
Detecting Web Bots via Mouse Dynamics
and Communication Metadata

August See(B), Tatjana Wingarz, Matz Radloff , and Mathias Fischer

Universität Hamburg, Hamburg, Germany
{richard.august.see,tatjana.wingarz,mathias.fischer}@uni-hamburg.de

Abstract. The illegitimate automated usage of Internet services by web
robots (bots) is an ongoing problem. While bots increase the cost of oper-
ations for service providers and can affect user satisfaction, e.g., in social
media and games, the main problem is that some services should only be
usable by humans, but their automated usage cannot be prevented easily.
Currently, services are protected against bots using visual CAPTCHA
systems, the de facto standard. However, they are often annoying for
users to solve. Typically, CATPCHAs are combined with heuristics and
machine-learning approaches to reduce the number of times a human
needs to solve them. These approaches use request data like IP and
cookies but also biometric data like mouse movements. Such detection
systems are primarily closed source, do not provide any performance
evaluation, or have unrealistic assumptions, e.g., that sophisticated bots
only move the mouse in straight lines. Therefore we conducted an exper-
iment to evaluate the usefulness of detection techniques based on mouse
dynamics, request metadata, and a combination of both. Our findings
indicate that biometric data in the form of mouse dynamics performs
better than request data for bot detection. Further, training a mouse
dynamic classifier benefits from external and not only website-specific
mouse dynamics. Our classifier, which differentiates between artificial
and human mouse movements, achieves similar results to related work
under stricter and more realistic conditions.

Keywords: web bots · mouse dynamics · captchas

1 Introduction

Programs that can automatically request endpoints increase operating costs and
can frustrate users. For example, web bots made popular items such as graphics
cards and new game consoles unavailable for years because they were purchasing
them automatically. Commercial countermeasures, such as IDS solutions, prove
ineffective against web bots because these bots operate within the constraints of
the targeted e-commerce website’s existing APIs or user interface. For instance,
web bots may mimic human behavior by navigating to a product and clicking on
the “buy now” button. The problem is that the endpoints are used as intended.
A defense that scans, e.g., for malicious payload in requests is pointless here. One
solution is CAPTCHAs, which give users tasks that are difficult for a computer
c© IFIP International Federation for Information Processing 2024
Published by Springer Nature Switzerland AG 2024
N. Meyer and A. Grocholewska-Czury�lo (Eds.): SEC 2023, IFIP AICT 679, pp. 73–86, 2024.
https://doi.org/10.1007/978-3-031-56326-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56326-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-56326-3_6

74 A. See et al.

but easy for a human to solve. However, this introduces user friction that can
cost a company customers and thus revenue [9]. Modern CAPTCHAs are used
together with risk assessment methods. Depending on the risk score, a certain
hard CAPTCHA or no CAPTCHA at all is presented [15]. While we see this
as a step in the right direction, the problem remains that such solutions are
not privacy friendly as request data and biometric features are passed on to
third parties. Commercial CAPTCHA providers, understandably, do not disclose
which features they use for detection and which are most beneficial to identify
bots.

Existing approaches are subject to various limitations, such as being closed-
source, considering only request data or mouse dynamics, or having shallow
assumptions in their evaluation. For instance, some approaches assume that
advanced web bots only produce mouse movements in straight lines rather than
curved human-like movements. Moreover, these approaches fail to address other
real-world problems, such as whether website-specific mouse data or any mouse
data can be used for bot detection. We address this in our paper.

Our main contribution is evaluating the usefulness of mouse dynamics for
detecting bots in realistic settings. In more detail:

– We evaluate the performance of classifiers for bot detection based on mouse
dynamics and compare them to the performance of using request data. We do
this on a consistent dataset that contains mouse- and request data belonging
to the same user. Our evaluation includes advanced bots that mimic human
mouse movements utilizing third-party software.

– We show that bot detection based on mouse dynamics can benefit from not
being solely trained on website-specific mouse movements, indicating that
website operators do not need to train on the mouse movements of their
users exclusively but can leverage third-party datasets.

– We investigate the relationship between the number of data points and the
performance of bot detection, thus allowing us to determine the amount of
data required for good performance and, consequently, the speed at which a
classification can take place.

The rest of this paper is structured as follows: Sect. 2 discusses web bot
detection using request data and mouse dynamics. Section 3 explains how and
which features we used to train classifiers from related work. Section 4 describes
our evaluation, how we created our dataset, and the limitations of our work.
Finally, Sect. 5 concludes the paper.

2 Related Work

We divide the related work into approaches that detect bots based on
request data and ones detect bots based on mouse data. Note that there are
also approaches that recognize bots based on other biometric data [5,6], or
approaches that are based on trusted platforms [8].

Modern CAPTCHA systems like hCaptcha and reCAPTCHA [15,16] are
already using biometric data like mouse movements in addition to request data.

Detecting Web Bots via Mouse Dynamics and Communication Metadata 75

However, they do not disclose if the detection of bots is website specific and
how well which factor performs. This is most likely due to protecting business
secrets and denying bot creators information about where improvements need
to be made. Google itself doesn’t even specify what data they use exactly for
reCAPTCHA. However, there is related work that tries to break this down [19].

2.1 Bot Detection via Request Data

A simple way for bot detection is to block IPs that are known for spamming
or cyber attacks, for example, using abuseipdb1. Furthermore, there are many
approaches for the detection of bots based on request data [11,12,14–16,20].

Iliou et al. [11] present a comparison of different machine learning algorithms
and combinations of various attributes used in previous literature. Their app-
roach does not rely on cross-website tracking or using external resources like
IP databases. This makes their approach simple to reimplement and validate.
Their methods were tested on a year’s worth of HTTP log data from MK-
Lab’s public web server2. The data included IP addresses, the request method,
the request path, referrers, user agent strings, and timestamps. The attributes
mainly include request metadata that would be suitable for a privacy-friendly
bot detection system, for example, the percentage of image requests or the num-
ber of total bytes per session. The authors split the bot data in their dataset into
simple and advanced bots, which are determined by whether the requests have
a browser agent name and, in case they do, whether the IPs have shown mali-
cious activity before. Their results show that different sets of attributes perform
best depending on the classification algorithm used. The best machine learn-
ing methods are Random Forest and Multilayer Perceptron, although the paper
concludes that using an ensemble classifier that averages over all used methods
would be more stable. Additionally, simple web bots can be detected very easily,
while detecting advanced bots is significantly harder, with areas under the ROC
curve of 1.00 and 0.64, respectively. Especially in false positive intolerant use
cases, the performance of detecting advanced bots is too poor to be used in the
real world. The authors conclude that future work would need to incorporate
more advanced features that bots cannot easily simulate.

2.2 Bot Detection via Mouse Dynamics

There is a lot of related work in the area of authentication using biometric data
using mouse dynamics [13,17,18].

The work by Shen et al. [18] shows that it is possible to use mouse and
trackpad actions to verify the authenticity of users. For this purpose, they group
mouse events such as single-click, double-click, or drag-and-drop. This data is
combined with information about the current application type, e.g., web brows-
ing or gaming, the screen area where the mouse movement occurred, the win-
dow position, and the timestamp. The data is transformed into a feature vector
1 https://www.abuseipdb.com/.
2 Multimedia Knowledge and Social Media Analytics Laboratory, https://mklab.iti.

gr/.

https://www.abuseipdb.com/
https://mklab.iti.gr/
https://mklab.iti.gr/

76 A. See et al.

containing data such as the time it took a user to click a button, the speed
of movement, or the acceleration. Finally, three different one-class classifiers
(Nearest Neighbor, Single-Layer Neural Network, Support Vector Machine) are
compared, with the Support Vector Machine method performing best with false
positive and false negative rates of 0.37% and 1.12%, respectively. This was
achieved only when 3000 operations and 30 min of processing time for successful
authentication are considered. With a more feasible authentication time of one
minute, the values for FPR and FNR increase to 44.65% and 34.78%, respec-
tively. This drastically limits the applicability of this approach, which the authors
also note.

Acien et al. [1] show the feasibility of using biometric features for bot detec-
tion. They use both function-based and GAN-based mouse trajectory synthesis
methods to generate training and evaluation data. Six different classifier types
(Support Vector Machine, K-Nearest Neighbor, Random Forest, Multi-Layer
Perceptron, and 2 Recurrent Neural Networks with Long Short-Term Mem-
ory and Gated Recurrent Units, respectively) are compared to each other, with
Random Forest performing the best. Combined, their method can distinguish
between humans and bots with up to 98.7% accuracy with only one mouse tra-
jectory as input. They conclude that, compared to state-of-the-art works, the
usage of mouse data has unexploited potential in the context of bot detection.
While there are other approaches for bot detection based on mouse dynamics
[5,21], they are all quite similar to each other. There are even approaches and
projects that try to synthesize human mouse movements [1,2].

2.3 Bot Detection via Request Data and Mouse Dynamics

Iliou et al. [10] present a method of using request data together with mouse
data for bot detection, building on their previous work on bot detection using
requests [11]. When classifying mouse dynamics, they do not build on existing
work but create a new model that performs the classification using a convolu-
tional neural network (CNN) on the raw mouse positions. As they do not have a
labeled bot dataset, they create bots themselves. While the general idea of their
approach has merit, they perform their evaluation with advanced bots that only
move the mouse in straight lines. Figure 1 shows an example of the advanced
bot behavior used for evaluation in their paper.

Fig. 1. Excerpt of the advanced
mouse movements of [10] (Page
18, Table 7).

The mouse movements created by such a
bot are not realistic enough to challenge human
behavior and are very easy to classify as a bot
by, e.g., looking at the straightness/curvature or
angular velocity of the purported mouse move-
ments. While our approach is similar to the
one presented by Iliou et al., we utilize more
advanced bots for our evaluation that do not
only move in straight lines and thus mimic
human-like behavior more closely. We describe
our advanced bot setup in Sect. 3.

Detecting Web Bots via Mouse Dynamics and Communication Metadata 77

In summary, there is already relevant research on bot detection using bio-
metric features, including mouse dynamics, but most of it is closed-source. Most
publicly available approaches tackle the problem of bot detection independent
of the website being defended, i.e., the bot detection systems are trained on a
dataset that does not originate from the website being defended. Additionally,
the majority of approaches consider only request data or mouse data for detec-
tion, while the ones combining both techniques only evaluate their approaches
with easily detectable bots.

3 Bot Detection Using Requests and Mouse Dynamics

Our core idea is to improve the detection of web bots by using mouse dynamics
in addition to request data. While request (meta)data like user-agent or screen
size can easily be faked, mouse movements are continuous and contain many
features, making them significantly harder to replicate. Thus an attacker would
need valid, human-like mouse movements for each action. An example of several
mouse movements is given in Fig. 2, which shows three different recordings of
mouse movements, two from using a chat app (one activity produced by a human,
the other by the advanced bot used in our evaluation) and one from using a
rhythm game3 where the mouse is used heavily. This image depicts that the
mouse dynamics are different per application and that advanced bots exist which
do not exclusively move in straight lines.

To be consistent with prior work, we use machine learning models and request
features proposed by [11] for bot detection on request data. For bot detection on
mouse dynamics, we use machine learning models and mouse features proposed
by [1]. Both papers are described in Sect. 2.

3.1 Request Data

Iliou et al. [11] ranked the best-performing metrics for simple and advanced bots
per classification algorithm. However, some attributes used in their analysis are
not suitable for this paper. For example, the authors include a Boolean indicating
whether a request has a known search engine in their ”Referer” header. Because
we asked participants to visit the websites directly, this attribute is omitted. We
use the following selection of metrics from Iliou et al.’s work [11] for our analysis:

1. The percentage of HTTP requests that led to an HTTP 4xx code response.
2. The percentage of HTTP requests that requested a CSS file.
3. The percentage of HTTP requests that requested a JavaScript file.
4. The percentage of HTTP-requested URLs that contain the previously

requested URL as a subpart.
5. The total time between the first and the last HTTP request of the session.
6. Standard deviation of requested pages’ depth (number of “/” in URL path).
7. Mean and Standard Deviation of times between successive requests.
3 https://osu.ppy.sh/home.

https://osu.ppy.sh/home

78 A. See et al.

Fig. 2. Mouse dynamics example. Browser activity in a chat app on the left. In the
middle movements of ghost-cursor (see foonote 7) creating a path between four given
points. On the right a human playing a rythm game (Osu!).

3.2 Mouse Features

Mouse dynamic features consist of the relative x- and y-coordinates as well as
a time value for each mouse event (e.g., left-click). Single mouse data points
are grouped based on the following rules: They either end with a click, have a
maximum of 50 data points, or span a maximum of two seconds. The features
are calculated for each group. As a basis for all derived values, the time, x and
y coordinates are linearly interpolated such that vectors with uniformly spaced
values x′

t and y′
t every 20ms are generated. All indices start at zero.

In the following, we describe the additional used features engineered similarly
to Gamboa et al. [7] and [4]. We include the path length from the origin, angle
of the path tangent, horizontal, vertical, and overall velocity, acceleration, jerk,
and angular velocity. Additionally, the type of action, length of the movement,
and time needed to complete the action will be used.

The path length from the origin s′
t, i.e., the accumulated sum of previous

segment lengths:

s′
t =

t−1∑

k=0

√
(x′

k+1 − x′
k)2 + (y′

k+1 − y′
k)2

The angle of the path tangent with the x-axis θt is the arctangent (atan2 is
used, which returns only values −π < θ < π) of the segment at time t > 0. At
t = 0 an angle of 0 is assumed.

θt = atan2((y′
t+1 − y′

t), (x
′
t+1 − x′

t))

Detecting Web Bots via Mouse Dynamics and Communication Metadata 79

The temporal features horizontal (vx), vertical (vy), tangential (v) and angu-
lar velocity (ω) as well as tangential acceleration (v̇) and jerk (v̈) are computed
as follows:

vx =
δx

δt
; vy =

δy

δt
; v =

√
v2
x + v2

y;

ω =
δθ

δt
; v̇ =

δv

δt
; v̈ =

δv̇

δt

For each of the 9 vectors (x′
t, y

′
t, s

′
t, vx, vy, v, ω, v̇, v̈) the mean, standard deviation,

minimum, maximum and value range (max-min) is calculated and yields the first
45 feature values.

Additionally, the time ttotal and length sn−1 of the stroke (i.e. group of n
data points), its straightness and jitter are computed. The time is the difference
between the first and last data points’ timestamps and the length can is the accu-
mulated sum of segment lengths but using the raw instead of the interpolated
data.

ttotal = tn−1 − t0

sn−1 =
n−1∑

k=0

√
(x′

k+1 − x′
k)2 + (y′

k+1 − y′
k)2

Analogous to Gamboa et.al.’s definition [7], the straightness is defined as the
ratio of the Euclidian distance between the first and last points of each group,
and the total distance:

straightness =

√
(x0 − xn−1)2 + (y0 − yn−1)2

sn−1

The jitter is the ratio between the original and smoothed path lengths:

jitter =
s′
n′−1

sn−1

In total, these 50 values make up the input vector that is computed for each
mouse action group. We base our detection on whether a mouse movement is
human on the features described above.

4 Evaluation

In this section, we summarize the evaluation results of our approach. We
employed the best classifiers that were identified in related work. We utilized
a random forest classifier [11] to analyze the request data, and for the mouse
data, we also employed a random forest classifier [1]. One of the advantages of
using a random forest classifier for the mouse data is its explainability, which
helps in understanding how the model arrived at its predictions. We used the
dataset described in Sect. 4.1 for our training and evaluation. The features used
for the classifiers are described in Sect. 3.1 and Sect. 3.2. Further, we answer the
following research questions:

80 A. See et al.

RQ1: What is the performance of the detection depending on the available data,
i.e., the number of requests and mouse movements?

RQ2: How does the performance of the machine learning model change when
trained additionally with mouse dynamics from an external dataset, i.e., unre-
lated to mouse dynamics on our websites?

4.1 Data Collection and Augmentation

To train and evaluate bot detection approaches, we need a dataset of request
data together with related mouse dynamics, i.e., the combination of requests and
matching mouse movements of a user. However, such a dataset does not exist
to our knowledge [10]. While some datasets on mouse dynamics exist [3], they
are obtained by users that repeatedly perform specific mouse-intensive tasks.
Since such a type of mouse dynamics differs from the mouse dynamics of users
visiting a website, it could affect a classifier’s performance. We use this dataset
in a second step to explore whether this is true.

Since no suitable dataset combining both features is publicly available [10], we
need to build our dataset. For this, we invited users to visit and browse our two
websites that log each request and every mouse movement. We announced our
experiment with a link to our websites via a mailing list and had 322 participants
visiting the first and 163 participants visiting the second website mentioned in
the mail. We excluded mobile users, as well as users with no recorded mouse
movements. Figure 3 shows the distribution of all users on both websites and
their generated data points.

To integrate bot data we had to write our own. For this we use puppeteer.
The behavior looks like this:

1. Accepting the initial prompt dialogue to start the experiment
2. Visiting the top-level pages {About, Blog, Contact/Imprint, Login, Register}
3. Visiting 10 randomly selected single blog pages
4. Visiting 100 randomly selected pages
5. Registering an account

All actions are configured to wait for the target element to be visible and
clickable, scrolling it into view, if not. A random delay between 0 and 2 seconds
is applied before each action. The behavior should reflect a scraper that does
not scrape at full speed and in a specific order, e.g., width search.

Further, we distinguish between a basic mouse bot and an advanced mouse
bot. The basic mouse bot moves the mouse on a direct path and at a constant
speed to the target (links, blog posts, ...). The advanced mouse bot does not
do this but uses bezier curves implemented in the popular javascript library
ghost-cursor4, which promises human-like mouse movements. An example of
such movements created by ghost-cursor is depicted in Fig. 2. We sample as
many bot users as human users in the experiment.

4 https://github.com/Xetera/ghost-cursor.

https://github.com/Xetera/ghost-cursor

Detecting Web Bots via Mouse Dynamics and Communication Metadata 81

Fig. 3. Distribution of users in terms of data point count

4.2 Results

This section presents our results. Limitations are described in Sect. 4.3.

RQ1 - Bot Detection Performance. The performance of our model for the
detection of bots depends on the data available. With more data available, the
request data model’s evaluation metrics show increasingly good performance.
Table 1 shows the detailed results. Note that there are many cases where fewer
data points than the limit are available (cf. Figure 3). The mouse data model
generally performs better the more data is available. Table 2 lists the performance
for different amounts of data points per user. A big advantage of this approach
is that more data points can potentially be acquired in a shorter amount of
time compared to request data. For example, when sampling at 30 events per
second, as this work’s implementation does, it only takes on average 1.66 s (50
samples) to capture the number of data points needed to surpass the request data
model’s performance. When, for example, considering a potential application for
a CAPTCHA, this time does not represent a significant disruption of most user
interactions, e.g., filling in a registration form.

Parameter Tuning We used combinations of the following parameters to deter-
mine the best random forest parameters for bot detection empirically. Note that
the number of bots and users in the dataset is the same, i.e., the same number
of sessions. For mouse movements, we use the advanced bot that mimics human
mouse movements.

1. Number of estimators (10, 50, 100, 150, 200, 1000)
2. Maximum number of features (None, log2, sqrt)
3. Maximum tree depth (None, 1, 2, 3, 4, 6, 7)

Tables 3 and 4 show the 10 best-performing combinations for mouse and
request data. The data is sorted by accuracy. The additional scores Precision,

82 A. See et al.

Table 1. Request data model performance with varying amounts of data points per
user

Data Points/User Acc Precision Recall AUC Time

200 0.980 0.980 0.980 0.982 0.209

100 0.970 0.961 0.980 0.985 0.209

No limit 0.960 0.960 0.960 0.972 0.215

50 0.950 0.941 0.960 0.976 0.208

20 0.910 0.918 0.900 0.975 0.221

5 0.900 0.885 0.920 0.945 0.220

10 0.890 0.842 0.960 0.956 0.220

4 0.880 0.913 0.840 0.922 0.211

Table 2. Mouse data model performance with varying amounts of data points per user
(Advanced Mouse Bot)

Data Points/User Acc Precision Recall AUC Time

No limit 0.966 0.964 0.968 0.993 0.449

50 0.933 0.943 0.922 0.979 0.124

200 0.930 0.951 0.906 0.979 0.189

100 0.920 0.942 0.895 0.975 0.149

20 0.855 0.846 0.868 0.949 0.114

10 0.850 0.862 0.833 0.903 0.120

5 0.846 0.909 0.769 0.916 0.099

4 0.826 0.895 0.739 0.879 0.098

Recall, AUC, and training time are computed as well. Their values of the top-
performing results lie close together except for training time. The different values
for the number of estimators and the maximum number of features for split con-
sideration perform very similarly. For request data, the values for the following
experiments were chosen to be 100 and None, respectively, as their result had
the same accuracy and AUC as the top result. Analogously for the mouse data
result, 200 and sqrt were chosen. All results have in common that no restriction
to the decision trees’ maximum depth is applied, which is also the default value
of scikit-learn’s implementation. This is expected as the tree depth is directly
correlated with the ability to classify multi-dimensional input data.

Basic vs. Advanced Mouse Bot. The first direct comparison used all available
human mouse data and the generated basic and advanced mouse data for train-
ing and testing datasets. Table 5 shows that the model performs better in every
aspect and can classify inputs more reliably when using data generated only by
the basic mouse bot with linear movements. This is expected as the bots’ linear
movements are uniquely identifying properties that result in very specific out-

Detecting Web Bots via Mouse Dynamics and Communication Metadata 83

Table 3. Model accuracy for different parameters (request data)

Features Estimators Acc Prec. Recall AUC Time

None 1000 0.910 0.887 0.940 0.973 4.348

log2 200 0.910 0.887 0.940 0.973 0.732

log2 1000 0.910 0.887 0.940 0.975 3.965

None 100 0.910 0.887 0.940 0.973 0.486

sqrt 1000 0.910 0.887 0.940 0.972 3.912

log2 100 0.910 0.887 0.940 0.971 0.389

log2 150 0.910 0.887 0.940 0.972 0.694

None 50 0.900 0.870 0.940 0.971 0.273

sqrt 200 0.900 0.870 0.940 0.972 0.727

None 150 0.900 0.870 0.940 0.972 0.703

Table 4. Model accuracy for different parameters (mouse data)

Features Estimators Acc Prec. Recall AUC Time

sqrt 150 0.967 0.964 0.969 0.994 11.305

log2 1000 0.966 0.962 0.970 0.993 70.796

sqrt 200 0.966 0.962 0.970 0.994 5.899

sqrt 50 0.966 0.964 0.968 0.993 9.280

sqrt 100 0.966 0.962 0.969 0.994 9.815

sqrt 1000 0.966 0.960 0.971 0.994 82.889

log2 200 0.964 0.963 0.965 0.993 20.381

log2 150 0.962 0.963 0.960 0.993 5.950

None 150 0.961 0.954 0.969 0.991 91.586

None 200 0.961 0.953 0.969 0.991 110.588

comes for many input features. The model only correctly differentiated between
humans and bots 96.6% of the time but still has a very high AUC.

Combining Mouse and Request Data for Advanced Bot Detection. Since we have
a dataset containing request data and a user’s matching mouse dynamics, we
can explore whether a bot detection system that combines both mouse and
request data may improve the performance compared to using them individually.
Therefore, we apply the classifiers mentioned above to the mouse and request
data individually. Afterward, we combine the calculated predictions of the two
classifiers and average them to determine the final result. We split the data
into training and test sets on the user level, i.e., each user instance (human or
bot) is only part of either the training or test set. We use two test ratios for
this experiment, namely 0.1 and 0.2. Table 6 shows the overall performance, the
precision of 1.0 was omitted from the table for readability. The most valuable

84 A. See et al.

Table 5. Simple and Advanced Mouse Data Performance

Scenario Acc Prec Recall AUC Time

Basic mouse 0.995 0.997 0.994 1.000 0.857

Advanced mouse 0.966 0.962 0.970 0.994 1.293

difference is that there are no false positive results, while the false negative
rates of 0.272 and 0.327 are higher in contrast to using the classifiers separately.
However, the lower false positive rate and same overall performance favor using
the combined approach as it is a priority not to disrupt the user experience [9].

Table 6. Combined Mouse and Request Data Performance

Test ratio Acc Recall AUC TP FP TN FN

0.1 0.960 0.953 0.976 122 0 22 6

0.2 0.950 0.940 0.970 252 0 49 16

RQ2 - Using Unrelated Mouse Dynamics for Training. We used Antal et
al.’s dataset [3] to compare the performance to different real-world data. Inputs
from 21 users were collected during their normal computer activities on one desk-
top and 20 laptop devices. Both mice and touchpads were used. Their raw mouse
movement and interaction data are preprocessed similarly to the experiment’s
data. The whole dataset yielded 1.54M input vectors. The initial assumption
was that these mouse movements do not match the interaction with our website
and the performance decreases when using these mouse movements. However,
when trained additionally with the external dataset, the accuracy increases to
99.71%, and the values for FPR and FNR decrease to 0.55% and 0.15%, respec-
tively. This indicates that the origin of the mouse movements is not important
with regards to their effectiveness.

4.3 Limitations

The strongest limitation of our approach is that we only have access to a syn-
thetic bot dataset, similar to approaches like [10]. Further, we create bots using
fitting third-party projects. However, an external, labeled dataset with bot- and
real-human traffic would be more suitable. The lack of such a realistic dataset
leads to the performance of our model likely being worse outside our lab setting.
Bots may act more camouflaged, e.g., by using recorded mouse movements.
Those bots would probably escape detection. However, this is universal. Bots
that behave completely like humans cannot be distinguished from humans. At
the same time, making a bot behave like a human increases the costs for an
attacker because the bot cannot work at full performance, e.g., scrape all data
available or monitor a website for a long duration.

Detecting Web Bots via Mouse Dynamics and Communication Metadata 85

Further, while we were able to show that mouse data can easily be used
for the detection of bots, another limitation is the focus on mouse data. This
excludes users who interact without a mouse, e.g., only via keyboard, mobile
devices, or screen readers.

5 Conclusion

We demonstrated the value of incorporating both mouse dynamics and request
data when detecting bots. Unlike previous research that relied solely on one
of the two data types or made unrealistic assumptions about the capability of
advanced bots, we used a consistent dataset that included both mouse move-
ments and request data belonging to the same user. Furthermore, we utilized
a third-party library to create bots that performed human-like mouse move-
ments. We used classifiers that performed best in literature for these tasks. We
achieved better results with similar performance but in a more realistic setting.
Thus mouse dynamics remain a useful tool for identifying even advanced bots.
An interesting finding was that mouse data from third-party sources can be used
to train the classifiers while achieving similar performance, thus simplifying the
usage process. By leveraging third-party mouse data, operators can minimize
the need to save and train on potentially sensitive user data. In the future, we
intend to test our approach on a larger e-commerce dataset. Further, we want
to consider more combinations of alternative approaches to bot detection, e.g.,
by including typing behavior as well as touch events from smartphones.

References

1. Acien, A., Morales, A., Fierrez, J., Vera-Rodriguez, R.: BeCAPTCHA-mouse: syn-
thetic mouse trajectories and improved bot detection. arXiv:2005.00890 [cs] (2021)

2. Akrout, I., Feriani, A., Akrout, M.: Hacking google reCAPTCHA v3 using rein-
forcement learning. arXiv preprint arXiv:1903.01003 (2019)

3. Antal, M., Denes-Fazakas, L.: User verification based on mouse dynamics: a com-
parison of public data sets. In: 2019 IEEE 13th International Symposium on
Applied Computational Intelligence and Informatics, pp. 143–148. IEEE (2019)

4. Antal, M., Egyed-Zsigmond, E.: Intrusion detection using mouse dynamics. IET
Biomet. 8(5), 285–294 (2019)

5. Chu, Z., Gianvecchio, S., Wang, H.: Bot or human? A behavior-based online bot
detection system. In: Samarati, P., Ray, I., Ray, I. (eds.) From Database to Cyber
Security. LNCS, vol. 11170, pp. 432–449. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-04834-1 21

6. Dee, T., Richardson, I., Tyagi, A.: Continuous transparent mobile device touch-
screen soft keyboard biometric authentication. In: 2019 32nd International Con-
ference on VLSI Design and 2019 18th International Conference on Embedded
Systems (VLSID), pp. 539–540. IEEE (2019)

7. Gamboa, H., Fred, A.: A behavioral biometric system based on human-computer
interaction. In: Proceedings of the SPIE, vol. 5404, pp. 381–392 (2004). https://
doi.org/10.1117/12.542625

http://arxiv.org/abs/2005.00890
http://arxiv.org/abs/1903.01003
https://doi.org/10.1007/978-3-030-04834-1_21
https://doi.org/10.1007/978-3-030-04834-1_21
https://doi.org/10.1117/12.542625
https://doi.org/10.1117/12.542625

86 A. See et al.

8. Gummadi, R., Balakrishnan, H., Maniatis, P., Ratnasamy, S.: Not-a-bot: improving
service availability in the face of botnet attacks. In: NSDI, pp. 307–320 (2009)

9. Heath, N.: Expedia on how one extra data field can cost $12m (2010). https://www.
zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/. Accessed
18 Oct 2021

10. Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S., Kompatsiaris, I.:
Detection of advanced web bots by combining web logs with mouse behavioural
biometrics. Digit. Threats: Res. Pract. 2(3), 1–26 (2021)

11. Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S., Kompatsiaris, Y.:
Towards a framework for detecting advanced web bots. In: Proceedings of the
14th International Conference on Availability, Reliability and Security, ARES 2019.
Association for Computing Machinery, New York (2019)

12. Jonker, H., Krumnow, B., Vlot, G.: Fingerprint surface-based detection of web bot
detectors. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS,
vol. 11736, pp. 586–605. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-29962-0 28

13. Jorgensen, Z., Yu, T.: On mouse dynamics as a behavioral biometric for authen-
tication. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, pp. 476–482 (2011)

14. Li, X., Azad, B.A., Rahmati, A., Nikiforakis, N.: Good bot, bad bot: characterizing
automated browsing activity. In: 2021 IEEE symposium on security and privacy
(SP), pp. 1589–1605. IEEE (2021)

15. Liu, W.: Introducing reCAPTCHA v3: the new way to stop bots (2018). https://
developers.google.com/search/blog/2018/10/introducing-recaptcha-v3-new-way-
to. Accessed 20 May 2021

16. Machines, I.: Stop more bots. start protecting user privacy (2018). https://www.
hcaptcha.com/. Accessed 20 May 2021

17. Sayed, B., Traoré, I., Woungang, I., Obaidat, M.S.: Biometric authentication using
mouse gesture dynamics. IEEE Syst. J. 7(2), 262–274 (2013)

18. Shen, C., Cai, Z., Guan, X.: Continuous authentication for mouse dynamics: a
pattern-growth approach. In: IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2012), pp. 1–12 (2012).https://doi.org/10.1109/DSN.
2012.6263955

19. Sivakorn, S., Polakis, J., Keromytis, A.D.: I’m not a human: breaking the google
recaptcha. Black Hat 14 (2016)

20. Suchacka, G., Cabri, A., Rovetta, S., Masulli, F.: Efficient on-the-fly web bot detec-
tion. Knowl.-Based Syst. 223, 107074 (2021)

21. Wei, A., Zhao, Y., Cai, Z.: A deep learning approach to web bot detection using
mouse behavioral biometrics. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds.)
CCBR 2019. LNCS, vol. 11818, pp. 388–395. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31456-9 43

https://www.zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/
https://www.zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/
https://doi.org/10.1007/978-3-030-29962-0_28
https://doi.org/10.1007/978-3-030-29962-0_28
https://developers.google.com/search/blog/2018/10/introducing-recaptcha-v3-new-way-to
https://developers.google.com/search/blog/2018/10/introducing-recaptcha-v3-new-way-to
https://developers.google.com/search/blog/2018/10/introducing-recaptcha-v3-new-way-to
https://www.hcaptcha.com/
https://www.hcaptcha.com/
https://doi.org/10.1109/DSN.2012.6263955
https://doi.org/10.1109/DSN.2012.6263955
https://doi.org/10.1007/978-3-030-31456-9_43
https://doi.org/10.1007/978-3-030-31456-9_43

	Detecting Web Bots via Mouse Dynamics and Communication Metadata
	1 Introduction
	2 Related Work
	2.1 Bot Detection via Request Data
	2.2 Bot Detection via Mouse Dynamics
	2.3 Bot Detection via Request Data and Mouse Dynamics

	3 Bot Detection Using Requests and Mouse Dynamics
	3.1 Request Data
	3.2 Mouse Features

	4 Evaluation
	4.1 Data Collection and Augmentation
	4.2 Results
	4.3 Limitations

	5 Conclusion
	References

