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Abstract. Online Bin Stretching is a problem closely related to
Online Bin Packing and various scheduling problems. There is exten-
sive history of computer search being used to establish lower bounds
for this problem by identifying difficult sets of inputs. We demonstrate a
novel approach enabling the use of computer search for finding new algo-
rithms and therefore upper bounds for this problem. This not only leads
to improved results for Online Bin Stretching, but also shows that
computer search can be used to find new algorithms, even for problems
that might not appear suitable for this approach.
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1 Introduction

Online Bin Stretching, introduced by Azar and Regev [1], is a problem
somewhat similar to Online Bin Packing. We are given the number of bins
m and then a sequence of items with sizes between 0 and 1 arrives. Each item
must be assigned to one of the m bins before processing the next item. The goal
is to minimize the total load packed into the largest bin. Importantly, we are
assured that the entire input does fit into m bins of size at most 1. We measure
the performance of an algorithm by the worst-case load of the largest bin which
is known as the stretching factor.

Example: Let us consider the case m = 2. The first item that arrives can be
packed into the first bin without loss of generality. Suppose that first item is of
size 1/3 and the second item is also of size 1/3. If we pack the second item into
the first bin, two items of size 2/3 may then arrive, forcing the total load of the
largest bin to be at least 4/3. If we pack the second item into the second bin, an
item of size 1 may then arrive, forcing the total load of the largest bin to be at
least 4/3.

In the language of scheduling problems, Online Bin Stretching is a vari-
ant of Pm||Cmax where jobs must be assigned in an online manner but there are
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c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 241–253, 2024.
https://doi.org/10.1007/978-3-031-55598-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_16&domain=pdf
http://orcid.org/0000-0002-0058-3133
https://doi.org/10.1007/978-3-031-55598-5_16


242 M. Lieskovský

no release times and we know the optimal makespan of the instance in advance.
We will, however, stick to the original terminology of bins and items.

Since lower bounds for these problems typically consist of sets of inputs utiliz-
ing a finite number of item sizes, computer search for Online Bin Stretching
lower bounds has been successful via constraining the adversary to a finite set of
possible item sizes. This approach cannot be directly used for computing upper
bounds as the resulting algorithm must be able to pack items of arbitrary size,
which prevents both an upper bound on the number of distinct item sizes and on
the number of items. We demonstrate a novel approach that where we instead
limit the decision abilities of the potential algorithms and thus enable computer
search for Online Bin Stretching upper bounds.

1.1 Previous Results

See Fig. 1 for a graphical representation of the best known results.

Fig. 1. Best known results

Let us denote the optimal stretching factor for m bins as αm. Trivially,
α1 = 1. Kellerer et al. [7] showed that α2 = 4/3 < 1.334 by demonstrating
an algorithm using two bins of size 4/3 and a set of inputs such that any deter-
ministic algorithm packs at least 4/3 load into one of the bins for one of the
inputs. (See the example earlier.) They also proved that a similar set of inputs
exists for three bins and thus α3 ≥ 4/3 > 1.333. Azar and Regev [1] generalised
the lower bound further, proving that αm ≥ 4/3 > 1.333 for all m ≥ 2. They
also presented an algorithm proving αm ≤ 5m−1

3m+1 for m ∈ {3, 4, . . . , 21} and
αm ≤ 13/8 = 1.625 for all m.



Better Algorithms for Online Bin Stretching via Computer Search 243

The upper bounds have since been improved by multiple algorithms. Kellerer
and Kotov [8] proved αm ≤ 11/7 < 1.572 for all m, Gabay et al. [5] improved
that to αm ≤ 26/17 < 1.530 for all m, and the latest results are by Böhm et
al. [2] achieving α3 ≤ 11/8 = 1.375 and αm = 3/2 = 1.5 for all m ≥ 5.

Although no better lower bound for general m was found, there are results
for small values of m. Gabay et al. [4] introduced the idea of using computer
search to find new lower bounds, leveraging the fact that online problems can
be viewed as two-player games. This approach was then improved by Böhm
and Simon [3] who proved α3 ≥ 56/41 > 1.365 and αm ≥ 19/14 > 1.357 for
m ∈ {4, 5, 6, 7, 8}. Ongoing efforts to further improve these results have so far
yielded αm ≥ 15/11 > 1.363 for m ∈ {6, 7, 8} [9] with more results known to be
in preparation.

So far, computer search approaches for lower bounds constrain the possible
item sizes to the equally-spaced values 1/k, 2/k, . . . , 1 for some granularity k, and
then view the problem as a two player game where one player generates items
and the other assigns them to the m bins. This game has a finite branching factor
max(m, k) and length O(mk). Unfortunately, placing additional constraints on
the item-generating adversary is not permitted in the search for new algorithms.

1.2 Our Results

We modify the computer search approach so that it can be used for finding new
algorithms for small values of m. This yields new algorithms, improving upper
bounds on αm for m ∈ {4, 5, 6, 7, 8} significantly.

Number of bins 4 5 6 7 8

Previous upper bound 19/13 < 1.462 3/2 = 1.5 3/2 = 1.5 3/2 = 1.5 3/2 = 1.5

Our upper bound 39/28 31/22 20/14 16/11 19/13

(algorithm) < 1.393 < 1.410 < 1.429 < 1.455 < 1.462

Time needed (hours) 91 468 23 3.6 235

The computer search was done using a server with an Intel Xeon E5-2630 v3
CPU and 126 GB of RAM. The time complexity grows rapidly with increasing
m and granularity, but we do not believe that we have reached any fundamental
limit of this method.

For three bins, we found an upper bound of 91/66 < 1.379 with a run time
of 46 h. This is worse than the previous upper bound of 11/8 = 1.375 by Böhm
et al. [2] For m ≥ 9 we did not find any upper bound better than 3/2 = 1.5.
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2 Reductions Between Games

We view Online Bin Stretching as a game. The game is:

– deterministic
– 2-player – we call the players A (the adversary) and B (the algorithm)
– sequential – players alternate in taking turns with A going first
– partisan – A generates items and B assigns them to bins
– perfect information
– zero-sum – when the game ends, one player is the winner and the other is the

loser

When we talk about winning or losing the game, it will be from the point of
view of B. The following definitions are worded carefully since we shall need to
apply these methods to games with both unbounded branching and unbounded
number of turns.

We shall define a pair of functions, MG
A and MG

B , which will indicate the
possible moves. For example, MG

B (p) will return the set of positions to which B
can move from position p, always including loseG (letting B resign) and possibly
including winG (if B can claim victory).

We formally define the type of games we are interested in as follows.

Definition 2.1. Game G is a 7-tuple (PG
A , PG

B , initG, winG, loseG,MG
A ,MG

B )
where:

– PG
A is the set of all possible game positions where A is the next player to move

– PG
B is the set of all possible game positions where B is the next player to move

– initG ∈ PG
A is the initial position

– winG is the winning position where the game ends and B wins
– loseG is the losing position where the game ends and B loses
– MG

A : PG
A → P (

PG
B ∪ {winG, loseG})

indicates all possible moves of A
– MG

B : PG
B → P (

PG
A ∪ {winG, loseG})

indicates all possible moves of B
We further require that the following constraints hold:

– PG
A , PG

B , {winG} and {loseG} are disjoint sets
– ∀p ∈ PG

A : winG ∈ MG
A (p) – A can resign whenever it is their turn

– ∀p ∈ PG
B : loseG ∈ MG

B (p) – B can resign whenever it is their turn

When talking about positions, we are mostly interested in the case where
the next player to move is A. Since A can make the game of Online Bin
Stretching last for an unbounded number of turns, and an algorithm that can
always pack the next item is satisfactory, we are interested in non-losing rather
than winning positions. Therefore, we define the concept of losing positions as
follows by building up the set of losing positions iteratively.

Definition 2.2. Let G be a game. We define

– LG
0 = {loseG}
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– LG
n+1 = LG

n ∪ {a ∈ PG
A | (∃b ∈ MG

A (a))(∀c ∈ MG
B (b))(c ∈ LG

n )}
– LG =

⋃∞
i=0 LG

i . We then call LG the set of losing positions.

A position is non-losing if it is not losing and game G is non-losing if initG is
a non-losing position.

Our paper relies on the concept of reductions among games. We say that a game
G reduces to game H if we can translate the moves of the adversary from G to H
and then translate the algorithms response back from H to G in such a way, that
if the algorithm avoids losing H, then the same result is achieved in G.

Definition 2.3 (Reduction). For any two games G and H, we say that f :
PG

A ∪PG
B ∪{winG, loseG} → PH

A ∪PH
B ∪{winH , loseH} is a reduction from game

G to game H if it satisfies the following four conditions:

1. f(initG) = initH , f(winG) = winH , and f(loseG) = loseH

2. f(PG
A ) ⊆ PH

A and f(PG
B ) ⊆ PH

B
3. (∀a ∈ PG

A )(∀b ∈ MG
A (a))(f(b) ∈ MH

A (f(a)))
4. (∀b ∈ PG

B )(∀c′ ∈ MH
B (f(b)))(∃c ∈ MG

B (b))(f(c) = c′)

We also say that a reduction is computable if there exists an algorithm that
can find

– f(b) for any b ∈ PG
B

– c ∈ MG
B (b) such that f(c) = c′ for any b ∈ PG

B and any c′ ∈ PH
A (f(b))

Theorem 2.4. If f is a reduction from game G to game H, and H is non-
losing, then G is non-losing. Furthermore, if the reduction is computable and we
are given an algorithm for H, this gives an algorithm for G.

Proof. In order to prove that initG ∈ LG implies initH ∈ LH , we prove by
induction on n that (∀a ∈ PG

A )(∀n ∈ N)(a ∈ LG
n =⇒ f(a) ∈ LH

n ).
By Definition 2.2, LG

0 = {loseG} and LH
0 = {loseH}. By Condition 1,

f(loseG) = loseH . The basis of the induction thus holds.
For the induction step, suppose that a ∈ LG

n+1. We now need to prove that
f(a) ∈ LH

n+1. By definition of LG
n+1, either position a was already contained in

LG
n or there exists a position b ∈ MG

A (a) such that (∀c ∈ MG
B (b))(c ∈ LG

n ). In
the first case, f(a) ∈ LH

n by induction and LH
n ⊆ LH

n+1 by definition of LH
n+1.

In the latter case, let us take an arbitrary b ∈ MG
A (a) such that (∀c ∈

MG
B (b))(c ∈ LG

n ). We shall now prove that position f(b) in game H has properties
similar to those of position b in game G.

Condition 3 gives us f(b) ∈ MH
A (f(a)). Condition 4 ensures that (∀c′ ∈

MH
B (f(b)))(∃c ∈ MG

B (b))(f(c) = c′). By induction we already know that (∀c ∈
MG

B (b))(f(c) ∈ LH
n ), giving us (∀c′ ∈ MH

B (f(b)))(c′ ∈ LH
n ) and thus f(a) ∈

LH
n+1.

Now that we know that a ∈ LG
n+1 implies f(a) ∈ LH

n+1, we simply observe
that if G is losing, then initG is in some LG

n which implies that initH is in LH
n

and thus H is losing.
The resulting algorithm will, when in position b ∈ PG

B , find f(b), observe to
which position c′ ∈ PH

A (f(b)) the algorithm for H moves from f(b), and move
to a position c ∈ MG

B (b) such that f(c) = c′.
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3 Defining the Games Formally

We view Online Bin Stretching as a game between two players, A and B.
Let us first introduce a version that represents Online Bin Stretching the
most directly. For a given number of bins m and target stretching factor α, we
call this game Real Game(m,α) and it proceeds as follows:

In every round, A either generates an item or resigns. B must then place into
one of the m bins or resign. We keep track of the sequence s of items generated
by A, and their packing t into the bins by B. We restrict A to sequences that
can be packed into m bins of size 1 and B to packings where no bin exceeds load
α, forcing them to resign if they have no other choice.

Definition 3.1 (Real Game). We define Real Game(m,α) as the game G
with the following components:

– each position in PG
A \ {initG} is an ordered triple (n, s, t) where

• n ∈ N is the number of already packed items
• s ∈ (0, 1]n is a sequence of n items that can be packed into m bins of size

at most 1
• t ∈ {1, . . . , m}n such that (∀i)(

∑
j:tj=α sj ≤ 1), which is a packing of

those n items into m bins of size at most α
– each position in PG

B is an ordered triple (n, s, t) where
• n ∈ N is the number of already packed items
• s ∈ (0, 1]n+1 is a sequence of n + 1 items that can be packed into m bins

of size at most 1
• t ∈ {1, . . . , m}n is a packing of the first n items into m bins of size at
most α

– For any position (n, s, t) ∈ PG
A \{initG} the set MG

A ((n, s, t)) of possible moves
by A contains:

• positions (n, (s1, . . . , sn, s′), t) for all s′ ∈ (0, 1] such that the position is
in PG

B
• winG

– The set MG
A (initG) of possible moves by A contains:

• positions (0, (s1), ∅) for all s1 ∈ (0, 1]
• winG

– For any position (n, s, t) ∈ PG
B the set MG

B ((n, s, t)) of possible moves by B
contains:

• positions (n + 1, s, (t0, . . . , tn, t′)) for all t′ ∈ {1, . . . , m} such that the
position is in PG

A
• loseG

Theorem 3.2. An algorithm for Online Bin Stretching with m bins and
stretching factor α exists if a non-losing Real Game strategy exists for B.
Proof. Consider any finite input for Online Bin Stretching. If we have A
play according to the input and the algorithm plays according to B, then at the
end of input no bin exceeds size α.
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There are several main obstacles to implementing a computer search of Real
Game:

1. A has an infinite selection of item sizes to pick from.
2. By sending arbitrarily small items, A can make Real Game last arbitrarily

many rounds.
3. Computing the maximum size of item A can generate in a given position

requires solving Bin Packing Problem, which is NP-hard.

In order to avoid these problems, we analyse a simplified version of Real
Game that we shall call Rounded Game. We then construct a computable
reduction from Real Game to Rounded Game, proving that a winning strat-
egy for B in Rounded Game implies an algorithm for Online Bin Stretch-
ing. We do this by defining Rounded Game such that it corresponds to Online
Bin Stretching where B is restricted in its decision-making process and A is
permitted to cheat to a limited extent.

In essence, A only informs B about the item sizes and bin loads after rounding
them. A is then allowed to modify the real values afterwards as long as they
remain consistent with what B was told. The branching factor of the game is
thus reduced to the granularity of the rounding. This makes it possible to analyse
Rounded Game using computer search at the price of a lack of a winning
strategy for B no longer resulting in new lower bounds. Perhaps surprisingly,
these modifications do not prevent us from finding new algorithms for Online
Bin Stretching. We shall now first describe and define Rounded Game,
then explain the connection to Real Game and finally describe the reduction
between them.

An instance of Rounded Game is parameterised by three values—the num-
ber of bins m, the granularity level k and the target bin size z. In every round of
Rounded Game(m, k, z), A generates an item of integer size x which B must
then place into one of the m bins. Finally, A chooses whether the load of that
bin increased by x or x − 1. We call the latter case an underflow. We keep track
of the current loads of the individual bins, not letting any exceed z, and of the
multiset of item sizes we have seen so far. B may claim victory when the total
load of the bins exceeds m(k + 1) − 1 or, after decreasing the size of each item
by 1, the items do not fit into m bins of size k − 1. We define these promises
formally below as (A) and (B) and will refer to them later. Finally, B must resign
if it cannot claim victory and an item cannot be packed without a bin exceeding
load z.

Definition 3.3 (Rounded Game). We define Rounded Game(m, k, z) as
the game H with components as follows:

– Each position in PH
A \ {initH} is an ordered triple (v, w, u) where

• v is a multiset of integers from {1, . . . , k} representing item sizes
• w ∈ {0, . . . , z}m is an m-tuple representing the current loads of the indi-
vidual bins

• u ∈ {1, . . . , m} represents the index of the bin the last item was placed
into
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– Each position in PH
B is an ordered triple (v, w, x) where

• v and w are the same as for PH
A

• x ∈ v is the size of the last generated (and not yet packed) item
– For any position (v, w, u) ∈ PH

A \ {initH} the set MH
A ((v, w, u)) of possible

moves by A contains:
• positions (v∪{x}, w′, x) for all x ∈ {1, . . . , k} such that w′

u ∈ {wu, wu−1}
and w′

i = wi for all i �= u, and the position is in PH
B

• winH

– The set MH
A (initH) of possible moves by A contains:

• positions ({x}, (0, . . . , 0), x) for all x ∈ {1, . . . , k} such that the position
is in PH

B
• winH

– For any position (v, w, x) ∈ PH
B the set MH

B ((v, w, x)) of possible moves by B
contains:

• positions (v, w′, u) for all u ∈ {1, . . . , m} such that w′
u = wu + x and

w′
i = wi for all i �= u, and the position is in PH

A
• loseH

• winH if either of the following two promises is broken:
(A) the total load of the bins

∑
i∈{1,...,m} wi is at most m(k + 1) − 1

(B) after decreasing the size of each item by 1, the items fit into m bins
of size k − 1

We now need to find a reduction from Real Game to Rounded Game.
Consider how we could modify Real Game to make it possible to solve via
computer search. Since we cannot restrict the items A has at their disposal to
a finite number of types, we instead restrict information B has about the game
state. We scale the problem to avoid working with fractional values, selecting a
granularity k ∈ N and target bin size z ∈ N, which will allow us to analyse Real
Game with stretching factor α = z/k.

We now provide B with item sizes and bin loads which have been rounded
by function round(x) = kx� instead of their real loads. Due to the uncertainty
about the real sizes, placing an item of rounded size x into a bin of rounded load
y might result in the new rounded load being merely x + y − 1 instead of x + y.
We call this effect an underflow. In order to ensure we do not restrict A, we let
A decide whether that has happened on their following turn.

The game ends with B losing whenever the rounded load of any bin exceeds z
as this corresponds to that bin having a real load higher than z/k. On the other
hand, B gets the option to claim victory when one of the promises defined above
is broken, as this implies that A is cheating in Real Game. Breaking promise
(A) means that the real total size of all items exceeds m, which is not possible
in Real Game. Since round(x) − 1 < kx, breaking promise (B) means that the
real items cannot be packed into m bins of size 1, which is also not possible in
Real Game.

Definition 3.4. With the above in mind, we define round(x) = kx� and con-
struct the reduction f from G to H where G is Real Game(m, z/k) and H is
Rounded Game(m, k, z) as follows:
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– f(initG) = initH , f(winG) = winH , and f(loseG) = loseH

– For any (n, s, t) ∈ PG
A \ {initG} we define f((n, s, t)) = (v, w, u) where:

• v is the multiset {round(s1), . . . , round(sn)}
• u = tn
• wu = min(z, round(

∑
j:tj=u∧j �=n sj) + round(sn))

• wi = round(
∑

j:tj=i sj) for i �= u

– For any (n, s, t) ∈ PG
B we define f((n, s, t)) = (v, w, x) where:

• v is the multiset {round(s1), . . . , round(sn)}
• x = round(sn+1)
• wi = round(

∑
j:tj=i sj) for all i

Lemma 3.5. For any position a = (n, (s1, . . . , sn), t) ∈ PG
A \ {initG} and any

successor position (n, (s1, . . . , sn, s′), t) ∈ MG
A (a) \ {winG}, let u = tn, wu =

min(z, round(
∑

j:tj=u∧j �=n sj)+round(sn)), and w′
u = round(

∑
j:tj=u sj). Then

w′
u ∈ {wu, wu − 1}.

Proof. First, observe that round(
∑

j:tj=u∧j �=n sj) + round(sn) is equal to either
round(

∑
j:tj=u sj) or round(

∑
j:tj=u sj)+1. This proves the lemma for all cases

where round(
∑

j:tj=u∧j �=n sj) + round(sn) ≤ z. Since
∑

j:tj=u sj is at most z/k,
round(

∑
j:tj=u sj) must be at most z, and therefore round(

∑
j:tj=u∧j �=n sj) +

round(sn) is z + 1 only if round(
∑

j:tj=u sj) is z.

Theorem 3.6. The function f , as defined by Definition 3.4, is indeed a reduc-
tion from Real Game(m, z/k) to Rounded Game(m, k, z). Furthermore, this
reduction is computable and any algorithm for Rounded Game(m, k, z) thus
gives an algorithm for Real Game(m, z/k).

Proof. Let us go over the conditions from Definition 2.3.
Condition 1 obviously holds.
Condition 2:

– All round(si) are in {1, . . . , k} as all items in Real Game are of size ≤ 1.
Thus {round(s1), . . . , round(sn)} is a multiset of integers from {1, . . . , k}.

– Since
∑

j:tj=u sj is at most z/k, min(z, round(
∑

j:tj=u∧j �=n sj) + round(sn))
and round(

∑
j:tj=i sj) are always in {0, . . . , z}.

– tn is always in {1, . . . , m}.

Condition 3:

– Let us consider a move from a ∈ PG
A to b ∈ MG

A (a).
– The condition obviously holds whenever b = winG.
– If a = initG, then:

• f(a) is initH .
• Any b ∈ MG

A (initG) \ {winG} is (0, (s1), ∅) for some s1 ∈ (0, 1].
• f(b) is ({round(s1)}, (0, . . . , 0), round(s1)).
• Since round(s1) ∈ {1, . . . , k}, we get f(b) ∈ MH

A (f(a)).
– If a is some (n, (s1, . . . , sn), t) from the set PG

A \ {initG}, then:
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• f(a) is ({round(s1), . . . , round(sn)}, w, u)
• Any position b from MG

A (a)\{winG} is (n+1, (s1, . . . , sn, s′), t) for some
s′ ∈ (0, 1].

• f(b) is ({round(s1), . . . , round(sn), round(s′)}, w′, round(s′)) where
w′

i = wi for all i �= u and, by Lemma 3.5, w′
u ∈ {wu, wu − 1}.

• Since round(s′) ∈ {1, . . . , k}, we get f(b) ∈ MH
A (f(a)).

Condition 4:

– Let us consider some b ∈ PG
B and c′ ∈ MH

B (f(b)).
– The condition obviously holds whenever c′ = loseG.
– Since neither of the two promises is ever broken in state f(b), there are no

moves from any f(b) to winG.
– If b = (n, (s1, . . . , sn, sn+1), ()), then

• f(b) = ({round(s1), . . . , round(sn+1)}, w, round(sn+1)).
• Any position c′ ∈ MH

B (f(b)) is either contained in {winG, loseG} or is
({round(s1), . . . , round(sn+1)}, w′, u) for some u ∈ {1, . . . , m}, where:

* By definition of f(b), wi = round(
∑

j:tj=i sj) ≤ z for all i.
* By definition of MH

B (f(b)), w′
i = wi ≤ z for all i �= u and w′

u =
wu + round(sn+1) ≤ z.

• For any c′ ∈ MH
B (f(b)), since w′

i ≤ z, we know that
∑

j:tj=i sj ≤ z/k for
all i and thus c = (n + 1, (s1, . . . , sn, sn+1), (, u)) is in MG

B (b).

We also observe that f(a) is easily computable for any position a and MG
B (b) is

easily computable for any b ∈ PG
B , making the entire reduction computable.

In order to analyse the game using computer search, we employ some fur-
ther modifications of the game, which will be described in the following section.
However, those modifications are much simpler.

4 Computer Search

Let us first describe the simple modifications of the game that we use to make
the computer search easier.

Rounded Game still has an infinite number of states due to not placing
any limit on the number of items of rounded size 1 as long as almost all of them
underflow. To avoid this problem, we do not include items of size 1 in v, thus
ensuring that the number of positions is finite. This is obviously a reduction as
items of size 1 never affect the set of possible moves. However, this reduction
causes the game to include cycles among the states, caused by adding an item
of rounded size 1 and then having it underflow.

In order to prevent these cycles, we forbid A from making the move from
any (v, w, u) to (v, w′, 1) where w′

u = wu − 1. While this is not a reduction, we
can observe that if A has a winning strategy, then A also has a winning strategy
that never makes such a move. This is because B can pack the new item of size 1
into bin u, returning the game to position (v, w, u). We are now guaranteed that
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the sum of wi is strictly increasing with every pair of successive moves, ensuring
that the game takes at most O(mk) moves.

The computer search uses special game positions which occur after A chooses
whether an underflow occurred and before they select the size of the next item.
This is because such positions are completely described by the multiset of items
and the m-tuple of current loads, minimizing the number of positions to analyse.
Instead of forbidding, as per the previous paragraph, the generation of an item
of rounded size 1 after an underflow, we can now forbid the underflowing of items
of size 1 with very similar reasoning.

We can now describe the basic version of our computer program, which
searches for a strategy that would allow B to win Rounded Game(m, k, z)
where m, k and z are, for the purposes of the program, global constants. We
have two helper functions:

– Check takes a multiset of item sizes and checks whether promise (B) was
broken

– Add takes (w, x, u) and returns a copy of w with wu increased by x

The program is then a straightforward application of the MiniMax algorithm
first described by von Neumann [11]. Ultimately, if our search returns True
for the initial game state, the whole Rounded Game is winnable for B, an
algorithm for Online Bin Stretching corresponding to the winning strategy
exists and therefore αm ≤ s/k.

5 Optimizations

We observe that permuting the bins does not affect the game significantly. We
thus have the helper function Add sort the bins by their load, decreasing the
number of states. This is trivially a reduction. By sorting the bins in decreasing
order, the search tries BestFit first, further improving overall computation
time.

We implemented custom caching of results for Solve. Since caching for all
possible game states used too much memory, we made use of the fact that, for
a given game state, we can often find either a less favourable game state that
we managed to win previously or a more favourable game state that we could
not win. LRU caching was tried and was clearly inferior when compared to the
following custom caching approach.

Definition 5.1 (Order on v). We define v1 � v2 to be true if the items from
v1 can fit into bins with sizes corresponding to the items in v2 after decreasing
all rounded sizes in both multisets by 1.

Theorem 5.2. If v1 � v2, then Solve(v1, w) implies Solve(v2, w)

Proof. If v1 � v2, then v1 ∪ v′ breaking promise (B) implies v2 ∪ v′ breaking
promise (B) for any multiset of items v′. Otherwise we could pack items of v1
into the spaces occupied by the items of v2, showing that v1 ∪ v′ does not break
promise (B) after all.
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Algorithm 1. Computer search for a winning strategy for Rounded Game

1: function Solve(v, w) � Return True iff position is winnable.
2: remaining = m(k + 1) − ∑

(wi) − 1 � This ensures promise (A).
3: if remaining + min(w) < z then return True � Put all into emptiest bin.
4: end if
5:
6: limit = min(remaining, k) � Upper bound on largest item that does not let B

win.
7:
8: for item ∈ {1, . . . , limit} do � If there exists an item size...
9: v′ = v ∪ {item}

10: result = False
11: for bin ∈ {1, . . . , m} do � ...which cannot be packed into any bin...
12: w′ = Add(w, item, bin)
13: w′′ = Add(w, item − 1, bin)
14: if Solve(v′, w′) ∧ (item == 1 ∨ Solve(v′, w′′)) then
15: result = True
16: break
17: end if
18: end for
19: if not result and not Check(v) then � ...and B cannot claim victory...
20: return False � ...then declare this position lost.
21: end if
22: end for
23: return True
24: end function

For any given w, we now store only the set of minimal v for which Solve(v, w)
is True and the set of maximal v for which Solve(v, w) is False. When evaluating
Solve(v, w), we query the cache for that w, checking if there is any v′ � v for
which we know Solve(v′, w) to be True, or there is any v′′ � v for which we
know Solve(v′, w) to be False. This is done after line 4 of the algorithm. If the
position needs to be evaluated further, we add v to the relevant cache before
returning the result and remove any v′ made redundant by it.

The comparisons between v are implemented by generalising the function
Check. Indeed, the original use of Check corresponds to comparing v to m
items of rounded size k.

The (now generalised) helper function Check is relatively computation-
ally intensive. We preprocess the input to remove some easy cases and then
use dynamic programming, which proved faster than using an ILP. Results are
cached to avoid repeated computation.

As a final optimisation, the program stores all rounded sizes already
decreased by 1 to simplify some formulae and avoid off-by-one errors.

These optimizations are how we achieved our results. The code is available
on Github [10].
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6 Conclusions

We found new algorithms for Online Bin Stretching on 4, 5, 6, 7 and 8 bins.
Perhaps surprisingly, these new algorithms were found using discrete computer
search, despite the problem inherently using real-valued input. This was possible
thanks to a reduction from a game with infinite depth and branching factor to
a game with both depth and branching factor being O(mk) where m is the
number of bins and k is our chosen granularity. We expect that these techniques
will prove to be useful for other similar problems.

Acknowledgements. We would like to thank Martin Böhm for consultation and the
reviewers for their valuable feedback.
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