
Web Content Integrity: Tamper-Proof
Websites Beyond HTTPS

Sven Zemanek(B) , Sebastian Tauchert , Max Jens Ufer ,
and Lilli Bruckschen

Fraunhofer FKIE, Bonn, Germany
{sven.zemanek,sebastian.tauchert,max.jens.ufer,

lilli.bruckschen}@fkie.fraunhofer.de

Abstract. We propose Web Content Integrity, a framework that allows
a service provider to guarantee the integrity of their static website, even
in the face of a compromised web server. Such integrity assurances can
then be used to implement a secure end-to-end encryption application
built in the form of a website. Our framework encompasses developers,
the Domain Name System, and web browsers. To accomplish the integrity
guarantees, our framework makes use of an index of queryable URLs and
allowed redirects for the website, and publishes the cryptographic hash
value of the index in the DNS. Web browsers can then use the information
from the DNS to verify that the resources they retrieve from the web
server have not been tampered with. The required data structures can be
generated automatically, and the framework introduces an initial delay
of about 4 ms and a recurring delay for each request of about 2 ms for a
sample website.

Keywords: Web Security · Integrity · DNS

1 Introduction

Current web security measures such as HTTPS protect the integrity of data
transmission between web server and client. However, the web server serving
the website is not technically restricted from answering requests with arbitrary
response content. An attacker who compromised the web server can leverage this
to provide false or misleading information to website visitors. In addition, such
an attacker can possibly extract secret information from clients or distribute
malware. Some service providers have extra strong integrity requirements, like a
voting authority that publishes election results, or a distributor of software used
in classified contexts. Frequently, service providers do not host their websites
themselves, on their own infrastructure, but use the services of dedicated web
hosting providers. On the one hand, these hosting providers have all the options
of an attacker who compromised a web server, and on the other hand, they
could be breached themselves, giving an attacker control over a website’s content.
This means that even if one has trust in their legal framework to guarantee that
c© IFIP International Federation for Information Processing 2024
Published by Springer Nature Switzerland AG 2024
N. Meyer and A. Grocholewska-Czury�lo (Eds.): SEC 2023, IFIP AICT 679, pp. 1–14, 2024.
https://doi.org/10.1007/978-3-031-56326-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56326-3_1&domain=pdf
http://orcid.org/0000-0003-3188-7989
http://orcid.org/0009-0008-2304-7158
http://orcid.org/0000-0002-9136-6168
http://orcid.org/0000-0001-5328-2441
https://doi.org/10.1007/978-3-031-56326-3_1

2 S. Zemanek et al.

hosting providers behave properly, a technical solution to guarantee the integrity
of one’s website is still needed.

We propose Web Content Integrity (WCI), a framework that allows service
providers to cryptographically ensure that visitors of their website receive only
content that has not been tampered with. This is accomplished by first compiling
an index of URLs and corresponding cryptographic hashes of the content avail-
able under the respective URL as well as allowed redirects. The cryptographic
hash of this index is then published in the Domain Name System, next to the
entries for the domain name that connects the domain name with IP addresses.
WCI effectively eliminates the possibility for a web server to serve modified
or entirely different content for a domain name. This leaves malicious actors
only with the option to completely disable access to certain content. While our
framework is tailored towards static websites, we also sketch a migration path
for dynamic websites towards using WCI.

In summary, our contributions are as follows:

1. We propose a framework for service providers to make the integrity of their
website verifiable using cryptographic hashes, and for web browsers to obtain
those cryptographic hashes via DNS

2. We demonstrate that the creation of metadata required for the integrity ver-
ification can be automated, by implementing plugins for multiple static site
generators

3. We determine properties of websites that can reasonably apply the framework
4. We provide upper bounds for the delays introduced when WCI is implemented

by web browsers and deployed for a website

The remainder of this paper is structured as follows: After presenting related
work in Sect. 2, we define the WCI framework in Sect. 3. We discuss the applica-
bility of the framework, its compatibility with existing web infrastructure, pos-
sible attacks, and introduced overheads in Sect. 4, and summarize our findings
in Sect. 5.

2 Related Work

There are already existing concepts for making sure the content of remote
resources matches an expectation.

Subresource Integrity [11] allows resources from “script” or “link” tags that
are included in a website, i.e., JavaScript or CSS files, to be accompanied by
cryptographic hash values. The resource is checked against the hash values when
it is retrieved. If no hash matches, the script or style is not applied, and it is
treated as a network error where the resources could not be loaded. While this
prevents tampering with the contents of specific types of resources, it does not
cover all types of content (like images), and the HTML content which loads
the resources is itself not protected from tampering. Nevertheless, the principle
of checking loaded resources against cryptographic hashes before using them is

Web Content Integrity: Tamper-Proof Websites Beyond HTTPS 3

also used in WCI, and the widespread availability of Subresource Integrity in
web browsers demonstrates the technical feasibility.

Mylar [6] ensures the integrity of static web applications by cryptographically
signing the root HTML content and serving subresources from a second domain
in order to leverage the web browser’s same-origin policy. Included subresources
are accompanied by a cryptographic hash that is checked similarly to Subresource
Integrity. The key for verifying the signature of the root HTML page is stored in
the TLS certificate. This may be problematic since the TLS certificate is being
provided by the web server and can therefore be manipulated or replaced by
an attacker with access to a Certificate Authority that is trusted by the web
browser.

There are also approaches for integrity verification that have been developed
before the widespread deployment of HTTPS.

Already in 1998, Peacock and Powell [7] described an algorithm to calculate
a MD5 hash value over the contents of a website and selected subresources.
This hash value was to be included in a metadata set for the BIBLINK project.
The hash value could then be used to verify that the parts of a website covered
by the hash value did not change since the metadata set had been created. The
concept represents an early framework for expressing expectations about website
contents, albeit partly outside the web browsing context.

Bayardo and Sorensen [1] suggested the construction of a Merkle tree over the
contents of a website to provide integrity guarantees. The root hash value of that
Merkle tree has to be transferred to clients over a secure channel that cannot be
tampered with by web servers, for which the authors suggest among others to use
the DNS. Besides guaranteeing the integrity of web content, the framework can
also express that a specific resource does not exist on the website. The Merkle
tree is constructed in a way that does leak the number of resources available
on the website, but does not leak the actual URLs to those resources. Due to
the properties of that construction, the use of wildcards or regular expressions
in path specifiers is not possible. Also, since clients always need to know the
current root hash of the Merkle tree in order to validate the website contents,
updates of the website contents require immediate redistribution of the root hash
value over the secure channel. When a resource is requested, parts of the Merkle
tree below the root hash value are transferred in a special response header. This
requires modifications to the web servers’ behavior.

Sedaghat et al. [9] proposed to run additional software on the web server that
validates the web server’s responses against cryptographic hash values. This
is not a suitable mechanism to protect against tampering from an attacker-
controlled web server, since the integrity mechanism on the web server can be
tampered with as well.

Singh et al. [10] advocated for HTTPi, a protocol that extends HTTP with
integrity guarantees. Reis et al. [8] proposed what they called “Web Tripwires”:
JavaScript snippets that are included in websites, check client-side whether the
site has been modified in transit, and report back to the web server if a modifica-
tion is detected. Both approaches focus on the manipulation of content in transit

4 S. Zemanek et al.

between a web server and a web browser. They do not protect against a com-
promised web server and are also made obsolete by the widespread deployment
of HTTPS.

3 Web Content Integrity

We propose Web Content Integrity (WCI), a framework to cryptographically ver-
ify the integrity of content served by a web server. The framework involves three
parties: Developers who generate the content that is served by web servers, the
Domain Name System (DNS), and web browsers. Section 3.1 defines the frame-
work, Sect. 3.2 describes scaled-down variants of the framework with reduced
scope, Sect. 3.3 lays out considered alternatives for some design decisions, and
Sect. 3.4 details how we automated the creation of the necessary data structures.

3.1 Framework

Web Content Integrity ensures the integrity of websites in the following way:

1. When a website is created, a WCI index for the website contents is created
alongside it

2. The website and WCI index are deployed to a web server
3. A WCI DNS record is configured
4. Web browsers use the WCI DNS record to validate the WCI index, and use

the WCI index to validate the integrity of resources they retrieve from the
web server

The WCI index file represents a cryptographically verifiable expectation
about the responses that a web server gives to requests. A website for which
WCI is configured must provide a WCI index file under the path /wci.txt.

This WCI index file consists of lines of text and is structured as follows:

1. The file starts with a REDIRECTS section, mapping all paths for which the
web server may send a “Location” header to redirect to another URL to a
list of the allowed values of the “Location” header.

2. This is followed by a PATHS section, which maps all queryable paths the
website is supposed to provide to the SHA-256 hash value of the expected
response content for that path.

Figure 1 depicts a sample WCI index for a website with one redirect rule and
three URLs with hashes in the PATHS section.

Paths in the PATHS and the REDIRECTS section are treated as regular expres-
sions. The PATHS and the REDIRECTS section may be empty, with only their
respective section header being present. Location values in the REDIRECTS section
may use capture groups from the regular expression in their respective path. This
flexible definition of paths enables developers to define hashes for pages that are
available under many URLs, without having to enumerate all of those URLs.

Web Content Integrity: Tamper-Proof Websites Beyond HTTPS 5

#REDIRECTS

"/goto /(.+)":"https:// example.org/$1"
#PATHS

"/":858 d80f786e52cdece36d141de383 ... c9ce

"/about":309 d702383574787c1925ae13703 ...5 bb2

"/download.zip":15 cfd081fc216ea06d74b31ff343 ...7837

Fig. 1. Sample WCI index with a REDIRECTS section with one entry and a PATHS
section with three entries. Three dots indicate shortened lines for display purposes.

This is especially useful for covering Single-Page-Applications. It also makes it
possible to specify hashes for default pages, like a 404 error page that is displayed
for URLs that are not available on the website. This reduces false-positive alerts
on websites that deploy WCI.

The cryptographic hash value is calculated over the contents of the WCI
index file. Note that this is purely an operation on a string. No whitespace or
newlines are manipulated. This makes the construction robust against differences
in serialisation/deserialisation of the various clients working with the file.

A web browser must know that WCI is configured for a domain in order to
act accordingly. Also, the web server that serves the website under that domain
must not be able to interfere with the web browser learning this information.
Therefore, DNS is a suitable vehicle to convey this information and the crypto-
graphic public key. Similar to DANE [3], which uses DNS records to pin TLS
certificates, we announce the cryptographic hash value that can be used to verify
the WCI index via DNS records.

We define a new WCI DNS record to consist of three components:

1. specification version indicator
2. identifier of a cryptographic hash function (sha256)
3. cryptographic hash value (base64 encoded)

Figure 2 shows an annotated example of such a DNS record. When a DNS
server receives an A (IPv4) or AAAA (IPv6) query, and one or more WCI records
exists for the queried domain, all WCI records must be sent in the additional
records section of the response, alongside the answer to the original request. As
“the additional records section contains RRs which relate to the query, but are
not strictly answers for the question” [4], it is a suitable place to transmit this
information, and existing clients that follow RFC 1035 should not malfunction
due to the presence of data in the additional records section of a DNS response.

Web browsers query DNS information without having to interact with a web
server first.1 If a WCI DNS record is present, WCI is configured for the corre-
sponding domain, and the absence of corresponding features from the responses
of the web server must be considered a severe error, possibly indicating an attack.
1 Chromium and Firefox implement DNS clients that issue their own queries and pro-

cess the responses. They do not require DNS support from the underlying operating
system.

6 S. Zemanek et al.

Fig. 2. Structure of a WCI DNS record

For the WCI framework to function, web browsers must implement verifica-
tion and application of the WCI index. When a web browser queries a domain
for which WCI is configured, it must first fetch the WCI index under the path
/wci.txt and verify that the cryptographic hash value of the WCI index content
is announced by at least one of the WCI DNS records.

If this verification fails, this must be considered a severe error, possibly indi-
cating an attack.

When the verification of the WCI index was successful, for each queried path,
the response from the web server must be checked against the given hash values
in the PATHS section. If no entry for the queried path is present, or if there is
no such entry with a matching hash value, which means the queried URL is not
covered by the WCI index, this must again be considered a severe error, possibly
indicating an attack.

If the response from the web server contains a Location header, its value must
be checked against the values given for the path in the REDIRECTS section. If no
entry for the queried path is present or none of the allowed values match the
given value, this must once again be considered a severe error, possibly indicating
an attack.

To prevent false positives, e.g. during a site update, we additionally mandate
the following retry policy:

1. A validation mismatch of a resource triggers a reload of the WCI index. If
the reloaded WCI index is equal to the previous one, the error is confirmed
and access to the Website is blocked. Otherwise, the WCI index is validated
against the known WCI DNS records.

2. A validation mismatch of the WCI index triggers a reload of the WCI DNS
records. If the reloaded WCI DNS records are equal to the previous ones, the
error is confirmed and access to the Website is blocked. Otherwise, the WCI
index is validated against the new WCI DNS records.

For requests during a site update, there may be multiple rounds of reloading.
However, a malicious web server cannot maintain an endless chain of reloads
because an error is confirmed once the same WCI DNS records are observed
twice, which the web server cannot influence.

Website operators usually wish to update the contents of their website from
time to time. To update a website on a domain for which WCI is configured, the
following steps should be executed in order:

Web Content Integrity: Tamper-Proof Websites Beyond HTTPS 7

1. Create the new version of the website, create the WCI index and calculate
its hash value

2. Add a WCI DNS record with the new hash value
3. Set the TTL of the WCI DNS records with the old hash value to 0
4. Wait for the original TTL of the WCI DNS records with the old hash value
5. Deploy the new version of the website on the web server
6. Remove WCI DNS records with old hash values

This sequence of events ensures that the old hash value is no longer cached in
intermediate DNS resolvers when the new version of the website is deployed on
the web server. Clients that contact the website at that point will either already
have fetched the new WCI DNS record, or be prompted to do so by a validation
failure.

When the procedures outlined above are properly executed, our presented
framework guarantees that a web browser only processes resources that have
not been tampered with, and prevents access to the modified website in all
other cases. It does so in a failsafe way that takes into account the effects of
caching.

3.2 Scaled-Down Variants

The full WCI framework requires modifications to web browser and DNS server
behavior. For evaluation purposes and local applications, less invasive scaled-
down variants of the framework can be used. Instead of a native implementation,
the web browser logic can be implemented by an add-on, which either performs
its own DNS queries or uses hardcoded WCI DNS records. Such a browser add-on
can intercept responses and perform the WCI validation before either handing
off the unaltered response to the web browser or blocking access to the resource
when a validation error occurs.

Current DNS servers can return the necessary information in TXT DNS
records instead of dedicated WCI DNS records. Explicitly querying WCI data
in the DNS effectively doubles the DNS traffic. For a full-scale implementation
of WCI, the behavior as described in Sect. 3.1 is therefore preferable.

3.3 Considered Alternatives

The WCI index is represented in a custom line based text format. We considered
using commonly found structured data formats like JSON or YAML to store the
WCI index, as tools for parsing and representing data in those formats are usually
broadly available. These data formats provide a lot more features than required,
like nested properties. To keep the processing of the WCI index as simple as
possible, we chose to use the custom line based format instead.

It would be possible to alternatively specify a binary format and represen-
tation for the WCI index. However, the web ecosystem generally tends to use
plain text files. Since files can be compressed for transit, we expect the impact

8 S. Zemanek et al.

of the decision to choose a plain text format for the WCI index to be negligible
with regard to the actual transmission size.

Due to how it is constructed, the WCI index leaks all queryable paths of the
website. An alternative would have been to use hash values of the paths instead
of the path specifiers, like [1] have chosen to. This would however prevent the
use of regular expressions as path specifiers, since correctly guessing the used
regular expression from a given path is infeasible for nontrivial cases. We prefer
the flexibility that the use of regular expressions enables over the concealment
of all valid paths, and have therefore decided against this alternative.

The WCI framework requires the selection of a cryptographic hash algorithm.
Output size is the main point to consider besides general security considerations.
SHA-256 has an output size of 256 bits, high general availability, and is currently
considered cryptographically secure [2,5]. It is therefore a suitable choice com-
pared to alternatives with bigger output size, like SHA-512 or SHA3-512.

We considered distributing a cryptographic public key instead of the crypto-
graphic hash value in the WCI DNS record. The WCI DNS record would then
also include a version identification number that is incremented with each new
version of the website to prevent rollback attacks, and the WCI index would be
extended by a signatures section that contains signatures over the version iden-
tification number and the redirects and paths sections. While such an approach
could eliminate retries in some scenarios during website updates, it introduces
additional challenges with regard to cryptographic key management, key rota-
tion, key loss and compromise, requires the calculation of cryptographic signa-
tures over selected parts of a file as well as the application of public key cryp-
tography in the first place, and finally makes calculations considerably slower
compared to the caluclation of cryptographic hash values. We therefore opted
for the current framework specification without public key cryptography.

3.4 Automation

To ease adoption of a new concept, it is desirable to make its implementation as
easy as possible. Most of the steps required for configuring WCI for a domain
can be automated. We have developed tooling to generate the WCI index and
the content of the WCI DNS record. To demonstrate that this functionality can
be integrated into the build processes of static websites, we have created plug-ins
for the popular static site generators Gatsby, which is written in JavaScript, and
MkDocs, which is written in Python. Additionally, we have developed a generic
npm package that provides the same functionality when applied to a directory
structure of files, and can be integrated in arbitrary build pipelines. We use
the developed tools to generate valid WCI indexes and DNS record data in
our performance measurement experiments. Our implementations are available
under https://github.com/fkie-cad/Web-Content-Integrity.

https://github.com/fkie-cad/Web-Content-Integrity

Web Content Integrity: Tamper-Proof Websites Beyond HTTPS 9

4 Discussion

4.1 Applicability

Currently, we expect the majority of websites to employ server-side processing.
As WCI only works on static websites, such websites must be adapted before
configuring WCI for them. Websites can be functionally separated into a static
data component, a dynamic data component, and a static application component
that works on the static or dynamic data. The integrity of the static data and
the static application can be protected with WCI. Dynamic data can then be
handled via another domain or subdomain for which WCI is not configured.
Such data must be considered untrustworthy by the application component.

Investing the effort of separating dynamic data from the rest of the website in
order to be able to configure WCI can be especially worthwhile for websites which
provide authoritative information, like law texts or election results, or which
provide a web application like a text or graphics editor for sensitive contents.

4.2 Compatibility with Existing Web Infrastructure

We want WCI to require only sparse modifications to existing web infrastructure.
In this section we argue that many phenomena of the existing web infrastructure
are not impaired by WCI.

DNS Caching. Resource records in DNS responses carry a time-to-live (TTL)
field, indicating how long the contained information may be considered valid
until it should be fetched again [4]. After a website update (cf. Section 3.1),
clients will not yet accept the updated WCI index because its hash value has
changed. The validation failure for the WCI index triggers a forced update of
the hash value from the DNS, which resolves issue.

Websites Under Multiple Domains. Sometimes, websites are available
under multiple domains or subdomains. A common example would be a website
that is available under both example.org and www.example.org. As the WCI
index does not encode the domain name in any way, it is possible to configure
WCI for all of those (sub-) domains by setting the WCI DNS record, and serving
the exact same files for all of them.

Specification Updates. The version identifier at the start of the WCI DNS
record facilitates updates to the WCI framework. The involved entities can use
the value of this field to adapt their behavior or content generation, or to deter-
mine that they do not recognize the specific version. As it is only present in the
WCI DNS record, a compromised web server has no way to feign an older version
of the specification. This prevents downgrade attacks based on the version of the
WCI specification.

10 S. Zemanek et al.

4.3 Defense Against Attacks

In order to connect to a website, web browsers query the DNS for the IP
address(es) connected to a domain name and receive a response from a DNS
server. Then, a connection is opened to an IP address from the response. While
WCI does not protect against attackers who can control the content of responses
to DNS queries, we argue that WCI does also not enable such an attacker to
launch a new kind of attack. An attacker who controls the content of DNS
responses has the following options with regard to WCI:

1. Remove the WCI record from a response if WCI is configured for the domain
2. Modify the WCI record so it no longer matches the content on the genuine

web server
3. Add a WCI record for a domain for which WCI is not configured

The first case enables the web server to serve modified content. However,
an attacker who can control the content of DNS responses can also replace the
genuine IP address with one of a server under their own control, and serve
modified content from there.

The second and third case lead to a denial of service, as the web server’s
responses no longer match the expectation that has been given by the DNS
record. However, an attacker who can control the content of DNS responses can
also suppress the genuine IP address from the response, or respond with an
invalid IP address. This equally leads to a denial of service.

We conclude that control over the content of responses to DNS queries gives
an attacker the ability to sidestep WCI, but WCI does not enable novel attacks.
The following considerations are therefore all under the assumption that DNS
queries and responses are not tampered with.

WCI protects against arbitrary modifications of the contents of a website.
Even a compromise of the web server does not permit an attacker to circumvent
the protection that WCI provides. Another attack method to consider are roll-
back attacks, where a compromised web server serves a previous version of the
website. Such an attack can only be successful against clients which still have
the WCI DNS record with the corresponding hash value cached. This only works
for the duration of the TTL for the WCI DNS record. Since a rollback attack
can only be conducted with a previous version of the website, the success of such
an attack depends heavily on the goal of the attacker and whether that previous
version of the website contains vulnerabilities or required content that enables
the attack in the first place.

4.4 Overheads

We identify impacts on the network load caused by DNS requests and responses
and on the processing of requests by DNS servers. We also look at the perfor-
mance impact on the processing of responses by web browsers, and estimate a
margin of improvement by comparison with SRI. We argue that the overhead
needed for deployment of WCI in terms of development time and effort can be
alleviated by use of automated tools.

Web Content Integrity: Tamper-Proof Websites Beyond HTTPS 11

DNS Load. In order to be able to grant the security guarantees that WCI
provides, web browsers must query the WCI DNS record for each domain name
they resolve. A scaled-down implementation (cf. Sect. 3.2) would send out two
queries instead of one, effectively doubling the amount of DNS traffic caused
by web browsers, which is undesirable. The alternative is to mandate that each
response for an A or AAAA query include the WCI DNS record if one exists in
the additional records section. Similar lookup behavior is already happening for
A or AAAA queries for which a CNAME record is defined. This alternative does
not increase the number of DNS requests. In this scenario, DNS servers do have
to look up whether a WCI DNS record exists for each A and AAAA request
they receive and have an answer for. This likely increases processing times of A
and AAAA requests on dns servers, similar to how CNAME chains are resolved.
Compared to a scenario where most clients send two DNS requests that have to
be processed independently by the DNS servers, the version where WCI DNS
records are automatically included in A and AAAA responses seems favorable
both in terms of network usage and used processing power of DNS servers.

Performance Considerations and Comparison with SRI. Introducing
WCI has a negative impact on performance. We have set up a local test setup
that minimizes latency introduced by network communications and uses the
minimal variant (see Sect. 3.2) with a browser extension that uses a hardcoded
DNS WCI record. Using this test setup, we have measured two kinds of delay:
Initial delay, which occurs once for each domain that is being connected to, and
recurring delay, which occurs for every retrieval of a resource. Our performance
measurements show about 4 ms initial delay and about 2 ms recurring delay
for single resources, and about 3 ms initial delay and 13 ms recurring delay in
total for a test of a full sample website with multiple subresources. Initial delay
depends on the size of the WCI index, and recurring delay depends on the size
of the fetched content.

These delays are composed as shown in Fig. 3. Depicted are three browser
setups for testing to separate out the interesting kinds of delay (S1 is a baseline
setup with a dummy extension for comparison):

S2 The WCI index is already cached in the web browser extension, so no initial
delay occurs

S3 The WCI index is not cached in the web browser extension, so initial delay
occurs every time

S4 An outdated WCI index is cached initially in the web browser extension, so
the WCI index has to be reloaded once when a request is processed

The “WCI setup” step is where most of the initial delay occurs (∼ 4 ms).
Fetching and verifying the response, on the other hand, require around 4 ms
and 2 ms respectively. Note that the concrete load time only refers to internal
network traffic. These times are expected to increase in an actual deployment.

A special case is when a retry occurs. In this case, the time required to fetch
and validate the WCI file is shifted to the “Verify content” step. In addition,

12 S. Zemanek et al.

two hash validations are performed. A failing one, which triggers the retry, and
a successful one after updating the cached WCI file. Thus, the time required in
this case is about the same as if the WCI file had to be loaded directly from the
server.

Fig. 3. Durations for sub-steps during the WCI validation.

We have conducted similar experiments with Subresource Integrity. The per-
formance results from our tests with SRI are shown in Fig. 4.

SRI and WCI appear similar in terms of load time for files below 100 KiB.
Once file sizes surpass this limit however, the native implementation of SRI
outclasses our sample WCI implementation, taking only one third of the time
of our WCI implementation at a file size of 10,000 KiB. The results spark hope
that an efficient implementation of WCI can further reduce the processing time
of larger resources by a factor of 2 to 3 or more. This transferability of results is
justified by the similar nature of the processes in SRI and WCI.

Automation. The adoption of a new technology like WCI by developers can be
facilitated by appropriate tooling support. We demonstrate that the creation of
the WCI index file can effectively be fully automated by implementing plug-ins
for MkDocs and Gatsby, two popular static site generators, as well as a generic
tool that can be applied to arbitrary collections of files. The availability of easy-
to-use and easy-to-integrate tools for WCI index creation keeps overheads for
adopting this technology for existing static websites low.

Web Content Integrity: Tamper-Proof Websites Beyond HTTPS 13

Fig. 4. Comparison of average processing times for a minimal HTML page with inline
(WCI) or linked (SRI) JavaScript of different sizes

5 Conclusion

Web Content Integrity focuses on an advanced understanding of the relationship
between service providers and website visitors that goes beyond what HTTPS
covers. It provides integrity guarantees for static websites that are resistant to
tampering by a compromised web server. WCI is also resilient with regard to
common maintenance tasks. We have demonstrated that the creation of the
data structures required for WCI can be automated, hence facilitating adoption.
With our sample implementation of the web browser logic in the form of a web
browser extension, we have determined that the overhead in terms of additional
delay introduced by WCI is expected to be around 9 ms initially, and about
2 ms for every resource. Initial delay increases with the size of the WCI index,
and recurring delay increases with the size of the fetched content. Experiments
with Subresource Integrity make it seem probable that the performance of our
extension for bigger files can significantly be undercut by a native implemen-
tation. The evaluation of processing delays introduced at DNS servers by the
deployment of WCI is considered future work, as is the development of methods
to efficiently handle websites with many distinct queryable URLs.

References

1. Bayardo, R., Sorensen, J.: Merkle tree authentication of http responses, pp. 1182–
1183 (2005). https://doi.org/10.1145/1062745.1062929

2. Bundesamt für Sicherheit in der Informationstechnik: Kryptographische Verfahren:
Empfehlungen und Schlüssellängen (BSI TR-02102-1), Version: 2023-01 (2023)

https://doi.org/10.1145/1062745.1062929

14 S. Zemanek et al.

3. Hoffman, P.E., Schlyter, J.: The DNS-based authentication of named entities
(DANE) transport layer security (TLS) protocol: TLSA. RFC 6698 (2012).https://
doi.org/10.17487/RFC6698, https://www.rfc-editor.org/info/rfc6698

4. Mockapetris, P.V.: Domain names - implementation and specification. RFC 1035
(1987). https://doi.org/10.17487/RFC1035, https://www.rfc-editor.org/info/rfc1
035

5. National Institute of Standards and Technology: Fips pub 180-4 – secure hash
standard (shs) (2015). https://doi.org/10.6028/NIST.FIPS.180-4

6. Popa, R.A., Stark, E., Valdez, S., Helfer, J., Zeldovich, N., Balakrishnan, H.: Build-
ing web applications on top of encrypted data using mylar. In: 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14) (2014)

7. Powell, A., Peacock, I.: Metadata: Biblink.checksum. Ariadne (17) (1998). http://
www.ariadne.ac.uk/issue/17/biblink/

8. Reis, C., Gribble, S.D., Kohno, T., Weaver, N.C.: Detecting in-flight page changes
with web tripwires. In: NSDI, vol. 8 (2008)

9. Sedaghat, S., Pieprzyk, J., Vossough, E.: On-the-fly web content integrity check
boosts users’ confidence. Commun. ACM 45(11), 33–37 (2002)

10. Singh, K., Wang, H.J., Moshchuk, A., Jackson, C., Lee, W.: Practical end-to-end
web content integrity. In: Proceedings of the 21st International Conference on
World Wide Web (2012)

11. Weinberger, J., Braun, F., Akhawe, D., Marier, F.: Subresource integrity. W3C
recommendation, W3C (2016)

https://doi.org/10.17487/RFC6698
https://doi.org/10.17487/RFC6698
https://www.rfc-editor.org/info/rfc6698
https://doi.org/10.17487/RFC1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://doi.org/10.6028/NIST.FIPS.180-4
http://www.ariadne.ac.uk/issue/17/biblink/
http://www.ariadne.ac.uk/issue/17/biblink/

	Web Content Integrity: Tamper-Proof Websites Beyond HTTPS
	1 Introduction
	2 Related Work
	3 Web Content Integrity
	3.1 Framework
	3.2 Scaled-Down Variants
	3.3 Considered Alternatives
	3.4 Automation

	4 Discussion
	4.1 Applicability
	4.2 Compatibility with Existing Web Infrastructure
	4.3 Defense Against Attacks
	4.4 Overheads

	5 Conclusion
	References

