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Abstract. Cellular automata are synchronous discrete dynamical sys-
tems used to describe complex dynamic behaviors. The dynamic is based
on local interactions between the components, these are defined by a
finite graph with an initial node coloring with two colors. In each step,
all nodes change their current color synchronously to the least/most fre-
quent color in their neighborhood and in case of a tie, keep their current
color. After a finite number of rounds these systems either reach a fixed
point or enter a 2-cycle. The problem of counting the number of fixed
points for cellular automata is #P-complete. In this paper we consider
cellular automata defined by a tree. We propose an algorithm with run-
time O(nΔ) to count the number of fixed points, here Δ is the maximal
degree of the tree. We also prove upper and lower bounds for the num-
ber of fixed points. Furthermore, we obtain corresponding results for pure
cycles, i.e., instances where each node changes its color in every round.
We provide examples demonstrating that the bounds are sharp.
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1 Introduction

A widely used abstraction of classical distributed systems such as multi-agent
systems are graph automata. They evolve over time according to some simple
local behaviors of its components. They belong to the class of synchronous
discrete-time dynamical systems. A common model is as follows: Let G be a
graph, where each node is initially either black or white. In discrete-time rounds,
all nodes simultaneously update their color based on a predefined local rule.
Locality means that the color associated with a node in round t is determined
by the colors of the neighboring nodes in round t − 1. As a local rule we con-
sider the minority and the majority rule that arises in various applications and
as such have received wide attention in recent years, in particular within the
context of information spreading. Such systems are also known as graph cellular
automata. It is well-known [9,19] that they always converge to configurations
that correspond to cycles either of length 1 – a.k.a. fixed points – or of length 2,
i.e., such systems eventually reach a stable configuration or toggle between two
configurations.
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One branch of research so far uses the assumption that the initial configura-
tion is random. Questions of interest are on the expected stabilization time of
this process [25] and the dominance problem [18].

In this paper we focus on counting problems related to cellular automata, in
particular counting the number of fixed points and pure 2-cycles, i.e., instances
where each node changes its color in every round. This research is motivated by
applications of so-called Boolean networks (BN) [11], i.e., discrete-time dynam-
ical systems, where each node (e.g., gene) takes either 0 (passive) or 1 (active)
and the states of nodes change synchronously according to regulation rules given
as Boolean functions. Since the problem of counting the fixed points of a BN
is in general #P-complete [3,8,21], it is interesting to find graph classes, for
which the number of fixed points can be efficiently determined. These counting
problems have attracted a lot of research in recent years [4,6,13].

We consider tree cellular automata, i.e., the defining graphs are finite trees.
The results are based on a characterization of fixed points and pure 2-cycles for
tree cellular automata [22]. The authors of [22] describe algorithms to enumerate
all fixed points and all pure cycles. Since the number of fixed points and pure 2-
cycles can grow exponentially with the tree size, these algorithms are unsuitable
to efficiently compute these numbers. We prove the following theorem.

Theorem 1. The number of fixed points and the number of pure 2-cycles of a
tree with n nodes and maximal node degree Δ can be computed in time O(nΔ).

We also prove the following theorem with upper and lower bounds for the
number of fixed points of a tree improving results of [22] (parameter r is explained
in Sect. 4.3). In the following, the ith Fibonacci number is denoted by Fi.

Theorem 2. A tree with n nodes, diameter D and maximal node degree Δ has
at least max

(
2r/2+1, 2FD

)
and at most min

(
2n−Δ, 2Fn−�Δ/2�

)
fixed points.

For the number of pure cycles we prove the following result, which consider-
ably improves the bound of [22].

Theorem 3. A tree with maximal degree Δ has at most min
(
2n−Δ, 2F�n/2�

)

pure 2-cycles.

We provide examples demonstrating ranges where these bounds are sharp.
All results hold for the minority and the majority rule. We also formulate several
conjectures about counting problems and propose future research directions. A
long version of the paper including all proofs and more results is available [23].

2 State of the Art

The analysis of fixed points of minority/majority rule cellular automata received
limited attention so far. Královič determined the number of fixed points of a
complete binary tree for the majority process [12]. For the majority rule he
showed that this number asymptotically tends to 4n(2α)n, where n is the number
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of nodes and α ≈ 0.7685. Agur et al. did the same for ring topologies [2], the
number of fixed point is in the order of Φn, where Φ = (1+

√
5)/2. In both cases

the number of fixed points is an exponentially small fraction of all configurations.
A related concept are Boolean networks (BN). They have been extensively

used as mathematical models of genetic regulatory networks. The number of
fixed points of a BN is a key feature of its dynamical behavior. A gene is mod-
eled by binary values, indicating two transcriptional states, active or inactive.
Each network node operates by the same nonlinear majority rule, i.e., majority
processes are a particular type of BN [24]. The number of fixed points is an
important feature of the dynamical behavior of a BN [5]. It is a measure for
the general memory storage capacity. A high number implies that a system can
store a large amount of information, or, in biological terms, has a large phe-
notypic repertoire [1]. However, the problem of counting the fixed points of a
BN is in general #P-complete [3]. There are only a few theoretical results to
efficiently determine this set [10]. Aracena determined the maximum number of
fixed points regulatory Boolean networks, a particular class of BN [5].

Recently, Nakar and Ron studied the dynamics of a class of synchronous
one-dimensional cellular automata for the majority rule [16]. They proved that
fixed points and 2-cycles have a particular spatially periodic structure and give a
characterization of this structure. Concepts related to fixed points of the minor-
ity/majority process are global defensive 0-alliance or monopolies [14].

Most research on discrete-time dynamical systems on graphs is focused on
bounding the stabilization time. Good overviews for the majority (resp. minor-
ity) process can be found in [25] (resp. [17]). Rouquier et al. studied the minority
process in the asynchronous model, i.e., not all nodes update their color concur-
rently [20]. They showed that the stabilization time strongly depends on the
topology and observe that the case of trees is non-trivial.

2.1 Notation

Let T = (V,E) be a finite, undirected tree with n = |V |. The maximum degree
of T is denoted by Δ(T ), the diameter by D(T ). The parameter T is omitted in
case no ambiguity arises. A star graph is a tree with n−1 leaves. A l-generalized
star graph is obtained from a star graph by inserting l − 1 nodes into each edge,
i.e., n = lΔ+1. For F ⊆ E and v ∈ V denote by degF (v) the number of edges in
F incident to v. Note that degF (v) ≤ deg(v). For i ≥ 2 denote by Ei(T ) the set
of edges of T , where each end node has degree at least i. For v ∈ V denote the
set of v’s neighbors by N(v). For e = (v1, v2) ∈ E2(T ) let Ti be the subtree of T
consisting of e and the connected component of T \ e that contains vi. We call
Ti the constituents of T for e. T1 and T2 together have n + 2 nodes. We denote
the ith Fibonacci number by Fi, i.e., F0 = 0,F1 = 1, and Fi = Fi−1 + Fi−2.

3 Synchronous Discrete-Time Dynamical Systems

Let G = (V,E) be a finite, undirected graph. A coloring c assigns to each node
of G a value in {0, 1} with no further constraints on c. Denote by C(G) the set



244 V. Turau

of all colorings of G, i.e., |C(G)| = 2|V |. A transition process M is a mapping
M : C(G) −→ C(G). Given an initial coloring c, a transition process produces
a sequence of colorings c,M(c),M(M(c)), . . .. We consider two transition pro-
cesses: Minority and Majority and denote the corresponding mappings by MIN
and MAJ . They are local mappings in the sense that the new color of a node
is based on the current colors of its neighbors. To determine M(c) the local
mapping is executed in every round concurrently by all nodes. In the minority
(resp. majority) process each node adopts the minority (resp. majority) color
among all neighbors. In case of a tie the color remains unchanged (see Fig. 1).
Formally, the minority process is defined for a node v as follows:

MIN (c)(v) =

{
c(v) if |N c(v)(v)| ≤ |N1−c(v)(v)|
1 − c(v) if |N c(v)(v)| > |N1−c(v)(v)|

N i(v) denotes the set of v’s neighbors with color i (i = 0, 1). The definition of
MAJ is similar, only the binary operators ≤ and > are reversed. Some results
hold for both the minority and the majority process. To simplify notation we
use the symbol M as a placeholder for MIN and MAJ .

Fig. 1. For the coloring on the left MIN reaches after 5 rounds a fixed point. MAJ
reaches for the same initial coloring after one round a monochromatic coloring.

Let c ∈ C(G). If M(c) = c then c is called a fixed point. It is called a 2-cycle
if M(c) 	= c and M(M(c)) = c. A 2-cycle is called pure if M(c)(v) 	= c(v) for
each node v of G, see Fig. 2. Denote by FM(G) (resp. PM(G)) the set of all
c ∈ C(G) that constitute a fixed point (resp. a pure 2-cycle) for M.

Fig. 2. Examples for the MIN rule. The coloring of the first (resp. second) tree is a
fixed point (resp. a pure 2-cycle). The right two colorings are a non-pure 2-cycle.

Let T be a tree. The following results are based on a characterization of
FM(T ) and PM(T ) by means of subsets of E(T ) [22]. Let Efix(T ) be the set of
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all F-legal subsets of E(T ), where F ⊆ E(T ) is F-legal if 2degF (v) ≤ deg(v) for
each v ∈ V . Each F-legal set is contained in E2(T ), hence |Efix(T )| ≤ 2|E2(T )|.
Theorem 1 of [22] proves that |FM(T )| = 2|Efix(T )|, see Fig. 3. Let Epure(T ) be
the set of all P-legal subsets of E(T ), where F ⊆ E(T ) is P-legal if 2degF (v) <
deg(v) for each v ∈ V . Thus, P-legal subsets are contained in E3(T ) and therefore
|Epure(T )| ≤ 2|E3(T )|. Theorem 4 of [22] proves that |PM(T )| = 2|Epure(T )|. For
the tree in Fig. 3 we have Epure(T ) = {∅}, thus |PM(T )| = 2. The pure colorings
are the two monochromatic colorings. Given these results it is unnecessary to
treat MIN and MAJ separately. To determine the number of fixed points
(resp. pure 2-cycles) it suffices to compute |Efix(T )| (resp. |Epure(T )|).

Fig. 3. A tree T with Efix(T ) = {∅, {(1, 3)}} and the corresponding fixed points for
MIN , the other two can be obtained by inverting colors.

4 Fixed Points

In this section we propose an efficient algorithm to determine |FM(T )|, we pro-
vide upper and lower bounds for |FM(T )| in terms of n, Δ, and D, and discuss
the quality of these bounds. As stated above, it suffices to consider Efix(T ) and
there is no need to distinguish the minority and the majority model. The follow-
ing lemma is crucial for our results. It allows to recursively compute |Efix(T )|.
For a node v define Efix(T, v) = {F ∈ Efix(T ) | 2(degF (v) + 1) ≤ deg(v)}.

Lemma 1. Let T be a tree, e = (v1, v2) ∈ E2(T ), and Ti the constituents of T
for e. Then |Efix(T )| = |Efix(T1, v1)||Efix(T2, v2)| + |Efix(T1)||Efix(T2)|.
Proof. Let A = {F ∈ Efix(T ) | e ∈ F} and B = {F ∈ Efix(T ) | e 	∈ F}. Then
A∩B = ∅ and A∪B = Efix(T ), i.e., |Efix(T )| = |A|+ |B|. If F ∈ A then F \e∩
Ti ∈ Efix(Ti, vi) since T1 ∩ T2 = {e}. Hence, |A| ≤ |Efix(T1, v1)||Efix(T2, v2)|.
If F ∈ B then F ∩ Ti ∈ Efix(Ti), i.e., |B| ≤ |Efix(T1)||Efix(T2)|. This yields,

|Efix(T )| ≤ |Efix(T1, v1)||Efix(T2, v2)| + |Efix(T1)||Efix(T2)|.
If Fi ∈ Efix(Ti, vi), then F1 ∪ F2 ∪ {e} ∈ A. If Fi ∈ Efix(Ti), then F1 ∪ F2 ∈ B.
Hence, |Efix(T1, v1)||Efix(T2, v2)| + |Efix(T1)||Efix(T2)| ≤ |Efix(T )|. �

If degT (vi) ≡ 0(2), then Efix(Ti, vi) = Efix(Ti\{vi}). This yields a corollary.

Corollary 1. Let Pn be a path with n nodes, then |Efix(Pn)| = Fn−1.
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4.1 Computing |FM(T )|
Algorithm 1 of [22] enumerates all elements of Efix(T ) for a tree T . Since
|Efix(T )| can grow exponentially with the size of T , it is unsuitable to efficiently
determine |Efix(T )|. In this section we propose an efficient novel algorithm to
compute |Efix(T )| in time O(nΔ) based on Lemma 1. The algorithm operates
in several steps. Let us define the input for the algorithm. First, each node vi

is annotated with bi = �deg(vi)/2�. Let TR be the tree obtained form T by
removing all leaves of T ; denote by t the number of nodes of TR. Select a node
of TR as a root and assign numbers 1, . . . , t to nodes in TR using a postorder
depth-first search. Direct all edges towards higher numbers, i.e., the numbers of
all predecessors of a node i are smaller than i, see Fig. 4 for an example. The
annotated rooted tree TR is the input to Algorithm 1.

Fig. 4. From left to right: Tree T , annotation of T , TR, a postorder numbering of TR.

Algorithm 1 recursively operates on two types of subtrees of TR which are
defined next. For k = 1, . . . , t − 1 denote by Tk the subtree of TR consisting of
k’s parent together with all nodes connected to k’s parent by paths using only
nodes with numbers at most k (see Fig. 5). Note that TR = Tt−1. For k = 1, . . . , t
denote by Sk the subtree of TR consisting of all nodes from which node k can be
reached. In particular St = TR, and if k is a leaf then Sk consist of node k only.

Fig. 5. The subtrees T1, . . . T7 of the tree from Fig. 4. Note that S4 = T3 and S3 = {3}.

For a subtree S of TR with largest node s and b ≥ 0 denote by w(S, b) the
number of subsets F of E(S) with degF (i) ≤ bi for all nodes i of S (recall that
bi is defined above) and degF (s) ≤ b. Let w(S,−1) = 0. Clearly if b ≥ bs then
w(S, b) = w(S, bs). If S consists of a single node s then s is a leaf and E(S) = ∅;
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therefore w(S, b) = 1 for all b ≥ 0. Note that w(S, bs − 1) = |Efix(S, s)|. The
following observation shows the relation between |Efix(T )| and w(Tk, b).

Lemma 2. |Efix(T )| = w(Tt−1, bt) for any tree T .

The next lemma shows how to recursively compute w(Tk, b) using Lemma 1.

Lemma 3. Let i be an inner node of TR, k a child of i, and b ≥ 0. Let δb,0 = 0
if b = 0 and 1 otherwise. If k is the smallest child of i, then

w(Tk, b) = w(Sk, bk) + w(Sk, bk − 1)δb,0.

Otherwise let j 	= k be the largest child of i such that j < k. Then

w(Tk, b) = w(Tj , b)w(Sk, bk) + w(Tj , b − 1)w(Sk, bk − 1).

Proof. The proof for both cases is by induction on k. Consider the first case. If k
is a leaf then w(Sk, b) = 1 for all b ≥ 0 and w(Sk,−1) = 0. This is the base case.
Assume k is not a leaf. Tk consists of node i, Sk and the edge e = (i, k). If b = 0
then δb,0 = 0 and w(Tk, 0) = w(Sk, bk) by definition. Let b > 0, i.e., δb,0 = 1. Let
fi (resp. fo) be the number of F ⊆ E(Tk) with degF (l) ≤ bl for all nodes l of
Tk, degF (i) ≤ b and e ∈ F (resp. e 	∈ F ). Let F ⊆ E(Tk). If e ∈ F let F̂ = F \ e.
Then F̂ ∈ E(Sk), degF̂ (l) ≤ bl for all nodes l 	= k in Sk and degF̂ (k) ≤ bk − 1,
hence fi ≤ w(Sk, bk −1). If e 	∈ F then F ∈ E(Sk) and degF (l) ≤ bl for all nodes
l in Sk, hence fo ≤ w(Sk, bk). Thus, w(Tk, b) ≤ w(Sk, bk)+w(Sk, bk −1). On the
other hand, let F ∈ E(Sk) such that degF (l) ≤ bl for all nodes l 	= k in Sk. If
degF (k) ≤ bk − 1 then F ∪ {e} contributes to w(Tk, b) and if degF (k) ≤ bk then
F contributes to w(Tk, b). Thus w(Tk, b) ≥ w(Sk, bk) + w(Sk, bk − 1).

Consider the second statement. The case that k is a leaf follows immediately
from Lemma 1. Assume that k is not a leaf. We apply Lemma 1 to Tk and
edge (i, k). Then Tj ∪ (i, k) and Sk ∪ (i, k) are the constituents of Tk. Note that
Efix(Sk ∪ (i, k), i) = w(Sk, bk − 1) and Efix(Tj ∪ (i, k), k) = w(Tj , b − 1). �

Algorithm 1 makes use of Lemma 2 and 3 to determine w(Tt−1, bt), which is
equal to |Efix(T )|. Let B = max{bi | i = 1, . . . , t}, clearly B ≤ Δ/2. Algorithm 1
uses an array W of size [0, t − 1] × [0, B] to store the values of w(·, ·). The first
index is used to identify the tree Tk. To simplify notation this index can also
have the value 0. To store the values of w(Sk, b) in the same array we define for
each inner node k an index l(k) as follows l(k) = k − 1 if k is not a leaf and
l(k) = 0 otherwise. Then clearly Sk = Tl(k) if k is not a leaf. More importantly,
the value of w(Sk, b) is stored in W (l(k), b) for all k and b.

The algorithm computes the values of W for increasing values of k < t
beginning with k = 0. If W (j, b) is known for all j < k and all b ∈ [0, B] we
can compute W (k, b) for all values of b in [0, B] using Lemma 3. Finally we have
w(t−1, bt) which is equal to |Efix(T )|. Theorem 1 follows from Lemma 2 and 3.
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Algorithm 1: Computation of W (k, b) for all k and b using TR.
for b = 0, . . . , B do

W (0, b) = 1

for k = 1, . . . , t − 1 do
if k is the smallest child of its parent in TR then

W (k, 0) := W (l(k), bk)
for b = 1, . . . , B do

W (k, b) := W (l(k), bk) + W (l(k), bk − 1)

else
let j be the largest sibling of k with j < k in TR

W (k, 0) := W (j, 0)W (l(k), bk)
for b = 1, . . . , B do

W (k, b) := W (j, b)W (l(k), bk) + W (j, b − 1)W (l(k), bk − 1)

4.2 Upper Bounds for |FM(T )|
The definition of Efix(T ) immediately leads to a first upper bound for |FM(T )|.
Lemma 4. |Efix(T )| ≤ 2n−Δ−1.

Proof. Theorem 1 of [22] implies |Efix(T )| ≤ 2|E2(T )|. Note that |E2(T )| =
n − 1 − l, where l is the number of leaves of T . It is well known that l =
2+

∑Δ
j=3(j −2)Dj , where Dj denotes the number of nodes with degree j. Thus,

|E2(T )| = n − 3 −
Δ∑

j=3

(j − 2)Dj ≤ n − 3 − (Δ − 2) = n − Δ − 1.

�
For Δ < n − �n/3� the bound of Lemma 4 is not attained. Consider the case
n = 8,Δ = 4. The tree from Fig. 6 with x = 1 has 14 fixed points, this is the
maximal attainable value.

Fig. 6. If x ≥ Δ/2 then |FM(T )| = 2n−Δ.

For Δ < n/2 we will prove a much better bound than that of Lemma 4. For
this we need the following technical result.
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Lemma 5. Let T = (V,E) be a tree with a single node v that has degree larger
than 2. Let D = [dist(w, v) | w ∈ V,w 	= v] be the multi-set with the distances of
all nodes to v. Then

|Efix(T )| =
∑

S⊂D,|S|≤Δ/2

∏

s∈S

Fs−1

∏

s∈D\S

Fs.

Proof. Let P be the set of all Δ paths from v to a leaf of T . Let F ∈ Efix(T ).
Then PF = {P ∈ P | F ∩ P 	∈ Efix(P )}. Let P ∈ PF and vP the node of P

adjacent to v. Then (v, vP ) ∈ F . This yields |PF | ≤ Δ/2. For P ∈ P let P̂ be an
extension of P by an edge (v, x) with a new node x. Then F ∩ P ∈ Efix(P̂ ) for
each P ∈ PF . By Cor. 1 there are F|P |−2 possibilities for F ∩P . Let P̄F = P\PF .
For P ∈ P̄F we have (v, vP ) 	∈ F . Hence, F ∩ P ∈ Efix(P ). By Cor. 1 there are
F|P |−1 possibilities for F ∩ P . Also |P̄F | = Δ − |PF |.

Let P1 ⊂ P with |P1| ≤ Δ/2 and F̂P ∈ Efix(P̂ ) for all P ∈ P1 and FP ∈
Efix(P ) for all P ∈ P \ P1. Then the union of all F̂P and all FP is a member of
Efix(T ). This yields the result. �
Corollary 2. Let T be a l-generalized star graph. Then

|Efix(T )| =
�Δ/2�∑

i=0

(
Δ

i

)
F

i
l−1F

Δ−i
l .

The corollary yields that a star graph (i.e. l = 1) has two fixed points. For
l = 2 we have the following result.

Lemma 6. Let T be a 2-generalized star graph. Then |Efix(T )| ≤ Fn−�Δ/2�.

Proof. We use Corollary 2. If Δ ≡ 0(2) then

|Efix(T )| =
�Δ/2�∑

i=0

(
Δ

i

)
=

1
2

(
2Δ +

(
Δ

Δ/2

))
≤ F3Δ/2+1 = Fn−Δ/2,

otherwise |Efix(T )| = 2Δ−1 ≤ Fn−�Δ/2�. �
In Theorem 2 we prove that the upper bound of Lemma 6 holds for all trees.

First, we prove two technical results.

Lemma 7. Let T be a tree and v a leaf of T with neighbor w. Let nl (resp. ni)
be the number of neighbors of w that are leaves (resp. inner nodes). If nl > ni

then Efix(T ) = Efix(T \ v).

Proof. Clearly, Efix(T \ v) ⊆ Efix(T ). Let F ∈ Efix(T ). Then degF (w) ≤ ni.
Thus, 2degF (w) ≤ 2ni ≤ nl − 1 + ni = degT (w) − 1. Hence, F ∈ Efix(T \ v),
i.e., Efix(T ) ⊆ Efix(T \ v). �
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Lemma 8. Let T be a tree and v, w, u a path with deg(v) = 1 and deg(w) = 2.
Then |Efix(T )| ≤ |Efix(Tv)| + |Efix(Tw)| with Tv = T \ v and Tw = Tv \ w.

Proof. Let F ∈ Efix(T ) and e = (u,w). If e ∈ F then F \e ∈ Efix(Tw) otherwise
F ∈ Efix(Tv). This proves the lemma. �
Lemma 9. |Efix(T )| ≤ Fn−�Δ/2� for a tree T with n nodes.

Proof. The proof is by induction on n. If Δ = 2 the result holds by By Cor. 1.
If T is a star graph then |FM(T )| = 2, again the result is true. Let Δ > 2
and T not a star graph. Thus, n > 4. There exists an edge (v, w) of T where
v is a leaf and all neighbors of w but one are leaves. If deg(w) > 2 then
there exists a neighbor u 	= v of w that is a leaf. Let Tu = T \ u. Then
|Efix(T )| = |Efix(Tu)| by Lemma 7. Since Δ(Tu) ≥ Δ(T ) − 1 we have by
induction |Efix(T )| = |Efix(Tu)| ≤ Fn−1−�Δ(Tu)/2� ≤ Fn−�Δ(T )/2�. Hence, we
can assume that deg(w) = 2.

Let u 	= v be the second neighbor of w. Denote by Tv (resp. Tw) the tree T \v
(resp. T \ {v, w}). By Lemma 8 we have |Efix(T )| ≤ |Efix(Tv)| + |Efix(Tw)|. If
there exists a node different from u with degree Δ then |Efix(T )| ≤ Fn−1−�Δ/2�+
Fn−2−�Δ/2� = Fn−�Δ/2� by induction. Hence we can assume that u is the only
node with degree Δ. Repeating the above argument shows that T is 2-generalized
star graph with center node u. Hence, |Efix(T )| ≤ Fn−�Δ/2� by Lemma 6. �

Lemmas 4 and 9 prove the upper bound of Theorem 2. The bound of Lemma 9
is sharp for paths. Note that for a fixed value of n the monotone functions
Fn−�Δ/2� and 2n−Δ intersect in Δ ∈ (�n/2�, �n/2� + 1).

4.3 Lower Bounds for |FM(T )|
A trivial lower bound for |FM(T )| for all trees is 1 + |Efix(T )|. It is sharp for
star graphs. For a better bound other graph parameters besides n are required.

Lemma 10. Let T be a tree and TL the tree obtained from T by removing all
leaves. Then |Efix(T )| ≥ 2r/2, where r is the number of inner nodes of TL.

Proof. By induction we prove that TL has a matching M with r/2 edges. Then
M ⊆ Efix(T ) and each subset of M is F-legal. �

Applying Lemma 10 to a 2-generalized star graph yields a lower bound of 1,
which is far from the real value. Another lower bound for |Efix(T )| uses D, the
diameter of T . Any tree T with diameter D contains a path of length D+1. Thus,
|Efix(T )| ≥ FD by Cor. 1. This completes the proof of Theorem 2. We show that
there are trees for which |Efix(T )| is much larger than FD. Let n,D, h ∈ N with
n − 2 > D ≥ 2(n − 1)/3 and n − D − 1 ≤ h ≤ 2D − n + 1. Let Tn,D,h be a
tree with n nodes that consists of a path v0, . . . , vD and another path of length
n − D − 2 attached to vh. Clearly, Tn,D,h has diameter D. Also deg(vh) = 3, all
other nodes have degree 1 or 2. Figure 7 shows Tn,D,h.
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Fig. 7. A tree Tn,D,h.

Lemma 11. |Efix(Tn,D,h)| = FDFn−D−1 + FhFD−hFn−D−2.

Proof. Let e = (vh, vD+1) and Tvh
, TvD+1 the constituents of T for e. Then

|Efix(T )| = |Efix(Tvh
, vh)||Efix(TvD+1 , vD+1)| + |Efix(Tvh

)||Efix(TvD+1)| by
Lemma 1. Clearly, |Efix(Tvh

, vh)| = FhFD−h and |Efix(TvD+1 , vD+1)| = Fn−D−2

by Cor. 1. �
Lemma 17 of [23] determines the value h0 for which |Efix(Tn,D,h)| is maximal

and show that |Efix(Tn,D,h0)| = FDFn−D−1 + Fh0FD−h0Fn−D−2. Let Tn,D be
a tree that maximizes the number of fixed points among all trees with n nodes
and diameter D. An interesting question is about the structure of Tn,D. By an
exhaustive search among all trees with n ≤ 34 there was just a single case where
this was not a star-like tree (all nodes but one have degree 1 or 2) that maximizes
the number of fixed points (see [23]). We have the following conjecture.

Conjecture 1. Except for a finite number of cases for each combination of n and
D there exists a star-like graph that maximizes the number of fixed points.

4.4 Special Cases

Lemma 12. Let T be a tree with n ≥ 4 and Δ ≥ n − �n/3� then |Efix(T )| ≤
2n−Δ−1. This bound is sharp.

Proof. First we construct a tree Tm realizing this bound. Let Tm be a tree with
a single node v with degree Δ, x = 2Δ − n + 1 neighbors of v are leaves and the
remaining Δ − x = n − Δ − 1 neighbors have degree 2 (see Fig. 6). Assumption
Δ ≥ n−�n/3� implies Δ−x ≤ Δ/2. Hence Efix(Tm) =

∑Δ−x
i=0

(
Δ−x

i

)
= 2Δ−x =

2n−Δ−1 (see also Lemma 5).
Let v be a node of T with degree Δ. Assume that at most two neighbors of v

are leaves. Then n ≥ Δ + 1 + Δ − 2 = 2Δ − 1. This yields Δ ≤ (n + 1)/2, which
contradicts the assumption Δ ≥ n − �n/3�. Hence, at least three neighbors of
v are leaves. Let w be a non-leaf neighbor of v and e = (v, w). Without loss of
generality we can assume that deg(w) = 2 and that the neighbor v′ 	= v is a
leaf. Next we apply Lemma 1. Let x be a neighbor of v that is a leaf. Note that
Efix(Tv, u) = Efix(Tv \ {w, x}). By induction we have |Efix(Tv, u)| ≤ 2n−Δ−2.
We also have |Efix(Tv)| ≤ 2n−Δ−2. This yields the upper bound. �

Let T be a tree with n − �n/3� > Δ > (n − 1)/2. In [23] it is proved that
|Efix(T )| ≤ ∑�Δ/2�

i=0

(
n−Δ−1

i

)
. This bound is sharp. Let τn,Δ be the maximal
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value of |Efix(T )| for all trees T with n nodes and maximal degree Δ. We
have the following conjecture. If this conjecture is true, it would be possible to
determine the structure of all trees with |Efix(T )| = τn,Δ.

Conjecture 2. τn,Δ = τn−1,Δ + τn−2,Δ for Δ < (n − 1)/2.

5 Pure 2-Cycles

In this section we prove an upper bound for |PM(T )|. We use the fact |PM(T )| =
2|Epure(T )| from [22]. Algorithm 1 is easily adopted to compute |Epure(T )|. The
difference between F-legal and P-legal is that instead of 2degF (v) ≤ deg(v)
condition 2degF (v) < deg(v) is required. If deg(v) is odd then the conditions
are equivalent. Thus, it suffices to define for each node vi with even degree
bi = �deg(vi)/2� − 1. Hence, |Epure(T )| can be computed in time O(nΔ).

Note that Epure(T ) ⊆ Efix(T ) with Epure(T ) = Efix(T ) if all degrees of
T are odd. Thus, |Epure(T )| ≤ Fn−�Δ/2�. In this section we prove the much
better general upper bound stated in Theorem 3. We start with an example. Let
n ≡ 0(2) and Hn the tree with n nodes consisting of a path Pn of length n/2 and
a single node attached to each inner node of Pn (see Fig. 8). Since all non-leaves
have degree 3 we have Epure(Hn) = Efix(Pn), thus, |Epure(Hn)| ≤ Fn/2 by
Corollary 1. We prove that F�n/2� is an upper bound for |Epure(T )| in general.

Fig. 8. The graph H10, edges of E3(H10) are depicted as solid lines.

We first state a few technical lemmas and then prove Theorem 3. The proof
of the first Lemma is similar to Lemma 7.

Lemma 13. Let T be a tree, v a leaf with neighbor w, and T ′ = T \ v. Let nl

(resp. ni) be the number of neighbors of w that are leaves (resp. inner nodes). If
nl > ni + 1 then |Epure(T )| = |Epure(T ′)|.

For a tree T let T 2 be the tree obtained from T by recursively removing each
node v with degree 2 and connecting the two neighbors of v by a new edge. Note
that T 2 is uniquely defined and degT 2(v) = degT (v) for each node v of T 2.

Lemma 14. Epure(T ) ⊆ Epure(T 2) for each tree T .

Proof. Let w be a node v of T with degree 2. Let T ′ be the tree obtained from
T by removing w and connecting the two neighbors of w by a new edge. Let
F ∈ Epure(T ). Since deg(w) = 2 no edge of F is incident to w. Thus, for all
v 	= w we have 2degF (v) < degT (v) = degT ′(v), i.e., F ∈ Epure(T ′). Hence,
Epure(T ) ⊆ Epure(T ′) and the statement follows by induction. �
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Proof (Proof of Theorem 3). Proof by induction on n. The statement is true for
n ≤ 5 as can be seen by a simple inspection of all cases. Let n ≥ 6. By Lemma 14
we can assume that no node of T has degree 2. Let T̂ be the tree induced by
the edges in E3(T ). T̂ includes all inner nodes of T . Let u be a node of T̂ such
that all neighbors of u in T̂ except one are leaves. Denote the neighbors of u in
T̂ that are leaves by v1, . . . , vd with d ≥ 1, i.e., degT̂ (u) = d+1. Let ei = (u, vi).
By Lemma 13 we can assume degT (vi) = 3 for i = 1, . . . , d. Denote the two
neighbors of vi in T \ T̂ by va

i and vb
i . Let H1 = {F ∈ Epure(T ) | e1 	∈ F}

and T ′ = T \ {va
1 , vb

2}. Clearly H1 = Epure(T ′). Thus, |H1| ≤ F�n/2�−1 by
induction. Assume that u has a neighbor u′ in T that is a leaf in T . Let F ∈
Epure(T ) \ H1. Then F \ {e1} ∈ Epure(T \ {u′, v1, va

1 , vb
1}). Thus, by induction

|Epure(T ) \ H1| ≤ F�n/2�−2 and hence, |Epure(T )| ≤ F�n/2�. Therefore we can
assume that degT (u) = d + 1, i.e., d ≥ 2.

Next we expand the definition of H1 as follows. For i = 1, . . . , d let Hi =
{F ∈ Epure(T ) | ei 	∈ F and e1, . . . , ei−1 ∈ F}. Thus, Hi = ∅ for i ≥ (d + 3)/2
since 2degF (u) < d+1. Let d0 = �(d+1)/2�. Then Epure(T ) = H1∪. . .∪Hdo

. We
claim that |Hi| ≤ F�n/2�−(2i−1). The case i = 1 was already proved above. Let
i ≥ 2 and define Ti = T \ {vj , v

a
j , vb

j | j = i − 1, i}. Then |Epure(Ti)| ≤ F�n/2�−3

by induction, hence |H2| = |Epure(T2)| ≤ F�n/2�−3. Let i ≥ 3 and F ∈ Hi. Then
F \ {ei−1} ∈ Epure(Ti). Clearly, Epure(Ti) \ Hi consists of all F ∈ Epure(Ti) for
which {e1, . . . , ei−2} ∩ F 	= ∅ holds. Hence,

|Hi| ≤ |Epure(Ti)| − |
i−2⋃

j=1

Ei
j | ≤ F�n/2�−3 − |

i−2⋃

j=1

Ei
j |

where Ei
j = {F ∈ Epure(Ti) | ej 	∈ F}. We use the following well known identity

for I = {1, . . . , i − 2}.

|
⋃

i∈I

Ei| =
∑

∅�=J⊆I

(−1)|J|+1|
⋂

j∈J

Ei|

Note that |⋂j∈J Ei
j | ≤ F�n/2�−(|J|+3) by induction. Let k = i − 2. Then

|Hi| ≤ F�n/2�−3 −
k∑

j=1

(−1)j+1

(
k

j

)
F�n/2�−(j+3) =

k∑

j=0

(−1)j

(
k

j

)
F�n/2�−(j+3)

Note that �n/2� ≥ 2k + 3. Lemma 25 of [23] implies |Hi| ≤ F�n/2�−(2i−1). Then
Lemma 15 yields

|Epure(T )| ≤
d0∑

i=1

|Hi| ≤
d0∑

i=1

F�n/2�−(2i−1) ≤ F�n/2�.

�
Lemma 15. For each c ≥ 1 and d ≤ c+1

2 we have
∑d

i=1 Fc−(2i−1) ≤ Fc.
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Proof. The proof is by induction on d. The cases d ≤ 2 clearly hold. Let d > 2.
By induction we get

d∑

i=1

Fc−(2i−1)=Fc−1+
d∑

i=2

Fc−(2i−1)=Fc−1+
d−1∑

i=1

Fc−2−(2i−1)

Ind.≤ Fc−1+Fc−2=Fc.

6 Conclusion and Open Problems

The problem of counting the fixed points for general cellular automata is #P-
complete. In this paper we considered counting problems associated with the
minority/majority rule of tree cellular automata. In particular we examined fixed
points and pure 2-cycles. The first contribution is a novel algorithm that counts
the fixed points and the pure 2-cycles of such an automata. The algorithms run
in time O(Δn). It utilizes a characterization of colorings for these automata
in terms of subsets of the tree edges. This relieved us from separately treating
the minority and the majority rule. The second contribution are upper and
lower bounds for the number of fixed points and pure 2-cycles based on different
graph parameters. We also provided examples to demonstrate the cases when
these bounds are sharp. The bounds show that the number of fixed points (resp.
2-cycles) is a tiny fraction of all colorings.

There are several open questions that are worth pursuing. Firstly, we believe
that it is possible to sharpen the provided bounds and to construct examples for
these bounds. In particular for the case Δ ≤ n/2, we believe that our bounds
can be improved. Another line of research is to ext minority/majority rules. One
option is to consider the minority/majority not just in the immediate neigh-
borhood of a node but in the r-hop neighborhood for r > 1 [15]. We believe
that this complicates the counting problems considerably. Finally the prede-
cessor existence problem and the corresponding counting problem [7] have not
been considered for tree cellular automata. The challenge is to find for a given
c ∈ C(T ) a coloring c′ ∈ C(T ) with M(c′) = c. A coloring c ∈ C(T ) is called a
garden of Eden coloring if there doesn’t exist a c′ ∈ C(T ) with M(c′) = c. The
corresponding counting problem for tree cellular automata is yet unsolved.
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