetry recitation in theatres, it simply had to have 
a great and prominent impact on their lives. Perhaps this was a direct reason why 
ancient Greeks started to study various phenomena, which nowadays we can so eas-
ily place within the fields of mathematics (harmonics), physics (sound propagation) 
or architecture (outdoor theatres), and which could be thought of as the foundations 
of modern acoustics. 

With no doubt Pythagoras (c. 570–c. 495) should be mentioned as the first great 
Greek philosopher, whose efforts to understand the universe left deep imprints on 
music and mathematics as well as astronomy. In the field of music Pythagoras, 
using the monochord, investigated vibrating strings producing harmonious tones in 
order to determine mathematical formulae describing relations between the lengths 
of these strings and the tones they produced. By dividing the strings into ratios of 
halves, thirds, quarters or fifths Pythagoras created music intervals of an octave, 
a perfect fifth, a second octave, and a major third, respectively. Thanks to these 
investigations he discovered what we now call the first five overtones, and which 
create the common intervals being the primary building blocks of modern musical 
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2 1 Introduction

Fig. 1.1 Waves are inherently a part of the surrounding world as: a sea waves resulting from 
the interaction of the wind blowing over the free surface of the sea [ 2], b atmospheric gravity 
(internal) waves resulting from the interaction of the rapidly rising air through convection and the 
wind blowing over the ocean [ 3], c shock waves in the atmosphere resulting from the eruptions 
of volcanoes [ 4], d wave structure in Saturn’s rings known as the Janus 2:1 spiral density wave, 
resulting from the same process as this responsible for the creation of spiral galaxies [ 5] 

harmony—see Fig. 1.2. For many centuries this idea of Pythagoras had been the 
foundation of all music theory, having its roots in antiquity but lasting up to modern 
times [ 1]. 

Another great Greek philosopher Aristotle (384–322 BC), whose interests spanned 
nearly all fields of ancient science, also studied sounds and investigated the phe-
nomenon of their propagation. He rightly found out that sound propagation in the air 
results from compressive air movements, but he was wrong to think that the speed 
of sound is proportional to the sound pitch, greater for sounds of higher frequencies 
and smaller for sounds of lower frequencies. 

It should be noted that in the Middle Ages and the Renaissance it was music which 
directly stimulated investigations in the field of acoustics as well as other fields of 
science. An English philosopher John Blund (c. 1175–1248), who studied Aristotle’s 
works, established frameworks for future acoustics theories by studying generation
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Fig. 1.2 A concept of Pythagorean music intervals based on the note C 

of sound and its reception, its medium, etc. Another English music theorist Walter 
Odington (c. 1260–1346) gathered together all knowledge of music at that time, 
which he supplemented with his own theoretical considerations about the consonance 
of the minor and major thirds. A music theorist, Iacobus de Ispania (d.c. 1330), 
was the author of the longest work on music of the Middle Ages. In contrast to 
that Thomas Bradwardine (c. 1300–1349), an English scholar, mathematician and 
physicist together with Johannes Boen (d.c. 1367), a Dutch music theorist, held 
the position that separation between the theory of music and acoustics was at least 
questionable [ 6]. However, over the forthcoming centuries the leading role of music 
would be gradually fading. Music evolved to become a separate field of art, while 
those branches of science that were initially serving to music as tools to explain 
music rules and complexity, now released form this dependence, evolved to become 
individual science disciplines such as: acoustics, astronomy, chemistry, mathematics, 
mechanics, physics, etc. However, musical sounds continued to be a very important 
subject of then research. 

From one angle the primary subject of investigation was the air or water and 
their properties as the media within which sounds can propagate. An Anglo-Irish 
philosopher, chemist and physicist Robert Boyle (1627–1691), investigating prop-
erties of various gasses, proved experimentally that sound cannot propagate through 
the vacuum. Sir Isaac Newton (1642–1726), an English mathematician, astronomer, 
theologian and physicist was the first who tried to establish a formula for the speed of 
sound in air. Assuming harmonic motion of adjacent air particles, Newton expected 
the speed of sound in air to be equal to the square root of the ratio of the air pressure and 
density. This problem was also studied by Joseph Louis Lagrange (1736–1813), an 
Italian astronomer and mathematician, who corrected Newton’s calculations by for-
mulating general equations of air motion and by their subsequent integration along 
the direction of their propagation. However, it was Pierre Simon Laplace (1749– 
1827), a French mathematician, physicist and astronomer, who further corrected
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both previous formulae by pointing out that elastic properties of the air should take 
into account the air heat capacity due to adiabatic compression. In turn, a Swiss 
physicist Daniel Colladon (1802–1893) determined the speed of sound in water. He 
also measured the compressibility of other principal liquids, thereby winning the the 
prize of the Academy of Sciences in Paris. Another French physicist, astronomer 
and mathematician Jean Baptiste Biot (1774–1862), carried out measurements on 
the propagation of sounds in pipes noting that the speed of sound in the pipes them-
selves is much higher that in the air. Propagation of sound in gasses other than the air 
was the area of interest of a German physicist and musician Ernst Florence Friedrich 
Chladni (1756–1827). 

Approaching from the opposite angle, the subjects of investigation were various 
instruments in the form of strings, plates, membranes, etc. that were responsible for 
sound generation. Many great names can be mentioned here as well. An ingenious 
Italian polymath, Galileo Galilei (1564–1642), who worked as an astronomer, physi-
cist, philosopher and mathematician, tried to establish a link between the pitch and 
frequency of sounds produced by vibrating monochord strings of different lengths. 
This was also a research subject of a French mathematician and physicist Joseph 
Sauveur (1653–1716), who investigated this link in great detail, and who is also 
credited with coining the term acoustique [ 7]. 

An English mathematician Brook Taylor (1685–1731), thanks to the application 
of a mathematical tool sophisticated for its time, now known as the calculus of finite 
differences, determined the fundamental form of vibrating strings. In the following 
years Daniel Bernoulli (1700–1782), a famous Swiss mathematician and physicist, 
managed to formulate and solve partial differential equations describing the motion 
of vibrating strings. This was possible thanks to the application of d’Alembert’s 
formula, which nowadays is broadly used in mechanics. The solution to the equation 
of motion obtained by Bernoulli was interpreted by Jean le Rond d’Alembert (1717– 
1783), a French mathematician, mechanician, physicist, philosopher as well as music 
theorist, as two independent waves travelling in opposite directions along the strings 
[ 8]. Transverse vibrations of strings were also studied by Lagrange, who disputed 
in his works the lack of generality in earlier works of Brook Taylor, d’Alembert or 
Euler, suggesting a new, general solution form. 

A Swiss mathematician, physicist, astronomer, logician and engineer Leonhard 
Euler (1707–1783) helped to formulate the Euler-Benoulli equations for transverse 
vibrations of beams, which today is one of the most common analytical tools of 
classical mechanics. His studies included fluid dynamics too. In this field Euler is 
responsible for the formulation of a very important set of equations of fluid dynamics 
for inviscid fluids, known as the Euler equations. The work of Jean-Baptiste Joseph 
Fourier (1768–1830), a French mathematician and physicist, well-known for the 
Fourier theorem, should also be mentioned here. The impact of the Fourier theorem 
turned out to have very deep implications also in the field of acoustics. His theorem 
about representing periodic functions by an infinite series of sines and cosines, proved 
in fact the principle of superposition, which is one of the fundamentals of every linear 
analysis, including the analysis of sound propagation.
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Fig. 1.3 First nine Chladni 
patterns of a free aluminium 
disc. Results of numerical 
computations by TD-SFEM 

Based on the research that had been carried out in the previous decades as well as 
many indisputable milestones in various field of science, also driven by the demand 
of the Industrial Revolution, the 18th and 19th century appear as the period of great 
progress in the field of theoretical and experimental acoustics. 

Simeon Denis Poisson (1781–1840), a French mathematician, engineer, and 
physicist was the first to presented a solution to the problem of vibrating circular and 
rectangular membranes, which was also studied by a German mathematician Rudolf 
Friedrich Alfred Clebsch (1833–1872). A simple method to visualise nodal lines of 
vibrating plates was proposed by Chladni, who for that purpose used sand sprin-
kled onto their surfaces—see Fig. 1.3. After his name the patterns produced by this 
technique are known as Chladni figures. In the opinion of Michael Faraday (1791– 
1867), a famous British scientist, it was the process of acoustic streaming which was 
responsible for the appearance of Chladni figures. The relationship between vibration 
frequencies and corresponding modes of vibrations for flat circular surfaces was given 
the name of Chladni’s law by Lord Rayleigh. Lord Rayleigh, in full John William 
Strutt, 3rd Baron Rayleigh (1842–1919), a Nobel prize winning British physicist, 
in his textbook Theory of Sound [ 9] presented a holistic and scientific approach to 
the most urgent problems of acoustics at that time. A solution to the problem of 
vibrating plates was given by Marie Sophie Germain (1776–1831), a French mathe-
matician, physicist, and philosopher, who received for her work a prestigious grand 
prize from the Paris Academy of Sciences. However, it was Gustav Robert Kirchhoff 
(1824–1887), a German physicist, who corrected her results by presenting a more 
accurate approach to treat plate boundary conditions. John Tyndall (1820–1893) was 
a prominent Irish physicist. The results of his scientific investigations on vibrations
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of rods, plates and bells were published in his book on sound [ 10]. Tyndall was also 
an experimentalist, whose works in the field of acoustics focused on sound transmis-
sion in the air, especially on differences in sound propagation at particular locations, 
resulting from temperature differences of air masses. Hermann Ludwig Ferdinand 
von Helmholtz (1821–1894) was a German physician and physicist, not only to be 
remembered for his famous theorem, named after him as Helmholtz’s theorem. His 
works in the field of acoustics were mainly focused on sound perception. As he was 
also educated in medicine, in his book [ 11] he combined his knowledge of physics, 
physiology and music to show that the human sense of hearing is able to differentiate 
even very complex tones. 

The following decades are a time of a great progress and rapid development 
primarily in mathematics, and consequently in other fields of science, including 
acoustics and mechanics, which very eagerly took advantage of the achievements 
of contemporary mathematics. Wave motion stayed at the very centre of scientific 
interest of then research. A simple classification in the case of various types of waves, 
as well as in the case of mechanical waves, are presented in Figs. 1.4 and 1.5. 

In the field of acoustics the classical theory of longitudinal behaviour of rods is 
well established, which can be attributed together to d’Alembert, Bernoulli, Euler 
and Lagrange. The same can be said about the theory of flexural behaviour of beams, 
which we owe to the works of Bernoulli and Euler. Nowadays it is best known as 
the classical theory of flexural behaviour, or simply the classical beam theory. On 
the other hand the theory of torsional vibration can be attributed to Adhemar Jean 
Claude Barre de Saint-Venant (1797–1886), a French mechanician and mathemati-
cian, whose works concentrated on stress analysis and hydraulics. The equations 
developed by Saint-Venant for unsteady flows in shallow waters through open chan-
nels, also known as the Saint-Venant equations, are fundamental in modern hydraulic 
engineering. Two-dimensional structures such as membranes and plates were also a 
common subject of research. 

In 1888 Augustus Edward Hough Love (1863–1940), an English mathematician 
famous for his works on mathematical theories of elasticity, developed a theory for 
flexural behaviour of plates. The theory was a two-dimensional extension of the 
classical theory of beams by Bernoulli and Euler, and was taking advantage of the 
same assumptions earlier formulated by Kirchhoff. Love is also known for his works 
on propagation of horizontally polarised seismic surface waves, which are called 
Love waves. It should be added that another type of seismic surface waves, which 
are polarised vertically, as opposed to horizontally polarised Love waves, takes its 
name from Lord Rayleigh, who predicted their existence. The problem of flexu-
ral behaviour of plates was also studied by Poisson and Cauchy, who based their 
approach on the general theory of elasticity. Baron Augustin-Louis Cauchy (1789– 
1857) was a famous French mathematician, engineer and physicist. His pioneering 
works contributed to several branches of mathematics, including mathematical anal-
ysis as well as continuum mechanics. The theory of bending was a field of spe-
cialisation of another great scientist at that time, Stephan Prokopovych Timoshenko 
(1878–1972). This Russian born, and since 1922 also an American engineer and 
academic, is recognised by many as the father of modern engineering mechanics.
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Fig. 1.4 Simple classification of various types of waves 

As shown above the tremendous progress in science during these times included 
not only physics and mathematics, but also acoustics and mechanics. Very often 
theoretical investigations were driven directly by luck and experiments. Based on the 
foundations laid by many great scientists and researchers from the previous centuries 
many new or refined theories, explaining better the observed phenomena or offering 
a deeper insight into the physics behind them were proposed during this Golden Age 
of acoustics and mechanics. Many well-known names contributing to these fields can 
be listed here including Pochhammer, Chree, Lamb, Reisner, Mindlin, Herrmann, 
Reddy, etc. to mention only a few. 

Leo August Pochhammer (1841–1920) was a Prussian mathematician, who is 
mostly known for his works on special functions, but who had a great interest in 
the theory of elasticity [ 12]. At the same time as Pochhammer [ 13], Charles Chree
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Fig. 1.5 Simple classification of mechanical waves in various types elastic media 

(1860–1928), a Scottish born British physicist, also worked on elasticity problems, 
which concerned the longitudinal dynamic behaviour of elastic bars [ 14]. The result 
of their parallel work was greatly recognised by the scientific community, and nowa-
days this result is known as the Pochhammer-Chree equation. The phenomenon of 
sound propagation in the form of multi-mode flexural and in-plane elastic waves 
in infinite plates was studied by Sir Horace Lamb (1849–1934) [ 15]. Lamb was an 
English applied mathematician, who authored several influential textbooks on clas-
sical physics, mechanics and acoustics [ 16], as well as who contributed to hydrody-
namics. Lamb coined the term vorticity, which since 1916 remains in use in fluid-
dynamics. 

Eric Reissner (1913–1996) was a German born, American civil engineer and 
mathematician, whos works in applied mechanics is fundamental to the theoretical 
understanding of the behaviour of elastic solids. Reissner [ 17] is recognised as a 
co-author of the most commonly used plate theory, which is known to the scientific 
community as the Mindlin-Reissner theory of plates, since the theory was devel-
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oped in parallel and independently by Raymond David Mindlin (1906–1987), an 
American mechanical engineer [ 18]. George Herrmann (1921–2007) was a Russia 
born American scientist working in the field of mechanical and civil engineering. 
Together with Mindlin he co-authored a theory describing longitudinal behaviour 
of rods, know in the literature as the Mindlin-Herrman theory of rods [ 19]. Finally, 
Junuthula Narasimha Reddy (1945–present) is an Indian born, American civil engi-
neer, scientist and researcher, who significantly contributed to the field of solid and 
fracture mechanics as well as mechanics of composite materials, who is also respon-
sible for the development of a higher-order theory of plate flexural behaviour, known 
as the Reddy plate theory [ 20]. 

It may be interesting to note that the tremendous progress in many branches of 
science sometimes led to unusual situations. New theories were formulated, but the 
ability of the mathematics of the time to show practical solutions for these theories 
was insufficient. For example, the characteristic equation derived by Pochhammer 
and Chree had to wait nearly 65 years to get solved. However, its solution was 
obtained not thanks to the traditional analytical approach of mathematics, but thanks 
to numerical computations. A new era of numerical computations was about to come 
and brought to existence a powerful computational tool, which nowadays we call the 
computer. Together with computers new algorithms and methods were developed to 
offer computational abilities, which we know from the present day. 

The first steps on the path leading to the emergence of modern computers can be 
attributed to Jospeh Marie Jacuquard (1752–1834), a French weaver and merchant, 
who is the inventor of the earliest programmable machine known as the Jacquard 
loom. The Jacquard loom invented in 1801 used punched wooden cards to weave 
fabric designs in exactly the same manner as an early version of IBM digital com-
piler. Based on the idea of Jacuquard, an American engineer and inventor Herman 
Hollerith (1860–1929) developed in 1890 an electromechanical punched card tabu-
lator for the purpose of the 1890 census in the United States. His invention led to the 
beginning of the Tabulating Machine Company, which in 1911 joined with three other 
companies to become the Computing-Tabulating-Recording Company, which since 
1924 has been known just as IBM. In 1936 Alan Mathison Turing (1912–1954), an 
English mathematician, computer scientist, logician and cryptanalyst came up with 
the idea of a universal machine, better known as the Turing machine, being a true and 
real ancestor of modern computers. Turing is considered as the father of theoretical 
computer science and artificial intelligence, the originator of the so-called Turing test 
from 1950 measuring the ability of a computing machine to mimic the behaviour of 
a human being in an intelligent and indistinguishable manner. In 1948 Turing devel-
oped and presented the algorithm of the LU decomposition method, which since that 
time remains in use for solving matrix equations. 

A breakthrough was made by two American engineers John Presper Eckert (1919– 
1995) and John William Mauchly (1907–1980), who built between 1943–1945 the 
earliest and the most famous electronic computer named ENIAC (Electronic Numer-
ical Integrator and Computer). However, it should be said that the title of the first 
computer is also claimed by Colossus, built in 1943 under the supervision of a British 
mathematician and codebreaker Maxwell Herman Alexander Newman (1897–1984)
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and an English engineer Tommy Flowers (1905–1998), as well as Alan Turing him-
self. Additionally, a computational machine Z3 designed in 1943 by a German 
civil engineer, inventor and computer pioneer Konrad Zuse (1910–1995) must be 
mentioned here together with the ABC computer (Atanasoft-Berry Computer) built 
between 1937–1942 by two American engineers John Vincent Atanasoff (1903– 
1995) and Clifford Edward Berry (1918–1963). 

A great leap forward in the development of computers, as we understand this term 
today, was made in 1947 by William Bradford Shockley (1910–1989), an American 
physicist and inventor, John Bardeen (1908–1991), an American physicist and electri-
cal engineer, as well as Walter Houser Brattain (1902–1987), an American physicist, 
who in Bell Laboratories invented the transistor, which today is the most essential and 
fundamental building block of modern electronic devices. For their joined invention 
they were awarded the Nobel Prize in Physics in 1956. However, the concept of the 
transistor undoubtedly belongs to Julius Edgar Lilienfeld (1882–1963), an American 
physicist and electronic engineer, who presented it more than two decades earlier 
earlier, in 1926. In 1958 the first integrated circuit (microchip) was built, which is 
considered the key element of modern computers, and which spurred the revolution 
in the field of personal computers. The invention of the integrated circuit should be 
attributed independently to an American inventor and engineer Jack St. Clair Kilby 
(1923–2005), who for his invention was awarded the Nobel Prize in physics in 2000, 
and an American physicist Robert Noyce (1927–1990), a co-founder of Fairchild 
Semiconductor in 1957 and Intel Corporation in 1968. 

The inventions of the transistor and the integrated circuit denote a symbolic begin-
ning of the era of personal computers. Altair 8800 is considered by many as the first 
personal computer. It was built in 1974 by Micro Instrumentation and Telemetry 
Systems (MITS) founded by an American engineer Ed Roberts (1941–2010), who is 
recognised as the father of the personal computer. In 1976 Apple Computer, Inc. was 
established by Stephen Gary Wozniak (1950–present), an American inventor, elec-
tronics engineer, programmer, and Steven Paul Jobs (1955–2011), which produced 
one of the first commercially successful and mass-produced home computers, Apple 
II. Apple II was the successor to a short-series of 200 hand-built Apple I computers. 
The first personal computer produced by Hewlett-Packard Company HP-85 enters 
the market in 1980. Only one year later, in 1981 the first personal computer produced 
by IBM named Acorn appears. The number of computers used for various purposes 
grows tremendously and new companies producing computers for everyday home 
use appear, including such brands as: ZX series, Commodore, Amiga or Atari. Today 
the total number of personal computers sold worldwide every year exceeds 250 mil-
lion. Personal computers, as well as computers in general, assist every day life in 
every possible aspect of human activity. This also includes science and research. 

From the very beginning of their history computers were found by scientists and 
researchers to be very helpful tools offering enormous speed of computations, which 
otherwise had to be carried out by many people over long hours or even days, and 
being so much prone to human error or mistake. Computer programming became 
practically a separate branch of science giving birth to new, more efficient and more 
intuitive programming languages, programming packages or environments such as:
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computer aided designing (CAD) or computer aided engineering (CAE). Among 
them, in the realm of scientific research and its needs, numerical computational 
methods and tools played the most important role. However, before this could have 
happened it is necessary to travel back in time to much earlier years and such great 
names as: Navier, Stokes, Ritz or Galerkin. 

Claude-Louis Navier (1785–1836), was a famous French engineer and physi-
cist, who is mostly known for his contribution to continuum mechanics. In 1821 
Navier presented, formulated by himself, the general theory of elasticity using the 
language of contemporary mathematics. The input of Navier into the field of con-
tinuum mechanics allows him to be considered as the founder of modern structural 
analysis. The system of partial differential equations describing the behaviour of the 
elastic continuum under the influence of forces is known in mechanics as the Navier 
or Navier-Cauchy equations. However, the major contribution of Navier stays at the 
centre of fluid dynamics. Together with Sir George Gabriel Stokes (1819–1903), an 
Anglo-Irish physicist and mathematician, Navier is recognised as a co-author of the 
famous Navier-Stokes equations. Walther Ritz (1878–1909) was a Swiss theoretical 
physicist, famous for the formulation of a general method for finding approximate 
solutions of partial differential equations accompanied with sets of boundary condi-
tions, known as boundary value problems. A special variant of the method proposed 
by Ritz was developed by Boris Grigoryevich Galerkin (1871–1945), who was a Rus-
sian mathematician and engineer. In his article from 1915 Galerkin proposed an idea 
for a new approach that could be effectively used for approximate solutions to par-
tial differential equations. Nowadays the Ritz and Galerkin methods are considered 
as the foundation of many effective solution algorithms in the fields of mechanics, 
thermodynamics, electromagnetism, hydrodynamics and many others. One such a 
method is the Finite Element Method (FEM). 

It should be said, however, that the mathematical origins of FEM were not only 
firmly embedded in the earlier works of Bernoulli, Euler, Lagrange, Legendre, Gauss, 
Cauchy and many more, considered as the fathers of the calculus of variations, 
but also in the contemporary works of Rayleigh, Ritz and Galerkin. Its principal 
idea, as well as the most important feature and advantage, is the subdivision of the 
computational domain into smaller sub-domains of simpler geometry, which are 
called finite elements (FEs). Based on numerical properties of FEs the solution of a 
given problem, through a simple element aggregation procedure, can be presented 
at the level of the entire domain and solved algebraically. 

No precise date can be proposed as the date of birth of FEM, which undoubt-
edly is one of the most popular and efficient computational tools available these 
days. However, the beginnings of FEM can be dated back to the 1940 s the and 
names of Hrennikoff and Courant, when the idea of FEs was crystallised [ 21– 24]. 
Alexander Pavlovich Hrennikoff (1896–1984) was a Russian born, Canadian struc-
tural engineer, who is considered as the originator of FEM. The unique approach 
of Hrennikoff employed to solve a boundary value problem was based on a lattice 
analogy [ 21, 22] used for subdivision of the computational domain. The approach 
presented by Richard Courant (1888–1972), a German born, American mathemati-
cian, was different. Courant suggested the subdivision of the computational domain
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into a regular mesh of triangular sub-domains [ 23, 24], in a manner more typical of 
the current approach of FEM. At first FEM was mostly used as a numerical technique 
by mechanical engineers in order to solve boundary value problems associated with 
various types of partial differential equations. In 1973 a fundamental book deal-
ing with mathematical aspects of FEM was published [ 25]. Since then, FEM has 
been gradually reinforcing its mathematical foundations gaining its current strength 
as a tool used for numerical modelling of physical phenomena in a wide range of 
engineering disciplines. 

However, the method had to wait until the 1960 and 1970 s, when it achieved its 
current, great level of interest among engineers and researchers all around the world 
thanks to the works of such pioneers of FEM as: John Hadji Argyris (1913–2004) 
[ 26– 28], a Greek born engineer, academic and professor of aerospace engineering 
at the University of Stuttgart; Ray William Clough (1920–2016) [ 29– 31], an Amer-
ican engineer, academic and professor of structural engineering at the University 
of California, Berkeley; Olgierd Cecil Zienkiewicz (1921–2009) [ 32– 34], a British 
engineer and academic of Polish descent, professor at Swansea University; Philippe 
Gaston Ciarlet (1938–present) [ 35– 37], a French mathematician, professor at Pierre 
and Marie Curie University in Paris as well as Richard Hugo Gallagher (1927–1997) 
[ 38– 40], an American engineer and academic, a professor of civil engineering at 
Cornell University, to name only a few. 

Nowadays, FEM is very well-established as a numerical tool as well as a mathe-
matical computational method, which is still improving its capabilities and efficiency. 
A strong proof of this is perhaps the total number of scientific and research papers 
published every year, which directly refer to FEM in their titles. Figure 1.6 suggest 
that not only is the total number of papers published every year vast, but that this 
number is constantly growing. Despite the fact that the results presented in Fig. 1.6 
only concern the Web of Science database, which is one out of many similar databases 
providing this kind of information, it should be emphasised that the expected num-
ber of papers, which will be published within the years 2021–2025 may far exceed 
8,000, which is more than 1,600 papers per year. At the same time the total number 
of papers related to wave propagation problems, so relevant to this monograph, also 
stays on a high level and within the same years 2021–2025 should reach 5,000, which 
is 1,000 papers per year. 

The growing popularity of FEM is no coincidence. The strength of the method 
comes from its constant theoretical development, behind which many names of great 
scientists and researchers can be found. Among many such names, the following 
may be mentioned: Oden, Babuška, Doyle, Gopa-lakrishnan or Patera. 

Ivo Milan Babuška (1926–present) [ 41– 43] is a Czech born, American mathe-
matician, well-known for his studies of FEM as well as the error estimation asso-
ciated with this numerical technique. John Tinsley Oden (1936–present) [ 44– 46], 
is an American mathematician and academic, whose works in the field of FEM not 
only concern problems related to error estimation, but also non-linear mechanics and 
computation mechanics in general. James Francis Doyle (1951–present) [ 47– 49] is  
an Irish born, American mechanical engineer and academic, and an expert in the 
field of computational mechanics. He is one of the fathers of the Frequency-domain
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Fig. 1.6 Number of publications published according to the Web of Science database related to 
two different topic search keywords: A—finite and element and method, B—wave and propagation 

Spectral Finite Element Method (FD-SFEM), an extremely efficient and powerful 
FEM clone, which is based on the application of the fast Fourier transform (FFT) 
together with analytical shape functions to built finite elements. An adopter of the 
idea of FD-SFEM and its further development is Srinivasan Gopalakrishnan (1960– 
present) [ 49– 51], an Indian aerospace engineer and academic. Another clone of FEM 
is the Time-domain Spectral Finite Element Method (TD-SFEM), which has been 
originally proposed and developed by Anthony Tyr Patera (1959–present) [ 52– 54] an  
American mathematician, academic and professor of mechanical and computational 
engineering. This specialised variant of FEM, based on the application of special, 
orthogonal approximation polynomials of higher orders in comparison with the clas-
sical FEM, is a particularity efficient computational tool in solving fluid-mechanics 
problems as well as wave propagation problems—see Fig. 1.7. 

However, the popularity of FEM also results from its general availability as an 
easy-to-use computational tool, which is offered to and used worldwide by engineers, 
scientists and researchers. This is mostly thanks to many FEM software packages 
guiding their users through all required steps of FEM analysis including pre- and 
post-processing of all resulting computational data. 

With no doubt NASTRAN [ 55] (from  NASA 1 STRucture ANalysis) developed 
in late 1960 s, thanks to the financial support of the US government, was one of the 
first FEM packages used to help engineers in complex structural dynamic analysis. 
Its evolution over the following years changed its original purpose to a multi-physics

1 NASA, National Aeronautics and Space Administration—an independent agency of the US Fed-
eral Government established in 1958, which is responsible for American civilian space programmes, 
aeronautics and aerospace research. NASA is the successor of NACA, the National Advisory Com-
mittee for Aeronautics, founded in 1915. 
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Fig. 1.7 Patterns of elastic 
waves propagating in a 
laminated wind turbine rotor 
blade in consecutive 
moments in time: a 112.5 
. µs, b 187.5. µs, c 375.0. µs, d 
562.5. µs, e 750.0. µs and  f 
the mesh of SFEs. Results of 
numerical computations by 
TD-SFEM 

computational tool that allows engineers to carry on structural analysis computations 
of any type. Since that time its source code has been integrated into many different 
FEM software packages that are available, including such ones as: MSC 2 Software 
(MSC NASTRAN), NEi 3 Software (NEi NASTRAN) or Siemens PLM Software 
(NX NASTRAN). 

On the same list of early FEM software packages available nowadays is ANSYS 
[ 56] (from ANalysis SYStems). ANSYS was originally developed in 1970 by John 
Arthur Swanson (1940–present), founder of Swanson Analysis Systems Inc. Swan-
son is an American engineer and entrepreneur who, according to many experts in 
computational methods, is regarded as a pioneer in the application of FEM in numer-
ous fields of engineering. Since its début ANSYS has been gradually taking over the 
market of FEM software packages and nowadays the company is one of the biggest 
producer of computer simulation engineering software in the world. It is the holder 
of such brand names as FLUENT, ICEM CFD, 4 Reaction Design and many more. 

Finite element analysis software ABAQUS [ 57] (probably derived from the word 
abacus) was originated in 1978 as a computational product based on the application of 
FEM. It was developed by the team of three scientists Dr Hugh David Hibbitt (1944– 
present), Dr Bengt Karlsson (1944–present) and dr Paul Sorensen (1959–present), 
who established Hibbitt, Karlsonn and Sorensen, Inc. that later on changed its name

2 MSC—a software company formed in 1963 by dr Richard MacNeal (1924–2018) and Robert 
Schwendler (1930–1979) under the name of MacNeal-Schwendler Corporation, which specialises 
in FEM simulation. 
3 NEi—a company that develops engineering FEM software, started in 1991 as Noran Engineering 
Inc. 
4 CFD—computational fluid dynamics. 
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to ABAQUS Inc. Since that time ABAQUS has established a firm position in the 
market of computational tools amongst engineers and researchers all over the world. 
ABAQUS offers a number of core products addressed to structural engineers, espe-
cially those seeking solutions to linear and non-linear structural dynamics problems, 
as well as problems of computational fluid dynamics and also electromagnetism. 
ABAQUS remains a highly regarded tool for its multi-physics computational capa-
bilities including various problems of coupled fields, for example acoustic-structural, 
thermo- and electromechanical, and more. 

In 1986 a company was founded by Klass-Jürgen Bathe (1943–present) under 
the name of ADINA [ 58] R&D Inc. It is the producer and developer of a FEM 
computational tool, called ADINA (from Automatic Dynamic Incremental Non-
linear Analysis), which is addressed to academics as well as industry. In a similar 
way to other FEM commercial packages ADINA offers a complex computational 
environment to solve problems of fluid dynamics, heat transfer, electromagnetism and 
more, but primarily ADINA is highly regarded as a numerical computational tool for 
structural analysis, especially its non-linear analysis capabilities. As a result of this 
its non-linear solver is also employed by other FEM packages, such as NASTRAN, 
for example. 

In the same year 1986 COMSOL [ 59] (probably from COMputer SOLution) was 
founded in Sweden, at the Royal Institute of Technology in Stockholm, by Svante 
Littmarck (1954–present) and Farhad Saeidi (1962–present). Since the time of its 
emergence COMSOL FEM software has developed its reputation as a multi-platform 
and multi-physics computational tool offering scientists and researchers an integrated 
environment to carry on numerical computations in the case of electrical, mechanical 
and chemical engineering problems as well as fluid dynamics. 

It should be emphasised at this point that the list of FEM software that is available 
nowadays is much longer and the names already mentioned are meant to represent 
only historical beginnings of FEM software development. The rapid development 
of numerical computation techniques together with a tremendous increase in the 
computational power of modern computers is directly responsible for the boom 
that can be observed in the field of numerical computational tools available to both 
academia and industry. Another interesting aspect of it comes from the fact that now 
an increasing number of such computational tools is made available to scientists and 
researchers as free, very often customised and optimised, computational tools. It is 
worth mentioning here such FEM packages as: Z88, Code_Aster, Elmer, CalculiX 
or SimScale. 

Z88 [ 60] is a free FEM software package, which was developed in 1985 at the 
University of Bayreuth, in Germany, by a team led by Frank Rieg (1955–present), 
who is a German academic and professor of mechanical engineering at the same 
university. Since its development Z88 has been adopted by many universities and 
small-sized enterprises as a tool offering a three-dimensional analysis of structural 
problems as well as topology optimisation. 

Code_Aster [ 61] (from Analyses des Structures et Thermomécanique pour des 
Études et des Recherches in French, which can be translated to Structural and Ther-
momechanical Analysis for Study and Research in English) appeared in 1989 as a
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response to the demand of the French Department of Energy seeking a computa-
tional tool, which could allow for structural and thermal analysis of nuclear facilities 
in France. Since that time the program is maintained and developed to serve as a 
numerical solver for both academics and engineers. Code_Aster is freely distributed 
as open-source FEM software together with Salomé [ 62], which is a generic software 
platform for pre- and post-processing. 

The origins of Elmer [ 63] date back to 1995. This FEM software package was 
developed under support of the Finnish Funding Agency for Technology and Inno-
vation, named Tekes, with help from Finnish universities, research laboratories and 
industry. Its development was a part of a national CFD technology programme. 
Nowadays Elmer is a free and open-source FEM-based computational tool for multi-
physics problems including fluid and structural mechanics, electromagnetism and 
acoustics. 

CalculiX [ 64], as open-source and free FEM software, emerged in 1998. Since that 
time it has been developed by its authors Dr Guido Dhondt (1961–present), who is 
responsible for the development of the solver, as well as Klaus Wittig (1961–present), 
who is the author of the pre- and post-processing software. It is interesting to note 
that CalculiX is compatible, in terms of input data, with a number of commercial 
FEM software packages such as: NASTRAN, ANSYS or ABAQUS. Additionally, 
CalculiX offers its users generation of input data for other open-source solvers. 

Another free FEM software package is SimScale [ 65]. It is interesting to note that 
SimScale is a fully web-based FEM solution for computer aided engineering (CAE) 
available as a free tool for non-commercial use. It is well integrated with another 
web-based solution for computer aided design (CAD) named Onshape [ 66]. Both 
of them, integrated together, represent a powerful cloud-based computation tool for 
scientists and engineers employing FEM for solving scientific and/or engineering 
problems from various fields. 

It should be mentioned here once more that the constant development of FEM, 
as well as many similar numerical techniques based of FEM, comes from the fact 
that the number of software packages for more general purposes or very specialised 
ones, changes very rapidly due to the constant demand of engineers and academia. 
Many specialised and customised solutions are reported in the available literature 
devoted to the subject of FEM. What is more interesting, many such solutions are 
successfully adopted by commercial FEM software developers, which can be clearly 
seen over all these years that have passed since the beginning of FEM. 

References 

1. F. V. Hunt. Origins in acoustics: The science of sound from antiquity to the age of Newton. 
Yale University Press, New Haven and London, 1978. 

2. A. Kinsella. Finding nature at sea during NASA’s S-MODE field campaign. https://blogs. 
nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-
campaign, 2022. Visited on 09/12/2023.

https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign
https://blogs.nasa.gov/earthexpeditions/2022/11/03/finding-nature-at-sea-during-nasas-s-mode-field-campaign


References 17

3. MISR Team NASA/GSFC/LaRC/JPL. Gravity waves ripple over marine Stratocumulus 
clouds. https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-
stratocumulus-clouds, 2003. Visited on 09/12/2023. 

4. NASA Earth Observatory. Volcanic shockwave captured by ISS imagery. https://www. 
universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery, 2009. Visited on 
09/12/2023. 

5. NASA/JPL-Caltech/Space Science Institute. Staggering structure. https://science.nasa.gov/ 
resource/staggering-structure, 2017. Visited on 09/12/2023. 

6. T. F. Glick, S. Livesey, and F. Wallis. Medieval science, technology, and medicine: An ency-
clopedia. Routledge, Taylor & Francis Group, London, 2005. 

7. R. B. Lindsay. Acoustics: Historical and philosophical development. Dowden, Hutchinson & 
Ross, Stroudsburg, 1973. 

8. R. B. Lindsay. The story of acoustics. The Journal of the Acoustical Society of America, 
39:629–644, 1966. 

9. J. W. S. Rayleigh. The theory of sound. Dover Publications, Inc., New York, 1945. 
10. J. Tyndall. Sound. A Course of eight lectures. Greenwood Press, New York, 1969. 
11. H. L. F. Helmholtz. On sensations of tone. Greenwood Press, New York, 1862. 
12. D. L. Pochhammer. Gleichgewicht des elastischen Stabes. Universtitäts-Buchhandlung, Kiel, 

1879. 
13. D. L. Pochhammer. Über die Fortpflanzung Geschwindigkeiten kleiner Schwingungen in einem 

unbegrenzten isotropen Kreiszylinder. Journal für die Reine und Angewandte Mathematik, 
81:324–336, 1876. 

14. C. Chree. Longitudinal vibrations of a circular bar. Quarterly Journal of Mathematics, 21:287– 
288, 1886. 

15. H. Lamb. On waves in an elastic plate. Proceedings of the Royal Society A, 93:114–128, 1917. 
16. H. Lamb. The dynamical theory of sound. Edward Arnold, London, 1910. 
17. E. Reissner. The effect of transverse shear deformation on the bending of elastic plates. ASME 

Journal of Applied Mechanics, 12:68–77, 1945. 
18. R. D. Mindlin. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic 

plates. ASME Journal of Applied Mechanics, 18:31–38, 1951. 
19. R. D. Mindlin and G. Herrmann. A one dimensional theory of compressional waves in an 

elastic rod. Proceedings of the First U.S. National Congress on Applied Mechanics, Chicago, 
Illinois, 1:187–191, 11-16 June 1951. 

20. J. N. Reddy. A simple higher-order theory for laminated composite plates. ASME Journal of 
Applied Mechanics, 51:745–752, 1984. 

21. A. Hrennikoff. Solution of problems of elasticity by the framework method. Journal of Applied 
Mechanics, 8:169–175, 1941. 

22. A. Hrennikoff. Framework method and its technique for solving plane stress problems. Inter-
national Association for Bridge and Structural Engineering Publications, 9:217–248, 1949. 

23. R. Courant. On a method for the solution of boundary-value problems. in: Theodore von Kármán 
Anniversary Volume. University of Michigan, 1941. 

24. R. Courant. Variational methods for the solution of problems of equilibrium and vibrations. 
Bulletin of the American Mathematical Society, 49:1–23, 1943. 

25. G.  Strang  and G. J. Fix.  An analysis of the finite element method. Prentice Hall, New Jersey, 
1973. 

26. J. H. Argyris and D. W. Scharpf. Finite elements in time and space. Nuclear Engineering and 
Design, 10:456–464, 1969. 

27. J. H. Argyris, P. C. Dunne, and T. Angelopoulos. Non-linear oscillations using the finite element 
technique. Computer Methods in Applied Mechanics and Engineering, 2:203–250, 1973. 

28. J. H. Argyris, H. Balmer, J. S. Doltsinis, P. C. Dunne, M. Haase, M. Kleiber, G. A. Melejannakis, 
H. P. Mlejnek, M. Müller, and D. W. Scharpf. Finite element method – natural approach. 
Computer Methods in Applied Mechanics and Engineering, 17:1–106, 1979. 

29. G. Cantin and R. W. Clough. A curved cylindrical shell finite element. AIAA Journal, 6:1057– 
1062, 1968.

https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://earthobservatory.nasa.gov/images/4117/gravity-waves-ripple-over-marine-stratocumulus-clouds
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://www.universetoday.com/33431/volcanic-shockwave-captured-by-iss-imagery
https://science.nasa.gov/resource/staggering-structure
https://science.nasa.gov/resource/staggering-structure
https://science.nasa.gov/resource/staggering-structure
https://science.nasa.gov/resource/staggering-structure
https://science.nasa.gov/resource/staggering-structure
https://science.nasa.gov/resource/staggering-structure
https://science.nasa.gov/resource/staggering-structure


18 1 Introduction

30. S. F. Pawsey and R. W. Clough. Improved numerical integration of thick shell finite elements. 
International Journal for Numerical Methods in Engineering, 3:575–586, 1971. 

31. G. A. Fonder and R. W. Clough. Explicit addition of rigid body motions in curved finite 
elements. AIAA Journal, 11:305–317, 1973. 

32. O. C. Zienkiewicz, D. W. Kelly, and P. Bettess. Reduced integration technique in general 
analysis of plates and shells. International Journal for Numerical Methods in Engineering, 
3:275–290, 1971. 

33. I. Christie, D. F. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz. Finite element methods for 
second order differential equations with significant first derivatives. International Journal for 
Numerical Methods in Engineering, 10:1389–1396, 1976. 

34. O. C. Zienkiewicz, D. W. Kelly, and P. Bettess. Coupling of finite element method and boundary 
solution procedures. International Journal for Numerical Methods in Engineering, 11:355–375, 
1977. 

35. P. G. Ciarlet and C. Wagschal. Multipoint Taylor formulas and applications to the finite element 
method. Numerische Mathematik, 17:84–100, 1971. 

36. P. G. Ciarlet and P. A. Raviart. General Lagrange and Hermite interpolation in.Rn with appli-
cations to finite element methods. Archive for Rational Mechanics and Analysis, 46:178–198, 
1972. 

37. P. G. Ciarlet and R. Glowinski. Dual iterative techniques for solving a finite element approxima-
tion of the biharmonic equation. Computer Methods in Applied Mathematics and Engineering, 
5:277–295, 1975. 

38. R. H. Gallagher and R. H. Mallett. Efficient solution processes for finite element analysis of 
transient heat conduction. Journal of Heat Transfer, 93:257–263, 1971. 

39. R. H. Gallagher. The finite element method in shell stability analysis. Computers & Structures, 
3:543–557, 1973. 

40. K. Loganathan, S. C. Chang, and R. H. Gallagher. Finite element representation and pressure 
stiffness in shell stability analysis. International Journal for Numerical Methods in Engineer-
ing, 14:1413–1420, 1979. 

41. I. Babuška and M. Suri. Locking effects in the finite element approximation of elasticity prob-
lems. Numerische Mathematik, 62:439–463, 1992. 

42. I. Babuška and M. Suri. The. p and.h-. p versions of the finite element method, basic principles 
and properties. SIAM Review, 36:578–632, 1994. 

43. I. Babuška, J. R. Whiteman, and T. Strouboulis. Finite elements: An introduction to the method 
of error estimation. Oxford University Press, Oxford, 2011. 

44. J. T. Oden and J. N. Reddy. An introduction to the mathematical theory of finite elements. 
Wiley, New York, 1976. 

45. C. E. Baumann and J. D. Oden. A discontinuous .hp finite element method for the Euler and 
Navier’Stokes equations. International Journal for Numerical Methods in Fluids, 31:79–95, 
1999. 

46. M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis. John 
Wiley & Sons, Ltd., New York, 2011. 

47. J. F. Doyle. Wave propagation in structures. Springer-Verlag, Inc., New York, 1997. 
48. S. A. Rizzi and J. F. Doyle. A spectral element approach to wave motion in layered solids. 

Journal of Vibration and Acoustics, 114:569–577, 1992. 
49. S. Gopalakrishnan and J. F. Doyle. Spectral super-elements for wave-propagation in struc-

tures with local nonuniformities. Computer Methods in Applied Mechanics and Engineering, 
121:79–90, 1995. 

50. D. R. Mahapatra and S. Gopalakrishnan. A spectral finite element model for analysis of axial-
flexural-shear coupled wave propagation in laminated composite beams. Composite Structutrs, 
59:67–88, 2003. 

51. S. Gopalakrishnan, A. Chakraborty, and D. R. Mahapatra. Spectral finite element method: Wave 
propagation, diagnostics and control in anisotropic and inhomogeneous structures. Springer-
Verlag London, London, 2008.



References 19

52. A. T. Patera. A spectral element method for fluid dynamics: Laminar flow in a channel expan-
sion. Journal of Computational Physics, 54:468–488, 1984. 

53. K. Z. Korczak and A. T. Patera. An isoparametric spectral element method for solution of the 
Navier-Stokes equations in complex-geometry. Journal of Computational Physics, 62:361– 
382, 1986. 

54. Y. Maday, D. Meiron, A. T. Patera, and E. M. Ronquist. Analysis of iterative methods for the 
steady and unsteady Stokes problems – Application to spectral element discretizations. SIAM 
Journal of Scientific Computing, 14:310–337, 1993. 

55. http://www.mscsoftware.com. Visited on 23/08/2019. 
56. http://www.ansys.com. Visited on 23/08/2019. 
57. http://www.simula.com. Visited on 23/08/2019. 
58. http://www.adina.com. Visited on 23/08/2019. 
59. http://www.comsol.com. Visited on 23/08/2019. 
60. http://www.en.z88.de. Visited on 27/08/2019. 
61. http://www.code-aster.org. Visited on 27/08/2019. 
62. http://www.salome-platform.org. Visited on 28/08/2019. 
63. http://www.elmerfem.org. Visited on 27/08/2019. 
64. http://www.calculix.de. Visited on 27/08/2019. 
65. http://www.simscale.com. Visited on 23/08/2019. 
66. http://www.onshape.com. Visited on 23/08/2019.

http://www.mscsoftware.com
http://www.mscsoftware.com
http://www.mscsoftware.com
http://www.mscsoftware.com
http://www.ansys.com
http://www.ansys.com
http://www.ansys.com
http://www.ansys.com
http://www.simula.com
http://www.simula.com
http://www.simula.com
http://www.simula.com
http://www.adina.com
http://www.adina.com
http://www.adina.com
http://www.adina.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.comsol.com
http://www.en.z88.de
http://www.en.z88.de
http://www.en.z88.de
http://www.en.z88.de
http://www.en.z88.de
http://www.code-aster.org
http://www.code-aster.org
http://www.code-aster.org
http://www.code-aster.org
http://www.code-aster.org
http://www.salome-platform.org
http://www.salome-platform.org
http://www.salome-platform.org
http://www.salome-platform.org
http://www.salome-platform.org
http://www.elmerfem.org
http://www.elmerfem.org
http://www.elmerfem.org
http://www.elmerfem.org
http://www.calculix.de
http://www.calculix.de
http://www.calculix.de
http://www.calculix.de
http://www.simscale.com
http://www.simscale.com
http://www.simscale.com
http://www.simscale.com
http://www.onshape.com
http://www.onshape.com
http://www.onshape.com
http://www.onshape.com


Chapter 2 
Wave Essentials 

2.1 Wave Motion 

Elastic waves or waves in elastic media have exactly the same nature when they 
propagate in various elements of engineering structures. Their motion can be fully 
characterised by the language of modern mathematics, as presented in the following 
sections of this chapter. However, before studying propagation of elastic waves in 
complex engineering structures, it is necessary to introduce some basic definitions 
commonly used to describe wave motion, which are very helpful to fully understand 
and reveal the true nature of elastic waves. 

Firstly, it is helpful to clarify what in fact are waves, or what is wave motion in 
elastic media? It was already mentioned that waves are a kind of disturbance that 
can transfer energy from one point in space to another, as presented in Fig. 2.1. In  
the case of elastic media this transfer of energy is achieved thanks to the existence 
of elastic forces in these media. 

The fundamental property of elastic media is that elastic forces are recoverable, 
or in other words, that no energy is lost during the process of elastic deformation of 
the media, which can be true only under an assumption of small deformations. Wave 
motion is associated with elastic forces acting and varying in time. These forces are 
directly responsible for the existence of waves, as they lead to the transfer of the 
resulting deformation from one point in space to another, and further on. This can 
be observed from the outside as the phenomenon known as propagation of elastic 
waves. The type of elastic deformation can be of two distinctive natures. It can have 
the nature of either voluminal deformation, due to compression or tension forces 
acting, or shape deformation, due to shear forces acting. 

Particular types of elastic waves, which can propagate in various elements of 
engineering structures, as a results of the coupled interaction between these two 
fundamental wave types (voluminal and shear, as presented in Fig. 1.5), as well as 
the interaction of these waves with structural boundaries, give rise to new types of 
waves such as, for example, Love and Rayleigh waves in solids or Lamb waves in 
plates. These are discussed in more detail in the following sections of this book. 
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Fig. 2.1 A wave pattern  on  
the surface of water as a 
results of falling drops [ 1] 

2.2 Wave Relations 

Harmonic oscillations, as presented in Fig. 2.2, are a type of oscillation that vary 
sinusoidally in space. x and time. t with some constant frequency. ω and wave number 
. k. They play a very important role in many fields of science. It will be shown later 
that their applicability extends not only to basic or simple cases, but they can be 
successfully used to study and investigate elastic waves of any type. 

Harmonic oscillations, or harmonic waves, in a 1-D elastic medium, can be 
expressed mathematically in various alternative forms: 

.

u(x, t) = A sin(kx − ωt − ψ)

= A cos(kx − ωt − θ)

= A1 cos(kx − ωt) + A2 sin(kx − ωt)

(2.1) 

where.u(x, t) denotes a response of the medium being a function of space. x and time 
. t . The meaning of physical quantities associated with harmonic waves, as well as 
Eq. (2.1), are shown in the following list: 

. ω—angular frequency in radians per second (rad/s), where .ω = 2π f , 

. f—cyclic frequency in cycles per second or hertz (c/s, Hz), where . f = 1/T , 

. T—period in seconds (s), 

. k—wave number in radians per meter (rad/m), where .k = 2π/λ, 

. λ—wavelength in meters (m), 

. φ—wave phase in radians (rad), where .φ = kx − ωt , 

. ψ—initial phase in radians (rad), 

. θ—initial phase in radians (rad), where .θ = ψ − π/2, 

. cp—phase velocity in meters per second (m/s), where .cp = ω/k,
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Fig. 2.2 A harmonic wave propagating in a 1-D elastic medium 

. cg—group velocity in meters per second (m/s), where .cg = dω/dk, 

. A—amplitude in meters (m), where .A =
/
A2
1 + A2

2, 
.A1—amplitude in meters (m), where .A1 = −A sinψ = A cos θ, 
.A2—amplitude in meters (m), where .A2 = A cosψ = A sin θ. 

A very important feature of a harmonic wave is the speed of its propagation, which 
is known as the phase velocity. cp. The phase velocity.cp provides information on how 
fast a wave of constant angular frequency. ω, or constant wave number. k, propagates 
in space. Such harmonic waves are also known in the literature as monochromatic 
waves [ 2]. 

Alternatively, it can be said that the phase velocity .cp is the rate at which the 
phase . φ of a harmonic wave propagates in space. This can be easily calculated by 
considering the phase differential .dφ as: 

.

φ = const ⇒ kx − ωt − ψ = const⏐↓
dφ = d(kx − ωt − ψ) = k dx − ω dt = 0⏐↓

k dx = ω dt ⇒ dx

dt
= ω

k
= cp

(2.2) 

It should be said that the majority of signals propagating in nature are localised 
in space, travelling as wave packets, as can be seen in Fig. 2.3. This is in contrast to 
harmonic waves, which are represented by infinite sinusoids travelling throughout
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Fig. 2.3 An example of a 
sound signal, which 
represents a song. This 
signal is formed by many 
wave packets placed at 
various moments in time. t
along the time axis 

space, and which cannot be localised. However, wave packets can be thought of as 
represented by or composed of many harmonic waves of various frequencies, wave 
numbers and amplitudes, which propagate at various phase velocities. This is thanks 
to the famous Fourier theorem and the superposition principle. In such a case the 
speed at which wave packets propagate in space can be associated with a new velocity, 
called the group velocity . cg , rather than the phase velocity .cp of its components, as 
these two velocities can be significantly different. 

The concept of the group velocity .cg can be easily explained by considering two 
harmonic waves .u1(x, t) and .u2(x, t) of the same amplitudes, which differ slightly 
in their angular frequencies .ω1 and .ω2 as well as wave numbers .k1 and . k2: 

.

{
u1(x, t) = A1 cos(k1x − ω1t) + A2 sin(k1x − ω1t)
u2(x, t) = A1 cos(k2x − ω2t) + A2 sin(k2x − ω2t)

(2.3) 

where .k1 = k̄ + dk and .k2 = k̄ − dk, while .ω1 = ω̄ + dω and .ω2 = ω̄ − dω. 
The sum of the waves .u1(x, t) and .u2(x, t), after simple trigonometric manipu-

lations, takes the following form: 

.u(x, t) = u1(x, t) + u2(x, t) = B1 cos(k̄x − ω̄t) + B2 sin(k̄x − ω̄t) (2.4) 

where now the amplitudes .B1 and .B2 can be expressed in the following manner: 

.B1 = 2A1 cos(dk x − dω t), B2 = 2A2 cos(dk x − dω t) (2.5)
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Now, it can be seen from Eqs. (2.4) and (2.5) that the resulting sum of the two 
harmonic waves.u1(x, t) and.u2(x, t) is a new harmonic wave.u(x, t). This wave can 
be characterised by the average carrier frequency. ω̄ and the average wave number. k̄, 
the amplitude of which is modulated rather than being constant. The phase velocity 
of this modulation, enveloping the carrier wave, can be evaluated as before: 

.

φ = const ⇒ dk x − dω t = const⏐↓
dφ = d(dk x − dω t) = dk dx − dω dt = 0⏐↓

dk dx = dω dt ⇒ dx

dt
= dω

dk
= cg

(2.6) 

which in fact is the speed of a group of internal waves enveloped within one modu-
lation cycle. This group travels with the group velocity . cg . 

It can be expected that the difference between the values of the phase velocity 
.cp and the group velocity .cg can lead to interesting behaviour. Such behaviour is 
commonly known as dispersion and is a direct consequence of different values of 
the phase velocities .cp of particular harmonic components of a wave packet. This is 
explained in detail in Sect. 2.5. 

In general, the phase velocity.cp and the group velocity.cg can be certain functions 
of the wave number. k or the angular frequency. ω. Therefore it can be formally written 
that .cp = cp(k) and .cp = cp(ω), as well as .cg = cg(k) and .cg = cg(ω). 

Now, it is worth looking at a direct link between these two velocities, which can 
be expressed in the flowing manner: 

.cg = dω

dk
= d

dk
(kcp) = cp + k

dcp
dk

(2.7) 

or alternatively as 1: 

.cg = dω

dk
= dω

d

(
ω

cp

) = dω

dω

cp
− ω

dcp
c2p

= c2p

cp − ω
dcp
dω

(2.8) 

which relations will come in useful in the following sections of this book. It should 
be said here that with no difficulty the formulae given by Eqs. (2.7) and (2.8) can be 
expressed as functions of the wavelength . λ or the cyclic frequency . f , by the use of 
the relations presented at the beginning of this section.

1 It may be useful to note from Eq. (2.8) that when.dcp/dω → 0 than.cg → cp . On the other hand 
when.dcp/dω → ∞ then.cg → 0. 
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2.3 Simple Wave Equations 

2.3.1 1-D Elastic Rod 

Investigation of wave propagation in elastic media can be started from a simple case 
of a stress pulse propagating in a 1-D isotropic elastic rod, as presented in Fig. 2.4. 

The resulting wave equation can be straightforwardly obtained by the application 
of d’Alembert’s principle. It should be noticed that the axial force .N (x, t) acting 
within the rod, varying in time. t and space. x , is responsible for local deformation of 
the rod material. This deformation can be expressed in terms of the strain .∈xx (x, t), 
which links together the local displacement.u(x, t)with the local strain.∈xx (x, t) and 
the stress .σxx (x, t), by the very well-known Hooke’s law. It can be written that: 

.σxx (x, t) = E∈xx (x, t), ∈xx (x, t) = ∂u(x, t)

∂x
(2.9) 

where .E is Young’s modulus of the rod material. 
The axial force .N (x, t) can be expressed in terms of the local stress .σxx (x, t), or  

in terms of the local displacement .u(x, t) by the application of Eq. (2.9): 

.N (x, t) =
{

S
σxx (x, t)dS = Sσxx (x, t) = SE

∂u(x, t)

∂x
(2.10) 

where . S is the cross-sectional area of the rod. 
The local nature of rod deformation allows one to expand locally the axial force 

.N (x, t) into a Taylor series as: 

.N (x + dx, t) = N (x, t) + ∂N (x, t)

∂x
dx + 1

2

∂2N (x, t)

∂x2
dx2 + . . . (2.11) 

Fig. 2.4 A concept of a 1-D isotropic elastic rod
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Considering a thin section of the rod .dx , as presented in Fig. 2.4, it can be found 
that the rod longitudinal motion is driven by the axial forces acting on the right and 
left-hand side of the section .dx . Application of d’Alembert’s principle leads to the 
following equation: 

.N (x + dx, t) − N (x, t) = a(x, t)dm (2.12) 

where.dm is the mass of the section.dx , while.a(x, t) represents its axial acceleration. 
The mass .dm of the section .dx can be expressed in terms of its material density . ρ
and volume. V , which is equal to .ρSdx . 

Knowing that that the axial acceleration.a(x, t) is equal to the second time deriva-
tive of the axial displacement .u(x, t) with respect to time . t , and that higher-order 
terms of the Taylor series given by Eq. (2.11) can be neglected due to local nature of 
the rod deformation .∈xx (x, t), it can be written that: 

.
∂N (x, t)

∂x
dx = ∂

∂x

[
SE

∂u(x, t)

∂x

]
dx = ρSdx

∂2u(x, t)

∂t2
(2.13) 

This equation can be further simplified, assuming the independence of the rod 
cross-sectional area . S and Young’s modulus .E of the spatial coordinate . x , to form  
the wave equation of the following form: 

.SE
∂2u(x, t)

∂x2
= ρS

∂2u(x, t)

∂t2
(2.14) 

Alternatively, the wave equation can be presented in its most well-known form as: 

.
∂2u(x, t)

∂x2
= 1

β2

∂2u(x, t)

∂t2
, β =

/
E

ρ
(2.15) 

where . β is a certain constant expressed in meters per second (m/s). 
It should be emphasised here that its value turns out to be equal to the phase 

velocity .cp of longitudinal waves, which can propagate in the rod: 

.β = cp =
/

E

ρ
(2.16) 

It was found by Jean le Rond d’Alembert that a general solution to the 1-D wave 
equation (2.15) can be obtained by a simple substitution: 

.

{
ξ(x, t) = x − cpt
η(x, t) = x + cpt

(2.17) 

which reduces the wave equation (2.15) to:
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.
∂2u(ξ, η)

∂ξ∂η
= 0 (2.18) 

This equation has a general solution in the following form: 

.u(ξ, η) = F(ξ) + G(η) or u(x, t) = F(x − cpt) + G(x + cpt) (2.19) 

where arbitrary functions.F(x − cpt) and.G(x + cpt) represent two waves travelling 
within the rod in opposite directions. 

In the case of an initial value problem, the wave equation (2.15) must be sup-
plemented by certain initial and boundary conditions. These conditions restrict the 
arbitrariness of the functions .F(x − cpt) and .G(x + cpt) and can be presented as: 

.

{
u(x, 0) = f (x)
∂u(x, 0)

∂t
= g(x)

(2.20) 

where functions . f (x) and .g(x) describe initial displacements and initial velocities 
within the rod, respectively. 

A solution to the initial value problem defined in this way was also studied and 
found by d’Alembert. It can be presented in the following manner: 

.u(x, t) = f (x − cpt) + f (x + cpt)

2
+ 1

2cp

{ x+cpt

x−cpt
g(τ )dτ (2.21) 

It can be clearly seen that in the case of the function.g(x) being equal to zero, the 
solution given by Eq. (2.21) simplifies to: 

.u(x, t) = f (x − cpt) + f (x + cpt)

2
(2.22) 

This allows one to state that the initial displacement, described by the function. f (x), 
travels within the rod in opposite directions as two independent wave pulses. Their 
amplitudes are reduced by half during their propagation, as is shown in Fig. 2.5. 

Additionally, it can be clearly seen from Fig. 2.5 that the initial axial displacement 
.u(x, 0) = f (x) travels within the rod with the phase velocity.cp as two independent 
longitudinal waves, exactly as prescribed by Eq. (2.22). Their locations within the rod 
at particular moments in time. t are precisely described by two sets of characteristics: 

.

{
x − cpt − 1

2Δx = 0

x − cpt + 1
2Δx = 0

(2.23) 

.

{
x + cpt − 1

2Δx = 0

x + cpt + 1
2Δx = 0

(2.24)
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Fig. 2.5 Propagation of an initial condition in the form of an axial displacement pulse in a 1-D 
isotropic elastic rod 

where .Δx denotes the spatial width of the initial displacement in Fig. 2.5. The  two  
sets of characteristics determine the position of the waves travelling in the direction 
of the . x axis, in the case of Eq. (2.23), and in the opposite direction, in the case of 
Eq. (2.24). 

Moreover, it should be emphasised here that the resulting wave equation (2.15) 
is a linear partial differential equation and as such it has a very well-known and 
profound property of superposition. This property allows one to search for a solution 
to this equation in the form of combined solutions to individual initial value problems 
instead of a solution to a combined initial value problem. 

Alternatively, it can be said that the analysis of wave propagation, determined by 
the wave equation (2.15), can be carried out by breaking up the initial wave into a 
number of linearly dependent components. For example, this takes place in the case 
of a Fourier series introduced by Jean-Baptiste Joseph Fourier, which allows one 
to represent a given periodic function as a combination of sinusoidal functions of 
various amplitudes and frequencies.
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2.3.2 1-D Elastic Beam 

In the case of wave propagation in a 1-D isotropic elastic beam, as presented in 
Fig. 2.6, a stress pulse propagating within the beam also results from the local defor-
mation of the beam material. 

However, in the case of flexural waves propagating within the beam, their presence 
is the effect of the shear force.Q(x, t) and the bending moment acting within the beam 
.M(x, t), which varies in time. t and space. x . Once again the use of very well-known 
Hooke’s law allows one to write the relations between the local strain . ∈xx (x, z, t)
and the stress .σxx (x, z, t) in the following form: 

.σxx (x, z, t) = E∈xx (x, z, t), ∈xx (x, z, t) = −z
∂2w(x, t)

∂x2
(2.25) 

Additionally, the bending moment .M(x, t) can be obtained in a straightforward 
manner as a function of the local stress .σxx (x, z, t): 

.M(x, t) =
{

S
zσxx (x, z, t)dS (2.26) 

which leads, after substitution of Eq. (2.25) to Eq.  (2.26), to a well-known relation-
ship: 

.M(x, t) = −E
∂2w(x, t)

∂x2

{

S
z2dS = −E I

∂2w(x, t)

∂x2
(2.27) 

where . I is the the area moment of inertia of the beam cross-section . S. 

Fig. 2.6 A concept of a 1-D isotropic elastic beam
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In a similar manner as in the case of the 1-D elastic rod, it can be stated that the 
beam deformation allows one to expand locally the shear force.Q(x, t) into a Taylor 
series as: 

.Q(x + dx, t) = Q(x, t) + ∂Q(x, t)

∂x
dx + 1

2

∂2Q(x, t)

∂x2
dx + . . . (2.28) 

Once again, by considering a thin section of the beam.dx , as presented in Fig. 2.6, 
it can be found that the beam transverse motion is driven by the shear forces acting 
on the right and left-hand side of the section.dx . A relationship binding together the 
shear force.Q(x, t) with the bending moment.M comes from the theory of elasticity 
as: 

.Q(x, t) = ∂M(x, t)

∂x
(2.29) 

Application of d’Alemebert’s principle to the section of the beam.dx leads to the 
following equation: 

.Q(x + dx, t) − Q(x, t) = a(x, t)dm (2.30) 

where .dm is the mass of the section .dx of the beam, while now .a(x, t) represents 
its transverse acceleration. Again, the mass .dm of the section .dx can be expressed 
in terms of its material density . ρ and its volume. V , which is equal to .ρSdx , exactly 
as in the case of the rod. 

Now, expressing the transverse acceleration.a(x, t) as equal to the second deriva-
tive of the transverse displacement .w(x, t) with respect to time . t leads to: 

.
∂Q(x, t)

∂x
dx = − ∂2

∂x2

[
E I

∂2w(x, t)

∂x2

]
= ρSdx

∂2w(x, t)

∂t2
(2.31) 

after neglecting higher-order terms of the Taylor series from Eq. (2.28), subsequent 
substitution of Eq. (2.28) into Eq. (2.30), and the use of Eq. (2.29). 

Yet again, the resulting wave equation can be further simplified. This can be done 
under the assumption of the independence of the beam cross-sectional area. S and the 
area moment of inertia. I , as well as Young’s modulus. E , of the spatial coordinate. x . 
As a result the wave equation for propagation of flexural waves in the beam can be 
written in the following form: 

. − ∂4w(x, t)

∂x4
= 1

β4

∂2w(x, t)

∂t2
, β = 4

/
E I

ρS
(2.32) 

where now . β is a different constant, which cannot represent the speed of flexural 
waves in the beam. It should be noted that . β is expressed in metres per square root 
of a second (m/.

√
s) rather than in meters per second (m/s).
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2.4 Fourier Method 

A very effective and simple analytical method used to study and analyse wave equa-
tions is the Fourier method, also known as the method of separation of variables. In 
this method an unknown function.u(x, t) of space. x and time. t variables is assumed 
to have a representation, which can be expressed as a product to two independent 
functions, a space function .X (x) and a time function .T (t): 

.u(x, t) = X (x)T (t) (2.33) 

In the case of the 1-D isotropic elastic rod, the form of Eq. (2.33) allows on to 
replace the partial derivatives in the wave equation (2.15) by ordinary derivatives, 
according to the following formulae: 

.u(x, t) = X (x)T (t) →

⎧
⎪⎨
⎪⎩

∂2u(x, t)

∂x2
= T (t)

d2X (x)

dx2
∂2u(x, t)

∂t2
= X (x)

d2T (t)

dt2

(2.34) 

In this manner a simple substitution of Eq. (2.34) into the wave equation (2.15) 
leads, after necessary rearrangements, to a set of new ordinary differential equations: 

.
1

X (x)

d2X (x)

dx2
= 1

β2T (t)

d2T (t)

dt2
(2.35) 

Since the left-hand side of Eq. (2.35) depends only on the spatial coordinate . x , 
and the right-hand side only on time . t , this equation can be satisfied only if its both 
sides are equal to one common constant, which can be conveniently assumed to equal 
to .−k2. In this way two separated ordinary equations are formed: 

.
d2X (x)

dx2
+ k2X (x) = 0,

d2T (t)

dt2
+ ω2T (t) = 0 (2.36) 

where .ω = kβ denotes the angular frequency and . k is the wave number. 
These ordinary differential equations have well-known solutions: 

.X (x) = A1 cos kx + A2 sin kx, T (t) = A3 cosωt + A4 sinωt (2.37) 

where .A1, .A2, .A3 and .A4 are real constants, which values depend on initial and 
boundary conditions. 

Based on the obtained solutions to the ordinary differential equations given by 
Eq. (2.37) the unknown function .u(x, t) can be expressed as follows: 

.
u(x, t) = X (x)T (t)

= (A1 cos kx + A2 sin kx)(A3 cosωt + A4 sinωt)
(2.38)
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or alternatively, after simple mathematical manipulations and trigonometric reduc-
tion, in a form which clearly indicates particular waves, being solutions to the wave 
equation (2.15): 

.
u(x, t) = B1 cos(kx − ωt) + B2 sin(kx − ωt)

+ B3 cos(kx + ωt) + B4 sin(kx + ωt)
(2.39) 

where new real constants .B1, .B2, .B3 and .B4 are introduced, and which result from 
the rearrangement of appropriate terms in Eq. (2.38). 

At this point it is convenient to note that the real solution given by Eq. (2.39) can 
be expressed by the complex exponential function using Euler’s formula: 

.

A cosφ + B sin φ = Re[(A + iB) cosφ − i(A + iB) sin φ]
= Re[(A + iB)(cosφ − i sin φ)]
= Re[(A + iB)e−iφ]
= Re[Ce−iφ]

(2.40) 

or alternatively: 

.

A cosφ + B sin φ = Re[(A − iB) cosφ + i(A − iB) sin φ]
= Re[(A − iB)(cosφ + i sin φ)]
= Re[(A − iB)eiφ]
= Re[C̄eiφ]

(2.41) 

where . i is the imaginary unit, i.e. .i2 = −1, the constants .C = A + iB and . C̄ =
A − iB are complex conjugate numbers, while the phase . φ can take the form of 
either .kx − ωt or .kx + ωt . 

Based on the complex representation given by Eq. (2.41) the solution to the wave 
equation (2.15) can be presented in a much simpler form as: 

.u(x, t) = C1e
i(kx−ωt) + C2e

i(kx+ωt) (2.42) 

where new complex constants .C1 and .C2 are introduced as .C1 = B1 − i B2 and 
.C2 = B3 − i B4. However, one must remember that the resulting solution is complex 
in this case and only its real part represents the solution to Eq. (2.36). In order to 
simplify the notation the symbol.Re[•], denoting the real part of a complex expression 
.[•], is omitted in Eq. (2.42) and from this point on. 

It can be clearly seen that the form of the solution given by Eq. (2.42) fully 
conforms with the solution given by Eq. (2.19). Moreover, it will be shown later that 
particular wave solutions to Eq. (2.42) indeed represents waves propagating either 
in positive or negative direction of the . x axis.



34 2 Wave Essentials

The general solution to the wave equation (2.15) can be presented in an equiv-
alent form, as a combination of two independent spatial solutions multiplied by a 
time harmonic factor. This can be obtained by the simultaneous use of the complex 
representations given by Eqs. (2.40) and (2.41) to the phase . φ equal to .kx + ωt or 
.kx − ωt , respectively. This leads to the following form of the general solution: 

.u(x, t) = (C1e
ikx + C2e

−ikx )e−iωt (2.43) 

where now the complex constants .C1 and .C2 are equal to .C1 = B1 − i B2 and . C2 =
B3 + i B4, respectively. 

The form of the general solution obtained fully corresponds to the initial assump-
tion (2.33) of the Fourier method about the representation of the unknown function 
.u(x, t) as a product of two independent space and time functions, while the latter 
can be expressed as a time harmonic function: 

.u(x, t) = X (x)e−iωt (2.44) 

and as such, this property will be used later in the following sections of this book. 

2.5 Wave Dispersion 

Dispersion is a very important aspect of the wave propagation phenomena. Due to 
dispersion different frequency components of elastic waves travel at different speeds. 
It will be shown that the shape of non-dispersive waves remains unchanged during 
their propagation as long as they propagate in a non-dissipative medium and their 
energy is conserved. In contrast to this the shape of dispersive waves evolves during 
their propagation and the changes in their shapes that can be observed are stronger 
the longer the distance the waves travel, as presented in Fig. 2.7. 

Since wave equations appear in many scientific and engineering problems, their 
accurate solution is a very important aspect of research practice. In each case dis-
persion, or dispersion relations, must be very carefully taken into account. There are 
many methods that can be potentially applied in order to solve a wave equation and 
their success is directly dependent on the type of problem. In general, they can be 
divided into analytical and numerical methods, despite the fact that there exist a range 
of other approximate methods such as, for example, a graphical method of charac-
teristics. In the present era of modern supercomputers and fast parallel computations 
various numerical methods are successfully adopted for this purpose. 

It should be noted that in the case of simple problems, such as the 1-D problems 
described in the preceding paragraphs, analytical methods are preferable for giving 
a great insight into the problem, as well as helping to understand the influence of 
various factors associated with solutions obtained for the wave equation. 

It was shown in the previous paragraphs that a very effective and simple analytical 
method used to examine wave equations is the Fourier method. The effectiveness
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Fig. 2.7 Wave propagation patterns for: a non-dispersive, b dispersive, waves in an isotropic elastic 
medium. Results of numerical computations by FEM 

and usefulness of this particular analytical approach in the case of wave propagation 
can be demonstrated for the wave equations given by Eq. (2.15) and Eq. (2.32). 

Taking into account the wave equation given by Eq. (2.15), describing propagation 
of elastic waves in a 1-D isotropic elastic rod from Sect. 2.3.1, it can be written that: 

.

∂2u(x, t)

∂x2
− 1

β2

∂2u(x, t)

∂t2
= 0

⏐⏐⏐↓u(x, t) = X (x)e−iωt

[
d2X (x)

dx2
+ ω2

β2
X (x)

]
e−iωt = 0

(2.45) 

which is satisfied for any moment in time. t only if the expression within the brackets 
is satisfied: 

.
d2X (x)

dx2
+ ω2

β2
X (x) = 0 (2.46) 

Expected solutions to Eq. (2.46) can be assumed to be in the exponential form.eikx , 
and their substitution into Eq. (2.46) leads to the characteristic equation: 

. − k2 + ω2

β2
= 0 (2.47)
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which has two different roots: 

.k = ±ω

β
or ω = ±kβ (2.48) 

and which can be associated with two elastic waves propagating within the rod in 
opposite directions. 

Now, the phase velocity .cp and the group velocity .cg of these two waves can be 
evaluated based on the relations given by Eq. (2.2) and Eq. (2.7), or by Eq. (2.8), to 
obtain: 

.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cp = ω

k
= β =

/
E

ρ

cg = dω

dk
= β =

/
E

ρ
= cp

(2.49) 

where for simplicity only the positive root was taken into account out of the two 
existing roots, as the one associated with the wave travelling in the positive direction 
of the . x axis. 

It can be noted straight away that since the values of the two velocities are the 
same and.cp = cg , regardless the angular frequency. ω, all wave components within a 
wave packet/stress pulse must travel at the same speed. As a result of this, the shape 
of a wave packet propagating within the rod remains unchanged over the distance. x , 
and in time . t , as already presented in Fig. 2.5. 

However, in the case of the wave equation given by Eq. (2.32), describing propa-
gation of elastic waves in a 1-D isotropic elastic beam from Sect. 2.3.2, observations 
are different. It can be written that: 

.

∂4w(x, t)

∂x4
+ 1

β4

∂2w(x, t)

∂t2
= 0

⏐⏐⏐↓u(x, t) = X (x)e−iωt

[
d4X (x)

dx4
− ω2

β4
X (x)

]
e−iωt = 0

(2.50) 

which again can be satisfied at any moment in time . t only if the expression within 
the brackets is satisfied: 

.
d4X (x)

dx4
− ω2

β4
X (x) = 0 (2.51) 

As before, assuming expected solutions to Eq. (2.51) to be in the exponential form 
.eikx , their subsequent substitution to Eq. (2.51) leads to the characteristic equation: 

.k4 − ω2

β4
= 0 (2.52)
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which now has four different roots, which can be associated with two different wave 
propagation modes. The first mode represents solutions being elastic waves travelling 
within the beam, which are related to the two roots: 

.k = ±
√

ω

β
or ω = β2k2 (2.53) 

while the second mode represents evanescent waves, which are spatially damped 
wave solutions obtained in the case of the two remaining roots: 

.k = ±i

√
ω

β
or ω = −β2k2 (2.54) 

The phase velocity.cp and the group velocity.cg of the two waves, corresponding to 
the first wave propagation mode, can easily be evaluated from the same relationships 
as before, which are given by Eq. (2.2) and Eq. (2.7), or Eq. (2.8), as: 

.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cp = ω

k
= β

√
ω = 4

/
E I

ρS

√
ω

cg = dω

dk
= 2β

√
ω = 2 4

/
E I

ρS

√
ω = 2cp

(2.55) 

where again only the positive root was taken into account. 
In the case of waves propagating in the 1-D isotropic elastic beam, in contrast to 

the case of the 1-D isotropic elastic rod, the phase velocity.cp and the group velocity 
.cg are different, therefore .cp /= cg for all angular frequencies . ω. The intensity of 
dispersion, understood as the difference between the value of the group velocity 
.cg and the phase velocity .cp for a given wave number . k, strongly influences and 
controls the amount by which these amplitudes are reduced, and the way the shapes 
of the wave packet/stress pulses are distorted. Based on Eq. (2.7) this intensity can be 
simply expressed as directly dependent on the local derivative of the phase velocity 
.cp with respect to the wave number . k and equal to .k · dcp/dk. 

In general, it can be stated that wave packets, understood as groups of waves well 
localised in space and time, and characterised by finite dimensions, propagate with 
the group velocity . cg , while harmonic waves, infinite in space and time, propagate 
with the phase velocity. cp. When no dispersion is observed, these two velocities are 
equal, i.e. .cp = cg , exactly as in the case of the 1-D isotropic elastic rod. As a result 
of this, wave packets propagate within the rod with no changes in their shapes, as 
clearly seen in Fig. 2.5, as long as the rod material remains elastic. 

On the other hand, when dispersion in observed these two velocities are different, 
i.e. .cp /= cg . However, as presented in Fig. 2.8 also in this case two sets of charac-
teristics can be found, which determine the position of the waves travelling in the 
direction of the . x axis, in the case of Eq. (2.56), and in the opposite direction, in the
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Fig. 2.8 Propagation of an initial condition in the form of a transverse displacement pulse in a 1-D 
isotropic elastic beam 

case of Eq. (2.57). This time it can be clearly seen from Fig. 2.8 that the initial trans-
verse displacement .w(x, 0) = f (x) travels within the beam with the group velocity 
.cg rather than the phase velocity . cp, as two independent flexural waves, exactly as 
prescribed by Eq. (2.32). Their locations within the beam in particular moments in 
time . t are precisely described by two sets of characteristics: 

.

{
x − c,

gt − 1
2Δx0 = 0

x − c,,
g t + 1

2Δx0 = 0
(2.56) 

.

{
x + c,

gt − 1
2Δx0 = 0

x + c,,
g t + 1

2Δx0 = 0
(2.57) 

where .Δx0 denotes the spatial width of the initial displacement in Fig. 2.8, while . c,
g

and .c,,
g denote two group velocities associated with the width of the initial displace-

ment in the frequency domain. 
At this point it is convenient to assume that the time and frequency representations 

of a typical excitation signal can have the form of a wave packet. Such a wave 
packet may consist of a number of higher frequency harmonic oscillations modulated
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Fig. 2.9 An example of a normalised excitation signal in the form of a wave packet represented 
in: a the time domain, b the frequency domain, as well as dispersion curves for the phase velocity 
.cp and the group velocity .cg obtained in the case of a 1-D isotropic elastic: c rod, d beam, with 
corresponding ranges of excited frequencies 

by a lower frequency envelope. In the time domain it can be characterised by its 
total duration or modulation time .Tm , as well as the time corresponding to each 
particular oscillation .Tc of the carrier wave, or alternatively by the period of the 
modulation .Tm and the period of the carrier wave . Tc, as presented in Fig. 2.9a. In 
the frequency domain such a wave packet is represented by a pulse of a certain 
amplitude and frequency width, which can be easily obtained by the application of 
the Fourier transform, as presented in Fig. 2.9b. The centre of the pulse is located 
at the frequency corresponding to the carrier frequency . fc = 1/Tc, while its total
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frequency width depends not only on the modulation frequency . fm = 1/Tm , but  
also on the assumed accuracy of its representation. For the majority of practical 
problems it can be assumed that more than 97% of the signal energy is stored in 
the range of frequencies starting from . fc − 2 fm to . fc + 2 fm , however for higher 
accuracy, exceeding 99%, this range must expand to cover frequencies from. fc − 4 fm
to . fc + 4 fm or even more. 

Now it can be clearly seen from Fig. 2.9c and d that the frequency representation 
of the excitation signal can be very helpful in order to determine the values of the 
group velocities .c,

g and .c
,,
g describing the set of characteristics given by Eqs. (2.56) 

and (2.57). Bearing in mind the accuracy of the frequency representation of the 
excitation signal, it can be immediately seen that these two group velocities are 
equal to: 

.

{
c,
g = cg( fc − 2 fm)

c,,
g = cg( fc + 2 fm)

(2.58) 

In general, it is observed that the group velocity.cg is smaller than the phase veloc-
ity . cp, i.e. when .cg < cp or .dcp/dk < 0. This fact leads to the behaviour whereby 
wave components characterised by longer wavelengths . λ (smaller wave numbers 
. k), being faster than the wave components characterised by shorter wavelengths . λ

Fig. 2.10 An example of a wave packet characterised by normal or anomalous dispersion
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(greater wave numbers . k), gradually travel through a wave packet to its beginning, 
substantially elongating the packet at its front. This type of behaviour corresponds 
to so-called normal dispersion. 

In contrast to this, when the group velocity.cg is greater that the phase velocity. cp, 
i.e. when .cg > cp or .dcp/dk > 0, the observed behaviour corresponds to so-called 
anomalous dispersion. In such a case wave components characterised by longer 
wavelengths . λ (smaller wave numbers . k), being slower than the wave components 
characterised by shorter wavelengths . λ (greater wave numbers . k), gradually travel 
through a wave packet to its end, substantially elongating the packet at its back. Both 
of these behaviours are illustrated in Fig. 2.10. 

2.6 Standing Waves and Normal Modes 

Standing waves, also known in the literature as stationary waves, result from the 
superposition (interference) of two harmonic waves of the same wave number. k and 
angular frequency . ω, but travelling in opposite directions, as presented in Fig. 2.11. 

It should be recalled that the particular form of the general solution to the wave 
equation (2.15), given by Eq. (2.43) in Sect. 2.4, represents in fact two waves prop-
agating in either positive or negative direction of the. x axis. For this reason it can be 
written that: 

Fig. 2.11 A standing wave 
on the free surface of liquid
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.

u(x, t) = (C1e
ikx + C2e

−ikx )e−iωt

⏐⏐⏐↓C1 = C2 = A

u(x, t) = 2Ae−iωt cos kx

(2.59) 

under an additional assumption of equal and real amplitudes of the superposing 
waves, denoted as . A. 

Bearing in mind that only the real part of the complex solution given by Eq. (2.59) 
should be taken into account, it can be immediately noted that: 

.u(x, t) = 2A cosωt cos kx (2.60) 

It can be clearly seen that the resulting wave .u(x, t) has interesting properties. 
First of all it can be seen that now the shape of the wave.u(x, t), defined by the term 
.cos kx , does not travel and is stationary, while its amplitude equal to.2A cosωt varies 
in time periodically with the angular frequency . ω, as presented in Fig. 2.12. These 
points in space, for which the amplitude of the wave is always zero regardless of 
time . t , are called nodal points or nodes. Their coordinates on the . x axis correspond 
to the solution to a simple equation: 

. cos kx = 0 → x = π

2k
+ nπ

k
= λ

4
+ nλ

2
, n = 0,±1,±2, . . . (2.61) 

On the other hand those points in space, for which the amplitude takes its extreme 
values, are called anti-nodal points or anti-nodes. Their coordinates on the . x axis 
correspond to the solution to a similar simple equation: 

. cos kx = ±1 → x = nπ

k
= nλ

2
, n = 0,±1,±2, . . . (2.62) 

Additionally it can be seen that the shape of the resulting standing wave . u(x, t)
is independent of time . t , however, a standing wave can be formed at any angular 
frequency . ω. The distance between consecutive nodes or anti-nodes of a standing 
wave is fixed and equal to .λ/2, while between consecutive nodes and anti-nodes is 
equal to .λ/4. 

Standing waves resulting from the interaction of propagating harmonic waves with 
structural boundaries present another interesting case. Their multiple reflections and 
superposition give rise to so-called normal modes or modes of free vibrations, which 
are also referred to as modes of natural vibrations. It should be emphasised that this 
kind of elastic vibration always concerns perfect recovery forces and as such never 
involves damping, either internal or external. Moreover, in the case of structures 
representing smooth, simply or multi connected, regions, normal modes may appear 
as a multiple self-superposition of propagating waves, as is presented in Fig. 2.13 in 
the case of a spherical shell.
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Fig. 2.12 A standing wave as a superposition of two identical, harmonic waves propagating in 
opposite directions 

It can be immediately found that finite dimensions of typical engineering struc-
tures, which lead to multiple reflections and superposition of the waves that can 
propagate within them, have a direct impact on the forms of generated solutions 
to associated equations of motion. Imposing specific conditions on these equations, 
resulting from various types of physical constraints placed on propagating waves at 
structural boundaries, limits the characteristic equations to discrete sets of the wave 
number . k and the angular velocity . ω, typically denoted as .kn and .ωn . 

In the case of the equation of motion (2.15) and the bar of finite length . l, the  
solution to the resulting Eq. (2.46) must be accompanied by two general, structural 
boundary conditions, which must be satisfied at any moment in time. t . There are two 
possible states of the bar ends, which can be described as: 

• fixed end, when the axial displacements .u(x, t) must vanish, 
• free end, when the axial force .N (x, t) must vanish. 

at either end of the bar, i.e. for .x = 0 or .x = l.



44 2 Wave Essentials

Fig. 2.13 Multiple 
(degenerated) normal modes 
belonging to the 5th 
frequency of free vibrations 
of a thin-walled isotropic 
elastic spherical shell. 
Results of numerical 
computations by TD-SFEM 

These two boundary conditions can be expressed in terms of the unknown function 
.X (x) from Eq. (2.46) as a set of two equations: 

.

{
X (x) = 0

dX (x, t)

dx
= 0

(2.63) 

which must be satisfied at the selected end of the bar, i.e. for .x = 0 or .x = l. 
In the next step, bearing in mind the form of Eq. (2.46) as well as Eq.  (2.47), one 

can immediately write the general form of the solution to Eq. (2.46) as:  

.X (x) = C1e
ikx + C2e

−ikx (2.64) 

with.C1 and.C2 being complex constants, or alternatively by the use of real functions: 

.X (x) = B1 sin kx + B2 cos kx (2.65)
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where the two real constants .B1 and .B2 must be found based on Eq. (2.63). This 
leads to the following set of equations: 

.

{
B1 sin kx + B2 cos kx = 0

B1k cos kx − B2k sin kx = 0
(2.66) 

which must be satisfied at the previously selected end of the bar, i.e. for .x = 0 or 
.x = l. 

For example, assuming that the bar is fixed at one end, at .x = 0, while the other 
end of the bar remains free, at.x = l, it can be seen straight away that the first equation 
leads to.B2 = 0 for.x = 0. However, the second equation leads to non-trivial solutions 
for .x = l, i.e. when .B1 /= 0 and .k /= 0, only if: 

. cos kl = 0 → kn = π

2l
+ (n − 1)π

l
= (2n − 1)π

2l
, n = 1, 2, 3, . . . (2.67) 

The non-trivial solutions expressed in terms of the discrete wave number .kn are 
more often expressed in terms of the discrete angular frequencies .ωn , which by the 
use of the characteristic equation (2.47) as well as Eq.  (2.49), can be written in the 
following form: 

.ωn = (2n − 1)π

2l

/
E

ρ
, n = 1, 2, 3, . . . (2.68) 

where now the discrete angular frequencies .ωn are known as frequencies of normal 
modes, frequencies of free vibrations or frequencies of natural vibrations of the bar. 

In a similar manner, in the case of equation of motion (2.32) and the beam of 
finite length . l, the solution to the resulting Eq. (2.51) must be supplemented by four 
general, structural boundary conditions, which must be satisfied at any moments in 
time . t . This time, however, there are three possible states of the beam ends, which 
can be described as: 

• fixed end, when the transverse displacement .w(x, t) and the slope .w,(x, t) must 
vanish, 

• simply supported, when transverse displacement.w(x, t) and the bending moment 
.M(x, t) must vanish, 

• free end, when the bending moment .M(x, t) and the shear force .Q(x, t) must 
vanish, 

at either the end of the beam, i.e. for .x = 0 or .x = l. 
These two boundary conditions can be expressed in terms of the unknown function 

.X (x) from Eq. (2.51) as a set of four equations:
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.

⎧
⎪⎨
⎪⎩
X (x) = 0,

d2X (x, t)

dx2
= 0

dX (x, t)

dx
= 0,

d3X (x, t)

dx3
= 0

(2.69) 

which must be satisfied at the same ends of the beam, i.e. for .x = 0 or .x = l. 
The general form of the solution to Eq. (2.51) can be expressed in similar manner 

as before, which is: 

.X (x) = C1e
kx + C2e

−kx + C3e
ikx + C4e

−ikx (2.70) 

with .C1, .C2, .C3 and .C4 being complex constants, or alternatively by the use of real 
functions: 

.X (x) = B1 sinh kx + B2 cosh kx + B3 sin kx + B4 cos kx (2.71) 

where the four real constants .B1, .B2, .B3 and .B4 must be found based on Eq. (2.69). 
This leads to the following set of equations: 

.

⎧
⎪⎪⎨
⎪⎪⎩

B1 sinh kx + B2 cosh kx + B3 sin kx + B4 cos kx = 0
B1k cosh kx + B2k sinh kx + B3k cos kx − B4k sin kx = 0
B1k2 sinh kx + B2k2 cosh kx − B3k2 sin kx − B4k2 cos kx = 0
B1k3 cosh kx + B2k3 sinh kx − B3k3 cos kx + B4k3 sin kx = 0

(2.72) 

This time, for example, assuming that the beam is simply supported at both ends, 
at .x = 0 and .x = l, it can be easily seen that for .x = 0 the first equation leads to 
.B2 = −B4, while the third equation leads to.B2 = B4. These conditions are satisfied 
only if both these constants vanish, i.e. when .B2 = B4 = 0. 

By looking at the remaining simply supported end of the beam at.x = l the remain-
ing constants .B1 and .B3 can be easily evaluated from Eq. (2.72), which forms a set 
of two equations: 

.

{
B1 sinh kl + B3 sin kl = 0
B1 sinh kl − B3 sin kl = 0

(2.73) 

which has non-trivial solutions only if its determinant vanishes. This leads to the 
following characteristic equation: 

. sinh kl sin kl = 0 (2.74) 

and which has non-trivial solutions for .k /= 0 only if: 

. sin kl = 0 → kn = nπ

l
, n = 1, 2, 3, . . . (2.75) 

Again, the non-trivial solutions expressed in terms of the discrete wave number 
.kn are more commonly expressed in terms of the discrete angular frequencies .ωn ,
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which by means of the characteristic equation (2.52) as well as Eq.  (2.55), can be 
written in the following form: 

.ωn =
(nπ

l

)2
/

E I

ρS
, n = 1, 2, 3, . . . (2.76) 

where now the discrete angular frequencies .ωn are known as frequencies of normal 
modes, frequencies of free vibrations or frequencies of natural vibrations of the beam. 

In general, the lowest frequency of free vibrations, which corresponds to.n = 1 in 
Eq. (2.68) or Eq.  (2.76), is called the fundamental frequency, while the corresponding 
normal mode is called the fundamental mode. 

It should be noted that dispersion curves discussed in Sect. 2.5 are inextrica-
bly linked with frequencies of free vibrations, which have to follow their changes 
regardless of the type of structural boundary conditions for a given type of problem, 
as presented in Fig. 2.14. For this reason dispersion curves remain a very important 
source of information on dynamic properties of structures, in a similar manner to 
normal modes and frequencies of free vibrations. However, computation of normal 
modes and frequencies of free vibrations is nowadays a task, which is relatively sim-
ple, even in the case of huge numerical models, thanks to the availability of modern 
supercomputers and fast parallel computations. On the other hand numerical calcu-
lation of dispersion curves presents a much more difficult problem, especially when 
more advanced theories of structural behaviour are considered than the two simple 
theories discussed in this chapter. These modelling aspects will be discussed in the 
following chapters of this book. 

Fig. 2.14 Dispersion curves for the phase velocity.cp obtained in the case of a 1-D isotropic elastic: 
a rod, b beam. Discrete points on the curves correspond to the first 10 frequencies of free vibrations 
for various types of structural boundary conditions
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Chapter 3 
Waves in a 3-D Elastic Space 

3.1 Navier-Cauchy Equation 

Wave motion in a 3-D elastic medium can be expressed in a very elegant way by the 
use of tensor notation and differential operators. Because of this the resulting form 
of the equations of motion becomes independent of the selection of the coordinate 
system. This makes such a form of the equations of motion universal and more 
suitable for further studies. Under the assumption of small strains and homogeneity 
of the elastic medium, starting from Newton’s second law of motion, it may be written 
that: 

.∇ · σσσ + F = ρü (3.1) 

where the symbol .∇ denotes the nabla operator of differentiation, . σσσ is the Cauchy 
stress tensor, . F is the vector of body forces, . ρ is the material density, . u is the vector 
of displacements being a function of space variables . x , . y and . z as well as time . t , 
while the symbol .(•̈) represents the second derivative with respect to time . t . 

Equation (3.1) must be supplemented with two additional equations: one being 
the so-called strain-displacement relationship and the other being the constitutive 
equation, known as Hooke’s law, linking together strains and stresses: 

.∈∈∈ = 1
2 [∇u + (∇u)T], σσσ = C : ∈∈∈ (3.2) 

where. ∈∈∈ is the strain tensor and. C is the fourth-order stiffness tensor, while the symbol 
.(•)T denotes transposition. 

In the case of an isotropic elastic medium the stiffness tensor can be expressed in 
terms of two independent material constants. λ and. μ, known as the Lamé parameters 
or constants. These parameters are closely correlated with elastic properties of the 
medium by the following relationships: 
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.λ = νE

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
(3.3) 

where .E is material Young’s modulus and . ν denotes Poisson’s ratio. 
It seems reasonable to assume that body forces in Eq. (3.1) can be neglected since 

wave motion in elastic media is entirely driven by recoverable elastic forces. As a 
result of this the equation of motion can be expressed in the following manner: 

.μ∇2u + (λ + μ)∇(∇ · u) = ρü (3.4) 

It should be noted that this neat form of the equation of motion represents in fact 
three coupled partial differential equations, which can be written independently for 
each component of the displacement vector .u = [ux , uy, uz]T as: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ∇2ux + (λ + μ)
∂

∂x
(∇ · u) = ρ

∂2ux

∂t2

μ∇2uy + (λ + μ)
∂

∂y
(∇ · u) = ρ

∂2uy

∂t2

μ∇2uz + (λ + μ)
∂

∂z
(∇ · u) = ρ

∂2uz

∂t2

(3.5) 

where .ux = ux (x, y, z, t), .uy = uy(x, y, z, t) and .uz = uz(x, y, z, t) are the dis-
placement components in the direction of the . x , . y and . z axes, respectively. 

It can be shown that Eqs. (3.5) describe the behaviour of three independent wave 
modes in a 3-D elastic space. In order to see this, one can consider in this space 
propagation of a plane harmonic wave. u, which can be assumed to have the following 
form: 

.u = û ei(k·r−ωt) =
⎡

⎣
ûx

û y

ûz

⎤

⎦ ei(kx x+ky y+kz z)e−iωt (3.6) 

where .û = [ûx , û y, ûz]T and .k = [kx , ky, kz]T are the vectors of amplitude compo-
nents and wave numbers, while.r = [x, y, z]T denotes the position vector, all in 3-D 
space, as presented in Fig. 3.1. 

Alternatively, as shown in Fig. 3.1, the wave number vector. k can be conveniently 
expressed by the use of the direction cosines as: 

.k =
⎡

⎣
kx
ky
kz

⎤

⎦ = |k|
⎡

⎣
cosβx

cosβy

cosβz

⎤

⎦ (3.7) 

where .|k| denotes the length of the wave number vector . k and where the cosines of 
particular angles .βx , .βy and .βz can be calculated using the following formulae:
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Fig. 3.1 A wave number 
vector. k in the Cartesian 
coordinate system. (x, y, z)
in relation to the the 
direction cosines 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cosβx = kx
|k|

cosβy = ky
|k|

cosβz = kz
|k|

, |k| =
/
k2x + k2y + k2z (3.8) 

At this point it is convenient to express the plane harmonic wave . u, given by 
Eq. (3.6) in a slightly modified form, by the use of directional cosines as: 

.u = û ei(k·r−ωt) =
⎡

⎣
ûx

û y

ûz

⎤

⎦ ei |k|(cosβx x+cos βy y+cos βz z)e−iωt (3.9) 

A simple substitution of Eq. (3.9) into Eqs. (3.5), after necessary mathematical 
operations and rearrangement of terms, leads to a set of three homogeneous equations: 

.

⎧
⎪⎪⎨

⎪⎪⎩

(μ|k|2 − ρω2)ûx + (λ + μ)|k|2 cosβx ·Δ = 0

(μ|k|2 − ρω2)û y + (λ + μ)|k|2 cosβy ·Δ = 0

(μ|k|2 − ρω2)ûz + (λ + μ)|k|2 cosβz ·Δ = 0

(3.10) 

where .Δ = ûx cosβx + û y cosβy + ûz cosβz . 
It is well-known that non-trivial solutions to the set of three homogeneous equa-

tions, given by Eqs. (3.10), can be obtained only if its determinant vanishes, i.e. 
when: 

.[(λ + 2μ)|k|2 − ρω2](μ|k|2 − ρω2)2 = 0 (3.11) 

which leads straight away to two independent characteristic equations:
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.(λ + 2μ)|k|2 − ρω2 = 0, μ|k|2 − ρω2 = 0 (3.12) 

which determine two independent wave propagation velocities. 
It is interesting to check which displacement components can be assigned to 

particular solutions represented by these two characteristic equations. In order to do 
this without any loss of generality, it can be conveniently assumed that the plane 
harmonic wave . u propagates in the direction of the . x axis, thus .cosβx = 1 and 
.cosβy = cosβz = 0. Moreover, in this case.|k| = kx , so it can be conveniently noted 
that .kx ≡ k. This helps to simplify the set of homogeneous equations, given by 
Eqs. (3.10), to a much simpler form, which fully reveals the nature of the solutions 
sought: 

.

⎧
⎪⎪⎨

⎪⎪⎩

[(λ + 2μ)k2 − ρω2]ûx = 0

(μk2 − ρω2)û y = 0

(μk2 − ρω2)ûz = 0

(3.13) 

Now, it can be clearly seen that there are three distinctive and independent wave 
modes, which can propagate in a 3-D elastic space: 

• the primary wave, as presented in Fig. 3.2, also known as the dilatational, irrota-
tional, longitudinal, voluminal or P-wave of the form: 

..ux (x, t) = ûx e
ik(x−cP t) (3.14) 

which propagates with the phase and group velocity: 

Fig. 3.2 A schematic representation of a P-wave propagating in a 3-D elastic space
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.cP =
/

λ + 2μ

ρ
(3.15) 

• two secondary waves, also known as the equivoluminal, distorsional, rotational, 
shear or S-waves of the forms: 

.

{
uy(x, t) = û yeik(x−cS t)

uz(x, t) = ûzeik(x−cS t)
(3.16) 

which propagate with the phase and group velocity: 

.cS =
/

μ

ρ
(3.17) 

The type of S-wave that propagates along the . x axis with the non-zero displace-
ment component .uy(x, t) is called the shear horizontal or SH-wave. In contrast to 
this, the type of S-wave that propagates along the. x axis with the non-zero displace-
ment component .uz(x, t) is called the shear vertical or SV-wave. 

It is evident that both types of S-wave represent transverse waves, which are 
characterised by displacements of particles transverse to the direction of wave prop-
agation, in a 3-D elastic medium, as clearly seen in Figs. 3.3 and 3.4. However, in 
the case of the P-wave these displacements remain parallel to the direction of wave 
propagation, thus the P-wave represents a longitudinal wave, as it can be observed 
in Fig. 3.2. 

It should be emphasised that the three wave modes are non-dispersive, as the 
phase velocities .cl and .cs depend only on mechanical properties of the 3-D elastic 
space, but remain independent of the angular frequency . ω. 

3.2 Helmholtz Decomposition 

Helmholtz’s theorem is a very powerful mathematical tool, which helpful in the 
study of various problems related to wave propagation. It takes its name from a 
famous German physician and physicist Hermann Ludwig Ferdinand Helmholtz. 
This theorem, also known as the fundamental theorem of vector calculus, states that 
under appropriate conditions 1 a three-dimensional vector field . u can be represented 
as a sum of irrotational (conservative or curl-free) and solenoidal (incompressible or 
divergence-free) vector fields. 

The irrotational part of this vector field can be expressed by the gradient of a scalar 
potential. φ, since the curl of any scalar field always vanishes, i.e..∇ × (∇φ) = 0. On  
the other hand the solenoidal part of the vector field . u can be expressed by the curl

1 These conditions concern the smoothness of the vector field under consideration as well as its fast 
decay at infinity. 



54 3 Waves in a 3-D Elastic Space

Fig. 3.3 A schematic representation of a SH-wave propagating in a 3-D elastic space 

Fig. 3.4 A schematic representation of a SV-wave propagating in a 3-D elastic space
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of a vector potential . Ψ , since the divergence of the curl of any vector field always 
vanishes, i.e. .∇ · (∇ × Ψ ) = 0. 

As a result of this it can be written: 

.u = ∇φ + ∇ × Ψ , ∇ · Ψ = 0 (3.18) 

where the additional condition.∇ · Ψ = 0 guarantees the uniqueness of the solution. 
Next, Eq. (3.18) can be simply substituted into the subsequent parts of the equation 

of motion, given by Eq. (3.4), in the following manner: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇2u → ∇2(∇φ + ∇ × Ψ ) = ∇2(∇φ) + ∇2(∇ × Ψ )

∇ · u → ∇ · (∇φ + ∇ × Ψ ) = ∇ · ∇φ + ∇ · (∇ × Ψ )
~ ~~ ~

= 0

= ∇2φ

ü → ∂2

∂t2
(∇φ + ∇ × Ψ ) = ∇φ̈ + ∇ × Ψ̈

(3.19) 

Finally, by the use of the above relationships the equation of motion can be 
presented as: 

.

μ[∇2(∇φ) + ∇2(∇ × Ψ )] + (λ + μ)∇(∇2φ) = ρ(∇φ̈ + ∇ × Ψ̈ )
⏐
⏐
⏐
↓

∇2(∇φ) = ∇(∇2φ)

∇2(∇ × Ψ ) = ∇ × (∇2Ψ )

μ[∇(∇2φ) + ∇ × (∇2Ψ )] + (λ + μ)∇(∇2φ) = ρ(∇φ̈ + ∇ × Ψ̈ )
⏐
⏐
⏐
↓grouping of terms

∇[(λ + 2μ)∇2φ − ρφ̈] + ∇ × (μ∇2Ψ − ρΨ̈ ) = 0

(3.20) 

The resulting equation can be satisfied only if both scalar and vector equations 
of motion are simultaneously equal to zero. This leads to two independent wave 
equations. The first wave equation is a wave equation for the scalar potential . φ and 
describes propagation of P-waves: 

.(λ + 2μ)∇2φ = ρφ̈ or c2P∇2φ = φ̈ (3.21) 

while the second wave equation is a wave equation for the vector potential .Ψ and 
describes propagation of S-waves: 

.μ∇2Ψ = ρΨ̈ or c2S∇2Ψ = Ψ̈ (3.22)
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Indeed, it can be easily checked that if the solenoidal part of the vector field . u
vanishes, i.e. when .∇ × Ψ = 0, the resulting Eq. (3.20) can be written as: 

.

∇[(λ + 2μ)∇2φ − ρφ̈] = 0
⏐
⏐
⏐
↓∇(∇2φ) = ∇2(∇φ)

(λ + 2μ)∇2(∇φ) − ρ(∇φ̈) = 0
⏐
⏐
⏐
↓u = ∇φ

(λ + 2μ)∇2u − ρü = 0 or c2P∇2u = ü

(3.23) 

In a similar manner if the irrotational part of the vector field. u vanishes, i.e. when 
.∇φ = 0, the resulting Eq. (3.21) can be written as: 

.

∇ × (μ∇2Ψ − ρΨ̈ ) = 0
⏐
⏐
⏐
↓∇ × (∇2Ψ ) = ∇2(∇ × Ψ )

μ∇2(∇ × Ψ ) − ρ(∇ × Ψ̈ ) = 0
⏐
⏐
⏐
↓u = ∇ × Ψ

μ∇2u − ρü = 0 or c2S∇2u = ü

(3.24) 

The resulting equations, Eqs. (3.23) and (3.24), are two wave equations, which 
govern the behaviour of P-waves and S-waves. It is clear that these two types of wave 
are not coupled and can propagate in a 3-D elastic medium independently with no 
interaction. 

It should be emphasised that in a general case the displacement vector . u can 
be expressed by the use of the scalar potential . φ and the vector potential .Ψ in the 
following way 2: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ux = ∂φ

∂x
+ ∂ψz

∂y
− ∂ψy

∂z

uy = ∂φ

∂y
+ ∂ψx

∂z
− ∂ψz

∂x

uz = ∂φ

∂z
+ ∂ψy

∂x
− ∂ψx

∂y

(3.25)

2 In a coordinate system different from the Cartesian coordinate system, i.e. cylindrical, spherical 
or others, different formulae must be used to calculate the components of the displacement vector 
. u. 
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Fig. 3.5 Spherical 
atmospheric shock waves 
visible above the surface of 
water resulting from the USS 
Iowa battleship gun firing [ 1] 

where.φ = φ(x, y, z, t) and where.ψx = ψx (x, y, z, t),.ψy = ψy(x, y, z, t) and. ψz =
ψz(x, y, z, t) are appropriate components of the vector potential . Ψ . The general 
form of the displacement vector . u can be simplified according to the case under 
consideration, as will be shown in the following paragraphs. 

An interesting case represents spherical P-waves, whose propagation in a 3-D 
elastic medium is govern by the resulting wave equation (3.23). This kind of wave 
can be generated by a point source as a rapidly changing pressure or temperature, as 
presented in Fig. 3.5. 

Since the nabla operator of differentiation is independent of the choice of the 
coordinate system the resulting wave equation (3.23) can be formally written in the 
spherical coordinate system as: 

.c2P∇2ur (r, t) = ür (r, t) (3.26) 

when now the only remaining displacement component of the displacement vector 
. u is the radial displacement . ur . The radial displacement .ur = ur (r, t) must be a 
function of one spatial coordinate. r and time. t , since the waves are purely spherical, 
thus independent of the polar and azimuthal angles, which is clearly seen in Fig. 3.6. 

Following the solution procedure presented in Sect. 2.4 it can be written that:
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Fig. 3.6 A schematic representation of a harmonic spherical P-wave propagating in a 3-D elastic 
space 

.

c2P∇2ur (r, t) − ür (r, t) = 0
⏐
⏐
⏐
↓ur (r, t) = R(r)e−iωt

[

∇2R(r) + ω2

c2P
R(r)

]

e−iωt = 0

⏐
⏐
⏐
↓∇2R(r) = 1

r2
d

dr

[

r2
dR(r)

dr

]

[

r2
d2R(r)

dr2
+ 2r

dR(r)

dr
+ (kr)2R(r)

]

e−iωt = 0

(3.27) 

which is satisfied for any moment in time. t only if the expression within the brackets 
is satisfied: 

.r2
d2R(r)

dr2
+ 2r

dR(r)

dr
+ (kr)2R(r) = 0 (3.28) 

and where .k = ω/cP is the wave number.
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Equation (3.28) represents in fact the radial part of the Helmholtz equation 3 in 
spherical coordinates. This equation has has the following general form: 

.x2
d2y(x)

dx2
+ 2x

dy(x)

dx
+ [x2 − n(n + 1)]y(x) = 0 (3.29) 

which has two linearly independent solutions known as the spherical Bessel functions 
. jn(x) and .yn(x). 

By the use of Rayleigh’s formulae the spherical Bessel functions. jn(x) and. yn(x)
can be presented as: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

jn(x) = (−1)nxn
(
1

x

d

dx

)n sin x

x

yn(x) = (−1)n+1xn
(
1

x

d

dx

)n cos x

x

, n = 0, 1, 2, . . . (3.30) 

It can be clearly seen that the wave equation given by Eq. (3.28) is identical to 
Eq. (3.29) when .n = 0 and .x = kr . However, since the spherical Bessel function 
.y0(kr) is singular at the origin at .r = 0, this particular solution must be disregarded. 
This leads to a solution to the equation of motion in the following two simple steps. 

First of all it can be noted that now: 

.R(r) = Aj0(kr) = A
sin kr

kr
= Im

[

A
eikr

kr

]

(3.31) 

where .A is a certain constant. 
Next, the spatial solution .R(r) must be combined with the harmonic factor to 

produce: 

.ur (r, t) = R(r)e−iωt = A
ei(kr−ωt)

kr
= A

eik(r−cl t)

kr
(3.32) 

where the symbol .Im[•], denoting the imaginary part of a complex expression .[•], 
is omitted in Eq. (3.32) in order to simplify the notation. 

The solution obtained, in the form of Eq. (3.32), provides some interesting infor-
mation about the behaviour of spherical P-waves in a 3-D elastic space. Firstly, it 
should be noted that the amplitudes of P-waves decrease with the distance travelled 
and they are proportional to the inverse of the distance, i.e. .∝ 1/r . Secondly, since 
the energy carried by these waves is proportional to the square of their amplitudes, 
this energy also decreases with the distance, but this decrease is proportional to the 
inverse of the square of the distance, i.e. .∝ 1/r2. Thus in a distance far away from

3 The Helmholtz equation, which describes the process of diffusion or wave propagation, presents 
the eigenvalue problem for the Laplace operator, i.e..∇2φ = −k2φ, and is an important equation in 
many fields of science. 
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a source the amplitude and energy carried by spherical P-waves must tend to zero. 
This conforms with the Sommerfeld radiation condition [ 2]. 

3.3 Christoffel Equation 

A very important aspect of wave motion in a 3-D elastic medium is wave propagation 
in an anisotropic material. Many engineering materials exhibit material properties 
that depend on the direction of observation, which is just anisotropy, as can seen in 
Figs. 3.7 and 3.8. This kind of behaviour is typical for crystals, but is not limited to 
crystalline materials. Such modern materials as composites and laminates also exhibit 
similar properties. An increasing interest in the investigation of their properties results 
in the fact that composites and laminates are more and more often used as structural 
materials in many fields of modern mechanical and civil engineering. However, their 
application is not strictly limited to these two branches of engineering. 

It can be noted that waves propagating in a 3-D anisotropic elastic medium can 
also be described by the same Newton’s law, as given by Eq. (3.1). However, in the 
case of anisotropy, it can be conveniently presented using tensor index notation: 

.σi j, j + fi = ρüi , i, j = 1, 2, 3 (3.33) 

where the symbol .(•),i represents differentiation .∂(•)/∂xi with respect to spatial 
coordinates, which now are represented by . x1, .x2 and . x3. 

Also in this case Eq. (3.33) must be supplemented with the same strain-
displacement relationship and the constitutive equation. In contrast to isotropy, this 
time the fourth-order stiffness tensor . C must have a different form. Using the same 

Fig. 3.7 The most common 
natural anisotropic 
(orthotropic) engineering 
material used nowadays still 
remains wood [ 3]
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Fig. 3.8 Anisotropy is 
naturally observed in 
crystalline solids like pyrites 
[ 4] 

tensor index notation the strain-displacement relationship, together with the stress-
strain relationship governed by Hooke’s law, can be written as: 

.

⎧
⎪⎨

⎪⎩

σi j = Ci jrs∈rs, i, j, r, s = 1, 2, 3

∈rs = 1

2
(ur,s + us,r ), r, s = 1, 2, 3

(3.34) 

The stress-strain relationship represents equations linking together six stress com-
ponents with six strain components. The symmetry of the stress tensor .σi j = σ j i , as  
well as the symmetry of the strain tensors .∈rs = ∈rs , called the minor symmetries, 
plus the major symmetry resulting from the uniqueness of the strain energy and its 
differentiation, require that the stiffness tensor .Ci jrs is also symmetric, i.e. that: 

.Ci jrs = C jirs = Ci jsr = Crsi j , i, j, r, s = 1, 2, 3 (3.35) 

which effectively reduces the number of independent elastic constants of the stiffness 
tensor .Ci jrs from 81 down to 21.  

Under the assumption of material orthotropy this number can be further reduced— 
see Appendix A. In the case of material orthotropy there are 9 independent elastic con-
stants in the stiffness tensor .Ci jrs , while for materials exhibiting transverse isotropy 
this number drops down to 5. 

Exactly as in Eq. (3.1), also in this case acting body forces . fi can be formally 
neglected, since wave motion in elastic media is driven by recoverable elastic forces. 
Thus, the resulting equation of motion takes the following form: 

.
1

2
Ci jrs∈rs, j = ρüi , i, j, r, s = 1, 2, 3 (3.36)
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or after using the definition of strains .∈rs from Eq. (3.34) as:  

.
1

2
Ci jrs(ur, js + us, jr ) = ρüi , i, j, r, s = 1, 2, 3 (3.37) 

Now, it is convenient to consider propagation of a plane harmonic wave. u in 3-D 
space, which can be assumed to have the same form as in Eq. (3.6), but expressed 
using index notation as: 

.ui = ûi e
k j x j−ωt i, j = 1, 2, 3 (3.38) 

which after substitution to Eq. (3.37) and necessary differentiation leads to: 

.Ci jrsk j krus − ρω2ui = 0, i, j, r, s = 1, 2, 3 (3.39) 

It should be noted that by the use of the Kronecker delta the displacement .ui can 
be expressed as .ui = δisus . This helps to rewrite Eq. (3.39) in a modified form: 

.(Ci jrsk j kr − ρω2δis)us = 0, i, j, r, s = 1, 2, 3 (3.40) 

which now represents the famous Christoffel equation for a 3-D anisotropic medium. 
Moreover, the Christoffel acoustic tensor.Γis can be defined based on the following 

simple relationship: 

.Γis = Ci jrsn jnr , i, j, r, s = 1, 2, 3 (3.41) 

where.n j denotes the direction cosines, i.e..n j = cosβ j , which allows one to express 
the wave vector components as .k j = |k|n j . This leads to the following equation: 

.(Γis |k|2 − ρω2δis)us = 0 or (Γis − ρc2δis)us = 0, i, s = 1, 2, 3 (3.42) 

which in fact is a set of three homogeneous equations. 
As before, non-trivial solutions to Eq. (3.42) can be obtained only if its determinant 

vanishes, i.e. when: 
.|Γis − ρc2δis | = 0, i, s = 1, 2, 3 (3.43) 

which results in three different wave propagation velocities. 
This time, however, their values are dependent on the directions of observation 

due to the definition of the acoustic tensor .Γis = Ci jrsn jnr , with .n j defining these 
directions. Different observation directions may be associated with different values of 
the direction cosines. n j . In each such case the acoustic tensor.Γis must be evaluated. 
For example, in the case of the element .Γ11 we can write that: 

.Γ11 = C1 jr1, j, r = 1, 2, 3 (3.44)
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Table 3.1 Index conversion from tensor to Voigt notation 

.i j or.rs 11 22 33 23, 32 31, 13 12, 21 

.↓ .↓ .↓ .↓ .↓ .↓ . ↓

. p or.q 1 2 3 4 5 6 

which after necessary expansion takes the following form: 

.

Γ11 = C1111n1n1 + C1211n2n1 + C1311n3n1
+ C1121n1n2 + C1221n2n2 + C1321n3n2
+ C1131n1n3 + C1231n2n3 + C1331n3n3

(3.45) 

It turns out that in many practical applications the use of the stiffness tensor.Ci jrs , 
expressed by tensor index notation, in which.i, j, r, s = 1, 2, 3, is very complicated. 
In order to simplify this Voigt matrix notation can be used instead, in which. i j and. rs
indexes are replaced by two independent indexes. p and. q, and where.p, q = 1, . . . , 6, 
as  shown in [  5]. Such index transformation, from tensor to Voigt notation, is presented 
in Table 3.1. 

The Voigt notation helps to present the original stiffness tensor.Ci jrs , defined as: 

.C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1111 C1122 C1133 C1123 C1131 C1112

C2222 C2233 C2223 C2231 C2212

C3333 C3323 C3331 C3312

C2323 C2331 C2312

C3131 C3112

symm. C1212

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.46) 

in a much simplified manner. Now a new stiffness tensor .Cpq has the following 
general form: 

.C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

symm. C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.47) 

which is much more preferred computationally. 
As a result of this the element .Γ11, previously expressed by Eq. (3.45), now can 

be presented as: 

.

Γ11 = C11n
2
1 + C16n2n1 + C15n3n1

+ C16n1n2 + C66n
2
2 + C56n3n2

+ C15n1n3 + C65n2n3 + C55n
2
3

(3.48)
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In specific cases, when particular directions of observation are not coupled in 
the acoustic tensor .Γis , as is in the case of full material isotropy, pure and fully 
decoupled P-waves and S-waves can be obtained. In other cases quasi P-waves and 
quasi S-waves [ 6] are obtained. Nevertheless, full information about the dependence 
of the phase velocities of particular wave modes on the directions of observations, 
calculated based on the characteristic equation (3.43), requires complex and repeated 
computations. 

References 

1. P. J. A. Elliot. Shock wave. http://www.wikiwand.com/en/shock_wave, 1984. Visited on 
09/12/2023. 

2. A. Sommerfeld. Partial differential equations in physics. Academic Press, New York, 1949. 
3. http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803, 2018. Visited on 

09/12/2023. 
4. http://pixabay.com/pl/photos/piryt-krysztal-natura-173716, 2013. Visited on 09/12/2023. 
5. V. Giurgiutiu. Structural health monitoring of aerospace composites. Academic Press, Oxford, 

2016. 
6. J. L. Rose. Ultrasonic waves in solid media. Cambridge University Press, Cambridge, 1999.

http://www.wikiwand.com/en/shock_wave
http://www.wikiwand.com/en/shock_wave
http://www.wikiwand.com/en/shock_wave
http://www.wikiwand.com/en/shock_wave
http://www.wikiwand.com/en/shock_wave
http://www.wikiwand.com/en/shock_wave
http://www.wikiwand.com/en/shock_wave
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/sloje-drzewo-drewno-tekstura-tlo-3212803
http://pixabay.com/pl/photos/piryt-krysztal-natura-173716
http://pixabay.com/pl/photos/piryt-krysztal-natura-173716
http://pixabay.com/pl/photos/piryt-krysztal-natura-173716
http://pixabay.com/pl/photos/piryt-krysztal-natura-173716
http://pixabay.com/pl/photos/piryt-krysztal-natura-173716
http://pixabay.com/pl/photos/piryt-krysztal-natura-173716
http://pixabay.com/pl/photos/piryt-krysztal-natura-173716
http://pixabay.com/pl/photos/piryt-krysztal-natura-173716
http://pixabay.com/pl/photos/piryt-krysztal-natura-173716


Chapter 4 
Surface Waves 

4.1 Rayleigh Waves 

Rayleigh surface waves take their name after Lord Rayleigh, who in 1885 predicted 
their existence. Rayleigh waves belong to the class of elastic waves, as shown in 
Fig. 1.5 in Introduction, which can propagate near the surface of elastic solids, 
and having the property that their amplitudes decrease gradually with the depth. In 
nature Rayleigh surface waves accompany earthquakes, which in geology are very 
frequent events 1 and their destructive power comes from high amplitudes of ground 
movements measured even in meters [ 1], as seen in Fig. 4.1. 

Rayleigh surface waves can be studied mathematically starting from the equation 
of motion, given by Eqs. (3.5), under an additional assumption about the form of the 
displacement components . ux , .uy and . uz , which are assumed to be functions of the 
spatial coordinates . x , . z and time . t . The form of the displacement field, as proposed 
by Rayleigh, requires that the displacement components of a plane harmonic wave 
. u propagating in a 3-D elastic half-space must vanish asymptotically with . z. In the  
current case, for .z ≤ 0, it can be written that: 

.

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, z, t) = ûx eαzeik(x−ct)

uy(x, z, t) = û yeαzeik(x−ct)

uz(x, z, t) = ûzeαzeik(x−ct)

(4.1) 

1 It is estimated by the National Earthquake Information Center (NEIC) that the number of earth-
quakes recorded every year around the world is near 20,000. The total number of earthquakes, 
including not recordable events, can be much higher reaching millions. 
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A. Żak, A Finite Element Approach for Wave Propagation in Elastic Solids, 
Lecture Notes on Numerical Methods in Engineering and Sciences, 
https://doi.org/10.1007/978-3-031-56836-7_4 

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56836-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4
https://doi.org/10.1007/978-3-031-56836-7_4


66 4 Surface Waves

Fig. 4.1 The effect of 
earthquake on house 
buildings after the San 
Francisco earthquake of 
1906 [ 2] 

where . α is a certain positive constant, . k is the wave number, while . c denotes the 
phase velocity 2 of a Rayleigh surface wave propagating in the direction of the. x axis. 

It is clearly seen from Eqs. (4.1) that indeed all displacement components . ux , . uy

and .uz vanish with .z → −∞. Substitution of Eqs. (4.1) into Eqs. (3.5) leads to a 
system of three homogeneous equations: 

.

⎧
⎪⎪⎨

⎪⎪⎩

[α2c2S + k2(c2 − c2P)]ûx + iαk(c2P − c2S)ûz = 0

[α2c2S + k2(c2 − c2S)]û y = 0

iαk(c2P − c2S)ûx + [α2c2P + k2(c2 − c2S)]ûz = 0

(4.2) 

It can be noted from Eqs. (4.2) that the amplitude .û y is equal to zero. Thus, 
the displacement component .uy is also equal to zero. The remaining system of two 
homogeneous equations has non-trivial solutions only if its determinant vanishes. 
This leads to the following characteristic equation: 

.[α2c2P + k2(c2 − c2P)][α2c2S + k2(c2 − c2S)] = 0 (4.3) 

The characteristic equation, given by Eq. (4.3), has two independent solutions. α1

and .α2, which can be presented in the following manner:

2 In order to avoid unnecessary confusion from this point on, wherever it is necessary, the phase 
velocity.cp is simply noted as. c to distinguish it clearly from the velocity of primary waves. cP . 
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.α1 = k

/

1 − c2

c2P
, α2 = k

/

1 − c2

c2S
(4.4) 

bearing in mind that . α must be positive, i.e. .α ≥ 0. This conditions holds only if 
.c ≤ cS ≤ cP . 

Substitution of.α = α1 or.α = α2 into the first or last equation in Eqs. (4.2) leads 
to the following relationships between the amplitudes of the non-zero displacement 
components .ûx and . ûz : 

.
ûz

ûx

|
|
|
|
α1

= α1

ik
or

ûz

ûx

|
|
|
|
α2

= k

iα2
(4.5) 

This allows one to express the solution to the equation of motion, given by 
Eqs. (3.5), as a linear combination of two particular solutions associated with each 
of the roots .α1 or .α2 as: 

.

{
ux (x, z, t) = (ûx |α1e

α1z + ûx |α2e
α2z)eik(x−ct)

uz(x, z, t) = (ûz|α1e
α1z + ûz|α2e

α2z)eik(x−ct)

⏐
⏐
⏐
↓ûz|α1 = α1

ik
ûx |α1 , ûz|α2 = k

iα2
ûx |α2

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, z, t) = (ûx |α1e
α1z + ûx |α2e

α2z)eik(x−ct)

uz(x, z, t) =
(

α1

ik
ûx |α1e

α1z + k

iα2
ûx |α2e

α2z

)

eik(x−ct)

(4.6) 

Expressing the amplitudes .ûx |α1 and .ûx |α2 by certain new constants .A1 and .A2, 
defined as.ûx |α1 = ik A1 and.ûx |α2 = iα2A2, enables one to present the final solution 
to the equation of motion, governing the propagation of Rayleigh surface waves in a 
3-D elastic half-space, in the following manner: 

.

{
ux (x, z, t) = i(A1keα1z + A2α2eα2z)eik(x−ct)

uz(x, z, t) = (A1α1eα1z + A2keα2z)eik(x−ct)
(4.7) 

The dispersion relation for Rayleigh surface waves can be easily obtained by the 
use of Eqs. (4.7) assuming that the free surface of a 3-D elastic half-space remains 
free of stresses. This is expressed by the traction-free boundary conditions, 3 which 
leads to the following conditions for particular stress components at the free surface, 
i.e. at .z = 0:

3 The traction-free boundary conditions states that the traction vector. T vanishes on the free surface 
of an elastic body, i.e. .T = σσσ · n is equal to . 0, where . n is the normal vector to the free surface of 
the body. 
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.σzz(x, z, t) = τxz(x, z, t) = τyz(x, z, t) = 0, for z = 0 (4.8) 

The stress component .τyz is always equal to zero, as seen from Eqs. (4.7), while 
the remaining stress components.σzz and.τxz can be expressed by the use of Hooke’s 
law as: 

.

{
σzz = 2μ∈zz + λ(∈xx + ∈zz)

τxz = μγxz

(4.9) 

knowing that the strain components .∈xx , .∈zz and .γxz can be easily expressed by the 
use of Eqs. (4.7) as follows: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∈xx = ∂ux

∂x
= −k(A1k + A2α2)eik(x−ct)

∈zz = ∂uz

∂z
= (A1α

2
1 + A2kα2)eik(x−ct)

γxz = ∂ux

∂z
+ ∂uz

∂x
= i[2A1kα1 + A2(k2 + α2

2)]eik(x−ct)

(4.10) 

Again, this leads to a system of two homogeneous equations, which after necessary 
simplifications take the form: 

.

{[(λ + 2μ)α2
1 − λk2]A1 + 2μkα2A2 = 0

2μkα1A1 + μ(k2 + α2
2)A2 = 0

(4.11) 

where the factor .eik(x−ct) is not present, as the system of homogeneous equations 
Eqs. (4.11) must be satisfied for propagating Rayleigh surface waves independently 
of the spatial coordinate . x and time . t . 

As before, the system of homogeneous equations Eqs. (4.11) has non-trivial solu-
tions only if its determinant vanishes. This leads to the characteristic equation for the 
phase velocity . c of Rayleigh surface waves, which after necessary simplifications 
and rearrangements of terms can be presented simply as: 

.

(

2 − c2

c2S

)2

− 4

/

1 − c2

c2P

/

1 − c2

c2S
= 0 (4.12) 

It should be mentioned that this characteristic equation is dependent only on 
material properties of a 3-D elastic half-space, through the phase velocities .cP and 
. cS , of longitudinal P-waves and shear S-waves, respectively. On the other hand it 
remains independent of the wave number . k and/or angular velocity . ω. As a result of 
this Rayleigh surface waves are non-dispersive, so their shape remains unchanged 
during their propagation.
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Fig. 4.2 The effect of 
Poisson’s ratio on the phase 
velocity of Rayleigh surface 
waves in relation to the  
phase velocities of S-waves 
and P-waves. A curve for the 
phase velocity of S-waves in 
relation to the phase velocity 
of  P-waves is also presented  
[ 3] 

The characteristic equation (4.12) can be easily solved numerically. It is conve-
nient to introduce a new variable.ζ = c/cS and to express the phase velocities.cP and 
.cS directly by Young’s modulus . E , Poisson’s ratio . ν and material density . ρ. Then 
it can be found that the characteristic equation (4.12), after necessary mathematical 
manipulations, can be presented as: 

.ζ4 − 4ζ2 + 4 − 4
√
1 − ζ2

√
1 − βζ2, β = 1 − 2ν

2 − 2ν
(4.13) 

A solution to Eq. (4.13) is shown in Fig. 4.2 as a function of Poisson’s ratio . ν. It  
is expressed as the ratio.cR/cS , where now.cR denotes the phase velocity of Rayleigh 
surface waves. Additionally, in this graph results corresponding to the ratios . cR/cP
and .cS/cP are presented. 

In the case of Rayleigh surface waves it is interesting to observe the wave motion 
associated with their propagation. Based on the second equation from Eqs. (4.11) it  
can be found that the amplitude ratio .A1/A2 can be conveniently presented as: 

.
A2

A1
= − 2kα1

k2 + α2
2

(4.14) 

which helps to express the solution to the equation of motion given by Eqs. (4.7) in  
a modified form:
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.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ux (x, z, t) = ik A1

(

eα1z − α1α2

k2 + α2
2

eα2z

)

eik(x−ct)

uz(x, z, t) = α1A1

(

eα1z − k2

k2 + α2
2

eα2z

)

eik(x−ct)

(4.15) 

Bearing in mind that the physical meaning has only the real part of the solution 
to the equation of motion, Eqs. (4.15) can be formally rewritten in the following 
manner: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ux (x, z, t) = −k A1

(

eα1z − α1α2

k2 + α2
2

eα2z

)

sin[k(x − ct)]

uz(x, z, t) = α1A1

(

eα1z − k2

k2 + α2
2

eα2z

)

cos[k(x − ct)]
(4.16) 

Application of the well-known trigonometric identity to the non-zero components 
of the displacements .ux and .uz allows one to find that: 

.
u2x (x, z, t)

A2(z)
+ u2z (x, z, t)

B2(z)
= 1 (4.17) 

which indicates that the displacement vector .u = [ux , 0, uz] moves along a certain 
ellipse, which exponentially decreases its dimensions with the depth . z and where: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(z) = k A1

(

eα1z − α1α2

k2 + α2
2

eα2z

)

B(z) = α1A1

(

eα1z − k2

k2 + α2
2

eα2z

) (4.18) 

Based on Eqs. (4.16) it is noteworthy that Rayleigh surface waves, which are 
schematically presented in Fig. 4.3, can be understood as a superposition of two 
independent waves: one being a longitudinal wave propagating along the. x axis, the 
other being a transverse wave propagating along the . z axis. 

The amplitudes of these waves are characterised by exponential attenuation with 
the depth . z, as clearly seen from Eqs. (4.18) and shown in Fig. 4.4. It is obvi-
ous that although Rayleigh surface waves are non-dispersive and propagate with 
a constant velocity . cR , the amplitudes of their components .ux and .uz must be 
frequency/wavelength dependent through .α1 and .α2. 

The depth of full attenuation of Rayleigh surfaces waves is linearly dependent 
on the wavelength . λ, thus longer waves are characterised by slower attenuation 
and deeper penetration of the medium than shorter waves. The dependence on the 
frequency . f is inverse and waves of higher frequencies are characterised by faster 
attenuation and shallower penetration of the medium than waves of lower frequencies.
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Fig. 4.3 A schematic representation of a Rayleigh surface wave propagating in a 3-D elastic half-
space 

Fig. 4.4 Relative 
displacement amplitudes of 
Rayleigh surface waves 
propagating in aluminium as 
a function of depth. z, for  
various frequencies. f of the 
waves
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Table 4.1 Relative displacement amplitudes of Rayleigh surface waves propagating in a 3-D elastic 
half-space at selected relative depths.z/λ, for various materials 

Relative depth/material Aluminium Steel Tungsten 

.z/λ (–) .ûx (–) .ûz (–) .ûx (–) .ûz (–) .ûx (–) .ûz (–) 

0 0.640 1.000 0.700 1.000 0.670 1.000 

.−1 .−0.080 0.231 .−0.066 0.177 .−0.074 0.207 

.−2 .−0.009 0.024 .−0.006 0.014 .−0.007 0.019 

.−3 .−0.001 0.002 0.000 0.001 .−0.001 0.002 

.ûx = ux (z)/uz(z = 0), . ûz = uz(z)/uz(z = 0)

Fig. 4.5 Relative 
displacement amplitudes of 
Rayleigh surface waves 
propagating in a 3-D elastic 
half-space as a function of 
the relative depth.z/λ, for  
various values of Poisson’s 
ratio 

The linear dependence of the attenuation of Rayleigh surface waves on the wave-
length . λ allows one to conveniently present their distribution along the . z axis as 
relative to the wavelength . λ, i.e. as .z/λ, as shown in Table 4.1. The amplitude pro-
files obtained in this manner become frequency independent, as presented in Fig. 4.5. 

Moreover, it is clearly seen from Table 4.1 and Fig. 4.5 that the amplitude profiles 
of Rayleigh surface waves propagating within 3-D elastic half-space are well confined 
to the near surface of the medium and practically their depth of penetration does not 
exceed twice their wavelengths. It is also evident that their depth of full attenuation 
remains independent of Poisson’s ratio.
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4.2 Love Waves 

Another type of surface waves is Love waves. They are named after Augustus Edward 
Hough Love, who mathematically proved their existence in 1911. Together with 
Rayleigh surface waves, Love waves represent surface elastic waves, as shown in 
Fig. 1.5 in Chap. 1. In a similar manner to the case of Rayleigh waves, their amplitudes 
also decrease gradually with the depth, however unlike Rayleigh surface waves, Love 
waves are polarised horizontally. In nature they too accompany earthquakes leading 
to relative horizontal movements of earth masses, which very often have devastating 
consequences, as presented in Fig. 4.6. 

The mathematical description of Love surface waves may start at the very same 
point as the description of Rayleigh surface waves, which is the equation of motion 
given by Eqs. (3.5). However, in the current case, due to the horizontal polarization 
of Rayleigh surface waves, it must be assumed that the form of the displacement 
components . ux , .uy and .uz is different. The nature of these waves requires that the 
displacement components .ux and .uz must vanish, i.e. .ux = uz = 0, and the only 
non-zero displacement component is . uy , which remains only a function of the spa-
tial coordinate . x and time . t . Also in this case the form of the displacement field 
requires that the displacement component. uy , representing a plane harmonic wave. u
propagating in a 3-D elastic half-space, must vanish asymptotically with . z, as seen 
in Fig. 4.7. For .z ≤ 0 it can be written that: 

.uy(x, z, t) = û ye
αzeik(x−ct) (4.19) 

Fig. 4.6 Twisted rails near 
Whittier as a result earth 
movements during the 
Alaska earthquake of 1964 
[ 4]
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Fig. 4.7 A schematic representation of a Love surface wave propagating in a 3-D elastic half-space 

where . α is a certain positive constant, . k is the wave number, while . c denotes the 
phase velocity of the Love surface wave propagating in the direction of the . x axis. 

Substitution of Eqs. (4.19) into Eqs. (3.5), or even better to the resulting equation 
from Eqs. (3.24), leads to a simple relationship: 

.[α2c2S + k2(c2 − c2S)]û y = 0 (4.20) 

This relationship will be satisfied for non-zero amplitudes .û y of the displacement 
component .uy only if the characteristic equation is always equal to zero, i.e. when: 

.α2c2S + k2(c2 − c2S) = 0 (4.21) 

which, under assumptions made, has only one solution in the following form: 

.α = k

/

1 − c2

c2S
(4.22) 

It can be immediately found that the traction-free boundary conditions for Love 
surface waves, expressed by the only stress component .τyz at the free surface, i.e. at 
.z = 0, requires that either the amplitude .û y or . α must vanish, since: 

.τyz(x, z, t) = μ
∂uy

∂z
= μαû ye

ik(x−ct) (4.23)
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None of these cases lead to the propagation of Love surfaces waves. This suggests 
that in contrast to Rayleigh surface waves Love surface waves cannot propagate in a 
3-D elastic half-space as long as the elastic space remains homogeneous. 

This problem, as suggested by Love, can be overcome by an additional assumption. 
Under this assumption the 3-D elastic half-space is covered by an additional material 
layer of different properties from the properties of the 3-D elastic half-space. Thus, 
initially a problem of the propagation of horizontal SH-waves within the additional 
layer of elastic material must be analysed. For the sake of this analysis it may be 
assumed that the displacement field associated with propagation of a plane harmonic 
wave . u propagating within the layer of thickness . h has the form: 

.uy(x, z, t) = f (z)eik(x−ct) (4.24) 

when now . c denotes the phase velocity of the waves resulting from the coupled 
interaction of the incident SH-waves and their reflections from the layer boundaries. 

Again, substitution of Eqs. (4.24) into Eqs. (3.5), or even simpler to the resulting 
equation from Eqs. (3.24), leads to a simple relationship: 

.

[
d2 f (z)

dz2
+ k2

(
c2

c2S
− 1

)

f (z)

]

û ye
ik(x−ct) = 0 (4.25) 

which has non-zero solutions only if the expression within the square brackets equals 
to zero, which can be rewritten as: 

.
d2 f (z)

dz2
+ β2 f (z) = 0, β = k

/

c2

c2S
− 1 (4.26) 

Equation (4.26) has a very well-known general solution 4: 

. f (z) = A1 sin βz + A2 cosβz (4.27) 

which allows one to present the general form of the displacement field associated 
with propagation of Love surface waves in the following manner: 

• within the covering elastic layer of thickness . h, for .0 ≤ z ≤ h: 

.uy(x, z, t) = (A1 sin βz + A2 cosβz)eik(x−ct) (4.28) 

• within the 3-D elastic half-space, for .z ≤ 0: 

.uy(x, z, t) = û ye
αzeik(x−ct) (4.29)

4 The case of an isolated elastic layer is discussed in detail in Sect. 5.1. 
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The application of the traction-free boundary conditions for the stress component 
.τyz at the free surface of the elastic layer, i.e. for.z = h, and the use of the compatibility 
conditions for the same stress components .τyz as well as the displacement .uy at the 
interface, i.e. at .z = 0, allows one to obtain the dispersion relation for Love surface 
waves straight from Eqs. (4.28) and (4.29). It can be written that: 

.

⎧
⎪⎪⎨

⎪⎪⎩

τyz|h = 0 → A1 cosβh − A2 sin βh = 0

τyz|0+ = τyz|0− → A1βμ1 − û yαμ2 = 0

uy |0+ = uy|0− → A2 − û y = 0

(4.30) 

where.μ1 describes material properties within the covering elastic layer of thickness 
. h, while .μ2 describes those in the 3-D elastic half-space. 

As before the factor .eik(x−ct) is not present, as the conditions expressed by 
Eqs. (4.30) must be satisfied for propagating Love surface waves independently 
of the spatial coordinate . x and time . t . 

The conditions given by Eqs. (4.30) form a system of three homogeneous equa-
tions, which has non-trivial solutions only if its determinant vanishes, i.e. when: 

.βμ1 sin βh − αμ2 cosβh = 0 (4.31) 

which can be also expressed in the following well-known form: 

.tan

(

kh

/
c2

c2S|1
− 1

)

− μ2

μ1

/

1 − c2

c2S|2
/

c2

c2S|1
− 1

= 0 (4.32) 

It can be immediately seen that the dispersion relation for Love surface waves, 
expressed by Eq. (4.32), is dependent on the wave number. k and the thickness. h of the 
covering elastic layer. It can easily be solved numerically—see Appendix B. For this 
reason Love surface waves, unlike Rayleigh surface waves, are dispersive in nature. 
Moreover, it can be noted that real roots of the dispersion relation correspond to the 
phase velocity . c of Love surface waves, which stays within the range of velocities 
.cS|1 ≤ c ≤ cS|2. In the case when .cS|2 ≤ cS|1 the characteristic equation has no real 
roots, thus propagation of Love surface waves is prohibited. 

Additionally, it should be realised that unlike the Rayleigh surface waves, the 
Love surface waves propagating within the covering elastic layer are either partially 
reflected from the layer boundaries or partially transmitted into the 3-D elastic half-
space. These multiple reflections and their subsequent interference [ 5] lead to the 
formation of multiple modes of Love surface waves, the existence of which is cor-
rectly predicted by solutions to the characteristic equation, as presented in Fig. 4.8. In  
most cases, however, the most important modes are the fundamental (.n = 0) mode
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Fig. 4.8 Dispersion curves for: a the phase velocity, b the group velocity, for modes of Love 
surface waves (.n = 0, 1, 2, . . .) propagating in a 10 mm thick epoxy layer covering an aluminium 
half-space 

Fig. 4.9 Relative displacement amplitudes within: a covering layer, b aluminium half-space, as a 
function of the relative depth.z/h, for the first three modes of Love surface waves propagating in a 
10 mm thick epoxy layer covering an aluminium half-space, for the phase velocity equal to 2.5 km/s 

and subsequent modes. It should be also emphasised that due to the multi-mode 
nature of Love surface waves, within a given frequency range, a number of wave 
modes can propagate simultaneously. 

The profile of the displacement amplitudes associated with Love surface waves is 
also different from the profile observed for Rayleigh surface waves. This is because 
it must reflect not only the multi-mode nature of Love surface waves, but also the
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existence of the covering elastic layer, as shown in Fig. 4.9. In this case the displace-
ment component .uy is normalised with respect to the displacement .uy|n associated 
with the .n-mode of Love surface waves, measured on the surface of the 3-D elastic 
half-space, i.e. for .z = 0. Additionally its variation is presented not as a function of 
.z/λ, as the wavelength. λ is a function of material properties as well as the frequency 
. f , but rather as a function of the relative depth .z/h, where . h is the thickness of the 
covering elastic layer. It is interesting to observe that these displacement amplitudes 
remain continuous but are not smooth, which is a direct consequence of different 
material properties of the covering elastic layer and the 3-D elastic half-space. 

4.3 Stoneley Waves 

Stoneley waves can be considered as a special case of surface waves, as they propagate 
in material layers close to the interface between two solids, as presented in Fig. 4.10. 5

They are also known as boundary or interface waves and were discovered in 
1924 by Robert Stoneley (1894–1976), a British seismologist and professor at the 
University of Cambridge. In practice Stoneley waves are typically associated with 
seismic investigations of the properties of deep rock formations, which can be carried 
out through a borehole by sonic logging or vertical seismic profiling. Stoneley waves 
are also referred to as Scholte waves, when the interface along which they propagate 
is a solid-liquid interface. 

The mathematical description of Stoneley waves is similar to that presented in the 
case of Rayleigh surface waves, in Sect. 4.1. In this case, however, the displacement 
field used to define the wave motion in a 3-D elastic half-space, for .z ≤ 0, and 
given by the final set of Eqs. (4.6), must be modified. This modification reflects the 
existence of the second material, in order to form the interface. 

Without any loss of generality it can be conveniently assumed that the interface 
between two solids, which are represented by two 3-D elastic half-spaces of different 
material properties, can be defined by a plane .z = 0. 

For this reason the displacement field, representing a plane harmonic wave . u, 
propagating within material layers close to the interface between two 3-D elastic 
half-spaces, can be presented in the following manner: 

• within the upper 3-D elastic half-space, characterised by material constants. λ1,. μ1

and . ρ1, for .z ≥ 0:

5 The term von Schmidt waves or Schmidt head waves (SHW) is related to a pseudo-supersonic 
phenomenon of wave propagation in solids at or near their interface. This type of wave takes its 
name after a German physicist Oswald von Schmidt (1889–1945), who extensively studied wave 
propagation at media boundaries, which are characterised by different speeds of wave propagation. 
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Fig. 4.10 Wave propagation patterns at the interface between tungsten and aluminium (1—P-waves, 
2—SV-waves, 3—von Schmidt waves, 4—Stoneley waves). Results of numerical computations by 
TD-SFEM 

.

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, z, t) = (A1eα1|1z + A2eα2|1z)eik(x−ct)

uz(x, z, t) =
(

α1|1
ik

A1eα1|1z + k

iα2|1
A2eα2|1z

)

eik(x−ct)
(4.33) 

and where: 

.α1|1 = −k

/

1 − c2

c2P|1
, α2|1 = −k

/

1 − c2

c2S|1
(4.34) 

• within the lower 3-D elastic half-space, characterised by material constants. λ2,. μ2

and . ρ2, for .z ≤ 0: 

.

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, z, t) = (A3eα1|2z + A4eα2|2z)eik(x−ct)

uz(x, z, t) =
(

α1|2
ik

A3eα1|2z + k

iα2|2
A4eα2|2z

)

eik(x−ct)
(4.35) 

and where: 

.α1|2 = +k

/

1 − c2

c2P|2
, α2|2 = +k

/

1 − c2

c2S|2
(4.36)
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Now, .cP|1 and .cS|1 denote the phase velocities of the P-wave and S-wave within 
the upper 3-D half-space, i.e. for.z ≥ 0, while.cP|2 and.cS|2 the same velocities within 
the lower 3-D half-space, i.e. for .z ≤ 0. 

In the case of Stoneley waves the dispersion relation can be obtained by the use 
of Eqs. (4.33)–(4.36) under the assumption that both displacement components . ux

and . uz , as well as the non-zero stress components .σxx and .τxz , remain continuous 
at the interface .z = 0. Yet again the stress components .σxx and .τxz can be easily 
evaluated by the use of Hooke’s law, as presented by Eq. (4.9), while the non-zero 
strain components .∈xx , .∈zz and .γxz can be presented in the following form: 

• within the upper 3-D elastic half-space, for .z ≥ 0: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∈xx = ∂ux

∂x
= −k(A1k + A2α2|1)eik(x−ct)

∈zz = ∂uz

∂z
= (A1α

2
1|1 + A2kα2|1)eik(x−ct)

γxz = ∂ux

∂z
+ ∂uz

∂x
= i[2A1kα1|1 + A2(k2 + α2

2|1)]eik(x−ct)

(4.37) 

• within the lower 3-D elastic half-space, for .z ≤ 0: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∈xx = ∂ux

∂x
= −k(A3k + A4α2|2)eik(x−ct)

∈zz = ∂uz

∂z
= (A3α

2
1|2 + A4kα2|2)eik(x−ct)

γxz = ∂ux

∂z
+ ∂uz

∂x
= i[2A3kα1|2 + A4(k2 + α2

2|2)]eik(x−ct)

(4.38) 

These continuity conditions lead to a set of four homogeneous equations for 
the unknown constants .A1, .A2, .A3 and .A4, which after necessary mathematical 
manipulations can be presented as: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 + A2 − A3 − A4 = 0

α1|1
k

A1 + k

α2|1
A2 − α1|2

k
A3 − k

α2|2
A4 = 0

β1A1 + 2A2 − β2μ2

μ1
A3 − 2μ2

μ1
A4 = 0

2α1|1
k

A1 + β1k

α2|1
A2 − 2α1|2

k

μ2

μ1
A3 − β2k

α2|2
μ2

μ1
A4 = 0

(4.39) 

where .β1 and .β2 are respectively:
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.β1 =
/

2 − c2

c2S|1
, β2 =

/

2 − c2

c2S|2
(4.40) 

As before the system of homogeneous equations, given by Eqs. (4.39), has non-
trivial solutions only if its determinant vanishes. This condition leads straight to the 
characteristic equation, which in the current case after simplifications and rearrange-
ments of terms can be expressed as: 

.

c4[(ϑ2 − 1)μ2
1c

4
S|2 + (2 + ϑ3 + ϑ4)μ1μ2c2S|1c

2
S|2 + (ϑ1 − 1)μ2

2c
4
S|1]

−4c2c2S|1c
2
S|2(μ1 − μ2)[(ϑ2 − 1)μ1c2S|2 − (ϑ1 − 1)μ2c2S|1]

−4c4S|1c
4
S|2(ϑ1 − 1)(ϑ2 − 1)(μ1 − μ2)

2 = 0

(4.41) 

where symbols .ϑi (i = 1, . . . , 4) are defined as follows: 

.

⎧
⎪⎨

⎪⎩

ϑ1 = α1|1α2|1
k2

, ϑ2 = α1|2α2|2
k2

ϑ3 = α1|1α2|2
k2

, ϑ4 = α2|1α1|2
k2

(4.42) 

It may be noted that the characteristic equation (4.41) is independent of the wave 
number . k and/or angular frequency . ω. As a result of this Stoneley waves must be 
non-dispersive, in a similar manner to that observed in the case of Rayleigh surface 
waves. However, in the case of Stoneley waves the depth of their full attenuation 

Fig. 4.11 Relative displacement amplitudes: a horizontal, b transverse, as a function of the relative 
depth .z/λ, for Stoneley waves propagating in 3-D elastic half-spaces, at the interface between 
tungsten and aluminium
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Table 4.2 Selected material properties and the calculated speeds of P-, SV-, Rayleigh and Stoneley 
waves for tungsten and aluminium 

Property/material Aluminium Tungsten 

Poisson’s ratio,. ν (–) 0.33 0.28 

Density,. ρ (kg/m. 3) 2700 19300 

Young’s modulus,.E (GPa) 67.5 411.0 

1st Lamé constant, . λ (GPa) 49.3 204.3 

2nd Lamé constant, . μ (GPa) 25.4 160.5 

Speed of P-waves,.cP (km/s) 6.09 5.22 

Speed of SV-waves,.cS (km/s) 3.07 2.88 

Speed of Rayleigh waves,.cR (km/s) 2.86 2.67 

Speed of Stoneley waves,. c (km/s) 2.78 2.78 

generally exceeds twice their wavelength and is dependent on elastic properties of 
constituent materials, and thus may be different on both sides of the interface, as 
shown in Fig. 4.11. 

Moreover, this characteristic equation is bi-quadratic with respect to the phase 
velocity. c. It can be found that the number and nature of the roots of this bi-quadratic 
equation depend not only on the phase velocities of SV-waves .cS|1 and .cS|2, but also 
depend on the elastic properties of the two 3-D elastic half-spaces, defined by . μ1

and .μ2. 
Alternatively, it can be stated that the presence of positive roots of the characteristic 

equation (4.41) is a certain function of the material densities .ρ1 and . ρ2, as well as  
the shear moduli.μ1 and.μ2 of both adjacent 3-D elastic half-spaces [ 5]. Its roots can 
be easily found numerically. A typical case of materials at whose interface Stoneley 
waves may propagate is given by tungsten and aluminium. Their selected material 
properties and the calculated speeds of P-, SV-, Rayleigh and Stoneley waves, are 
presented in Table 4.2. 
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Chapter 5 
Waves in a 2-D Elastic Space 

5.1 SH-Waves in an Elastic Layer 

An elastic layer can be understood as two parallel surfaces bounding a 3-D elastic 
space. In such circumstances the presence of the bounding surfaces limits potential 
directions of propagation of elastic waves, so it can be said that an elastic layer is a 
case of a 2-D elastic space. Although two parallel surfaces represent a every specific 
example of 2-D space, it significantly helps to simplify not only the analysis but also 
the mathematical description of the wave phenomenon, as well as to formulate some 
general conclusions. 

Propagation of SH-waves in a thin elastic layer was briefly discussed on the 
occasion of the analysis of Love surface waves in Sect. 4.2. In the current section 
this analysis is presented in more detail. First of all it should be observed that the 
presence of a bounding surface in a 3-D elastic space results in wave reflection and 
subsequent interaction of the reflected waves with the incident waves. At certain 
conditions these reflected and incident waves are able to form specific wave patterns, 
which are called wave modes. Such wave modes could be observed in the case of Love 
surface waves and because of their dispersive nature they were strongly frequency 
dependent, as presented in Fig. 4.8. However, such wave modes were not observed 
in the case of Rayleigh or Stoneley surface waves. 

The presence of two surfaces parallel to the .xy plane, bounding a 3-D elastic 
space, leads to the entrapment of the propagating waves within the elastic layer as 
well as the formation of various wave modes, as presented in Fig. 5.1. Following 
the considerations presented in Sect. 4.2 it can be repeated that the displacement 
field associated with the propagation of a plane harmonic wave . u within a layer of 
thickness . h has the already known form. As before the nature of this wave requires 
that the displacement components .ux and .uz must vanish, i.e. .ux = uz = 0, and the 
only non-zero displacement component is. uy , which remains a function of the spatial 
coordinates . x , . z and time . t : 
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Fig. 5.1 Formation of the pattern of elastic SH-waves propagating in an aluminium layer, in con-
secutive moments in time. Results of numerical computations by TD-SFEM 

.uy(x, z, t) = û y(z)e
ik(x−ct) (5.1) 

where now . c denotes the phase velocity of the wave propagating in the direction of 
the . x axis and resulting from a coupled interaction of the incident SH-waves and 
their reflections from the layer boundaries. This interaction leads to the creation of a 
standing wave in the direction perpendicular to the .xy plane, which is the direction 
of the . z axis. 

As before a simple substitution of Eq. (5.1) into the governing equations of 
motion (3.5), or simply into the resulting equation from Eq. (3.24), leads to a well-
known ordinary differential equation given by Eq. (4.25): 

.
d2û y(z)

dz2
+ β2û y(z) = 0, β = k

/
c2

c2S
− 1 (5.2) 

which is formally rewritten here for the sake of completeness, where .|z| ≤ a, with 
.2a = h and . h denoting the thickness of the elastic layer. 

This equation has a solution composed of two independent harmonic functions: 
one being the symmetric cosine function and the other the antisymmetric sine func-
tion: 

.û y(z) = A1 sin βz + A2 cosβz (5.3) 

Now, the application of the traction-free boundary conditions for the stress com-
ponent.τyz at the free surface of the elastic layer, i.e. for.z = ±a, allows one to obtain
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Fig. 5.2 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric modes of 
SH-waves SH.n(n = 0, 2, 4, . . .) propagating in a 10 mm thick aluminium layer 

Fig. 5.3 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric modes 
of SH-waves SH.n(n = 1, 3, 5, . . .) propagating in a 10 mm thick aluminium layer 

the dispersion relation for SH-waves propagating in the elastic layer, as illustrated 
in Figs. 5.2 and 5.3. 

This condition can be formally presented in the following form: 

.τyz|±a = 0 → A1 cosβa ± A2 sin βa = 0 (5.4)
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Indeed, it can be found that Eq. (5.4) is satisfied in two cases [ 1]: 

• when .A1 = 0 and .û y(z) = A2 cosβz then: 

. A2 sin βa = 0 → βna = nπ, n = 0, 1, 2, . . .

or alternatively: 

.βna = nπ

2
→ βnh = nπ, n = 0, 2, 4, . . . (5.5) 

• when .A2 = 0 and .û y(z) = A1 sin βz then: 

. A1 cosβa = 0 → βna = (2n − 1)π

2
, n = 1, 2, 3, . . .

or alternatively: 

.βna = nπ

2
→ βnh = nπ, n = 1, 3, 5, . . . (5.6) 

It is interesting to note that the case of .n = 0, 2, 4, . . . corresponds to the infinite 
number of symmetric modes of SH-waves propagating within the elastic layer and 
standing waves described by the symmetric (even) cosine function, while the case 
of .n = 1, 3, 5, . . . corresponds to the infinite number of antisymmetric modes of 
SH-waves propagating within the elastic layer and standing waves described by the 
antisymmetric (odd) sine function. In the literature [ 1– 3] modes of SH-waves are 
very often noted SH.n(n = 0, 1, 2, . . .) and their associated displacement amplitude 
profiles are presented in Fig. 5.4. 

It should be stressed that the displacement amplitude profiles of both symmetric 
and antisymmetric modes of SH-waves remain independent of the wave number . k
and the angular frequency . ω. 

Finally, by using the definition of the parameter . β in Eq. (5.2) as well as the  
resulting relations from Eq. (5.5) and Eq. (5.6), the dispersion relation for SH-waves 
propagating within an elastic layer of thickness. h, for symmetric and antisymmetric 
modes, can be expressed as a function of the wave number . k in the following way: 

.c(k) = cS

/
1 +

(nπ

kh

)2
, n = 0, 1, 2, . . . (5.7)
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Fig. 5.4 Relative displacement amplitudes of the transverse displacement .uy for modes of SH-
waves propagating in an elastic layer: symmetric SH.n(n = 0, 2, 4, . . .) and antisymmetric SH. n(n =
1, 3, 5, . . .)

or alternatively as a function of the angular frequency . ω1 as: 

.c(ω) = cS/
1 −

(nπcS
ωh

)2
, n = 0, 1, 2, . . . (5.8) 

It can be also noted from Figs. 5.2 and 5.3 that SH-waves propagating within an 
elastic layer are dispersive except for the fundamental mode, i.e. for.n = 0, which is a 
non-dispersive fundamental symmetric mode SH. 0. Moreover, it can be also seen that 
in the case of the fundamental mode the phase velocity of the SH-waves propagating 
in such a layer is equal to the phase velocity of SH-waves propagating in a 3-D elastic 
space. 

5.2 Lamb Waves in an Elastic Layer 

In a similar manner to SH-waves propagating in an elastic layer discussed previously 
in Sect. 5.1 the presence of two surfaces parallel to the.xy plane bounding a 3-D elastic 
space leads to the entrapment of the propagating waves within the elastic layer, as 
presented in Fig. 5.5. As a result of this, it also leads to the formation of various wave 
modes, known as symmetric and antisymmetric modes of Lamb waves.

1 Since the phase velocity. c is simultaneously dependent on the angular frequency. ω and the thick-
ness of the elastic layer. h this dependence can be also conveniently presented as a function of their 
product, i.e. as.c = c(ω ·h) or.c = c( f ·h). 
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Fig. 5.5 Formation of the fundamental symmetric Lamb wave mode S. 0 propagating in an alu-
minium layer in consecutive moments in time. Results of numerical computations by TD-SFEM 

Lamb waves, very often referred to as Rayleigh-Lamb waves, are a different type of 
wave from SH-waves, which can also propagate in an elastic layer. Their propagation 
in an elastic layer is very similar to the propagation of Rayleigh waves discussed in 
Sect. 4.1. There a detailed discussion examined the formation of Rayleigh waves 
as a direct consequence of the presence of a free surface bounding a 3-D elastic 
space, where two types of waves can propagate freely as P-waves and S-waves. The 
presence of that free surface results in a coupled interaction between P-waves and 
S-waves, which required a complex mathematical description. 

In the case Lamb waves the nature of the wave motion requires that the dis-
placement component.uy must vanish, i.e..uy = 0, while the other two displacement 
components .ux and .uz are retained, remaining only a function of the spatial coordi-
nates . x and . z as well as of time . t . Thus the wave motion stays fully independent of 
the spatial coordinate . y. As before it is assumed that .|z| < a, with .2a = h where . h
denotes the thickness of the layer. 

The investigation of Lamb waves benefits a lot from the decomposition of the 
displacement field, according to Eq. (3.25) from Sect. 3.2, into the scalar potential . φ
and the vector potential . ψ. Bearing in mind the assumptions made about the nature 
of the wave motion it can be noted in the case of Lamb waves that Eq. (3.25) reduces 
to the following form: 

.

⎧⎪⎪⎨
⎪⎪⎩
ux (x, z, t) = ∂φ

∂x
− ∂ψz

∂z

uz(x, z, t) = ∂φ

∂z
+ ∂ψz

∂x

(5.9)
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where now.φ = φ(x, z, t) and .ψz = ψz(x, z, t) represent two scalar potentials. 
Both scalar potentials. φ and.ψz must satisfy appropriate wave equations given by 

Eq. (3.21) and Eq. (3.22). For this reason it can be formally written that: 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c2P∇2φ = φ̈ or

∂2φ

∂x2
+ ∂2φ

∂z2
= 1

c2P

∂2φ

∂t2

c2S∇2ψz = ψ̈z or
∂2ψy

∂x2
+ ∂2ψy

∂z2
= 1

c2S

∂2ψy

∂t2

(5.10) 

Solutions to these wave equations (5.10) can be assumed to have well-known 
forms: 

.

{
φ(x, z, t) = ϕ(z)eik(x−ct)

ψz(x, z, t) = ψ(z)eik(x−ct)
(5.11) 

where. ϕ and. ψ represent unknown functions dependent only on the spatial coordinate 
. z and where . c is the phase velocity of Lamb waves propagating in the direction of 
the . x axis. 

A simple substitution of Eq. (5.11) into the appropriate wave equations, expressed 
by Eq. (5.10), leads to two ordinary differential equations: 

.

⎧⎪⎪⎨
⎪⎪⎩
d2ϕ(z)

dz2
+ p2ϕ(z) = 0

d2ψ(z)

dz2
+ q2ψ(z) = 0

(5.12) 

with: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
p = k

/
c2

c2P
− 1 =

/
ω2

c2P
− k2

q = k

/
c2

c2S
− 1 =

/
ω2

c2S
− k2

(5.13) 

where. p and. q are certain constants dependent on the angular frequency. ω, the  wave  
number . k as well as the velocities of P-waves and SH-waves propagating in a 3-D 
elastic medium. 

The displacement field associated with propagation of Lamb waves in an elastic 
layer, thanks to Eq. (5.11), can be expressed as: 

.

⎧⎪⎪⎨
⎪⎪⎩
ux (x, z, t) =

[
ikϕ(z) − dψ(z)

dz

]
eik(x−ct)

uz(x, z, t) =
[
dϕ(z)

dz
+ ikψ(z)

]
eik(x−ct)

(5.14)
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which helps to express the strain field in the elastic layer directly as dependent on 
the unknown functions .ϕ and . ψ: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∈xx = ∂ux

∂x
= −

[
k2ϕ(z) + ik

dψ(z)

dz

]
eik(x−ct)

∈zz = ∂uz

∂z
=

[
d2ϕ(z)

dz2
+ ik

dψ(z)

dz

]
eik(x−ct)

γxz = ∂ux

∂z
+ ∂uz

∂x
=

[
2ik

dϕ(z)

dz
− k2ψ(z) − d2ψ(z)

dz2

]
eik(x−ct)

(5.15) 

Since solutions to the ordinary differential equations given by Eq. (5.12) are also 
well-known: 

.

{
ϕ(z) = A1 sin pz + A2 cos pz

ψ(z) = B1 sin qz + B2 cos qz
(5.16) 

the application of the traction-free boundary conditions for the stress components 
.σzz and .τxz at the free surface of the elastic layer, i.e. for .z = ±a: 

.σzz(x, z, t) = τxz(x, z, t) = 0, for z = ±a (5.17) 

allows one to obtain the dispersion relations for Lamb waves propagating in the 
elastic layer. 

The stress components.σzz and.τxz can be expressed by the use of Hooke’s law, as 
was presented in Eq. (4.9) in Sect. 4.1, which results in the following two equations: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σzz|±a = 0 → k2λϕ(±a) − (λ + 2μ)
d2ϕ(±a)

dz2

−2ikμ
dψ(±a)

dz
= 0

τxz|±a = 0 → μ

[
2ik

dϕ(±a)

dz
− k2ψ(±a) − d2ψ(±a)

dz2

]
= 0

(5.18) 

where as before the factor .eik(x−ct) is not present, since the traction-free boundary 
conditions must be satisfied for propagating Lamb waves independently of the spatial 
coordinate . x and time . t . 

It can be immediately seen that the system of two equations, resulting from the 
traction-free boundary conditions is dependent on four unknown constants: .A1, .A2, 
.B1 and .B2. However, its solution is possible thanks to the fact that the wave motion 
associated with propagation of Lamb waves can be split into two independent types 
of wave modes, i.e. symmetric modes and antisymmetric modes, in a very similar 
manner as it was in the case of SH-waves propagating in an elastic layer. 

The modes of Lamb waves are noted in the literature [ 1– 3] as S. n(n = 0, 1, 2, . . .)
for symmetric modes and A.n(n = 0, 1, 2, . . .) for antisymmetric modes. In contrast
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Fig. 5.6 Relative displacement amplitudes for symmetric modes of Lamb waves S. n(n =
0, 1, 2, . . .) propagating in a 10 mm thick aluminium layer, at the frequency. f = 750 kHz 

Fig. 5.7 Relative displacement amplitudes for antisymmetric modes of Lamb waves A. n(n =
0, 1, 2, . . .) propagating in a 10 mm thick aluminium layer, at the frequency. f = 750 kHz 

to SH-waves propagating in an elastic layer, this time the associated displacement 
amplitudes of Lamb waves concern two components, i.e. the longitudinal displace-
ment component .ux and the transverse displacement component . uz , as presented 
Figs. 5.6 and 5.7. 

Moreover, a closer examination of the displacement field expressed by Eq. (5.14) 
allows one to conclude that in the case of wave motion in the direction of the . x axis 
(i.e. longitudinal displacement component. ux ) symmetric modes must be associated
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with cosine functions in Eq. (5.16), while antisymmetric modes must be associ-
ated with sine functions, as clearly seen in Fig. 5.6. It is opposite in the case of 
wave motion in the direction of the . z axis (i.e. transverse displacement component 
. uz), when symmetric modes must be associated with sine functions in Eq. (5.16), 
while antisymmetric modes must be associated with cosine functions, as presented 
in Fig. 5.7. 

Following the notation used in Eq. (5.11) the displacement and stress fields can 
formally be expressed as plane harmonic waves [ 1]: 

.

{
ux (x, z, t) = ûx (z)eik(x−ct), σzz(x, z, t) = σ̂zz(z)eik(x−ct)

uz(x, z, t) = ûz(z)eik(x−ct), τxz(x, z, t) = τ̂xz(z)eik(x−ct)
(5.19) 

which together with all above considerations allows one to present the unknown 
functions of the spatial coordinate . z in the case of symmetric modes of Lamb waves 
as: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(z) = A2 cos pz

ψ(z) = B1 sin qz

ûx (z) = ik A2 cos pz − qB1 cos qz

ûz(z) = −pA2 sin pz + ikB1 sin qz

σ̂zz(z) = −[k2 + p2(λ + 2μ)]A2 cos pz + 2μikqB1 cos qz

τ̂xz(z) = −2μikpA2 sin pz + μ(q2 − k2)B1 sin qz

(5.20) 

while in the case of antisymmetric modes of Lamb waves as: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(z) = A1 sin pz

ψ(z) = B2 cos qz

ûx (z) = ik A1 sin pz + qB2 sin qz

ûz(z) = pA1 cos pz + ikB2 cos qz

σ̂zz(z) = −[k2 + p2(λ + 2μ)]A1 sin pz − 2μikqB2 sin qz

τ̂xz(z) = 2μikpA1 cos pz + μ(q2 − k2)B2 cos qz

(5.21) 

In such a way the resulting the system of two homogeneous equations leading to 
the dispersion relations for Lamb waves propagating in an elastic layer are always 
dependent on two unknown constants: .A2 and.B1 in the case of symmetric modes of 
Lamb waves and .A1 and .B2 in the case of antisymmetric Lamb waves. 

In a similar manner as before the two system of homogeneous equations resulting 
from the traction-free boundary conditions at the free surface of the elastic layer, 
i.e. for .z = ±a, for either symmetric or antisymmetric mode of Lamb waves, have 
non-trivial solutions only if their determinant vanishes. These conditions lead to the 
two characteristic equations.
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In the case of symmetric modes of Lamb waves this characteristic equation can 
be expressed as: 

.(k2 − q2)[λk2 + (λ + 2μ)p2] sin qa cos pa = 4μk2 pq sin pa cos qa (5.22) 

which can be simplified after necessary mathematical manipulations and rearrange-
ments of terms 2 to its well-know form: 

.
tan qa

tan pa
= − 4k2 pq

(k2 − q2)2
, for symmetric modes (5.23) 

In the case of antisymmetric modes of Lamb waves the corresponding character-
istic equation can be expressed as: 

.(k2 − q2)[λk2 + (λ + 2μ)p2] sin pa cos qa = 4μk2 pq sin qa cos pa (5.24) 

which can be simplified after the same mathematical manipulations and rearrange-
ments to its well-know form: 

.
tan qa

tan pa
= − (k2 − q2)2

4k2 pq
, for antisymmetric modes (5.25) 

The characteristic equations for symmetric and antisymmetric modes of Lamb 
waves, given by Eqs. (5.23) and (5.25), represent transcendental equations, which 
cannot be solved analytically. Instead, they can be effectively solved numerically 
leading to desired dispersion curves for Lamb waves propagating in an elastic 
layer—see Appendix B. Such dispersion curves obtained numerically are presented 
in Figs. 5.8 and 5.9 for symmetric and antisymmetric modes of Lamb waves. 

It is interesting to note that the dispersion curves obtained for the fundamental 
symmetric S. 0 and antisymmetric A. 0 modes of Lamb waves are strongly correlated 
with Rayleigh surface waves, as the speed of Rayleigh waves .cR is their high fre-
quency limit. 

Moreover, it can also be seen from Eqs. (5.20) and (5.20) that displacement 
amplitude profiles of symmetric and antisymmetric modes of Lamb waves are directly 
dependent on the wave number. k, hence they are dispersive and as such must be also 
dependent on the angular frequency. ω. For this reason these displacement amplitude 
profiles evolve with changes in the wave number. k or the angular frequency. ω, which 
is not observed in the case of SH-waves discussed in Sect. 5.1. This variation is also 
clearly observed in Figs. 5.10 and 5.11 as a function of the frequency . f , due to the 
well-known relationship between the angular and cyclic frequencies .ω = 2π f .

2 It can be checked that .λk2 + (λ + 2μ)p2 = (ρc2P − 2μ)k2 + ρc2P p
2 since .λ + 2μ = ρc2P , which  

can be easily rearranged to .λk2 + (λ + 2μ)p2 = ρc2P(k
2 + p2) − 2μk2. Next, from the definition 

of. p and. q it can be found that.(k2 + p2)c2P = (k2 + q2)c2S , which leads to. ρc
2
P(k

2 + p2) − 2μk2 =
ρc2S (k

2 + q2) − 2μk2 = μ(k2 + q2) − 2μk2 since .μ = ρc2S . Finally, after a simple rearrangement 
one obtains that.λk2 + (λ + 2μ)p2 = −μ(k2 − q2). 
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Fig. 5.8 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric modes of 
Lamb waves S.n(n = 0, 1, 2, . . .) propagating in a 10 mm thick aluminium layer 

Fig. 5.9 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric modes 
of Lamb waves A.n(n = 0, 1, 2, . . .) propagating in a 10 mm thick aluminium layer



5.2 Lamb Waves in an Elastic Layer 95

Fig. 5.10 Relative displacement amplitudes as a function of the frequency. f for the fundamental 
symmetric mode of Lamb waves S. 0 propagating in a 10 mm thick aluminium layer 

Fig. 5.11 Relative displacement amplitudes as a function of the frequency. f for the fundamental 
antisymmetric mode of Lamb waves A. 0 propagating in a 10 mm thick aluminium layer
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Chapter 6 
Waves in a 1-D Elastic Space 

6.1 Longitudinal Waves 

Longitudinal waves in a 1-D elastic space, likewise Rayleigh waves in a 2-D elas-
tic space, also result from a simultaneous reflection and interaction of propagating 
P-waves and S-waves with the existing boundary. However, due to the closed form 
of the boundary 1 the observed behaviour is different. 

It is most convenient to analyse longitudinal waves in a 1-D elastic space using 
the cylindrical .(x, r, θ) rather than the Cartesian .(x, y, z) coordinate system—see 
Appendix C. Moreover, they can be assumed as propagating in a 1-D infinite elastic 
bar of circular cross-section presented in Fig. 6.1. 

In Sect. 3.1 it was discussed that the equation of motion, given by Eq. (3.4), 
describing the wave phenomena in elastic media is independent of the selection of 
the coordinate system. For the sake of clarity and completeness this equation is 
presented below once more: 

.μ∇2u + (λ + μ)∇(∇ · u) = ρü (6.1) 

where . u is the vector of displacements, now dependent on the spatial coordinates . x , 
. r and . θ as well as on time . t . 

The investigation of longitudinal waves also benefits from the application of 
Helmholtz’s theorem and decomposition of the displacement field, according to 
Eq. (3.18) from Sect. 3.2, into a scalar potential . φ and a vector potential . ψ. Both  
potentials . ψ and .ψ satisfy appropriate wave equations, i.e. Eqs. (3.21) and (3.22), 
which are also presented below: 

1 A closed boundary is the type of boundary, which surrounds the domain of interest confining it 
to a finite surface or volume. This is contrary to an open boundary, which has no such property, 
allowing the domain of interest to extend to infinity in one or more directions. 
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Fig. 6.1 A schematic representation of a longitudinal wave propagating in a 1-D infinite elastic bar 

.

{
c2P∇2φ = φ̈

c2S∇2ψ = ψ̈ 
(6.2) 

In the most general case particular components of the displacement vector . u =
[ux , ur , uθ]T in the cylindrical coordinate system.(x, r, θ) are defined as follows: 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ux = ∂φ

∂x
− 1

r

∂ψr

∂θ
+ 1

r

∂(rψθ)

∂r

ur = ∂φ

∂r
+ 1

r

∂ψx

∂θ
− ∂ψθ

∂x

uθ = 1

r

∂φ

∂θ
+ ∂ψr

∂x
− ∂ψx

∂r

(6.3) 

where . φ is the scalar potential, .ψx , .ψr and .ψθ are the components of the vector 
potential .ψ = [ψx ,ψr ,ψθ]T, which in the most general case all remain dependent 
on the spatial coordinates . x , . r and . θ as well as on time . t . 

It can be noted that in the current case the nature of propagating longitudinal waves 
requires the vanishing of the tangential displacement component . uθ, i.e. .uθ = 0, the  
presence of which is typically associated with propagation of flexural or torsional 
waves. Additionally, the independence of the longitudinal and radial displacement 
components .ux and .ur of the angle . θ is implied, which results in the vanishing of 
two components of the vector potential . ψ, i.e. .ψx = ψr = 0. As a consequence also 
two strain components .γxθ and .γrθ must vanish, i.e. .γxθ = γrθ = 0.
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Finally, the displacement vector . u can be expressed in the following way: 

.

⎧⎪⎪⎨
⎪⎪⎩
ux = ∂φ

∂x
+ 1

r

∂(rψθ)

∂r

ur = ∂φ

∂r
− ∂ψθ

∂x

(6.4) 

where now .ux = ux (x, r, t) and .ur = ur (x, r, t) depend only on the spatial coordi-
nates . x and . r as well as on time . t . 

After substitution of the displacement vector . u, given by Eq. (6.4), into the equa-
tion of motion (6.1) and after necessary mathematical manipulations and rearrange-
ments, it can be checked that the equation of motion reduces to a set of two indepen-
dent equations of motion expressed in terms of the scalar potentials . φ and .ψθ. This  
can be presented as: 

.

⎧⎪⎨
⎪⎩
c2P∇2φ = φ̈

c2S

(
∇2ψθ − ψθ

r2

)
= ψ̈θ

(6.5) 

The second equation of motion can be further simplified 2 by the substitution 
.ψθ = − ∂ψ

∂r , which helps to express Eq. (6.5) in the following way: 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c2P∇2φ = φ̈ or

∂2φ

∂x2
+ ∂2φ

∂r2
+ 1

r

∂φ

∂r
= 1

c2P

∂2φ

∂t2

c2S∇2ψ = ψ̈ or
∂2ψ

∂x2
+ ∂2ψ

∂r2
+ 1

r

∂ψ

∂r
= 1

c2S

∂2ψ

∂t2

(6.6) 

where now .ψ = ψ(x, r, t) is a new scalar potential dependent on the same spatial 
coordinates . x and . r as well as on time . t . 

Consequently, the displacement vector . u takes the following form: 

.

⎧⎪⎪⎨
⎪⎪⎩
ux = ∂φ

∂x
− ∂2ψ

∂r2
− 1

r

∂ψ

∂r

ur = ∂φ

∂r
+ ∂2ψ

∂x∂r

(6.7)

2 It can be checked that in the current case .∇2 ∂
∂r = ∂

∂r
∂2

∂x2
+ ∂

∂r
∂2

∂r2
+ 1

r
∂
∂r

∂
∂r since . ∇2 = ∂2

∂x2
+

∂2

∂r2
+ 1

r
∂
∂r . Noting that.

∂
∂r ( 1r

∂
∂r ) = 1

r
∂2

∂r2
− 1

r2
∂
∂r it can be found that. ∇2 ∂

∂r = ∂
∂r

∂2

∂x2
+ ∂

∂r
∂2

∂r2
+

∂
∂r ( 1r

∂
∂r ) + 1

r2
∂
∂r = ∂

∂r ∇2 + 1
r2

∂
∂r . As a result, if .ψθ = − ∂ψ

∂r then .−c2S (∇2 ∂ψ
∂r − 1

r2
∂ψ
∂r ) = − ∂ψ̈

∂r , 

which leads to.−c2S [( ∂
∂r ∇2ψ + 1

r2
∂ψ
∂r ) − 1

r2
∂ψ
∂r ] = − ∂ψ̈

∂r . This reduces to.
∂
∂r (c2S ∇2ψ) = ∂

∂r ψ̈, which  

has to be satisfied independently of. r , thus.c2S ∇2ψ = ψ̈. 
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Following the procedure already known from previous sections, solutions to the 
wave equations given by Eq. (6.6) can be assumed yet again as two independent 
harmonic functions: 

.

{
φ(x, r, t) = ϕ(r)eik(x−ct)

ψ(x, r, t) = ψ(r)eik(x−ct)
(6.8) 

where .ϕ(r) and .ψ(r) represent unknown functions dependent only on the spatial 
coordinate . r . 

Substitution of Eq. (5.8) into the appropriate wave equations, expressed by 
Eq. (6.6), leads this time to two Bessel differential equations: 

.

⎧⎪⎪⎨
⎪⎪⎩
d2ϕ(r)

dr2
+ 1

r

dϕ(r)

dr
+ α2ϕ(r) = 0

d2ψ(r)

dr2
+ 1

r

dψ(r)

dr
+ β2ψ(r) = 0

(6.9) 

with: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α = k

/
c2

c2P
− 1 =

/
ω2

c2P
− k2

β = k

/
c2

c2S
− 1 =

/
ω2

c2S
− k2

(6.10) 

where . α and . β denote the same constants as in Eq. (5.13) in Sect. 5.2 in the case of 
Lamb waves. They remain dependent on the angular frequency. ω, the wave number 
. k as well as the velocities of P-waves and S-waves propagating in a 3-D elastic 
medium. 

Next, the displacement field associated with propagation of longitudinal waves 
in the 1-D infinite elastic bar under consideration, thanks to Eq. (6.8), can be easily 
written as: 

.

{
ux (x, r, t) = ûx (r)eik(x−ct)

ur (x, r, t) = ûr (r)eik(x−ct)
(6.11) 

where the amplitudes of particular plane harmonic waves are: 

.

⎧⎪⎪⎨
⎪⎪⎩
ûx (r) = ikϕ(r) − 1

r

dψ(r)

dr
− d2ψ(r)

dr2

ûr (r) = dϕ(r)

dr
+ ik

dψ(r)

dr

(6.12) 

The strain components, which result from the propagation of longitudinal waves 
within the bar, can be presented in an analogous way:
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.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈xx = ∂ux

∂x
= ∈̂xx (r)eik(x−ct)

∈rr = ∂ur
∂r

= ∈̂rr (r)eik(x−ct)

∈θθ = ur
r

= ∈̂θθ(r)eik(x−ct)

γxr = ∂ux

∂r
+ ∂ur

∂x
= γ̂xr (r)eik(x−ct)

(6.13) 

which leads to the following expressions for the amplitudes of the strain field com-
ponents dependent on the two unknown functions .ϕ and . ψ: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈̂xx (r) = −k2ϕ(r) − ik

r

dψ(r)

dr
− ik

d2ψ(r)

dr2

∈̂rr (r) = d2ϕ(r)

dr2
+ ik

d2ψ(r)

dr2

∈̂θθ(r) = 1

r

dϕ(r)

dr
+ ik

r

dψ(r)

dr

γ̂xr (r) = 2ik
dϕ(r)

dr
− k2

dψ(r)

dr
+ 1

r2
dψ(r)

dr

− 1

r

d2ψ(r)

dr2
− d3ψ(r)

dr3

(6.14) 

At this point it is worth noting that solutions to Eq. (6.9) can be expressed by 
Bessel functions of the first kind .J0(αr) and .J0(βr), as well as Bessel functions of 
the second kind .Y0(αr) and .Y0(βr). 

Bearing in mind the fact that the Bessel functions of the second kind .Y0(αr) and 
.Y0(βr) are singular at .r = 0 these solutions should be disregarded in the case of 
the bar under investigation. Consequently the unknown functions .ϕ and .ψ can be 
presented in the following straightforward manner: 

.

{
ϕ(r) = A1 J0(αr)

ψ(r) = A2 J0(βr)
(6.15) 

where.A1 and.A2 are certain constants, which help to express the potentials . φ and. ψ
as: 

.

{
φ(x, r, t) = A1 J0(αr)eik(x−ct)

ψ(x, r, t) = A2 J0(βr)eik(x−ct)
(6.16) 

where . c is the phase velocity of longitudinal waves propagating in the direction of 
the . x axis.
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As before, the application of the traction-free boundary conditions for the stress 
components .σrr and .τxr at the free surface of the bar, i.e. for .r = a: 

.σrr (x, r, t) = τxr (x, r, t) = 0, for r = a (6.17) 

with .2a = d, where . d denotes the diameter of the bar, allows one to obtain the 
dispersion relations for longitudinal waves propagating in the 1-D isotropic elastic 
bar under consideration. 

According to the standard procedure, well-known from the previous sections, the 
stress components .σrr and .τxr can be expressed by the use of Hooke’s law. Thanks 
to this the following two equations are obtained: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σrr |a = 0 → λ

[
k2ϕ(a) − 1

a

dϕ(a)

dr

]
− (λ + 2μ)

d2ϕ(a)

dr2

−2ikμ
d2ψ(a)

dr2
= 0

τxr |a = 0 → μ

[
2ik

dϕ(a)

dr
− k2

dψ(a)

dr
+ 1

a2
d2ψ(a)

dr2

−d3ψ(a)

dr2

]
= 0

(6.18) 

where as previously the factor.eik(x−ct) is not present since the traction-free boundary 
conditions must be satisfied for propagating longitudinal waves independently of the 
spatial coordinate . x and time . t . 

Now, the system of two equations resulting from the traction-free boundary con-
ditions can be expressed by the potentials . φ and . ψ, as presented by Eq. (6.16). 
This results in a set of two homogeneous equations with two unknown constants 
.A1 and .A2. The system has non-trivial solutions only if its determinant vanishes, 
which leads to the characteristic equation known in the literature as the Pochham-
mer frequency equation for longitudinal modes propagating in circular rods. The 
Pochhammer equation can be presented as: 

.

2α

a
(β2 + k2)J1(αa)J1(βa) − (β2 − k2)J0(αa)J1(βa)

−4k2αβ J1(αa)J0(βa) = 0
(6.19) 

It is noteworthy that the Pochhammer equation was studied over the years by 
many researchers [ 1– 5]. However, due to its mathematical complexity no roots of 
this equation were known for many years. Nowadays these roots can be effectively 
found only numerically—see Appendix B. Since the roots are dependent on the wave 
number . k the longitudinal waves propagating in circular rods must be dispersive in 
nature. Resulting dispersion curves for the phase and group velocities as a function 
of the cyclic frequency . f are shown in Fig. 6.2.
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Fig. 6.2 Dispersion curves for: a the phase velocity, b the group velocity, for modes of longitudinal 
waves L.n(n = 0, 1, 2, . . .) propagating in a 10 mm diameter aluminium bar 

Fig. 6.3 Distribution of 
displacement components: a 
longitudinal.ux , b radial. ur , 
on the bar circumference, for 
the fundamental mode of 
longitudinal waves L. 0
propagating in a 10 mm 
diameter aluminium bar, at 
the frequency. f = 1 kHz 

The modes of longitudinal waves are very often noted in the literature [ 6, 7] as  
L.n(n = 0, 1, 2, . . .). Their behaviour is very similar to the behaviour of symmetric 
modes of Lamb waves propagating in an elastic layer and discussed in Sect. 5.2, 
however, they originate from very different characteristic equations. This can be 
clearly seen in Fig. 6.2, when compared with the results presented in Fig. 5.9. This  
similarity concerns not only the frequency behaviour of modes propagating within the 
1-D infinite elastic bar under consideration, but also extends onto the displacement 
amplitude profiles presented in Figs. 6.4 and 6.5. 

As before, the knowledge of the dispersion curves from Fig. 6.2 associated with the 
propagation of longitudinal waves within the bar, together with the use of Eqs. (6.10), 
(6.12) and (6.15), enables one to establish the displacement amplitude profiles for 
required values of the angular frequency . ω or the cyclic frequency . f , as shown  in  
Fig. 6.3. This can be done based on the following simple relations:
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Fig. 6.4 Relative displacement amplitudes as a function of the frequency . f for the fundamental 
mode of longitudinal waves L. 0 propagating in a 10 mm diameter aluminium bar 

Fig. 6.5 Relative displacement amplitudes for modes of longitudinal waves L. n(n = 0, 1, 2, . . .)
propagating in a 10 mm diameter aluminium bar, at the frequency. f = 750 kHz 

.

{
ûx (r) = A1ik J0(αr) + A2β

2 J0(βr)

ûr (r) = −A1αJ1(αr) − A2ikβ J1(βr)
(6.20) 

It should strongly emphasised though that in the current case of longitudinal waves 
propagating in the bar the displacement amplitude profiles concern the longitudinal 
and radial displacement components.ux and. ur , while in the case of symmetric modes 
of Lamb waves propagating in an elastic layer they represented the longitudinal and
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Fig. 6.6 Detailed view of the dispersion curve for the second mode of longitudinal waves L. 1
propagating in a 10 mm diameter aluminium bar: a the phase velocity, b the group velocity, exhibiting 
unusual behaviour leading to negative values of the group velocity 

transverse displacement components .ux and . uz . Here it can be also noted that the 
dispersion curve obtained for the fundamental mode L. 0, in a similar manner as in the 
case of the fundamental mode of Lamb waves S. 0, is also correlated with Rayleigh 
surface waves, as the speed of Rayleigh waves .cR is its high frequency limit. 

In the case of the longitudinal waves propagating within the 1-D infinite elastic bar 
the frequency dependence of the second mode L. 1 exhibits some unusual behaviour. 
This is when the analysis of the phase velocity . c for this mode is extended onto a 
wider range of phase velocities, reaching or even exceeding 100 km/s, as presented 
in Fig. 6.6. Then it can be observed that within a relatively narrow frequency band of 
14 kHz, starting from the frequency. f1 = 356.8 kHz up to the frequency. f2 = 372.8
kHz, the dispersion curve for the second mode L. 1 is double-valued. This is clearly 
seen along the dispersion curve for this mode between points . B ,, .A and . B. As a  
consequence the group velocity within this frequency band exhibits simultaneously 
positive and negative values, as presented in Fig. 6.6, leading to the phenomenon 
known in the literature as the so-called backward wave propagation [ 8, 9]. 

Although individual monochromatic waves within this frequency band have dif-
ferent and always positive values of their phase velocities, simultaneously travelling 
wave packets are characterised by group velocities of different signs, as shown in 
Fig. 6.6. Point. A appears as a very specific point on the dispersion curve for mode L. 1. 
It represents the so-called zero-group-velocity resonance [ 10, 11], where the group 
velocity drops to zero for a non-zero value of the phase velocity. Such points are 
typical for most isotropic materials and concern the first order modes, i.e. longitu-
dinal modes in the case of elastic bars or symmetric modes in the case of Lamb 
waves propagating within elastic layers. At the same time it should be noted that
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Fig. 6.7 Relative displacement amplitudes for the second mode of longitudinal waves L. 1 propa-
gating in a 10 mm diameter aluminium bar, near the critical point of the mode 

the displacement amplitude profiles within this frequency band remain practically 
unchanged, as illustrated in Fig. 6.7. 

Additionally, it should be also strongly emphasised that this kind of phenomenon 
is not limited to the behaviour of longitudinal modes discussed in the case of the 
bar under consideration. This kind of behaviour can also be observed in the case of 
numerous symmetric modes of Lamb waves, and was extensively investigated not 
only theoretically but also experimentally, by many researchers [ 12– 16]. 

6.2 Flexural Waves 

In a similar manner to longitudinal waves, flexural waves also originate from a 
simultaneous reflection and interaction of propagating P-waves and S-waves with 
the existing boundary, but their presence results from a different type of excitation, 
which has no axial symmetry. Consequently, their mathematical description must be 
similar to that presented in Sect. 4.1 concerning Rayleigh waves in 2-D elastic space. 

A starting point in the analysis of propagation of flexural waves in a 1-D infinite 
elastic bar of circular cross-section, shown in Fig. 6.8, can be the same equation of 
motion as in the case of longitudinal waves: 

.μ∇2u + (λ + μ)∇(∇ · u) = ρü (6.21) 

This time, however, the same vector of displacement. u has three non-vanishing dis-
placement components in the cylindrical coordinate system .(x, r, θ)—see
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Fig. 6.8 A schematic representation of a flexural wave propagating in a 1-D infinite elastic bar 

Appendix C. They are dependent on the spatial coordinates . x , . r and . θ as well as 
on time and represent longitudinal .ux = ux (x, r, θ, t), radial .ur = ur (x, r, θ, t) and 
tangential .uθ = uθ(x, r, θ, t) displacements. 

Again, it is very convenient to begin with the application of Helmholtz’s theorem 
and the decomposition of the displacement field into a scalar potential. φ and a vector 
potential .ψ according to Eq. (3.18) from Sect.n 3.2. As a result the potentials . ψ
and.ψ satisfy appropriate wave equations, i.e. Eqs. (3.21) and (3.22), which are also 
presented below: 

.

{
c2P∇2φ = φ̈

c2S∇2ψ = ψ̈
(6.22) 

while particular components of the displacement vector .u = [ux , ur , uθ]T can be 
expressed in the cylindrical coordinate system.(x, r, θ) by the same set of relations: 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ux = ∂φ

∂x
− 1

r

∂ψr

∂θ
+ 1

r

∂(rψθ)

∂r

ur = ∂φ

∂r
+ 1

r

∂ψx

∂θ
− ∂ψθ

∂x

uθ = 1

r

∂φ

∂θ
+ ∂ψr

∂x
− ∂ψx

∂r

(6.23) 

where . φ is the scalar potential, .ψx , .ψr and .ψθ are all non-vanishing components of 
the vector potential.ψ = [ψx ,ψr ,ψθ]T dependent on the spatial coordinates. x ,. r and 
. θ as well as on time . t .
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Substitution of Eq. (6.23) into the wave equations given by Eq. (6.22) and some 
necessary mathematical manipulations and rearrangements leads this time to a set of 
four independent wave equations expressed in terms of the scalar potential. φ as well 
as the scalar potentials .ψx , .ψr and .ψθ, being the components of the vector potential 
. ψ: 

.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c2P∇2φ = φ̈, c2S∇2ψx = ψ̈x

c2S

(
∇2ψr − ψr

r2
− 2

r2
∂ψθ

∂θ

)
= ψ̈r

c2S

(
∇2ψθ − ψθ

r2
+ 2

r2
∂ψr

∂θ

)
= ψ̈θ

(6.24) 

Solutions to Eq. (6.2) can be represented this time by four independent functions 3: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ(x, r, θ, t) = ϕ(r)eik(x−ct) cos θ

ψx (x, r, θ, t) = ψx (r)eik(x−ct) sin θ

ψr (x, r, θ, t) = ψr (r)eik(x−ct) sin θ

ψθ(x, r, θ, t) = ψθ(r)eik(x−ct) cos θ

(6.25) 

where .ϕ(r) and .ψx (r), .ψr (r) and .ψθ(r) represent four new unknown functions 
dependent only on the spatial coordinate . r . 

A simple substitution of Eq. (6.25) into Eq. (6.24) results in a set of four differential 
equations for the unknown functions . ϕ, .ψx , .ψr and.ψθ. It can be noted that the last 
two equations are coupled and as such cannot be solved. However, they can be easily 
decoupled by producing two new equations representing their sum and difference, 
i.e. for .ψr + ψθ and .ψr − ψθ. In such a manner the complete set of four equations 
leads to Bessel’s differential equations of very well-known solutions. 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2ϕ(r)

dr2
+ 1

r

dϕ(r)

dr
− ϕ(r)

r2
+ α2ϕ(r) = 0

d2ψx (r)

dr2
+ 1

r

dψx (r)

dr
− ψx (r)

r2
+ β2ψx (r) = 0

d2ψr (r)

dr2
+ 1

r

dψr (r)

dr
− 2ψr (r)

r2
+ β2ψr (r) + 2ψθ(r)

r2
= 0

d2ψθ(r)

dr2
+ 1

r

dψθ(r)

dr
− 2ψθ(r)

r2
+ β2ψθ(r) + 2ψr (r)

r2
= 0

(6.26)

3 In the case of a hollow cylindrical bar the dependence of the scalar potentials . φ as well as .ψx , 
.ψr and .ψθ on the angle . θ involves harmonic functions .sinmθ and .cosmθ where .m = 0, 1, 2, . . ., 
which lead to an infinite set of circumferential solutions [ 17, 18]. In the case of a full cylindrical 
bar the most important family of these solutions, however, is the case of.m = 1. 
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with: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α = k

/
c2

c2P
− 1 =

/
ω2

c2P
− k2

β = k

/
c2

c2S
− 1 =

/
ω2

c2S
− k2

(6.27) 

where . α and . β denote the same constants as in Eq. (5.13) in Sect. 5.2 in the case of 
Lamb waves. They remain dependent on the angular frequency. ω, the wave number 
. k as well as the velocities of P-waves and S-waves propagating in a 3-D elastic 
medium. 

The displacement components associated with propagation of flexural waves in 
the 1-D infinite elastic bar can be easily expressed by the use of the unknown func-
tions . ϕ, .ψx , .ψr and .ψθ by a simple substitution of Eq. (6.25) into Eq. (6.23) and 
some rearrangements of terms. Taking into account the considerations from previous 
sections they can be conveniently expressed as plane harmonic waves of amplitude 
profiles dependent on the radial coordinate . r additionally multiplied by appropriate 
factors dependent on the angle . θ. This can be presented as: 

.

⎧⎪⎨
⎪⎩
ux (x, r, θ, t) = ûx (r)eik(x−ct) cos θ

ur (x, r, θ, t) = ûr (r)eik(x−ct) cos θ

uθ(x, r, θ, t) = ûθ(r)eik(x−ct) sin θ

(6.28) 

where particular amplitude profiles have the forms: 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ûx (r) = ikϕ(r) − ψr (r)

r
+ ψθ(r)

r
+ dψθ(r)

dr

ûr (r) = dϕ(r)

dr
− ikψθ(r) + ψx (r)

r

ûθ(r) = −ϕ(r)

r
+ ikψr (r) − dψx (r)

dr

(6.29) 

The strain components associated with the propagation of flexural waves in the 
bar can be expressed in a similar manner thanks to the following relations:
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.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈xx = ∂ux

∂x
= ∈̂xx (r)eik(x−ct) cos θ

∈rr = ∂ur
∂r

= ∈̂rr (r)eik(x−ct) cos θ

∈θθ = ur
r

+ 1

r

∂ψθ(r)

∂θ
= ∈̂θθ(r)eik(x−ct) cos θ

γxr = ∂ur
∂x

+ ∂ux

∂r
= γ̂xr (r)eik(x−ct) cos θ

γrθ = ∂uθ

∂r
− uθ

r
+ 1

r

∂ur
∂θ

= γ̂rθ(r)eik(x−ct) sin θ

γxθ = 1

r

∂ψx (r)

∂θ
+ ∂ψθ(r)

∂x
= γ̂xθ(r)eik(x−ct) sin θ

(6.30) 

This leads to the expressions for amplitude profiles associated with the compo-
nents of the strain field as dependent on all unknown functions . ϕ, .ψx , .ψr and .ψθ: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∈̂xx (r) = −k2ϕ(r) − ikψr (r)

r
+ ikψθ(r)

r
+ ik

dψθ(r)

dr

∈̂rr (r) = −ψx (r)

r2
− ik

dψθ(r)

dr
+ 1

r

dψx (r)

dr
+ d2ϕ(r)

dr2

∈̂θθ(r) = −ϕ(r)

r2
+ ikψr (r)

r
− ikψθ(r)

r
+ ψx (r)

r2

+ 1

r

dϕ(r)

dr
− 1

r

dψx (r)

dr

γ̂xr (r) = ψr (r)

r2
+ k2ψθ(r) − ψθ(r)

r2
+ ikψx (r)

r
+ 2ik

dϕ(r)

dr

− 1

r

dψr (r)

dr
+ 1

r

dψθ(r)

dr
+ d2ψθ(r)

dr2

γ̂rθ(r) = 2ϕ(r)

r2
− ikψr (r)

r
+ ikψθ(r)

r
− ψx (r)

r
− 2

r

dϕ(r)

dr

+ ik
dψr (r)

dr
+ 1

r

dψx

dr
− d2ψx (r)

dr2

γ̂xθ(r) = − 2ikϕ(r)

r
− k2ψr (r) + ψr (r)

r2
− ψθ(r)

r2

− 1

r

dψθ(r)

dr
− ik

dψx (r)

dr

(6.31) 

Following the same solution procedure as in the case of longitudinal waves dis-
cussed in previous Sect. 6.1, it can be found that solutions to Eq. (6.26) can expressed 
by two Bessel functions of the first kind .Ji (αr) and .Ji (βr) as well as two Bessel 
functions of the second kind .Yi (αr) and .Yi (βr), where .i = 0, 1, 2. 

As before the singular behaviour of the Bessel function of the second kind. Yi (αr)
and .Yi (βr) at .r = 0 leads to the results that this branch of solutions should be
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disregarded. Consequently the unknown functions.ϕ(r) and.ψx (r),.ψr (r) and. ψθ(r)
take the following forms: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ(r) = AJ1(αr)

ψx (r) = BJ1(βr)

ψr (r) = C J0(βr) + DJ2(βr)

ψθ(r) = C J0(βr) − DJ2(βr)

(6.32) 

where . A, . B, .C and .D are certain constants, which leads to the potentials . φ, .ψx , . ψr

and .ψθ presented in the following manner: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ(x, r, θ, t) = AJ1(αr)eik(x−ct) cos θ

ψx (x, r, θ, t) = BJ1(βr)eik(x−ct) sin θ

ψr (x, r, θ, t) = [C J0(βr) + DJ2(βr)] eik(x−ct) sin θ

ψθ(x, r, θ, t) = [C J0(βr) − DJ2(βr)] eik(x−ct) cos θ

(6.33) 

At this point it should be noted that the displacement vector . u, expressed by 
the potentials . φ, .ψx , .ψr and .ψθ, is specified in terms of four constants: . A, . B, . C
and . D, whereas there are only three traction-free boundary conditions for the stress 
components: .σrr , .τxr and .τrθ at the free surface of the bar. 

The fourth condition that could help to determine these potentials can be the 
already known condition about the solenoidal character of the potential vector . ψ, 
i.e. .∇ · ψ = 0. This is a sufficient condition for the existence of solutions in the 
form assumed by Helmholtz’s theorem and given by Eq. (3.18), but it is not a neces-
sary condition [ 8]. Additionally, its application leads to unnecessary mathematical 
complications [ 17]. 

The fourth condition is somehow arbitrary and in the current case can result from 
the assumption of the vanishing of the potential vector.ψ when.r → 0, which yields 
.C = 0 and .ψr = −ψθ. Thus, the potentials .φ,ψx ,ψr and .ψθ can be presented as: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ(x, r, θ, t) = AJ1(αr)eik(x−ct) cos θ

ψx (x, r, θ, t) = BJ1(βr)eik(x−ct) sin θ

ψr (x, r, θ, t) = DJ2(βr)eik(x−ct) sin θ

ψθ(x, r, θ, t) = −DJ2(βr)eik(x−ct) cos θ

(6.34) 

Now, the application of the traction-free boundary conditions for the stress com-
ponents: .σrr , .τxr and .τrθ at the free surface of the bar, i.e. for .r = a: 

.σrr (x, r, θ, t) = τxr (x, r, θ, t) = τrθ(x, r, θ, t) = 0, for r = a (6.35)
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with .2a = d, where . d denotes the diameter of the bar, allows one to obtain the 
dispersion relations for flexural waves propagating in the 1-D infinite elastic bar 
under consideration. 

All required stress components:.σrr ,.τxr and.τrθ can be easily expressed by the use 
of Hooke’s law together with Eq. (6.31), in a similar manner as it was done before. 
This leads to the following thee equations: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σrr |a = 0 → λ

[
k2ϕ(a) + ϕ(a)

a2
− 1

a

dϕ(a)

dr

]

−(λ + 2μ)
d2ϕ(a)

dr2
+ 2μ

[
ψx (a)

a2

−1

a

dψx (a)

dr
+ ik

dψθ(a)

dr

]
= 0

τxr |a = 0 → μ

[
k2ψθ(a) + ikψx (a)

a
+ ψr (a)

a2
− ψθ(a)

a2

+2ik
dϕ(a)

dr
− 1

a

dψr (a)

dr

+1

a

dψθ(a)

dr
+ d2ψθ(a)

dr2

]
= 0

τrθ|a = 0 → μ

[
2ϕ(a)

a2
− ikψr (a)

a
+ ikψθ(a)

a
− ψx (a)

a2

−2

a

dϕ(a)

dr
+ ik

dψr (a)

dr

+1

a

dψx (a)

dr
− d2ψx (a)

dr2

]
= 0

(6.36) 

where the factors: .eik(x−ct), .cos(θ) and .sin(θ) are not present since the traction-free 
boundary conditions must be satisfied for propagating flexural waves independently 
of the spatial coordinates . x , . θ and time . t . 

The traction-free boundary conditions given explicitly by Eq. (6.36) represent a 
system of three homogeneous equations dependent on the potentials. φ,.ψx ,.ψr and.ψθ. 
These potentials can be further expressed by the solutions presented in Eq. (6.33). In 
this way the system of the homogeneous equations with three unknown constants:. A, 
. B and.D is formed, which has non-trivial solutions only if its determinant vanishes. 
This determinant defines the characteristic equation for flexural modes propagating 
in circular bars and can be presented in the following form [ 19]: 

.
c1 J1(αa)J 2

0 (βa) + J0(βa)J1(βa)[c2 J0(αa) + c3 J1(αa)]
−J 2

1 (βa)[c4 J0(αa) + c5 J1(αa)] = 0
(6.37)



6.2 Flexural Waves 113

Fig. 6.9 Dispersion curves for: (a) the phase velocity, (b) the group velocity, for modes of flexural 
waves F.n(n = 0, 1, 2, . . .) propagating in a 10 mm diameter aluminium bar 

where the coefficients .cn(n = 1, 2, . . . , 5) are given as: 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c1 = 2βa2(β2 − k2)2

c2 = 2αβ2a2(β2 + 5k2)

c3 = a[k2β2(2 + k2a2) − 2β4(5 + k2a2) + β6a2 − 4k4]
c4 = 2αβa[β2 + k2(9 − 2a2β2)]
c5 = β(k2 + β2)[a2(k2 + β2) − 8]

(6.38) 

Since the characteristic equation, given by Eq. (6.37), is dependent on the wave 
number. k through the coefficients.cn(n = 1, 2, . . . , 5) as well as. α and. β the flexural 
waves propagating in a 1-D infinite elastic bar must be dispersive in nature. Roots of 
this characteristic equation can effectively be found numerically—see Appendix B. 
These roots represent dispersion curves, which are presented in Fig. 6.9, for the phase 
and group velocities as a function of the cyclic frequency . f . 

The modes of flexural waves 4 are very often noted in the literature [ 6, 7] as  
F.n(n = 0, 1, 2, . . .). Their behaviour, however, is very similar to the behaviour of 
antisymmetric modes of Lamb waves propagating in an elastic layer and discussed 
in Sect. 5.2 and results from very distinct characteristic equations.

4 Modes of flexural waves are also noted as L.m,n(m, n = 1, 2, 3, . . .), with .m being the so-called 
circumferential order of the wave mode number . n associated with harmonic functions .sinmθ and 
.cosmθ used in the potentials . φ as well as .ψx , .ψr and .ψθ [ 18]. The case of .m = 0 corresponds 
to axisymmetric modes of longitudinal waves noted as L.0,n(n = 1, 2, 3, . . .). In the same manner 
modes of torsional waves are very often noted as axisymmetric modes T.0,n(n = 1, 2, 3, . . .) and 
modes T.m,n(m, n = 1, 2, 3, . . .). 
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Fig. 6.10 Distribution of displacement components: a longitudinal.ux , b radial.ur and c tangential 
. uθ , on the bar circumference, for the fundamental mode of flexural waves F. 0 propagating in a 10 
mm diameter aluminium bar, at the frequency. f = 1 kHz 

Fig. 6.11 Relative displacement amplitudes as a function of the frequency. f for the fundamental 
mode of flexural waves F. 0 propagating in a 10 mm diameter aluminium bar 

This is easily seen in Fig. 6.9, when compared with the results presented in Fig. 5.9. 
This similarity concerns not only the frequency behaviour of modes propagating 
within the 1-D infinite elastic bar under consideration, but also extends onto the 
displacement amplitude profiles presented in Figs. 6.11 and 6.12.
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Fig. 6.12 Relative displacement amplitudes for modes of flexural waves F.n(n = 0, 1, 2, . . .) prop-
agating in a 10 mm diameter aluminium bar, at the frequency. f = 750 kHz 

Following the same procedure as in the case of modes of longitudinal waves, 
the use of the dispersion curves from Fig. 6.9 associated with the propagation of 
flexural waves within the bar, together with the use of Eqs. (6.27), (6.29) and (6.34), 
enables one to establish the displacement amplitude profiles for required values of 
the angular frequency . ω or the cyclic frequency . f , as illustrated in Fig. 6.10. This  
can be done based on the the following simple relations: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ûx (r) = Aik J1(αr) − Bβ J1(βr)

ûr (r) = A
d J1(αr)

dr
+ Bik J2(βr) + D

r
J1(βr)

ûθ(r) = − A

r
J1(αr) + Bik J2(βr) − D

d J1(βr)

dr

(6.39) 

It should be noted that in the current case of flexural waves propagating in the 
bar the displacement amplitude profiles concern the longitudinal, radial and angular 
displacement components . ux , .ur and . uθ, while in the case of antisymmetric modes 
of Lamb waves propagating in an elastic layer they represent the longitudinal and 
transverse displacement components .ux and . uz . Again it can be also noted that the 
dispersion curve obtained for the fundamental mode F. 0, in a similar manner as in
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the case of the fundamental mode of Lamb waves A. 0, is correlated with Rayleigh 
surface waves as the speed of Rayleigh waves .cR is its high frequency limit. 

6.3 Torsional Waves 

The analysis of propagation of torsional waves in a 1-D infinite elastic bar of circular 
cross-section, shown in Fig. 6.13, is very similar to the analysis of SH-waves in a 
2-D elastic space. 

As a starting point the same wave equation can be considered as in the case of 
SH-waves and given by Eq. (3.24) in Sect. 3.1: 

.c2S∇2u = ü (6.40) 

This wave equation, however, is now reduced to a single equation due to certain 
additional assumptions. It is assumed that torsional waves propagate in a 1-D elastic 
bar as shear waves with no longitudinal and radial displacement components, i.e. that 
.ux = 0 and.ur = 0. As a result the only non-vanishing component of the displacement 
vector. u is the tangential component. uθ, which remains dependent only on the spatial 
coordinates . x , . r as well as on time, i.e. .uθ = uθ(x, r, t). 

Under the above assumptions the wave equation governing the behaviour of tor-
sional waves propagating in a 1-D infinite elastic bar can be written in the cylindrical 
coordinate system.(x, r, θ) as: 

Fig. 6.13 A schematic representation of a torsional wave propagating in a 1-D infinite elastic bar
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.c2S

(
∇2uθ − uθ

r2

)
= üθ (6.41) 

or presented in its full form as: 

.
∂2uθ

∂x2
+ ∂2uθ

∂r2
+ 1

r

∂uθ

∂r
− uθ

r2
= 1

c2S

∂2uθ

∂t2
(6.42) 

Following the same procedure as in the case of SH-waves, as a solution to 
Eq. (6.41) a plane harmonic wave can be considered, having the well-known form: 

.uθ(x, r, t) = ûθ(r)e
ik(x−ct) (6.43) 

where .ûθ is an unknown function representing the amplitude profile of torsional 
waves propagating in the bar, which is only dependent on the spatial coordinate . r . 

Substitution of the assumed solution into the wave equation (6.41) results in the 
already known Bessel’s differential equation, which now governs the behaviour of 
the amplitude profile . ûθ: 

.
d2ûθ(r)

dr2
+ 1

r

dûθ(r)

dr
+ β2ûθ(r) − ûθ(r)

r2
= 0 (6.44) 

with: 

.β = k

/
c2

c2S
− 1 =

/
ω2

c2S
− k2 (6.45) 

where. β is exactly the same constant as used Eq. (5.13) from Sect. 5.2, where Lamb 
waves were discussed. It remains dependent on the angular frequency . ω, the  wave  
number . k as well as the velocity of S-waves propagating in a 3-D elastic medium. 

As before the solution to Eq. (6.44) can be expressed by the Bessel function of the 
first.J0(βr) as well as the Bessel function of the second kind.Y0(βr). Since the Bessel 
function of the second kind.Y0(βr) is singular at.r = 0 this branch of solutions should 
be disregarded. Additionally, it should be noted that the case of .βa = 0 should also 
represent a non-trivial solution, in a similar manner to that observed for SH-waves 
propagating in an elastic layer. As a consequence the unknown function describing 
the amplitude profile .ûθ can be assumed to have the form: 

.ûθ(r) = A

β
J1(βr) (6.46) 

where .A is a certain constant. This helps to express the tangential displacement 
component .uθ in the following way: 

.uθ(x, r, t) = A

β
J1(βr)e

ik(x−ct) (6.47)



118 6 Waves in a 1-D Elastic Space

where . c is the phase velocity of torsional waves propagating within the bar under 
consideration in the direction of the . x axis. 

The only strain component that leads to non-trivial solution is .γrθ. It can be 
expressed by the following simple relationship: 

.γrθ = ∂uθ

∂r
− uθ

r
= r

∂

∂r

(
uθ

r

)
(6.48) 

which allows one to present the only non-zero stress component .τrθ as: 

.τrθ = μγrθ → τrθ = μ
Ar

β

∂

∂r

[
J1(rβ)

r

]
eik(x−ct) (6.49) 

Now, the application of the traction-free boundary condition for the stress com-
ponent .τrθ at the free surface of the bar, i.e. for .r = a, allows one to obtain the 
characteristic equation for torsional waves propagating in the 1-D infinite elastic bar 
under consideration. 

After necessary mathematical simplifications and manipulations this relationship 
takes the following simple form: 

.τrθ|a = 0 → J2(βa) = 0 or (βa)J0(βa) − 2J1(βa) = 0 (6.50) 

with .2a = d, where . d denotes the diameter of the bar. 
The roots of the Bessel function .J2(x) are well known and tabulated, or alterna-

tively can be easily calculated to any required precision by using modern com-
putation packages [ 20, 21]. The first five roots obtained in such a manner are: 
.r1 = β1a = 5.1356,.r2 = β2a = 8.4172,.r3 = β3a = 11.6198,. r4 = β4a = 14.7960
and .r5 = β5a = 17.9598 plus the additional zero-root .r0 = β0a = 0. 

In a similar manner to the case of SH-waves propagating in an elastic layer, the 
use of the definition of the parameter. β in Eq. (6.45), as well as the knowledge of the 
roots of the characteristic equation .rn(n = 1, 2, 3, . . .) given by Eq. (6.50), leads to 
the dispersion relation for torsional waves propagating within a 1-D infinite elastic 
bar. This dispersion relation can be expressed as a function of the wave number . k in 
the following way: 

.c(k) = cS

/
1 +

( rn
ka

)2
, n = 0, 1, 2, . . . (6.51) 

or alternatively as a function of the angular frequency . ω as: 

.c(ω) = cS/
1 −

(rncS
ωa

)2
, n = 0, 1, 2, . . . (6.52)
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Fig. 6.14 Dispersion curves for: a the phase velocity, b the group velocity, for modes of torsional 
waves T.n(n = 0, 1, 2, . . .) propagating in a 10 mm diameter aluminium bar 

Based on the dispersion relation given by Eq. (6.51) it can be seen that modes 
of torsional waves T.n(n = 0, 1, 2, . . .) propagating in a 1-D infinite elastic bar of 
circular cross-section are dispersive except for the fundamental mode T. 0, i.e. for 
.n = 0, which is a non-dispersive mode, as presented in Fig. 6.14 as a function of the 
cyclic frequency . f . 

Moreover, it can be also seen that in the case of the fundamental mode T. 0 the 
phase velocity of the torsional waves propagating in the bar under consideration is 
equal to the phase velocity of SH-waves propagating in a 3-D elastic space. This also 
fully corresponds to the case of SH-waves propagating in a 2-D elastic layer. 

Additionally, it can be easily checked that for the fundamental mode T. 0 distri-
bution of the angular displacement .uθ within the cross-sectional area of the bar is 
purely radial, as presented in Fig. 6.15, since: 

. lim
β→0

ûθ(r) = lim
β→0

A

β
J1(βr) = Ar

2
(6.53) 

which leads to a very simple expression describing the distribution of the angular 
displacement . uθ: 

.uθ(x, r, t) = Ar

2
J1(βr)e

ik(x−ct) (6.54) 

This is the lowest torsional mode well-known from the literature [ 17], which is 
characterised by a bulk rotation of the entire cross-section of the bar around its 
longitudinal axis. 

Moreover, the displacement amplitude profiles shown in Fig. 6.15 are very similar 
to the displacement amplitude profiles obtained in the case of SH-waves propagat-
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Fig. 6.15 Relative displacement amplitudes of the transverse displacement .uθ for modes of tor-
sional waves T.n(n = 0, 1, 2, . . .) propagating in a 10 mm diameter aluminium bar 

ing in an elastic layer. It can be easily noticed that the modes of torsional waves 
T.n(n = 0, 1, 2, . . .) propagating in the 1-D bar under consideration fully correspond 
to consecutive antisymmetric modes SH.n(n = 1, 3, 5, . . .) presented in Fig. 5.4. 
Slight variations in the shapes of the amplitude profiles are entirely due to different 
geometrical conditions in both cases, i.e. 1-D geometry in the case of the bar and 
2-D geometry in the case of the elastic layer. 
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7. A. Żak and M. Krawczuk. Assessment of rod behaviour theories used in spectral finite element 

modelling. Journal of Sound and Vibration, 329:2099–2113, 2010. 
8. T. R. Meeker and A. H. Meitzler. Guided wave propagation in elongated cylinders and plates. 

In Physical Acoustics: Principles and Methods, pages 111–167. Academic Press, 1964. 
9. A. H. Meitzler. Backward wave transmission of stress pulses in elastic cylinders and plates. 

The Journal of Acoustical Society of America, 38:835–842, 1965.



References 121

10. T. W. Murray, O. Balogun, C. Prada, D. Clorennec, and D. Royer. Theory and application 
of laser generated zero-group velocity Lamb mode resonance. API Conference Proceedings: 
Review of Progress in Quantitative Nondestructive Evaluation, 975:255–262, 2008. 

11. Q. Xie, S. Mezil, P. H. Otsuka, M. Tomoda, J. Laurent, O. Matusuda, Z. Shen, and O. B. Wright. 
Imaging gigahertz zero-group-velocity Lamb waves. Nature Communications, 10:1–7, 2019. 

12. G. Kaduchak, D. H. Hughes, and P. L. Marston. Enhencement of the backscattering of high-
frequency tone bursts by thin spherical shells associated with a backward wave: Observations 
and ray approximation. The Journal of the Acoustical Society of America, 96:3704–3714, 1994. 

13. A. Alippi, A. Bettucci, and M. Germano. Anomalous propagation characteristics of evanescent 
waves. Ultrasonics, 38:817–820, 2000. 

14. P. L. Marston. Negative group velocity Lamb waves on plates and applications to the scattering 
of sound by shells. The Journal of the Acoustical Society of America, 113:2659–2662, 2003. 

15. K. Negishi. Existence of negative group velocities in Lamb waves. Japanese Journal of Applied 
Physics, 26:171–173, 1987. 

16. K. Negishi and H. U. Li. Strobo-photoelastic visualization of Lamb waves with negative group 
velocity propagating on a glass plate. Japanese Journal of Applied Physics, 35:3175–3176, 
1996. 

17. J. D. Achenbach. Wave propagation in elastic solids. North-Holland Publishing Company, 
Amsterdam, 1973. 

18. J. L. Rose. Ultrasonic waves in solid media. Cambridge University Press, Cambridge, 1999. 
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Chapter 7 
A Step Towards FE Modelling 

7.1 Modelling Errors 

FE numerical models as such represent the final stage of a very complex and important 
part of scientific activity, which is known as numerical modelling. As every type of 
scientific activity, numerical modelling by FEs, or modelling in general, is olso prone 
to errors [ 1]. These errors appear at every stage of this process and may have a more 
or less significant impact on the final results. Although the process of numerical 
modelling may be represented or understood in many ways, some general remarks 
about particular stages of such a process can be easily made, as presented in Table 7.1. 
These stages are meant not only to illustrate the importance of particular assumptions, 
which lead to reliable numerical models, but also to indicate some important aspects 
and profound consequences related to these assumptions. 

As proposed in Table 7.1 a modelling process can be divided into a number of 
specific levels, which start at level 0 to end at level 4. By no means should the number 
of these levels be considered as fixed. They may include many other less or more 
specific steps of modelling process, which under certain circumstances can be of very 
great importance to a modeller. In order to illustrate particular steps of the modelling 
process, which formally ends when an FE numerical model is built, the problem of 
propagation of flexural/bending waves in an aluminium bar is considered below in 
detail. 

• In fact modelling leve 0 is not related to mathematical modelling, but it rather 
corresponds to a real physical object and its properties, which in the case under 
consideration is the aluminium bar. At this stage technically all possible kinds of 
data can be extracted upon appropriately designed experiments, so no modelling 
errors are associated with it. If any, some discrepancies may result from finite reso-
lution of experimental techniques and equipment, but not mathematical modelling 
itself. The latter is not present in modelling level 0. As a consequence modelling 
level 0 requires no assumptions in this respect. 
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Table 7.1 Proposed stages of modelling errors associated with wave propagation problems 

Level 0 .→ Real object 

Typical assumptions .→ None 

Available data .→ All 

Typical errors .→ None 

Level 1 .→ Physical model 

Typical assumptions .→ Uncoupled physical fields,. 1 Linearised behaviour,.. 2

Homogenised material properties,. 3 etc. 

Available data .→ None 

Typical errors .→ Decoupled and/or restricted responses, No energy 
transfer, etc. 

Level 2 .→ Mathematical model 

Typical assumptions .→ Reduced dimensionality,. 4 Idealised boundary 
conditions, Or loads,. 5 Specific representation,.. 6 etc. 

Available data .→ Analytical responses, Analytical strain/stress fields, 
Analytical dispersion curves, etc. 

Typical errors .→ Under or overestimated responses, Truncation errors, 
Non-physical solutions, etc. 

Level 3 .→ Simplified mathematical model 

Typical assumptions .→ simplified kinematics,. 7 Idealised strain/stress fields,. 8

Reduction of specific terms,. 9 etc. 

Available data .→ Simplified responses, Simplified strain/stress fields, 
Reduced dispersion curves, etc. 

Typical errors .→ Under or overestimated responses, Smaller range of 
applicability, Non-physical solutions, etc. 

Level 4 .→ Discrete mathematical model 

Typical assumptions .→ Finite number of degrees of freedom, Discrete 
space/time representation, Reduced resolution,.10 etc. 

Available data .→ Discrete responses, Discrete strain/stress fields, 
Discrete dispersion curves, etc. 

Typical errors .→ Under or overestimated responses, Reduced range of 
applicability, numerical anisotropy, etc. 

. 1 Independent physical fields and/or displacement/strain/stress components, etc. 

. 2 Neglect of large deformations/strains, neglect of non-linear material behaviour, etc. 

. 3 Neglect of material directionality in all or specific directions, etc. 

. 4 Plane stress or plane stress condition, wave fronts represented as plane waves, etc. 

. 5 Pinned/simply-supported/sliding boundary conditions, point forces/moments, etc. 

. 6 Solutions by means of truncated/infinite series, neglect of damping, etc. 

. 7 Reduced number of displacement/strain/stress components, etc. 

. 8 3-D displacement/strain/stress fields reduced to 2-D plane or 1-D fields, etc. 

. 9 Neglect of local behaviour strain/stress fields, etc. 

.10 Result of the Nyquist-Shannon theorem, result of Bloch’s theorem, etc.
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• Modelling level 1 is the most general stage of modelling and helps to narrow the 
observation space to the most important aspects of real physical phenomena related 
to the behaviour of the object being modelled. Modelling level 1, representing a 
physical model, is an abstract, which helps to identify and take into account the 
most important features of these phenomena. For this reason no data are generated 
at this modelling stage and consequently there are no errors associated with these 
data. In the case of the aluminium bar the observation space can be narrowed to 
displacements or strains only, which when considered in the linear regime allow 
one to take full advantage of the properties of elastic waves, such as superposition. 
Heat transfer, if necessary, may be a part of the analysis or may be neglected, as 
long as the displacement and temperature fields remain decoupled. An additional 
assumption of aluminium isotropy decouples particular displacement components 
making analysis even simpler as long as some further assumptions about the rod 
symmetry are made. 

• Modelling level 2 is also an abstract, which concerns attempts to express in the 
language of mathematics the results of the previous modelling level. Despite the 
fact that modelling level 2 employs some specific mathematical operators and 
similar concepts such as, for example, differential operators or specific boundary 
conditions that do not always having physical representation, modelling level 2 
offers the most general mathematical description. It should be emphasised here that 
the use of sophisticated mathematical tools leads to formulation of some general 
governing equations, which very often allow one to search for some first order 
solutions. In the case of the aluminium bar under consideration these can have the 
form of analytical dispersion curves resulting from the most general form of the 
characteristic equation. This is, however, achievable only under additional specific 
assumptions, such as the assumptions about the circular cross-section of the bar 
and the angular dependence of the scalar potentials . φ as well as .ψx , .ψr and.ψθ on 
the angle . θ, as was demonstrated in Sect. 6.2. 

• Modelling level 3 further simplifies the outcome of modelling level 2. Very often 
such an approach is demanded and it results directly from the complexity of the 
mathematical description offered by modelling level 2. The most typical assump-
tions made at modelling level 3 are those regarding kinematics, which lead to 
simplified forms of displacement/strain fields. As a consequence the resulting 
governing equations are also simplified, which helps to make subsequent anal-
yses much easier and faster. However, it should be noted that this is possible at 
some additional cost, namely the reduced range of applicability of such simplified 
mathematical models. In the case of the aluminium bar discussed here this reduced 
range of applicability manifests itself as a gradual divergence of calculated disper-
sion curves based on a simplified mathematical model of modelling level 3 from 
its more general counterpart offered by modelling level 2. Consequently, mathe-
matical models developed at modelling level 3 should be carefully examined for 
their ranges of applicability in order to avoid confusion and some obvious mis-
takes. On the other hand it should be said that very often typical simplifications at 
modelling level 3 lead to better understanding of the physical phenomena related 
to the behaviour of the object being modelled.
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• Modelling level 4 can be considered as the final stage of the modelling process, 
when the mathematical description obtained at modelling level 3 is expressed in 
a manner which enables one to transform the continuous mathematical model to 
a discrete numerical model. Amongst many numerical techniques used for this 
purpose the most popular technique appears to be FEM. The discretisation pro-
cess itself is a demanding and complex process during which the unknown func-
tions/quantities resulting from modelling level 3 are expressed by certain discrete 
functions of some special properties. This is yet another simplification, which 
consequently reduces the range of applicability of discrete models in comparison 
to the mathematical models obtained at modelling level 3. Moreover, the discrete 
nature of the resulting models has some extra and profound consequences result-
ing from the Nyquist-Shannon sampling theorem or Bloch’s theorem. Once again 
the ease and speed of the modelling process at modelling level 4 is obtained at the 
additional cost of a further reduced range of applicability in comparison to mod-
elling level 3. This can be understood as a direct effect of the substitution of the 
unknown functions/quantities of predefined mathematical properties with regard 
to their continuity, smoothness, differentiability, etc. from modelling level 3 by 
finite series of much simpler approximation functions. Again, discrete numerical 
models developed at modelling level 4 should be even more carefully examined 
for their ranges of applicability in order to avoid problems emerging, for exam-
ple, from numerical anisotropy, appearance of frequency band gaps in discrete 
depression curves or instability of numerical solution schemes used. 

At this point it should be strongly emphasised once more that Table 7.1 by no 
means represents any closed and fixed concept of modelling stages and errors associ-
ated with them. Its illustrative nature is rather meant to indicate that some important 
aspects of the modelling process may vary in terms of typical assumptions or errors, 
as well as the necessary number of modelling levels, in the case of propagation of 
flexural/bending waves in an aluminium bar and can be different in more specific 
cases than discussed here. Moreover, very often such errors and assumptions may 
appear interchangeably at various stages of the modelling process or can be even 
fully replaced by some others, depending on the specific case. 

7.2 Some Thoughts About Simplified Theories 

Displacement fields of 1-D or 2-D structural elements can be thought of as Maclau-
rin series expansions of the corresponding displacement fields of 3-D structural 
elements. If only the characteristic longitudinal dimensions (length, width, radius of 
curvature, etc.) of these elements are dominant over their characteristic transverse
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dimension (thickness) then such series expansions can be considered as mathemati-
cally correct. 1

Consequently, a Maclaurin series expansion of the displacement field of a 3-D 
structural element may effectively reduce the dimensionality of the static or dynamic 
behaviour investigated, from 3-D to either the mid-plane behaviour in 2-D or even 
to the mid-axis behaviour in 1-D. In such a case each displacement component of 
the displacement field under consideration, only if all required conditions for series 
expansion are fulfilled, 2 can be expanded and presented as a Maclaurin series. 

For the displacement component.ux in the direction of the. x axis it can be formally 
written that: 

.ux (x, y, z, t) = ux (x, y, 0, t) +
∞∑

n=1

zn

n!
∂nux (x, y, 0, t)

∂zn
(7.1) 

which is a step towards FE representation since Eq. (7.1) can be rewritten and pre-
sented in the following form: 

.ux (x, y, z, t) =
m∑

n=0

znφn(x, y, t) + O(z p+1) (7.2) 

where .m is the number of terms kept in the truncated Maclaurin series. This is 
directly associated with the degree of approximation in the traverse directions, i.e. in 
the direction of the. z axis. Apart from this.φn may be thought of as denoting degrees 
of freedom (DOF) of a certain FE associated with the Maclaurin expansion of the 
displacement component . ux . 

Moreover, it should be noted that the above series representation of the displace-
ment component .ux is not exact due to the truncation of the series and the resulting 
error.O(zm+1). However, in the case of the majority of engineering problems related 
to statics or low frequency dynamic problems such series representation is sufficient 
and can be based only on one or two terms of the corresponding Maclaurin series. 

For example, for .m = 3 the corresponding Maclaurin series expansion of the 
displacement component .ux leads to: 

.
ux (x, y, z, t) ∼= φ0(x, y, t) + zφ1(x, y, t)

+ z2φ2(x, y, t) + z3φ3(x, y, t)
(7.3)

1 In the literature the ratio of the thickness. h to the length. L plays an important role in differentiation 
between various theories and their ranges of applicability. Structural elements of .h/L ≤ 0.01 are 
considered as very thin and typically exhibit geometrically non-linear behaviour. On the other hand 
structural elements of .0.01 ≤ h/L ≤ 0.1 are considered as thin and are typically characterised 
by negligible transverse shear deformations. Finally, structural elements of .0.1 ≤ h/L ≤ 0.2 are 
considered as thick and are typically characterised by non-zero transverse shear deformations. 
2 Mathematically, these conditions require the existence off all the required partial derivatives for a 
given series-expanded function. 
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where the functions.φn(n = 0, 1, 2, 3)may be considered as representing mid-plane 
DOFs of a certain 2-D FE, which can be associated with the given Maclaurin series 
expansion. It can also be noted that: 

.

⎧
⎪⎨

⎪⎩

φ0(x, y, t) = ux (x, y, 0, t), φ2(x, y, t) = 1

2

∂2ux (x, y, 0, t)

∂z2

φ1(x, y, t) = ∂ux (x, y, 0, t)

∂z
, φ3(x, y, t) = 1

6

∂3ux (x, y, 0, t)

∂z3

(7.4) 

In contrast to this the investigation of problems involving propagation of elastic 
waves in 1-D or 2-D structural elements requires much more accurate representation 
of the dynamic behaviour of a 3-D structural element. This is directly linked to the 
necessity for mathematical modelling of different modes of Lamb waves or SH-
waves, as discussed and presented in Chap. 5 as well as modes of longitudinal, 
flexural or torsional waves, as presented and discussed in Chap. 6. 

As explained earlier the phenomena of wave propagation in 1-D or 2-D struc-
tural elements is always related to coupled interaction of P-waves and S-waves with 
existing structural boundaries. As a result of this coupled interaction propagation of 
various modes of elastic waves can be observed. An appropriate representation of 
these wave modes in a broad range of frequencies, in order to capture the complexity 
of the phenomena under investigation, usually requires a greater number of terms 
of the corresponding Maclaurin series than two. In general, it can be observed that 
the number of independent terms kept in the Maclaurin series expansion is equal to 
the number of wave propagation modes based on the theory under consideration, or 
alternatively it can be understood as the number of DOFs. 

In the case of the displacement field of a 2-D shell element based on its represen-
tation by the Maclaurin series expansion, the particular displacement components 
. ux , .uy and .uz can be presented in the following way: 

.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ux (x, y, z, t) =
m∑

n=0
znφn(x, y, t)

uy(x, y, z, t) =
m∑

n=0
znψn(x, y, t)

uz(x, y, z, t) =
m∑

n=0
znθn(x, y, t)

(7.5) 

where all mid-plane defined functions.φn ,.ψn and. θn , denote the element independent 
variables, i.e. DOFs. 

It can be seen that in the current case the 2-D shell element under consideration has 
as many as .3m independent variables. This great number of independent variables 
may be reduced by taking into account the traction-free boundary conditions 3 at the 
element lateral boundaries for the stress components .σzz as well as .τyz and .τxz :

3 In this way various higher-order theories of fewer modes can be formulated, which take advantage 
of the traction-free boundary conditions and the fact that certain higher-order terms of the dis-
placement fields can be expressed by the use of the remaining lower order terms. In contrast, these 
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.σzz(x, y, z, t) = τyz(x, y, z, t) = τxz(x, y, z, t) = 0, for z = ±a (7.6) 

with.2a = h, where. h denotes the thickness of the shell element under consideration. 
Because the first traction-free boundary condition for.σzz links together the strain 

components .∈xx , .∈yy and .∈zz through Hooke’s law, 4 its direct use is difficult and 
leads to a partial differential equation, which in most cases is too complicated to be 
solved analytically. However, this problem can be overcome by a simple mathemat-
ical substitution and introduction of new mid-plane defined functions.φ̄n , .ψ̄n and. θ̄n , 
as presented in [ 2] or Appendix C. In this case the mid-plane functions .φ̄n can be 
presented as: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ̄0(x, y, t) = φ0(x, y, t) −
p∑

n=1
φ̄2n(x, y, t)

φ̄2n(x, y, t) = −a2nφ2n(x, y, t), n = 1, 2, . . . , p

φ̄1(x, y, t) = φ1(x, y, t) −
p∑

n=1
φ̄2n+1(x, y, t)

φ̄2n+1(x, y, t) = −a2nφ2n+1(x, y, t), n = 1, 2, . . . , p

(7.7) 

where .m = 2p + 1. It should be noted that the equivalent relationships exist for the 
remaining two mid-plane functions .ψ̄n and . θ̄n . 

As a result the displacement components. ux , .uy and. uz , in the case of.m = 3, can 
be expressed in the following new form [ 3]: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t) + aζφ1(x, y, t)

+(1 − ζ2)φ2(x, y, t) + aζ(1 − ζ2)φ3(x, y)

uy(x, y, ζ, t) = ψ0(x, y, t) + aζψ1(x, y, t)

+(1 − ζ2)ψ2(x, y, t) + aζ(1 − ζ2)ψ3(x, y)

uz(x, y, ζ, t) = θ0(x, y, t) + aζθ1(x, y, t)

+(1 − ζ2)θ2(x, y, t) + aζ(1 − ζ2)θ3(x, y, t)

(7.8) 

where a new variable. ζ is introduced with.z = aζ and where the symbol.(•̄) is omitted 
for clarity. 

At this point it should be emphasised that according to earlier considerations 
the mid-plane defined functions .φn , .ψn and .θn must be associated either with the 

theories, which take advantage of some other properties of the strain/stress fields are considered as 
modified or improved theories.
4 The theories, for which all 3 normal strain/stress components are non-zero may be thought of as 
3-D theories. Otherwise, depending on the number of non-zero strain/stress components, which can 
be 2 or less, they may be thought of as 2-D or 1-D theories. 
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symmetric or antisymmetric dynamic behaviour. 5 As a result it can be easily checked 
that the symmetric modes must be described by the mid-plane functions . φn(n =
0, 2),.ψn(n = 0, 2) and.θn(n = 1, 3), and the antisymmetric modes by the mid-plane 
functions .φn(n = 1, 3), .ψn(n = 1, 3) and .θn(n = 0, 2). 

For this reason the use of Eqs. (7.6) and (7.7) helps to reduce the total number 
of independent variables, i.e. DOFs, from 12 down to 6, since the same traction-free 
boundary conditions can be applied independently either to the mid-plane functions 
describing the symmetric modes or antisymmetric modes. This leads to the following 
relationships: 

• for the mid-plane functions . φ2, .ψ2 and .θ3 in the case of symmetric behaviour: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2φ2(x, y, t) = a2
∂θ1(x, y, t)

∂x

2ψ2(x, y, t) = a2
∂θ1(x, y, t)

∂y
2θ3(x, y, t) = θ1(x, y, t)

+ λ

λ + 2μ

[
∂φ0(x, y, t)

∂x
+ ∂ψ0(x, y, t)

∂y

]
(7.9) 

• and for the mid-plane functions . φ3, .ψ3 and .θ2 in the case of antisymmetric 
behaviour: 

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2φ3(x, y, t) = φ1(x, y, t) + ∂θ0(x, y, t)

∂x

2ψ3(x, y, t) = ψ1(x, y, t) + ∂θ0(x, y, t)

∂y

2θ2(x, y, t) = a2
λ

λ + 2μ

[
∂φ1(x, y, t)

∂x
+ ∂ψ1(x, y, t)

∂y

]
(7.10) 

where . λ and . μ are the Lamé constants. 

Finally, the displacement field of the 2-D shell element under consideration, ini-
tially expressed by Eq. (7.5) and later by Eq. (7.8), can be split up and presented 
in simpler forms, independently for the symmetric and anti-symmetric behaviour, 
associated with propagation of Lamb waves and SH-waves. It should be noted that 
thanks to such an approach two independent higher-order 3-mode 3-D theories of 
the symmetric and antisymmetric behaviour are established. 

By taking into account Eq. (7.9) and Eq. (7.10), resulting from the application of 
the traction-free boundary conditions, the following relationships are obtained: 

• in the case of the symmetric behaviour for the displacement components . ux , . uy

and . uz :

5 The symmetric behaviour requires the in-plane displacements and the transverse strain to be even 
functions, while the antisymmetric behaviour requires these functions to be odd, with respect to the 
. z coordinate. 
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.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t) + a2(1 − ζ2)

2

∂θ1(x, y, t)

∂x

uy(x, y, ζ, t) = ψ0(x, y, t) + a2(1 − ζ2)

2

∂θ1(x, y, t)

∂y

uz(x, y, ζ, t) = aζ(3 − ζ2)

2
θ1(x, y, t)

+aζ(1 − ζ2)

2

λ

λ + 2μ

[
∂φ0(x, y, t)

∂x
+ ∂ψ0(x, y, t)

∂y

]

(7.11) 

• in the case of the antisymmetric behaviour for the displacement components . ux , 
.uy and . uz : 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux (x, y, ζ, t) = aζ(3 − ζ2)

2
φ1(x, y, t)

+aζ(1 − ζ2)

2

∂θ0(x, y, t)

∂x

uy(x, y, ζ, t) = aζ(3 − ζ2)

2
ψ1(x, y, t)

+aζ(1 − ζ2)

2

∂θ0(x, y, t)

∂y

uz(x, y, ζ, t) = θ0(x, y, t)

+a2(1 − ζ2)

2

λ

λ + 2μ

[
∂φ1(x, y, t)

∂x
+ ∂ψ1(x, y, t)

∂y

]

(7.12) 

The methodology presented above leading to the formulation of the displacement 
fields for the higher-order 6-mode 3-D theory of shells, independently for symmetric 
and antisymmetric behaviour, may be considered as a general procedure. It may also 
be applied, after appropriate adjustments resulting from the problem dimensionality 
or the use of specific coordinate systems, in order to build the displacement fields 
of various 1-D structural elements. This approach can be successfully employed 
not only in the case of simple one-mode or multi-mode theories of their behaviour, 
but also higher-order multi-mode theories, which take advantage of the traction-free 
boundary conditions, as presented above. 

7.3 Dispersion Curves 

Dispersion curves provide very important information about wave propagation prop-
erties of a physical medium. This corresponds to modelling level 1 discussed in 
Sect. 7.1. In the same manner analytical dispersion curves may be associated with 
a given mathematical model of the wave propagation phenomena in structural ele-
ments, typically at modelling level 2. Simplifications of the process of mathematical 
modelling, which very often results in the simplifications of kinematics and the
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reduction of terms in the corresponding Maclaurin series expansions, take place at 
modelling level 3. It should be emphasised that these simplifications usually have an 
additional influence on dispersion curves, which manifests in the loss of accuracy 
in a specific range of frequencies. This loss can be measured, however, in a very 
straightforward manner as a difference between the dispersion curves observed and 
provided by physical or analytical models and the dispersion curves obtained from 
simplified mathematical models. 

A very effective tool that can be used to obtain dispersion curves for simplified 
mathematical models, typically associated with modelling level 3, is Hamilton’s 
principle. 6 Hamilton’s principle allows one to determine the dynamic behaviour of 
an elastic structure by the use of a single function, which contains all necessary 
information about the kinetic energy .K and the strain energy . U of this structure. 

The kinetic energy .K of a structure associated with its wave motion can be 
expressed by the use of the following formula: 

.K = 1

2

a{

−a

ρ u̇ j u̇ j dz, j = 1, 2, 3 (7.13) 

where . ρ is the material density and .u̇ j u̇ j is understood as: 

.u̇ j u̇ j = u̇x (x, y, z, t)
2 + u̇ y(x, y, z, t)

2 + u̇x (x, y, z, t)
2 (7.14) 

where the symbol .(•̇) represents the first derivative with respect to time . t . 
In a similar manner the strain energy .U of a structure associated with its elastic 

deformation can be expressed by the following formula: 

.U = 1

2

a{

−a

σi j∈i j dz, i, j = 1, 2, 3 (7.15) 

where .σi j∈i j is understood as: 

.

σi j∈i j = σxx (x, y, z, t)∈xx (x, y, z, t) + σyy(x, y, z, t)∈yy(x, y, z, t)

+ σzz(x, y, z, t)∈zz(x, y, z, t) + τxy(x, y, z, t)γxy(x, y, z, t)

+ τyz(x, y, z, t)γyz(x, y, z, t) + τzx (x, y, z, t)γzx (x, y, z, t)

(7.16) 

In general, Hamilton’s principle states that out of all possible evolution paths 
between the initial and the final state of the structure, described by times . t1 and .t2

6 Hamilton’s principle, being one of the most fundamental principles in vibration analysis, takes its 
name after an Irish mathematician, astronomer and physicist Sir William Rowan Hamilton (1805– 
1865), whose works concerned algebra, theoretical mechanics and optics. His input into classical 
mechanics and variational calculus made him the father of Hamiltonian mechanics, which formed 
the basis for quantum mechanics nowadays. 
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and resulting from its deformation and motion, those actually realised are on the 
evolution paths for which the following relationship is true: 

.δ

t2{

t1

L dt = δ

t2{

t1

(K − U) dt = 0 (7.17) 

where the symbol . L denotes the Lagrangian, with .L = T − U . 
The above relationship is satisfied only if: 

.
∂

∂t

⎡

⎣ ∂L
∂

(
∂qn
∂t

)

⎤

⎦ +
3∑

j=1

∂

∂x j

⎡

⎣ ∂L
∂

(
∂qn
∂x j

)

⎤

⎦ − ∂L
∂qn

= 0 (7.18) 

where.qn(t)(i = 1, 2, . . . ,m) denote time dependent components of a so-called gen-
eral coordinate vector .q(t) = [q1, q2, . . . , qm]T, which describes the state of the 
structure, and where the Lagrangian . L is a function dependant not only on the par-
ticular components.qn of the vector.q(t), but also on their space and time derivatives, 
i.e. where .L = L(qn, ∂qn

∂t ,
∂qn
∂x j

). 
It should be noted that Eq. (7.18), known in the literature as the Euler-Lagrange 

equations of the variational problem, can be used directly in order to obtain a system 
of .m equations of motion for the general coordinates . qn , having determined the 
kinetic energy .K and the strain energy . U associated with the structure deformation 
and motion [ 4]. Moreover, nowadays the process of the generation of equations of 
motion can be fully automated by the use of modern mathematical packages suitable 
for symbolic computations [ 5, 6], which were also used here. 

Application of this methodology is presented below in the case of the higher-
order 6-mode 3-D theory obtained for the shell element from the previous section, 
for which the displacement field was defined by Eq. (7.8) as well as the additional 
conditions given by Eqs. (7.9) and (7.10), independently for the symmetric and anti-
symmetric behaviour. In this case the use of Hamilton’s principle leads to the set 
of six equations of motion describing the wave motion, according to the assumed 
kinematics. Because of the great complexity of the final results it is convenient to 
introduce the following differential operators in order to simplify the notation: 

.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L1 ≡ ∂2

∂t2
− c2P

∂2

∂x2
− c2S

∂2

∂y2

L2 ≡ ∂2

∂t2
− c2P

∂2

∂y2
− c2S

∂2

∂x2

L3 ≡ ∂2

∂t2
− c2S

(
∂2

∂x2
+ ∂2

∂y2

)
(7.19) 

Then, thanks to simple mathematical manipulations, equations of motion can be 
presented in the following manner:
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• for symmetric behaviour: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1s1(x, y, t) − (c2P − c2S)
∂2s2(x, y, t)

∂x∂y

−(c2P − 2c2S)
∂θ1(x, y, t)

∂x
= 0

L2s2(x, y, t) − (c2P − c2S)
∂2s1(x, y, t)

∂x∂y

−(c2P − 2c2S)
∂θ1(x, y, t)

∂y
= 0

L3s3(x, y, t) + c2Pθ1(x, y, t)

−c2S

[
∂φ0(x, y, t)

∂x
− ∂ψ0(x, y, t)

∂y

]

−(c2P − c2S)

[
∂s1(x, y, t)

∂x
+ ∂s2(x, y, t)

∂y

]
= 0

(7.20) 

• for antisymmetric behaviour: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1s4(x, y, t) − (c2P − c2S)
∂2s5(x, y, t)

∂x∂y

−2

3
(c2P − 2c2S)

∂θ2(x, y, t)

∂x
− c2Sφ1(x, y, t) = 0

L2s5(x, y, t) − (c2P − c2S)
∂2s4(x, y, t)

∂x∂y

−2

3
(c2P − 2c2S)

∂θ2(x, y, t)

∂y
− c2Sψ1(x, y, t) = 0

L3s6(x, y, t) − c2S

[
∂φ1(x, y, t)

∂x
− ∂ψ1(x, y, t)

∂y

]
= 0

(7.21) 

where six auxiliary variables .sn(n = 1, 2, . . . , 6) are introduced and defined as fol-
lows: 

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s1(x, y, t) = φ0(x, y, t) + 2

3
φ2(x, y, t)

s2(x, y, t) = ψ0(x, y, t) + 2

3
ψ2(x, y, t)

s3(x, y, t) = 1

3
a2

[
θ1(x, y, t) + 2

5
θ3(x, y, t)

] (7.22) 

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s4(x, y, t) = 1

3
a2

[
φ1(x, y, t) + 2

5
φ3(x, y, t)

]

s5(x, y, t) = 1

3
a2

[
ψ1(x, y, t) + 2

5
ψ3(x, y, t)

]

s6(x, y, t) = θ0(x, y, t) + 2

3
θ2(x, y, t)

(7.23)
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Fig. 7.1 Dispersion curves for: a the phase velocity, b the group velocity, for modes of Lamb 
waves and SH-waves propagating in a 10 mm thick aluminium layer, according to the higher-order 
6-mode 3-D theory of shells 

The dispersion curves associated with the equations of motion obtained, given by 
Eqs. (7.20) and (7.21), can be easily obtained by assuming solutions in the form of 
plane harmonic waves [ 4] for each independent variable, i.e. DOF,.φn , .ψn and.θn as: 

.

⎧
⎪⎪⎨

⎪⎪⎩

φn(x, y) = φ̂nei(kx x+ky y)e−iωt

ψn(x, y) = ψ̂nei(kx x+ky y)e−iωt

θn(x, y) = θ̂nei(kx x+ky y)e−iωt

, n = 1, 2 (7.24) 

where.φ̂n ,.ψ̂n and.θ̂n denote the amplitudes of these waves, while.kx and.ky associated 
wave numbers in the directions of the . x axis and the . y axis. 

A simple substitution of the assumed form of solutions expressed by Eq. (7.24) to  
the equations of motion given by Eqs. (7.20) and (7.21) leads to two independent sets 
of three homogeneous equations, one for the symmetric and one for the antisymmetric 
behaviour. As before these systems have non-trivial solutions only if their determi-
nants vanish. Bearing in mind that in the current case the following relationship holds: 
.|k|2 = k2x + k2y = k, two independent characteristic equations are obtained, each of 
them being a 10th degree polynomial with respect to the wave number. k. These char-
acteristic equations are very complex and difficult to handle analytically. However, 
they can be effectively solved first symbolically and next numerically by the use of 
modern mathematical packages suitable for such computations [ 5, 6], which were 
already mentioned. The result of such computations are presented in Fig. 7.1 as a 
function of the cyclic frequency. f , for symmetric and antisymmetric modes of Lamb
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waves and SH-waves, obtained in the case of elastic waves propagating in a 10 mm 
thick aluminium layer. 7

It can be seen that the dispersion curves obtained concerning the symmetric and 
antisymmetric behaviour are characterised by great complexity and are very difficult 
to analyse. For this reason, in the following sections it is shown that without any 
loss of generality dispersion curves associated with the displacement fields of shell 
structural elements can be viewed and analysed separately, as dispersion curves 
related to either symmetric or antisymmetric behaviour of plates. 
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Chapter 8 
Simplified Theories of 2-D Structural 
Elements 

8.1 Symmetric Behaviour of Plates 

The general form of the displacement field associated with the symmetric behaviour 
of plates results directly from the same considerations as presented in Sect. 7.2, in  
the case of the 2-D shell 1 and expressed by Eq. (7.8). The symmetry of the plate 
behaviour requires that: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t) +
p∑

n=1
(1 − ζ2n)φ2n(x, y, t)

uy(x, y, ζ, t) = ψ0(x, y, t) +
p∑

n=1
(1 − ζ2n)ψ2n(x, y, t)

uz(x, y, ζ, t) = aζθ1(x, y) +
q∑

n=1
aζ(1 − ζ2n)θ2n+1(x, y)

(8.1) 

where. p and. q are the numbers of terms kept in the series and related to the total num-
ber of independent variables, i.e. DOFs, of a given theory. In the case of higher-order 
theories being developed, the traction-free boundary condition may be used in order 
to lower the total number of independent variables, i.e. DOFs, as was demonstrated 
in Sect. 7.2. 

It can also be easily checked that the above form of the displacement field may also 
be obtained by Maclaurin series expansion of the appropriate relationships describing 
the symmetric behaviour in the case of SH-waves and Lamb waves, and given by 
Eq. (5.3) in Sect. 5.1 and Eq. (5.20) in Sect. 5.2. It is also clear that the appropriate 
truncation of the series in Eq. (8.1) may lead to numerous theories describing the 
symmetric behaviour of plates. 

1 In a sense that the in-plane displacement components and the transverse strain must remain even 
functions with respect to the. z coordinate. 
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Based on the results presented in [ 1, 2] it should be emphasised that the total 
number of terms kept in the case of the in-plane displacement components .ux and 
.uy should be equal to the number of therms kept in the case of the out-of-plane 
displacement function. uz . This general recommendation helps to lower the modelling 
error, which otherwise tends to be increased in comparison to the case when . p = q
especially in the case of higher-order multi-mode theories. 

In the Cartesian coordinate system .(x, y, z) particular theories of the symmet-
ric behaviour of plates can be associated with different forms of Maclaurin series 
expansions of each component of the displacement field. ux ,.uy and. uz , and presented 
as: 

• 2-mode 2-D theory (classical) 2: 

.

p = q = 0 and θ1(x, y, t) = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t)

uy(x, y, ζ, t) = ψ0(x, y, t)

uz(x, y, ζ, t) = 0

(8.2) 

for which the characteristic equation can be easily obtained as: 

.

(

k2 − ω2

c̃2P

) (

k2 − ω2

c2S

)

= 0 (8.3) 

which leads to the dispersion curves presented in Fig. 8.1 and where.c̃P is the phase 
velocity of P-waves under plane stress condition 3 related to the phase velocities of 
P-waves and S-waves in a 3-D elastic space by the following simple relationship: 

.c̃P = 2cS

/

1 − c2S
c2P

or c̃P =
/

E

(1 − ν2)ρ
(8.4)

2 This theory is determined only by in-plane displacements due to the membrane type of loading. No 
symmetric transverse displacements are present regardless of the excitation type: static or dynamic 
and its frequency. For this reason its use should be limited to studies of static and low frequency 
dynamic problems rather than problems involving propagation of symmetric modes of Lamb waves. 
3 This condition requires vanishing of the stress vector . T across a particular plane, typically . xy
plane, which leads to vanishing of the stress components .σzz , .τxz and .τyz , i.e.  . T = σσσ · [0, 0, 1]T
is equal to . 0. This very often occurs in thin plates under static or low frequency dynamic loads. 
Thanks to this condition the analysis of the stress state within plates is reduced from 3-D to 2-D 
and considerably simplified. 
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Fig. 8.1 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric modes 
of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to the 
2-mode 2-D theory (classical) of the symmetric behaviour of plates 

• Modified 2-mode 2-D theory: 

.

p = q = 0 and θ1(x, y, t) = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t)

uy(x, y, ζ, t) = ψ0(x, y, t)

uz(x, y, ζ, t) = 0

(8.5) 

with the additional condition for the rate of the transverse thickness change . ∈̇zz =
−ν(∈̇xx + ∈̇yy)/2 resulting from the Poisson effect and influencing the plate kinetic 
energy .K [ 3]: 

. u̇z(x, y, ζ, t) = −ν

2

[
∂φ̇0(x, y, t)

∂x
+ ∂ψ̇0(x, y, t)

∂y

]

aζ (8.6) 

for which the characteristic equation can be easily obtained as: 

.

(

k2 − ω2

c2

) (

k2 − ω2

c2S

)

= 0 (8.7)
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Fig. 8.2 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric modes 
of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to the 
modified 2-mode 2-D theory of the symmetric behaviour of plates 

which leads to the dispersion curves presented in Fig. 8.2, where now . c is the 
phase velocity defined us: 

.c =
/

E

(1 + β2)ρ
, with β = ν

2

ka√
3

(8.8) 

• 3-mode 3-D theory [ 4]: 

.

p = q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t)

uy(x, y, ζ, t) = ψ0(x, y, t)

uz(x, y, ζ, t) = aζθ1(x, y, t)

(8.9) 

for which the characteristic equation is a 6th degree polynomial with respect to 
the wave number . k. Its roots can be easily found numerically, which leads to the 
dispersion curves presented in Fig. 8.3. Based on [ 5] the additional assumption 
about the value of the shear correction factor .κ = 0.83 is also made in this case.
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Fig. 8.3 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric modes 
of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to the 
3-mode 3-D theory of the symmetric behaviour of plates 

• Modified 3-mode 3-D theory [ 4]: 

.

p = q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t)

uy(x, y, ζ, t) = ψ0(x, y, t)

uz(x, y, ζ, t) = aζθ1(x, y, t)

(8.10) 

for which the characteristic equation is also a 6th degree polynomial with respect 
to the wave number . k. Its roots can be easily found numerically, which leads to 
the dispersion curves presented in Fig. 8.4. Based on [ 4] the additional assump-
tion about the distribution of shear stresses is made using the correction function 
. f (ζ) = α(1 − ζ2)with.α = 1.6κ, which is incorporated within the matrix of elas-
tic coefficients at the positions corresponding to the stress components.τxz and.τyz . 

• Higher-order 3-mode 3-D theory [ 6]: 

.

p = q = 1
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t) + (1 − ζ2)φ2(x, y, t)

uy(x, y, ζ, t) = ψ0(x, y, t) + (1 − ζ2)ψ2(x, y, t)

uz(x, y, ζ, t) = aζθ1(x, y, t) + aζ(1 − ζ2)θ3(x, y, t)

(8.11)
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Fig. 8.4 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric modes 
of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to the 
modified 3-mode 3-D theory of the symmetric behaviour of plates 

for which the characteristic equation is a 10th degree polynomial with respect to 
the wave number . k. Its roots can be easily found numerically, which leads to the 
dispersion curves presented in Fig. 8.5. The additional assumptions for. φ2,.ψ2 and 
.θ3 are made resulting from the traction-free boundary conditions for the stress 
components .σzz , .τxz and .τyz leading to: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2φ2(x, y, t) = a2
∂θ1(x, y, t)

∂x

2ψ2(x, y, t) = a2
∂θ1(x, y, t)

∂y

2θ3(x, y, t) = θ1(x, y, t)

+ λ

λ + 2μ

[
∂φ0(x, y, t)

∂x
+ ∂ψ0(x, y, t)

∂y

]

(8.12) 

• 6-mode 3-D theory [ 7]: 

.

p = q = 1
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t) + (1 − ζ2)φ2(x, y, t)

uy(x, y, ζ, t) = ψ0(x, y, t) + (1 − ζ2)ψ2(x, y, t)

uz(x, y, ζ, t) = aζθ1(x, y, t) + aζ(1 − ζ2)θ3(x, y, t)

(8.13)
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Fig. 8.5 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric modes 
of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to the 
higher-order 3-mode 3-D theory of the symmetric behaviour of plates 

Fig. 8.6 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric modes 
of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to the 
6-mode 3-D theory of the symmetric behaviour of plates 

for which the characteristic equation is a 12th degree polynomial with respect to 
the wave number . k. Its roots can be easily found numerically, which leads to the 
dispersion curves presented in Fig. 8.6. 

A very important aspect of each particular approximated theory presented above, 
which indicates its practical range of applicability, is the accuracy. There are many
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methods and measures, which can be employed for the purpose of the evaluation of 
their accuracy [ 2], each of them characterised by different properties. The easiest 
and the most commonly used measure is the relative error, which was also used in 
the case of the calculated dispersion curves for the phase velocity, for all discussed 
theories. It is understood as the ratio of the error to the exact value predicted by the 
known analytical solution, while the error is the difference between the value of the 
phase velocity predicted by a given theory and the exact value. 4

This relative error can be simply expressed as: 

.δ(ω) = c(ω) − ca(ω)

ca(ω)
× 100% (8.14) 

where . c is the phase velocity obtained by the use of a given theory, while .ca is the 
corresponding value obtained from the analytical solution. 

The results concerning the 6 theories of the symmetric behaviour of plates pre-
sented above are shown in Figs. 8.7, 8.8 and 8.9 as relative error curves 5 and a 
function of the cyclic frequency. f . For clarity of presentation the frequency range is 
limited to 1 MHz, which in the case of a 10 mm thick aluminium layer is sufficient 
to incorporate a great number of modes of Lamb waves and SH-waves. 

The results presented in Fig. 8.7 concern the 2-mode 2-D theory (classical) and 
the modified 2-mode 2-D theory. Since these 2-D theories neglect the out-of-plane 
component of the displacement field their application range turns out to be very 
limited. In practice it is driven by the accuracy of the fundamental symmetric mode 
of Lamb waves S. 0 and for this reason their application range should concentrate only 
on statics or low frequency dynamics. This is despite the fact that the prediction of the 
behaviour of the fundamental symmetric mode of SH-waves SH. 0 remains correct. 

The enrichment of the 2-D theories with the additional modes, which in the case of 
the 3-mode 3-D theory and the modified 3-mode 3-D theory is the second symmetric 
mode S. 1, improves the quality of the theories as well as their ranges of applicability. 
This is clearly seen in Fig. 8.8. As the result of this enrichment the 3-D theories 
become also suitable for problems involving mid frequency dynamics. In order to 
further extend this range of applicability and to improve theoretical predictions it 
is necessary to further enrich the theories. This can be achieved in two alternative 
ways. The first one assumes a simple process of adding extra modes of Lamb waves 
and SH-waves, preferably in such a manner that the corresponding Maclaurin series 
expansion of each displacement component includes the same number of terms, i.e. 
the same number of independent mid-plane functions. The second method addition-
ally assumes the application of the traction-free boundary conditions in order to

4 Very often in the literature the definition of the relative error uses the absolute value of the error 
instead of the plain error. In such a case an important piece of information, namely whether a given 
theory predicts values higher or lower than the exact solution, is lost. In order to preserve this 
information the plain error is used now instead of the absolute error. 
5 Hereinafter solid lines in all presented figures depicting changes in the relative error of the phase 
velocity as a function of the frequency correspond to the range of phase velocities not exceeding 8 
km/s. Otherwise they are presented as dashed lines. 
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Fig. 8.7 Relative error for: a the 2-mode 2-D theory (classical), b the modified 2-mode 2-D theory, 
of the symmetric behaviour of plates measured against the analytical solution for symmetric modes 
of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer 

Fig. 8.8 Relative error for: a the 3-mode 3-D theory, b the modified 3-mode 3-D theory, of the 
symmetric behaviour of plates measured against the analytical solution for symmetric modes of 
Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer
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Fig. 8.9 Relative error for a the higher-order 3-mode 3-D theory, b the 6-mode 3-D theory, of the 
symmetric behaviour of plates measured against the analytical solution for symmetric modes of 
Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer 

lower this increased number of independent mid-plane functions. The result of such 
an approach is presented in Fig. 8.9 in the case of the higher-order 3-mode 3-D theory 
and the 6-mode 3-D theory. It can be clearly seen that the applicability of these two 
3-D theories is substantially increased in comparison with the remaining theories. 

In practical applications concerning the analysis and investigation of the symmet-
ric behaviour of plates it is the fundamental symmetric mode S. 0 that plays the most 
important role. For this reason it is much better to compare the studied theories, if the 
investigation of their accuracy is limited to this mode only, as well as the frequency 
range up to the first cut-off frequency. fS1 , as presented and summarised in Table 8.1. 
In the current case of a 10 mm aluminium plate the second symmetric mode S. 1
appears at the frequency . fS1 of 277.1 kHz. 

It is evident from Fig. 8.10 that for the simplest 2-D and 3-D theories the funda-
mental symmetric mode S. 0 is characterised by the relative error of the phase velocity, 
which grows very rapidly with an increase in the frequency. This is the case for the 
2-mode 2-D theory (classical), the modified 2-mode 2-D theory, the 3-mode 3-D the-
ory as well as the modified 3-mode 3-D theory. For these theories the relative error 
reaches 5% at 151.2, 167.0, 183.0 and 189.0 kHz, respectively. However, this is not 
observed in the case of the higher-order 3-mode 3-D theory and the 6-mode 3-D the-
ory, for which the maximum value of the modelling error within the frequency range 
of interest is never higher than 1.2% and 0.39%, respectively. Although at higher 
computational cost due to the increased number of independent variables, i.e. DOFs, 
it is recommended to use the latter or other multi-mode or higher-order multi-mode 
3-D theories to ensure high accuracy of numerical predictions, especially where high 
frequency dynamic problems are investigated.
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Table 8.1 Statistical data on the relative modelling error associated with the phase velocity of the 
fundamental symmetric mode S. 0 propagating in a 10 mm thick aluminium layer in the frequency 
range up to the first cut-off frequency . fS1 of 277.1 kHz, for various theories of the symmetric 
behaviour of plates. 

Theory Extr. error (%) Avg. error (%) Std. deviation (%) 

Classical 2-D 58.0 12.4 16.8 

Modified 2-mode 2-D 50.1 10.3 14.6 

3-mode 3-D 37.6 7.83 11.5 

Modified 3-mode 3-D 30.1 6.57 9.72 

Higher-order 3-mode 
3-D 

1.20 0.22 0.34 

6-mode 3-D 0.39 0.08 0.11 

Fig. 8.10 Relative error of the fundamental symmetric mode S. 0 propagating in a 10 mm thick 
aluminium layer: a full range, b magnified view, for various theories of the symmetric behaviour 
of plates (1—classical 2-D, 2—modified 2-mode 2-D, 3—3-mode 3-D, 4—modified 3-mode 3-D, 
5—higher-order 3-mode 3-D, 6—6-mode 3-D) 

8.2 Antisymmetric Behaviour of Plates 

The general form of the displacement field related to the antisymmetric behaviour of 
plates also results from the same considerations as presented in the section related 
to the shell element, 6 and expressed by Eqs. (7.8). Due to the antisymmetric type of 
plate behaviour it is required that:

6 In a sense that this time the in-plane displacements and the transverse strain must remain odd 
functions with respect to the. z coordinate. 
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.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux (x, y, ζ, t) = aζφ1(x, y, t) +
p∑

n=1
aζ(1 − ζ2n)φ2n+1(x, y, t)

uy(x, y, ζ, t) = aζψ1(x, y, t) +
p∑

n=1
aζ(1 − ζ2n)ψ2n+1(x, y, t)

uz(x, y, ζ, t) = θ0(x, y, t) +
q∑

k=1
(1 − ζ2n)θ2n(x, y, t)

(8.15) 

where as previously . p and . q are the numbers of terms kept in the series and related 
to the total number of independent variables, i.e. DOFs, of a given theory. In the 
same manner as before in the case of higher-order theories being developed the 
traction-free boundary condition may be used in order to lower the total number of 
independent variables, i.e. DOFs, as was demonstrated in Sect. 7.2. 

It can also be easily checked that the above form of the displacement field may be 
obtained by Maclaurin series expansion of the appropriate relations describing the 
antisymmetric behaviour in the case of SH-waves and Lamb waves, and given by 
Eq. (5.3) in Sect. 5.1 and Eq. (5.21) in Sect. 5.2. Following the same approach as for 
the symmetric behaviour of plates already presented, it can be clearly seen that by 
the appropriate truncation of the series in Eq. (8.15) may lead to numerous theories 
describing the antisymmetric behaviour of plates. 

Based on the results presented in [ 1, 2] it should be emphasised once more that 
it is recommended that the total number of terms kept in the case of the in-plane 
displacement components.ux and.uy is equal to the number of terms kept in the case 
of the out-of-plane displacement function . uz . This general rule helps to lower the 
modelling error, which otherwise would be increased in comparison to the case when 
.p = q. 

In the Cartesian coordinate system .(x, y, z) particular theories of the antisym-
metric behaviour of plates can be associated with different forms of Maclaurin series 
expansions of each component of the displacement field. ux ,.uy and. uz , and presented 
as: 

• Higher-order 1-mode 2-D theory (Kirchhoff-Love): 

.

p = q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = aζφ1(x, y, t)

uy(x, y, ζ, t) = aζψ1(x, y, t)

uz(x, y, ζ, t) = θ0(x, y, t)

(8.16) 

where thanks to the additional assumptions resulting from the traction-free bound-
ary conditions for the shear stress components.τxz and.τyz , the mid-plane displace-
ment functions .φ1 and .ψ1 can be expressed as:
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Fig. 8.11 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to 
the higher-order 1-mode 2-D theory (Kirchhoff-Love) of the antisymmetric behaviour of plates 

.

⎧
⎪⎪⎨

⎪⎪⎩

φ1(x, y, t) = −∂θ0(x, y, t)

∂x

ψ1(x, y, t) = −∂θ0(x, y, t)

∂y

(8.17) 

where the characteristic equation takes the following simple form: 

.h2k4 − (12 + h2k2)
ω2

c̃2P
= 0 (8.18) 

which leads to the dispersion curves presented in Fig. 8.11. The presence of the 
factor.h2k2 results from taking into account the higher-order terms of the transverse 
accelerations associated with the mid-plane functions .φ1 and .ψ1. 
In the case of very thin plates these higher-order terms are usually neglected, 
which is equivalent to the assumption of.h2k2 ≈ 0, which leads to the characteristic 
equation in the form which is well-known from the literature [ 8]: 

.k = ±
√

ω

β
or ω = β2k2, where β = 4

/

Eh2

12(1 − ν2)ρ
(8.19)
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Fig. 8.12 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to 
the 3-mode 2-D theory (Mindlin-Reissner) of the antisymmetric behaviour of plates 

• 3-mode 2-D theory (Mindlin-Reissner): 

.

p = q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = aζφ1(x, y, t)

uy(x, y, ζ, t) = aζψ1(x, y, t)

uz(x, y, ζ, t) = θ0(x, y, t)

(8.20) 

for which the characteristic equation is a 6th degree polynomial with respect of 
the wave number . k. Its roots can be easily found numerically, which leads to the 
dispersion curves presented in Fig. 8.12. Based on [ 5] the additional assumption 
about the value of the shear correction factor .κ = 0.83 is also made in this case. 

• Modified 3-mode 2-D theory [ 4]: 

.

p = q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = aζφ1(x, y, t)

uy(x, y, ζ, t) = aζψ1(x, y, t)

uz(x, y, ζ, t) = θ0(x, y, t)

(8.21)
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Fig. 8.13 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to 
the modified 3-mode 2-D theory of the antisymmetric behaviour of plates 

for which the characteristic equation is also a 6th degree polynomial with respect 
of the wave number . k. Its roots can be easily found numerically, which leads 
to the dispersion curves presented in Fig. 8.13. Based on [ 4, 5] the additional 
assumption about the distribution of shear stresses is made using the correction 
function. f (ζ) = α(1 − ζ2)with.α = 1.6κ, which is incorporated within the matrix 
of elastic coefficients at the positions corresponding to the stress components . τxz
and .τyz . 

• Higher-order 3-mode 2-D theory (Reddy) [ 9]: 

.

p = 1, q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = aζφ1(x, y, t) + aζ(1 − ζ2)φ3(x, y, t)

uy(x, y, ζ, t) = aζψ1(x, y, t) + aζ(1 − ζ2)ψ3(x, y, t)

uz(x, y, ζ, t) = θ0(x, y, t)

(8.22) 

for which the characteristic equation is now a 8th degree polynomial with respect 
of the wave number. k. Its roots can be easily found numerically, which leads to the 
dispersion curves presented in Fig. 8.14. The additional assumptions for .φ3 and 
.ψ3 are made, resulting from the traction-free boundary conditions for the stress 
components .τxz and .τyz , leading to:
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Fig. 8.14 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to 
the higher-order 3-mode 2-D theory (Reddy) of the antisymmetric behaviour of plates 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2φ3(x, y, t) = φ1(x, y, t) + ∂θ0(x, y, t)

∂x

2ψ3(x, y, t) = ψ1(x, y, t) + ∂θ0(x, y, t)

∂y

(8.23) 

• Higher-order 3-mode 3-D theory [ 6]: 

.

p = q = 1
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = aζφ1(x, y, t) + aζ(1 − ζ2)φ3(x, y, t)

uy(x, y, ζ, t) = aζψ1(x, y, t) + aζ(1 − ζ2)ψ3(x, y, t)

uz(x, y, ζ, t) = θ0(x, y, t) + (1 − ζ2)θ2(x, y, t)

(8.24) 

for which the characteristic equation is also a 10th degree polynomial with respect 
of the wave number . k. Its roots can be easily found numerically, which leads to 
the dispersion curves presented in Fig. 8.15. The additional assumptions for . φ3, 
.ψ3 and .θ2 are made, resulting from the traction-free boundary conditions for the 
stress components .σzz , .τxz and .τyz , leading to:
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Fig. 8.15 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to 
the higher-order 3-mode 3-D theory of the antisymmetric behaviour of plates 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2φ3(x, y, t) = φ1(x, y, t) + ∂θ0(x, y, t)

∂x

2ψ3(x, y, t) = ψ1(x, y, t) + ∂θ0(x, y, t)

∂y

2θ2(x, y, t) = a2
λ

λ + 2μ

[
∂φ1(x, y, t)

∂x
+ ∂ψ1(x, y, t)

∂y

]

(8.25) 

• 6-mode 3-D theory [ 7]: 

.

p = q = 1
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, y, ζ, t) = aζφ1(x, y, t) + aζ(1 − ζ2)φ3(x, y, t)

uy(x, y, ζ, t) = aζψ1(x, y, t) + aζ(1 − ζ2)ψ3(x, y, t)

uz(x, y, ζ, t) = θ0(x, y, t) + (1 − ζ2)θ2(x, y, t)

(8.26) 

for which the characteristic equation is a 12th degree polynomial with respect to 
the wave number . k. Its roots can be easily found numerically, which leads to the 
dispersion curves presented in Fig. 8.16. 

As shown in the case of the symmetric behaviour of plates, the same analysis of 
the relative error of the phase velocity for particular theories of the antisymmetric 
behaviour of plates presented above can be carried out here. The results concerning
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Fig. 8.16 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer, according to 
the 6-mode 3-D theory of the antisymmetric behaviour of plates 

Fig. 8.17 Relative error for: a the higher-order 1-mode 2-D theory (Kirchhoff-Love), b the 
3-mode 2-D theory (Mindlin-Reissner), of the antisymmetric behaviour of plates measured against 
the analytical solution for antisymmetric modes of Lamb waves and SH-waves propagating in a 10 
mm thick aluminium layer 

the 6 theories of the antisymmetric behaviour of plates are given in Figs. 8.17, 8.18 
and 8.19 as relative error curves and a function of the cyclic frequency. f . As before 
for clarity of presentation the frequency range is limited to 1 MHz, which in the 
case of a 10 mm thick aluminium layer is sufficient to incorporate a great number of 
modes of Lamb waves and SH-waves.
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Fig. 8.18 Relative error for: a the modified 3-mode 2-D theory, b the higher-order 3-mode 2-D 
theory (Reddy), of the antisymmetric behaviour of plates measured against the analytical solution 
for antisymmetric modes of Lamb waves and SH-waves propagating in a 10 mm thick aluminium 
layer 

Fig. 8.19 Relative error for: a the higher-order 3-mode 3-D theory, b the 6-mode 3-D theory, of 
the antisymmetric behaviour of plates measured against the analytical solution for antisymmetric 
modes of Lamb waves and SH-waves propagating in a 10 mm thick aluminium layer
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The results presented in Fig. 8.17 concern the higher-order 1-mode 2-D theory 
(Kirchhoff-Love) and the 3-mode 3-D theory (Mindlin-Reissner). The first 2-D the-
ory (Kirchhoff-Love) is entirely based on the out-of-plane displacement component 
and its derivatives, which limits its application range due to the rapidly growing 
modelling error. In this 2-D theory only the fundamental antisymmetric mode A. 0

is present. In the case of the second 2-D theory (Mindlin-Reissner) the situation is 
significantly improved by the enrichment of the theory by the second antisymmetric 
mode A. 1 as well as the second antisymmetric mode of SH-waves SH. 1. The relative 
error for the fundamental antisymmetric mode A. 0 is relatively small within the entire 
frequency range of interest, however this is not the case for the remaining two modes. 
For this reason the 2-mode 2-D theory (Mindlin-Reissner) has a greater application 
range than the higher-order 1-mode 2-D theory (Kirchhoff-Love) and can be applied 
for problems involving mid frequency dynamics up to the frequencies correspond-
ing to the second antisymmetric mode A. 1, while the application range of the latter 
remains within the range of low frequency dynamics. 

The results obtained in the case of the modified 3-mode 2-D theory and the higher-
order 3-mode 2-D theory (Reddy) are presented in Fig. 8.18. It is clearly seen that 
the modification of the 3-mode 2-D theory (Mindlin-Reissner), by correction of the 
distribution of shear stresses, profoundly improves the predictions of this 2-D theory 
in the frequency range of interest only in the case of the fundamental antisymmetric 
mode A. 0. The correction offered by the higher-order 3-mode 2-D theory (Reddy) has 
a more significant influence on the obtained results in the case of the remaining two 
modes, but this is at the cost of the loss of the accuracy in the case of the fundamental 
antisymmetric mode A. 0 within the frequency range above the cut-off frequency for 
the second antisymmetric mode A. 1. It can be also observed that the appearance of 
the antisymmetric SH-mode SH. 1, which is charactered by a small relative error at 
higher frequencies, results in an increase in the relative error associated with the 
fundamental antisymmetric mode A. 0 and the second antisymmetric mode A. 1 to 
unacceptable levels. 

A further improvement of the 2-D theories, as observed in the case of the higher-
order 3-mode 3-D theory and the 6-mode 3-D theory, has little effect on the relative 
errors. This is clearly seen in Fig. 8.19. As shown in the case of the symmetric 
behaviour of plates the enrichment process can be obtained by two alternative ways. 
The first is based on a simple process of adding extra modes, of Lamb waves and 
SH-waves, preferably in such a manner that the corresponding Maclaurin series 
expansion of each displacement component includes the same number of terms, i.e. 
the same number of independent mid-plane functions, as in the case of the 6-mode 
3-D theory. The second method additionally takes advantage of the traction-free 
boundary conditions in order to lower this increased number of independent mid-
plane functions, as in the case of the higher-order 3-mode 3-D theory. However, 
it can be seen that in the case of the antisymmetric behaviour of plates only the 
enrichment of the 3-D theory by additional modes, as observed for the 6-mode 3-
D theory, results in a significant improvement of the predictions. Such an approach 
makes it suitable for problems involving moderately high frequency dynamics as well 
as propagation of elastic waves. This significantly increases the applicability of the
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Table 8.2 Statistical data on the relative modelling error associated with the phase velocity of the 
fundamental antisymmetric mode A. 0 propagating in a 10 mm thick aluminium layer in the frequency 
range up to the first cut-off frequency . fA1 of 153.4 kHz for various theories of the antisymmetric 
behaviour of plates. 

Theory Extr. error (%) Avg. error (%) Std. deviation (%) 

Kirchhoff-Love 2-D 33.6 18.4 9.76 

Mindlin-Reissner 2-D –2.00 –1.11 0.59 

Modified 3-mode 2-D –0.09 0.03 0.04 

Reddy 2-D –0.98 –0.73 0.28 

Higher-order 3-mode 
3-D 

1.96 0.68 0.60 

6-mode 3-D 0.62 0.21 0.19 

6-mode 3-D theory in comparison to the higher-order 3-mode 3-D theory, although at 
higher computational cost related to the increased number of independent mid-plane 
variables, i.e. DOFs. 

As previously mentioned, in practical applications concerning the analysis and 
investigation of the antisymmetric behaviour of plates, it is the fundamental antisym-
metric mode A. 0 that plays the most important role. For this reason it is much better 
to compare the investigated 2-D and 3-D theories, if the analysis of their accuracy is 
limited to this mode only, as well as within the frequency range up to the first cut-off 
frequency. fA1 , as presented and summarised in Table 8.2. In the current case of a 10 
mm aluminium plate the second antisymmetric mode A. 1 appears at the frequency 
. fA1 of 153.4 Hz. 

It is noticeable from Fig. 8.20 that for the simplest 2-D theory the fundamental 
antisymmetric mode A. 0 is characterised by the relative error of the phase velocity, 
which grows very rapidly with an increase in the frequency. This is the case for the 
higher-order 1-mode 2-D theory (Kirchhoff-Love). The observed behaviour changes 
significantly for the 3-mode 2-D theory (Mindlin-Reissner), the modified 3-mode 
2-D theory as well as the higher-order 3-mode 2-D theory (Reddy), which are char-
acterised by small negative errors within the frequency range of interest. For the 
higher-order 1-mode 2-D theory (Kirchhoff-Love) the relative error reaches 5% at 
18.0 kHz, while for the 3-mode 2-D theories takes the extreme values of.−2.00,. −0.09
and .−0.98%, respectively. It should be noted that these small values of the relative 
errors, smaller than in the case of the remaining 3-D theories, i.e. the higher-order 
3-mode 3-D theory as well as the 6-mode 3-D theory, are unfortunately associated 
with higher values of the relative errors for the second antisymmetric mode A. 1 as 
well as the second antisymmetric mode of SH-waves SH. 1. 

For the 6-mode 3-D theory the modelling error within the frequency range up to the 
first cut-off frequency. fA1 stays below 0.62%. Although at higher computational cost 
due to the increased number of independent variables, i.e. DOFs, it is recommended to 
use the latter or other multi-mode or higher-order multi-mode 3-D theories to ensure 
high accuracy of numerical predictions, especially when high frequency dynamics 
is investigated.
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Fig. 8.20 Relative error of the fundamental antisymmetric mode A. 0 propagating in a 10 mm thick 
aluminium layer: a full range, b magnified view, for various theories of the antisymmetric behaviour 
of plates (1—Kirchhoff-Love 2-D, 2—Mindlin-Reissner 2-D, 3—modified 3-mode 2-D, 4—Reddy 
2-D, 5—higher-order 3-mode 3-D, 6—6-mode 3-D) 

8.3 Coupled Behaviour of Shells 

The mechanical behaviour associated with the phenomena of wave propagation in 
shell structural elements requires bonding of the in-plane and out-of-plane behaviour 
standard for 2-D plate structural elements. This requirement results from the inherent 
coupling of different types of wave modes leading to their conversion, which is 
observed in the case of shells, and which is a direct consequence of their geometrical 
complexity 7 typical for 3-D structures [ 10– 12]. 

For this reason the displacement fields associated with the behaviour of shell 
structural elements should always take into account this phenomenon and allow the 
conversion of wave modes between each symmetric and each antisymmetric mode as 
a result of their interaction with the existing boundaries, having 3-D nature. Moreover, 
for the same reason not every two arbitrarily chosen plate theories of the in-plane and 
out-of-plane behaviour may be combined together to represent a complete 8 theory 
of shell mechanical behaviour, and than employed for the analysis of high frequency 
dynamics or wave propagation.

7 Despite the fact that real shell structural elements very often represent complex 3-D structures, 
they may still be successfully investigated based on the theories used in the analysis of 2-D plate 
structural elements. This is possible thanks to the fact that the same approach can be used for shells 
based on the description of their behaviour at the mid-plane, in exactly the same manner as in the 
case of 2-D plates. 
8 Employing pairs of wave modes, symmetric and antisymmetric, to describe the investigated 
behaviour of shells. 
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This problem can be well illustrated in the case of the displacement field resulting 
from combining together the 2-mode 2-D theory (classical) of the in-plane behaviour 
of plates, described by Eq. (8.2), with the higher-order 1-mode 2-D theory (Kirchhoff-
Love) of the out-of-plane behaviour of plates, described by Eq. (8.16). The resulting 
displacement field takes use of 3 fundamental wave modes, which are the symmetric 
and antisymmetric modes of Lamb waves S. 0 and A. 0 as well as the symmetric mode 
of of SH-waves SH. 0, as shown below: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t) − aζ
∂θ0(x, y, t)

∂x

uy(x, y, ζ, t) = ψ0(x, y, t) − aζ
∂θ0(x, y, t)

∂y

uz(x, y, ζ, t) = θ0(x, y, t)

(8.27) 

where 2 boxed mid-plane functions .φ0 and .ψ0 are associated with the presence of 
the fundamental symmetric wave modes S. 0 and SH. 0, while the remaining mid-plane 
function .θ0 is associated with the presence of the fundamental antisymmetric wave 
mode A. 0. 

Despite the lower accuracy offered by the resulting 2-D theory, which was anal-
ysed in detail in the previous sections concerning the in-plane and out-of-plane 
behaviour of plate structural elements based on various plate theories, the shell the-
ory under consideration not only prevents the existence of, but also the conversion of 
modes between symmetric and antisymmetric SH-modes, since the antisymmetric 
mode SH. 1 of SH-waves is not taken into account by this theory. 

In order to take into account the conversion of particular pairs of wave modes 
resulting from their interaction due to geometrical coupling a proper approach in this 
respect should be based on the representation of particular displacement components 
using the same number of terms resulting from their Maclaurin series expansions. 
This general recommendation can be successfully fulfilled in the case of a simple 
6-mode 3-D theory of shells presented below: 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ux (x, y, ζ, t) = φ0(x, y, t) + aζφ1(x, y, t)

uy(x, y, ζ, t) = ψ0(x, y, t) + aζψ1(x, y, t)

uz(x, y, ζ, t) = θ0(x, y, t) + aζθ1(x, y, t)

(8.28) 

as well as in the case of the 12-mode theory given by Eq. (7.8) or the higher-order 
6-mode 3-D theory given by Eqs. (7.11) and (7.12), both discussed in Sect. 7.2 in 
full detail. It can be easily seen that now 3 boxed mid-plane functions . φ0, .ψ0 and. θ1
are associated with the presence of the symmetric wave modes S. 0, S. 1 and SH. 0, while 
the remaining 3 mid-plane functions . θ0, .φ1 and .ψ1 are associated with the presence 
of the antisymmetric wave modes A. 0, A. 1 and SH. 1.
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Displacement fields of shell structural elements based on such an approach can be 
considered as well-balanced, otherwise they are ill-balanced. This is despite the fact 
that the frequency content of typical signals associated with propagation of elastic 
waves typically remains within the range of frequencies well below the first cut-
off frequency for the antisymmetric wave modes . fA1 and . fSH1 and for this reason 
concerns only 3 fundamental wave modes: the symmetric A. 0 and SH. 0 as well as the 
antisymmetric A. 0. 

It should be emphasised that in the case of shell structural elements conversion of 
wave modes may result not only from geometrical coupling due their complex 3-D 
geometry, but also from any types of discontinuities including boundaries, edges, 
structural faults or cracks, etc. This can be clearly seen in Fig. 8.21 in the case of 
a z-shape 10 mm thick aluminium profile, which represents a complex 3-D shell 
structural element. 

Fig. 8.21 Conversion of wave modes propagating in a z-shape 10 mm thick aluminium profile in 
consecutive moments in time. Results of numerical computations by TD-SFEM according to the 
modified 6-mode 3-D theory of shells
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Fig. 8.22 Dispersion curves for: a the phase velocity, b the group velocity, for modes of Lamb 
waves and SH-waves propagating in a 10 mm thick aluminium shell, according to the modified 
6-mode 3-D theory of shells 

In this case the central frequency of the excitation signal . fc was assumed as 
equal to 75 kHz, while the frequency of modulation. fm as equal to 18.75 kHz. Thus, 
the frequency content of the excitation covered frequencies from . fc − 2 fm = 37.5
kHz up to  . fc + 2 fm = 112.5 kHz. The position of this frequency range against 
the dispersion curves for the phase velocity and the group velocity is illustrated in 
Fig. 8.22. 

It can be clearly seen that within this frequency range only three fundamental 
modes exist: the symmetric S. 0 and SH. 0 as well as the antisymmetric A. 0. As a result 
any conversion of modes that can take place for excitation signals from this frequency 
range is limited to three wave modes only. It can be also observed from Fig. 8.21 that 
the antisymmetric mode A. 0 of Lamb waves converts to the symmetric mode of Lamb 
waves S. 0 and vice versa, as well as that both these modes become a source of the 
symmetric mode of SH-waves SH. 0 while passing through structural discontinuities 
in the form of edges. At the same time it may be observed that the symmetric mode 
of SH-waves SH. 0 exhibits no conversion. 

Another very important aspect of the analysis and investigation of shell structural 
elements is the way, in which their 3-D geometry is defined. Typically, there are three 
different coordinate systems, as presented in Fig. 8.23, which can be distinguished 
and used here: 

• Curvilinear/normalised coordinate system .(ξ, η, ζ) is an orthogonal coordinate 
system, in which the 3-D geometry of a shell structural element is defined. This 
coordinate system may be local, in the case when it concerns a part of a shell 
structure such as is a single FE, or global, for the definition of shell structural 
elements such as pipes, domes, hemispheres, etc. The main advantage of the use
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Fig. 8.23 Different coordinate systems used in the analysis of a structural shell element 

of the curvilinear coordinate system.(ξ, η, ζ) comes from the fact that for the defi-
nition of the 3-D geometry it uses the mid-plane defined quantities, i.e. defined in 
the .ξη plane, and the shell thickness. This effectively helps to reduce the dimen-
sionality of the problem from 3-D to 2-D. In the curvilinear coordinate system 
shell structural elements are often represented by squares or rectangles of vari-
ous dimensions. 9 Examples of curvilinear coordinate systems very often used in 
engineering and research practice can be the polar coordinate system in 2-D or the 
cylindrical coordinate system or the spherical coordinate system in 3-D.

9 1-D FEs are usually represented in FEM in the local curvilinear/normalised coordinates systems as 
sections of the non-dimensional length of 2, i.e..ξ ∈ ⟨−1,+1⟩, 2-D plates and shell FEs as squares of 
the non-dimensional area of 4, i.e..ξ, η ∈ ⟨−1,+1⟩, while 3-D FEs as cubes of the non-dimensional 
volume of 8, i.e. .ξ, η, ζ ∈ ⟨−1,+1⟩ [ 13]. 
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• Local Cartesian coordinate system .(x, y, z) is the Cartesian coordinate system 
defined locally, which can be associated with any point .P(x, y, z) located on the 
mid-plane representing the 3-D geometry of a shell structural element. In should 
be mentioned here that conventionally in FEM the orientation of the local Carte-
sian coordinate system .(x, y, z) determines two mutually orthogonal directions 
tangential to the mid-plane . x and . y as well as one normal direction to the mid-
plane . z. Its use comes from the fact that the coupled in-plane and out-of-plane 
behaviour of shell structural elements is local in nature. A proper description of 
this feature requires an appropriate coordinate system, in which the values of local 
displacement, strain and stress components can be easily expressed and calculated. 
Moreover, in the case of plane shell structural elements (linear or plane elements 
in general) the local Cartesian coordinate system.(x, y, z) is often interchangeably 
regarded and identified as the global Cartesian coordinate system.(X,Y, Z). 

• Global Cartesian coordinate system.(X,Y, Z) is also the Cartesian coordinate sys-
tem, which is the absolute reference frame for other coordinate systems employed 
in the analysis of shell structural elements. This is the coordinate system, in which 
all requested information about the displacement, strain or stress fields are finally 
expressed and presented. It should be remembered, however, that depending on 
the types of problems and the 3-D nature of the geometry of shell structural ele-
ments also other coordinate system are very frequently in use as global coordinate 
systems, instead of the Cartesian coordinate system. For example, in the case of 
spherical shells this can be the spherical coordinate system, while in the case of 
tubular shell structures the cylindrical coordinate system is used. 
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Chapter 9 
Simplified Theories of 1-D Structural 
Elements 

9.1 Longitudinal Behaviour of Rods 

The general form of the displacement field associated with the longitudinal behaviour 
of rods can be expressed in an analogous manner to the in-plane behaviour of plates. In 
the cylindrical coordinate system.(x, r, θ) the displacement field takes the following 
form: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ux (x, ζ, t) = φ0(x, t) +
p∑

n=1
(1 − ζ2n)φ2n(x, t)

ur (x, ζ, t) = aζψ1(x, t) +
q∑

n=1
aζ(1 − ζ2n)ψ2n+1(x, t)

(9.1) 

with .r = aζ and .2a = d, where . d denotes the diameter of the rod. 
It should be emphasised that the form of the displacement field given by Eq. (9.1) 

fully conforms with the Maclaurin series expansion of the resulting form of the 
displacement field presented in Sect. 6.1 and expressed by Eqs. (6.11), (6.12) and 
(6.15). 

As before . p and . q denote the numbers of terms kept in the series and related to 
the total number of independent variables, i.e. DOFs, of a given theory. Again, in 
order to minimise the modelling error it is recommended that the total number of 
terms kept in the case of the longitudinal displacement components .ux be equal to 
the number of terms kept in the case of the radial displacement component . ur . It  
should be also noted that now the independent variables, i.e. DOFs, are represented 
by the mid-axis displacement functions .φn and .ψn . 

In the cylindrical coordinate system .(x, r, θ) particular theories of the longitu-
dinal behaviour of rods can be associated with different forms of Maclaurin series 
expansions of each component of the displacement fields .ux and . ur , and presented 
as: 
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Fig. 9.1 Dispersion curves for: a the phase velocity, b the group velocity, for longitudinal modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the 1-mode 1-D 
theory (elementary) of rods 

• 1-mode 1-D theory (elementary): 

.

p = q = 0 and ψ1(x, t) = 0
⏐
↓

ux (x, ζ, t) = φ0(x, t)

(9.2) 

for which the characteristic equation and its solution has the already known form 
of Eq. (2.47) or Eq.  (2.49), which is formally presented below once more: 

.k2 − ω2

c20
= 0 (9.3) 

leading to the dispersion curves presented in Fig. 9.1, where.c0 is the phase velocity 
of longitudinal waves related to the phase velocities of P-waves and S-waves in a 
3-D elastic space by the following simple relationship: 

.c0 = cS

/
3c2P − 4c2S
c2P − c2S

or c0 =
/

E

ρ
(9.4)
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• Modified 1-mode 1-D theory (Love) [ 1]: 

.

p = q = 0 and ψ1(x, t) = 0
⏐
↓

ux (x, ζ, t) = φ0(x, t)

(9.5) 

with the additional condition for the rate of the transverse thickness change . ∈̇rr =
−ν∈̇xx resulting from the Poisson effect and influencing the rod kinetic energy . K
[ 1]: 

. u̇r (x, r, t) = −ν
∂φ̇0(x, t)

∂x
aζ (9.6) 

for which the characteristic equation can be easily obtained as: 

.k2 − ω2

c2
= 0 (9.7) 

leading to the dispersion curves presented in Fig. 9.2, where now . c is the phase 
velocity defined as: 

.c =
/

E

(1 + β2)ρ
, with β = ν

2
ka (9.8) 

with .2a = d, where . d denotes the diameter of the rod. 

Fig. 9.2 Dispersion curves for: a the phase velocity, b the group velocity, for longitudinal modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the modified 1-mode 
1-D theory (Love) of rods
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• 2-mode 2-D theory (Mindlin-Herrmann) [ 2]: 

.

p = q = 0
⏐
↓

{
ux (x, ζ, t) = φ0(x, t)

ur (x, ζ, t) = aζψ1(x, t)

(9.9) 

for which the characteristic equation is a 4th degree polynomial with respect to 
the wave number . k: 

.

k2(24 + a2k2)c2Pc
2
S − (8 + a2k2)ω2c2P + (8 − a2k2)ω2c2S

−32k2c4S + a2ω4 = 0
(9.10) 

Its roots can be easily found numerically leading to the dispersion curves presented 
in Fig. 9.3. 

• Higher-order 2-mode 2-D theory [ 3]: 

.

p = q = 1
⏐
↓

{
ux (x, ζ, t) = φ0(x, t) + (1 − ζ2)φ2(x, t)

ur (x, ζ, t) = aζψ1(x, t) + aζ(1 − ζ2)ψ3(x, t)

(9.11) 

Fig. 9.3 Dispersion curves for: a the phase velocity, b the group velocity, for longitudinal modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the modified 2-mode 
2-D theory (Mindlin-Herrmann) of rods
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Fig. 9.4 Dispersion curves for: a the phase velocity, b the group velocity, for longitudinal modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the higher-order 
2-mode 2-D theory of rods 

for which the characteristic equation is a 8th degree polynomial with respect to 
the wave number . k. Its roots can be easily found numerically, which leads to the 
dispersion curves presented in Fig. 9.4. The additional assumptions for .φ2 and 
.ψ2 are made resulting from the traction-free boundary conditions for the stress 
components .σrr and .τxr leading to: 

.

⎧
⎪⎪⎨

⎪⎪⎩

2φ2(x, t) = a2
∂ψ1(x, t)

∂x

2ψ3(x, t) = 2(λ + μ)

λ + 2μ
ψ1(x, t) + λ

λ + 2μ

∂φ0(x, t)

dx

(9.12) 

• 4-mode 2-D theory [ 4]: 

.

p = q = 1
⏐
↓

{
ux (x, ζ, t) = φ0(x, t) + (1 − ζ2)φ2(x, t)

uz(x, ζ, t) = aζψ1(x, t) + aζ(1 − ζ2)ψ3(x, t)

(9.13) 

for which the characteristic equation also is a 8th degree polynomial with respect 
to the wave number . k. Its roots can be easily found numerically, which leads to 
the dispersion curves presented in Fig. 9.5.
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Fig. 9.5 Dispersion curves for: a the phase velocity, b the group velocity, for longitudinal modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the 4-mode 2-D 
theory of rods 

Fig. 9.6 Dispersion curves for: a the phase velocity, b the group velocity, for longitudinal modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the 6-mode 2-D 
theory of rods 

• 6-mode 2-D theory [ 5]: 

.

p = q = 2
⏐
↓

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ux (x, ζ, t) = φ0(x, t) +
2∑

n=1
(1 − ζ2n)φ2n(x, t)

ur (x, ζ, t) = aζψ1(x, t) +
2∑

n=1
aζ(1 − ζ2n)ψ2n+1(x, t)

(9.14)
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Fig. 9.7 Relative error for: a the 1-mode 1-D theory (elementary), b the modified 1-mode 1-D 
theory (Love), of the longitudinal behaviour of rods measured against the analytical solution for 
longitudinal waves propagating in a 10 mm diameter aluminium bar 

for which the characteristic equation also is a 12th degree polynomial with respect 
to the wave number . k. Its roots can be easily found numerically, which leads to 
the dispersion curves presented in Fig. 9.6. 

As previously, the same kind of analysis of the relative error of the phase velocity 
for particular 1-D and 2-D theories of the longitudinal behaviour of rods presented 
above was carried out here. The results concerning the 6 theories of the longitudinal 
behaviour of rods are presented in Figs. 9.7, 9.8 and 9.9 as relative error curves 
and a function of the cyclic frequency . f . As before, for clarity of the presentation, 
the frequency range is limited to 1 MHz, which in the case of a 10 mm diameter 
aluminium bar is sufficient to incorporate 4 longitudinal modes. 

The results  shown in Fig.  9.7 concern the 1-mode 1-D theory (elementary) and 
the modified 1-mode 1-D theory (Love) of the longitudinal behaviour of rods. This 
is the simplest existing theory developed under a strong assumption of no transverse 
deformation during wave motion. This strong assumption significantly influences 
the accuracy of this 1-D theory, which obviously limits its application range due 
to the rapidly growing modelling error. In the case of the modified 1-mode 1-D 
theory (Love) the strong assumption of no transverse deformation is eased by taking 
into account the kinetic energy of the transverse wave motion due to the Poisson 
effect. Thanks to this the modelling error is initially smaller. For higher frequencies, 
however, predictions of this 1-D theory very fast diverge from the known analytical 
solution, as clearly seen in Fig. 9.7.
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Fig. 9.8 Relative error for: a the 2-mode 2-D theory (Mindlin-Herrmann), b the higher-order 2-
mode 2-D theory, of the longitudinal behaviour of rods measured against the analytical solution for 
longitudinal waves propagating in a 10 mm diameter aluminium bar 

Fig. 9.9 Relative error for: a the 4-mode 2-D theory, b the 6-mode 2-D theory, of the longitudinal 
behaviour of rods measured against the analytical solution for longitudinal waves propagating in a 
10 mm diameter aluminium bar 

Quite surprisingly the enrichment of the 1-D theory by an extra mode, mode L. 1, 
in the case of the 2-mode 2-D theory (Mindlin-Herrmann) has the opposite effect, as 
presented in Fig. 9.8. In this case the predictions of the enriched 2-D theory, based on 
the use of two modes of longitudinal waves, are initially worse in comparison with 
the predictions of the modified 1-mode 1-D theory (Love). At higher frequencies the 
situation slightly improves, but the level of modelling error remains unacceptable. 
This undesired behaviour can be improved, however, when the traction-free boundary



9.1 Longitudinal Behaviour of Rods 173

conditions are used enabling one to formulate the higher-order 2-mode 2-D theory. In 
this case the predictions of the fundamental mode L. 0 are then significantly improved. 
The prediction of the 2-D theory related to the behaviour of the second longitudinal 
mode L. 1, however, is fairly poor. This is well illustrated in Fig. 9.8. 

The low and mid frequency predictions can be further improved, in the frequency 
range up to the first cut-off frequency. fL1 of 359.5 kHz, when additional longitudinal 
modes are employed to further enrich the theories. This is clearly seen in Fig. 9.9 in 
the case of the 4-mode 2-D theory as well as the 6-mode 2-D theory. In both cases the 
predictions of the 2-D theories are significantly improved and for the 6-mode 2-D 
theory this improvement concerns the frequency range including the appearance of 
the second and third longitudinal modes L. 1 and L. 2. This is despite the fact that both 
2-D theories make no use of the traction-free boundary conditions. The multi-mode 
nature of the theories significantly increases their applicability making them suitable 
for problems involving moderately high frequency dynamics as well as propagation 
of elastic waves, yet at additional computational cost. This is related to the increased 
number of independent mid-axis displacement functions, i.e. DOFs, in comparison 
to other 1-D or 2-D theories under investigation. 

As was mentioned before in the case of the symmetric and antisymmetric 
behaviour of plates, in practical applications concerning the analysis and investi-
gation of the longitudinal behaviour of rods it is the fundamental longitudinal mode 
L. 0 that plays the most important role. For this reason it is much better to compare 
the investigated 1-D and 2-D theories, if the analysis of their accuracy is limited to 
this mode only, as well as within the frequency range up to the first cut-off frequency 
. fL1 , as presented and summarised in Table 9.1. In the current case of a 10 mm diam-
eter aluminium bar the second longitudinal mode L. 1 appears at the frequency. fL1 of 
359.5 Hz. 

With no surprise it is clearly seen from Fig. 9.10 that for the simplest 1-mode 
1-D and 2-D theories the fundamental longitudinal mode L. 0 is characterised by the 
relative error of the phase velocity, which grows very rapidly with an increase in the 
frequency. This is the case for the 1-mode 1-D theory (elementary), the modified 

Table 9.1 Statistical data on the relative modelling error associated with the phase velocity of 
the fundamental longitudinal mode L. 0 propagating in a 10 mm diameter aluminium bar in the 
frequency range up to the first cut-off frequency . fL1 of 359.5 kHz for various theories of the 
longitudinal behaviour of rods 

Theory Extr. error (%) Avg. error (%) Std. deviation (%) 

Elementary 1-D 50.7 12.3 15.1 

Love 1-D 28.1 6.22 8.88 

Mindlin-Herrmann 2-D 34.0 8.02 10.5 

Higher-order 2-mode 2-D 0.82 0.15 0.20 

4-mode 2-D 0.21 0.05 0.07 

6-mode 2-D 0.00 0.00 0.00



174 9 Simplified Theories of 1-D Structural Elements

Fig. 9.10 Relative error of the fundamental longitudinal mode L. 0 propagating in a 10 mm diameter 
aluminium bar: a full range, b magnified view, for various theories of the longitudinal behaviour of 
rods (1—elementary 1-D, 2—Love 1-D, 3—Mindlin-Herrman 2-D, 4—higher-order 2-modes 2-D, 
5—4-mode 2-D, 6—6-mode 2-D) 

1-mode 2-D theory (Love) as well as the 2-mode 2-D theory (Mindlin-Herrmann), 
which is characterised by a greater relative error than the modified 1-mode 1-D theory 
(Love). For these 3 theories the relative error reaches 5% at 182.0, 239.0 and 219.0 
kHz, respectively. However, this is not observed in the case of the remaining 2-D 
theories: the higher-order 2-mode 2-D theory as well as the 4-mode 2-D theory and 
the 6-mode 2-D theory. For these theories the maximum value of the modelling error 
within the frequency range of interest is never higher than 0.85%. In the case of the 
higher-order 2-mode 2-D theory the relative error slowly increases and has a local 
maximum of 0.60% at 276.0 kHz. For higher frequencies, after an initial drop in its 
value, it further increases to reach 0.85%. For the 4-mode 2-D theory the relative 
error remains even smaller and after reaching its local maximum of 0.21% at 275.0 
kHz the error decreases slightly to rise again to 0.21% at the cut-off frequency. fL1 of 
359.5 kHz. The smallest values of the relative error are associated with the 6-mode 
2-D theory, when the error within the whole range of interest is negligible. 

As before the same recommendation can be made here, which confirms that 
although at higher computational cost due to the increased number of independent 
variables, i.e. DOFs, it is recommended to use the latter or other multi-mode or higher-
order multi-mode 2-D theories to ensure high accuracy of numerical predictions, 
especially where high frequency dynamics is investigated.
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9.2 Flexural Behaviour of Beams 

The general form of the displacement field associated with the flexural behaviour of 
beams can be expressed in the cylindrical coordinate system.(x, r, θ) in the following 
way: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux (x, ζ, θ, t) =
[

aζφ1(x, t) +
p∑

n=1
aζ(1 − ζ2n)φ2n+1(x, t)

]

cos θ

ur (x, ζ, θ, t) =
[

ψ̃0(x, t) +
q∑

n=1
(1 − ζ2n)ψ2n(x, t)

]

cos θ

uθ(x, ζ, θ, t) =
[

θ̃0(x, t) +
q∑

n=1
(1 − ζ2n)θ2n(x, t)

]

sin θ

(9.15) 

where .ψ̃0 and .θ̃0 are expressed as 1: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ̃0(x, t) = ψ0(x, t) −
q∑

n=1
ψ2n(x, t)

θ̃0(x, t) = ψ0(x, t) −
q∑

n=1
θ2n(x, t)

(9.16) 

with .r = aζ and .2a = d, where . d denotes the diameter of the beam. 
Again, it should be noted that the form of the displacement field expressed by 

Eq. (9.15) fully conforms with the Maclaurin series expansion of the resulting form 
of the displacement field presented in Sect. 6.2 and expressed by Eqs. (6.28), (6.29) 
and (6.34). 

In the same manner as before . p and . q denote the numbers of terms kept in the 
series and related to the total number of independent variables, i.e. DOFs, of a given 
theory. In order to minimise the modelling error it is recommended that the total 
number of terms kept in the case of the longitudinal displacement components.ux be 
equal to the number of terms kept in the case of the radial displacement component 
.ur and the angular displacement component. uθ. As before it should be noted that the 
independent variables, i.e. DOFs, represent the mid-axis displacement functions.φn , 
.ψn and . θn . 

In the cylindrical coordinate system .(x, r, θ) particular theories of the flexural 
behaviour of beams can be associated with different forms of Maclaurin series expan-
sions of each component of the displacement fields . ux , .ur and. uθ, and presented as:

1 The coupling between the mid-axis functions .ψ̃0 and .θ̃0 results from the necessary condition 
for the vanishing of the displacement component.uz transverse to the bending plane, as well as the 
constant value of the displacement component.uy in the bending plane, when.r → 0. This condition 
leads to.ψ0 = θ0. 
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• Higher-order 1-mode 1-D theory (Euler-Bernoulli): 

.

p = q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, ζ, θ, t) = aζφ1(x, t) cos θ

ur (x, ζ, θ, t) = ψ0(x, t) cos θ

uθ(x, ζ, θ, t) = ψ0(x, t) sin θ

(9.17) 

where thanks to the additional assumption resulting from the traction-free bound-
ary condition for the shear stress component .τxr , the mid-axis displacement func-
tions .φ1 can be expressed as: 

.φ1(x, t) = −∂ψ0(x, t)

∂x (9.18) 

where the characteristic equation takes the following simple form: 

.a2k4 − (4 + a2k2)
ω2

c20
= 0 (9.19) 

leading to the dispersion curves presented in Fig. 9.11. The presence of the factor 
.a2k2 results from taking into account the higher-order terms of the transverse 
accelerations associated with the mid-axis function . φ1. For very slender beams 

Fig. 9.11 Dispersion curves for: a the phase velocity, b the group velocity, for flexural modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the higher-order 
1-mode theory (Euler-Bernoulli) of beams
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this higher-order term is usually neglected, which is equivalent to the assumption 
of.a2k2 ≈ 0, which leads to the characteristic equation in the form well-know from 
the literature [ 6]. 

• 2-mode 1-D theory (Timoshenko) [ 6]: 

.

p = q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, ζ, θ, t) = aζφ1(x, y, t) cos θ

ur (x, ζ, θ, t) = ψ0(x, y, t) cos θ

uθ(x, ζ, θ, t) = ψ0(x, y, t) sin θ

(9.20) 

where the characteristic equation takes the following simple form: 

.

[

a2k4 − (4 + a2k2)
ω2

c20

]

κμ − ρω2a2
[

k2 − ω2

c20

]

= 0 (9.21) 

The roots of the characteristic equation can be easily found numerically, which 
leads to the dispersion curves presented in Fig. 9.12. Based on [ 7] the additional 
assumption about the value of the shear correction factor .κ = 0.89 is also made 
in this case. 

Fig. 9.12 Dispersion curves for: a the phase velocity, b the group velocity, for flexural modes of 
elastic waves propagating in a 10 mm diameter aluminium bar, according to the 2-mode 1-D theory 
(Timoshenko) of beams
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• modified 2-mode 1-D theory: 

.

p = q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, ζ, θ, t) = aζφ1(x, y, t) cos θ

ur (x, ζ, θ, t) = ψ0(x, y, t) cos θ

uθ(x, ζ, θ, t) = ψ0(x, y, t) sin θ

(9.22) 

for which the characteristic equation also is a 4th degree polynomial with respect 
to the wave number . k. Its roots can be easily found numerically, which leads 
to the dispersion curves presented in Fig. 9.13. Based on [ 7, 8] the additional 
assumption about the distribution of the shear stresses is made using the correction 
function. f (ζ) = α(1 − ζ2)with.α = 2.1κ, which is incorporated within the matrix 
of elastic coefficients at the positions corresponding to the stress components . τxr
and .τrθ. 

• Higher-order 2-mode 1-D theory (Reddy) [ 9]: 

.

p = 1, q = 0
⏐
↓

⎧
⎪⎪⎨

⎪⎪⎩

ux (x, ζ, θ, t) = [
aζφ1(x, t) + aζ(1 − ζ2)φ3(x, t)

]
cos θ

ur (x, ζ, θ, t) = ψ0(x, t) cos θ

uθ(x, ζ, θ, t) = ψ0(x, t) sin θ

(9.23) 

where the additional assumptions for .φ3 is made, resulting from the traction-free 
boundary conditions for the stress components .τxr : 

. 2φ3(x, t) = φ1(x, t) + ∂ψ0(x, t)

∂x
(9.24) 

leading to the characteristic equation, which is now a 6th degree polynomial with 
respect to the wave number . k. Its roots can be easily found numerically, which 
leads to the dispersion curves presented in Fig. 9.14. 

• Higher-order 2-mode 3-D theory [ 10]: 

.

p = q = 1
⏐
↓

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ux (x, ζ, θ, t) = [
aζφ1(x, t) + aζ(1 − ζ2)φ3(x, t)

]
cos θ

ur (x, ζ, θ, t) =
[
ψ̃0(x, t) + (1 − ζ2)ψ2(x, t)

]
cos θ

uθ(x, ζ, θ, t) =
[
θ̃0(x, t) + (1 − ζ2)θ2(x, t)

]
sin θ

(9.25)
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Fig. 9.13 Dispersion curves for: a the phase velocity, b the group velocity, for flexural modes of 
elastic waves propagating in a 10 mm diameter aluminium bar, according to the modified 2-mode 
1-D theory of beams 

Fig. 9.14 Dispersion curves for: a the phase velocity, b the group velocity, for flexural modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the higher-order 
2-mode 1-D theory (Reddy) of beams 

where .ψ̃0 and .θ̃0 are expressed as: 

.

{
ψ̃0(x, t) = ψ0(x, t) − ψ2n(x, t)

θ̃0(x, t) = ψ0(x, t) − θ2n(x, t)
(9.26) 

for which the characteristic equation is now a 10th degree polynomial with respect 
to the wave number . k. Its roots can be easily found numerically, which leads to
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Fig. 9.15 Dispersion curves for: a the phase velocity, b the group velocity, for flexural modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the higher-order 
2-mode 3-D theory of beams 

the dispersion curves presented in Fig. 9.15. The additional assumptions for . φ3, 
.ψ2 and .θ2 are made, resulting from the traction-free boundary conditions for the 
stress components .σrr , .τxr and .τrθ, leading to: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2φ3(x, t) = φ1(x, t) + ∂ψ0(x, t)

∂x
− ∂ψ2(x, t)

∂x

4ψ2(x, t) = a2
λ

λ + μ

∂φ1(x, t)

∂x

θ2(x, t) = −ψ2(x, t)

(9.27) 

• 5-mode 3-D theory [ 10]: 

.

p = q = 1
⏐
↓

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ux (x, ζ, θ, t) = [
aζφ1(x, t) + aζ(1 − ζ2)φ3(x, t)

]
cos θ

ur (x, ζ, θ, t) =
[
ψ̃0(x, t) + (1 − ζ2)ψ2(x, t)

]
cos θ

uθ(x, ζ, θ, t) =
[
θ̃0(x, t) + (1 − ζ2)θ2(x, t)

]
sin θ

(9.28)
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Fig. 9.16 Dispersion curves for: a the phase velocity, b the group velocity, for flexural modes of 
elastic waves propagating in a 10 mm diameter aluminium bar, according to the 5-mode 3-D theory 
of beams 

where .ψ̃0 and .θ̃0 are expressed in the same manner as before: 

.

{
ψ̃0(x, t) = ψ0(x, t) − ψ2n(x, t)

θ̃0(x, t) = ψ0(x, t) − θ2n(x, t)
(9.29) 

for which the characteristic equation is now a 10th degree polynomial with respect 
to the wave number . k. Its roots can be easily found numerically, which leads to 
the dispersion curves presented in Fig. 9.16. 

The same analysis of the relative error of the phase velocity for particular 1-D and 3-
D theories of the flexural behaviour of beams presented above can be carried out. The 
results concerning the 6 theories of the flexural behaviour of beams are presented 
in Figs. 9.17, 9.18 and 9.19 as relative error curves and a function of the cyclic 
frequency . f . For clarity of presentation the frequency range is limited to 1 MHz, 
which in the case of a 10 mm diameter aluminium bar is sufficient to incorporate 
as many as 6 flexural modes in the dispersion curves for the phase velocity and 8 
flexural modes in the dispersion curves for the group velocity. 

The results  shown in Fig.  9.11 concern the higher-order 1-mode 1-D theory (Euler-
Bernoulli) and the 2-mode 1-D theory (Timoshenko) of the flexural behaviour of 
beams. This is the simplest existing theory developed under a strong assumption of no 
shear deformation during wave motion. Again, this strong assumption significantly 
influences the accuracy of this 1-D theory, which obviously limits its application 
range to statics or low frequency dynamics due to the rapidly growing modelling 
error, while in the case of the 2-mode 1-D theory (Timoshenko) no assumptions 
are made except the one about adjusting the distribution of the shear stresses by 
the use of the so-called shear correction factor . κ. Thanks to this simple adjustment
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the modelling error for the fundamental flexural mode F. 0 is very small in the entire 
frequency range of interest. However, this is not the case for the second flexural 
mode F. 1 except near its cut-off frequency, as clearly seen in Fig. 9.17. As a result 
the 2-mode 1-D theory (Timoshenko) has its application range extended only to mid 
frequency dynamics for frequencies up to the second flexural mode F. 1. 

Quite surprisingly the correction of the distribution of the shear stresses by the 
use of the correction function . f (ζ) = α(1 − ζ2), with .α = 2.1κ, in the case of the 
modified 2-mode 1-D theory has a strong effect and significantly increases the accu-
racy of this theory at higher frequencies well below the appearance of the second 
flexural mode F. 1, as shown in Fig. 9.18. However, this takes place only for the funda-
mental flexural mode F. 0 and as a result the modified 2-mode theory, similarly to the 
2-mode 1-D theory (Timoshenko) appears as suitable only for problems involving 
mid frequency dynamics for frequencies up to the second flexural mode F. 1. 

The enrichment of the 1-D theory proposed by the higher-order 2-mode 1-D 
theory (Reddy) is based on the use of the traction-free boundary conditions for the 
distribution of the shear stresses only. However, this enrichment has no significant 
effect on the accuracy of the predictions offered by this 1-D theory in comparison 
with a much simpler 2-mode 1-D theory (Timoshenko), as presented in Fig. 9.18. The  
higher-order 2-mode 1-D theory slightly underestimates the values of the calculated 
phase velocities, but its accuracy stays relatively high for the fundamental flexural 
mode F. 0 up to the frequencies near the cut-off frequency of the second flexural mode 
F. 1. As a consequence its application range stays similar to the 2-mode 1-D theory 
(Timoshenko). 

This undesired behaviour is slightly improved in the case of the higher-order 2-
mode 3-D theory, which makes use of all available traction-free boundary conditions, 

Fig. 9.17 Relative error for: a the higher-order 1-mode 1-D theory (Euler-Bernoulli), b the 2-
mode 1-D theory (Timoshenko), of the flexural behaviour of beams measured against the analytical 
solution for flexural waves propagating in a 10 mm diameter aluminium bar
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Fig. 9.18 Relative error for: a the modified 2-mode 1-D theory, b the higher-order 2-mode 1-D 
theory (Reddy), of the flexural behaviour of beams measured against the analytical solution for 
flexural waves propagating in a 10 mm diameter aluminium bar 

Fig. 9.19 Relative error for: a the higher-order 2-mode 3-D theory, b the 5-mode 3-D theory, of the 
flexural behaviour of beams measured against the analytical solution for flexural waves propagating 
in a 10 mm diameter aluminium bar 

as seen in Fig. 9.19. Despite this improvement the predictions offered by this 3-D 
theory are not significantly improved, especially for the frequencies near the cut-off 
frequency of the second flexural mode F. 1 and higher. For this reason also this 3-D 
theory has its application range limited to mid frequency dynamics up to the second 
flexural mode F. 1. 

It is interesting to note that the application of the traction-free boundary conditions 
in the case of 1-D and 3-D higher-order theories of the flexural behaviour of beams
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has no significant effect on the quality and accuracy of the predictions concerning the 
second flexural mode F. 1. This fact limits their application range just to the frequencies 
near the cut-off frequency of the second flexural mode F. 1. As clearly seen from 
Fig. 9.19 presenting dispersion curves in the case of the 5-mode 3-D theory, only the 
enrichment of the 3-D theory by additional modes, not necessarily supported by the 
use of the traction-free boundary conditions, substantially enhances the applicability 
of the given theory. 

In the case of the 5-mode 3-D theory this application range is enhanced well 
above the second flexural mode F. 1, however the accuracy of the predictions offered 
by the theory in this frequency range are characterised by higher errors. It should be 
remembered that although the multi-mode nature of the 5-mode 3-D theory substan-
tially increases its applicability making is suitable for problems involving moderately 
high frequency dynamics as well as propagation of elastic waves, yet at additional 
computational cost. This is related to the increased number of independent mid-axis 
displacement variables (degress of freedom) in comparison to other 1-D and 3-D 
theories under investigation. 

For the reasons discussed previously, in practical applications concerning the 
analysis and investigation of the flexural behaviour of beams it is the fundamental 
flexural mode F. 0 that plays the most important role. For this reason the investigated 
theories can be compared based on the analysis of their accuracy limited to this 
mode only, as well as within the frequency range up to the first cut-off frequency. fF1 , 
as presented and summarised in Table 9.2. In the current case of a 10 mm diameter 
aluminium bar the second longitudinal mode F. 1 appears at the frequency. fF1 of 179.7 
Hz. 

With no surprise it is clearly seen from Fig. 9.20 that for the simplest higher-
order 1-mode 1-D theory (Euler-Bernoulli) the fundamental longitudinal mode F. 0 is 
characterised by the relative error of the phase velocity, which grows very rapidly 
with an increase in the frequency. For this 1-D theory the relative error reaches 5% 
at 23.0 kHz. However, this is not observed in the case of the second 1-D theory, 
which is the 2-mode 1-D theory (Timoshenko). In the case of this theory the relative 

Table 9.2 Statistical data on the relative modelling error associated with the phase velocity of the 
fundamental flexural mode F. 0 propagating in a 10 mm diameter aluminium bar in the frequency 
range up to the first cut-off frequency. fF1 of 179.7 kHz for various theories of the flexural behaviour 
of beams 

Theory Extr. error (%) Avg. error (%) Std. deviation (%) 

Euler-Bernoulli 1-D 29.3 16.2 8.49 

Timoshenko 1-D –1.35 –0.77 0.40 

Modified 2-mode 1-D –0.01 0.00 0.04 

Reddy 1-D –1.53 –1.07 0.46 

Higher-order 2-mode 3-D 1.46 0.53 0.45 

5-mode 3-D 0.40 0.14 0.12
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Fig. 9.20 Relative error of the fundamental flexural mode F. 0 propagating in a 10 mm diameter 
aluminium bar: a full range, b magnified view, for various theories of the flexural behaviour of 
bars (1—Euler-Bernoulli 1-D, 2—Timoshenko 1-D, 3—modified 2-mode 1-D, 4—Reddy 1-D, 
5—higher-order 2-mode 3-D, 6—5-mode 3-D) 

error of the phase velocity stays small and negative and its extreme value never 
exceeds 5%, reaching only.−1.35%. This is not the case for the modified 2-mode 1-
D theory, for which the relative error drops significantly and stays negligible, reaching 
only .−0.01% at the first cut-off frequency. The remaining 1-D and 3-D theories are 
characterised by small, but still higher values of the errors in comparison with the 
modified 2-mode 1-D theory in the frequency range of interest. In the case of the 
higher-order 2-mode 1-D theory (Reddy) the error also remains small and negative to 
take its extreme value of.−1.53% at 163 kHz. The situation is only slightly improved 
in the case of the higher-order 2-mode 3-D theory, for which the maximum value of 
the error also never exceeds 5%, never reaching 1.46% at the first cut-off frequency. 
Finally, even a smaller value of the relative error of the phase velocity is observed in 
the case of the richest theory based on 5 independent wave modes, i.e. 5 independent 
mid-axis variables, i.e. DOFs. For the 5-mode 3-D theory the maximum value of the 
relative error stays well below 5% for the frequencies up to the first cut-off frequency, 
reaching its maximum value of 0.4%. 

The same recommendation can be made here, that although at higher computa-
tional cost due to the increased number of independent variables, i.e. DOFs, it is 
recommended to use the latter or other multi-mode or higher-order multi-mode 3-D 
theories to ensure high accuracy of numerical predictions, especially where high 
frequency dynamics or wave propagation problems are investigated.
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9.3 Torsional Behaviour of Shafts 

In the cylindrical coordinate system .(x, r, θ) the general form of the displacement 
field associated with the torsional behaviour of shafts may be expressed in the fol-
lowing way: 

. uθ(x, ζ, t) = aζθ1(x, t) +
q∑

n=1
aζ(1 − ζ2n)θ2n+1(x, t) (9.30) 

with .r = aζ and .2a = d, where . d denotes the diameter of the shaft. 
The form of the displacement field given by Eq. (9.30) fully conforms with the 

Maclaurin series expansion of the resulting form of the displacement field presented 
in Sect. 6.3 and expressed by Eq. (6.4). 

As before. q is the number of terms kept in the series and related to the total number 
of independent variables, i.e. DOFs, of a given theory. It should be also noted that now 
the independent variables, i.e. DOFs, represent the mid-axis displacement functions 
. θn . 

In the cylindrical coordinate system .(x, r, θ) particular theories of the torsional 
behaviour of shafts can be associated with different forms of Maclaurin series expan-
sions of the sole non-zero component of the displacement field.uθ and presented as: 

• 1-mode 1-D theory: 

.

q = 0
⏐
↓

uθ(x, ζ, t) = aζθ0(x, t)

(9.31) 

for which the characteristic equation and its solution has the already known form 
of Eq. (2.47). However, this time propagation of torsional waves is associated with 
the phase velocity of S-waves.cS rather than than the phase velocity of longitudinal 
waves . c0: 

.k2 − ω2

c2S
= 0 (9.32) 

which leads to the dispersion curves presented in Fig. 9.21. 
• 2-mode 1-D theory: 

.

q = 1
⏐
↓

uθ(x, ζ, t) = aζθ1(x, t) + aζ(1 − ζ2)θ3(x, t)

(9.33)
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Fig. 9.21 Dispersion curves for: a the phase velocity, b the group velocity, for torsional modes of 
elastic waves propagating in a 10 mm diameter aluminium bar, according to the 1-mode 1-D theory 
of shafts 

where the characteristic equation takes the following simple form: 

.

[
(
48 + a2k2

) − a2
ω2

c2S

] [

k2 − ω2

c2S

]

= 0 (9.34) 

where solutions of the characteristic equation can be indicated: 

.c = cS and c = cS

/

1 + 48

a2k2
(9.35) 

leading to the dispersion curves presented in Fig. 9.22. 
• Higher-order 2-mode 1-D theory: 

.

q = 2
⏐
↓

uθ(x, ζ, t) = aζθ1(x, t) +
2∑

n=1
aζ(1 − ζ2n)θ2n+1(x, t)

(9.36) 

where the additional assumption for .θ5 is made, resulting from the traction-free 
boundary condition for the stress components .τrθ, leading to: 

.2θ5(x, t) = −θ3(x, t) (9.37)
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Fig. 9.22 Dispersion curves for: a the phase velocity, b the group velocity, for torsional modes of 
elastic waves propagating in a 10 mm diameter aluminium bar, according to the 2-mode 1-D theory 
of shafts 

where the characteristic equation takes the following simple form: 

.

[
(
192 + 7a2k2

) − 7a2
ω2

c2S

] [

k2 − ω2

c2S

]

= 0 (9.38) 

where solutions of the characteristic equation can be indicated: 

.c = cS and c = cS

/

1 + 192

7a2k2
(9.39) 

leading to the dispersion curves presented in Fig. 9.23. 
• 3-mode 1-D theory: 

.

q = 2
⏐
↓

uθ(x, ζ, t) = aζθ1(x, t) +
2∑

n=1
aζ(1 − ζ2n)θ2n+1(x, t)

(9.40) 

where the characteristic equation is a 6th degree polynomial with respect to the 
wave number . k and can be presented in the following form:
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Fig. 9.23 Dispersion curves for: a the phase velocity, b the group velocity, for torsional modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the higher-order 
2-mode 1-D theory of shafts 

Fig. 9.24 Dispersion curves for: a the phase velocity, b the group velocity, for torsional modes of 
elastic waves propagating in a 10 mm diameter aluminium bar, according to the 3-mode 1-D theory 
of shafts 

.

[
(
5750 + 240a2k2 + a4k4

) − 2a2
(
120 + a2k2

) ω2

c2S

+a4
ω4

c4S

] [

k2 − ω2

c2S

]

= 0

(9.41) 

Its roots can be easily found numerically, which leads to the dispersion curves 
presented in Fig. 9.24.
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Fig. 9.25 Dispersion curves for: a the phase velocity, b the group velocity, for torsional modes 
of elastic waves propagating in a 10 mm diameter aluminium bar, according to the higher-order 
3-mode 1-D theory of shafts 

• Higher-order 3-mode 1-D theory: 

.

q = 3
⏐
↓

uθ(x, ζ, t) = aζθ1(x, t) +
3∑

n=1
aζ(1 − ζ2n)θ2n+1(x, t)

(9.42) 

where the additional assumption for .θ7 is made, resulting from the traction-free 
boundary condition for the stress components .τrθ, leading to: 

.3θ7(x, t) = −θ3(x, t) − 2θ5(x, t) (9.43) 

where the characteristic equation also is a 6th degree polynomial with respect to 
the wave number . k and can be presented in the following form: 

.

[
(
80640 + 4032a2k2 + 37a4k4

) − 2a2
(
2016 + 37a2k2

) ω2

c2S

+37a4
ω4

c4S

] [

k2 − ω2

c2S

]

= 0

(9.44) 

Its roots can be easily found numerically, which leads to the dispersion curves 
presented in Fig. 9.25. 

• 4-mode 1-D theory:
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Fig. 9.26 Dispersion curves for: a the phase velocity, b the group velocity, for torsional modes of 
elastic waves propagating in a 10 mm diameter aluminium bar, according to the 4-mode 1-D theory 
of shafts 

.

q = 3
⏐
↓

uθ(x, ζ, t) = aζθ1(x, t) +
4∑

n=1
aζ(1 − ζ2n)θ2n+1(x, t)

(9.45) 

where the characteristic equation is a 8th degree polynomial with respect to the 
wave number . k. Its roots can be easily found numerically, which leads to the 
dispersion curves presented in Fig. 9.26. 

As previously, for the 1-D theories of the torsional behaviour of shafts presented 
above the analysis of their accuracy can be carried out based on the relative error of 
the phase velocity. The results concerning the 6 theories of the torsional behaviour 
of shafts are presented in Figs. 9.27, 9.28 and 9.29 as relative error curves and as 
a function of the cyclic frequency . f . This time, however, due to the nature of the 
analysed torsional waves, an extended frequency range was used up to 2 MHz, which 
in the case of a 10 mm diameter aluminium bar was sufficient to incorporate as many 
as 6 torsional modes in the dispersion curves for the phase velocity and 6 torsional 
modes in the dispersion curves for the group velocity. 

The results shown in Fig. 9.27 concern two theories, i.e. the 1-mode theory and the 
2-mode theory of the torsional behaviour of shafts. These are the simplest theories 
developed. It is interesting to observe that since the dominant wave mode is the 
fundamental torsional mode T. 0, which is non-dispersive, its representation even in 
the case of the 1-mode theory is exact with no errors associated. This type of behaviour 
is also observed in the case of the remaining theories, for which the representation 
of the fundamental torsional mode T. 0 is always exact. For this reason the analysis
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Fig. 9.27 Relative error for: a the 1-mode 1-D theory, b the 2-mode 1-D theory, of the torsional 
behaviour of shafts measured against the analytical solution for torsional waves propagating in a 
10 mm diameter aluminium bar 

of the accuracy of the remaining multi-mode and higher-order multi-mode theories 
must focus on higher torsional wave modes. 

It can be clearly seen in Fig. 9.27 that in the case of the 2-mode theory the relative 
error of the phase velocity related to the second torsional mode T. 1 stays at a relatively 
high level decreasing gradually towards higher frequencies. The application of the 
traction-free boundary condition in the case of the higher-order 2-mode theory has a 
great impact on the obtained results. The accuracy of the representation of the second 
torsional mode T. 1 for this theory is very similar to the representation offered by the 
3-mode theory, as presented in Fig. 9.28. 

A further improvement of the theories, as observed in the case of the higher-order 
3-mode theory and the 4-mode theory, substantially lowers the relative error to very 
small values for lower torsional modes, as presented in Fig. 9.29. It should be said 
that at the same time the relative errors associated with the representation of higher 
modes remain significant. 

At this place it should be emphasised that in contrast to the previously presented 
and investigated theories of the longitudinal behaviour of rods and flexural behaviour 
of beams, even the simplest theories of the torsional behaviour of shafts remain 
exact in the frequency range up to the first cut-off frequency . fT1 . For this reason 
their application range covers not only mid frequency dynamics, but also problems 
involving high frequency dynamics or wave propagation problems. At the same time, 
if the frequency range covers frequencies exceeding the first cut-off frequency. fT1 it 
is recommended as before to employ other multi-mode or higher-order multi-mode 
theories. 

For the very same reason the detailed analysis of the accuracy of the multi-mode 
and higher-order multi-mode theories developed and presented above concerned 
the second torsional mode T. 1 rather than the fundamental torsional mode T. 0. This
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Fig. 9.28 Relative error for: a the higher-order 2-mode 1-D theory, b the 3-mode 1-D theory, 
of the torsional behaviour of shafts measured against the analytical solution for torsional waves 
propagating in a 10 mm diameter aluminium bar 

Fig. 9.29 Relative error for: a the higher-order 3-mode 1-D theory, b the 4-mode 1-D theory, 
of the torsional behaviour of shafts measured against the analytical solution for torsional waves 
propagating in a 10 mm diameter aluminium bar 

analysis was carried out in the range of frequencies starting from the first cut-off 
frequency. fT1 up to 1 MHz, as presented and summarised in Table 9.3. In the current 
case of a 10 mm diameter aluminium bar the second torsional mode T. 1 appears at 
the frequency . fT1 of 501.2 kHz. 

Unsurprisingly, it is clearly seen from Fig. 9.30 that for the 2-mode 1-D theory 
the second torsional mode T. 0 is characterised by the relative error of the phase 
velocity, which is relatively high for the frequencies near the first cut-off frequency
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Table 9.3 Statistical data on the relative modelling error associated with the phase velocity of the 
second torsional mode T. 1 propagating in a 10 mm diameter aluminium bar, for phase velocities 
below 8 km/s in the frequency range up to 1 MHz, for various theories of the torsional behaviour 
of shafts 

Theory Extr. error (%) Avg. error (%) Std. deviation (%) 

1-mode 1-D – – – 

2-mode 1-D 90.1 9.86 18.8 

Higher-order 2-mode 1-D 10.4 1.01 1.73 

3-mode 1-D 6.90 0.42 0.84 

Higher-order 3-mode 1-D 0.19 0.02 0.03 

4-mode 1-D 0.13 0.01 0.02 

Fig. 9.30 Relative error of the second torsional mode T. 1 propagating in a 10 mm diameter alu-
minium bar: a full range, b magnified view, for various theories of the flexural behaviour of bars 
(1—n/a, 2—2-mode 1-D, 3—higher-order 2-mode 1-D, 4—3-mode 1-D, 5—higher-order 3-mode 
1-D, 6—4-mode 1-D) 

. fT1 reaching 90.1% (this value corresponds to the value of the phase velocity of 8 
km/s) to decrease slowly to 17.4% at 1 MHz. This behaviour is significantly improved 
in the case of the higher-order 2-mode theory, for which the corresponding values 
of the relative error are 10.4 and 6.77%, while in the case of the 3-mode theory they 
further reduce to 6.90 and 4.30%, respectively. 

Only in the cases of the higher-order 3-mode theory and the 4-mode theory the 
relative error in the frequency range of interest drops down significantly to a prefer-
able level below 5%. For the higher-order 3-mode theory the relative error of the 
phase velocity near the first cut-off frequency. fT1 of 501.2 kHz is as small as 0.19% 
(this value corresponds to the value of the phase velocity of 8 km/s) to decrease to 
0.01% at 1 MHz. For the 4-mode theory the corresponding values of the relative 
error are 0.13% and 0.01%, respectively.



References 195

Based on the obtained results the same recommendation can be made here, that 
although at higher computational cost due to the increased number of independent 
variables, i.e. DOFs, it is recommended to use the latter or other multi-mode or 
higher-order multi-mode 1-D theories to ensure high accuracy of numerical predic-
tions, especially where high frequency dynamics or wave propagation problems are 
investigated. 
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Chapter 10 
FEM Essentials 

10.1 What Is FEM? 

The Finite Element Method (FEM) is a modern computational technique originally 
developed for solving partial differential equations. Due to its unquestionable power 
and robustness [ 1– 3], nowadays FEM is considered to be the most popular numerical 
tool employed to solve various complex engineering and scientific problems. An 
example can be the results concerning normal modes of an aluminium periodic 
vibration isolator presented in Fig. 10.1. 

As already mentioned in Chap. 1 a precise date of birth of FEM does not exist. The 
method itself takes a lot from early works of many great scientists and researchers. On 
the foundations laid by such great names as: Bernoulli, Euler, Lagrange, Legendre, 
Gauss, Cauchy and many more, who by many are considered as the pioneers of 
the calculus of variations, as well as contemporary works of Rayleigh, Ritz and 
Galerkin, who should also be mentioned here, solid frames for the current success of 
FEM have been established. These works were true milestones in the development 
of something, which in the 1960s and 1970s, the beginning of the era of modern 
computers, took finally the shape of FEM. This, however, would not happen without 
a great input of numerous scientists and researchers forming a long list of names 
including: Hrennikoff [ 4, 5], Courant [ 6, 7], Argyris [ 8, 9], Zienkiewicz [ 10, 11], 
Ciarlet [ 12, 13], Gallagher [ 14, 15], Babuška [ 16, 17], Oden [ 18] and many more 
(Fig. 10.1). 

As previously stated FEM is a numerical tool, which is used to solve partial 
differential equations. Because of its weak (integral) formulation the method is more 
flexible in finding such solutions than the traditionally used strong (differential) 
formulation. This can be easily explained in the case of the problem of propagation 
of longitudinal waves in a 1-D elastic rod discussed in Sect. 2.3.1. 
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Fig. 10.1 Normal modes of an aluminium periodic vibration isolator belonging to: a the 180th 
frequency of natural vibrations at 15.8 kHz, b the 181th frequency of natural vibrations at 25.5 kHz, 
modelled by more than 1,200,000 FEs. Results of numerical computations by FEM 

10.2 Weak Formulation 

A good starting point leading to the weak formulation of the 1-D wave equation, 
presented in Sect. 2.3.1 and given by Eq. (2.15), can be its already known form. 
However, in the current case the 1-D wave equation is additionally supplemented with 
an externally acting force . f (x, t) (expressed in newtons per metres), as presented 
below: 

.ES
∂2u(x, t)

∂x2
− ρS

∂2u(x, t)

∂t2
+ f (x, t) = 0 (10.1) 

where the physical meaning of particular symbols and quantities remains the same. 
For regions of interest having finite dimensions this wave equation is typically 

supplemented with certain boundary and initial conditions for the unknown solu-
tion function .u(x, t), which allow one to search for some specific solutions. These 
boundary conditions may be conveniently assumed to have the following forms: 

.u(0, t) = u(L , t) = 0 or
∂u(0, t)

∂x
= ∂u(L , t)

∂x
= 0 (10.2) 

where . L is the length of the rod and . T denotes a certain time interval within which 
these solutions are sought. 

At this point it is noteworthy that the unknown solution function .u(x, t) must 
satisfy the 1-D wave equation within the whole region of interest, i.e. for all. x ∈ ⟨0, L⟩
and for all .t ∈ ⟨0, T ⟩. In order to do this the function.u(x, t) must be continuous and
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differentiable up to the second derivative 1 with respect to the spatial coordinate . x
and the time . t . Moreover, its derivatives must exist in the whole region of interest, 
so the unknown solution function .u(x, t) must be of class C. 

2 at least. 
It can be said that the strong requirements placed on the function.u(x, t) resulting 

from the order of the differential equation under consideration, i.e. the wave equation 
in the form of Eq. (10.1), presents a strong formulation of the problem of propagation 
of longitudinal waves in a 1-D elastic rod. 

However, this strong formulation can be relaxed by the use of a certain weight 
(test) function.w(x, t), which satisfies the same boundary and initial conditions as the 
unknown solution function .u(x, t). This can be presented in the following integral 
form: 

.

L{

0

w(x, t)

[
ES

∂2u(x, t)

∂x2
− ρS

∂2u(x, t)

∂t2
+ f (x, t)

]
dx = 0 (10.3) 

At this point, with no loss of generality, it may be assumed that the weight (test) 
function is the unknown solution function .u(x, t) itself. Furthermore, the integra-
tion by parts of the first component of the wave equation leads to the following 
relationship: 

.

L{

0

u(x, t)
∂2u(x, t)

∂x2
dx =

L{

0

u(x, t)d

[
∂u(x, t)

∂x

]

= u(x, t)
∂u(x, t)

∂x

||||
L

0~ ~~ ~
=0 due to b.c.

−
L{

0

∂u(x, t)

∂x

∂u(x, t)

∂x
dx

(10.4) 

which allows one to express the integral form of the wave equation as: 

.

ES

L{

0

∂u(x, t)

∂x

∂u(x, t)

∂x
dx + ρS

L{

0

u(x, t)
∂2u(x, t)

∂t2
dx

−
L{

0

u(x, t) f (x, t)dx = 0

(10.5) 

It can be easily seen that the strong requirements originally placed on the unknown 
solution function .u(x, t) are weakened, as now it is sufficient for this function 
.u(x, t) to be of class C. 

1 with respect to the spatial coordinate . x . For this reason the

1 Mathematically, a function is of class C. n in its domain, if its first . n derivatives exist and remain 
continuous. Additionally, a function is of class C. ∞, if its derivatives of any order exist and remain 
continuous. Such a function is called smooth. 
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formulation of the wave equation given by Eq. (10.5) presents a weak formulation of 
the problem of propagation of longitudinal waves in a 1-D elastic rod. This weak form 
of the wave equation can be further transformed to equations of motion describing the 
dynamic behaviour of the rod under investigation, when some additional assumption 
concerning the unknown solution function .u(x, t) are made. 

10.3 Equations of Motion 

In FEM there are some specific rules regarding the methods used to approximate the 
unknown solution function .u(x, t). This is done not only to simplify the resulting 
weak formulation of the original wave equation, but first of all to guarantee the 
correctness of obtained solutions. As a consequence it is assumed that within the 
region of interest, i.e. for all .x ∈ ⟨0, L⟩, the function.u(x, t) can be approximated by 
a finite sum of certain test functions as: 

.u(x, t) ∼=
p∑

n=1

Nn(x)qn (10.6) 

where.Nn(x) are so-called 1-D shape functions,.qn are nodal displacements dependent 
on time . t , while . p denotes the number of nodes distributed over the length . L of the 
rod. 

The unknown solution function.u(x, t) can also be presented using matrix notation 
[ 19], in a manner typical for FEM: 

.u(x, t) ∼=
p∑

n=1

Nn(x)qn = N(x)qe, qe = [q1, q2, . . . , qp]T (10.7) 

where now .N(x) is a matrix of 1-D shape functions and .qe is a vector of nodal 
displacements of a certain FE. e, now represented by the entire rod under investigation. 
Thanks to this, the spatial and time differentiation can be expressed as follows: 

.

⎧⎪⎨
⎪⎩

∂u(x, t)

∂x
∼= N,(x)qe,

∂2u(x, t)

∂x2
∼= N,,(x)qe, . . .

∂u(x, t)

∂t
∼= N(x)q̇e,

∂2u(x, t)

∂t2
∼= N(x)q̈e, . . .

(10.8) 

where the symbols .(•,) and .(•,,) denote the first and the second derivatives with 
respect to the spatial coordinate . x , while the symbols .q̇e and .q̈e denote vectors of 
nodal velocities and accelerations. 

At this point it is important to mention that the matrix notation used in FEM 
requires that all necessary differentiations in Eq. (10.5) are performed in the following 
manner:
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.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂x

∂u(x, t)

∂x
∼= [

N,(x)qe
]T [

N,(x)qe
]

= qT
eN,(x)TN,(x)qe

u(x, t)
∂2u(x, t)

∂t2
∼= [

N(x)qe
]T [

N(x)q̈e
]

= qT
eN(x)TN(x)q̈e

(10.9) 

As a result of this particular components of the weak form of the wave equation, 
given by Eq. (10.5), may be transformed and presented as: 

.ES

L{

0

∂u(x, t)

∂x

∂u(x, t)

∂x
dx ∼= qT

e

⎡
⎣ES

L{

0

N,(x)TN,(x)dx

⎤
⎦

~ ~~ ~
=Ke

qe (10.10) 

.ρS

L{

0

u(x, t)
∂2u(x, t)

∂t2
dx ∼= qT

e

⎡
⎣ρS

L{

0

N(x)TN(x)dx

⎤
⎦

~ ~~ ~
=Me

q̈e (10.11) 

.

L{

0

u(x, t) f (x, t)dx ∼= qT
e

⎡
⎣

L{

0

N(x)T f (x, t)dx

⎤
⎦

~ ~~ ~
=Fe

(10.12) 

where following the notation typical for FEM the symbols .Ke, .Me and .Fe denote 
the elemental characteristic stiffness and inertia matrices as well as the elemental 
vector of external forces (expressed in newtons), respectively [ 19– 22]. Moreover, in 
the current case they concern the entire rod, which may be thought of as represented 
by one FE only. 

Finally, substitution of Eqs. (10.10), (10.11) and (10.12) into the wave equation 
expressed by Eq. (10.5) leads to a matrix equation: 

.qT
eMeq̈e + qT

eKeqe − qT
e Fe = 0 (10.13) 

which after grouping of appropriate terms takes the form: 

.qT
e (Meq̈e + Keqe − Fe) = 0 (10.14) 

The result obtained represents a system of linear differential equations, which is 
satisfied only if the expression within the brackets is satisfied, which leads to the 
following equation:
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.Meq̈e + Keqe = Fe (10.15) 

representing 1-D equations of motion corresponding to the original wave equation, 
which were obtained thanks to the representation of the unknown solution function 
.u(x, t) by a set of 1-D shape functions .Nn(x). Consequently, these equations of 
motion are satisfied in a discrete sense only for a set of. p points. qp, which represent 
so-called nodes of the FE . e. 

It is noteworthy that in the current case under consideration only one DOF asso-
ciated per node is assumed, i.e. the longitudinal displacement component. Thus, the 
number of DOFs of the entire numerical model of the rod must be equal to the total 
number of nodes in this model. However, this may be different in a general case, 
where the number of DOFs in a single node can be greater than one including, for 
example, other displacement components, their derivatives, etc. Then, the number 
of DOFs of the entire numerical FEM discrete model is equal to the total number of 
nodes of this model multiplied by the number of DOFs in a single node. 

It should be mentioned here that sometimes the obtained 1-D equations of motion 
should be supplemented with a dissipation component .Ceq̇e, where .Ce is the ele-
mental characteristic damping matrix. This matrix is usually expressed as a linear 
combination of the inertia and stiffness matrices, i.e. .Ce = αMe + βKe, where . α
and . β are certain constants [ 23]. 

10.4 Shape Functions 

In the case of 1-D FEs, as can be viewed the rod under investigation, it is typical 
for FEM to assume as shape functions polynomials of certain degrees, usually equal 
to .r = p − 1 with . p denoting the number of nodes .qn within a single FE, where 
.n = 1, 2, . . . , p. Higher degrees of approximation polynomials can be obtained in 
special cases, which take advantage of some additional conditions regarding shape 
functions [ 24] or the smoothness of strain/stress fields, etc. [ 24– 26]. Candidates for 
shape functions should be chosen carefully, as they must satisfy certain conditions in 
order to guarantee the correctness of the obtained results as well as the convergence 
of these results with an increase in the number of nodes and/or DOFs of numerical 
models. The requirements concerning the properties of the approximation shape 
functions can be summarised as follows [ 19]: 

• Shape functions should be chosen so that they allow one to achieve no strains in the 
case of displacement fields compatible with no strains. This can be translated as the 
ability of the shape functions to reproduce the vanishing of their first derivatives 
under appropriate nodal conditions. 

• Shape functions should be chosen so that they allow one to achieve constant strains 
in the case of displacement fields compatible with constant strains. This can be 
translated as the ability of the shape functions to reproduce constant values of their 
first derivatives under appropriate nodal conditions.
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• Shape functions should be chosen so that they allow one to achieve finite strains, 
even though these strains can be discontinuous between adjacent FEs. This can be 
translated as the ability of the shape functions to reproduce the unknown solution 
function as a piecewise smooth function of class C. 

0 at least. 

In order to make shape functions independent of the rod length . L a simple trans-
formation can be used. In the case of the rod under consideration it takes the following 
simple form: 

.ξ = 2x

L
− 1, x ∈ ⟨0, L⟩ (10.16) 

which transforms 2 the region of interest from .x ∈ ⟨0, L⟩ to a new region . ξ ∈
⟨−1,+1⟩ and 1-D shape functions .Nn(x) to new shape functions .Nn(ξ). Thanks to 
such an approach 1-D shape functions can be easily obtained, tabulated and manip-
ulated by modern computation packages [ 27, 28] as having a universal definition. 

Polynomials used for shape functions can be characterised by different distribu-
tions of their nodes . qn . These distributions can influence their approximation prop-
erties, thus influencing numerical properties of FEs built based on their application 
[ 29]. 

In general, distributions of nodes within FEs can be equidistant of non-equidistant. 
The non-equidistant distributions of nodes within FEs take advantage of zeros of 
specialised polynomials, namely Chebyshev polynomials of the first kind or Lobatto 
polynomials [ 20]. The use of these kinds of polynomials leads to the so-called spectral 
convergence, typical for Fourier series, which guarantees that computational errors 
decrease very fast, or even exponentially [ 30], with an increase in the degree of 
approximation polynomials. r . Additionally, their use helps to avoid so-called Runge’s 
phenomenon, which leads to undesired oscillations of solutions near the edges of 
investigation regions in the case of higher degrees of approximation polynomials 
based on equidistant node distributions. 

In each these cases the coordinates of the nodes of appropriate approximation 
polynomials can be calculated based on simple formulae. 

• For equidistant node distributions the coordinates .ξn of nodes of 1-D shape func-
tions being approximation polynomials of degree .r = p − 1 are obtained as: 

.ξn = 2(n − 1)

p − 1
− 1, n = 1, 2, . . . , p (10.17) 

The equidistant node distributions are typical for the classical FEM, where the 
degrees of approximation polynomials . r are usually equal to 1, 2 or vary rarely 
3. Shape functions for the equidistant distribution of nodes and the degree of 
approximation polynomials .r = 2 are shown in Fig. 10.2.

2 This is equivalent to the transformation of shape functions to the local curvilinear/normalised 
coordinates system. 
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Fig. 10.2 Shape functions 
for equidistant node 
distribution, for 
approximation polynomials 
of degree. r = 2

• For non-equidistant node distributions based on the zeros of Chebyshev polyno-
mials of the first kind, or simply Chebyshev nodes, the coordinates .ξn of nodes of 
1-D shape functions being approximation polynomials of degree .r = p − 1 can 
be obtained as: 

.ξn = − cos

[
π(n − 1)

p − 1

]
, n = 1, 2, . . . , p (10.18) 

The non-equidistant node distributions based on Chebyshev nodes are typical for 
specialised FEM approaches as is TD-SFEM, when the degrees of approximation 
polynomials . r is usually equal 5, but can be as high as 10. Shape functions for 
the non-equidistant distribution of nodes based on Chebyshev nodes and degree of 
approximation polynomials .r = 5 are shown in Fig. 10.3. It should be noted that 
for.r = 1 and.r = 2 the obtained coordinates.ξn are the same as for the equidistant 
node distribution. 

• For non-equidistant node distributions based on the zeros of Lobatto polynomials, 
or simply Lobatto nodes, the coordinates .ξn of nodes of 1-D shape functions 
being approximation polynomials of degree .r = p − 1 can be obtained from the 
following formula: 

.Lc
p(ξ) = (1 − ξ2)

dPp−1(ξ)

dξ
= 0 → ξn, n = 1, 2, . . . , p (10.19) 

where .Pp−1(ξ) is the Legendre polynomial of degree .p − 1, while .Lc
p(ξ) is the 

complete Lobatto polynomial of degree . p.
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Fig. 10.3 Shape functions for non-equidistant node distributions based on: a Chebyshev nodes, b 
Lobatto nodes, for degree of approximation polynomials. r = 5

The non-equidistant node distributions based on Lobatto nodes are also typical for 
specialised FEM approaches as is TD-SFEM, when the degrees of approximation 
polynomials . r is usually equal 5, but can be as high as 10. Shape functions for 
the non-equidistant distribution of nodes based on Lobatto nodes and degree of 
approximation polynomials .r = 5 are shown in Fig. 10.3. It should be noted that 
for .r = 1 and.r = 2 the obtained coordinates .ξn are the same as in the case of the 
equidistant node distribution. 

The knowledge of the node distribution allows one to evaluate 1-D shape functions 
.Nn(ξ), being polynomials of .r = p − 1 degree, by the use of a simple relationship: 

.Nn(ξm) =
p∑

n=1

an−1ξ
n−1
m = δmn, m, n = 1, 2, . . . , p (10.20) 

where .δmn is the already known Kronecker delta. This leads to a set of .p linear 
equations for unknown coefficients . an . Such a system can be easily solved to obtain 
desired shape functions .Nn(ξ) for all . p nodes of a single FE. Alternatively, the very 
well-known Lagrange formula [ 31] can be used for a given set of nodes in order to 
establish the shape functions .Nn(ξ). It should be emphasised that in the literature 
there are numerous other definitions of shape functions, such as those based on the 
use of Hermite polynomials [ 19], splines [ 24], orthogonal trigonometric polynomials 
[ 30] or other specialised approaches using wavelets [ 32], etc. 

It can be shown [ 19] that 1-D shape functions, based on the definition given by 
Eq. (10.20), have very important properties, which can be expressed by the following 
two simple identities:
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.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p∑
n=1

Nn(ξ) = 1

p∑
n=1

dNn(ξ)

dξ
= 0

(10.21) 

which often are very useful in FEM since corresponding identities also hold in 2-D 
and 3-D cases. 3

10.5 Numerical Integration 

Despite the fact that the use of modern computation packages [ 27, 28] allows one to 
perform many computations required by FEM analytically with no practical limita-
tions, the effective use of this computational method is strongly based on numerical 
integration [ 19]. In order to obtain the elemental characteristic stiffness .Ke, inertia 
.Me and other matrices as well as vectors required by FEM certain integrals must be 
computed numerically. 

In the case of the rod under consideration 1-D integrals of the following type must 
be calculated repeatedly: 

.

L{

0

f (x)dx = . . . (10.22) 

Since the above integral is defined in the global coordinate system .(x), its value 
is always dependent on the length of the rod . L , which can vary. This makes the 
direct computation of this integral not universal. In a more general case its repeated 
evaluation can be not only tedious, but also time consuming. For this reason it is much 
more effective to transform the integral given by Eq. (10.22) to the local normalised 
coordinate system.(ξ) by the use of Eq. (10.16) to obtain: 

.

L{

0

f (x)dx =
+1{

−1

f (ξ) det Jedξ (10.23) 

where .det Je denotes the determinant of the Jacobi matrix . Je, which is related to 
the transformation of the region of interest .x ∈ ⟨0, L⟩ to .ξ ∈ ⟨−1,+1⟩ and which 
determinant can be evaluated from the following simple relationships in the case of 
the rod under consideration:

3 This is because in 2-D and 3-D cases shape functions are obtained by appropriate multiplica-
tions of corresponding 1-D shape functions. Consequently, in the case of 2-D shape functions it 
can be formally written that .Nl(x, y) = Ni (x)N j (y), while in the case of 3-D shape functions 
that.Nm(x, y, z) = Ni (x)N j (y)Nk(z), where indexes.i, j, k and.l,m take values dependent on the 
chosen degrees of approximation polynomials. 
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.Je = dx

dξ
→ x = L

2
(ξ + 1) → det Je = L

2
(10.24) 

With no loss of accuracy the integrals given by Eq. (10.23) can be conveniently 
replaced by appropriate summation as long as the integrated function . f (ξ) can be 
represented by polynomials of certain degree. r . This summation must be carried out 
for a required number of sampling points in order to guarantee the exactness of such 
a replacement [ 31]: 

.

+1{

−1

f (ξ) det Jedξ =
p∑

n=1

wn f (an) det Je (10.25) 

where both the weights.wn and the so-called abscissas.an are dependent on the degree 
of approximation polynomials. 

The representation of an integral by the appropriate sum presented above is called 
quadrature. 4 It can be checked [ 31] that the Gaussian quadrature based on . p inte-
gration points is exact for polynomials of degrees up to .r = 2p − 1 [ 31]. This is a 
universal quadrature used in FEM and its specialised clones. At the same time the 
Lobatto quadrature based on. p integration points, also known as the Gauss-Lobatto-
Legendre quadrature (GLL), is exact for polynomials of degrees up to . r = 2p − 3
[ 31], and is typically used in combination with the non-equidistant node distributions 
based on Lobatto nodes. In both these cases the weights.wn and the abscissas.an can 
be easily calculated from the following formulae: 

• for the Gaussian quadrature: 

.

⎧⎪⎪⎨
⎪⎪⎩

Pp(an) = 0 → an

wn = 2

(1 − a2n)
dPp−1(an)

dξ

, n = 1, 2, . . . , p (10.26) 

• for the Lobatto quadrature: 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − a2n)
dPp−1(an)

dξ
= 0 → an

wn = 2

p(p − 1)P2
p (an)

, n = 1, 2, . . . , p (10.27) 

However, it should be emphasised here that when used together with the Lobatto 
nodes the Lobatto quadrature leads to a very important numerical property, which is 
called discrete orthogonality since:

4 The term quadrature reflects understanding of the process of the determination of the area of 
figures by ancient Greek mathematicians, who tried to solve it geometrically by the construction of 
squares of the corresponding areas. 
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.

+1{

−1

Lc
m(ξ)Lc

n(ξ)dξ =
p∑

i=1

wi L
c
m(ai )

q∑
j=1

w j L
c
n(a j ) = δmn (10.28) 

which is very willingly employed in TD-SFEM, as it leads to the diagonal or semi-
diagonal forms of the elemental characteristic inertia matrix .Me. This is a very  
desirable feature of the GLL quadrature, which significantly simplifies numerical 
computations [ 33] in the case of dynamic or wave propagation problems. 

10.6 Division into FEs 

In FEM the computational region of interest can be conveniently divided into sub-
regions taking advantage of the property of definite integrals, which allows one to 
split the integration interval into a finite number of sub-intervals. As a consequence, 
in the case of the 1-D rod under investigation having the length. L , it can be formally 
written that: 

.

L{

0

f (x)dx =
m∑
e=1

Le{

Le−1

f (x)dx (10.29) 

where. m denotes the number of sub-intervals, which can also be thought of as repre-
senting finite elements (FEs). They can be of the same or different lengths, 5 where 
.L0 < L1 < . . . < Lm with .L0 = 0 and .Lm = L . 

The use of Eq. (10.23) allows one to transform the integral (10.29) from the global 
coordinate system.(x) to the local normalised coordinate system.(ξ) to obtain: 

.

L{

0

f (x)dx =
m∑
e=1

+1{

−1

f (ξ) det Jedξ (10.30) 

where appropriate determinants of the Jacobi matrix .Je [ 19] are:  

. det Je = Le−1 − Le

2
, e = 1, 2, . . . ,m (10.31) 

It is noteworthy that thanks to Eq. (10.6) the unknown function. f (x) in Eq. (10.30) 
is expressed by .m sets of shape functions .Nn(ξ) of the degree of approximation 
polynomials .r = p − 1, which are spanned over .(p − 1)m + 1, or simply  .rm + 1, 
nodes rather than a single set spanned over . p nodes, since it can be written that:

5 For problems concerning high frequency dynamics or wave propagation it is usually required that 
FEs are uniformly distributed in space in order to minimise so-called numerical anisotropy. 
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Fig. 10.4 Results of 
numerical computations by 
FEM. An average frequency 
error for equidistant node 
distributions, for different 
degrees of approximation 
polynomials, as a function of 
the number of DOFs of 
numerical models. Results 
according to the 1-mode 1-D 
theory (elementary) of the 
longitudinal behaviour of 
rods for the first 30 
frequencies of free vibrations 
of  a  10mm  diameter,  2m  
long aluminium bar of free 
ends 

.

m∑
e=1

+1{

−1

f (ξ) det Jedξ =
m∑
e=1

p∑
n=1

+1{

−1

Nn(ξ) det Jedξ qr(e−1)+n

=
m∑
e=1

p∑
n=1

wnNn(an) det Jeqr(e−1)+n

(10.32) 

As a consequence each division into sub-intervals increases the number of nodes, 
thus the accuracy of obtained solutions also increases and converges to the exact 
solution [ 19]. This process is clearly visible in Figs. 10.4 and 10.5 in the case of the 
average frequency error calculated for the 30 first frequencies of free vibrations of 
the rod under consideration, calculated according to Eq. (2.68), when the error is 
expressed as a function of the number of DOFs 6 of rod numerical models. 

The use of Eq. (10.30) allows one to express the characteristic stiffness matrix. K
and the characteristic inertial matrix .M as well as the vector of external forces . F as 
follows: 

.K =
m∑
e=1

Ke, M =
m∑
e=1

Me, F =
m∑
e=1

Fe (10.33) 

where now their meaning is slightly changed. The characteristic stiffness matrix . K
and the characteristic inertial matrix . M, as well as the vector of external forces . F,

6 In the current case only one DOF is associated with one node. As a consequence within each sub-
region/finite element out of. m such sub-regions/finite elements there are.p = r + 1 local/elemental 
DOFs, while within the whole region of interest there are .(p − 1)m + 1 or .rm + 1 global/total 
DOFs. 
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Fig. 10.5 Results of numerical computations by TD-SFEM. An average frequency error for non-
equidistant node distributions for: a Chebyshev nodes, b Lobatto nodes, for different degrees of 
approximation polynomials, as a function of the number of DOFs of numerical models. Results 
according to the 1-mode 1-D theory (elementary) of the longitudinal behaviour of rods for the first 
30 frequencies of free vibrations of a 10 mm diameter, 2 m long aluminium bar of free ends 

now have a global nature as they collect local/elemental shares resulting from the 
division of the rod into smaller sub-regions/elements. Thus, the symbols.Ke,.Me and 
.Fe denote the elemental characteristic stiffness and inertia matrices and the elemental 
vector of external forces, respectively. 

Following FEM notation [ 19– 21] general formulae for computation of the ele-
mental characteristic stiffness matrix .Ke, the elemental characteristic inertia matrix 
.Me and the vector of external forces .Fe can be expressed as: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ke =
{{{

Ve

BTDeB dVe

Me =
{{{

Ve

NTρeN dVe

Fe =
{{{

Ve

NT f (x, y, z, t) dVe

, e = 1, 2, . . . ,m (10.34) 

where .Ve denotes the volume of a particular sub-region/finite element. 
At this point it should be stressed that the elegant form of summation present in 

Eq. (10.33) is not trivial in FEM [ 19– 21] as it concerns two different node numbering 
systems: local/elemental and global, as shown in Fig. 10.6. As a result of this the 
summation process, known in FEM as the aggregation or assembling process, has 
been the subject of research for many years as it has profound consequences for 
numerical properties of the global characteristic matrices. Optimisation of their band
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Fig. 10.6 A concept of the discretisation and the assembling process in FEM in the case of a 
numerical model of 1-D bar consisting of 4 rod FEs, for degree of approximation polynomials 
.r = 2
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properties resulting from the local/elemental and global numbering has a significant 
influence on the effectiveness and accuracy of all FEM computations. However, 
nowadays it has a much smaller impact as the majority of FEM packages as well 
as modern computation packages [ 27, 28] allow one to work on sparse/indexed 
matrices—see Appendix E. 

It should also be noted here that the symbol . B in Eq. (10.34) denotes the matrix 
of the linear relationships 7 between strains and displacements: 

.∈∈∈ = Bqe, ∈∈∈ = [∈xx , ∈yy, ∈zz, γyz, γzx , γxy]T (10.35) 

where the symbol . ∈∈∈ denotes in FEM the vector of strains. 8 Additionally, the matrix 
. B can be expressed as: 

.B = ┌N, ┌ =

⎡
⎢⎢⎢⎢⎢⎣

∂

∂x
0 0 0

∂

∂z

∂

∂y

0
∂

∂y
0

∂

∂z
0

∂

∂x

0 0
∂

∂z

∂

∂y

∂

∂x
0

⎤
⎥⎥⎥⎥⎥⎦

T

(10.36) 

where. ┌ is the matrix operator of linear differentiation, which in the case of 1-D rod 
under investigation is simply .┌ = d

dx and .B(x) = N,(x). 
The matrix.De is the matrix of linear relationships between the stress vector. σσσ and 

the strain vector . ∈∈∈: 

.σσσ = De∈∈∈, σσσ = [σxx ,σyy,σzz, τyz, τzx , τxy]T (10.37) 

where the form of the matrix.De depends not only the dimension of a problem under 
consideration: 1-D, 2-D or 3-D, but also the type of elastic material—see Appendix B. 

10.7 Solving Equations of Motion 

Solving equations of motion takes a central position in all problems involving wave 
propagation in structural elements analysed by FEM. As a very important aspect of 
numerical investigations, appropriate solving of equations of motion remained the 
subject of intensive research for decades. The use of numerical solution procedures 
enabled researchers and scientists to investigate problems, which until the emerge 
of numerical solution techniques, were unreachable. This included various problems

7 In general, the relationship between strains and displacements can be non-linear. Then a different 
definition of the matrix. B is used, as presented in [ 20], for example. 
8 Certainly, in other coordinate systems than the Cartesian coordinate system the strain vector. ∈∈∈ has 
components of different physical meaning. The same also applies to the stress vector. σσσ. 
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of wave propagation not only in the case of the presence of geometrical or material 
non-linear behaviour, but also problems involving structural elements of complex 
geometries. 

Numerous solution procedures were developed to solve equations of motion 
in the past including the methods of: central differences [ 34], leapfrog [ 35], .β-
Newmark [ 36], .θ-Wilson [ 37] as well as many other specialised methods developed 
and employed for exclusive use by numerous commercial FEM packages [ 38]. How-
ever, two of them are of special importance and interest. The first one is the explicit 
method of central difference and the second is the implicit.β-Newmark method, also 
known in the literature as the Newmark method or the .β-method. 

At this point it should be remembered that in general solution schemes can be 
explicit or implicit ones. Explicit solution schemes are those that are based on the 
assumption that the current state of structural dynamics can be fully described by the 
knowledge of its past state, whereas implicit solution schemes ignore this assumption. 
Instead, they assume that the current state of structural dynamic results from its past 
and present states, which leads to the necessity of solving of some specific equations. 

The central difference scheme is one of many schemes employed by the finite 
difference method (FDM), which is a numerical technique used for solving partial 
differential equations by the use of the differential operators. It is interesting to note 
that as such the method was already known to Euler and further developed by Runge. 9

Now, a good starting point can be provided by the equations of motion, expressed 
by Eq. (10.15), written for discrete moments in time . t . Moreover, this time these 
equations are formulated at the level of the global characteristic matrices and sup-
plemented by a dissipation term expressed by the global damping matrix. C, presented 
below in a slightly modified form: 

.Mq̈t + Cq̇t + Kqt = Ft (10.38) 

where discrete dependence on time . t is explicitly noted for the vectors of nodal 
accelerations . q̈t , velocities .q̇t and displacements .qt as well as forces . Ft . 

In the central difference method the vector of nodal acceleration.q̈t and the vector 
of nodal velocities .q̇t are approximated by the well-known finite difference central 
stencils [ 39]: 

.

⎧⎪⎨
⎪⎩
q̇t = qt+Δt − qt−Δt

2Δt
+ O(Δt2)

q̈t = qt+Δt − 2qt + qt−Δt

Δt2
+ O(Δt2)

(10.39) 

where .Δt denotes a time step resulting from the discretisation of the time interval 
of analysis . T into a number of equidistant moments in time, for which a numerical

9 Carl David Tolmé Runge (1856–1927) was a German scientist, a professor of mathematics at the 
University of Hanover. His indisputable input in mathematics, especially numerical computations, 
include the famous Runge-Kutta method used nowadays for solving partial differential equations 
numerically. Apart from mathematics his scientific interests also included physics and spectroscopy. 
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solution to the equations of motion is sought, while the truncation error .O(Δt2) is 
proportional to the square of the time step .Δt . 

Substitution of Eq. (10.39) into the equations of motion, given by Eq. (10.38), 
leads to the following relationships: 

.

⎧⎪⎪⎨
⎪⎪⎩

(
M
Δt2

+ C
2Δt

)
qt+Δt

∼= Rt

Rt = Ft −
(
K − 2M

Δt2

)
qt −

(
M
Δt2

− C
2Δt

)
qt−Δt

(10.40) 

which can be easily expressed in the form of an algorithm presented below in 
Table 10.1 and where .Rt represents the vector of effective loads. 

Table 10.1 The algorithm for solution of equations of motion by the explicit method of cen-
tral differences for the consistent forms of the global inertia matrix .M and the global damping 
matrix. C

Preliminary operations 

1. Assembling the characteristic matrices: stiffness. K, damping. C and inertia. M

2. Initialisation of the vectors of nodal: displacements. q0, velocities.q̇0 and 
accelerations. q̈0

3. Selection of the time step.Δt as resulting from time discretisation 

4. Computation of auxiliary coefficients 

. a0 = 1

Δt2
, a1 = 1

2Δt
, a2 = 2a0, a3 = 1

a2
5. Determination (if necessary) of the vector of nodal displacements.q−Δt as 

. q−Δt = q0 − q̇0Δt + a3q̈0
6. Computation of the global effective inertia matrix.M̃ as. M̃ = a0M + a1C

7. Triangularisation of the global effective inertia matrix.M̃ from. M̃ = LDLT

Computations on a typical time step . Δt

8. Computation of the vector of effective nodal loads.Rt as 
. Rt = Ft − (K − a2M)qt − (a0M − a1C)qt−Δt

9. Solving a system of linear algebraic equations to find the vector of nodal 
displacements.qt+Δt from. LDLTqt+Δt = Rt

10. Computation (if necessary) of the vectors of nodal velocities.q̇t and 
accelerations.q̈t as 
. q̇t = a1(qt+Δt − qt−Δt )

.q̈t = a0(qt+Δt − 2qt + qt−Δt )
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Table 10.2 The algorithm for solution of equations of motion by the implicit.β-Newmark method 
for the consistent forms of the global inertia matrix.M and the global damping matrix. C

Preliminary operations 

1. Assembling the characteristic matrices: stiffness. K, damping. C and inertia. M

2. Initialisation of the vectors of nodal: displacements. q0, velocities.q̇0 and 
accelerations. q̈0

3. Selection of the time step.Δt as resulting from time discretisation 

4. Computation of auxiliary coefficients 

.. a0 = 1

βΔt2
, a1 = 1

βΔt
, a2 = 1

2β
− 1, a3 = α

βΔt

. a4 = α

β
− 1, a5 =

(
α

2β
− 1

)
Δt, a6 = (1 − α)Δt, a7 = αΔt

5. Computation of the global effective stiffness matrix.K̃ as 
. K̃ = K + a0M + a1C

6. Triangularisation of the global effective stiffness matrix.K̃ from. K̃ = LDLT

Computations on a typical time step . Δt

7. Computation of the vector of effective nodal loads.Rt+Δt as 
. Rt+Δt = Ft+Δt + M(a0qt + a1q̇t + a2q̈t )
. +C(a3qt + a4q̇t + a5q̈t )

8. Solving a system of linear algebraic equations to find the vector of nodal 
displacements.qt+Δt from. LDLTqt+Δt = Rt+Δt

9. Computation of the vectors of nodal velocities.q̇t+Δt and accelerations. q̈t+Δt
as 
. q̇t+Δt = q̇t + a6q̈t + a7q̈t+Δt
. q̈t+Δt = a0(qt+Δt − qt−Δt ) − a1q̇t − a2q̈t

It is clear that in the case of diagonal 10 forms of the global inertia matrix.M and the 
global damping matrix . C the algorithm presented in Table 10.1 can be significantly 
simplified, which usually takes place for FEs whose definition is based on Lobatto 
nodes. 

Such an approach allows one to significantly decrease the time of computations 
or alternatively to improve the accuracy of these computations at a relatively low 
cost for an increased number of FEs. However, it should be emphasised that the 
explicit method of central differences is conditionally stable and appropriate time 
discretisation is of great importance. 

It can be easily checked in the literature [ 19] that the critical time step .Δt in 
the case of the method of central difference is .Δt ≤ 2/ωmax in order to guarantee 
its stability, where .ωmax is the maximum angular frequency associated with a given

10 Typically, the form of the characteristic inertia matrix .M can be consistent (all or nearly all 
elements are non-zero) or diagonal/lumped (only diagonal elements are non-zero). It results from 
the assumed type of numerical integration: the Gauss quadrature leads to its consistent form, while 
the Lobatto quadrature to its diagonal form, or additional requirements, which make it necessary to 
diagonalise the characteristic inertia matrix.M through the process called lumping, well known in 
FEM. 
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numerical model/spatial discretisation. This condition is very difficult to satisfy, so 
in computational practice much larger time steps are used. 

Because numerical errors tend to build up on each time step very slowly and 
the truncation error .O(Δt2) is proportional to the square of the time step, these 
features allows one to use the method of central difference effectively for various 
time dependent problems. Its higher-order modifications offer even greater accuracy 
at similar computational costs [ 40] and can be used in the case where such accuracy 
is required. 

In the case when the time interval of the analysis . T is great, which could lead to 
unreasonably small time steps.Δt in order to obtain numerical solutions, the method 
of central differences can be replaced by a method much more effective in that respect, 
developed by Newmark [ 36], the algorithm of which is presented in Table 10.2. The  
.β-Newmark method is based on a simple assumption that changes in the vectors of 
nodal displacements .qt+Δt and velocities .q̇t+Δt over a single time step .Δt depend 
simultaneously on the vectors of nodal accelerations at the beginning .q̈t and end 
.q̈t+Δt of this time step, which can be expressed as: 

.

⎧⎨
⎩
q̇t+Δt = q̇t + (1 − α)q̈tΔt + αq̈t+ΔtΔt

qt+Δt = qt + q̈tΔt +
(
1

2
− β

)
q̈tΔt2 + βq̈t+ΔtΔt2

(10.41) 

where . α and . β are certain parameters, which indicate what the proportions of this 
dependence are. 

The values of the parameters .α and . β are of great importance for the quality 
and accuracy of the result of numerical computations obtained by the use of the 
.β-Newmark method [ 20]. In computational practice the value of the .α parame-
ter is usually taken as .α = 1/2, while in the case of the . β parameter as .β = 1/4, 
which guarantee unconditional stability of the method. If the value of the . α param-
eter is greater than .1/2, i.e. .α > 1/2, some artificial damping is introduced, which 
sometimes may have positive effects on the quality of numerical results. On the 
other hand, when.α = 1/2 and.β = 0 the implicit .β-Newmark method becomes the 
explicit method of central differences. In general, for .β = 1/4 the average constant 
value of acceleration over a single time step.Δt is obtained, for .β = 1/6 the change 
in acceleration is linear, while for .β = 1/8 it is stepped. 

At this point it should be strongly emphasised that apart from the time discretisa-
tion process there is the process of space discretisation, which is also of great impor-
tance, especially where high accuracies are expected and high frequency dynamics 
and/or wave propagation problems are investigated. There is a strong correlation 
between the space and time discretisation in the case of time dependent problems. 
Depending on the type of excitation and its frequency content as well as applica-
tion domain different rules are reported in the literature [ 41], which suggest that the 
number of nodal distances per wavelength in the case of the classical FEM can be as 
small as 4 or 5 [ 42] or as great as 18 [ 43].
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Chapter 11 
Waves in Unbounded Structures 

11.1 Infinite Versus Finite 

Despite their infinite dimensions propagation of elastic waves in unbounded engi-
neering structures can be successfully analysed by the use of FEM [ 1]. This can be 
achieved by numerous computational techniques, which can be employed for this 
purpose and which are able to mimic the properties of unbounded structures. The 
primary and main feature of these techniques is their ability to simulate the process 
of diffusion of propagating waves, which allows the wave energy to be transferred 
from the region of interest out to infinity with no reflections, conforming with the 
Sommerfeld radiation condition [ 2]. 

It should be noted that many engineering structures may be considered as 
unbounded. A good example of such structures represent railways, shown in Fig. 11.1, 
since their longitudinal dimension can be considered as many, many times greater 
than the remaining transverse dimensions. The same applies to various pipeline sys-
tems or truss structures known from their use in bridges. In each of these cases, 
however, the analysis of wave propagation by the use of FEs demands a special 
approach, as it must take into account a very specific behaviour of elastic waves 
propagating within these structures, which comes from their freedom to diffuse with 
no reflections. 

This is a very strong requirement, which makes such analysis computationally 
demanding, especially if a so-called direct approach is used, when local responses of 
infinite structures are simply approximated by local responses calculated for enlarged 
FE models, but still in the finite space [ 4– 6]. This approach can be understood 
as the use of FEM in the case of an appropriately selected large sections of the 
original unbounded structures, which can be assumed as a good representation of 
the required part of the structures under consideration. This simple approach can be 
correct as long as the wave propagation analysis is carried out for a period of time, 
which guarantees no reflections of propagating waves from existing boundaries, 
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Fig. 11.1 Railways are a 
good example of engineering 
structures, which can be 
regarded as unbounded for 
propagation of elastic waves 
[ 3] 

which could influence local responses of interest. Unfortunately, very often such an 
approach requires impractically large numerical models consisting of many FEs in 
order to comprise with the process of space discretisation, which additionally must 
conform with the requirement of providing the sufficient number of nodal distances 
per wavelength due to scale factors, as mentioned previously in Sect. 10.7. However, 
there are other solutions to this problem known and reported in the literature. 

11.2 Treatment of Unwanted Boundary Reflections 

In general, there exists three general approaches in FEM, 1 which can be successfully 
employed for treating unwanted boundary reflections in order to mimic the properties 
of unbounded structures. 

The first and the most intuitive approach is the application of specially modified 
FEs with their shape functions defined over infinite regions. This can be computa-
tionally considered as extending some of their boundaries to infinity, which in fact 
makes them infinite elements [ 10– 12]. This approach comes useful and effective in 
solving various static and dynamics problems, however, its direct use for problems 
related to propagation of elastic waves in elements of structures becomes difficult 
and ineffective. This is because in this formulation the characteristic matrices appear 
as wave number dependent, which makes this approach impractical in the case of the 
analysis of propagation of wave packets, since they represent non-monochromatic 
signals composed of many harmonic components.

1 The boundary integral method, also known as the Boundary Element Method (BEM), is a close 
FEM cousin, which was also successfully employed for solving problems related to wave propaga-
tion in unbounded media [ 7– 9]. 
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Fig. 11.2 Wave propagation patterns for: a the longitudinal displacement component .ux for the 
1-mode 1-D theory (elementary) of rods, b for the radial displacement component.ur for the 2-mode 
1-D theory (Timoshenko) of beams, obtained for a 10 mm diameter semi-infinite aluminium bar. 
Results of numerical computations by FD-SFEM with NRBCs at infinity modelled by throw-off 
FEs 

The second and very interesting solution to this problem is a formulation, in which 
a similar approach is used, but taking advantage of the discrete Fourier transform 
[ 13– 15], which transforms the space and time domains into the wave number 2 and fre-
quency domains. The application of a computationally effective discrete fast Fourier 
transform (FFT) combined with a new class of boundary FEs, so-called throw-off 
elements, mimicking the existence of structural boundaries at infinity, makes this FE 
approach, better known in the literature as FD-SFEM, very powerful and effective. 
Despite its unquestionable advantages FD-SFEM turns out to be limited to simple 1-
D or 2-D geometries as well as simple 1-D or 2-D theories of the dynamic behaviour 
of structural elements [ 16– 18], as presented in Fig. 11.2. 

The third and very effective approach is the application of so-called non-reflective 
boundary conditions (NRBCs) as a numerical technique, in which some extra vari-
ables are used in order to obtain structural responses conforming with the Sommerfeld 
radiation condition [ 2], for these structural boundaries, which extend to infinity [ 19– 
21]. Although this approach can be combined with the classical FEM, it requires 
some modifications to the standard FEM solution procedures, in which the original 
equations of motion are supplemented with an additional integral term depending on 
the assumed properties of the non-reflective boundaries. For this reason its practical 
use stays limited to rather specific cases and as such in time the approach gave way 
to a new method, known as the absorbing layer method.

2 In physics the resulting space of the Fourier transform of a spatial function is often called the 
reciprocal space or just.k-space. 
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The fourth approach, the absorbing layer method, in fact represents two numerical 
techniques, these being: the perfectly matched layer (PML) and the absorbing layer 
with increasing damping (ALID), which can be much better integrated with FEM 
then those previously mentioned. 

The concept of PML is based on the assumption that within PML the space 
coordinates and their derivatives have a new definition, according to which they 
become frequency dependent [ 22]. In the case of the coordinate. x being transformed 
within PML to a new coordinate . ξ it can be formally written that: 

.x = ξ + iα(ξ) with α(ξ) = 1

ω

ξ{

0

β(η)dη (11.1) 

where the derivative with respect to the coordinate . x can be now expressed as: 

.
∂

∂x
= ∂

∂ξ

∂ξ

∂x
= ∂

∂ξ

[
1 + ih(ξ)

ω

]−1

(11.2) 

where .α(ξ) and .β(ξ) represent certain unknown smooth functions having the fol-
lowing properties: 

.α(0) = β(0) = 0, and α(1) = β(1) = 1 (11.3) 

where .ξ = 0 corresponds to PML-structure interface, while .ξ = 1 to the full depth 
of the layer, which functions are responsible for wave attenuation within PML for 
wave numbers .k > 0 and space coordinates .ξ > 0. 

It can be easily noted that according to such a definition a monochromatic wave 
.Aei(kx−ωt) propagating in the positive direction of the. x axis is attenuated after enter-
ing PML since the following relationship is satisfied within the layer: 

.
Aei(kx−ωt) = Aeikxe−iωt = Aeik[ξ+iα(ξ)]e−iωt

= Aeikξe−kα(ξ)e−iωt = e−kα(ξ)Aei(kξ−ωt) (11.4) 

as long as the attenuation function .α(ξ) is positive. 
The application of PML extends to various problems related to: electromagnetism 

[ 23– 25], seismology [ 26– 28], acoustics [ 29– 31] as well as the propagation of elastic 
waves [ 32– 34]. Although it is reported in the literature that the use of PML offers 
better computational properties and higher accuracy in terms of damping properties 
than the use of ALID, its full integration with the classical FEM approach becomes 
cumbersome. This is due to the inherent property of PML, which lies in the frequency 
dependence of the attenuation function .α(ξ), which results in the necessity to seek 
for solutions using implicit solvers in the frequency domain rather than in the time 
domain [ 22].
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Contrary to PML the use of ALID is very flexible in this respect and free of such 
additional requirements. The concept of ALID, which can be dated to early 1980s, 
is based on a simple assumption that the absorbing properties of ALID result purely 
from the damping properties of the medium, which is assumed to increase with the 
depth of the layer [ 35]. This is explained in detail in the next Sect. 11.3. 

11.3 Absorbing Layer with Increasing Damping 

Because of its definition the use of ALID can be much easier integrated with FEM 
[ 22] including numerous FEM packages available commercially. 

In the case of FEM the damping properties of ALID can be easily expressed by the 
characteristic global damping matrix . C, which typically are represented as a linear 
combination of the characteristic global inertia matrix .M and the global stiffness 
matrix .K as: 

.C = α(x)M + β(x)K (11.5) 

where .α(x) and .β(x) represents unknown smooth attenuation functions having the 
following properties: 

.α(0) = β(0) = 0, and α(L) = β(L) = 1 (11.6) 

with . L denoting the depth of ALID. 
As before a monochromatic wave .q(t) = q̂ ei(kx−ωt) propagating in the posi-

tive direction of the . x axis, resulting from the monochromatic excitation . F(t) =
F̂ ei(kx−ωt), can be assumed. Thanks to this the equations of motion presented below: 

.Mq̈(t) + Cq̇(t) + Kq(t) = F(t) (11.7) 

where the well-known relationships are employed: 

.q̇(t) = −iωq̂ ei(kx−ωt), q̈(t) = −ω2q̂ ei(kx−ωt) (11.8) 

can be expressed as the equations of equilibrium in the frequency domain, since they 
have to be satisfied for a given angular frequency . ω independently of time . t : 

. − ω2Mq̂ − iωCq̂ + Kq̂ = F̂ (11.9) 

Now, the resulting equilibrium equations, expressed by Eq. (11.9) in the frequency 
domain, can by modified by taking advantage of the assumed form of the character-
istic global damping matrix . C, given by Eq. (11.5). Thanks to this it can be written 
that: 

. −
[
1 + iα(x)

ω

]
ω2Mq̂ + [1 − iωβ(x)]Kq̂ = F̂ (11.10)
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It can be immediately noted that within ALID the material density . ρ as well as 
material Young’s modulus .E may be interpreted as frequency dependent since: 

.ρ(ω) = ρ

[
1 + iα(x)

ω

]
, E(ω) = E[1 − iωβ(x)] (11.11) 

Finally, taking into account the fact that the wave number . k associated with the 
given monochromatic wave, being proportional to the square root of the material 
density . ρ and inversely proportional to Young’s modulus . E , can also be expressed 
as frequency dependent [ 1]: 

.k(ω) ∝ ω

/
ρ(ω)

E(ω)
= ω

/
ρ

E

√
a(x) + ib(x) → k1,2 = ±(k , + ik ,,) (11.12) 

where .±k , and .±k ,, denote the real and imaginary parts of the roots .k1,2 and where: 

.a(x) = 1 − α(x)β(x)

1 + ω2β2(x)
, b(x) = α(x) + ω2β(x)

ω[1 + ω2β2(x)] (11.13) 

A careful examination of these roots allows one to check that the first root . k1
has its real and imaginary parts .k , and .k ,, always positive, while the second root 
.k2 = −k1 always negative. 3 For this reason the second root can be disregarded as 
a consequence of the assumed direction of wave propagation within ALID in the 
positive direction of the . x axis. 

As a final step the variation of the unknown smooth attenuation functions . α(x)
and.β(x) must be selected in order to obtain desired properties of ALID. According 
to [ 1, 22, 36] the most desirable form for these functions are power expressions, 
which can be assumed as: 

.α(x) = αx p, β(x) = βxq , with p, q > 0 (11.14) 

where . α and . β are certain constants. 
It should be emphasised that the constant value of . α and. β leads to the frequency 

dependence of the attenuation according to Eq. (11.9), which is not always desirable. 
In order to make the attenuation properties of ALID frequency independent it is 
sufficient to assume that: 

.α(x) = ωαx p, β(x) = βxq

ω
, with p, q > 0 (11.15)

3 It can be observed that formally it can be assumed that . k, + ik,, = ±√
(a + ib)2 =√

a2 − b2 + 2iab, with the real and imaginary parts. a and. b being positive, i.e..a, b > 0. Thus, it can  
be further observed that the principal root of the equation.z2 − k2 = 0, equal to. k, + ik,, = a + ib
must have its real and imaginary parts also positive, even if the real part of the expression under the 
square remains negative, i.e. even if .a2 − b2 < 0. 
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which allows one to express the characteristic global damping matrix .C in the fol-
lowing form: 

.C = ωαx pM + βxq

ω
K (11.16) 

As a consequence of this also the equations of equilibrium in the frequency domain 
are modified and can be presented as: 

. − [
1 + iαx p

]
ω2Mq̂ + [1 − iβxq ]Kq̂ = F̂ (11.17) 

It turns out that in computational practice not only the values of the constants 
. α and . β, but also the exponents . p and . q are very important. The depth of ALID 
is also a crucial parameter, which has a great influence on the overall effectiveness 
of the attenuation properties of ALID. Each time the depth of ALID should be 
precisely defined based on the knowledge about the excitation type and its frequency 
content, which on the other hand is closely correlated with the total number of modes, 
which can possibly participate in the calculated dynamic responses and wave motion 
[ 1, 22]. The effectiveness of ALID in the case of non-dispersive and dispersive waves 
is illustrated in Fig. 11.3. 

For majority of cases related to the analysis in the time domain, however, a slightly 
modified definition of ALID comes as very useful: 

.C = 10p(ξL)p
(

ωcM + K
ωc

)
, p = 3, 4, ωc = 2π fc (11.18) 

Fig. 11.3 Wave propagation patterns for: a the longitudinal displacement component .ux for the 
1-mode 1-D theory (elementary) of rods, b for the radial displacement component.ur for the 2-mode 
1-D theory (Timoshenko) of beams, obtained for a 10 mm diameter semi-infinite aluminium bar. 
Results of numerical computations by TD-SFEM with NRBCs at infinity modelled by ALID
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where now the depth of ALID. L is expressed in terms of a multiple of . n of a certain 
wavelength . λ, i.e. .L = nλ, while . fc denotes the carrier frequency associated with 
typical excitation signals having the form of a wave packet and characterised by the 
modulation frequency . fm . 

Typically, the wavelength. λ should be taken as associated with the longest wave-
length in the frequency content of the excitation signal out of all modes available. 4

Bearing in mind that this content can be estimated with various precision, in the 
majority of cases it is sufficient to assume that the range of frequencies starting from 
. fc − 2 fm to . fc + 2 fm is taken for satisfactory accuracy 5 or alternatively starting 
from . fc − 4 fm to . fc + 4 fm for better results, as discussed in Sect. 2.5. In the same  
manner it is recommended that the multiple of . n is taken as at least equal to 4, while 
for better results it can be increased up to 6 or even to 8. This is in slight contrast to 
the recommendations made in [ 1], when a much safer approach was used leading to 
unnecessary large depths of ALID and therefore large numerical models. 

Finally, it should be said that the use of ALID together with the explicit method 
of central differences, or other explicit time integration schemes, strongly affects the 
stability of the scheme and reduces the useful time increment .Δt due to very large 
values of damping introduced [ 22]. Out of two damping sources, one being propor-
tional to the characteristic global inertia matrix.M and the second to the characteristic 
global stiffness matrix . K, the latter has a much more profound effect on the stabil-
ity of the scheme, which leads to impractical small time steps. This can be easily 
avoided if this damping source is omitted. In the case of the damping proportional 
to the characteristic global inertia matrix .M this problem is not present. Moreover, 
it can be added that in order to take full advantage of the explicit solution method 
the characteristic global inertia matrix.M can be diagonalised or, when TD-SFEM is 
exploited, it may take full advantage of its existing diagonal or semi-diagonal form. 
The problem described above is not present, however, if the implicit .β-Newmark 
method is used or other implicit methods. 

At this point it is noteworthy that the concept of ALID has been extended to the 
reduced stiffness method (RSM) as reported in the literature [ 36]. Since only the 
damping source proportional to the characteristic global stiffness inertia matrix . M
can be used directly, due to resulting stability problems of the explicit time integration 
schemes, in RSM the frequency dependence of Young’s modulus from Eq. (11.11) is  
incorporated directly into the characteristic global stiffness matrix. K instead. Such an 
approach leads to an improved performance and effectiveness of the damping layer 
in comparison with ALID. However, this is achieved at additional computational 
cost.

4 For this reason the use of ALID should be limited in the case of low frequency excitations, as the 
longest wavelength requirement may lead to impractical large depths of the layer comparable to or 
even larger than the characteristic length of the structure under investigation. 
5 This means the damping levels of approximately 40, 70 or 80 dB for displacement components, 
their velocities or accelerations, respectively. 
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Chapter 12 
Numerical Case Studies 

12.1 Wave Propagation in a Stepped Bar 

12.1.1 Problem Definition 

As the first numerical example, wave propagation in an infinite stepped bar of the 
circular cross-section is considered. It is assumed that only longitudinal elastic waves 
can propagate within the bar. It is also assumed that the bar is made out of aluminium 
having the already known material properties: Young’s modulus .E of 67.5 GPa, 
Poisson’s ratio . ν of 0.33 and material density . ρ of 2700 kg/m. 

3, also summarised in 
Table 4.2 in Sect. 4.2. The geometry of the bar under investigation is presented in 
Fig. 12.1. 

A finite section of the bar, having length .L1 of 600 mm, is of particular interest. 
This section is indicated by points.P1 and.P2 as the points were dynamic responses of 
the bar are examined. The excitation signal is applied as a longitudinally acting force 
at point .P1, having the amplitude of 1 N and the form of 5 sine pulses at the carrier 
frequency . fc of 166.7 kHz, modulated by the Hann window, i.e. the frequency of 
modulation. fm = fc/m being equal to 33.3 kHz, where.m = 5. The total calculation 
time .T covers 300 . µs and is divided into 6,000 equal time steps. The excitation 
signal is presented in Fig. 12.2 in the time and frequency domains, for the initial 
100. µs of its duration in the time domain and the frequency range up to 500 kHz in 
the frequency domain. 

As clearly seen from Fig. 12.2b the excitation signal is broad in the frequency 
domain covering frequencies from the range starting at . f1 = 100.0 kHz up to . f2 =
233.3 kHz, where . f1,2 = fc ∓ 2 fm . It should be recalled that within this frequency 
range 97% of the signal energy is stored, as discussed earlier in Sect. 2.5. 
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Fig. 12.1 Geometry of an infinite stepped aluminium bar with NRCBs at infinity modelled by 
ALID 

Fig. 12.2 Normalised excitation signal in: a the time domain, b in the frequency domain 

The stepped bar under consideration can be characterised by two different cross-
sectional areas, as clearly seen in Fig. 12.1. The cross-sectional area of the bar is 
.S1 = πR2

1 over its entire length except a short section having length .L3 of 200 mm, 
where the cross-sectional area is increased to .S2 = πR2

2 . The assumed values of the 
radii .R1 and .R2 are 5 and 7 mm, respectively. 

12.1.2 Dispersion Curves and Theory Selection 

For modes of longitudinal waves propagating within the bar, the wide range of excited 
frequencies must be compared with the analytical dispersion curves already known 
from Sect. 6.1, in order to select the most appropriate theory of longitudinal behaviour 
of rods, which next can be employed for numerical computations.
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Fig. 12.3 Dispersion curves for: a the phase velocity, b the group velocity, for modes of longitudinal 
waves L.n(n = 0, 1, 2) corresponding to both cross-sectional areas of an infinite stepped aluminium 
bar, according to the analytical solution 

It is clear from Figs. 12.1 and 12.2 that excited elastic longitudinal waves cover 
different ranges of wave velocities for each cross-sectional area of the bar. According 
to the analytical solutions presented in Sect. 6.1, in the case of the cross-sectional 
area.S1 this range covers phase velocities from 4.94 km/s at. f1 = 100.0 kHz down to  
4.51 km/s at . f2 = 233.3 kHz, while in the case of the cross-sectional area . S2, phase 
velocities from 4.88 km/s at . f1 = 100.0 kHz down to 3.55 km/s at . f2 = 233.3 kHz, 
respectively. 

In a similar manner to the case of the cross-sectional area .S1 the same range of 
frequencies covers group velocities from 4.82 km/s at. f1 = 100.0 kHzup to 3.31  km/s  
at . f2 = 233.3 kHz, while in the case of the cross-sectional area . S2, group velocities 
from 4.01 km/s at . f1 = 100.0 kHz up to 1.96 km/s at . f2 = 233.3 kHz, respectively. 
This is clearly illustrated in Fig. 12.3. 

As clearly seen from Fig. 12.3 the longitudinal waves propagating in 1-D elastic 
space, which is the infinite stepped aluminium bar under consideration, are charac-
terised by very strong dispersion, 1 i.e. .−8.7% of the relative change in the phase 
velocity and .−31% in the group velocity in the case of the cross-sectional area . S1, 
as well as.−27% of the relative change in the phase velocity and.−51% in the group 
velocity in the case of the cross-sectional area . S2. This dispersion directly results 
from the Pochhammer characteristic equation and the broad range of excited fre-
quencies. Moreover, it practically concerns the fundamental longitudinal mode L. 0,

1 It is convenient to assume wave signals as characterised by dispersion of various strengths: very 
small, small, moderate, strong and very strong. These strengths correspond to absolute levels of the 
relative change in their phase or group velocities over a given frequency range, i.e. less than 1% for 
very small, up to 5% for small, up to 10% for moderate, up to 20% for strong and above 30% for 
very strong dispersion. 
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which is denoted as L.0|R1 in the case of the cross-sectional area.S1 and as L.0|R2 in the 
case of the cross-sectional area. S2. A similar notation is used for higher longitudinal 
modes L. 1 and L. 2. 

Moreover, it was clearly indicated in Fig. 9.10 from Sect. 9.1 that in the case 
of very strong dispersion, multi-mode or higher-order multi-mode theories of the 
longitudinal behaviour of rods prove to be more useful due to small relative modelling 
errors, as also summarised in Table 9.1. It is seen that in the current case the upper 
frequency limit of the excitation signal never exceeds the frequency corresponding to 
the first cut-off frequency. fL1|R1 of 359.4 kHz in the case of the cross-sectional area 
.S1 and. fL1|R2 of 256.7 kHz in the case of the cross-sectional area . S2. For this reason 
it is decided to employ the higher-order 2-mode 2-D theory of rod behaviour for 
the purpose of numerical modelling. This theory can be characterised by relatively 
simple definition of its displacement field and a great accuracy in the frequency range 
of interest. It should be emphasised here that the values of the cut-off frequencies 
based on analytical dispersion curves are always lower than the corresponding values 
obtained as based on simplified theories, providing a kind of safe margin in modelling. 

The phase velocity dispersion curves obtained for the selected theory, for modes 
of longitudinal waves L.0|R1 and L.1|R1 as well as L.0|R2 and L.1|R2 , corresponding to 
both cross-sectional areas .S1 and.S2 of the bar under consideration, are presented in 
Fig. 12.4. 

Indeed, it can be checked that within the range of excited frequencies the disper-
sion curves for the fundamental mode of longitudinal waves L. 0, corresponding to 
both cross-sectional areas of the bar, obtained for the selected higher-order 2-mode 
2-D theory of the longitudinal behaviour of rods, agree very well with the analytical 
solutions obtained based on the Pochhammer characteristic equation. In the case of 

Fig. 12.4 Dispersion curves for the phase velocity for modes of longitudinal waves L. 0 and L. 1, 
corresponding to: the cross-sectional area . S1, b the cross-sectional area . S2, of an infinite stepped 
aluminium bar, according to the higher-order 2-mode 2-D theory of the longitudinal behaviour of 
rods
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the cross-sectional area .S1 the extreme value of the relative modelling error associ-
ated with the phase velocity is negligible, since its value is equal to 0.26%, while its 
average value to 0.06%. In the case of the cross-sectional area .S2 the extreme value 
of the relative modelling error is higher, but still very small, and is equal to 0.60%, 
while its average value to 0.22%. 

In order to mimic the infinite length of the bar the technique of ALID is used, 
discussed in detail in Sect. 11.3. As a consequence of this the numerical model must 
be extended 2 accordingly in order to incorporate the presence of two damping layers, 
one at each end of the bar, as presented in Fig. 12.1. The depths of the layers must 
be defined as resulting not only from the frequency content of the excitation signal, 
but also as depending on the applied theory. 

12.1.3 ALID Parameters and Numerical Discretisation 

It is noteworthy that the knowledge of the range of excited frequencies can be used 
not only in order to select the most appropriate theory of the longitudinal behaviour 
of rods, or to establish the depth of ALID, but also to establish the requirements 
for the bar discretisation conforming with the minimal number of nodal distances 
per wavelength. The dispersion curves for the wavelength for modes of longitudinal 
waves corresponding to both cross-sectional areas of the bar, according to the higher-
order 2-mode theory of the longitudinal behaviour of rods, are presented in Fig. 12.5. 

It can be clearly seen from Fig. 12.5 that in the case of the cross-sectional area. S1
the extreme wavelengths for the selected excitation signal and its frequency content 
are .λ1|R1 = 49.4 mm at the frequency . f1 = 100.0 kHz and .λ2|R1 = 19.4 m at the  
frequency. f2 = 233.3 kHz. In a similar manner in the case of the cross-sectional area 
.S2 the corresponding wavelengths are.λ1|R2 = 48.8 mm at the frequency. f1 = 100.0
kHz and .λ1|R2 = 15.2 m at the frequency of . f2 = 233.3 kHz. Since the presence of 
ALID solely concerns the cross-sectional area .S1 the depth of each damping layer 
should be selected as a multiple of .λ1|R1 = 49.4 mm, so the assumed depth of ALID 
is.L = 4λ1|R1 ≈ 200mm, with.p = 3. For this reason the total length of the bar under 
consideration is increased by .2L from.L2 = 600 mm to .L3 = 1000 mm. 

It also is evident from Fig. 12.5 that the cut-off frequencies . fL1|R1 and . fL1|R2

corresponding to the current higher-order 2-mode 2-D theory of the longitudinal 
behaviour of rods are greater than those corresponding to the analytical solution 
based on the Pochhammer characteristic equation. In the case of the cross-sectional 
area.S1 this value is equal to 419.3 kHz, while in the case of the cross-sectional area 
.S2 it is equal to 299.5 kHz. 

At this point it should be strongly emphasised that any changes in the excitation 
frequency . fc or the modulation frequency . fm must involve corresponding modifi-

2 In order to mimic the behaviour of an infinite bar by the direct approach the enlarged FE model 
should be approximately 3 times greater to guarantee no reflections from the external boundaries 
within the assumed time window. 
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Fig. 12.5 Dispersion curves for the wavelength for modes of longitudinal waves L. 0 and L. 1, cor-
responding to: the cross-sectional area . S1, b the cross-sectional area . S2, of an infinite stepped 
aluminium bar, according to the higher-order 2-mode 2-D theory of the longitudinal behaviour of 
rods 

cations to the depth of ALID in order to guarantee its optimal damping properties. 
Based on the established parameters of ALID and the requirements for rod discreti-
sation a numerical model of the stepped bar under investigation can be finally built. 
For the purpose of the current analysis it is decided to use TD-SFEM and 6-node rod 
SFEs based on Chebyshev nodes [ 1], as discussed in Sect. 10.4. 

The knowledge of the corresponding shortest wavelengths obtained from Fig. 12.5 
allows one to state that in the case of the cross-sectional area.S1 the requirement of 5 
nodal distances per wavelength is satisfied only for the lengths of SFEs equal 3 to or 
shorter than the wavelength.λ2|R1 = 19.4mm, while in the case of the cross-sectional 
area .S2 for the lengths of SFEs equal to or shorter than the wavelength. λ2|R2 = 15.2
mm. Since it is decided to divide the bar into 500 rod SFEs of equal lengths, with the 
resulting length. l of a single rod SFE equal to 2 mm, the number of nodal distances per 
wavelength secured by such a discretisation level can be estimated as approximately 
equal to 48 nodal distances in the case of the cross-sectional area .S1 and 38 nodal 
distances in the case of the cross-sectional area. S2, respectively. The resulting number 
of the discrete numerical model DOFs is 5,002. 

12.1.4 Numerical Computations and Result Discussion 

For numerical computations carried out the implicit .β-Newmark method is used, 
as discussed in Sect. 10.7, for the recommended values of the parameters . α and .β

3 It is because for 6-node SFEs there are always 4 nodal distances between their first and last nodes. 
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Fig. 12.6 Spectra of frequencies of free vibrations for modes of longitudinal waves, corresponding 
to: a the higher-order 2-mode 2-D theory, b the 1-mode 1-D (elementary) theory, of the longitudinal 
behaviour of rods, obtained for an infinite stepped aluminium bar. Results of numerical computations 
by TD-SFEM with NRBCs at infinity modelled by ALID 

equal to.1/2 and.1/4, respectively. However, prior to the solution of the equations of 
motion the spectrum of frequencies of free vibrations of the bar under investigation 
is examined to confirm the correctness of the assumed parameters of the discrete 
numerical model of the bar, as presented in Fig. 12.6. 

It should be noted that in this step the discrete numerical model of the bar must 
take into account the contributions to the characteristic global inertia matrix .M and 
the global stiffness matrix. K resulting from the presence of both damping layers. For 
the sake of comparison this spectrum is accompanied by the spectrum of frequencies 
of free vibrations of the same bar, however, obtained in the case of the 1-mode 1-D 
theory (elementary) of rods. The remaining features and parameters of the discrete 
numerical model of the bar remain the same. 

It can be seen from Fig. 12.6 that the obtained spectrum of frequencies of free 
vibrations correlates very well with the dispersion curves for the phase velocity, 
previously presented in Fig. 12.4. At the same time the computational effort related 
to finding the frequencies of free vibrations, preferably a finite number of them, is 
much smaller than that corresponding to the process of establishing all dispersion 
curves from the Pochhammer characteristic equation. 

As a final element of the examination of the discrete numerical model the analysis 
of the performance of ALID is examined, since the use of ALID is directly responsible 
for the correctness and accuracy of calculated dynamic responses and generally 
for appropriate mimicking of the infinite dimensions of the bar [ 2]. The damping 
properties of ALID are tested in the case of a simplified geometry of the bar under 
the assumption of the constant cross-sectional area of the bar of .S1 along its entire 
length. In such a manner the only reflections, which potentially can be present in the
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Table 12.1 Statistical data on the relative amplitude damping associated with the ALID perfor-
mance for the 1-mode 1-D (elementary) and the higher-order 2-mode 2-D theory of longitudinal 
behaviour of rods 

Theory Component Disp. (dB) Vel. (dB) Acc. (dB) 

Elementary 1-D Longitudinal 42.69 60.32 83.25 

Higher-order 
2-mode 2-D 

Longitudinal 38.52 70.15 82.56 

Radial 74.11 105.9 118.5 

Fig. 12.7 Wave propagation patterns for the longitudinal acceleration component .üx for: a the 
higher-order 2-mode 2-D theory, b the 1-mode 1-D (elementary) theory, of the longitudinal 
behaviour of rods, obtained for an infinite stepped aluminium bar. Results of numerical compu-
tations by TD-SFEM with NRBCs at infinity modelled by ALID 

calculated dynamic responses are those related to the improper performance of ALID. 
The obtained results for the assumed form of the excitation signal are summarised 
in Table 12.1. 

Knowledge of the established parameters of the discrete numerical model of the 
bar under consideration allows one to compute its dynamic responses. They are 
presented as wave propagation patterns for the longitudinal acceleration component 
.üx in Fig. 12.7 and compared with similar results obtained in the case of the 1-mode 
1-D theory (elementary) of the longitudinal behaviour of rods. 4 It is also evident 
from Fig. 12.7 that the wave propagation patterns exhibit regions, when propagating 
elastic waves interact with the structural discontinuity present, very clearly revealing 
the part of the bar of the increased cross-sectional area. This concerns both discrete

4 In the case of the higher-order 2-mode 2-D theory of the longitudinal behaviour of rods the 
longitudinal displacement component .ux , or its time derivatives, can be compared with that of the 
1-mode 1-D (elementary) theory only on the upper surface of the bar, i.e. for .ζ = 1. Note that no 
such relationship exists for the radial displacement component. ur . 
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Fig. 12.8 Dynamic responses for the longitudinal acceleration component.üx taken at: a point.P1, 
b point.P2, of an infinite stepped aluminium bar modelled according to the 1-mode 1-D (elementary) 
and the higher-order 2-mode 2-D theory of the longitudinal behaviour of rods. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID 

numerical models of the bar. Despite the fact that qualitatively the obtained results 
are similar, certain obvious differences can be indicated. 

It can be stated that the observed differences result from the dispersive nature of 
the longitudinal waves, which is the direct consequence of the analytical solutions 
arising from the Pochhammer characteristic equation as well as the frequency content 
of the excitation signal. Obviously, this feature cannot be mimicked by the 1-mode 
1-D (elementary) theory of the longitudinal behaviour of rods, since in the case of this 
theory the phase and the group velocities remain independent of the frequency as well 
as the cross-sectional area of the bar. In other words the 1-mode 1-D (elementary) 
theory is non-dispersive. 

The difference between the results obtained based on both discrete numerical 
models of the bar becomes more apparent and even more strongly emphasised when 
the dynamic responses obtained are compared at points .P1 and .P2, as presented in 
Fig. 12.8, for the longitudinal acceleration component . üx . 

Now, it is evident from Figs. 12.7 and 12.8 that this difference builds up in time 
and distance, which for elongated structural elements may lead to significant dis-
crepancies. Such behaviour may be important for problems related to detection of 
any structural discontinuities, such as the stepped change in the bar cross-sectional 
area. For this reason the use of the 1-mode 1-D (elementary) theory for problems 
involving propagation of elastic waves should practically be limited only to quantita-
tive numerical tests before more appropriate multi-mode or higher-order multi-mode 
theories are applied.
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12.2 Wave Propagation in a Strip with a Side Cut-Out 

12.2.1 Problem Definition 

In the second numerical example a similar configuration to the previously analysed 
infinite stepped aluminium bar with NRBC is considered. This time, however, the 
object of the analysis is an infinite strip with a side cut-out. The geometry of the strip 
is presented in Fig. 12.9. 

It is assumed that as well as flexural waves, also shear horizontal waves can 
propagate within the strip. It is assumed that the strip is made out of the same material 
as previously, which is aluminium of the already known material properties: Young’s 
modulus. E of 67.5 GPa, Poisson’s ratio. ν of 0.33 and material density of 2700 kg/m. 

3, 
as summarised in Table 4.2 in Sect. 4.2. 

As before a finite section of the strip, having length .L1 of 900 mm, width .B1 of 
300 mm and thickness. h of 10 mm, is of particular interest. This section in indicated by 
points.P1 and.P2 as the points where dynamic responses of the strip are examined. The 
excitation signal is applied at point.P1 as a transversely acting bending force leading 
to the generation of antisymmetric SH-waves and antisymmetric Lamb waves. The 
excitation signal is assumed to have the amplitude of 1 N and the form of 12 sine 
pulses at the carrier frequency . fc of 60 kHz, modulated by the Hann window, i.e. 
the frequency of modulation . fm = fc/m being equal to 5 kHz, where .m = 12. The  
total calculation time. T covers 800. µs and is divided into 6400 equal time steps. The 

Fig. 12.9 Geometry of an infinite aluminium strip with a side cut-out, with NRCBs at infinity 
modelled by ALID
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Fig. 12.10 Normalised excitation signal in: a the time domain, b in the frequency domain 

excitation signal is presented in Fig. 12.10 in the time and frequency domains, for 
the initial 500. µs of its duration in the time domain and the frequency range from 30 
kHz up to 120 kHz in the frequency domain. 

It is evident from Fig. 12.10b that this time the excitation signal is narrow in the 
frequency domain covering frequencies from within the range from . f1 = 50 kHz 
up to . f2 = 70 kHz, where as before . f1,2 = fc ∓ 2 fm . It should be recalled that 
within this frequency range 97% of the signal energy is stored, as discussed earlier 
in Sect. 2.5. 

From Fig. 12.9 it can be seen that the strip under consideration can be characterised 
by a stepped change in its width, which is reduced from one side from the initial 
width .B1 of 300 mm to .B2 of 200 mm, i.e. by the cut-out of depth equal to 100 mm 
extending over the distance .L2 of 300 mm. Additionally, point .P3, located at the 
distance . l of 150 mm from point .P2 indicates the position of an additional mass of 
5 g. It is noteworthy that the additional mass of 5 g is equivalent to less than 0.1% of 
the total mass of the strip. The additional mass is assumed to be placed on the upper 
surface of the strip. 

12.2.2 Dispersion Curves and Theory Selection 

In a similar manner to before the range of excited frequencies must be compared 
with the analytical dispersion curves already known from Sects. 5.1 and 5.2, for  the  
antisymmetric modes of SH-waves and the Lamb waves propagating within the strip, 
in order to select the most appropriate theory of antisymmetric behaviour of plates, 
which next can be employed for numerical computations.



240 12 Numerical Case Studies

Fig. 12.11 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves: A. 0, A. 1 and SH. 1 propagating in a 10 mm thick aluminium 
strip with a side cut-out, according to the analytical solutions 

From Figs. 12.9 and 12.10 it is clear that due to the assumed form of the exci-
tation signal the excited waves within the strip practically concern the fundamental 
antisymmetric mode of Lamb waves A. 0, while the other antisymmetric modes of SH-
waves and Lamb waves are absent. According to the analytical solutions presented 
in Sect. 5.2 the excited phase velocities for the fundamental antisymmetric mode of 
Lamb waves A. 0 cover the range from 1.86 km/s at . f1 = 50 kHz up to 2.08  km/s at  
. f2 = 70 kHz, while in the case of the group velocities from 2.87 km/s at . f1 = 50
kHz up to 3.01  km/s at . f2 = 70 kHz. 

Based on Fig.  12.11 it can be concluded that the waves propagating as the fun-
damental antisymmetric mode of Lamb waves A. 0 in 2-D elastic space, which is the 
infinite aluminium strip under investigation with a side cut-out, are characterised 
by a moderate dispersion, i.e. 12% of the relative change in the phase velocity and 
5% in the group velocity. This is a direct consequence of the characteristic equa-
tion for antisymmetric modes of Lamb waves. This, together with the considerations 
from Sect. 8.2 and the results presented in Fig. 8.20 allow one to state that simple 
multi-mode theories of the antisymmetric behaviour of plates appears sufficient for 
modelling purposes, as summarised in Table 8.2. 

It is seen that in the current case the upper frequency limit of the excitation signal 
is placed well below the frequency corresponding to the first cut-off frequency for 
the first antisymmetric mode of SH-waves and Lamb waves A. 1 and SH. 1, . fA1|SH1 of 
153.4 kHz. For this reason it is decided to employ the modified 3-mode 2-D theory of 
antisymmetric behaviour of plates. This theory is characterised by a simple definition 
of its displacement field combined with the greatest accuracy in the frequency range 
of interest out of the theories discussed in Sect. 8.2. As before it should be emphasised 
that the values of the cut-off frequencies provided by analytical dispersion curves
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Fig. 12.12 Dispersion curves for: a the phase velocity, b the group velocity, for antisymmetric 
modes of Lamb waves and SH-waves propagating in a 10 mm thick infinite aluminium strip with a 
side cut-out, according to the modified 3-mode 2-D theory of the antisymmetric behaviour of plates 

are always lower than the values obtained from simplified theories, thus providing a 
kind of safe margin in modelling. 

The phase and group velocity dispersion curves obtained for this theory, for anti-
symmetric modes of Lamb waves and SH-waves, are presented in Fig. 12.12. It can 
be clearly seen Fig. 12.12 that within the range of excited frequencies the disper-
sion curve for the fundamental antisymmetric mode of Lamb waves A. 0, obtained for 
the selected modified 3-mode 2-D theory of the antisymmetric behaviour of plates, 
agrees very well with the analytical solution obtained based on the characteristic 
equation. 

The results presented in Fig. 12.12 allow one to easily assess the values of the 
modelling error. In the case of the fundamental antisymmetric mode of Lamb waves 
A. 0 it can be checked that the extreme value of the modelling error associated with 
the phase velocity is negligible with its value equal to 0.03% and its average value 
to 0.02%. In a similar manner the extreme value of the modelling error associated 
with the group velocity is equal to .−0.10% and its average value to .−0.06%. 

12.2.3 ALID Parameters and Numerical Discretisation 

In order to model the infinite length of the strip the same method is employed in 
the current case as in the case of the infinite stepped aluminium bar, which is the 
technique of ALID, discussed in detail in Sect. 11.3. As before a consequence of the 
use of ALID is that the numerical model of the strip must be extended accordingly 
to incorporate the presence of two damping layers, one at each end of the strip, as
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Fig. 12.13 Dispersion 
curves for the wavelength for 
modes of Lamb waves and 
SH-waves of a 10 mm thick 
infinite aluminium strip with 
a side cut-out, according to 
the modified 3-mode 2-D 
theory of the antisymmetric 
behaviour of plates 

presented in Fig. 12.9. The depths of the layers must be defined as resulting not only 
from the frequency content of the excitation signal, but also as depending on the 
applied theory. 

Again, it can be stated that the knowledge of the range of the excited frequen-
cies can be used not only to select the most appropriate theory of the antisymmet-
ric behaviour of plates or to establish the depth of ALID, but also to establish the 
requirements for the strip discretisation conforming with the minimal number of 
nodal distances per wavelength. The dispersion curves for the wavelength for modes 
of Lamb waves and SH-waves, according to the modified 3-mode 2-D theory of the 
antisymmetric behaviour of plates, are presented in Fig. 12.13. 

It can be clearly seen from Fig. 12.13 that the extreme wavelengths for the selected 
excitation signal and its frequency content are .λ1 = 37.1 mm at the frequency. f1 =
50 kHz and .λ2 = 29.7 mm at the frequency . f2 = 70 kHz. Since the presence of 
ALID solely concerns the fundamental antisymmetric mode of Lamb waves A. 0 the 
depth of each damping layer should be selected as a multiple of .λ1 = 37.1 mm, so 
the assumed depth of ALID is .L = 4λ1 ≈ 150 mm, with .p = 3. For this reason the 
total length of the strip under consideration is increased by .2L from .L2 = 900 mm 
to .L3 = 1200 mm. 

Yet again it should be strongly emphasised that any changes in the excitation fre-
quency. fc or the modulation frequency. fm must involve corresponding modifications 
to the depth of ALID in order to guarantee its optimal damping properties. Based 
on the established parameters of ALID and the requirements for plate discretisation 
a numerical model of the strip under investigation with a side cut-out can be finally
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Fig. 12.14 The mesh of plate SFEs, according to the modified 3-mode 2-D theory of the antisym-
metric behaviour of plates, used for numerical computations, consisting of 3,300 SFEs and 249,903 
DOFs 

built. For the purpose of the current analysis it is decided to use TD-SFEM and 
36-node plate SFEs based on Lobatto nodes [ 1], as discussed in Sect. 10.4. 

The knowledge of the corresponding shortest wavelengths obtained from 
Fig. 12.13 allows one to state, in a similar manner as in the case of the stepped 
aluminium bar, that the requirement of 5 nodal distances per wavelength is satisfied 
only for the characteristic dimensions of FEs equal to or shorter than the wavelength 
.λ2 = 29.7 mm. Thus, it is decided to divide the strip into 3,300 plate SFEs, i.e. 120 
SFEs along its length axis and 30 SFEs along its width, excluding 300 SFEs resulting 
from the presence of the cut-out. The mesh of SFEs resulting from the discretisation 
process is presented in Fig. 12.14. All SFEs represent squares of equal dimensions of 
10 by 10 mm. Since the characteristic dimension of a single plate SFE is 10 mm, the 
number of nodal distances per wavelength secured by such a discretisation level can 
be estimated as approximately equal to 15 nodal distances per shortest wavelength. 
The resulting number of DOFs of the discrete numerical model is 249,903. 

12.2.4 Numerical Computations and Result Discussion 

For numerical computations carried out the explicit method of central differences is 
used, as discussed in Sect. 10.7. The use of the explicit method of central differences 
enables one to take full advantage of the diagonal form of the resulting global inertia 
matrix. M. It is noteworthy that in the current case however, the spectrum of frequen-
cies of free vibrations of the strip is not examined due to the 2-D nature of the strip 
and, resulting from this, couplings of normal modes, which significantly complicate 
such an analysis in comparison with a 1-D case. For the very same reason also the 
performance of ALID is not tested. This performance can only be estimated based 
on the methodology presented before and concerning the results obtained in the case 
of the 1-D infinite stepped aluminium bar. 

The knowledge of the established parameters of the discrete numerical model of 
the strip under consideration allows one to compute its dynamic responses. They are 
presented in Fig. 12.15 as wave propagation patterns at selected moments in time 
for the transverse acceleration component . üz . It can be expected that the interaction 
of propagating waves with a structural discontinuity in the form of the additional
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Fig. 12.15 Wave propagation patterns for the transverse acceleration component .üz according to 
the modified 3-mode 2-D theory of the antisymmetric behaviour of plates, obtained for a 10 mm 
thick infinite aluminium strip with a side cut-out. Results of numerical computations by TD-SFEM 
with NRBCs at infinity modelled by ALID
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Fig. 12.16 Dynamic responses for the transverse acceleration component.üx taken at: a point.P1, 
b point .P2, of an infinite aluminium strip with a side cut-out modelled according to the modified 
3-mode 2-D theory of the antisymmetric behaviour of plates. Results of numerical computations 
by TD-SFEM with NRBCs at infinity modelled by ALID 

mass should influence the observed patterns in such a way that the location of the 
additional mass is clearly revealed. However, from the results presented in Fig. 12.15 
this is not evident. 

The reason for such behaviour may seem to lay in too small sensitivity of the 
propagating waves to structural damage/discontinuity. This sensitivity may be esti-
mated as proportional to the shortest wavelength out of all wavelengths constituent 
in the propagating waves and resulting from the assumed form of the excitation sig-
nal, which in the current case is .λ2 = 29.7 mm. However, this is not applicable to 
damage/discontinuity represented by a point mass. Alternatively, the problem may 
also be related to too complicated wave propagation patterns, which are very difficult 
to interpret due to multiple reflections and/or possible mode conversion. This prob-
lem is very well illustrated by Fig. 12.16 where the obtained dynamic responses are 
compared at points.P1 and.P2. It should be stressed that since the dynamic responses 
obtained at point.P1 are initially dominated by the excitation, it is decided to exclude 
the time window corresponding to the duration of excitation, which is equal to the 
modulation time .Tm of 200 . µs. 

It can be seen from Fig. 12.16 that within the time signals corresponding to points 
.P1 and .P2 there is no clear evidence of any reflections resulting from the presence 
of the additional mass, which on the other hand is the effect of signal reflections 
from lateral structural boundaries. Despite the fact that the signals obtained for the 
case when the additional mass is present or not must be different, it is impossible to 
extract directly from them any useful information about the location of the additional 
mass.
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Fig. 12.17 Differential signals for the transverse acceleration component .üx taken at: a point .P1, 
b point .P2, of an infinite aluminium strip with a side cut-out modelled according to the modified 
3-mode 2-D theory of the antisymmetric behaviour of plates. Results of numerical computations 
by TD-SFEM with NRBCs at infinity modelled by ALID 

This adverse situation is not significantly improved when differential signals 5 are 
examined, as shown in Fig. 12.17. It is clear that the amplitudes of the differential 
signals corresponding to points .P1 and .P2 are smaller than those of the original 
signals, which may present an additional problem for small signal-to-noise ratios. 
For this reason the estimation of the times of flight (ToF), in the current case, indicated 
as . t1 and . t2 in Fig. 12.17 based on which the location of the additional mass can be 
identified [ 1, 3], may be difficult and/or not precise due to the inherent dispersion 
of propagating wave signals. For this reason both ToFs are estimated assuming the 
signal threshold equal to 2% of its maximum value. In general, the poor sensitivity 
may be improved either by an increase in the carrier frequency. fc or alternatively by 
the use of more specialised damage indicators. 

It can be checked that in the current case the distance . l can be easily calculated 
from the following simple relationships: 

.

⎧
⎪⎪⎨

⎪⎪⎩

2|P1P2| = cg| f2 t1

|P1P3| = cg| f2 t2

l = |P1P2| − |P1P3|
→ l = cg| f2

(

t2 − t1
2

)

(12.1) 

which lead to the result of 182.3 mm, which is not too close to the assumed value of 
the distance . l equal to 150 mm, giving the relative error of 21.5%.

5 A differential signal is understood here as a signal resulting from the difference between the signal 
obtained at a given point for the current but unknown state of a structure, and some reference signal 
obtained at the same point, but for a well-defined state of the structure. 
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Fig. 12.18 WRMS(. n2) patterns for the transverse acceleration component .üz according to the 
modified 3-mode 2-D theory of the antisymmetric behaviour of plates, obtained for a 10 mm thick 
infinite aluminium strip with a side cut-out. Results of numerical computations by TD-SFEM with 
NRBCs at infinity modelled by ALID
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Of many damage indicators that can be possibly built and used, those which are 
based on the observation of the propagation of energy within a structure, rather 
than the observation of pure wave propagation patterns, seem particularly attractive. 
Typically a cumulative kinetic energy indicator or the root mean square (RMS) of 
measured time signals can be used for that purpose [ 1, 4]. It is noteworthy that 
damage indicators based on modified RMS, such as is a weighted root mean square 
(WRMS) for example, provide an increased sensitivity even in the case of damage of 
small magnitudes located at large distances from signal sources. 6 The use of such an 
improved damage indicator in the form of WRMS.(n2) is demonstrated in Fig. 12.18. 

Thanks to this the location of the additional mass within the strip under consider-
ation with a side cut-out becomes clearly visible as soon as the excited waves reach 
point .P2, that is after initial 400 . µs. In subsequent moments in time the obtained 
RMS patterns only become sharpened and amplified, which allows one to shorten 
the time of numerical analysis significantly. In the current case, according to results 
presented in Fig. 12.18, with no loss of accuracy the total calculation time . T can be 
reduced by half from the initial 800 to 400 . µs and from 6,400 equal time steps to 
3,200. 

It should be emphasised that for excitation signals broader in the frequency 
domain, which may lead to the propagation of other antisymmetric modes of SH-
waves and Lamb waves than the fundamental A. 0 mode of Lamb waves, other theo-
ries of antisymmetric behaviour of plates should be used, preferably multi-mode or 
higher-order multi-mode 3-D theories. 

12.3 Wave Propagation in a Flanged Pipe 
with a Circumferential Crack 

12.3.1 Problem Definition 

The last numerical example concerns wave propagation in the most complex con-
figuration, which is represented by an infinite flanged pipe section with a small 
circumferential crack. 

As before, thanks to the application on NRBC only a finite section of the structure 
can be investigated. Its geometry is presented in Fig. 12.19. It is assumed that the 
flanged pipe section under consideration is made out of aluminium of the same 
material properties as before: Young’s modulus .E of 67.5 GPa, Poisson’s ratio . ν of 
0.33 and material density of 2700 kg/m. 

3, as summarised in Table 4.2 in Sect. 4.2.

6 For a discrete sequence .u1, u2, . . . , un of . n numbers a weighted RMS can be simply defined as 

.WRMS(wn) =
/

w1u21 + w2u22 + · · · + wnu2n/
√
w1 + w2 + · · · + wn , where  .wn denote certain 

weights. In the case of WRMS(1) the weights are assumed as .wn = 1 and .WRMS(1) ≡ RMS, 
while in the case of WRMS.(n2) the weights are assumed as .wn = n2, thus . WRMS(n2) =/

u21 + 4u22 + · · · + n2u2n/
√
1 + 4 + · · · + n2. 
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Fig. 12.19 Geometry of an aluminium flanged pipe section with a circumferential crack, with 
NRCBs at infinity modelled by ALID 

The finite section of the pipe, having length .L1 of 500 mm, outer radius .R1 of 
150 mm and thickness. h of 10 mm, is of special interest. In the middle of this section 
a flange is located, having an outer radius .R2 of 250 mm and the same thickness . h
of 10 mm. On the flange face 6 evenly spaced M12 bolt sets are placed at a radius 
.R3 of 200 mm, represented by additional masses of 50 g each. Additionally, it is 
assumed that a small open circumferential crack, with its centre at point .P3 located 
at a distance. d of 17 mm from the flange centre, is spanned over the angle. α of 12. ◦C, 
which corresponds to its surface length of 31 mm. The crack is also assumed as open 
and a through-thickness crack. 

The flanged pipe section of interest is indicated by points .P1 and .P2, which are 
the points where dynamic responses are examined. The excitation signal is applied 
at point .P1 either as a transversely acting bending force leading to the generation of 
antisymmetric waves (antisymmetric excitation) or a transversely acting pair of ten-
sile or compressive forces leading to the generation of symmetric waves (symmetric 
excitation), as discussed in [ 5]. It has the amplitude of 1 N and the form of 11 sine 
pulses of the carrier frequency . fc of 110 kHz, modulated by the Hann window, i.e. 
the frequency of modulation . fm = fc/m being equal to 10 kHz, where .m = 11. As  
previously, the total calculation time. T covers 800. µs and is divided into 6400 equal 
time steps.
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Fig. 12.20 Normalised excitation signal in: a the time domain, b the frequency domain 

The excitation signal is presented in Fig. 12.20 in the time and frequency domains, 
for the initial 250. µs of its duration in the time domain and the frequency range from 
50 kHz up to 200 kHz in the frequency domain. 

12.3.2 Dispersion Curves and Theory Selection 

In the current case, due to the geometry of the section under consideration as well as 
two excitation modes, the process of the theory selection must concern both symmet-
ric and antisymmetric modes, which can propagate. As before the range of excited 
frequencies must be compared with the analytical dispersion curves already known 
from Sects. 5.1 and 5.2. This time, however, this process concerns the symmetric 
and antisymmetric modes of SH-waves and the Lamb waves, which can propagate 
within the structure, in order to select the most appropriate theories of symmetric and 
antisymmetric behaviour of plates/shells, which next can be employed for numerical 
computations. 

From Figs. 12.20 and 12.21 it is evident that due to the assumed form of the exci-
tation signal the excited waves within the section only concern three fundamental 
modes: the fundamental symmetric mode of Lamb waves S. 0, the fundamental anti-
symmetric mode of Lamb waves A. 0 as well as the fundamental symmetric mode of 
SH-waves SH. 0, while the remaining symmetric and antisymmetric modes of SH-
waves and Lamb waves are absent. 

According to the analytical solutions presented in Sect. 5.2 the excited phase 
velocities for the fundamental symmetric mode of Lamb waves S. 0 cover the range 
from 5.23 km/s at . f1 = 90 kHz down to 5.13 km/s at . f2 = 130 kHz, for the funda-
mental antisymmetric mode of Lamb waves A. 0 from 2.23 km/s at. f1 = 90 kHz up to
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Fig. 12.21 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric and 
antisymmetric modes of Lamb waves and SH-waves: S. 0, S. 1, A. 0, A. 1, SH. 0 and SH. 1 propagating 
in a 10 mm thick aluminium flanged pipe section with a circumferential crack, according to the 
analytical solutions 

2.44 km/s at. f2 = 130 kHz, while for the fundamental symmetric mode of SH-waves 
SH. 0, which is non-dispersive, it is constant and equal to 3.07 km/s for all frequen-
cies. In the case of the group velocities the obtained values are different and for the 
fundamental symmetric mode of Lamb waves S. 0 cover the range from 5.08 km/s 
at . f1 = 90 kHz down to 4.73 km/s at . f2 = 130 kHz, for the fundamental antisym-
metric mode of Lamb waves A. 0 from 3.07 km/s at . f1 = 90 kHz up to 3.10  km/s at  
. f2 = 130 kHz. 

Based on Fig. 12.21 it can be concluded that the waves propagating as the funda-
mental modes in 2-D elastic space, which is the infinite flanged pipe section under 
investigation with a circumferential crack, are characterised by moderate dispersion, 
i.e. .−1.9% of the relative change in the phase velocity and .−6.9% in the group 
velocity in the case of the fundamental symmetric mode of Lamb waves S. 0 and 9.4% 
of the relative change in the phase velocity and 1.0% in the group velocity in the 
case of the fundamental antisymmetric mode of Lamb waves A. 0. This is a direct 
consequence of the characteristic equations for the symmetric and antisymmetric 
modes of Lamb waves and SH-waves. This, together with the considerations from 
Sects. 8.1 and 8.2, as well as the results presented in Fig. 8.20, allows one to state 
that simple multi-mode theories of the symmetric and antisymmetric behaviour of 
plates appear sufficient for modelling purposes, as summarised in Tables 8.1 and 8.2. 

In the same manner as before it can be noted that in the current case the upper 
frequency limit of the excitation signal is placed below the frequency corresponding 
to the first cut-off frequency for the first antisymmetric mode of SH-waves and Lamb 
waves, A. 1 and SH. 1,. fA1|SH1 of 153.4 kHz. Based on the same reasoning as in the case 
of the previous numerical example, discussed in Sect. 12.2, it is decided to employ the 
modified 6-mode 3-D theory of shells. Of the simple theories discussed in Sects. 8.1
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Fig. 12.22 Dispersion curves for: a the phase velocity, b the group velocity, for symmetric and 
antisymmetric modes of Lamb waves and SH-waves propagating in a 10 mm thick infinite aluminium 
flanged pipe section with a circumferential crack, according to the modified 6-mode 3-D theory of 
shells 

and 8.2, the current theory, being a simple combination of the modified 3-mode 
theories of the symmetric and antisymmetric behaviour of plates, is characterised by 
a simple definition of its displacement field combined with a great accuracy in the 
frequency range of interest. As previously it should be emphasised that the values 
of the cut-off frequencies provided by analytical dispersion curves are always lower 
than the values obtained from simplified theories, thus providing a kind of safe margin 
in modelling. 

The phase and group velocity dispersion curves obtained for the modified 6-mode 
theory of shells, for symmetric and antisymmetric modes of Lamb waves and SH-
waves, are presented in Fig. 12.22. It can be clearly seen in Fig. 12.22 that within the 
range of excited frequencies the dispersion curves for the fundamental symmetric 
mode of Lamb waves S. 0, the fundamental antisymmetric mode of Lamb waves A. 0

and the fundamental symmetric mode of SH-waves SH. 0, obtained for the selected 
modified 6-mode 3-D theory of shells, agree very well with the analytical dispersion 
curves obtained based on the corresponding characteristic equations. 

It should be emphasised that based on the results presented in Fig. 12.22 the 
extreme values of the modelling errors can be easily assessed. In the case of the 
fundamental symmetric mode of Lamb waves S. 0 the relative error associated with 
the phase velocity is very small with its value equal to 0.92% and its average value to 
0.55%, while in the case of the fundamental antisymmetric mode of Lamb waves A. 0

is negligible with its value equal to .−0.06% and its average value equal to .−0.04%. 
In the same manner the extreme values of the modelling errors associated with the 
group velocity are examined. As a result it can be stated that in the case of the 
fundamental symmetric mode of Lamb waves S. 0 the relative error associated with 
the group velocity is small with its value equal to 3.92% and its average value equal to
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2.21%, while in the case of the fundamental antisymmetric mode of Lamb waves A. 0

is negligible with its value equal to .−0.26% and its average value equal to .−0.21%. 
The modelling errors associated with the fundamental symmetric mode of SH-

waves SH. 0 is neglected in this analysis, since this wave mode is non-dispersive and 
as a consequence it fully conforms with the analytical dispersion curves obtained for 
the phase and group velocities. 

12.3.3 ALID Parameters and Numerical Discretisation 

In order to model the infinite length of the flanged pipe section the same method is 
employed in the current case as in the case of the infinite aluminium strip, which 
is the technique of ALID, discussed in detail in Sect. 11.3. In the same manner as 
before it can be said that as a consequence of the use of ALID the numerical model 
of the pipe section must be extended accordingly to incorporate the presence of two 
damping layers, one at each end of the pipe section, as presented in Fig. 12.19. The  
depths of the layers must be defined as resulting not only from the frequency content 
of the excitation signal, but also as depending on the applied theory. 

Once again, it can be stated that the knowledge of the range of the excited frequen-
cies can be used not only to select the most appropriate theory of the shell behaviour 
or to establish the depth of ALID, but also to establish the requirements for the 
flanged pipe section discretisation conforming with the minimal number of nodal 
distances per wavelength. The dispersion curves for the wavelength for modes of 
Lamb waves and SH-waves, according to the modified 6-mode 3-D theory of shells, 
are presented in Fig. 12.23. 

It can be clearly seen from Fig. 12.23 that the extreme wavelengths for the selected 
excitation signal and its frequency content must differ depending on the wave mode 
under consideration, since three fundamental modes of Lamb waves and SH-waves 
are present there. In the case of the fundamental symmetric mode of Lamb waves S. 0
the corresponding values of the extreme wavelengths are the greatest and equal to 
.λ1|S0 = 58.4mm at the frequency. f1 = 90 kHz and.λ2|S0 = 39.8mm at the frequency 
. f2 = 130 kHz. In the case of the fundamental antisymmetric mode of Lamb waves 
A. 0 the corresponding values of the extreme wavelengths are the smallest and equal to 
.λ1|A0 = 24.8mm at the frequency. f1 = 90kHz and.λ2|A0 = 18.8mm at the frequency 
. f2 = 130 kHz. Consequently, in the case of the fundamental symmetric mode of SH-
waves SH. 0 the extreme wavelengths take intermediate values equal to. λ1|SH0 = 34.1
mm at the frequency. f1 = 90 kHz and.λ2|SH0 = 23.6 mm at the frequency. f2 = 130
kHz. 

Since the depth of ALID must be defined using the knowledge about the longest 
wavelength in the frequency content of the excitation signal out of all modes available, 
it can be stated that in the current case this must be done based on the values related 
to the fundamental symmetric mode of Lamb waves S. 0. As before the depth of each 
damping layer is taken as a multiple of .λ1|S0 = 58.3 mm, so the assumed depth 
of ALID is .L = 4λ1 ≈ 234 mm, with .p = 3. For this reason the total length of
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Fig. 12.23 Dispersion 
curves for the wavelength for 
modes of Lamb waves and 
SH-waves of a 10 mm thick 
infinite aluminium flanged 
pipe section with a 
circumferential crack, 
according to the modified 
6-mode 3-D theory of shells 

the flanged pipe section under consideration must be increased by at least .2L from 
.L1 = 500 mm to.L2 = 968 mm, which value is additionally increased to. L2 = 1000
mm in order to simplify the discretisation process. 

It should be emphasised here that any changes in the excitation frequency. fc or the 
modulation frequency . fm must involve corresponding modifications to the depth of 
ALID in order to guarantee its optimal damping properties. Based on the established 
parameters of ALID and the requirements for shell discretisation a numerical model 
of the flanged pipe section under investigation with a circumferential crack can be 
finally built. For the purpose of the current analysis it is decided to use TD-SFEM 
and 36-node shell SFEs based on Lobatto nodes [ 1], as discussed in Sect. 8.3. 

The knowledge of the corresponding shortest wavelengths obtained from 
Fig. 12.23 allows one to state, in a similar manner as in both previous numerical 
cases, that the requirement of 4 nodal distances per wavelength is satisfied only for 
the lengths of SFEs equal to, or shorter than, the wavelength .λ2|A0 = 18.8 mm. 

Thus, it is decided to divide the strip into 3,960 shell SFEs, i.e. 60 SFEs along its 
length axis and 60 SFEs along its circumference, plus 360 SFEs used for modelling 
the flange, as presented in Fig. 12.24. As a result of the discretisation process the 
characteristic dimension of each SFE can be estimated as 16.6 mm, thus the number 
of nodal distances per wavelength secured by such a discretisation level can be 
estimated as approximately equal to 6 nodal distances per shortest wavelength. The 
resulting number of DOFs of the discrete numerical model is 595,854.
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Fig. 12.24 The mesh of 
shell SFEs, according to the 
modified 6-mode 3-D theory 
of shells, used for numerical 
computations, consisting of 
3,960 SFEs and 595,854 
DOFs 

12.3.4 Numerical Computations and Result Discussion 

For numerical computations carried out the explicit method of central differences, as 
discussed in Sect. 10.7, is employed exactly in the same manner as in the case of the 
infinite aluminium strip with a side cut-off. The use of the explicit method of central 
differences enables one to take advantage of the diagonal form of the resulting global 
inertia matrix. M. However, it should be strongly emphasised here that in the case of 
the flanged pipe section under investigation the geometrical couplings resulting from 
non-flat geometry lead to certain off-diagonal elements in the global inertia matrix 
. M. Their magnitudes, being inversely proportional to the local radius of curvature, 
remain very small in comparison with the diagonal elements of this matrix and for 
this reason all off-diagonal elements in the global inertial matrix .M are neglected. 

The spectrum of frequencies of free vibrations of the flanged pipe section is 
also not examined due to the 3-D nature of the section and resulting couplings of 
normal modes, which significantly complicate, or simply prevent, such an analysis in 
comparison with 1-D cases. For the very same reason also the performance of ALID 
is not tested. However, this performance can be estimated based on the methodology 
presented before and concerning the results obtained in the case of the 1-D infinite 
stepped aluminium bar. 

The knowledge of the established parameters of the discrete numerical model 
of the flanged pipe section under consideration allows one to compute its dynamic 
responses. They are presented in Figs. 12.25 and 12.26 as wave propagation patterns 
at selected moments in time for the amplitudes of the resulting acceleration compo-
nents .AMP2 = ü2x + ü2y + ü2z , for both types of excitation. It can be expected that 
the interaction of propagating waves with structural discontinuities in the form of
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Fig. 12.25 Wave propagation patterns for the amplitude of the resulting acceleration component 
AMP according to the modified 6-mode 3-D theory of shells, obtained for an aluminium flanged pipe 
section with a circumferential crack in the case of antisymmetric excitation. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID
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Fig. 12.26 Wave propagation patterns for the amplitude of the resulting acceleration component 
AMP according to the modified 6-mode 3-D theory of shells, obtained for an aluminium flanged pipe 
section with a circumferential crack in the case of the symmetric excitation. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID
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the crack and bolts should influence the observed patterns in such a way that their 
locations are revealed. However, from the results presented in Figs. 12.25 and 12.26 
this is not evident. 

The reason for such behaviour may seem to lie in too small sensitivity of the prop-
agating waves to structural damage/discontinuity. This sensitivity may be estimated 
as proportional to the shortest wavelength out of all wavelengths constituent in the 
propagating waves and resulting from the assumed form of the excitation signal, 
but it also depends on the type of excitation [ 1, 6, 7]. In the case of antisymmetric 
excitation the shortest wavelengths is .λ2|A0 = 18.8 mm, while in the case of sym-
metric excitation it is.λ2|S0 = 39.8 mm. Despite the fact of mode conversion between 
symmetric and antisymmetric modes at the flange position the response of the pipe 
section is dominated by the type of excitation. For this reason, at least in the case 
of the antisymmetric excitation, since the crack length of 31 mm is grater than the 
shortest wavelength, the location of the crack should be clearly revealed. However, 
this is not visible in either case of excitation except the early stage of development of 
wave propagation patterns, as seen in Fig. 12.25 at 200 . µs and Fig. 12.26 at 100 . µs. 
Alternatively, the problem may also be related to too complicated wave propagation 
patterns, which are very difficult to interpret due to multiple reflections and/or possi-
ble mode conversion. This problem is very well illustrated by Figs. 12.27 and 12.28, 
for both types of excitation, where the obtained dynamic responses are compared at 
points .P1 and.P2. As previously it should be pointed out that the dynamic responses 
obtained at point .P1 are initially dominated by the excitation. For this reason it is 
decided to exclude the time window corresponding to the time of excitation, which 
is equal to the modulation time .Tm of 100 . µs. 

Fig. 12.27 Dynamic responses for the transverse acceleration component .üx taken at: a point 
.P1, b point .P2, of an aluminium flanged pipe section with a circumferential crack in the case of 
the antisymmetric excitation, according to the modified 6-mode 3-D theory of shells. Results of 
numerical computations by TD-SFEM with NRBCs at infinity modelled by ALID
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Fig. 12.28 Dynamic responses for the transverse acceleration component.üx taken at: a point.P1, 
b point .P2, of an aluminium flanged pipe section with a circumferential crack in the case of the 
symmetric excitation, according to the modified 6-mode 3-D theory of shells. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID 

It can be seen from Figs. 12.27 and 12.28 that within the time signals correspond-
ing to points .P1 and .P2 there is no clear evidence of any reflections resulting from 
the presence of the crack, which on the other hand is the effect of signal reflec-
tions/conversion at the flange position. Despite the fact that the signals obtained for 
the cases when the crack is present or not must be different, it is impossible to directly 
extract from them any useful information about the location of the crack. 

This adverse situation is not significantly improved when differential signals are 
examined, as shown in Figs. 12.29 and 12.30, for the same two types of excitation. 
It is clear that the amplitudes of the differential signals corresponding to points . P1
and .P2 are smaller than those of the original signals, which may present a problem 
for small signal-to-noise ratios. For this reason the estimation of the times of flight 
(ToF), in the current case indicated as . t1 and . t2 in Figs. 12.29 and 12.30, based on 
which the location of the additional mass can be evaluated [ 1, 3], is difficult and/or 
not precise due to the inherent dispersion of propagating wave signals. Both ToFs 
are estimated assuming the same signal threshold equal to 2% of its maximum value. 
In the same manner as before the poor sensitivity may be improved either by an 
increase in the carrier frequency . fc or alternatively by the use of more specialised 
damage indicators. 

It can be checked that in the current case the distance . d can be easily calculated 
from the following simple relationships: 

.

⎧
⎪⎪⎨

⎪⎪⎩

2|P1P3| = cg| f2 t1

|P1P2| = cg| f2 t2

2d = 2|P1P3| − |P1P2|
→ d = cg| f2

(
t1 − t2

2

)

(12.2)
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Fig. 12.29 Differential signals for the transverse acceleration component .üx taken at: a point 
.P1, b point .P2, of an aluminium flanged pipe section with a circumferential crack in the case of 
the antisymmetric excitation, according to the modified 6-mode 3-D theory of shells. Results of 
numerical computations by TD-SFEM with NRBCs at infinity modelled by ALID 

Fig. 12.30 Differential signals for the transverse acceleration component .üx taken at: a point .P1, 
b point .P2, of an aluminium flanged pipe section with a circumferential crack in the case of the 
symmetric excitation, according to the modified 6-mode 3-D theory of shells. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID
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Fig. 12.31 WRMS (. n2) patterns for the amplitude of the resulting acceleration component AMP 
according to the modified 6-mode 3-D theory of shells, obtained for an aluminium flanged pipe 
section with a circumferential crack in the case of the antisymmetric excitation. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID



262 12 Numerical Case Studies

Fig. 12.32 WRMS (. n2) patterns for the amplitude of the resulting acceleration component AMP 
according to the modified 6-mode 3-D theory of shells, obtained for an aluminium flanged pipe 
section with a circumferential crack in the case of the symmetric excitation. Results of numerical 
computations by TD-SFEM with NRBCs at infinity modelled by ALID
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which lead to the result of 18.5 mm in the case of antisymmetric excitation and of 
16.0 mm in the case of symmetric excitation. The obtained results stay close to the 
assumed value of the distance . d equal to 17 mm with the relative error of 8.5% and 
.−5.5%, respectively. 

In the very same manner as before, in order to precisely pinpoint the location of 
the crack, the damage indicator in the form of WRMS.(n2) is employed as presented 
in Figs. 12.31 and 12.32. Thanks to this the location of the crack within the flanged 
pipe section under consideration with a circumferential crack becomes easily visible 
as soon as the excited waves reach point .P2, that is well before the initial 400. µs. At 
the same time the locations of the bolts are also revealed. 

It can be also noted that the interaction of propagating waves with the crack 
leads to more prominent patterns revealing the crack location in the case of the 
antisymmetric excitation than in the case of the symmetric excitation. The behaviour 
observed is explained based on the same analysis of the characteristic wavelengths 
associated with both types of excitations already given. Consequently, in the case of 
the symmetric excitation these wavelengths are much greater due to the greater values 
of the phase and group velocities associated with the fundamental symmetric mode 
of Lamb waves S. 0, as clearly seen from Fig. 12.23. Thus, the resulting sensitivity to 
damage is smaller than in the case of the antisymmetric excitation. 

As before, it can be observed that in consecutive moments in time the obtained 
RMS patterns only become sharpened and amplified, which allows one to shorten 
the time of numerical analysis significantly. In the current case, according to results 
presented in Figs. 12.31 and 12.32, with no loss of accuracy the total calculation time 
. T can be reduced by half from the initial 800 to 400 . µs and from 6,400 equal time 
steps to 3,200. 

It should be emphasised that for excitation signals broader in the frequency 
domain, which may lead to the propagation of other symmetric or antisymmetric 
modes of Lamb waves and SH-waves than the fundamental modes S. 0, A. 0 and SH. 0

mode other theories of shell behaviour should be used, preferably multi-mode or 
higher-order multi-mode 3-D theories. 
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Chapter 13 
Periodic Properties of FE Discrete 
Numerical Models 

13.1 Bloch’s Theorem 

Bloch’s 1 theorem is one of the most fundamental theorems in solid-state physics, 
which allows one to study the properties and the behaviour of periodic structures. 
It should be said that now its application fields lay far beyond solid-state physics 
and concern not only the investigations of crystal lattices, but also the design and 
development of metamaterials and even further, to study the numerical properties 
of computational models. The close resemblance of these application fields is well 
illustrated by Fig. 13.1. 

The essence of Bloch’s theorem is the statement that the solution to the 
Schrödinger 2 wave equation .ψ in the case of periodic potentials takes a special 
form and can be represented as a plane harmonic wave .eik·r modulated by a certain 
periodic function . u, which expresses the properties of the potentials. This can be 
formally written in the following manner: 

.ψ(r) = eik·ru(r) (13.1) 

1 Felix Bloch (1905–1983) was a Swiss born American physicist whose works mainly concerned 
solid-state physics: ferromagnetism and nuclear magnetic resonance. For his input in this field he 
was awarded the Nobel Prize in Physics in 1952. His theoretical works concerned the application 
of the Schrödinger equation for studies of the behaviour of electrons in crystal lattices and led to 
the formulation of the theorem known today as Bloch’s theorem. 
2 Erwin Rudolf Josef Alexander Schrödinger (1887–1961) was an Austrian theoretical physicist, 
naturalised in Ireland in 1948, who formulated one of the most important and fundamental equations 
of the solid-state physics, which is known nowadays as the Schrödinger equation. For his theoretical 
works on quantum mechanics he was awarded the Nobel Prize in Physics in 1933. His broad scientific 
interests concerned also statistical mechanics, thermodynamics, electrodynamics, general relativity 
and many more. 
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Fig. 13.1 A schematic representation of periodic structures: a a 2-D lattice of carbon atoms in 
graphene formed out of hexagonal cells, b a 2-D mesh of FEs formed out of 9-node square FEs 

where .r = [x, y, z]T denotes the position vector in a 3-D space, the symbol . k =
[kx , ky, kz]T denotes the vector of wave numbers, while . i is the imaginary unit, i.e. 
.i2 = −1. 

Despite its general applicability to problems in 3-D space Bloch’s theorem is 
much easier to follow in a 1-D case. For this purpose it is assumed that longitudinal 
harmonic waves propagate within a 1-D periodic medium, which can be described by 
two different wave propagation phase velocities.c1 and. c2. In order to further simplify 
the analysis it is also assumed that the wave behaviour can be fully described by the 
1-D wave equation for longitudinal waves, given by Eq. (2.15), which in the realm of 
FEM is equivalent to the 1-mode 1-D theory (elementary) of rods, given by Eq. (9.2). 

Formally, Bloch’s theorem in a 1-D case can be presented in the following way: 

.ψ(x) = eikxu(x) (13.2) 

where. k is the wave number. As a consequence, for periodically spaced cells of length 
. a the following relation must be satisfied at the cell level: 

.ψ(x + a) = eik(x+a)u(x + a) = eikaeikxu(x) = eikaψ(x) (13.3) 

since the modulation function . u is periodic, i.e. .u(x + a) = u(x). 
It is noteworthy that although Bloch’s theorem is formulated for infinite media it 

can also be applied to study the behaviour of finite structures, such as, for example, 
structures composed of a large number of cells 3 periodically arranged in space. This

3 In practice the properties of periodic structures are well exhibited for the number of cells as small 
as 100. However, for real structures of finite dimensions composed of a smaller number of cells 
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Fig. 13.2 A schematic representation of a 1-D periodic medium characterised by two different 
phase velocities.c1 and.c2 of propagating waves 

can be easily achieved by a simple assumption of periodic/cyclic boundary conditions 
for the function . ψ, i.e. when .ψ(x + aN ) = ψ(x), where .N is the total number of 
cells. 

Consequently, the 1-D periodic medium under consideration can be well described 
by a sequence of .N cells of length . a, where within each cell the phase velocity of 
propagating waves is equal to.c1 over the distance.(a − b) and to.c2 over the distance 
. b, as presented in Fig. 13.2 [ 1]. 

Next, the periodic/cyclic boundary conditions .ψ(x + aN ) = ψ(x) can be com-
bined with Eq. (13.3) in order to obtain the relationship, which must be satisfied at 
the sequence level: 

.ψ(x + aN ) = eikaNψ(x) = ψ(x) → eikaN = 1 (13.4) 

which leads to the relationship for the wave number . k: 

.eikaN = 1 → kn = 2πn

aN
, n = 0,±1,±2, . . . ,±N/2 (13.5) 

where.kn takes only.N/2 + 1 different values 4 in order to represent waves travelling 
in the negative and positive directions of the . x axis. 

It can be checked that in the 1-D periodic medium both Bloch’s waves.ψ1 and.ψ2, 
representing the solutions to the wave equation within a single cell of length . a, can 
be expressed as: 

.

⎧
⎨

⎩

ψ1(x) = A1eik̂1x + A2e−i k̂1x , 0 ≤ x ≤ a − b

ψ2(x) = B1eik̂2x + B2e−i k̂2x , a − b ≤ x ≤ a
(13.6) 

reaching only 40 or 50 cells such properties can also be found, although in such cases they may be 
influenced by structural boundary conditions.
4 Note that.n = 0 is the value of the wave number.kn →0 corresponding to the wavelength. λn →∞
or alternatively to a constant wave field. 
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while thanks to the use of Eq. (13.3) both periodic waves.u1 and.u2 have the following 
form: 

.

⎧
⎨

⎩

u1(x) = A1ei(k̂1−kn)x + A2e−i(k̂1+kn)x , 0 ≤ x ≤ a − b

u2(x) = B1ei(k̂2−kn)x + B2e−i(k̂2+kn)x , a − b ≤ x ≤ a
(13.7) 

where .A1, .A2, .B1 and .B2 are certain unknown constants, while . ω is the common 
angular frequency for both harmonic waves .ψ1 and .ψ2 such that: 

.ω = k̂1c1 = k̂2c2 (13.8) 

The use of the continuity conditions for the Bloch’s waves .ψ1 and .ψ2 and their 
spatial derivatives, as well as for the periodic waves.u1 and. u2, which can be written 
as: 

.

⎧
⎪⎪⎨

⎪⎪⎩

ψ1|0+ = ψ2|0− ,
dψ1

dx

|
|
|
0+

= dψ2

dx

|
|
|
0−

u1|a−b = u2|b, du1
dx

|
|
|
a−b

= du2
dx

|
|
|
b

(13.9) 

leads to a set of four homogeneous equations for the unknown constants .A1, .A2, 
.B1 and .B2. A non-trivial solution to this set can be obtained only if its determinant 
vanishes, i.e. when the following equation is satisfied: 

.

cos[k̂1(a − b)] cos k̂2b − k̂21 + k̂22
2k̂1k̂2

sin[k̂1(a − b)] sin k̂2b

= cos kna, n = 0,±1,±2, . . . ,±N/2

(13.10) 

which equation represents the characteristic solution to the wave propagation problem 
in the 1-D periodic medium characterised by two different wave propagation phase 
velocities. 

It should be pointed out that the characteristic Eq. (13.10) is dependent on the 
angular frequency . ω through the wave numbers .k1 and . k2. It can be easily solved 
numerically, with the angular frequency. ω treated as a parameter. Based of the form 
of the characteristic equation it can be stated that that the phenomenon of wave 
propagation in a 1-D periodic medium described by two different phase velocities 
.c1 and .c2 is dispersive. An interesting feature of the characteristic equation is also 
the fact that it has real solutions only if the absolute value of its left-hand side stays 
below 1. Also for this reason the resulting dispersion curve becomes discontinuous. 

Consequently, the characteristic Eq. (13.10) predicts the presence of certain fre-
quency bands, so-called frequency band gaps, 5 within which no harmonic waves can 
propagate within the 1-D periodic medium under consideration. This is well illus-
trated by Fig. 13.3 in the case of a 1-D periodic medium modelled by.N = 200 cells

5 In the literature frequency band gaps are very often referred to as stop bands. 
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Fig. 13.3 Spectra of frequencies of free vibrations for the fundamental mode of longitudinal waves 
L. 0 propagating in a 1-D periodic medium characterised by two different phase velocities .c1 and 
.c2 of propagating waves: a in the reduced zone, b in the extended zone. Results of numerical 
computations obtained by the use of Bloch’s theorem for 200 cells, .c1 = 5 km/s, .c2 = 1 km/s, 
.a = 10 mm,.b = 2 mm 

of length.a = 10 mm. In this case it is assumed that the phase velocity.c1 is equal to 
5 km/s over the distance .(a − b) and drops to 1 km/s over the distance .b = 2 mm. 

Similar results can be obtained by the use of TD-SFEM, as presented in Fig. 13.4, 
for the same 1-D periodic medium but modelled by 1000 SFEs. For the purpose of 
numerical computations 6-node SFEs based on Chebyshev nodes, as discussed in 
Sect. 10.4, according to the 1-mode 1-D theory (elementary) of rods are employed. 
Periodic/cyclic boundary conditions are used in this case. This time, however, the 
obtained results are shown as a function of the frequency number . n rather than the 
wave number.kn in order to emphasise their periodic nature and the model periodicity. 
Then, it is interesting to observe that the frequency band gaps FG. j ( j = 1, 2, . . .), 
shown in Fig. 13.4, regularly appear for frequency numbers. n being multiplies of the 
total number of cells.N = 200. This feature of periodic structures can be exploited to 
assess the dynamic properties of discrete numerical models built by the use of FEM 
or its clones, which is very important in the case of wave propagation problems. 6

It can be also seen from the results presented in Fig. 13.4 that in the regime of 
higher frequencies or for higher frequency numbers . n, i.e. for .n > 800, the  rela-
tive frequency error increases rapidly. Moreover, its changes have a clearly periodic 
nature, indicating periodic properties of the discrete numerical model of the 1-D peri-
odic medium under consideration, which have an as yet unknown origin and which 
gradually become more apparent. It will turn out that the source of this unknown 
periodicity, in the case of the numerical model of the medium, based on the appli-

6 Note that the ends of the calculated frequency spectra as well as the edges of existing frequency 
band gaps indicate points where.dω/dk → 0. On the other hand when.dω/dk → 0 then.cg → 0. 
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Fig. 13.4 Spectra of: a frequencies of free vibrations, b relative frequency errors, for the funda-
mental mode of longitudinal waves L. 0 propagating in a 1-D periodic medium characterised by two 
different phase velocities.c1 and.c2 of propagating waves: a in the reduced zone, b in the extended 
zone. Results of numerical computations by TD-SFEM according to the 1-mode 1-D theory (ele-
mentary) of rods versus results of numerical computations by Bloch’s theorem for 200 cells,. c1 = 5
km/s,.c2 = 1 km/s,.a = 10 mm,.b = 2 mm 

cation of FEM or its clones, comes from the discontinuity of the strain/stress fields 
between adjacent FEs, as discussed in detail in the next sections. 

It should be mentioned that Eq. (13.10) can be simplified in the case of a 1-D 
periodic medium characterised by a single wave velocity .c1 and the discontinuity 
of its properties between adjacent cells. This can be obtained under the following 
assumption: .b→0 and .k2→0, for .k2b = const. Then a new characteristic equation 
takes a simpler form: 

. cos k̂1a + A
sin k̂1a

k̂1a
= cos kna, n = 0,±1,±2, . . . ,±N/2 (13.11) 

where . A represents a constant expressing the intensity of the discontinuity. 
It can be immediately noted that if .A = 0 the characteristic Eq. (13.11) reduces 

itself to the very well-known characteristic equation, which is obtained in the case 
of a non-periodic 1-D elastic rod for periodic/cyclic boundary conditions. 

13.2 Bloch Reduction 

The Bloch reduction technique is a numerical implementation of Bloch’s theorem, 
which enables one to practically apply Bloch’s theorem especially in the case of FEM. 
The Bloch reduction technique allows one to investigate the dynamic properties of
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the entire periodic structure from the level of its single cell, as presented in Fig. 13.5, 
which may also be represented by a single FE [ 2]. 

A starting point of the analysis by the Bloch reduction technique is the eigenvalue 
problem, which arises from the already-known form of the equations of motion, 
given by Eq. (11.9), which under specific conditions of no damping and no external 
forces acting reduces itself to the well-known eigenvalue problem. 7

In the case of the 1-mode 1-D theory (elementary) of rods considered in previous 
Sect. 13.1 the eigenvalue problem can be expressed as follows: 

.(K − ω2M) · q = 0 (13.12) 

which has solutions represented by a finite number of pairs .(ω j ,q j ), where . j =
1, 2, . . . ,m. As before the symbols.M and.K denote the characteristic global inertia 
and stiffness matrices of a single cell. 

In the pair .(ω j ,q j ) .ω j denotes the . j-th angular frequency of free vibrations and 
.q j is the corresponding . j-th mode (vector) of free vibrations, where .m is equal to 
the total number of nodes, i.e. DOFs, of a discrete numerical model of one single 
cell only, 8 as presented in Fig. 13.5. 

In the case of a single cell the displacements within the vector of nodal dis-
placements . q may be conveniently divided as belonging to the internal nodes .qa or 
the boundary nodes . qb. Following the concept a 1-D periodic medium presented in 
Fig. 13.5 it can be formally written that: 

.

q = [q1, q2, . . . , qm−1, qm]T
/ ↘

qa = [q2, q3, . . . , qm−1]T, qb = [q1, qm]T
(13.13) 

At this point the application of the cyclic/periodic boundary conditions for the 
boundary nodes .qb leads to the following relationship: 

.qm = q1e
ikna, kn = 2πn

aN
, n = 0,±1,±2, . . . ,±N/2 (13.14) 

which consequently allows one to create the reduced vector of nodal displacements 
.qr (n) expressed as: 

.q = A(n) · qr (n) (13.15)

7 The eigenvalue problem belongs to a very important group of problems in structural dynamics. 
This is because structural dynamic responses are always built up from eigenmodes/modes of free 
vibrations, whose number and amplitudes depend on the frequency content of the excitation signal 
[ 3]. 
8 This is because in the current case there is only one DOF per node. Also for this reason the total 
number of nodes is equal to the total number of DOFs. In a more general case the number of DOFs 
per node can be greater than one. 
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Fig. 13.5 A concept of the Bloch reduction technique in the case of a 1-D periodic medium modelled 
by FEM 

where the rectangular matrix .A(n) of size .m × (m − 1) is defined as follows: 

.

⎧
⎨

⎩

A j, j = 1, j = 1, 2, . . . ,m − 1

A j,1 = eikna, j = m
(13.16) 

As a consequence a modified eigenvalue problem can be formulated: 

.[Kr (n) − ω2Mr (n)] · qr (n) = 0 (13.17) 

where.Mr (n) and.Kr (n) denote the reduced characteristic global inertia and stiffness 
matrices of a single cell expressed as: 

.

⎧
⎨

⎩

Mr (n) = A(n)T · M · A(n)

Kr (n) = A(n)T · K · A(n)
(13.18) 

Finally, repeated solutions to the reduced eigenvalue problem (13.17) lead to the 
frequency spectrum of free vibrations of the 1-D periodic medium modelled by FEM, 
which is obtained from the level of its single cell. 

It should be strongly emphasised that such a general procedure as the one described 
above, after necessary modifications, may be successfully applied for other types of
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1-D, 2-D or even 3-D periodic structures. Then, the Bloch reduction technique must 
take into account all available boundary nodes as well as corresponding nodal DOFs. 

13.3 Numerical Dispersion 

Depending on the degree of approximation polynomials discrete numerical models 
produced by FEM or its clones may exhibit some undesired numerical dispersion, 
which has its origin in certain periodic properties resulting from the applied modelling 
techniques [ 1]. As discussed in Sect. 10.4 it is not required for the shape functions 
employed by FEM or its clones to guarantee the continuity of strain/stress fields 
between adjacent FEs in order to guarantee the convergence of obtained numerical 
solutions. Consequently, certain discontinuities of these fields always exist, even 
though they can be minimised by increasing the degree of approximation polynomials 
. r . For problems that require fine spatial discretisation the resulting meshes of FEs 
gradually build up properties typical of periodic structures with their inherent feature, 
which is the presence of frequency band gaps. However, the frequency band gaps 
tend to manifest themselves stronlgy at high frequencies in the upper parts of the 
available frequency spectra. 

Typically, in FEM it is sufficient to assume that the shape functions employed 
lead to solutions of class C. 

0 only. Such an approach works very well in the case of 
various static or low frequency dynamic problems, where the presence of frequency 
band gaps in the frequency spectrum remain unnoticed. However, in the case of 
high frequency dynamics or wave propagation problems this approach may lead 
to completely wrong or falsified results even for relatively rich discrete numerical 
models of many DOFs. 

Here, the Bloch reduction technique comes as a very useful tool, which can be 
applied in order to investigate the properties of built discrete numerical models and 
to search for undesired numerical dispersion in the spatial domain as well as the 
presence of frequency band gaps. Yet again a good starting point for such an analysis 
is the 1-D wave equation for longitudinal waves, given by Eq. (2.15), which in the 
realm of FEM is equivalent to the 1-mode 1-D theory (elementary) of rods, given 
by Eq. (9.2). As shown in Sect. 2.5 the solutions to the 1-D wave equations are 
non-dispersive longitudinal waves with the corresponding dispersion curves for the 
phase and group velocities presented in Sect. 9.1. 

It can be demonstrated that for various degrees of approximation polynomials . r
a similar characteristic equation can be obtained to that given by Eq. (13.11), which 
can be presented in a general form as: 

.

2r∏

j=1

k̂1a − α j

k̂1a − β j

= cos kna

(−1)r (r + 1)
, n = 0,±1,±2, . . . ,±N/2 (13.19)
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Table 13.1 Roots.α j and.β j , where. j = 1, 2, . . . , 2r , from the characteristic equation (13.19), for 
selected degrees of approximation polynomials. r

Degree.r Roots.α j Roots. β j

1 .α1 = 1.732,.α2 = −α1 .β1 = 2.449i , . β2 = β̄1

2 .α1 = 1.577,.α2 = −α1 .β1 = 1.935 + 3.427i , . β2 = β̄1

.α3 = 5.673,.α4 = −α3 .β3 = −β1,. β4 = −β̄1

3 .α1 = 1.571,.α2 = −α1 .β1 = 5.088i , . β2 = β̄1

.α3 = 4.836,.α4 = −α3 .β3 = 3.817 + 4.078i , . β4 = β̄3

.α5 = 10.45,.α6 = −α5 .β5 = −β3,. β6 = −β̄3

4 .α1 = 1.571,.α2 = −α1 .β1 = 1.848 + 6.228i , . β2 = β̄1

.α3 = 4.725,.α4 = −α3 .β3 = −β1,. β4 = −β̄1

.α5 = 8.331,.α6 = −α5 .β5 = 5.691 + 4.584i , . β6 = β̄5

.α7 = 16.30,.α8 = −α7 .β7 = −β5,. β8 = −β̄5

5 .α1 = 1.571,.α2 = −α1 .β1 = 7.734i , . β2 = β̄1

.α3 = 4.713,.α4 = −α3 .β3 = 3.675 + 7.127i , . β4 = β̄3

.α5 = 7.939,.α6 = −α4 .β5 = −β3,. β6 = −β̄3

.α7 = 12.17,.α8 = −α4 .β7 = 7.567 + 5.007i , . β8 = β̄7

.α9 = 23.36,.α10 = −α4 .β9 = −β7,. β10 = −β̄7

where .α j and . β j , with . j = 1, 2, . . . , 2r , represent roots of certain Lagrange poly-
nomials of .k̂1a and degree . 2r , which can be easily obtained by the application of 
the Bloch reduction technique and some mathematical simplifications and manipu-
lations. For selected degrees of approximation polynomials. r the roots.α j and.β j are 
shown in Table 13.1. 

It should be emphasised that the very existence of the characteristic equation in 
the form given by Eq. (13.19) confirms the periodic nature of the investigated discrete 
numerical models built by the use of FEM or its clones and based on the 1-mode 1-D 
theory (elementary) of rods. Similar characteristic equations can also be obtained for 
other multi-mode and higher-order multi-mode theories in the case of 1-D, 2-D or 
3-D structural elements. 

The characteristic equations for various degrees of approximation polynomials. r , 
resulting from Eq. (13.19) and evaluated based on the data from Table 13.1, can be 
easily solved numerically. The results of such solutions are presented in Fig. 13.6 as 
appropriate spectra of frequencies of free vibrations and in Fig. 13.7 as corresponding 
dispersion curves for the phase velocity. 

Indeed, the results presented in Fig. 13.6 confirm a strong link between the number 
of frequency band gaps, denoted as FG. j ( j = 1, 2, . . . , r − 1), observable in the 
frequency spectra and the degree of approximation polynomials . r . Independently of 
the dimensionality of the problem under consideration the periodicity of a discrete 
numerical model can be understood as the number of identical cells or FEs per unit 
length. It can be observed that frequency band gaps tend to appear at the frequency 
numbers being multiples of the model periodicity. If the model periodicity is equal
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Fig. 13.6 Spectra of frequencies of free vibrations for the fundamental mode of longitudinal waves 
L. 0 propagating a 1-D non-periodic medium for selected degrees of approximation polynomials: a 
.r = 1, b.r = 2, c.r = 3, d.r = 4. Results of numerical computations by FEM/TD-SFEM according 
to the 1-mode 1-D theory (elementary) of rods, obtained by the use of the Bloch reduction technique 
for 100 cells.c1 = 5 km/s,.a = 20 mm 

to 100, as in the case of results presented in Fig. 13.6, then frequency band gaps build 
at multiples of the model periodicity, i.e. every 100 frequencies of free vibrations, 
with an increase in the degree of approximation polynomials . r . 

Moreover, it should also be observed that the frequency band gaps of lower indexes 
tend to fade with an increase of the degree of approximation polynomials . r and 
gradually become unrecognisable based on the analysis of the frequencies of free 
vibrations or dispersion curves for the phase velocity, as seen in the case of the 
frequency band gap FG. 1 from Table 13.2.
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Fig. 13.7 Dispersion curves for the phase velocity for the fundamental mode of longitudinal waves 
L. 0 propagating in a 1-D non-periodic medium for selected degrees of approximation polynomials: a 
.r = 1, b.r = 2, c.r = 3, d.r = 4. Results of numerical computations by FEM/TD-SFEM according 
to the 1-mode 1-D theory (elementary) of the longitudinal behaviour of rods, obtained by the use 
of the Bloch reduction technique for 100 cells, .c1 = 5 km/s,.a = 20 mm 

As already mentioned the presence of frequency band gaps has a great impact on 
dispersion curves. The dispersion curves obtained numerically for the phase velocity 
.cp tend to diverge from the analytical ones at the ends of frequency spectra as well as 
exhibit discontinuities/jumps at the edges of frequency band gaps with an increase 
in the frequency, as shown in Fig. 13.7. In this case it can be easily checked for. r = 1
that the characteristic equation obtained based on Eq. (13.19) can be presented as: 

.
k̂21a

2 − α2
1

k̂21a
2 − β2

1

= cos kna

(−2)
, n = 0,±1,±2, . . . ,±N/2 (13.20)
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Table 13.2 Statistical data on the influence of the degree of approximation polynomials . r on the 
number and positions of frequency band gaps in the case of discrete numerical models of a 1-D 
non-periodic medium. Results of numerical computations by FEM/TD-SFEM according to the 1-
mode 1-D theory (elementary) of the longitudinal behaviour of rods, obtained by the use of the 
Bloch reduction technique for 100 cells, .c1 = 5 km/s,.a = 20 mm 

Degree.r FG. 1 (kHz) FG. 2 (kHz) FG. 3 (kHz) FG. 4 (kHz) 

2 125.8 ... 137.8 – – – 

3 125.0 ... 125.8 257.9 ... 308.2 – – 

4 125.0 ... 125.0 250.9 ... 257.9 402.1 ... 519.0 – 

5 125.0 ... 125.0 250.1 ... 250.9 380.0 ... 402.1 563.4 ... 775.9 

which, after noting that .ω = k̂1c1, can be easily simplified and transformed to the 
following form: 

.ω2 = c21
a2

· 2α
2
1 + β2

1 cos kna

2 + cos kna
, n = 0,±1,±2, . . . ,±N/2 (13.21) 

leading to the relationship for the phase velocity .cp given by: 

.cp = ω

k
= c1

kna
·
/

2α2
1 + β2

1 cos kna

2 + cos kna
, n = 0,±1,±2, . . . ,±N/2 (13.22) 

Remembering that at the end of calculated frequency spectra .kn → ±π/a and 
.cos kna → −1 the corresponding phase velocity .cp is: 

.cp = ±
/

2α2
1 − β2

1 · c1
π

= ±12 · c1
π

∼= ±1.10 · c1, for kn = ±π/a (13.23) 

The dispersion curves obtained numerically for the group velocity.cg tend to zero 
at the ends of frequency spectra as well as the edges of frequency band gaps, as shown 
in Fig. 13.8. In this case by the use of Eq. 13.21 it can be found, after differentiation 
with respect to the wave number . k and necessary simplifications that: 

.ωdω = c21
a

· (α
2
1 − β2

1) sin kna

(2 + cos kna)2
dk, n = 0,±1,±2, . . . ,±N/2 (13.24) 

which leads directly to the relationship for the group velocity .cg expressed as: 

.cg = dω

dk
= c21

ωa
· (α

2
1 − β2

1) sin kna

(2 + cos kna)2
, n = 0,±1,±2, . . . ,±N/2 (13.25) 

Again, noting that at the end of calculated frequency spectra .kn → ±π/a and 
.sin kna → 0 the corresponding phase velocity .cg is zero:
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Fig. 13.8 Dispersion curves for the group velocity for the fundamental mode of longitudinal waves 
L. 0 propagating in a 1-D non-periodic medium for selected degrees of approximation polynomials: a 
.r = 1, b.r = 2, c.r = 3, d.r = 4. Results of numerical computations by FEM/TD-SFEM according 
to the 1-mode 1-D theory (elementary) of the longitudinal behaviour of rods, obtained by the use 
of the Bloch reduction technique for 100 cells, .c1 = 5 km/s,.a = 20 mm 

.cg = 0, for kn = ±π/a (13.26) 

Indeed, the results obtained confirm that the presence of frequency band gaps 
in the investigated spectra of frequencies of free vibrations has a strong impact on 
the usability of discrete numerical models in spite of the broadness of these spectra. 
Moreover, the presence of the frequency band gaps resulting from the periodicity 
of discrete numerical models, governed by the characteristic Eq. (13.19), leads to 
additional spatial numerical dispersion. This is well illustrated by Figs. 13.7 and 13.8, 
from which it can be seen that the obtained frequency spectra of free vibrations are
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Table 13.3 Statistical data on the influence of the degree of approximation polynomials . r on 
the spatial numerical dispersion in the case of discrete numerical models of a 1-D non-periodic 
medium. Results of numerical computations by FEM/TD-SFEM according to the 1-mode 1-D 
theory (elementary) of rods, obtained by the use of the Bloch reduction technique for 100 cells, 
.c1 = 5 km/s,.a = 20 mm 

Degree.r Mode 1% disp. (kHz) 5% disp. (kHz) . fmax (kHz) 

1 L.0 . <20.21 (14.7%) . <47.42 (34.4%) 137.8 

2 L.0 . <83.37 (27.1%) . <125.8 (40.8%) 308.2 

3 L.0 . <125.0 (24.1%) . <231.2 (44.5%) 519.0 

4 L.0 . <234.8 (30.3%) . <318.1 (40.1%) 775.9 

5 L.0 . <313.2 (28.9%) . <380.0 (35.1%) 1081.6 

In brackets the percentage of the entire frequency spectrum is indicated 

characterised by clear numerical dispersion, even though the employed 1-mode 1-D 
theory (elementary) of rods is entirely non-dispersive. 

The source of this additional dispersion is solely due to the periodicity of discrete 
numerical models built. It is noteworthy that the usable part of the available frequency 
spectra for the analysis of high frequency dynamics as well as wave propagation 
problems, offered by the discrete numerical models of the rod, are therefore defined 
and limited by the presence of the first significant 9 frequency band gap. 

In the case of the degree of approximation polynomials .r = 2 or.r = 3 this is the 
first frequency band gap FG. 1, while in the case of the degree of approximation poly-
nomials .r = 4 this is the second frequency band gap FG. 2 since the first frequency 
band gap FG. 1 is undetectable. For this reason the usable part of the frequency spec-
tra must also be dependent on the degree of approximation polynomials. This is 
summarised by the results given in Table 13.3. 

But not only this, since the additional numerical dispersion due to the periodicity 
of the discrete numerical models under investigation should be minimised as an 
undesired numerical feature. Following the definition of the degrees of dispersion 
from Sect. 12.1, for very small dispersion below 1% only very small parts of available 
spectra of frequencies of free vibrations remain available for the analysis of high 
frequency dynamics as well as wave propagation problems, these being: 14.7, 27.1, 
24.1 and 30.3% for the degrees of approximation polynomials . r equal to 1, 2, 3 or 
4, respectively. For small dispersion below 5% the corresponding values are: 34.4, 
27.1, 24.1 and 33.5%. However, it should be noted that in these cases the obtained 
values are limited by the presence of neighbouring frequency band gaps, except the 
case of the linear approximation polynomials for .r = 1, as also seen from Fig. 13.7.

9 It is understood as the frequency band gap, which can be identified either based on the analysis 
of the frequencies of free vibrations or dispersion curves for the phase velocity. 
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13.4 Numerical Anisotropy 

Numerical anisotropy can be viewed as a property of discrete numerical models 
in 2-D or 3-D, being a direct consequence of numerical dispersion. Its presence 
may also be understood as resulting from the fact that for a finite number of nodes 
in 2-D or 3-D it is topologically impossible to provide the same number of nodal 
distances per wavelength in every direction, even in the case of very fine spatial 
discretisation typical for high frequency dynamics or wave propagation problems 
solved by FEM. Similarly to the numerical dispersion also the numerical anisotropy 
can be investigated and studied by the use of the Bloch reduction technique. 

For the purpose of such investigation an isotropic plate of infinite dimensions 
and constant thickness . h is considered, which represents a 2-D elastic medium, as 
presented in Fig. 13.9. The plate is modelled as a uniform 2-D lattice/mesh of. N × N
square cells/plate FEs characterised by the edge length . a. The Mindlin-Reissner 
theory of plates is used, which in the realm of FEM corresponds to the 3-mode 2-D 
theory from Sect. 8.2. Thanks to the application of the Bloch reduction technique, 
periodic properties of discrete numerical models of the plate can be easily revealed 
and assessed from the level of a single cell/FE, for example, in the context of the 
future wave propagation analysis. 

It should be recalled that the 3-mode 2-D (Mindlin-Reissner) theory of the anti-
symmetric behaviour of plates is based on the use of three independent modes of 
elastic waves, as discussed in Sect. 8.2, which can propagate within the plate as: A. 0, 
A. 1 and SH. 1. These modes are not only dispersive, but also have fully 2-D nature, 
which means that they can freely propagate in all available directions of the.xy plane. 
In such a case the application of the Bloch reduction technique becomes significantly 
more difficult and complicated in comparison with 1-D cases. 

The process of the analysis can be simplified greatly thanks to the use of the 
concepts known from crystallography, since the arrangements of crystal lattices in 
many aspects resemble uniform meshes of FEs. In the analysis of crystal lattices 
typically wave vectors of the reciprocal space 10 are used in order to describe their 
properties, which also indicate the directions of wave propagation within the lattices. 

The same concept is employed here, where three non-dimensional wave vectors of 
the reciprocal space.k̃[10]

n ,.k̃[01]
n and.k̃[11]

n are used and where the following relationships 
hold: 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k̃[10]
n = k̃[01]

n = k̃[11]
n = 2n

N
, n = 0,±1,±2, . . . ,±N/2

k[10]
n = k[01]

n =
(π

a

)
k̃[10]
n , k[11]

n =
(

π√
2a

)

k̃[11]
n

(13.27)

10 The reciprocal space is a mathematical concept of space representing the Fourier transform of 
a physical lattice, which is also referred to as the k-space or the wave vector space. Consequently, 
spatial properties of the lattice are expressed in terms of wave numbers. 
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Fig. 13.9 An isotropic plate of infinite dimensions modelled as a uniform mesh of plate FEs, 
representing a 2-D non-periodic medium 

with .N denoting the number of cells along the . x and . y axes. The superscript [10] 
is a Miller 11 index denoting the direction corresponding to the . x axis of a cell/FE, 
[01] is a Miller index denoting the direction corresponding to the. y axis of a cell/FE, 
while the superscript [11] is a Miller index denoting the direction corresponding to 
the cell/FE diagonal. 

The results of the application of the Bloch reduction technique in the case of 
the isotropic plate under consideration are shown in Fig. 13.10. In this example two 
different degrees of approximation polynomials are examined, i.e. .r = 2 and FEM, 
and .r = 5 and TD-SFEM for Chebyshev nodes. The computations carried out con-
cerned also two different 2-D lattices, which consist of .126 × 126 = 15, 876 cells 
and .50 × 50 = 2, 500 cells, in order to lead to similar densities of calculated fre-
quency spectra of 190,512 and 187,500 frequencies of free vibrations, 12 respectively. 

Again, thanks to the Bloch reduction technique the entire spectra of frequencies 
of free vibrations of the plate can be determined based on repeated solutions to 
the reduced eigenvalue problem, expressed by Eq. (13.17), by the use of a single 
cell/FE. As shown in Fig. 13.10 the obtained spectra are complex and difficult to

11 William Hallowens Miller (1801–1880) was a Welsh mineralogist. In 1839 he introduced a 
notation system used in crystallography until today, which helps to identify different lattice planes 
in crystals. The system is known as Miller indices. 
12 These numbers take into account the periodic/cyclic boundary conditions. 
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Fig. 13.10 Spectra of frequencies of free vibrations for antisymmetric modes of elastic waves 
propagating in a 10 mm thick non-periodic medium, for degrees of approximation polynomials: a 
.r = 2 and FEM, b .r = 4 and TD-SFEM. Results of numerical computations for the reduced zone, 
according to the 3-mode 2-D theory (Mindlin-Reissner) theory of the antisymmetric behaviour of 
plates, obtained by the use of the Bloch reduction technique for a uniform lattice of: a . 126 × 126
cells and.a = 7.94 mm, b .50 × 50 cells and.a = 20 mm,.cP3pt = 6.09 km/s,.cS3pt = 3.07 km/s 

study. Their 3-D nature and complexity make the process of the identification of 
particular frequency band gaps and their mode association practically impossible. At 
the same time it is noteworthy that the density of the spectra are directly dependent on 
the number of independent wave modes and the square of the degree of approximation 
polynomials . r employed in the analysis. On the other hand, this is directly related 
to the resulting number of DOFs of the discrete numerical models employed. These 
factors are the reasons why the direct analysis of the 3-D spectra obtained should be 
simplified. 

It should be pointed out that the analysis of the frequency band gaps in the spectra 
of frequencies of free vibrations of the plate, presented in Fig. 13.10, becomes some-
how easier, if the analysis takes place for particular directions, which are usually 
associated with the wave vectors of the reciprocal space .k[10] and.k[11], as presented 
in Figs. 13.11 and 13.12. 

Additionally, the results of numerical computations obtained and presented in 
Figs. 13.11 and 13.12, as related to the reduced zone [ 4] are tainted by the results 
associated with other directions than [10] and [11]. For this reason they should be 
further processed: unfolded to recover the whole range of the variation of the wave 
vectors.k[10] and.k[11], as well as filtered out to fully reveal the periodic nature of the 
discrete numerical models of the plate. In such a manner appropriate frequencies of 
free vibrations of the plate from the entire frequency spectrum can be checked and 
examined, and next associated with appropriate wave modes. The result of these two 
operations are presented in Figs. 13.13 and 13.14 as dispersion curves for the phase 
velocity.
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Fig. 13.11 Spectra of frequencies of free vibrations for antisymmetric modes of elastic waves 
propagating in a 10 mm thick non-periodic medium as a function of non-dimensional wave vectors 
of the reciprocal space: a .k̃[10]

n , b .k̃[11]
n . Results of numerical computations in the reduced zone, 

for the degree of approximation polynomials.r = 2 and FEM, according to the 3-mode 2-D theory 
(Mindlin-Reissner) of the antisymmetric behaviour of plates, obtained by the use of the Bloch 
reduction technique for a uniform lattice of.126 × 126 cells,.cP3pt = 6.09 km/s,.cS3pt = 3.07 km/s, 
.a = 7.94 mm 

Fig. 13.12 Spectra of frequencies of free vibrations for antisymmetric modes of elastic waves 
propagating in a 10 mm thick non-periodic medium as a function of non-dimensional wave vectors 
of the reciprocal space: a .k̃[10]

n , b .k̃[11]
n . Results of numerical computations in the reduced zone, for 

the degree of approximation polynomials.r = 5 and TD-SFEM for Chebyshev nodes, according to 
the 3-mode 2-D theory (Mindlin-Reissner) of the antisymmetric behaviour of plates, obtained by 
the use of the Bloch reduction technique for a uniform lattice of.50 × 50 cells,.cP3pt = 6.09 km/s, 
.cS3pt = 3.07 km/s,.a = 20 mm
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Fig. 13.13 Dispersion curves for the phase velocity for antisymmetric modes of elastic waves 
propagating in a 10 mm thick non-periodic medium in the directions of non-dimensional wave 
vectors of the reciprocal space: a .k̃[10]

n , b .k̃[11]
n . Results of numerical computations in the reduced 

zone, for the degree of approximation polynomials .r = 2 and FEM, according to the 3-mode 2-D 
theory (Mindlin-Reissner) theory of the antisymmetric behaviour of plates, obtained by the use of the 
Bloch reduction technique for a uniform lattice of.126 × 126 cells,.cP3pt = 6.09 km/s,. cS3pt = 3.07
km/s,.a = 7.94 mm 

Fig. 13.14 Dispersion curves for the phase velocity for antisymmetric modes of elastic waves 
propagating in a 10 mm thick non-periodic medium in the directions of non-dimensional wave 
vectors of the reciprocal space: a .k̃[10]

n , b .k̃[11]
n . Results of numerical computations in the reduced 

zone, for the degree of approximation polynomials .r = 5 and TD-SFEM for Chebyshev nodes, 
according to the 3-mode 2-D theory (Mindlin-Reissner) theory of the antisymmetric behaviour of 
plates, obtained by the use of the Bloch reduction technique for a uniform lattice of .50 × 50 cells, 
.cP3pt = 6.09 km/s,.cS3pt = 3.07 km/s,.a = 20 mm
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Table 13.4 Statistical data on the influence of the degree of approximation polynomials . r on the 
position of the frequency band gap FG. 1 and the frequency spectrum availability in the case of discrete 
numerical models of a 10 mm thick non-periodic medium. Results of numerical computations 
according to the 3-mode 2-D theory (Mindlin-Reissner) theory of the antisymmetric behaviour of 
plates, obtained by the use of the Bloch reduction technique for the uniform lattices of: . 126 × 126
cells for FEM and.50 × 50 cells for TD-SFEM and Chebyshev nodes,.cP3pt = 6.09 km/s,. cS3pt =
3.07 km/s,.a = 20 mm 

FEM 
approach 

Mode Direction FG. 1 (kHz) . fmax (kHz) % spectr. (%) 

FEM,.r = 2 A.0 [10] 162.2 ... 177.6 439.3 . <36.9 

FEM,.r = 2 A.0 [11] 238.9 ... 263.6 621.2 . <38.5 

TD-SFEM, 
. r = 5

A.0 [10] 198.8 ... 210.8 612.5 . <32.5 

TD-SFEM, 
. r = 5

A.0 [11] 290.6 ... 309.5 867.2 . <33.5 

The results presented in Figs. 13.13 and 13.14 clearly confirm the existence of 
numerical anisotropy. Consequently, the usable parts of the frequency spectra for 
numerical computations, due to the presence of the frequency band gaps, are effec-
tively reduced to the frequencies corresponding to the beginnings of the first fre-
quency band gaps, which are different for the directions [10] and [11]. The remaining 
parts of the frequency spectra are not usable and practically inaccessible for simula-
tion purposes due to the presence of multiple frequency band gaps and their potential 
influence on calculated dynamic responses. This is also indicated in Table 13.4. 

It can also be noted that the positions of these frequency band gaps are not fixed 
in the frequency spectra under investigation, but they depend on the direction of 
the observation, different in the direction [10] and [11]. This is due to the obvious 
differences in nodal densities of the discrete numerical models in these two directions, 
as indicated by Eq. 13.27. Consequently, it is noteworthy that sole different nodal 
densities in various directions, resulting in differences of computational properties 
of the same discrete numerical model in these directions, are sufficient to fulfil very 
well the definition of numerical anisotropy. 

From these results it can be also seen that in the case of numerical computa-
tions concerning FEM and the degree of approximation polynomials .r = 2 the first 
frequency band gap concerns the fundamental antisymmetric mode A. 0 is located 
between 162.2 kHz and 177.6 kHz for the direction [10] and between 238.9 kHz and 
263.6 kHz for the direction [11]. As a consequence the usable parts of the frequency 
spectra for these modes, are reduced to not more than 36.9% and 38.5%, respec-
tively. In the case of numerical computations concerning TD-SFEM for Chebyshev 
nodes and the degree of approximation polynomials.r = 5 the corresponding values 
are not significantly higher as the first frequency band gap is located between 198.2 
kHz and 210.8 kHz for the direction [10] and between 290.6 kHz and 309.5 kHz for 
the direction [11]. Despite the fact that the use of TD-SFEM enables one to access 
higher frequencies, this time the usable parts of the frequency spectra are reduced to
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Fig. 13.15 Directional maps of frequencies of free vibrations for the fundamental antisymmetric 
mode of Lamb waves A. 0 of elastic waves propagating in a 10 mm thick non-periodic medium, 
for degrees of approximation polynomials: a .r = 2 and FEM, b .r = 4 and TD-SFEM. Results 
of numerical computations for the reduced zone, according to the 3-mode 2-D theory (Mindlin-
Reissner) of the antisymmetric behaviour of plates, obtained by the use of the Bloch reduction 
technique for a uniform lattice of: a .126 × 126 cells and.a = 7.94 mm, b.50 × 50 cells and. a = 50
mm,.cP3pt = 6.09 km/s,.cS3pt = 3.07 km/s 

not more than 32.5% and 33.5%, as summarised in Table 13.4. It is noteworthy that 
the obtained values are significantly smaller when they are related to the frequencies 
of free vibrations corresponding to the entire calculated spectrum. Then the usable 
parts of the frequency spectra drop to: 19.4 and 24.8% for FEM, 17.2 and 21.8% for 
TD-SFEM, respectively. 

Obviously, the direction of the observation is an important factor. However, the 
results given by Figs. 13.13 and 13.14 provide no information about such influence 
except the two directions [10] and [11]. This information can be extracted from the 
spectra of frequencies of free vibrations of the plate, presented in Fig. 13.10, how-
ever they require advanced mathematical manipulations and/or the use of artificial 
intelligence (AI) algorithms. The information obtained in this manner can be directly 
associated with a corresponding wave modes to form 2-D directional maps, which 
fully reveal the directional nature of the periodicity of discrete numerical models of 
the plate. Since the usable part of the spectrum of the calculated frequencies of free 
vibrations of the plate is practically limited by the presence of the first frequency 
band gap FG. 1 for the fundamental antisymmetric mode of Lamb waves A. 0, in order 
to assess the extents of numerical anisotropy of the discrete numerical model of the 
plate it is sufficient to base on the maps corresponding to this mode only. Such maps 
are shown in Fig. 13.15.
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Chapter 14 
Spline-Based FEM Approach 

14.1 Some General Considerations 

Numerical dispersion in 1-D cases as well as numerical anisotropy in 2-D and 3-D 
cases, but most of all the presence of frequency band gaps in the calculated spectra 
of the frequencies of free vibrations, are the primary reasons for the development 
of a new FEM approach, which could help to minimise their negative influence on 
the computational properties of discrete numerical models, which were discussed in 
previous sections. Since the presence and the impact of these features on calculated 
dynamic responses in FEM or its clones are directly linked to the properties of the 
shape functions employed, a search for a new FEM approach should start just from 
introducing new shape functions. 

The shape functions traditionally used in FEM and its specialised clones such 
as TD-SFEM represent smooth approximation polynomials, but lead to solutions 
of class C. 

0 only. Typically, the shape functions are based on equidistant node dis-
tributions or zeros of Chebyshev or Lobatto polynomials for non-equidistant node 
distributions, as discussed in Sect. 10.4. The  C. 

0 class of solution continuity results 
from the discontinuities of the strain/stress fields between adjacent FEs, which con-
sequently leads to the presence of frequency band gaps, as discussed in Sect. 13.1. 
For this reason it is expected that an increase in the class of solution continuity from 
C. 
0 to C. 

1 or C. 
2, or even higher, may result in a significant improvement in the com-

putational properties of FEM discrete numerical models. This can be achieved by 
the use of such shape functions, which by their very definition provide the continuity 
of the strain/stress fields between adjacent FEs. Good candidates here are splines, 1

as they offer continuous and smooth solutions at relatively low computational costs. 

1 The word spline is commonly attributed to Isaac Jacob Schoenberg (1903–1990), who was a 
Romania born American mathematician of Jewish origins, and who used this term for the first time 
in his work from 1946 to describe smooth, piecewise approximation polynomials. 
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Table 14.1 The influence of the degree of approximation polynomials . r and the class of solution 
continuity. c on the number of frequency band gaps. d, where.d = r − c − 1, within the calculated 
spectra of frequencies of free vibrations, in the case of 1-D shape functions employed by 1-mode 
1-D theories 

Type of approach Approx. polynomials .r .c . d

Classical FEM Lagrange [ 1– 3] for equidistant 
nodes within FEs 

1 0 0 

2 0 1 

3 0 2 

... ... ... 

TD-SFEM Chebyshev/Lobatto [ 1, 3, 4] for  
non-equidistant nodes within FEs 

3 0 2 

4 0 3 

5 0 4 

... ... ... 

Specialised FEM Hermite [ 5– 7] for 2-node FEs 3 1 1 

5 2 2 

7 3 3 

... ... ... 

spFEM Spline [ 1, 8– 10] for 2-node FEs 1 0 0 

2 1 0 

3 2 0 

... ... ... 

Consequently, a FEM approach employing splines for shape functions can be named 
as the Spline-based Finite Element Method (spFEM). 

It is interesting to note that in the case of 1-D shape functions employed by 1-
mode theories, as discussed in Sect. 13.1, there is a close link between the number 
of frequency band gaps observed in the calculated spectra of frequencies of free 
vibrations, noted as. d, and the degree of approximation polynomials. r employed for 
shape functions, and the class of solution continuity. c, since.d = r − c − 1 as shown 
in [ 1]. This is clearly illustrated by Table 14.1. 

From Table 14.1 it can be seen that in the case of FEM the number of frequency 
band gaps. d in the calculated spectra is equal to 0 only for the linear shape functions, 
i.e., when the degree of approximation polynomials. r is equal to 1, since the class of 
solution continuity . c is equal to 0. For this reason it is expected that similar results 
can be obtained for higher degrees of approximation polynomials . r as long as the 
class of solution continuity . c is one smaller from the degree . r , i.e., when the class 
of solution continuity .c = r − 1. Such a condition can be easily satisfied in the case 
of spFEM, which is based on the use of piecewise shape functions represented by 
splines, as shown below. 

At this point it should be emphasised that a special type of splines known as 
B-splines [ 11– 13], or Non-uniform Rational B-splines (NURBS), are already well-
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established and frequently used for numerical computations for the same kinds of 
problems as the classical FEM. Despite their unquestionable advantages NURBS do 
not belong to FEM approaches, since they are based on so-called patches rather than 
typical FEs, which in FEM are well localised in space. Additionally, NURBS use 
a concept different from elemental nodes, which is based on discretisation points 
within so-called knot vectors. Such discretisation points may also stay outside com-
putational domains [ 14– 16], which makes the computation process more complex 
and difficult. The lack of the features typical to FEM makes NURBS rather difficult 
to directly adopt or combine with FEM as, for example in the case of damage mod-
elling techniques well developed in FEM [ 17] or modelling of structural joints [ 18], 
etc. 

14.2 1-D Spline-Based Shape Functions 

1-D spline-based piecewise shape functions can be easily derived by using standard 
FEM procedures for this purpose [ 1, 2, 4, 19]. Since the class of solution continuity. c
is assumed to be one smaller than their degree. r , derivation of spline-based piecewise 
elemental shape functions requires the use of some internal nodes. This is in con-
trast to Hermite approximation polynomials, which are solely based on edge nodes 
of FEs, and which are characterised, in general, by higher degrees . r of approxi-
mation polynomials for the same nodal quantities as spline-based approximation 
polynomials. 

A family of 1-D spline-based piecewise shape functions can be easily built in the 
local normalised coordinate system.(ξ) by assuming that a 2-node FE of length . a is 
divided into a number of . r sections of equal lengths, 2 where . r denotes the degree 
of approximation polynomials. These .r − 1 sections are defined by internal nodes 
.ξn with.n = 1, 2, . . . , r − 1 and indicate so-called stitching points, where continuity 
conditions for all nodal quantities must be satisfied. Detailed information about the 
methodology for obtaining 1-D spline-based piecewise shape functions can be found 
in [ 1]. 

Following this methodology and by taking into account the definition of shape 
functions from Sect. 10.3 and given by Eq. (10.7), the variation of an unknown solu-
tion function .u(x, t) over the length . a of the element under consideration can be 
expressed by 1-D spline-based piecewise shape functions, for particular degrees. r of 
approximation polynomials, 3 in the following manner: 

• Linear shape functions (.r = 1, c = 0): 

.u(x, t) ∼= N
(
ξ(x)

)
qe, qe = [q1, q2]T (14.1)

2 This is not a fixed requirement, as other divisions are also allowed. 
3 Although the current study is limited to linear, quadratic and cubic shape functions, shape functions 
of higher degrees can also be easily obtained by the use of modern mathematical packages suitable 
for such computations [ 20, 21]. 
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where the vector of nodal displacements.qe has only one DOF per node represented 
by two displacements: . q1, . q2. No internal nodes/stitching points are required. 
In the local normalised coordinate system.(ξ) the matrix of piecewise shape func-
tions .N(ξ) takes the following form: 

.N(ξ) = [N1(ξ), N2(ξ)] (14.2) 

where: 

.

N1(ξ) = + 1
2 − 1

2ξ, ξ ∈ ⟨−1,+1⟩  

N2(ξ) = + 1
2 + 1

2ξ, ξ ∈ ⟨−1,+1⟩  
(14.3) 

• Quadratic shape functions (.r = 2, c = 1): 

.u(x, t) ∼= N
(
ξ(x)

)
qe, qe = [q1, q ,

1, q2, q
,
2]T (14.4) 

where the vector of nodal displacements.qe has two DOFs per node represented by 
two displacements:. q1,.q2 and their first space derivatives with respect to. x :. q ,

1,. q
,
2. 

In this case the element is divided into two sections and one internal node/stitching 
point at .ξ1 = 0 is required. 
In the local normalised coordinate system.(ξ) the matrix of piecewise shape func-
tions .N(ξ) takes the following form: 

.N(ξ) = [N1(ξ), N2(ξ), N3(ξ), N4(ξ)] (14.5) 

where: 

.

N1(ξ) =
{

+ 1
2 − ξ − 1

2ξ
2, ξ ∈ ⟨−1, 0)

+ 1
2 − ξ + 1

2ξ
2, ξ ∈ ⟨0,+1⟩  

N2(ξ)

a
=

{
+ 1

8 − 1
4ξ − 3

8ξ
2, ξ ∈ ⟨−1, 0)

+ 1
8 − 1

4ξ + 1
8ξ

2, ξ ∈ ⟨0,+1⟩  

N3(ξ) =
{

+ 1
2 + ξ + 1

2ξ
2, ξ ∈ ⟨−1, 0)

+ 1
2 + ξ − 1

2ξ
2, ξ ∈ ⟨0,+1⟩  

N4(ξ)

a
=

{
− 1

8 − 1
4ξ − 1

8ξ
2, ξ ∈ ⟨−1, 0)

− 1
8 − 1

4ξ + 3
8ξ

2, ξ ∈ ⟨0,+1⟩  

(14.6) 

• Cubic shape functions (.r = 3, c = 2): 

.u(x, t) ∼= N
(
ξ(x)

)
qe, qe = [q1, q ,

1, q
,,
1 , q2, q

,
2, q

,,
2 ]T (14.7)
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where the vector of nodal displacements.qe has three DOFs per node represented by 
two displacements: . q1, .q2 and their first and second space derivatives with respect 
to . x : . q ,

1, .q
,
2 and . q ,,

1 , . q
,,
2 . In this case the element is divided into three sections and 

two internal node/stitching point at .ξ1,2 = ±1/3 are required. 
In the local normalised coordinate system.(ξ) the matrix of piecewise shape func-
tions .N(ξ) takes the following form: 

.N(ξ) = [N1(ξ), N2(ξ), N3(ξ), N4(ξ), N5(ξ), N6(ξ)] (14.8) 

where: 

.

N1(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

+ 7
16 − 27

16ξ − 27
16ξ

2 − 9
16ξ

3, ξ ∈ ⟨−1,− 1
3 )

+ 1
2 − 9

8ξ + 9
8ξ

3, ξ ∈ ⟨− 1
3 ,+ 1

3 )

+ 9
16 − 27

16ξ + 27
16ξ

2 − 9
16ξ

3, ξ ∈ ⟨+ 1
3 ,+1⟩  

N2(ξ)

a
=

⎧
⎪⎪⎨

⎪⎪⎩

+ 1
8 − 5

8ξ − 9
8ξ

2 − 3
8ξ

3, ξ ∈ ⟨−1,− 1
3 )

+ 23
144 − 5

16ξ − 3
16ξ

2 + 9
16ξ

3, ξ ∈ ⟨− 1
3 ,+ 1

3 )

+ 3
16 − 9

16ξ + 9
16ξ

2 − 3
16ξ

3, ξ ∈ ⟨+ 1
3 ,+1⟩  

N3(ξ)

a2
=

⎧
⎪⎪⎨

⎪⎪⎩

+ 1
96 − 3

32ξ − 7
32ξ

2 − 11
96ξ

3, ξ ∈ ⟨−1,− 1
3 )

+ 5
288 − 1

32ξ − 1
32ξ

2 + 7
96ξ

3, ξ ∈ ⟨− 1
3 ,+ 1

3 )

+ 1
48 − 1

16ξ + 1
16ξ

2 − 1
48ξ

3, ξ ∈ ⟨+ 1
3 ,+1⟩  

N4(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

+ 9
16 + 27

16ξ + 27
16ξ

2 + 9
16ξ

3, ξ ∈ ⟨−1,− 1
3 )

+ 1
2 + 9

8ξ − 9
8ξ

3, ξ ∈ ⟨− 1
3 ,+ 1

3 )

+ 7
16 + 27

16ξ − 27
16ξ

2 + 9
16ξ

3, ξ ∈ ⟨+ 1
3 ,+1⟩  

N5(ξ)

a
=

⎧
⎪⎪⎨

⎪⎪⎩

− 3
16 − 9

16ξ − 9
16ξ

2 − 3
16ξ

3, ξ ∈ ⟨−1,− 1
3 )

− 23
144 − 5

16ξ + 3
16ξ

2 + 9
16ξ

3, ξ ∈ ⟨− 1
3 ,+ 1

3 )

− 1
8 − 5

8ξ + 9
8ξ

2 − 3
8ξ

3, ξ ∈ ⟨+ 1
3 ,+1⟩  

N6(ξ)

a2
=

⎧
⎪⎪⎨

⎪⎪⎩

+ 1
48 + 1

16ξ + 1
16ξ

2 + 1
48ξ

3, ξ ∈ ⟨−1,− 1
3 )

+ 5
288 + 1

32ξ − 1
32ξ

2 − 7
96ξ

3, ξ ∈ ⟨− 1
3 ,+ 1

3 )

+ 1
96 + 3

32ξ + 7
32ξ

2 + 11
96ξ

3, ξ ∈ ⟨+ 1
3 ,+1⟩  

(14.9) 

It can be easily noticed based on Eqs. (14.3), (14.6) and (14.9) that an increase in 
the degree of approximation polynomials . r requires the incorporation of additional 
nodal DOFs in the form of higher order space derivatives in order to obtain corre-
sponding spline-based piecewise shape functions. These higher order derivatives may
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be thought of as corresponding to higher order corrections to the unknown function 
.u(x, t) and may be effectively included in the case of the degrees of approximation 
polynomials . r higher than 3. 

Despite that such a procedure can be easily carried out, from a practical point 
of view it is sufficient to limit oneself to quadratic or cubic spline-based piecewise 
shape functions for computational purposes. This is due to an increased complexity 
of the notation/definition of such FEs, especially in 2-D or 3-D cases, which is not 
fully compensated by an increase in the computational accuracy. 1-D spline-based 
piecewise shape functions obtained by the use of Eqs. (14.3), (14.6) and (14.9) are  
presented in Fig. 14.1 together with a quartic case, which is not discussed here, all 
in the case of a 2-node FE of length .a = 2m. 

Fig. 14.1 1-D spline-based piecewise shape functions for various degrees of approximation poly-
nomials: a linear.r = 1, b quadratic.r = 2, c cubic.r = 3, d quartic.r = 4, in the local normalised 
coordinate system (. ξ ), obtained in the case of a 2-node FE,.a = 2 m
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Fig. 14.2 Results of 
numerical computations by 
spFEM. An average 
frequency error for 1-D 
spline-based piecewise shape 
functions of various degrees 
of approximation 
polynomials, as a function of 
the number of DOFs of 
numerical models. Results 
according to the 1-mode 1-D 
theory (elementary) of the 
longitudinal behaviour of 
rods for the first 30 
frequencies of free vibrations 
of  a  10mm  diameter,  2m  
long aluminium bar with free 
ends 

It is noteworthy that 1-D spline-based piecewise shape functions are characterised 
by excellent convergence of computational results in comparison with the classical 
FEM and comparable with TD-SFEM, as shown in Figs. 10.4 and 10.5 form Sect. 
10.6. This is well illustrated by the results presented in Fig. 14.2 in the case of linear 
(.r = 1), quadratic (.r = 2) and cubic (.r = 3) approximation polynomials used for 
1-D spline based piecewise shape functions. 

Bearing in mind that spFEM employs for shape functions approximation polyno-
mials of similar degrees as FEM, but much lower than TD-SFEM, spFEM appears 
to be a very good computational alternative to FEM and TD-SFEM from the point 
of view of computational accuracy. However, it should be strongly emphasised here 
that the convergence is not the only feature of spFEM, which should be taken into 
account. It is shown and discussed in the following section that the application of 
spFEM eliminates frequency band gaps from calculated spectra of frequencies of 
free vibrations, which has a great impact on the computational properties of discrete 
numerical models and which fully manifests in the case of dynamic responses as 
well as wave propagation problems. 

14.3 Wave Propagation Problems by spFEM 

The computational problems analysed in this section make a direct reference to 
previously considered computational issues. This time however, they are tackled by 
the use of spFEM in order to emphasise the computational robustness and advantages 
of this FEM approach.
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Fig. 14.3 Dispersion curves for the phase velocity for the fundamental mode of longitudinal waves 
L. 0 propagating in a 1-D non-periodic bar for selected degrees of approximation polynomials: a 
.r = 5 and TD-SFEM, b.r = 3 and spFEM. Results of numerical computations by TD-SFEM/spFEM 
according to the 1-mode 1-D theory (elementary) of the longitudinal behaviour of rods, obtained by 
the use of the Bloch reduction technique for: a 100 cells, .a = 20mm and TD-SFEM, b 166 cells, 
.a = 12mm and spFEM, and.c1 = 5 km/s 

At first a 40 mm diameter, 2 m long aluminium bar with free ends is considered, 
for which the phase velocity of the fundamental mode of longitudinal waves L. 0 is 
.c1 = 5 km/s. However, prior to any analysis concerning propagation of longitudi-
nal waves the dispersion curves for the phase velocity for the L. 0 mode should be 
investigated. 

The effects of such analysis are presented in Fig. 14.3, where the dispersion curves 
obtained in the case of TD-SFEM and the degree of approximation polynomials. r = 5
are contrasted with similar curves obtained in the case of spFEM and the degree of 
approximation polynomials .r = 3. They result from the application of the Bloch 
reduction technique leading to the frequency spectra of free vibrations of similar 
densities. 

For these computations 100 cells of length .a = 20mm is used for TD-SFEM, 
while in the case of spFEM it is 166 cells of length .a = 12mm. This translates to 
500 frequencies of free vibrations for TD-SFEM and 498 for spFEM, respectively. 
In both these cases the same 1-mode 1-D theory (elementary) of the longitudinal 
behaviour of rods is employed. 

It is evident from Fig. 14.3 that the dispersion curve obtained in the case of spFEM, 
contrary to the case of TD-SFEM, is continuous and free of any frequency band gaps. 
In the case of spFEM undesired spatial numerical dispersion is on a much smaller 
level than in the case of TD-SFEM, as presented in Table 14.2, and never exceeds 5%. 
This is clear evidence of the superiority of spFEM over TD-SFEM in that respect. 

The dispersion curves obtained for TD-SFEM and spFEM, presented in Fig. 14.3, 
have a strong impact on calculated dynamic responses of the bar in the form of



14.3 Wave Propagation Problems by spFEM 297

Table 14.2 Statistical data on the spatial numerical dispersion in the case of two discrete numerical 
models of a 1-D non-periodic medium. Results of numerical computations by spFEM/TD-SFEM 
according to the 1-mode 1-D theory (elementary) of the longitudinal behaviour of rods, obtained by 
the use of the Bloch reduction technique for: a 100 cells, .a = 20mm and TD-SFEM, b 166 cells, 
.a = 12mm and spFEM, and.c1 = 5 km/s 

FEM approach Mode 1% disp. (kHz) 5% disp. (kHz) . fmax (kHz) 

TD-SFEM,.r = 5 L.0 . <313.2 (28.9%) . <380.0 (35.1%) 1081.6 

spFEM,.r = 3 L.0 . <446.9 (71.7%) . <622.9 (100%) 622.9 

In brackets the percentage of the frequency spectrum associated with a given mode is indicated 

Fig. 14.4 Response patterns for the longitudinal acceleration component .üx of the fundamen-
tal mode of longitudinal waves L. 0 propagating in a 1-D non-periodic bar for selected degrees of 
approximation polynomials: a, c .r = 5 and TD-SFEM, b, d .r = 3 and spFEM. Results of numer-
ical computations by TD-SFEM/spFEM according to the 1-mode 1-D theory (elementary) of the 
longitudinal behaviour of rods for a 40 mm diameter, 2 m long aluminium bar of free ends
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wave propagation patterns, as shown in Fig. 14.4. For this analysis the implicit .β-
Newmark method is used, as discussed in Sect. 10.7, for the recommended values 
of the parameters . α and . β equal to .1/2 and .1/4, respectively. The total calculation 
time .T covers 400 . µs and is divided into 8,000 equal time steps. The excitation 
signal is applied as a longitudinally acting force at the left hand, free end of the bar, 
having the amplitude of 1 N and the form of 10 sine pulses at the carrier frequency 
. fc of 200 or 250 kHz, modulated by the Hann window, i.e., with the frequency of 
modulation . fm = fc/m equal to 20 or 25 kHz, where .m = 10. The total calculation 
time. T is chosen in such a manner that the resulting wave packet travelling along the 
bar should reach the right hand free end of the bar. The expected position of the wave 
packet, calculated based on the dispersion curves presented in Fig. 9.1 in Sect. 9.1, is 
indicated by a white box. It should be emphasised that any deviation in this respect is 
a clear indication of the quality of the discrete numerical model of the bar employed 
for this numerical simulation. 

It can be seen from Fig. 14.4 that both discrete numerical models, based on the 
use of TD-SFEM and spFEM, perform well in the case of the excitation signal 
characterised by the lower carrier frequency. fc = 200kHz, for which the frequency 
content covers frequencies from . fc − 2 fm = 160kHz up to . fc + 2 fm = 240 kH. 
However, a slight increase in the carrier frequency to . fc = 250kHz results in a sud-
den change in the calculated dynamic responses for TD-SFEM. In this case, how-
ever, the frequency content covers higher frequencies from. fc − 2 fm = 200kHz up 
to . fc + 2 fm = 300kHz, which just in the case of TD-SFEM leads to a strong influ-
ence of the frequency band gap FG. 2 with its central frequency matching the central 
frequency of the excitation signal, as presented in Table 13.2 from Sect. 13.3. This is 
despite a relatively small width of the frequency gap FG. 2, which is of only 0.8 kHz. 
Consequently, the calculated dynamic responses exhibit not only some additional 
spatial numerical dispersion, manifested by an increased speed of the wave packet, 
but also the behaviour typical of periodic structures, when a signal gets trapped 
within the structure leading to observable oscillations along the whole length of the 
bar. This is not the case for spFEM, where no such influence can be detected. 

Additionally, it can easily checked, based on the dispersion curves presented in 
Fig. 14.3, that in the case of TD-SFEM the assumed excitation signals of the central 
frequency. fc equal to 200 and 250 kHz conform well with the requirement of 4 nodal 
distances per wavelength [ 22– 24]. In the case of spFEM, however, this requirement 
is changed to 4 nodal DOFs per wavelength, 4 which is also satisfied. 

Next, a similar analysis is performed in the case of the 2-mode 1-D theory (Timo-
shenko) of the flexural behaviour of beams. This analysis is carried out in exactly the 
same two steps, however, due to the 2-mode nature of the applied theory it concerns 
1000 frequencies of free vibrations for TD-SFEM and 996 for spFEM, respectively. 

It can be seen from Fig. 14.5 that the dispersion curves obtained in the case of 
spFEM, in the same manner as before and contrary to TD-SFEM, are continuous and

4 This is due to the fact that in spFEM, contrary to the classical FEM or TD-SFEM, 1-D FEs use 
higher order nodal DOFs and always have only two nodes. 
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Fig. 14.5 Dispersion curves for the phase velocity for flexural modes of elastic waves propagating 
in a 1-D non-periodic bar for selected degrees of approximation polynomials: a .r = 5 and TD-
SFEM, b .r = 3 and spFEM. Results of numerical computations by TD-SFEM/spFEM according 
to the 2-mode 1-D theory (Timoshenko) of the flexural behaviour of beams, obtained by the use of 
the Bloch reduction technique for: a 100 cells,.a = 20mm and TD-SFEM, b 166 cells,.a = 12mm 
and spFEM,.cP3pt = 6.09 km/s,.cS3pt = 3.07 km/s 

Table 14.3 Statistical data on the spatial numerical dispersion in the case of two discrete numerical 
models of a 1-D non-periodic medium. Results of numerical computations by spFEM/TD-SFEM 
according to the 2-mode 1-D theory (Timoshenko) of the flexural behaviour of beam, obtained by 
the use of the Bloch reduction technique for: a 100 cells, .a = 20mm and TD-SFEM, b 166 cells, 
.a = 12mm and spFEM, and.cP3pt = 6.09 km/s,.cS3pt = 3.07 km/s 

FEM approach Mode 1% disp. (kHz) 5% disp. (kHz) . fmax (kHz) 

TD-SFEM,.r = 5 F.0 . <176.7 (28.3%) . <217.4 (34.8%) 625.2 

F.1 . <315.5 (29.1%) . <384.2 (35.5%) 1082.6 

spFEM,.r = 3 F.0 . <256.3 (70.8%) . <362.2 (100%) 362.2 

F.1 . <452.8 (72.1%) . <628.3 (100%) 628.3 

In brackets the percentage of the frequency spectrum associated with a given mode is indicated 

free of any frequency band gaps. In the case of spFEM undesired spatial numerical 
dispersion is also on a much smaller level than in the case of TD-SFEM, as presented 
in Table 14.3. 

It is noteworthy that in the case of TD-SFEM the undesired spatial numerical dis-
persion is entirely driven by the presence of frequency band gaps, i.e., FG. 2 (217.4 kHz 
... 230.1 kHz) for the fundamental flexural mode F. 0 as well as FG. 3 (296.6 kHz ... 
300.4 kHz) for the second flexural mode F. 1, rather than the finite size of the fre-
quency spectrum. The absence of frequency band gaps in the calculated spectrum in 
the case of spFEM once more indicates its superiority over TD-SFEM, especially that 
for spFEM the undesired spatial numerical dispersion never exceeds 5%. It should 
be emphasised that in computational practice the first significant frequency band gap
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Fig. 14.6 Response patterns for the radial acceleration component.ür of flexural waves propagating 
in a 1-D non-periodic bar for selected degrees of approximation polynomials: a, c .r = 5 and TD-
SFEM, b, d.r = 3 and spFEM. Results of numerical computations by TD-SFEM/spFEM according 
to the 2-mode 1-D theory (Timoshenko) of the flexural behaviour of beams for a 40 mm diameter, 
2 m long aluminium bar of free ends 

is the one which effectively limits the available spectrum for numerical simulations. 
In the case of TD-SFEM this is FG. 1 (217.4 kHz ... 230.1 kHz) for the fundamental 
flexural mode F. 0. 

The dispersion curves obtained for TD-SFEM and spFEM, presented in Fig. 14.5, 
due to the 2-mode nature of the applied theory, have even a stronger impact on 
calculated wave propagation patterns of the bar, as shown in Fig. 14.6. Also in this  
analysis the implicit .β-Newmark method is used, as discussed in Sect. 10.7, for  the  
recommended values of the parameters . α and . β equal to .1/2 and .1/4, respectively.
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The phase velocity dispersion curve as well as the group velocity dispersion 
curve for the 2-mode 1-D theory (Timoshenko) of the flexural behaviour of beams, 
as presented in Fig. 9.12 from Sect. 9.2, indicate a strong frequency dependence on 
associated velocities. Consequently, the total calculation time .T covers 430 or 414 
. µs and is divided into 8,000 equal time steps. The excitation signal is applied as a 
transversely acting force at the left hand, free end of the bar, having the amplitude 
of 1 N and the form of 10 sine pulses at the carrier frequency . fc of 100 or 150 kHz, 
modulated by the Hann window, i.e., with the frequency of modulation . fm = fc/m
equal to 10 or 15 kHz, where.m = 10. The total calculation time. T is chosen in such 
a manner that the faster wave packet, due to the excitation of both modes F. 0 and F. 1, 
travelling along the bar should reach the right hand, free end of the bar. The expected 
positions of both wave packets, calculated based on the dispersion curves presented 
in Fig. 9.12 from Sect. 9.2, are indicated by white boxes. As before it should be 
emphasised that any deviation in this respect is a clear indication of the quality of 
the discrete numerical model of the bar employed for this numerical simulation. 

It can be seen from Fig. 14.6 that both discrete numerical models, based on the use 
of TD-SFEM and spFEM, perform well in the case of the excitation signal charac-
terised by the lower carrier frequency. fc = 100kHz, for which the frequency content 
covers frequencies from. fc − 2 fm = 80kHz up to. fc + 2 fm = 120 kH. However, an 
increase in the carrier frequency to. fc = 150kHz results in a significant change in the 
calculated dynamic responses for TD-SFEM. In this case the frequency content cov-
ers higher frequencies from. fc − 2 fm = 120kHz up to. fc + 2 fm = 180kHz, which 
in the case of TD-SFEM leads to a subtle influence on the frequency band gap FG. 1

(141.1 kHz ... 141.6 kHz) for mode F. 0, having its central frequency very close to 
the central frequency of the excitation signal. This influence is observable despite a 
relatively small width of the frequency gap FG. 1, which is of only 0.5 kHz. 

As a consequence and in the same manner as observed in the case of longitudinal 
waves, the calculated dynamic responses exhibit not only some additional spatial 
numerical dispersion manifesting by an increased speed of both wave packets, but 
also the behaviour typical of periodic structures, when a signal gets trapped within 
the structure leading to observable oscillations along the whole length of the bar. 
This is not the case for spFEM, where no such influence can be detected. 

Also in this case, it can easily checked based on the dispersion curves presented in 
Fig. 14.5 that in the case of TD-SFEM the assumed excitation signals of the central 
frequency. fc equal to 100 or 150 kHz conforms well with the requirement of 4 nodal 
distances per wavelength, while in the case of spFEM with the requirement of 4 
nodal DOFs per wavelength [ 22– 24]. 

Finally, the analysis carried out concerns a 2-D structure, which is a 10 mm thick, 
1m. × 1 m aluminium plate with free edges. The application of the 3-mode 2-D theory 
(Mindlin-Reissner) of the antisymmetric behaviour of plates for wave propagation 
purposes, as before is preceded by the analysis of the dispersion curves for the 
antisymmetric modes A. 0, A. 1 and SH. 1 employed by this theory. 

The dispersion curves obtained in the case of TD-SFEM and the degree of approxi-
mation polynomials.r = 5 are already presented in Fig. 13.14 from Sect. 13.4. Similar 
curves obtained in the case of spFEM and the degree of approximation polynomials
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.r = 3 are presented in Fig. 14.7. The Bloch reduction technique is used for that pur-
pose aiming again for the frequency spectra of free vibrations of similar densities. 
In order to achieve this a uniform lattice of 82. ×82 cells of length .a = 12.2mm is 
used. It is clear from the results presented in Fig. 14.7 that the dispersion curves are 
free of any frequency band gaps in the entire spectrum available. Also the level of 
undesired spatial numerical dispersion is on a much lower level than in the case of 
TD-SFEM, which is summarised by Table 14.4. 

Once more special attention should be paid to the fact that in computational 
practice the percentage values from Table 14.4 could be also related to the maximum 
frequency from the available spectrum of free vibrations, which to some extent gives 
more adequate information about the discrete numerical model in use. In the current 
case under consideration these percentage values could be approximately lowered 
by half. Additionally, the spectra of free vibrations obtained by spFEM, with no 
frequency band gaps, enable one to use excitation signals of the frequency content 
reaching at least twice or three times higher frequencies in comparison with TD-
SFEM. 

The high quality of the results obtained by the use of spFEM, already presented in 
Fig. 14.7, is also confirmed by the same type of a 2-D directional map of frequencies 
of free vibrations, presented in Fig. 14.8, in order to assist the previously obtained 2-
D directional maps presented in Fig. 13.15 from Sect. 13.4. Since the presented map 
is free of any frequency band gaps in the case of spFEM, in contrast to TD-SFEM, 
the usable part of the spectrum of the calculated frequencies of free vibrations of 
the plate is practically limited by the presence and magnitude of undesired spatial 
numerical anisotropy for the fundamental antisymmetric mode of Lamb waves A. 0, 
as summarised in Table 14.3. As before in order to assess the extent of this numerical 
anisotropy of the discrete numerical model of the plate it is sufficient to use as basis 
the map corresponding to the fundamental antisymmetric mode of Lamb waves A. 0

only. 
The observation made until this point concerning numerical properties of three 

FEM approaches, i.e., the classical FEM, TD-SFEM and spFEM are best illustrated 
by the results of numerical computations concerning propagation of elastic waves 
within the plate under consideration presented in Fig. 14.9. 

For this purpose the explicit.β-Newmark method is used, as discussed in Sect. 10.7, 
for the recommended values of the parameters. α and. β equal to.1/2 and.1/4, respec-
tively. Moreover, in order to ensure that discrete numerical models of similar number 
of DOFs are used, the already tested uniform meshes of the plate are employed: 
.126 × 126 FEs and 192,027 DOFs for FEM, .50 × 50 FEs and 189,003 DOFs for 
TD-SFEM, .82 × 82 FEs and 186,003 DOFs for spFEM. The obtained numbers 
result directly from the degrees of approximation polynomials used by these FEM 
approaches, which are: .r = 2 for FEM, .r = 5 for TD-SFEM and .r = 3 for spFEM. 

This time the total calculation time .T covers 500 . µs and is divided into 6,000 
equal time steps. The excitation signal is applied as a transversely force acting at the 
plate centre, having the amplitude of 1 N and the form of 10 sine pulses at the carrier 
frequency. fc equal to 70, 120 or 165 kHz, modulated by the Hann window, i.e., with 
the frequency of modulation . fm = fc/m equal to 5.83, 10.0 or 13.75 kHz, where
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Fig. 14.7 Dispersion curves for the phase velocity for antisymmetric modes of elastic waves prop-
agating in a 10 mm thick non-periodic medium in the directions of non-dimensional wave vectors 
of the reciprocal space: a .k̃[10]

n , b .k̃[11]
n . Results of numerical computations in the reduced zone, for 

the degree of approximation polynomials .r = 3 and spFEM, according to the 3-mode 2-D theory 
(Mindlin–Reissner) theory of the antisymmetric behaviour of plates, obtained by the use of the 
Bloch reduction technique for a uniform lattice of .82 × 82 cells, .cP3pt = 6.09 km/s, . cS3pt = 3.07
km/s,.a = 12.2 mm 

Table 14.4 Statistical data on the spatial numerical dispersion in the case of two discrete numerical 
models of a 2-D non-periodic medium. Results of numerical computations by TD-SFEM/spFEM 
according to the 2-mode 2-D theory (Mindlin-Reissner) of the antisymmetric behaviour of plates, 
obtained by the use of the Bloch reduction technique for a uniform lattice of: a .50 × 50 cells,. a =
20mm and TD-SFEM, b .82 × 82 cells, .a = 12mm and spFEM, and .cP3pt = 6.09 km/s, . cS3pt =
3.07 km/s 

FEM approach Mode Direct. 1% disp. (kHz) 5% disp. (kHz) . fmax (kHz) 

TD-SFEM,.r = 5 A.0 [10] 150.2 (24.5%) 198.8 (32.5%) 612.5 

[11] 229.5 (26.5%) 290.6 (33.5%) 867.2 

A.1 [10] 244.8 (35.9%) 280.4 (41.2%) 681.2 

[11] 294.1 (22.1%) 374.1 (28.1%) 1333.1 

SH.1 [10] 370.8 (32.1%) 440.6 (38.1%) 1156.0 

[11] 427.4 (31.1%) 665.4 (49.9%) 1333.1 

spFEM,.r = 3 A.0 [10] 219.6 (63.1%) 290.8 (83.5%) 348.1 

[11] 334.5 (68.0%) 447.4 (90.1%) 492.2 

A.1 [10] 311.1 (76.2%) 408.3 (100%) 408.3 

[11] 359.3 (46.7%) 434.1 (56.4%) 769.2 

SH.1 [10] 509.0 (75.9%) 670.3 (100%) 670.3 

[11] 734.9 (93.6%) 779.7 (99.3%) 785.2 

In brackets the percentage of the frequency spectrum associated with a given mode is indicated
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Fig. 14.8 Directional map 
of frequencies of free 
vibrations for the 
fundamental antisymmetric 
mode of Lamb waves A. 0 of 
elastic waves propagating in 
a 10 mm thick non-periodic 
medium, for the degree of 
approximation polynomials 
.r = 3 and spFEM. Results of 
numerical computations for 
the reduced zone, according 
to the 3-mode 2-D theory 
(Mindlin-Reissner) of the 
antisymmetric behaviour of 
plates, obtained by the use of 
the Bloch reduction 
technique for a uniform 
lattice of.82 × 82 cells and 
.a = 12.2 mm,. cP3pt = 6.09
km/s,.cS3pt = 3.07 km/s 

.m = 10. The total calculation time .T is chosen in such a manner that the resulting 
wave packet travelling within the plate should at least reach any of the free edges of 
the plate. 

The values of the carrier frequency. fc are carefully selected, so the periodic nature 
of discrete numerical models of the plate can be fully revealed. This is possible since 
in the case of FEM the first frequency band gap FG. 1 (162.2 kHz ... 177.7 kHz) is 
centrally located within the range of excited frequencies for the carrier frequency 
of the excitation . fc = 165kHz, while in the case of TD-SFEM the first frequency 
band gap FG. 1 (198.8 kHz ... 210 kHz) is located on its edge, all in the direction of 
the wave vector of reciprocal space.k[10], as presented in Table 13.4 in Sect. 13.4. For 
lower values of the carrier frequencies, i.e., 70 and 120 kHz, the periodic nature of 
the discrete numerical model of the plate should stay hidden, except some influence 
of numerical anisotropy can be revealed depending on the properties of discrete 
numerical models used. 

It is evident from the results presented in Fig. 14.9 that an increase in the carrier 
frequency . fc leads to an increasing influence of the periodic nature of the discrete 
numerical models of the plate, for both FEM and TD-SFEM. In the case of FEM 
clear numerical dispersion is observed yet for the carrier frequency . fc of 120 kHz, 
while in the case of TD-SFEM this becomes observable for the carrier frequency. fc
of 165 kHz. This higher excitation frequency leads to strong numerical dispersion 
in the case of FEM, which is a clear indication of the influence of a frequency band 
gap within the range of excited frequencies. However, in the case of spFEM no such 
behaviour is observed, except some small numerical dispersion, which can be noticed 
for the higher excitation frequency. fc of 165 kHz. Once more the superior behaviour
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Fig. 14.9 Wave propagation patterns for transverse acceleration component.üz for the fundamental 
antisymmetric mode of Lamb waves A. 0 of elastic waves propagating in a 2-D non-periodic plate, for 
various modelling approaches: (top) FEM, (middle) TD-SFEM and (bottom) spFEM and various 
excitation frequencies: (left) 70 kHz, (centre) 120 kHz, (right) 165 kHz, for similar number of DOFs 
of discrete numerical models. Results of numerical computations according to the 3-mode 2-D 
theory (Mindlin-Reissner) of the antisymmetric behaviour of plates for a 10 mm thick non-periodic 
1 m. ×1 m aluminium plate with free edges 

of spFEM over both FEM and TD-SFEM, in the case of analysis of wave propagation 
patterns, is clearly confirmed. 

Finally, also in this case it can easily be checked, based on the dispersion curves 
presented in Fig. 14.9 as well as in Figs. 13.13 and 13.14 from Sect. 13.4, that in the 
case of the classical FEM and TD-SFEM the assumed excitation signals of the central 
frequency. fc equal to 70, 120 and 165 kHz conforms well with the requirement of 4 
nodal distances per wavelength, while in the case of spFEM with the requirement of 
4 nodal DOFs per wavelength [ 22– 24].
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Afterword 

Think it over, think it under—Winnie-the-Pooh 

Despite the fact that this book is intended as a textbook for undergraduate, postgrad-
uate as well as doctoral students, it is far from being complete. In a way it leaves 
readers enough space for their own study and research, but on the other hand it pro-
vides all information that is needed to start this process. In all necessary places it 
refers readers not only to the most recent scientific literature, but also to the most 
important and influential historical positions. However, it is a very difficult, if not 
an impossible task to fit and squeeze all available historical as well as contemporary 
information from such broad scientific disciplines as: physics, acoustics, mathemat-
ics and additionally computational techniques such as is FEM, into a finite number 
of pages. 

In view of this, while looking on the content of the book, for the benefit of its 
readers, it is perhaps at this stage much more important to point out what is missing 
in this book rather than to state what is included. 

The historical background, for the reasons already mentioned, had to be limited 
to the most important aspects of the developments in the scientific disciplines most 
relevant to the subject of the book and is intended by the author to present a kind of 
sequence of historical factors, discoveries and milestones leading to the current state 
of knowledge. Perhaps more inquisitive readers will find this kind of information 
placed in the book as inspirational and sufficient to start their own investigations in 
this respect. 

The theoretical considerations included in the book are focused on the most impor-
tant and typical aspects of acoustics and wave propagation. The necessary mathe-
matical background is offered to readers to support these considerations. But yet 
again, the vast range of existing aspects of modern acoustics and associated wave 
propagation problems, remains far beyond what was possible to include in the book. 
For this reason the book is focused on linear problems in elastic solids only. However, 
this somehow narrowed scope offers readers an insight into and understanding of the 
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associated phenomena to the extent which allows them to start to conduct their own 
research in these fields. 

Due to the sheer number of more or less advanced textbooks on FEM available, 
the relevant section of the book dealing with FEM modelling also had to be limited. 
For this reason it is focused on the linear displacement FEM approach concerning 
isotropic media only, but places particular emphasis on those problems of FEM 
modelling which are new or not too well recognised in the available literature. This 
concerns the process of building simplified as well as higher-order multi-mode FEM 
models of typical structural elements and their subsequent assessment, especially in 
the context of wave propagation analysis. Based on the information provided more 
inquisitive readers may easily apply the methodology presented in the book to other 
types of problems typically solved by FEM, which are not covered in the book. 

However, it is noteworthy that two very important aspects of numerical anal-
ysis of the problems associated with the propagation of elastic waves in engi-
neering structures, carried out by the use of FEM, are investigated in the book to 
some greater depth. The first of them concerns the wave propagation phenomena in 
unbounded/infinite engineering structures by FEM, while the second concerns peri-
odic properties of FE discrete numerical models, which are used for this purpose. In 
that context some basic theoretical background on periodic structures is also offered 
to readers not familiar with this subject. This original part of the book is meant by 
the author as offering readers deeper understanding of important issues related to 
FEM modelling and analysis, which can be easily moved onto and adopted for new 
types of scientific or engineering problems tackled by FEM. 

Finally, a concept of spFEM is explained and introduced as a new type of FEM 
approach offering computational properties, which are not accessible in the case of 
classical FEs. This further original aspect of the book, still under development, is 
presented to readers in a very accessible and easy to follow form, but supported by 
a number of simple and demonstrative case studies. Nerveless, it is also meant to 
encourage more inquisitive readers to start their own investigations in this respect to 
the benefit of the field and whole research community. 

At this point the author of this book would also like to gratefully acknowledge 
the support for his research provided by the Centre of Informatics Tricity Academic 
Supercomputer & Network (CI TASK). All results presented in this book have been 
obtained by the use of the software available at CI TASK. 



Appendix A 
Material Constants 

Anisotropic materials 1 have no planes of material symmetry. Typical examples of 
anisotropic materials include: wood, most crystals or short-fibre reinforced compos-
ites. The number of independent material coefficients in the stiffness tensor . C is 21. 
They have to be established through as many as 21 independent experimental tests 
[ 1]. 

In the case anisotropic materials the stiffness tensor . C takes the following form: 

.C = 

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

C11 C12 C13 C14 C15 C16 

C22 C23 C24 C25 C26 

C33 C34 C35 C36 

C44 C45 C46 

C55 C56 

symm. C66 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
(A.1) 

At this place it is noteworthy that the stiffness tensor . C, as defined by Eq. (3.47) 
form Sect. 3.3, fully corresponds to the matrix .De of linear relationships between 
the stress vector. σσσ and the strain vector. ∈∈∈, as defined by Eq. (10.37) from Sect. 10.6, 
which can be written as: 

.C = De (A.2) 

Orthotropic materials, also known as orthogonally anisotropic materials, have  
three orthogonal planes of material symmetry. Typical examples of orthotropic mate-
rials include: wood, rolled metals, certain crystals or single layers of long-fibre rein-
forced composites. The number of independent material coefficients in the stiffness 
tensor. C is 9. They can be established through 6 independent experimental tests [ 2]. 

1 The term anisotropy comes for Greek (an—not, isos—the same, trópos—a turn, way, manner or 
style) and means not the same or different for the direction or rotation. Its opposite is isotropy. 
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In the case orthotropic materials the stiffness tensor . C takes the following form: 

.C = 

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

C11 C12 C13 0 0  0  
C22 C23 0 0  0  

C33 0 0  0  
C44 0 0  

C55 0 
symm. C66 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
(A.3) 

Transversely isotropic materials have an infinite number of planes of material 
symmetry and exhibit isotropy in one direction, which is normal to the plane of 
isotropy. Typical examples of transversely isotropic materials include: unidirectional 
long-fibre reinforced composites, stratified soils and rocks as well as bones. The 
number of independent material coefficients in the stress tensor. C is 5. They have to 
be established through 5 independent experimental tests [ 3]. 

In the case transversely isotropic materials the stiffness tensor. C takes the follow-
ing form: 

.C = 

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

C11 C12 C23 0 0  0  
C22 C23 0 0  0  

C22 0 0  0  
Ĉ 0 0  

C66 0 
symm. C66 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
(A.4) 

where . Ĉ = (C11 − C12)/2. 
Isotropic material have an infinite number of planes of material symmetry. Typ-

ical examples of isotropic materials include: glass, plastics, metals and their alloys. 
The number of independent material coefficients in the stress tensor. C is 2. They can 
be established through 2 simple and independent experimental tests [ 3]. 

In the case isotropic materials the stiffness tensor . C takes the following form: 

.C = 

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

C11 C12 C12 0 0  0  
C11 C12 0 0  0  

C11 0 0  0  
Ĉ 0 0  

Ĉ 0 
symm. Ĉ 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
(A.5) 

where as before . Ĉ = (C11 − C12)/2. 
In engineering practice the material coefficients within the stress tensor . C can be 

expressed either by Lamé parameters or more preferably by engineering constants 
describing material properties in various directions [ 4]. For this purpose it is con-
venient to use the subscripts 1, 2 and 3 as a reference to the principal directions of 
material symmetries, which coincide with the . x , . y and . z axes, respectively. 
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In the case of orthotropic material the material coefficients in the stiffness tensor 
. C can be expressed by the following relationships: 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

C11 = 
1 − ν23ν32 
ΔE22 E33 

, C12 = 
ν21 + ν23ν31 
ΔE22 E33 

= 
ν12 + ν13ν32 
ΔE11 E33 

C13 = 
ν31 + ν21ν32 
ΔE22 E33 

= 
ν13 + ν12ν23 
ΔE11 E22 

, C22 = 
1 − ν13ν31 
ΔE11 E33 

C23 = 
ν32 + ν12ν31 
ΔE11 E33 

= 
ν23 + ν13ν21 
ΔE11 E22 

, C33 = 
1 − ν12ν21 
ΔE11 E22 

C44 = G23, C55 = G31, C66 = G12 

(A.6) 

where the factor .Δ is defined as: 

.Δ = 
1 − ν12ν21 − ν13ν31 − ν23ν32 − 2ν12ν23ν31 

E11 E22 E33 
(A.7) 

since due to the symmetry of the stress tensor . C it can be found that: 

. 
ν12 

E11 
= 

ν21 

E22 
, 

ν13 

E11 
= 

ν31 

E33 
, 

ν23 

E22 
= 

ν32 

E33 
(A.8) 

In the case of transversely isotropic material the number of material coefficients 
in the stiffness tensor . C is reduced since: 

.E33 → E22, ν13 → ν12, ν31 → ν21, ν32 → ν23, G31 → G12 (A.9) 

Finally, in the case of isotropic material the number of material coefficients in 
the stiffness tensor . C if further reduced since: 

.E22 → E11 → E, ν23 → ν12 → ν, G23 → G12 → G (A.10) 

The values of material coefficients in the stiffness tensor . C, for various types of 
materials mentioned above, can be defined by many ways. They can be obtained 
experimentally or established based on the results available in the literature. In the 
case of unidirectional composite materials or laminates they can be calculated by the 
use of well-known formulae [ 2– 4]. 

Additionally, material coefficients in the stiffness tensor . C, describing the elastic 
properties of the material in 3-D, may take into account various stress or strain 
conditions, which lead to the reduction of its dimension in the case of 2-D or 1-D 
problems. This takes place under such conditions as: plane stress or plane strain, 
pure bending, tension or torsion [ 5– 7], also exploited in this book. 



Appendix B 
Solving for . c(ω) 

In many places throughout this book in order to obtain dispersion curves it is neces-
sary to solve characteristic equations . f (k) = 0 for a specific cyclic frequency . ω as 
a parameter. This process can be formally written as: 

.for given ω → f (k) = 0 → k → c(ω) = 
ω 
k 

(B.1) 

which leads directly to the phase velocity .c(ω). 
The characteristic equation . f (k) = 0 can be also thought of as representing a 

certain complex function . f (z) of a complex variable .z = x + iy. This function has 
complex roots and they can be found numerically. There are numerous numerical 
methods available in the literature, which allow one to find them. The method used 
in this book is a simple approach, which is based on the very well-known method 
of bisection [ 8]. The use of such a simple method leads to a very fast and good 
estimation of the sought roots, which next can be precisely pinned down by the use of 
the Newton-Raphson method or similar methods, which in general are characterised 
by much faster convergence than the method of bisection. 

However, one must remember that finding roots of a complex function . f (z) of 
a complex variable .z = x + iy  can be a difficult task of its own. In order to simply 
this task the function . f (z) can be represented as a sum of its real and imaginary 
parts, expressed by certain functions.u(z) and.v(z), but treated as functions of . x and 
. y variables instead: 

. 
f (z) = f (x + iy) = Re[ f (z)] +  iIm[ f (z)] 

= u(z) + i v(z) = u(x, y) + i v(x, y) 
(B.2) 

Moreover, it can be noticed that the roots of the function. f (z) must simultaneously 
be the roots of the functions .u(z) and .v(z) and vice versa. This property can be 
exploited to construct a new real-valued function.F(x, y), which has the same roots 
as the original complex function . f (z): 
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A. Żak, A Finite Element Approach for Wave Propagation in Elastic Solids, 
Lecture Notes on Numerical Methods in Engineering and Sciences, 
https://doi.org/10.1007/978-3-031-56836-7 

313 

https://doi.org/10.1007/978-3-031-56836-7
https://doi.org/10.1007/978-3-031-56836-7
https://doi.org/10.1007/978-3-031-56836-7
https://doi.org/10.1007/978-3-031-56836-7
https://doi.org/10.1007/978-3-031-56836-7
https://doi.org/10.1007/978-3-031-56836-7
https://doi.org/10.1007/978-3-031-56836-7
https://doi.org/10.1007/978-3-031-56836-7
https://doi.org/10.1007/978-3-031-56836-7
https://doi.org/10.1007/978-3-031-56836-7


314 Appendix C: Solving for c(ω) 

.F(x0, y0) = 0 → f (z0) = 0, where z0 = x0 + iy0 (B.3) 

Consequently, many real-valued functions .F(x, y) can be used here [ 9]. In order 
to simplify computational operations and avoid dealing with very high positive and 
negative numbers, for the results presented in this book a real-valued function. F(x, y) 
in the following form was employed: 

.F(x, y) = 
sgn[u(x, y) + v(x, y)] 

2
+ 

sgn[u(x, y) − v(x, y)] 
2 

(B.4) 

where.sgn is the sign function. It can be also checked that as a result. F(x, y) ∈ ⟨−1, 1⟩ 
and particular roots of the new function .F(x, y) on .xy  plane can be easily located 
by the use of the bisection method. The absolute accuracy of the obtained values 
of the phase velocity .c(ω) by the use of the proposed approach can easily reach 
.10−5 m/s. 



Appendix C 
Coordinate Systems 

Very often the equations of motion, given by Eq. (3.4) from Sect. 3.1, must be  
analysed in coordinate systems other that the Cartesian coordinate system.(x, y, z). 
In all such cases it is necessary to express the nabla operator of differentiation . ∇ 
associated with calculations of: 

• the gradient .∇ f ≡ grad f , 
• the divergence .∇ ·  f ≡ div f , 
• the curl (rotor) .∇ ×  f ≡ culr f , 

in such coordinate systems [ 10]. 
Since three coordinate systems are typically used in engineering practice, i.e. the 

Cartesian coordinate system .(x, y, z), the cylindrical coordinate system .(x, r, θ  )  as 
well as the spherical coordinate system .(r, θ, ϑ), the corresponding formulae for 
calculations of the gradient, divergence and curl become very important. 

In the case of the Cartesian coordinate system .(x, y, z): 

• the gradient of a scalar function . f (x, y, z) is: 

.∇ f (x, y, z) = g(x, y, z) (C.1) 

where .g(x, y, z) is a vector function such that: 

.gx = 
∂ f 
∂x 

, gy = 
∂ f 
∂ y 

, gz = 
∂ f 
∂z 

(C.2) 

• the divergence of a vector function .g(x, y, z) is: 

.∇ ·  g(x, y, z) = ∇  ·  [gx , gy, gz] =  f (x, y, z) (C.3) 
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where . f (x, y, z) is a scalar function such that: 

. f (x, y, z) = 
∂gx 

∂x 
+ 

∂gy 

∂y 
+ 

∂gz 

∂z 
(C.4) 

• the curl of a vector function .g(x, y, z) is: 

.∇ ×  g(x, y, z) = ∇  ×  [gx , gy, gz] =  h(x, y, z) (C.5) 

where .h(x, y, z) is a vector function such that: 

.hx = 
∂ fz 
∂ y 

− 
∂ fy 
∂z 

, hy = 
∂ fx 
∂ z 

− 
∂ fz 
∂x 

, hz = 
∂ fy 
∂x 

− 
∂ fx 
∂y 

(C.6) 

In the case of the cylindrical coordinate system .(x, r, θ  ): 

• the gradient of a scalar function . f (x, r, θ  )  is: 

.∇ f (x, r, θ  )  = g(x, r, θ  ) (C.7) 

where .g(x, r, θ  )  is a vector function such that: 

.gx = 
∂ f 
∂x 

, gr = 
∂ f 
∂r 

, gθ = 
1 

r 

∂ f 
∂θ 

(C.8) 

• the divergence of a vector function . g is: 

.∇ ·  g(x, r, θ  )  = ∇  ·  [gx , gr , gθ ] =  f (x, r, θ  ) (C.9) 

where . f (x, r, θ  )  is a scalar function such that: 

. f (x, r, θ  )  = 
∂ fx 
∂ x 

+ 
1 

r 

∂(r fr ) 
∂r 

+ 
1 

r 

∂ fθ 

∂θ 
(C.10) 

• the curl of a vector function .g(x, r, θ  )  is: 

.∇ ×  g(x, r, θ  )  = ∇  ×  [gx , gr , gθ ] =  h(x, r, θ  ) (C.11) 

where .h(x, r, θ  )  is a vector function such that: 

. 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

hx = 
1 

r 

∂(rgθ ) 
∂r 

− 
1 

r 

∂gr 

∂θ 
hr = 

1 

r 

∂gx 

∂θ 
− 

∂gθ 

∂x 

hθ = 
∂gr 

∂x 
− 

∂gx 

∂r 

(C.12) 
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In the case of the spherical coordinate system .(r, θ, ϑ): 

• gradient of a scalar function . f (r, θ, ϑ)  is: 

.∇ f (r, θ, ϑ)  = g(r, θ, ϑ) (C.13) 

where .g(r, θ, ϑ)  is a vector function such that: 

.gr = 
∂ f 
∂r 

, gθ = 
1 

r 

∂ f 
∂θ 

, gϑ = 1 

r sin θ 
∂ f 
∂ϑ 

(C.14) 

• divergence of a vector function .g(r, θ, ϑ)  is: 

.∇ ·  g(r, θ, ϑ)  = ∇  ·  [gr , gθ , gϑ ] =  f (r, θ, ϑ) (C.15) 

where . f (r, θ, ϑ)  is a scalar function such that: 

. f (r, θ, ϑ)  = 
1 

r2 
∂(r2gr ) 

∂r 
+ 1 

r sin θ 
∂(gθ sin θ)  

∂θ
+ 1 

r sin θ 
∂gϑ 

∂ϑ 
(C.16) 

• curl of of a vector function .g(r, θ, ϑ)  is: 

.∇ ×  g(r, θ, ϑ)  = ∇  ×  [gr , gθ , gϑ ] =  h(r, θ, ϑ) (C.17) 

where .h(r, θ, ϑ)  is a vector function such that: 

. 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

hx = 1 

r sin θ 
∂(gϑ sin θ)  

∂θ
− 

1 

r sin θ 
∂gθ 

∂ϑ 
hy = 1 

r sin θ 
∂gr 

∂ϑ 
− 

1 

r 

∂(rgϑ ) 
∂r 

hz = 
1 

r 

∂(rgθ ) 
∂r

− 
1 

r 

∂gr 

∂θ 

(C.18) 

Additionally, the following calculations rules [ 10] involving the nabla operator of 
differentiation .∇ may come as useful: 

. 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

∇ ·  (∇ f ) = ∇2 f 
∇ ×  (∇ f ) = 0 
∇ ·  (∇ ×  h) = 0 
∇ ×  (∇ ×  h) = ∇(∇ ·  h) − ∇2h 
∇2( f · g) = f ∇2g + 2(∇ f ) · (∇g) + g∇2 f 

(C.19) 

as they are fully independent of the choice of the coordinate system. 
The first of them represents the so-called Laplace operator (Laplacian), also noted 

as. Δ, which plays an important role in engineering sciences [ 6, 11– 14]. The Laplace 
operator can be expressed in the three coordinate systems under consideration [ 10] 
in the following manner: 
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. 

Δ f = ∇2 f = 
∂2 f 

∂ x2 
+ 

∂2 f 

∂y2 
+ 

∂2 f 

∂z2 ~ ~~ ~ 
f = f (x,y,z) 

= 
∂2 f 

∂ x2 
+ 

∂2 f 

∂r2 
+ 

1 

r 

∂ f 
∂r 

+ 
1 

r2 
∂2 f 

∂θ 2 ~ ~~ ~ 
f = f (x,r,θ ) 

= 
∂2 f 

∂r2 
+ 

2 

r 

∂ f 
∂r 

+ 1 

r2 sin θ 
∂ 
∂θ 

( 
sin θ 

∂ f 
∂θ 

) 
+ 1 

r2 sin2 θ 
∂2 f 

∂ϑ2 
~ ~~ ~ 

f = f (r,θ,ϑ) 

(C.20) 



Appendix D 
Transformation of Mid-plane Displacement 
Fields 

Very often it is necessary to transform the resulting form of the Maclaurin series 
expansion of a particular displacement components of the 3-D displacement field. 
Thanks to this transformation as well as the application of the traction-free boundary 
conditions higher-order theories can be built and formulated with a relative ease 
[ 15]. On the other hand, without the transformation the application of the traction-
free boundary conditions leads to systems of partial differential equations, which 
very often cannot be solved analytically. 

It is show in Sect. 7.2 that in the case of the 3-D displacement field, the Maclaurin 
series expansion of the displacement component .ux of this field, in the direction of 
the. z axis, has the form of Eq. (7.2), which for.m = 5 can be presented in an expanded 
form as: 

. 
ux (x, y, z, t) = φ0(x, y, t) + zφ1(x, y, t) + z2 φ2(x, y, t) 

+ z3 φ3(x, y, t) + z4 φ4(x, y, t) + z5 φ5(x, y, t) 
(D.1) 

where the expansion error .O(z6) is omitted for the simplicity of notation. 
This equation is a starting point for a mid-plane representation of the displacement 

component.ux of the initial 3-D displacement field, which can be presented as follows: 

. 
ux (x, y, ζ,  t) = φ0(x, y, t) + aζφ1(x, y, t) + a2 ζ 2 φ2(x, y, t) 

+ a3 ζ 3 φ3(x, y, t) + a4 ζ 4 φ4(x, y, t) + a5 ζ 5 φ5(x, y, t) 
(D.2) 

where a new variable . ζ is introduced with .z = aζ , where .2h = a, such that if . z ∈ 
⟨−a, +a⟩ then .

A simple supplementation of the above equation by a number of zero terms leads 
to: 

ζ ∈ ⟨−1, +1⟩. 
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. 

ux (x, y, ζ,  t) = φ0(x, y, t) + aζφ1(x, y, t) 
+ a2 ζ 2 φ2(x, y, t) + [φ2(x, y, t) − φ2(x, y, t)]a2 ~ ~~ ~ 

= 0 

+ a3 ζ 3 φ3(x, y, t) + [φ3(x, y, t) − φ3(x, y, t)]a3 ζ~ ~~ ~ 
= 0 

+ a4 ζ 4 φ4(x, y, t) + [φ4(x, y, t) − φ4(x, y, t)]a4 ~ ~~ ~ 
= 0 

+ a5 ζ 5 φ5(x, y, t) + [φ5(x, y, t) − φ5(x, y, t)]a5 ζ~ ~~ ~ 
= 0 

(D.3) 

which can be rearranged to form the following equation: 

. 

ux (x, y, ζ,  t) = [φ0(x, y, t) + a2 φ2(x, y, t) + a4 φ4(x, y, t)] 
− (1 − ζ 2 ) a2 φ2(x, y, t)~ ~~ ~ 

=− ̄φ2(x,y,t) 

−(1 − ζ 4 ) a4 φ4(x, y, t)~ ~~ ~ 
=− ̄φ4(x,y,t) 

+ aζ [φ1(x, y, t) + a3 φ3(x, y, t) + a5 φ5(x, y, t)] 
− aζ(1 − ζ 2 ) a3 φ3(x, y, t)~ ~~ ~ 

=− ̄φ3(x,y,t) 

−aζ(1 − ζ 4 ) a5 φ5(x, y, t)~ ~~ ~ 
=− ̄φ5(x,y,t) 

(D.4) 

Next, a set of new variables . φ̄n = −anφn(n = 2, 3, 4, 5) can be introduced as 
shown above, which allows one to rewrite the above equation in a modified form as: 

. 

ux (x, y, ζ,  t) = [φ0(x, y, t) − φ̄2(x, y, t) − φ̄4(x, y, t)]~ ~~ ~ 
= φ̄0(x,y,t) 

+ (1 − ζ 2 ) ̄φ2(x, y, t) + (1 − ζ 4 ) ̄φ4(x, y, t) 
+ aζ [φ1(x, y, t) − φ̄3(x, y, t) − φ̄5(x, y, t)]~ ~~ ~ 

= φ̄1(x,y,t) 

+ aζ(1 − ζ 2 ) ̄φ3(x, y, t) + aζ(1 − ζ 4 ) ̄φ5(x, y, t) 

(D.5) 

Finally, introduction of two new variables . φ̄0 = φ0 − φ̄2 − φ̄4 as well as . φ̄1 = 
φ1 − φ̄3 − φ̄5 leads to the mid-plane representation of the displacement component 
.ux of the 3-D displacement field in a desired form: 

. 
ux (x, y, ζ,  t) = φ̄0(x, y, t) + aζ φ̄1(x, y, t) + (1 − ζ 2 ) ̄φ2(x, y, t) 

+ φ̄3(x, y, t) + (1 − ζ 4 ) ̄φ4(x, y, t) + aζ(1 − ζ 4 ) ̄φ5(x, y, t) 
(D.6) 
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The above simple methodology can be successfully applied to the remaining 
displacements components .uy and . uz , which helps to transform the initial form of 
the displacement field to a new form, which allows one to take full advantage of the 
traction-free boundary condition for building higher-order theories, as it occurs in 
many places throughout this book. 



Appendix E 
FEM Aggregation/Assembly in MATLAB 

The aggregation/assembly process is a core operation for FEM. There is no fixed 
methodology, which can be applied for that purpose, as such a methodology may be 
dependent not only on the dimensionality of the problem under investigation 1-D, 
2-D or 3-D, the dimensionality of the elemental matrices of FEs in use, but also 
such factors as the adopted nodal numbering convention, etc. For these reasons the 
methodology presented below should be considered only as one example out of many 
possibilities. 

In the case of 1-D problems concerning the use of 3-node FEs, defined according 
to the 1-mode 1-D theory (elementary) of the longitudinal behaviour of rods, the 
elemental characteristic stiffness and inertia matrices ke and me may be presented 
in the following forms as appropriate MATLAB codes: 

MATLAB code for the elemental stiffness matrix 

function ke = stiffness_matrix(e,l,s) 

% ke - elemental stiffness matrix, e - material Young’s modulus 
% l - element length, s - element cross-sectional area 

ke = zeros(3,3); 

ke(1,1) = 7*e*s/6/l; 
ke(2,2) = 8*e*s/3/l; 
ke(3,3) = 7*e*s/6/l; 

ke(1,2) = -8*e*s/3/l; 
ke(1,3) = e*s/3/l; 
ke(2,3) = -8*e*s/3/l; 

ke = ke + transpose(ke); 
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MATLAB code for the elemental inertia matrix 

function ke = inertia_matrix(rho,l,s) 

% me - elemental inertia matrix, rho - material density 
% l - element length, s - element cross-sectional area 

me = zeros(3,3); 

me(1,1) = rho*l*s/15; 
me(2,2) = 4*rho*l*s/15; 
me(3,3) = rho*l*s/15; 

me(1,2) = rho*l*s/15; 
me(1,3) = -rho*l*s/30; 
me(2,3) = rho*l*s/15; 

me = me + transpose(me); 

while the corresponding part of a MATLAB code responsible for the aggrega-
tion/assembly process of FEs may be presented as follows: 

MATLAB code for the aggregation/assembly process of FEs 

% kg - global stiffness matrix, mg - global inertia matrix 
% me - elemental sifffness matrix, me - elemental inertia matrix 
% iout - auxiliary matrix, elements - matrix of node numbers 
% fen - number of FEs, dof - number of DOFs 

kg = sparse(dof,dof); 
mg = sparse(dof,dof); 

ke = stiffness_matrix(e,l,s); 
me = inertia_matrix(rho,l,s); 

for n = 1:fen 
iout = dofs(elements,n,dof); 
kg = kg + transpose(iout)*ke*iout; 
mg = mg + transpose(iout)*me*iout; 

end 

where kg and mg are the global stiffness and inertia matrices. The symbol fen 
denotes the total number of FEs employed in a discrete numerical model, the symbol 
dof its total number of DOFs, while the symbol elements denotes a matrix of node 
numbers, which size depends on the total number of FEs used in the discrete numer-
ical model as well as the number of nodes of a single FE. The aggregation/assembly 
loop may be thought of as stretching/distributing elements of the elemental char-
acteristic matrices onto the global characteristic matrices by a simple mathematical 
operation/manipulation. 
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In the case of a discrete numerical model consisting of 10 FEs, being 3-node rod 
FEs, the matrix of node numbers may have the following form: 

Matrix of node numbers for a 10 FE assembly of 3-node FEs 

elements = 

01 02 03 
03 04 05 
05 06 07 
07 08 09 
09 10 11 
11 12 13 
13 14 15 
15 16 17 
17 18 19 
19 20 21 

A key element of the transformation mentioned above is the dofs function. 
This function is responsible for appropriate distribution of particular elements of 
the elemental characteristic stiffness and inertia matrices ke and me into the global 
characteristic stiffness and inertia matrices, which is fully based on the assumed 
numbering convention encoded in the matrix elements. 

For the 3-node FEs used in this example, having 1 DOF per node, as are FEs 
employed in the case the 3-mode 1-D theory (elementary) of the longitudinal 
behaviour of rods, the function dofs may have the following simple form: 

MATLAB code for the transformation from local-to-global DOFs 

function iout = dofs(elements,n,dof) 

% iout - auxiliary matrix, elements - matrix of node numbers 
% n - number of current FE, dof - number of DOFs 

iout = sparse(3,dof); 

for j = 1:3 
iout(j,elements(n,j)-1) = 1; 

end 

where the dimensionality of the auxiliary matrix iout is dependent on the total 
number of FEs fen in the discrete numerical model, or in a more general case 
dependent on the resulting form this number the total number DOFs of this model 
dof, as well as on the total number of DOFs within a single FE. On the other 
hand, the latter one is dependent on the total number of nodes within a FE and the 
number of DOFs per each node. In the current example of the 3-node FEs, combined 
with the 1-mode 1-D theory (elementary) of the longitudinal behaviour of rods, the 
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number of nodes within a single FE is 3, while the number of DOFs per each node 
is 1, i.e. the resulting number is also . 3. It should be strongly emphasised that the 
aggregation/assembly methodology presented above is also fully applicable in the 
case of 2-D or 3-D problems involving any types of FEs. 
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