
Faster Combinatorial k-Clique Algorithms

Amir Abboud, Nick Fischer, and Yarin Shechter(B)

Weizmann Institute of Science, Rehovot, Israel
{amir.abboud,nick.fischer,yarin.shechter}@weizmann.ac.il

Abstract. Detecting if a graph contains a k-Clique is one of the most
fundamental problems in computer science. The asymptotically fastest
algorithm runs in time O(nωk/3), where ω is the exponent of Boolean
matrix multiplication. To date, this is the only technique capable of
beating the trivial O(nk) bound by a polynomial factor. Due to this tech-
nique’s various limitations, much effort has gone into designing “combi-
natorial” algorithms that improve over exhaustive search via other tech-
niques.

The first contribution of this work is a faster combinatorial algorithm
for k-Clique, improving Vassilevska’s bound of O(nk/ logk−1 n) by two
log factors. Technically, our main result is a new reduction from k-Clique
to Triangle detection that exploits the same divide-and-conquer at the
core of recent combinatorial algorithms by Chan (SODA’15) and Yu
(ICALP’15).

Our second contribution is exploiting combinatorial techniques to
improve the state-of-the-art (even of non-combinatorial algorithms) for
generalizations of the k-Clique problem. In particular, we give the first
o(nk) algorithm for k-clique in hypergraphs and an O(n3/ log2.25 n + t)
algorithm for listing t triangles in a graph.

1 Introduction

One of the most fundamental problems in computer science is k-Clique: given
an n-node graph, decide if there are k nodes that form a clique, i.e. that have
all the

(
k
2

)
edges between them. Our interest is in the case where 3 ≤ k � n

is a small constant. This is the “SAT of parameterized complexity” being the
canonical problem of the W[1] class of “fixed parameter intractable” problems,
and its basic nature makes it a core task in countless applications where we seek
a small sub-structure defined by pairwise relations.

The naïve algorithm checks all subsets of k nodes and runs in O(k2
(
n
k

)
) time,

which is Θ(nk) for constant k. Whether and how this bound can be beaten (in
terms of worst-case asymptotic time complexity) is a quintessential form of the
question: can we beat exhaustive search?

This work is part of the project CONJEXITY that has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon Europe research
and innovation programme (grant agreement No. 101078482). The first author is addi-
tionally supported by an Alon scholarship and a research grant from the Center for
New Scientists at the Weizmann Institute of Science.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 193–206, 2024.
https://doi.org/10.1007/978-3-031-55598-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_13

194 A. Abboud et al.

The asymptotically fastest algorithms gain a speedup by exploiting fast
matrix multiplication – one of the most powerful techniques for beating exhaus-
tive search. In particular, for the important special case of k = 3, i.e. the Triangle
Detection problem, the running time is O(nω) where 2 ≤ ω < 2.3719 [23] is the
exponent in the time complexity of multiplying two n × n binary matrices.1 For
larger k > 3, there is a reduction to the k = 3 case by Nešetřil and Poljak [31]
that produces graphs of size O(n�k/3�).2 The resulting time bound is O(n�ωk/3�).
Except for improvements for k that is not a multiple of 3 [24], and the develop-
ments in fast matrix multiplication algorithms reducing the value of ω over the
years, this classical algorithm remains the state-of-the-art.

The one general technique underlying all fast matrix multiplication, starting
with Strassen’s algorithm [34], is to find some clever formula to exploit cancella-
tions in order to replace multiplications with additions. To date, this is the only
technique capable of beating exhaustive search by a polynomial nε factor for the
k-Clique problem. All techniques have their limitations, and so does Strassen’s;
we defer a detailed discussion on this to the full paper due to space constraints.
Consequently, much research has gone into finding “combinatorial algorithms”
that beat exhaustive search by other techniques. Existing techniques have only
led to polylogarithmic speedups, leading the community to the following conjec-
tures that have become the basis for many conditional lower bounds.

Conjecture 1 (Combinatorial BMM). Combinatorial algorithms cannot
solve Triangle Detection in time O(n3−ε) where ε > 0.3

A reduction of Vassilevska and Williams [37] shows that this conjecture is
equivalent to the classical conjecture that combinatorial algorithms cannot solve
Boolean Matrix Multiplication (BMM) in truly subcubic time [28,33]. Following
their reduction, many conditional lower bounds were based on this conjecture,
e.g. [5,16,19,21] (we refer to the survey [36] for a longer list).

Conjecture 2 (Combinatorial k-Clique). Combinatorial algorithms cannot
solve k-Clique in time O(nk−ε) for any k ≥ 3 and ε > 0.

The latter conjecture is stronger than the former, in the sense that faster
algorithms for k = 3 imply faster algorithms for larger k > 3 but the converse
is not known. The first use of this conjecture as a basis for conditional lower
bounds was by Chan [17] to prove an nk−o(1) lower bound for a problem in
computational geometry. Later, Abboud, Backurs, and Vassilevska Williams [2]
used it to prove n3−o(1) lower bounds in P. Several other papers have used it
since then, e.g. [1,4,9,11–14,20,22,26,29].

1 Simply compute A2 where A is the adjacency matrix of the graph and check if
A2[i, j] > 0 for any {i, j} that are an edge.

2 Each k/3-clique becomes a node and edges are defined in a natural way so that a
triangle corresponds to a k-clique.

3 Note the informality in these combinatorial conjectures stemming from the lack
of precise definition for “combinatorial” in this context. See full paper for further
discussion.

Faster Combinatorial k-Clique 195

Previous Combinatorial Bounds. The previous bounds for Triangle detec-
tion (k = 3) fall under three conceptual techniques (see full paper for more
details). We will omit (log log n) factors in this paragraph.

1. The Four-Russians technique [6] from 1970 gives an O(n3/ log2 n) bound, and
is used in all later developments.

2. In 2010, Bansal and Williams [7] use pseudoregular partitions to shave off an
additional log1/4 n factor.

3. In 2014, Chan [18] introduced a simple divide-and-conquer technique to get
an O(n3/ log3 n) bound, and a year later, Yu [38] optimized this technique to
achieve a bound of O(n3/ log4 n).

For k > 3 there are two options: (1) we either apply these algorithms inside
the aforementioned reduction to Triangle, getting a bound of O(nk/ log4 n), or
(2) we apply these combinatorial techniques directly to k-Clique. An early work
of Vassilevska [35] from 2009 applied the Four-Russians technique directly to
get an O(nk/ logk−1) bound. Note that this generalizes the log2 shaving from
the first bullet naturally to all k, and is favorable to the algorithms from option
(1) for k > 5. Vassilevska’s bound remains state-of-the-art, and in this work,
we address the challenge of generalizing the other combinatorial techniques to
k-Clique.

1.1 Our Results

The first result of this paper is a faster combinatorial algorithm for k-Clique for
all k > 3 based on a generalization of the divide-and-conquer technique from
Chan’s and Yu’s algorithms for k = 3. We use divide-and-conquer to design a
more efficient reduction from k-Clique to the k = 3 case. The main feature of this
reduction is that we get an additional log factor shaving each time k increases by
one; this should be contrasted with the classical reduction from option(1) above,
in which we gain nothing when k grows.

Theorem 1 (Reduction from k-Clique to Triangle). Let k ≥ 3, and let
a, b be reals such that there is a combinatorial triangle detection algorithm run-
ning in time O(n3(log n)a(log log n)b). Then there is a combinatorial k-clique
detection algorithm in time O(nk(log n)a−(k−3)(log logn)b+k−3).

Combining our reduction with Yu’s state-of-the-art combinatorial algorithm
for Triangle detection, we improve Vassilevska’s bound by two log factors.

Corollary 1 (Faster Combinatorial k-Clique Detection). There is a k-
clique detection algorithm running in time O(nk(log n)−(k+1)(log log n)k+3).

It may be interesting to note that our reduction can even be combined with
the naïve O(n3) algorithm for Triangle detection, giving a (log n)k−3 shaving for
k-Clique without using the Four-Russians technique.

196 A. Abboud et al.

Another interesting implication of our reduction is concerning the framework
of Bansal and Williams’ [7]. Their algorithm can be improved if better dependen-
cies for regularity/triangle removal lemmas are achieved. The best known upper
bound on f(ε) in a triangle removal lemma is of the form c

(log∗(1/ε))δ for some
constants c > 1 and δ > 0.4. Due to this dependency, their first algorithm [7,
Theorem 2.1] only shaves a log∗(n) factor from the running times achieved with
the standard Four-Russians technique. However, it is not ruled out that much
better dependencies can be achieved that would accelerate their algorithm to
the point where, combined with our reduction, a k-clique algorithm with faster
running times than Corollary 1 is obtained.5

A primary reason to seek combinatorial algorithms for k-Clique is that
the techniques may generalize in ways fast matrix multiplication cannot (see
full paper for detailed discussion). Our second set of results exhibits this phe-
nomenon by shaving logarithmic factors over state-of-the-art for general (non-
combinatorial) algorithms.

One limitation of the O(nω) algorithm for Triangle detection is that it does
not solve the Triangle listing problem: we cannot specify a parameter t and get all
triangles in the graph in time O(nω+t) assuming their number is up to t. Listing
triangles in an input graph is not only a natural problem, but it is also connected
to the fundamental 3SUM problem (given n numbers, decide if there are three
that sum to zero). A reduction from 3SUM [27,32] shows that in order to beat
the longstanding O(n2/ log2 n) bound over integers [8] it is enough to shave
a log6+ε n factor for Triangle listing – i.e., achieve a running time of O(n3

log6+ε n
+t)

for some ε > 0. Although research has seen some results on triangle listing [10],
we are not aware of any previous o(n3)+O(t) time bound for this problem (even
with non-combinatorial techniques). Our second result produces such a time
bound, showing that the other combinatorial techniques (namely Four-Russians
and regularity lemmas) can be exploited. We shave a log2.25 n factor for this
problem, generalizing the Bansal-Williams bound for BMM. Note we use the
non-standard notation Õ̃(n) = n(log log n)O(1) to suppress polyloglog factors.

Theorem 2 (Faster Triangle Listing). There is a randomized combinatorial
algorithm that lists up to t triangles in a given graph in time Õ̃(n3

(log n)2.25 + t),
and succeeds with probability 1 − n−100.

Another well-known limitation of Strassen-like techniques is that they are
ineffective for detecting hypergraph cliques. They fail to give any speedup even
for the first generalization in this direction: detecting a 4-clique in a 3-uniform
hypergraph (i.e. a hypergraph where each hyper-edge is a set of three nodes). We
are not aware of any non-trivial o(n4) algorithm for this problem (even with non-
combinatorial techniques). The conjecture that O(n4−ε) time cannot be achieved

4 Fox achieved some improved dependencies with a new proof of the removal
lemma [25], however, it is not clear whether it can be implemented efficiently.

5 Note that the same cannot be said about their second algorithm [7, Theorem 2.1];
see the lower bound for pseudoregular partitions due to Lovasz and Szegedy [30]).

Faster Combinatorial k-Clique 197

has been used to prove conditional lower bounds, e.g. [15,29]. Our third result
is a log1.5 n factor shaving for this problem. The following theorem provides our
general bound and strengthens the result for listing (detection can be obtained
by setting t = 1).

Theorem 3 (Faster k-Hyperclique Listing). There is an algorithm for list-
ing up to t k-hypercliques in an r-uniform hypergraph in time

O

(
nk

(log n)
k−1
r−1

+ t

)

(assuming a word RAM model with word size w = Ω(log n)).

Subsequent Work. Shortly after this work, Abboud, Fischer, Kelly, Lovett, and
Meka announced a combinatorial algorithm for BMM with O(n3

2(log n)ε) running
time [3]. This implies an improvement for k-Clique as well that is stronger than
any poly-log speedup and thus improves over Corollary 1 (by using pseudo-
regularity techniques rather than divide-and-conquer). Moreover, building on
our proof of Theorem 2 the authors present a speedup for triangle listing as
well. However, our result for hypergraphs in Theorem 3 remains unbeaten.

1.2 Outline

We start with some preliminaries in Sect. 2. In Sect. 3 we provide our improved
combinatorial k-Clique algorithm. In Sects. 4 and 5 we provide the high-level
ideas of our improvements for Triangle Listing and k-Hyperclique Detection;
due to space constraints we are forced to defer the technical details to the the
full paper.

2 Preliminaries

Let [n] := {1, . . . , n}. We write Õ(n) = n(log n)O(1) to suppress polylogarithmic
factors and use the non-standard notation Õ̃(n) = n(log log n)O(1).

Throughout we consider undirected, unweighted graphs. In the k-clique prob-
lem, we are given a k-partite graph (V1, . . . , Vk, E) and the goal is to determine
whether there exist k vertices v1 ∈ V1, . . . , vk ∈ Vk such that there is an edge
(vi, vj) ∈ E for every pair i �= j. Note that the assumption that the input
graphs are k-partite is without loss of generality, and can be achieved by a triv-
ial transformation of any non-k-partite graph G = (V,E): We create k copies
V1, . . . , Vk of the vertex set and for every (u, v) ∈ E we add the edges (ui, vj)
for every i �= j. Another typical relaxation is that we only design an algorithm
that detect the presence of k-cliques (without actually returning one). It is easy

198 A. Abboud et al.

to transform a detection algorithm into a finding algorithm using binary search
without asymptotic overhead.6

We additionally define the following notation for a k-partite graph as before:
For a vertex v, let Ni(v) = {u ∈ Vi : (v, u) ∈ E} denote the neighbourhood of
v in Vi and di(v) = |Ni(v)| denote the degree of v in Vi. Moreover, for a vertex
set V ′ ⊆ V we let G[V ′] denote the subgraph of G induced by the vertex set
V ′. Throughout we further let n = |V1| + · · · + |Vk| denote the total number of
vertices in the graph.

An r-uniform hypergraph is a pair (V,E), where V is a vertex set and E ⊆(
V
r

)
is a set of hyperedges. In the r-uniform k-hyperclique problem we need to

decide whether in a k-partite hypergraph (V1, . . . , Vk, E) there are vertices v1 ∈
V1, . . . , vk ∈ Vk such that all hyperedges on {v1, . . . , vk} are present. Similarly,
the assumption that the hypergraph is a k-partite is without loss of generality.

We are using the standard word RAM model with word size w ∈ Θ log(n). In
this model a random-access machine can perform arithmetic and bitwise opera-
tions on w-bit words in constant time.

3 Combinatorial Log-Shaves for k-Clique

In this section we provide our improved algorithmic reduction from k-clique to
triangle detection (see Theorem 1). In our core we follow a divide-and-conquer
approach for k-clique reminiscent to Chan’s algorithm for triangle detection [18]
with a simple analysis. We start with the following observation:

Observation 1 (Trivial Reduction from k-Clique to (k−1)-Clique). Let
k ≥ 4, let f(n) be a nondecreasing function, and assume that there is a combi-
natorial (k − 1)-clique detection algorithm running in time O(nk−1/f(n)). Then
there is a combinatorial k-clique detection algorithm running in time

O

(
∑

v∈V1

d2(v) · · · · · dk(v)
f(min{d2(v), . . . , dk(v)})

)

.

Proof. The algorithm is simple: For each vertex v ∈ V1, we construct the sub-
graph Gv = G[N2(v) ∪ · · · ∪ Nk(v)] consisting of all neighbors of v and test
whether Gv contains a (k − 1)-clique. Let nv = d2(v) + · · · + dk(v) denote the
number of vertices in Gv. Our intention is to use the efficient (k − 1)-clique
algorithm—however, simply running the algorithm in time O(nk

v/f(nv)) is pos-
sibly too slow. Instead, we partition each of the k − 1 vertex parts in Gv into

6 More specifically, any detection algorithm can be transformed into a finding algo-
rithm with constant running time overhead by using binary search as follows: Arbi-
trarily split each of the k vertex parts into two halves. Then for each subgraph
induced by one of the 2k combination of halves whether it contains a k-clique. If
the detection algorithm succeeds on some combination, we continue on this combi-
nation recursively. For any natural running time the recursive overhead becomes a
geometric sum and thus is constant.

Faster Combinatorial k-Clique 199

blocks of size dv := min{d2(v), . . . , dk(v)} (plus one final block of smaller size,
respectively). Then, for each combination of k − 1 blocks, we use the efficient
(k − 1)-clique detection algorithm. It is clear that the algorithm is correct, since
we exhaustively test every tuple (v1, v2, . . . , vk). For the running time, note that
testing whether Gv contains a k-clique takes time

⌈
d2(v)
dv

⌉
· · · · ·

⌈
dk(v)
dv

⌉
· O

(
(dv)k−1

f(dv)

)
= O

(
d2(v) · · · · · dk(v)

f(min{d2(v), . . . , dk(v)})
)

,

and thus the total running time is indeed

O

(
∑

v∈V1

d2(v) · · · · · dk(v)
f(min{d2(v), . . . , dk(v)})

)

(possibly after preprocessing the graph in time O(n2) to allow for constant-time
edge queries. Note that this also covers the cost of constructing Gv for every
v ∈ V1). 	

Before moving to the formal proof of Theorem 1, let us give a simplified high-
level description of this algorithmic reduction in the specific case of 4-clique. For a
given 4-partite graph (V1, V2, V3, V4), the core idea is the following: If the degrees
in V1 tend to be small, i.e. if for every v ∈ V1 we have d2(v)·d3(v)·d4(v) ≤ α·|V2|·
|V3|·|V4| for some fraction α ≈ 1

log n , then we can apply Observation 1. Otherwise,
there is a heavy vertex v ∈ V1 with d2(v) ·d3(v) ·d4(v) > α · |V2| · |V3| · |V4|. In this
case, we will check every triplet of the form (u,w, z) ∈ N2(v) × N3(v) × N4(v).
If any of these triplets form a triangle, we have detected a 4-clique. Otherwise,
we have learned that no triplet in N2(v) × N3(v) × N4(v) is part of a 4-clique.
We will therefore recurse in such a way that ensures we never test these triplets
again and thereby make sufficient progress.

Proof. Assume that there is a combinatorial triangle detection algorithm which
runs in time O(n3(log n)a(log log n)b). We prove the claim by induction on k.
The base case (k = 3) is immediate by the assumption there exists a triangle
detection algorithm running in time O(n3(log n)a(log log n)b).

For the inductive step, consider the following recursive algorithm to detect a
k-clique in a given k-partite graph (V1, . . . , Vk, E). Let D and α be parameters
to be determined later and let d be initialized to 0.

KCliqueRec(G = (V1, . . . , Vk, E), d):

1. If d = D, meaning depth D in the recursion is reached, perform exhaustive
search. Return YES if a k-clique was detected, otherwise NO.

2. Test whether there is some v ∈ V1 with d2(v) · . . . · dk(v) ≥ α · |V2| · . . . · |Vk|.
If such a vertex exists:
a. Test whether the subgraph Gv induced by N2(v)∪ · · · ∪ Nk(v) contains a

(k−1)-clique by exhaustive search. If it does return YES since this means
we’ve found a k-clique involving v.

200 A. Abboud et al.

b. For 2 ≤ i ≤ k, partition Vi into Vi,0 = Vi \ Ni(v) and Vi,1 = Vi ∩ Ni(v).
Recursively solve the 2k−1 − 1 subproblems on (V1, V2,i2 , . . . , Vk,ik

) for
(i2, . . . , ik) ∈ {0, 1}k−1 \ {1k−1}, while incrementing the depth.
In other words, for each (i2, . . . , ik) ∈ {0, 1}k−1 \ {1k−1}, call KCli-
queRec(G[V1 ∪ V2,i2 ∪ · · · ∪ Vk,ik

], d + 1).
c. If any of the calls returned YES, return YES. Otherwise, return NO.

3. Solve the instance using Observation 1.

Correctness. As soon as the algorithm reaches recursion depth D, the algorithm
will correctly detect a k-clique in step 1. In earlier levels of the recursion, the
algorithm first attempts to find a vertex v with d2(v)·. . .·dk(v) ≥ α·|V2|·. . .·|Vk|
in step 2. If this succeeds, we test whether v is involved in a k-clique (and
terminate in this case). Otherwise, we recurse on (V1, V2,i2 , . . . , Vk,ik

) for all
combinations (i2, . . . , ik) ∈ {0, 1}k−1 \ {1k−1}. Note that we can indeed ignore
the instance (V1, V2,1, . . . , Vk,1) knowing that (V2,1, . . . , Vk,1) does not contain a
(k − 1)-clique. If the condition in step 2 is not satisfied, we instead correctly
solve the instance by means of Observation 1 (which reduces the problem to an
instance of (k − 1)-clique).

Running Time. Imagine a recursion tree in which every node corresponds to
an execution of the algorithm; the root corresponds to the initial call and child
nodes correspond to recursive calls. Thus, every node in the tree is either a leaf
(indicating that this execution does not spawn recursive calls), or an internal
node with fan-out exactly 2k−1 − 1. The time at a node is the running time of
the respective call of the algorithm (ignoring the cost of further recursive calls).
In other words, the time at a node is the amount of local work performed in the
corresponding call. To bound the total running time of the algorithm, we bound
the total time across all nodes in the recursion tree.

We analyze the contributions of all steps individually. Let us introduce
some notation first: At a node x in the recursion tree, let (V x

1 , . . . , V x
k)

denote the instance associated to the respective invocation. We similarly write
dx
2(v), . . . , d

x
k(v).

Cost of Step 1. Note that at any node x at depth D in the recursion tree, the
time is O(|V x

1 | · . . . · |V x
k |) since we solve the instance by exhaustive search. Next,

observe that for any internal node x in the recursion tree, we have that

|V x
1 | · . . . · |V x

k | = |V x
1 | ·

∑

i2,...,ik∈{0,1}k−1

|V x
2,i2 | · . . . · |V x

k,ik
|

≥ |V x
1 | · dx

2(v) · . . . · dx
k(v) +

∑

y child of x

|V y
1 | · . . . · |V y

k |

≥ α · |V x
1 | · . . . · |V x

k | +
∑

y child of x

|V y
1 | · . . . · |V y

k |,

and thus ∑

y child of x

|V y
1 | · . . . · |V y

k | ≤ (1 − α) · |V x
1 | · . . . · |V x

k |.

Faster Combinatorial k-Clique 201

It follows by induction that at any depth d ≤ D in the recursion tree, we have
that ∑

x at depth d

|V x
1 | · . . . · |V x

k | ≤ (1 − α)dnk.

In particular, the total time of all nodes at depth D is bounded by O((1−α)Dnk).

Cost of Step 2. Note that the number of nodes in our recursion tree is at most 2kD

since the recursion tree has degree ≤ 2k and the recursion depth is capped at D.
At each node, the time of step 2a is bounded by O(nk−1) and the cost of step 2b
is bounded by O(n2). Therefore, the total time of step 2 across all nodes is
bounded by O(2kDnk−1).

Cost of Step 3. By induction we have obtained a (k − 1)-clique algorithm in
time O(nk−1/f(n)), where f(n) = (log n)−a+k−4(log log n)−b−(k−4). Therefore,
by Observation 1 the total time of step 3 across all nodes x in the recursion tree
is

O

⎛

⎝
∑

x lea

∑

v∈V x
1

dx
2(v) · . . . · dx

k(v)
f(min{dx

2(v), . . . , d
x
k(v)})

⎞

⎠ .

To bound this quantity, we distinguish two subcases: A pair (x, v) (where x is a
leaf in the recursion tree and v ∈ V u

1) is called relevant if dx
2(v), . . . , d

x
k(v) ≥ √

n
(where n is the initial number of nodes). On the one hand, it is easy to bound
the total cost of all irrelevant pairs by

O

⎛

⎝
∑

(x,v) irrelevant

dx
2(v) · . . . · dx

k(v)
f(min{dx

2(v), . . . , d
x
k(v)})

⎞

⎠ ≤ O(2kDnk−1/2),

since there are at most 2kD nodes in the recursion tree. On the other hand,
for any relevant pair (x, v), we have min{dx

2(v), . . . , d
x
k(v)} ≥ √

n. Moreover,
since we reach step 3 of the algorithm we further know that dx

2(v) · . . . · dx
k(v) ≤

α|V x
2 | · . . . · |V x

k | (as otherwise the condition in step 2 had triggered). It follows
that

O

⎛

⎝
∑

(x,v) relevant

dx
2(v) · . . . · dx

k(v)
f(min{dx

2(v), . . . , d
x
k(v)})

⎞

⎠

≤ O

⎛

⎝
∑

(x,v) relevant

α|V x
2 | · . . . · |V x

k |
f(

√
n)

⎞

⎠

≤ O

(
nk · α

f(
√

n)

)
.

Choosing the Parameters. Summing over all contributions computed before, the
total running time is bounded by

O

(
nk · (1 − α)D + nk · α

f(
√

n)
+ nk−1/2 · 2kD

)
.

202 A. Abboud et al.

We pick D = log n/(4k) such that the latter term becomes nk−1/4. Next, we
pick α = log((−a + k) log n)/D = Θ((log n)−1 log log n) such that the first term
becomes

nk · (1 − α)D ≤ nk · 2−αD ≤ nk(log n)a−k.

All in all, the total running time is dominated by the second term

nk · α

f(
√

n)
≤ O(nk · α · (log n)a−(k−4)(log logn)b+k−4)

≤ O(nk(log n)a−(k−3)(log log n)b+k−3),

which is as claimed. 	

4 Combinatorial Log-Shaves for Triangle Listing by Weak
Regularity

In this section we quickly outline our triangle listing algorithm which is based on
Bansal and Williams’ BMM algorithm [7]. Our contribution is in reformulating
and reanalyzing their algorithm for the purpose of triangle listing achieving
Theorem 2. Note that we cannot achieve the running time stated in the theorem
by applying state-of-the-art black-box reductions from triangle listing to Boolean
matrix multiplication [37].

The two key ingredients are pseudoregularity and the following lemma which
applies four russians to sparse graphs (see full paper for discussion on pseudoreg-
ularity and proof of the lemma).

Lemma 1 (Sparse Four-Russians). There is an algorithm which lists up to t
triangles in a given graph (V1, V2, V3, E) (with n = min{|V1|, |V2|, |V3|}) in time

Õ̃

(
|V1| · |V2| · |V3|

(log n)100
+

∑

v∈V1

d2(v) · d3(v)
(log n)2

+ t

)

.

Let us give an informal overview of the algorithm. For a given tripartite
graph G = (V1, V2, V3, E), we first compute an ε-pseudoregular partition of the
bipartite graph G[V2 ∪ V3]. We then distinguish between two types of pieces—
pieces with low density (less than

√
ε) and pieces with high density. Based on

this we divide the instance into two triangle listing instances—GL which only
includes edges connecting low density parts between V2 and V3 in G, and its com-
plement GH consisting of edges connecting the high-density parts between V2

and V3. In the former case we can benefit from the sparseness (by construction
the total number of edges GL is at most

√
εn2). In the latter case, due to the

pseudoregularity, there must be many triangles in GH . We can thus charge the
extra cost of computing with GH towards the output-size. For complete specifi-
cation refer to the full paper.

Faster Combinatorial k-Clique 203

5 Combinatorial Log-Shaves for k-Hyperclique

In this section we give an intuitive description of the algorithm in the simplest
case k = 4, r = 3 (detecting a 4-clique in a 3-uniform hypergraph in faster than
O(n4) time), for complete and general specification refer to the full paper. We
are given a 4-partite 3-uniform graph G = (V1, V2, V3, V4, E) with vertex sets of
size n. For each v ∈ V1, we can define a tri-partite graph Gv = (V2, V3, V4, E

′) in
which we draw an edge between two vertices if and only if they share a hyperedge
with v in G. It is easy to check that there is a 4-hyperclique in G if and only if
there are vertices v2, v3, v4 that form a triangle in Gv and in G (meaning they
are a hyperedge in G). The naive search for such a triplet would take O(n3), and
we present an algorithm that accelerates this search:

1. Let s =
√

c log n for some small constant c > 0, and partition V2, V3 and V4

each into g = �n/s� blocks of size at most s. We let Vi,j denote the j’th block
in Vi.

2. For every combination j2, j3, j4 ∈ [g]:
a. Create a lookup table Tj2,j3,j4 with an entry for every possible tripartite

graph on the vertex sets V2,j2 , V3,j3 , V4,j4 (there are 2s2
= nc such graphs).

b. For every entry corresponding to a graph G′ store whether G′ has a
triangle that is a hyperedge in G.

Note that this preprocessing is fast: We construct n3

s3 tables, each consisting
of nc entries, and each entry takes O(s3) time to determine. So, the total pre-
processing time is O(n3+c). Given these tables we can now search for a 4-clique
more efficiently: For each v ∈ V1 we break Gv into triples of blocks as before,
and query Tj2,j3,j4 for the graphs Gv[V2,j2 ∪ V3,j3 ∪ V4,j4], for all j2, j3, j4. If one
the answers is positive we have found a hyperclique. Assuming every query is
performed in constant time, the running time is determined by the number of
queries which is

O

(
n · n3

s3

)
= O

(
n4

(log n)1.5

)
.

All that is left now is to justify the assumption that every query is per-
formed in constant time. The main question is given v ∈ V1 and a combina-
tion of blocks V2,j2 , V3,j3 , V4,j4 , how can we determine the key corresponding
to Gv[V2,j2 , V3,j3 , V4,j4] in Tj2,j3,j4 in constant time? For this purpose, we define
in the proof a compact representation of tripartite graphs (on vertex sets of
size s) used to index the tables Tj2,j3,j4 . This compact representation is chosen
in such a way which allows to efficiently precompute the compact representations
of all such graphs Gv[V2,j2 , V3,j3 , V4,j4].

References

1. Abboud, A., Backurs, A., Bringmann, K., Künnemann, M.: Fine-grained complex-
ity of analyzing compressed data: quantifying improvements over decompress-and-
solve. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 192–203. IEEE (2017)

204 A. Abboud et al.

2. Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are
optimal, so is valiant’s parser. SIAM J. Comput. 47(6), 2527–2555 (2018)

3. Abboud, A., Fischer, N., Kelley, Z., Lovett, S., Meka, R.: New graph decom-
positions and combinatorial boolean matrix multiplication algorithms. CoRR,
abs/2311.09095 (2023). arxiv:2311.09095

4. Abboud, A., et al.: Faster algorithms for all-pairs bounded min-cuts. In: Baier, C.,
Chatzigiannakis, I., Flocchini, P., Leonardi, S., editors, 46th International Collo-
quium on Automata, Languages, and Programming, ICALP 2019, July 9–12, 2019,
Patras, Greece, volume 132 of LIPIcs, pp. 7:1–7:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.7

5. Abboud, A., Williams, V.V.:. Popular conjectures imply strong lower bounds for
dynamic problems. In: 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2014), pp. 434–443. IEEE Computer Society (2014). https://doi.
org/10.1109/FOCS.2014.53

6. Arlazarov, V.L.V., Dinitz, Y.A., Kronrod, M.A., Faradzhev, I.: On economical
construction of the transitive closure of an oriented graph. In: Akademii Nauk, D.,
vol. 194, pp. 487–488. Russian Academy of Sciences (1970)

7. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theor.
Comput. 8(1), 69–94 (2012). https://doi.org/10.4086/toc.2012.v008a004

8. Baran, I., Demaine, E.D., Patrascu, M.: Subquadratic algorithms for 3SUM. Algo-
rithmica 50(4), 584–596 (2008). https://doi.org/10.1007/s00453-007-9036-3

9. Bergamaschi, T., Henzinger, M., Gutenberg, M.P., Williams, V.V., Wein, N.: New
techniques and fine-grained hardness for dynamic near-additive spanners. In: Pro-
ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1836–1855. SIAM (2021)

10. Björklund, A., Pagh, R., Williams, V.V., Zwick, U.: Listing triangles. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 223–234. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7_19

11. Bringmann, K., Fischer, N., Künnemann, M.: A fine-grained analogue of schaefer’s
theorem in p: Dichotomy of existŝ k-forall-quantified first-order graph properties.
In: 34th Computational Complexity Conference (CCC 2019). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2019)

12. Bringmann, K., Gawrychowski, P., Mozes, S., Weimann, O.: Tree edit distance
cannot be computed in strongly subcubic time (unless apsp can). ACM Trans.
Algorithm. (TALG) 16(4), 1–22 (2020)

13. Bringmann, K., Grønlund, A., Larsen, K.G.. A dichotomy for regular expression
membership testing. In: 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 307–318. IEEE (2017)

14. Bringmann, K., Wellnitz, P.: Clique-based lower bounds for parsing tree-adjoining
grammars. arXiv preprint arXiv:1803.00804 (2018)

15. Carmeli, N., Kröll, M.: On the enumeration complexity of unions of conjunctive
queries. In: Dan Suciu, Sebastian Skritek, and Christoph Koch, editors, Proceedings
of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pp.
134–148. ACM (2019). https://doi.org/10.1145/3294052.3319700

16. Casel, K., Schmid, M.L.: Fine-grained complexity of regular path queries. arXiv
preprint arXiv:2101.01945 (2021)

17. Chan, T.M.: A (slightly) faster algorithm for klee’s measure problem. In: Proceed-
ings of the Twenty-fourth Annual Symposium on Computational geometry, pp.
94–100 (2008)

http://arxiv.org/abs/2311.09095
https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.4086/toc.2012.v008a004
https://doi.org/10.1007/s00453-007-9036-3
https://doi.org/10.1007/978-3-662-43948-7_19
https://doi.org/10.1007/978-3-662-43948-7_19
http://arxiv.org/abs/1803.00804
https://doi.org/10.1145/3294052.3319700
http://arxiv.org/abs/2101.01945

Faster Combinatorial k-Clique 205

18. Chan, T.M.: Speeding up the four Russians algorithm by about one more loga-
rithmic factor. In: Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4–6, 2015, pp. 212–217. SIAM (2015). https://doi.org/10.1137/1.
9781611973730.16

19. Chan, T.M., Rahul, S., Xue, J.: Range closest-pair search in higher dimensions.
Comput. Geometry 91 101669 (2020)

20. Chang, Y.J.: Hardness of RNA folding problem with four symbols. In: Grossi,
R., Lewenstein, M., editors, 27th Annual Symposium on Combinatorial Pattern
Matching, CPM 2016, June 27–29, 2016, Tel Aviv, Israel, volume 54 of LIPIcs, pp.
13:1–13:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.
org/10.4230/LIPIcs.CPM.2016.13

21. Clifford, R., Grønlund, A., Larsen, K.G., Starikovskaya, T.: Upper and lower
bounds for dynamic data structures on strings. arXiv preprint arXiv:1802.06545
(2018)

22. Dalirrooyfard, M., Vuong, T.D., Williams, V.V.: Graph pattern detection: Hard-
ness for all induced patterns and faster non-induced cycles. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 1167–1178
(2019)

23. Duan, R., Wu, H., Zhou, R.: Faster matrix multiplication via asymmetric hashing.
In: 64th IEEE Annual Symposium on Foundations of Computer Science (FOCS
2023). IEEE Computer Society, 2023. To appear. https://doi.org/10.48550/arXiv.
2210.10173

24. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and
dominating set. Theor. Comput. Sci. 326(1–3), 57–67 (2004). https://doi.org/10.
1016/j.tcs.2004.05.009

25. Fox, J.: A new proof of the graph removal lemma. CoRR, abs/1006.1300 (2010).
arxiv:1006.1300

26. Jin, C., Xu, Y.: Tight dynamic problem lower bounds from generalized bmm and
omv. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 1515–1528 (2022)

27. Kopelowitz, T., Pettie, S., Porat, E.: Higher lower bounds from the 3SUM conjec-
ture. In: Krauthgamer, R., editor, 27th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2016), pp. 1272–1287. SIAM (2016). https://doi.org/10.
1137/1.9781611974331.ch89

28. Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multipli-
cation. J. ACM (JACM) 49(1), 1–15 (2002)

29. Lincoln, A., Williams, V.V., Williams, R.: Tight hardness for shortest cycles and
paths in sparse graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1236–1252. SIAM (2018)

30. lóVász, L., Lovász, M., Szegedy, B.: Szemerédi’s lemma for the analyst. GAFA Geo-
metric Funct. Anal. 17 252–270 (2007). https://api.semanticscholar.org/CorpusID:
15201345

31. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment.
Math. Univ. Carol. 26(2), 415–419 (1985)

32. Pătraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: Schul-
man, L.J., editor, 42nd Annual ACM Symposium on Theory of Computing (STOC
2010), pp. 603–610. ACM (2010). https://doi.org/10.1145/1806689.1806772

33. Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Albers, S., Radzik,
T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 580–591. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30140-0_52

https://doi.org/10.1137/1.9781611973730.16
https://doi.org/10.1137/1.9781611973730.16
https://doi.org/10.4230/LIPIcs.CPM.2016.13
https://doi.org/10.4230/LIPIcs.CPM.2016.13
http://arxiv.org/abs/1802.06545
https://doi.org/10.48550/arXiv.2210.10173
https://doi.org/10.48550/arXiv.2210.10173
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/j.tcs.2004.05.009
http://arxiv.org/abs/1006.1300
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.ch89
https://api.semanticscholar.org/CorpusID:15201345
https://api.semanticscholar.org/CorpusID:15201345
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1007/978-3-540-30140-0_52

206 A. Abboud et al.

34. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356
(1969)

35. Vassilevska, V.: Efficient algorithms for clique problems. Inf. Process. Lett. 109(4),
254–257 (2009). https://doi.org/10.1016/j.ipl.2008.10.014

36. Williams, V.V.: On some fine-grained questions in Algorithms and Complexity, pp.
3447–3487 (2018). https://doi.org/10.1142/9789813272880_0188

37. Williams, V.V., Williams, R.R.: Subcubic equivalences between path, matrix, and
triangle problems. J. ACM 65(5), 27:1–27:38 (2018). https://doi.org/10.1145/
3186893

38. Huacheng, Yu.: An improved combinatorial algorithm for boolean matrix multi-
plication. Inf. Comput. 261, 240–247 (2018). https://doi.org/10.1016/j.ic.2018.02.
006

https://doi.org/10.1016/j.ipl.2008.10.014
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
https://doi.org/10.1016/j.ic.2018.02.006
https://doi.org/10.1016/j.ic.2018.02.006

	Faster Combinatorial k-Clique Algorithms
	1 Introduction
	1.1 Our Results
	1.2 Outline

	2 Preliminaries
	3 Combinatorial Log-Shaves for k-Clique
	4 Combinatorial Log-Shaves for Triangle Listing by Weak Regularity
	5 Combinatorial Log-Shaves for k-Hyperclique
	References

