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Abstract. A slab in d-dimensional space R
d is the set of points enclosed

by two parallel hyperplanes. We consider the problem of finding an opti-
mal pair of parallel slabs, called a double-slab, that covers a given set P of
n points in R

d. We address two optimization problems in R
d for any fixed

dimension d � 3: the minimum-width double-slab problem, in which one
wants to minimize the maximum width of the two slabs of the resulting
double-slab, and the widest empty slab problem, in which one wants to
maximize the gap between the two slabs. Our results include the first
nontrivial exact algorithms that solve the former problem for d � 3 and
the latter problem for d � 4.

Keywords: computational geometry · hyperplane · slab ·
double-slab · widest empty slab · minimum-width double-slab

1 Introduction

A slab in d-dimensional space R
d is the set of points enclosed by two parallel

hyperplanes. A double-slab is a pair of parallel slabs, that is, all four hyperplanes
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bounding the two slabs are parallel. We consider the problem of finding an
optimal double-slab that covers a given set P of n points in R

d, for any fixed
dimension d � 3. We consider two optimization problems. In the first problem,
which we call the minimum-width double-slab problem, we wish to minimize the
width of the resulting double-slab, where the width of a double-slab is defined
as the maximum width of its two slabs. In the second problem, which we call
the widest empty slab problem, we wish to maximize the gap of the double-slab,
which is defined as the distance between the two slabs.

The two optimization problems concerning double-slabs extend and/or gen-
eralize several fundamental geometric problems, which have been extensively
studied mostly in R

2 or R
3, and sometimes in higher dimensions.

The width of a point set P in R
d is defined as the minimum width of a slab

that covers P . The width is considered one of the most fundamental extent mea-
sures describing a point set, together with the diameter and the radius. The width
of a set of n points in the plane can be computed easily in optimal O(n log n)
time [29]. If the convex hull of P is already given, this can be improved to O(n)
time using rotating calipers [31]. For d = 3, Houle and Toussaint [23] presented
an O(n2)-time algorithm, and the first subquadratic-time algorithm was given
by Chazelle et al. [13]. The currently best algorithm by Agarwal and Sharir runs
in O(n3/2+ε) expected time [2]. In higher dimensions, Chan [9] discussed a simple
formulation that reduces the width problem to searching a (d + 1)-dimensional
convex polytope, resulting in an O(n�d/2�)-time exact algorithm for d � 4. Effi-
cient approximation schemes are also known [1,9].

By definition, computing the width is equivalent to fitting a line for d = 2
(a plane for d = 3, or in general a hyperplane) to the given point set P . In
particular, for d = 2, this problem is also known as the line center problem.
For k � 1, the k-line center problem asks to find a set of k lines such that
the maximum distance of a point in P to its nearest line center is minimized.
Like the k-center problem, this problem is known to be NP-hard when k is part
of the input, even in the plane R

2 [28]. In spite of its fundamental position in
theory and applications, little is known about exact algorithms for the k-line
center problem. Even for d = 2, efficient algorithms are known only for k � 2:
algorithms with running time O(n2 log2 n) were found in the 1990 s [20,25] and
there has been no improvement since then. For d � 3, we are not aware of any
nontrivial exact algorithm to compute a k-line center for k � 2 in the literature.
Agarwal et al. [5] presented an efficient approximation algorithm for any k � 1
and d � 2. Recently, some results on constrained variants of the k-line center
problem in the plane R

2 have been published: Bae [6] showed that a parallel 2-
line center can be computed in O(n2) time, where the two lines are restricted to
be parallel. Das et al. [17] presented an approximation algorithm for orthogonal
line centers and Chung et al. [15] studied a variant of parallel k-line centers for
k � 2 considering gaps between the induced clusters.

The generalization to higher dimensions is the k-hyperplane center problem.
Given a set P of n points in R

d, we want to find k hyperplanes that minimize
the maximum distance from a point in P to its nearest hyperplane. This is
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equivalent to finding k slabs of minimum width that cover P . This problem has
been studied in the context of the projective clustering problem and, except for
the variants in R

2 mentioned above, only approximation algorithms are known
(see e.g. [4] and the references therein). As discussed in [4] and [5], an exact
algorithm with running time nO(dk) can be easily obtained for both the k-line
center and the k-hyperplane center problems. To our best knowledge, no better
algorithms are known, not even for small constants k � 2 and d � 3.

Our first problem, namely the minimum-width double-slab problem, can be
seen as a constrained variant of the 2-hyperplane center problem, in which the
two hyperplane centers must be parallel, while it extends and generalizes the
fundamental geometric problems mentioned above. We give the first exact algo-
rithm for this problem.

Covering P by a double-slab induces two clusters on P . In some applications,
such as in obnoxious facility location [16], it is considered more important to
achieve a maximum possible separation between the resulting clusters of P . This
motivates us to find a double-slab cover of P with the maximum possible gap,
or a widest empty slab through P . In the planar case d = 2, this problem is well
known as the widest empty corridor problem. Houle and Maciel [22] presented
the first O(n2)-time algorithm for the widest empty corridor problem. Many
variants of the problem have been studied since, including corridors containing
at most k input points [10,24,30], dynamic maintenance of corridors [24,30], and
more. Díaz-Báñez et al. [18] studied the widest empty slab problem in R

3, and
presented an O(n3)-time algorithm. We are not aware of any known algorithm
for the widest empty slab problem in R

d for any fixed dimension d � 4. We
present the first exact algorithm.

We summarize our results as follows:

(1) We solve the minimum-width double-slab problem in O(nd) time for d = 3, 4,
and in O(nd+1) time for any fixed dimension d � 5.

(2) We solve the widest empty slab problem in O(nd log n) time for any fixed
dimension d � 4.

We characterize combinatorial properties of optimal solutions to both prob-
lems, and find the optimal solution by efficiently enumerating all candidates. We
make a heavy use of geometric duality, mapping points in R

d into non-vertical
hyperplanes in R

d, and known algorithms and data structures for hyperplanes
and their arrangement in high dimensions.

Due to page limit, most proofs are omitted and will be seen in a full version.

2 Preliminaries

Let d � 2 be an arbitrary fixed dimension. We consider the d-dimensional
Euclidean space R

d with the d coordinate axes, called the x1, x2, . . . , xd-axes.
We consider the xd-axis as the vertical direction. We also treat R

d as a vector
space equipped with the standard inner product and the induced Euclidean norm
‖ ·‖. Hence, for any two points p, q ∈ R

d, the length of segment pq is ‖p−q‖. For
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any subset A ⊂ R
d, let aff(A) be the affine hull of A, that is, the intersection of

all affine subspaces containing A.
For any affine subspace A of Rd, we denote by A⊥ the orthogonal complement

of A in R
d, the vector subspace consisting of all vectors in R

d that are orthogonal
to every vector a − a0 for a, a0 ∈ A. Note that dim(A) + dim(A⊥) = d. Let
πA : Rd → A denote the orthogonal projection onto A. In particular, if A =
R

d−1 = {xd = 0}, then we simply write π = πRd−1 . The projection π drops the
xd-coordinate, so that for any (a1, . . . , ad) ∈ R

d, we have π(a1, . . . , ad−1, ad) =
(a1, . . . , ad−1) ∈ R

d−1.

Hyperplanes and orientations. We call a k-flat vertical if it is parallel to the xd-
axis. A hyperplane in R

d is a (d − 1)-flat. Any non-vertical hyperplane h ⊂ R
d

can be seen as the graph of a (d − 1)-variate linear function h : Rd−1 → R:
h : xd = u1x1+u2x2+ · · ·+ud−1xd−1+b, for some u = (u1, u2, . . . , ud−1) ∈ R

d−1

and b ∈ R. We call u the orientation of h, and b its displacement. Any non-
vertical hyperplane h can be uniquely determined by an orientation u and a
displacement b in this way, and we have the following.

Observation 1. Let h be a non-vertical hyperplane in R
d with orientation u ∈

R
d−1. Then, the vector (u,−1) ∈ R

d is a normal of h.

In particular, hyperplanes with equal orientation are parallel. We can thus iden-
tify the space of possible orientations of non-vertical hyperplanes with R

d−1. For
any orientation u ∈ R

d−1, let θ(u) be the angle between the vector (u,−1) ∈ R
d

and the negative direction of the xd-axis. For any two parallel hyperplanes h1

and h2, let w(h1, h2) denote the distance between h1 and h2. We observe that
w(h1, h2) = |b1 − b2| · cos(θ(u)) = |b1−b2|

‖(u,−1)‖ , where u denotes their common ori-
entation and bi the displacement of hi, for i = 1, 2.

A slab S is the closure of the region between two parallel hyperplanes h1 and
h2, denoted by S = (h1, h2). The width of S, denoted by w(S), is w(h1, h2). A
double-slab D = (S1, S2) is the union of two disjoint parallel slabs S1 and S2.
The width of D, denoted by w(D), is max{w(S1), w(S2)}. We say that a slab or
double-slab is vertical if its defining hyperplanes are vertical. For any non-vertical
slab or double-slab, its orientation is the orientation of its defining hyperplanes.

Duality. We recall the classic point-to-hyperplane duality transform: for any
point p = (a1, a2, . . . , ad) ∈ R

d, the dual transformation maps p into its dual
hyperplane p� : xd = a1x1 + · · · + ad−1xd−1 − ad. Conversely, any non-vertical
hyperplane h ⊂ R

d is mapped to a point h� ∈ R
d. It is well known that the

duality transform a �→ a� preserves the point-hyperplane incidence relation and
the vertical order among points and hyperplanes [8].

Observation 2. Let S = (h1, h2) be a non-vertical slab with orientation u.

– The segment h�
1h

�
2 is vertical, that is, it is parallel to the xd-axis in R

d.
– It holds that w(S) = ‖h�

1 − h�
2‖ cos(θ(u)).

– The first d − 1 coordinates of h�
1 and h�

2 are equal to those of u, that is,
π(h�

1) = π(h�
2) = u.
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– For any point p ∈ R
d, p ∈ S if and only if the segment h�

1h
�
2 intersects p�.

Therefore, there is a one-to-one correspondence between non-vertical slabs and
vertical segments under the duality transform.

Arrangement of Hyperplanes. Let H be a set of n hyperplanes in R
d. Consider

the arrangement A(H) of these n hyperplanes. We introduce some algorithms
and data structures for hyperplane arrangements that we will be using.

The arrangement A(H) consists of O(nd) faces for d � 2 [21]. The upper and
lower envelopes of H, denoted by U(H) and L(H), correspond to the convex hull
of points that are dual to H, so their complexity is bounded by O(n�d/2�). It is
well known that A(H) can be computed in O(nd) time [21] and the envelopes
U(H) and L(H) can be computed in O(n log n+n�d/2�) time, using any optimal
convex hull algorithm, such as the one by Chazelle [12].

The zone Z(h;H) of another hyperplane h in the arrangement of H is the
set of all cells in A intersected by h and their incident faces. Edelsbrunner et
al. [19] showed that the complexity of the zone Z(h;H) is Θ(nd−1).

Lemma 1. (de Berg et al. [7]). For any fixed d � 2, the zone of a hyper-
plane h in an arrangement A(H) of n hyperplanes H can be computed in
O(nd−1 + n log n) time, without computing the whole arrangement A.

In our algorithms, it is often required to test the feasibility of a candidate
slab. The following query structure for point location in the arrangement will be
used for our purpose.

Lemma 2. (Chazelle [11] and Matoušek [26]). A set H of n hyperplanes
in R

d can be preprocessed in O(nd/ logd n) time into a data structure of size
O(nd/ logd n) that answers the following query in O(log n) time: Given a query
point q ∈ R

d, locate the face in A(H) that contains q and count the number of
hyperplanes in H above q.

By the duality transform, this data structure can answer the half-space counting
query [3]. Thus, given a set P of n points in R

d, by using the query structure
in Lemma 2 for the set of n hyperplanes dual to points in P , we can count the
number of points in P contained in a query slab S = (h1, h2) in O(log n) time,
according to Observation 2.

General Position Assumption. In the following, P will be a set of n input points
in R

d. For simplicity, we will assume that P is in general position, meaning that
no hyperplane in R

d contains more than d points of P or, equivalently, that
any d + 1 points in P are affinely independent. Hence, for any subset Q ⊆ P of
k � d + 1 points, its affine hull aff(Q) is a (k − 1)-flat in R

d. This also implies
that the orthogonal complement (aff(Q))⊥ is of dimension d−k+1. Throughout
the paper, we often discuss the intersection of two orthogonal complements V =
(aff(Q1))⊥ ∩ (aff(Q2))⊥ for two nonempty disjoint subsets Q1, Q2 ⊂ P with
k = |Q1|+ |Q2| � d+1. We shall call V the (linear) subspace orthogonal to both
aff(Q1) and aff(Q2). The general position also implies that the subspace V is
always of dimension d − k + 2 for any two subsets Q1, Q2 ∈ P .
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3 Widest Empty Slabs

Let us call a slab S empty if it contains no point of P in its interior while
separating P into two nonempty subsets. Our goal in this section is to compute
an empty slab S of maximum width. The following is an easy observation on
empty slabs.

Lemma 3. Suppose that S is a maximum-width empty slab for P in R
d for d �

3. Let h ⊂ R
d be any hyperplane parallel to the normal of S. Then, πh(S) is a

maximum-width empty slab for πh(P ) in the (d − 1)-dimensional space h.

Lemma 3 allows us to find the widest vertical empty slab by projecting the
point set to R

d−1 and solving the problem there. We can therefore concentrate on
finding the widest non-vertical empty slab, and in the remainder of this section
all slabs will be non-vertical. We represent a non-vertical slab S by a pair (h1, h2)
of hyperplanes such that h1 is above h2.

We prove the following characterization of optimal empty slabs.

Lemma 4. For any d � 2, if S = (h1, h2) is an empty slab of maximum width,
then one of the following must hold:

(i) At least d+1 points lie on the boundary of S, that is, |P ∩ (h1 ∪h2)| � d+1.
(ii) The normal vector to S is parallel to aff(P ∩ (h1 ∪ h2)).

Proof. Let S = (h1, h2) be a maximum-width empty slab for P , and let k :=
|P ∩(h1∪h2)| be the number of points in P that lie on the boundary of S. Clearly
at least one point of P lies on each of h1 and h2, so k � 2. Let u ∈ R

d−1 be the
orientation of S. Then, û := (u,−1) is a normal vector of S by Observation 1.

We will prove by induction on k and d that whenever k � d, the statement
in the second case holds, that is, the normal û is parallel to aff(P ∩ (h1 ∪ h2)).

Consider first the case k = 2. The planar case of the statement was proven
by Houle and Maciel [22], see also Janardan and Preparata [24, Theorem 2.1].
Consider now d > 2 and assume the claim holds in R

d−1 (for k = 2). Let
q1, q2 ∈ P be the two points such that q1 ∈ h1 and q2 ∈ h2, and suppose for
a contradiction that û is not parallel to � := aff(P ∩ (h1 ∪ h2)). In this case, �
is the line through q1 and q2. Let �′ be the line parallel to û going through q1.
The two lines � and �′ make a positive angle φ > 0. We consider a hyperplane h
containing both lines � and �′. Since the normal of h is parallel to S, Lemma 3
implies that πh(S) is a maximum-width empty slab for πh(P ) in h. The two
points q1 and q2 lie in h and are still the only two points of P on the boundary
of πh(S). The normal of πh(S) is identical to û and still makes a positive angle φ
with �, a contradiction to the optimality of πh(S). See Fig. 1(a). It follows that
the claim holds for k = 2 in any dimension.

Consider now the general case d > 2 and 2 < k � d, and assume that
the claim holds for all smaller dimensions and smaller values of k. In this case
there are at least two points in P ∩ h1 or P ∩ h2. Without loss of generality, we
let |P ∩h1| � 2. Let f be the (k−1)-flat f = aff(P ∩(h1∪h2)). We pick two points
q1, q2 ∈ P ∩ h1. Let � be the line through q1 and q2, and let h be the hyperplane
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Fig. 1. Illustration to the proof of Lemma 4.

normal to � containing q1. Since the normal of h is parallel to S, we again apply
Lemma 3 to conclude that πh(S) is a maximum-width empty slab for πh(P ) in h.
Since πh(q1) = πh(q2), there are k − 1 points of πh(P ) lying on the boundary
of πh(S). By the inductive assumption, the normal û of πh(S) is parallel to the
(k−2)-flat f ′ = aff(πh(P )∩(πh(h1)∪πh(h2)). Since our projection direction lies
in f , we have f ′ ⊂ f , and so û is parallel to f , completing the inductive step.
See Fig. 1(b) for an illustration when d = 3 and k = 3.

We will now describe our algorithm that computes a maximum-width empty
slab for a given set P of n points in R

d. It enumerates all candidate slabs that
satisfy one of the two conditions described in Lemma 4. We will show that the
number of candidates is bounded by O(nd) and we will spend O(log n) time per
candidate for the emptiness test.

Let P � be the set of n hyperplanes dual to the points P , and let A = A(P �)
be their arrangement. We first build the query structure of Lemma 2 for A. We
will separately enumerate all candidates that fall in case (i) and those that fall
in case (ii) of Lemma 4.

3.1 Case (i)

Let us call an empty slab S a candidate slab if it satisfies the condition of case (i)
in Lemma 4. In dual space, Observation 2 immediately implies the following.

Lemma 5. A candidate slab corresponds to a maximal vertical segment con-
tained in a d-dimensional cell of A, whose endpoints lie in the relative interior1
of two faces f1 and f2 with dim(f1) + dim(f2) � d − 1.

We call such a vertical segment a candidate stick. Our algorithm collects all can-
didate sticks from the arrangement A, computes the width of the corresponding
slab for each candidate stick, and returns one that maximizes this width.

The candidate sticks are closely related to a vertical decomposition of the
arrangement of hyperplanes. Chazelle and Friedman [14] showed that the number
1 Note that the relative interior of a 0-flat (a point) is by definition the point itself.
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of candidate sticks is O(nd) and argued that they can be computed by overlaying
the orthogonal projections of all the faces incident to each d-dimensional cell of A
onto the horizontal hyperplane {xd = 0}. They also described an algorithm that
computes all candidate sticks in O(n�3d/2� log�d/2� n) time,2 which is too slow
for our purpose.

Consider a candidate stick s between two faces f1 and f2 of A. By Lemma 5,
their dimensions sum up to at most d − 1, so the smaller dimension of the two,
say dim(f2), is at most 
(d−1)/2�. Let k := dim(f2)+1. Then, we have dim(f1) �
d−k, and so f1 lies on (is a subface of) a face f ′ of A of dimension dim(f ′) = d−k.
The face f ′ is a face on the (d − k)-flat fQ :=

⋂
q∈Q q� for some subset Q ∈ P

with |Q| = k. Let now f̂Q be the (d − k + 1)-flat spanned by fQ and the vertical
direction, and observe that s lies in f̂Q, with one endpoint in fQ.

Every hyperplane q� intersects f̂Q in a (d − k)-flat q′. The face f2 of A
has dim(f2) = k−1 and therefore lies on the intersection of d−k+1 hyperplanes
of A. The intersection of these hyperplanes with the (d−k+1)-flat f̂Q is therefore
zero-dimensional, that is, a vertex of the arrangement AQ of the (d− k)-flats q′,
for q ∈ Q, inside the (d − k + 1)-flat f̂Q.

To summarize, for our candidate stick s there is a subset Q ⊂ P of size |Q| =
k, for some 1 � k � 
(d − 1)/2� + 1 = �d/2, such that one endpoint of s is
a vertex v of the arrangement AQ in f̂Q and the other endpoint is the vertical
projection of v on the (d − k)-flat fQ. No hyperplane q′ crosses the relative
interior of s, so the entire segment lies in the zone of fQ in the arrangement AQ.

Our algorithm enumerates all possibilities: We consider all non-empty sub-
sets Q ⊂ P of size at most �d/2. For each Q, we compute the flat fQ and its
vertical extension f̂Q, and intersect all hyperplanes with f̂Q. We then compute
the zone Z of fQ in the arrangement AQ, and for each vertex v of Z, gener-
ate a vertical segment connecting v with its vertical projection on fQ. Finally,
we test whether the segment actually is a candidate stick by verifying whether
its relative interior intersects any hyperplane of A using the data structure of
Lemma 2.

There are
(
n
k

)
= O(nk) different subsets of k points. Computing the zone of n

hyperplanes in the (d−k+1)-dimensional space f̂Q takes time O(nd−k +n log n)
time by Lemma 1. By the zone theorem [19], the zone has at most O(nd−k)
vertices, so we can test all the resulting vertical segments in time O(nd−k log n).
Summing over all O(nk) subsets Q of size k results in time O(nd log n +
nk+1 log n), and summing over k from 1 to �d/2 results in total time O(nd log n).

3.2 Case (ii)

We now turn to the second case. We will enumerate all slabs S (not just empty
ones) that are determined by a subset Q of at most d points of P in the following
way: The intersection of the boundary of S with P is exactly Q, and the normal

2 In fact they construct a vertical decomposition of the entire arrangement.
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of S is parallel to aff(Q). We then test whether the slab is actually empty using
the data structure of Lemma 2, and return an empty slab maximizing the width.

The following lemma shows that given the boundary points, the unique slab
satisfying the condition can be found in constant time.

Lemma 6. Let Q1, Q2 ⊂ P be two disjoint subsets such that 2 � |Q1|+|Q2| � d.
There exists a unique orientation u of a slab S = (h1, h2) such that P ∩h1 = Q1,
P ∩ h2 = Q2, and the normal of S is parallel to aff(Q1 ∪ Q2). Moreover, such a
unique orientation can be computed in O(d3) = O(1) time.

Let Q1, Q2 ⊂ P be a pair of disjoint subsets of P with 2 � |Q1 ∪ Q2| � d. In
constant time we can compute the unique orientation described in Lemma 6,
denoted by u(Q1, Q2), and construct a slab S = (h1, h2) with orientation
u(Q1, Q2) such that P ∪ h1 = Q1 and P ∪ h2 = Q2. We can then test in
O(log n) time if the relative interior of S is empty using the data structure of
Lemma 2. We return the widest slab among all slabs passing the test.

We run the above procedure for all valid pairs (Q1, Q2). The number of such
pairs is bounded by

∑
2�k�d

(
n
k

) · 2k = O(nd), since d is a constant. Hence, the
total running time for case (ii) is also bounded by O(nd log n).

Theorem 1. For any constant dimension d � 4, a widest empty slab for a set
of n points in R

d can be computed in O(nd log n) time.

Our algorithm can be implemented faster for d � 3, because the emptiness of
a candidate slab can be tested in O(1) amortized time. This results in algorithms
with O(n2) and O(n3) time for d = 2 and d = 3, respectively, matching the
previously known time bounds [18,22]. The space requirement of our algorithm,
however, is larger.

4 Minimum-Width Double-Slabs

In this section, we present algorithms that compute a minimum-width double-
slab enclosing P in R

d for d � 3. Throughout this section, we assume that there
exists a minimum-width double-slab enclosing P that is non-vertical. As in the
previous section, if this is not the case, we can solve the problem by reducing it
to an instance in R

d−1 after orthogonally projecting P onto R
d−1. In addition,

we also assume that P consists of at least d+2 points, since the problem becomes
trivial when |P | � d + 1.

Let P � be the set of n hyperplanes dual to points in P , A = A(P �) be their
arrangement A, L = L(P �) be the lower envelope of A, and U = U(P �) be the
upper envelope of A. We represent any non-vertical double-slab D by a 4-tuple
(h1, h2, h3, h4) of hyperplanes such that hi is above hi+1 in R

d for each i = 1, 2, 3.
It is obvious that there exists a minimum-width double-slab enclosing P such

that at least one point in P lies on each of its four hyperplanes. The following
lemma describes a characterization of optimal double-slabs for our problem. See
also Fig. 2.
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Fig. 2. Two possible configurations of minimum-width double-slabs D = (h1, h2, h3, h4)
in R

3. (a) Case (i) of Lemma 7: There are six points on the four planes. (b) Case (iii):
There are five points on the four planes, while we have w(h1, h2) = w(h3, h4).

Lemma 7. For any d � 2, if D = (h1, h2, h3, h4) is a minimum-width double-
slab enclosing P such that |P∩hi| � 1 for each i ∈ {1, 2, 3, 4}. Then, the following
conditions must hold:

–
∑

i |P ∩ hi| � d + 2.
– Exactly one of the following cases holds:

(i) w(h1, h2) > w(h3, h4) and |P ∩ h1| + |P ∩ h2| � d + 1.
(ii) w(h1, h2) < w(h3, h4) and |P ∩ h3| + |P ∩ h4| � d + 1.
(iii) w(h1, h2) = w(h3, h4).

Consider any minimum-width double-slab D = (h1, h2, h3, h4) enclosing P
that satisfies the conditions described in Lemma 7. Let Qi := P ∩ hi for i =
1, 2, 3, 4. Since the outer slab Sout = (h1, h4) also encloses P , it is obvious that a
portion of

⋂
q∈Q1

q� appears as a face of L and a portion of
⋂

q∈Q4
q� appears in

U in the same way. Hence, we have h�
1 ∈ L and h�

4 ∈ U . On the other hand, the
inner slab Sin = (h2, h3) should be empty, so the vertical segment h�

2h
�
3 crosses

no hyperplane in P �. Observe also that the dual point h�
i for each i lies in the

relative interior of a (d − |Qi|)-face of A that is a portion of the flat
⋂

q∈Qi
q�.

We will often discuss the overlay M of the orthogonal projections π(U) and
π(L) of the envelopes U and L onto the hyperplane {xd = 0} = R

d−1. Each face
f of the overlay M is associated with a pair (Q1, Q4) of subsets of P such that:
for any orientation u ∈ f , if (h1, h4) is the minimum-width slab of orientation u
that encloses P , then it always holds that P ∩ h1 = Q1 and P ∩ h4 = Q4.

Lemma 8. For any fixed d � 2, the overlay M consists of O(n�d/2�) many faces
and can be computed in O(n�d/2� + n log n) time.

In the following, we describe our algorithms for d � 3.

4.1 Three-Dimensional Case

First, we consider the case of d = 3. For any point q ∈ P and any orientation
u ∈ R

2, we consider the double-slab Dq(u) = (h1, h2, h3, h4) with orientation u
such that P ⊂ Dq(u), h�

1 ∈ L, q′ ∈ h2 (that is, h�
2 ∈ q′�) for some q′ ∈ P \ {q},

q ∈ h3 (that is, h�
3 ∈ q�), and h�

4 ∈ U . Since Dq(u) encloses P , the point q′ on h2 is
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determined as the first point in P hit by translating h3 upwards or, equivalently,
as the first hyperplane q′� in A hit by the ray emanating downwards from h�

3.
By Lemma 7, there exist some q ∈ P and u ∈ R

2 such that Dq(u) is indeed a
minimum-width double-slab enclosing P .

Let wq(u) := w(Dq(u)) be its width. Then, we have wq(u) = max{‖h�
1 −

h�
2‖, ‖h�

3 − h�
4‖} · cos(θ(u)). Let vq(u) := wq(u)/ cos(θ(u)) be the linear part of

the right side of the above equation. Observe that the function vq : R2 → R is
piecewise linear, since its values are determined by the vertical distances between
faces in A, while cos(θ(u)) = 1/

√‖u‖2 + 1 is a continuous function over u ∈ R
2.

Lemma 9. The number of linear pieces in function vq is O(n2) and an explicit
description of function vq can be computed in O(n2) time.

By Lemma 9, we also obtain the planar subdivision Mq induced by the break-
points of vq such that vq restricted to any face of Mq (of any dimension) is a
linear function. Lemma 7 for d = 3 implies the existence of a minimum-width
double-slab enclosing P whose orientation lies on a vertex or an edge of Mq.
Since the function vq restricted to each face of Mq (of any dimension) is linear
and thus of constant complexity, we can find an optimal double-slab constrained
about q ∈ P in total O(n2) time. By iterating all q ∈ P , we obtain the following.

Theorem 2. Given a set P of n points in R
3, a minimum-width double-slab

enclosing P can be computed in O(n3) time.

4.2 Four-Dimensional Case

We then consider the four-dimensional case, d = 4. Consider an optimal solution
D = (h1, h2, h3, h4) that satisfies the conditions of Lemma 7. We distinguish two
cases: when (a) |P ∩h2| = |P ∩h3| = 1 or (b) either |P ∩h2| � 2 or |P ∩h3| � 2.
Our goal is to find an optimal double-slab that falls into each case.

In the former case (a), we first compute the overlay M of π(U) and π(L)
by applying Lemma 8. Then, for each face of M, consider its associated pair
(Q1, Q4) of subsets and a minimum-width double-slab D enclosing P such that
P ∩ h1 = Q1, P ∩ h4 = Q4, and it falls into case (a). Since we must have |Q1| +
|Q4| � 4 by Lemma 7, we ignore those faces of M whose associated pair (Q1, Q4)
consists of at most three points. Since our target double-slab contains Q1 and
Q4 on its outer boundary, its normal should be orthogonal both to aff(Q1) and
aff(Q4). Hence, we consider the subspace f = (aff(Q1))⊥∩(aff(Q4))⊥ orthogonal
to both aff(Q1) and aff(Q4). As discussed in Sect. 2, such a flat f exists and its
dimension is always 6−|Q1|−|Q4| � 2. Hence, f is a line or a plane in R

4. If f is
a line, then we can find our solution in O(n) time by scanning all points in P ; if
f is a plane, then we project P orthogonally onto f and solve the 2-dimensional
problem instance in O(n2) time [6]. Since M consists of O(n2) faces (Lemma 8),
we can handle case (a) in a total of O(n4) time.

Next, we consider the latter case (b). Assume without loss of generality that
we have |Q3| � 2 in an optimal double-slab of this case. We fix a pair of points



314 T. Ahn et al.

q, q′ ∈ P and consider the case where q, q′ ∈ Q3. For the purpose, we consider any
hyperplane h in R

4 orthogonal to the line through q and q′, and the orthogonal
projections of P onto h. Note that q and q′ are projected to a common point q̄
on h. We then have a problem instance in R

3 with the constraint that q̄ should
lie on the third plane in the resulting slab. Therefore, we apply Lemma 9 to solve
this instance in O(n2) time. We can thus handle case (b) by iterating all pairs
(q, q′) of two points in P , taking O(n4) time.

Theorem 3. Given a set P of n points in R
4, a minimum-width double-slab

enclosing P can be computed in O(n4) time.

4.3 Algorithm for Higher Dimension

Finally, we consider higher dimensions for d � 5. The algorithm starts with
some preprocessing, including the initialization of the point location structure
of Lemma 2 and the query structure by Matoušek and Schwarzkopf [27] for ray
shooting for U and L. The cost of preprocessing is not more than O(nd) time.
In the main part of the algorithm, we handle each of the three cases described
in Lemma 7.

Cases (i) and (ii). First, we handle double-slabs D = (h1, h2, h3, h4) enclosing
P of case (i): w(h1, h2) > w(h3, h4) and |P ∩ h1| + |P ∩ h2| � d + 1. For the
purpose, we consider those D = (h1, h2, h3, h4) with the additional constraint
that only one fixed point q ∈ P lies on h2.

Lemma 10. Let d � 2 be any fixed integer and q ∈ P be any fixed point.
A minimum-width double-slab D = (h1, h2, h3, h4) enclosing P such that
w(h1, h2) > w(h3, h4) and P ∩ h2 = {q} can be computed in O(n�d/2� log n)
time, provided the query structure of Lemma 2.

For each 1 � k � d, consider an optimal double-slab D of this case such
that |P ∩ h2| = k. Such an optimal solution D can be computed as follows:
For each subset Q2 ⊂ P with |Q2| = k, let f := (aff(Q2))⊥ be the orthogonal
complement of aff(Q2). Note that f is a (d − k + 1)-flat, as discussed in Sect. 2.
We then orthogonally project P onto f by the projection operator πf , and
find an optimal double-slab D′ = (h′

1, h
′
2, h

′
3, h

′
4) of case (i) with the additional

constraint that πf (P ) ∩ h′
2 = πf (Q2). This constrained problem can be solved

by Lemma 10 if 1 � k � d − 1, since the projection πf maps all points in Q2

to a common point in f and thus πf (Q2) consists of a single point. Since there
are

(
n
k

)
different choices of Q2 and we spend O(n�(d−k+1)/2� log n) time per each

(Lemma 10), it takes O(nd log n) time in total over all 1 � k � d − 1.
In case of k = d, the dimension of flat f is 1, so it gives us a unique orientation

u ∈ R
d−1. Hence, this case can be solved in O(log n) time as follows: Using the

ray shooting queries for L and U [27], we locate the points h�
1 and h�

4 on L and U ,
respectively, at u in O(log n) time, and then test if the vertical segment with top
endpoint at h�

4 and length ‖h�
1−h�

2‖ crosses the correct number of hyperplanes in
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A. This query can be answered in O(log n) time by Lemma 2. The total running
time for case (i) is thus bounded by O(nd log n).

Case (ii) can be handled in the same way as above.

Case (iii). Finally, consider double-slabs D = (h1, h2, h3, h4) enclosing P of
case (iii): w(h1, h2) = w(h3, h4) and

∑
i |P ∩ hi| � d + 2. For any four sub-

sets Q1, Q2, Q3, Q4 ⊆ P , we define D(Q1, Q2, Q3, Q4) = (h1, h2, h3, h4) to be a
minimum-width double-slab such that w(h1, h2) = w(h3, h4) and P ∩hi = Qi for
i = 1, 2, 3, 4. Note that D(Q1, Q2, Q3, Q4) does not have to enclose P and it may
be undefined when all the conditions cannot be fulfilled at the same time or there
is no minimum width even though there are infinitely many such double-slabs.
If D(Q1, Q2, Q3, Q4) is well defined, then we call it a candidate double-slab. Our
strategy is to collect all candidate double-slabs over all possible combinations of
four subsets and then to test the feasibility of each of them, that is, if it encloses
P by Lemma 2.

It turns out that the case of |Q2| = |Q3| = 1 can be handled efficiently.

Lemma 11. Let d � 2 be any fixed integer and q2, q3 ∈ P be two fixed points.
The number of candidate double-slabs of the form D(Q1, {q2}, {q3}, Q4) for some
Q1, Q4 ⊂ P is O(n�d/2�), and all of them can be computed in O(n�d/2� +n log n)
time. In case of d � 3, given the lower and upper envelopes L and U , all candi-
dates can be reported in O(n) time.

Now, we fix 2 � k � d and any pair (Q2, Q3) of nonempty subsets of P
with |Q2| + |Q3| = k. We enumerate all candidate double-slabs of the form
D(Q1, Q2, Q3, Q4) for some Q1, Q4 ⊂ P in the following way. Compute the
subspace f = (aff(Q2))⊥ ∩ (aff(Q3))⊥ orthogonal to both aff(Q2) and aff(Q3).
As discussed in Sect. 2, we always have dim(f) = d − k + 2. As done above
for case (i), we project points in P orthogonally onto f by projection operator
πf . Observe that all points in Q2 are projected to a common point q̄2 ∈ f and
all points in Q3 are projected to a common point q̄3 ∈ f . Hence, we can apply
Lemma 11 in the (d−k+2)-dimensional space f . This results in O(n�(d−k+2)/2�)
candidate double-slabs, taking the same amount of time if 2 � k � d − 2, or
O(n log n) time if k = d − 1 or d. By iterating all 2 � k � d and all

(
n
k

) · (2k − 2)
pairs (Q2, Q3), we collect a total of O(nd+1) candidate double-slabs. We then
test each candidate double-slab if it encloses P by point location in A (Lemma 2)
in O(log n) time per each.

It remains to consider those double-slabs D = (h1, h2, h3, h4) of case (iii)
such that k = |P ∩h2|+ |P ∩h3| � d+1. In this case, observe that (h2, h3) is an
empty slab and its dual segment h�

2h
�
3 is a candidate stick defined in Sect. 3. (See

also Lemma 5.) Thus, we run the algorithm described in Sect. 3.1 to compute all
O(nd) candidate sticks and, for each candidate sticks s, we build a corresponding
double-slab that encloses P in O(log n) time by ray shooting queries on L and
U at u = π(s) ∈ R

d−1. So, we can handle this case in O(nd log n) time.
The algorithm described above takes O(nd+1 log n) time in total to compute

an optimal double-slab of case (iii). The most time-consuming part of the algo-
rithm is the case of k = d: for k = d, we collect O(n) candidates for each of O(nd)
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pairs (Q2, Q3) and spend O(nd+1 log n) time, including the feasibility test. The
other cases for 2 � k � d − 1 and for k � d + 1 take only O(nd log n) time in
total.

In order to improve the running time, remark that, when k = d, we reduce
the problem in R

d to an instance in R
2. In the following, we show that these

2-dimensional instances can be handled efficiently in a 3-dimensional instance.

Lemma 12. Let d = 3 and q2, q3 ∈ P be two fixed points. A minimum-width
double-slab D = (h1, h2, h3, h4) enclosing P such that w(h1, h2) = w(h3, h4),
q2 ∈ h2, q3 ∈ h3, and |P ∩ h2| + |P ∩ h3| = 3 can be computed in O(n2) time.

We exploit Lemma 12 as follows: For each pair (Q2, Q3) with |Q2| + |Q3| =
d−1, we apply Lemma 12. Then, it also handles the pairs (Q′

2, Q3) and (Q2, Q
′
3)

such that Q′
2 = Q2 ∪ {q} and Q′

3 = Q3 ∪ {q} for any point q ∈ P \ (Q2 ∪ Q3).
Hence, we can now handle those pairs including d points in bundles. Since we
spend only O(nd log n) time for the cases of 2 � k � d − 1, the final running
time is thus improved to O(nd+1).

Theorem 4. Given a set P of n points in R
d for any fixed d � 5, a minimum-

width double-slab enclosing P can be computed in O(nd+1) time.
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