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Abstract. Secure pattern matching allows a client who holds a sub-
string (pattern) to find all the substring’s locations appearing in the long
string (text) stored in a server. Meanwhile, the server should not learn
any information about the pattern or the matching results. Wildcard
pattern matching (WPM) problem, a specific variant with more realistic
significance, defines that the pattern contains wildcards that can match
any character in the text.

Previous studies introduce various approaches for the WPM problem
but requires at least a two-round protocol or computation cost linear to
input length. Oriented to applications in the client-server mode, how-
ever, existing solutions are not practical and efficient enough. Therefore
we focus on the round and computation complexity of the WPM. In this
paper, under the semi-honest model, we propose a single-round secure
WPM protocol based on oblivious transfer (OT) and secret sharing
schemes. The insight of our proposed protocol is the reduction from the
WPM to the process of secret sharing and reconstruction in a novel way.
We provide a customized OT construction and apply the OT extension
technique to the protocol, where the client and the server need merely a
constant number of public key operations in a round of communication.
In addition, we prove the security of the protocol in the ideal/real sim-
ulation paradigm and evaluate the performance. Compared to existing
secure WPM protocols, both theoretical and experimental results show
that our protocol is more practical.

Keywords: wildcard pattern matching - oblivious transfer - secret
sharing

1 Introduction

Secure multi-party computation (MPC) is an important subfield of cryptography
and is first introduced by Andrew Yao [1] in the early 1980s. The goal of MPC
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is to enable a set of independent mutually untrusted parties to jointly compute
a function f on their private inputs, during which any additional information
except for the output of that function cannot be revealed. Traditionally, two
security models are mainly taken into consideration in MPC, i.e., semi-honset
model and malicious model. In the semi-honest adversarial model, the adver-
sary follows the protocol instruction but tries to learn anything about the other
party’s input. In contrast, the adversary in the malicious model can follow any
arbitrary polynomial-time strategy to deviate from the protocol.

Secure pattern matching (PM) problem is becoming a hot topic in the
research field of MPC [2]. In this problem, the goal is to find all the locations
of the pattern in a text for the party holding a pattern p, while the other learns
nothing about the pattern. The PM problem can be formally defined as follows:
given a finite alphabet X, a server holds a text T' € ¥™ and a client holds a pat-
tern p € £™ (m<n). The client wants to learn where its pattern is a substring of
the server’s text. Meanwhile, the server cannot learn any information about the
pattern or the matching results. Considering a hospital holding patient genomic
data, a researcher with a specific DNA sequence wishes to know the frequency
and positions of the gene occurrences in the database and analyze the structure
and properties of this sequence. However, the researcher does not intend to reveal
its DNA sequence to the hospital. The hospital needs to prevent miscellaneous
researchers from pirating the records of its genomic database on the other hand.

Wildcard pattern matching (WPM) problem, a specific variant with more
realistic significance, defines that the pattern contains wildcards that can match
any character of the alphabet in the text. We mainly focus on the WPM problem
in this paper. In general, the wildcard character is denoted by %, which could
be any character of the alphabet. In addition, the server is not allowed to learn
the locations of wildcard characters in the pattern, either. Same to the PM
problem without wildcards, the client can only obtain information where the
occurrence of the pattern in the server’s text. Pattern matching is widely applied
in text retrieval, computational biology, DNA analysis [3], intrusion detection
systems [4], and other fields. Prior studies [5-8] introduce various approaches
for the WPM problem but requires at least a two-round protocol or expensive
computation cost (linear to input length).

Our Contributions. We design an efficient protocol that addresses the WPM
problem in the presence of semi-honest adversaries. The proposed protocol is
extremely competitive for lightweight devices in many scenarios such as Infor-
mation Processing Systems. Our contributions can be summed up as follows:

e We provide a novel combination between the secret share scheme and a cus-
tomized oblivious transfer protocol, which would be building blocks for the
pattern matching problem.

e We propose an efficient single-round protocol with semi-honest security for
wildcard pattern matching, which requires O(x) exponentiation computation
and O(mn) communication, where k is the security parameter and indepen-
dent of the input length m and n.
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o We evaluate the performance and apply the precomputation technique and
proxy OT to our contribution. We prove the security of the protocol in the
ideal/real simulation paradigm.

2 Related Works

There are three main approaches to constructing secure pattern matching proto-
cols: oblivious automaton evaluation, homomorphic encryption (HE), and Yao’s
garbled circuit. To our knowledge, the protocols based on oblivious automa-
ton evaluation are often used to solve the approximate/exact pattern matching
problem [9-11]. Yao’s garbled circuits is a generic approach for secure compu-
tation, which can be used to evaluate arbitrary functions, given a description of
the function as a fixed-size circuit. In 2010, Katz and Malka [12] showed how
to modify Yao’s garbled circuits to obtain a secure pattern matching protocol
where the size of the circuit is linear in the number of matched locations. Later,
Kolesnikov et al. [7] believed that the protocol [12] can be extended to solve
wildcard pattern matching, while there may be a requirement that it should
provide a priori bound on the number of matches for the circuit construction.
Secure wildcard pattern matching protocols based on homomorphic encryption
schemes have been extensively studied in the past decade.

The first work of secure wildcard pattern matching was considered by Hazay
and Toft [5] in 2010. In their scheme, the client is required to encrypt the wild-
card locations using an additively homomorphic variation of ElGamal encryption
and then supply the ciphertext to the server. In the meanwhile, the substrings
of the server’s text must be modified to match the pattern at those positions.
Baron et al. [13] suggested an efficient pattern matching protocol entitled 5PM.
The core idea of their work is to reduce the problem of pattern matching with
single-character wildcards to a sequence of linear operations, which can be effi-
ciently computed in the malicious model using additively homomorphic encryp-
tion schemes. Therefore, they employed homomorphic encryption in an insecure
pattern matching algorithm to support basic linear operations. Yasuda et al. [14]
adopted a packing method and somewhat homomorphic encryption technique to
address both approximate and wildcard pattern matching for non-binary inputs,
where the encryption scheme supports a limited number of polynomial additions
and multiplications on encrypted data. Their proposed packing method is applied
to compute multiple Hammming distance values between the pattern and text
in encrypted form.

Recently, Zarezadeh et al. [6] firstly resolved the parameterized pattern
matching problem in the semi-honest and malicious setting where there exists
a renaming bijection on the alphabet such that a pattern can be transformed
into a substring of the text. Their proposed protocol supports wildcard and
approximate pattern matching. Subsequently, they extended their construction
to the multi-pattern matching scenario [15] that the pattern owner can find
the matching locations in multiple texts and presented an efficient solution for
parameterized matching of multiple patterns in the semi-honest adversary model.
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In addition to the above methods, several works based on oblivious transfer
for wildcard pattern matching were studied in [7,8,16]. The scheme of Kolesnikov
et al. [7] called SWiM is a simple and fast protocol for wildcard pattern matching
in a semi-honest setting, which converts the problem of wildcard pattern match-
ing into the problem of secure equality test of strings. On the basis of this idea,
Qin et al. [16] also presented a pattern matching protocol by combining oblivi-
ous transfer with secret sharing. However, these two works require an additional
secure string equality test protocol.

3 Preliminaries

Throughout the paper, we use the following notation: The length of the text T’
is n, while the length of the pattern p is m. The notation t; denotes the m-bit
substring of the text T from the i-th location. The wildcard is denoted by x. We
use [m] to denote a set {1,---,m}. We denote vectors in bold, and matrices in
capitals. For a vector «, we let &[k] denote the k-element of vector x, x; ; denote
the j-th share in the i-th secret sharing. For a matrix A, we let a; denote the
i-th row of A, @’ denote the j-th column of A. We use the notation k to denote
a tuple which contains three vectors.

3.1 Oblivious Transfer

Oblivious Transfer [17] is an essential cryptographic primitive that is used as
a fundamental building block for MPC protocols. The standard definition of
1-out-of-2 OT involves two participants, a sender (denoted by S) holding two
inputs (mg, m1) and a receiver (denoted by R) holding a choice bit b € {0, 1}.
After the transfer is completed, R learns m; without learning anything about
the other input mj_p, while § has no output and learns nothing about b. The
efficient 1-out-of-2 OT extension technique (also known as IKNP OT) is intro-
duced by Ishai et al. [18], which can achieve an arbitrarily large number of OTs
by executing a small (relying on security parameter) number of OT instances,
and a number of symmetric key primitives. In 2013, Kolesnikov and Kumaresan
[19] presented an optimization and generalization of IKNP OT extension proto-
col, which offers the sublinear communication/computation cost in the security
parameter.

In this paper, our building block of independent interest is 1-out-of-3 OT,
which is used to design a secure wildcard pattern matching protocol.

3.2 Secret Sharing

Secret sharing is a fundamental primitive, that is at the core of many MPC
protocols. The idea of secret sharing was introduced by Shamir [20] and Blakey
[21], and they constructed specific threshold secret sharing schemes based on
Lagrange’s interpolation theorem and projective geometry theory, respectively.
Informally speaking, in a (t,n)-secret sharing scheme (¢t < n), the secrets s
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can be split into n shares, which would be distributed among several parties,
such that any ¢ — 1 of the shares cannot leak anything about s, while any ¢
shares allow complete reconstruction of the secret s. In secret-sharing-based
MPC protocol, the target is then to obtain a secret-shared representation of
the inputs to the computation, such that any possible set of adversarial parties
reveals no information about the underlying secret. A (¢, n)-secret sharing scheme
needs to satisfy these two properties: correctness (meaning that any k > t shares
can completely determine the secret) and privacy (meaning that any set of shares
of size less than ¢ does not leak anything about the secret).

In our discussion, we will use (n, n)-secret sharing schemes, where all n shares
are required and sufficient to reconstruct the secret.

Functionality Fwpm
PARAMETERS:

e A text of length n, a pattern of length m, and two parties: sender S and
receiver R.

INPUT:

e Wait for S to input a text T {0,1}".
e Wait for R to input a pattern pe {0,1,x}™.

OuTPUT:

e S has no output.
e R outputs ¢ if p matches the substring T'[i---i + |p| — 1].

Fig. 1. Wildcard Pattern Matching Functionality

4 Secure Wildcard Pattern Matching Scheme

In this work, we present a secure two-party protocol for wildcard pattern match-
ing based on two cryptographic tools: oblivious transfer and secret sharing. The
rationale behind our secure wildcard pattern matching scheme is described in
the following. Then, we explain how to construct a secure scheme for semi-honest
parties.

4.1 Overview of Techniques

Before discussing our contributions and technical approach, we review the
privacy-preserving wildcard pattern matching protocol in [16]. They transformed
the secure wildcard pattern matching problem into reconstruction of a shared
secret and presented a secure two-party wildcard pattern matching protocol
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based on oblivious transfer and secret sharing. As usual, the sender S has a text
T €{0,1}" and the receiver R holds a pattern p € {0,1,x}". The intuition idea
behind their protocol is that, (1) the pattern p is represented by the shares of
secret s; (2) the two parties with reverse roles invoke the standard 1-out-of-2 OT
protocol, where R as the sender inputs these shares and some random shares
and S as the receiver inputs the text T. (3) S receives shares corresponding
to its own input T from OT protocol and reconstructs the secret s'. If s’ = s,
this means S receives all the valid shares. Therefore, the pattern p matches the
text T. However, their proposed protocol is inapplicable to many application
scenarios due to the limited computing power of the receiver (for example, if it
is a mobile device). Furthermore, the sender and receiver in their protocol are
required to perform a string equality test protocol relying on OT, which causes
additional overhead. We modify their protocol and use l-out-of-3 OT protocol
to achieve wildcard pattern matching, where the two parties always maintain a
single role during the whole execution of our protocol. In addition, we transfer
most of the computational cost to the sender S and achieve better efficiency by
dispensing with the string equality test technique.

Our method can be depicted as follows. Suppose the sender S holds a text
T € {0,1}" and the receiver R holds a pattern p € {0,1,x}". To achieve secure
pattern matching, the key is how to judge the i-th bit of p matches the i-th bit
of T securely. As a very simple warm up, consider the case that |T| = |p| = 1.
R wants to know whether the pattern p matches the text T or not and S can
not obtain any information about p. Initially, S will first choose a public string
r of length x as a substitute of 7" and another string s of the same length as
r randomly. According to the value of T, S sets a tuple k as follows: if T = 0,
k= (r, s, r); Otherwise, k= (s,r,r). Then S and R jointly execute a 1-out-of-3
OT protocol, where S gives input k and R gives input ¢ € {0,1,2}. After that,
R determines if p and T are matched based on whether its output from OT
protocol is r. Note if p = x, then R sets ¢ = 2 and always can obtain 7. In this
process, the only new information that R obtains is output = or s, which leaks
no information about the text T of S.

Next, we extend this approach to the case |T'| = |p| = m by combining secret
sharing. Specifically, S represents its text 7" on shares of r using a secret sharing
scheme, i.e., each bit of 7" is denoted by a secret share r;. In the meantime, a
random share s; is selected for every secret share of r. After doing so, S will set
a tuple Ej for each bit of T" using s; and r; in the same way as above. Then §
and R invoke 1-out-of-3 OT protocol m times, where R takes as input c[j] for
every time. T matches p if and only if R obtains all shares of r from OT protocol
and reconstructs r. An example is given in Fig. 2. During the whole execution,
R either receive all the valid shares of r or at least a random share. In the latter
case, R can not reconstruct the publicly shared string r. The security of the
protocol is obvious in the semi-honest setting: R can not obtain any information
about the text T of S but know whether the pattern p matches 7.

The idea of the general case of wildcard pattern matching with |T'| >[p| is
natural: simply perform the above method on each substring T'[i---i + |p| — 1]
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Text T 0 1 1 0 1 Pattern p 0 1 % % 0
Tuple EHEEHE choice ¢ 0 1 2 2 0
r/
T Sz S3 Ty Ss /
_» Output T2 T3 Ty |Ss
Input 172 73 S4 T5 oTd

Tmatches p < All chosen items can reconstruct »
: the shares of r to represent 7'

: the choice corresponding p

Fig. 2. Illustration of the core idea of our protocol

and p. Besides, note that in every matching of substring T'[i--- i + |p| — 1] and
pattern p, R’s OT choice is always the same selection integer vector c¢. Hence
instead of |p|(|T'| — |p|+ 1) instances of string-OT where the string is # bits long,
we can use |p| instances of string-OT, with string of length x(|T| — |p| + 1) to
reduce computation cost.

4.2 Secure Wildcard Pattern Matching Protocol

In this section, we present a new secure wildcard pattern matching protocol
ITw par based on 1-out-of-3 OT first and then give an analysis of correctness
and a formal proof of security. The wildcard pattern matching functionality,
denoted by Fw pas, is formally defined in Fig. 1. Recall that the discussion in
Sect. 4.1, T matches p if and only if R obtain all shares of » from OT protocol.
The detailed protocol is presented in Fig. 3 and is proven secure in the presence
of semi-honest adversaries.

Correctness. Our goal here is to prove that in an honest execution of the pro-
tocol the output of R is indeed the locations in the text T" where the pattern
p appears. Note that in the OT phase S takes as input shares of » and corre-
sponding random shares. The pattern p matches the substring ¢; if only if R can
get all the valid shares of r and reconstruct r. For non-wildcard bits in pattern
p, the relevant valid shares would be received by R when these bits are equal to
the values at the corresponding locations. In the case of wildcard bits in p, R
can always obtain the corresponding valid shares from OT protocol. Therefore,
‘R can reconstruct the publicly shared string r based on these valid shares and
obtain the matching location. And if the match between t; and p is unsuccessful,
there is at least one random share will be outputted to R. Under the circum-
stance, Bob cannot reconstruct the string r because of the property of the secret
sharing scheme.

Security. We are now ready to prove the security of our protocol ITyy pys in the
presence of semi-honest adversaries.
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Wildcard pattern matching protocol Iy par
PARAMETERS:

e Two parties: sender S and receiver R.

e Text length n, pattern length m. Define n’ = n —m + 1.

e Both parties share a public random string r < {0,1}" as auxiliary input.
o Ideal functionality OT-functionality .FOT%.

ProTOCOL:

1. [secret sharing] For each i € [n'], S invokes the secret sharing scheme to
share the public random string r into r; j, where j =1,--- ,;m and
r= EBT:l Tij
2. S chooses values s;,; < {0,1}" at random for i € [n'] and j € [m].
3. Let t; denote the m-bit substring of S’s text T for i = 1,--- ,n’. Then S
generates the values tuple for each j € [m] as follows:
(1) if ¢5[j] = 0, the values tuple is in the order of (7i;, Ss,5,7i,5);
(2) if ¢;[j] = 1, the values tuple is in the order of (s j,74,5,7i;);
Without loss of generality, let I;” = (kloj, kzlj, 3]) denote each tuple. Then &
forms n’ x m matrix U blow using these tuples.

(k?,hki,hk%,l) (k?,27k’%,27k%,2) e (kl m:ki,mak%,m)
(kg,l7k%,l7k§,1) (kg,27k%,27k§,2) e (kZ m7k%,m7k%,m)

(kg’,lakrlﬂ,lvk Y 1) ( 4 kan’ 27kn’ 2) : (kn’ m> n’ m7k2 )

4. [OT] For each j € [m], S and R invoke 1-out-of 3 OT-functionality For1
(1) R acts as receiver with input a selection integer ¢[j] corresponding to the

j-th bit of p. '
(2) S acts as sender with input u’ as the j-th column of U
(3) R receives output v’ = (ki ;], ky i], e ,kz[,ﬂj)

5. [secret reconstruction] R forms n’' x m matrix V using v’ as follows.

c[l c[2 clm
i 1 o
kz,l k2,2 e kz,m

ell] pefm] | elm]
kn',l kn’,Q T kn',m

For i € [n'], R reconstructs the public string r using v; and outputs {i € [n']|
the values in v; can reconstruct r.}

Fig. 3. Secure Wildcard Pattern Matching Protocol
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Theorem 1. Assuming that the 1-out-of-3 oblivious transfer is secure against
semi-honest adversaries and the secret sharing scheme satisfies that all shares are
necessary and sufficient to reconstruct the secret, the protocol Ily pyr securely
computes the functionality Fyppr in the semi-honest setting.

Proof. We prove Theorem 1 in a hybrid model where a trusted party is used to
compute the oblivious transfer functionality ]—'OT%. We separately prove the case
that S is corrupted and the case that R is corrupted. The form proof is available
on https://github.com/Cathysrm/Proof-of-security for the lack of space.

5 Performance Evaluation

5.1 Complexity Analysis

In this section, we analyze the efficiency of our scheme by comparing it with the
most representative secure wildcard pattern matching protocol, SWiM [7], the
recently proposed Zarezadeh et al.’s protocol [22] and [6].

The main cost of our protocol appears in all OTs in step 4. We use the nota-
tion OTzl,,— (T) to denote m instances of 1-out-of-3 string-OT where the string is
I bits long. Consider the case of |T| = |p| = m, OT4-("") are required in our
protocol. According to the OT extension technique [19], any number of OTs
can be obtained with communication proportional to the total size of parties’
inputs and computation proportional to the size of the security parameter. Thus
it is easy to see that the total communication cost of OT}- ("™) is the commu-
nication cost of implementing “base OT” instances plus 2km bits transferred
for symmetric-key operations between & and R. These base OTs has O(km)
communication complexity. Therefore, we can conclude that the communication
cost of OT3- (™) is O(km) bits. The computation cost can be reduced to O(k)
exponentiations. As to |T| >|p|, we make use of a batched version of 1-out-of-3
OT to transfer the string of length x(n —m+ 1) and thus avoid the requirement
of m(n —m + 1) instances of OTil,, on x-bit strings. Consequently, our proposed
protocol in the semi-honest model has O(k) computation complexity, and the
total cost of communication of executing m OTs each of length x(n —m + 1)
would be O(kmn) (the security parameter x can be viewed as a constant).

As can be seen in Table 1, we summarize the performance of the above three
protocols and our scheme. Both the research [22] and [6] focus mainly on homo-
morphic encryption. Compared with our scheme, their protocol has lower com-
munication costs. But in terms of computation, in addition to exponentiations,
it usually involves complicated encryption operations and massive multiplica-
tions on encrypted data, which requires higher computing capacity for a client.
The SWiM protocol is also based on OT and requires only a small number of
public-key primitives plus some symmetric-key operations from OT extension.
It involves m instances of 1-out-of-2 OT on (n — m + 1)-bit strings in the OT
phase where the communication cost is O(mn) bits. However, we note that the
SWiM protocol still needs to perform private equality tests (PEQT) of strings
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behind the OT phase and thus this finally leads to two rounds of communica-
tion, while the proposed protocol requires only single-round of communication.
The remarkable thing here is that we consider merely the communication rounds
in the online phase. Furthermore, in the most basic PEQT protocol, § and R
check whether their /-bit strings x and y are equal by executing random OT%—(D,
where R utilizes y[i] as its choice and S acts sender with input random k-bit
strings (s}, si). After that, R obtains 3;[1‘] and then computes strg = @§:15;m~
S computes strg = @ézls;[i] where S;[i] corresponds to the i-bit of z and sends
this value to R. R determines that © = y iff strg = strs. Therefore, for each
PEQT instance of I-bit strings, it requires [ instances of OT% on k-bit strings and
causes O(kl) communication costs. In the case of the SWiM protocol, there are
n—m+1 instances of PEQT on m-bit string, so O(km(n—m+1)) communication
costs are required. Overall, we have the same communication and computation
complexity to the SWiM protocol but better communication rounds.

5.2 Experimental Performance

We analysis the efficiency of the proposed protocol through some experimental
results in this section.

Since the main cost of our protocol comes from 1-out-of-3 OT, we performed
the experiments on m instances of OTj3 on s(n — m + 1)-bit strings instead
of implementing the whole protocol. Our implementation was done in 1ibOTe
library [23]. All runs have been taken on a virtual machine with 4GB RAM and
8 cores (the host machine is Intel Core i5-10210U 2.11 GHz with 20 GB RAM).
The running time of our scheme compared with SWiM is shown in Table2 and
all running times are reported as the average over 20 trials.

As experimental results show, the proposed scheme is more significantly effi-
cient than the protocols of SWiM in small-scale text/pattern, taking 0.034 sec-
onds to conduct a wildcard pattern matching operation for text length |T'| = 103
and pattern length [p| = 10%. We see a 27.4x improvement in running time com-
pared to SWiM. However, considering the larger values for size of text/pattern,
our performance improvement is unsatisfactory or even worse in the extreme
case where the length of the text is much greater than that of the pattern. Due
to the limited computing power, the detailed results of our performance at scale
can not be provided. We can conclude that the proposed scheme is optimized
for the case where the size of the text is approximate to that of the pattern. For
instance |T| = |p| = 10, our scheme needs to generate 1000 instances of OTj
on k-bit strings and finally takes 0.039 s. Using the same parameters, the SWiM
protocol results in 1.019 seconds on executing 1000 instances of OT; on k-bit
strings and one PEQT instance of 1000-bit strings. This is a 26.1x improvement.
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Table 1. Complexity comparison for text length = n, pattern = m, computation
security parameter k, a finite alphabet X

work | security | method | communication | round | computation
expo. | multi. | enc.
[7] |semi. oT O(mn) 2 O(k) | — -
[22] | mal. HE O(m+n)k) 2 - O(mn) | O(m|X))
[6] |semi. |HE O(n) 2 O(n) | O(mn) | O(m(|Z| 4+ m))
Ours | semi. OT+SS | O(mn) 1 O(k) | — —

6 Optimizations

In this section, considering that the main computing and communication over-
head in the WPM protocol comes from OT, we give two optimizations on securely
computing functionality For:.

6.1 Online/Offline OT

We briefly describe how the protocol can be modified so that most of the cost can
be incurred in an offline phase before the parties’ inputs are known. The idea of
precomputing OT could trace back to Beaver’s work [24] where a precomputing
1-out-of-2 OT construction is given, we apply this idea to a more general case.
See Fig. 4 for a full description.

On the basis of the precomputing protocol, we are ready now to briefly
describe how the protocol Ily py; can be modified so that most of the cost
can be incurred in an offline phase before the parties’ inputs are known. In brief,
we are able to run all OTs in Step 4 of the protocol by invoking our precomput-
ing protocol. First, the receiver uses a random o[j] € {0, 1,2} as its OT choice.
The sender chooses a n’ x m matrix W randomly and takes as OT input w'
denoting the ¢-th column of matrix W. The each element of this matrix w; ;
is denoted by a tuple ¥; ; = (’nga *yil,j, *y?,j). Later, upon learning p, the receiver
sends 6 = ¢[j]—o[j] mod 3 to the sender, where ¢[j] denotes the i-th bit of p. As

the sender learns its input 7', it prepares the value tuple Ei,j = (k:? > kll s kf])

and computes Z;; = Eu ® i, as follows: z{'; = ki, ® 2, where b = a — 0
mod 3. The receiver can compute k‘f[;] = ’yZ jj] ® zf; after receiving Z; ; from
the sender. By the precomputation technique, we are able to transfer most of
the O(nm) communication to the offline phase, and the resulting protocol is still
secure.

6.2 Proxy OT

So far as we know, all known oblivious transfer protocol relies on a large num-
ber of asymmetric-key operations, which are typically implemented by modular



98 J. Xu et al.

Table 2. Comparison of the total runtime (in seconds) for the text of length |T| = n,
the pattern of length |p| =m

|p| ||T] | SWiM | Ours | Improved
10 |10% | 0.846 |0.025|33.8x
10" 0.953 |0.031 | 30.7x
10° [ 1.073 |0.098 | 10.9x
102110 |0.930 | 0.034 | 27.4x
10* | 1.011 | 0.097 | 10.4x
105 [2.052 | 0.684|3.0x
10% 110 |1.019 | 0.039 | 26.1x
10*[1.122 | 0.627 | 1.8x
105 2.227 | — -

28 1212 10.993 [0.098|10.1x
21 11.139 10.334|3.4x%
26 11,771 |1.563|1.1x
210 1912 11,072 0.348 | 2.3x
2 11.596 |1.388|1.2x
216 12139 | — -

PARAMETERS:

e Two parties: Sender S and Receiver R.
e A security parameter k.
e Ideal functionality For1 primitive.

INPUT OF S: Message set M = {mqg, m1,ma}.
INPUT OF R: Choice o.
PrROTOCOL:

e Precomputing Phase:
1. 8 generates random message set M’ = {mg, m}, m5} and sends -7:0T§
M’'. Here |m}| = |m;| = L.
2. R sends ]:OTé a random choice ¢’ and receives message 1 = m,,.
e Online Phase:
1. R computes § = 0 — o’ mod 3 and sends § to S.
2. After receiving §, S computes x; = m; ® m;-, here j =i — 6 mod 3.
3. R receives m, by computing xz, @ m.

Fig. 4. Generic Precomputing OT3 Protocol

exponentiations, that are dense computational tasks. The computational over-
head of oblivious transfer is usually more critical than that in communication.
The construction of Ishai et al. [19] shows an efficient extension technique with
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the additional symmetric-key operation to achieve massive effective OT, which
reduces the number of asymmetric operations. However, in many certain scenar-
ios, the receiver with limited computational resources e.g., a handheld device
can not undertake such intensive computational tasks even using OT extension
technology. We wish to minimize the computational task of the receiver. There-
fore, we use prozxy oblivious transfer, a variant of oblivious transfer proposed in
[25], to further reduce the computation overhead of the receiver.

In prozy oblivious transfer protocol, there are three parties: A sender that
holds two messages mg and my, and a receiver with a choice o € {0, 1}, as well
as a third party, the proxy, which has no inputs and serves as the receiver’s
proxy to learn the chosen item. At the end of the protocol, the proxy receives
the output m, without learning the choice o, while the sender and receiver learn
nothing.

Our protocol can be implemented on the basis of the 1-out-of-3 proxy OT.
It is remarkable that this improvement is particularly useful for the receiver
with low computational power, since most of the computational overhead is
transferred to the proxy, and it can actually compute all the exponentiations in
the preprocessing phase.

7 Conclusion

In this paper, we transformed the wildcard pattern matching problem into recon-
struction of a shared secret by combining XOR-secret-sharing and 1-out-of-3 OT
and presented an efficient protocol with security against semi-honest adversary.
The proposed protocol has the same communication and computation complex-
ity to the state-of-the-art solutions but better round complexity.
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