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Abstract. Third-party tracking allows companies to identify users and
track their online activity across different websites or digital services.
This paper presents a first experimental study to detect advertisements
and tracker by inspecting fully encrypted network transactions at the
TCP/IP network level associated with a website. The first results are
encouraging and motivate to extend this first proof-of-concept study even
further in the future. A classical application area in the future would be
the use in areas where communication can only be accessed on encrypted
TCP/IP level (keyword secure IoT environments) or the presented app-
roach is used simply to enable a classical extension of the portfolio for
tracker detection.
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1 Introduction

Advertising is essential to a free market economy: it enables commerce by pro-
viding consumers with product and service information and encouraging com-
petition. However, online marketing has emerged as a new independent business
model, described in the literature as “surveillance capitalism” [32]. To protect
themselves from advertising and online tracking, users rely on privacy-enhancing
blocking tools, such as Adblock Plus or uBlock Origin. Many of them are based
on manually created blacklists, which leads to scalability issues. Hence, the
research community has applied machine learning to automate the creation of
blacklists. To the best of our knowledge, these approaches solely leverage features
at the application layer of the network stack [5,13,16,24]. Although the models
perform well with an accuracy up to 98.1%, they assume access to the applica-
tion layer. Consequently, related work proposes client-side tools that cannot be
easily extended to the network-level as the trend shifts towards encrypted data
transmission.

This raises the question whether the purpose of a communication (here adver-
tising and tracking) can be inferred despite encryption. Regarding this question,
there are many traffic classification problems that gain information by apply-
ing pattern recognition to encrypted traffic traces. For instance, in [3,12,18]
the encrypted traffic is categorized into several application types, ranging from
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chat application to streaming service. Another prominent example is website
fingerprinting, which aims to determine the website a user has accessed via an
anonymized channel [14,21,26,27]. These attacks have proven to be effective
on HTTPS because traffic features, such as size, timing, and order of network
packets, are unique to each website. To the best of our knowledge, we are the
first to adapt traffic analysis to tracking detection. This use case entails addi-
tional challenges compared to the aforementioned traffic classification problems,
since we intend to classify individual elements within a website in contrast to
its cumulative traffic flow. Furthermore, modern websites contain various types
of potentially harmful resources (images, JavaScript, etc.) which show diverse
behavior patterns. Considering that the information about the resource type is
not available in encrypted traffic, we face a binary classification problem involv-
ing heterogeneous target classes (tracking or non-tracking). Notably, our app-
roach does not break encryption but exploits that privacy-invasive resources, or
even communications with the serving host, follow an observable tracking pro-
tocol which is distinct from benign traffic traces. In fact, our model learns some
meta-information to match observed patterns with known patterns. Traffic clas-
sification applied to the advertising and tracking problem potentially opens up
network-wide detection and blocking of unwanted resources, which is becoming
increasingly relevant as Internet of Things proliferate [20,30]. As a starting point,
we seek to answer whether tracking resources are detectable in an encrypted traf-
fic flow, and if so, what features best describe them.
In summary, our contributions are as follows:

— For our empirical study, we create a dataset of the top 1K most popular
websites according to the Majestic list. Our dataset covers the entire network-
stack from L1 to L7 and maximizes the number of trackers by automatically
accepting the consent management platform.

— We train a classifier based on fully encrypted network transactions to iden-
tify tracking resources with an accuracy and Fj score of about 90% and
88%, respectively. Given that the tracking portion of most domains is highly
homogeneous, features related to the whole conversation exhibit high discrim-
inatory power.

— We show that traffic features are particularly useful for detecting third-party
tracker, as well as unwanted resource types such as documents (HTML),
images, and scripts.

The remainder of the paper is structured as follows: Sect. 2 provides back-
ground information on cross-site online tracking and corresponding blocking
measures. Section 3 presents our experimental design and Sect.4 showcases our
dataset. We show our results on feature importance and classifier performance
in Sect. 5. Section 6 concludes our study.

2 Background and Related Work

2.1 Cross-Site Online Tracking

The beauty of the Web lies in the hyperlinking of objects, which allows third-
party elements to be easily included into first-party websites. However, the
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analysis in [2] shows the picture of a hidden market whose actors collect per-
sonal data without the user’s influence by exploiting third-party content. Today’s
online marketing is mainly driven by advertisers (demand for product place-
ments), publishers (supply of advertising space) and advertising networks (inter-
mediaries).

When a website is visited, the available advertising space is auctioned to the
highest bidder by the ad network [31]. For the financial evaluation of an auction,
bidders are provided with a detailed user profile containing information on the
geography, demographics and preferences of the respective website visitor. This
is achieved by using various tracking techniques that uniquely identify the user
and expose information, such as the browsing history [7,19,23]. In collaboration
with several publishers, third-party trackers scale across a variety of sites to
create a comprehensive browsing profile. As more browser vendors discontinue
support for third-party cookies, recent studies show a vast majority of websites
are using first-party tracking techniques (e.g., first-party cookies or CNAME
cloaking) and sharing them with other parties to circumvent blocking [4,8,9].
They conclude that tracking prevention should be extended to first parties as
well.

2.2 Existing Blocking Techniques

Broadly speaking, several strategies exist to mitigate online tracking. One strat-
egy might be to spoof web tracker by providing incorrect information. A promi-
nent example is Brave’s randomization to some fingerprinting endpoints [6]. How-
ever, blocking unwanted content according to known signatures is much more
common. In contrast to spoofing, blocking requires the detection of trackers.
This is done either by manually created blacklists or through machine learning
to automate the signature creation process.

Blacklists. Popular browser extensions like uBlock Origin rely on blacklists.
These lists are manually curated based on user feedback and suffer from scala-
bility and robustness issues. First, blacklists struggle to keep up with the ever
expanding advertising and tracking ecosystem. For example, the adoption of
anti-adblocker rules took around 90 days [15]. To make matters worse, there are
several evasion strategies for advertisers to avoid blacklists, such as changing
domains or using the CNAME cloaking technique [10,29].

Machine Learning. To address both, scalability and robustness, researchers
have applied machine learning (ML) for automated ad and tracker blocking. The
first generation of ML approaches detects trackers based on a single dimension of
the application layer. These approaches featurizing the content of either URLs,
HTTP headers, or request and response payloads [5,13,24]. Since they mimic
blacklists, they inherit their shortcomings (i.e. the presence of a specific key-
word is susceptible to trivial evasion). Therefore, the second generation involves
a number of graph-based approaches that capture the interactions among HTML
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elements, JavaScript, and HTTP requests [16,25]. They leverage rich cross-layer
features and thus claim to be robust to evasion attempts. However, the afore-
mentioned approaches require access to the application layer, which is usually
encrypted. Thus, they cannot efficiently prevent tracking at the network-level,
but only on a per-host basis. In contrast, we leverage traffic aspects of TCP /IP
layer, which are hardly affected by encryption because the traffic shape is always
available. Lastly, we argue that traffic flow statistics are robust to evasions. One
could obfuscate such information by sending redundant traffic or delaying pack-
ets to manipulate the time series. However, this would have a negative impact
on bandwidth, latency, and quality of service.

3 Experimental Design

This section provides an overview of our study design. First, we present our
assumed attack scenario. Second, we report on our methodology for creating
and preprocessing the dataset, as well as parameter selection and training of the
classifiers and their evaluation. Last, we present our feature engineering process.

3.1 Scenario

Consider the following scenario (cf. Fig.1). Alice wants to visit a website (here
example.org). The initial response from the web server contains the web page,
which links to new resources, leading to subsequent requests. These requests typ-
ically involve several hosts (third parties). The HTTP packets are then transmit-
ted over Ethernet and are split into multiple TCP packets due to the maximum
transmission unit (in our example from packet no. 20 to 23). In addition, all
communication between Alice and the web servers is encrypted. However, for
labeling purposes, we assume the network traffic in plain. To achieve this, we
observe and experiment locally on Alice’s host. This gives us also the opportu-
nity to study the upper bound of tracking defenses based on network features
with perfect information. One information that might be useful is the relative
arrival time of packets since the site was accessed, or knowledge about individual
resources. In our model, tracking is defined as a host providing tracking resources
to Alice. While some web services are used exclusively for tracking purposes,
others fall into a gray area because portions of the communication provide ben-
efits. Therefore, a fine distinction of tracking is necessary. Since current tracking
techniques follow fixed protocols, these may show different traffic characteristics
than regular web services and thus differ in their communication patterns, even
if encrypted. Furthermore, the question arises how well suited these structures
are to determine the semantics of the data flow, in this case tracking. Towards
answering these questions, we present a machine learning approach for the auto-
mated identification of privacy-intrusive services. We classify resources into two
classes: (i) tracker and (ii) non-tracker (other). Here, the challenge is to assess
the intent of a service with limited knowledge.

In our attack scenario, we run an ex-post traffic analysis for each website.
Meaning, we expect Alice to visit each web page sequentially, observe all traffic,
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Fig. 1. Example scenario for the website call example.org.

and eventually estimate trackers independently of other pages. Our methodol-
ogy prevents traffic features tailored to a host from being biased. For instance,
extensive communication might result from a chatty host or because the host is
present at many first parties. In a practical environment, a similar outcome is
achieved by using a short time window. It is worth noting that isolating the net-
work traffic of a website preserves the partyness of a resource, which is necessary
for labeling the dataset. Furthermore, we discard signaling packets (e.g. ACK
packets) since they provide no useful information for our classification task. A
similar optimization is done in [21] with the usage of a minimum byte size filter.

3.2 Methodology

As depicted in Fig.2, our study consists of three components: Web Crawler,
Preprocessing and Evaluation. For our empirical study!, we first build an appro-
priate dataset of network traces. For this purpose, we developed a tool based
on Python-Selenium to automatically crawl websites and capture the entire net-
work stack using Tepdump. The crawler is containerized in Docker. This allows
parallel browsing of websites while keeping the network traffic of each website
isolated.

Web Crawler. The homepage of the 1000 most popular websites from the
Majestic Million list is automatically visited and the web traffic to the destination
port 80 and 443 is filtered. The Majestic 1K list ranks the top websites based on
the number of backlinks and can be freely downloaded?. We use Google Chrome
in headless mode to disable telemetry data. To evade bot detection, we obfuscate
the user agent and set the language to en-Us. Furthermore, the homepage is

! The source code of our study is available at: https://github.com/wim50594 /network-
traffic-tracker-observer.
2 https://majestic.com /reports/majestic-million.
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Fig. 2. Abstract overview of our experiment.

scrolled vertically to simulate organic user interaction and trigger additional
requests. The environment variable SSLKEYLOGFILE is set to allow TLS data to
be decrypted during preprocessing. The sslkeylog contains keying material of
the TLS handshake. Each website is accessed up to three times for 20s, with
varying degree of cookie policy acceptance: before accept, accepting policy and
after accept. Cookie consent is important because more and possibly different
trackers may be loaded after acceptance. We only visit a website a third time if
it offers a cookie policy and is discovered by us. To identify a cookie policy, we
scan the Document Object Model for typical phrases to accept all cookies. We
adopt the word list from preliminary work [17]. For all websites, we conduct a
stateless crawl, meaning the cache is cleared after each visit.

Preprocessing. Since most requests are protected by HTTPS, the pcap files
are decrypted using the sslkeylog. After that, we extract web resources from the
packet flow via the tshark command line tool. During this process, an HTTP
request and response, as well as their associated TCP segments, are reassembled
into a resource (cf. Fig. 1b). Subsequently, each resource is labeled based on the
blacklists EasyList (advertisement) and EasyPrivacy (tracking). Both lists® were
originally developed for the browser extension Adblock and are used in numerous
studies [11,13]. Although our main goal is to study tracker detection, we include
EasyList in the ground truth because digital advertising is fundamentally linked
to tracking and cannot be considered separately. In our case, the well-known
advertising network doubleclick.net is only exposed by EasyList. To apply
the filter rules to the web resources, we utilize Brave’s adblock engine*. Last, we
determine the party level of a resource based on eTLD+1 as well as the content
type from the HT'TP header.

Evaluation. First, we extract several network features with respect to IP
address, size, direction, and timing. Next, we analyze the feature importance
by plotting their distribution and measuring the classification performance of a
decision tree and logistic regression. Both models were chosen because of their

3 https://ecasylist.to/.
4 https://github.com/brave/adblock-rust.
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interpretability of the classification decision. The task of binary classification
is to assign a web resource to one of the two categories (i) tracker or (ii) non-
tracker. Both classifiers are trained in a supervised learning environment (ground
truth is given by blacklists). For this, we use the Python library scikit-learn with
default hyperparameters, except for a regularization term to prevent overfitting.
These are configured by a grid search. The maximum depth of the decision tree
is limited to %ffeat“esj with minimum samples at a leaf node set to 5,
and L1 penalty term is set to C' = 10~% for logistic regression. The performance
is evaluated using 5-fold cross-validation and repeated 5 times unless otherwise
stated. The split into training and test data is based on website visits, so com-
munication to hosts remains compact. As the features are different in scale, they

must be standardized before passed to the logistic regression.

3.3 Network Traffic Features

Based on observations during preliminary work regarding the prevalence and
operation of trackers [1,8,23], we know that tracking services seldom deliver
large responses (e.g., tracking pixel). At the same time, large amounts of data
are supposed to flow to privacy-intrusive services. Hence, we expect the data
flow to tracking parties to be characterized by small responses with low volume
compared to large client requests. With these observations in mind, we develop
statistical features for binary classification of web resources.

Table 1. Network traffic features for this study. The resource level refers to the asso-
ciated packets of a resource. The conversation level comprises the entire packet flow to
a host during a page visit.

A: Resource level (packets associated with a resource)

packet size Packet sizes of a resource

in/out packet size | Directional packet sizes of a resource (from client’s
perspective)

relative time Relative arrival time of the packets since website call

delta resource time | Delta time to the previous resource of a host

B: Conversation level (separated by IP address)

packet size Packet sizes of a conversation

in/out packet size | Directional packet sizes of a conversation (from client’s
perspective)

relative time Relative arrival time of the packets since website call

prevalence(ip) No. of observed IP address on first-party websites

The network features explored in our experiment are summarized in Table 1.
We use two different granularity levels of features, namely the conversation
level and the resource level. The former describes the communication behav-
ior to a host during a page visit (e.g., in Fig.1 the traffic to the IP host of
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fonts-api.com). At this level, we are only considering the packet flow without
any resource information. However, since web services offer both tracking and
non-tracking content (especially in the case of a first-party), we further explore
the characteristics of individual resources. To build our features, we aggregate
the network packets and compute the main descriptive statistics count, sum, min,
max, mean, rsd, and span. The latter takes the difference between max and min.
The relative standard deviation is standardized by std/mean (coefficient of vari-
ation). At both levels of granularity, we consider TCP packet size, TCP packet
size of incoming and outgoing traffic, and the relative arrival time of packets
since the site was visited. The split into in and out packets encodes directional
features as shown to be important in previous work [26,27]. Since third-party
trackers require a high penetration rate to create a comprehensive browsing pro-
file, we expect them to be widely spread on first-party websites. Therefore, we
calculate the frequencies of IP addresses on first-party websites within the train-
ing data. Unknown IP addresses within the test data are encoded as —1. Last,
we measure the time intervals between resources (delta resource time).

Since we introduced several variants of features measuring similar properties,
we expect that an automatic classifier will only need a subset of the proposed
features. However, we examine all features to understand which specific features
are most relevant for classifying tracking web services.

4 Dataset

We conducted our experiment on November 9, 2022, for which we obtained
the most current state of the Majestic list and the two blacklists EasyList and
EasyPrivacy. We ran our crawl at a German university. Accordingly, we were
often redirected to a German version of the website due to IP geolocating.

Table 2. Characteristics of the Majestic-Million 1K dataset

Characteristic

Websites successfully crawled | 933

Cookie-acceptance rate 0.46

Count unique domains first-party==827/third-party=2161
Average parties per domain | parties=25.52/tracking-parties=22.3
Count resources first-party==83,993 /third-party=182,001
Count tracking resources is-tracker=105,586 /not is-tracker=160,408
Count packets in=3,258,443 /out=320,468

The characteristics of the dataset are summarized in Table2. In total, 933
websites were successfully visited, approximately 266 thousand resources were
requested, and over 3.5 million packets were exchanged. Not all websites could
be accessed because the Majestic list contains entries whose domain could not be
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resolved, or the connection was refused. Most websites (70%) fall under the cat-
egories of Computers & Technology, Education, News or Business. The number
of first-parties is lower than successfully crawled websites, because some have
multiple domains from which they are redirected to the main site. For example,
business.site becomes www.google.com, which is already ranked 1. Likewise,
typical properties of web traffic are observed. As expected, we find a significant
preponderance of third-parties per domain on average, with 22.3 hosts sending at
least one tracking-related resource. Consequently, only one third of the resources
originates from the first-party. Furthermore, an imbalance exists between incom-
ing packets to the client and outgoing packets to the web server by a factor of
10. On 46% of the websites, we accepted all cookies. Unfortunately, the ground
truth of consent banner is unknown, but in a similar study a detection rate of
63.2% for European websites was reported [17]. Since our experiment crawls the
top websites worldwide, with some providing no cookie policy (e.g., apple.com
or wikipedia.org), the result looks reasonable. In 10% of the cases, a cookie
banner could not be found within the time window of 20 s because the web pages
consisted of extensive HTML elements. The five most common consent texts are:

RIS

“accept all cookies”, “accept all”, “accept”, “i accept”, and “alle akzeptieren”.

Non-Tracker
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Fig. 3. Tracker distribution in Majestic 1K dataset.

Figure 3 presents a weak imbalance between our target classes with a distri-
bution of about 60/40% harmless resources. However, only 6.7% of first-party
resources are tracking-related, as most trackers are included by third parties
(94.6%). When the cookie policy is accepted, we measure a remarkable increase
of tracking resources. This indicates that the user’s consent is only partially
taken into consideration, since trackers are already loaded even without con-
sent®. The number of resources after accepting is lower, because we visit web
pages a third time only when a cookie policy is detected. For a better com-
parison, Before Accept* denotes a subset of websites whose cookie banners we
have identified. The comparison with the samples of after accept shows a signif-
icant jump in resources as well as third-party trackers, while first-party trackers
slightly increase. Most requested elements are images and scripts (59.9%). If
no content type is provided in the HTTP header, it is labeled as “none”. The
resources marked as “other” include json files in most cases (65.3%).

5 The interested reader can find an in-depth analysis in [22].



140 M. Wittig and D. Kesdogan

Majestic Tracker by Categorization

Arts i

Professional Networking i
Chat

AVG
Shopping

Job Search
Transportation

Nature & Conservation

Travel
Computers & Technology

News
Information Security

File Repository

Restaurants & Dining
Sports

Games

Search Engines & Portals
General

Finance
Web-based Email

Politics & Law
Business

Streaming Media & Downloads
Education

Non-profits & NGOs

Leisure & Recreation
Real Estate

Download Sites

Translators
Instant Messaging

Fashion & Beauty
Entertainment
Web Meetings
Image Sharing
Health & Medicine
Personal Sites
Personal Storage
Forums & Newsgroups I
Remote Access
Social Networking
Government
‘Web Phone
Suspected Malware
Peer-to-Peer

Fig. 4. Majestic 1K top tracked websites categorization by Cyren URL Lookup API°.
Some were assigned to multiple categories and therefore counted repeatedly.

The amount of tracking varies considerably among different categories of
websites. In Fig.4 we show the average number of tracking resources across all
three page visits for each web category. Websites at the lower end of the spectrum
are mostly service providers that require authentication, as well as government
and non-profit organizations. On average the web pages of the last 20 categories
consist of 130.42 non-tracking resources vs. 171.93 overall. Meaning, they are
simpler in design and require fewer resources. In contrast, monetization plays
a major role for websites at the top of the spectrum, as they primarily offer
editorial content with no external funding.
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Fig. 5. Top 25 most widespread third parties.

The tracking ecosystem involves only a handful of third parties. Figureb
shows the percentage of third parties on first-party sites, most of which are for
tracking purposes. A regular user is exposed to at least one of the top 25 third
parties with 84.89% chance. On average, third parties are only present on about
1% of the pages. The dominance of a few providers becomes even greater when
you consider that many of the domains are owned by the same organization.

5 Analysis of Network Traffic

In this section, we analyze characteristic patterns in network flow to tracking
or non-tracking services. To do this, we visualize the distribution of network
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features and then evaluate them using statistical methods. Lastly, we evaluate
the classification power and how its performance depend on the website context
and resource type.

5.1 Feature Distribution

Since a host may exchange a mix of tracking and non-tracking resources, we mea-
sure the purity of the communication channels by computing its service entropy.
For our two classes, the entropy varies between 0 and 1. The overall entropy is
0.028 on average and 0.023 for third parties, indicating that communication is
mostly pure. This can be explained by the fact that blacklists often only block
at a coarse domain level (in our experiment 51.5% of the rules). However, for
first-party communication, the mean entropy slightly increases to 0.072. While
this suggests that detection at the granularity of communication is promising,
the associated resources share the same conversational context. Therefore, it
is necessary to distinguish individual resources more precisely to minimize the
impact on functionality, which is especially important for the first-party.
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Fig. 6. Feature distribution of resources by size, direction, and time. As a rule of thumb,
the less the boxes overlap, the more distinctive the feature.

This finding motivates us to look at the network properties of resources. For
this purpose, we aggregate the packet attributes of resources by statistical loca-
tion parameters (cf. Sect.3.3). Figure6 visualizes the discrimination power of
the resource features. To achieve good classification results, the features should
follow different distributions. For readability reasons, we only plot the relevant
features without outliers. Overall, tracking resources tend to be smaller in size
(sum) which also applies to individual packets (mean). A small span (max - min)
represents equally sized packets. While the span of privacy-invasive resources is
dispersed, non-trackers are more concentrated at the larger end. Harmless traffic
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is typically characterized by a small request and large responses. In contrast, a
tracking pixel that only triggers requests to set or synchronize cookies, causes
both short outbound and inbound traffic. The opposite case is primarily a result
of tracking scripts that have small requests and large responses. Overall, track-
ers are significantly smaller than non-trackers in terms of packet size, except for
R:min(packet sizes), which varies substantially. This observation could possi-
bly be explained due to the information leakage (e.g., via URL parameter [23]).
Incoming traffic makes up the majority of packets (91%), so the feature distribu-
tion looks similar to the previous one. The opposite is true for outgoing packets.
These are shifted further to the top due to the loss of information caused by
either multiple parameters in the URL or POST data. The packet arrival time
reveals that trackers are loaded later and with greater pauses between individual
requests, while the total loading time of a resource (R:span(rel time)) is sim-
ilarly short for both categories. Notably, the discrimination power of outgoing
packet size and relative time is limited by a large interquartile range.

5.2 Feature Importance

Next, we look at the feature importance to discuss what features most accurately
describe trackers. To begin with, we show in Fig.7 a simplified version of the
decision tree with a depth of 3, which still achieves an accuracy of 85.3% and a
Fy score of 0.823. It is an excellent tool for generalizing typical characteristics
of tracking traffic. The tree consists exclusively of conversation features, as they
are best suited to classify third-party trackers. Most resources (71%) can be
described by two paths. Accordingly, a conversation is classified as tracker if it
generates less than 53.8 kB of incoming traffic, it starts after 0.8 s, and its IP
address has been observed over 3 times at a first-party. In contrast, harmless
network traffic is characterized by at least 234.1 kB of incoming packets and an
IP address prevalence of at most 29. While both paths lead to pure leaves, with
Gini coefficients of 0.213 and 0.061, respectively, there are also minorities that
do not yield good classification results. For example, if the incoming packets
range from 53.8 KB to 234.1 kB and the conversation starts after 1.3 s, 48.6% of
them are misclassified as trackers. Compared to most trackers, this class contains
mostly advertisements, large JavaScript files, and twice as many requests to the
host, resulting in a large communication volume.

To further understand which network features are most indicative of tracking,
we compute the Gini importance for the decision tree and report the weights for
the logistic regression in Fig.8. For reference, we compare both scores with the
point biserial correlation coefficient, which measures the individual predictive
ability of each attribute. To improve readability, only significant features are
shown.
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C:sum(in packet sizes) <= 53879.5
gini = 0.48
samples = 100.0%
value = [0.601, 0.399]
class = Non-Tracker

C:min(rel time) <= 0.837 C:sum(in packet sizes) <= 234054.0
ini = ini = 0.174
samples = 44.8% samples = 55.2%
value = [0.228, 0.772] value = [0.904, 0.096]
class = Tracker class = Non-Tracker
C:min(rel time) <= 0.087 Cprevalence(ip) <= 2.5 C:min(rel time) <= 1.257 Ciprevalence(ip) <= 29.5
gini = 0.281 gini = 0.415 gini =
samples = 5.5% samples = 39.3% samples = 12.8% samples = 42.4%
value = [0.646, 0.354] value = [0.169, 0.831] value = [0.707, 0.293] value = [0.963, 0.037]
class = Non-Tracker class = Tracker class = Non-Tracker class = Non-Tracker
gini = 0.041 gini = 0.497 gini = 0.457 gini = 0.211 gini = 0.236 gini = 05 gini = 0.049 gini = 0.357

samples = 4.2%
value = [0.537, 0.463]
class = Non-Tracker

samples = 7.5%
value = [0.863, 0.137]
class = Non-Tracker

samples = 5.3%
value = [0.486, 0.514]
class = Tracker

samples = 2.4%
value = [0.768, 0.232]
class = Non-Tracker

samples = 8.3%
value = [0.353, 0.647]
class = Tracker

samples = 31.0%
value = [0.12, 0.88]
class = Tracker

samples = 1.4%
value = [0.979, 0.021]
class = Non-Tracker

samples = 40.0%
value = [0.975, 0.025]
class = Non-Tracker

Fig. 7. Simplified decision tree with maximum depth of 3.

C:sum(packet sizes) - 1 1 1
C:sum(in packet sizes) - 2 2 2
C:mean(in packet sizes) - 3 3 3
C:min(in packet sizes) - 4 4 4
C:mean(out packet sizes) - 5 5 5
C:max(out packet sizes) - 6 6 6
C:span(out packet sizes) - 7 7 7
C:mean(rel time) - 8 8 8
C:min(rel time) - 9 9 9
C:prevalence(ip) - 10 10 10
R:sum(in packet sizes) - 11 1 1"
R:mean(in packet sizes) - 12 12 12
R:max(in packet sizes) - 13 13 13
R:min(rel time) - 14 14 14

0.0 0.2 0.4 0.6 -0.5 0.0 0.5 -0.5 0.0 0.5

Desicion Tree Logistic Regression Correlation

Fig. 8. Feature importance for different model.

Due to the regularization and the strong correlation between features, only
a few features are selected. The most informative characteristics relate to the
incoming packet size as well as the relative time. These results are in line with
Fig. 6, as privacy-intrusive services generally do not provide useful web content
(r = —0.47) and conversations with them tend to start after the main page has
finished loading (r = 0.57), e.g., after an event has been triggered. In partic-
ular; the resource-specific features are less important, although the classifica-
tion task involves the assessment of a resource. One explanation might be that
web services provide very homogeneous content (either tracking or non-tracking)
and therefore classification based on conversation is plausible. In addition, con-
versation features accumulate more information over the time horizon, leading
to less variation compared to their resource counterpart. The importance of
C:prevalence(ip) is consistent with our intuition that a higher frequency of a
host on first-party websites is an indicator of tracking, since cross-site tracking
requires widespread services (r = 0.23).

5.3 Classifier Performance

In this section, we evaluate the performance of our classifiers. To reduce varia-
tions, we test our classifier with 5-fold cross-validation and repeat this process



144 M. Wittig and D. Kesdogan

5 times, since results can vary depending on composition of training and test
data. We are particularly interested in the distinctiveness of features at different
levels of granularity, as perfect information may not be needed.

Table 3. Comparison of classification performance.

All features | Conv. level | Res. level
Acc. |F1 Acc. |F1 Acc. |F1
Decision tree 0.899 | 0.875|0.882 | 0.860 | 0.853 | 0.824
Logistic regression | 0.862 | 0.833 | 0.859 | 0.829 | 0.776 | 0.733

Overall Performance. The results in Table 3 show better overall performance
for the decision tree than for the logistic regression. The decision tree can repro-
duce the blacklist labels 89.9% of the time. When looking at only a subset of
features, conversational features perform better than resource-based features. As
the communication flow contains more information, the conversational features
exhibit more discriminative power. But the resource-specific features are still
valuable, in detecting trackers for an impure communication with high service
entropy. Therefore, combining both levels of granularity provides the best result.

First-Party vs. Third-Party. Even though the conversation features con-
tribute the most to the classification, they are inadequate for detecting at first-
party context. We observe different network characteristics for resources depend-
ing on the context of the party. For example, the average on R:sum(out packet
sizes) is for first-party tracker 1.9 kB and for third-party tracker 0.9 kB, while
R:sum(in packet sizes) is for non-tracker on average 27.5 and 21.7, respec-
tively. Since first parties are only responsible for 5.6% of tracking, our classifiers
are not able to generalize first-party trackers well. To compensate for the imbal-
ance, we apply random undersampling to the majority classes. Each sample
takes 30% of the dataset and is 5-fold cross-validated. This process is repeated
10 times, and we report the average in Table 4.

As the performance of first-party trackers is significantly lower than that
of third-party trackers, correct detection in the first-party context remains a
challenging task. While the decision tree based on resource features is best suited
for first-party context, with a true positive rate of 78.2%, only 59.5% of the
predicted positives are correct.
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Table 4. Classification performance for first-party/third-party.

First-Party Third-Party
Precision | Recall | Precision | Recall
Decision Tree All features | 0.668 0.661 | 0.850 0.906

Conv. level |0.688 0.657 |0.811 0.926
Res. level |0.595 0.782 |0.802 0.882
Logistic Regression | All features | 0.713 0.639 | 0.822 0.775
Conv. level |0.715 0.638 |0.823 0.775
Res. level |0.464 0.745 |0.768 0.752

Table 5. Classification performance for different resource types.

Decision Tree Logistic Regression

F1 Precision | Recall | F1 Precision | Recall
document | 0.891 | 0.859 0.926 |0.800|0.739 0.874
font 0.073]0.048 0.220 |0.104 | 0.063 0.360

image 0.919 | 0.944 0.897 |0.907 | 0.948 0.869
media 0.462 | 0.381 0.755 |0.174{0.142 0.315
nan 0.876 | 0.842 0.914 |0.8350.761 0.925
other 0.838|0.811 0.868 |0.7770.731 0.830
script 0.847|0.881 0.816 | 0.524|0.857 0.378
stylesheet | 0.302 | 0.221 0.525 |0.147/0.103 0.272

Resource Types. To further uncover what our classifiers are able to detect,
we present the classification results over various tracking object types in Table 5.
Again, we apply undersampling due to heavy imbalance of types. Our approach
performs equally well in distinguishing the different tracking types, except media
(aka. video or audio), stylesheet, and font. However, they account for only 13.5%
of the tracking and contribute little to the overall performance. The misclassifi-
cations are caused because the network flow of regular traffic is not sufficiently
distinctive from tracking. The point biserial correlation coeflicient is close to 0
for the three types for all network features.

6 Conclusion

In this work, we present preliminary experimental findings on identifying track-
ing resources based on TCP/IP features. Our classifier achieves a promising
precision and recall of up to 85% and 90%, and is particularly suitable for third-
party and image tracker detection. This shows that properties of tracking pro-
tocols are reflected on the network layer, which enables network-wide tracking
protection without breaking encryption.
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We conclude by discussing the limitations and outline future research direc-
tions. First, we assume a local attacker scenario with perfect information that
offers a broad selection of features. However, our results suggest that analyzing
the packet flow to a host is sufficient, as the performance improves marginally
by including resource features. Besides the size of incoming packets, temporal
features relative to the web page call provide useful information, but are usually
only known to the client. Second, we only consider basic flow statistics (count,
sum, mean, etc.) instead of conducting a time series analysis, though the latter
may result in better performance [3,27]. Third, our experiment is limited by the
low level of interaction on the homepage and focuses solely on web traffic. In
future work, we plan to extend our analysis to mobile and IoT traffic.
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