
16th Latin American Symposium
Puerto Varas, Chile, March 18–22, 2024
Proceedings, Part I

LATIN 2024:
Theoretical InformaticsLN

CS
 1

45
78

AR
Co

SS
José A. Soto
Andreas Wiese (Eds.)

Lecture Notes in Computer Science 14578

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

José A. Soto • Andreas Wiese
Editors

LATIN 2024:
Theoretical Informatics
16th Latin American Symposium
Puerto Varas, Chile, March 18–22, 2024
Proceedings, Part I

123

Editors
José A. Soto
DIM-CMM, Universidad de Chile
Santiago, Chile

Andreas Wiese
Technical University of Munich
Munich, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-55597-8 ISBN 978-3-031-55598-5 (eBook)
https://doi.org/10.1007/978-3-031-55598-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-2219-8401
https://orcid.org/0000-0003-3705-016X
https://doi.org/10.1007/978-3-031-55598-5

Preface

This volume contains the papers presented at the 16th Latin American Theoretical
Informatics Symposium (LATIN 2024), held during March 18–22, 2024, in Puerto
Varas, Chile. Previous editions of LATIN took place in São Paulo, Brazil (1992),
Valparaíso, Chile (1995), Campinas, Brazil (1998), Punta del Este, Uruguay (2000),
Cancún, Mexico (2002), Buenos Aires, Argentina (2004), Valdivia, Chile (2006),
Búzios, Brazil (2008), Oaxaca, Mexico (2010), Arequipa, Peru (2012), Montevideo,
Uruguay (2014), Ensenada, Mexico (2016), Buenos Aires, Argentina (2018), São
Paulo, Brazil (2021) and Guanajuato, Mexico (2022). The symposium received 93
submissions from around the world. Each submission was double-blind reviewed by
three or four program committee members, and carefully evaluated on quality, origi-
nality, and relevance to the conference. Committee members often reviewed the sub-
missions with the help of additional external referees. Based on an extensive electronic
discussion, the committee selected 44 papers. In addition to the accepted contributions,
the symposium featured keynote talks by Pablo Barceló (Universidad Católica de
Chile, Chile), Pierre Fraigniaud (Université Paris Cité and CNRS, France), Penny
Haxell (University of Waterloo, Canada), Eunjung Kim (Korea Advanced Institute of
Science and Technology, South Korea) and Jon Kleinberg (Cornell University, USA).

Also, LATIN 2024 featured two awards: the Imre Simon Test-of-Time Award and
the Alejandro López-Ortiz Best Paper Award. In this edition, the Imre Simon Test-of-
Time Award winners were Pierre Fraigniaud, Leszek Gąsieniec, Dariusz R. Kowalski
and Andrzej Pelc for their paper “Collective Tree Exploration” which appeared in
LATIN 2004. For the Alejandro López-Ortiz Best Paper Award, the program com-
mittee selected the paper “Faster Combinatorial k-Clique Algorithms” by Yarin
Shechter, Amir Abboud and Nick Fischer. We thank our sponsor Springer for sup-
porting both awards.

Our heartfelt thanks go to the authors for their excellent papers and cooperation, to
the program committee members for their insightful discussions, to the subreferees for
their careful reports, and to the steering committee for their valuable advice and
feedback.

We would also like to recognize Nikhil Bansal, Conrado Martínez and Yoshiko
Wakabayashi for their work on the 2024 Imre Simon Test-of-Time Award Selection
Committee. Finally, the conference would not have been possible without our generous
sponsors: ANID-Chile through grants BASAL FB210005 and ANILLO ACT210005,
the Center for Mathematical Modelling (CMM), the research group Information and
Computation in Market Design (ICMD) and Springer. We are also grateful for the
facilities provided by EasyChair for the evaluation of the submitted papers and the
discussions of the program committee.

January 2024 José A. Soto
Andreas Wiese

The Imre Simon Test-of-Time Award

The winner of the 2024 Imre Simon Test-of-Time Award, considering papers up to the
2014 edition of the Latin American Theoretical INformatics Symposium (LATIN), is

Collective Tree Exploration by Pierre Fraigniaud, Leszek Gąsieniec, Dariusz R. Kowalski and
Andrzej Pelc, LATIN 2004, LNCS 2976, 141–151, 2004,

which later appeared as part of the journal article Collective Tree Exploration, by the
same authors, and published in Networks 48(3): 166–177, 2006.

Collective Tree Exploration is an important milestone in the more general context of
exploring an unknown environment. The problem arises in many applications, and over
the years several researchers have studied efficient ways to explore different environ-
ments consisting of closed regions of the plane or graphs (typically used to model
complex physical environments involving obstacles) under several computa-
tional/communication models.

For connected undirected graphs, it is well known that depth-first search (DFS)
examines every single vertex and edge in an optimal way, provided that we can mark
vertices and edges already explored. However, despite much interest, the amount of
memory needed and the role of communication were much less understood. Collective
Tree Exploration was one of the first contributions which addressed the issue of how
much improvement can be obtained using k � 2 agents or robots instead of just k = 1,
and which communication capabilities made a difference (and by how much).

In their work, Fraigniaud, Gąsieniec, Kowalski and Pelc consider an n-node tree that
has to be explored by a team of k robots, starting from the root. All edges (and nodes)
have to be visited by at least one robot, and this must be completed as quickly as
possible. In each synchronous round, each of the k robots can stay where it is, or
traverse one incident edge (either leading towards the root or towards some leaf). Two
extreme communication scenarios are studied in the paper: in one, robots can share
instantaneously all the information they have gathered until that moment (exploration
with complete communication), in the other the robots share no information. A third
scenario which is of interest is exploration with write-read communication, where
robots can leave all the information that they have gathered for others to read. In the
paper, an efficient algorithm is developed for the stronger scenario (complete com-
munication), then the authors show that the same time complexity can be achieved in
the less demanding and more practical model of write-read communication.

The first important contribution of the paper was to show that computing an optimal
schedule for the exploration is NP-hard even if the full tree is known in advance; the
proof was omitted in the conference extended abstract, but given in full detail in the
journal version. The optimal algorithm with full knowledge of the tree is however an
important piece of the investigation, as it sets the minimum exploration cost (= number
of synchronous rounds) with which we can compare online exploration algorithms, that
is, those that do not know the tree in advance and explore it in rounds.

The second fundamental result is the simple and elegant algorithm called “Collec-
tive Exploration” (CE) in the paper, which solves the problem on a tree of diameter
D in OðDþ n= log kÞ rounds. The overhead of CE is Oðk= log kÞ; it is the maximum
competitive ratio between the exploration cost of the algorithm and that of the opti-
mum, which is Hðmaxf2n=k;DgÞ, and taking the maximum over all possible trees of
size n and all possible roots (starting points). This result was first established for the
scenario with complete communication, then the authors showed how to simulate CE in
the write-read communication scenario, while the time complexity remains the same.

The third main result of the work was to show that the overhead of any exploration
algorithm (with no knowledge of the tree) is XðkÞ if there is no communication among
the robots. Thus, combining these results, the authors give an interesting separation:
without any form of communication k robots are essentially not better than one robot,
on the other hand even a limited (and reasonable) amount of communication improves
the exploration process, and allows us to take (some) advantage of having k� 2 robots.

Collaborative exploration of trees has been an important problem since its intro-
duction in the ISTT 2024 awarded paper, cited many times by authors coming from
different areas of Computer Science. Collective Tree Exploration has become a well-
known and recognized reference by theoretical computer scientists working on
exploration algorithms, but also for researchers in more practical areas like distributed
robotics. Since the publication of the LATIN paper in 2004, and two years later of the
journal version, many authors have studied variants, proposed new exploration algo-
rithms for trees and other graphs, and analyzed the consequences of different com-
munication capabilities, asynchronous settings and different ways to compare the
collaborative online algorithms against the optimal algorithm that has complete
knowledge of the tree. The area has been quite active during these years since the
publication of Collective Tree Exploration, with the first improvement of the original
overhead Oðk= log kÞobtained as recently as 2023.

The relevance of the problem addressed, the originality of the techniques used to
solve it, the clarity of presentation and the continued and widespread recognition of this
contribution throughout the years since its publication weighed heavily in the com-
mittee’s choice.

The committee for the 2024 Imre Simon Test-of-Time Award,

Nikhil Bansal
Conrado Martínez

Yoshiko Wakabayashi

viii The Imre Simon Test-of-Time Award

Organization

Program Committee Chairs

José A. Soto Universidad de Chile, Chile
Andreas Wiese Technical University of Munich, Germany

Steering Committee

Jacques Sakarovitch CNRS and Télécom Paris, France
Armando Castañeda Universidad Nacional Autónoma de México (UNAM),

Mexico
Conrado Martínez Universitat Politècnica de Catalunya, Spain
Flávio Keidi Miyazawa Universidade Estadual de Campinas, Brazil
Cristina G. Fernandes Universidade de São Paulo, Brazil
Michael A. Bender Stony Brook University, USA

Program Committee

Shaull Almagor Technion, Israel
Gabriela Araujo Universidad Nacional Autónoma de México, Mexico
Flavia Bonomo Universidad de Buenos Aires, Argentina
Fabio Botler Universidade Federal do Rio de Janeiro, Brazil
Mario Bravo Universidad Adolfo Ibáñez, Chile
Igor Carboni Oliveira University of Warwick, UK
Timothy Chan University of Illinois Urbana-Champaign, USA
Mark de Berg TU Eindhoven, The Netherlands
Franziska Eberle London School of Economics and Political Science,

UK
Celina Figueiredo Universidade Federal do Rio de Janeiro, Brazil
Johannes Fischer TU Dortmund University, Germany
Emily Fox University of Texas at Dallas, USA
Paweł Gawrychowski University of Wrocław, Poland
Cristóbal Guzmán Pontificia Universidad Católica de Chile, Chile
Christoph Haase University of Oxford, UK
Adriana Hansberg Universidad Nacional Autónoma de México, Mexico
Tobias Harks University of Passau, Germany
Christoph Hertrich London School of Economics and Political Science,

UK
Martin Hoefer Goethe University Frankfurt, Germany
Bart Jansen TU Eindhoven, The Netherlands
Artur Jeż University of Wrocław, Poland
Andrea Jiménez Universidad de Valparaíso, Chile

Michael Kerber Graz University of Technology, Austria
Thomas Kesselheim University of Bonn, Germany
Arindam Khan Indian Institute of Science, India
Stefan Kratsch Humboldt University of Berlin, Germany
Jan Kretinsky Technical University of Munich, Germany, and

Masaryk University, Czech Republic
Ian Mertz University of Warwick, UK
Pedro Montealegre Universidad Adolfo Ibáñez, Chile
Ryuhei Mori Nagoya University, Japan
Gonzalo Navarro Universidad de Chile, Chile
Alantha Newman Université Grenoble Alpes, France
Harumichi Nishimura Nagoya University, Japan
André Nusser University of Copenhagen, Denmark
Joël Ouaknine Max Planck Institute for Software Systems, Germany
Dana Pizarro Universidad de O’Higgins, Chile
Sergio Rajsbaum Universidad Nacional Autónoma de México, Mexico
Andrea Richa Arizona State University, USA
Saket Saurabh Institute of Mathematical Sciences, India, and

University of Bergen, Norway
Kevin Schewior University of Southern Denmark, Denmark
Ildikó Schlotter Centre for Economic and Regional Studies, Hungary
Sebastian Siebertz University of Bremen, Germany
Jose A. Soto (Co-chair) Universidad de Chile, Chile
Maya Stein Universidad de Chile, Chile
Kavitha Telikepalli Tata Institute of Fundamental Research, India
Roei Tell Institute for Advanced Study, Princeton, USA, and

Rutgers University, USA
Erik Jan van Leeuwen Utrecht University, The Netherlands
Rob van Stee University of Siegen, Germany
Jose Verschae Pontificia Universidad Católica de Chile, Chile
Seeun William Umboh University of Melbourne, Australia
Andreas Wiese (Co-chair) Technical University of Munich, Germany

Organization Committee

Waldo Gálvez Universidad de O’Higgins, Chile
José A. Soto Universidad de Chile, Chile
Victor Verdugo Universidad de O’Higgins, Chile
Andreas Wiese Technical University of Munich, Germany

x Organization

Additional Reviewers

Maximilian J. Stahlberg
Nicole Megow
Martín Ríos-Wilson
Lydia Mirabel Mendoza Cadena
Armando Castaneda
Kaustav Bose
Marta Grobelna
Pierre Vandenhove
Antonio Casares
Youssouf Oualhadj
Simon Weber
Sudebkumar Prasant Pal
Matt Gibson
Andrew Ryzhikov
Maël Le Treust
Stavros Kolliopoulos
Carolina Gonzalez
Luis Cunha
Lehilton L. C. Pedrosa
Abhinav Chakraborty
Lasse Wulf
André van Renssen
Leonidas Theocharous
Sanjana Dey
Tatsuya Gima
Bartlomiej Dudek
Bruno Netto
Yasuaki Kobayashi
Lucas De Meyer
Akira Suzuki
Alexandre Vigny
Torsten Mütze
Wanderson Lomenha
Jan Petr
Julien Portier
Sariel Har-Peled
Saladi Rahul
João Pedro de Souza Gomes da Costa
Aritra Banik
Anja Schedel
Raul Lopes
Tesshu Hanaka
François Dross

Hans Bodlaender
Augusto Modanese
Victor Larsen
Jens Schlöter
Matheus Pedrosa
Madhusudhan Reddy Pittu
Karol Pokorski
Sharma V. Thankachan
Julian Mestre
Alexander Braun
Maximilian Fichtl
Sugata Gangopadhyay
Eric Pérez
Ran Duan
Arturo Merino
K. Somasundaram
Asaf Yeshurun
Florian Dorfhuber
Vincent Froese
Andrei Draghici
Marc Vinyals
Torsten Ueckerdt
Elmar Langetepe
Martín Ríos-Wilson
Aditya Subramanian
Tobias Hofmann
Óscar C. Vásquez
Abdolhamid Ghodselahi
Jacob Calvert
Stefano Gogioso
Martin Koutecky
Syamantak Das
Sarita de Berg
Yuan Sha
Ge Xia
Shaily Verma
Andrea Marino
Neta Dafni
Venkatesh Raman
Benjamin Jauregui
Juan L. Reutter
Patrick Dinklage
Claudson Bornstein

Organization xi

Moses Ganardi
Jonas Ellert
Travis Gagie
Tomasz Kociumaka
Ernesto Araya Valdivia
Fahad Panolan
Valmir Barbosa
Stefan Schirra
Tassio Naia
Manuel Cáceres
Hadas Shachnai
Markus Bläser
Akanksha Agrawal
Mohammad Sadegh Mohagheghi
Eduardo Moreno
Giovanna Varricchio
Jamison Weber
Dolores Lara
César Hernández-Cruz
Vikash Tripathi
Ivan Bliznets
Pranabendu Misra
Ioan Todinca
Roohani Sharma
Patrick Eades
Alexandra Weinberger
Shaohua Li
Adam Kasperski
Nadia Brauner
Bertrand Simon
Łukasz Jeż
Ivan Rapaport
Daniel Rehfeldt
Andre Schidler
Anahi Gajardo
Pacôme Perrotin

Alberto Dennunzio
Mingyu Xiao
Benjamin Raichel
Britta Peis
Juan Pablo Contreras
Bart de Keijzer
Andrés Cristi
Michael Kaufmann
Philipp Kindermann
Juan Gutiérrez
Felix Schröder
Nicola Prezza
Jonas Ellert
Robert Bredereck
Claudio Telha Cornejo
Sung-Hwan Kim
Tomasz Kociumaka
Nikhil Balaji
Gerth Stølting Brodal
Jakub Łacki
Dominik Kempa
Adam Karczmarz
Nidhi Purohit
Kirill Simonov
Maximilian Prokop
Sven Jäger
Cristian Urbina
Bartlomiej Dudek
David Eppstein
Jean Cardinal
Mikkel Abrahamsen
Felipe A. Louza
Sabine Rieder
Zhouningxin Wang
Santiago Guzman Pro
Kathryn Nurse

Sponsors

ANID-Chile through grants BASAL FB210005 and ANILLO ACT210005
Center for Mathematical Modelling (CMM)
Information and Computation in Market Design (ICMD)
Springer

xii Organization

Contents – Part I

Algorithms and Data Structures

On 1-Bend Upward Point-Set Embeddings of st-Digraphs 3
Emilio Di Giacomo, Henry Förster, Daria Kokhovich,
Tamara Mchedlidze, Fabrizio Montecchiani, Antonios Symvonis,
and Anaïs Villedieu

Decoding Tree Decompositions from Permutations . 19
Samuel Eduardo da Silva and Uéverton S. Souza

Enumerating m-Length Walks in Directed Graphs with Constant Delay 35
Duncan Adamson, Paweł Gawrychowski, and Florin Manea

The Hardness of Local Certification of Finite-State Dynamics. 51
Diego Maldonado, Pedro Montealegre, and Martín Ríos-Wilson

Iterated Straight-Line Programs. 66
Gonzalo Navarro and Cristian Urbina

Computing Largest Minimum Color-Spanning Intervals
of Imprecise Points . 81

Ankush Acharyya, Vahideh Keikha, Maria Saumell,
and Rodrigo I. Silveira

Total Domination, Separated-Cluster, CD-Coloring: Algorithms
and Hardness . 97

Dhanyamol Antony, L. Sunil Chandran, Ankit Gayen, Shirish Gosavi,
and Dalu Jacob

Generating Signed Permutations by Twisting Two-Sided Ribbons 114
Yuan Qiu and Aaron Williams

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 130
Zsuzsanna Lipták and Luca Parmigiani

Space-Efficient Conversions from SLPs . 146
Travis Gagie, Adrián Goga, Artur Jeż, and Gonzalo Navarro

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast 162
Lorraine A. K. Ayad, Grigorios Loukides, Solon P. Pissis,
and Hilde Verbeek

Wheeler Maps . 178
Andrej Baláž, Travis Gagie, Adrián Goga, Simon Heumos,
Gonzalo Navarro, Alessia Petescia, and Jouni Sirén

Faster Combinatorial k-Clique Algorithms . 193
Amir Abboud, Nick Fischer, and Yarin Shechter

Approximation and Online Algorithms

On Approximate Colored Path Counting . 209
Younan Gao and Meng He

Quick-Sort Style Approximation Algorithms for Generalizations
of Feedback Vertex Set in Tournaments. 225

Sushmita Gupta, Sounak Modak, Saket Saurabh,
and Sanjay Seetharaman

Better Algorithms for Online Bin Stretching via Computer Search. 241
Matej Lieskovský

Competitive Searching over Terrains . 254
Sarita de Berg, Nathan van Beusekom, Max van Mulken, Kevin Verbeek,
and Jules Wulms

Computational Geometry

Minimizing the Size of the Uncertainty Regions for Centers of
Moving Entities . 273

William Evans and Seyed Ali Tabatabaee

Guarding Polyominoes Under k-Hop Visibility . 288
Omrit Filtser, Erik Krohn, Bengt J. Nilsson, Christian Rieck,
and Christiane Schmidt

Minimum-Width Double-Slabs and Widest Empty Slabs in High
Dimensions . 303

Taehoon Ahn, Chaeyoon Chung, Hee-Kap Ahn, Sang Won Bae,
Otfried Cheong, and Sang Duk Yoon

xiv Contents – Part I

Complexity Theory

The Complexity Classes of Hamming Distance Recoverable Robust
Problems . 321

Christoph Grüne

Geometric Thickness of Multigraphs is 9R-Complete 336
Henry Förster, Philipp Kindermann, Tilmann Miltzow,
Irene Parada, Soeren Terziadis, and Birgit Vogtenhuber

Author Index . 351

Contents – Part I xv

http://dx.doi.org/10.1007/978-3-031-50524-9_7

Contents – Part II

Combinatorics and Graph Theory

Self-complementary (Pseudo-)Split Graphs . 3
Yixin Cao, Haowei Chen, and Shenghua Wang

Schnyder Woods and Long Induced Paths in 3-Connected Planar Graphs. 19
Christian Ortlieb

Bi-arc Digraphs: Recognition Algorithm and Applications 31
Pavol Hell, Akbar Rafiey, and Arash Rafiey

Pebbling in Kneser Graphs . 46
Matheus Adauto, Viktoriya Bardenova, Mariana da Cruz,
Celina de Figueiredo, Glenn Hurlbert, and Diana Sasaki

Structural and Combinatorial Properties of 2-Swap Word
Permutation Graphs . 61

Duncan Adamson, Nathan Flaherty, Igor Potapov, and Paul G. Spirakis

Directed Ear Anonymity . 77
Marcelo Garlet Milani

Separating Path Systems in Complete Graphs . 98
Cristina G. Fernandes, Guilherme Oliveira Mota,
and Nicolás Sanhueza-Matamala

Infinite Separation Between General and Chromatic Memory 114
Alexander Kozachinskiy

Parameterized Algorithms

Sparsity in Covering Solutions . 131
Pallavi Jain and Manveer Singh Rathore

Induced Tree Covering and the Generalized Yutsis Property. 147
Luís Cunha, Gabriel Duarte, Fábio Protti, Loana Nogueira,
and Uéverton Souza

Knapsack: Connectedness, Path, and Shortest-Path . 162
Palash Dey, Sudeshna Kolay, and Sipra Singh

Parameterized Approximation Algorithms for Weighted Vertex Cover 177
Soumen Mandal, Pranabendu Misra, Ashutosh Rai, and Saket Saurabh

Parameterized Algorithms for Minimum Sum Vertex Cover 193
Shubhada Aute and Fahad Panolan

A Polynomial Kernel for Proper Helly Circular-Arc Vertex Deletion 208
Akanksha Agrawal, Satyabrata Jana, and Abhishek Sahu

Max-SAT with Cardinality Constraint Parameterized by the Number
of Clauses . 223

Pallavi Jain, Lawqueen Kanesh, Fahad Panolan, Souvik Saha,
Abhishek Sahu, Saket Saurabh, and Anannya Upasana

Automata Theory and Formal Languages

Counting Fixed Points and Pure 2-Cycles of Tree Cellular Automata. 241
Volker Turau

Semantics of Attack-Defense Trees for Dynamic Countermeasures
and a New Hierarchy of Star-Free Languages . 257

Thomas Brihaye, Sophie Pinchinat, and Alexandre Terefenko

Asymptotic (a)Synchronism Sensitivity and Complexity of Elementary
Cellular Automata . 272

Isabel Donoso Leiva, Eric Goles, Martín Ríos-Wilson, and Sylvain Sené

Game Theory and Fairness

On Binary Networked Public Goods Game with Altruism 289
Arnab Maiti and Palash Dey

Proportional Fairness for Combinatorial Optimization 304
Minh Hieu Nguyen, Mourad Baiou, Viet Hung Nguyen,
and Thi Quynh Trang Vo

Core Stability in Altruistic Coalition Formation Games 320
Matthias Hoffjan, Anna Maria Kerkmann, and Jörg Rothe

xviii Contents – Part II

Newton-Type Algorithms for Inverse Optimization: Weighted Span
Objective . 334

Kristóf Bérczi, Lydia Mirabel Mendoza-Cadena, and Kitti Varga

Author Index . 349

Contents – Part II xix

Algorithms and Data Structures

On 1-Bend Upward Point-Set
Embeddings of st-Digraphs

Emilio Di Giacomo1(B), Henry Förster2, Daria Kokhovich3,
Tamara Mchedlidze3, Fabrizio Montecchiani1, Antonios Symvonis4,

and Anäıs Villedieu5

1 University of Perugia, Perugia, Italy
{emilio.digiacomo,fabrizio.montecchiani}@unipg.it

2 Universität Tübingen, Tübingen, Germany
henry.foerster@uni-tuebingen.de

3 Utrecht University, Utrecht, The Netherlands
t.mtsentlintze@uu.nl

4 National Technical University of Athens, Athens, Greece
symvonis@math.ntua.gr

5 TU Wien, Vienna, Austria
avilledieu@ac.tuwien.ac.at

Abstract. We study the upward point-set embeddability of digraphs on
one-sided convex point sets with at most 1 bend per edge. We provide an
algorithm to compute a 1-bend upward point-set embedding of outerpla-
nar st-digraphs on arbitrary one-sided convex point sets. We complement
this result by proving that for every n ≥ 18 there exists a 2-outerplanar
st-digraph G with n vertices and a one-sided convex point set S so that
G does not admit a 1-bend upward point-set embedding on S.

1 Introduction

A point-set embedding (PSE) of a planar graph G = (V,E) on a given set of
points S, with |S| = |V |, is a planar drawing Γ of G such that every vertex of G
is represented by a point of S and each edge is drawn as a polyline connecting
its end-vertices; if every edge has at most b ≥ 0 bends, Γ is a b-bend PSE.

Gritzmann et al. [19] proved that the class of graphs that admit a PSE
without bends along the edges on every set of points in general position coincides
with the class of outerplanar graphs. Efficient algorithms to compute a PSE with
no bends on any given set of points in general position exist for outerplanar
graphs [8] and trees [9]. Cabello [10] proved that deciding whether a planar
graph admits a PSE without bends on a given set of points is NP-complete.
When bends are allowed, Kaufmann and Wiese [22] proved that every planar
graph admits a PSE on every set of points with at most two bends per edge.

An upward point-set embedding (UPSE) of a directed graph G = (V,E) on
a given set of points S, with |S| = |V |, is a PSE with the additional property
that each edge e is represented as a polyline monotonically increasing in the
y-direction; also in this case we say that Γ is a b-bend UPSE if every edge has
at most b bends. Clearly, for an UPSE to exist G must be an upward planar
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 3–18, 2024.
https://doi.org/10.1007/978-3-031-55598-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_1

4 E. Di Giacomo et al.

graph (and thus it must be a DAG). Different to the undirected case, a charac-
terization of the upward planar digraphs that admit a UPSE without bends on
every point set is still missing even for points in convex position. On the other
hand, Binucci et al. [7] characterize DAGs that admit a 1-bend UPSE on every
upward one-sided convex (UOSC) point set, i.e., a convex point set such that
the bottommost point and the topmost point are adjacent in the convex hull of
S; the same class has also been characterized by Heath and Pemmaraju [20] as
the class of graphs that admit an upward 1-page book embedding. For points in
convex position Binucci et al. [7] proved that there exist directed trees that do
not admit an UPSE on every convex point set and many partial results exists
about the embeddability of specific subclasses of directed trees on point sets
with different properties [1,2,7,21]. Kaufmann et al. [21] studied the problem
of deciding whether an upward planar graph admits an UPSE on a given set of
points S and show that the problem can be solved in polynomial time for convex
point sets, while it is NP-complete for point sets in general position. Arseneva et
al. [2] proved that the problem remains NP-complete even for trees if one vertex
is mapped to a specific point. As for the undirected case, two bends per edge
suffice for UPSEs of upward planar graphs on any given set of points [18].

The results about (U)PSEs with zero and two bends naturally motivates
the study of (U)PSEs with one bend. Testing whether a (upward) planar graph
admits a 1-bend (U)PSE is NP-complete in both the upward and the non-upward
variants. Indeed, it is easy to see that a 1-bend (U)PSE on a set of collinear points
is, in fact, a 2-page (upward) book embedding and deciding whether a (upward)
planar graph G admits a 2-page (upward) book embedding is NP-complete both
in the non-upward [5] and in the upward case [4]. However, this relation between
1-bend (U)PSEs and 2-page (upward) book embeddings relies on the use of
collinear points, and thus it does not hold for points in general or in convex
position. The following problems are therefore open and worth to investigate.

Problem 1. Does every (upward) planar graph admit a 1-bend (U)PSE on every
set of points in general or in convex position?

Problem 2. What is the complexity of testing whether a (upward) planar graph
admits a 1-bend (U)PSE on a given set of points in general or in convex position?

We study the upward version of Problem 1 and our contribution is as follows.

– On the positive side, we show that every st-outerplanar graph (i.e., an out-
erplanar DAG with a single source and a single sink) admits a 1-bend UPSE
on every UOSC point set (Theorem 1).

– We give a negative answer to the upward version of Problem 1 (Theorem
2). Namely, we prove that for every n ≥ 18 there exists a 2-outerplanar st-
digraph G with n vertices and an UOSC point set S such that G does not
admit an UPSE on S with at most one bend per edge.

Concerning our second contribution, Di Giacomo et al. [12] proved that every
two-terminal series-parallel digraph admits a 1-bend UPSE on any given set of

On 1-Bend Upward Point-Set Embeddings of st-Digraphs 5

Fig. 1. (a) Two edges that cross; (b) two edges that nest; (c) an example of a 2UBE;
(d) an example of a 2UTBE; the bold edges have spine crossings, shown with small
crosses; (e) removal of unnecessary sub-edges.

points. This result has been extended by Mchedlidze and Symvonis [25] to the
superclass of N -free graphs 1. However, there exist st-outerplanar graphs that are
not N -free digraphs (indeed, st-outerplanar graphs may contain the forbidden N -
digraph), and vice-versa. We remark that the study of PSEs is a classical subject
of investigation in the Graph Drawing and Computational Geometry literature
where different (not necessarily upward) variants have been studied [3,11,14–
16,24,27]. In particular, Everett et al. [17] and Löffler and Tóth [23] considered
universal point sets for non-upward 1-bend drawings.

The paper is organized as follows. In Sect. 2 we give preliminary definitions.
In Sect. 3 we prove necessary and sufficient conditions for the existence of a 1-
bend UPSE. In Sect. 4 we describe the construction for outerplanar digraphs,
while our negative example is described in Sect. 5. Open problems are in Sect. 6.
Proofs marked with (�) are sketched/removed and can be found in [13].

1 The embedded N -graph is shaped like an N, i.e., it contains four vertices a, b, c, d and
three edges (a, b), (c, b) and (c, d) such that (1) (a, b) enters b to the left of (c, b) and
(2) (c, b) exists c to the left of (c, d). An embedded N -free graph does not contain
the embedded N -graph as a subgraph.

6 E. Di Giacomo et al.

2 Preliminaries

Let G = (V,E) be an upward planar graph. A 2-page upward book embedding
(2UBE) of G consists of a total order ≺ of V , that is, a topological sorting of
G, and of a partition of E into two sets, called pages, such that no two edges
cross; two edges (u, v) with u ≺ v and (w, z) with w ≺ z cross if the two edges
are in the same page and u ≺ w ≺ v ≺ z or w ≺ u ≺ z ≺ v (see Fig. 1(a)). Also,
edges (u, v) and (w, z) nest if they are on the same page and u ≺ w ≺ z ≺ v or
w ≺ u ≺ v ≺ z (see Fig. 1(b)). We write u � v if u precedes or coincides with v.
A 2UBE can be visualized as an upward planar drawing such that all vertices of
G lie along a horizontal line �, called the spine, and each edge is represented as a
semi-circle oriented in the direction of the spine and completely contained either
above the spine (top page) or below the spine (bottom page). See Fig. 1(c) for
an example of a 2UBE. A 2-page upward topological book embedding (2UTBE)
of G is a 2UBE of a subdivision of G. When considering a 2UTBE as a planar
drawing, each subdivision vertex of an edge e can be regarded as a point where
e crosses the spine, and therefore is also called a spine crossing (see Fig. 1(d)).
Further, each of the “pieces” of an edge e defined by the subdivision vertices is
called a sub-edge of e; specifically, the sub-edges that are in the top page are
called top sub-edges and those that are in the bottom page are called bottom
sub-edges. We write (sub-)edge to mean an element that is either an edge or a
sub-edge. We assume that in a 2UTBE no spine crossing has two incident sub-
edges that are in the same page; if so, the two sub-edges can be replaced by a
single (sub-)edge (see Fig. 1(e)). A 2UTBE is a single-top 2UTBE if each edge
has at most one top sub-edge (and hence at most two bottom sub-edges).

A set of points S is an upward one-sided convex (UOSC) point set if the
points of S are in convex position and the lowest point of S is adjacent to the
highest point of S in the convex hull. See Fig. 7(b) for an illustration. We denote
by CH(S) the convex hull of S. We always assume that all the points of S are
to the left of the line passing through the topmost and the bottommost point.

3 Conditions for the Existence of a 1-Bend UPSE

We begin with a necessary condition for the existence of a 1-bend UPSE.

Lemma 1 (�). Let G = (V,E) be an upward planar graph. If G admits a 1-bend
UPSE on an UOSC point set, then G admits a single-top 2UTBE.

Proof (sketch). Let Γ be a 1-bend UPSE of G on an UOSC point set S. For each
edge e of Γ , replace each intersection point between e and CH(S) that is not
an end-vertex of e, with a dummy vertex. We obtain a 1-bend upward planar
drawing Γ ′ of a subdivision G′ = (V ′, E′) of G, such that each edge is drawn
completely outside CH(S) or completely inside CH(S). An edge of Γ ′ that is
drawn completely outside CH(S) has necessarily at least one bend, as edges
with no bends necessarily lie inside CH(S). Thus, an edge of Γ can be split
by its intersection points with CH(S) in at most three “pieces”, at most one

On 1-Bend Upward Point-Set Embeddings of st-Digraphs 7

Fig. 2. (a) A Type 1 forbidden configuration; (b) A Type 1 impossible point set.

of which can be outside CH(S). Each “piece” will be a sub-edge in the bottom
page if it is inside CH(S) and in the top page if it is outside CH(S). ��

Given a 1-bend UPSE Γ on an UOSC point set S, we say that the 2UTBE
γ that can be obtained as explained in the proof of Lemma 1 is induced by Γ .

We now give a sufficient condition for the existence of a 1-bend UPSE. We
begin by introducing some additional definitions and technical lemmas. Let γ be
a single-top 2UTBE of an upward planar graph G. A sub-edge (u, v) with u ≺ v
is nested inside another sub-edge (w, z) with w ≺ z if the two sub-edges are in
the same page and w � u ≺ v � z. Notice that it cannot be that w = u and
v = z at the same time. An (sub-)edge (w, z) with w ≺ z covers a vertex v if
w ≺ v ≺ z. Let e1 and e2 be two edges of G. Edges e1 and e2 form a forbidden
configuration in γ if the following three conditions hold simultaneously: (a) e1
and e2 both have a top sub-edge, one of the top sub-edges is nested inside the
other, and the two sub-edges can possibly share a vertex; (b) e1 and e2 both
have a bottom sub-edge, one of the bottom sub-edges is nested inside the other,
and the sub-edges do not share a vertex; and (c) each bottom sub-edge covers at
least one vertex and each top sub-edge covers at least two vertices. See Fig. 2(a)
for an illustration of a forbidden configuration. We have four possible forbidden
configurations: Type 1 forbidden configuration is such that the top sub-edges do
not share a vertex and the two bottom sub-edges precede the two top sub-edges
in the direction of the spine; Type 2 forbidden configuration is like the Type
1 forbidden configuration but with the top edges that share a vertex. Type 3
and Type 4 forbidden configurations are like Type 1 and Type 2 respectively,
but the top sub-edges precede the bottom sub-edges. We say that the 7 (or 6)
vertices necessary to have a forbidden configuration are the vertices that define
the forbidden configuration. These are the 4 (or 3) end-vertices of the two edges
forming the forbidden configuration and the three vertices that are covered by
their sub-edges. A single-top 2UTBE is nice if it has no forbidden configuration.

The next lemma shows that forbidden configurations are obstacles to the exis-
tence of a 1-bend UPSE for specific set of points. We describe 4 types of UOSC
point sets, one for each type of forbidden configuration. Let p1, p2, p3, p4, p5, p6, p7
be a set S of points ordered from bottom to top. Denote by Ci, with i ∈ {1, 2}

8 E. Di Giacomo et al.

the cone defined by the two half-lines starting at pi and passing through p3 and
p4, respectively. Also, denote by Hi, with i ∈ {6, 7} the half plane above the
straight line passing through pi−1 and pi. Finally, denote by T1 the portion of
C1 that does not intersect H6 and by T2 the portion of C2 that does not intersect
H7. We say that T1 and T2 cross each other if every segment connecting p1 to
the opposite side of T1 crosses every segment that connects p2 to the opposite
side of T2. If S is such that T1 and T2 cross, we say that S is a Type 1 impossible
point set (see Fig. 2(b)). A Type 2 impossible point set is like a Type 1 impossible
point set, but with p6 and p7 coincident – in this case the two half planes H6

and H7 are also coincident. Type 3 and Type 4 impossible points sets are like
Type 1 and Type 2 respectively, but mirrored vertically.

Lemma 2. If a single-top 2UTBE γ contains a forbidden configuration of Type
i, with i ∈ {1, 2, 3, 4}, then there does not exist a 1-bend UPSE whose induced
2UTBE is γ and such that the vertices that define the forbidden configuration
are mapped to an impossible point set of Type i.

Proof. Assume that γ has a Type 1 forbidden configuration (the other cases are
analogous). Denote the two edges forming the forbidden configuration as e1 and
e2, with the top sub-edge of e1 nested inside the top sub-edge of e2. Suppose that
an UPSE exists whose induced 2UTBE is γ and such that the vertices of the
forbidden configuration are mapped to the points of a Type 1 impossible point
set. Then both e1 and e2 have one bend; the bend of e1 is a point of C1 ∩ H6,
and the one of e2 is a point of C2∩H7. This implies that the portion of e1 drawn
inside T1 crosses the portion of e2 drawn inside T2 (see Fig. 2(a) and 2(b)). ��

In the rest of this section, we prove that if G has a nice single-top 2UTBE
then it admits a 1-bend UPSE on every UOSC point set. Let S be an UOSC point
set of size n. Let γ be a 2UTBE of an n-vertex upward planar graph G and let
v1, v2, . . . , vn′ be the sequence of vertices along the spine obtained by replacing
each spine crossing with a dummy vertex. An enrichment of S consistent with
γ is an UOSC point set S′ such that: (i) S ⊂ S′; (ii) |S′| = n′; and (iii) if we
denote by p1, p2, . . . , pn′ the points of S′ in bottom-to-top order, then pi is a
dummy point if and only if vi is a dummy vertex. See Fig. 3.

Let γ be a single-top 2UTBE of an upward planar graph G, and let γ′ be the
2UBE obtained by replacing the spine crossings of γ with dummy vertices and let
γ′
top be the 1-page book embedding obtained by γ′ considering only the top page;

we call γ′
top the top-reduction of γ. See Fig. 3(b). Let S be an n-point one-sided

convex point set and let S′ = 〈p1, p2, . . . , pn′〉 be an enrichment of S consistent
with γ. We assign to each dummy vertex vi in γ′

top a slope σ, which has to be
used to draw the segment incident to the dummy vertex. If vi is adjacent to a
vertex vj (real or dummy) with j > i, then σ is a slope of the II-IV quadrant
defined by the Cartesian axes, while if vi is adjacent to a vertex vj (real or
dummy) with j < i, then σ is a slope of the I-III quadrant. In either case the
value of σ must be smaller, in absolute value, than the slope of any segment
pkpk+1 for k = i, i + 1, . . . , j − 1 if i < j or for k = j, j + 1, . . . , i − 1 if i > j.
Such a choice of slopes is called a slope assignment for γ′

top. Let e1 and e2 be two

On 1-Bend Upward Point-Set Embeddings of st-Digraphs 9

sub-edges with at least one dummy end-vertex each and such that e2 is nested
inside e1. The slope assignment is good for e1 and e2 if for any two slopes σ1

assigned to e1 and σ2 assigned to e2 in the same quadrant we have |σ1| < |σ2|.
The slope assignment is good if it is good for every pair of nested sub-edges.

Fig. 3. (a) A single-top 2UTBE γ; (b) the top-reduction γ′
top of γ; (c) an enrichment of

an UOSC point set S (black squares) consistent with γ with a good slope assignment.
(d) A 1-bend UPSE of γ′

top on S′ computed as in Lemma 3.

Lemma 3 (�). Let G be an n-vertex upward planar graph, let S be an UOSC
point set. Let γ be a single-top 2UTBE of G and let γ′

top be the top-reduction of γ.
If a good slope assignment is given, then γ′

top has a 1-bend UPSE on every enrich-
ment S′ of S consistent with γ such that all the edges are drawn outside CH(S′)
and the segment incident to each dummy vertex is drawn with the assigned slope.

Proof (sketch). Let v1, v2, . . . , vn′ be the vertices in γ′
top according to the spine

order. Let S′ = 〈p1, p2, . . . , pn′〉 be an enrichment of S consistent with γ; see
Fig. 3. An edge is drawn only after all edges nested inside it are already drawn.
Let e = (vi, vj) be the current edge and suppose that i < j, i.e., that vi ≺ vj . The
edge e is drawn as the union of two segments: si incident to vi and sj incident
to vj . The segment si is drawn in the II quadrant, while segment sj is drawn
in the III quadrant. This guarantees that si and sj meet at a bend point. If vi
(resp. vj) is a dummy vertex, then si (resp. sj) is drawn with the slope assigned

10 E. Di Giacomo et al.

to vi (resp. vj). Notice that the slope assigned to vi (resp. vj) is a slope of the
II-IV quadrant (resp. I-III quadrant). If vi (resp. vj) is a real vertex, then si
(resp. sj) is drawn with a slope σ of the II-IV quadrant (resp. I-III quadrant);
the absolute value of σ has to be smaller than the absolute value of any other
slope used by the already drawn edges nested inside (vi, vj). If no edge is nested
inside (vi, vj), then |σ| has to be smaller than the absolute value of the slope of
any segment pkpk+1, for k = i, i + 1 . . . , j − 1. It is easy to see that all the edges
are drawn outside CH(S′) and no crossing exists. ��
Lemma 4 (�). Let G be an n-vertex upward planar graph, let γ be a single-top
2UTBE of G, and let e be a top sub-edge that covers exactly one vertex and
that has no top sub-edge nested inside it. Let γ′ be the 2UTBE obtained from γ
by removing the edge e′ containing the sub-edge e. Let Γ ′ be a 1-bend UPSE of
G\{e′} on an UOSC point set S whose induced 2UTBE is γ′. Then it is possible
to construct a 1-bend UPSE of G on S that has Γ ′ as a sub-drawing.

Lemma 5 (�). Let G = (V,E) be an n-vertex upward planar graph. If G admits
a nice single-top 2UTBE, then G admits a 1-bend UPSE on every UOSC point
set S of size n.

Proof (sketch). If G admits a nice single-top 2UTBE γ, then we can com-
pute a 1-bend UPSE on every one-sided convex point set S as follows. Let
S′ = 〈p1, p2, . . . , pn′〉 be an enrichment of S consistent with γ. We recursively
remove all edges that have a top sub-edge covering only one vertex and no edges
nested inside. These edges will be reinserted at the end in reverse order using
Lemma 4.

Let γ′ be the single-top 2UTBE resulting from the edge removal explained
above and let G′ be the corresponding graph. We now compute a 1-bend UPSE
of G′ on S′. We first map each vertex vi to the point pi (i = 1, 2, . . . , n′). By the
choice of the additional points, the dummy vertices are mapped to the dummy
points. We then draw the bottom (sub-)edges as straight-line segments inside
the convex hull CH(S′) of S′. Since the bottom-to-top order of the vertices along
CH(S′) is the same as in γ′, the (sub-)edges drawn inside CH(S′) do not cross.

Now, in order to draw the top (sub-)edges, we consider the top restriction of
γ′, and define a slope assignment, assigning to each dummy vertex d the slope
of the segment incident to d that is in the bottom page (drawing the segment
incident to d with this slope guarantee that no additional bend is created at
d). We can prove that this slope assignment is good and thus by Lemma 3 all
the top (sub-)edges can be drawn outside the convex hull respecting the slope
assignment, which guarantees that each edge is drawn with one bend. ��

4 1-Bend UPSE of st-Outerplanar Graphs

A graph is outerplanar if it admits an outerplanar drawing, i.e., a planar drawing
in which all vertices belong to the boundary of the outer face, which defines an
outerplanar embedding. Unless otherwise specified, we will assume our graphs to

On 1-Bend Upward Point-Set Embeddings of st-Digraphs 11

have planar or outerplanar embeddings. An edge of an embedded planar graph
G is outer if it belongs to the outer face, and it is inner otherwise. The weak
dual G of G is the graph having a node for each inner face of G, and an edge
between two nodes if and only if the two corresponding faces share an edge. If G
is outerplanar, its weak dual G is a tree. If G is a path, G is an outerpath. A fan is
an internally-triangulated outerpath whose inner edges all share an end-vertex.

An st-digraph is a directed acyclic graph with a single source s and a sin-
gle sink t; an st-outerplanar graph (resp. st-outerpath) is an st-digraph whose
underlying undirected graph is an outerplanar graph (resp. an outerpath). An
st-fan is an st-digraph whose underlying graph is a fan and whose inner edges
have s as an end-vertex. An st-outerplanar graph such that the edge (s, t) exists
is one-sided if (s, t) is an outer edge, it is two-sided if (s, t) is an inner edge.

We recall a decomposition of st-outerpaths defined in [6]. The extreme faces
of an st-outerpath G are the two faces that correspond to the two degree-one
nodes of the weak dual G. An st-outerpath G is primary if and only if one
of its extreme faces is incident to s and the other one to t. Observe that this
definition is stronger than the one used in [6], in the sense that a primary st-
outerpath according to our definition is a primary st-outerpath also according
to the definition in [6] (but the converse may not be true). Let G be a primary
st-outerpath. Consider a subgraph F of G that is an xy-fan (for some vertices
x, y of G). Let 〈f1, . . . , fh〉 be the list of faces forming the path G ordered from
s towards t. Note that the subgraph F of G is formed by a subset of faces that
are consecutive in the path 〈f1, . . . , fh〉. Let fi be the face of F with the highest
index, with 1 ≤ i ≤ h. We say that F is incrementally maximal if i = h or
F ∪ fi+1 is not an xy-fan. For every face fi we denote by mid(fi) the unique
vertex of fi with one incoming edge and one outgoing edge in the boundary of fi.

Definition 1. An st-fan decomposition of a primary st-outerpath G is a
sequence of siti-fans Fi ⊆ G, with i = 1, . . . , k, such that: (i) Fi is incrementally
maximal for each i = 1, . . . , k; (ii) for any 1 ≤ i < j ≤ k, Fi and Fj do not
share any edge if j > i + 1, while Fi and Fi+1 share a single edge, which we
denote by ei; (iii) s1 = s; (iv) the tail of ei is si+1 for each i = 1, . . . , k − 1; (v)
ei �= (si, ti) for each i = 1, . . . , k − 1; and (vi)

⋃k
i=1 Fi = G. Refer to Fig. 4a-b.

Lemma 6 ([6]). Every primary st-outerpath G admits an st-fan decomposition.

Let G be an st-outerplanar graph and let P be a path in the weak dual G
of G whose two endpoints are such that one corresponds to a face containing s
and the other one to a face containing t. Observe that the primal graph Gcore

of P is a primary st-outerpath by construction, we call it the core of G. On the
other hand, if an outer edge (u, v) of Gcore is not an outer edge of G, then it
corresponds to a separation pair in G. In particular, (u, v) belongs to Gcore and
to another subgraph Auv of G which is a one-sided uv-outerplanar graph; we
call Auv an appendage of G attached to (u, v); refer to Fig. 4c.

Property 1. Let G be an st-outerplanar graph and let Gcore be the core of G.
The following properties hold:

12 E. Di Giacomo et al.

Fig. 4. (a) An st-fan in the middle of the st-fan decomposition. (b) The first and last
st-fans of the st-fan decomposition. Since the outerpath is primary, the last fan can
always be chosen to be one-sided with edge (sk, tk) regarded as a possible attachment
edge of an appendage (light blue). (c) Gcore is blue and gray, while green subgraphs
represent appendages of Gcore. (d) Illustration of Property 1b. (Color figure online)

(a) Every outer edge of Gcore is potentially an attachment edge of an appendage.
(b) Let F1, . . . , Fk be an st-fan decomposition of Gcore and let P be its dual

path. Let si, ti denote the source and the sink of Fi. The fans Fi−1 and Fi

share the edge (si, ti−1); See Fig. 4d (Stronger version of Lemma 3 in [6]).
(c) Path P enters Fi, i = 2, . . . , k through the edge (si, ti−1) and leaves Fi,

i = 1, . . . , k − 1 through the edge (si+1, ti).
(d) Let Fi be a two-sided st-outerpath and let f1, . . . , fa be the faces of Fi as

visited by P . Faces f1, . . . , fa−1, a ≥ 2, lie on one side of (si, ti) and only
the face fa lies on the other side of (si, ti). Refer to Fig. 4a.

Property (a) holds by definition. If Properties (b) and (c) do not hold, then
Gcore has either more than one sink or more than one source. Finally, assuming
that Property (d) does not hold, implies that Gcore is not an outerpath.

In this section we utilize a tool, called Hamiltonian completion, that is
another way to look at 2UTBEs. An upward planar graph G has a 2UBE if
and only if it is subhamiltonian, i.e., it is a spanning subgraph of an upward
planar st-digraph G̃ that has a directed Hamiltonian st-path [26]. More gener-
ally, there is an analogy between upward topological book embeddings and a
more general form of subhamiltonicity. Let G be an upward planar graph and
G̃ = (V, Ẽ) be an embedded st-digraph such that: (1) G = (V,E) is a spanning
subgraph of G̃, (2) G̃ has a directed Hamiltonian st-path H, and (3) each edge
in E is crossed by at most one edge of Ẽ \ E. We say that H is a subhamilto-
nian path of G and G̃ is an HP-completion of G. See Fig. 5 for an example of
subhamiltonian paths.

Lemma 7 ([26]). An upward planar graph has a 2UTBE with at most one spine-
crossing per edge if and only if it has an HP-completion. The order of the vertices
along the spine in the 2UTBE is the same as in the subhamiltonian path.

On 1-Bend Upward Point-Set Embeddings of st-Digraphs 13

The subhamiltonian path crosses some edges of G by splitting them into
sub-edges. We inherit the definition of nesting (sub-)edges from 2UTBE to HP-
completion. Thus, the (sub-)edges (u, v), (w, z) nest in G̃ if in the embedding
of G̃ they are on the same side of the path H and u ≺ w ≺ z ≺ v or w ≺ u ≺
v ≺ z. Since the order of the vertices on the spine of the book and along the
Hamiltonian path coincide, two (sub-)edges nest in G̃ if and only if they nest in
the corresponding 2UTBE. We now prove the key result of this section.

Lemma 8 (�). Every primary st-outerpath has an HP-completion without nest-
ing sub-edges.

Fig. 5. Proof of Lemma 8: (a) Case 1. (b–d) Case 2, 3.a, and 3.b. The subhamiltonian
path Hi is drawn in dark red. (Color figure online)

Proof (sketch). Let G be a primary st-outerpath and F1, . . . , Fk be its st-fan
decomposition. Let P be the dual path of G. Let Gi be the subgraph of G
composed by F1, . . . , Fi, i = 1, . . . , k, therefore G = Gk. We construct the sub-
hamiltonian path Hi in Gi by induction on i, assuming the next invariants for
Hi−1 in Gi−1:

I1 Subhamiltonian path Hi−1 in Gi−1 terminates with the edge (si, ti−1).
I2 Path Hi−1 crosses the edge (si−1, ti−1) (in a point referred to as pi−1) if and

only if Fi−1 is two-sided. No other edge of Fi−1 is crossed by Hi−1.
I3 Hi−1 does not create nesting sub-edges in Gi−1.

We show how to construct Hi so to maintain the invariants. We have three cases
(two are omitted) based on whether Fi−1 and Fi are two-sided or not.

14 E. Di Giacomo et al.

Case 1: both Fi−1 and Fi are two-sided. Refer to Fig. 5a. Consider the
dual path P in Fi and let f1, . . . , fa, be the faces of Fi as visited by P . By
Property 1(d), since Fi is two-sided, faces f1, . . . , fa−1, a ≥ 2, lie on one side
of (si, ti) and only the face fa lies on the other side of (si, ti). Note that, by
Properties 1(b) and 1(c), Fi−1 and Fi share (si, ti−1) and P enters Fi through
(si, ti−1); it follows that mid(f1) = ti−1. By induction hypothesis Hi−1 termi-
nates at (si, ti−1). Therefore, we can set path Hi to be Hi−1 concatenated with
mid(f1), . . . ,mid(fa), ti. Note that mid(fa) = si+1, thus Invariant I1 holds.
Also, Hi crosses (si, ti) and no other edge of Fi, hence Invariant I2 holds as
well. Finally, concerning the only two edges of Fi−1 and Fi that are crossed by
Hi, the order in which their end-vertices si, ti, si−1, and ti−1 and their crossing
points pi−1 and pi are visited is si−1, pi−1, si, ti−1, pi, ti, which implies that their
sub-edges do not nest. No other sub-edge is created by Hi, thus I3 holds. ��
Lemma 9. Every st-outerplanar graph has an HP-completion without nesting
sub-edges.

Proof. Let G be an st-outerplanar graph and let Gcore be the core of G. By
Lemma 8, Gcore has an HP-completion with subhamiltonian path H ′ that does
not create nesting sub-edges. By Property 1(a), every outer edge of Gcore is
potentially an attachment edge of an appendage of G. We expand the subhamil-
tonian path H ′ of Gcore to a subhamiltonian path H in G as follows, refer to
Fig. 6. Let A be an appendage of P attached to an edge e and let f be the
internal face of Gcore incident to the edge e. We flip A to lie inside f . We visit
all the vertices of A that are not the source or the sink of A either immediately
after H ′ visits the source of A (blue appendage in Fig. 6.c) or immediately before
it visits the sink of A (pink appendage in Fig. 6.c), or both things at the same
time (green appendages in Fig. 6c). After this procedure the edges crossed by H
are exactly the edges of Gcore crossed by H ′, i.e., no new sub-edge is created.
Further, the vertices of Gcore are visited in the same order by H and by H ′.
Hence, since H ′ did not create nesting sub-edges in Gcore, so does H in G. ��

Fig. 6. Augmenting the subhamitonian path to visit appendages. (Color figure online)

By Lemmas 7 and 9 every st-outerplanar graph has a nice 2UTBE with at
most one spine-crossing per edge. By Lemma 5 we have the following.

Theorem 1. Every st-outerplanar graph admits a 1-bend UPSE on every UOSC
point set.

On 1-Bend Upward Point-Set Embeddings of st-Digraphs 15

5 1-Bend UPSE Are Not Always Possible

We describe a 2-outerplanar st-digraph G and an UOSC point set S such that G
does not admit a 1-bend UPSE on S. An st-digraph is 2-outerplanar if removing
all vertices of the outer face yields an outerplanar digraph.

Fig. 7. (a) An st-digraph G and (b) an UOSC point set S for the proof of Lemma 10
(Color figure online)

Lemma 10 (�). There exists a 2-outerplanar st-digraph G and an UOSC point
set S such that G does not admit a 1-bend UPSE on S.

Proof (sketch). Let G be the st-digraph of Fig. 7(a) and let S be the point set
of Fig. 7(b) By Lemma 1, if G has a 1-bend UPSE Γ on S, then Γ induces a
single-top 2UTBE. We show that every single-top 2UTBE γ of G has a forbidden
configuration of Type i, for some i ∈ {1, 2, 3, 4}, that is necessarily mapped to a
Type i impossible point subset of S. By Lemma 2 a 1-bend UPSE cannot exist.
Let p1, p2, . . . , p18 be the points of S in bottom-to-top order. Let πl be the path
from u to v to the left of (u, v) (red in Fig. 7(a)) and let πr be the path from u
to v to the right of (u, v) (blue in Fig. 7(a)). The edge (u, v) (yellow in Fig. 7(a))
has vertices on both sides. Thus, in every 2UTBE it crosses the spine either once
or twice and the vertices of πl must appear along the spine in the order they
appear along πl; the same holds for πr. We have different cases. In each case we
denote by v1, v2, . . . , vn the sequence of vertices along the spine (thus vertex vi
is mapped to point pi). In all cases u is mapped to p2 and v is mapped to p17.
Case 1: Edge (u, v) crosses the spine once (see Fig. 8(a)). The first sub-edge
of (u, v) is either a bottom or a top sub-edge. Assume the first case (the other
one is symmetric) case the vertex w coincides with v6 and the edges (w, v) and
(u, v) form a Type 2 forbidden configuration with the spine crossings between
v9 and v10. Since, p2, p6, p9, p10, p16, p17 form a Type 2 impossible point set (see
Fig. 8(b)), by Lemma 2 a 1-bend UPSE cannot exist in this case.

16 E. Di Giacomo et al.

Fig. 8. Theorem 2: (a)–(c) Case 1. (b)–(d) Case 2.A.

Case 2: Edge (u, v) crosses the spine twice. In this case (u, v) consists of three
sub-edges (u, d1), (d1, d2), and (d2, v), where d1 and d2 are spine crossings. Only
(d1, d2) is a top sub-edge. Thus, the vertices of πl have to be distributed in the
two intervals defined by (u, d1) and (d2, v). We distinguish six sub-cases (five are
omitted) depending on the distribution of the vertices of πl.
Case 2.A: w is between u and d1 with a single vertex of πl between d2 and v
(see Fig. 8(b)). In this case w coincides with v6 and both (w, v) and (u, v) cross
the spine between v8 and v9 and between v15 and v16. The edges (w, v) and
(u, v) form a Type 2 forbidden configuration. Since p2, p6, p8, p9, p15, p17 form a
Type 2 impossible point set (see Fig. 8(d)), by Lemma 2 a 1-bend UPSE cannot
exist. ��

The following theorem is easily derived from Lemma 10 by suitably adding,
for every n ≥ 18, n − 18 vertices to G and n − 18 points to S.

Theorem 2. For every n ≥ 18 there exists an n-vertex 2-outerplanar st-digraph
G and an UOSC point set S such that G does not admit a 1-bend UPSE on S.

6 Open Problems

Various questions remain open related to Problem 1 and 2 of Sect. 1, such
as: (i) Investigate the non-upward version of Problem 1. (ii) Study Prob-
lem 2. In particular, characterize the digraphs admitting a 1-bend UPSE on
every UOSC point set.

On 1-Bend Upward Point-Set Embeddings of st-Digraphs 17

References

1. Angelini, P., Frati, F., Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.:
Upward geometric graph embeddings into point sets. In: Brandes, U., Cornelsen, S.
(eds.) GD 2010. LNCS, vol. 6502, pp. 25–37. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-18469-7 3

2. Arseneva, E., et al.: Upward point set embeddings of paths and trees. In: Uehara,
R., Hong, S.H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 234–246.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8 19

3. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points.
Theor. Comput. Sci. 408(2–3), 129–142 (2008)

4. Bekos, M.A., Da Lozzo, G., Frati, F., Gronemann, M., Mchedlidze, T.,
Raftopoulou, C.N.: Recognizing DAGs with page-number 2 is NP-complete. Theor.
Comput. Sci. 946, 113689 (2023)

5. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser.
B 27(3), 320–331 (1979)

6. Bhore, S., Da Lozzo, G., Montecchiani, F., Nöllenburg, M.: On the upward book
thickness problem: combinatorial and complexity results. Eur. J. Comb. 110,
103662 (2023)

7. Binucci, C., et al.: Upward straight-line embeddings of directed graphs into point
sets. Comput. Geom. 43(2), 219–232 (2010)

8. Bose, P.: On embedding an outer-planar graph on a point set. Comput. Geom.
Theory Appl. 23, 303–312 (2002)

9. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a
point set. J. Graph Algorithms Appl. 2(1), 1–15 (1997)

10. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006)

11. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Wismath, S.K.: Point-set
embeddings of trees with given partial drawings. Comput. Geom. 42(6–7), 664–
676 (2009)

12. Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Book embeddability of
series-parallel digraphs. Algorithmica 45(4), 531–547 (2006). https://doi.org/10.
1007/s00453-005-1185-7

13. Di Giacomo, E., et al.: On 1-bend upward point-set embeddings of st-digraphs.
CoRR 2401.03226 (2024). http://arxiv.org/2401.03226

14. Di Giacomo, E., Gasieniec, L., Liotta, G., Navarra, A.: On the curve complexity
of 3-colored point-set embeddings. Theor. Comput. Sci. 846, 114–140 (2020)

15. Di Giacomo, E., Liotta, G., Trotta, F.: Drawing colored graphs with constrained
vertex positions and few bends per edge. Algorithmica 57(4), 796–818 (2010).
https://doi.org/10.1007/s00453-008-9255-2

16. Dujmović, V., et al.: On point-sets that support planar graphs. Comput. Geom.
46(1), 29–50 (2013)

17. Everett, H., Lazard, S., Liotta, G., Wismath, S.K.: Universal sets of n points
for one-bend drawings of planar graphs with n vertices. Discrete Comput. Geom.
43(2), 272–288 (2010). https://doi.org/10.1007/s00454-009-9149-3

18. Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A., Whitesides, S.: Comput-
ing upward topological book embeddings of upward planar digraphs. J. Discrete
Algorithms 30, 45–69 (2015)

19. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation
with vertices at specified points. Am. Math. Monthly 98(2), 165–166 (1991)

https://doi.org/10.1007/978-3-642-18469-7_3
https://doi.org/10.1007/978-3-642-18469-7_3
https://doi.org/10.1007/978-3-030-68211-8_19
https://doi.org/10.1007/s00453-005-1185-7
https://doi.org/10.1007/s00453-005-1185-7
http://arxiv.org/2401.03226
https://doi.org/10.1007/s00453-008-9255-2
https://doi.org/10.1007/s00454-009-9149-3

18 E. Di Giacomo et al.

20. Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs:
part II. SIAM J. Comput. 28(5), 1588–1626 (1999)

21. Kaufmann, M., Mchedlidze, T., Symvonis, A.: On upward point set embeddability.
Comput. Geom. 46(6), 774–804 (2013)

22. Kaufmann, M., Wiese, R.: Embedding vertices at points: few bends suffice for
planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)

23. Löffler, M., Tóth, C.D.: Linear-size universal point sets for one-bend drawings.
In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 423–429.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0 35

24. Mchedlidze, T.: Upward planar embedding of an n-vertex oriented path on O(n2)
points. Comput. Geom. 46(8), 1003–1008 (2013)

25. Mchedlidze, T., Symvonis, A.: Crossing-free acyclic hamiltonian path completion
for planar st-digraphs. In: Dong, Y., Du, D.Z., Ibarra, O. (eds.) ISAAC 2009.
LNCS, vol. 5878, pp. 882–891. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10631-6 89

26. Mchedlidze, T., Symvonis, A.: Crossing-optimal acyclic hamiltonian path com-
pletion and its application to upward topological book embeddings. In: Das, S.,
Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 250–261. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-00202-1 22

27. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs
Comb. 17(4), 717–728 (2001). https://doi.org/10.1007/PL00007258

https://doi.org/10.1007/978-3-319-27261-0_35
https://doi.org/10.1007/978-3-642-10631-6_89
https://doi.org/10.1007/978-3-642-10631-6_89
https://doi.org/10.1007/978-3-642-00202-1_22
https://doi.org/10.1007/PL00007258

Decoding Tree Decompositions
from Permutations

Samuel Eduardo da Silva and Uéverton S. Souza(B)

Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil

samueleduardo@id.uff.br, ueverton@ic.uff.br

Abstract. Most algorithmic strategies for solving problems considering
treewidth parameterization require that a tree decomposition is given.
Given a graph G = (V, E) and denoting by CG the family of chordal
graphs (triangulations) G′ such that V (G) = V (G′) and E(G) ⊆ E(G′),
the treewidth of a graph G can be defined alternatively as the size of
the smallest maximum clique of a graph in CG , minus one. In addition,
any tree decomposition T of a graph G′ ∈ CG is also a tree decomposi-
tion of G. In this paper, we are interested in the main subproblem to be
solved by the most popular heuristics for treewidth computation, called
Tree Decomposition Decoding. In such a problem, we are given a
graph G = (V, E) and a permutation ρ of V (G) and asked to determine
the width of the tree decomposition T of G that is an optimum tree
decomposition of the minimal triangulation G′ ∈ CG having ρ as per-
fect elimination ordering. From (G, ρ), it is easy to find the solution to
the problem by first constructing the triangulation G′ arising from ρ.
However, in the worst case, such constructions of G′ require Θ(|V (G)|2)
space. In this work, we propose two algorithms for solving the problem;
both avoid the construction of triangulations G′. The first performers
in O(|V (G)| · �) space and O(|V (G)|2 · �) time, where � is the number
of leaves of the tree decomposition encoded by ρ. The second is faster
in practice and achieves a different trade-off, solving the problem within
O(|E(G)| + |V (G)|) space and O(|E(G)| · log |V (G)|) time.

Keywords: Tree decomposition · Treewidth · Perfect elimination
order · Decoder

1 Introduction

A simple graph G is called chordal when every induced cycle of G has exactly
three vertices, i.e., every cycle of size at least four of G has at least one chord.
The chordal graph class is one of the main and most important graph classes,
used in several theoretical frameworks in Algorithmic Graph Theory and having
many practical applications.

Given a graph G, a vertex v ∈ V (G) is called simplicial if its neighbor-
hood induces a clique. In 1961, Dirac [6] proved that any chordal graph is either

This research has received funding from Rio de Janeiro Research Support Foundation
(FAPERJ) and National Council for Scientific and Technological Development (CNPq).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 19–34, 2024.
https://doi.org/10.1007/978-3-031-55598-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_2&domain=pdf
http://orcid.org/0000-0002-5320-9209
https://doi.org/10.1007/978-3-031-55598-5_2

20 S. E. da Silva and U. S. Souza

complete or has at least two non-adjacent simplicial vertices. Based on that,
Fulkerson and Gross [7], in 1965, presented a polynomial-time algorithm to rec-
ognize chordal graphs, which finds and removes simplicial vertices of the input
graph until there are no more simplicial vertices.

A permutation ρ = v1, v2, . . . , vn of the n vertices of a graph G is called a
perfect elimination ordering of G if for all 1 ≤ i ≤ n, the vertex vi is a simplicial
vertex in G[{vi, . . . , vn}] (subgraph of G induced by {vi, . . . , vn}). At this point,
by Dirac’s characterization of chordal graphs [6], it is easy to see that a graph is
chordal if and only if it admits a perfect elimination ordering of its vertex set.
Also, the Fulkerson and Gross algorithm [7] asserts that the input graph G is
chordal if and only if it finds a perfect elimination ordering of G.

Note that any perfect elimination ordering ρ of a tree T can be obtained
from the successive removal of simplicial vertices with degree one (leaves) in the
current graph until getting a single vertex. This notion of perfect elimination
ordering by removing simplicial vertices with bounded degree can be generalized
to define a family of subclasses of chordal graphs called k-trees. Given an integer
k ≥ 1, the class of k-trees is defined recursively as follows: a complete graph
with k +1 vertices is a k-tree; a k-tree T with n+1 vertices where n ≥ k +1 can
be constructed from a k-tree H with n vertices by adding a new vertex adjacent
to exactly k vertices that form a k-clique in H. Also, any perfect elimination
ordering of a k-tree can be obtained from the successive removal of simplicial
vertices with degree k in the current graph until a clique of size k is obtained.
Trees are precisely the class of 1-trees.

A graph G is a partial k-tree if G is a subgraph of a k-tree. The minimum
integer k such that a graph G is a partial k-tree is a width parameter that aims to
measure some “distance” from G to a tree. Such a width parameter is equivalent
to the notion of treewidth commonly defined under tree decompositions.

A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T)), where T
is a tree in which every node t is associated with a subset Xt ⊆ V (G), called a
bag, satisfying the following conditions (c.f. [4]):

– ∪t∈V (T)Xt = V (G), i.e., every vertex is in at least one bag;
– for every edge uv ∈ E(G), there is a node t of T where the bag Xt contains

both u and v;
– for all u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Xt} (set of bags containing u)

is a subtree of T .

The width of a tree decomposition T is max{|Xt| − 1} for t ∈ V (T) (the size
of the largest bag minus one). The treewidth of a graph, denoted by tw(G), is
the smallest width among all its possible tree decompositions. Nowadays, it is
well known that a graph G is a partial k-tree if and only if tw(G) ≤ k.

Tree decompositions are widely used in designing dynamic programming algo-
rithms for graph problems on instances with bounded treewidth (see [4]), and
the treewidth of a graph is one of the most important and useful graph parame-
ters. Several classes of graphs have treewidth bounded by a constant, and many
NP-hard problems can be solved in polynomial time in classes of graphs with
bounded treewidth (see [4]). Most algorithmic strategies for solving problems

Decoding Tree Decompositions from Permutations 21

using treewidth and tree decompositions require that a tree decomposition with
a “sufficiently small” width is previously computed. However, computing the
treewidth of a graph (thus, finding a tree decomposition with minimum width)
is an NP-hard problem, as demonstrated in [1]. From these facts, the need to
compute tree-decompositions that do not necessarily have the minimum width
but have a small enough width for applications emerges.

Since k-trees are chordal graphs, any graph G with treewidth at most k is
a subgraph of a chordal graph having maximum clique of size at most k + 1.
Furthermore, Dirac [6] showed that a chordal graph G with perfect elimination
ordering ρ = v1, . . . , vn has treewidth max{|N(vi) ∩ {vi, . . . , vn}|}, where N(vi)
is the neighborhood of vi in G. Thus, if G′ is a chordal supergraph of a graph G
and G′ has maximum clique size at most k+1, then G is a partial k-tree because
G′ is also a partial k-tree. Therefore, given a graph G = (V,E) and denoting by
CG the family of chordal graphs G′ such that V (G) = V (G′) and E(G) ⊆ E(G′),
the treewidth of a graph G can be defined alternatively as the cardinality of the
smallest maximum clique size of a graph in CG , minus one.

From a chordal graph G′ whose maximum clique size is at most k+1, one can
successively remove simplicial vertices whose neighborhood is a clique of size at
most k. From this perfect elimination ordering ρ = v1, v2, . . . , vn, a tree decom-
position T can be built where each bag is formed by the closed neighborhood of
the simplicial vertices during its removal/elimination concerning ρ in G′; and,
letting Xi be the bag formed by the closed neighborhood of vi during its elim-
ination concerning ρ in G′, if |Xi| ≥ 2 the parent of the bag Xi correspondent
to the least j > i such that vj ∈ Xi; otherwise, Xi = {vi} and its parent is the
root of T whose bag is empty. We say that such a tree decomposition T arises
from ρ. Since T has width k, such a tree decomposition that arises from ρ is an
optimum tree decomposition of G′. Figure 1 illustrates a chordal graph G′ and
its tree decomposition T that arises from a given perfect elimination ordering ρ.

1

26

3

74

5

G

3 4 7

4 5 7

1 2 6

2 5 6

∅

7

6 7

5 6 7

T

Fig. 1. Chordal graph G′ with V (G′) = {1, 2, 3, 4, 5, 6, 7} and its tree decomposition
T that arises from the perfect elimination ordering ρ = 1, 2, 3, 4, 5, 6, 7. The vertices
highlighted in red inside the bags are the simplicial vertices that generate such a bag
when eliminated from the current graph. (Color figure online)

22 S. E. da Silva and U. S. Souza

Also, it is possible to transform any simple graph G into a chordal graph by
adding some edges; the resulting graph is called a triangulation of G. A process
for obtaining a triangulation of a graph G can be described as follows:

(i) create a copy of the original graph, named G∗;
(ii) choose any vertex x from G∗, add edges between vertices in the neighbor-

hood of x until they form a clique;
(iii) remove x from G∗;
(iv) add to the original graph all the edges added in the previous step;
(v) repeat step (ii) if there are still vertices in G∗.

At the end of this process, the order in which the vertices were removed from
the copy of the original graph provides a perfect elimination ordering ρ of the
resulting graph G′. We also say that G′ arises from ρ. Thus, a typical strategy
of heuristics to compute a tree decomposition of the graph G is: (a) compute,
according to some criteria, a permutation ρ of the vertices of G representing a
perfect elimination ordering of a triangulation G′ of G; (b) compute an optimal
tree decomposition T of G′; (c) return T as a tree decomposition of G.

Note that, with respect to polynomial-time computations, the criteria to
obtain the permutation ρ must be heuristic (non-exact) because finding the
perfect elimination ordering that results in a triangulation with the smallest
treewidth is NP-hard since it is equivalent to computing the treewidth of G.

At this point, we can observe that any permutation of the vertices of G
represents a perfect elimination ordering of a triangulation of G and encodes
a tree decomposition for G. Therefore, in this paper, we are interested in the
problem that we formalize as follows:

Instance: A graph G = (V,E), and a permutation ρ of V (G).
Goal: Determine the width of the tree decomposition T of G that

arises from ρ; i.e., the width of the optimum tree decompo-
sition of the triangulation G′ of G that arises from ρ.

Tree Decomposition Decoding

Tree Decomposition Decoding is the main subproblem to be solved by
the most popular heuristics for the problem of computing the treewidth of a
graph. For solving Tree Decomposition Decoding, one can use the informa-
tion that the treewidth of a triangulation G′ is the size of its largest clique minus
one. Thus, from (G, ρ), by constructing the triangulation G′ that arises from ρ,
we can obtain in O(|V (G′)| + |E(G′)|) time the solution for the problem. How-
ever, constructions of G′ take Θ(n2) space in the worst case where n = |V (G)|
because for each simplicial vertex, one must transform its current neighborhood
into a clique. Therefore, the main issue of such constructions is that Θ(n) width
requires Θ(n2) space, which might be too much for large instances. However, the
triangulation does not necessarily need to be computed to evaluate a solution
encoded by ρ (determine its width). Since it is the main drawback of algorithms
for Tree Decomposition Decoding, one can ask the following algorithmic
questions:

Decoding Tree Decompositions from Permutations 23

Question 1. Is it possible to obtain the solution T for Tree Decomposition

Decoding without constructing the triangulation G′ arising from ρ?

Avoiding typical auxiliary structures is challenging but can be the key prop-
erty of some algorithmic breakthroughs. Besides, it is worth asking the following:

Question 2. Can Tree Decomposition Decoding be solved in o(n2) space
and O(n2) time?

Question 3. Can Tree Decomposition Decoding be solved in o(n2) time?

This paper has answered the first question and presented two approaches.
The algorithm Leaf decoder avoids the construction of the triangulation G′ and
solves the problem in O(n · �) space and O(n2 · �) time, where n is the number
of vertices of the input graph G, and � is the number of leaves of the tree
decomposition encoded by the permutation ρ. The algorithm Set decoder, using
a different strategy, solves the problem in O(m · log n) time, where m = |E(G)|.
However, it may consume more auxiliary memory (O(m + n)), which can be an
issue in huge instances.

Since the triangulation G′ that arises from ρ is a chordal graph, the number
of leaves in the tree decomposition T encoded by ρ = v1, v2, . . . , vn is precisely
the number of vertices vi having no neighbor in G′[{v1, . . . , vi}]. Therefore, we
partially answer the second question by presenting an algorithm that performs
in o(n2) space when the tree decomposition encoded by ρ has o(n) leaves. In
particular, if the underlying triangulation that arises from ρ has a bounded
clique cover number, then the solution is decoded by our algorithm in O(n)
space and O(n2) time. At the same time, the best decoders based on computing
triangulations would use Θ(n2) space and Θ(n2) time. A similar phenomenon
occurs if ρ encodes a path decomposition with a large width. Thus, avoiding
the construction of G′, in O(n) space, we can solve some dense instances of the
problem that tend to require Ω(n2) space if the construction of G′ is required.
Computational experiments show that in addition to saving space, the proposed
algorithm is also competitive in terms of running time, decoding the solution of
some instances faster than the method based on computing triangulations. We
also partially answer the third question with the Set decoder algorithm, which
performs in o(n2) time when m = o(n2

logn). In addition, it is the fastest decoder
in practice, according to our experiments.

It is worth mentioning that even when G is a graph having bounded
treewidth, depending on the permutation ρ, the associated graph G′ may have
Θ(n2) edges. The extreme case would be when the first element of the per-
mutation is a universal vertex of G, forcing the triangulation G′ to be a com-
plete graph. Also, the reader may wonder why ρ could be any permutation
rather than one obtained by an appropriate heuristic. One of the motivations
is the engineering of heuristic algorithms, such as genetic algorithms, that are
based on generating a population of solutions encoded through permutations.
Although constructive heuristics generate some members of the population, due

24 S. E. da Silva and U. S. Souza

to the population’s need for diversity, some permutations are commonly gener-
ated randomly and must be evaluated by some decoder. In addition, it is worth
mentioning that, in some scenarios, it may be desirable to find a feasible solu-
tion in a short time. Thus, running more elaborate constructive heuristics may
be unfeasible in the context of huge graphs. Our computational experiments
point to real benchmark instances where this occurs. However, taking a random
permutation and using an efficient decoding algorithm would still be possible
in such a case. We remark that besides the theoretical contribution regarding
the state of practice, by taking a random permutation of the vertices and using
our decoding algorithms, we can obtain feasible solutions for large instances
that triangulation-based decoders and classical constructive heuristics are not
able to get within the same time. Finally, space constraints impose a rule, and
therefore, our contribution complements state-of-the-art by offering a solution
for situations in which the construction of triangulations is not pertinent.

Due to space constraints, our computational experiments are omitted.

2 Related Works

Most studies regarding heuristics for the treewidth computation of a graph G
are based on finding perfect elimination orderings of triangulations of G, where
vertices are selected following some criteria to build a permutation ρ of V (G).
Thus, the feasible solution to be returned is the tree decomposition of the mini-
mal triangulation that arises from ρ. The most prominent constructive heuristics
in the literature are Min-Degree and Fill-in (c.f. [9]). The Min-Degree heuristic
selects the vertex with a minimum degree in the current graph successively, while
in the Fill-in heuristic, the vertex to be chosen is the one whose neighborhood is
the closest to becoming a clique through additions of edges (completions). Both
criteria aim to minimize the size of the largest clique of the chordal graph to
be produced. The Min-Degree heuristic is faster than the Fill-in heuristic, but
Fill-in typically finds a better solution in practice. In 2019, Gaspers et al. [9]
proposed turbocharging both heuristics. Besides, exact and heuristic implemen-
tations for the treewidth computation were proposed in PACE 2017 [5]. The goal
of this challenge was to investigate the applicability of algorithmic ideas studied
in the vast literature of the treewidth computation, and it has inspired some
interesting works such as [2,11].

Besides, many approaches to solving optimization problems consist of study-
ing how to encode feasible solutions as permutations. Bean [3] showed that any
optimization problems in which their solutions can be encoded as permutations
can be used in metaheuristic algorithms to manipulate these permutations to
obtain better solutions. After manipulating encoded solutions, it is necessary to
decode them so that we can infer a solution value (value encoding). A determin-
istic algorithm called decoder takes a solution encoded as a permutation and
associates it with a value (its encoded value). Decoding the solution can be com-
putationally expensive and a bottleneck for metaheuristics since it is a recurrent
subroutine of the entire process. Regarding Tree Decomposition Decoding,

Decoding Tree Decompositions from Permutations 25

in 1976, Rose, Tarjan, and Lueker [10] presented an algorithm with O(n + m′)
running time that computes the chordal supergraph G′ of a graph G that arises
from a given permutation ρ of V (G) representing the elimination ordering of G′,
where n = |V (G)| and m′ = |E(G′)|. In addition, from G′, its corresponding
tree decomposition can be obtained in polynomial time [8]. Therefore, Tree

Decomposition Decoding can be solved in O(n2) space and O(n2) time. In
this paper, we present the algorithms leaf decoder that solves Tree Decompo-

sition Decoding in O(n · �) space and O(n2 · �) time and the set decoder that
solves it in O(m+n) space and O(m · logn) time. To the best of our knowledge,
these are the first decoders that neither compute triangulations of the input
graph nor perform any completion operation (addition of edges).

3 Leaf Decoder Algorithm

As explained in the Introduction, any permutation of the vertices of a graph G
can be seen as a perfect elimination ordering of a triangulation of G. During
the triangulation process, edges are added to transform the original graph into
a chordal graph. Now, we propose an algorithm to compute the width of the
tree decomposition that arises from the permutation ρ of V (G) (representing a
perfect elimination ordering of the triangulation of G), but without adding edges
to the original graph G and avoiding constructing the triangulation.

Definition 1. Given a graph G, a permutation ρ of V (G), and the tree decom-
position T of G that arises from ρ, a vertex v ∈ V (G) is a leaf vertex according
to ρ if v is contained in exactly one bag of T .

Observation 1. Given a graph G, a permutation ρ of V (G), and the tree decom-
position T of G that arises from ρ, the number of leaf vertices according to ρ is
exactly the number of leaf nodes of T .

Proof. By construction, except the root bag, each bag is formed by the closed
neighborhood of a vertex v during their elimination concerning ρ in G′. Thus,
each leaf node t of T has exactly one leaf vertex v in Xt. Also, by construction,
the bag of a node t with child t′ is formed by the closed neighborhood of a vertex
v ∈ Xt′ . Thus, there is no non-leaf node t having leaf vertices. �	

Our algorithm is divided into two procedures. The first procedure aims to
find the set of leaf vertices according to ρ. These vertices can be seen as those
that dictate which branch of the tree decomposition each vertex will be on.

Observation 2. Given a graph G, a permutation ρ = v1, v2, . . . , vn of V (G),
and the tree decomposition T of G that arises from ρ, a vertex vi ∈ V (G) is a
leaf vertex if and only if vi is an isolated vertex in G[{v1, v2, . . . , vi}].

Proof. Let vi be an isolated vertex in G[{v1, v2, . . . , vi}], and let ρi =
v1, v2, . . . , vi. Clearly, the triangulation of G[{v1, v2, . . . , vi}] that arises from

26 S. E. da Silva and U. S. Souza

ρi has vi as isolated vertex. Thus, vi is a leaf vertex according to ρ. Now, sup-
pose that vi is a leaf vertex according to ρ. Let G′ be the triangulation of G
that arises from ρ. By definition, vi has no neighbor in {v1, v2, . . . , vi−1} in
the graph G′. Since G′ is a supergraph of G then vi is an isolated vertex in
G[{v1, v2, . . . , vi}]. �	

3.1 Determining Descendant Leaves for Each Node

For computing the leaf vertices, we use as data structure a list F indexed by
the vertices of the graph, where each position stores an ordered set/list of linked
elements (for better performance). The elements p to be stored for a vertex v of
G are pairs (f, c) of integers f and c, where the first integer (f) of the pair p is
denoted by p.f and indicates a leaf vertex that v reaches, and the second integer
(c) of p denoted by p.c indicates through which vertex of the graph such a leaf
f reaches v (i.e., the first neighbor of v in the path between f and v). Thus, the
goal of Algorithm 1 is not just determining the set of leaf vertices of G according
to ρ, but also determining for each vertex vi of G a subset of leaf vertices that
safely are descendant from node i (bag Xi) according to the tree decomposition
T that arises from ρ. Recall that the node of the tree decomposition T formed
during the elimination of vi (according to ρ) is denoted by node i (its bag is Xi).

Algorithm 1: FindLeaves(G, ρ)
1 Let ρ = 1, 2, . . . , n;
2 for x from 1 to n do
3 F [x] ← ∅;
4 Leaves[x] ← 1;

5 for x from 1 to n do
6 if Leaves[x]= 1 then
7 add {x, x} to F [x]

8 foreach w ∈ N (x) do
9 if w > x then

10 Leaves[w] ← 0;
11 else
12 foreach p in F [w] do
13 if the leaf p.f is in some element of F [x] then
14 Let p′ be the element of F [x] such that p′.f = p.f ;
15 replace p′ by (p.f, min{w, p′.c}) in F [x];

16 else
17 add to F [x] the pair (p.f, w);

18 return (F);

The Algorithm 1 describes the process of finding the leaf vertices and initial-
izing the leaf set of each vertex vi with some leaf vertices which are descendants

Decoding Tree Decompositions from Permutations 27

1

26

3

74

5

G

ρ 1 2 3 4 5 6 7

F (1,1) (1,1) (3, 3) (3,3)
(1,2)
(3,4) (1,1) (3,3)

Fig. 2. A graph G, a permutation ρ = 1, 2, 3, 4, 5, 6, 7 of the vertices of G, and the
structure F after the computation of Algorithm 1 on (G, ρ). Highlighted in red are the
leaf vertices of the tree decomposition T that arises from ρ. The decomposition T and
the triangulation G′ arising from ρ are illustrated in Fig. 1. (Color figure online)

of the node corresponding to vi in the tree decomposition T that arises from
ρ. The algorithm takes as input a graph G and a permutation of the vertices
ρ. Let x be a vertex of G, F [x] denotes the list F at position x and represents
the descendant leaves of x in T , and N (x) denotes the neighborhood of x into
G. The variable Leaves is a binary vector indexed by the vertices of G, such
that Leaves[i]= 1 means that vi is a leaf vertex. Initially, Leaves[i]= 1 for each
i, and the structure will be updated as the algorithm progresses, according to ρ.
Figure 2 illustrates the structure F after the computation of Algorithm 1.

Time and Space Complexity. This procedure traverses all vertices and edges
of G, taking Ω(n + m) time, where for each edge, the descendant leaf sets of
its endpoints are parsed and updated if necessary. Considering that such sets of
descendant leaves are stored in ascending order in a linked list for each edge, this
step can be performed in O(�) time. Therefore, the procedure FindLeaves can
be performed in O((n + m) · �) time and O(n · �) space, where n is the number
of vertices, m the number of edges of the input graph, and � is the maximum
number of descendant leaves of a vertex.

3.2 Determining the Width of the Encoded Tree Decomposition

The second procedure of the algorithm computes the bags of the tree decom-
position or, alternatively, the size of each bag if the objective is to evaluate the
permutation by determining the width of its tree decomposition rather than
returning the decomposition. The main goal is to identify for each vertex which
successor vertices according to ρ should be in its bag. For this, the current vertex
vi and its successor vj must have descendant leaves in common in their leaf sets;
that is, they are vertices that are part of the same branch in the tree decom-
position, but not only that, it is also necessary that the vertex that takes the
successor vj to the leaf must be in a position less than or equal to the position

28 S. E. da Silva and U. S. Souza

of the current vertex vi in ρ because the current vertex bag must be a minimal
separator between the “already-forgotten” vertices and the “not-yet-forgotten”
vertices in the path from the leaf node to the root node in tree decomposition
that arises from the permutation ρ. In addition, by determining that vj should
be in the bag of vi, new descendant leaves for vj can be recognized.

Algorithm 2: FillBags(F, ρ)
1 width ← 0;
2 foreach x ∈ ρ do
3 T [x].bag ← {x};
4 T [x].size ← 1;
5 T [x].parent ← n + 1 (representing the root node);
6 foreach y ∈ ρ and y > x do
7 inter ← ∅;
8 if there are p ∈ F [x], p′ ∈ F [y] with p.f = p′.f and p.c′ ≤ x then
9 foreach p ∈ F [x] such that there is p′ ∈ F [y] with p.f = p′.f do

10 add p to inter;

11 T [x].bag ← T [x].bag ∪ {y};
12 T [x].size ← T [x].size + 1;
13 T [x].parent ← min{y, T [x].parent}
14 if inter �= ∅ then
15 notinter ← F [x] \ inter;
16 foreach p ∈ inter do
17 foreach p′ in F [y] such that p′.f = p.f do
18 replace p′ by (p.f, p.f) in F [y];

19 foreach p ∈ nointer do
20 add (p.f, p.f) to F [y];

21 width ← max{width, T [x].size − 1};

22 return (T, width);

Algorithm 2 summarizes the entire process necessary in the second procedure.
It receives as a parameter the structure of sets F generated by the Algorithm 1
and the permutation of the vertices ρ. As a data structure to store the tree
decomposition or the size of its bags, we use a list T with n positions where each
position is associated with a node of the tree decomposition ordered according to
ρ. Each position in the list T is a record with three fields, bag, size, and parent,
storing the vertices of the bag of node i, its size, and the index of its parent
node, respectively. We are implicitly assuming that there is a root node with an
empty bag whose position is n+1. We remark that to save space and determine
just the width of the decomposition, it is enough to omit the field “bag” of the
structure. As previously discussed, our primary goal is saving space; however,
we consider the field “bag” to simplify the argumentation about correctness.

Decoding Tree Decompositions from Permutations 29

x
F

1 2 3 4 5 6 7 T [x].bag

1 (1,1) (1,1) (3,3) (3,3)
(1,2)
(3,4) (1,1) (3,3) –1, 2, 6˝

2 (1,1) (3,3) (3,3)
(1,1)
(3,4) (1,1) (3,3) –2, 5, 6˝

3 (3,3) (3,3)
(1,1)
(3,4) (1,1) (3,3) –3, 4, 7˝

4 (3,3)
(1,1)
(3,3) (1,1) (3,3) –4, 5, 7˝

5
(1,1)
(3,3)

(1,1)
(3,3)

(3,3)
(1,1) –5, 6, 7˝

6
(1,1)
(3,3)

(3,3)
(1,1) –6, 7˝

7
(3,3)
(1,1) –7˝

1

26

3

74

5

(1-4)

1

26

3

74

5

(5)

1

26

3

74

5

(6)

Fig. 3. Evolution of the data structures throughout the execution of Alg. 2. The first
element of a bag represents the current simplicial vertex and the label of the correspon-
dent node on T . The second element of a bag (if any) determines the parent’s label of
the current node. The root node is the parent of node 7 in T . Highlighted in red are
the sets of pairs to be traversed at each step. (Color figure online)

Figure 3 describes the execution of Algorithm 2 according to a perfect elimi-
nation ordering ρ. Initially, the first vertex in ρ is the vertex 1 (i.e., x = 1), and
it has {(1, 1)} as set of leaves. The possible vertices to be added to its bag are
vertices 2, 5, and 6, as they have leaf 1 in their leaf sets. However, only vertices
2 and 6 are introduced in its bag because vertex 5, despite having leaf 1 in F [5],
is accessed by vertex 2, which has not yet been forgotten. Therefore, vertex 5 is
not necessary in the bag of node 1, while the other two are accessed by 1 itself,
which represents precisely the edges between these vertices.

When x = 2, vertex 2 is analyzed. It has a leaf set {(1, 1)}, so the possible
vertices to be introduced in its bag are vertices 5 and 6. Both are introduced in
its bag, as they have leaf 1, and these are accessed by forgotten vertices or by
2 itself. Hence, the pair p′ = (1, 2) containing the leaf vertex 1 in F [5] is then
updated to (1, 1) (underlined), as 2 will be now forgotten. This update on F [5]
is because if vertex 5 is forgotten before vertices that still have 1 in their leaf
set, it should get those vertices into your bag (each non-leaf bag is a separator).

When x = 3, the vertex to be considered is the vertex 3, which has the element
(3, 3) in F [3], implying the vertex 3 is a leaf vertex. The possible vertices to be
introduced in its bag are 4, 5, and 7, but only 4 and 7 are introduced because 5
reaches the leaf vertex 3 through vertex 4, and it has not yet been forgotten.

The next vertex is 4, that is x = 4. The possible vertices to be introduced
into its bag are 5 and 7, and both are added. Thus, the pair (3, 4) in F [5] is then
updated to (3, 3) (underlined), because vertex 4 is being forgotten.

30 S. E. da Silva and U. S. Souza

Next, we consider vertex 5 having leaf set F [5] containing (1, 1) and (3, 3).
When x = 5, the importance of the updates made in the previous steps can be
noted since the possible vertices to be introduced are 6 and 7, which had as leaf
sets, respectively {(1, 1)} and {(3, 3)}, implying that they must be introduced
in the bag of node 5. This is analogous to introducing the edges (5, 6) and
(5, 7) in G′. Also, note that originally F [5] = {(1, 2), (3, 4)}, so the updates are
fundamental for correctness. After that, an important step is that as vertex 5 is
being forgotten, and it has introduced 6 and 7 into its bag, all its pairs in F [5]
are “inherited” to the leaf sets F [6] and F [7].

When x = 6, we consider the vertex 6 as simplicial. At this moment, it has
F [6] = {(1, 1), (3, 3)}. The only possible vertex to be introduced into its bag is
7, which is introduced due to the previous step. Here, the importance of the
previous update on F [6] and F [7] becomes evident, since originally F [6]∩F [7] =
∅. This is analogous to creating an edge between 6 and 7 in G′.

Finally, when x = 7, only vertex 7 remains, implying that its bag is {7} and
its parent should be the root node with an empty bag. Thus, the algorithm ends.

The tree decomposition T for the instance (G, ρ) of Fig. 3 is presented in
Fig. 1 together with the corresponding supergraph G′ that arises from (G, ρ).

Time and Space Complexity. This second procedure traverses all vertices,
and for each vertex vx, it analyzes all the vertices vy not yet removed according
to ρ (y > x), taking Ω(n2) time, where given vx, vy the current leaf set of
both vertices is compared. Again, by considering that such sets of descendant
leaves are stored in ascending order in a linked list, the steps from lines 6–18
can be performed in O(�) time for each pair vx, vy of vertices, where � is the
maximum number of descendant leaves of a vertex (which is upper bounded by
the number of leaves of the tree decomposition that arises from the permutation
ρ). Therefore, the second procedure can be performed in O(n2 · �) time.

Regarding space complexity, the version considering the field “bag” is per-
formed in O(n·(k+�)) space, where k is the width of the decomposition. However,
if the goal is to evaluate the width of the encoded tree decomposition rather than
computing it, then one can omit the field “bag” and the algorithm would run in
O(n · �) space.

By adding both procedures together, the complete algorithm to evaluate the
solution encoded by ρ has O(n2 · � + (n + m) · �) = O(n2 · �) running time and
O(n · �) running space.

In practice, it was observed that the applicability of the new decoder becomes
noticeable in relatively large and dense instances. This is because the value �
tends to be small for dense instances while its width tends to be large, making
our algorithm more practical in this scenario. In particular, G (or G′) having
bounded clique cover number implies that the tree decomposition has a small
number of leaf vertices. For instance, if G is co-bipartite, then the tree decom-
position arising from ρ has at most 2 leaves.

Decoding Tree Decompositions from Permutations 31

4 Optimizing Running Time: The Set Decoder Algorithm

Algorithm 3 is developed to obtain better performance concerning running time.
Let v1, ..., vn be the elimination ordering of G and let Pi = {v1, . . . , vi} denote
the prefix of eliminated vertices at point i. Let Ci ⊆ Pi be the connected com-
ponent of G[Pi] that contains vi. It can be observed that the number of forward-
edges of vertex vi in the elimination order is equal to |N(Ci)|. Therefore, we can
solve the problem by keeping track of the connected components of G[Pi] and
their neighborhoods. Note that the sum of the sizes of the neighborhoods over all
components is always at most m. We can explicitly keep track of the components
and their neighborhoods by storing them in sets represented by balanced binary
trees and doing small-to-large merging when components merge.

Algorithm 3: SetDecoder(ρ,G)
1 width ← 0;
2 C ← ∅;
3 U ← ∅;
4 foreach x ∈ ρ do
5 Cx ← FindDisjointSet(C, x);
6 UCx ← FindJointSet(U, Cx);
7 foreach y ∈ N(x) do
8 Cy ← FindDisjointSet(C, y);
9 if y < x then

10 if Cx �= Cy then
11 UnionDisjointSet(C, Cx, Cy);
12 UCy ← FindJointSet(U, Cy);
13 UCx ← UnionJointSet (U, UCx , UCy);

14 else
15 UCx ← UCx ∪ y;

16 UCx ← UCx \ x;
17 width ← max{width, |UCx |};

18 return width;

The algorithm identifies the disjoint set containing x or creates it if it does
not exist yet and stores this set in a variable named Cx (representing the cur-
rent connected component of x) with the function FindDisjointSet, keeping the
current set of connected components updated and stored in C. Now, on line 6, it
obtains the neighbors of the connected component Cx denoted as UCx

with the
function FindJointSet, keeping the current set of connected components’ neigh-
borhoods updated and stored in U . Continuing to line 7, inside an inner loop,
the algorithm iterates through each vertex y in the neighbors of x, represented
by N(x). Line 8 entails finding the disjoint set to which y belongs, or creating if
it does not exist yet, and storing it in the variable Cy (representing the current

32 S. E. da Silva and U. S. Souza

1

26

3

74

5

G

1

26

3

74

5

(a) 1st step: vertex 1
C = {{1}}

U = {{6, 2}}

1

26

3

74

5

(b) 2nd step: vertex 2
C = {{1, 2}}
U = {{6, 5}}

1

26

3

74

5

(c) 3rd step: vertex 3
C = {{1, 2}, {3}}

U = {{6, 5}, {4, 7}}

1

26

3

74

5

(d) 4th step: vertex 4
C = {{1, 2}, {3, 4}}
U = {{6, 5}, {5, 7}}

1

26

3

74

5

(e) 5th step: vertex 5
C = {{1, 2, 3, 4, 5}}

U = {{6, 7}}

1

26

3

74

5

(f) 6th step: vertex 6 and 7
C = {{1, 2, 3, 4, 5, 6, 7}}

U = {}

Fig. 4. Step-by-step of Algorithm 3 on a graph G. (Color figure online)

connected component of y) with the function FindDisjointSet. On line 9, the
algorithm checks whether y is less than x. If this condition does not hold, in line
15, y is merged in UCx

; otherwise, in line 10, it verifies whether the disjoint sets
Cx and Cy are different. If they are indeed different, in line 11, it is done the
union of the disjoint sets Cx and Cy with the function UnionDisjointSet, which
also keeps C updated. On line 12, it obtains the neighbors of the connected
component Cy denoted by UCy

, with the function FindJointSet. Finally, line 13
updates the neighbors of Cx, merging them with the neighbors of Cy using the
UnionJointSet function (it also keeps U updated). In line 16, x is removed from
UCx

and in line 17, witdh is updated with the maximum value between width
and |UCx

|. In line 18, the width is returned.
The Fig. 4 shows the step-by-step of the Algorithm 3 on the graph G and

ρ = 1, 2, 3, 4, 5, 6, 7. The process begins with vertex 1 (a), initializing sets: C
with only {1} for connected components and U with its neighbors {6, 2}. Sub-
sequently, vertex 2 (b) leads to the merging of components into C {1, 2} and
these neighborhoods resulting U {6, 5}. Moving on to vertex 3 (c), a new com-
ponent forms in C {1, 2} and {3}, with U containing {6, 5} and {4, 7}, the
neighborhoods, respectively. In the fourth step, vertex 4 (d) results in C {1, 2}
and {3, 4}, while U holds {6, 5} and {5, 7} neighborhoods. Vertex 5 (e) leads
to a single merged connected component, C {1, 2, 3, 4, 5}, with U containing
{6, 7} neighbors. Finally, vertices 6 and 7 (f) are considered together; both do
not have any neighbors that have not yet been eliminated, resulting in the entire

Decoding Tree Decompositions from Permutations 33

graph being a single connected component, C {1, 2, 3, 4, 5, 6, 7}, and U becoming
empty, signifying the completion of the algorithm’s execution. The largest size
of some subset of U (neighborhood of some connected component, edges in red
in each step) formed during the process was 2, which is the algorithm’s response.

Time and Space Complexity. In lines 2 and 5 of Algorithm 3, we traverse
all edges of G. Consequently, during this process, we incur a time complexity
of Ω(m). For each edge, it is necessary to determine if the sets Cx and Cy

are identical. This can be accomplished in O(log n) time by implementing the
FindDisjointSet and UnionDisjointSet operations using an efficient UnionFind
algorithm with path compression techniques [12].

It is important to note that the number of sets of the connected components
neighborhoods U is limited to n. This limitation reflects the maximum number
of connected components in graph G. Consequently, for any given vertex, it will
belong to at most O(n) sets and go through a maximum of O(n) merge opera-
tions. Consequently, if the UnionJointSet operation is implemented similarly to
UnionFind but permitting non-disjoint sets, the resulting tree structure formed
by these sets will have a size O(n2), with its height limited to O(log n). As a
result, each merge/union operation costs O(log n). In summary, Algorithm 3
performs in O(m · log n) runtime.

For each iteration, any edge of G contributes with at most one element in
some subset of U . Thus, in the worst case, the sum of the sizes of the subsets in
U results in an auxiliary memory of size O(m). The sum of the sizes of subsets
within C is constrained by n since they are disjoint sets, resulting in a space
requirement of Ω(n). Therefore, Algorithm 3 requires O(m+n) auxiliary space.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

2. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: a modular library for computing tree
decompositions. In: 16th International Symposium on Experimental Algorithms
(SEA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

3. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154–160 (1994)

4. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

5. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameter-
ized algorithms and computational experiments challenge: the second iteration. In:
Lokshtanov, D., Nishimura, N. (eds.) 12th International Symposium on Parame-
terized and Exact Computation (IPEC 2017), Volume 89 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 30:1–30:12. Dagstuhl (2018)

6. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Semin. Univ. Hambg. 25, 71–76
(1961). https://doi.org/10.1007/BF02992776

7. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math.
15(3), 835–855 (1965)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/BF02992776

34 S. E. da Silva and U. S. Souza

8. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl,
M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60618-1 88

9. Gaspers, S., Gudmundsson, J., Jones, M., Mestre, J., Rümmele, S.: Turbocharging
treewidth heuristics. Algorithmica 81(2), 439–475 (2019). https://doi.org/10.1007/
s00453-018-0499-1

10. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

11. Tamaki, H.: Positive-instance driven dynamic programming for treewidth. J.
Comb. Optim. 37(4), 1283–1311 (2019). https://doi.org/10.1007/s10878-018-
0353-z

12. Wu, K., Otoo, E.: A simpler proof of the average case complexity of union-find
withpath compression. Technical report, Lawrence Berkeley National Lab. (LBNL),
Berkeley, CA, United States (2005)

https://doi.org/10.1007/3-540-60618-1_88
https://doi.org/10.1007/s00453-018-0499-1
https://doi.org/10.1007/s00453-018-0499-1
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1007/s10878-018-0353-z

Enumerating m-Length Walks in Directed
Graphs with Constant Delay

Duncan Adamson1(B), Pawe�l Gawrychowski2, and Florin Manea3

1 Materials Innovation Factory, University of Liverpool, Liverpool, UK
D.A.Adamson@Liverpool.ac.uk

2 Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
3 Department of Computer Science, University of Göttingen, Göttingen, Germany

Abstract. In this paper, we provide a novel enumeration algorithm for
the set of all walks of a given length within a directed graph. Our algo-
rithm has worst-case constant delay between outputting succinct repre-
sentations of such walks, after a preprocessing step requiring linear time
relative to the size of the graph. We apply these results to the problem
of enumerating succinct representations of the strings of a given length
from a prefix-closed regular language (languages accepted by a finite
automaton which has final states only).

1 Introduction

Enumerating all members of a given class of combinatorial objects is one of
the fundamental problems in computer science. Enumeration problems take
a description of the class of objects and produce every object satisfying this
description. Often, the number of objects in each class is of exponential size
relative to the size of the description: for example, the set of walks of length m
in the complete graph Kn with n vertices has size nm. Due to the large size of
these classes, the usual goal of enumeration algorithms is to reduce the delay
between outputting consecutive objects, either in terms of the worst case or
the average case. Various enumeration problems appear in diverse contexts with
a wide range of applications. Comprehensive surveys of enumeration problems
and their connections to various areas of computer science and mathematics have
been provided by Segoufin [28] (with a focus on logic), Wasa [32] (which provides
a list of enumeration problems from multiple areas, ranging from graph theory
to computational geometry or to combinatorics on words and automata), and
Uno [30] (focused on the amortized analysis of enumeration algorithms). Inter-
esting applications of enumeration algorithms include, among others, database
theory [4,5,26,27], combinatorics and algorithms on strings and the study of
formal languages [1,2,5,15,29].

This paper is primarily motivated by the problem of enumerating the set
of all crystal structures of a given size. This problem originates in chemistry,
with the problem of crystal structure prediction. In one dimension, the crystal
structure prediction problem asks, given an alphabet of “blocks” (3-dimensional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 35–50, 2024.
https://doi.org/10.1007/978-3-031-55598-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_3

36 D. Adamson et al.

structures), what is the optimal way to arrange these objects to minimise some
pairwise objective function [11]. Currently, this problem is solved via heuristic
techniques [21], leaving the possibility of missing the optimal solution in numer-
ous instances, or by costly integer programming-based algorithms [16] that often
correspond to checking every possible solution. At the same time, existing knowl-
edge from chemistry allows certain solutions to be ruled out without the costly
process of simulating the predicted structure [21], simply based on the presence
of some bad (or forbidden) block combinations. By considering the set of blocks
as an alphabet, we can canonically represent the set of various arrangements of
blocks as strings over this alphabet. In this way, the set of valid arrangements
of blocks forms as a prefix-closed regular language, i.e., a set of strings where
every prefix of every string is also in the set. The class of prefix-closed regular
languages has nice language theoretic properties [10,19], and, interestingly w.r.t.
our motivation, includes the class of languages of strings that avoid a given set
of forbidden factors (corresponding to the bad combinations of blocks). Thus, in
this framework, we may solve the problem of enumerating the set of valid crystal
structures, for a given set of blocks, by solving the problem of enumerating all
strings in a given prefix-closed regular language.

Rather than restricting ourselves purely to prefix-closed regular languages
(or crystal structures), and since deterministic finite automata (which are natu-
ral ways to specify such languages) can be canonically represented as directed,
labelled multi-graphs, we look at the problem of enumerating (succinct repre-
sentations of) all walks of a given length in a directed graph (potentially param-
eterized by their starting vertex or set of starting vertices). This seems to lift
the language-enumeration problem discussed above to a more abstract setting.
Therefore, we will first consider Problem 1, and then see how we can use the
obtained results to solve the more concrete problem introduced above.

Problem 1. Given directed graph G, and integer m > 0, enumerate efficiently
succinct representations of all walks of length m in G.

To fully specify this problem, one needs to define exactly what is the output
of the enumeration. One possibility would be to output each walk of length
m explicitly (as a sequence of edges); this would inherently lead to O(m)-time
delay between the consecutive walks (as we first need to finish outputting the first
walk, before starting the next one). To achieve O(1)-delay, an implicit, succinct
representation of the output is needed. However, such a representation has to be
meaningful: one should be able to canonically and efficiently retrieve the explicit
list of enumerated walks from the list of implicitly represented walks. Ideally, an
algorithm solving Problem 1 would also permit explicitly outputting, on demand,
the current walk of the enumeration, at any step of the computation. Also,
ideally, the preprocessing done by the algorithm would take linear time in the
size of G and would not depend on m, allowing the constructed data structures
to be reused to enumerate walks of other lengths. Worth noting, straightforward
implicit representations of the enumerated walks (e.g., outputting in step i of the
enumeration the implicit description “the ith walk of G in lexicographic order (as

Enumerating m-Length Walks in Directed Graphs with Constant Delay 37

induced by a total order on edges/vertices)”) are usually not meaningful (or do
not fulfil our other requirements), as obtaining the walks explicitly would usually
require non-trivial work (in the enumeration or in the preprocessing phase).

Our Contributions. We solve Problem 1 by providing an enumeration algorithm
with worst-case constant delay after a preprocessing phase running in linear time
in the total size of the graph G, while being independent of m.

Our first contribution, essential in achieving this result, is to introduce the
notion of default walks in the graph G. More precisely, each vertex of G is associ-
ated with a default edge, corresponding to the first edge on the longest (possibly
infinite) walk in the graph starting at that vertex. These default edges allow the
definition of default walks in the graph (walks consisting only of default edges).
In this framework, arbitrary walks in the graph can be represented implicitly
as the concatenation of multiple default walks (specified by starting vertex and
length) and the non-default edges which connect these walks.

Our second contribution, is an enumeration algorithm for the walks of length
m within a graph G, which crucially uses the notions of default edges and walks
both for the sake of efficiency of enumeration and as the basis for the output
of the enumerated walks. The main idea behind this algorithm is to maintain
internally, while going through the walks we want to enumerate, the implicit
representation of the current walk as a list of default walks in the graph. By
augmenting the graph of default edges with a series of non-trivial data struc-
tures, the implicit representation of the enumerated walks allows us to efficiently
compute the representation of the next walk in the enumeration and present it
in a succinct (yet, meaningful, in the sense mentioned above) way, by simply
referencing (by length) the “prefix” shared by the current walk and the next
one, and then extending it by appending a non-default edge and a single, suc-
cinctly represented default walk. This implicit representation also allows us to
output explicitly, on-demand, at every point of the computation, the current
walk in linear time w.r.t. its length. Finally, we show that only constant time is
needed in our enumeration algorithms to move between consecutive walks and
output their representations. Our main results are, as such, efficient solutions to
Problem 1.

Result 1 (Theorem 2). Given directed graph G = (V,E), with n vertices,
and integer m, we can enumerate succinct representations of all walks of length
m in G, with O(1)-delay, after O(|E|)-time preprocessing.

The above result can be extended to enumerate with O(1)-delay all the walks
in a graph, whose length is between two given integers � and m. More interest-
ingly, these results can be directly applied to languages accepted by a prefix
closed automaton (PCA for short, a deterministic finite automaton with final
states only), by noting that there is a bijective correspondence between the
walks starting in the initial state of a PCA and the strings of the language.

Result 2 (Theorem 3). Given integer m and PCA A, we can enumerate suc-
cinct representations of all strings of length m accepted by A, with O(1) delay
after a linear time preprocessing w.r.t. the size of A.

38 D. Adamson et al.

We also extend our results to obtain efficient algorithms for the problems of
ranking and unranking strings in prefix closed regular languages w.r.t. the order
in which they are output by the enumeration algorithm from Theorem 3.

Result 3 (Theorem 5). Given PCA A, with n states, accepting the prefix-
closed regular language L(A) over the alphabet Σ with σ letters, and string w ∈
L(A), with |w| = m, we can compute in polynomial time the number of strings
of length m output in our enumeration of L(A) before outputting w. Moreover,
given integer i, we can compute in polynomial time (relative to the output) the
ith string of length m output in our enumeration algorithm of L(A).

Related Work. The problem of enumerating walks and paths (walks with no
repeated vertex) within graphs is highly studied with a wealth of existing results.
Wasa lists a series of such enumeration tasks and the complexity of their solutions
in [32]. A notable work regarding the enumeration of paths within a graph is
the backtracking technique by Read and Tarjan [22], proving a delay between
outputting paths of at most O(|E|). We note that in the general case, where each
path must be explicitly output and there is no upper bound on the length of the
path, this is optimal. However, when the length of the paths is bounded by some
m < |E|, the potentially significant cost of backtracking limits the efficiency of
this algorithm. Other initial work on enumerating paths focused on matrix-based
approaches, requiring exponential time and space for precomputation, without
intermediary output. Danielson [12] (later strengthened by Rubin [23]) provided
such an approach for enumerating all simple paths (paths that do not visit any
vertex more than once). Kamae [18] used this approach to output all cycles and
paths in a directed graph; their approach was strengthened by Mateti and Deo
[20], Wild [33], and Birmelé et al. [9]. We note that these algorithms are not
focused, as ours are, on outputting (succinct representations of) each path (or
cycle) sequentially with minimal delay, but rather on collecting all the paths,
and thus optimise the time taken to compute the paths efficiently, rather than
focusing on the output. Additional work has focused on specific classes of paths,
such as Hamiltonian paths [34], ST-paths [9,14], and chordless paths [31].

Regarding the application of our results on walk-enumeration to the enumera-
tion of strings from prefix closed languages, we also recall the rich literature regard-
ing the enumeration of strings. We again point to the survey of Wasa for a series
of classical results [32], as well as to the surveys by Gruber et al. [15] and Shal-
lit [29]. Several works have focused on more general classes of languages, at the
cost of allowing enumeration with non-constant delay, relative to the length of the
strings [1,2,26,27]. Of particular interest to us is the recent work by Amarilli and
Monet [6], who have provided an algorithm for outputting all strings recognised
by a given regular language with bounded delay (which depends on the size of the
automaton). This is achieved by partitioning the input language into orderable reg-
ular languages, i.e., a language whose strings can be ordered (in a potentially infi-
nite sequence) in such a way that the edit distance between the ith and the i + 1th

members of the sequence is bounded. In the other direction, there have been sev-
eral algorithms for enumerating strings within specific subclasses of prefix closed
languages. Quite close to our work are the results of Ruskey and Sawada from [24],

Enumerating m-Length Walks in Directed Graphs with Constant Delay 39

where they give a relatively straightforward algorithm for enumerating the strings
of length n, over an alphabet with σ letters, which do not contain a given factor f of
length m with constant amortized delay, after a preprocessing taking O(mσ) time.
We note that our solution outperforms the one from [24] for this specific class by
reducing the preprocessing time to O(m), and the delay to constant in the worst-
case. Similarly, constant amortised delay enumeration algorithms have since been
provided for a large number of classes of cyclic strings, most relevantly necklaces
and bracelets with a forbidden factor [24,25].

For the interested reader, a full version of this paper containing complete
proofs a pseudo code can be found in arXiv [3].

2 Preliminaries: Definitions and Sketch of the Algorithm

The computational model we use in this paper is the RAM with logarithmic
word size relative to the size of the input graph or automaton.

Let N = {1, 2, . . .} be the set of strictly positive integers and let [n] =
{1, . . . , n} for n ∈ N. Let G = (V,U) be a directed graph (multi-graph) with
the set of vertices V and the set of edges U ⊆ V × V (respectively, U is a mul-
tiset of pairs from V × V); the direction of an edge (v, u) is from v to u. The
directed (multi-)graph G is labelled, with labels over an alphabet Σ = [σ], if
there exists a function L : U → Σ which labels each edge of G with a letter
from Σ. An example relevant to our paper is that of finite automata, which are
directed multi-graphs whose edges, called transitions in that context, are labelled
by letters from an input alphabet. We assume that the sets Σ and V are totally
ordered.

A walk of length k in G is a sequence π = ((v1, v2), (v2, v3), . . . , (vk−1, vk))
such that (vi, vi+1) ∈ U , for all i ∈ [k − 1]; the length k of π is denoted by |π|,
and v1, . . . , vk are the vertices on the walk π. Given a walk π, we refer to its first
(respectively, last) � edges as the prefix (respectively, suffix) of length � of π.

In this paper, we first develop an algorithm for the enumeration of walks of
length m within a directed graph G, and then apply these results to enumerate
strings accepted by a specific class of deterministic finite automaton, called prefix
closed automata (PCA, for short). For space reasons, we refer the reader to [17]
for definitions regarding strings and automata.

Algorithm Sketch. The key idea behind our approach is to enumerate the set of
walks via an implicit yet meaningful representation of the walks within G, i.e. a
representation that does not require the walk to be explicitly output but allows
the explicit representation to be retrieved in linear time. We do so by creating
a pseudoforest D(G) from G, which has the same vertices as G. Moreover, each
vertex has at most one outgoing edge, called default edge, corresponding to the
first edge on (one of) the longest walk(s) leaving that vertex in G. We refer to
D(G) as the default graph and note that there is a unique (potentially infinite)
walk leaving the vertex v in D(G). The walks in D(G) are called default walks.
Using the default graph, we can succinctly represent default walks as tuples: the
unique default walk of length � starting with v is represented as (v, �).

40 D. Adamson et al.

When solving Problem 1, we maintain the most recently enumerated walk π
(which is a walk in G) as a list (v1, �1)(u1, v2)(v2, �2) . . . , (uk−1, vk)(vk, �k) where
(vi, �i) is the default walk starting in v of length �i, ending at ui, and (ui, vi+1)
is a non-default edge of G (so, not an edge of D(G)). To modify this walk π, and
continue the enumeration, we find the last vertex v′ in the current walk π that
has a branch, i.e., a non-default edge, (v′, u′), which has not been considered yet
as a continuation for the prefix of π which connects v1 to v′, and which starts
at least one walk as long as the suffix of the current walk π which connects
v′ to uk. Once v′ has been identified, a new walk is constructed, represented
by (v1, �1)(u1, v2)(v2, �2) . . . , (ui−1, vi)(vi, �

′
i)(v

′, u′)(u′, �′
i+1), i.e. a walk sharing

the first m − (�′
i+1 + 1) edges with π, followed by the non-default edge from v′

to u′, then the default walk from u′ of corresponding length. Importantly, this
new walk can be enumerated by only changing at most three entries in the list
representing π: first, updating the tuple (vi, �i) to (vi, �

′
i); second, adding the

edge (v′, u′); third, adding the tuple (u′, �′
i+1). In this way, we require only a

constant number of steps to update the walk.
The main challenge of this algorithm is determining these branches in con-

stant time while keeping the preprocessing linear. In Sect. 3 we define the data
structures used to achieve this result and show that these can be built in O(|E|)
time, where |E| is the number of edges in the input graph. Section 4 formalises
the algorithms, and explains why the worst-case delay between outputs is O(1).

3 Toolbox: Default Graphs and Data Structures

Default edges, default walks, default graphs: definitions and basic facts. For the
remainder of this paper, we consider the directed graph G = (V,E), where
V = {v1, v2, . . . , vn} is a set of n vertices, and E ⊆ V × V is a set of directed
edges represented by ordered pairs of vertices (v, u). We assume that we store a
list of all outgoing and incoming edges for every vertex v ∈ V . We now introduce
the primary data structures that are used for our enumeration algorithm.

Firstly, observe that the longest walk starting with vertex v either has length
at most n or infinite length. Hence, we compute, for each vertex v ∈ V , the
length π(v) ∈ [n]∪{∞} of the longest walk starting at v. Moreover, we compute
and store an ordered list Lv for each vertex v ∈ V , containing the pairs ((v, u), �),
where � ∈ [n] ∪ {∞} is the length of the longest walk from v starting with the
edge (v, u). The list Lv is ordered in decreasing order of the length-component
of its elements, with ties broken according to the ordering of the target vertices
of the edge-component of these elements, as induced by the ordering on V . We
can show the following lemma.

Lemma 1. Given a directed graph G = (V,E), the lengths π(v) and the lists
Lv, for all v ∈ V , can be computed in O(|E|) time.

Now, for each vertex v, the first edge (v, u) of the list Lv is the first edge
on (one of) the longest walk(s) starting with v. This first edge of the list Lv is
called in the following default edge of v (note that, by the definition of Lv, the

Enumerating m-Length Walks in Directed Graphs with Constant Delay 41

notion of default edge is unambiguous, although there might be more than one
longest walk starting with v). At this point, it is also important to note that, for
each edge (v, u), the longest walk from v starting with (v, u) has a length equal
to the length of the longest walk starting with u plus 1. Consequently, there is
a walk from v starting with the edge (v, u) whose length is maximal among all
walks starting with (v, u) and whose second edge is the default edge of u.

Further, we define the default graph D(G) = (V,D(E)). D(G) has the same
vertex set V and the edge set D(E) containing exactly the default edges of the
vertices from V . By Lemma 1, as the default edges of G (that is, the edges of
D(G)) can be retrieved by simply taking the first edges of each of the lists Lv,
with v ∈ V , we get that D(G) can be constructed efficiently, in O(|V |) time.
Moreover, because each vertex v of the default graph D(G) has at most a single
outgoing edge (the default edge of v), this graph is a pseudoforest, consisting of a
collection of default components: disjoint cycles, trees whose roots are on cycles,
and, respectively, independent trees, which are not connected to any cycle. In the
trees of this collection, the orientation of the edges is induced by the orientation
of the edges in G, i.e., from children to parents, so from the leaves towards the
root. For an example, see Fig. 1.

The walks of the graph D(G) are called default walks. We use the notation
(v, �) to represent the unique default walk of length � starting from v.

Connected Tree Cycle Independent Tree

Fig. 1. The different classes of default components: On the left we have a directed
graph; on the right, for that graph, default edges are shown as solid lines, and non-
default edges are dashed. From left to right, we have a tree that is connected to a cycle,
a cycle, and an independent tree. The tree-roots are grey.

We use the default walks as a tool to represent all walks in G. More precisely,
given a walk π = ((v1, v2), (v2, v3), . . . , (vk−1, vk)), we represent the walk π as a
sequence (vi1 , �i1)(vt1 , vi2)(vi2 , �i2)(vt2 , vi3) . . . (vtr−1 , vir)(vir , �r), where default
walks and non-default edges alternate:

– vi1 = v1 and vk is the final vertex of the default walk (vir , �r).
– For 1 ≤ x ≤ r, (vix , �ix), with �x ≥ 0, is the longest default walk which is a

prefix of the suffix (vix , vix+1, . . . , vk) of π. The vertex vtx is the last vertex
on the default walk (vix , �ix).

– For 1 ≤ x ≤ r − 1, (vtx , vix+1) is a non-default edge and ix+1 = tx + 1.

Alternatively, to obtain this representation of π, we could first select all the
non-default edges of π. These edges are connected, along π, by default walks (of
length greater or equal to 0). This yields the aforementioned representation.

Before defining the data structures allowing us to process efficiently default
graphs, we make one more observation. Consider a vertex v and the first edge

42 D. Adamson et al.

(v, u) of Lv (i.e., the default edge of v). Now, the first edge (v, u′), with u 	= u′,
on the longest walk starting from v with any edge other than (v, u), is given
by ((v, u′), �′), the second element of Lu. So, these lists enable us to decide in
constant time if, for a given length � ≤ m and vertex v, there exists some walk
from v of length at least �, other than the default walk: we get this information
by looking at the second element of Lv. This will become crucial in finding
branches, as described in the sketch of our algorithm, during the enumeration.

Efficient algorithms and data structures for the default graph. To work efficiently
with the representations of arbitrary walks based on default walks, we need to
be able to efficiently process the default graph. To this end, we now present
a set of combinatorial lemmas, tools, and data structures providing a deeper
understanding of the default graph. We begin by showing that the components
of D(G) can be computed efficiently.

Lemma 2. Given default graph D(G), we can compute in O(|E|) time all its
default components, and store for each vertex v the default component containing
it.

Trees appearing as default components of D(G) (independent or attached to
a cycle) can be represented as the root, followed by a list of children for each
vertex; additionally, the default edge of each vertex points to its parent in the
tree. Each cycle α is represented by its length |α| and an array containing 2|α|
elements. More precisely, for each cycle α, we have an initial vertex r, which is
the first element in the array corresponding to α. We then traverse through α
twice, while writing in the array the vertices of α in the order we meet them in
this traversal. So, each element of α appears exactly twice in the array associated
with the cycle, with exactly |α| − 1 positions between its two occurrences. For
each vertex v of α, it is enough to store its first occurrence iv in the corresponding
array. While a bit cumbersome at first view, this representation of cycles makes
a bit simpler the usage of default graphs in the enumeration.

If vertex v is on a cycle α of length |α|, the default walk (v, �) corresponds
to following α starting at v for � edges. Letting v be the ith vertex on α (the
initial vertex being the first), then the ending vertex of the default walk (v, �) is
the vertex found on the ((i + �) mod |α|)th position of the cycle.

If vertex v is in an independent tree rooted at r, the default walk (v, �) goes
towards the root of the tree, traversing � edges. We define the root as being on
level 0, and the children of a vertex on level i are on level i+1. Therefore, if v is
on level h in its tree, the ending vertex of the default walk (v, �) is the ancestor
of v on level h − � of this tree. Thus, to be able to retrieve the ending vertices of
default walks in trees quickly, we build, for all our trees (both independent and
attached to cycles), level ancestor data structures [8]. For a tree of size τ , these
data structures can be computed in O(τ) time and enable us to answer in O(1)
queries LA(v, j) : return the ancestor of v which is on level j of the tree.

If v is in a tree whose root r is on a cycle, the walk (v, �) goes towards the
root of the tree and potentially also goes around the cycle, traversing � edges in
total. Following the ideas already described above, to retrieve the ending vertex

Enumerating m-Length Walks in Directed Graphs with Constant Delay 43

of a default walk (v, �) in a tree with root r attached to a cycle, we will first
check if the walk ends inside the tree or enters the cycle. This can be done by
verifying if the level h of v inside its tree is greater or equal to �. If yes, we can
compute again the level ancestor of v, which is on level h − �. If not, then the
ending vertex of the walk (v, �) is on the cycle. The number of edges traversed
in the cycle by this walk is � − h, and to find the ending vertex of (v, �) it is
enough to find the ending vertex of the default walk (r, � − h), which is a walk
on a cycle, and can be treated as above.

According to the above, it is important to store, for the vertices of the tree
components of D(G), their level. To allow a uniform treatment of all the vertices,
we define the depth of vertex v in its default component, denoted dt

v, if v is in a
tree, or, respectively, dc

v, if v is on a cycle. This is defined in one of three ways,
depending on which kind of component contains v. Before giving the definition,
we note that the vertices contained in trees whose root is on a cycle will have
two such depths, one w.r.t. the tree and one w.r.t. the cycle.

– If v is in a tree, then dt
v is simply the level of v in the respective tree.

– For a cycle α, we define the depth of each position i ≤ 2|α| of the array
associated to α as dc

i = 2|α| − i + 1. If v is a vertex on α, we define dc
v = dc

iv
,

where iv is the first (i.e., leftmost) occurrence of v in the array associated to
α.

– If v is in a tree with root r connected to a cycle α, then we associate to v a
second value dc

v (the depth of v w.r.t. the cycle α), defined as dc
v = dt

v + dc
r.

Using the default graph for enumeration. The algorithm presented in Sect. 4
enumerates all walks of length m in G starting at a given vertex v0. We note
that the preprocessing does not depend on the choice of the vertex v0, it can be
done once for all vertices. Our approach can be then extended by selecting (at
the time when the values π(v) are computed) a list of all vertices with a default
walk of length at least m, and then repeating the enumeration for each vertex
of that list.

An important primitive of this algorithm, allowing us to move in our enu-
meration from one walk π1 to the next one π2 (both starting with v0), is to check
whether there exists a vertex v on some default walk (s, �) (which is part of the
representation of the first walk π1) from which we can follow a non-default edge,
instead of the default edge which we have followed in the walk π1, and obtain a
new walk starting in v0 of length m. Such a vertex v is called, for simplicity of
exposure, a branching vertex w.r.t. the walk π1 (notice, though, that some ver-
tices might be branching w.r.t. some walks π1 and not branching w.r.t. others,
depending on the position in which they appear on these walks; however, we
will only use this name when there is no danger of confusion). Thus, we need to
check the existence of a vertex v on (s, �), such that, if the walk from v0 to such a
vertex v along π1 has length �v, then there is a walk starting with a non-default
edge of v, with length at least m − �v.

We achieve this by finding the vertex v of the default walk (s, �) maximising
the sum between the length of the walk from v0 to v along π1 and the length

44 D. Adamson et al.

of the longest walk starting in v with a non-default edge, and seeing if this sum
is greater or equal to m. If this sum is not greater or equal to m, then there is
no vertex with the desired properties on (s, �). If the sum is greater or equal to
m, the vertex v has the desired properties, and thus we can use it next in our
enumeration. To identify this vertex v, we note that v is exactly that vertex for
which the sum of the length of the walk from s to v and the length of the longest
walk starting in v with a non-default edge is maximum (as all walks from v0 to
vertices on the default walk (s, �), along π1, share the prefix of π1 connecting v0
to s, the starting vertex of that default walk (s, �)).

We define for each vertex v a weight wv, corresponding to the length of
the longest walk from v which starts with a non-default edge, i.e. the length of
the walk starting with the second edge stored in Lv, and then continuing with
the longest default walk starting with the end vertex of that edge. After the
preprocessing of Lemma 1, wv can be retrieved in O(1) time, for each v.

Let WalkMaxNode(s, �) denote, for each default walk (s, �) of D(G), the pair
(v, d) where v is the vertex of this walk such that the sum of wv and the distance
d between s and v along the default walk (s, �) is maximum. In Lemma 3, we
show that WalkMaxNode queries can be answered in O(1)-time, after linear
time preprocessing. Indeed, building on the data structures introduced above
and taking into account the particular structure of the default graph, these
queries reduce to either computing walk minimum queries in trees, which can be
handled efficiently [13], or to range minimum queries in arrays corresponding to
the cycles, which again can be computed efficiently [7].

Lemma 3. We can build in O(|E|) time data structures, allowing us to answer
WalkMaxNode(s, �) queries in O(1) time, for each default walk (s, �) of D(G).

4 Enumeration

The Main Algorithm. The basic idea of our enumeration algorithm is to represent
and compute the walks of length m of G starting at v0 as sequences of default
walks and the single non-default edges connecting them. This is achieved using a
recursive procedure, Enumerate. In each call, Enumerate takes two parameters:
an edge (v, u) ∈ E, and a number �. In the call Enumerate((v, u), �) we go
through all walks of length � starting from u; each such walk is the suffix of a
walk of length m starting in v0, going through v, which will be output.

Before making the first call, we preprocess the graph G in O(|E|) time as
described in Sect. 3: building the default components and associated data struc-
tures which allow their efficient processing. In particular, we construct in O(|E|)
time the data structures needed to answer in O(1)-time WalkMaxNode-queries.
Note that the space used by the respective structures is also linear, O(|E|).

During the enumeration, done via calls to the recursive procedure Enumerate,
we maintain as global variables two stacks C and S (of size at most m), containing
tuples ((v, u), �), with (v, u) ∈ E, � ∈ [n]. Intuitively, if the content of the stack
S is, at some step of the computation, the sequence 〈(↑, v0, �0), ((u0, v1), �1), . . .,

Enumerating m-Length Walks in Directed Graphs with Constant Delay 45

((ut−1, vt), �t)〉 (where the top of the stack is to the right of this sequence), then
the currently enumerated walk π is the concatenation of p0, (u0, v1), p1, (u1, v2),
. . . , pt−1, (ut−1, vt), pt, where, for i ≥ 0, pi is the default walk of length �i

starting with the vertex vi and ending with some vertex ui, and (ui, vi+1) ∈ E,
for 0 ≤ i ≤ t − 1. This allows the walk π to be retrieved explicitly from its
representation on the stack S in O(m) time. With respect to the execution of
our algorithm, S corresponds to the stack of currently active recursive calls.
The usage of C is more subtle. Intuitively, at every step of the computation, C
contains (bottom to top, in the same order as in S) exactly those tuples ((v, u), �)
of S for which the default walk of length � starting in v still contains branching
vertices leading to walks of length m which have not yet been enumerated. As
such, C facilitates the quick identification of the next walk to output in our
enumeration: such a walk should go through one of the branching points of the
default walk found on top of this stack C. With respect to the execution of our
algorithm, C corresponds to the currently active recursive calls which were not
tail calls. We assume, w.l.o.g., that in the computational model we use, tail calls
are implemented so that no new stack frame is added to the call stack. Hence,
C corresponds, at each moment of our algorithm’s execution, to the current call
stack.

The enumeration starts with the call Enumerate((↑, v0),m), which outputs
first the tuple (v0,m), corresponding to the first m edges of the default walk
starting at v0. Note that this first object in our enumeration is output in O(1),
after the preprocessing. In a general step, we call Enumerate((v, u), �). Due to
space constraints, we give only a high-level description of our algorithm.

In general, Enumerate((v, u), �) first outputs the triple (m − � − 1, (v, u), �).
That is, the current walk in the enumeration, denoted by π in the following, is
obtained from the previous one by keeping its prefix of length m − � − 1 edges
(which ends in some vertex v), to which we append the edge (v, u), and the
default walk of length � starting in u. We also store the tuple ((v, u), �) in the
two stacks.

Next, we need to see if there are more walks of length � starting with u, other
than the default walk. If no, we simply remove the triple ((u, v), �) from both
stacks and return. If yes, we need to discover each of them, and this will be done
by further recursive calls to Enumerate; all the walks produced in this way will
share at least the first m − � edges with π. The efficient identification of these
walks relies on the data structures constructed in the preprocessing phase for
the default components of G. However, to see how exactly they are identified, we
need to understand what we are looking for. Basically, each such walk follows a
(potentially empty) prefix of the default walk of length � starting with u, which
ends with a branching vertex w.r.t. the walk π starting in v0. So, we only need
to discover the respective branching vertices and process them one by one, by
recursive calls. We can find the branching vertices by WalkMaxNode-queries and,
by Lemma 3, such queries can be answered in O(1)-time due to the structure of
the default graph (composed of trees and cycles).

46 D. Adamson et al.

This is done as follows. Let r be the ending vertex of the default walk (u, �).
We first retrieve (v′, d) = WalkMaxNode(u, �). If d + wv′ ≥ �, then this vertex is
one of the branching vertices we were looking for. Indeed, the above inequality
means that the walk starting from v′ with the edge given by the second element
of Lv′ is at least as long as the walk from v′ to r along the default walk (u, �).
Thus, we can go through the non-default edges leaving v′ (as given by Lv′), as
long as they start walks which are at least as long as the default walk from v′ to
r, and start a corresponding recursive call of Enumerate for each of them. Once
we are done with all these edges, and, accordingly, with the vertex v′, we might
still have other branching vertices on the default walk (u, �). Such a vertex is
either on the segment of this walk between u and the predecessor of v′ or on the
segment of this walk between the successor of v′ and r, and can be identified
using WalkMaxNode-queries, as above. In general, if the WalkMaxNode-query
on such a segment of the default walk (u, �) (delimited by vertices v1 and v2)
returns a vertex v′′ from which we can follow a long-enough walk starting with
a non-default edge, we process v′′ exactly as we processed vertex v′ above, then
search for more branching vertices in the two segments delimited, resp., by v1
and the predecessor of v′′ and the successor of v′′ and v2. If the WalkMaxNode-
query on a segment of the default walk (u, �) returns a vertex v′′ from which
no long-enough walk starting with a non-default edge can be found, we stop
processing that entire segment: there are no more relevant branching vertices to
be found there.

From the above, we guarantee that we only call Enumerate when we are
certain that it will lead to the discovery of at least one walk which was not yet
enumerated. The total number of WalkMaxNode-queries which are answered
during the call Enumerate((v, u), �) is proportional to the number of branching
vertices on the default walk (u, �). So, the overall time complexity of the execu-
tion of Enumerate((v, u), �) is proportional to the number of walks starting from
u of length � (each corresponding to a walk of length m we need to enumerate).

To obtain enumeration with constant delay in the worst case, there is one
more additional subtlety. Namely, we need to make sure that as soon as a call
to Enumerate is finished, we will directly consider a default walk on which we
certainly find branching vertices. This is ensured by the usage of tail calls and
of the stack C. Indeed, we need to make sure that the last step of the procedure
Enumerate is a recursive call (and this is not hard to do); before executing this
call, we remove the tuple ((v, u), �) from C (as it will also be removed from the
call stack). Thus, in our computational model, after the respective tail recursive
call is finished, we will return to a previous call which still has at least one walk
to explore (so, one branching vertex that was not completely processed); the
respective previous call corresponds to the tuple found now on top of C, and,
as such, we can check where the respective tuple is found in S and set it to
be the current top of the respective stack too (what came above it is no longer
important for the rest of the computation, as it does not lead to new walks).

The correctness of our approach is proven by induction, by showing that
every walk is output exactly once via the tree of recursive calls whose root is

Enumerating m-Length Walks in Directed Graphs with Constant Delay 47

Enumerate(↑, q0, n) (in this tree, the vertices are instances of Enumerate called in
our algorithm, and their children the calls initiated in the respective instances).

Lemma 4. The call Enumerate((↑, v0),m) outputs a representation of every
walk of length m starting at v0 in the graph G exactly once.

Theorem 1. Given integer m, directed graph G = (V,E), and vertex v0, we can
enumerate, without repetitions, succinct representations of all walks of length m
starting from v0 in G with O(1)-delay, after an O(|E|)-time preprocessing.

It is worth noting that the space used by our algorithm (on top of the O(|E|)-
space used by the data structures produced during the preprocessing) is upper
bounded, at any point, by the length of the currently enumerated walk. We can
immediately extend Theorem 1 to output every walk of length m in G: in the
preprocessing phase, we collect every vertex with a default walk of length at
least m, and then use the algorithm of Theorem 1 for each such vertex.

Theorem 2. Given integer m and directed graph G = (V,E), we can enumer-
ate, without repetitions, succinct representations of all walks of length m in G
with O(1)-delay, after an O(|E|)-time preprocessing.

We can also enumerate for integers � ≤ m, after exactly the same preprocessing
(which is independent of the length of the enumerated walks), representations
of the walks of G with length between � and m.

Applications for Automata. The result of Theorem 1 can be immediately applied
to prefix closed regular languages (PCLs), given by the prefix closed automata
(PCA, incomplete deterministic finite automata with final states only) accepting
them. For this, we represent the input PCA A as a directed, labelled multi-
graph, G(A), and enumerate all walks of length m starting at the vertex v0
corresponding to the initial state in A. Our algorithm still works without any
change because between two vertices of G(A) we have at most one edge with a
certain label (although we might have multiple edges), and all our data structures
can be extended canonically to this setting. As there is a bijective correspondence
between the walks in G(A) and the strings of L(A), the following theorem follows.

Theorem 3. Given integer m and PCA A, we can enumerate, without repeti-
tions, succinct representations of all strings of length m of L(A) with O(1)-delay
after an O(|A|)-time preprocessing.

Among PCLs, the class of languages LF , of the strings over Σ that do not
contain any forbidden factor from a finite set of strings F , is of particular interest.
However, when F = {f} the following result holds, outperforming [24].

Theorem 4. Given integer m and string f ∈ Σ∗, we can enumerate, without
repetitions, succinct representations of the strings of length m over Σ which do
not contain f as a factor, with O(1)-delay, after an O(|f |)-time preprocessing.

48 D. Adamson et al.

The final problems considered here are those of ranking and unranking strings
in prefix-closed regular languages. The rank of a string w ∈ Σm in a language is
the number of strings smaller than w in the language under some ordering. The
ranking problem requires computing the rank of a given string w. The unranking
operation (problem) takes a number i as the input and asks for the string of
rank i. In both cases, we refer to the ordering induced by the enumeration
algorithm of Sect. 4. Both ranking and unranking require identifying a walk in the
tree of recursive calls with root Enumerate(↑, q0,m). For ranking, we identify the
walk corresponding to w, and the branching vertices occurring on it, then count
the total number of walks of length m corresponding to the leaves of subtrees
of recursive calls occurring prior to this walk (assuming that the recursive calls
made by an instance are ordered in the tree left to right according to their call-
order). This can be done by running Enumerate(↑, q0,m) and simply performing
only the recursive calls that correspond to branching vertices on the walk labelled
with w, and retrieving the number of induced walks for those that should have
been called before them. For unranking, we run again Enumerate(↑, q0,m) and
we make only those recursive calls which lead to the ith walk of length m, in the
order of our enumeration. The following two results are obtained, w denotes here
the size of the memory word in our model).

Theorem 5. Ranking. Given PCA A and string w ∈ L(A) of length m, we
can compute the number of strings accepted by A which are output before w

in our enumeration algorithm in O
(

n log σ
w

(nσ + m(nω + m + σ))
)
-time, where

2 ≤ ω ≤ 3 is the exponent for matrix multiplication. U. Given integers i and
m, and PCA A, we can compute the ith string w of length m output in our
enumeration algorithm in O

(
n log σ

w
(nσ + m(nω + m + σ))

)
-time.

Acknowledgements. The authors thank the reviewers for their helpful comments.
Duncan Adamson was supported by the Leverhulme Trust via the Leverhulme Centre
for Functional Material Design and by DFG Heisenberg-project number 389613931.
Florin Manea was supported by DFG Heisenberg-project number 466789228.

References

1. Ackerman, M., Mäkinen, E.: Three new algorithms for regular language enumera-
tion. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 178–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02882-3 19

2. Ackerman, M., Shallit, J.: Efficient enumeration of words in regular languages.
Theoret. Comput. Sci. 410(37), 3461–3470 (2009)

3. Adamson, D., Gawrychowski, P., Manea, F.: Enumerating m-length walks in
directed graphs with constant delay (2024)

4. Amarilli, A., Bourhis, P., Mengel, S., Niewerth, M.: Constant-delay enumeration
for nondeterministic document spanners. ACM Trans. Database Syst. 46(1), 2:1–
2:30 (2021)

5. Amarilli, A., Jachiet, L., Muñoz, M., Riveros, C.: Efficient enumeration for anno-
tated grammars. In: PODS 2022, pp. 291–300. ACM (2022)

https://doi.org/10.1007/978-3-642-02882-3_19

Enumerating m-Length Walks in Directed Graphs with Constant Delay 49

6. Amarilli, A., Monet, M.: Enumerating regular languages with bounded delay. In:
STACS 2023. LIPIcs, vol. 254, pp. 8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2023)

7. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

8. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theoret.
Comput. Sci. 321(1), 5–12 (2004)

9. Birmelé, E., et al.: Optimal listing of cycles and st-Paths in undirected graphs. In:
SODA 2013, pp. 1884–1896. SIAM (2013)

10. Cevorová, K., Jirásková, G., Mlynárcik, P., Palmovský, M., Sebej, J.: Operations
on automata with all states final. In: AFL 2014. EPTCS, vol. 151, pp. 201–215
(2014)

11. Collins, C., et al.: Accelerated discovery of two crystal structure types in a complex
inorganic phase field. Nature 546(7657), 280–284 (2017)

12. Danielson, G.: On finding the simple paths and circuits in a graph. IEEE Trans.
Circuit Theory 15(3), 294–295 (1968)

13. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range mini-
mum queries. Algorithmica 68(3), 610–625 (2014)

14. Grossi, R., Marino, A., Versari, L.: Efficient algorithms for listing k disjoint st-
Paths in graphs. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.)
LATIN 2018. LNCS, vol. 10807, pp. 544–557. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77404-6 40

15. Gruber, H., Lee, J., Shallit, J.O.: Enumerating regular expressions and their lan-
guages. In: Pin, J. (ed.) Handbook of Automata Theory, pp. 459–491. European
Mathematical Society Publishing House, Zürich, Switzerland (2021)

16. Gusev, V.V., et al.: Optimality guarantees for crystal structure prediction. Nature
619(7968), 68–72 (2023)

17. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, London (1979)

18. Kamae, T.: A systematic method of finding all directed circuits and enumerating
all directed paths. IEEE Trans. Circuit Theory 14(2), 166–171 (1967)

19. Kao, J., Rampersad, N., Shallit, J.O.: On NFAs where all states are final, initial,
or both. Theoret. Comput. Sci. 410(47–49), 5010–5021 (2009)

20. Mateti, P., Deo, N.: On algorithms for enumerating all circuits of a graph. SIAM
J. Comput. 5(1), 90–99 (1976)

21. Oganov, A.R.: Crystal structure prediction: reflections on present status and chal-
lenges. Faraday Discuss. 211, 643–660 (2018)

22. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks 5(3), 237–252 (1975)

23. Rubin, F.: Enumerating all simple paths in a graph. IEEE Trans. Circuits Syst.
25(8), 641–642 (1978)

24. Ruskey, F., Sawada, J.: Generating necklaces and strings with forbidden sub-
strings. In: Du, D.-Z.-Z., Eades, P., Estivill-Castro, V., Lin, X., Sharma, A.
(eds.) COCOON 2000. LNCS, vol. 1858, pp. 330–339. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44968-X 33

25. Sawada, J.: Generating bracelets in constant amortized time. SIAM J. Comput.
31(1), 259–268 (2001)

26. Schmid, M.L., Schweikardt, N.: Spanner evaluation over SLP-compressed docu-
ments. In: PODS 2021, pp. 153–165. ACM (2021)

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/978-3-319-77404-6_40
https://doi.org/10.1007/978-3-319-77404-6_40
https://doi.org/10.1007/3-540-44968-X_33

50 D. Adamson et al.

27. Schmid, M.L., Schweikardt, N.: Query evaluation over SLP-represented document
databases with complex document editing. In: PODS 2022, pp. 79–89. ACM (2022)

28. Segoufin, L.: Enumerating with constant delay the answers to a query. In: ICDT
2013, pp. 10–20. ACM (2013)

29. Shallit, J.: Decidability and enumeration for automatic sequences: a survey. In:
Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 49–63. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-0 5

30. Uno, T.: Amortized analysis on enumeration algorithms. In: Kao, M.Y. (ed.) Ency-
clopedia of Algorithms. Springer, New York (2016). https://doi.org/10.1007/978-
1-4939-2864-4 730

31. Uno, T., Satoh, H.: An efficient algorithm for enumerating chordless cycles and
chordless paths. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS
2014. LNCS (LNAI), vol. 8777, pp. 313–324. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11812-3 27

32. Wasa, K.: Enumeration of enumeration algorithms. CoRR abs/1605.05102 (2016)
33. Wild, M.: Generating all cycles, chordless cycles, and Hamiltonian cycles with the

principle of exclusion. J. Discrete Algorithms 6(1), 93–102 (2008)
34. Yau, S.: Generation of all Hamiltonian circuits, paths, and centers of a graph, and

related problems. IEEE Trans. Circuit Theory 14(1), 79–81 (1967)

https://doi.org/10.1007/978-3-642-38536-0_5
https://doi.org/10.1007/978-1-4939-2864-4_730
https://doi.org/10.1007/978-1-4939-2864-4_730
https://doi.org/10.1007/978-3-319-11812-3_27
https://doi.org/10.1007/978-3-319-11812-3_27

The Hardness of Local Certification
of Finite-State Dynamics

Diego Maldonado1, Pedro Montealegre2(B), and Mart́ın Ŕıos-Wilson2

1 Facultad de Ingenieŕıa, Universidad Católica de la Sant́ısima Concepción,
Concepción, Chile

dmaldonado@ucsc.cl
2 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Peñalolén, Chile

{p.montealegre,martin.rios}@uai.cl

Abstract. Finite-State Dynamics (FSD) is one of the simplest and con-
strained distributed systems. An FSD is defined by an n-node network,
with each node maintaining an internal state selected from a finite set.
At each time-step, these nodes synchronously update their internal states
based solely on the states of their neighboring nodes.

Rather than focusing on specific types of local functions, in this article,
our primary focus is on the problem of determining the maximum time
required for an FSD to reach a stable global state. This global state can
be seen as the acceptance state or as the output of a distributed compu-
tation. For fixed k and q, we define the problem convergence(k, q), which
consists of deciding if a q-state FSD converges in at most k time-steps.

Our main focus is to study the problem convergence from the per-
spective of distributed certification, with a focus on the model of proof-
labeling schemes (PLS). First, we study the problem convergence on arbi-
trary graphs and show that every PLS has certificates of size Θ(n2) (up
to logarithmic factors). Then, we turn to the restriction of the problem
on graphs of maximum degree Δ. Roughly, we show that the problem
admits a PLS with certificates of size Δk+1, while every PLS requires
certificates of size at least 2k/6 · 6/k on graphs of maximum degree 3.

Keywords: Local Certification · Proof Labeling Schemes · Finite
State Dynamics

1 Introduction

Networks serve as the backbone of numerous scientific domains, ranging from the
social sciences, where they represent human connections, to logistics, as seen in

This research was supported by Centro de Modelamiento Matemático (CMM),
FB210005, BASAL funds for centers of excellence from ANID-Chile (P.M.), FONDE-
CYT 1230599 (P.M.), Programa Regional STIC-AMSUD (CAMA) cod. 22-STIC-02
(P.M., M.R.-W.), ECOS project C19E02 (M.R.-W.), ANID FONDECYT Postdoc-
torado 3220205 (M.R.-W.) and Fondo Especial de Actividades Académicas proyecto
ingenieŕıa 2030 ING222010004 (D.M.).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 51–65, 2024.
https://doi.org/10.1007/978-3-031-55598-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_4

52 D. Maldonado et al.

traffic patterns, and even electrical engineering, as in circuitry. Distributed com-
puting explores the capabilities and constraints of algorithms that operate across
these networks. Given the pervasive influence of the Internet, most contemporary
models aim to understand devices capable of accessing it. Typically, distributed
computing employs the message-passing model, where nodes can send extensive
messages to neighboring nodes and perform local computations. However, some
networks, such as emerging wireless networks like ad-hoc or sensor networks, do
not perfectly conform to this traditional model. Their underlying devices have
constraints that do not align with the classical message-passing model.

A recent trend involves using distributed computing techniques, especially
the message-passing model, for sub-microprocessor networks like those in bio-
logical cells or nano-mechanical devices [10]. However, the fundamental differ-
ences in capability between biological or nano nodes and silicon-based devices
necessitate a distinct network model, one designed for nodes inherently more
limited than Turing machines. A natural model to consider in that context is
the one of finite-state dynamics [21,27]. Within this framework, numerous agents
are interconnected through an undirected graph known as the interaction graph.
Each agent communicates solely with its immediate neighbors. Every node on
this graph has an inherent local state, with the collective states of all nodes
forming a configuration or global state for the dynamic system. This internal
state gets updated, relying on its prior state and those of its neighbors. This
updating is governed by a local rule. Moreover, the function that transforms one
configuration into another using local rules is termed the global rule. As this
rule is repeatedly applied, a series of global configurations ensues. Given that
there is a finite number of configurations, the dynamics will eventually lead to a
repetitive sequence of node states. If, after successive applications of the global
rule, the system reaches a stable configuration where the internal state of each
node remains unchanged, we say that the system converges.

An interesting feature of the finite-state dynamics formalism is its capacity to
describe complex behavior while utilizing a constant-size information represen-
tation through the states of the nodes [3]. In the realm of theoretical computer
science, the study of finite-state dynamics revolves around several key topics. One
significant question involves investigating whether the structure of the underly-
ing interaction graph can influence its dynamics [22–24]. Another well-explored
approach is the study of decision problems linked to the dynamics, often moti-
vated by specific questions pertaining to particular models. In this context, a
central question centers on determining the point at which the complexity of the
dynamics, viewed as the complexity of a particular decision problem, becomes
related to the dynamical behavior.

In the field of distributed systems, numerous models exhibit similarities or
share characteristics with finite-state dynamics. An example of a model in which
the messages distributed by the nodes in the network are bounded is the case of
the beeping model [8,17]. In this model, nodes can either beep or stay silent, and
they can only distinguish between two situations: when all their neighbors are
silent or when at least one neighbor is beeping. In addition, they can either beep

The Hardness of Local Certification of Finite-State Dynamics 53

or listen to their neighbors, but they cannot do both at the same time. A crucial
difference between the FSD model and the beeping model is that in the latter,
the local computation is performed by a Turing machine (so the set of states is
not finite). This model has interesting applications as the beeping process can
be interpreted as communication between simple machines, such as sensors, or
it can be seen as a way to communicate messages in a biological network [1,2].

Another example of a model related to finite-state dynamics is the model
called networked state machines (nFSM) introduced in [10]. In this case, the
local computation is done using a finite set of states, but the essential differ-
ence between this model and finite-state dynamics is that nFSM operates asyn-
chronously and incorporates elements of randomness. In the previously cited
papers, the dynamics induced by these models are interpreted as the distributed
computing of coloring or a maximal independent set [1,2,10].

Generally speaking, the main measure of performance in distributed systems
is the number of rounds required to output a solution in the worst case. In this
sense, studying the time required for the system to compute a solution, the con-
vergence time, is crucial. However, to our knowledge, this has not been addressed
from a more dynamics-centered approach or a local certification approach.

Existing literature has established a connection between the computational
complexity of these problems and the dynamical properties of the system
[5,25,34]. Nevertheless, to our knowledge, these problems have not been explored
from a distributed standpoint.

Recently, a novel approach based on distributed algorithms and local deci-
sions has been introduced [31]. This approach has been applied to study opinion
dynamics in social systems. In this work, we extend this approach to examine
a broader framework, specifically focusing on distributed certification for deter-
mining whether the dynamics converge.

The Model. We now define the model more formally, while we refer to the
preliminaries section for further details. We consider simple finite undirected
graphs G. Each node has one over a finite set of states Q. A node u of G also
knows a deterministic local function fu, that specifies how the node updates its
state, computed according to the states on its closed neighborhood. In order to
simplify the model, we consider only synchronous dynamics, meaning that all
nodes update their states at the same time on each time-step. The synchronous
application of the local functions on every node produces a global function F
over G, which establishes how the configuration of states of every node evolves
over time. The pair (G,F) is called a finite-state dynamic system.

Since the possible state configurations of the system is finite, and the local
functions are deterministic, we have that every sequence of state configurations
of a finite-state dynamics system is eventually periodic. A state configuration
is called a fixed point if the dynamics does not change under the application of
the global function. A finite-state dynamics system is convergent if every state
configuration reaches a fixed point after a certain number of times-steps. The
convergence time of a system is the maximum number of time-steps required

54 D. Maldonado et al.

to reach a fixed point from any initial configuration. Obviously, the convergence
time of a system is finite only if the system is convergent.

The Convergensen Problem. In the study of finite-state dynamics, there are
multiple possible research questions. Most of these questions are related to the
study of one particular dynamical behavior. However, instead of focusing on a
specific system, the main aim of this work is to focus on identifying properties of
an arbitrary dynamics that can be studied using distributed methods. A natural
task in this context consists of predicting the long-term behavior of the system.
For example, it might be interesting to ask if observing the dynamics for a
given number of time-steps is enough for the system to attain a particular state
(such as an acceptance state, for instance), or ascertain whether a computation
processed by the network will eventually converge.

Within distributed systems characterized by finite states, the properties
based on localized knowledge of the update rules constitute a key element to
consider. In fact, given the inherent nature of distributed systems, it becomes
crucial to understand the evolution of the dynamics and the long-term behavior
of the system based solely on this local data.

The main research question of this article is: Using local knowledge, can we
predict if a dynamic system will converge within a given number of time-steps?
More precisely, given a pair of positive integers k and q, we define the prob-
lem Convergence(k, q) which consists of, given a q-state finite-state dynamic
system, determining if the dynamics converges in at most k time-steps.

This problem is not solvable by a local algorithm, as the state evolution of
a node might be affected by the state configuration in remote locations of the
network. For that reason, we tackle the Convergence(k, q) problem from the
perspective of local certification, more specifically, proof-labeling schemes.

Local Certification. A local certification algorithm for a distributed decision
problem is a prover-verifier pair where the prover is an untrustworthy oracle
assigning certificates to the nodes, and the verifier is a distributed algorithm
enabling the nodes to check the correctness of the certificates by a certain number
of communication rounds with their neighbors. Note that the certificates may not
depend on the instance G only, but also on the identifiers id assigned to the nodes.
Proof-labeling schemes (PLSs) are a specific type of local certification algorithms,
where the information exchanged between the nodes during the verification phase
is limited to only one round, and the contents are limited to the certificates. The
prover-verifier pair must satisfy the following two properties.

Completeness: On yes-instances, the untrustworthy prover can assign certificates
to the nodes such that the verifier accepts at all nodes;

Soundness: On no-instances, for every certificate assignment to the nodes by the
untrustworthy prover, the verifier rejects in at least one node.

The main complexity measure for proof-labeling schemes is the size of the
certificates assigned to the nodes by the prover.

The Hardness of Local Certification of Finite-State Dynamics 55

1.1 Our Results

First, we observe that for each pair of positive integers k and q, the problem
Convergence(k, q) can be verified on n-node graphs with certificates of size

bmax(k + 1) · log(idmax) · |fmax(n, q)|,

where bmax(k+1) is the maximum number of edges having an endpoint in a node
at distance at most k + 1, the identifiers are assigned with values in [idmax] and
|fmax(n, q)| is the maximum number of bits required to encode a local function.
This is achieved by providing each node with the necessary part of the network
to simulate k+1 time-steps of any configuration. In our first main result, we show
that such a simple algorithm is in fact the best one possible in general, up to
logarithmic factors. More precisely, we show that every Proof-Labeling Scheme
(PLS) for Convergence(2, 4) requires certificates of size Ω(n2/(log n)).

Observe that even if we consider a finite number of states, the encoding of a
local function can be exponentially large relative to the number of neighbors of
a node. Therefore, we consider local rules that admit succinct representations,
which can be encoded using a logarithmic number of bits per neighbor. Examples
of such local rules are the ones found in artificial neural networks, the modeling
of opinion dynamics, or different biological processes. Our lower-bound does not
hide the complexity in the encoding of the local rules, as it holds even when the
problem is restricted to local functions that admit a succinct representation.

Later, we focus on graphs with bounded degree. Restricted to this case, the
straightforward approach gives a PLS for Convergence(k, q) with certificates
of size at most

Δ((Δ − 1)k+1 − 1) · qΔ+1 log(q) · log(idmax)

where Δ ≥ 2 is the maximum degree of the input graph. In our second main
result, we show that the exponential dependency on k cannot be avoided in
the bounded degree case. More precisely, we show that every PLS for problem
Convergence(k, 3) requires certificates of size at least 2k/6 ·6/k even when the
problem is restricted to input graphs of maximum degree 3.

1.2 Related Work

Finite-State Dynamics and Majority Voting Dynamics. An interesting
distributed problem is the one of predicting the result of a two-candidate election.
This process is typically modeled as a majority voting dynamics. The model can
be seen as a group of n agents represented by nodes in a network who are surveyed
about their preferred candidate in an upcoming election with two choices. Over a
series of time steps, each agent adjusts their vote based on the majority opinion
of their network neighbors, ultimately determining the leading candidate after
T time steps. The challenge lies in predicting the leading candidate which in
general is a very hard task.

56 D. Maldonado et al.

In [31] the authors study the problem Election-Prediction, consisting
of predicting the leading candidate after a certain number of time-steps from
the perspective of local certification. In particular, they show that graphs with
sub-exponential growth admit a proof labeling scheme of size O(log n) for prob-
lem Election-Prediction. Additionally, they deduce upper bounds for graphs
with bounded degree, where certificate sizes are sub-linear in n. Furthermore,
they explore lower bounds for the unbounded degree case, establishing that the
local certification of Election-Prediction on arbitrary n-node graphs require
certificates of at least Ω(n) bits. Interestingly, the authors show that the upper
bounds are tight, even for graphs with constant growth.

In terms of the techniques used in this paper, the authors present an interest-
ing approach for deriving an upper bound based on the analysis of the maximum
number of time steps in which an individual may change their opinion during
the majority dynamics. In particular, they show for different families of graphs
(one of them being the graphs with sub-exponential growth) that this number is
bounded when the dynamics are observed at every two time steps. In addition,
the lower bounds are deduced via a reduction to the disjointedness problem in
non-deterministic communication complexity.

Local Certification. Since the introduction of PLSs [29], various variants have
been introduced. As we mentioned, a stronger form of PLS are locally check-
able proofs [26], where each node can send not only its certificates but also its
state and look around within a given radius. Other stronger forms of local cer-
tifications are d-PLS [14], where nodes perform communication at a distance of
d ≥ 1 before deciding. Authors have studied many other variants of PLSs, such
as randomized PLSs [20], quantum PLSs [18], interactive protocols [9,28,33],
zero-knowledge distributed certification [6], and certain PLSs that use global
certificates in addition to the local ones [16], among others. On the other hand,
some trade-offs between the size of the certificates and the number of rounds
of the verification protocol have been exhibited [14]. Also, several hierarchies
of certification mechanisms have been introduced, including games between a
prover and a disprover [4,13].

PLSs have been shown to be effective for recognizing many graph classes.
For example, there are compact PLSs (i.e., with logarithmic size certificates) for
the recognition of acyclic graphs [29], planar graphs [15], graphs with bounded
genus [11], and H-minor-free graphs, provided that H contains no more than
four vertices [7]. In a recent breakthrough, Bousquet et al. [12] proved a ’meta-
theorem’, stating that there exists a PLS for deciding any monadic second-order
logic property with O(log n)-bit certificates on graphs of bounded tree-depth.
This result has been extended by Fraigniaud et al [19] to the larger class of
graphs with bounded tree-width, using certificates on O(log2 n) bits.

2 Preliminaries

In this article, we denote by [m,n] the set of integers greater than or equal to
m and less than or equal to n. We also denote [n] as the interval [1, n].

The Hardness of Local Certification of Finite-State Dynamics 57

Let G = (V,E) be a graph. We denote by NG(v) the neighborhood of v in G,
defined by NG(v) = {u ∈ V : {u, v} ∈ E}. The degree of v, denoted dG(v), is the
cardinality of NG(v). The maximum degree of G, denoted ΔG, is the maximum
value of dG(v) taken over all v ∈ V . We denote by NG[v] the set NG(v) ∪ {v}
and call it the close neighborhood of v. We say that two nodes u, v ∈ V are
connected if there exists a path in G joining them. In the following, we only
consider connected graphs. The distance between u, v, denoted dG(u, v), is the
minimum length (number of edges) of a path connecting them. For a graph G,
v ∈ V (G), and p ≥ 0, we denote Bv(p) as the set of all edges where one of the
endpoints is a node at distance at most p from v in G. We denote by bv(p) the
cardinality of Bv(p), and denote by bmax(p) the maximum bv(p) over v ∈ V (G).
In the following, we omit the sub-indices when they are obvious by the context.

Finite State Dynamics. Let G = (V,E) be a graph, Q a finite set. A finite
state dynamic system over G is a function F : QV → QV such that, for each
v ∈ V there exists a function fv : QN [v] → Q satisfying F (x)v = fv(x|N [v]). The
functions {fv}v∈V are called the local functions of F and the elements of Q are
the states of F . The elements of QV are called configurations of G.

We consider the model where F is distributed over the network in a way
that each node v receives its local function fv : QN [v] → Q as input. A vertex
v identifies d(v) ports that enumerate its incident edges, where d(v) is the size
of the neighborhood of v. Each input variable of fv is identified with one of the
ports, except one that is identified with v. Therefore, fv can be encoded in at
most |Q|d(v)+1 log |Q| + (d(v) + 1) log(d(v) + 1) bits.

In some cases we are interested in the local functions that can be encoded with
much fewer bits. For instance, consider the dynamics with states Q = {−1, 1}
and where each node takes the majority state over its neighbors, which can be
encoded with a constant number of bits per node. We say that F : QV → QV is
succinct if, for each v ∈ V we have that fv can be encoded with O(d(v) log(d(v)))
bits.

Local Decision. Let G = (V,E) be a simple connected n-node graph. A dis-
tributed language L is a Turing-decidable collection of tuples (G, id, In), called
network configurations, where In : V → {0, 1}∗ is called an input function and
id : V → [nc] is an injective function that assigns to each vertex a unique
identifier in [nc] with c > 1. In this article, all our distributed languages are
independent of the id assignments. In other words, if (G, id, In) ∈ L for some id,
then (G, id′, In) ∈ L for every other id′.

Given d > 0, a local decision algorithm for a distributed language L is an
algorithm on instance (G, id, In), where each node v in V (G) receives the sub-
graph induced by all nodes within a distance of at most d from v, including their
identifiers and inputs. The integer d > 0 depends only on the algorithm, not
on the size of the input. Each node performs unbounded computation on the
information received, and decides whether to accept or reject, with the following
requirements:

58 D. Maldonado et al.

– When (G, id, In) ∈ L, then every node accepts.
– When (G, id, In) /∈ L, there is at least one vertex that rejects.

Distributed Languages for Finite-State Dynamics. Consider a graph G,
a finite-state dynamic (FSD) F over G, and a configuration x. The orbit of x
is the sequence of configurations {xt}t>0 such that x0 = x and for every t > 0,
xt = F (xt−1). We say that the dynamics of x converge in at most k ≥ 0 time-
steps if xk is a fixed point, i.e., xk = F (xk). We denote by Convergence(k, q)
the set of pairs (G,F) satisfying that every configuration x converges in at most
k time-steps. Formally,

Convergence(k, q) =

⎧
⎨

⎩
(G,F) :

F : QV (G) → QV (G) is a FSD over G,
|Q| ≤ q, and
F (xk) = xk for every x ∈ QV (G)

⎫
⎬

⎭

It is easy to see that there are no local decision algorithms for problem
Convergence(k, q). That is, there are no algorithms in which every node of
a network exchanges information solely with nodes in its vicinity and decides
whether the dynamics converge within a limited number of time-steps.

2.1 Communication Complexity

Given a Boolean function f : X × Y → {0, 1}, where Alice is given an input
x ∈ X and Bob is given an input y ∈ Y , the deterministic communication
complexity of f is the minimum number of bits Alice and Bob need to exchange
to compute f(x, y), over all possible deterministic communication protocols. In
the non-deterministic version of communication complexity, a third party, called
the prover, is allowed to send a message (called a certificate) to one or both of
the communicating parties to assist in computing the function. The challenge is
to determine the minimal size of such a hint that would enable the parties to
compute the function with the least amount of communication between them. In
this article, we prove our lower-bounds by reducing Convergence to a problem
Disjointness in communication complexity. This problem corresponds to the
function Disjointnessn : 2[n] × 2[n] → {0, 1} such that

Disjointnessn(A,B) = 1 if and only if A ∩ B = ∅.

The following result is given in [30].

Proposition 1. Ncc(Disjointnessn) = n.

3 Finite-State Dynamics on Arbitrary Graphs

In this section, we tackle problem Convergence on arbitrary graphs. We begin
by giving an upper bound on the certification size. For q > 0, we denote by
|fmax(n, q)| the maximum number of bits required to encode a local function of
finite-state dynamics over an n-node graph on q states.

The Hardness of Local Certification of Finite-State Dynamics 59

Theorem 1. For each q > 1, Convergence(k, q) admits a Proof-Labeling
Scheme (PLS) with certificates of size

bmax(k + 1) · log(idmax) · |fmax(n, q)|,

on graphs with identifiers in [idmax].

Proof. Let G,F be an instance of Convergence(k, q). The certification algo-
rithm provides each node v ∈ V (G) with the following information:

• The set Bv
v (k + 1) representing Bv(k + 1).

• The set of all local functions fv
w of nodes w that are endpoints of edges in

Bv
v (k + 1).

Observe that the certificates can be encoded in at most bmax(k+1)·log(idmax)·
|fmax(n, q)| bits. Given the certificates, v can reconstruct all the neighborhoods
and local functions of nodes at distance at most k + 1 from v. In particular, v
can determine all the nodes up to distance k + 2 and all the local functions of
nodes up to distance k + 1.

In the verification algorithm, each node v checks the consistency of the infor-
mation provided to its neighbors and verifies that v converges to a fixed-point in
k time-steps for every configuration assigned to nodes with endpoints in Bv(k).
Formally, v checks the following conditions for each node u ∈ N(v):

a. All the edges in Bu
u(k) belong to Bv

v (k + 1).
b. If w is an endpoint of an edge in Bu(k + 1) ∩ Bv(k + 1) then fv

w = fu
w. In

particular, fv
v = fu

v .
c. For every configuration of the nodes with endpoints in Bv

v (k +1), v simulates
k + 1 time-steps and checks that the configuration reached by v after k time-
steps is a fixed point.

Node v accepts only if all conditions are satisfied. Let us analyze now the sound-
ness and completeness.

Completeness: Let us suppose that (G,F) is a yes-instance. Clearly, if every
node v receives the certificates as they are defined (i.e., Bv

v (k + 1) = Bv(k + 1),
fv

w = fw for every w that is an endpoint of an edge in Bv(k + 1)), then every
node accepts.

Soundness: Let us suppose that (G,F) is a No-instance. In other words, there
exists a configuration x of G for which F (xk) 	= xk. Let v be a node such that
F (xk)v 	= xk

v . Assuming that every node accepts conditions a. and b., and since
these conditions are satisfied for every node, we have that Bv

v (k+1) = Bv(k+1)
and fv

w = fw for every w that is an endpoint of an edge in Bv(k + 1). Observe
that xk+1

v only depends on the initial configuration of nodes at distance at most
k + 2 from v, and the local functions of nodes at distance at most k + 1 from v.
Therefore, v rejects the condition c of the verification algorithm.
�

60 D. Maldonado et al.

Notice that when bmax(k+1) = O(n2) (for instance, on dense graphs of small
diameter), the upper bound above is O(n2 log(idmax)|fmax|), which is greater
than the trivial upper bound O(n2 log(idmax) + n|fmax|) that involves providing
each node with all the edges of the graph and all the local functions. In the
next theorem, we show that, up to logarithmic factors, there is also a quadratic
lower bound for the convergence in at most two time-steps, and specifically for
dynamics on four states that admit a succinct representation.

Theorem 2. Every Proof Labeling Scheme for Convergence(2, 4) has certifi-
cates of size Ω(n2/(log n)). This holds even when the problem is restricted to
local functions that admit a succinct representation.

Proof. We reduce Convergence(2, 4) to Disjointness in two-player commu-
nication complexity. Given an instance of Disjointness, we build an instance
of problem Convergence(2, 4), which is composed of a lower-bound graph and
a dynamic picked from a family of lower-bound dynamics.

We begin by giving a high-level description of the construction. Let n be a
positive integer, and let A,B ⊆ (

[n]
2

)
be a pair of sets, interpreted as an instance

of Disjointness. The set A is associated with the graph GA with the vertex
set {v1, . . . , vn} such that, for each i, j ∈ [n], node vi is adjacent to vj if and
only if {i, j} ∈ A. The graph GB is defined analogously using the set B instead
of A.

The lower-bound graph has vertices containing disjoint copies of GA and GB,
as well as a bit gadget, which is connected to every other vertex. A configuration
satisfies an admissibility condition when the state of the bit gadget encodes the
binary representation of an element of [n] × [n], and this element represents an
edge that is both in GA and GB (i.e., when A ∩ B 	= ∅). The dynamic of the
system is designed to oscillate in a limit-cycle of period two only when the admis-
sibility condition is satisfied. When the admissibility condition is not satisfied,
the dynamic reaches a fixed point in at most two time-steps.

Lower-bound graph. For each n > 0, the lower-bound graph G(A,B) is a graph
of size 2n + 4log n�. The vertex set of G(A,B) is partitioned into four subsets,
namely, VA = {vA

1 , . . . , vA
n }, VB = {vB

1 , . . . , vB
n }, DA = {dA

1 , . . . , dA
� } and DB =

{dB
1 , . . . , dB

� }, where � = 2log n�. The edge set of GA,B = (V,E) contains all
the edges with one endpoint in VA and the other in DA, all edges between nodes
in VB and DB , and all edges with endpoints in DA ∪ DB . It also contains, for
each i, j ∈ [n] the edge {vA

i , vA
j } (respectively, {vB

i , vB
j }) if node vi is adjacent

to vj in GA (respectively, GB).
Nodes in DA ∪ DB are called the bit gadget and the nodes of VA ∪ VB are

the set gadget.

States of the system. For all nodes the set of states is Q = {0, 1} × {0, 1}. Given
a node u in state s(u) = (m(u), c(u)) ∈ Q we say that m(u) is the mark of u
and c(u) is the clock of u.

Given the set of states Q, we define now lower-bound dynamics given by
lower-bound local functions, that we call F (A,B). The local functions of nodes

The Hardness of Local Certification of Finite-State Dynamics 61

in DA ∪DB will be independent on the input of the players, while the ones nodes
of VA (respectively VB) depend only on A (respectively B). We describe first
the local functions of nodes in DA ∪ DB .

Local functions of nodes of the bit gadget. First, we define the following admis-
sibility conditions for a given configuration, which is checked for every node in
DA (respectively DB):

d1) Every node in DA ∪ DB has the same clock.
d2) There are exactly two nodes in VA (resp. VB) with mark 1.
d3) For each s ∈ {1, . . . , �}, the mark of dA

s equals the one of dB
s .

The dynamic of the nodes u in DA and DB is then defined as follows: if the
admissibility conditions are satisfied, then the mark of u remains unchanged,
and the clock of u switches to 0 if the clock was 1 and vice-versa. If the admis-
sibility condition is not satisfied, the whole state of u (mark and clock) remains
unchanged. In any case, the marks in the nodes of the bit gadget do not change
under any circumstances.

For each s ∈ [�], the local function of dA
s (respectively dB

s) is succinct. Indeed,
to define the function, we simply need to indicate which neighbors of dA

s (resp.
dB

s) belong to DA and which to VA (resp. DB and VB), and which node is dB
s

(resp. dA
s). This can be encoded using O(1) bit per neighbor.

Observe that while the admissibility condition is verified, the clocks in the
nodes of DA ∪ DB continuously switch between 0 and 1. Suppose that in the
configuration on a given time-step t, there are nodes d1, d2 ∈ DA ∪DB such that
the admissibility condition is satisfied for d1 but not for d2. Then, in time-step
t, we have that c(d1) = c(d2), but in t + 1, c(d1) 	= c(d2). This implies that in
time-step t + 1, the admissibility condition (d1) is not satisfied by any node in
DA ∪DB , which results in every node in that set being fixed in its state forever.

Local functions of nodes of the set gadgets. Let i ∈ [n]. The following admissibility
conditions are considered for node vA

i :

v1) The mark of vA
i is 1.

v2) Exactly one neighbor of vA
i in VA has mark 1.

v3) The mark of dA
1 , . . . , dA

�/2 or dA
�/2+1, . . . , d

A
� represents the binary represen-

tation of i.

The local function of vA
i indicates that the mark of node vA

i is 1 if the
admissibility conditions are satisfied, and 0 otherwise. The clock of vA

i does not
change under any circumstance.

The local function of vA
i is succinct for every i ∈ [n]. To define the function,

it is necessary to simply indicate which neighbors of vA
i belong to DA and which

to VA. This can be encoded using O(1) bit per neighbor. Additionally, specifying
the index i requires O(log n) bits. Analogous admissibility conditions and local
functions are defined for node vB

i by switching the subindices A by B.
Independently of the initial configuration, the admissibility condition is sat-

isfied for at most two nodes in VA, as the marks in DA can represent at most

62 D. Maldonado et al.

two indices in [n]. Then, in the first time-step, the mark of every node in VA

is 0, except for at most two nodes. The mark of the remaining nodes, namely
vA

i and vA
j , is 1 only if the admissibility condition is satisfied for two nodes. In

particular, condition (v2) implies that vA
i is adjacent to vA

j . Hence {i, j} ∈ A.
In any case, the state of every node of VA ∪VB remains unchanged after the first
time-step.

The Reduction. We now show that (G(A,B), F (A,B)) converges in at most two
time-steps if and only if A ∩ B = ∅. Let us suppose that A ∩ B 	= ∅, and let
{i, j} ∈ A ∩ B. We define the following initial configuration x.

• For every s ∈ [n] \ {i, j}, nodes vA
s and vB

s have initial configuration (0, 0).
• The initial configuration of vA

i , vA
j , vB

i , and vB
j is (1, 0).

• For each s ∈ [�/2], the initial configuration of dA
s and dB

s is (b, 0), where b is
the s-th bit in the binary representation of i.

• For each s ∈ [�/2+1, �], the initial configuration of dA
s and dB

s is (b, 0), where
b is the s-th bit in the binary representation of j.

Observe that in x all the admissibility conditions are satisfied. Moreover, in
the next time-steps, the mark of every node in G(A,B) remains unchanged, and
the clocks of every node in DA ∪ DB switch between 0 and 1 back and forth.
Therefore, the dynamic (G(A,B), F (A,B)) does not converge.

Now let us suppose that A ∩ B = ∅. Let x be any initial configuration, and
let y be the configuration obtained in the first time-step. Observe that the state
of every node in VA ∪ VB is fixed in the state of y in the next time-steps. If
fewer than two nodes in VA (respectively VB) have mark 1 in y, all nodes in DA

(respectively DB) are fixed in their state forever. Then, in the third time-step,
all nodes in DB (respectively DA) are also fixed. Suppose then that in y, exactly
two nodes vA

i , vA
j ∈ VA and two nodes vB

p , vB
q ∈ VB have mark 1. By condition

(v3), in y the marks of the nodes in DA are the binary representation of i and
j. By condition (v2), vA

i and vA
j are adjacent. Hence {i, j} ∈ A. Similarly, the

marks on DB are the binary representations of p and q, and vB
p is adjacent to

vB
q . Hence {p, q} ∈ B. Since A ∩ B = ∅, condition (d3) is not satisfied in y,

implying that y is a fixed point.
We deduce that (G,F (A,B)) ∈ Convergence(2, 4) if and only if A∩B = ∅.

Let π be a PLS for Convergence(2, 4). We define the following two-player pro-
tocol P for Disjointness. On instance A, Alice computes nondeterministically
the certificates that π would give on all nodes in VA ∪ DA ∪ DB , and simulates
the verification protocol of π on all nodes in VA ∪ DA. Alice communicates a
single bit to Bob indicating if every node in VA ∪ DA has accepted, as well as
all the certificates of DA ∪ DB . Analogously, Bob computes the certificates of
DA∪DB∪VB and simulates the verification protocol of π on all nodes in VB∪DB .
Bob accepts if all nodes in VB accept and his certificates for DA ∪ DB are the
same as those generated by Alice. The correctness of P follows directly from the
soundness and completeness of π. Let C(n) be the maximum size of a certificate
produced by π on graphs of size n. According to Proposition 1, it follows that
C(2n + 2log n�) · log n� = Ω(n2), implying that C(n) = Ω(n2/ log n).
�

The Hardness of Local Certification of Finite-State Dynamics 63

4 Finite-State Dynamics in Graphs of Bounded Degree

Given that the problem is hard in general graphs, we focus our study on finite-
state dynamics over graphs of bounded degree. The full proofs of this section
are given in the full version of this article [32].

The local functions defined on graphs of bounded degree are all succinct.
Moreover, an analysis of the bound given by Theorem 1 provides a non-trivial
upper-bound for the certificate size.

Corollary 1. For each q > 1 and for each Δ > 2, problem Convergence(k, q)
admits a Proof-Labeling Scheme with certificates of size at most

Δ((Δ − 1)k+1 − 1) · qΔ+1 log(q) · log(idmax)

on graphs of maximum degree Δ with assignments of identifiers in [idmax].

In the following result, we state that the exponential dependency on k is
necessary even on graphs of bounded degree. Our proof follows similar ideas to
the proof of Theorem 2. However, we need to introduce a series of gadgets that
allows us to control the maximum degree of the lower-bound graph. One of our
gadgets simulates a binary decoder. A Boolean circuit C is called a binary decoder
if there exists a positive integer t such that C has t inputs and 2t outputs, named
{v1, . . . , v2t}. This Boolean circuit satisfies that for each i ∈ [2t], the output value
of vi is True if and only if the truth values of the inputs (mapped to 0/1 values)
correspond to the binary representation of i. In the full version of this article
[32], we provide a construction of a binary decoder with small depth, as well as
a finite-state dynamic that simulates its behavior.

Theorem 3. Let k ≥ 2. Every PLS for Convergence(k, 3) requires certificates
of size at least 2k/6 · 6/k, even when the problem is restricted to input graphs of
degree at most 3.

5 Discussion

In this paper, we study local certification of the problem Convergence(t, q)
which asks whether a finite-state dynamics with q states converges in at most t
time steps. We show that in general there is an upper bound of bmax · log(idmax) ·
|fmax|, and we show as a lower bound that certificates of size Ω(n2/ log n) are
required even for t = 2 and q = 4. In both cases, the size of the representation of
the function F plays an important role. We present the following open questions:

First, which specific families of functions might exhibit a succinct representa-
tion? An interesting case study might be studying if the lower bound construc-
tion is still valid in the context of set-valued functions, such as neural networks,
which depend only on the subset of states in the neighborhood.

Second, how does the difficulty of solving Convergence compare to other
decision problems commonly studied for finite-state dynamics, such as the reach-
ability problem (determining whether a configuration y is reachable from a start-
ing configuration x under the dynamics) and the prediction problem (determining

64 D. Maldonado et al.

if the state of a node will change after T time steps, given a node, time T , and
an initial configuration)?

Finally, what is the certification cost for other global properties of F , such
as reversibility, injectivity, or nilpotency (where a function is nilpotent if there
is only one possible fixed point)? How are these problems related to problem
Convergence and at which point are they comparable? Do they require cer-
tificates of bigger size compared to Convergence?

References

1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping
a maximal independent set. Distrib. Comput. 26(4), 195–208 (2013)

2. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biolog-
ical solution to a fundamental distributed computing problem. Science 331(6014),
183–185 (2011)

3. Atlan, H.: Self-organizing networks: weak, strong and intentional, the role of their
underdetermination. In: Carsetti, A. (ed.) Functional Models of Cognition. Theory
and Decision Library, vol. 27, pp. 127–142. Springer, Dordrecht (1999). https://
doi.org/10.1007/978-94-015-9620-6 9

4. Balliu, A., D’Angelo, G., Fraigniaud, P., Olivetti, D.: What can be verified locally?
J. Comput. Syst. Sci. 97, 106–120 (2018)

5. Barrett, C.L., Hunt, H.B., III., Marathe, M.V., Ravi, S., Rosenkrantz, D.J.,
Stearns, R.E.: Complexity of reachability problems for finite discrete dynamical
systems. J. Comput. Syst. Sci. 72(8), 1317–1345 (2006)

6. Bick, A., Kol, G., Oshman, R.: Distributed zero-knowledge proofs over networks.
In: 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2426–2458
(2022)

7. Bousquet, N., Feuilloley, L., Pierron, T.: Local certification of graph decompo-
sitions and applications to minor-free classes. In: 25th International Conference
on Principles of Distributed Systems (OPODIS). LIPIcs, vol. 217, pp. 22:1–22:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

8. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) Distributed Computing, pp. 148–162. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15763-9 15

9. Crescenzi, P., Fraigniaud, P., Paz, A.: Trade-offs in distributed interactive proofs.
In: 33rd International Symposium on Distributed Computing (DISC). LIPIcs, vol.
146, pp. 13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

10. Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: Proceedings of
the 2013 ACM Symposium on Principles of Distributed Computing, pp. 137–146
(2013)

11. Esperet, L., Lévêque, B.: Local certification of graphs on surfaces. Theor. Comput.
Sci. 909, 68–75 (2022)

12. Feuilloley, L., Bousquet, N., Pierron, T.: What can be certified compactly? compact
local certification of mso properties in tree-like graphs. In: Proceedings of the 2022
ACM Symposium on Principles of Distributed Computing, pp. 131–140 (2022)

13. Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. Theor.
Comput. Sci. 856, 51–67 (2021)

14. Feuilloley, L., Fraigniaud, P., Hirvonen, J., Paz, A., Perry, M.: Redundancy in
distributed proofs. Distrib. Comput. 34(2), 113–132 (2021)

https://doi.org/10.1007/978-94-015-9620-6_9
https://doi.org/10.1007/978-94-015-9620-6_9
https://doi.org/10.1007/978-3-642-15763-9_15

The Hardness of Local Certification of Finite-State Dynamics 65

15. Feuilloley, L., Fraigniaud, P., Montealegre, P., Rapaport, I., Rémila, É., Todinca,
I.: Compact distributed certification of planar graphs. In: Algorithmica, pp. 1–30
(2021)

16. Feuilloley, L., Hirvonen, J.: Local verification of global proofs. In: 32nd Interna-
tional Symposium on Distributed Computing. LIPIcs, vol. 121, pp. 25:1–25:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

17. Flury, R., Wattenhofer, R.: Slotted programming for sensor networks. In: Proceed-
ings of the 9th ACM/IEEE International Conference on Information Processing in
Sensor Networks, pp. 24–34 (2010)

18. Fraigniaud, P., Gall, F.L., Nishimura, H., Paz, A.: Distributed quantum proofs for
replicated data. In: 12th Innovations in Theoretical Computer Science Conference
(ITCS). LIPIcs, vol. 185, pp. 28:1–28:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021)

19. Fraigniaud, P., Montealegre, P., Rapaport, I., Todinca, I. (2022). A meta-theorem
for distributed certification. In: Parter, M. (ed.) Structural Information and Com-
munication Complexity. SIROCCO 2022. LNCS, vol. 13298, pp. 116–134. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-09993-9 7

20. Fraigniaud, P., Patt-Shamir, B., Perry, M.: Randomized proof-labeling schemes.
Distrib. Comput. 32(3), 217–234 (2019)

21. D Frischknecht, S., Keller, B., Wattenhofer, R.: Convergence in (social) influence
networks. In: Proceedings of the Distributed Computing: 27th International Sym-
posium, DISC 2013, Jerusalem, 14–18 October 2013, vol. 27. pp. 433–446. Springer
(2013)

22. Gadouleau, M.: On the stability and instability of finite dynamical systems with
prescribed interaction graphs. Electron. J. Combinator. P3–32 (2019)

23. Gadouleau, M.: On the influence of the interaction graph on a finite dynamical
system. Nat. Comput. 19(1), 15–28 (2020)

24. Gadouleau, M., Richard, A.: Simple dynamics on graphs. Theoret. Comput. Sci.
628, 62–77 (2016)

25. Goles, E., Montealegre, P.: Computational complexity of threshold automata net-
works under different updating schemes. Theoret. Comput. Sci. 559, 3–19 (2014)

26. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory
Comput. 12(1), 1–33 (2016)

27. Guseo, R., Guidolin, M.: Modelling a dynamic market potential: a class of automata
networks for diffusion of innovations. Technol. Forecast. Soc. Change 76(6), 806–
820 (2009). https://doi.org/10.1016/j.techfore.2008.10.005

28. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: ACM Sym-
posium on Principles of Distributed Computing, pp. 255–264. ACM (2018)

29. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

30. Kushilevitz, E.: Communication complexity. In: Advances in Computers, vol. 44.
Elsevier (1997)

31. Maldonado, D., Montealegre, P., Ŕıos-Wilson, M., Theyssier, G.: Local certification
of majority dynamics. arXiv preprint arXiv:2309.01852 (2023)

32. Maldonado, D., Montealegre, P., Ŕıos-Wilson, M.: The hardness of local certifica-
tion of finite-state dynamics (2023)

33. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interac-
tive proofs. In: 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1096–115. SIAM (2020)

34. Ŕıos-Wilson, M., Theyssier, G.: Intrinsic Simulations and Universality in Automata
Networks (2022). https://hal.science/hal-03779748

https://doi.org/10.1007/978-3-031-09993-9_7
https://doi.org/10.1016/j.techfore.2008.10.005
http://arxiv.org/abs/2309.01852
https://hal.science/hal-03779748

Iterated Straight-Line Programs

Gonzalo Navarro1,2(B) and Cristian Urbina1,2(B)

1 CeBiB – Centre for Biotechnology and Bioengineering, Santiago, Chile
2 Department of Computer Science, University of Chile, Santiago, Chile

{gnavarro,crurbina}@dcc.uchile.cl

Abstract. We explore an extension to straight-line programs (SLPs)
that outperforms, for some text families, the measure δ based on sub-
string complexity, a lower bound for most measures and compres-
sors exploiting repetitiveness (which are crucial in areas like Bioinfor-
matics). The extension, called iterated SLPs (ISLPs), allows rules of
the form A → Πk2

i=k1
Bic1

1 · · · Bict
t , for which we show how to extract

any substring of length λ, from the represented text T [1 . . n], in time
O(λ + log2 n log log n). This is the first compressed representation for
repetitive texts breaking δ while, at the same time, supporting direct
access to arbitrary text symbols in polylogarithmic time. As a byprod-
uct, we extend Ganardi et al.’s technique to balance any SLP (so it has
a derivation tree of logarithmic height) to a wide generalization of SLPs,
including ISLPs.

Keywords: Grammar compression · Substring complexity ·
Repetitiveness measures

1 Introduction

Motivated by the data deluge, and by the observed phenomenon that many
of the fastest-growing text collections are highly repetitive, recent years have
witnessed an increasing interest in (1) defining measures of compressibility that
are useful for highly repetitive texts, (2) develop compressed text representations
whose size can be bounded in terms of those measures, and (3) provide efficient
(i.e., polylogarithmic time) access methods to those compressed texts, so that
algorithms can be run on them without ever decompressing the texts [23,24].
We call lower-bounding measures those satisfying (1), reachable measures those
(asymptotically) reached by the size of a compressed representation (2), and
accessible measures those reached by the size of representations satisfying (3).

For example, the size γ of the smallest “string attractor” of a text T is a
lower-bounding measure, unknown to be reachable [14], and smaller than the
size reached by known compressors. The size b of the smallest “bidirectional
macro scheme” of T [31], and the size z of the Lempel-Ziv parse of T [20], are
reachable measures. The size g of the smallest context-free grammar generating
(only) T [5] is an accessible measure [3]. It holds γ ≤ b ≤ z ≤ g for every text.

Funded with Basal Funds FB0001, ANID, Chile; and ANID-Subdirección de Capital
Humano/Doctorado Nacional/2021-21210580.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 66–80, 2024.
https://doi.org/10.1007/978-3-031-55598-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_5

Iterated Straight-Line Programs 67

One of the most attractive lower-bounding measures devised so far is δ [6,29].
Let T [1 . . n] be a text over alphabet [1 . . σ], and Tk be the number of distinct
substrings of length k in T , which define its so-called substring complexity. Then
the measure is δ(T) = maxk Tk/k. This measure has several attractive properties:
it can be computed in linear time and lower-bounds all previous measures of
compressibility, including γ, for every text. While δ is known to be unreachable,
the measure δ′ = δ log n log σ

δ log n has all the desired properties: Ω(δ′) is the space
needed to represent some text family for each n, σ, and δ; within O(δ′) space it
is possible to represent every text T and access any length-λ substring of T in
time O(λ + log n) [18], together with more powerful operations [13,17,18].

As for g, a straight-line program (SLP) is a context-free grammar that gen-
erates (only) T , and has size-2 rules of the form A → BC, where B and C are
nonterminals, and size-1 rules A → a, where a is a terminal symbol. The SLP
size is the sum of all its rule sizes. A run-length SLP (RLSLP) may contain, in
addition, size-2 rules of the form A → Bk, representing k repetitions of nonter-
minal B. A RLSLP of size grl can be represented in O(grl) space, and within
that space we can offer fast string access and other operations [6, Appendix A].
It holds δ ≤ grl = O(δ′), where grl is the smallest RLSLP that generates T
[18,23] (the size g of the smallest grammar or SLP, instead, is not always O(δ′)).

While δ lower-bounds all previous measures on every text, δ′ is not the small-
est accessible measure. In particular, grl is always O(δ′), and it can be smaller by
up to a logarithmic factor. Indeed, grl is a minimal accessible measure as far as
we know. It is asymptotically between z and g [23]. An incomparable accessible
measure is zend ≥ z, the size of the LZ-End parse of the text [15,19].

The belief that δ is a lower bound to every reachable measure was disproved
by the recently proposed L-systems [26,27]. L-systems are like SLPs where all
the symbols are nonterminals and the derivation ends at a specified depth in
the derivation tree. The size � of the smallest L-system generating T [1 . . n] is a
reachable measure of repetitiveness and was shown to be as small as O(δ/

√
n)

on some text families, thereby sharply breaking δ as a lower bound. Measure �,
however, is unknown to be accessible, and thus one may wonder whether there
exist accessible text representations that are smaller than δ.

In this paper we devise such a representation, which we call iterated SLP
(ISLP). ISLPs extend SLPs (and RLSLPs) by allowing a more complex version
of the rule A → Bk, namely A → Πk2

i=k1
Bic1

1 · · · Bict
t of size 2 + 2t. We show

how to extract a substring of length λ from the ISLP of a text T in time O(λ +
log2 n log log n) provided the ISLP is balanced, that is, its derivation tree is of
height O(log n).

Just like SLPs and RLSLPs can be balanced [10,28] while retaining their
asymptotic size, we show how to balance a more general class of SLP extensions
we call generalized SLPs (GSLPs). GSLPs, which include ISLPs, allow rules of
the form A → x, where x is a program that outputs the right-hand side of the
rule. We show that, if every nonterminal appearing in x’s output does it at least
twice, then the GSLP can be balanced in the same way as SLPs. This byproduct

68 G. Navarro and C. Urbina

of our results can be of independent interest to provide polylogarithmic-time
access to other extensions of context-free grammars.

2 Preliminaries

We explain some concepts and notation used in the rest of the paper.

Strings. Let Σ = [1 . . σ] be an alphabet. A string T [1 . . n] of length n is a
finite sequence T [1]T [2] . . . T [n] of n symbols in Σ. We denote by ε the unique
string of length 0. We denote by Σ∗ the set of all finite strings with symbols
in Σ. The i-th symbol of T is denoted by T [i], and the sequence T [i] . . . T [j] is
denoted by T [i . . j]. The concatenation of X[1 . . n] and Y [1 . . m] is defined as
X ·Y = X[1] . . . X[n]Y [1] . . . Y [m] (we omit the dot when there is no ambiguity).
If T = XY Z, then X (resp. Y , resp. Z) is a prefix (resp. substring, resp. suffix) of
T . A power T k stands for k consecutive concatenations of the string T . We denote
by |T |a the number of occurrences of the symbol a in T . A string morphism is
a function ϕ : Σ∗ → Σ∗ such that ϕ(xy) = ϕ(x) · ϕ(y) for any strings x and y.

Straight-Line Programs. A straight-line program (SLP) is a context-free
grammar [30] that contains only terminal rules of the form A → a with a ∈ Σ,
and binary rules of the form A → BC for variables B and C whose deriva-
tions cannot reach again A. These restrictions ensure that each variable of the
SLP generates a unique string, defined as exp(A) = a for a rule A → a, and as
exp(A) = exp(B)·exp(C) for a rule A → BC. A run-length straight-line program
(RLSLP) is an SLP that also admits run-length rules of the form A → Bk for
some k ≥ 3, with their expansion defined as exp(A) = exp(B)k. The size of an
SLP is the sum of the lengths of the right-hand sides of its rules; the size of an
RLSLP is defined similary, assuming that rules A → Bk are of size 2 (i.e., two
integers to represent B and k).

The derivation tree of an SLP is an ordinal tree where the nodes are the
variables, the root is the initial variable, and the leaves are the terminal vari-
ables. The children of a node are the variables appearing in the right-hand side
of its rule (in left-to-right order). The height of an SLP is the length of the
longest path from the root to a leaf node in the derivation tree. The height of an
RLSLP is obtained by unfolding its run-length rules, that is, writing a rule Bk

as BB . . . B where B appears k times, to obtain an equivalent SLP (actually, a
slight extension where the right-hand sides can feature more than two variables).

SLPs and RLSLPs yield measures of repetitiveness g and grl, defined as the
size of the smallest SLP and RLSLP generating the text, respectively. Clearly,
it holds that grl ≤ g. It also has been proven that g is NP-hard to compute [5].

Other Repetitiveness Measures. For self-containedness, we describe the
most important repetitiveness measures and relate them with the accessible mea-
sures g and grl; for more details see a survey [23].

Iterated Straight-Line Programs 69

Burrows-Wheeler Transform. The Burrows-Wheeler Transform (BWT) [4] is a
reversible permutation of T , which we denote by bwt(T). It is obtained by sorting
lexicographically all the rotations of the string T and concatenating their last
symbols, which can be done in O(n) time. The measure r is defined as the size
of the run-length encoding of bwt(T). Usually, T is assumed to be appended
with a sentinel symbol $ strictly smaller than any other symbol in T , and then
we call r$ the size of the run-length encoding of bwt(T$). This measure is then
reachable, and fully-functional indexes of size O(r$) exist [8], but interestingly, it
is unknown to be accessible. While this measure is generally larger than others,
it can be upper-bounded by r$ = O(δ log δ log n

δ) [16].

Lempel-Ziv Parsing. The Lempel-Ziv parsing (LZ) [20] of a text T [1 . . n] is a
factorization into non-empty phrases T = X1X2 . . . Xz where each Xi is either
the first occurrence of a symbol or the longest prefix of Xi . . . Xz with a copy in
T starting at a position in [1 . . |X1 . . . Xi−1|]. LZ is called a left-to-right parsing
because each phrase has its source starting to the left, and it is optimal among
all parsings satisfying this condition. It can be constructed greedily from left to
right in O(n) time. The measure z is defined as the number of phrases in the
LZ parsing of the text, and it has been proved that z ≤ grl [25]. While z is
obviously reachable, it is unknown to be accessible. A close variant zend ≥ z [19]
that forces phrase sources to be end-aligned with a preceding phrase, has been
shown to be accessible [15].

Bidirectional Macro Schemes. A bidirectional macro scheme (BMS) [31] is a
factorization of a text T [1 . . n] where each phrase can have its source starting
either to the left or to the right. The only requirement is that by following the
pointers from phrases to sources, we should eventually be able to fully decode
the text. The measure b is defined as the size of the smallest BMS representing
the text. Clearly, b is reachable, but it is unknown to be accessible. It holds that
b ≤ z, and it was proved that b ≤ r$ [25]. Computing b is NP-hard [9].

String Attractors. A string attractor for a text T [1 . . n] is a set of positions Γ ⊆
[1 . . n] such that any substring of T [i . . j] has an occurrence T [i′ . . j′] crossing at
least one of the positions in Γ (i.e., there exist k ∈ Γ such that i′ ≤ k ≤ j′). The
measure γ is defined as the size of the smallest string attractor for the string T ,
and it is NP-hard to compute [14]. It holds that γ lower bounds the size b of
the smallest bidirectional macro scheme and can sometimes be asymptotically
smaller [2]. On the other hand, it is unknown if γ is reachable.

Substring Complexity. Let T [1 . . n] be a text and Tk be the number of distinct
substrings of length k in T , which define its so-called substring complexity. Then
the measure is δ = maxk Tk/k [6,29]. This measure can be computed in O(n)
time and lower-bounds γ, and thus all previous measures of compressibility,
for every text. On the other hand, it is known to be unreachable [18]. The
related measure δ′ = δ log n log σ

δ log n is reachable and accessible, and still lower-
bounds b and all other reachable measures on some text family for every n, σ,
and δ [18]. Besides, grl (and thus z, b, and γ, but not g) are upper-bounded by
O(δ log n log σ

δ log n).

70 G. Navarro and C. Urbina

L-systems. An L-system (for compression) is a tuple L = (V, ϕ, τ, S, d, n) extend-
ing a Lindenmayer system [21,22], where V is the set of variables (which are also
considered as terminal symbols), ϕ : V → V + is the set of rules (and also a mor-
phism of strings), τ : V → V is a coding, S ∈ V the initial variable, and d and n
are integers. The string generated by the system is τ(ϕd(S))[1 . . n]. The measure
� is defined as the size of the smallest L-system generating the string. It has been
proven that � is incomparable to δ (� can be smaller by a

√
n factor) and almost

any other repetitiveness measure considered in the literature [26,27].

3 Iterated Straight-Line Programs

We now define iterated SLPs and show that they can be much smaller than δ.
Some proofs in this section are omitted due to space constraints.

Definition 1. An iterated straight-line program of degree d (d-ISLP) is an
SLP that allows in addition iteration rules of the form A → ∏k2

i=k1
Bic1

1 · · · Bict
t ,

where 1 ≤ k1, k2, 0 ≤ c1, . . . , ct ≤ d are integers and B1 . . . Bt are variables that
cannot reach A (so the ISLP generates a unique string). Iteration rules have size
2 + 2t = O(t) and expand to exp(A) =

∏k2
i=k1

exp(B1)ic1 · · · exp(Bt)ict , where if
k1 > k2 the iteration goes from i = k1 downwards to i = k2. The size size(G) of
a d-ISLP G is the sum of the sizes of all of its rules.

Definition 2. The measure git(d)(T) is defined as the size of the smallest d-
ISLP that generates T , whereas git(T) = mind≥0 git(d)(T).

The following observations show that ISLPs subsume RLSLPs, and thus, can
be smaller than the smallest L-system.

Proposition 1. For any d ≥ 0, it always holds that git(d) ≤ grl.

Proof. Just note that a rule A → ∏k
i=1 Bi0 from an ISLP simulates a rule

A → Bk from a RLSLP. In particular, 0-ISLPs are equivalent to RLSLPs. �	
Proposition 2. For any d ≥ 0, there exists a string family where git(d) = o(�).

Proof. Navarro and Urbina show a string family where grl = o(�) [27]. Hence,
git(d) is also o(�) in this family. �	

We now show that d = 1 suffices to obtain ISLPs that are significantly smaller
than δ for some string families.

Lemma 1. Let d ≥ 1. There exists a string family with git(d) = O(1) and
δ = Ω(

√
n).

Proof. Such a family is formed by the strings sk =
∏k

i=1 a
ib. The 1-ISLPs with

initial rule Sk → ∏k
i=1 AiB, and rules A → a, B → b, generate each string

sk in the family using O(1) space. On the other hand, it has been proven that
δ = Ω(

√
n) in the family csk [27]. As δ can only decrease by 1 after the deletion

of a character [1], δ = Ω(
√

n) in the family sk too. �	

Iterated Straight-Line Programs 71

On the other hand, ISLPs can perform worse than other compressed repre-
sentations; recall that δ ≤ γ ≤ b ≤ r$.

Lemma 2. Let μ ∈ {r, r$, �}. There exists a string family with git(d) = Ω(log n)
and μ = O(1).

Lemma 3. There exists a string family satisfying that z = O(log n) and git(d) =
Ω(log2 n/ log log n).

One thing that makes ISLPs robust is that they are not very sensitive to
reversals, morphism application, or edit operations (insertions, deletions, and
substitutions of a single character). This makes git(d) more robust than measures
like r and r$, which are sensitive to all these transformations [1,7,11,12].

Lemma 4. Let G be a d-ISLP generating T . Then there exists a d-ISLP of size
|G| generating the reversed text TR. Let ϕ be a morphism. Then there exists a d-
ISLP of size |G|+ cϕ generating the text ϕ(T), where cϕ is a constant depending
only on ϕ. Moreover, there exists a d-ISLP of size at most O(|G|) generating T ′

where T and T ′ differ by one edit operation.

4 Accessing ISLPs

We have shown that git(d) breaks the lower bound δ already for d ≥ 1. We now
show that the measure is accessible. Concretely, we will show that any substring
of length λ can be extracted in time O(λ + (h + log n) log n log log n), where h
is the height of the grammar tree, and in Sect. 5 we show that ISLPs can be
balanced so they have h = O(log n). In total, we obtain the following result.

Theorem 1. Let T [1 . . n] be represented by a d-ISLP of size git. Then, there
exists a data structure of size O(git) that extracts any substring of T of length
λ in time O(λ + log2 n log log n) on a RAM machine of Θ(log n) bits, using
O(log2 n log log n) additional words of working space.

In fact, our extraction time is O(λ + d log d log n + d2 log d) using O(d2 log d)
working space, which reduces to O(λ + log n) time and O(1) working space for
d = O(1) (recall that 1-ISLPs already break the δ lower-bound), and yields the
result in the theorem if d = O(log n). For larger d, we start with a technical result
that shows that we can always force d to be O(log n) without asymptotically
increasing the size. From now on in the paper, we will disregard for simplicity
the case k1 > k2 in the rules A → Πk2

i=k1
Bic1

1 · · · Bict
t , as their treatment is

analogous to that of the case k1 ≤ k2.

Lemma 5. If a d-ISLP G generates T [1 . . n], then there is also a d′-ISLP G′

of the same size that generates T , for some d′ ≤ log2 n.

Proof. For any rule A =
∏k2

i=k1
Bic1

1 · · · Bict
t , any i ∈ [k1 . . k2], and any cj , it

holds that n ≥ |exp(A)| ≥ icj , and therefore cj ≤ logi n, which is bounded by
log2 n for i ≥ 2. Therefore, if k2 ≥ 2, all the values cj can be bounded by some
d′ ≤ log2 n. A rule with k1 = k2 = 1 is the same as A → B1 · · · Bt, so all values
cj can be set to 0 without changing the size of the rule at all. �	

72 G. Navarro and C. Urbina

4.1 Data Structures

We define some data structures that extend ISLPs allowing us to efficiently
navigate it within O(git) space. Per Lemma 5, we assume d = O(log n).

Consider a rule A → ∏k2
i=k1

Bic1
1 . . . Bict

t . Though t can be large, there are
only d + 1 distinct values cj . We will make use of auxiliary polynomials

fr(i) =
r∑

j=1

|exp(Bj)| · icj ,

for r ∈ [1, t], to navigate within the “blocks” i: fr(i) computes cumulative lengths
inside the product expression Bic1

1 . . . Bict
t , up to the variable Br, for a given i.

We now show how to compute any fr(i) in time O(d) using O(t) space
for each A. An array SA[1 . . t] stores cumulative length information, as follows
SA[r] =

∑
1≤j≤r,cj=cr

|exp(Bj)|. That is, SA[r] adds up the lengths of the symbol
expansions up to Br that must be multiplied by icr . A second array, CA[1 . . t],
stores the values c1, . . . , ct. We preprocess CA to solve predecessor queries of the
form pred(A, r, c) = max{j ≤ r, CA[j] = c}, that is, the latest occurrence of c in
CA to the left of position r, for every c = 0, . . . , d. This query can be answered in
O(d) time because the elements in CA are also in {0, . . . , d}: cut CA into chunks
of length d + 1, and for each chunk CA[(d + 1) · j + 1 . . (d + 1) · (j + 1)] store
precomputed values pred(A, (d + 1) · j, c) for all c ∈ {0, . . . , d}. This requires
O(t) space. To compute the values rc = pred(A, r, c) for all c, find the chunk
j =
r/(d + 1)� − 1 where r belongs, initialize every rc = pred(A, (d + 1) · j, c)
for every c (which is stored with the chunk j), and then scan the chunk prefix
CA[(d + 1) · j + 1 . . r] left to right, correcting every rc ← k if c = CA[k], for
k = (d + 1) · j + 1 . . r. We can then evaluate fr(i) in O(d) time by computing all
values rc as explained (i.e., the last position to the left of r where the exponent
is c), and adding up SA[rc] · ic (because SA[rc] adds up all |exp(Bj)| that must
be multiplied by ic in fr(i)). We also define the polynomial

f+(k) =
k∑

i=k1

ft(i)

to select a “block”: f+(k) computes the cumulative sum of the length of the
whole expressions Bic1

1 · · · Bict
t until i = k. Note we cannot afford to store all the

k2 − k1 + 1 values f+(k), but we can exploit the fact that the polynomials ft(i)
have degree at most d, and thus f+(k) is a polynomial on k of degree at most
d+1. Storing f+ as a polynomial, then, requires only O(d) space, instead of the
O(k) space needed to store all of its values. This can still be excessive, however,
as it blows the space by an O(log n) factor in a rule like A → Πk2

i=k1
Bid , which

is of size 4 but f+ is of degree d + 1. We will instead compute f+(k) in O(d)
arithmetic operations by reusing the same data structures we store for fr(i):
for each c = 0, . . . , d, we compute tc = pred(A, t, c) and sc = SA[tc]. Instead of
accumulating sc·ic, however, we accumulate sc·

∑k
i=k1

ic = sc·(pc(k)−pc(k1−1)),
where pc(k) =

∑k
i=1 ic.

Iterated Straight-Line Programs 73

We cannot afford storing all the O(kd) values pc(k), but since there are
only d + 1 = O(log n) functions pc and each one is a polynomial of degree
c+1 = O(log n), they can be represented as polynomials using O(log2 n) integers.
Further, they can be computed at query time1, before anything else, in O(d2)
arithmetic operations using, for each c, the formula2

pc(k) = kc +
1

c + 1
·

c∑

j=0

(
c + 1

j

)

Bj · kc+1−j ,

which is a polynomial on k of degree at most d + 1. The formula requires O(c)
arithmetic operations once the numbers Bj are computed. Those Bj are the
Bernoulli (rational) numbers. All the Bernoulli numbers from B0 to Bd can be
computed in O(d2) arithmetic operations using the recurrence

∑d
j=0

(
d+1

j

)
Bj =

0, from B0 = 1. The numerators and denominators of the rationals Bj fit in
O(j log j) = O(d log d) = O(log n log d) bits,3 so they can be operated in O(log d)
time in a RAM machine with word size Θ(log n). Therefore, the total prepro-
cessing time to later compute any f+(k) is O(d2 log d). We note, however, that
due to the length of the numerators and denominators of the fractional Bernoulli
numbers, the time to compute any f+(k) is O(d log d).

Example 1. Consider the ISLP of Proposition 2, defined by the rules S →∏k2
i=1 AiB, A → a, and B → b. The polynomials associated with the repre-

sentation of the rule S are ic1 = i and ic2 = 1. Then, we construct the auxiliary
polynomials f1(i) = |exp(A)|ic1 = i and f2(i) = |exp(A)|ic1 +|exp(B)|ic2 = i+1.
Finally, we construct the auxiliary polynomial f+(k) =

∑k
i=1 f2(i) =

∑k
i=1(i +

1) = 1
2k2 + 3

2k. Figure 1 shows a more complex example to illustrate CA and SA.

4.2 Direct Access in Time O((h + logn) d log d)

We start with the simplest query: given the data structures of size O(git) defined
in the previous sections, return the symbol T [l] given an index l.

For SLPs with derivation tree of height h, the problem is easily solved in
O(h) time by storing the expansion size of every nonterminal, and descending
from the root to the corresponding leaf using |exp(B)| to determine whether
to descend to the left or to the right of every rule A → BC. This is easy to
generalize in RLSLP rules A → Bk, because every repetition corresponds to the
same string, of length |exp(B)|. The general idea for d-ISLPs is similar, but now
determining which child to follow in repetition rules is more complex.

To access the l-th character of the expansion of A → ∏k2
i=k1

Bic1
1 · · · Bict

t we
first find the value i such that f+(i − 1) < l ≤ f+(i) by using binary search.
1 Indeed, the polynomials pc(k) are independent of the grammar, so they can be

computed once for all queries and for all grammars.
2 See Wolfram Mathworld’s https://mathworld.wolfram.com/BernoulliNumber.html,

Eqs. (34) and (47).
3 See https://www.bernoulli.org, sections “Structure of the denominator”, “Structure

of the nominator”, and “Asymptotic formulas”.

https://mathworld.wolfram.com/BernoulliNumber.html
https://www.bernoulli.org

74 G. Navarro and C. Urbina

1 2 3 4 5 6 7 8

2 3 6 7 14 13 5 3

1 2 1 0 0 1 2 3

SA

CA

f8(i) = 3i3 + 5i2 + 13i+ 14

f+(k) = 9
12
k4 + 38

12
k3 + 117

12
k2 + 256

12
k

Fig. 1. Data structures built for the ISLP rule A → ∏5
i=1 BiCi2DiEEEiBi2Ci3 , with

|exp(B)| = 2, |exp(C)| = 3, |exp(D)| = 4, and |exp(E)| = 7. We show some of the
polynomials to be simulated with these data structures.

Then, we find the value r such that fr−1(i) < l − f+(i − 1) ≤ fr(i) by using
binary search in the subindex of the polynomials. We then know that the search
follows by Br, with offset l − f+(i − 1) − fr−1(i) inside |exp(Br)|icr . The offset
within Br is then easily computed with a modulus, as in RLSLPs. Algorithm 1
gives the details.

We carry out the first binary search so that, for every i we try, if f+(i) < l we
immediately answer i + 1 if l ≤ f+(i + 1); instead, if l ≤ f+(i), we immediately
answer i if f+(i−1) < l. As a result, the search area is initially of length |exp(A)|
and, if the answer is i, the search has finished by the time the search area is of
length ≤ f+(i) − f+(i − 1) = ft(i). Thus, there are O(1 + log(|exp(A)|/ft(i)))
binary search steps. The second binary search is modified analogously so that it
carries out O(1 + log(ft(i)/(icr |exp(Br)|))) steps, for a total of at most O(1 +
log(|exp(A)|/|exp(Br)|)) steps. As the search continues by Br, the sum of binary
search steps telescopes to O(h + log n) on an ISLP of height h, and the total
time is O((h + log n) d log d) = O((h + log n) log n log log n).

Example 2. We show how to access the b at position 14 of the string T =∏5
i=1 a

ib. Consider the ISLP G and its auxiliary polynomials computed in Exam-
ple 1. We start by computing f+(2) = 5. As l > 5, we go right in the binary
search and compute f+(4) = 14. As l ≤ 14 we go left, compute f+(3) = 9 and
find that i = 4. Hence, T [l] lies in the expansion of AiB = A4B at position
l1 = l − f+(i − 1) = 5. Then, we compute f1(4) = 4. As l1 > 4, we turn right
and compute f2(4) = 5, finding that r = 2. Hence, T [l] lies in the expansion of
Bi0 = B1 at position l2 = l1 − fr−1(i) = 1.

4.3 Extracting Substrings

Once we have accessed T [l], it is possible to output the substring T [l . . l +λ− 1]
in O(λ+h) additional time, as we return from the recursion in Algorithm 1. We
carry the parameter λ of the number of symbols (yet) to output, which is first
decremented when we finally arrive at line 3 and find the first symbol, T [l], which
we now output immediately. From that point, as we return from the recursion,
instead of returning the symbol T [l], we return the number λ of symbols yet to
output, doing some extra work until λ = 0.

Iterated Straight-Line Programs 75

Algorithm 1. Direct access for ISLPs in O((h + log n) d log d) time
Input: An ISLP G of height h, a variable A of G, and a position l ∈ [1, |exp(A)|].
Output: The character exp(A)[l] at position l in exp(A).
1: function access(G, A, l)
2: if A → a then
3: return a
4: if A → BC then
5: if l ≤ |exp(B)| then
6: return access(G, B, l)
7: else
8: return access(G, C, l − |exp(B)|)
9: if A → ∏k2

i=k1
Bic1

1 . . . Bict
t then

10: i ← arg successor([f+(k1) . . f+(k2)], l)
11: l ← l − f+(i − 1)
12: r ← arg successor([f1(i) . . ft(i)], l)
13: l ← l − fr−1(i)
14: return access(G, Br, l mod |exp(Br)|)

1. If we return from line 5, we output min(λ, |exp(C)|) symbols from nonterminal
C, by invoking a new procedure report(G,C, λ), which returns the new
number λ of symbols yet to report; this number is then returned by access.

2. If we return from line 7, we just return the current value of λ to the caller.
3. If we return from line 13, we must report:

(a) icr −
l/|exp(Br)|� further copies of exp(Br).
(b) ics copies of exp(Bs), for s = r + 1, . . . , t.
(c) the expansions exp(B1)jc1 · · · exp(Bt)jct , for j = i + 1, . . . , k2.
For each expansion exp(C) to report, we invoke report(G,C, λ) and update
λ to the new number of symbols yet to report. We stop if λ = 0.

Procedure report(G,C, λ) outputs exp(C) in O(|exp(C)|) time if λ ≥ |exp(C)|,
as it simply traverses the leaves of a tree without unary paths. In this case
it returns λ − |exp(C)|. Otherwise, it traverses only the first λ leaves of the
derivation tree of C, in time O(λ + h), and returns zero. Once a call to report
returns zero, it is never called again; therefore the total time we spend is O(λ+h).

5 Balancing ISLPs

We show that any d-ISLP can be balanced so that its derivation tree is of height
O(log n). Actually, we introduce a new type of SLP, which allows us to prove a
more general balancing result that subsumes ISLPs.

Definition 3. A generalized straight-line program (GSLP) is an SLP that
allows special rules of the form A → x, where x is a program (in any Turing-
complete language) of length |x| whose output OUT(x) is a nonempty sequence
of variables, none of which can reach A. The rule A → x contributes |x| to the

76 G. Navarro and C. Urbina

size of the GSLP; the standard SLP rules contribute as usual. If it holds for all
special rules that no variable appears exactly once inside OUT(x), then the GSLP
is said to be balanceable.

We can choose any desired language to describe the programs x. Though in
principle |x| can be taken as the Kolmogorov complexity of OUT(x), we will focus
on very simple programs and on the asymptotic value of x. In particular, RLSLPs
allow rules of the form A → Bk of size 2, and we can have a program of size O(1)
that outputs k copies of B; ISLPs allow rules of the form

∏k2
k1

B
ic1
1 · · · Bict

t of size
2 + 2t, and we can have a program of size O(t) that writes the corresponding
f+(k2) symbols. Note that in both cases the GSLP is balanceable as long as
special rules satisfy k > 1 (for RLSLPs), or if k1 = k2 (for ISLPs); otherwise
they can be replaced by alternative rules of the same asymptotic size.

We will prove that any balanceable GSLP can be balanced without increasing
its asymptotic size. Our proof generalizes that of Ganardi et al. [10, Theorem 1.2]
for SLPs in a similar way to how it was extended to balance RLSLPs [28]. Just
as Ganardi et al., in this section we will allow SLPs to have rules of the form
A → B1 · · · Bt, of size t, where each Bj is a terminal or a nonterminal; this can
be converted into a strict SLP of the same asymptotic size.

A directed acyclic graph (DAG) is a directed multigraph D = (V,E) without
cycles (nor loops). We denote by |D| the number of edges in this DAG. For our
purposes, we assume that any DAG has a distinguished node r called the root,
satisfying that any other node can be reached from r and r has no incoming
edges. We also assume that if a node has k outgoing edges, they are numbered
from 1 to k, so edges are of the form (u, i, v). The sink nodes of a DAG are the
nodes without outgoing edges. The set of sink nodes of D is denoted by W . We
denote the number of paths from u to v as π(u, v), and π(u, V) =

∑
v∈V π(u, v)

for a set V of nodes. The number of paths from the root to the sink nodes is
n(D) = π(r,W).

One can interpret an SLP G generating a string T as a DAG D: There is a
node for each variable in the SLP, the root node is the initial variable, variables
of the form A → a are the sink nodes, and a variable with rule A → B1B2 . . . Bt

has outgoing edges (A, i,Bi) for i ∈ [1, t]. Note that if D is a DAG representing
G, then n(D) = |exp(G)| = |T |.
Definition 4. (Ganardi et al. [10, p. 5]) Let D be a DAG, and define the pairs
λ(v) = (�log2 π(r, v)�, �log2 π(v,W))�). The symmetric centroid decomposition
(SC-decomposition) of a DAG D produces a set of edges between nodes with the
same λ pairs defined as Escd(D) = {(u, i, v) |λ(u) = λ(v)}, partitioning D into
disjoint paths called SC-paths (some of them possibly of length 0).

The set Escd can be computed in O(|D|) time. If D is the DAG of an SLP
G, then |D| is O(|G|). The following lemma justifies the name “SC-paths”.

Lemma 6. (Ganardi et al. [10, Lemma 2.1]) Let D = (V,E) be a DAG. Then
every node has at most one outgoing and at most one incoming edge from
Escd(D). Furthermore, every path from the root r to a sink node contains at
most 2 log2 n(D) edges that do not belong to Escd(D).

Iterated Straight-Line Programs 77

Note that the sum of the lengths of all SC-paths is at most the number of
nodes of the DAG, or equivalently, the number of variables of the SLP.

The following definition and technical lemma are needed to construct the
building blocks of our balanced GSLPs.

Definition 5. (Ganardi et al. [10, p. 7]) A weighted string is a string T ∈ Σ∗

equipped with a weight function || · || : Σ → N\{0}, which is extended homomor-
phically. If A is a variable in an SLP G, then we write ||A|| for the weight of
the string exp(A) derived from A.

Lemma 7. (Ganardi et al. [10, Proposition 2.2]) For every non-empty weighted
string T of length n one can construct in linear time an SLP G generating T
with the following properties:

– G contains at most 3n variables
– All right-hand sides of G have length at most 4
– G contains suffix variables S1, ..., Sn producing all non-trivial suffixes of T
– every path from Si to some terminal symbol a in the derivation tree of G has

length at most 3 + 2(log2 ||Si|| − log2 ||a||)
Theorem 2. Given a balanceable GSLP G generating a string T , it is possible
to construct an equivalent GSLP G′ of size O(|G|) and height O(log n).

Proof. Transform the GSLP G into an SLP H by replacing their special rules
A → x by A → OUT(x), and then obtain the SC-decomposition Escd(D) of
the DAG D of H. Observe that the SC-paths of H use the same variables of
G, so it holds that the sum of the lengths of all the SC-paths of H is less
than the number of variables of G. Also, note that any special variable A → x
of G is necessarily the endpoint (i.e., the last node of a directed path) of an
SC-path in D. To see this note that λ(A) = λ(B) for any B that appears in
OUT(x), because log2 π(A,W) ≥ log2(|OUT(x)|B · π(B,W)) ≥ 1 + log2 π(B,W)
where |OUT(x)|B ≥ 2 because G is balanceable. This implies that the balancing
procedure of Ganardi et al. on H, which transforms the rules of variables that
are not the endpoint of an SC-path in the DAG D, will not touch variables that
were originally special variables in G.

Let ρ = (A0, d0, A1), (A1, d1, A2), . . . , (Ap−1, dp−1, Ap) be an SC-path of D.
It holds that for each Ai with i ∈ [0 . . p − 1], in the SLP H its rule goes to two
distinct variables, one to the left and one to the right. Thus, for each variable
Ai, with i ∈ [0 . . p − 1], there is a variable A′

i+1 that is not part of the path.
Let A′

1A
′
2 . . . A′

p be the sequence of these variables. Let L = L1L2 . . . Ls be the
subsequence of left variables of the previous sequence. Then construct an SLP
of size O(s) ⊆ O(p) for the sequence L (seen as a string) as in Lemma 7, using
|exp(Li)| in H as the weight function. In this SLP, any path from the suffix
nonterminal Si to a variable Lj has length at most 3 + 2(log2 ||Si|| − log2 ||Lj ||).
Similarly, construct an SLP of size O(t) ⊆ O(p) for the sequence R = R1R2 . . . Rt

of right symbols in reverse order, as in Lemma 7, but with prefix variables Pi

instead of suffix variables. Each variable Ai, with i ∈ [0 . . p−1], derives the same

78 G. Navarro and C. Urbina

string as wlApwr, for some suffix wl of L and some prefix wr of R. We can find
rules deriving these prefixes and suffixes in the SLPs produced in the previous
step, so for any variable Ai, we construct an equivalent rule of length at most 3.
Add these equivalent rules, and the left and right SLP rules to a new GSLP G′.
Do this for all SC-paths. Finally, add the original terminal variables and special
variables (which are left unmodified) of the GSLP G, so G′ is equivalent to G.

The SLP constructed for L has all its rules of length at most 4, and 3s ≤ 3p
variables. The same happens with R. The other constructed rules also have a
length of at most 3, and there are p of them. Summing over all SC-paths, we
have O(|G|) size. The special variables cannot sum up to more than O(|G|) size.
Thus, the GSLP G′ has size O(|G|).

Any path in the derivation tree of G′ is of length O(log n). To see why, let
A0, . . . , Ap be an SC-path. Consider a path from a variable Ai to an occurrence
of a variable that is in the right-hand side of Ap in G′. Clearly, this path has
length at most 2. Now consider a path from Ai to a variable A′

j in L with
i < j ≤ p. By construction this path is of the form Ai → Sk →∗ A′

j for
some suffix variable Sk (if the occurrence of A′

j is a left symbol), and its length
is at most 1 + 3 + 2(log2 ||Sk|| − log2 ||A′

j ||) ≤ 4 + 2 log2 ||Ai|| − 2 log2 ||A′
j ||.

Analogously, if A′
j is a right variable, the length of the path is bounded by

1+3+2(log2 ||Pk||−log2 ||A′
j ||) ≤ 4+2 log2 ||Ai||−2 log2 ||A′

j ||. Finally, consider a
maximal path to a leaf in the derivation tree of G′. Factorize it as A0 →∗ A1 →∗

· · · →∗ Ak where each Ai is a variable of H (and also of G). Paths Ai →∗ Ai+1

are like those defined in the paragraph above, satisfying that their length is
bounded by 4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||. Observe that between each Ai and
Ai+1, in the DAG D there is almost an SC-path, except that the last edge is not
in Escd. The length of this path is at most

k−1∑

i=0

(4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||) ≤ 4k + 2 log2 ||A0|| − 2 log2 ||Ak||

By Lemma 6, k ≤ 2 log2 n, which yields the upper bound O(log n).
The resulting GSLP can be modified to contain standard SLP rules of size

at most two, with only a constant increase in size and depth. �	
By the above theorem, Lemma 5, and because ISLPs can be made balance-

able, we obtain the following.

Corollary 1. Given a d-ISLP G generating a string T , there is an equivalent
d′-ISLP G′ of size O(|G|), with d′ ≤ d, d′ = O(log n), and height h′ = O(log n).

6 Conclusions

We have introduced a new extension to straight-line programs (SLPs) and run-
length SLPs (RLSLPs) called iterated SLPs (ISLPs). ISLPs permit so-called
iteration rules of the form A → Πk2

i=k1
Bic1

1 · · · Bict
t , of size O(t). While it had

already been shown that the lower-bound (and unreachable) measure δ, which

Iterated Straight-Line Programs 79

was text-wise smaller than every preceding measure of repetitiveness, could be
outperformed by a reachable measure (L-systems) on some text families [26,27],
the size git of the smallest ISLP generating a text is the first accessible measure
that also outperforms δ (by the same margin, O(δ/

√
n) on a text of length n).

With SLPs or RLSLPs representing a text T [1 . . n], an arbitrary symbol of T
can be accessed in O(log n) time. We have shown that, just as SLPs and RLSLPs
[10,28], ISLPs can be balanced without asymptotically increasing their space,
and used it to devise an algorithm to access any arbitrary text position in time
O(log2 n log log n) within O(git) space. They are also similarly resistant to edits
and other text manipulations.

References

1. Akagi, T., Funakoshi, M., Inenaga, S.: Sensitivity of string compressors and repet-
itiveness measures. Inf. Comput. 291, 104999 (2023)

2. Bannai, H., Funakoshi, M., I, T., Köppl, D., Mieno, T., Nishimoto, T.: A separation
of γ and b via Thue–Morse words. In: Lecroq, T., Touzet, H. (eds.) SPIRE 2021.
LNCS, vol. 12944, pp. 167–178. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86692-1 14

3. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Rao, S.S., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015)

4. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

5. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

6. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms 17(1), Arti-
cle 8 (2020)

7. Fici, G., Romana, G., Sciortino, M., Urbina, C.: On the impact of morphisms on
BWT-Runs. In: Bulteau, L., Lipták, Z. (eds.) 34th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 259, pp. 10:1–10:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2023)

8. Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), Article 2 (2020)

9. Gallant, J.K.: String compression algorithms. Ph.D. thesis, Princeton University
(1982)

10. Ganardi, M., Jeż, A., Lohrey, M.: Balancing straight-line programs. J. ACM 68(4),
1–40 (2021)

11. Giuliani, S., Inenaga, S., Lipták, Z., Prezza, N., Sciortino, M., Toffanello, A.: Novel
results on the number of runs of the burrows-wheeler-transform. In: Bureš, T., et al.
(eds.) SOFSEM 2021: Theory and Practice of Computer Science, pp. 249–262.
Springer, Cham (2021)

12. Giuliani, S., Inenaga, S., Lipták, Z., Romana, G., Sciortino, M., Urbina, C.: Bit
catastrophes for the burrows-wheeler transform. In: Drewes, F., Volkov, M. (eds.)
Developments in Language Theory, pp. 86–99. Springer, Cham (2023)

13. Kempa, D., Kociumaka, T.: Collapsing the hierarchy of compressed data structures:
suffix arrays in optimal compressed space. CoRR 2308.03635 (2023)

https://doi.org/10.1007/978-3-030-86692-1_14
https://doi.org/10.1007/978-3-030-86692-1_14

80 G. Navarro and C. Urbina

14. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors.
In: Proceedings of 50th Annual ACM Symposium on the Theory of Computing
(STOC), pp. 827–840 (2018)

15. Kempa, D., Saha, B.: An upper bound and linear-space queries on the LZ-End pars-
ing. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 2847–2866 (2022)

16. Kempa, D., Kociumaka, T.: Resolution of the burrows-wheeler transform conjec-
ture. In: Proceedings of 61st IEEE Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 1002–1013 (2020)

17. Kociumaka, T., Navarro, G., Olivares, F.: Near-optimal search time in δ-optimal
space, and vice versa. CoRR 2206.00781 (2023)

18. Kociumaka, T., Navarro, G., Prezza, N.: Towards a definitive compressibility mea-
sure for repetitive sequences. IEEE Trans. Inf. Theory 69(4), 2074–2092 (2023)

19. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theoret.
Comput. Sci. 483, 115–133 (2013)

20. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976)

21. Lindenmayer, A.: Mathematical models for cellular interactions in development I.
Filaments with one-sided inputs. J. Theoret. Biol. 18(3), 280–299 (1968)

22. Lindenmayer, A.: Mathematical models for cellular interactions in development
II. Simple and branching filaments with two-sided inputs. J. Theoret. Biol. 18(3),
300–315 (1968)

23. Navarro, G.: Indexing highly repetitive string collections, Part I: repetitiveness
measures. ACM Comput. Surv. 54(2), Article 29 (2021)

24. Navarro, G.: Indexing highly repetitive string collections, Part II: compressed
indexes. ACM Comput. Surv. 54(2), Article 26 (2021)

25. Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings.
IEEE Trans. Inf. Theory 67(2), 1008–1026 (2021)

26. Navarro, G., Urbina, C.: On stricter reachable repetitiveness measures. In: Pro-
ceedings of 28th International Symposium on String Processing and Information
Retrieval (SPIRE), pp. 193–206 (2021)

27. Navarro, G., Urbina, C.: L-systems for measuring repetitiveness. In: Proceedings
of 34th Annual Symposium on Combinatorial Pattern Matching (CPM), p. article
14 (2023)

28. Navarro, G., Olivares, F., Urbina, C.: Balancing run-length straight-line programs.
In: Proceedings of 29th International Symposium on String Processing and Infor-
mation Retrieval (SPIRE), pp. 117–131 (2022)

29. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.D.: Sublinear algorithms for
approximating string compressibility. Algorithmica 65(3), 685–709 (2013)

30. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, London
(2012)

31. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982)

Computing Largest Minimum
Color-Spanning Intervals of Imprecise

Points

Ankush Acharyya1(B), Vahideh Keikha2, Maria Saumell3,
and Rodrigo I. Silveira4

1 Department of Computer Science and Engineering,
National Institute of Technology, Durgapur, India

aacharyya.cse@nitdgp.ac.in
2 Institute of Computer Science, The Czech Academy of Sciences, Prague,

Czech Republic
keikha@cs.cas.cz

3 Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic

maria.saumell@fit.cvut.cz
4 Department de Matemàtiques, Universitat Politècnica de Catalunya,

Barcelona, Spain

rodrigo.silveira@upc.edu

Abstract. We study a geometric facility location problem under impre-
cision. Given n unit intervals in the real line, each with one of k colors,
the goal is to place one point in each interval such that the resulting
minimum color-spanning interval is as large as possible. A minimum
color-spanning interval is an interval of minimum size that contains at
least one point from a given interval of each color. We prove that if the
input intervals are pairwise disjoint, the problem can be solved in O(n)
time, even for intervals of arbitrary length. For overlapping intervals, the
problem becomes much more difficult. Nevertheless, we show that it can
be solved in O(n2 log n) time when k = 2, by exploiting several structural
properties of candidate solutions, combined with a number of advanced
algorithmic techniques. Interestingly, this shows a sharp contrast with
the 2-dimensional version of the problem, recently shown to be NP-hard.

Keywords: Color-spanning interval · Imprecise points · Algorithms

1 Introduction

Color-spanning problems arise naturally in certain facility location problems
where the goal is to find a “good” location for a facility (with respect to a set of

A. Acharyya was supported by the DST-SERB grant number SRG/2022/002277. V.
Keikha was supported by the CAS PPPLZ grant L100302301, and the institutional
support RVO: 67985807. M. Saumell was supported by the Czech Science Founda-
tion, grant number 23-04949X. R. Silveira was partially supported by grant PID2019-
104129GB-I00/MCIN/AEI/10.13039/501100011033.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 81–96, 2024.
https://doi.org/10.1007/978-3-031-55598-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_6

82 A. Acharyya et al.

sites), and where, in addition, each site has a category (or color). In such settings,
the goal is often to consider only one site of each category. For instance, one may
be interested in a location such that the maximum distance to reach one site of
each color is as small as possible. Then, from a geometric point of view, if sites
are points in the plane, and the distance used is the Euclidean distance, one is
looking for a smallest circle that contains at least one point from each color.
This is known as a minimum color-spanning circle.

Plenty of variants of color-spanning objects have been studied. Typically, the
object sought is a two-dimensional region of some type, such a circle, a square,
or a strip. Then one can aim at finding the smallest, largest, narrowest, etc.,
color-spanning object of such a type (see, for example, [1,5]).

However, it is well-known that data used in real-world instances is not
100% accurate. This is especially true for geometric data, which—in most
applications—originates from inaccurate measuring devices, such as GPS
receivers o laser scanners. This motivated a flurry of research on uncertainty
models for geometric algorithms, where the imprecision in the data is modeled
explicitly. One of the simplest and most studied models for geometric uncer-
tainty is based on regions: instead of assuming that the exact location of each
site is known, one assumes that the site lies within a region (e.g., a disk). In
principle, any location within the site’s region is possible. Choosing one location
inside each site’s region results in a realization of the imprecise sites. Since many
different realizations are possible, natural optimization problems arise. Most typ-
ically, one is interested in understanding extreme realizations: those that give the
best possible situation, or the worst one. For instance, in the context of color-
spanning circles, if each site is modeled by, say, a disk, then one can wonder how
to place one point inside each disk, so that the resulting set of points gives the
smallest or largest color-spanning circles.

Many problems in computational geometry have been studied for the region-
based imprecision model (see, e.g., [10,11]). Depending on the region (e.g., a
line segment, a square, a disk) and the actual problem (e.g., convex hull, trian-
gulation, etc.), some problems become very difficult already under very simple
imprecision models, while some others can still be solved efficiently.

In this work, we study the problem of finding a minimum color-spanning
circle of largest size, for imprecise points modeled as 1D intervals on the real
line. Our motivation stems from recent work by Acharyya et al. [2], where the
problem was studied for regions consisting of disks in 2D. While the authors
of [2] managed to find efficient algorithms to find a minimum color-spanning
circle of smallest size, the maximization versions resulted more difficult. In fact,
they proved that the problem of placing one point in each disk, such that the
minimum color-spanning circle has largest possible size, is NP-hard, even for
unit input disks and only two colors. Given this somewhat surprising negative
result, in this paper, we study the same problem, one dimension lower, where
disks become intervals on the real line, and the minimum color-spanning circle
becomes the minimum color-spanning interval. More formally, the problem we
study is defined as follows. See Fig. 1 for an example with k = 3.

Minimum Color-Spanning Intervals of Imprecise Points 83

Fig. 1. Example of unit intervals with k = 3 colors, with an optimal realization that
results in four L-MCSI s (indicated in gray). Note that the three leftmost representatives
also form a color-spanning interval, but it is not minimum.

Largest Minimum Color-Spanning Interval (L-MCSI): Given n unit-
length closed intervals on the real line I = {I1, I2, . . . , In}, each with one of
k colors, specified in sorted order with respect to their left endpoints, find a
realization of I such that the length of the minimum color-spanning interval(s)
(MCSI) of the realization is as large as possible.

Contributions. We first show that, if the input intervals are pairwise disjoint,
the L-MCSI problem can be solved in O(n) time, even if intervals have arbitrary
lengths. It turns out that the main difficulty of the problem originates from
intervals that overlap. Intuitively, when two intervals of different color overlap,
the points in each interval can be placed in any of two orders. This, repeated
for all pairs of intersecting intervals of different color, results in a combinato-
rial explosion of possible orderings, already for two colors (i.e., k = 2). Thus
most of this work is devoted to efficiently solving the problem for k = 2. As is
usual in this type of optimization setting, we focus on the decision version of the
problem: Given n colored unit-intervals, is there a realization with a minimum
color-spanning interval of length at least q? We show that this problem has a rich
structure that allows us to compute solutions efficiently. Indeed, a key contri-
bution is a detailed analysis of the structure of certain canonical (sub)solutions,
which we call leftmost, and their decomposition into so-called tabular subsolu-
tions. The careful combination of leftmost (sub)solutions leads to an O(n3)-time
algorithm to solve the decision version of the problem.

By applying a number of advanced algorithmic techniques, we show how to
decrease this running time substantially, from O(n3) to O(n log n). This allows
to solve the L-MCSI problem in O(n2 log n) time. Further, we also present a
(1 − ε)-approximation algorithm that runs in O(n log n log 1

ε) time.

Related Work. An extensive literature exists devoted to color-spanning objects.
For a set of n points of k colors in the plane, the problem of identifying a set
of k points of disjoint colors such that the chosen points have smallest possible
diameter is NP-hard [7]. Polynomial algorithms are known for computing the
smallest color-spanning circle or square [1], strip or rectangle [5], among others.

Several strategies have been proposed in the literature to deal with impre-
cision in geometric data. Here we only mention a few relevant results for the
region-based model, which is the one adopted in this article. In this model, find-
ing a placement of points within a set of disks that maximizes or minimizes
the radius of the smallest enclosing circle of the points can be solved in O(n)
time [11]. Finding a placement of points within a set of line segments or squares
that maximizes or minimizes the area or the perimeter of the convex hull can be

84 A. Acharyya et al.

solved with algorithms with running times ranging from O(n) to O(n13), while
some variants are NP-hard [10]. Other objective functions and/or regions lead
to many other variants that have also been studied in the literature. Impre-
cision problems have also been previously studied for one-dimensional points,
represented by intervals, as we do in this work. For instance, in the 1D k-center
problem on imprecise points, one is given n intervals, and the goal is to find a
point in each interval that maximizes or minimizes the distances to the resulting
k-centers; something that can be done in O(n) time [8].

The problem of finding the largest minimum color-spanning interval is also
related to the 1D dispersion problem: given n (uncolored) intervals, choose one
point from each interval such that the minimum distance between any pair of
consecutive points is maximized. Multiple variants of this problem exist, depend-
ing on the exact objective and constraints taken into account. See, e.g., [6,12]
and references therein. If the intervals are given in sorted order which has to be
preserved for the representatives, the problem can be solved in O(n) time [9].

As already mentioned, the related work most relevant to ours is that of
Acharyya et al. [2], who studied algorithms for the minimum color-spanning
disk problem for imprecise points in 2D. Given n colored disks, they consider
finding one point in each disk such that the minimum color-spanning circle of the
selected points has maximum radius. They show this problem is NP-hard even
for unit input disks and only two colors. In contrast, the minimization version
of the problem, for k colors, can be solved in O(nk log n) time [2].

1.1 Preliminaries

The input to the problem is a set of closed intervals I = {I1, I2, . . . , In} of unit
length on the real line, where each interval is colored with one of k colors. We
will sometimes refer to the intervals also as segments. We assume that no two
intervals of the same color are at the same position. The intervals are given sorted
from left to right, breaking ties arbitrarily if needed. For each i, we use xi to
denote the left endpoint of Ii. We assume that x1 = 0. Given a realization (also
called a representation) P of I, we call the chosen point of Ii the representative
of Ii. We denote it by ri (with some abuse of notation, ri is sometimes used
to denote the coordinate of the representative). Sometimes, realization applies
to a proper subset of I rather than the entire I. In this case, we say that Ii is
represented in the realization, if the realization contains a representative of Ii.
When k = 2, we use c or c′ to denote one of the two colors. For a fixed c, we use
c̄ to denote the color that is not c. We use ci to denote the color of Ii.

2 Disjoint Case

In this section, input segments are disjoint. We use the concept of minimal
color-spanning interval (mCSI), defined as a color-spanning interval not properly
contained within any other color-spanning interval. A minimum color-spanning
interval is also a minimal color-spanning interval, with minimum length.

Minimum Color-Spanning Intervals of Imprecise Points 85

Fig. 2. An example where the chains of mCSI s are {γ1, γ4, γ6}, {γ2, γ5}, {γ3}.

In general, mCSI s depend on the realization. However, if intervals are dis-
joint, the only thing that varies is the location of the first and last representatives.
All other intervals represented in the mCSI are fully contained in the mCSI, thus
the positions of their representatives are irrelevant. Hence, from a combinatorial
point of view, an mCSI is a sequence of consecutive intervals. It follows that the
possible combinatorial mCSI s are determined by the intervals alone:

Lemma 1. If the input segments are disjoint, every realization leads to the same
set of at most n − k + 1 combinatorial mCSIs.

The set of combinatorial mCSI s can be computed in O(n) time [4]. Let
γ = {γ1, γ2, . . . , γ�} be this set, sorted by the leftmost segment represented. We
divide γ into subsets called chains of mCSI s as follows: Start with γ1, and let
the rightmost segment represented in γ1 be Iβ . If there is an mCSI γi starting
at Iβ , add it to the subset of γ1, and repeat with γi; otherwise, stop. At the end
of the process, remove from γ all the γi in the same subset as γ1, and construct
a new subset starting with the remaining element in γ with the smallest index.
Repeat until γ is empty. See Fig. 2 for an example.

Next, we process each chain of mCSI s separately as follows: Let I ′ be the
set of segments obtained from taking the leftmost and rightmost segments repre-
sented in each γi contained in the chain of mCSI s. Among all mCSI s contained
in the chain of mCSI s, the minimum one is achieved by the pair of represen-
tatives of consecutive segments of I ′ at minimum distance. The position of the
representatives of the segments not in I ′ is irrelevant. Since we want to maxi-
mize the length of the MCSI s, we compute a realization of I ′ maximizing the
minimum distance between consecutive representatives in time O(|I ′|) [9].

After repeating this procedure for all chains of mCSI s, we obtain a realization
for all those segments that are the leftmost or rightmost of some γi. For all the
other segments, we choose a representative arbitrarily. We output the obtained
representation as the solution to the problem. Note that the algorithm does not
require segments to be unit-length. Since the input segments are sorted, we have:

Theorem 1. If the input intervals have arbitrary lengths and are pairwise dis-
joint, the L-MCSI problem can be solved in O(n) time.

Finally, we observe that the previous result can also be extended to the case
where there is no pair of intersecting intervals of distinct color.

86 A. Acharyya et al.

3 Case k = 2: Decision Problem

In the rest of the paper, we focus on the case where k = 2 and there is at least
one pair of intersecting intervals of distinct color. We assume the two colors are
red and blue, denoting the set of red and blue intervals by R and B, respectively.
Let q∗ be the length of an MCSI in a realization solving the L-MCSI problem.

Lemma 2. If at least two intervals of different colors intersect, then 1
2 ≤ q∗ ≤ 2.

Hence, the decision problem only makes sense for this range. For k = 2, it
can be rephrased as: For a given value q, does there exist a realization of R ∪ B
such that the distance between any pair of representatives of distinct color is at
least q? Such a realization is said to satisfy the separation property.

In the subsequent sections, we assume that no two consecutive intervals leave
a gap of length q or greater between them. Indeed, if the opposite happens, we
can divide the problem into two independent subproblems.

All of our algorithms for the decision problem use the following concept:

Definition 1. A leftmost solution is a solution where each representative is
either at the left endpoint of its interval or at a distance q from a representative
of distinct color located to its left.

Observe that any solution can be easily transformed into a leftmost solution.
Thus, our algorithms try to compute a leftmost solution. The main difficulty is
that, if two intervals of distinct color overlap by q or more, there are two possible
orderings of the representatives that satisfy the separation property. We divide
(12 , 2] into three subranges and present a different algorithm for each of them.

3.1 Decision Problem for q ∈ (1, 2]

This is an easy case due to the following observation:

Lemma 3. In the decision problem for q ∈ (1, 2], it is enough to consider real-
izations where ri ≤ ri+1, for all i = 1, 2, . . . , n − 1.

Hence, we can process the segments from left to right and try to compute
a leftmost solution. The algorithm stops if, for some segment Ii, there is no
placement for ri in Ii satisfying the separation property (with respect to the
representatives that have already been placed).

Proposition 1. For k = 2, the decision problem for q ∈ (1, 2] can be solved in
O(n) time.

Minimum Color-Spanning Intervals of Imprecise Points 87

3.2 Decision Problem for q ∈ (
3
4
, 1

]

In this case, there might be more left-to-right orderings for the representatives
leading to affirmative answers for the problem. To deal with them, we introduce
a bipartite graph H with vertices R ∪ B where a red and a blue segment are
adjacent if and only if the length of their intersection is at least q. Let Ci be a
connected component of H and V (Ci) be its set of vertices.

We define JCi
as the interval spanned by V (Ci), that is, its leftmost (resp.,

rightmost) point is the leftmost (resp., rightmost) point of the leftmost (resp.,
rightmost) segment(s) in V (Ci).

Lemma 4. For any Ij ∈ R ∪ B, if Ij ⊆ JCi
, then Ij ∈ V (Ci).

Corollary 1. For any two intervals JCi
and JCj

with i �= j, none of them is
contained in the other.

By Corollary 1, given two intervals JCi
and JCj

with i �= j, their left end-
points do not coincide. Thus, we can uniquely sort the intervals JCi

from left to
right according to their left endpoints. We rename the components Ci so that
this left-to-right order is JC1 ,JC2

Lemma 5. In the decision problem for q ∈
(
3
4 , 1

]
, it is enough to consider

realizations where, for any Ii′ ∈ Ci and Ij′ ∈ Cj with i < j, ri′ ≤ rj′ .

Proof. Let the realization {r1, r2, . . . , rn} be a yes-certificate for the problem.
If JCi

∩ JCj
= ∅, we are done. Otherwise, we denote the positions of the left

and right endpoints of JCi
by �(JCi

) and r(JCi
), respectively. We show that

xi′ ≤ xj′ : If xj′ > r(JCi
), we have xi′ < r(JCi

) < xj′ . If �(JCi
) ≤ xj′ ≤ r(JCi

),
Lemma 4 implies that xj′ + 1 > r(JCi

). Since xi′ + 1 ≤ r(JCi
), the conclusion

follows. Finally, xj′ < �(JCi
) is not possible (it would imply xj′ < �(JCj

)).
If ci′ �= cj′ , ri′ ≤ rj′ is implied by xi′ ≤ xj′ and |Ii′ ∩ Ij′ | < q. If ci′ = cj′

and ri′ > rj′ , the fact that xi′ ≤ xj′ allows us to reassign the representatives
(ri′ becomes the representative of Ij′ and vice versa), and this change does not
decrease the length of MCSI (s). 	

The final key lemma is the following:

Lemma 6. In any realization of V (Ci) satisfying the separation property, there
is exactly one alternation between red and blue representatives.

We can now sketch our algorithm: By Lemma 5, we can process C1, C2 . . .
in this order. By Lemma 6, in the relevant realizations of V (Ci) either we have
first all red representatives and then all the blue ones, or vice versa. We compute
one leftmost representations of each type as follows: We take each of the two
computed leftmost representations of V (Ci−1), and we try to compute a leftmost
representation of V (Ci) of the specific type with the condition that the separation
property is satisfied in the final representation of V (Ci−1) ∪ V (Ci). Among the
two computed representations of V (Ci) of that type, we keep the one where the
rightmost representative is as much to the left as possible.

Theorem 2. For k = 2, the decision problem for q ∈
(
3
4 , 1

]
can be solved in

O(n) time.

88 A. Acharyya et al.

Fig. 3. Left: A leftmost solution. Right: A sequence of four tabular subsolutions
T1, T4, T7, T8 that is almost identical to the leftmost solution.

4 Case k = 2: Decision Problem for q ∈ (
1
2
, 3
4

]

This case requires a more involved algorithm and demands the use of more
sophisticated algorithmic machinery to achieve an efficient running time. Here
we present a summarized version with all the key ingredients.

4.1 Basic Algorithm

Suppose that, for some Ii and x ∈ Ii, there exists an interval Ij of the opposite
color with leftmost point in the interval (x − q, x + q − 1). Then, choosing x
as a representative for Ii makes it impossible to find a representative for Ij not
violating the separation property. Thus, we say that x is a forbidden position
for the representative of Ii.

Definition 2. A representation of a subset of intervals is valid if it satisfies the
separation property and no representative is placed at a forbidden position.

Observe the leftmost solution illustrated in Fig. 3 (left). The section that
starts at r4 is formed by a red representative placed at the left endpoint of
its interval (r4), followed by blue representatives r2, r5 at distance q, in turn,
followed by red representative r6 at distance q, and finishing before r7, where
a new representative is placed at the left endpoint of its interval. In order to
describe these groups of representatives, we introduce the following definition:

Definition 3. A tabular subsolution Ti starting at Ii is a valid representation
of a subset of intervals including Ii such that: (i) ri = xi; (ii) rj ≥ ri for
all representatives rj of Ti; (iii) all representatives with rj > ri are placed at
a distance q to the right of a representative of opposite color; (iv) if for two
intervals of the same color Ik, Ij we have that Ti contains a representative rk for
Ik and rk ∈ Ij, then Ti contains a representative rj for Ij and rj = rk.

Figure 3 (right) shows a sequence of tabular subsolutions that is almost iden-
tical to the leftmost solution from Fig. 3 (left). They only differ at r3, which in
the tabular subsolution is forced to be at the same position as r4 (by Definition
3), but this position is not leftmost. Clearly, transforming the sequence of tabu-
lar subsolutions into the leftmost solution is trivial, so in our algorithm, we work
with sequences of tabular subsolutions.

Minimum Color-Spanning Intervals of Imprecise Points 89

Fig. 4. A valid sequence of tabular subsolutions.

The strategy of our algorithm is to try to construct a sequence of tabular
subsolutions such that: (i) the separation property is satisfied; (ii) the sequence
contains a representative for every interval. Such a sequence gives a solution to
the decision problem.

The first key question about such a sequence is under which conditions some
Ti can be concatenated with some Tk, with k < i.

Definition 4. Let k < i. A tabular subsolution Ti is compatible with a tabular
subsolution Tk if the rightmost representative of Tk is to the left of xi and every
pair of representatives of different colors, one of which is in Ti and the other in
Tk, are at distance at least q.

Denote by L̃[k] the set of representatives in the sequence to the left of xi. It
is less clear which elements must belong to L̃[k]. Requiring that L̃[k] contains
representatives for all Ij with j < i is not the right answer, as witnessed by the
example in Fig. 4: r3 /∈ L̃[1] (here we are looking at i = 4, k = 1). It is not
even necessary to require that this rj is either in L̃[k] or in Ti, since in Fig. 4, r3
is actually in T5 (not in T4). Interestingly, we can show that a set of necessary
conditions on L̃[k] is also sufficient.

Let us explain these conditions. We denote by Is,<
i the set of intervals Ij

such that cj = ci and xj < xi − 1. Since Ij lies completely to the left of Ii, any
sequence where rj /∈ L̃[k] does not contain any representative for Ij . We thus
obtain the first necessary condition (C1) (see below).

Let us next denote by Io,<<
i (resp., Io,<

i) the set of intervals Ij such that
cj �= ci and xj ≤ xi − (1 + q) (resp., xj ∈ (xi − (1 + q)), xi − q]). If Ij ∈ Io,<<

i ,
it lies to the left of Ii, so again we need rj ∈ L̃[k] (condition (C2); see below).
Furthermore, Ij leaves a gap with Ii greater than or equal to q, which implies
that any choice of rj is compatible with ri = xi. On the other hand, if Ij ∈ Io,<<

i ,
it has a portion of length smaller than q to the right of xi. Thus, if ri = xi, rj

can only be placed to the left of xi with rj ≤ xi − q (condition (C3); see below).
Let us next examine the leftmost tabular subsolution Tl of a sequence. As

before, the choice rl = xl forces any interval in Is,<
l ∪ Io,<<

l ∪ Io,<
l to have its

representative to the left of xl. Since there is nothing to the left of xl, we obtain
a new condition (C0). All in all, the list of necessary conditions is as follows:

(C0) Is,<
l = Io,<<

l = Io,<
l = ∅.

(C1) For all Ij ∈ Is,<
i , rj ∈ L̃[k].

(C2) For all Ij ∈ Io,<<
i , rj ∈ L̃[k].

90 A. Acharyya et al.

(C3) For all Ij ∈ Io,<
i , rj ∈ L̃[k] and rj ≤ xi − q.

We now have all the ingredients to define our main object of interest:

Definition 5. A sequence S of tabular subsolutions is valid if it satisfies the fol-
lowing: (i) the leftmost tabular subsolution of S satisfies condition (C0); (ii) for
every pair of consecutive subsolutions Tk, Ti, with k < i, Tk and Ti are compatible
and conditions (C1)–(C3) are satisfied.

Lemma 7. Let S be a valid sequence of tabular subsolutions. Suppose that the
rightmost representative of S is at position x and has color c. Then, S contains
representatives exactly for all intervals Ij of color c such that xj ≤ x and for all
intervals Ib of color c̄ such that xb < x + q − 1.

Notice that S might contain more than one representative for some intervals
(see, e.g., I4 in Fig. 4).

Lemma 7 leads to our desired conclusion, stated in Lemma 8. Before, we
introduce the following concept:

Definition 6. The maximal tabular subsolution starting at Ii, denoted M [i],
is the tabular subsolution starting at Ii containing the largest number of repre-
sentatives of intervals.

In Fig. 4, M [5] = T5 because no red interval contains the position r5 + 2q.
Notice that we might have M [i] = ∅.

Lemma 8. Let S be a valid sequence of tabular subsolutions such that the right-
most tabular subsolution is a maximal tabular subsolution containing a represen-
tative for In. Then, S satisfies the separation property and it contains at least
one representative (but possibly more) for every interval.

Proof. Within a tabular subsolution the separation property is satisfied. Addi-
tionally, the fact that consecutive subsolutions are compatible guarantees that
the separation property is satisfied between pairs of consecutive subsolutions.
This is enough to guarantee that the property is satisfied in the entire sequence.

Let us next prove that S contains representatives for all intervals. Let Ti be
the rightmost tabular subsolution of S, and x be the position of the represen-
tative for In in Ti. Suppose that In has color c. By Lemma 7, if S contains a
representative for an interval, it also contains representatives for all intervals of
the same color to its left. Thus, S contains representatives for all intervals of
color c. To prove that it also contains representatives for all intervals of color c̄,
we consider two cases, where we denote by In′ the rightmost interval of color c̄.

Suppose first that x is the position of the rightmost representative of S. By
Lemma 7, S contains representatives for all intervals Ib of color c̄ such that
xb < x + q − 1. Thus, if xn′ < x + q − 1, we are done. Notice that xn′ > x + q
is not possible, because we would have xn ≤ x < x + q < xn′ , which contradicts
the fact that In is a rightmost interval from the set. Hence, the remaining case is
xn′ ∈ [x+ q −1, x+ q]. Then In′ contains x+ q. Since x is the rightmost position
of Ti and Ti is maximal, Ti does not contain representatives at x+q because this

Minimum Color-Spanning Intervals of Imprecise Points 91

Algorithm 1. Decision problem for q ∈ (1/2, 3/4] (simplified)
Input: I
Output: a solution, if it exists; otherwise, “there is no solution”
1: for i = 1, 2, . . . , n do
2: compute M [i]
3: appendable[i] := F � F stands for false, and T stands for true
4: p[i] := ∅ � p[i] stores an index k such that the predecessor of M [i] in a valid

sequence of tabular subsolutions is a tabular subsolution starting at Ik

5: for i = 1, 2, . . . , n such that M [i] �= ∅ do
6: if Is,<

i = Io,<<
i = Io,<

i = ∅ then
7: appendable[i] := T
8: else
9: if ∃k < i such that appendable[k] = T and some portion Tk of M [k] is

compatible with M [i] and is s.t. conditions (C1)–(C3) are satisfied then
10: appendable[i] := T
11: p[i] := k

12: if appendable[i] = T and M [i] contains a representative for In then
13: reconstruct and return a solution based on the reverse of the sequence

i, p[i], p[p[i]], . . .
14: finish
15: return “there is no solution”

is a forbidden position. Hence, there exists an interval of color c with leftmost
point in (x, x + 2q − 1). This contradicts the fact that In is a rightmost interval.

Finally, suppose that x is not the position of the rightmost representative
of S. Such rightmost representative cannot be at x + 2q, x + 3q . . ., because
then In would not be a rightmost interval from the set. Thus, the rightmost
representative of S is at x+q. Since all intervals Ib of color c̄ satisfy xb ≤ xn ≤ x
and at least one of them contains x + q, we derive that In′ contains x + q. Thus,
S contains a representative for In′ and, by Lemma 7, also for all intervals of
color c̄ to its left. Hence, S contains representatives for all intervals of color c̄. 	

The goal of the algorithm is to find a sequence S satisfying the hypothesis
of Lemma 8.

Definition 7. We say that M [i] �= ∅ is appendable if there exists a valid
sequence of tabular subsolutions with M [i] as the rightmost tabular subsolution.

For each i with M [i] �= ∅, the algorithm (sketched in Algorithm 1) determines
if M [i] is appendable. To this end, there are two options: If Is,<

i = Io,<<
i =

Io,<
i = ∅ (condition (C0)), M [i] is appendable because on its own it forms a

valid sequence of tabular subsolutions. Otherwise, the algorithm looks for some
k < i such that M [k] is appendable, and some portion Tk of M [k] is compatible
with M [i] and is such that conditions (C1)–(C3) are satisfied.

Lemma 9. Algorithm 1 is correct and runs in O(n3) time.

92 A. Acharyya et al.

Proof (sketch). The first observation is that, if the algorithm sets appendable[i] =
T , then M [i] �= ∅ and there exists a valid sequence of tabular subsolutions
finishing with M [i]. This happens because the algorithm checks precisely the
conditions defining valid sequences. Thus, if the algorithm answers “yes”, it
finds a sequence satisfying the conditions of Lemma 8. Such a sequence can be
trivially transformed into a solution to the problem.

Conversely, if there exists a leftmost solution where the indices of the inter-
vals having a representative at the leftmost endpoint are i1, i2, . . . , im, it is
easy to show by induction that, for each of these indices, the algorithm sets
appendable[·] := T . Since the leftmost solution contains a representative for In,
one of these indices will then satisfy both conditions of line 12 and the algorithm
will answer “yes”.

Let us next analyze the running time. Each M [i] can be computed in O(n)
time by scanning the set of intervals from left to right and placing the represen-
tatives of M [i] also from left to right.

In the main loop, let k < i be such that appendable[k] = T . To check condi-
tions (C1)–(C3), a possible approach is as follows: suppose that the associated
valid sequence of tabular subsolutions finishing with M [k] is stored. Then, in
this sequence we replace M [k] by the longest Tk such that Tk and M [i] are com-
patible. To check (C1)–(C3), we traverse the obtained sequence and check that
the relevant intervals are indeed represented there; in the case of (C3), we also
check that the position of the representative is ≤ xi − q. Thus, the test for a
particular k takes O(n) time and the main loop takes O(n3) time. 	

4.2 Speed Up of the Algorithm

The goal of this subsection is to describe a more sophisticated version of the
algorithm running in O(n log n) time. Due to lack of space, we focus on the two
main parts of the algorithm.

Computing M [i]. If xi is a forbidden position for ri, M [i] = ∅. This can be
tested in O(log n) time. In the following, let us assume that M [i] �= ∅.

In the new algorithm, it is enough to be able to compute the position of the
rightmost representatives of M [i]. Suppose that they have color c and they are
at xi + kq. We can observe that either: (i) there is no interval of color c̄ that
contains the point xi +(k +1)q; or (ii) there is such an interval, but the position
xi + (k + 1)q is forbidden for that interval.

To take care of (i), we describe a preprocessing of the intervals that allows to
detect in O(log n) time the first time that there are no intervals of the appropriate
color containing some point of the form xi + (k + 1)q.

Suppose that we are dealing with red color. We take the minimum segment
spanning all the intervals, and we divide it into the red region, containing all
points of the segment covered by at least one of the red intervals, and the white
region, containing the rest. Afterwards, we “cut” the segment into portions of
length 2q. Our assumptions imply that the number of such portions is O(n). We
then translate these portions of length 2q in the plane as follows: All portions

Minimum Color-Spanning Intervals of Imprecise Points 93

Fig. 5. Construction of T r. Top: red input intervals (and the red region). Bottom: left,
portions of length 2q have been cut and translated; right: final set of segments T r.
(Color figure online)

have their left endpoint on the line x = 0. Additionally, the portion [0, 2q) is
placed at y = 0, the portion [2q, 4q) is placed at y = 2, the portion [4q, 6q) is
placed at y = 4, and so on (see Fig. 5 for an example). Finally, we make the red
regions disappear and the white regions become a set of (open) segments in the
plane, called T r. We then preprocess T r in O(n log n) time and O(n) space to
answer ray-shooting queries into upwards direction in O(log n) time [3].

Let 2jq + δ, where j is a non-negative integer and δ ∈ [0, 2q), be the position
of the leftmost red representative of M [i]. Then the red representatives of M [i]
are at 2jq + δ, 2(j +1)q + δ, 2(j +2)q + δ . . . Consider the following query: If we
shoot a vertical ray with origin at (δ, 2j+1) in upwards direction, when is the first
time that it intersects a segment of T r? If the answer to this query is the point
(δ, 2k) (k > j), the first time that we cannot place the next red representative
as there is no red interval covering that position happens at 2kq + δ.

We take care of (ii) similarly: In the preprocessing phase, we mark all portions
corresponding to forbidden positions for one of the colors. For example, if Ij is
blue, all points in (xj +(1− q), xj + q) are forbidden for the red representatives.
The union of all such segments gives the dark red region. As in the previous case,
we cut the spanning interval into portions of length 2q, and we distribute the
portions into a vertical column of segments of length 2q. The starting point of a
maximal tabular solution M [i] tells us from which position we shoot a vertical
ray upwards and compute the first intersection with a dark red region.

Naturally, we create analogous data structures to deal with color blue. All in
all, the total cost of computing all the M [i] becomes O(n log n).

Concatenating Two Subsolutions. The other bottleneck of the algorithm is
the test in line 9.

The first observation is that, by Lemma 7, for each of the sets Is,<
i , Io,<<

i and
Io,<

i , it is enough to check that the rightmost interval in the set has representative
in L̃[k]. We use the notation,

−→I
·,·
i to denote such rightmost intervals.

94 A. Acharyya et al.

Let us first suppose that Io,<
i = ∅. Then, it is enough to determine if there

exists k < i such that appendable[k] = T and some portion Tk of M [k] is

compatible with M [i] and is such that L̃[k] contains representatives for
−→I

s,<

i

and
−→I

o,<<

i . With some preprocessing, this query can be answered fast: Every
time that appendable[k] is set to T , we add to a data structure S the point
(lastr[k], lastb[k]), where lastr[k] and lastb[k] store the index of the rightmost red
and blue interval with representative in the valid sequence of tabular subsolutions
(found by the algorithm) finishing with M [k]. Then, if say,

−→I
s,<

i is red and
−→I

o,<<

i is blue, we need to determine if there is some point (x, y) ∈ S such that

x ≥ ind(
−→I

s,<

i) and y ≥ ind(
−→I

o,<<

i) (where ind(Ij) denotes the index of interval
Ij). This is a 2-sided orthogonal range query for points in the plane, which can
be answered in O(log n) time after the appropriate preprocessing.

Next, let us suppose that Io,<
i �= ∅. In this case, we can prove that checking

(C3) is enough:

Lemma 10. Let S be a valid sequence of tabular subsolutions. Let M [k] be the
rightmost subsolution of S, Ii be an interval of color c with i > k, and Tk be the
longest tabular subsolution starting at Ik that is compatible with M [i]. Suppose
that M [i] �= ∅, Io,<

i �= ∅, and Tk �= ∅. If Tk and M [i] satisfy condition (C3), then
Tk and M [i] also satisfy conditions (C1) and (C2).

To check (C3), we use a preprocessing similar to that for computing M [i].

Let us consider a red interval Ii such that M [i] �= ∅ and Io,<
i �= ∅. Then

−→I
o,<

i

is a blue interval, and the positions for its representative relevant for (C3) are

those in the so-called good segment of
−→I

o,<

i :
−→I

o,<

i ∩ (−∞, xi − q]. We take the
collection S of all such good segments. Exactly as before, we cut the minimum
segment spanning all the intervals into portions of size 2q, and we place the
portions in a vertical column of segments. The set S is cut consistently and thus
becomes a collection of horizontal segments at different heights. We call it Gb.

Let us next consider some k such that k < i and appendable[k] := T . The
positions of the blue representatives of M [k] (if any) are 2jq + δ, 2(j + 1)q +
δ, . . . , 2j′q + δ, where j, j′ are non-negative integers, j′ ≥ j and δ ∈ [0, 2q).
If the vertical ray starting at (δ, 2j) and going upwards intersects the good

segment of
−→I

o,<

i within the portion up to (δ, 2j′), we derive that M [k] contains

a representative for
−→I

o,<

i at a position ≤ xi − q, and the pair satisfies (C3).
Hence, we perform such ray shooting query repeatedly until we do not find any
new good segment intersected by the ray. Every time that a good segment of
some

−→I
o,<

i is intersected by the vertical ray, we remove it from Gb and we store
p[i] := k. For all i such that Io,<

i �= ∅, the test in line 9 simply becomes checking
whether p[i] has already been assigned a value.

All in all, the total cost of all the involved operations is O(n log n).
Observe that segments in S may overlap, which is an issue for standard

ray-shooting data structures. Hence, the described general approach is slightly
modified to handle this issue.

Minimum Color-Spanning Intervals of Imprecise Points 95

Theorem 3. For k = 2, the decision problem for q ∈
(
1
2 , 3

4

]
can be solved in

O(n log n) time.

5 Case k = 2: Optimization Problem

In this section we present an algorithm for the optimization problem. Recall that
q∗ is the length of an MCSI in a realization solving the problem.

Lemma 11. There exist i, j with i < j such that q∗ = xj+1−xi

m , where m ∈ N.

How many values of type (xj + 1 − xi)/m are there? Since q∗ ≤ 2, we can
assume that no two consecutive intervals leave a gap of length 2 or greater.
Together with x1 = 0, this implies that xn + 1 < 3n. Recall also that 1

2 ≤ q∗.
For fixed i, j with i < j, we have that 1

2 ≤ xj+1−xi

m ≤ 2,with m ∈ N, if and only
if xj+1−xi

2 ≤ m ≤ 2(xj + 1 − xi). Since xj + 1 − xi < 3n, there are less than 6n
values of m ∈ N satisfying the equations. Thus, the total number of candidates
for q∗ is O(n3). To avoid listing all of them, we proceed as follows.

We first run a binary search on the values of type xn+1−x1
m ∈

[
1
2 , 2

]
. In

O(n log2 n) time we find some m0 ∈ N such that xn+1−x1
m0+1 ≤ q∗ < xn+1−x1

m0
.

For any other i, j with i < j, we are then only interested in the values of
the form xn+1−x1

m0+1 <
xj+1−xi

m < xn+1−x1
m0

. Hence, we have xj+1−xi

xn+1−x1
m0 < m <

xj+1−xi

xn+1−x1
(m0+1). Since xj −xi < xn−x1, this equation has at most one solution.

Thus, each pair i, j with i < j gives at most one candidate and we can run a
second binary search in this set of O(n2) candidates to find q∗. In conclusion:

Theorem 4. For k = 2, the L-MCSI problem can be solved in O(n2 log n) time.

Additionally, given some ε > 0, by using the bisection method on [12 , 2], we
can obtain some value q̂ such that q∗ ≥ q̂ > q∗ − ε/2 in O(n log n log 1

ε) time.
Since q̂ > q∗ − ε/2 ≥ q∗ − εq∗ = q∗(1 − ε), we obtain

Corollary 2. For k = 2, we can compute a (1 − ε)-approximation for the L-
MCSI problem in O(n log n log 1

ε) time.

References

1. Abellanas, M., et al.: Smallest color-spanning objects. In: auf der Heide, F.M. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44676-1 23

2. Acharyya, A., Jallu, R.K., Keikha, V., Löffler, M., Saumell, M.: Minimum color
spanning circle of imprecise points. Theor. Comput. Sci. 930, 116–127 (2022)

3. de Berg, M. (ed.): Ray shooting into a fixed direction. In: Ray Shooting, Depth
Orders and Hidden Surface Removal. LNCS, vol. 703, pp. 67–84. Springer, Heidel-
berg (1993). https://doi.org/10.1007/BFb0029819

4. Chen, D.Z., Misio�lek, E.: Algorithms for interval structures with applications.
Theor. Comput. Sci. 508, 41–53 (2013)

https://doi.org/10.1007/3-540-44676-1_23
https://doi.org/10.1007/3-540-44676-1_23
https://doi.org/10.1007/BFb0029819

96 A. Acharyya et al.

5. Das, S., Goswami, P.P., Nandy, S.C.: Smallest color-spanning object revisited. Int.
J. Comput. Geom. Appl. 19(5), 457–478 (2009)

6. Fiala, J., Kratochv́ıl, J., Proskurowski, A.: Systems of distant representatives. Dis-
cret. Appl. Math. 145(2), 306–316 (2005)

7. Fleischer, R., Xu, X.: Computing minimum diameter color spanning sets is hard.
Inf. Process. Lett. 111(21–22), 1054–1056 (2011)

8. Hu, R., Zhang, J.: Computing k-centers of uncertain points on a real line. Oper.
Res. Lett. 50(3), 310–314 (2022)

9. Li, S., Wang, H.: Dispersing points on intervals. Discret. Appl. Math. 239, 106–118
(2018)

10. Löffler, M., van Kreveld, M.: Largest and smallest convex hulls for imprecise points.
Algorithmica 56(2), 235–269 (2010)

11. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related
problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)

12. Naredla, A.M.: Algorithms for Geometric Facility Location: Centers in a Polygon
and Dispersion on a Line. Ph.D. thesis, University of Waterloo (2023)

Total Domination, Separated-Cluster,
CD-Coloring: Algorithms and Hardness

Dhanyamol Antony1(B), L. Sunil Chandran1(B), Ankit Gayen2(B),
Shirish Gosavi1(B), and Dalu Jacob1(B)

1 Indian Institute of Science, Bengaluru, India
{dhanyamola,sunil,shirishgp,dalujacob}@iisc.ac.in

2 Chennai Mathematical Institute, Chennai, India
ankitg@cmi.ac.in

Abstract. Domination and coloring are two classic problems in graph
theory. In this paper, our major focus is on the CD-coloring problem,
which incorporates the flavors of both domination and coloring in it. Let
G be an undirected graph. A proper vertex coloring of G is said to be a
cd-coloring, if each color class has a dominating vertex in G. The mini-
mum integer k for which there exists a cd-coloring of G using k colors is
called the cd-chromatic number of G, denoted as χcd(G). A set S ⊆ V (G)
is said to be a total dominating set, if any vertex in G has a neighbor
in S. The total domination number of G, denoted as γt(G), is defined
to be the minimum integer k such that G has a total dominating set of
size k. A set S ⊆ V (G) is said to be a separated-cluster (also known as
sub-clique) if no two vertices in S lie at a distance exactly 2 in G. The
separated-cluster number of G, denoted as ωs(G), is defined to be the
maximum integer k such that G has a separated-cluster of size k.

In this paper, we contribute to the literature connecting CD-

coloring with the problems, Total Domination and Separated-

Cluster. For any graph G, we have χcd(G) ≥ γt(G) and χcd(G) ≥
ωs(G). First, we explore the connection of CD-Coloring problem to the
well-known problem Total Domination. Note that Total Domina-

tion is known to be NP-Complete for triangle-free 3-regular graphs. We
generalize this result by proving that both the problems CD-Coloring

and Total Domination are NP-Complete, and do not admit any
subexponential-time algorithms on triangle-free d-regular graphs, for
each fixed integer d ≥ 3, assuming the Exponential Time Hypothesis. We
also study the relationship between the parameters χcd(G) and ωs(G).
Analogous to the well-known notion of ‘perfectness’, here we introduce
the notion of ‘cd-perfectness’. We prove a sufficient condition for a graph
G to be cd-perfect (i.e. χcd(H) = ωs(H), for any induced subgraph H
of G). Our sufficient condition is also necessary for certain graph classes
(like triangle-free graphs). This unified approach of ‘cd-perfectness’ has
several exciting consequences. In particular, it is interesting to note that
the same framework can be used as a tool to derive both positive and
negative results concerning the algorithmic complexity of CD-coloring

and Separated-Cluster.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 97–113, 2024.
https://doi.org/10.1007/978-3-031-55598-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_7&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_7

98 D. Antony et al.

Keywords: Total Domination · CD-coloring · Separated-Cluster ·
CD-perfectness · Triangle-free d-regular graphs

1 Introduction

In graph theory, one of the prominent directions of research is to study the
relationship between any two correlated graph parameters and explore the algo-
rithmic consequences on the graphs for which these two parameters coincide. For
instance, for a given graph, the chromatic number χ and the clique number ω,
are two such classic parameters in the literature. It is a well-known fact that for
any graph G, χ(G) ≥ ω(G). Perfect graphs are exactly the graphs G having the
property that for any induced subgraph H of G, χ(H) = ω(H). The notion of
perfectness thereby unifies the results concerning colorings and cliques for many
important graph classes. The celebrated ‘Strong Perfect Graph Theorem’ [1]
gives a different perspective on perfect graphs by characterizing them by their
structure instead of parameters. Along these lines of research, here we explore
the interconnections between a few related graph parameters. Domination and
coloring are two important and well-motivated problems in graph theory. The
central problem, ‘cd-coloring,’ in this paper incorporates the flavors of both dom-
ination and coloring. Even though the other two problems, ‘total domination’
and ‘separated-cluster’ have their own significance and are of independent inter-
est, they share an interesting relationship with the ‘cd-coloring ’ problem. In
this paper, we explore these relationships in detail and obtain several exciting
algorithmic consequences.

Let G be an undirected graph and let c : V (G) −→ [k] be a proper vertex col-
oring of G that partitions the vertex set into k color classes, say C1, C2, . . . , Ck.
Then c is said to be a cd-coloring of G if, for each j ∈ {1, 2, . . . , k}, there exists
a vertex vj ∈ V (G) such that Cj ⊆ N [vj]. Note that each non-trivial color
class Cj in G has to be dominated by a vertex vj ∈ V (G) \ Cj . Hence the
name class-domination coloring, which we shortly call cd-coloring. The mini-
mum integer k for which there exists a cd-coloring of G using k colors is called
the cd-chromatic number of G, denoted as χcd(G). Given an input graph G,
the problem CD-coloring seeks to find the cd-chromatic number of G. CD-

coloring is known to be NP-Complete for several special classes of graphs,
including bipartite graphs [2] and chordal graphs [3] and polynomial-time solv-
able for graph classes like trees [4], co-bipartite graphs [4], split graphs [2], and
claw-free graphs [3]. Shalu et al. [3] obtained a complexity dichotomy for CD-

coloring for H-free graphs. CD-coloring is also studied in the paradigm
of parameterized complexity [5,6] and approximation complexity [7]. In addi-
tion to its theoretical significance, CD-coloring has a wide range of practical
applications in social networks [7] and genetic networks [8].

A set S ⊆ V (G) is said to be a total dominating set if any vertex in G has a
neighbor in S. The total domination number of G, denoted as γt(G), is defined
to be the minimum integer k such that G has a total dominating set of size k.
Given an input graph G, in the problem Total Domination, we intend to find

Total Domination, Separated-Cluster, CD-Coloring 99

the total domination number of G. Total domination is one of the most popular
variants of domination, and there are hundreds of research papers dedicated to
this notion in the literature [2,9–11].

A set S ⊆ V (G) is said to be a separated-cluster (also known as sub-clique)
if no two vertices in S lie at a distance exactly 2 in G. The separated-cluster
number of G, denoted as ωs(G), is defined to be the maximum integer k such
that G has a separated-cluster of size k. Given an input graph G, in the problem
Separated-Cluster, our goal is to find the separated-cluster number of G.
Note that a disjoint union of cliques in a graph G is called a cluster in G. We
introduce this name, ‘separated-cluster’ (instead of the existing name, subclique)
because if no two vertices in S lie at a distance exactly 2 in G, then S is, in fact,
a disjoint union of cliques, where any pair of cliques are separated by a distance
greater than 2 in G (i.e. no two vertices belonging to two distinct cliques in S can
be adjacent in G or have a common neighbor in G). Using this perspective, we can
infer that Separated-Cluster is a restricted version of the well-known prob-
lem, Cluster Vertex Deletion, where we intend to find minimum number
of vertices whose deletion results in a disjoint union of cliques [12] (or, alterna-
tively, to find maximum number of vertices that can be partitioned into disjoint
cliques). Separated-Cluster is known to be NP-Complete for graph classes
like bipartite graphs, chordal graphs, 3K1-free graphs [13], and polynomial-time
solvable for trees, co-bipartite graphs, cographs, split graphs [13].

1.1 Total Domination and cd-Coloring

Domination and graph coloring problems are often related. There exist vari-
ants of graph coloring problems in the literature that concern domination. For
instance, see [4,13–15]. The close relationship between CD-coloring and Total

Domination was established by Merouane et al. [2]. They proved that for any
triangle-free graph G, we have γt(G) = χcd(G). It is also known that Total

Domination is NP-Complete for bipartite graphs with bounded degree 3 and
triangle-free cubic graphs [11]. Even though several bounds for γt are known
for regular graphs [9], to the best of our knowledge, the complexity of Total

Domination remains unknown for triangle-free d-regular graphs for each fixed
integer d ≥ 4.

Our Results: The following theorem is one of the major results in this section.

Theorem 1. CD-coloring is NP-Complete on triangle-free d-regular graphs,
for each fixed integer d ≥ 3. Further, the problem cannot be solved in time
2o(|V (G)|), unless the Exponential-Time Hypothesis fails.
It is fascinating to observe how a relatively new graph parameter, like cd-coloring,
sheds light on a classic problem of total domination. For instance, the following
corollary is an easy consequence of Theorem 1, and the fact that for any triangle-
free graph G, γt(G) = χcd(G).
Corollary 1. Total domination on triangle-free d-regular graphs is NP-
Complete, for any constant d ≥ 3. Further, the problem cannot be solved in
time 2o(|V (G)|), unless the Exponential-Time Hypothesis fails.

100 D. Antony et al.

1.2 Separated-Cluster and cd-Coloring

Interestingly, we can see that the notions of cd-chromatic number χcd and
separated-cluster number ωs also follow a similar relationship as their classic
counterparts of chromatic number χ and clique number ω. Since any two ver-
tices in a separated-cluster of a graph G cannot lie at a distance exactly 2 in
G, we have χcd(G) ≥ ωs(G). Moreover, using the same idea of ‘Mycielskian’
construction [16] (in classic coloring), we can have a family of graphs for which
ωs = 2 but χcd is arbitrarily large.

By the definition of separated-cluster, a natural way to look at this problem
is by considering the following auxiliary graph.
Definition 1 (Auxiliary Graph G∗ [13]). Given a graph G, the auxiliary
graph G∗ is the graph having V (G∗) = V (G) and E(G∗) = {uv : u, v ∈ V (G)
and dG(u, v) = 2}, where dG(u, v) denote the distance between the vertices u and
v in G.
It is easy to infer that ωs(G) = α(G∗), where α(G∗) is the independence number
(the size of maximum cardinality independent set) of G∗. For a graph G, we
observe that χcd(G) ≥ k(G∗), where k(G∗) is the clique cover number (the size
of a minimum number of cliques needed to partition the vertex set) of G∗. Note
that the parameters α and k are well-studied in the literature, particularly in
connection with perfect graphs. By an equivalent definition of perfect graphs, we
have that a graph G is perfect if for any induced subgraph H of G, α(H) = k(H).

Our Results: Motivated by the close relationship between the parameters
χcd(G) and ωs(G), respectively with the parameters α(G∗) and k(G∗) of a graph
G, here we initiate the study of ‘cd-perfectness’. We say that a graph G is cd-
perfect if for any induced subgraph H of G, we have χcd(H) = ωs(H). In some
of the earlier works on cd-coloring, the researchers have observed that for certain
classes of graphs, say C, we have χcd(G) = ωs(G), for each graph G ∈ C [4,13].
But to the best of our knowledge, no one has tried to study the structural proper-
ties of the graphs for which these two parameters coincide. This general notion of
cd-perfectness allows us to unify several (existing) results concerning cd-coloring
and separated-clusters for several graph classes.

As an attempt to understand the structure of cd-perfect graphs, first, in
Theorem 5, we prove a sufficient condition for a graph G to satisfy the equal-
ity, χcd(G) = k(G∗). This further leads us to a sufficient condition for a
graph to be cd-perfect (Corollary 2). We then use this to bring several graph
classes, like co-bipartite graphs, chordal bipartite graphs etc. under the com-
mon umbrella of cd-perfect graphs. Even though these results look structural in
nature, they have several exciting algorithmic consequences. It is interesting to
note that the same framework can be used as a tool to derive both positive and
negative results concerning the algorithmic complexity of CD-coloring and
Separated-Cluster. For instance,
– We use Theorem 5 to provide a unified approach (mostly with an improve-

ment) for finding polynomial-time algorithms for CD-coloring on graph
classes including proper interval graphs, 3K1-free graphs, etc.

Total Domination, Separated-Cluster, CD-Coloring 101

– A beautiful interplay between the problems, Total Domination, CD-

coloring, and Separated-Cluster can be witnessed in Theorem 10, where
we use Corollary 2, Theorem 9, and the fact that γt(G) = χcd(G) for triangle
free-graphs G, to prove that the three problems mentioned above are equiv-
alent and solvable in O(n2) time for chordal bipartite graphs. Consequently,
this result improves and generalizes the existing O(n3)-time algorithm for
Separated-Cluster on the class of P6-free chordal bipartite graphs [17].

– We apply Theorem 5 and Proposition 3 to derive hardness results for both
CD-coloring and Separated-Cluster for C6-free bipartite graphs.

2 Preliminaries and Notations

All graphs considered in this paper are undirected, simple, and finite. For stan-
dard graph-theoretic definitions, notations, and terminologies, we refer to the
book “Introduction to graph theory” by West [18]. However, here we present
some expressions that are specific to this article. Let G be a graph. For a vertex
v ∈ G, we denote the open neighborhood of v in G by NG(v) and the closed neigh-
borhood of v in G by NG[v] = NG(v)∪{v} (sometimes, we omit the subscript, if
the graph G is clear from the context). The degree of a vertex v in G is denoted
as dG(v) and the maximum degree of a graph G by Δ(G). We denote by dG(u, v),
the distance between two vertices u and v in G. The square of a graph G, denoted
by G2, is the graph having V (G2) = V (G), and E(G2) = {uv : dG(u, v) ≤ 2}.
We denote by G − H, the graph obtained from G by removing the vertices in
H, i.e. G − H = G[V (G) \ V (H)].

A graph G is said to be H-free, if it does not contain H as an induced
subgraph. A graph G is said to be d-regular if every vertex of G has degree d.
We denote the star graph on t + 1 vertices by K1,t. A claw, K1,3, is a star on
4 vertices. A chordal bipartite graph is a bipartite graph that does not contain
any induced cycle of length k, where k ≥ 6.

Even though the parameters χcd and ωs have a strong similarity to their
classic counterparts, χ, and ω, here we note an important property of χcd and
ωs, which is fundamentally different from χ and ω.
Note: For any induced subgraph H of a graph G, we have χ(H)≤ χ(G) and
ω(H) ≤ ω(G). But it can be seen that this is not true in general for the
parameters χcd and ωs. i.e. it is possible for G to have an induced subgraph
H such that χcd(H) > χcd(G) or ωs(H) > ωs(G). For instance, let G = K1,3,
the star graph, with central vertex, say, u, and leaf vertices, say, v1, v2, v3.
It is easy to verify that χcd(G) = ωs(G) = 2. On the other hand, consider
the subgraph induced by leaf vertices, say, H = G[{v1, v2, v3}]. We then have
χcd(H) = ωs(H) = 3 > 2 = ωs(G) = χcd(G).

In the following observation, we have a natural sufficient condition for an
induced subgraph H of a graph G to have χcd(G) ≥ χcd(H). We use this obser-
vation later.

102 D. Antony et al.

Observation 2. Let H be an induced subgraph of the graph G. Suppose there
exist no independent set I ⊆ V (H) of vertices such that I has a dominating
vertex in G but not in H, then χcd(G) ≥ χcd(H).

We also make use of the following known results.

Proposition 1 [11]. Total domination in bipartite graphs with bounded degree 3
is NP-Complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless
the Exponential-Time Hypothesis fails.

Proposition 2 [2]. Let G be a triangle-free graph. Then χcd(G) = γt(G).

3 Total Domination and cd-Coloring in Triangle-Free
d-Regular Graphs

In this section, we prove Theorem 1, i.e. we derive the hardness result for CD-

coloring in triangle-free d-regular graphs for each fixed integer d ≥ 3. As a
corollary of this result, we obtain the hardness result for Total Domination

in triangle-free d-regular graphs for each fixed integer d ≥ 3. Note that the
reduction for the hardness given in [11] for triangle-free cubic graphs does not
seem to have an easy generalization. Hence, first, we propose a simple linear
reduction for triangle-free cubic graphs. Then, we generalize this reduction for
triangle-free d-regular graphs for each fixed integer d ≥ 3, by using two linear
reductions; one for odd values of d and the other for even values.

The Exponential-Time Hypothesis (ETH) along with the Sparsification
Lemma implies that 3-SAT cannot be solved in subexponential-time, i.e. in
time 2o(n+m), where n is the number of variables and m is the number of clauses
in the input formula. To prove that a problem does not admit a subexponential-
time algorithm, it is sufficient to obtain a linear reduction from a problem which
does not admit a subexponential time algorithm, where a linear reduction is
a polynomial-time reduction in which the size of the resultant instance is lin-
ear in the size of the input instance. We refer to Chap. 14 of the book [19] for
more details about these concepts. All reductions mentioned in this section are
trivially linear.

To prove Theorem 1, we use three constructions. Construction 1 is used
for a reduction from Total Domination on bipartite graphs with bounded
degree 3 to CD-coloring on triangle-free cubic graphs. Construction 2 is used
for a reduction from CD-coloring on triangle-free (d − 2)-regular graphs to
CD-coloring on triangle-free d-regular graphs, for each odd integer d ≥ 5,
whereas Construction 3 is used for a reduction from CD-coloring on triangle-
free (d − 1)-regular graphs to CD-coloring on triangle-free d-regular graphs,
for each even integer d ≥ 4.

Construction 1. Let G be a bipartite graph with bounded degree 3. We con-
struct a gadget W , as shown in Fig. 1, in the following way:

Total Domination, Separated-Cluster, CD-Coloring 103

a

b c

d e f g

h i j k

H
H

Fig. 1. The gadget W used in Construction 1. The shaded vertices, d, b, f and c, respec-
tively dominates the color classes, {b, h, i}, {a, d, e}, {c, j, k}, and {f, g}, in a valid cd-
coloring of W .

– Introduce a star graph K1,2, which we denote by S, having a as the root vertex,
and b, c as the leaves. Note that we also call ‘a’ as the root vertex of W .

– Then we introduce two copies of the complete bipartite graph K2,2, denoted
by C1 = (A1, B1) and C2 = (A2, B2), respectively. Now the leaf b (resp. c) of
S is adjacent to each vertex of the partition A1 (resp. A2) of C1 (resp. C2).
Furthermore, each vertex of the partition B1 of C1 is adjacent to exactly one
vertex of the partition B2 of C2 as shown in Fig. 1. Let H = W − {a} and
H ′ = H − {b, c}.

– Thereafter we construct a graph Gc from G using the gadget W as follows:
for every vertex u of G with degree 2, introduce a gadget W such that the
root vertex a of W is adjacent to u in G. Similarly, for each vertex v in G of
degree 1, we introduce two copies of W such that the root vertices of both the
gadgets are adjacent to v in G.

The graph Gc − G contains 11x + 22y vertices, where x and y denote the
number of vertices in G having degree 2 and degree 1, respectively.

An example of the Construction 1 corresponding to the bipartite graph G
with bounded degree 3 given in Fig. 2a is as shown in Fig. 2b. By Observation 2,
it is clear that the number of colors needed for V (H ′) in any cd-coloring of H is
at least 4. Now it is easy to see that any 4-cd-coloring of a cycle C6 in each H ′

can be extended to a 4-cd-coloring of the corresponding gadget W (by using the
leaves of star graph S, and one of the vertices from the partition Ai of each Ci,
for i ∈ {1, 2}, as the dominating vertices of the color classes). Note that none of
the colors used for the vertices in the gadgets of Gc obtained in Construction 1
are used to color any vertex in G. Thus, we have the following lemma, based on
the Construction 1, and as a consequence, we have Theorem 3.

Lemma 1. Let G be a bipartite graph with bounded degree 3 and Gc be a graph
obtained from Construction 1. Then γt(G) = k if and only if χcd(Gc) = k+4x+
8y, where x and y denote the number of vertices in G having degree 2 and degree
1, respectively.

104 D. Antony et al.

(a)

(b)

Fig. 2. (a) is a bipartite graph G with bounded degree 3, and (b) is the resultant graph
Gc obtained from Construction 1 corresponding to the bipartite graph G in (a). The
dotted rectangles represent the gadget W used for the construction.

Theorem 3. CD-coloring is NP-Complete on triangle free cubic graphs. Fur-
ther, the problem cannot be solved in time 2o(|V (G)|), unless the ETH fails.

Proof. Notice that Gc has |V (G)| + 11(x + 2y) vertices, where x and y are the
number of vertices in G having degree 2 and degree 1, respectively. We know
that there is a linear reduction from Total Domination on bipartite graphs
with bounded degree 3 to CD-coloring on triangle-free cubic graphs due to
Lemma 1. Thus, by using Proposition 1, we are done.

Now, we generalize Construction 1 to prove the hardness of CD-coloring on
triangle-free d-regular graphs, for any constant d ≥ 4. The following construction
is used to prove the hardness of CD-coloring on triangle-free d-regular graphs,
for any odd integer d ≥ 5.

Construction 2. Let G be a triangle-free (d − 2)-regular graph, for any odd
integer d ≥ 5. Let W be a gadget which is constructed in the following way.

– Introduce a star graph K1,d−1, which we denote by S, having the vertex a as
the root vertex. Note that we also call ‘a’ as the root vertex of W .

– Further introduce 2(d − 1)2 vertices which induces d − 1 disjoint copies of
complete bipartite graphs Kd−1,d−1, namely C1, C2 . . . , Cd−1, respectively.
The adjacency between these complete bipartite graphs Ci = (Ai, Bi), for
1 ≤ i ≤ (d − 1), and the star graph S is in such a way that the vertices of
Ai of the complete bipartite graph Ci is adjacent to the leaf vertex vi of S.
Furthermore, for each odd integer i ≤ (d − 2), each vertex in the partite set
Bi of Ci is adjacent to exactly one vertex of the partite set Bi+1 of Ci+1 (for
instance refer Fig. 3, when d = 5). Now, by H ′

i we denote the subgraph of W
induced by the vertices in the two complete bipartite graphs Ci and Ci+1, for
an odd integer i ≤ d − 2. Then, by Hi we denote the subgraph of W induced
by the vertices in H ′

i and the two leaves vi and vi+1 of the star graph S. Note
that H ′

i = Hi − {vi, vi+1} and the gadget W contains (2d2 − 3d + 2) vertices.
– Now the graph Gc is constructed from G using W in such a way that for each

vertex u in G, introduce two copies of W such that root vertices of both the
copies of W is attached to u.

Total Domination, Separated-Cluster, CD-Coloring 105

Note that Gc − G contains 2n(2d2 − 3d + 2) vertices, where n = |V (G)|.

a

b c

d1 d2 d3 d4 f1 f2 f3 f4

e1 e2 e3 e4 g1 g2 g3 g4

H1
H1

Fig. 3. An example of the gadget W used in Construction 2, for d = 5 such that the
shaded vertices correspond to the dominating vertices of the color classes in a valid
cd-coloring of W .

An example of the gadget W in Construction 2 is shown in Fig. 3. By Obser-
vation 2, it is clear that the number of colors needed for V (H ′

i) in any cd-coloring
of Hi is at least 4. Now it is easy to see that any 4-cd-coloring of a C6 in each H ′

i

can be extended to a 2(d − 1)-cd-coloring of the gadget W (by using the leaves
of star graph S, and one of the vertices from the partition Ai of each Ci, for
1 ≤ i ≤ d − 1, as the dominating vertices of the color classes). Note that none of
the colors used for the vertices in the gadgets of Gc obtained in Construction 2
are used to color any vertex in G. Thus, we have the following lemma, based on
the Construction 2.

Lemma 2. For each odd integer d ≥ 5, let G be a triangle-free (d − 2)-regular
graph, having n vertices. Then χcd(G) = k if and only if χcd(Gc) = k+4n(d−1).

Now, the following construction is used to prove the hardness of CD-

coloring on triangle-free d-regular graphs, for any even integer d ≥ 4.

a b

c d

d1 d2 d3 f1 f2 f3

e1 e2 e3 g1 g2 g3

H11

H11

W1 W2

Fig. 4. An example of the gadget W used in Construction 3, for d = 4, such that
shaded vertices correspond to the dominating vertices of the color classes in a valid
cd-coloring of W .

106 D. Antony et al.

Construction 3. Let G be a triangle-free (d − 1)-regular graph, for any even
integer d ≥ 4. Let W be a gadget which is constructed in the following way.

– Introduce two sets of 2d2 − 5d + 3 vertices which induces two subgraphs W1

and W2 in W .
– The adjacency among the vertices in W1 (resp. W2) is in such a way that the

d−1 vertices of W1 (resp. W2) induces a star graph K1,d−2, which we denote
by S1 (resp. S2), having the vertex a in W1 (resp. the vertex b in W2) as the
root vertex. Note that the vertices a and b are adjacent.

– Further in each set Wi, for i ∈ {1, 2}, the remaining (2d2 − 6d + 4) vertices
induces d − 2 disjoint copies of complete bipartite graphs Kd−1,d−1, namely
Ci1, Ci2 . . . , Ci(d−2) respectively. The adjacency between these complete bipar-
tite graphs Cij, for i ∈ {1, 2} and 1 ≤ j ≤ d − 2 and the star graph Si, is in
such a way that the vertices of one of the partition Aij of a complete bipartite
graph Cij is adjacent to the leaf vj of Si. Furthermore, for each odd integer
j ≤ d − 3, each vertex of the partite set Bij of Cij is adjacent to exactly one
vertex of Bi(j+1) of Ci(j+1) (for instance, refer Fig. 4, when d = 4). Now, by
H ′

ij we denote the subgraph of Wi induced by the vertices in the two complete
bipartite graphs Cij and Ci(j+1), for an odd integer j ≤ d−3. Then, by Hij we
denote the subgraph of Wi induced by the vertices in H ′

ij and the two leaves
vj and vj+1 of the star graph Si which are adjacent to the partitions Aij and
Ai(j+1) of Cij and Ci(j+1), respectively. Note that H ′

ij = Hij − {vj , vj+1}.
– Now the graph Gc is constructed from G using W in the following way: con-

sider an arbitrary pair-wise ordering (v1, v2), (v3, v4) . . . , (vn−1, vn) of ver-
tices, in G. Note that such a pairing is possible, since n is even (as d − 1 is
odd). For a pair of vertices (vj , vj+1), for odd integer j ≤ n− 1 in this order-
ing, introduce a gadget W such that the vertex a (resp. b) of W is adjacent
to vj (resp. vj+1) of G.

The graph Gc − G contains n(2d2 − 5d + 3) vertices, where n = |V (G)|.
An example of the gadget W in Construction 3 is shown in Fig. 4. By Observa-
tion 2, it is clear that the number of colors needed for V (H ′

ij), for i ∈ {1, 2} and
1 ≤ j ≤ (d−2)/2, in any cd-coloring of Hij is at least 4. Now it is easy to see that
a 4-cd-coloring of a C6 in each H ′

ij can be extended to a 4(d − 2)-cd-coloring of
the gadget W (by using the leaves of star graphs Si, for i ∈ {1, 2}, and one of the
vertices from the partition Aij of each Cij , for 1 ≤ j ≤ d − 2, as the dominating
vertices of the color classes). It is easy to see that none of the colors used for the
vertices in the gadgets of Gc obtained in Construction 3 are used to color any
vertex in G. Thus we have the following lemma, based on the Construction 3.

Lemma 3. For even integer d ≥ 4, let G be a triangle-free (d−1)-regular graph
having n vertices. Then χcd(G) = k if and only if χcd(Gc) = k + 2n(d − 2).

Now, we are ready to prove Theorem 1.

Proof of Theorem 1: Note that |V (Gc1)| = 2n(2d2 − 3d + 2) + n, where Gc1 is
obtained as per construction 2. Similarly, |V (Gc2)| = n(2d2 − 5d+3)+n, where

Total Domination, Separated-Cluster, CD-Coloring 107

Gc2 is obtained as per construction 3. Hence, both the constructions are linear
with respect to their size of inputs and hence, their associated reductions are
also linear. Thus, we know that there is a linear reduction from triangle-free
(d−2)-regular graphs to triangle-free d-regular graphs for odd integer d ≥ 5 due
to Lemma 2. We also know that there is a linear reduction from triangle-free
(d − 1)-regular graphs to triangle-free d-regular graphs for even integer d ≥ 4
due to Lemma 3. Therefore, we are done using Proposition 1 and Theorem 3.

4 Separated-Cluster and cd-Coloring: cd-Perfectness

Here, we introduce the notion of cd-perfect graphs, which is defined below.

Definition 2 (cd-Perfect Graphs). An undirected graph G is said to be cd-
perfect if for any induced subgraph H of G, we have χcd(H) = ωs(H).

In this section, we study χcd(G) and ωs(G) of a graph G, by relating them
to some well-known graph parameters of the auxiliary graph G∗. This simple
reduction has various interesting consequences. Recall from Definition 1 that
given a graph G, the auxiliary graph G∗ is the graph having V (G∗) = V (G) and
E(G∗) = E(G2) \ E(G). i.e. E(G∗) = {uv : u, v ∈ V (G) and dG(u, v) = 2}. The
following proposition trivially follows from the definition of G∗.

Proposition 3. For any graph G, we have ωs(G) = α(G∗).

We then note the observation below.

Observation 4. For any graph G, we have χcd(G) ≥ k(G∗)

Proof sketch: Let χcd(G) = l, where I1, I2, . . . , Il denote the corresponding color
classes of G. Then, as each color class has a dominating vertex, it can be seen
that {I1, I2, . . . , Il} forms a clique cover of G∗.

(a) C6 (b) C1
6 (c) C2

6 (d) C3
6

Fig. 5. Set of graphs in H

Note that the reverse inequality of Observation 4 is not necessarily true. For
instance, consider the graph C6 (an induced cycle on 6 vertices). It is not difficult
to verify that χcd(C6) = 4. But as C∗

6 is a disjoint union of two triangles, we
have that k(C∗

6) = 2 < χcd(C6). In Theorem 5, we prove a sufficient condition
for a graph to satisfy the equality in Observation 4. First, we define certain
graphs. Consider the graph C6. Since C6 is bipartite, observe that V (C6) can be
partitioned into two independent sets, say A and B, where |A| = |B| = 3. We
denote by C1

6 , C2
6 , and C3

6 , the graphs obtained by respectively adding 1 edge,
2 edges, and 3 edges to exactly one of the partite sets A or B of C6 (see Fig. 5).
Let H = {C6, C

1
6 , C2

6 , and C3
6}. We then have the following theorem.

108 D. Antony et al.

Theorem 5. Let G be an H-free graph and G∗ its corresponding auxiliary graph.
Then χcd(G) = k(G∗).

Proof Sketch: By Observation 4, here it is enough to show that χcd(G) ≤ k(G∗).
Let k(G∗) = t, and let K1,K2, . . . ,Kt be a clique cover of G∗ having size t.
Using the fact that G is H-free, we then prove that for each j ∈ {1, 2, . . . , t},
there exists a vertex vj ∈ V (G) such that Kj ⊆ NG(vj). This further implies that
the sets, K1,K2, . . . ,Kt, form the color classes for a cd-coloring of G, proving
that χcd(G) ≤ k(G∗).

The following corollary that provides a sufficient condition for a graph G to
be cd-perfect is a consequence of Proposition 3 and Theorem 5.

Corollary 2. Let G be an H-free graph. If for any induced subgraph H of G,
k(H∗) = α(H∗) then G is cd-perfect. Consequently, if G is H-free and H∗ is
perfect for any induced subgraph H of G, then G is cd-perfect.

It is known in the literature that if G is a co-bipartite graph (complement of a
bipartite graph), then χcd(G) = ωs(G) [4]. Since co-bipartite graphs are H-free
and perfect, by Corollary 2, we now have a simple and shorter proof for the
same.

Note: Consider a graph H ∈ H. It is not difficult to see that χcd(H) = 3 =
ωs(H), if H �= C6, and χcd(H) = 4 > 2 = ωs(H), if H = C6. This is why
the sufficient condition for cd-perfectness given in Corollary 2 is not a necessary
condition. To obtain a necessary and sufficient condition, we consider the set
H′ = {C1

6 , C2
6 , C3

6}. Then, in the following theorem, we have a characterization
for H′-free graphs (a superclass of triangle-free graphs, 3K1-free graphs, etc.) to
be cd-perfect.

Theorem 6. Let G be an H′-free graph. Then G is cd-perfect if and only if G
is C6-free and k(H∗) = α(H∗), for each induced subgraph H of G.

In the following theorem, we propose some necessary conditions for a graph
G to be cd-perfect. Observe that these conditions are almost consistent with
the necessary conditions for a graph to be perfect. The proof of the theorem is
majorly due to Theorem 5 and Proposition 3.

Theorem 7. If a graph G is cd-perfect, then G is Cn-free for each n ≥ 4 with
n �= 4k, and C̄n-free for each n ≥ 5 with n �= 2k, where k is a positive integer.

4.1 A Unified Approach for Algorithmic Complexity on Some
Special Graph Classes

Here, we see some implications of our generalized framework of relating χcd(G)
and ωs(G) to k(G∗) and α(G∗), respectively, together with the notion of cd-
perfectness. In particular, we use Theorem 5 and Proposition 3 as tools for
deriving both positive and negative results concerning the algorithmic complex-
ity of the problems CD-coloring and Separated-Cluster on some special

Total Domination, Separated-Cluster, CD-Coloring 109

classes of graphs. Note that the classes of graphs for which these results are
applied to evaluate the time complexity of the problems CD-coloring and
Separated-Cluster, may not be limited to those studied here.

Polynomial-Time Algorithms: In this section, we will see a unified app-
roach for obtaining polynomial-time algorithms (mostly with an improvement)
for some special classes of graphs, using the framework of cd-perfectness and the
auxiliary graph G∗.

(1) Chordal Bipartite Graphs: The following theorem is proved in [17].

Theorem 8 [17]. Let G be a P6-free chordal bipartite graph. Then χcd(G) =
ωs(G), and the problem Separated-Cluster can be solved in O(n3) time for
P6-free chordal bipartite graphs.

We improve and generalize the result above in Theorem 10. First, note the
following theorem proved in [20].

Theorem 9 [20]. The problem Total Domination can be solved in O(n2)
time for chordal bipartite graphs.

We then prove the following theorem.

Theorem 10. Let G = (A,B,E) be a chordal bipartite graph. Then G is cd-
perfect. Consequently, Total Domination, CD-coloring, and Separated-

Cluster are all equivalent problems for chordal bipartite graphs and can be
solved in O(n2) time.

Proof Sketch: Clearly, G is H-free. We first prove that G∗ is chordal, and there-
fore, perfect. Since any induced subgraph H of G is also chordal bipartite, it
follows from Corollary 2 that G is cd-perfect. Further, as G is triangle-free, by
Proposition 2, we have that χcd(G) = γt(G). Since χcd(G) = ωs(G), the latter
statement of the theorem is now immediate from Theorem 9.

(2) Proper Interval Graphs and 3K1-Free Graphs: It is known that for
the classes of proper interval graphs and 3K1-free graphs, CD-coloring can
be solved in O(n3) time [3] (as they are sub-classes of claw-free graphs). Again,
using Theorem 5 as a tool, we show that CD-coloring can be solved in O(n2.5)
time for the above classes of graphs. First, we observe the following:

Observation 11. Let G be a proper interval graph or a 3K1-free graph. Then,
G∗ is triangle-free.

Before evaluating the complexity of CD-coloring for proper interval graphs
and 3K1-free graphs, recall that for any graph G, we have V (G∗) = V (G) =
V (G2), and E(G∗) = E(G2) \E(G). Therefore, if G2 can be computed in O(n2)
time, then G∗ can also be computed in O(n2) time (as the subtraction of the
adjacency matrices of G2 and G takes only O(n2) time). Note that the squares
of proper interval graphs can be computed in O(n2) time [21]. We further note
some additional observations.

110 D. Antony et al.

Observation 12. For a co-bipartite graph G, the auxiliary graph G∗ can be
computed in O(n2) time.

Proof. Let G be a co-bipartite graph. For any pair of vertices u, v ∈ V (G), we
have uv ∈ E(G2) if and only if u ∈ A, v ∈ B, and either NB(u) �= ∅ or NA(v) �= ∅
or both. This implies that G2 can be constructed in O(n2) time, and so does G∗.

In the following lemma, we observe an important property of 3K1-free graphs
that are not co-bipartite, which is crucial in proving Theorem 13, but also inter-
esting on its own.

Lemma 4. Let G be a 3K1-free graph. If G is not co-bipartite, then G2 is a
clique.

Main Idea: For any two non-adjacent vertices, say u and v in G, as G is 3K1-free
but not co-bipartite, we prove that dG(u)+dG(v) > n−2. This implies that there
exists a vertex w ∈ V (G) such that uw,wv ∈ E(G), and therefore, uv ∈ E(G2).

Using the above lemma and Observation 12, we have that for a 3K1-free
graph G, the auxiliary graph G∗ can be computed in O(n2) time. We then have
the following theorem due to Theorem 5 and some earlier observations.

Theorem 13. The CD-coloring problem can be solved in O(n2.5) time for
proper interval graphs and 3K1-free graphs.

Remark 1. As noted before, the time complexity of CD-coloring for the class
of proper interval graphs and 3K1-free graphs provided in Theorem 13 is an
improvement over the existing algorithms [3] for the problem in the same classes.
Clearly, the class of 3K1-free graphs is not cd-perfect, as Separated-Cluster is
NP-Complete for 3K1-free graphs [13]. Further, we note that the parameters χcd

and ωs are not necessarily equal for proper interval graphs too (see an example
in Fig. 6). Therefore, the class of proper interval graphs and, in general interval
graphs are not cd-perfect.

Fig. 6. An example of a proper interval graph G, with χcd(G) = 4 > 3 = ωs(G).

Hardness Implications: In contrast to the previous section, here we see an
application of Proposition 3 and Theorem 5 in deriving hardness results for the
problems CD-coloring and Separated-Cluster.
C6-Free Bipartite Graphs: We prove the hardness of the problems CD-

coloring and Separated-Cluster for C6-free bipartite graphs by proposing a
polynomial-time reduction respectively, from the problems Clique Cover and
Independent Set for diamond-free graphs. Note that both Clique Cover and
Independent Set are known to be NP-hard for diamond-free graphs [22,23],

Total Domination, Separated-Cluster, CD-Coloring 111

where a diamond is the graph obtained by deleting exactly one edge from K4

(complete graph on 4 vertices). First, we note the following observation for
diamond-free graphs [24].

Observation 14 [24]. Any diamond-free graph with m edges can have at most
m maximal cliques.

Let G be a diamond-free graph and let K = {K1,K2, . . . ,Kl} denote the collec-
tion of all maximal cliques in G. By Observation 14, we have that l ≤ |E(G)|.
From G, we now construct a bipartite graph BG = (A,B,E) in polynomial-time
as follows:

Construction 4. Define A = V (G) ∪ {u} and B = K = {K1,K2, . . . ,Kl}
(each vertex in the partite set B represents a maximal clique in G). For a pair
of vertices, a ∈ A \ {u} and Kj ∈ B (where j ∈ {1, 2, . . . , l}), we make the
vertices a and Kj adjacent in BG if and only if a ∈ Kj ⊆ V (G). In addition, we
make the vertex u ∈ A adjacent to all the vertices in B. i.e. E(BG) = {aKj :
a ∈ A \ {u},Kj ∈ K = B, and a ∈ Kj ⊆ V (G)} ∪ {uKj : Kj ∈ K = B}. Clearly,
BG is a bipartite graph.

We first prove the following lemmas, which are crucial for proving Theo-
rem 15.

Lemma 5. Let G be a diamond-free graph and BG = (A,B,E) be the corre-
sponding bipartite graph (as in Construction 4). Then, B2

G[A \ {u}] ∼= G and
B2

G[B] is a clique.

Proof Sketch: The former part of the lemma is due to the fact that, for any
x, y ∈ V (G), we have xy ∈ E(G) ⇐⇒ x and y belong to a maximal clique Kj

in G. Whereas the latter part B2
G[B] is a clique is trivial, since B ⊆ NBG

(u).

Lemma 6. Let G be a diamond-free graph and BG = (A,B,E) be the corre-
sponding bipartite graph. Then, BG is a C6-free bipartite graph.

Proof Sketch: Suppose that S = (a1,K1, a2,K2, a3,K3, a1) is an induced C6 in
BG. Then, using the facts that {a1, a2, a3} induces a triangle in B2

G[A] and K1 is
a maximal clique in G, we prove that there exists a vertex a4 ∈ V (G) ⊆ A such
that a4 ∈ K1 in G and a3a4 /∈ E(G). Then {a1, a2, a3, a4} induces a diamond in
G, a contradiction.

Theorem 15. The problems CD-coloring and Separated-Cluster are
NP-Compete for C6-free bipartite graphs.

Proof Sketch: Let G be a diamond-free graph, and let BG be the corresponding
bipartite graph. We prove that ωs(BG) = α(B∗

G) = α(G) + 1. Since BG is a
C6-free bipartite graph (by Lemma 6), the fact that Independent Set is NP-
hard for diamond-free graphs implies that Separated-Cluster is NP-hard for
C6-free bipartite graphs. Also, we can infer that BG is H-free. Therefore, by
Theorem 5, we have that χcd(BG) = k(B∗

G). We then prove χcd(BG) = k(B∗
G) =

k(G) + 1. Therefore, the fact that Clique Cover is NP-hard for diamond-free
graphs implies that CD-coloring is NP-hard for C6-free bipartite graphs.

112 D. Antony et al.

References

1. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Annals Math. 164(1), 51–229 (2006)

2. Merouane, H.B., Haddad, M., Chellali, M., Kheddouci, H.: Dominated colorings of
graphs. Graphs Comb. 31(3), 713–727 (2015)

3. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: On the complexity of cd-coloring of
graphs. Discret. Appl. Math. 280, 171–185 (2020)

4. Shalu, M.A., Kirubakaran, V.K.: On cd-coloring of trees and co-bipartite graphs.
In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp.
209–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67899-9 16

5. Banik, A., Kasthurirangan, P.N., Raman, V.: Dominator coloring and CD coloring
in almost cluster graphs. In: Morin, P., Suri, S. (eds.) WADS 2023. LNCS, vol.
14079, pp. 106–119. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
38906-1 8

6. Krithika, R., Rai, A., Saurabh, S., Tale, P.: Parameterized and exact algorithms
for class domination coloring. Discret. Appl. Math. 291, 286–299 (2021)

7. Chen, Y.H.: The dominated coloring problem and its application. In: Murgante, B.,
et al. (eds.) ICCSA 2014. LNCS, vol. 8584, pp. 132–145. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09153-2 10

8. Klavžar, S., Tavakoli, M.: Dominated and dominator colorings over (edge) corona
and hierarchical products. Appl. Math. Comput. 390, 125647 (2021)

9. Hoppen, C., Mansan, G.: Total domination in regular graphs. Electron. Notes
Theor. Comput. Sci. 346, 523–533 (2019)

10. Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer, New York (2013)
11. Zhu, J.: Approximation for minimum total dominating set. In: ICIS (2009)
12. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret.

Appl. Math. 144(1–2), 173–182 (2004)
13. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: A lower bound of the cd-chromatic

number and its complexity. In: Gaur, D., Narayanaswamy, N.S. (eds.) Algorithms
and Discrete Applied Mathematics. LNCS, vol. 10156, pp. 344–355. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-53007-9 30

14. Chellali, M., Volkmann, L.: Relations between the lower domination parameters
and the chromatic number of a graph. Discret. Math. 274(1–3), 1–8 (2004)

15. Chellali, M., Maffray, F.: Dominator colorings in some classes of graphs. Graphs
Comb. 28(1), 97–107 (2012)

16. Mycielski, J.: Sur le coloriage des graphs. In: Colloquium Mathematicae (1955)
17. Shalu, M.A., Kirubakaran, V.K.: On cd-coloring of P5,K4-free chordal graphs. In:

CALDAM (2022)
18. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River

(2000)
19. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.

org/10.1007/978-3-319-21275-3
20. Damaschke, P., Müller, H., Kratsch, D.: Domination in convex and chordal bipar-

tite graphs. Inf. Process. Lett. 36(5), 231–236 (1990)
21. Paul, S., Pal, M., Pal, A.: A linear time algorithm to compute square of interval

graphs and their colouring. AKCE Int. J. Graphs Comb. 13(1), 54–64 (2016)
22. Král’, D., Kratochv́ıl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs

without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) Graph-
Theoretic Concepts in Computer Science, pp. 254–262. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45477-2 23

https://doi.org/10.1007/978-3-030-67899-9_16
https://doi.org/10.1007/978-3-031-38906-1_8
https://doi.org/10.1007/978-3-031-38906-1_8
https://doi.org/10.1007/978-3-319-09153-2_10
https://doi.org/10.1007/978-3-319-53007-9_30
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/3-540-45477-2_23

Total Domination, Separated-Cluster, CD-Coloring 113

23. Poljak, S.: A note on stable sets and colorings of graphs. In: Commentationes
Mathematicae Universitatis Carolinae, pp. 307–309 (1974)

24. Chiarelli, N., Mart́ınez-Barona, B., Milanič, M., Monnot, J., Muršič, P.: Strong
cliques in diamond-free graphs. Theoret. Comput. Sci. 858, 49–63 (2021)

Generating Signed Permutations
by Twisting Two-Sided Ribbons

Yuan Qiu and Aaron Williams(B)

Williams College, Williamstown, MA 01267, USA
{yq1,aaron.williams}@williams.edu

https://csci.williams.edu/people/faculty/aaron-williams/

Abstract. We provide a simple approach to generating all 2n ·n! signed
permutations of [n] = {1, 2, . . . , n}. Our solution generalizes the most
famous ordering of permutations: plain changes (Steinhaus-Johnson-
Trotter algorithm). In plain changes, the n! permutations of [n] are
ordered so that successive permutations differ by swapping a pair of
adjacent symbols, and the order is often visualized as a weaving pattern
on n ropes. Here we model a signed permutation as n ribbons with two
distinct sides, and each successive configuration is created by twisting
(i.e., swapping and turning over) two neighboring ribbons or a single
ribbon. By greedily prioritizing 2-twists of large symbols then 1-twists
of large symbols, we create a signed version of plain change’s memorable
zig-zag pattern. We also provide a loopless implementation (i.e., worst-
case O(1)-time per object) by enhancing the well-known mixed-radix
Gray code algorithm.

Keywords: plain changes · signed permutations · signed
permutohedron · greedy Gray codes · combinatorial generation ·
loopless algorithms

1 Generating Permutations and Signed Permutations

The generation of permutations is a classic problem that dates back to the dawn
of computer science (and several hundred years earlier). The goal is to create all
n! permutations of [n] = {1, 2, . . . , n} as efficiently as possible. A wide variety of
approaches have been considered, some of which can be conceptualized using a
specific physical model of the permutation. Let’s consider three such examples.

Zaks’ algorithm [38] can be conceptualized using a stack of n pancakes of
varying sizes. Successive permutations are created by flipping some pancakes at
the top of the stack, which is equivalent to a prefix-reversal in the permutation.
For example, if represents 1234, then flipping the top three pancakes gives

or
←→
1234 = 3214. Table 1 shows the full order for n = 4. Zaks designed his

‘new’ order to have an efficient array-based implementation. Unknown to Zaks,
Klügel had discovered this pancake order by 1796 [14]; see [1] for further details.

Corbett’s algorithm [3] can be conceptualized using n marbles on a ramp.
Successive permutations are created by moving a marble to the top of the ramp,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 114–129, 2024.
https://doi.org/10.1007/978-3-031-55598-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_8&domain=pdf
http://orcid.org/0000-0001-6816-4368
https://doi.org/10.1007/978-3-031-55598-5_8

Generating Signed Permutations by Twisting Two-Sided Ribbons 115

which is equivalent to a prefix-rotation in the permutation. For example, if

represents 1234, then moving the fourth marble gives or
←−−
1234 = 4123.

The algorithms by Zaks and Corbett are well-known, and have their own spe-
cific applications. For example, in interconnection networks [4], the algorithms
give Hamilton cycles in the pancake network and rotator network, respectively.

Plain changes can be conceptualized using n parallel ropes. Successive permu-
tations are obtained by crossing one rope over a neighboring rope as in weaving.
This is equivalent to a swap (or adjacent-transposition) in the permutation. For
example, if represents 1234, then swapping the middle pair gives or
1
←→
234 = 1324. Plain changes dates to bell-ringers in the 1600 s [5]. Figure 3 shows

the order for n = 4 and its zig-zag pattern. It is also known as the Steinhaus-
Johnson-Trotter algorithm [16,31,34] due to rediscoveries circa 1960.

Many other notable approaches to permutation generation exist, with surveys
by Sedgewick [30], Savage [27], and Mütze [22], and frameworks by Knuth [17]
and Ganapathi and Chowdhury [8]. While some methods have specific advan-
tages [15] or require less additional memory when implemented [19], there is
little doubt that plain changes is the solution to permutation generation.

A signed permutation of [n] is a permutation of [n] in which every symbol
is given a ± sign. We let Sn and S±

n be the sets of all permutations and signed
permutations of [n], respectively. Note that |Sn| = n! and |S±

n | = 2n · n!. For
example, 231 ∈ S3 has eight different signings, including +2−3−1 ∈ S±

3 . For con-
venience, we also use bold or overlines for negatives, with 231 and 231 denoting
+2−3−1. Signed permutations arise in many contexts including genomics [7].

The efficient generation of signed permutations has been considered. Suzuki,
Sawada, and Kaneko [33] treat signed permutations as stacks of n burnt pancakes
and provide a signed version of Zaks’ algorithm. Korsh, LaFollette, and Lipschutz
[18] provide a Gray code that swaps two symbols (and preserves their signs) or
changes the rightmost symbol’s sign. Both approaches offer improvements over
standard lexicographic orders (i.e., alphabetic orders) but neither is considered
to be the solution for signed permutations. We define a signed plain change order
to be any extension of plain changes to signed permutations.

Physical Model of Signed Permutations: Two-Sided Ribbons. A two-
sided ribbon is glossy on one side and matte on the other1, and we model a signed
permutation using n two-sided ribbons in parallel. We modify the ribbons via
twists. More specifically, a k-twist turns over k neighboring ribbons and reverses
their order, as visualized in Fig. 1 for k = 1, 2. A twist performs a complementing
substring reversal, or simply a reversal [11], on the signed permutation.

Our goal is to create a twist Gray code for signed permutations. This means
that each successive entry of S±

n is created by applying a single twist. Equiva-
lently, a sequence of 2nn!−1 twists generates each entry of S±

n in turn. It should
be obvious that 1-twists are insufficient for this task on their own, as they do not
modify the underlying permutation. Similarly, 2-twists are insufficient on their

1 Manufacturers refer to this type of ribbon as single face as only one side is polished.

116 Y. Qiu and A. Williams

1 1
2 -2
3 3
4 4

(a) The 1-twist changes 1 2 3 4 into 1 2 3 4.

1 1
-2 -3
3 2
-4 4

(b) The 2-twist changes 1 2 3 4 into 1 3 2 4.

Fig. 1. Two-sided ribbons with distinct positive (i.e., glossy) and negative (i.e., matte)
sides running in parallel. A k-twist reverses the order of k neighboring ribbons and
turns each of them over, as shown for (a) k = 1 and (b) k = 2.

own, as they do not modify the number of positive symbols modulo two. How-
ever, we will show that 2-twists and 1-twists are sufficient when used together.
Our solution is a signed plain change order that we name twisted plain changes.

Application: Train-Based Traveling Salesman Problems. Exhaustive
generation is central to many applications, including testing and exact algo-
rithms. Gray code algorithms can also improve the latter. For example, a travel-
ing salesman problem on n cities can be solved by generating all n! permutations
of [n], with each member of Sn providing a possible route through the cities
(e.g., p1p2 · · · pn ∈ Sn represents the route p1 → p2 → · · · → pn). Plain changes
is advantageous because successive routes differ in at most three segments (e.g.,
swapping pipi+1 to pi+1pi replaces segment pi → pi+1 with pi → pi+2) [15].
Thus, the distance of each successive route can be updated in constant time.

Now consider a TSP-variant involving trains, where each of the n stations
can be entered/exited in one of two orientations (e.g., the train may travel along
the station’s eastbound or westbound track). Note that the time taken to travel
from one station to another depends on these orientations. As a result, there are
2n ·n! possible routes and they correspond to the members of S±

n . Our twist Gray
code algorithm generates successive routes that differ in at most three segments.

1.1 Outline

Section 2 provides background on combinatorial generation. Section 3 defines our
twist Gray code using a simple (but inefficient) greedy algorithm. Section 4
discusses ruler sequences and their applications. Section 5 uses a signed ruler
sequence to generate our Gray code in worst-case O(1)-time per signed permu-
tation. A Python implementation of our final algorithm appears in the appendix.
The proofs of Lemma 1–3 are left as exercises to the reader due to page limits.

2 Combinatorial Generation

As Ruskey explains in Combinatorial Generation [26], humans have been writing
exhaustive lists of various kinds for thousands of years, and more recently, pro-
gramming computers to do so. Here we review basic concepts and terminology,
then we discuss two foundational results and modern reinterpretations of them.

Generating Signed Permutations by Twisting Two-Sided Ribbons 117

2.1 Gray Codes and Loopless Algorithms

If successive objects in an order differ in a constant amount (by some metric),
then it is a Gray code. If an algorithm generates each object in amortized or
worst-case O(1)-time, then it is constant amortized time (CAT) or loopless [6].
To understand these terms, note that a well-written generation algorithm shares
one object with an application. It modifies the object and announces that the
‘next’ object can be visited, without using linear-time to create a new object.
Loopless algorithms make constant-time modifications using a Gray code. For
example, Zaks’ order can be generated in CAT as its prefix-reversals have con-
stant average length (see Ord-Smith’s earlier EconoPerm program [24]), but a
loopless algorithm is not possible as a length n prefix-reversal takes Θ(n)-time2.

2.2 Binary Reflected Gray Code and Plain Changes

Plain change’s stature in combinatorial generation is rivaled only by the binary
reflected Gray code3. The BRGC orders n-bit binary strings by bit-flips, meaning
successive strings differ in one bit. It is typically defined recursively as

brgc(n) = 0 · brgc(n−1), 1 · reflect(brgc(n−1)) with brgc(1) = 0, 1 (1)

where reflect denotes list reflection (i.e., last string goes first). For example,

brgc(2) = 0 · brgc(1), 1 · reflect(brgc(1)) = 0 · (0, 1), 1 · (1, 0) = 00, 01, 11, 10

where overlines and underlines have been added for flips from 0 to 1 and 1 to 0,
respectively. The order for n = 4 is visualized in Fig. 2 using two-sided ribbons,
where each bit-flip is a 1-twist of the corresponding ribbon.

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Fig. 2. Binary reflected Gray code using indistinct two-sided ribbons for n = 4.

Plain changes recursively zigs and zags n through permutations of [n−1].
In (2), zig and zag give length n−1 lists that repeatedly swap n to the left or
right.

plain(n) =zig(p1 · n), zag(n · p2), . . . , zig(p(n−1)!−1 · n), zag(n · p(n−1)!) (2)
with plain(n − 1) = p1, p2, . . . , p(n−1)!

2 If the permutation is stored in a BLL instead of an array, then loopless is possible [35].
3 The eponymous Gray code by Gray [10] also demonstrates Stigler’s law [32]: [9,13].

118 Y. Qiu and A. Williams

Formula (2) assumes (n−1)! is even, so we use base case plain(2) =
←−
12, 21. Here

the arrow denotes a larger value swapping left past its smaller neighbor. Thus,

plain(3) = zig(12 · 3), zag(3 · 21) = 1
←−
23,

←−
132, 3

←−
12,

−→
321, 2

−→
31, 213,

Figure 3 visualizes plain(4) with distinct one-sided ribbons4. Note how 4 zigzags.

1 1 1 4 4 1 1 1 3 3 3 4 4 3 3 3 2 2 2 4 4 2 2 2
2 2 4 1 1 4 3 3 1 1 4 3 3 4 2 2 3 3 4 2 2 4 1 1
3 4 2 2 3 3 4 2 2 4 1 1 2 2 4 1 1 4 3 3 1 1 4 3
4 3 3 3 2 2 2 4 4 2 2 2 1 1 1 4 4 1 1 1 3 3 3 4

Fig. 3. Plain changes plain(n) using distinct one-sided ribbons for n = 4.

2.3 The Greedy Gray Code Algorithm

Historically, Gray codes have been created using recursion. In contrast, the greedy
Gray code algorithm [36] attempts to create a Gray code one object at time. A list
greedy(s, 〈o1, o2, . . . , ok〉) is initialized with a start object s, then it is repeatedly
extended as follows: If t is the last object in the list, then add oi(t) to the end of
the list, where i is the minimum index such that oi(t) is valid and not in the list.
This continues until none of the operations o1, o2, . . . , ok produce a new object.

The binary reflected Gray code is a greedy Gray code: start at s = 0n and
flip the rightmost possible bit [36]. That is, brgc(n) = greedy(0n, 〈f1, f2, . . . , fn〉)
where fi flips bi in bnbn−1 · · · b1 ∈ Bn. For example, the order for n = 4 begins

brgc(4) = 0000, 0001, 0011, 0010, (3)

To continue (3) we consider applying the bit-flips to the current last object
t = 0010. We can’t flip its right bit since f1(t) = f1(0010) = 0010 = 0011 is
already in the list. Similarly, f2(t) = f2(0010) = 0010 = 0000 is also in the list.
But f3(t) = f3(0010) = 0010 = 0110 is not in the list, so it is the next string.

Plain changes is also greedy: start at s = 12 · · · n and swap the largest possible
value left or right [36]. That is, plain(n) = greedy(12 · · · n, 〈←−sn,−→sn, . . . ,←−s2 ,−→s2〉)5
where ←−sv and −→sv swap value v to the left and right, respectively, when applied
to any member of Sn. For example, the order for n = 4 begins

plain(4) = 12
←−
34, 1

←−
243,

←−
1423, 41

←−
23,

−→
4132, 1

−→
432, 13

−→
42, 1324, (4)

We can’t apply ←−s4 to t = 1324 since ←−s4(1324) = 13
←−
24 = 1342 is already in the list.

Nor can we apply the next highest-priority operation −→s4 as −→s4(1324) is invalid.
But ←−s3(t) =

←−
1324 = 3124 is not in the list, so it is the next permutation. Plain

change’s greedy formula also holds when the swaps are replaced by jumps (i.e.,
values can only be swapped over smaller values) and with ←−s1 and −→s1 omitted [12].
4 Physically, a ribbon moves above or below its neighbor, but that is not relevant here.
5 ←−s1 and −→s1 are omitted as they equal other swaps. In fact, the swaps are all jumps [12].

Generating Signed Permutations by Twisting Two-Sided Ribbons 119

Reflecting BRGC and Plain Changes. Interestingly, if either of the previous
two greedy algorithms is started from their final object, then the entire order is
reflected. For example, if s = 1000 is chosen in Fig. 2, or s = 2134 is chosen in
Fig. 3, then the greedy algorithms generate the objects from right-to-left. This
is in part explained by their palindromic change sequences (see Sect. 4).

Lemma 1. greedy(10n−1, 〈f1, f2, . . . , fn〉) = reflect(brgc(n)).

Lemma 2. greedy(2134 · · · n, 〈←−sn,−→sn,←−−sn−1,
−−→sn−1, . . . ,

←−s2 ,−→s2 , 〉)
= reflect(plain(n)).

3 A Signed Plain Change Order: Twisted Plain Changes

Now we present a greedy solution to generating a signed plain change order.

Definition 1. Twisted plain changes twisted(n) is the signed permutation order
visited by Algorithm 1. It starts with s = +1+2 · · · +n ∈ S±

n and prioritizes 2-
twists of the largest possible value then 1-twists of the largest possible value. That
is, greedy(s, 〈←−tn,

−→
tn,

←−
tn−1,

−→
tn−1, . . . ,

←−
t2,

−→
t2, tn, . . . , t2, t1〉), where ←−

tv and −→
tv

2-twist value v left or right, and tv 1-twists value v (i.e., v’s sign is flipped).

Algorithm 1. Greedy algorithm for generating twisted plain changes twisted(n).
1: procedure Twisted(n) � Signed permutations are visited in twisted(n) order
2: T ← ←−

tn,
−→
tn,

←−
tn−1,

−→
tn−1, . . . ,

←−
t2,

−→
t2, tn, . . . , t2, t1 � List 2-twists then 1-twists

3: π ← +1 +2 · · · +n � Starting signed permutation s = π ∈ S±
n

4: visit(π) � Visit π for the first and only time
5: S = {π} � Add π to the visited set
6: i ← 1 � 1-based index into T ; T [1] =

←−
tn will 2-twist n left

7: while i ≤ 3n − 2 do � Index i iterates through the 3n − 2 twists in T
8: π′ ← T [i](π) � Apply the ith highest priority twist to create π′

9: if π′ /∈ S then � Check if π′ is a new signed permutation
10: π ← π′ � Update the current signed permutation π
11: visit(π) � Visit π for the first and only time
12: S = S ∪ {π} � Add π to the visited set
13: i ← 1 � Reset the 1-based index into T
14: else
15: i ← i + 1 � If π′ ∈ S, then consider the next twist

···
1 1 1 �4 �4 1 1 1 3 3 3 �4 �4 3 3 3 �2 �2 �2 �4 �4 �2 �2 �2 �2
2 2 4 �1 �1 4 �3 �3 �1 �1 4 �3 �3 4 2 2 �3 �3 4 2 2 4 �1 �1 �1
3 �4 �2 �2 3 3 �4 �2 �2 �4 1 1 �2 �2 �4 1 1 �4 3 3 1 1 �4 3 3
4 �3 �3 �3 2 2 2 4 4 2 2 2 �1 �1 �1 4 4 �1 �1 �1 �3 �3 �3 4 �4

Fig. 4. Twisted plain changes twisted(n) for n = 4 up to its 25th entry.

120 Y. Qiu and A. Williams

For example, our twist Gray code for n = 4 begins as follows

twisted(4) = 12
←−
34, 1

←−
243,

←−
1423,41

←−
23,

−→
4132, 1

−→
432, 13

−→
42, 1324, (5)

with bold for negatives and arrows for twists. To continue the order note that←−
t4(t) = ←−

t4(1324) = 13
←−
24 = 1342 is already in the list and −→

t4(t) is invalid. But←−
t3(t) = ←−

t3(1324) =
←−
1324 = 3124 is new, so it is the next signed permutation.

Figure 4 shows the start of twisted(n) for n = 4. Note that the first 24 entries
are obtained by 2-twists. The result is a familiar zig-zag pattern, but with every
ribbon turning over during each pass. The 25th entry is obtained by a 1-twist.

3.1 2-Twisted Permutohedron and Signed Permutohedra

At this point it is helpful to compare the start of plain changes and twisted plain
changes. The permutohedron of order n is a graph whose vertices are permuta-
tions Sn and whose edges join two permutations that differ by a swap. Plain
changes traces a Hamilton path in this graph, as illustrated in Fig. 5a.

Now consider signing each vertex p1p2 · · · pn in the permutohedron as follows:

pj = i is positive if and only if i ≡ j mod 2. (6)

In particular, the permutation 12 · · · n is signed as +1+2 · · · +n due to the fact
that odd values are in odd positions, and even values are in even positions. One
way of interpreting (6) is that swapping a symbol changes its sign. Thus, after
this signing, the edges in the resulting graph model 2-twists instead of swaps.
For this reason, we refer to the graph as a 2-twisted permutohedron of order n.

Since twisted plain changes prioritizes 2-twists before 1-twists, the reader
should be able to conclude that twisted(n) starts by creating a Hamilton path
in the 2-twisted permutohedron. This is illustrated in Fig. 5b.

Fig. 5. The (a) permutohedron and (b) 2-twisted permutohedron for n = 4.

Generating Signed Permutations by Twisting Two-Sided Ribbons 121

In general, there are 2n signed permutohedron of order n. Each signed permu-
tohedron contains n! vertices, including a single signing of the vertex 12 · · · n, and
edges for every possible 2-flip. In particular, the 2-twisted permutohedron is the
signed permutohedron with vertex +1+2 · · · +n (i.e., 12 · · · n is fully positive).

3.2 Global Structure

Our greedy approach can be verified to work for small n. To prove that it works
for all n we need to deduce the global structure of the order that is created.
We’ll see that the order navigates through successive signed permutohedron.

Theorem 1. Algorithm 1 visits a twist Gray code of signed permutations.
That is, twisted(n) = greedy(s, 〈←−tn,

−→
tn,

←−
tn−1,

−→
tn−1, . . . ,

←−
t2,

−→
t2, tn, . . . , t2, t1〉)

orders S±
n .

Proof. Since 2-twists are prioritized before 1-twists, the algorithm proceeds in
the same manner as plain changes, except for the signs of the visited objects.
As a result, it generates sequences of n! signed permutations using 2-twists until
a single 1-twist is required. One caveat is that the first signed permutation in
a sequence alternates between having the underlying permutation of 1234 · · · n
or 2134 · · · n. This is due to the fact that plain changes starts at 1234 · · · n and
ends at 2134 · · · n and swaps 12 to 21 one time. As a result, 12 will be inverted
while traversing every second sequence of length n!, and these traversals will be
done in reflected plain changes order by Lemma 2. More specifically, the order
generated by the algorithm appears in Fig. 6, with an example in Fig. 7. �	

Fig. 6. The global structure of twisted plain changes. Each row greedily applies 2-twists
to the largest possible symbol, thus following plain changes. At the end of a row, no
2-twist can be applied, and the down arrows greedily 1-twist the largest possible sym-
bol. The rows alternate left-to-right and right-to-left (i.e., in boustrophedon order) by
Lemma 2 The leftmost column contains 12 · · · n signed according to successive strings
in the binary reflected Gray code. The overall order is cyclic as a 1-twist on value 1
transforms the last entry into the first.

122 Y. Qiu and A. Williams

Fig. 7. Our twisted(4) order begins by traversing the above signed permutohedron,
starting from the 2-twisted permutohedron on the left. Straight lines are the edges of a
signed permutohedron (i.e., every possible 2-twist). Curved edges are 1-twists between
the vertices shown, and they connect two signed permutohedron. Highlighted edges are
used by the greedy algorithm: green subpaths start at a signed 1234 · · · n vertex and
proceed in plain changes; red subpaths start at a signed 2134 · · · n vertex and proceed
in reflected plain changes.

Theorem 1’s proof can be used toward a CAT implementation of twisted(n).
We’ll instead develop a loopless implementation of twisted(n) in Sects. 4–5.

4 Ruler Sequences

Here we consider integer sequences called ruler sequences. The sequences are
named after the tick marks on rulers and tape measures whose heights follow
the decimal ruler sequence ruler(10, 10, . . . , 10). They are central to Algorithm 2
in Sect. 5, and relate twisted(n) to other Gray codes and lexicographic orders.

4.1 Ruler Sequences, Mixed-Radix Words, and Lexicographic
Orders

The ruler sequence with bases bn, bn−1, . . . , b1 can be inductively defined as fol-
lows, where commas join sequences, and exponentiation denotes repetition.

ruler(b1) = 1b1−1 = 1, 1, . . . , 1 (i.e., b1 − 1 copies) (7)

ruler(bn, bn−1, . . . , b1) = (s, n)bn−1, s where s = ruler(bn−1, bn−2, . . . , b1) (8)

Hence, ruler(5, 3) = 1,1,2,1,1,2,1,1,2,1,1,2,1,1 = (s, 2)4, s since s = ruler(3) = 1, 1.
The length of the ruler sequence is |ruler(bn, bn−1, . . . , b1)| = (

∏n
i=1 bi) − 1.

Bases can also be used to define the set of mixed-radix words Wbn,bn−1,...,b1 ,
where wn · · · w2w1 is in the set if its digits satisfy 0 ≤ wi < bi for 1 ≤ i ≤ n. The
number of these words is |Wbn,bn−1,...,b1 | =

∏n
i=1 bi = |ruler(bn, bn−1, . . . , b1)|+1.

When mixed-radix words are written in lexicographic order, the ruler
sequence is its change sequence. Each ruler entry is the number of digits that

Generating Signed Permutations by Twisting Two-Sided Ribbons 123

“roll over” to create the next word. In particular, the binary ruler sequence
ruler(2, 2, . . . , 2) (Oeis A001511 [23]) gives the suffix lengths of the form 011 · · · 1
that change to 100 · · · 0 when counting in binary. This is shown below for n = 3.

lex(B3) = 000, 001, 010, 011, 100, 101, 110, 111 since ruler(2, 2, 2) = 1, 2, 1, 3, 1, 2, 1

The upstairs ruler sequence ruler(1, 2, . . . , n) (Oeis A235748) arises when listing
upstairs words W1,2,...,n, and the downstairs ruler sequence ruler(n, n−1, . . . , 1)
(Oeis A001511) arise when listing downstairs words Wn,n−1,...,1. The start of
these factorial patterns are below for n = 4 with full signed versions in Table 1.

lex(W1,2,3,4) = 1111,1112,1113,1121,1122,1123,1211,... as ruler(1,2,3,4) = 1,1,2,1,1,3,...

lex(W4,3,2,1) = 1111,1121,1211,1221,1311,1321,2111,... as ruler(4,3,2,1) = 2,3,2,3,2,4,...

Note that the unary bases bn = 1 (which never changes) and b1 = 1 (which
always rolls over to itself) are often omitted from these patterns.

Ruler sequences provide change sequences for various Gray codes, including
some from Sect. 1. The downstairs sequence gives the flip lengths in Zaks’ order
as seen in Table 1. Corbett’s order uses the upstairs sequence but subtly [36].
Other change sequences are more fully understood as signed ruler sequences.

4.2 Signed Ruler Sequences and (Reflected) Gray Codes

We define the signed ruler sequence ruler± as ruler with some entries negated.
The overlines complement the sign of each entry, and the R reverses a sequence.

ruler ± (b1) = 1b1−1 = 1, 1, . . . , 1 (i.e., b1 − 1 copies) (9)

ruler ± (bn,bn−1, . . . ,b1) =

{
(s, n, sR, n)bn/2, s if bn is odd
(s, n, sR, n)(bn−1)/2, s, n, s if bn is even

(10)

where s = ruler±(bn−1, bn−2, . . . , b1). Note that the subsequence s is repeated bn
times in (10) just as in (8), but every second subsequence is complemented6. For
example, ruler± (3) = 1, 1 so ruler± (4, 3) = 1, 1, 2,−1,−1, 2, 1, 1, 2,−1,−1. The
specific sequences (and associated orders) discussed below are shown in Table 1.

Signed ruler sequences govern reflected mixed-radix Gray codes, which gener-
alize (1) to non-binary bases b = bn, bn−1, . . . , b1 by reflecting every 2nd sublist,

mix(b) =

⎧
⎪⎨

⎪⎩

0, 1, . . . , b1−1 if n = 1
0 · mix(b′), 1 · reflect(b′), . . . , (bn−1) · mix(b′) odd n > 1
0 · mix(b′), 1 · reflect(b′), . . . , (bn−1) · reflect(mix(b′)) even n > 1

where b′ = bn−1, bn−2, . . . , b1. The entries of ruler ± (b) specify how to change
wnwn−1 · · · w1 ∈ Wb into the next word: increment wj for +j; decrement wj

for −j. The orders are also greedy: increment or decrement the rightmost digit.

6 Unsigned ruler sequences are palindromes, so R’s can be added to (8) to mirror (10).

124 Y. Qiu and A. Williams

Table 1. Ruler sequences provide the change sequences of reflected Gray codes of
mixed-radix words, and (greedy) Gray codes of various other objects. The left columns
show that the unsigned downstairs ruler sequence ruler(n, n−1, . . . , 1) is the change
sequence for the up-words W4,3,2,1, and the prefix-reversal lengths (i.e., flip lengths)
in Zaks’ Gray code. The change sequences of the binary reflected Gray code and plain
changes are usually given as unsigned ruler sequences. However, signed versions provide
more information. The middle-left columns show that the signed binary ruler sequence
ruler ± (2, 2, . . . , 2) is the change sequence for brgc(n), with the sign providing the
direction of the flip: +j for bj = 0 = 1 and −j for bj = 1 = 0. Similarly, the middle-right
columns show that the signed upstairs ruler sequence ruler± (1, 2, . . . , n) is the change
sequence for plain(n), with the sign providing the direction of the swap: +j for swapping
x left and −j for swapping x right where x = n−j+1. Our twisted plain change Gray
code twisted(n) uses a signed factorial ruler sequence ruler±(n, n−1, . . . , 2, 1, 2, 2, . . . , 2)
(with the unary 1 omitted). Sequence entries from the factorial and binary portions
give 2-twists and 1-twists, respectively. In particular, the last row in the right columns
is the 1-twist in Fig. 3.

down ruler Zaks ruler± BRGC up ruler± plain up± ruler± twisted

words 4321 p4p3p2p1 2222 b4b3b2b1 words 1234 changes words 22221234 plain

0000 2
←→
1234 +1 0000 000 +1 12

←−
34 0000000 +1 12

←−
34

0010 3
←→
2134 +2 0001 001 +1 1

←−
243 0000001 +1 1

←−
243

0110 2
←→
3124 −1 0011 002 +1

←−
1423 0000002 +1

←−
1423

0100 3
←→
1324 +3 0010 003 +2 41

←−
23 0000003 +2 41

←−
23

0200 2
←→
2314 +1 0110 013 −1

−→
4132 0000013 −1

−→
4132

0210 4
←−→
3214 −2 0111 012 −1 1

−→
432 0000012 −1 1

−→
432

1210 2
←→
4123 −1 0101 011 −1 13

−→
42 0000011 −1 13

−→
42

1200 3
←→
1423 +4 0100 010 +2

←−
1324 0000010 +2

←−
1324

1100 2
←→
2413 +1 1100 020 +1 31

←−
24 0000020 +1 31

←−
24

1110 3
←→
4213 +2 1101 021 +1 3

←−
142 0000021 +1 3

←−
142

1010 2
←→
1243 −1 1110 022 +1

←−
3412 0000022 +1

←−
3412

1000 4
←−→
2143 −3 1110 023 +3 43

←−
12 0000023 +3 43

←−
12

2000 2
←→
3412 +1 1010 123 −1

−→
4321 0000123 −1

−→
4321

2010 3
←→
4312 −2 1011 122 −1 3

−→
421 0000122 −1 3

−→
421

2110 2
←→
1342 −1 1001 121 −1 32

−→
41 0000121 −1 32

−→
41

2100 3
←→
3142 120 −2

−→
3214 0000120 −2

−→
3214

2200 2
←→
4132 110 +1 23

←−
14 0000110 +1 23

←−
14

2210 4
←−→
1432 111 +1 2

←−
341 0000111 +1 2

←−
341

3210 2
←→
2341 112 +1

←−
2431 0000112 +1

←−
2431

3200 3
←→
3241 113 −2 42

−→
31 0000113 −2 42

−→
31

3100 2
←→
4231 103 −1

−→
4213 0000103 −1

−→
4213

3110 3
←→
2431 102 −1 2

−→
413 0000102 −1 2

−→
413

3010 2
←→
3421 101 −1 21

−→
43 0000101 −1 21

−→
43

3000 4321 100 2134 0000100 +5 2134

0001100 · · · 2134

Generating Signed Permutations by Twisting Two-Sided Ribbons 125

The binary reflected Gray code brgc(n) is the special case where the signed
binary sequence ruler ± (2, 2, . . . , 2) (Oeis A164677) gives bit increments and
decrements. More interestingly, plain(n) follows the signed upstairs sequence
ruler ± (1, 2, . . . , n): +j swaps value n−j+1 left; −j swaps value n−j+1 right7.

A signed basis b contains 1, 2, . . . , n plus n copies of 2. Note that |ruler±(b)| =
2nn!−1 = |S±

n |−1. The twisted basis concatenates the signed binary and signed
upstairs bases to give the twisted ruler sequence ruler ± (2, 2, . . . , 2, 1, 2, . . . , n).

Lemma 3. A change sequence for twisted(n) is ruler ± (2, 2, . . . , 2, 1, 2, . . . , n):
+j and −j respectively 2-twist value n−j+1 to the left and right for 1 ≤ |j| ≤ n;
+j and −j respectively 1-twist (flip) value n−j+1 down and up for n < |j| ≤ 2n.

Now we can looplessly generate twisted plain changes twisted(n) by looplessly
generating the twisted ruler sequence ruler±(2,2, . . . ,2,1,2, . . . ,n) and its changes.

5 Loopless Generation of Gray Codes via Ruler
Sequences

The greedy algorithm for twisted(n) in Sect. 2.3 is simple but inefficient. It
requires exponential space, as all previously created objects must be remem-
bered. Fortunately, greedy Gray codes can often be generated without remem-
bering previous objects [21,28,29]. The loopless history-free implementation that
we provide here uses a signed ruler sequence to generate the changes. Loopless
algorithms for non-greedy Gray codes also exist using ruler sequence changes
[8,15].

Algorithm 2 has procedures for generating Gray codes whose changes follow
a ruler sequence with any bases b. The start object is s and the change functions
are in fns. The ruler sequence is generated one entry at a time, and the current
object is updated and visited accordingly. More specifically, if j is the next entry,
then fns[j] is applied to s to create the next object. The pseudocode is adapted
from Knuth’s loopless reflected mixed-radix Gray code Algorithm M [17].

Algorithm 2 can looplessly generate various Gray codes in this paper. As a
simple example, Zaks’ pancake order uses RulerGrayCode with b = 2, 3, . . . , n,
s = 12 · · · n, and fns = ←→r1 ,←→r2 , . . . ,←→rn where ←→ri reverses the prefix of length i.
The brgc(n) can be looplessly generated using RulerGrayCode or RulerGrayCode±.
When generating plain(n) with RulerGrayCode± we maintain the inverse of the
current permutation in order to swap a specific value left or right in O(1)-time.
Maintaining the inverse is also required to looplessly generate our new order.

7 Surprisingly, this sequence is not yet in the Online Encyclopedia of Integer Sequences,
nor is the signed downstairs sequence ruler±(n,n−1,...,2) = ruler±(n,n−1,...,1)−1 =
1, 2, −1, 2, 1, 3, −1, −2, 1, −2, −1, 3, 1, 2, −1, 2, 1, 3, −1, −2, 1, −2, −1, 4,

126 Y. Qiu and A. Williams

Algorithm 2. Generating Gray codes using ruler sequences with bases b. The
fns modify object s and are indexed by the sequence. For example, if b = 3, 2
then RulerGrayCode±(b) visits ruler ± (2, 3) = 1, 1, 2,−1,−1 alongside a Gray
code that starts s and applies fns with indices 1, 1, 2,−1,−1. The signed version
also generates the reflected mixed-radix Gray code mix(b) in a, with the d values
providing ±1 directions of change. So in the previous example the mixed-radix
words 00, 10, 20, 21, 11, 10 are generated in a. Focus pointers are stored in f . The
overall algorithm is loopless if each function runs in worst-case O(1)-time. Note
that the indexing is reversed with respect to Sect. 4 with b = b1, b2, . . . , bn.
Unary bases should be omitted: bi ≥ 2 is required for 0 ≤ i < n.
1: procedure RulerGrayCode(b, s, fns)
2: a1 a2 · · · an ← 0 0 · · · 0
3: f1 f2 · · · fn+1 ← 1 2 · · · n+1
4:
5: visit(s)
6: while f1 ≤ n do
7: j ← f1
8: f1 ← 1
9: aj ← aj + 1

10: s ← fns[j](s)
11: visit(j, s)
12: if aj = bj − 1 then
13: aj ← 0
14: fj ← fj+1

15: fj+1 ← j + 1

1: procedure RulerGrayCode±(b, s, fns)
2: a1 a2 · · · an ← 0 0 · · · 0
3: f1 f2 · · · fn+1 ← 1 2 · · · n+1
4: d1 d2 · · · dn ← 1 1 · · · 1
5: visit(s)
6: while f1 ≤ n do
7: j ← f1
8: f1 ← 1
9: aj ← aj + dj

10: s ← fns[dj · j](s)
11: visit(dj · j, s)
12: if aj ∈ {0, bj − 1} then
13: dj ← −dj

14: fj ← fj+1

15: fj+1 ← j + 1

Theorem 2. Twisted plain changes twisted(n) and its change sequence are gen-
erated looplessly by RulerGrayCode±(b, s, fns) with twisted bases b, the positive
identity permutation s ∈ S±

n , and the change functions fns given in Lemma 3.

6 Final Remarks

Alternate Gray codes for signed permutations can be generated using other
signed ruler sequences, and some of these generalize to colored permuta-
tions [25]. For additional new results involving greedy Gray codes see Merino
and Mütze [20].

Open question: Does S±
n have a doubly-adjacent Gray code [2] using twists?

We thank the reviewers for their helpful comments, proofreading, and debugging.

Generating Signed Permutations by Twisting Two-Sided Ribbons 127

A Python Implementation

A loopless implementation of our signed plain change order twisted(n) in Python 3.
Entries in the twisted ruler sequence ruler±(n, n−1, . . . , 2, 1, 2, 2, . . . , 2) select the
2-twist or 1-twist (i.e., flip) to apply8. Programs are available online [37].

Flip sign of value v in signed permutation p with unsigned inverse q

def flip(p, q, v): # with 1-based indexing, ie p[0] and q[0] are ignored.

p[q[v]] = -p[q[v]]

return p, q

2-twists value v to the left / right using delta = -1 / delta = 1

def twist(p, q, v, delta): # with 1-based indexing into both p and q.

pos = q[abs(v)] # Use inverse to get the position of value v.

u = p[pos+delta] # Get value to the left or right of value v.

p[pos], p[pos+delta] = -p[pos+delta], -p[pos] # Twist u and v.

q[abs(v)], q[abs(u)] = pos+delta, pos # Update unsigned inverse.

return p, q # Return signed permutation and its unsigned inverse.

Generate each signed permutation in worst-case O(1)-time.

def twisted(n):

m = 2*n-1 # The mixed-radix bases are n, n-1, ..., 2, 1, 2,..., 2

bases = tuple(range(n,1,-1)) + (2,) * n # but the 1 is omitted.

word = [0] * m # The mixed-radix word is initially 0^m.

dirs = [1] * m # Direction of change for digits in word.

focus = list(range(m+1)) # Focus pointers select digits to change.

flips = [lambda p,q,v=v: flip(p,q,v) for v in range(n,0,-1)]

twistsL = [lambda p,q,v=v: twist(p,q,v,-1) for v in range(n,1,-1)]

twistsR = [lambda p,q,v=v: twist(p,q,v, 1) for v in range(n,1,-1)]

fns = [None] + twistsL + flips + flips[-1::-1] + twistsR[-1::-1]

p = [None] + list(range(1,n+1)) # To use 1-based indexing we set

q = [None] + list(range(1,n+1)) # and ignore p[0] = q[0] = None.

yield p[1:] # Pause the function and return signed permutation p.

while focus[0] < m: # Continue if the digit to change is in word.

index = focus[0] # The index of the digit to change in word.

focus[0] = 0 # Reset the first focus pointer.

word[index] += dirs[index] # Adjust the digit using its direction.

change = dirs[index] * (index+1) # Note: change can be negative.

if word[index] == 0 or word[index] == bases[index]-1: # If the

focus[index] = focus[index+1] # mixed-radix word’s digit is at

focus[index+1] = index+1 # its min or max value, then update

dirs[index] = -dirs[index] # focus pointers, change direction.

p, q = fns[change](p, q) # Apply twist or flip encoded by change.

yield p[1:]

Demonstrating the use of our twisted function for n = 4.

for p in twisted(4): print(p) # Print all 2^n n! signed permutations.

8 Negative indices give right-to-left access in Python. So the ruler entry -1 selects the
last function fns[-1] = twist(p,q,n,1) (i.e., 2-twist n right). Notes: v=v is for bind-
ing; slice notation [-1::-1] reverses a list; indices are reversed from Sect. 4.

128 Y. Qiu and A. Williams

References

1. Cameron, B., Sawada, J., Therese, W., Williams, A.: Hamiltonicity of k-sided pan-
cake networks with fixed-spin: efficient generation, ranking, and optimality. Algo-
rithmica 85(3), 717–744 (2023)

2. Compton, R.C., Gill Williamson, S.: Doubly adjacent Gray codes for the symmetric
group. Linear Multilinear Algebra 35(3–4), 237–293 (1993)

3. Corbett, P.F.: Rotator graphs: an efficient topology for point-to-point multipro-
cessor networks. IEEE Trans. Parallel Distrib. Syst. 3(5), 622–626 (1992)

4. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks. Morgan Kaufmann,
Burlington (2003)

5. Duckworth, R., Stedman, F.: Tintinnalogia: Or, The Art of Ringing. London (1668)
6. Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and

other combinatorial configurations. J. ACM 20(3), 500–513 (1973)
7. Fertin, G., Labarre, A., Rusu, I., Vialette, S., Tannier, E.: Combinatorics of

Genome Rearrangements. MIT Press, Cambridge (2009)
8. Ganapathi, P., Chowdhury, R.: A unified framework to discover permutation gen-

eration algorithms. Comput. J. 66(3), 603–614 (2023)
9. Gardner, M.: Curious properties of the Gray code and how it can be used to solve

puzzles. Sci. Am. 227(2), 106 (1972)
10. Gray, F.: Pulse code communication. United States Patent Number 2632058 (1953)
11. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algo-

rithm for sorting signed permutations by reversals. In: Proceedings of the 27th
Annual ACM Symposium on Theory of Computing (STOC 1995), pp. 178–189.
ACM (1995)

12. Hartung, E., Hoang, H., Mütze, T., Williams, A.: Combinatorial generation via
permutation languages. I. fundamentals. Trans. Am. Math. Soc. 375(04), 2255–
2291 (2022)

13. Heath, F.: Origins of the binary code. Sci. Am. 227(2), 76–83 (1972)
14. Hindenburg, C.F.: Sammlung combinatorisch-analytischer Abhandlungen, vol. 1.

ben Gerhard Fleischer dem Jungern (1796)
15. Holroyd, A.E., Ruskey, F., Williams, A.: Shorthand universal cycles for permuta-

tions. Algorithmica 64, 215–245 (2012)
16. Johnson, S.M.: Generation of permutations by adjacent transposition. Math. Com-

put. 17(83), 282–285 (1963)
17. Knuth, D.E.: Art of Computer Programming, Volume 4, Fascicle 4, The: Gen-

erating All Trees-History of Combinatorial Generation. Addison-Wesley, Boston
(2013)

18. Korsh, J., LaFollette, P., Lipschutz, S.: A loopless implementation of a Gray code
for signed permutations. Publications de l’Institut Mathematique 89(103), 37–47
(2011)

19. Liptak, Z., Masillo, F., Navarro, G., Williams, A.: Constant time and space updates
for the sigma-tau problem. In: Nardini, F.M., Pisanti, N., Venturini, R. (eds.)
SPIRE 2023. LNCS, vol. 14240, pp. 323–330. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-43980-3 26

20. Merino, A., Mutze, T.: Traversing combinatorial 0/1-polytopes via optimization.
In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 1282–1291 (2023)

21. Merino, A., Mutze, T., Williams, A.: All your bases are belong to us: listing all
bases of a matroid by greedy exchanges. In: 11th International Conference on Fun

https://doi.org/10.1007/978-3-031-43980-3_26
https://doi.org/10.1007/978-3-031-43980-3_26

Generating Signed Permutations by Twisting Two-Sided Ribbons 129

with Algorithms (FUN 2022), vol. 226, p. 22. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2022)

22. Mütze, T.: Combinatorial Gray codes-an updated survey. arXiv preprint
arXiv:2202.01280 (2022)

23. OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2023).
http://oeis.org

24. Ord-Smith, R.: Generation of permutation sequences: part 1. Comput. J. 13(2),
152–155 (1970)

25. Qiu, Y.F.: Greedy and speedy: new iterative gray code algorithms. Bachelor’s the-
sis, Williams College (2024)

26. Ruskey, F.: Combinatorial generation. Preliminary working draft. University of
Victoria, Victoria, BC, Canada 11, 20 (2003)

27. Savage, C.: A survey of combinatorial Gray codes. SIAM Rev. 39(4), 605–629
(1997)

28. Sawada, J., Williams, A.: Greedy flipping of pancakes and burnt pancakes. Discret.
Appl. Math. 210, 61–74 (2016)

29. Sawada, J., Williams, A.: Successor rules for flipping pancakes and burnt pancakes.
Theoret. Comput. Sci. 609, 60–75 (2016)

30. Sedgewick, R.: Permutation generation methods. ACM Comput. Surv. (CSUR)
9(2), 137–164 (1977)

31. Steinhaus, H.: One hundred problems in elementary mathematics. Courier Corpo-
ration (1979)

32. Stigler, S.M.: Stigler’s law of eponymy. Trans. New York Acad. Sci. 39(1 Series
II), 147–157 (1980)

33. Suzuki, Y., Sawada, N., Kaneko, K.: Hamiltonian cycles and paths in burnt pancake
graphs. In: Proceedings of the ISCA 18th International Conference on Parallel and
Distributed Computing Systems, pp. 85–90 (2005)

34. Trotter, H.F.: Algorithm 115: perm. Commun. ACM 5(8), 434–435 (1962)
35. Williams, A.: O(1)-time unsorting by prefix-reversals in a boustrophedon linked

list. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 368–379.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6 35

36. Williams, A.: The greedy Gray code algorithm. In: Dehne, F., Solis-Oba, R., Sack,
J.R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 525–536. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40104-6 46

37. Williams, A.: Signed-plain-changes (2024). https://gitlab.com/combinatronics/
signed-plain-changes

38. Zaks, S.: A new algorithm for generation of permutations. BIT Numer. Math.
24(2), 196–204 (1984)

http://arxiv.org/abs/2202.01280
http://oeis.org
https://doi.org/10.1007/978-3-642-13122-6_35
https://doi.org/10.1007/978-3-642-40104-6_46
https://gitlab.com/combinatronics/signed-plain-changes
https://gitlab.com/combinatronics/signed-plain-changes

A BWT-Based Algorithm for Random de
Bruijn Sequence Construction

Zsuzsanna Lipták1(B) and Luca Parmigiani2

1 Dipartimento di Informatica, University of Verona, Verona, Italy
zsuzsanna.liptak@univr.it

2 Center for Biotechnology, Bielefeld University, Bielefeld, Germany

Abstract. A binary de Bruijn sequence (dB sequence) of order k is a
circular binary string that contains each k-length word exactly once as a
substring. Most existing algorithms construct a specific dB sequence, or
members of a specific class of dB sequences, representing only a tiny frac-
tion of the complete set. The only algorithms capable of generating all dB
sequences are based on finding Euler cycles in de Bruijn graphs. Here, we
present an algorithm for constructing random binary dB sequences which
uses the extended Burrows-Wheeler Transform. Our method is simple to
implement (less than 120 lines of C++ code) and can produce random dB
sequences of any order. Even though it does not output dB sequences
uniformly at random, it provably outputs each dB sequence with positive
probability. The algorithm runs in linear space and near-linear time in
the length of the dB sequence and needs less than one second on a lap-
top computer for orders up to 23, including outputting the sequence. It
can be straightforwardly extended to any constant-size alphabet. To the
best of our knowledge, this is the first practical algorithm for generating
random dB sequences which is capable of producing all dB sequences.
Apart from its immediate usefulness in contexts where it is desirable to
use a dB sequence that cannot be guessed easily, we also demonstrate
our algorithm’s potential in theoretical studies, giving hitherto unknown
estimates of the average discrepancy of binary dB sequences. The code
is available (in C++ and python) at https://github.com/lucaparmigiani/
rnd dbseq.

Keywords: De Bruijn sequence · Burrows-Wheeler Transform ·
extended BWT · random generation · spanning tree · standard
permutation · Lyndon words

1 Introduction

A binary de Bruijn sequence of order k (or dB sequence) is a circular binary
string in which every k-length string occurs exactly once as a substring. For
example, aabb, aaababbb, aaaabbababbbbaab are dB sequences of order 2, 3,
and 4 respectively, and the following is a dB sequence of order 8:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 130–145, 2024.
https://doi.org/10.1007/978-3-031-55598-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_9&domain=pdf
http://orcid.org/0000-0002-3233-0691
http://orcid.org/0000-0002-2139-3259
https://github.com/lucaparmigiani/rnd_dbseq
https://github.com/lucaparmigiani/rnd_dbseq
https://doi.org/10.1007/978-3-031-55598-5_9

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 131

aaaaaaaabbbbbbbbaabbbaaaabaababaababbbaaababababbaabaaaabbbabaaaab
abbaaaabbaaaaabbabaabbbbaaabbbaabbaabababbbbaabaabbabbaabbababbabb
abbbabbaaabaaaaabaaabbbbabbbaababbabaaabaabbbabbbbabaabaabaaababbb
bbabbababaabbaaabbabbbbbbababbbabababaaabbaabbbbbaaaaaabab

It is well known that there exist 22
k−1−k distinct binary dB sequences of

order k [7]. De Bruijn sequences are among the best studied families of binary
strings, due to their multitudinous applications, in particular as pseudo-random
number generators, for bias-free experiment setup [9,26], cryptographic proto-
cols [20,29], and computational biology [2,3,24], to name just a few. Accordingly,
much research effort has gone into constructing them, and many construction
algorithms exist; however, most construct a particular dB sequence, such as the
lex-least dB sequence, or some very restricted class of dB sequences, in par-
ticular, dB sequences that stem from linear feedback shift registers based on
primitive polynomials (LFSRs). But only a tiny fraction of all dB sequences are
LFSRs. To get an idea, in Table 1, we compare the number of LFSRs to the total
number of dB sequences, for small values of k.

Table 1. Number of de Bruijn sequences generated by LFSRs vs. the total number,
for some small values of k. Values in last row for k ≥ 7 are approximate.

k 4 5 6 7 10 15 20

#LFSRs 2 6 6 18 60 1 800 24 000

#dbseqs 16 2048 67 108 864 1.44 · 1017 1.3 · 10151 3.63 · 104927 2.47 · 10157820

In this paper, we present a simple and practical random dB sequence con-
struction algorithm that is able to produce all dB sequences. It is based on an
insight regarding the Burrows-Wheeler Transform (BWT [4]) of dB sequences,
due to Higgins [16]. Higgins introduced a generalization of dB sequences, called
de Bruijn sets, and proved that these are exactly the preimages of certain type
of strings under the extended BWT (eBWT) of Mantaci et al. [21]. We connect
this result with the swap method of [14] to manipulate the eBWTs of strings,
and employ it to produce a dB sequence, starting from a random bitstring.

Our approach turns out to be similar to the so-called cycle-joining [18,30], in
a new guise, and applied in a more general manner. To the best of our knowledge,
this is the first time that the connection between cycle-joining and the eBWT
has been made. Moreover, the insights of [16] on the eBWT of dB sequences
have not been previously used to generate dB sequences, even less to generate
random dB sequences. Our algorithm is simple, easy to implement, and runs in
near-linear time and linear space in the length of the dB sequence. Additionally,
it can be straightforwardly adapted to any constant-size alphabet. This is the
first practical algorithm able to generate all dB sequences. An implementation,
in C++ (less than 120 lines) and python, for binary as well as general alphabets,
can be found at https://github.com/lucaparmigiani/rnd dbseq.

https://github.com/lucaparmigiani/rnd_dbseq

132 Z. Lipták and L. Parmigiani

1.1 Related Work

There are many algorithms for constructing dB sequences in the literature,
see [11] for a classic survey, or the introductions of e.g. [12,13,30] for more
recent ones. Many of these constructions are described, and some implemented,
at debruijnsequence.org [25]; most use only O(k) space, i.e. logarithmic in the
output size.1 None of these algorithms, except those based on generating Euler
cycles in de Bruijn graphs, are capable of generating all dB sequences. This is
important because it may explain why there appear to be no efficient algorithms
for random dB sequence generation: adding randomization to one of these con-
struction algorithms will not produce a random generator capable of producing
any dB sequence.

One reason why much of the research has been restricted to algorithms that
require O(k) space is that the length of a dB sequence of order k is n = 2k, i.e.
exponential in k. Thus, when dB sequences with large order are sought, one may
not be able to afford to store the entire sequence. Further, many construction
algorithms stand in the tradition of feedback shift register sequences, which use
k binary memory cells and a feedback function f : GF (2)k → GF (2), which,
from the current state of the cells, determines the next bit. When f is a linear
function based on a primitive polynomial, then the resulting sequence is a so-
called m-sequence, a dB sequence without the substring 0k; adding a 0 in the
right place will produce a dB sequence. These special dB sequences are called
LFSRs. They can be produced in O(k) space and O(k) time per bit, but have
the drawback that after only 2k bits, the underlying function can be determined
by an adversary. For more on shift registers, see the classic book by Golomb [15].

In many real-life situations, such as experimental setup or computational
biology applications, orders up to k = 20 or so are amply sufficient. In these
situations, a truly random dB sequence would be preferable, chosen from the
vast set of all dB sequences. However, no such algorithm appears to be available,
so users have to turn to naive implementations of finding Euler cycles [9,28].

The fact that it is only possible to generate such a small subset of all de Bruijn
sequences also leads to a knowledge gap, since we simply do not know much about
other dB sequences. This point is argued in [24], where dB sequences are used for
the specific purpose of designing microarrays: “[. . .] only a small fraction of de
Bruijn sequences correspond to sequences generated by an LFSR, and the utility
of such non-LFSR-generated de Bruijn sequences remains largely unexplored.
[. . .] there may be additional desirable properties of de Bruijn sequences that
we have not yet considered, and for which LFSRs might not be optimal.”

The only construction algorithms that can generate all de Bruijn sequences
are those that construct an Euler cycle in the de Bruijn graph, such as Fleury’s
algorithm [10]. Fleury’s algorithm uses a spanning tree of the de Bruijn graph,
which is used to define the last edge to be used for each vertex. There is a one-to-
one-correspondence between spanning in-trees and binary de Bruijn sequences,
1 Note that in this tradition, an algorithm which runs in time and space O(n) is

considered exponential, since it is exponential in k; however, if one wants to output
or even store the sequence, then it is de facto optimal.

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 133

so choosing a spanning tree uniformly at random would result in a uniformly
random dB sequence. Unfortunately, the fastest algorithms for random spanning
tree construction run in superquadratic time in the number of vertices [5,8],
which in our case is 2k−1 = n/2, where n is the length of the dB sequence.

Our method differs from previous work using the so-called cycle-joining [18,
30] in at least two important ways: One, we (conceptually) start from any cycle
cover of the de Bruijn graph, and not a specific one such as the pure cycle transi-
tion. Two, when joining cycles, we choose from all intersecting nodes, and do not
restrict ourselves to specific ones (such as the ‘representatives’ of Jansen [18]).

2 The Burrows-Wheeler Transform of a dB Sequence

A binary string is a finite sequence of elements from the alphabet {a, b}. We
index strings from 0, denote the ith character of t by ti, and its length by |t|.
String u is a substring of string t if t = xuy for some strings x, y; u is called a
prefix of t if x is empty, and a suffix of t if y is empty. The notation ui = u · · · u
denotes the i-fold concatenation of string u, also called a power when i > 1. A
string t is called primitive if it is not a power, i.e. if t = ui implies u = t and
i = 1. Two strings u, v are conjugates (or rotations) if there exist words x, y such
that u = xy and v = yx. A string is called a necklace if it is lexicographically
smaller or equal to all of its rotations, and a Lyndon word if it is strictly smaller
than all of its rotations. Every necklace t can be written uniquely as t = ud for
some d ≥ 1 and some Lyndon word u. We use distH(s, t) to denote the Hamming
distance between two equal-length strings s and t.

A circular string is an equivalence class of its conjugates. Often, a circular
string is simply viewed as a linear string which is read circularly. A substring of
a circular string is a substring of any of the conjugates.

The Burrows-Wheeler Transform (BWT) [4] of a primitive string t is a per-
mutation of the characters of t, defined as the concatenation of the last columns
of a matrix, the so-called BW-matrix, which contains all of t’s rotations in lexico-
graphic order. Thus, if s is the BWT of t, then si is the last character of the i’th
rotation of t in lexicographic order, see Fig. 1 (left and middle). It follows from the
definition that the BWT is invariant w.r.t. conjugacy. In fact, bwt(t) = bwt(t′)
if and only if t and t′ are conjugates, i.e., the BWT is unique up to rotation;
moreover, it is reversible in linear time in the length of the string [22].

Given a string s, its standard permutation [23] πs is defined by: πs(i) < πs(j)
if si < sj , or si = sj and i < j.2 For example, the standard permutation of
s = baabbaba is πs = (0 1 2 3 4 5 6 7

4 0 1 5 6 2 7 3) = (0, 4, 6, 7, 3, 5, 2, 1), where we give both
the two-line and the cycle notation of πs. For a permutation π, we denote the
number of its cycles by c(π). It is a well-known fact that a string s is the BWT
of some primitive string t if and only if πs is cyclic, i.e. if c(πs) = 1 [19]. In
this case, baabbaba = bwt(aaababbb). Given πs, such a t can be computed as
follows: start with tn−1 = s0, and list the characters of t back to front, using

2 The standard permutation is also called LF-mapping if s is the BWT of some string.

134 Z. Lipták and L. Parmigiani

tn−j−1 = sπj
s(0)

. In general, data structures for fast rank-queries, such as wavelet
trees, are needed to compute πs(j) efficiently [22].

Mantaci et al. [21] introduced the extended BWT (eBWT), which generalizes
the BWT to multisets. The eBWT of a multiset of primitive strings M consists
of the concatenation of the last characters of the conjugates of the strings in M,
taken in ω-order. The ω-order <ω is defined based on the infinite concatenation
tω = t · t · t · · · , as follows: t <ω s if either tω <lex sω, or there is a string u such
that t = ui, s = uj , and i < j (in this case, tω = sω). See Fig. 1 (right) for an
example. Again, ebwt(M) is a permutation of the characters of the strings in M.
Similarly to the BWT, the eBWT is unique up to rotation, and the number and
length of the strings in M corresponds to the number and length of the cycles of
the standard permutation of the string ebwt(M) [21]. For example, πabbababa =
(0 1 2 3 4 5 6 7
0 4 5 1 6 2 7 3) = (0)(1, 4, 6, 7, 3)(2, 5), and abbababa = ebwt({a, aabbb, ab}).

Every string is the eBWT of some multiset M. Note that if M is a singleton,
then eBWT and BWT conincide: ebwt({t}) = bwt(t).

a dB seq. of order 3
aaababbb

rotations bwt
aaababbb b

aababbba a

ababbbaa a

abbbaaab b

baaababb b

babbbaaa a

bbaaabab b

bbbaaaba a

a string of length 23

ababbaab

rotations bwt
aabababb b

abababba a

ababbaab b

abbaabab b

baababab b

bababbaa a

babbaaba a

bbaababa a

a dB set of order 3
{a,ab,aabbb}

rotations ebwt
a a

aabbb b

ab b

abbba a

baabb b

ba a

bbaab b

bbbaa a

Fig. 1. The BW-matrices of the order-3 dB sequence aaababbb (left), of a binary string
of the same length (center), and the order-3 dB-set {a,ab,aabbb} (right).

Higgins [16] introduced de Bruijn sets, which are a generalization of dB
sequences. We give the definition restricted to binary, and adjusting terminol-
ogy:3

Definition 1. A set M of primitive binary strings is called a de Bruijn set of
order k if the total length of strings in M is 2k and for every k-length string u
there is a string t ∈ M s.t. u is the prefix of some power of some conjugate of t.

It follows from the definition that no string can occur more than once, hence
this is always a set. An example is given in Fig. 1 (right). The reader is invited
to check that every 3-mer is the prefix of some power of some row. Singleton
sets of one dB sequence are special cases of de Bruijn sets. We note that the
BWT of the dB sequence (left), and the eBWT of the de Bruijn set (right), have
3 In particular, Higgins uses the term necklace in a non-standard meaning.

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 135

a special form, not shared by the bitstring (center): they are concatenations of
ab’s and ba’s. Indeed, Higgins proved the following beautiful result (here given
in the restricted version for binary alphabets):

Theorem 1 (Higgins 2012 [16]). A multiset M is a binary de Bruijn set of
order k if and only if ebwt(M) ∈ {ab, ba}2k−1

.

Let m = 2k−1, and let Fk = {ab, ba}m. We will encode elements of Fk

using a bitstring of length m: for v ∈ Fk, define enc(v) by setting the ith
bit to 0 if v[2i, 2i + 1] = ab, and to 1 otherwise (i.e., if v[2i, 2i + 1] =
ba). For example, enc(abbababa) = 0111. For a bitstring b ∈ {0, 1}m,
dec(b) is the inverse map, e.g. dec(1101) = babaabba. Let Sk = {s |
s is the BWT of a dB sequence of order k}, thus, Sk ⊆ Fk. Since de Bruijn
sequences are primitive, we get:

Corollary 1. Let v ∈ Fk. Then v ∈ Sk if and only if πv is cyclic.

Our strategy for constructing a random dB sequence will be to produce an
element from v ∈ Fk uniformly at random, turn it into an element from s ∈ Sk,
invert s = bwt(t), and output the dB sequence t. From now we will use n = 2k,
the length of the dB sequence, and m = 2k−1, the length of its enconding.

3 Swapping Characters in the eBWT

The following is a generalization of a technique from [14], where it was used only
for swapping a specific character (the dollar) with its right neighbor.

Lemma 1 (Swap Lemma). Let v ∈ {a, b}n, vi �= vi+1, v′ the string that resu-
lts from swapping vi with vi+1. Then πv′ = (πv(i), πv(i + 1)) ◦ πv. Moreover, if
i and i + 1 are in distinct cycles in the cycle decomposition of π, then c(πv′) =
c(πv) − 1, otherwise c(πv′) = c(πv) + 1.

Proof. The first statement follows from the definition of the standard permuta-
tion, which is equivalent to a stable sort of the characters of the string: since two
distinct and neighboring characters are exchanged, the only positions affected
are i and i + 1. It is a well-known property of permutations that a transposition
(j, j′) either splits a cycle (if j and j′ are in the same cycle), or merges two cycles
(if they are in different cycles), for an explicit proof see [14].

Example 1. Let v = babbbaaa and v′ = bbabbaaa. Then πv = (0 1 2 3 4 5 6 7
4 0 5 6 7 1 2 3) =

(0, 4, 7, 3, 6, 2, 5, 1), and πv′ = (0 1 2 3 4 5 6 7
4 5 0 6 7 1 2 3) = (0, 4, 7, 3, 6, 2)(1, 5) = (0, 5) ◦ πv.

The next lemma shows that for v ∈ Fk, the standard permutation is easy to
compute. Let us refer to the interval [2i, 2i + 1] as the ith block of v.

Lemma 2. Let v ∈ Fk and b = enc(v). If bi = 0, then πv(2i) = i and πv(2i +
1) = m+i; otherwise, πv(2i) = m+i and πv(2i+1) = i. In particular, πv({2i, 2i+
1}) = {i,m + i}.

136 Z. Lipták and L. Parmigiani

Proof. Since v ∈ Fk, we know that each substring v2iv2i+1 has the form ab or
ba. Thus, the ith block contains the ith a, which is mapped to position i by πv,
and the ith b, which is mapped to position m + i. Whether v2i = a or v2i+1 = a
is encoded in bi.

We call the ith block unhappy (w.r.t. v) if 2i and 2i + 1 belong to distinct
cycles in πv. We now show that, in order to arrive at a standard permutation
with only one cycle, it is sufficient to swap positions within blocks.

Lemma 3. Let v, v′ ∈ Fk. Then

1. If v �∈ Sk, then there exists an unhappy block w.r.t. v.
2. If distH(enc(v), enc(v′)) = 1, then c(πv′) = c(πv)−1 if and only if i is unhappy

w.r.t. v, where i is the unique position s.t. enc(v)i �= enc(v′)i.

Proof. 1. Assume otherwise, and choose j minimal such that j is not in the same
cycle as 0. Note that this implies that j is even, since there are no unhappy
blocks. Let i = j/2, then j is in the ith block, which, by Lemma 2, is mapped
to {i,m + i}, hence j, j + 1, i,m + i are all in the same cycle. But since i < j, i
is in the same cycle as 0, a contradiction. 2. follows from Lemma 1.

Proposition 1. Let v ∈ Fk, b = enc(v), and let d = min{distH(b, b′) | b′ ∈
enc(Sk)}. Then d = c(πv) − 1.

Proof. Note that c(πv) = 1 iff v ∈ Sk iff d = 0. Let therefore c(πv) > 1. Note
that every flip of a bit in enc(v) corresponds to a swap of neighboring distinct
characters, and thus changes the number of cycles by 1 (Lemma 1), decreasing
it if and only if the corresponding block is unhappy (Lemma 3). By Lemma 3,
part 1., there is always an unhappy block as long as c(πv) > 1.

Let v ∈ Fk, c(πv) > 1. Define the cycle graph Γv = (V,E) as an undirected
multigraph whose vertex set equals the set of cycles of πv, and there is an edge
for every unhappy block i, connecting the cycles Cj , Cj′ , where 2i is in Cj and
2i + 1 in Cj′ . Let B(v) = {s ∈ Sk | distH(enc(v), enc(s)) = c(πv) − 1}.

The following is a new formulation of a theorem due to Aardenne-Ehrenfest
and de Bruijn (1951) [1], there given in terms of cycle joining (CJM), see the
Introduction. We give a new and simple proof in terms of the eBWT.

Theorem 2 (Aardenne-Ehrenfeucht and de Bruijn, 1951). There is a
one-to-one correspondence between spanning trees of Γv and s ∈ B(v).

Proof. Swapping the two characters in an unhappy block merges the two corre-
sponding cycles. Therefore, the edges of a spanning tree of Γv represent a set of
blocks which result in merging all cycles of πv, and thus will yield an element
s ∈ Sk. Since the number of edges of any spanning tree is c(πv) − 1, s ∈ B(v).
Conversely, two distinct elements of B(v) necessarily differ in their BWT, and
thus, in the blocks which need to be flipped, yielding distinct spanning trees.

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 137

4 Algorithm

Conceptually, our algorithm works as follows.

1. Choose a random bitstring b of length 2k−1.
2. Compute the standard permutation πv of v = dec(b).
3. Construct the cycle graph Γv.
4. Choose a random spanning tree T of Γv.
5. Flip the bits of b corresponding to the edges of T , resulting in b′.
6. Invert s = dec(b′), resulting in dB sequence t.
7. Output trev.

We will see that several steps can be skipped, however. A pseudocode is given
in Algorithm 1, and an example in Fig. 2.

First and Last Bit Must Be 1: It is easy to see that if a string starts with
a or ends with b, then its standard permutation cannot be cyclic, since either of
these creates a cycle of length 1. Therefore, every s ∈ Sk has first and last bit 1.

Computing the Standard Permutation: We compute directly the cycle
decomposition of πv, using Lemma 2 and passing conceptually through v. In Step
2, we fill in an array cycle of length n, which stores in cycle[j] the number of the
cycle in which j is contained (see Algorithm 2). In Step 6, we use Lemma 2 to
invert s, listing the characters of s in the order given by the unique cycle of πs:
0, πs(0), π2

s(0), π3
s(0), . . ., and thus constructing t back-to-front. Since for every

dB sequence, its reverse is also a dB sequence, we can output the reverse of the
dB sequence whose BWT equals s directly to the standard output.

Computing the Cycle Graph: We store an array edges, containing posi-
tion 2i whenever i is an unhappy block. The two ends of the edge are not stored
and can be identified on the fly using the cycle array.

Choosing a Random Spanning Tree: As discussed in the Introduction,
choosing a spanning tree of an undirected multigraph uniformly at random is
complex and slow (even the fastest algorithms have running time ω(c2), where
c = c(πv) is the number of vertices of Γv). Instead we construct a spanning tree
by randomly choosing and removing edges without replacement from the set
of edges. This can be done by moving the chosen edge to the end of the edges
array. We maintain a Union-Find data structure to keep track of the connected
components of the graph, updating it whenever an edge is chosen from different
connected components.

Example 2. Figure 2 shows an example of possible de Bruijn sequences con-
structed from a random bitstring b. In the first case the following edges are
chosen: 10, 4, 28, 22 (terminates after 4 edges). The first two choices are accepted,
28 is not accepted, because C1 and C2 are already in the same connected compo-
nent at that point, 22 is accepted. So the following three bits will be flipped in b:
2, 5, 11. Therefore, the bitstring b′ = 1001100111001101 is the encoding of some
s ∈ Sk, and the algorithm returns: aaaaabaabbaababaaabbbbbababbabbb. In the
second case the choice is the following: 14, 4, 16, 8, 24, 28, 26 (terminates after 7

138 Z. Lipták and L. Parmigiani

Algorithm 1: Random binary de Bruijn sequence
1 function Random deBruijn():
2 bwt enc ← random bitstring() � of length m, start and

end with 1
3 (cycle, num cycles) ← bwt2cycle(bwt enc)
4 if num cycles = 1 then
5 inv bwt(bwt enc)
6 return

7 edges ← []

8 for i ← 0 to n − 1 by 2 do
9 if cycle[i] �= cycle[i + 1] then

10 edges.push(i)

11 SpanTree ← UnionFind(num cycles)
12 while num cycles > 1 do
13 j ← random integer(num edges)
14 e ← edges[j]
15 if SpanTree.union(cycle[e], cycle[e + 1]) then
16 bwt enc[e/2] ← ! bwt enc[e/2]
17 num cycles ← num cycles − 1

18 num edges ← num edges − 1
19 swap(edges[j], edges[num edges])

20 inv bwt(bwt enc)

edges), then we accept 14 and 4, reject 16, 8, 24, 28, and accept 26. Therefore,
bits 2, 7, and 13 are flipped, resulting in: 1001110011011001, and the output is:
aaaaabaabbaababbbbbabbababaaabbb.

Analysis. The data structures used by the algorithm are: the bitstring of length
m = 2k−1, the cycle-array of length n = 2k, the edges-array of length at most
m, and the Union-Find data structure for the vertices of Γv, i.e. of size c(πv).
Therefore, the total space required is O(n).

Regarding the running time, (1) constructing the cycle-array takes O(n)
time, since each position j is visited at most four times: once to check if it
is filled (Line 6 in Algorithm 2), once to fill it (Line 7), once as the next to
be checked (Line 10), and a fourth time exclusively for the smallest j in each
cycle when the cycle closes. Note in particular that π(j) is computed in con-
stant time (Lemma 2). (2) Filling in the edges-array takes O(m) time, since we
check for each block whether it is unhappy in one scan over the cycle-array.
(3) Constructing the spanning tree takes O(mα(m)) time, since we choose each
edge at most once, and need to query and possibly update the Union-Find data
structure. Here, α is the inverse Ackermann function [27]. Finally, inverting the
BWT takes O(n) time, again because π(j) can be computed in constant time.
Altogether, we have O(nα(n)) time, as n = 2m.

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 139

Algorithm 2: eBWT to cycle
1 function bwt2cycle(bwt enc):
2 cycle ← integer[n] � initialized with zeros

3 i ← 0
4 num cycles ← 1
5 while i < n do
6 while cycle[i] = 0 do � cycle[i] not yet assigned

7 cycle[i] ← num cycles
8 i ← π(i)

9 i ← i + 1
10 if i < n and cycle[i] = 0 then
11 num cycles ← num cycles + 1

12 return(cycle, num cycles)

b

v

πv

cycle

edges

C1

C4

C2

C3

b
′

b
′′

Fig. 2. a) Random bitstring b of length 2k−1, with its corresponding eBWT v = dec(b),
its permutation πv and the arrays cycle and edges. b) Example of possible de Bruijn
sequence constructed from b. c) the cycle graph Γv.

Output Distribution. The algorithm does not output dB sequences according
to the uniform distribution, and there are two reasons for this. First, let us
assume that we choose the spanning tree of the cycle uniformly at random. Let
b = enc(v) be the random bitstring chosen, then the conditional probability that
a particular dB sequence t is output equals p(t | v) = 1/|B(v)| if bwt(t) ∈ B(v),
and p(t | v) = 0 otherwise. This leads us to define, for a dB sequence t, the
prestige of t, given by pres(t) = 1

|Fk|
∑

v∈Fk
p(t | v). Clearly, pres is a probability

140 Z. Lipták and L. Parmigiani

distribution, and if we chose the spanning tree uniformly at random, then it
would equal the output distribution asymptotically. The second reason is that
the spanning tree is not chosen uniformly at random. In the next section, we give
comparisons of prestige, the output distribution, and the uniform distributions.

5 Experimental Results

Due to lack of space, we give here a short summary of our experimental results.
Full details will be given in the full version of the paper.

Running Times. In Table 2, we report running times (real time) for σ = 2
and k up to 30. All code was compiled with g++ with the flag -O2. It ran on a
portable computer equipped with 12 Intel Core i7-8750H (2.20 GHz) and 16 GB
of RAM.

Table 2. Average running times in seconds, for σ = 2, taken over 100 randomly
generated dB sequences, without (w/o) and with (w) the time for outputting.

k 17 18 19 20 21 22 23 24 25 26 27 28 29 30

w/o (s) 0.003 0.01 0.02 0.04 0.10 0.29 0.87 2.63 6.07 12.42 27.49 57.19 125.38 247.10

w (s) 0.01 0.02 0.03 0.07 0.16 0.39 0.96 3.11 7.31 15.44 32.32 67.20 144.72 293.49

For σ = 2, we compared our approach with an implementation of Fleury’s
algorithm provided at [25], which we modified by adding randomization. We refer
to this implementation as ‘random-Fleury’. Even though that algorithm cannot
generate all possible dB sequences, given its reliance on DFS for spanning tree
generation, it serves as the closest available method for comparison with our
approach. We show running times and memory peaks consumption in Fig. 3.

Our algorithm is approximately 10–12 times faster than random-Fleury for
k values between 17 and 23, and five times faster for k = 29. Additionally, it
utilizes only half the memory. Memory consumption was evaluated using the
Valgrind Massif tool. The data point of random-Fleury for k = 30 is missing in
both graphs due to exceeding the available RAM (16 GB).

Output Distribution. For σ = 2, we computed the prestige for k = 4, 5 and
estimated experimentally the output distribution for k = 4, 5, 6 (empirical distri-
bution Pe), comparing both to the uniform distribution Pu ≡ 1/|Sk|. Estimates
of Pe are based on 108 trials each, except for k = 6, where they are based on
1010 trials. We note that we computed prestige explicitly, computing p(t | v) for
all v and t, which is prohibitive for k > 5.

There are 16 binary dB sequences of order k = 4, of which 8 have pres(t) =
0.0724 and 8 have pres(t) = 0.0526. For k = 5, there are 132 different prestige
values. In Table 3 we report the maximum and minimum prestige and empiri-
cal probabilities, for k = 4, 5, 6, and their normalized variants w.r.t. Pu (using
fnorm.(t) = (f(t) − 1

|Sk|)|Sk|, where f is pres or Pe).

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 141

Fig. 3. Left: real-time performance comparison between our algorithm (rnd dbseq) and
a modified C implementation of Fleury’s algorithm from [25] (random-Fleury) across
different values of k. For rnd dbseq, each data point represents the average over 100
randomly generated binary dB sequences, while for random-Fleury, each data point
is based on 10 binary dB sequences. Timings include outputting the sequences. Bars
about the points indicate standard deviation. Right: peak memory consumption of
rnd dbseq and random-Fleury.

Table 3. Min and max values Pe, pres for k = 4, 5, 6, and normalized w.r.t. Pu.

k Pe(s) pres(s) Pu(s) Norm. Pe Norm. pres

min max min max min max min max

4 0.0510 0.0740 0.0526 0.0724 0.0625 −0.184 0.184 −0.158 0.158

5 1.82e–4 6.68e–4 2.01e–4 6.48e–4 4.88e–4 −0.628 0.367 −0.589 0.328

6 1.70e–9 4.74e–8 1.59e–8 −0.886 2.180

6 A Case Study: Estimating the Discrepancy
of a Random de Bruijn Sequence

The discrepancy of a binary string w is defined as the maximum absolute dif-
ference between the number of a’s and b’s, taken over all substrings u of w.
In certain contexts where dB sequences are applied, high discrepancy can lead
to undesirable effects, such as interference in spread spectrum communications
or unwanted biochemical properties in certain biological settings [6]. In these
cases, one is interested in generating dB sequences with lowest possible discrep-
ancy. In [6], the discrepancy of the lex-least dB sequence was studied. This was
extended to a number of dB sequence constructions in [12], with the average
discrepancy taken over 104 random bitstrings and the average discrepancy of
LFSR-based dB sequences used as baselines for comparison.

With our method, it is now possible to estimate the expected discrepancy of
a random de Bruijn sequence, which is clearly a more adequate baseline. We
note that the discrepancy for a dB sequence, being a circular string, should be
measured over all cyclic substrings. It was shown in [12] that for dB sequences,
the linear and the cyclic discrepancies coincide, and a linear-time algorithm for
computation of the (linear) discrepancy was given.

142 Z. Lipták and L. Parmigiani

Table 4. Discrepancy of random dB sequences vs. LFSRs and random bitstrings.
Values taken over 105 trials, except for columns 4 (104 trials) and 5 (all LFSRs).

k random de Bruijn seq r. de Bruijn seq LFSRs [12] r. bitstring

min max mean mean over 104 mean mean

10 17 82 39 39 41 50

11 24 125 56 56 58 71

12 36 177 79 79 84 101

13 47 255 113 112 118 143

14 66 360 159 160 167 202

15 96 519 226 225 236 287

16 136 740 319 320 335 406

17 197 1058 453 452 473 575

18 283 1485 641 641 669 813

19 384 2299 904 905 947 1148

20 515 2830 1282 1282 1341 1621

21 810 4210 1811 1819 1986 2287

22 1140 5676 2566 2565 2681 3233

23 1676 8143 3627 3638 3793 4491

24 2173 11162 5134 5134 5362 6354

25 3248 17589 7264 7245 7586 9134

26 4476 24036 10272 10258 12730

We report our results in Table 4: for k ≤ 26, we list the minimum, maximum,
and average discrepancy over 105 dB sequences of order k, as well as the average
discrepancy of 105 bitstrings of the same length. We also ran the same experiment
over 104 trials (column 4) and found that the values were very close, indicating
that already a sample size of 104 could be sufficient. It can be seen that the
average discrepancy of a dB sequence appears to be lower than that of a bitstring
or an LFSR-based dB sequence. While the first result is not surprising, the second
was hitherto unknown.

We conclude that for studying properties of dB sequences such as the discrep-
ancy, it might not be realistic to use random bitstrings as a base for comparison,
nor LFSRs. Even though our trial number of 104 resp. 105, for most k is many
orders of magnitude below the total number of dB sequences, this is still a bet-
ter estimate of the mean discrepancy than the tests reported in [12], based on
bitstrings and LFSRs only. Consider also that for these values of k, it is very
likely that our algorithm never produced the same dB sequence twice.

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 143

We further note that our experiments did not produce any counterexamples
for the conjectured minimum and maximum discrepancy of dB sequences, that
of the Huang construction [17] (minimum) and

(
k−1

�k/2�
)
+
k/2� (maximum), both

of which are listed as open problems in [12].

7 Conclusion

We presented a remarkably simple algorithm for constructing a random de Bruijn
sequence, which, surprisingly, appears to be the first practical algorithm that
can output all dB sequences. On top of the obvious practical utility of such an
algorithm, we also demonstrated its potential in theoretical research by giving
the first estimate on the mean discrepancy of de Bruijn sequences. Our algorithm
is based on the fact that dB sequences have very regular BWTs and uses what
we termed the swapping technique for manipulating the BWTs of strings.

The algorithm can be adapted to any constant-size alphabet. A straightfor-
ward adaptation has worst-case running time O(σ · n), where σ is the alphabet
size, since the number of edges of the cycle graph can become

(
σ
2

)
σk−1 = Θ(σn).

Our approach does not lead to construction of dB sequences uniformly at
random; even if we chose a spanning tree of the cycle graph uniformly at ran-
dom, we would still output dB sequences according to their prestige, which is
not uniform. If we were able to efficiently compute the prestige of a dB sequence
of any order k, this might allow us to get a uniform sampler via rejection sam-
pling (albeit a Las Vegas one). We leave it as an open problem to compute the
distribution of the prestige function for general k.

Acknowledgements. ZsL would like to thank Joe Sawada for awakening her interest
in de Bruijn sequences. We thank the anonymous reviewers for some insightful sug-
gestions, and the participants of the Monday Meetings of the Algorithms Group of
Verona University for useful discussions. This work has been supported in part by the
European Union’s Horizon 2020 research and innovation programme under the Marie
Sk�lodowska-Curie grant agreement No 956229 and by the MUR PRIN Project ‘PINC,
Pangenome INformatiCs: from Theory to Applications’ (Grant No. 2022YRB97K).

References

1. Aardenne-Ehrenfest, T.v., Bruijn, N.G.d.: Circuits and trees in oriented linear
graphs. Simon Stevin, Wisen Natuurkundig Tijdschrift 28, 203–217 (1951)

2. Aguirre, G.K., Mattar, M.G., Magis-Weinberg, L.: De Bruijn cycles for neural
decoding. Neuroimage 56(3), 1293–1300 (2011)

3. Ben-Dor, A., Karp, R., Schwikowski, B., Yakhini, Z.: Universal DNA tag systems:
a combinatorial design scheme. J. Comp. Biol. 7(3/4), 503–519 (2000)

4. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

5. Colbourn, C.J., Myrvold, W.J., Neufeld, E.: Two algorithms for unranking arbores-
cences. J. Algorithms 20(2), 268–281 (1996)

144 Z. Lipták and L. Parmigiani

6. Cooper, J.N., Heitsch, C.E.: The discrepancy of the lex-least de Bruijn sequence.
Discret. Math. 310(6–7), 1152–1159 (2010)

7. de Bruijn, N.G.: A combinatorial problem. Proc. Sect. Sci. 49(7), 758–764 (1946)
8. Durfee, D., Kyng, R., Peebles, J., Rao, A.B., Sachdeva, S.: Sampling random span-

ning trees faster than matrix multiplication. In: Hatami, H., McKenzie, P., King,
V. (eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, pp. 730–742. ACM (2017)

9. Emerson, P.L., Tobias, R.D.: Computer program for quasi-random stimulus
sequences with equal transition frequencies. Behav. Res. Methods Instrum. Com-
put. 27(1), 88–98 (1995)

10. Fleury, P.-H.: Deux problèmes de géométrie de situation. J. Mathématiq. élément.
2, 257–261 (1883)

11. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Rev. 24(2), 195–221 (1982)

12. Gabric, D., Sawada, J.: Investigating the discrepancy property of de Bruijn
sequences. Discret. Math. 345(4), 112780 (2022)

13. Gabric, D., Sawada, J., Williams, A., Wong, D.: A framework for constructing de
Bruijn sequences via simple successor rules. Discret. Math. 341(11), 2977–2987
(2018)

14. Giuliani, S., Lipták, Zs., Masillo, F., Rizzi, R.: When a dollar makes a BWT. Theor.
Comput. Sci. 857, 123–146 (2021)

15. Golomb, S.: Shift Register Sequences, 3rd edn. World Scientific (2016)
16. Higgins, P.M.: Burrows-Wheeler transformations and de Bruijn words. Theor.

Comput. Sci. 457, 128–136 (2012)
17. Huang, Y.: A new algorithm for the generation of binary de Bruijn sequences. J.

Algorithm. 11(1), 44–51 (1990)
18. Jansen, C.J., Boekee, D.E.: An efficient algorithm for the generation of DeBruijn

cycles. IEEE Trans. Inf. Theory 37(5), 1475–1478 (1991)
19. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press

(2002)
20. Mandal, K., Gong, G.: Cryptographically strong de Bruijn sequences with large

periods. In: Knudsen, L.R., Wu, H. (eds.) Selected Areas in Cryptography: 19th
International Conference, SAC 2012, pp. 104–118. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35999-6 8

21. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-
Wheeler Transform. Theor. Comput. Sci. 387(3), 298–312 (2007)

22. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press (2016)

23. Perrin, D., Restivo, A.: Words. In: Bóna, M. (ed.) Enumerative Combinatorics,
chapter 8, pp. 485–540. CRC Press (2015)

24. Philippakis, A., Qureshi, A.M., Berger, M.F., Bulyk, M.L.: Design of compact,
universal DNA microarrays for protein binding microarray experiments. J. Comp.
Biol. 15(7), 655–665 (2008)

25. Sawada, J.: De Bruijn sequence and universal cycle constructions. https://
debruijnsequence.org

26. Sohn, H.-S., Bricker, D.L., Simon, J.R., Hsieh, Y.-C.: Optimal sequences of trials for
balancing practice and repetition effects. Behav. Res. Methods Instrum. Comput.
29(4), 574–581 (1997)

27. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM
31(2), 245–281 (1984)

https://doi.org/10.1007/978-3-642-35999-6_8
https://debruijnsequence.org
https://debruijnsequence.org

A BWT-Based Algorithm for Random de Bruijn Sequence Construction 145

28. Turan, M.S.: Evolutionary construction of de Bruijn sequences. In: Proceedings of
ACM-AISec, pp. 81–86 (2011)

29. Yang, B., Mandal, K., Aagaard, M.D., Gong, G.: Efficient composited de Bruijn
sequence generators. IEEE Trans. Computers 66(8), 1354–1368 (2017)

30. Zhu, Y., Chang, Z., Ezerman, M.F., Wang, Q.: An efficiently generated family of
binary de Bruijn sequences. Discret. Math. 344(6), 112368 (2021)

Space-Efficient Conversions from SLPs

Travis Gagie1,5, Adrián Goga2(B), Artur Jeż3, and Gonzalo Navarro4,5

1 Faculty of Computer Science, Dalhousie University, Halifax, Canada
2 Department of Computer Science, Comenius University in Bratislava, Bratislava,

Slovakia
adriangoga@gmail.com

3 Institute of Computer Science, University of Wrocław, Wroclaw, Poland
4 Department of Computer Science, University of Chile, Santiago, Chile
5 CeBiB—Center for Biotechnology and Bioengineering, Santiago, Chile

Abstract. We give algorithms that, given a straight-line program (SLP)
with g rules that generates (only) a text T [1..n], build within O(g) space
the Lempel-Ziv (LZ) parse of T (of z phrases) in time O(n log2 n) or
in time O(gz log2(n/z)). We also show how to build a locally consistent
grammar (LCG) of optimal size glc = O(δ log n

δ
) from the SLP within

O(g + glc) space and in O(n log g) time, where δ is the substring com-
plexity measure of T . Finally, we show how to build the LZ parse of T
from such an LCG within O(glc) space and in time O(z log2 n log2(n/z)).
All our results hold with high probability.

1 Introduction

With the rise of enormous and highly repetitive text collections [32], it is becom-
ing practical, and even necessary, to maintain the collections compressed all the
time. This requires being able to perform all the needed computations, like text
searching and mining, directly on the compressed data, without ever decom-
pressing it.

As an example, consider the modest (for today’s standards) genomic repos-
itory 1000 Genomes [12] containing the genomes of 2,500 individuals. At the
typical rate of about 3 billion bases each, the collection would occupy about 7

Research supported by the European Union’s Horizon 2020 research and innovation
program under Marie Skłodowska-Curie grant agreement No 956229 (ALPACA) and
by grants 1/0463/20 and 1/0538/22 from the Scientific Grant Agency of the Ministry of
Education, Science, Research, and Sport of the Slovak Republic and Slovak Academy of
Sciences (VEGA) and grant APVV-22-0143 from the Slovak Research and Development
Agency. T.G. and G.N. funded in part by Basal Funds FB0001, ANID, Chile. T.G.
funded in part by NSERC RGPIN-07185-2020. G.N. funded in part by Fondecyt Grant
1-230755, ANID, Chile.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 146–161, 2024.
https://doi.org/10.1007/978-3-031-55598-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_10&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_10

Space-Efficient Conversions from SLPs 147

terabytes. Recent projects like the Million Genome Initiative1 would then require
petabytes. The 1000 Genomes project stores and distributes its data already in a
compressed form2 to exploit the fact that, compared to a reference genome, each
individual genome has only one difference every roughly 500 bases, on average.
Certainly one would like to manipulate even such a modest collection always in
a compressed form, using gigabytes instead of terabytes of memory!

Some compression formats are more useful for some tasks than others, how-
ever. For example, Lempel-Ziv compression [29] tends to achieve the best com-
pression ratios, which makes it more useful for storage and transmission. Gram-
mar compression [26] yields slightly larger files, but in exchange it can produce
T in streaming form, and provide direct access to any text snippet [7], as well
as indexed searches [11]. Locally consistent grammars provide faster searches,
and support more complex queries, while still being bounded by well-known
repetitiveness measures [10,16,23,27,28,33]. The run-length-encoded Burrows-
Wheeler Transform of T requires even more space [22], but in exchange it enables
full suffix tree functionality [13].

It is of interest, then, to convert from one format to another. Doing this
conversion by decompressing the current format and then compressing to the
new one is impractical, as it is bound to use Ω(n) space, which in practice
implies running Θ(n)-time algorithms on secondary storage. Thus the interest
in algorithms whose running time and space usage can be bounded in terms of
input and output size. We say that a conversion between different compression
formats is a fully compressed conversion when it uses space and time polynomial
in the size of the (compressed) input, the size of the (compressed) output, and
log n; it is a compressed conversion when the bound applies only to space (and so
the running time may polynomially depend on n). There is a long line of research
on compressed conversions, we recall it below. For brevity we omit a large body of
work on producing compressed representations from the original string S, aiming
to use little space on top of S itself, and the work on compression formats that
are too weak for repetitive data, like LZ78 or run-length compression of the text.

Let z, g, glc and r be the asymptotic (i.e., up to constant factors) sizes of
the Lempel-Ziv (LZ) parse of a string T [1..n], a straight-line program (SLP) or
context-free grammar that expands to T , a locally consistent grammar (LCG)
that expands to T , and the run-length encoded Burrows-Wheeler Transform
(RLBWT) for T , respectively. On highly repetitive texts, all the given mea-
sures can be exponentially smaller than n, hence the relevance of such con-
versions. We refer to some SLP because finding the smallest SLP generat-
ing a given string is NP-complete [8]. It holds that z ≤ g ≤ glc ≤ r in
practice. The first such conversion was implicitly given by Mehlhorn, Sundar
and Uhrig [30], who proposed a data structure for a dynamic collection of
strings allowing adding concatenations and substrings of strings in the col-
lection in polylogarithmic time. The data structure implicitly used (a vari-
ant of) a LCG and so it allowed compressed conversions from SLP and LZ

1 https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes.
2 In VCF, https://github.com/samtools/hts-specs/blob/master/VCFv4.3.pdf.

https://digital-strategy.ec.europa.eu/en/policies/1-million-genomes
https://github.com/samtools/hts-specs/blob/master/VCFv4.3.pdf

148 T. Gagie et al.

to LCG, in time O(g log n(log g log∗ n + log n)) and space O(g log n log∗ n) and
time O(z log n(log g log∗ n+log n)) and space O(z log n log∗ n), respectively. They
also proposed a randomised variant of the data structure, with which the con-
version had expected time and space O(g log2 n), O(g log n) and O(z log2 n),
O(z log n), respectively. Their data structure was improved by Alstrup, Brodal
and Rauhe [1], who mainly added new functionalities and improved the con-
version times to O(g log n log∗ n) and O(z log n log∗ n) w.h.p. (the space usage
remained the same). Rytter [38] studied the problem of constructing the smallest
SLP for a given string and showed how to build an SLP of size g = O(z log(n/z))
within O(g) space and time from the LZ parse of T in the non-overlapping case
(i.e., when phrases cannot overlap their sources), and Gawrychowski [15, Lemma
8] extended this result to the general LZ parse. Nishimoto et al. [36] gave an
algorithm constructing the LZ parse from the LCG of Mehlhorn et al. [30], with
running time O(z log glc log3 n(log∗ n)2) and linear-space. It can also be used to
convert an SLP to the LZ parse in time O(n(log log n)2 + z log4 n(log∗ n)2) or
O(n(

√
log z + log log n+ z log4 n(log∗ n)2) and O(z log n log∗ n) space. Tomohiro

I [18] proposed a conversion algorithm from an SLP to (a variant of) a LCG
using O(g log(n/g)) time and O(g + z log(n/z)) space; one can also transform
an LZ77 to SLP using with log(n/z) blowup and then apply the reduction to
LCG, using O(z log2(n/z)) time and O(z log(n/z)) space. Kempa and Kociu-
maka [23] built on the produced LCG, showing how to convert a LCG or a SLP
to the LZ parse in time O(glc log4 n) or O(g log4 n), respectively. They also gave
a fully compressed conversion from a SLP or the LZ parse to a LCG (of optimal
size O(δ log n/δ)) in time O(δ log7 n) (δ is another compression measure with
δ ≤ z ≤ δ log n [28]). Policriti and Prezza [37] showed how to convert from the
RLBWT to the LZ parse in O(r+ z) space and O(n log r) time, and back in the
same space and O(n log(rz)) time. The earlier mentioned paper of Kempa and
Kociumaka [22] also converts from the LZ parse to the RLBWT in O(z log8 n)
expected time. Arimira et al. [2] recently showed how to convert from the com-
pressed directed acyclic word graph (CDAWG) of size e to either RLBWT or
LZ, both in O(e) time and space, though e is the weakest among the commonly
accepted repetitiveness measures [32].

Note that our contribution deals only with LZ, SLP and LCG; we recalled
results for other compression formats (RLBWT, CDAWG) for comparison and
to present the state of the art in the area.

In this paper we contribute to the state of the art with compressed and fully-
compressed conversions between various formats, all of which then use space
linear in the input plus the output, and work correctly with high probability:

1. A compressed conversion from any SLP to the LZ parse in O(n log2 n) time.
2. A fully-compressed conversion from any SLP to the LZ parse in

O(gz log2(n/z)) time.
3. A compressed conversion from any SLP to a certain (particularly small) LCG

[10] in O(n log glc) time.
4. A fully-compressed conversion from LCGs of some particular kind [10,27] to

the LZ parse in O(z log2(n/z) log2 n) time.

Space-Efficient Conversions from SLPs 149

The third conversion builds a particular LCG whose size is the optimal O(δ log n
δ)

[27], other similar LCGs [10] can be produced analogously; note that there is a
fully-compressed conversion from SLP to LCG [18]; it is for a different LCG,
though, and it is not clear, whether it generalizes to other LCGs within given
bounds. Also, while the running time of our fourth conversion is larger than
Nishimoto et al. [36], we work with a particular LCG, which can be up to log n
times smaller than the LCG of Mehlhorn et al. [30] (we use LCG with a bound
of O(δ log n

δ), while the latter is only known to be O(z log n log∗n) and the only
bound on z in terms of δ is O(δ log n

δ) [28]). Our contributions together with
previously known conversions are depicted in Table 1.

Table 1. The running times of compressed and fully compressed conversions between
LZ, SLP, and LCG, with our contributions in bold. The bounds of Nishimoto et al. [36]
are slightly simplified.

Fully compressed conversions
From \ To LZ SLP LCG

O(z log(n/z)) [15,38] O(z log2 n) expected [30]
LZ O(z logn log∗n) w.h.p. [1]

O(z log2(n/z)) [18]
O(g log4 n) [23] O(g log(n/g)) [18]

SLP O(gz log 2(n/z)) w.h.p.
O(glc log

4 n) [23]
O(z log glc log

3 n(log∗ n)2) [36]
LCG O(z log 2(n/z) log 2n) w.h.p.

Compressed conversions
From \ To LZ LCG

O(n(log log n)2 + z log4 n(log∗ n)2) [36] O(n log glc) w.h.p.
SLP O(n

√
log z + log log n+z log4 n(log∗n)2) [36]

O(n log 2n) w.h.p.
LCG O(n log 2n) w.h.p.

2 Preliminaries

A string T [1..n] is a sequence of symbols T [1]T [2] . . . T [n] over an ordered alpha-
bet Σ. For every 1 ≤ i, j ≤ n, T [1..i] = T [..i] is a prefix of T , T [j..n] = T [j..] is
a suffix of T , and T [i..j] is a substring of T , which is the empty string ε if i > j.
The length of T [1..n] is |T | = n; the length of ε is |ε| = 0. The concatenation of
two strings S ·S′ is defined as S[1]S[2] . . . S[|S|]S′[1]S′[2] . . . S′[|S′]]. The lexico-
graphic order between strings S �= S′ is defined as that between S[1] and S′[1] if
these are different, or as the lexicographic order between S[2..] and S′[2..] other-
wise; the empty string ε is smaller than every other string. The co-lexicographic
order is defined as the lexicographic order between the reversed strings.

The Karp-Rabin fingerprint or the Karp-Rabin hash of a string S[1..n] is a
value φ(S) =

∑n
i=1

(
S[i]xi

)
mod p, for a prime p and x < p [21]. The crucial

150 T. Gagie et al.

property of this hash is that if X �= Y , then φ(X) �= φ(Y) with high probability.
Another well-known and useful property is that for strings S, S′, S′ for which
S = S′ · S′′ holds, we can compute the hash of any of the strings knowing the
hashes of the other two, in O(1) time (see, e.g., [35]).

A straight-line program (SLP) of a text T is a context-free grammar in Chom-
sky normal form (so, in particular, each rule is at most binary) generating only
T , which contains exactly one rule for each nonterminal and the rules can be
linearly ordered, such that for any rule X → Y Z it holds that the rules for both
Y and Z precede the rule for X in the ordering.

The height of the SLP is the height of the derivation tree, i.e. the height of
a letter is 0 and the height of a nonterminal X with a (unique) rule X → Y Z
is 1 plus maximum of height of Y and Z. The size of the SLP is the number of
its rules. We define the expansion of a nonterminal X as the string it produces:
exp(a) = a if a is a terminal symbol, and exp(X) = exp(Y) · exp(Z) if X → Y Z.

We say that a grammar is a locally consistent grammar (LCG) if it is con-
structed by iteratively applying rounds of a particular locally consistent parsing,
which guarantees that matching fragments S[i..j] = S[i′..j′] are parsed the same
way, apart from the O(1) blocks from either end. This key property is lifted to
such grammars, for which matching fragments are spanned by almost identical
subtrees of the parse tree, differing in at most O(1) flanking nonterminals at
each level [10,16]. Such a parsing is defined in Sect. 5.

The Lempel-Ziv (LZ) parse of a string T [29] is a sequence F1, F2, . . . , Fz

of phrases, such that F1 · F2 · · · Fz = T [1..n] and Fi is either a single letter,
when this letter is not present in F1 ·F2 · · · Fi−1, or else Fi is the maximal string
that occurs twice in F1 · F2 · · · Fi, that is, it has an occurrence starting within
F1 · F2 · · · Fi−1; in non-overlapping LZ we additionally require that Fi occurs
within F1 · F2 · · · Fi−1. It is known that z ≤ g = O(z log(n/z)), where g is the
size of the smallest grammar generating T [8,15,38].

We assume the standard word-RAM model of computation with word length
Θ(log n), in which basic operations over a single word take constant time. Some
of our results hold with high probability (w.h.p.), meaning with probability over
1 − n−c for any desired constant c. We can make the constant arbitrarily large
at the cost of increasing the constant multiplying the running time.

3 Building the LZ Parse from an SLP in Õ(n) Time

Our first result computes the LZ parse of a text T [1..n] given an arbitrary SLP of
size g that represents T , in time O(n log2 n) and space O(g); note that the classic
LZ constructions use suffix trees or arrays and use Ω(n) space. We first describe
a couple of tools we need to build on the SLP before doing the conversion.

Lemma 1. Given an SLP of size g for T [1..n] we can construct in O(g) time
and space a new SLP G, and augment it with a data structure such that:

– G has height O(log n).
– Any T [i] can be accessed in O(log n) time.

Space-Efficient Conversions from SLPs 151

– The Karp-Rabin fingerprint of any T [i..j] can be computed in O(log n) time.
– The longest common prefix of any T [i..j] and T [i′..j′] can be computed (w.h.p.)

in O(log2 n) time.
– Any T [i..j] and T [i′..j′] can be compared lexicographically and co-lexicograph-

ically (w.h.p.) in O(log2 n) time.

Proof. Assume that we are given an SLP with g rules for a text T [1..n]. Ganardi
et al. [14] showed that in O(g) time and space we can turn it into an SLP G of
size O(g) and height O(log n) and augment G with O(g)-space structures that, in
O(log n) time, finds any character T [i] and returns the Karp-Rabin hash of any
substring T [i..j] (see Ganardi et al. [14], which refers to a simple data structure
from Bille et al. [6]). We work with such augmented G from now on. Given two
substrings of T , we can then compute their longest common prefix in O(log2 n)
time—w.h.p. of obtaining the correct answer—by exponentially searching for its
length � [6, Thm. 3]; by checking their characters at offset � + 1 we can also
compare the substrings of T lexicographically within the same time complexity.
We can similarly compute the longest common suffix of two substrings and thus
compare them co-lexicographically (by comparing the preceding characters). ��

We will also use a variant of a z-fast trie.

Lemma 2. Let S be a lexicographically sorted multiset of m strings of total
length n. Then one can build, in O(n) time w.h.p., a data structure of size
O(m) that, given a string P , finds in O(fh log |P |) time the lexicographic range
of the strings in S prefixed by P , where fh is the time to compute a Karp-
Rabin fingerprint of a substring of P . If this range is nonempty, the answer is
correct w.h.p.; if this range is empty, there are no guarantees on correctness of
the answer, i.e. the answer could be incorrect.

Proof. The structure is the z-fast trie of Belazzougui et al. [3, Theorem 5], and
the query is the fat binary search. A simpler construction was given by Kempa
and Kosolobov [24], and it was then fixed, and its construction analyzed, by
Navarro and Prezza [35, Sec. 4.3]. ��

We will resort to a classic grammar-based indexing method [11], for which
we need a few definitions and properties.

Definition 1. The grammar tree of an SLP G is formed by pruning the parse
tree, converting to leaves, for every nonterminal X, all the nodes labeled X but
the leftmost one. An occurrence of a string P in T is primary if it spans more
than one leaf in the grammar tree; otherwise it is contained in the expansion of a
leaf and is secondary. If a primary occurrence of P occurs in exp(X), with rule
X → Y Z, starting within exp(Y) and ending within exp(Z), then the position
P [j] aligning to the last position of exp(Y) is the splitting point of the occurrence.

A small exception to this definition is that, if |P | = 1, we say that its primary
occurrences are those where it appears at the end of exp(X) in any leaf X of
the grammar tree. We now give a couple of results on primary occurrences.

152 T. Gagie et al.

Lemma 3 ([11]). A pattern occurring in T has at least one primary occurrence.

Observation 4. If X is the lowest nonterminal containing a primary occur-
rence of P with splitting point j, then, by the way we form the grammar tree,
this is the leftmost occurrence of P under X with splitting position j.

The index sorts all rules X → Y Z twice: once by the lexicographical order
of exp(Z), while collecting those expansions in a multiset Z, and once by the
co-lexicographical order of exp(Y), while collecting the reversed expansions in a
multiset Y. It builds separate z-fast tries (Lemma 2) on Y and Z, and creates
a discrete g × g grid G, where the cell (x, y) stores the position p iff the xth
rule X → Y Z in the first order is the yth rule in the second order, and T [p] is
aligned to the last symbol of exp(Y) within the occurrence of X as an internal
node in the grammar tree. The grid supports orthogonal range queries. The key
idea of the index is that, given a search pattern P , for every 1 ≤ j ≤ |P |,
the lexicographic range [y1, y2] of P [j + 1..] in Z and the lexicographic range
[x1, x2] of the reverse of P [..j] in Y, satisfy that there is a point in the range
[x1, x2]× [y1, y2] of G per primary occurrence of P in T with splitting point P [j].
The structure G can determine if the area is empty, or else return a point in it,
in time O(log g). We now build our first tool towards our goal.

Lemma 5. Given an SLP of size g generating string T [1..n] we can, in space
O(g) and time O(n + g log g) construct w.h.p. a data structure that, given 1 ≤
i ≤ j ≤ k ≤ n, in O(log n log(k − i) + log1+ε g) time finds w.h.p. the leftmost
occurrence of T [i..k] in T that is a primary occurrence with splitting point T [j].

Proof. We build the components Y, Z, and G of the described index, following
the approach in (see [35, Sec. 4.3–4.4]), all time and space complexities are given
there. The data structure is correct w.h.p.. We sort w.h.p. the sets Y and Z in
O(g) space and O(n) time ([17]), we build the z-fast tries in O(g) space and
time O(n) (Lemma 2), and we build the grid data structure in O(g) space and
O(g

√
log g) time ([35, Sec. 4.4], [4]). We note that, by using Lemma 1, we can

also do the sorting correctly w.h.p. in O(g) space and O(g log g · log2 n) time.
We use those structures to search for P = T [i..k] with splitting point T [j],

that is, we search the z-fast trie of Z for T [j + 1..k] and the z-fast trie of Y for
T [i..j] reversed, in time O(fh log |P |); recall Lemma 2. Since the substrings of
T [i..j] are also substrings of T , we can compute the Karp-Rabin hash of any
substring of T [i..j] in time fh = O(log n) by Lemma 1, so this first part of the
search takes time O(log n log(k−i)). Recall from Lemma 2 that this search yields
correct results w.h.p., unless the ranges sought are empty, in which case there
are no guarantees on correctness.

We now use G to determine if there are points in the corresponding area.
If there are none, then w.h.p. T [i..k] does not occur in T with splitting point
T [j]. If there are some, then we obtain the value p associated with any point
in the range, and compare the Karp-Rabin hash of T [p − (j − i)..p + (k − j)]
with that of T [i..k]. If they differ, then T [i..k] has no occurrences with splitting

Space-Efficient Conversions from SLPs 153

point T [j]; otherwise w.h.p. the z-fast tries gave the correct range and there are
occurrences. This check takes O(log n) time.

Once we know that (w.h.p.) there are occurrences with splitting point T [j],
we want the leftmost one. Each point within the grid range may correspond
to a different rule X → Y Z that splits T [i..k] at T [j]; therefore, by Observa-
tion 4, we want the minimum of the p values stored for the points within the
range. This kind of two-dimensional range minimum query can be solved in time
O(log1+ε g) and O(g) space, for any constant ε > 0, with an enhancement of G
that uses O(g) space and can be built in time O(g log g) [9,31]. This completes the
query. ��

Finally, we will need the following observation on the monotonicity of occur-
rences in T , even when we stick to some splitting point.

Observation 6. If P has a primary occurrence in T with splitting point P [j],
then any prefix P ′ = P [..k], for any j < k < |P |, also has a primary occurrence
with splitting point P ′[j].

Proof. Let the primary occurrence of P appear in exp(X) and the occurrence
start in exp(Y) and end in exp(Z), with P [j] aligned to the last position of
exp(Y). Then P ′ = P [..k] satisfies the same conditions: a primary occurrence of
P ′ with splitting point P ′[j] starts at the same text position. ��

We are now ready to give the final result.

Theorem 1. Given an SLP with g rules for a text T [1..n], w.h.p. we can build
the LZ parse of T in O(n log2 n) time and within O(g) space.

Proof. We first build the data structures of Lemma 5 in O(n+ g log g) time and
O(g) space, correctly w.h.p.. We then carry out the LZ parse by sliding three
pointers left-to-right across T , i ≤ j ≤ k, as follows: suppose that the parse for
T [1..i−1] is already constructed, so a new phrase must start at i. We first check
whether T [i] appeared already in T [1..i − 1],3 if not then we create a one-letter
phrase and proceed to i + 1.

If T [i] has occurred earlier, we start the main process of building the next
phrase. The invariant is that we have found T [i..k] starting before i in T with
splitting point T [j], and there is no primary occurrence of T [i..k] (nor of T [i..k′]
for any k′ > k, by Observation 6) with a splitting point in T [i..j−1]. To establish
the invariant, we initialize j to i and try k from i onwards, using Lemma 5 and
advancing k as long as the leftmost occurrence of T [i..k] with splitting point T [i]
starts to the left of i.

Note that we will succeed the first time, for k = i. We continue until we
reach k = n (and output T [i..n] as the last phrase of the LZ parse) or we cannot
find T [i..k+1] starting before i with splitting point T [i]. We then try successive
3 This is easily done in O(1) time and |Σ| ∈ O(g) space by just storing an array with

the leftmost occurrence of every distinct symbol in T . This array is built in O(g)
time from the leaves of the grammar tree.

154 T. Gagie et al.

values of j, from i+1 onwards, using Lemma 5 to find T [i..k+1] starting before
i with splitting point T [j]. If we finally succeed for some j ≤ k, we reestablish
the invariant by increasing k and return to the first loop, which again increases
k with fixed j, and so on.

When j reaches k + 1, it follows that T [i..k] occurs before i and T [i..k + 1]
does not, with any possible splitting point. The next phrase is then T [i..k], which
we output, reset i = k + 1, and resume the parsing.

Since j and k never decrease in the process, we use queries from Lemma 5
O(n) times for a total time of O(n+ g log g+n(log2 n+ log1+ε g)) = O(n log2 n)
to build the LZ parse. ��

4 Building the LZ Parse from an SLP in Õ(gz) Time

If T is highly compressible, the running time O(n log2 n) in Theorem 1 could
be exponential in the size O(g) of the input. We can build the parse in
O(gz log2 n

z) ⊂ poly(g) time by using, instead of the machinery of the preced-
ing section, Jeż’s [19] algorithm for fully-compressed pattern matching. We will
only balance the SLP if needed [14] so that its height is O(log n). We start by
reminding some tools.

Lemma 7 ([38]). Given an SLP of height h for T , we can in O(h) time and
space produce an SLP of size O(h) for any desired substring T [i..j] (without
modifying the SLP of T).

Note that the SLP constructed in the Lemma above may use some of the
nonterminals of the original SLP for T , i.e. its size is in principal g + O(h).

Lemma 8 ([19]). If T and P have SLPs of size g and g′, then we can find the
leftmost occurrence of P in T in time O((g+ g′) log |P |), within O(g+ g′) space.

Note that [19] does not state the space complexity, however, the analysis [19,
Sec. 6] bounds intermediate SLPs to be of size O(g + g′) ([19, Lem. 6.5] and the
running time of the subprocedures (and so their space usage) to be linear; hence
the linear space consumption follows.

Assume again we have already parsed T [1..i − 1], and aim to find the next
phrase, T [i..k]. We will exponentially search for k using O(log(k−i)) steps. Each
step implies determining whether some T [i..j] occurs in T starting to the left
of i (so that k is the maximum such j). To do this we exploit the fact that
our SLP is of height h = O(log n) and use Lemma 7 to extract an SLP for
T [i..j], of size g′ ≤ g + O(h) = g + O(log n), in O(h) = O(log n) time4. We
then search for the SLP of T [i..j] in the SLP of size g of T using Lemma 8, in
time O((g + g′) log(j − i)) ⊆ O(g log(k − i)) (because g′ ⊆ O(g), as g is always
Ω(log n)). By comparing the leftmost occurrence position with i we drive the
exponential search, finding k in time O(g log2(k − i)) and space O(g).

4 Rytter [38] rebalances the grammar he extracts, but we do not need to do this.

Space-Efficient Conversions from SLPs 155

Repeating this for each LZ phrase we get
∑z

i=1 g log2 ni, where n1, n2, . . . , nz

denote the consecutive phrase lengths. By Jensen’s inequality (since log2(·) is
concave), the sum is maximized when all ni = n/z.

Theorem 2. Given an SLP with g rules for a text T [1..n] whose LZ parse has
z phrases, we can build that parse in O(gz log2(n/z)) time and O(g) space.

5 Building an LCG from an SLP in Õ(n) Time

Locally consistent grammars (LCGs) are actually run-length context-free gram-
mars, that is, they allow rules X → Y1 · · · Yt (of size t) and run-length rules of
the form X → Y t, equivalent to X → Y · · · Y (t copies of Y), of size 2. A par-
ticular kind of LCG can be obtained from T with the following procedure [27].
First, define �k = (4/3)�k/2�−1 and call S0 = T . Then, for increasing levels k > 0,
create Sk from Sk−1 as follows:

1. If k is odd, find the maximal runs of (say, t > 1 copies of) equal symbols Y
in Sk−1 such that | exp(Y)| ≤ �k, create a new grammar rule X → Y t, and
replace the run by X. The other symbols are copied onto Sk as is.

2. If k is even, generate a function πk that randomly reorders the symbols of
Sk−1 and define local minima as the positions 1 < i < |Sk−1| such that
πk(Sk−1[i−1]) > πk(Sk−1[i]) < πk(Sk−1[i+1]). Place a block boundary after
each local minimum, and before and after the symbols Y with | exp(Y)| > �k.
Create new rules for the resulting blocks of length more than 1 and replace
them in Sk by their corresponding nonterminals. Leave other symbols as is.

Our plan is to extract T left to right from its SLP, in O(n) time, and carry
out the described process in streaming form. The only obstacle to perform the
process at level k in a single left-to-right pass is the creation of the functions
πk without knowing in advance the alphabet of Sk−1. We can handle this by
maintaining two balanced trees. The first, Tid, is sorted by the actual symbol
identifiers, and stores for each symbol a pointer to its node in the second tree,
Tpos. The tree Tpos is sorted by the current πk values (which evolve as new
symbols arise), that is, the πk value of a symbol is its inorder position in Tpos.
We can know the current value of a symbol in πk by going up from its node
in Tpos to the root, adding up one plus the number of nodes in the left subtree
of the nodes we reach from their right child (so Tpos stores subtree sizes to
enable this computation). Two symbols are then compared in logarithmic time
by computing their πk values using Tpos.

When the next symbol is not found in Tid, it is inserted in both trees. Its rank
r in Tpos is chosen at random in [1, |Tid|+1]. We use the subtree sizes to find the
insertion point in Tpos, starting from the root: let tl be the size of the left child
of a node. If r ≤ tl +1 we continue by the left child, otherwise we subtract tl +1
from r and continue by the right child. The balanced tree rotations maintain the
ranks of the nodes, so the tree can be rebalanced after the insertion adds a leaf.

Our space budget does not allow us maintaining the successive strings Sk.
Rather, we generate S0 = T left to right in linear time using the given SLP

156 T. Gagie et al.

and have one iterator per level k (the number of levels until having a single
nonterminal is logarithmic [27, Remark 3.16]). Each time the process at some
level k − 1 produces a new symbol, it passes that new symbol on to the next
level, k. When the last symbol of T is consumed, all the levels in turn close their
processes, bottom-up; the LCG comprises the rules produced along all levels.

The total space used is proportional to the number of distinct symbols across
all the levels of the grammar. This can be larger than the grammar size because
symbols X with | exp(X)| > �k are not replaced in level k, so they exist in the
next levels as well. To avoid this, we perform a twist that ensures that every
distinct grammar symbol is stored only in O(1) levels. The twist is not to store
in the trees the symbols that cannot form groups in this level, that is, those
X for which | exp(X)| > �k. Since then the symbols stored in the tree for even
levels k are forced to form blocks (no two consecutive minima can exist), they
will no longer exist in level k + 1. Note that the sizes of the trees used for the
symbols at level k are then proportional to the number of nonterminals of that
level in the produced grammar.

There is a deterministic bound O(δ log n
δ) on the total number of nontermi-

nals in the generated grammar [27, Corollary 3.12], and thus on the total sizes
of the balanced trees. Here, δ is the compressibility measure based on substring
complexity, and size O(δ log n

δ) is optimal for every n and δ [27,28]. The size glc of
the produced LCG could be higher, as for some choices of letter permutations on
various levels some right-hand of the productions can be of not-constant length,
however, but it is still O(δ log n

δ) in expectation and with high probability [27,
Theorem 3.13]. Because the sum of the lengths of the strings Sk is O(n) [27,
Corollary 3.15], we produce the LCG in time O(n log glc); the log glc comes from
the cost of balanced tree operations.

Theorem 3. Given an SLP with g rules for a text T [1..n], we can build w.h.p.
an LCG of size glc = O(δ log n

δ) for T in O(n log glc) time and O(g + glc) space.

If we know δ, we can abort the construction as soon as its total size exceeds
c · δ log n

δ for some suitable constant c, and restart the process afresh. After
O(1) attempts in expectation, we will obtain a locally consistent grammar of
size O(δ log n

δ) [27, Corollary 3.15]. The grammar we produce, in O(n log glc)
expected time, is then of guaranteed size glc = O(δ log n

δ). Note that we need a
structure mapping blocks and runs to new symbols: using a simple trie for the
rules uses O(glc) space and can be constructed in O(glc log glc) time.

6 Building the LZ Parse from an LCG in Õ(z) Time

One of the many advantages of LCGs compared to general SLPs is that, related
to Definition 1, they may allow trying out only O(log |P |) splitting positions
of P in order to discover all their primary occurrences, as opposed to m − 1 if
using a generic SLP. This is the case of the LCG of size O(δ log n

δ) of the previous
section [27], which specializes [10], in the sense that any grammar produced with
the first method [27] can be produced by the second [10], and therefore every

Space-Efficient Conversions from SLPs 157

property we prove for the second method holds for the first as well. The first
method introduces a restriction to produce grammars of size O(δ log n

δ), whereas
the second kind has a weaker space bound of O(γ log n

γ), where γ ≥ δ is the size
of the smallest string attractor of T [25] (concretely, the parsing is as in Sect. 5
but does not enforce the condition exp(X) ≤ �k). We now show how the bound
on the splitting positions number enables us to find the LZ parse of those LCGs
in time O(z log4 n). We will then stick to the more general LCG [10]; the results
hold for the other too [27], as explained.

Our technique combines results used for Theorems 1 and 2: we will use expo-
nential search, as in Sect. 4, to find the next phrase T [i..k], and will use the
data structures of Sect. 3 to search for its leftmost occurrence in T ; the fact that
we will need to check just a logarithmic number of splitting points will yield
the bound. We start with an analogue of Lemma 1 for our LCG; we get better
bounds in this case.

Lemma 9. Given the LCG [10] of size glc of T [1..n], we can build in
O(glc log glc) time and O(glc) space a data structure supporting the same opera-
tions listed in Lemma 1, all in O(log n) time.

Proof. Since the LCG is already balanced, accessing T [i] in O(log n) time is
immediate. The Karp-Rabin fingerprints can be computed with the structure of
Christiansen et al. [10, Thm. A.3], which can be built in O(glc) space and time.

To compute longest common prefixes (LCPs) we use a similar approach as
Kempa and Kociumaka [23, Thm. III.3] or earlier Alstrup, Brodal and Rauhe [1].
To deal with rules of non-constant size, we build a data structure for answering
the LCE queries on the (right-hand sides of) non-runs rules of the LCG. This
is a standard construction (using suffix arrays and LCA queries [5]) and can be
done in O(glc log glc) time and O(glc) space, or even in O(glc) time, when the
letters can be identified with numbers that are polynomial in glc [20]. ��

Consider the cost to build the data structures of Sect. 3. Using Lemma 9, we
sort the multisets Y and Z in time O(glc log glc · log n). This time dominates the
construction time of the z-fast tries for Y and Z, the grid structure G, and the
two-dimensional range minimum query mentioned in Lemma 5. Further, because
glc ≤ γ log n

γ [10] and γ ≤ z [25], this time is in O(z log2 n log(n/z)).
After building those components, we start parsing the text using the exponen-

tial search of Sect. 4. To test whether the candidate phrase T [i..j] occurs starting
to the left of i, we use the LCG search algorithm for T [i..j] provided by the LCG.
Christiansen et al. [10] observed that we need to check only O(log(j − i)) split-
ting points to find every primary occurrence of T [i..j]. They find the splitting
points through a linear-time parse of T [i..j], but we can do better by reusing
the locally consistent parsing used to build the LCG. While we do not store the
strings Sk of Sect. 5, we can recover the pieces that cover T [i..j] by traversing
the (virtual) grammar tree from the root towards that substring of T .

Lemma 10 ([10]). Let M0(i, j) = {i, j−1}. For any k > 0, let Mk(i, j) contain
the first and last positions ending a block of Sk that are within T [i..j − 1] but

158 T. Gagie et al.

do not belong to Mk′(i, j) for any k′ < k. Then, M(i, j) = ∪kMk(i, j) is of size
O(log(j − i)) and the splitting point of every primary occurrence of T [i..j] in T
belongs to M(i, j).

Proof. Our definition of M(i, j) includes the positions in Definitions 4.7 and 4.8
of Christiansen et al. [10] (they use Br and B̂r instead of our even and odd levels
Sk). The property we state corresponds to their Lemma 6.4 [10]. ��
To compute M(i, j), then, we descend from the root of the (virtual) parse tree
of the LCG towards the lowest nonterminal X that fully contains T [i..j], and
continue from X towards the leaf L that contains T [i]. We then start adding to
M(i, j) the endpoint of L (which is i), and climb up to its parent P . If P ends
in the same position of L, we shift P to its next sibling. We now set L = P , add
the last position of L to M(i, j), climb up to its parent P , and so on until the
last position of L exceeds j − 1 (which may occur when reaching X or earlier).
We proceed analogously with the path from X to the leaf that contains T [j −1].

We visit O(log n) nodes in this process, but since the LCG may not be binary,
we may need O(log n) time to find the proper children of a node. The total time
is then O(log2 n).

Once the set M(i, j) of splitting points is found, we search for
each of them as in Lemma 5, each in time O(log(j − i) log n +
log1+ε glc). Therefore, the total time to check a candidate T [i..j] is
O

(
log2 n + log(j − i)

(
log(j − i) log n + log1+ε glc

))
. In turn, the exponential

search that finds the next phrase T [i..k] carries out O(log(k − i)) such checks,
with j − i ≤ 2(k − i), thus the total time to find the next phrase is O(log(k −
i) log2 n+log3(k−i) log n+log2(k−i) log1+ε glc). Using Jensen’s inequality again
and simplifying, this yields the running time of O(z log2(n/z) log2 n).

Theorem 4. Given the LCG of Christiansen et al. [10] of size glc of T [1..n],
we can build w.h.p. the LZ parse of T in O(z log2(n/z) log2 n) time and O(glc)
extra space. The result also holds verbatim for the LCG of Kociumaka et al. [27].

7 Conclusions

We have contributed to the problem of compressed conversions, that is, using
asymptotically optimal space, between various compression formats for repetitive
data. Such a space means linear in the input plus output size, which outrules
the possibility of decompressing the data. This is crucial to face the sharp rise
the size of data in sequence form has experienced in the last decades, which
requires manipulating the data always in compressed form. To the best of our
knowledge, we are the first to propose methods to build the Lempel-Ziv parse
of a text directly from its straight-line program representation. Our methods
work in time O(n log2 n) and O(gz log2 n). The second is polynomial on the size
of the compressed data and we thus call it a fully-compressed conversion; such
methods can be considerably faster when the data is highly compressible. We
also gave methods to convert from straight-line programs to locally consistent

Space-Efficient Conversions from SLPs 159

grammars, which enable faster and more complex queries, in O(n log n) time.
As a showcase for their improved search capabilities, we show how to produce
the Lempel-Ziv parse from those grammars in time O(z log4 n), another fully-
compressed conversion. All of our conversions work with high probability.

Obvious open problems are obtaining better running times without using
more space. Furthermore, we think that approaches similar to those described
in this article can be applied to effectively compute other parses, such as the
lexicographic parse [34]. We plan to address these in the extended version.

Acknowledgements. We thank the anonymous reviewers, whose comments helped
to improve the presentation, correct several errors and give a much better and more
detailed exhibition of the state of the art in the introduction.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In:
SODA, pp. 819–828 (2000)

2. Arimura, H., Inenaga, S., Kobayashi, Y., Nakashima, Y., Sue, M.: Optimally
computing compressed indexing arrays based on the compact directed acyclic
word graph. In: International Symposium on String Processing and Information
Retrieval, pp. 28–34 (2023)

3. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Fast prefix search in little space,
with applications. In: 18th European Symposium on Algorithms (ESA), Part I,
pp. 427–438 (2010)

4. Belazzougui, D., Puglisi, S.J.: Range predecessor and Lempel-Ziv parsing. In: 27th
Symposium on Discrete Algorithms (SODA), pp. 2053–2071 (2016)

5. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: LATIN, pp.
88–94 (2000)

6. Bille, P., Gørtz, I.L., Cording, P.H., Sach, B., Vildhøj, H.W., Vind, S.: Fingerprints
in compressed strings. J. Comput. Syst. Sci. 86, 171–180 (2017)

7. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Rao, S.S., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015)

8. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

9. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3), 427–462 (1988)

10. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms 17(1), arti-
cle 8 (2020)

11. Claude, F., Navarro, G., Pacheco, A.: Grammar-compressed indexes with logarith-
mic search time. J. Comput. Syst. Sci. 118, 53–74 (2021)

12. Durbin, R.M., Auton, A., Brooks, L.D.: A global reference for human genetic vari-
ation. Nature 526(7571), 68–74 (2015)

160 T. Gagie et al.

13. Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), article 2 (2020)

14. Ganardi, M., Jeż, A., Lohrey, M.: Balancing straight-line programs. J. ACM 68(4),
27:1–27:40 (2021)

15. Gawrychowski, P.: Pattern matching in Lempel-Ziv compressed strings: fast, sim-
ple, and deterministic. In: European Symposium on Algorithms, pp. 421–432 (2011)

16. Gawrychowski, P., Karczmarz, A., Kociumaka, T., Łącki, J., Sankowski, P.: Opti-
mal dynamic strings. In: 29th ACM-SIAM Symposium on Discrete Algorithms, pp.
1509–1528 (2018)

17. Gawrychowski, P., Kociumaka, T.: Sparse suffix tree construction in optimal time
and space. In: 28th ACM-SIAM Symposium on Discrete Algorithms, pp. 425–439.
SIAM (2017)

18. Tomohiro, I.: Longest common extensions with recompression. In: 28th Symposium
on Combinatorial Pattern Matching (CPM), pp. 18:1–18:15 (2017)

19. Jeż, A.: Faster fully compressed pattern matching by recompression. ACM Trans.
Algorithms (TALG) 11(3), 1–43 (2015)

20. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

21. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

22. Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler Transform conjec-
ture. In: 61st IEEE Symposium on Foundations of Computer Science (FOCS), pp.
1002–1013 (2020)

23. Kempa, D., Kociumaka, T.: Collapsing the hierarchy of compressed data struc-
tures: Suffix arrays in optimal compressed space. In: 63rd IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 1877–1886 (2023)

24. Kempa, D., Kosolobov, D.: LZ-End parsing in compressed space. In: 27th Data
Compression Conference (DCC), pp. 350–359 (2017)

25. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors.
In: 50th ACM SIGACT Symposium on Theory of Computing, pp. 827–840 (2018)

26. Kieffer, J.C., Yang, E.-H.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

27. Kociumaka, T., Navarro, G., Olivares, F.: Near-optimal search time in δ-optimal
space. Algorithmica (2023). accepted, available online

28. Kociumaka, T., Navarro, G., Prezza, N.: Toward a definitive compressibility mea-
sure for repetitive sequences. IEEE Trans. Inf. Theory 69(4), 2074–2092 (2023)

29. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976)

30. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time. Algorithmica 17(2), 183–198 (1997)

31. Navarro, G.: Wavelet trees for all. J. Dis. Algorithms 25, 2–20 (2014)
32. Navarro, G.: Indexing highly repetitive string collections, part I: repetitiveness

measures. ACM Comput. Surv. 54(2), article 29 (2021)
33. Navarro, G.: Computing MEMs on repetitive text collections. In: 34th Symposium

on Combinatorial Pattern Matching (CPM), page article 22 (2023)
34. Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings.

IEEE Trans. Inf. Theory 67(2), 1008–1026 (2020)
35. Navarro, G., Prezza, N.: Universal compressed text indexing. Theoret. Comput.

Sci. 762, 41–50 (2019)

Space-Efficient Conversions from SLPs 161

36. Nishimoto, T., Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index
and LZ factorization in compressed space. Discret. Appl. Math. 274, 116–129
(2020)

37. Policriti, A., Prezza, N.: From LZ77 to the run-length encoded burrows-wheeler
transform, and back. In: 28th Symposium on Combinatorial Pattern Matching
(CPM). LIPIcs, vol. 78, pp. 17:1–17:10 (2017)

38. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302(1–3), 211–222 (2003)

Sparse Suffix and LCP Array: Simple,
Direct, Small, and Fast

Lorraine A. K. Ayad1, Grigorios Loukides2, Solon P. Pissis3,4(B),
and Hilde Verbeek3

1 Brunel University London, London, UK
lorraine.ayad@brunel.ac.uk

2 King’s College London, London, UK
grigorios.loukides@kcl.ac.uk

3 CWI, Amsterdam, The Netherlands
{solon.pissis,hilde.verbeek}@cwi.nl

4 Vrije Universiteit, Amsterdam, The Netherlands

Abstract. Sparse suffix sorting is the problem of sorting b = o(n) suf-
fixes of a string of length n. Efficient sparse suffix sorting algorithms have
existed for more than a decade. Despite the multitude of works and their
justified claims for applications in text indexing, the existing algorithms
have not been employed by practitioners. Arguably this is because there
are no simple, direct, and efficient algorithms for sparse suffix array con-
struction. We provide two new algorithms for constructing the sparse
suffix and LCP arrays that are simultaneously simple, direct, small, and
fast. In particular, our algorithms are: simple in the sense that they
can be implemented using only basic data structures; direct in the sense
that the output arrays are not a byproduct of constructing the sparse
suffix tree or an LCE data structure; fast in the sense that they run
in O(n log b) time, in the worst case, or in O(n) time, when the total
number of suffixes with an LCP value greater than 2�log n

b
�+1 − 1 is in

O(b/ log b), matching the time of optimal yet much more complicated
algorithms [Gawrychowski and Kociumaka, SODA 2017; Birenzwige et
al., SODA 2020]; and small in the sense that they can be implemented
using only 8b + o(b) machine words. We also show that our second algo-
rithm can be trivially amended to work in O(n) time for any uniformly
random string. Our algorithms are non-trivial space-efficient adaptations
of the Monte Carlo algorithm by I et al. for constructing the sparse suffix
tree in O(n log b) time [STACS 2014].

Keywords: suffix array · LCP array · suffix sorting · sparse suffix
sorting

SPP and HV are supported by the PANGAIA project (GA 872539). SPP is supported
by the ALPACA project (GA 956229). HV is supported by a Constance van Eeden
Fellowship.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 162–177, 2024.
https://doi.org/10.1007/978-3-031-55598-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_11&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_11

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast 163

1 Introduction

Let T = T [1 . . n] be a string of length n over an ordered alphabet Σ. Further let
B ⊆ [1, n] be a set of b > 1 positions in T . Sparse suffix sorting is the problem
of sorting the set of suffixes TB = {T [i . . n] : i ∈ B} lexicographically [18].
This is achieved by constructing the sparse suffix array. The sparse suffix array
SSA = SSA[1 . . b] is the array containing the positions in B in the lexicographical
order of the suffixes in TB. The associated sparse longest common prefix array
SLCP = SLCP[1 . . b] stores the length SLCP[i] of the longest common prefix of
T [SSA[i−1] . . n] and T [SSA[i] . . n] when i ∈ [2, n] or 0 when i = 1. The SSA and
SLCP array can be used to construct the sparse suffix tree in linear time using
the algorithm by Kasai et al. [20]. The sparse suffix tree is the compacted trie of
the set TB. Vice-versa, the SSA and SLCP array can be obtained in linear time
via a pre-order traversal of the sparse suffix tree.

Sparse suffix sorting was introduced as a fundamental step in the con-
struction of compressed or sparse text indexes [18]. Modern compressed text
indexes [10,24], practical indexes for long patterns [2,15,22,23], and sublinear-
space string algorithms [3,5] rely on sparse suffix sorting: they first sample a sub-
linear number of “important” suffixes, which they next sort to construct their
final solution. Efficient sparse suffix sorting algorithms have existed for more
than a decade. The following algorithms construct SSA explicitly, or implicitly
by first constructing the sparse suffix tree. Since the size of SSA (and the size
of sparse suffix tree) is Θ(b), the goal of these algorithms is to use O(b) words
of space assuming read-only random access to T . Kärkkäinen et al. presented
a deterministic O(n2/s)-time and O(s)-space algorithm, for any s ∈ [b, n] [17,
Section 8]. Bille et al. presented a Monte Carlo O(n log2 b)-time and O(b)-space
algorithm [6], as well as a Las Vegas O(n log2 n + b2 log b)-time and O(b)-space
algorithm. I et al. presented a Monte Carlo O(n + (bn/s) log s)-time and O(s)-
space algorithm, for any s ∈ [b, n] [16] and a Las Vegas O(n log b)-time and
O(b)-space algorithm. Gawrychowski and Kociumaka [14] presented a Monte
Carlo O(n)-time and O(b)-space algorithm and a Las Vegas O(n

√
log b)-time

and O(b)-space algorithm. Birenzwige et al. [7] presented a Las Vegas algorithm
running in O(n) time using O(b) space. Besides this they also presented a deter-
ministic O(n log n

b)-time and O(b)-space algorithm, for any b = Ω(log n).
The following algorithms also construct SSA, but they work in the restore

model [9]: an algorithm is allowed to overwrite parts of the input, as long as it
can restore it to its original form at termination. Fischer et al. [12] presented
a deterministic O(c

√
log n + b log b log n log∗ n)-time and O(b)-space algorithm,

where c is the number of letters that must be compared for distinguishing the
suffixes in TB. In some cases, this runs in sublinear extra time; extra refers to
the linear cost of loading T in memory. Prezza [26] presented a Monte Carlo
O(n + b log2 n)-time algorithm using O(1) words of space.

Motivation. Despite the multitude of works on sparse suffix sorting and their
justified claims for applications in text indexing, the existing algorithms have not
been employed by practitioners. Arguably this is because there are no simple,

164 L. A. K. Ayad et al.

direct, and efficient algorithms for SSA construction. The O(n)-time algorithms
of Gawrychowski and Kociumaka [14] and of Birenzwige et al. [7] are far from
simple and do not seem to be practically promising either. The former (Monte
Carlo) algorithm relies heavily on the construction of compacted tries, which
induce high constants in space usage, and on a recursive application of differ-
ence cover to construct a Longest Common Extension (LCE) data structure. The
latter (Las Vegas) algorithm relies on an intricate partitioning scheme (sampling)
to construct SSA and on an LCE data structure to compute the SLCP array. The
Monte Carlo O(n log b)-time algorithm of I et al. [16] is simple but it also relies
heavily on compacted tries, which makes it less likely to be employed by prac-
titioners for SSA construction. The Monte Carlo O(n + b log2 n)-time algorithm
of Prezza [26] makes heavy usage of an LCE data structure as well: construct-
ing the SSA and SLCP array is a byproduct of an in-place LCE data structure.
The latter algorithm is, to the best of our knowledge, the only algorithm which
has been implemented (at least in a simplified form). Due to the interest in
sparse suffix sorting and the above characteristics of the existing algorithms,
we were motivated to revisit this problem to develop efficient, yet simple and
direct, algorithms for SSA construction. Such algorithms may serve as baselines
for practitioners to engineer the SSA and SLCP array construction.

Our Model and Results. We assume the standard word RAM model with word
size Θ(log n); basic arithmetic and bit-wise operations on O(log n)-bit integers
take O(1) time. We assume that we have a read-only random access string T of
length n over an integer alphabet Σ = {1, . . . , nO(1)}, a read-only integer array
A of size b storing the b elements of B, and two write-only integer arrays SSA
and SLCP, each of size b. We thus count the amount of extra space in machine
words used to construct the SSA and SLCP array. We present two algorithms:

1. Our first algorithm, Main-Algo, constructs SSA and SLCP directly ; i.e.,
without first explicitly constructing the sparse suffix tree or an LCE data
structure (see Sect. 3). Its time complexity is O(n+(bn/s) log s) and its space
complexity is s + 7b + o(b) machine words, for any chosen s ∈ [b, n]. It is a
Monte Carlo algorithm that returns the correct output with high probabil-
ity ; i.e., with probability at least 1 − n−c, for any constant c ≥ 1 chosen at
construction time. Main-Algo is simple in the sense that it can be imple-
mented using only basic data structures (e.g., dictionaries and arrays) readily
available in widely-used programming languages (e.g., C++, Java, or Python).
Main-Algo is a non-trivial space-efficient simulation of the algorithm by I
et al. for sparse suffix tree construction [16]. A disadvantage of these two
algorithms is that they attain the Θ(n log b) time bound for s = b in any
case. To address this, we develop Parameterized-Algo, a parameterized
algorithm which is input-sensitive.

2. Our second algorithm, Parameterized-Algo, also constructs SSA and
SLCP directly (see Sect. 4). Its time complexity is O(n + (b′n/b) log b) and
its space complexity is 8b + 4b′ + o(b) machine words, where b′ is the total
number of suffixes SSA[i] ∈ B with SLCP[i] ≥ � or SLCP[i + 1] ≥ �, where

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast 165

� = 2�log n
b �+1 − 1. When b′ = O(b/ log b), Parameterized-Algo runs in

O(n) time, thus matching the time of the optimal yet much more compli-
cated algorithms in [7,14], using only 8b + o(b) machine words. It is a Monte
Carlo algorithm that returns the correct output with high probability. It is
remarkably simple as it consists of two calls of Main-Algo and a linear-
time step that merges the partial results (however, the proof of correctness
requires some work). The running time of Parameterized-Algo is good
in the following sense: if the instance is reasonably sparse, then � is large
and likely b′ = O(b/ log b), thus it runs in O(n) time. In any case, it runs in
O(n log b) time. For instance, for the full human genome (v. GRCh38) as T ,
where n ≈ 3 · 109, and for b = �√n� = 56137 suffixes selected uniformly at
random, b′ = 2525 < �b/ log b� = 3558. We also analyze the time complexity
of Parameterized-Algo on random strings and show that it works in O(n)
time (after a trivial amendment), for any string chosen uniformly at random
from Σn and any set TB of b suffixes of T , with high probability.

2 Preliminaries

We consider strings over an integer alphabet Σ = {1, . . . , nO(1)}. The elements
of Σ are called letters. A string T = T [1 . . n] is a sequence of letters from Σ; we
denote by |T | = n the length of T . The fragment T [i . . j] of T is an occurrence of
the underlying substring P = T [i] . . . T [j] occurring at position i in T . A prefix
of T is a substring of T of the form T [1 . . j] and a suffix of T is a substring of T
of the form T [i . . n].

Karp-Rabin Fingerprints. Let T be a string of length n over an integer alphabet.
Let p be a prime and choose r ∈ [0, p−1] uniformly at random. The Karp-Rabin
(KR) fingerprint [19] of T [i . . j] is: φT (i, j) = (

∑j
k=i T [k]rj−k mod p, rj−i+1

mod p). Clearly, if T [i . . i + �] = T [j . . j + �] then φT (i, i + �) = φT (j, j + �).
On the other hand, if T [i . . i + �] 	= T [j . . j + �] then φT (i, i + �) 	= φT (j, j + �)
with probability at least 1 − �/p [11]. Since we are comparing only substrings
of equal length, the number of different possible substring comparisons is less
than n3. Thus, for any constant c ≥ 1, we can set p to be a prime larger than
max(|Σ|, nc+3) to make the KR fingerprint function perfect with probability at
least 1 − n−c. Any KR fingerprint or p fit in one machine word of size Θ(log n).

Lemma 1 ([16]). Any string T ∈ Σn can be preprocessed in O(n) time using
s + O(1) machine words, for any s ∈ [1, n], so that the KR fingerprint of any
length-k fragment of T is computed in O(min{k, n/s}) time.1

I et al. [16] employ the distribute-and-collect technique [25] to group b suffixes,
according to a fixed-length common prefix by using their KR fingerprints, in
O(b logs n) time. We instead use hashing to achieve the same result in O(b) time
with high probability. This gives improved running times in some special regimes
(see Theorem 2 and Theorem 3).
1 I et al. [16] claim O(s) space but from their construction it is evident that in fact

s + O(1) machine words are used.

166 L. A. K. Ayad et al.

3 Main Algorithm

Overview. A summary of our main algorithm (Main-Algo) follows with refer-
ences to the pseudocode given in Algorithms 1 and 2.2 It takes as input a string
T from Σn and an array A of b elements, indicating the starting positions of the
suffixes to be sorted. It also takes an integer jstart, which defines the number
of iterations. In this section, jstart is set to �log n� (the default value), but a
different value is used for the parameterized algorithm presented in Sect. 4.

Algorithm 1. Main-Algo

Input: string T ∈ Σn, integer b, array A of b integers,
and integer jstart (default �log n�)
Output: SSA and SLCP

1: m ← b + 1
2: Lm ← (1, . . . , b)
3: B ← {(m, 0, Lm)}
4: A[m] ← A[1]
5: for j = jstart, . . . , 0 do
6: B′ ← ∅
7: for (i, k, Li) ∈ B do
8: Hi ← empty hash table
9: s ← |Li|

10: for l ∈ Li do
11: h ← φT (A[l] + k, A[l] + k + 2j − 1)
12: Hi[h].append(l)
13: Li.erase(l)

14: for h ∈ Hi do
15: f ← Hi[h]
16: if |f | = s then
17: B ← B \ {(i, k, Li)} ∪ {(i, k + 2j , f)}
18: else if |f | ≥ 2 then
19: m ← m + 1
20: Li.append(m)
21: B′ ← B′ ∪ {(m, k + 2j , f)}
22: A[m] ← A[f [1]]
23: else if |f | = 1 then
24: Li.append(f)

25: B ← B ∪ B′

26: for (i, k, Li) ∈ B do
27: Li.sort(l 	→ T [A[l] + k])

28: return Output-Arrays(B, b, A)

During the first phase
(Algorithm 1, Lines 1–
25), the suffixes are dis-
tributed into groups such
that all suffixes belong-
ing to a particular group
share a common prefix.
At the end of this pro-
cess, we are left with
a hierarchy of groups
that describes the exact
longest common prefixes
between suffixes. The mem-
bers of each group are
then sorted lexicographi-
cally, which is made pos-
sible by knowing their
longest common prefixes
(Algorithm 1, Lines 26–
27), such that a traver-
sal of the hierarchy will
yield the suffixes in lex-
icographic order. This is
the second phase (Algo-
rithm 1, Line 28 and
Algorithm 2): a simple
depth-first search is used
to construct the sparse
suffix array and accompa-
nying sparse LCP array
from the hierarchy.

3.1 Computing and Sorting the LCP Groups

During the first phase, the suffixes of A are organized into several LCP groups
stored in set B. Each group in B is represented by a triple (i, k, {v1, . . . , vni

}),
2 We stress that the pseudocode is complete in the sense that it only assumes the

implementation of Lemma 1 (Line 11).

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast 167

where i is the index (id) of the group, k is its associated LCP value and v1 through
vni

are its members, which are either suffixes or other groups. To distinguish
between suffixes and groups, the indices 1 through b are reserved for the suffixes
in A and the group numbering starts at b + 1. At every point of the algorithm,
it holds that in a group (i, k, {v1, . . . , vni

}), all suffixes and groups (with their
respective suffixes) in {v1, . . . , vni

} share a prefix of length at least k. At the start
(base case), there exists just one group (b + 1, 0, {1, . . . , b}) (Line 3) containing
all suffixes as members.

The LCP groups are then “refined” (the refinement process will be explained
shortly) over the course of �log n� iterations, such that in the end each group
describes the exact longest common prefix of its members rather than just a lower
bound. Specifically, by the end of iteration j (where j descends from �log n� down
to zero), in a group with LCP value k, two suffixes will have an actual longest
common prefix of at least k and at most k + 2j − 1 letters. This gap is closed
once j has reached zero, at which point the refinement process is completed. The
algorithm allows specifying a different starting value for j than �log n�, through
the parameter jstart. This is used in the parameterized algorithm described in
Sect. 4.

The refinement process works as follows in iteration j. We refine every exist-
ing group; let one such group be (i, k, {v1, . . . , vni

}). We create a hash table
(Line 8) and for every group member, with index vi, we take the KR fingerprint
as per Lemma 1 of T [A[vi] + k . . A[vi] + k + 2j − 1] (Line 11).3 If vi denotes a
group, we do the same thing using any given suffix belonging to that group; this
is easily achieved by appending “witness” suffixes to A for every created group
as seen in Lines 4 and 22. (Any suffix can be a witness but we choose the one
with the smallest index.) All the members are grouped in the hash table based
on their KR fingerprints: if two suffixes have the same KR fingerprint, they will
end up in the same entry of the hash table and with high probability have the
same prefix of length k + 2j . To save space, entries are removed from the group
as they are added to the hash table (Line 13). All entries of the hash table are
then inspected (Line 14). We distinguish three cases. In case 1 (Lines 16–17), if
all suffixes in a group end up having the same KR fingerprint, we update the
LCP value of the old group to k + 2j rather than creating a new group. In case
2 (Lines 18–22), if two or more suffixes have the same KR fingerprint, a new
group is made with LCP value k +2j , containing these suffixes, and added to B.
After removing the suffixes from their original group, we replace them with the
index of the newly created group (Line 20). In case 3 (Lines 23–24), if a suffix
is not grouped with any other suffix, we append it back to its original group.

Once the iteration with j = 0 ends, all LCP groups describe the exact longest
common prefix of their members.4 We now sort the members of every group
lexicographically (Lines 26–27). Sorting can be done using merge sort or radix
sort, because these algorithms can be performed in place using O(1) additional

3 We assume that A[vi] + k + 2j − 1 ≤ n; otherwise, the suffix ends at position n.
4 This is generally not true when jstart was set to a value less than �log n�; in this

case, the LCP values are only correct if they are at most 2jstart+1 − 1; see Sect. 4.

168 L. A. K. Ayad et al.

memory. Moreover, since we now know the exact LCP value for each group, two
members in the same group can easily be compared in constant time: if they
have a longest common prefix of length k, then the first position in which they
differ is k + 1, meaning they can be compared by only comparing their k + 1-th
letters. After this, set B contains the complete and sorted LCP groups, which
are passed on to the second step of the algorithm.

3.2 Constructing the SSA and SLCP Array

The second phase (Algorithm 2) of the main algorithm involves traversing the
groups created in the previous phase in order to construct the SSA and SLCP
array. At this point, the members of each group are sorted lexicographically,
which means that the SSA can be obtained by a simple pre-order walk along
the hierarchy of the groups. For any two members, their exact longest common
prefix is stored by their lowest common ancestor; that is, the group with the
greatest LCP value that both suffixes fall under.

This part of the algorithm is thus a simple depth-first search of the underlying
hierarchy that records all encountered suffixes in SSA in the order they appear.
For every group that is visited, the LCP value of its direct “parent” is stored
with it (Lines 4 and 17). Throughout, a value � is tracked that takes the value
of the lowest LCP value that has been seen since the last suffix was encountered
(Lines 8–9); every time a suffix is appended to SSA, � is appended to the SLCP
array (Lines 11–12). This completes the construction.

Algorithm 2. Output-Arrays

Input: Set B of tuples (i, k, Li) in ascend-
ing order by i, integer b, and array A
Output: SSA and SLCP

1: SSA ← empty array
2: SLCP ← empty array
3: S ← empty stack
4: S.push((b + 1, 0))
5: � ← 0
6: while S is not empty do
7: (i, �′) ← S.pop()
8: if �′ < � then
9: � ← �′

10: if i ≤ b then
11: SSA.append(A[i])
12: SLCP.append(�)
13: � ← ∞
14: else
15: (i, k, Li) ← B[i − b]
16: for i′ ∈ Li in reverse order do
17: S.push((i′, k))

18: return SSA and SLCP

3.3 Analysis

We prove the following result (The-
orem 1) by analyzing the time
(Lemma 2) and space (Lemma 3)
complexity of Main-Algo. (The cor-
rectness of the algorithm follows
directly from [16].)

Theorem 1. For any string T ∈ Σn,
any set TB of b suffixes of T , and any
s ∈ [b, n], Main-Algo with jstart set
to �log n� computes the SSA and SLCP
of TB in O(n+(bn/s) log s) time using
s+7b+ o(b) machine words. The out-
put is correct with high probability.

Lemma 2. Main-Algo with jstart
set to �log n� runs in O(n + (bn/s)
log s) time.

Proof. The first phase of the algo-
rithm consists of O(log n) iterations

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast 169

and a sorting step. During every iteration, each existing group is considered and
every member within the group is hashed. After being hashed, it is either re-
added to the same group or put into a new group. The total number of groups
is at most b − 1, as the group structure represents a conceptual tree (hierarchy)
with b leaves in which all internal nodes have at least two children. The number
of members in each group is at most b. However, by amortization, it can be seen
that every member (that is, every suffix and every group other than the “root”)
is processed precisely once during every iteration. Thus, we have 2b − 2 = O(b)
members in total.

For every group member, a KR fingerprint is computed. After the one-time
pre-processing of T in O(n) time, the KR fingerprint of a length-k substring can
be computed in O(min{k, n/s}) time (Lemma 1). In the first log s iterations,
the cost is O(n/s), so the total cost of these iterations is O((bn/s) log s). After
log s iterations, the length k of the substring whose KR fingerprint is computed
is k < n/2log s = n/s and so the total cost of all remaining iterations is bn/s +
bn/(2s) + bn/(4s) + · · · + b = O(bn/s). Thus the total cost of computing all KR
fingerprints is O(n + (bn/s) log s).

Every group member has its KR fingerprint taken and added to a hash table
supporting constant worst-case operations with high probability [1,4]. After-
wards, all members from the hash table are re-added to the groups; for every
KR fingerprint collision a new group is created with its respective members,
and all other members are re-added to the original group. The number of newly
created groups is at most half the number of members in the original group,
as every new group has to contain at least two members. So other than the
fingerprinting, all operations for a single member are performed in constant
time with high probability,5 meaning that the total time for every iteration is
O(b log n) = O((bn/s) log s).

In the sorting step, we have two cases: (a) b < n/ log n and (b) b ≥ n/ log n.
The members in each group are sorted using in-place merge sort [21,27] (Case
(a)) or in-place radix sort [13] (Case (b)) in O(n) time.

Case (a): b < n/ log n. Sorting k members with merge sort takes O(k log k)
time. Recall that there are at most b− 1 groups and that the total number of
members over all groups is at most 2b − 2 = O(b). If the number of members
to be sorted in group i is ki, then k1+ · · ·+kb−1 = O(b) so the time needed to
sort all groups is O(k1 log k1+· · ·+kb−1 log kb−1) = O((k1+· · ·+kb−1) log b) =
O(b log b) = O(n).

Case (b): b ≥ n/ log n. We employ the algorithm by Franceschini et al. [13],
which, given an array A of k O(log k)-bit integers, sorts A in place in O(k)
time. Sorting the 2b − 2 members takes O(b) = O(n) time, because every
member can be encoded by its group id, which is a O(log b)-bit integer, and a
letter, which is also a log σ = O(log n) = O(log b)-bit integer, where σ = |Σ|.

5 If this is not the case, we output incorrect arrays deliberately to ensure that our
algorithm is Monte Carlo.

170 L. A. K. Ayad et al.

The second phase of the algorithm is a simple stack-based DFS. Each of
the O(b) members is pushed to and popped from the stack precisely once. The
further operations applied to each member all take O(1) time, so this step takes
O(b) time.

Adding all this together gives O(n) + O(bn/s) · O(log s) + O(n) + O(b) =
O(n + (bn/s) log s) time.
�

We remark that, like the algorithm by I et al. [16], Main-Algo can be
amended to work in O(n) time, when s = b log b.

Lemma 3. Main-Algo can be implemented using s+7b+o(b) machine words,
excluding the read-only string T , the array A representing the set of b suffixes,
and the write-only output arrays SSA and SLCP.

Proof. We analyze the peak space used by the algorithm neglecting the use of
O(1) machine words:

– KR fingerprints: Pre-processing T to compute KR fingerprints takes s
machine words by Lemma 1.

– Array A: Array A starts with b integers as input, but at most b − 1 more
integers are appended to it during the algorithm to store witness suffixes for
new groups, so it stores at most b − 1 extra integers. (Even if A is read-only
we can simulate the append operation by using an extra array.)

– Set B: We implement set B using three integer arrays: K of size b − 1; C of
size b − 1; and L of size 2b − 2. K[i] stores the LCP value for the group with
id i + b; and L[C[i − 1] + 1], . . . , L[C[i]] are the group’s member id’s.6 There
are at most b − 1 groups; for every group one integer is stored in K and C as
well as the group member id’s in L. The total number of group members is
at most 2b − 2, since all groups except the “root” group are a member. Thus
B can be implemented using 4b − 4 integers.

– Hash table Hi: While processing group i+b, every group member is (removed
from the group and) added to a hash table Hi as satellite value of the cor-
responding KR fingerprint key. We use a space-efficient hash table storing
ci = C[i] − C[i − 1] integers (KR fingerprints) as keys: By using [1,4], we
implement Hi using (1 + ε)ci machine words, for any ε = Ω(log log ci/ log ci).
We need at most b integers to maintain the size of the satellite values per KR
fingerprint because every group can have at most b members. By choosing
ε = log log ci/ log ci we need at most 2b + o(b) machine words in total.

We can delete the fingerprint data structure and the hash table before moving
to the sorting step. Sorting does not use any additional space because merge
sort and radix sort can be implemented in-place [13,21,27], thus using only
O(1) additional machine words. The first phase of the algorithm uses at most
s + 7b + o(b) machine words but at the end of it we have 5b + O(1) machine
words stored: array A and set B.

6 If i = 1 then the group member id’s are L[1], . . . , L[C[i]].

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast 171

We now analyze the space used in the second phase (Algorithm 2); in partic-
ular, the space taken by the search stack. The stack stores at most every group
and every suffix. However, the stack never simultaneously stores a member and
one of its ancestors, meaning the maximum size of the stack at any point is at
most the maximum width of the sparse suffix tree, which is b. Every element
in the stack consists of two integers, so the stack takes up at most 2b machine
words. No other machine words need to be stored as the maximum stack size b
is known in advance and so the stack is implemented using an array.

Adding this together gives at most s + 7b + o(b) machine words in total.
�

4 A Simple Parameterized Algorithm

Motivation. Let us start by motivating the parameterization. In real-world
datasets, the b suffixes in TB will generally not share very long prefixes. Even
when they do, it is highly unlikely that all of them have this property. While
Main-Algo is theoretically efficient, it would waste a lot of time with such
datasets by considering large overlaps between suffixes when in reality the longest
common prefixes are much shorter or when only very few suffixes share very long
prefixes. Below, we show a simple method to take advantage of this, by only con-
sidering short common prefixes in the beginning and then extending them only
for the suffixes that happen to share longer prefixes. By considering an extra
parameter b′ indicating the number of suffixes that share longest common pre-
fixes longer than a certain threshold, we arrive at a time and space complexity
that appears favorable for such real-world datasets.

Main Idea. We design an algorithm for constructing SSA and SLCP which is
parameterized by the total number b′ ≤ b of suffixes which have an LCP value of
at least � = 2�log n

b �+1 − 1 with some other suffix. We show that partitioning the
b suffixes into two classes (one with suffixes with LCP value strictly less than
�; and another with suffixes with LCP value greater than or equal to �) can be
done in O(n) time. In particular, we show that it suffices to invoke Theorem 1
twice: once (with a small change) for the b suffixes; and once (as is) for the b′

suffixes; and then merge the partial results in O(b) time to obtain the final SSA
and SLCP array.

Description and Pseudocode. The pseudocode is given as Parameterized-
Algo (Algorithm 3); it is complete in the sense that it only assumes the imple-
mentation of Main-Algo. A line-by-line explanation of the algorithm follows.

Parameterized-Algo invokes the original algorithm Main-Algo twice
with different arguments. In Line 1, it calls Main-Algo with the full array
A as argument (and s = b). We set the parameter jstart that indicates the
starting value of j (Line 5 of Algorithm 1) to �log n

b �, meaning that j starts at
a lower value than the value �log n� used in the Main-Algo and so it will take
less time to complete. The result of this is that SSA will only be sorted up to
� = 2�log n

b �+1−1 positions. This means that for every consecutive pair of suffixes

172 L. A. K. Ayad et al.

in SSA, if their LCP value is less than �, they will already be sorted correctly,
whereas the other suffixes, with associated LCP values of �, will need to be
further sorted in the second phase (Lines 8 to 13) of Parameterized-Algo.

Algorithm 3. Parameterized-Algo

Input: string T ∈ Σn, integer b, and array A of b inte-
gers
Output: SSA and SLCP

1: SSA, SLCP ← Main-Algo(T, A, b, jstart = �log n
b
�)

2: � ← 2�log n
b

�+1 − 1
3: P, A′ ← empty arrays
4: for i = 1, . . . , b do
5: if SLCP[i] = � ∨ (i < b ∧ SLCP[i + 1] = �) then
6: P.append(i)
7: A′.append(SSA[i])

8: if |A′| > 0 then
9: SSA′, SLCP′ ← Main-Algo(T, A′, |A′|)

10: for i = 1, . . . , |A′| do
11: SSA[P [i]] ← SSA′[i]
12: if SLCP[P [i]] = � then
13: SLCP[P [i]] ← SLCP′[i]

14: return SSA and SLCP

What remains is to
identify the suffixes that
need to be further sorted,
sort these suffixes sepa-
rately from the others,
and re-insert them into
the output arrays along
with the corrected LCP
values. We use two arrays
A′ and P for this purpose:
A′ contains the suffixes;
and P tracks the posi-
tions in SSA that these
suffixes are taken from,
to ensure that they will
later be re-inserted at the
correct positions. In Line
5, we ensure that the
right suffixes are tracked

in these arrays, namely those that have an LCP value of � with their predecessor
or successor suffix. If any such suffixes are found, we invoke Main-Algo again
(Line 9), but with just these suffixes (those in array A′) as input, and with the
default value of jstart = �log n�. This means that the suffixes of A′ will now
be fully sorted rather than being sorted up to � positions. Then, in Lines 10
and 11, we insert these re-sorted suffixes at the same positions that they were
taken from before, but in the corrected order. In Lines 12 and 13, we also copy
the associated LCP values, but only at the positions in-between two re-sorted
suffixes, as all other LCP values were already correct.

We next state and prove Theorem 2.

Theorem 2. For any string T ∈ Σn and any set TB of b suffixes of T , Parame-
terized-Algo computes the SSA and SLCP of TB in O(n + (b′n/b) log b) time
using 8b + 4b′ + o(b) machine words, where b′ is the total number of i such that
SSA[i] ∈ B and SLCP[i] ≥ � or SLCP[i+1] ≥ �, with � = 2�log n

b �+1−1. The output
is correct with high probability. When b′ = O(b/ log b), Parameterized-Algo
runs in O(n) time using 8b + o(b) machine words.

Time Complexity. The first phase of the algorithm (Line 1) runs in O(log n
b)

iterations. The longest prefixes whose KR fingerprints are computed have length
O(n

b), and there are O(b) KR fingerprints computed in each iteration. This
means that computing the KR fingerprints during the first phase takes O(b) ·
(O(n

b) + O(n
2b) + O(n

4b) + . . .) = O(n) time. Hashing the fingerprints takes
O(b log n

b) = O(n) worst-case time in total with high probability. (Grouping the

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast 173

fingerprints via distribute-and-collect, like the algorithm by I et al. [16], would
incur a multiplicative factor of logs n.) Sorting takes O(n) time (see Lemma 2).
Therefore the entire first phase runs in O(n) time. The second phase (Lines 8 to
13) computes KR fingerprints of longer prefixes as well and otherwise runs the
same as Main-Algo, with the exception that only b′ suffixes are now sorted.
By Lemma 2, for s = b, this takes O(n+(b′n/b) log b) time. All other operations
run in single loops over arrays of size b or b′ with constant-time operations, and
thus take O(b) time. Adding everything together gives O(n+(b′n/b) log b) time.
When b′ = O(b/ log b), the running time becomes O(n).

Space Complexity. The first phase of the algorithm uses s + 7b + o(b) machine
words (Lemma 3). The additional arrays P , A′, SSA′ and SLCP′ use 4b′ machine
words in total. The second invocation of Main-Algo uses s+7b′+o(b′) machine
words (Lemma 3). By setting s = b, the algorithm uses 8b + 4b′ + o(b) machine
words in total. If b′ = O(b/ log b), the algorithm uses 8b + o(b) machine words.

Correctness. We prove the correctness of SSA by Lemma 6 and that of SLCP by
Lemma 7. To prove these lemmas, we first show the auxiliary Lemmas 4 and 5.

Lemma 4. Let SSA1 be the instance of SSA after the first invocation of Main-
Algo (Line 1). The strings T [SSA1[i] . . n], i ∈ [1, b], are sorted up to their prefix
of length � = 2�log n

b �+1 − 1.

Proof. In Main-Algo, all LCP values can be increased by powers of two in each
iteration. With the starting value jstart = �log n

b �, this adds up to a maximum
LCP value of � in any group. At any point during Main-Algo, two suffixes that
are in the same group with LCP value k share a longest common prefix of length
at least k. Thus, this invocation of Main-Algo will compute the LCP values
between suffixes correctly if they are at most �, and all other LCP values will
be �. The sorting step takes into account only the letter which appears after the
computed (longest) common prefix, so if the LCP between any two suffixes is
less than � the suffixes are sorted correctly.
�
Lemma 5. Let SSA1 be the instance of SSA after the first invocation of Main-
Algo (Line 1), and let SSA2 be the instance of SSA returned at the end of
Parameterized-Algo (Line 14). For every i ∈ [1, b], either SSA1[i] = SSA2[i]
and SSA1[i] and SSA2[i] have a longest common prefix of length n − SSA1[i] + 1,
or SSA1[i] 	= SSA2[i] and SSA1[i] and SSA2[i] have a longest common prefix of
length at least �.

Proof. If SSA1[i] = SSA2[i], this is trivial, so we only concern ourselves with
the case SSA1[i] 	= SSA2[i]. In this case, the value was overwritten in Line 11,
meaning that the suffix SSA1[i] was stored in A′ in Line 7 to be re-sorted in the
second invocation of Main-Algo. The same must hold for SSA2[i].

Consider the array A′ as it is built in Lines 4–7. By Lemma 4, the suffixes of
SSA1 are sorted up to their length-� prefix; since the entries of A′ appear in the
same order as they appear in SSA1, this must also be the case for A′. Because

174 L. A. K. Ayad et al.

the suffixes of A′ are already sorted correctly up to their length-� prefix, it must
be that for every position j ∈ [1, b′], A′[j] and SSA′[j] have the same length-�
prefix. Now note that if SSA1[i] appears in position j in A′, then SSA2[i] will
take the value from SSA′[j]. Since A′[j] and SSA′[j] have a length-� common
prefix, SSA1[i] and SSA2[i] must as well.
�
Lemma 6. The instance SSA2 of SSA returned at the end of Parameterized-
Algo (Line 14), contains the suffixes of A sorted lexicographically.

Proof. We prove this by showing that for any two consecutive positions i and
i+1, SSA2[i] and SSA2[i+1] appear in the right order. Let SSA1 be the instance
of SSA after the first invocation of Main-Algo.

We already know that SSA1 is sorted correctly up to � positions. This means
that for any i, if the longest common prefix of SSA1[i] and SSA1[i + 1] is shorter
than �, they already appear in the correct order in this array. If neither suffix
is overwritten after the second phase, this is also trivially the case for them in
SSA2. Now suppose that exactly one of the two (wlog SSA1[i + 1]) is replaced
by some other suffix s while the other remains the same. Let k be the LCP of
SSA1[i] and SSA1[i + 1]. By Lemma 5, SSA1[i + 1] and s have a longest common
prefix of length at least �. This is longer than k, which is strictly less than �. This
means that the (k + 1)-th letter of s is the same as that of SSA1[i + 1], which
is the first position in which it differs from SSA1[i]. Thus SSA2[i] = SSA1[i] and
SSA2[i + 1] = s are sorted correctly relative to one another.

The remaining case is when SSA1[i] and SSA1[i + 1] have a longest common
prefix of length � or longer. In this case, both suffixes are added to A′ to be
re-sorted in the second invocation, and both SSA2[i] and SSA2[i + 1] may take
the value of another suffix. The second invocation of the main algorithm sorts
all suffixes in A′ completely, returning SSA′. The suffixes in SSA′ are then re-
inserted into SSA2, in which they will appear in the same order as they did in
SSA′. Therefore, no matter which suffixes end up at SSA2[i] and SSA2[i+1], they
also appeared consecutively in SSA′ and therefore must be sorted correctly.
�
Lemma 7. For any two consecutive positions i and i+1, SLCP[i+1], as returned
by Algorithm 3, gives the length of the longest common prefix of SSA[i] and
SSA[i + 1].

Proof. Let SSA1 and SLCP1 be the arrays returned by the first invocation of
Main-Algo, and SSA2 and SLCP2 the arrays produced at the end. By Lemma 4,
if SLCP1[i + 1] < �, this value is correct. Therefore, the only values that need
to be overwritten for SLCP2 are when SLCP1[i + 1] = �. The check at Line 12
ensures this. Of course, when SLCP1[i+1] = �, then both SSA1[i] and SSA1[i+1]
are added to A′ in order to be re-sorted in the second invocation. The values at
SSA2[i] and SSA2[i + 1] are then replaced by two suffixes that appear consecu-
tively in SSA′, say SSA′[j] and SSA′[j + 1]. By the correctness of Main-Algo,
the LCP value of these two suffixes is given by SLCP′[j + 1], which is the value
that SLCP2[j + 1] takes.
�

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast 175

Random Strings. Finally, we show that Parameterized-Algo can be trivially
amended to work in O(n) time for any string chosen uniformly at random from
Σn. In particular, we show the following result.

Theorem 3. For any string T chosen uniformly at random from Σn and any
set TB of b suffixes of T , SSA and SLCP of TB can be computed in O(n) time
using O(b) space. The output is correct with high probability.

Proof. We assume |Σ| ≥ 2, otherwise the problem has a trivial solution. Bollobás
and Letzter [8, Theorem 4] showed that the maximum length of an LCE on T
is at most 2 log|Σ| n + log|Σ| log|Σ| n with high probability. We bound this from
above by 3 log n and amend Parameterized-Algo as follows:

Case (a): b log n < n. We invoke Main-Algo by setting jstart to the small-
est integer such that 2jstart ≥ 2�log n�, which gives � = 2�log n� · 2 − 1 =
4�log n� − 1. After the O(n)-time preprocessing of Lemma 1, computing the
KR fingerprints takes O(b) ·4(O(log n

1)+O(log n
2)+O(log n

4)+ . . .) = O(b log n)
time. Hashing the fingerprints takes O(b) time per iteration with high prob-
ability, and so O(b log n) total time. Merge sort takes O(b log b) time. Since
� > 3 log n, all suffixes of TB will be fully sorted from the first invocation
of Main-Algo. If b′ = O(b/ log b) suffixes are still unsorted after the first
invocation, these will be fully sorted in the second invocation of Main-Algo
in O(n) time (Theorem 2). If b′ = ω(b/ log b), we output incorrect arrays. The
total time complexity is thus O(n + b log n) = O(n). The total space used is
the space used by Main-Algo, which is O(b).

Case (b): b log n ≥ n. Assume that we have O(s) space to sort the b suf-
fixes; we can do it efficiently using radix sort because it suffices to sort all
prefixes of them of length O(logσ n) by the Bollobas and Letzter’s result,
where σ = |Σ| (otherwise, we output incorrect arrays). The b prefixes are
each of length at most c logσ n, for some c = O(1); so radix sort takes
O((b + s)(c · log n/ log σ) · (log σ/ log s)) time, because we have at most
(c log n/ log σ) letters in every prefix, and each time we sort b letters, one
from each prefix, we use (log σ/ log s) rounds of counting sort. Conveniently,
the log σ terms cancel out. Then, because we set s = b, and by the fact that
we are in the case b ≥ n/ log n, we have that log n/ log s = O(1). The total
time complexity is thus O(b+s) = O(b). The total space used is O(s) = O(b).
By comparing adjacent suffixes we compute the SLCP array within the same
complexities.

�

References

1. Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: Constant worst-case
operations with a succinct representation. In: FOCS, pp. 787–796 (2010)

2. Ayad, L.A.K., Loukides, G., Pissis, S.P.: Text indexing for long patterns: anchors
are all you need. Proc. VLDB Endow. 16(9), 2117–2131 (2023)

176 L. A. K. Ayad et al.

3. Ben-Nun, S., Golan, S., Kociumaka, T., Kraus, M.: Time-space tradeoffs for finding
a long common substring. In: CPM. LIPIcs, vol. 161, pp. 5:1–5:14 (2020)

4. Bender, M.A., Conway, A., Farach-Colton, M., Kuszmaul, W., Tagliavini, G.: Ice-
berg hashing: optimizing many hash-table criteria at once. J. ACM 70(6) (2023)

5. Bernardini, G., Fici, G., Gawrychowski, P., Pissis, S.P.: Substring complexity in
sublinear space. In: ISAAC. LIPIcs, vol. 283, pp. 12:1–12:19 (2023)

6. Bille, P., Fischer, J., Gørtz, I.L., Kopelowitz, T., Sach, B., Vildhøj, H.W.: Sparse
text indexing in small space. ACM Trans. Algorithms 12(3), 39:1–39:19 (2016)

7. Birenzwige, O., Golan, S., Porat, E.: Locally consistent parsing for text indexing
in small space. In: SODA, pp. 607–626 (2020)

8. Bollobás, B., Letzter, S.: Longest common extension. Eur. J. Comb. 68, 242–248
(2018)

9. Chan, T.M., Munro, J.I., Raman, V.: Selection and sorting in the “restore” model.
ACM Trans. Algorithms 14(2), 11:1–11:18 (2018)

10. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms 17(1), 8:1–
8:39 (2021)

11. Dietzfelbinger, M., Gil, J., Matias, Y., Pippenger, N.: Polynomial hash func-
tions are reliable. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 235–246.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9 77

12. Fischer, J., Tomohiro, I., Köppl, D.: Deterministic sparse suffix sorting in the
restore model. ACM Trans. Algorithms 16(4), 50:1–50:53 (2020)

13. Franceschini, G., Muthukrishnan, S., Pǎtraşcu, M.: Radix sorting with no extra
space. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp.
194–205. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-
3 19

14. Gawrychowski, P., Kociumaka, T.: Sparse suffix tree construction in optimal time
and space. In: SODA, pp. 425–439 (2017)

15. Grabowski, S., Raniszewski, M.: Sampled suffix array with minimizers. Softw.
Pract. Exp. 47(11), 1755–1771 (2017)

16. Tomohiro, I., Kärkkäinen, J., Kempa, D.: Faster sparse suffix sorting. In: STACS.
LIPIcs, vol. 25, pp. 386–396 (2014)

17. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

18. Kärkkäinen, J., Ukkonen, E.: Sparse suffix trees. In: Cai, J.-Y., Wong, C.K.
(eds.) COCOON 1996. LNCS, vol. 1090, pp. 219–230. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61332-3 155

19. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

20. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A. (ed.)
CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-48194-X 17

21. Katajainen, J., Pasanen, T., Teuhola, J.: Practical in-place mergesort. Nord. J.
Comput. 3(1), 27–40 (1996)

22. Loukides, G., Pissis, S.P.: Bidirectional string anchors: a new string sampling mech-
anism. In: ESA. LIPIcs, vol. 204, pp. 64:1–64:21 (2021)

23. Loukides, G., Pissis, S.P., Sweering, M.: Bidirectional string anchors for improved
text indexing and top-K similarity search. IEEE Trans. Knowl. Data Eng. 35(11),
11093–11111 (2023)

https://doi.org/10.1007/3-540-55719-9_77
https://doi.org/10.1007/978-3-540-75520-3_19
https://doi.org/10.1007/978-3-540-75520-3_19
https://doi.org/10.1007/3-540-61332-3_155
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/3-540-48194-X_17

Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast 177

24. Navarro, G., Prezza, N.: Universal compressed text indexing. Theor. Comput. Sci.
762, 41–50 (2019)

25. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

26. Prezza, N.: Optimal substring equality queries with applications to sparse text
indexing. ACM Trans. Algorithms 17(1), 7:1–7:23 (2021)

27. Salowe, J.S., Steiger, W.L.: Simplified stable merging tasks. J. Algorithms 8(4),
557–571 (1987)

Wheeler Maps

Andrej Baláž1, Travis Gagie2, Adrián Goga1(B), Simon Heumos3,4,5,
Gonzalo Navarro6, Alessia Petescia1, and Jouni Sirén7

1 Comenius University in Bratislava, Bratislava, Slovakia
adrian.goga@fmph.uniba.sk

2 CeBiB & Dalhousie University, Nova Scotia, Canada
3 Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany

4 Department of Computer Science, University of Tübingen, Tübingen, Germany
5 M3 Research Center, University Hospital Tübingen, Tübingen, Germany

6 CeBiB & DCC, University of Chile, Santiago, Chile
7 University of California Santa Cruz Genomics Institute, Santa Cruz, USA

Abstract. Motivated by challenges in pangenomic read alignment, we
propose a generalization of Wheeler graphs that we call Wheeler maps.
A Wheeler map stores a text T [1..n] and an assignment of tags to the
characters of T such that we can preprocess a pattern P [1..m] and then,
given i and j, quickly return all the distinct tags labeling the first char-
acters of the occurrences of P [i..j] in T . For the applications that most
interest us, characters with long common contexts are likely to have the
same tag, so we consider the number t of runs in the list of tags sorted by
their characters’ positions in the Burrows-Wheeler Transform (BWT) of
T . We show how, given a straight-line program with g rules for T , we can
build an O(g + r+ t)-space Wheeler map, where r is the number of runs
in the BWT of T , with which we can preprocess a pattern P [1..m] in
O(m log n) time and then return the k distinct tags for P [i..j] in optimal
O(k) time for any given i and j.

1 Introduction

For years, geneticists have been worried about the fact that using a single ref-
erence for the human genomes biases scientific studies and medical diagnoses,
undermining the potential of personalized medicine, particularly for people from

Research funded in part by European Union’s Horizon 2020 research and innovation
program under Marie Sk�lodowska-Curie grant agreement No 956229 (ALPACA) and
by grants 1/0463/20 and 1/0538/22 from the Scientific Grant Agency of the Ministry of
Education, Science, Research, and Sport of the Slovak Republic and Slovak Academy of
Sciences (VEGA) and grant APVV-22-0143 from the Slovak Research and Development
Agency. T.G. and G.N. funded in part by Basal Funds FB0001, ANID, Chile. T.G.
funded in part by NSERC RGPIN-07185-2020. S.H. funded in part by the Central
Innovation Programme (ZIM) for SMEs of the Federal Ministry for Economic Affairs
and Energy of Germany. J.S. funded in part by National Human Genome Research
Institute (NHGRI) award R01HG010485.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 178–192, 2024.
https://doi.org/10.1007/978-3-031-55598-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_12

Wheeler Maps 179

under-represented groups. To address this bias, researchers [18] recently pub-
lished a pangenome consisting of nearly complete genomes from 47 people from
diverse origins and took, according to the New York Times [8], “a major step
toward a deeper understanding of human biology and personalized medicine for
people from a wide range of racial and ethnic backgrounds”. Eventually, the
plan is to include 350 genomes, but even this many genomes cannot fully cap-
ture humanity’s genetic diversity. As the Guardian [34] put it, “as long as the
reference contains only a subset, arguably someone will not make the cut”. Ulti-
mately, there will be pressure for a reference of at least thousands of genomes.

One of the primary use of a reference is during read alignment. As a DNA
sample passes through a sequencing machine, the machine records the genome in
short substrings called reads. The length and accuracy of the reads vary depend-
ing on the sequencing technology used. Next, software called a read aligner uses
an index of a reference to find seeds, sections of the reads that exactly match
sections in the reference, and uses dynamic programming to extend those seeds
to approximate matches of the whole read. These approximate matches form
alignments, which are used in many subsequent bioinformatics analyses.

Indexing 47 human genomes is feasible even with standard read aligners
such as Bowtie [16] and BWA [17], and even indexing 350 may be possible on
supercomputers, but indexing thousands will require new algorithmic insights.
The emerging consensus is that we should represent the combined reference
sequences as a pangenome graph [6] that shows variation between genomes as
detours on an otherwise shared path. The necessity of mapping reads to the
version of the path that best fits the sample leads to the question of how to
index pangenome graphs.

Equi et al. [9] showed that, unless the strong exponential-time hypothesis is
false, one cannot index a graph in polynomial time such that pattern match-
ing can run in sub-quadratic time, so several groups have tried constraining
pangenome graphs to have a particular structure, such as Wheeler graphs [12],
p-sortable graphs [7], elastic degenerate strings [1] or founder block graphs [19].
Unfortunately, merging reference sequences into a graph hides certain variations’
tendencies to co-occur, known as linkage disequilibrium [30], and creates chimeric
paths whose labels are not in any of the original sequences. Indexing and using
such a graph can result in false-positive matches to these chimeric paØ�LØths.

The more variations are represented, the noisier the graph becomes and the
more possibilities there are for spurious matches. The number of false positives
can be reduced by excluding rare variations, but sacrificing inclusivity for the
sake of computational convenience goes against the spirit of pangenomics, and
the pressure to include more genomes will probably force bioinformaticians to
index all the variations. Moreover, excluding variations could be viewed as trad-
ing false positives for false negatives. Another approach is to filter out false
positives by checking matches against the reference sequences represented as
strings, but then the overall query time cannot be bounded in terms of the pat-
terns and the true matches reported. Furthermore, the number of false positives
will likely grow as the pangenome does.

180 A. Baláž et al.

Some researchers have eschewed using a pangenome graph altogether and
indexed the genomes in the pangenome as a set of strings. This approach allowed
them to draw on a rich history of indexing compressible texts: the Burrows-
Wheeler Transform [4] (BWT) and FM-indexes [10], for which Burrows, Ferrag-
ina and Manzini recently shared the Paris Kanellakis Award and which underpin
Bowtie and BWA; RLCSA [20]; the r-index [13], subsampled r-index [5] and r-
index-f [29]. Recently, Rossi et al. [32] and Boucher et al. [3] showed how, given
a straight-line program with g rules for a text T [1..n], they can build an O(g+r)
space index, where r is the number of runs in the BWT of T , with which they
can find the maximal exact matches (MEMs) of a given pattern P [1..m] with
respect to T in O(m log n) time and list the occurrences of each MEM in con-
stant time per occurrence. This result means they can index the pangenome
compactly with no chance of false positives, find good seeds reasonably quickly,
and list the occurrences of those seeds in constant time per occurrence.

The main practical problem with those results is that if there are thousands
of genomes in the pangenome, then a MEM can occur thousands of times in
those genomes, even if all those occurrences map to only one place in the stan-
dard single reference genome. This observation makes extending the seeds and
combining the approximate matches of the reads much slower. In this paper, we
show how we can combine Rossi et al.’s result with a pangenome graph such that
we can still find seeds quickly, with no chance of false positives, but then report
their non-chimeric occurrences in the graph in constant time per occurrence.
Moreover, we put no constraints on the graph.

A set of genomes can be annotated so that for each character in the genomes,
we know at which vertex in a pangenome graph that character occurs. Then,
our idea is that if someone gives us a set of genomes and the corresponding
annotation, we can store them in a small space so we can later quickly report for
each seed its starting positions in the graph. The seeds of a read with respect to
the set of genomes can be MEMs, but also f -MEMs [25,35] (maximal substrings
that occur at least f times in the genomes) or other kinds of substrings.

We can formalize this problem as follows: we want to store a text T [1..n]
and an assignment of tags to the characters of T such that we can preprocess
a pattern P [1..m] and then, given i and j, quickly return all the distinct tags
labeling the first characters of the occurrences of P [i..j] in T . In a pangenome,
characters with long common contexts are more likely to have the same tag, so
we consider the number of runs t in the list of tags sorted by their characters’
positions in the Burrows-Wheeler Transform (BWT) of T .

Our Contribution. In this paper, we show how, given a straight-line program
with g rules for T , we can build an O(g + r + t) space data structure, where r is
the number of runs in the BWT of T , with which we can preprocess a pattern P
in O(m log n) time and then return the k distinct tags for P [i..j] in the optimal
O(k) time for any given i and j.

We call our data structure a Wheeler map since it resembles a Wheeler
graph [12] but with less structure. One reason Wheeler graphs were introduced
was to provide a model for alignment with a pangenome graph: we start with

Wheeler Maps 181

a string dataset, build a graphical representation, and index that graph; the
graphical representation is inherently lossy but, to filter out chimeric matches,
we can verify matches against the original dataset. (Even before Wheeler graphs
were defined, software for indexing variation graphs [15] used a procedure for
making them Wheeler or almost Wheeler, falling back on unwinding the graph
and indexing substrings when that procedure failed.) Our idea is to reverse that
approach of indexing a graph and then filtering out false positives using the
strings. Instead, we index the strings, and then map occurrences onto a graph
— but without considering all the occurrences in the strings.

Some researchers (see, e.g., [31] and references therein) argue that having
a graph index return matches not found in the original strings is a feature,
not a bug, since it allows the index to find matches that can be obtained by
recombination. As computer scientists, however, it is not our place to decide
what combination of alleles are reasonable and which not, and so we should
offer the option of indexing the datasets we are given and nothing else. Indexing
the strings means we index all the variations they contain, so we can presumably
capture most reasonable combinations by increasing the number of genomes in
our dataset. Scaling to larger datasets is thus a solution for us, whereas it is a
problem for graphical indexes, which tend to produce more false positives when
they include all the variations in large datasets.

From Rossi et al. [32], we know r and g are reasonably small for the datasets in
which we are most interested. To check that t is comparable, we computed it for
the chromosome-19 component in a Minigraph-Cactus graph based on 90 human
haplotypes from the Human Pangenome Reference Consortium [18]. This compo-
nent was built from 1100 contigs with total length n = 5,070,072,154 and t was
208,649,680, almost 25 times smaller than n. For comparison, r was 71,512,609,
just over 70 times smaller than n and not quite 3 times smaller than t.

Roadmap. In Sect. 2 we describe the basic concepts that will be used throughout
the rest of the work, together with a preliminary method of computing the tags
for the occurrences of a pattern P . In Sect. 3 we show how extended matching
statistics can be computed O(m log n) time without the need for buffering that
Rossi et al. [32] used, and extend the method for computing the tag statistics. In
Sect. 4 we describe how the tag statistics together with range successor queries
on the tag array can be used to get the k distinct tags for the occurrences of
P [i..j] in O(logε t + k) time for any ε > 0. Using more sophisticated techniques,
we improve this time to the optimal O(k) in Sect. 5. We conclude in Sect. 6 with
some future work directions.

2 Preliminaries

Our model of computation throughout is the standard word-RAM with Θ(log n)-
bit words. For the sake of brevity, we assume the reader is familiar with suf-
fix arrays (SAs), the Burrows-Wheeler Transform (BWT), FM-indexes, LF-
mapping and straight-line programs (SLPs); otherwise, we refer them to appro-
priate surveys [24,26]. We recall only that LCP(S1, S2) denotes the length of the

182 A. Baláž et al.

Fig. 1. Tables (top) for a set of toy genomes GATTACAT$, AGATACAT$, GATACAT$,
GATTAGAT$ and GATTAGATA$ and a pangenome graph (bottom). The BWT column
shows the characters sorted by their contexts, which are the rest of the genomes (con-
sider to be cyclic) and shown in the right column. The tag array is shown in the column
to the left of the BWT, with each entry identifying the source in the pangenome graph
of the edge labelled by the first character in the context in the same row (not the BWT
character). The leftmost two columns (together called L) show the LCP values for the
runs in the tag array, discussed in Sect. 3: column B contains the LCP value between
each run in the tag array and the preceding run (so the LCP value at the beginning of
the run), while column W contains the LCP value within each run (the length of the
longest prefix common to all the contexts in the run). LCPs extend only up to and not
including the terminators $ because they are not searchable. Due to space constraints,
the tables are displayed split into three pieces (at the end of runs).

longest common prefix of two strings S1 and S2 (which need not be lexicograph-
ically consecutive suffixes of a text), and of the bounds for Muthukrishnan’s [23]
classic document-listing data structure:

Theorem 1 (Muthukrishnan, [23, Thm. 3.1]). Given an array A[1..h], we
can build an O(h)-space data structure with which, given i and j, we can return
the k distinct elements in A[i..j] in O(k) time.

In our model, each text suffix T [i..] is labeled with a “tag”, which can also
be seen as labeling the position i. The tags of T are collected in a so-called “tag
array”; see Fig. 1.

Wheeler Maps 183

Definition 1. Let T [1..n] be a labeled text, such that the label for the ith position
is T [i].lab. The tag array Tag[1..n] of T is then defined as Tag[j] = T [SA[j]].lab.

We say that an occurrence T [i..i + |P | − 1] of a pattern P in T is labeled
by the tag that labels T [i..]. Consequently, the labels of all the occurrences of P
in T are listed in Tag[s..e], where SA[s..e] is the suffix array interval for P . For
example, in Fig. 1 the range for P = A is SA[6..22], and Tag[6..22] contains the
tags 9, 4, 5, 0, 7, and 2. Those are the labels with which P appears in the graph.

For convenience, we first extend the standard definition of matching statis-
tics to include the lexicographic ranks of the suffixes of T starting with the
occurrences we consider, and then further extend it to mention the tag array.

Definition 2. The extended matching statistics of a pattern P [1..m] with
respect to a text T [1..n] are an array XMS[1..m + 1] of (len,pos, rank) triples
such that

– XMS[i].len is the length of the longest prefix of P [i..m] that occurs in T ,
– XMS[i].pos is the starting position of one occurrence of P [i..i+XMS[i].len−1]

in T ,
– XMS[i].rank is the lexicographic rank of T [XMS[i].pos..n] among the suffixes

of T .

We emphasize that we expect the tag array to have long runs of equal con-
secutive symbols. The following definition considers those runs in the process of
matching P in T .

Definition 3. The tag statistics of a pattern P [1..m] with respect to a
text T [1..n] and its tag array Tag[1..n] are an array TS[1..m + 1] of
(len,pos, rank, run,up,down) sextuples such that TS[i].len, TS[i].pos and
TS[i].rank are the same as in the XMS array and

– TS[i].run is the index of the run Tag[u..d] in the tag array that contains
position TS[i].rank,

– TS[i].up = LCP(P [i..m], T [SA[u]..n]),
– TS[i].down = LCP(P [i..m], T [SA[d]..n]).

Finally, although we know of no previous work specifically addressing tag
arrays, we note a solution that follows directly from the work by Mäkinen et
al. [21]:

Theorem 2 (Mäkinen et al., [21, Thm 17.]). Given a text T [1..n] whose
BWT has r runs, we can build an O(r)-space data structure called RLBWT
such that later, given a pattern P [1..m], we can return the lexicographic range
of suffixes of T starting with P in O(m log log n) time.

Corollary 1. Given a text T [1..n] whose BWT has r runs, and a tag array with
t runs, we can build an O(r + t)-space data structure such that later, given a
pattern P [1..m], we can return the k distinct tags of P ’s occurrences in T in
O(m log log n + k) time.

184 A. Baláž et al.

Proof. We store an O(r)-space RLBWT for T , an O(t)-space predecessor struc-
ture storing where the runs start in Tag, and an O(t)-space instance of Muthukr-
ishnan’s data structure from Theorem 1 for the array A[1..t] obtained from Tag
by replacing each run by a single copy of the same tag. Given P , we first use the
RLBWT to find the lexicographic range SA[s..e] of suffixes of T starting with P ,
in O(m log log n) time. We then use predecessor queries to find the range A[s′..e′]
of the tag run indices overlapping Tag[s..e], in O(log log n) time. Finally, we use
Muthukrishnan’s data structure to report the distinct tags in A[s′..e′], in O(k)
time. ��

Our main concern with Corollary 1 is that if we want the distinct tags for
a set of substrings of P that can overlap—such as the maximal exact matches
(MEMs) of P with respect to T—and we apply this corollary to each one, then
we can use Ω(m2) total time even when the number of tags we return is small.
Our plan is then to preprocess P in a first stage, so that in a second stage we
can more quickly answer (many) questions about substrings of the form P [i..j].

3 Computing Tag Statistics

We rely on results about straight-line programs (SLPs), which we can encapsu-
late in the following lemma.

Lemma 1. Given an SLP with g rules for T [1..n], in O(n log n) expected time
we can build an O(g)-space data structure with which we can preprocess any
pattern P [1..m] in O(m) time such that later, given i, j and q, we can return
LCP(P [i..j], T [q..n]) in O(log n) time and with no chance of error as long as
P [i..j] occurs somewhere in T .

Proof. Bille et al. [2] showed how to build, in O(n log n) expected time, a Karp-
Rabin hash function with no collisions between substrings of T . If S = S′ · S′′

and we have the hashes of two of those strings, we can compute the hash of the
third in constant time, as soon as we store some precomputed values that can
also be maintained in constant time (see, e.g., [27]).

If necessary, we use Ganardi et al.’s [14] construction to balance the SLP such
that it has O(g) rules and height O(log n). We then label each symbol x in the
SLP with the length and hash of x’s expansion. This takes O(g) time because
we compute in constant time the hash of the left-hand side of a rule from those
of the right-hand side.

When P arrives, we compute the hashes of its suffixes in O(m) total time.
The hash of any P [i..j] can then be computed in constant time from the hashes
of P [i..m] and P [j + 1..m].

Given i, j and q, we descend to the qth leaf of the parse tree in O(log n) time.
We then re-ascend toward the root in O(log n) time, keeping track of the length
and hash of T [q..e], where e is the index of the rightmost leaf in the subtree of
the node we are currently visiting.

Wheeler Maps 185

When we reach a node such that T [q..e] is either longer than P [i..j] or the
hash of T [q..e] does not match the hash of the corresponding prefix of P [i..j], we
re-descend in O(log n) time. At each step in the re-descent, we go left if T [q..e]
is either longer than P [i..j] or the hash of T [q..e] does not match the hash of the
corresponding prefix of P [i..j], where e is now the index of the rightmost leaf in
the subtree of the left child. Otherwise, we go right.

We then find LCP(P [i..j], T [q..n]) in O(log n) time. As long as P [i..j] occurs
somewhere in T , no hash of a prefix of P [i..j] collides with the hash of a different
substring of T , so we have no chance of error. ��

We now show how to preprocess the tag array. Let U [1..t] and D[1..t] be
the arrays such that U [q] and D[q] are the indices of the first and last tags,
respectively, in the qth run in the tag array. Let W [1..t] be the array with

W [q] = min
U [q]+1≤p≤D[q]

{LCP(T [SA[p − 1]..n], T [SA[p]..n])}
= LCP(T [SA[U [q]]..n], T [SA[D[q]]..n])

for 1 ≤ q ≤ t, and let B[1..t − 1] be the array with

B[q] = LCP(T [SA[D[q]]..n], T [SA[U [q + 1]]..n])

for 1 ≤ q ≤ t − 1—so W [q] is the LCP computed within run q and B[q] is the
LCP computed between runs q and q + 1. Finally, let

L[0..2t] = 0,W [1], B[1],W [2], B[2], . . . ,W [t − 1], B[t − 1],W [t], 0 .

From now on we will only use L, and we will not refer to U , D, W or B again.
We recall that Fig. 1 shows the L array on an example text.

We now describe our preprocessing of the pattern. Our results in this section
can be viewed as mainly extending Rossi et al.’s [32] work on computing
(extended) matching statistics to computing tag statistics:

Theorem 3 (cf. [32]). Given an SLP with g rules for a text T [1..n] whose
BWT has r runs, we can build an O(g + r)-space data structure such that later,
given a pattern P [1..m], we can compute the extended matching statistics XMS
of P with respect to T in O(m log n) time.

Proof. We apply Lemma 1 to the SLP to obtain an O(g)-space LCP data struc-
ture with O(log n) query time. We also store SA[u] and SA[d], for each run
BWT[u..d], in an O(r)-space data structure supporting predecessor and succes-
sor queries on the keys u and d. Finally, we use the O(r)-space RLBWT of
Theorem 2, which can also compute any BWT[j] and LF[j]. These functions
and the predecessor queries can run in O(log log n) time, but O(log n) time is
enough for our purposes.

As usual, for technical convenience we add to T a special symbol T [n +
1] = $ that is lexicographically smaller than all the other symbols in T (and in
potential patterns P). This implies BWT[1] = $. For a start, then, considering

186 A. Baláž et al.

P [m + 1..m] = ε, we set XMS[m + 1].len = 0, XMS[m + 1].rank = 1 and
XMS[m + 1].pos = n + 1.

Now, suppose we have already computed the suffix XMS[i + 1..m + 1] of the
extended matching statistics and want to compute XMS[i]. If BWT[XMS[i +
1].rank] = P [i] then

XMS[i].len = XMS[i + 1].len + 1 ,

XMS[i].pos = XMS[i + 1].pos − 1 ,

XMS[i].rank = LF[XMS[i + 1].rank] .

Otherwise, let BWT[u] and BWT[d] be the occurrences of P [i] immediately
preceding and following BWT[XMS[i+ 1].rank]. We find u and d with predeces-
sor/successor queries.

By the definition of the BWT, at least one of T [SA[u]..n] and T [SA[d]..n]
has the longest common prefix with P [i + 1..m] of any suffix of T preceded by a
copy of P [i]. Since BWT[u] is the last character in a run and BWT[d] is the first
character in a run, we have SA[u] and SA[d] stored. Therefore, we can compute

�u = LCP(P [i + 1..i + XMS[i + 1].len − 1], T [SA[u]..n]) ,

�d = LCP(P [i + 1..i + XMS[i + 1].len − 1], T [SA[d]..n]) ,

in O(log n) time, since P [i+1..i+XMS[i+1].len−1] occurs in T , with no chance
of error.

If �u ≥ �d then

XMS[i].len = �u + 1 ,

XMS[i].pos = SA[u] − 1 ,

XMS[i].rank = LF[u] ,

and, symmetrically, if �u < �d then

XMS[i].len = �d + 1 ,

XMS[i].pos = SA[d] − 1 ,

XMS[i].rank = LF[d] .

��
Corollary 2. Suppose we are given an SLP with g rules for a text T [1..n] whose
BWT has r runs, and a tag array for T with t runs. Then we can build an
O(g +r+ t)-space data structure such that later, given a pattern P [1..m], we can
compute the tag statistics of P with respect to T in O(m log n) time.

Proof. We store an O(t)-space predecessor data structure on the starting posi-
tions of the runs in Tag. For each run Tag[u..d], we also store SA[u] and SA[d].
Given P , we start by applying Theorem 3 to compute the extended match-
ing statistics XMS[1..m + 1] of P with respect to T in O(m log n) time. For

Wheeler Maps 187

1 ≤ i ≤ m + 1, we then set

TS[i].len = XMS[i].len ,

TS[i].pos = XMS[i].pos ,

TS[i].rank = XMS[i].rank ,

and TS[i].run to the index of the run Tag[u..d] in the tag array containing posi-
tion TS[i].rank (computed with a predecessor query). Further, we use the LCP
data structure to compute

TS[i].up = LCP(P [i..m], T [SA[u]..n]) ,

TS[i].down = LCP(P [i..m], T [SA[d]..n]) .

This also takes a total of O(m log n) time. ��

4 Using Tag Statistics

Once we have the tag statistics of P with respect to T , we no longer need
Lemma 1, or even the SA samples or BWT, to find out which tags label the
occurrences of any P [i..j]. We use Muthukrishnan’s document-listing data struc-
ture in the same way as in the proof of Corollary 1: once we know which runs
in the tag array overlap the BWT interval for P [i..j], we use Muthukrishnan’s
structure to list the k distinct tags in O(k) time. In this section we explain how
we find which runs in the tag array overlap the BWT interval for P [i..j], with-
out computing the interval itself (which we do not know how to do quickly in
O(g + r + t) space).

Lemma 2. Suppose we are given a text T [1..n] and a tag array for T with t runs.
Then, for any constant ε > 0, we can build an O(g+ t)-space data structure such
that later, given the tag statistics of a pattern P [1..m] with respect to T and i
and j, we can find which runs in the tag array overlap the BWT interval for
P [i..j] in O(logε t) time.

Proof. We store O(t)-space range-predecessor/successor data structures over L
with O(logε t) query time [28] (we call them collectively range-successor queries
at times). With these data structures and given values � and q, we can find the
largest position of a value less than � in L[0..2q − 2] and the smallest position
of a value less than � in L[2q..2t] in O(logε t) time. We note that ε can be
made arbitrarily small for the cost of a larger constant multiplying the space
consumption.

Given the tag statistics TS[1..m + 1] of P with respect to T and i and j, we
can check that P [i..j] occurs in T at all by verifying that TS[i].len ≥ j − i + 1.
Assuming it does, we can look up the index q = TS[i].run of the run in the tag
array containing Tag[TS[i].rank] and we can check in constant time whether

TS[i].up ≥ j − i + 1 ,

TS[i].down ≥ j − i + 1 .

188 A. Baláž et al.

If TS[i].up < j−i+1 then L[2q−1] < j−i+1 (note L[2q−1] is the LCP within
run q) and run q is the first in the tag array to overlap the BWT interval for
P [i..j]. Otherwise, we use a range-predecessor query to find the largest position
in L[0..2q − 2] with value less than j − i + 1. This tells us the first run in
the tag array to overlap the BWT interval for P [i..j]: If the range-predecessor
query returns p, then the index of this first run is 1 + �p/2�; the run is covered
completely if p is even and partially if p is odd.

Symmetrically, if TS[i].down < j− i+1 then L[2q−1] < j− i+1 and run q is
the last one in the tag array to overlap the BWT interval for P [i..j]. Otherwise,
we use a range-successor query to find the smallest position in L[2q..2t] of a value
less than j − i + 1, which tells us the last run in the tag array to overlap the
BWT interval for P [i..j]. If the range-successor query returns p, then the index
of this last run is �p/2	, and it is covered completely iff p is even.

Notice we never compute the BWT interval for P [i..j]. ��
Corollary 3. Suppose we are given an SLP with g rules for a text T [1..n] whose
BWT has r runs, and a tag array for T with t runs. Then, for any constant ε > 0,
we can build an O(g + r + t)-space data structure with which we can preprocess
any pattern P [1..m] in O(m log n) time such that later, given i and j, we can
return the k distinct tags labeling occurrences of P [i..j] in T in O(logε t + k)
time.

Proof. We store instances of the data structures from (i) Corollary 2, (ii)
Lemma 2, and (iii) Corollary 1. Given P , we use the data structures (i) to
compute the tag statistics of P with respect to T in O(m log n) time. Given i
and j, we use the data structures (ii) to find the indices s and e of the runs in
Tag that are contained in or overlap the BWT range of P [i..j], in time O(logε t).
Finally, using the array A[1..t] (iii) we run Muthukrishnan’s algorithm on A[s..e]
to find the k distinct tags labeling occurrences of P [i..j] in T , in O(k) time. ��

5 Optimal-Time Tag Reporting

The time in Corollary 3 for reporting the k distinct tags labeling occurrences of
P [i..j] in T—that is, O(logε t + k)—is optimal if k ∈ Ω(logε t). We do not know
k in advance, however, and if we always want optimal reporting time we cannot
afford range-successor queries right away.

We start with an important property of the ranges we find in L in the proof
of Corollary 3.

Lemma 3. Let q, q′ be positions in L with respective thresholds �, �′, from which
the predecessor/successor queries result in ranges [u, d], [u′, d′]. Then [u, d], [u′, d′]
can be equal, disjoint or nested, but cannot overlap.

Proof. Consider L[u..d] (L[u′..d′]), which is as large as possible around q (q′)
not containing any values less than � (�′), and that u < u′ ≤ d < 2t. It follows
that � ≤ L[u′ − 1] < �′, therefore, since L[d + 1] < � < �′, it must be d′ ≤ d, so
L[u′..d′] is contained in L[u..d]. The case u ≤ d′ < d is analogous. ��

Wheeler Maps 189

Fig. 2. The array L of Fig. 1 and the sets of segments forming F3 (above) and F2

(below). The larger range of F3 contains the smaller, and thus they represent the same
set of tags.

Consider the distinct ranges we can find in L such that the correspond-
ing range in Tag (including both contained and overlapped runs) contains k′

distinct tags, for some k′. If two of these ranges in L are nested, then their
corresponding ranges in Tag contain exactly the same k′ distinct tags—possibly
with different multiplicities, but that does not concern us here. Let Fk′ be the
O(t)-bit balanced-parentheses representation [22] of these distinct ranges in L,
where every range is an ancestor of those it contains. With O(t) further bits, we
can find in O(1) time the lowest node of Fk′ that contains any given entry L[q]
[33, Sec. 4.1]. Figure 2 gives an example.

While querying the data structure from Lemma 2, if we somehow guess cor-
rectly that our range-successor queries will return a range in L whose corre-
sponding range in Tag contains exactly k′ distinct tags, then we can replace
those range-successor queries by the constant-time method described above to
find the corresponding node in Fk′ .

This node may correspond to a range nested strictly inside the one we would
obtain from the range-successor queries but, as we noted above, that makes no
difference to our final answer. In fact, the node of Fk′ we find has the smallest
range—corresponding to the largest value of j − i + 1—we could obtain from
our range-successor queries, while still returning k′ distinct tags. If we store an
O(t)-bits range-minimum data structure [11] over L—which we can reuse for all
values of k′—then we can find that largest value j − i + 1 in constant time, as it
is the minimum value of L in the range.

Of course, we cannot assume we will guess correctly the number k′ of dis-
tinct tags we will eventually return. Instead, we keep an O(t)-bits representa-
tion Fk′ for every k′ ≤ lgε t, which takes O

(
t lgε t
log t

)
⊂ O(t) space. We query

F1, F2, F3, . . . , Flgε t in turn, using constant time for each. If, for some Fk′ , the
range-minimum data structure returns a value smaller than j − i + 1, then we
know that P [i..j] is labeled by k = k′ − 1 distinct tags, so we use the formu-
las of Sect. 4 to convert the range in L given by Fk to a range A[s..e], and use
Muthukrishnan’s algorithm (Corollary 1) to return the distinct tags in A[s..e].
Otherwise, after we query Flgε t, we know that k > lgε t, so we can perform the
range-successor queries safely as in Sect. 4. In both cases, we use O(k) total time.

Theorem 4. Suppose we are given an SLP with g rules for a text T [1..n] whose
BWT has r runs, and a tag array for T with t runs. Then we can build an

190 A. Baláž et al.

O(g + r + t)-space data structure that can preprocess any pattern P [1..m] in
O(m log n) time such that later, given i and j, it returns the k distinct tags
labeling occurrences of P [i..j] in T in optimal O(k) time.

6 Discussion and Future Work

This paper lays out the theoretical basis for Wheeler maps. We have shown
how using compressed space, we can preprocess a pattern P such that later,
given any i and j, we report the distinct tags labeling the occurrences of P [i..j]
in the optimal constant time per tag reported. To the best of our knowledge,
Wheeler maps are the first data structure allowing for an efficient tag listing
of subpatterns. Further results on prioritizing and constraining the query tag
frequencies will be included in the extended version of this article.

As a future work, we plan to address the question of whether mixing Wheeler
graphs with Wheeler maps — to allow some kinds of recombinations while
excluding others — is useful and viable. Besides pangenomics, we plan to explore
the versatile nature of Wheeler maps and look for other applications. We also
believe that for certain cases we can prove analytical bounds on the number of
runs in the tag array by relating them to the repetitiveness of the input.

We are now investigating our approach experimentally. Together with the
full implementations of the data structures described here, we also still need
efficient algorithms for extracting tag arrays from pangenome graphs for large
genomic datasets, and good compression schemes for those tag arrays. A tag
could contain a lot of information, so representing it explicitly for every run of
that tag in the tag array might be very wasteful. It is likely more space-efficient
to store each distinct tag only once, separated from the tag array by one or more
levels of indirection. Once we can build and store Wheeler maps well in practice,
we intend to integrate them into current pangenomics pipelines.

References

1. Bernardini, G., Pisanti, N., Pissis, S.P., Rosone, G.: Pattern matching on elastic-
degenerate text with errors. In: Fici, G., Sciortino, M., Venturini, R. (eds.) SPIRE
2017. LNCS, vol. 10508, pp. 74–90. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-67428-5 7

2. Bille, P., Gørtz, I.L., Cording, P.H., Sach, B., Vildhøj, H.W., Vind, S.: Fingerprints
in compressed strings. J. Comput. Syst. Sci. 86 171–180 (2017)

3. Boucher, C., et al. PHONI: Streamed matching statistics with multi-genome ref-
erences. In: Proceedings 31st Data Compression Conference (DCC), pp. 193–202
(2021)

4. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm. In
Digital SRC Research Report, Citeseer (1994)

5. Cobas, D., Gagie, T., Navarro, G.: A fast and small subsampled R-Index. In:
Proceedings 32nd Annual Symposium on Combinatorial Pattern Matching (CPM),
pp. 13:1–13:16 (2021)

https://doi.org/10.1007/978-3-319-67428-5_7
https://doi.org/10.1007/978-3-319-67428-5_7

Wheeler Maps 191

6. Computational Pan-Genomics Consortium: Computational pan-genomics: status,
promises and challenges. Brief. Bioinform. 19(1), 118–135 (2018)

7. Cotumaccio, N., Prezza, N.: On indexing and compressing finite automata. In:
Proceedings 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
2585–2599 (2021)

8. Dolgin, E.: Scientists unveil a more diverse human genome (2023) Accessed 3 Jan
2024

9. Equi, M., Mäkinen, V., Tomescu, AI.: Graphs cannot be indexed in polynomial
time for sub-quadratic time string matching, unless SETH fails. In: Proceedings
Theory and Practice of Computer Science (SOFSEM), pp. 608–622 (2021)

10. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

11. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

12. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: framework for BWT-based data
structures. Theoret. Comput. Sci. 698, 67–78 (2017)

13. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1459–1477 (2018)

14. Ganardi, M., Jeż, A., Lohrey, M.: Balancing straight-line programs. J. ACM 68(4),
1–40 (2021)

15. Garrison, E., et al.: Variation graph toolkit improves read mapping by representing
genetic variation in the reference. Nature Biotechnol. 36(9), 875–879 (2018)

16. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4), 357–359 (2012)

17. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

18. Liao, W.W., et al.: A draft human pangenome reference. Nature 617(7960), 312–
324 (2023)

19. Mäkinen, V., Cazaux, B., Equi, M., Norri, T., Tomescu, A.I.: Linear time con-
struction of indexable founder block graphs. In: 20th International Workshop on
Algorithms in Bioinformatics (WABI), pp. 7:1–7:18 (2020)

20. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding. In:
Apostolico, A., Crochemore, M., Park, K. (eds.) Combinatorial Pattern Matching:
16th Annual Symposium, CPM 2005, Jeju Island, Korea, June 19-22, 2005. Pro-
ceedings, pp. 45–56. Springer Berlin Heidelberg, Berlin, Heidelberg (2005). https://
doi.org/10.1007/11496656 5

21. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

22. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

23. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Pro-
ceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
657–666, (2002)

24. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.,
39(1)article 2 (2007)

25. Navarro, G.: Compact data structures: a practical approach. Cambridge University
Press (2016)

26. Navarro, G.: Indexing highly repetitive string collections, part II: compressed
indexes. ACM Comput. Surv. 54(2), article 26 (2021)

https://doi.org/10.1007/11496656_5
https://doi.org/10.1007/11496656_5

192 A. Baláž et al.

27. Navarro, G., Prezza, N.: Universal compressed text indexing. Theoret. Comput.
Sci. 762, 41–50 (2019)

28. Nekrich, Y., Navarro, G.: Sorted range reporting. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31155-0 24

29. Nishimoto, T., Tabei, Y.: Optimal-time queries on BWT-runs compressed indexes.
In: Proceedings of the International Colloquium on Automata, Languages, and
Programming (ICALP), pp. 101:1–101:15 (2021)

30. Reich, D.E., et al.: Linkage disequilibrium in the human genome. Nature,
411(6834), 199–204 (2001)

31. Rizzo, N., Cáceres, M., Mäkinen, V.: Finding maximal exact matches in graphs.
In: Proceedings of the Workshop on Algorithms in Bioinformatics (WABI), pp.
10:1–10:17 (2023)

32. Rossi, M., Oliva, M., Langmead, B., Gagie, T., Boucher, C.: MONI: a pangenomic
index for finding maximal exact matches. J. Comput. Biol. 29(2), 169–187 (2022)

33. Russo, L.M., Navarro, G., Oliveira, A.L.: Fully-compressed suffix trees. ACM
Trans. Algorith. 7(4):article 53 (2011)

34. Steinmark, E.M.: The human genome needs updating but how do we make it fair?
(2023). Accessed 3 Jan 2024

35. Tatarnikov, I., Farahani, A.S., Kashgouli, S., Gagie, T.: MONI can find k-MEMs.
In: Proceedings 34th Annual Symposium on Combinatorial Pattern Matching
(CPM), pp. 26:1–26:14 (2023)

https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/978-3-642-31155-0_24

Faster Combinatorial k-Clique Algorithms

Amir Abboud, Nick Fischer, and Yarin Shechter(B)

Weizmann Institute of Science, Rehovot, Israel
{amir.abboud,nick.fischer,yarin.shechter}@weizmann.ac.il

Abstract. Detecting if a graph contains a k-Clique is one of the most
fundamental problems in computer science. The asymptotically fastest
algorithm runs in time O(nωk/3), where ω is the exponent of Boolean
matrix multiplication. To date, this is the only technique capable of
beating the trivial O(nk) bound by a polynomial factor. Due to this tech-
nique’s various limitations, much effort has gone into designing “combi-
natorial” algorithms that improve over exhaustive search via other tech-
niques.

The first contribution of this work is a faster combinatorial algorithm
for k-Clique, improving Vassilevska’s bound of O(nk/ logk−1 n) by two
log factors. Technically, our main result is a new reduction from k-Clique
to Triangle detection that exploits the same divide-and-conquer at the
core of recent combinatorial algorithms by Chan (SODA’15) and Yu
(ICALP’15).

Our second contribution is exploiting combinatorial techniques to
improve the state-of-the-art (even of non-combinatorial algorithms) for
generalizations of the k-Clique problem. In particular, we give the first
o(nk) algorithm for k-clique in hypergraphs and an O(n3/ log2.25 n + t)
algorithm for listing t triangles in a graph.

1 Introduction

One of the most fundamental problems in computer science is k-Clique: given
an n-node graph, decide if there are k nodes that form a clique, i.e. that have
all the

(
k
2

)
edges between them. Our interest is in the case where 3 ≤ k � n

is a small constant. This is the “SAT of parameterized complexity” being the
canonical problem of the W[1] class of “fixed parameter intractable” problems,
and its basic nature makes it a core task in countless applications where we seek
a small sub-structure defined by pairwise relations.

The naïve algorithm checks all subsets of k nodes and runs in O(k2
(
n
k

)
) time,

which is Θ(nk) for constant k. Whether and how this bound can be beaten (in
terms of worst-case asymptotic time complexity) is a quintessential form of the
question: can we beat exhaustive search?

This work is part of the project CONJEXITY that has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon Europe research
and innovation programme (grant agreement No. 101078482). The first author is addi-
tionally supported by an Alon scholarship and a research grant from the Center for
New Scientists at the Weizmann Institute of Science.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 193–206, 2024.
https://doi.org/10.1007/978-3-031-55598-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_13

194 A. Abboud et al.

The asymptotically fastest algorithms gain a speedup by exploiting fast
matrix multiplication – one of the most powerful techniques for beating exhaus-
tive search. In particular, for the important special case of k = 3, i.e. the Triangle
Detection problem, the running time is O(nω) where 2 ≤ ω < 2.3719 [23] is the
exponent in the time complexity of multiplying two n × n binary matrices.1 For
larger k > 3, there is a reduction to the k = 3 case by Nešetřil and Poljak [31]
that produces graphs of size O(n�k/3�).2 The resulting time bound is O(n�ωk/3�).
Except for improvements for k that is not a multiple of 3 [24], and the develop-
ments in fast matrix multiplication algorithms reducing the value of ω over the
years, this classical algorithm remains the state-of-the-art.

The one general technique underlying all fast matrix multiplication, starting
with Strassen’s algorithm [34], is to find some clever formula to exploit cancella-
tions in order to replace multiplications with additions. To date, this is the only
technique capable of beating exhaustive search by a polynomial nε factor for the
k-Clique problem. All techniques have their limitations, and so does Strassen’s;
we defer a detailed discussion on this to the full paper due to space constraints.
Consequently, much research has gone into finding “combinatorial algorithms”
that beat exhaustive search by other techniques. Existing techniques have only
led to polylogarithmic speedups, leading the community to the following conjec-
tures that have become the basis for many conditional lower bounds.

Conjecture 1 (Combinatorial BMM). Combinatorial algorithms cannot
solve Triangle Detection in time O(n3−ε) where ε > 0.3

A reduction of Vassilevska and Williams [37] shows that this conjecture is
equivalent to the classical conjecture that combinatorial algorithms cannot solve
Boolean Matrix Multiplication (BMM) in truly subcubic time [28,33]. Following
their reduction, many conditional lower bounds were based on this conjecture,
e.g. [5,16,19,21] (we refer to the survey [36] for a longer list).

Conjecture 2 (Combinatorial k-Clique). Combinatorial algorithms cannot
solve k-Clique in time O(nk−ε) for any k ≥ 3 and ε > 0.

The latter conjecture is stronger than the former, in the sense that faster
algorithms for k = 3 imply faster algorithms for larger k > 3 but the converse
is not known. The first use of this conjecture as a basis for conditional lower
bounds was by Chan [17] to prove an nk−o(1) lower bound for a problem in
computational geometry. Later, Abboud, Backurs, and Vassilevska Williams [2]
used it to prove n3−o(1) lower bounds in P. Several other papers have used it
since then, e.g. [1,4,9,11–14,20,22,26,29].

1 Simply compute A2 where A is the adjacency matrix of the graph and check if
A2[i, j] > 0 for any {i, j} that are an edge.

2 Each k/3-clique becomes a node and edges are defined in a natural way so that a
triangle corresponds to a k-clique.

3 Note the informality in these combinatorial conjectures stemming from the lack
of precise definition for “combinatorial” in this context. See full paper for further
discussion.

Faster Combinatorial k-Clique 195

Previous Combinatorial Bounds. The previous bounds for Triangle detec-
tion (k = 3) fall under three conceptual techniques (see full paper for more
details). We will omit (log log n) factors in this paragraph.

1. The Four-Russians technique [6] from 1970 gives an O(n3/ log2 n) bound, and
is used in all later developments.

2. In 2010, Bansal and Williams [7] use pseudoregular partitions to shave off an
additional log1/4 n factor.

3. In 2014, Chan [18] introduced a simple divide-and-conquer technique to get
an O(n3/ log3 n) bound, and a year later, Yu [38] optimized this technique to
achieve a bound of O(n3/ log4 n).

For k > 3 there are two options: (1) we either apply these algorithms inside
the aforementioned reduction to Triangle, getting a bound of O(nk/ log4 n), or
(2) we apply these combinatorial techniques directly to k-Clique. An early work
of Vassilevska [35] from 2009 applied the Four-Russians technique directly to
get an O(nk/ logk−1) bound. Note that this generalizes the log2 shaving from
the first bullet naturally to all k, and is favorable to the algorithms from option
(1) for k > 5. Vassilevska’s bound remains state-of-the-art, and in this work,
we address the challenge of generalizing the other combinatorial techniques to
k-Clique.

1.1 Our Results

The first result of this paper is a faster combinatorial algorithm for k-Clique for
all k > 3 based on a generalization of the divide-and-conquer technique from
Chan’s and Yu’s algorithms for k = 3. We use divide-and-conquer to design a
more efficient reduction from k-Clique to the k = 3 case. The main feature of this
reduction is that we get an additional log factor shaving each time k increases by
one; this should be contrasted with the classical reduction from option(1) above,
in which we gain nothing when k grows.

Theorem 1 (Reduction from k-Clique to Triangle). Let k ≥ 3, and let
a, b be reals such that there is a combinatorial triangle detection algorithm run-
ning in time O(n3(log n)a(log log n)b). Then there is a combinatorial k-clique
detection algorithm in time O(nk(log n)a−(k−3)(log logn)b+k−3).

Combining our reduction with Yu’s state-of-the-art combinatorial algorithm
for Triangle detection, we improve Vassilevska’s bound by two log factors.

Corollary 1 (Faster Combinatorial k-Clique Detection). There is a k-
clique detection algorithm running in time O(nk(log n)−(k+1)(log log n)k+3).

It may be interesting to note that our reduction can even be combined with
the naïve O(n3) algorithm for Triangle detection, giving a (log n)k−3 shaving for
k-Clique without using the Four-Russians technique.

196 A. Abboud et al.

Another interesting implication of our reduction is concerning the framework
of Bansal and Williams’ [7]. Their algorithm can be improved if better dependen-
cies for regularity/triangle removal lemmas are achieved. The best known upper
bound on f(ε) in a triangle removal lemma is of the form c

(log∗(1/ε))δ for some
constants c > 1 and δ > 0.4. Due to this dependency, their first algorithm [7,
Theorem 2.1] only shaves a log∗(n) factor from the running times achieved with
the standard Four-Russians technique. However, it is not ruled out that much
better dependencies can be achieved that would accelerate their algorithm to
the point where, combined with our reduction, a k-clique algorithm with faster
running times than Corollary 1 is obtained.5

A primary reason to seek combinatorial algorithms for k-Clique is that
the techniques may generalize in ways fast matrix multiplication cannot (see
full paper for detailed discussion). Our second set of results exhibits this phe-
nomenon by shaving logarithmic factors over state-of-the-art for general (non-
combinatorial) algorithms.

One limitation of the O(nω) algorithm for Triangle detection is that it does
not solve the Triangle listing problem: we cannot specify a parameter t and get all
triangles in the graph in time O(nω+t) assuming their number is up to t. Listing
triangles in an input graph is not only a natural problem, but it is also connected
to the fundamental 3SUM problem (given n numbers, decide if there are three
that sum to zero). A reduction from 3SUM [27,32] shows that in order to beat
the longstanding O(n2/ log2 n) bound over integers [8] it is enough to shave
a log6+ε n factor for Triangle listing – i.e., achieve a running time of O(n3

log6+ε n
+t)

for some ε > 0. Although research has seen some results on triangle listing [10],
we are not aware of any previous o(n3)+O(t) time bound for this problem (even
with non-combinatorial techniques). Our second result produces such a time
bound, showing that the other combinatorial techniques (namely Four-Russians
and regularity lemmas) can be exploited. We shave a log2.25 n factor for this
problem, generalizing the Bansal-Williams bound for BMM. Note we use the
non-standard notation Õ̃(n) = n(log log n)O(1) to suppress polyloglog factors.

Theorem 2 (Faster Triangle Listing). There is a randomized combinatorial
algorithm that lists up to t triangles in a given graph in time Õ̃(n3

(log n)2.25 + t),
and succeeds with probability 1 − n−100.

Another well-known limitation of Strassen-like techniques is that they are
ineffective for detecting hypergraph cliques. They fail to give any speedup even
for the first generalization in this direction: detecting a 4-clique in a 3-uniform
hypergraph (i.e. a hypergraph where each hyper-edge is a set of three nodes). We
are not aware of any non-trivial o(n4) algorithm for this problem (even with non-
combinatorial techniques). The conjecture that O(n4−ε) time cannot be achieved

4 Fox achieved some improved dependencies with a new proof of the removal
lemma [25], however, it is not clear whether it can be implemented efficiently.

5 Note that the same cannot be said about their second algorithm [7, Theorem 2.1];
see the lower bound for pseudoregular partitions due to Lovasz and Szegedy [30]).

Faster Combinatorial k-Clique 197

has been used to prove conditional lower bounds, e.g. [15,29]. Our third result
is a log1.5 n factor shaving for this problem. The following theorem provides our
general bound and strengthens the result for listing (detection can be obtained
by setting t = 1).

Theorem 3 (Faster k-Hyperclique Listing). There is an algorithm for list-
ing up to t k-hypercliques in an r-uniform hypergraph in time

O

(
nk

(log n)
k−1
r−1

+ t

)

(assuming a word RAM model with word size w = Ω(log n)).

Subsequent Work. Shortly after this work, Abboud, Fischer, Kelly, Lovett, and
Meka announced a combinatorial algorithm for BMM with O(n3

2(log n)ε) running
time [3]. This implies an improvement for k-Clique as well that is stronger than
any poly-log speedup and thus improves over Corollary 1 (by using pseudo-
regularity techniques rather than divide-and-conquer). Moreover, building on
our proof of Theorem 2 the authors present a speedup for triangle listing as
well. However, our result for hypergraphs in Theorem 3 remains unbeaten.

1.2 Outline

We start with some preliminaries in Sect. 2. In Sect. 3 we provide our improved
combinatorial k-Clique algorithm. In Sects. 4 and 5 we provide the high-level
ideas of our improvements for Triangle Listing and k-Hyperclique Detection;
due to space constraints we are forced to defer the technical details to the the
full paper.

2 Preliminaries

Let [n] := {1, . . . , n}. We write Õ(n) = n(log n)O(1) to suppress polylogarithmic
factors and use the non-standard notation Õ̃(n) = n(log log n)O(1).

Throughout we consider undirected, unweighted graphs. In the k-clique prob-
lem, we are given a k-partite graph (V1, . . . , Vk, E) and the goal is to determine
whether there exist k vertices v1 ∈ V1, . . . , vk ∈ Vk such that there is an edge
(vi, vj) ∈ E for every pair i �= j. Note that the assumption that the input
graphs are k-partite is without loss of generality, and can be achieved by a triv-
ial transformation of any non-k-partite graph G = (V,E): We create k copies
V1, . . . , Vk of the vertex set and for every (u, v) ∈ E we add the edges (ui, vj)
for every i �= j. Another typical relaxation is that we only design an algorithm
that detect the presence of k-cliques (without actually returning one). It is easy

198 A. Abboud et al.

to transform a detection algorithm into a finding algorithm using binary search
without asymptotic overhead.6

We additionally define the following notation for a k-partite graph as before:
For a vertex v, let Ni(v) = {u ∈ Vi : (v, u) ∈ E} denote the neighbourhood of
v in Vi and di(v) = |Ni(v)| denote the degree of v in Vi. Moreover, for a vertex
set V ′ ⊆ V we let G[V ′] denote the subgraph of G induced by the vertex set
V ′. Throughout we further let n = |V1| + · · · + |Vk| denote the total number of
vertices in the graph.

An r-uniform hypergraph is a pair (V,E), where V is a vertex set and E ⊆(
V
r

)
is a set of hyperedges. In the r-uniform k-hyperclique problem we need to

decide whether in a k-partite hypergraph (V1, . . . , Vk, E) there are vertices v1 ∈
V1, . . . , vk ∈ Vk such that all hyperedges on {v1, . . . , vk} are present. Similarly,
the assumption that the hypergraph is a k-partite is without loss of generality.

We are using the standard word RAM model with word size w ∈ Θ log(n). In
this model a random-access machine can perform arithmetic and bitwise opera-
tions on w-bit words in constant time.

3 Combinatorial Log-Shaves for k-Clique

In this section we provide our improved algorithmic reduction from k-clique to
triangle detection (see Theorem 1). In our core we follow a divide-and-conquer
approach for k-clique reminiscent to Chan’s algorithm for triangle detection [18]
with a simple analysis. We start with the following observation:

Observation 1 (Trivial Reduction from k-Clique to (k−1)-Clique). Let
k ≥ 4, let f(n) be a nondecreasing function, and assume that there is a combi-
natorial (k − 1)-clique detection algorithm running in time O(nk−1/f(n)). Then
there is a combinatorial k-clique detection algorithm running in time

O

(
∑

v∈V1

d2(v) · · · · · dk(v)
f(min{d2(v), . . . , dk(v)})

)

.

Proof. The algorithm is simple: For each vertex v ∈ V1, we construct the sub-
graph Gv = G[N2(v) ∪ · · · ∪ Nk(v)] consisting of all neighbors of v and test
whether Gv contains a (k − 1)-clique. Let nv = d2(v) + · · · + dk(v) denote the
number of vertices in Gv. Our intention is to use the efficient (k − 1)-clique
algorithm—however, simply running the algorithm in time O(nk

v/f(nv)) is pos-
sibly too slow. Instead, we partition each of the k − 1 vertex parts in Gv into

6 More specifically, any detection algorithm can be transformed into a finding algo-
rithm with constant running time overhead by using binary search as follows: Arbi-
trarily split each of the k vertex parts into two halves. Then for each subgraph
induced by one of the 2k combination of halves whether it contains a k-clique. If
the detection algorithm succeeds on some combination, we continue on this combi-
nation recursively. For any natural running time the recursive overhead becomes a
geometric sum and thus is constant.

Faster Combinatorial k-Clique 199

blocks of size dv := min{d2(v), . . . , dk(v)} (plus one final block of smaller size,
respectively). Then, for each combination of k − 1 blocks, we use the efficient
(k − 1)-clique detection algorithm. It is clear that the algorithm is correct, since
we exhaustively test every tuple (v1, v2, . . . , vk). For the running time, note that
testing whether Gv contains a k-clique takes time

⌈
d2(v)
dv

⌉
· · · · ·

⌈
dk(v)
dv

⌉
· O

(
(dv)k−1

f(dv)

)
= O

(
d2(v) · · · · · dk(v)

f(min{d2(v), . . . , dk(v)})
)

,

and thus the total running time is indeed

O

(
∑

v∈V1

d2(v) · · · · · dk(v)
f(min{d2(v), . . . , dk(v)})

)

(possibly after preprocessing the graph in time O(n2) to allow for constant-time
edge queries. Note that this also covers the cost of constructing Gv for every
v ∈ V1). 	

Before moving to the formal proof of Theorem 1, let us give a simplified high-
level description of this algorithmic reduction in the specific case of 4-clique. For a
given 4-partite graph (V1, V2, V3, V4), the core idea is the following: If the degrees
in V1 tend to be small, i.e. if for every v ∈ V1 we have d2(v)·d3(v)·d4(v) ≤ α·|V2|·
|V3|·|V4| for some fraction α ≈ 1

log n , then we can apply Observation 1. Otherwise,
there is a heavy vertex v ∈ V1 with d2(v) ·d3(v) ·d4(v) > α · |V2| · |V3| · |V4|. In this
case, we will check every triplet of the form (u,w, z) ∈ N2(v) × N3(v) × N4(v).
If any of these triplets form a triangle, we have detected a 4-clique. Otherwise,
we have learned that no triplet in N2(v) × N3(v) × N4(v) is part of a 4-clique.
We will therefore recurse in such a way that ensures we never test these triplets
again and thereby make sufficient progress.

Proof. Assume that there is a combinatorial triangle detection algorithm which
runs in time O(n3(log n)a(log log n)b). We prove the claim by induction on k.
The base case (k = 3) is immediate by the assumption there exists a triangle
detection algorithm running in time O(n3(log n)a(log log n)b).

For the inductive step, consider the following recursive algorithm to detect a
k-clique in a given k-partite graph (V1, . . . , Vk, E). Let D and α be parameters
to be determined later and let d be initialized to 0.

KCliqueRec(G = (V1, . . . , Vk, E), d):

1. If d = D, meaning depth D in the recursion is reached, perform exhaustive
search. Return YES if a k-clique was detected, otherwise NO.

2. Test whether there is some v ∈ V1 with d2(v) · . . . · dk(v) ≥ α · |V2| · . . . · |Vk|.
If such a vertex exists:
a. Test whether the subgraph Gv induced by N2(v)∪ · · · ∪ Nk(v) contains a

(k−1)-clique by exhaustive search. If it does return YES since this means
we’ve found a k-clique involving v.

200 A. Abboud et al.

b. For 2 ≤ i ≤ k, partition Vi into Vi,0 = Vi \ Ni(v) and Vi,1 = Vi ∩ Ni(v).
Recursively solve the 2k−1 − 1 subproblems on (V1, V2,i2 , . . . , Vk,ik

) for
(i2, . . . , ik) ∈ {0, 1}k−1 \ {1k−1}, while incrementing the depth.
In other words, for each (i2, . . . , ik) ∈ {0, 1}k−1 \ {1k−1}, call KCli-
queRec(G[V1 ∪ V2,i2 ∪ · · · ∪ Vk,ik

], d + 1).
c. If any of the calls returned YES, return YES. Otherwise, return NO.

3. Solve the instance using Observation 1.

Correctness. As soon as the algorithm reaches recursion depth D, the algorithm
will correctly detect a k-clique in step 1. In earlier levels of the recursion, the
algorithm first attempts to find a vertex v with d2(v)·. . .·dk(v) ≥ α·|V2|·. . .·|Vk|
in step 2. If this succeeds, we test whether v is involved in a k-clique (and
terminate in this case). Otherwise, we recurse on (V1, V2,i2 , . . . , Vk,ik

) for all
combinations (i2, . . . , ik) ∈ {0, 1}k−1 \ {1k−1}. Note that we can indeed ignore
the instance (V1, V2,1, . . . , Vk,1) knowing that (V2,1, . . . , Vk,1) does not contain a
(k − 1)-clique. If the condition in step 2 is not satisfied, we instead correctly
solve the instance by means of Observation 1 (which reduces the problem to an
instance of (k − 1)-clique).

Running Time. Imagine a recursion tree in which every node corresponds to
an execution of the algorithm; the root corresponds to the initial call and child
nodes correspond to recursive calls. Thus, every node in the tree is either a leaf
(indicating that this execution does not spawn recursive calls), or an internal
node with fan-out exactly 2k−1 − 1. The time at a node is the running time of
the respective call of the algorithm (ignoring the cost of further recursive calls).
In other words, the time at a node is the amount of local work performed in the
corresponding call. To bound the total running time of the algorithm, we bound
the total time across all nodes in the recursion tree.

We analyze the contributions of all steps individually. Let us introduce
some notation first: At a node x in the recursion tree, let (V x

1 , . . . , V x
k)

denote the instance associated to the respective invocation. We similarly write
dx
2(v), . . . , d

x
k(v).

Cost of Step 1. Note that at any node x at depth D in the recursion tree, the
time is O(|V x

1 | · . . . · |V x
k |) since we solve the instance by exhaustive search. Next,

observe that for any internal node x in the recursion tree, we have that

|V x
1 | · . . . · |V x

k | = |V x
1 | ·

∑

i2,...,ik∈{0,1}k−1

|V x
2,i2 | · . . . · |V x

k,ik
|

≥ |V x
1 | · dx

2(v) · . . . · dx
k(v) +

∑

y child of x

|V y
1 | · . . . · |V y

k |

≥ α · |V x
1 | · . . . · |V x

k | +
∑

y child of x

|V y
1 | · . . . · |V y

k |,

and thus ∑

y child of x

|V y
1 | · . . . · |V y

k | ≤ (1 − α) · |V x
1 | · . . . · |V x

k |.

Faster Combinatorial k-Clique 201

It follows by induction that at any depth d ≤ D in the recursion tree, we have
that ∑

x at depth d

|V x
1 | · . . . · |V x

k | ≤ (1 − α)dnk.

In particular, the total time of all nodes at depth D is bounded by O((1−α)Dnk).

Cost of Step 2. Note that the number of nodes in our recursion tree is at most 2kD

since the recursion tree has degree ≤ 2k and the recursion depth is capped at D.
At each node, the time of step 2a is bounded by O(nk−1) and the cost of step 2b
is bounded by O(n2). Therefore, the total time of step 2 across all nodes is
bounded by O(2kDnk−1).

Cost of Step 3. By induction we have obtained a (k − 1)-clique algorithm in
time O(nk−1/f(n)), where f(n) = (log n)−a+k−4(log log n)−b−(k−4). Therefore,
by Observation 1 the total time of step 3 across all nodes x in the recursion tree
is

O

⎛

⎝
∑

x lea

∑

v∈V x
1

dx
2(v) · . . . · dx

k(v)
f(min{dx

2(v), . . . , d
x
k(v)})

⎞

⎠ .

To bound this quantity, we distinguish two subcases: A pair (x, v) (where x is a
leaf in the recursion tree and v ∈ V u

1) is called relevant if dx
2(v), . . . , d

x
k(v) ≥ √

n
(where n is the initial number of nodes). On the one hand, it is easy to bound
the total cost of all irrelevant pairs by

O

⎛

⎝
∑

(x,v) irrelevant

dx
2(v) · . . . · dx

k(v)
f(min{dx

2(v), . . . , d
x
k(v)})

⎞

⎠ ≤ O(2kDnk−1/2),

since there are at most 2kD nodes in the recursion tree. On the other hand,
for any relevant pair (x, v), we have min{dx

2(v), . . . , d
x
k(v)} ≥ √

n. Moreover,
since we reach step 3 of the algorithm we further know that dx

2(v) · . . . · dx
k(v) ≤

α|V x
2 | · . . . · |V x

k | (as otherwise the condition in step 2 had triggered). It follows
that

O

⎛

⎝
∑

(x,v) relevant

dx
2(v) · . . . · dx

k(v)
f(min{dx

2(v), . . . , d
x
k(v)})

⎞

⎠

≤ O

⎛

⎝
∑

(x,v) relevant

α|V x
2 | · . . . · |V x

k |
f(

√
n)

⎞

⎠

≤ O

(
nk · α

f(
√

n)

)
.

Choosing the Parameters. Summing over all contributions computed before, the
total running time is bounded by

O

(
nk · (1 − α)D + nk · α

f(
√

n)
+ nk−1/2 · 2kD

)
.

202 A. Abboud et al.

We pick D = log n/(4k) such that the latter term becomes nk−1/4. Next, we
pick α = log((−a + k) log n)/D = Θ((log n)−1 log log n) such that the first term
becomes

nk · (1 − α)D ≤ nk · 2−αD ≤ nk(log n)a−k.

All in all, the total running time is dominated by the second term

nk · α

f(
√

n)
≤ O(nk · α · (log n)a−(k−4)(log logn)b+k−4)

≤ O(nk(log n)a−(k−3)(log log n)b+k−3),

which is as claimed. 	

4 Combinatorial Log-Shaves for Triangle Listing by Weak
Regularity

In this section we quickly outline our triangle listing algorithm which is based on
Bansal and Williams’ BMM algorithm [7]. Our contribution is in reformulating
and reanalyzing their algorithm for the purpose of triangle listing achieving
Theorem 2. Note that we cannot achieve the running time stated in the theorem
by applying state-of-the-art black-box reductions from triangle listing to Boolean
matrix multiplication [37].

The two key ingredients are pseudoregularity and the following lemma which
applies four russians to sparse graphs (see full paper for discussion on pseudoreg-
ularity and proof of the lemma).

Lemma 1 (Sparse Four-Russians). There is an algorithm which lists up to t
triangles in a given graph (V1, V2, V3, E) (with n = min{|V1|, |V2|, |V3|}) in time

Õ̃

(
|V1| · |V2| · |V3|

(log n)100
+

∑

v∈V1

d2(v) · d3(v)
(log n)2

+ t

)

.

Let us give an informal overview of the algorithm. For a given tripartite
graph G = (V1, V2, V3, E), we first compute an ε-pseudoregular partition of the
bipartite graph G[V2 ∪ V3]. We then distinguish between two types of pieces—
pieces with low density (less than

√
ε) and pieces with high density. Based on

this we divide the instance into two triangle listing instances—GL which only
includes edges connecting low density parts between V2 and V3 in G, and its com-
plement GH consisting of edges connecting the high-density parts between V2

and V3. In the former case we can benefit from the sparseness (by construction
the total number of edges GL is at most

√
εn2). In the latter case, due to the

pseudoregularity, there must be many triangles in GH . We can thus charge the
extra cost of computing with GH towards the output-size. For complete specifi-
cation refer to the full paper.

Faster Combinatorial k-Clique 203

5 Combinatorial Log-Shaves for k-Hyperclique

In this section we give an intuitive description of the algorithm in the simplest
case k = 4, r = 3 (detecting a 4-clique in a 3-uniform hypergraph in faster than
O(n4) time), for complete and general specification refer to the full paper. We
are given a 4-partite 3-uniform graph G = (V1, V2, V3, V4, E) with vertex sets of
size n. For each v ∈ V1, we can define a tri-partite graph Gv = (V2, V3, V4, E

′) in
which we draw an edge between two vertices if and only if they share a hyperedge
with v in G. It is easy to check that there is a 4-hyperclique in G if and only if
there are vertices v2, v3, v4 that form a triangle in Gv and in G (meaning they
are a hyperedge in G). The naive search for such a triplet would take O(n3), and
we present an algorithm that accelerates this search:

1. Let s =
√

c log n for some small constant c > 0, and partition V2, V3 and V4

each into g = �n/s� blocks of size at most s. We let Vi,j denote the j’th block
in Vi.

2. For every combination j2, j3, j4 ∈ [g]:
a. Create a lookup table Tj2,j3,j4 with an entry for every possible tripartite

graph on the vertex sets V2,j2 , V3,j3 , V4,j4 (there are 2s2
= nc such graphs).

b. For every entry corresponding to a graph G′ store whether G′ has a
triangle that is a hyperedge in G.

Note that this preprocessing is fast: We construct n3

s3 tables, each consisting
of nc entries, and each entry takes O(s3) time to determine. So, the total pre-
processing time is O(n3+c). Given these tables we can now search for a 4-clique
more efficiently: For each v ∈ V1 we break Gv into triples of blocks as before,
and query Tj2,j3,j4 for the graphs Gv[V2,j2 ∪ V3,j3 ∪ V4,j4], for all j2, j3, j4. If one
the answers is positive we have found a hyperclique. Assuming every query is
performed in constant time, the running time is determined by the number of
queries which is

O

(
n · n3

s3

)
= O

(
n4

(log n)1.5

)
.

All that is left now is to justify the assumption that every query is per-
formed in constant time. The main question is given v ∈ V1 and a combina-
tion of blocks V2,j2 , V3,j3 , V4,j4 , how can we determine the key corresponding
to Gv[V2,j2 , V3,j3 , V4,j4] in Tj2,j3,j4 in constant time? For this purpose, we define
in the proof a compact representation of tripartite graphs (on vertex sets of
size s) used to index the tables Tj2,j3,j4 . This compact representation is chosen
in such a way which allows to efficiently precompute the compact representations
of all such graphs Gv[V2,j2 , V3,j3 , V4,j4].

References

1. Abboud, A., Backurs, A., Bringmann, K., Künnemann, M.: Fine-grained complex-
ity of analyzing compressed data: quantifying improvements over decompress-and-
solve. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 192–203. IEEE (2017)

204 A. Abboud et al.

2. Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are
optimal, so is valiant’s parser. SIAM J. Comput. 47(6), 2527–2555 (2018)

3. Abboud, A., Fischer, N., Kelley, Z., Lovett, S., Meka, R.: New graph decom-
positions and combinatorial boolean matrix multiplication algorithms. CoRR,
abs/2311.09095 (2023). arxiv:2311.09095

4. Abboud, A., et al.: Faster algorithms for all-pairs bounded min-cuts. In: Baier, C.,
Chatzigiannakis, I., Flocchini, P., Leonardi, S., editors, 46th International Collo-
quium on Automata, Languages, and Programming, ICALP 2019, July 9–12, 2019,
Patras, Greece, volume 132 of LIPIcs, pp. 7:1–7:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.7

5. Abboud, A., Williams, V.V.:. Popular conjectures imply strong lower bounds for
dynamic problems. In: 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2014), pp. 434–443. IEEE Computer Society (2014). https://doi.
org/10.1109/FOCS.2014.53

6. Arlazarov, V.L.V., Dinitz, Y.A., Kronrod, M.A., Faradzhev, I.: On economical
construction of the transitive closure of an oriented graph. In: Akademii Nauk, D.,
vol. 194, pp. 487–488. Russian Academy of Sciences (1970)

7. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theor.
Comput. 8(1), 69–94 (2012). https://doi.org/10.4086/toc.2012.v008a004

8. Baran, I., Demaine, E.D., Patrascu, M.: Subquadratic algorithms for 3SUM. Algo-
rithmica 50(4), 584–596 (2008). https://doi.org/10.1007/s00453-007-9036-3

9. Bergamaschi, T., Henzinger, M., Gutenberg, M.P., Williams, V.V., Wein, N.: New
techniques and fine-grained hardness for dynamic near-additive spanners. In: Pro-
ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1836–1855. SIAM (2021)

10. Björklund, A., Pagh, R., Williams, V.V., Zwick, U.: Listing triangles. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 223–234. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7_19

11. Bringmann, K., Fischer, N., Künnemann, M.: A fine-grained analogue of schaefer’s
theorem in p: Dichotomy of existŝ k-forall-quantified first-order graph properties.
In: 34th Computational Complexity Conference (CCC 2019). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2019)

12. Bringmann, K., Gawrychowski, P., Mozes, S., Weimann, O.: Tree edit distance
cannot be computed in strongly subcubic time (unless apsp can). ACM Trans.
Algorithm. (TALG) 16(4), 1–22 (2020)

13. Bringmann, K., Grønlund, A., Larsen, K.G.. A dichotomy for regular expression
membership testing. In: 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 307–318. IEEE (2017)

14. Bringmann, K., Wellnitz, P.: Clique-based lower bounds for parsing tree-adjoining
grammars. arXiv preprint arXiv:1803.00804 (2018)

15. Carmeli, N., Kröll, M.: On the enumeration complexity of unions of conjunctive
queries. In: Dan Suciu, Sebastian Skritek, and Christoph Koch, editors, Proceedings
of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pp.
134–148. ACM (2019). https://doi.org/10.1145/3294052.3319700

16. Casel, K., Schmid, M.L.: Fine-grained complexity of regular path queries. arXiv
preprint arXiv:2101.01945 (2021)

17. Chan, T.M.: A (slightly) faster algorithm for klee’s measure problem. In: Proceed-
ings of the Twenty-fourth Annual Symposium on Computational geometry, pp.
94–100 (2008)

http://arxiv.org/abs/2311.09095
https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.4086/toc.2012.v008a004
https://doi.org/10.1007/s00453-007-9036-3
https://doi.org/10.1007/978-3-662-43948-7_19
https://doi.org/10.1007/978-3-662-43948-7_19
http://arxiv.org/abs/1803.00804
https://doi.org/10.1145/3294052.3319700
http://arxiv.org/abs/2101.01945

Faster Combinatorial k-Clique 205

18. Chan, T.M.: Speeding up the four Russians algorithm by about one more loga-
rithmic factor. In: Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4–6, 2015, pp. 212–217. SIAM (2015). https://doi.org/10.1137/1.
9781611973730.16

19. Chan, T.M., Rahul, S., Xue, J.: Range closest-pair search in higher dimensions.
Comput. Geometry 91 101669 (2020)

20. Chang, Y.J.: Hardness of RNA folding problem with four symbols. In: Grossi,
R., Lewenstein, M., editors, 27th Annual Symposium on Combinatorial Pattern
Matching, CPM 2016, June 27–29, 2016, Tel Aviv, Israel, volume 54 of LIPIcs, pp.
13:1–13:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.
org/10.4230/LIPIcs.CPM.2016.13

21. Clifford, R., Grønlund, A., Larsen, K.G., Starikovskaya, T.: Upper and lower
bounds for dynamic data structures on strings. arXiv preprint arXiv:1802.06545
(2018)

22. Dalirrooyfard, M., Vuong, T.D., Williams, V.V.: Graph pattern detection: Hard-
ness for all induced patterns and faster non-induced cycles. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 1167–1178
(2019)

23. Duan, R., Wu, H., Zhou, R.: Faster matrix multiplication via asymmetric hashing.
In: 64th IEEE Annual Symposium on Foundations of Computer Science (FOCS
2023). IEEE Computer Society, 2023. To appear. https://doi.org/10.48550/arXiv.
2210.10173

24. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and
dominating set. Theor. Comput. Sci. 326(1–3), 57–67 (2004). https://doi.org/10.
1016/j.tcs.2004.05.009

25. Fox, J.: A new proof of the graph removal lemma. CoRR, abs/1006.1300 (2010).
arxiv:1006.1300

26. Jin, C., Xu, Y.: Tight dynamic problem lower bounds from generalized bmm and
omv. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 1515–1528 (2022)

27. Kopelowitz, T., Pettie, S., Porat, E.: Higher lower bounds from the 3SUM conjec-
ture. In: Krauthgamer, R., editor, 27th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2016), pp. 1272–1287. SIAM (2016). https://doi.org/10.
1137/1.9781611974331.ch89

28. Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multipli-
cation. J. ACM (JACM) 49(1), 1–15 (2002)

29. Lincoln, A., Williams, V.V., Williams, R.: Tight hardness for shortest cycles and
paths in sparse graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1236–1252. SIAM (2018)

30. lóVász, L., Lovász, M., Szegedy, B.: Szemerédi’s lemma for the analyst. GAFA Geo-
metric Funct. Anal. 17 252–270 (2007). https://api.semanticscholar.org/CorpusID:
15201345

31. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment.
Math. Univ. Carol. 26(2), 415–419 (1985)

32. Pătraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: Schul-
man, L.J., editor, 42nd Annual ACM Symposium on Theory of Computing (STOC
2010), pp. 603–610. ACM (2010). https://doi.org/10.1145/1806689.1806772

33. Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Albers, S., Radzik,
T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 580–591. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30140-0_52

https://doi.org/10.1137/1.9781611973730.16
https://doi.org/10.1137/1.9781611973730.16
https://doi.org/10.4230/LIPIcs.CPM.2016.13
https://doi.org/10.4230/LIPIcs.CPM.2016.13
http://arxiv.org/abs/1802.06545
https://doi.org/10.48550/arXiv.2210.10173
https://doi.org/10.48550/arXiv.2210.10173
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/j.tcs.2004.05.009
http://arxiv.org/abs/1006.1300
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.ch89
https://api.semanticscholar.org/CorpusID:15201345
https://api.semanticscholar.org/CorpusID:15201345
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1007/978-3-540-30140-0_52

206 A. Abboud et al.

34. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356
(1969)

35. Vassilevska, V.: Efficient algorithms for clique problems. Inf. Process. Lett. 109(4),
254–257 (2009). https://doi.org/10.1016/j.ipl.2008.10.014

36. Williams, V.V.: On some fine-grained questions in Algorithms and Complexity, pp.
3447–3487 (2018). https://doi.org/10.1142/9789813272880_0188

37. Williams, V.V., Williams, R.R.: Subcubic equivalences between path, matrix, and
triangle problems. J. ACM 65(5), 27:1–27:38 (2018). https://doi.org/10.1145/
3186893

38. Huacheng, Yu.: An improved combinatorial algorithm for boolean matrix multi-
plication. Inf. Comput. 261, 240–247 (2018). https://doi.org/10.1016/j.ic.2018.02.
006

https://doi.org/10.1016/j.ipl.2008.10.014
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
https://doi.org/10.1016/j.ic.2018.02.006
https://doi.org/10.1016/j.ic.2018.02.006

Approximation and Online Algorithms

On Approximate Colored Path Counting

Younan Gao1(B) and Meng He2(B)

1 Département D’informatique et D’ingénierie, Université du Québec en Outaouais,
Gatineau, Canada
gaoy03@uqo.ca

2 Faculty of Computer Science, Dalhousie University, Halifax, Canada
mhe@cs.dal.ca

Abstract. Given an ordinal tree T on n nodes in which each node is
assigned a color from {0, 1, . . . , C − 1}, an approximate colored path
counting query asks for an approximation of the number, occ, of dis-
tinct colors assigned to nodes in a query path. We first present data
structures that can compute a 2-approximate answer, i.e., a number in
[occ, 2occ], and achieve three different time/space trade-offs: i) an O(n)-
word structure with O(lgλ n) query time for any constant 0 < λ < 1,
ii) an O(n lg lg n)-word structure with O(lg lg n) query time and iii) an
O(n lgλ n)-word structure with O(1) query time. The first trade-off beats
the O(lg n/ lg lg n) query time of the linear-word 2-approximate struc-
ture in previous work. We then design an O(n)-word structure which
can compute in O(ε−2 lg n) time a (1 ± ε)-approximate answer, i.e, a
number in [(1 − ε)occ, (1 + ε)occ], for any ε ∈ (0, 1). Previously, when
the space cost is O(n) words, the only known solution computes a (1±ε)-
approximate answer in O(ε−4 lg2 n) time with success probability no less
than 1−δ, where δ is an arbitrary constant in (0, 1); our solution not only
has faster query time but also always returns a (1 ± ε)-approximation.
When designing (1± ε)-approximate solutions, our techniques also yield
an O(n)-word structure that can answer a colored type-2 path counting
query in O(occ) time; this query reports the number of occurrences of
each distinct color in a query path. This result improves the best previous
linear-word solution in which the query time is O(occ lg lg n).

Keywords: Path queries · Colored path counting · Colored path
reporting · Approximate colored path counting

1 Introduction

In tree-structured data, information such as categories can be viewed as colors
assigned to tree nodes. One query which can retrieve such information is the
colored path counting query. It is defined over an ordinal tree1 T on n nodes,
each assigned a color from {0, 1, . . . , C − 1}, where C ≤ n, and it computes the
number, occ, of distinct colors assigned to the nodes in any query path in T .
1 This query can be defined over free trees. Following [12], we assume that the input

tree is ordinal, so that we can use data structures for ordinal trees directly [13,14].

This work was supported by NSERC of Canada.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 209–224, 2024.
https://doi.org/10.1007/978-3-031-55598-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_14&domain=pdf
http://orcid.org/0000-0003-4984-2551
http://orcid.org/0000-0003-0358-7102
https://doi.org/10.1007/978-3-031-55598-5_14

210 Y. Gao and M. He

When the tree structure is a single path, this query becomes the well-known
1D colored range counting query, for which Nekrich [19] designed an O(n)-word
solution with O(lg occ/lg lg n + 1) query time. However, a conditional lower
bound gives evidence that the colored path counting query problem is much
harder: He and Kazi [12] showed how to multiply two

√
n×√

n boolean matrices
by answering n colored path counting queries over a tree of O(n) nodes. This
reduction means, with current knowledge, the total running time of answer-
ing n colored path counting queries, including preprocessing, cannot be faster
than nω/2, save for polylogarithmic speedups, where ω < 2.37286 denotes the
exponent of matrix multiplication [1]. Furthermore, since the best known com-
binatorial approach of multiplying two n × n Boolean matrices under the word
RAM model requires Θ(n3/polylog(n)) time [23], the total time of answering
n of these queries cannot be faster than n1.5, save for polylogarithmic speedups,
using pure combinatorial methods with current knowledge. He and Kazi designed
an O(n)-word structure with O(

√
n lg lgC) query time and O(n3/2 lg lgC) pre-

processing time under the word RAM model. More recently, Gao and He [10]
considered the batched version of this problem and showed how to answer n
queries, including preprocessing, in O(n1.40704) time.

To achieve faster queries, approximate colored path counting problems have
been studied. Two different ways of bounding approximate ratios have been
considered [12]: a c-approximate colored path counting query computes a number
in [occ, c · occ], while a (1 ± ε)-approximate query returns a number in [(1 −
ε)occ, (1 + ε)occ] for any ε ∈ (0, 1). In this paper, we study this problem and
aim at improving previous results under both approximate measures.

We also note that 1D colored range counting is sometimes called 1D colored
type-1 range counting in the literature [4,11], while 1D colored type-2 range
counting reports the number of occurrences of each distinct color in a query
range. We can also generalize the latter to consider tree topology by defining
colored type-2 path counting over a colored tree, which reports the number of
occurrences of each distinct color in a query path. The O(n)-word data structure
of Durocher et al. [7] can be used to answer a colored type-2 path counting query
in O(occ lg lg n) time. This is slower than the O(occ + 1)-time support for 1D
colored type-1 range counting over points in rank space [9,11]. Thus, another
goal is to close this gap.

Previous Work. By reducing colored path counting to path counting over
weighted trees [15] using the chaining approach [11], He and Kazi [12] designed a
linear space data structure that supports 2-approximate colored path counting in
O(lg n/ lg lgn) time. For (1±ε)-approximate colored path counting queries, they
showed a sketching data structure that occupies O(n+ n

ε2t lg n) words and answers
a query in O(ε−2t lg n) time2 with success probability no less than 1 − δ, where
t is an arbitrary integer in [1, n] and δ is an arbitrary constant in (0, 1). Setting
t = �ε−2 lg n� makes the space cost linear and the query time O(ε−4 lg2 n).
2 He and Kazi [12] originally stated their result for constant ε, but it is easy to gener-

alize their bounds when ε = o(1).

On Approximate Colored Path Counting 211

Similar approximate problems can also be defined for colored 1D range count-
ing and colored 2D orthogonal range counting which generalizes the former by
preprocessing colored points in 2D to efficiently compute the number of distinct
colors assigned to points in an axis-aligned query rectangle. The same condi-
tional lower bound for colored path counting also applies to the latter [17]. In 1D,
given n colored points in the rank space, El-Zein et al. [8] designed an encoding
data structure that uses O(n)-bits of space and supports c-approximate colored
counting for any constant c > 1 in O(1) time without accessing the given point
set. In higher dimensions, Rahul [21] showed that (1 ± ε)-approximate colored
range counting can be answered by combining a colored range reporting struc-
ture and a c-approximate colored range counting structure. With it, he designed
an O(n lg n)-word structure to support (1 ± ε)-approximate colored 2D range
counting in O(ε−2 lg n) time.

Regarding 1D colored type-2 range counting, Gupta et al. [11] designed an
O(n)-word structure with O(lg n+occ) query time, over a set of n colored points
on a real line. Ganguly et al. [9] stated that, by combining the approach of Gupta
et al. and some other results [18,22], the query time can be further improved
to O(1 + occ) if all points are in rank space. This query problem can also be
generalized to point sets on the plane, and we refer to [4,6] for recent work on
2D colored type-2 range counting. For colored trees, the linear word structures
designed by Durocher et al. [7] can answer a colored type-2 path counting query
in O(occ lg lg n) time. They did not state this result explicitly, but it is implied
by the algorithmic steps stated in the proof of Theorem 6 in their article.

Our Results. Under the word RAM model, we first design 2-approximate col-
ored path counting structures with i) O(n) words of space and O(lgλ n) query
time for any constant 0 < λ < 1, ii) O(n lg lgn) words of space and O(lg lg n)
query time and iii) O(n lgλ n) words of space and O(1) query time. In all three
cases, the preprocessing time is O(n lg n). Hence the first trade-off beats the
O(lg n/ lg lg n) query time of the linear-word 2-approximate structure of He and
Kazi [12]. We then design an O(n)-word (1±ε)-approximate colored path count-
ing structure with O(ε−2 lgn) deterministic query time and O(n2 lgC lg lgC)
expected preprocessing time. Compared to the sketching structure by He and
Kazi [12] with O(n)-word space and O(ε−4 lg2 n) query time, we not only achieve
improvement for query time but also guarantee that the query algorithm always
returns a (1 ± ε)-approximation, though the cost of preprocessing is higher. In
the new (1 ± ε)-approximate solution, our techniques also lead to a linear-word
data structure supporting colored type-2 path counting in O(occ) time. This
result improves the solution of Durocher et al. [7] which has O(occ lg lg n) query
time. See Table 1 for a comparison of our results to all previous results.

To achieve these results, we develop new techniques. For 2-approximate col-
ored path counting, note that no further improvement can be made using the
strategy of He and Kazi for this problem, due to the lower bound on (uncolored)
2D orthogonal range counting [20] (which is a special case of path counting over
weighted trees). Instead, we adopt the strategy of Gao and He [10] for batched

212 Y. Gao and M. He

Table 1. A summary of our results on approximate colored path counting and colored
type-2 path counting, in which space costs are measured in words, ε is an arbitrary
parameter in (0, 1), λ is an arbitrary constant in (0, 1), † marks an expected bound,
and ‡ marks a solution that returns a (1 ± ε)-approximation with probability no less
than 1 − δ for any constant δ ∈ (0, 1).

Space Query Preprocess Ref

2-approx O(n) O(lg n
lg lg n

) O(n lg n
lg lg n

) [12]
O(n) O(lgλ n) O(n lg n) Thm 1a)
O(n lg lg n) O(lg lg n) Thm 1b)
O(n lgλ n) O(1) Thm 1c)

(1 ± ε)-approx O(n + n lg n
ε2t

) O(ε−2t lg n) O(ε−2n lg n) [12]‡

O(n) O(ε−2 lg n) O(n2 lgC lg lgC)† Thm 2
Type-2 O(n) O(occ lg lg n) O(n lg n) [7]

O(occ) Lemma 6

colored path counting which applies centroid decomposition to decompose the
tree into a hierarchy of components. A query is answered by locating and query-
ing the component that satisfies these two conditions: This component contains
the entire query path, and its centroid is in the path. This means, within each
component, we need only support queries for the paths that pass through a fixed
node, e.g., the selected centroid, given during the construction. This strategy
however incurs O(n lg n) words of space cost in [10]. To address this, we design
a data structure of O(n) bits that answers 2-approximate queries in constant
time, provided that a query path must contain a fixed node. To speed up the
mapping of the endpoints of a query path to nodes in a specific component in a
space-efficient manner, we borrow ideas from the solutions to the ball inheritance
problem [5] and design data structures with different time-space trade-offs.

With regard to (1± ε)-approximate colored path counting queries, we adapt
the reduction by Rahul [21] and make it work for trees. When doing so, we design
a solution to colored type-2 path counting with optimal query time.

2 Preliminaries

This section introduces the notation and the previous results used in this paper.

Notation. Given an ordinal tree T , we use |T | to represent the number of nodes
in T and ⊥ to represent its root. Each node of T is assigned a color encoded
by an integer in {0, 1, · · · , C − 1}, where C ≤ n. We identify each node by its
preorder rank, i.e., node x is the x-th node in a preorder traversal (x starts from
0), and c(x) denotes the color of node x. Furthermore, Px,y denotes the path
between nodes x and y, and C(Px,y) denotes the set of colors that appear in it.

On Approximate Colored Path Counting 213

Navigation in Colored Ordinal Trees. To support navigational operations
over the input tree, we apply the succinct representations of ordinal trees [13]
and labeled trees [14]. The operations and their complexity are summarized in
Lemma 1. As in previous work, we refer to a node (resp. ancestor) colored in α
as an α-node (resp. α-ancestor).

Lemma 1 ([13,14]). Let T denote a labeled ordinal tree on n nodes, each of
which is assigned a color from {0, 1, . . . , C − 1}, where C ≤ n. A data structure
occupying n lgC+2n+o(n lgC) bits can be built over T in O(n) time3 to support:

– counting the number, depth(x), of ancestors of x in O(1) time,
– counting the number, depthα(x), of α-nodes in Px,⊥ in O(lg lgC) time,
– finding the lowest common ancestor, lca(x, y), of x and y in O(1) time,
– finding the parent node, parent(x), of non-root node x in O(1) time,
– finding x’s lowest proper α-ancestor, parentα(x), in O(lg lgC) time and
– finding x’s ancestor, level_anc(x, d), at depth depth(x) − d in O(1) time.

Given a query path Px,y in a tree and a color α, a colored path emptiness
query determines whether color α appears in Px,y. He and Kazi [12] showed how
to use depthα and lca to compute the number of appearances of α in Px,y in
O(lg lgC) time. Via counting the number of appearances of color α in Px,y, one
can figure out whether or not α appears in Px,y. Hence, Lemma 1 can support
colored path emptiness query in O(lg lgC) time.

Partial Rank. Let A[0..n − 1] be a sequence of symbols over alphabet
{0, 1, . . . , σ − 1}. The partial rank operation [2], rank′(A, i), counts the num-
ber of elements equal to A[i] in A[0..i].

Lemma 2 ([2]). Given a sequence A[0..n − 1] over alphabet {0, 1, . . . , σ − 1},
where σ ≤ n, a structure of O(n lg σ) bits can be constructed in O(n) time to
support rank′ in O(1) time.

Tree Extraction [15]. Given a subset, X, of nodes of an ordinal tree T , the
extracted tree, TX , can be constructed by deleting each node v /∈ X using
the following approach: If v is not the root, let u = parent(v). We remove v
and its incident edges from T and insert its children into the list of children
of u, replacing v in this list while preserving these children’s original left-to-
right order. This means that v’s left and right siblings before the deletion will
respectively become the left and right siblings of its children after the deletion.
If v is the root, then, before we apply the same procedure to delete v, we add a
dummy root to T and make it the parent of v, so that TX will remain a tree.

To map a path Px,y in T to a path in TX , we use the operation,
decompose(x, y), defined in [12]: If Px,y ∩ X = ∅, it returns null. Otherwise,
3 As mentioned by Gao and He [10], the string representation of Belazzougui et al. [2]

needs to be used in the framework of He et al. [14] to achieve O(n) deterministic
preprocessing time, at the cost of slowing down labeled operations from O(lg lg C

lg w
)

in [14] to O(lg lgC) in this lemma.

214 Y. Gao and M. He

let x̂ and ŷ denote the nodes in Px,y ∩X that are closest to x and y, respectively
(this can be the node x or y itself if it is in X). Then decompose(x, y) returns
the nodes x′ and y′ in TX that correspond to (i.e., whose original copies are)
nodes x̂ and ŷ in T , respectively.

Lemma 3 ([12, Proposition 9]). Given a tree T on n nodes and a tree extrac-
tion TX , an O(n)-bit structure on top of T and TX can be constructed in O(n)
time to support decompose in O(1) time.

3 2-Approximate Colored Path Counting

For 2-approximate colored path counting, we first consider a special case in which
query paths must contain a fixed tree node specified in the preprocessing step
(Sect. 3.1). Then we generalize it for arbitrary paths (Sects. 3.2 and 3.3).

3.1 Counting over a Path that Contains a Fixed Node

Fix a node v of T , and we design an O(n)-bit encoding data structure that
supports 2-approximate colored path counting over any query path containing
v. To answer a query, our encoding data structure does not need to access T
after preprocessing, provided that the preorder ranks of the endpoints of the
query path are known.

Lemma 4. Let T be a colored tree on n nodes and fix any node v in T . A data
structure of O(n) bits can be constructed in O(n) time to support 2-approximate
colored path counting over any query path containing v in O(1) time.

Proof. We associate a binary label B(u) to each node u of T as follows: If u = v,
then B(u) = 1. Otherwise, locate the node, t, in Pu,v that is adjacent to u. If
color c(u) appears in Pt,v, then set B(u) = 0. If not, set B(u) = 1. We discard
the original colors of T , treat these labels as node colors and represent T with
these labels using Lemma 1. Since there are only two possible labels, this uses
3n + o(n) bits.

Let Px,y be a query path containing v. Consider the nodes in the subpath
Px,v one by one in the direction from v to x. Observe that, each time we see
a node labeled by 1, we encounter a color that has not been seen previously.
Therefore, the number of 1-bits assigned to nodes in Px,v is equal to |C(Px,v)|.
Similarly, the number of 1-bits assigned to nodes in Py,v is equal to |C(Py,v)|.
Therefore, the number of 1-bits assigned to nodes in Px,y is a 2-approximation of
the precise answer. Following the discussion after Lemma 1, this number can be
computed in O(lg lgC) = O(1) time using operations lca and depth1, as C = 2.

To prove the bound on construction time, it suffices to show that these binary
labels can be assigned in O(n) time. This can be done by performing a depth-first
traversal of T using v as the starting node. During this traversal, we also update
an array A[0..C − 1], and the invariant that we maintain is that, each time we
visit a node u, A[i] stores the number of nodes in Pv,u that are assigned color i

On Approximate Colored Path Counting 215

in the original tree T . The following are the steps: We start the traversal from
vertex v, set A[c(v)] = 1 and initialize all other entries of A to 0. During the
traversal, each time we follow an edge (x, y) with x ∈ Pv,y, there are two cases.
In the first case, we follow this edge to visit node y. Then this is the first time
we visit y. We check if A[c[y]] = 0. If it is, then the color of y does not appear
in Pv,x, so we set B(y) = 1. Afterwards, we increment A[c[y]] to maintain the
invariant. Otherwise, we set B(y) = 0 and also increment A[c[y]]. In the second
case, we follow this edge to visit x. Since x is closer to v than y is, we have
visited x before and we will not traverse any paths containing y in the future.
In this case, we decrement A[c[y]] to maintain the invariant.
�

3.2 Counting over Arbitrary Paths

To support 2-approximate colored path counting queries over arbitrary paths,
we transform the given ordinal tree T on n colored nodes into a binary tree T̃ .
Our transformation, similar to that used by Chan et al. [3], works as follows:
For each node v with degree d, where d > 2, we remove the edges between v
and its children, v1, v2, . . . , vd, to detach the subtrees rooted at these children
from T . For the convenience of the description, let v0 denote the node v. We
then create d − 2 dummy nodes, ṽ1, ṽ2, . . . , ṽd−2, each assigned the color of v0.
Next we add edges to reconnect v0 and its d children with the newly created
dummy nodes as follows: For t = 1, 2, . . . , d − 2, make vt and ṽt the left and
right children of vt−1, respectively. Afterwards, make vd−1 and vd the left and
right children of ṽd−2, respectively. The resulting tree is T̃ which has at most 2n
nodes. This transformation preserves preorder among the original nodes of T .
More importantly, any path Px,y in T and its corresponding path, P̃ , in T̃ share
the same set of colors. To see this, observe that the lowest common ancestor, z,
of nodes x and y in T is the only original node that appears in Px,y but may
not necessarily appear in P̃ . If z does not appear in P̃ , then P̃ must contain
a dummy node created for z which is also colored in c(z). On the other hand,
any original node in P̃ must also be in Px,y in T , while any dummy node that
appears in P̃ must satisfy the condition that the original node it is created for
must be in Px,y in T .

After this transformation, for each node in T , we store the preorder rank of
its corresponding node in T̃ . Then we follow the strategy in [10] to decompose T̃
recursively using centroid decomposition [16], but different data structures will
be constructed this time. Here a centroid of an m-node tree is a node whose
removal splits the tree into connected components, each containing at most m/2
nodes. It is known that a centroid can be found in O(m) time.

We now give the details of the recursion. At level 0 of the recursion, we
call tree T̃ the level-0 component. We find a centroid, u, of T̃ and construct
the data structure in Lemma 4 supporting 2-approximate queries over paths
containing u. Since T̃ is a binary tree, after removing u, we are left with at most
three connected components, and we add u back into the smallest component.
In this way, tree T̃ is partitioned into at most three pairwise-disjoint connected

216 Y. Gao and M. He

components in the level-0 recursion, each of which is a tree on no more than |T̃ |/2
nodes. We call each of these three components a level-1 component and build
the data structure recursively upon each of them. In general, at level i of the
recursion, we compute a centroid, v, of each level-i component γ. We then use
Lemma 4 to construct a data structure D(γ) supporting 2-approximate colored
path counting over paths that are entirely contained within γ and also contain
v. This component can be partitioned into up to three level-(i + 1) components
using the approach described above. We call component γ the parent of these
up to three level-(i + 1) components, and each of these up to three level-(i + 1)
components is a child of γ. A component that has a single node is called a base
component and is not partitioned further. Hence, the recursion has O(lg n) levels.

Suppose that query path Px,y is contained entirely within a level-t component
γ but not in any level-(t + 1) components. This means that Px,y contains the
centroid of γ. Therefore, we can find a 2-approximate of |C(Px,y)| using the data
structure D(γ), provided that the preorder ranks of x and y in γ are known. To
locate component γ and then to compute the preorder rank of x and y in it, we
define a component tree CT . A component tree is a 3-ary tree in which each node
represents a component and the edges represent the parent-child relationship
between components. More specifically, a node v at level l of CT represents a
level-l component Cv, where l starts from 0. A node v of CT is the parent of
another node u iff component Cv is the parent of component Cu. Among the
nodes that share the same parent in CT , the relative order between them does
not matter, so we order them arbitrarily. The height of CT is bounded by O(lg n),
and each leaf in it represents a base component. Since each internal node has at
least two children, CT has O(n) nodes in total.

At each internal node v of CT , we build an array SP(v) of length |Cv|, in which
SP(v)[i] is set to be d if the i-th node (in preorder) in Cv is stored in the d-th
child component of v in the next level. Then we represent SP(v) using Lemma 2
to support rank′. Since v can have at most 3 children, the alphabet size of SP(v)
is constant. Therefore, SP(v) is represented in O(|SP(v)|) bits. With these data
structures, we can support queries over arbitrary paths and achieve Lemma 5.

Lemma 5. Let T be an ordinal tree on n nodes in which each node is assigned
a color. A data structure of O(n) words can be constructed in O(n lg n) time to
support 2-approximate colored path counting over T in O(lg n) time.

Proof. Given a node i ∈ T̃ , let π denote the path from the root of CT to the leaf
of CT representing the base component that contains i, and let πl denote the
node in π whose depth is l. First, we show how to locate πl and to compute the
preorder rank of i in component Cπl

for l = 0, 1, 2, The procedure proceeds
as follows: We start at the root π0 of CT . The preorder rank of i in Cπ0 is i,
and π1 is the SP(π0)[i]-th child of π0, following the definition of array SP(π0).
In general, given that the preorder rank of i in Cπl

is j, one can find node πl+1,
which is the SP(πl)[j]-th child of πl. Since tree extraction preserves preorder,
the preorder rank of i in Cπl+1 is rank′(SP(πl), j) − 1. Each rank′ query takes
constant time, so this procedure uses constant time per level of CT .

On Approximate Colored Path Counting 217

Since each node of T stores the preorder rank of its corresponding node in T̃ ,
to answer a query, it is sufficient to compute a 2-approximation of |C(Px,y)| for
a query path Px,y in T̃ . This can be done by performing the top-down traversals
of CT described in the previous paragraph for x and for y simultaneously until
we reach the lowest level, l, of CT such that x and y are contained in the same
level-l component γ. This process also gives us the preorder ranks of x and y in
γ, which allows us to query D(γ) to find a 2-approximate answer. Since CT has
O(lg n) levels, the query algorithm uses O(lg n) time.

To analyze the space cost, observe that the total number of nodes in the
components at the same level is at most the number of nodes of T̃ , which is 2n.
The component tree contains O(lg n) levels, and all D(γ)’s and SP(v)’s at the
same level use O(n) bits, for a total of O(n lg n) bits, or O(n) words. The O(n)-
node component tree CT itself occupies another O(n) words of space. Therefore,
the total space cost is O(n) words. The data structure at each level can be
constructed in linear time, so the overall construction time is O(n lg n).
�

3.3 Speeding Up the Query

To further improve the query efficiency in Lemma 5, observe that two procedures
introduced before require O(lg n) time for a query Px,y in T̃ : The first locates
the lowest component γ in CT that contains both nodes x and y, and the second
computes the preorder ranks of x and y in γ. Previously, both procedures proceed
in the same top-down traversal of CT . Now, we perform them separately. For
the first procedure, observe that the node representing component γ in CT must
be the lowest common ancestor of the two leaves of CT representing the base
components that contain nodes x and y, respectively. To locate γ in constant
time, we can represent CT using Lemma 1 to support lca in O(1) time and store
with each node x of T̃ a pointer to the base component that contains x. This
incurs O(n) words of space and O(n) preprocessing time. To improve the second
procedure, we model it by defining an operation, locate(v, x); given a node v of
CT and a tree node x of T̃ that appears in component Cv, locate(v, x) returns
the preorder rank of node x in Cv.

To support locate(v, x), we borrow ideas from the solution to the ball inher-
itance problem [5] and achieve various trade-offs. Let π denote the path between
the root of CT and the leaf representing the base component that contains x, and
let πl denote the node in π whose depth is l. Then each component Cπl

contains
a copy of node x. Array SP’s in Sect. 3.2 work as pointers between these copies
in components at consecutive levels. The algorithm in the proof of Lemma 5
follows these pointers one by one till we locate x in Cv, which requires O(lg n)
time. To speed it up, we construct skipping pointers which allow us to jump over
many levels at one time: Suppose that we have computed the preorder rank, i,
of node x in component Cπl

, and we need to locate x in Cπl+Δ
for some positive

integer Δ. What we can do is to build an array SPΔ(πl) with length |Cπl
|, in

which SPΔ(πl)[k] is set to d if the k-th node in preorder in Cπl
appears in the

component represented by the d-th descendant of πl at depth l + Δ of CT . If
this node is not stored in any level-(l + Δ) descendant component of πl (this

218 Y. Gao and M. He

Fig. 1. An example of the first traversal strategy. In this example, the component tree
CT has 16 levels, and B = 4. The arrows represent the skipping pointer. By following
6 skipping pointers, one can reach level-15 from the root level.

may happen when CT is not a complete tree), then SPΔ(πl)[k] = −1. Since πl

has up to 3Δ descendants at level l +Δ, we can represent SPΔ(πl) in O(|Cπl
|Δ)

bits by Lemma 2 to support rank′. Then rank′(SPΔ(πl), i) − 1 is the preorder
rank of node x in Cπl+Δ

and can be computed in O(1) time. We regard SPΔ(πl)
as an array of skipping pointers that connect the nodes in component Cπl

to the
nodes in level-(l + Δ) descendant components of πl.

If an array of skipping pointers map nodes in a level-l component to nodes in
level-(l+Δ) descendants of this component, then we say that the length of each of
these skipping pointers is Δ. Furthermore, based on previous discussions, storing
a skipping pointer of length Δ incurs a space cost of O(Δ) bits. To achieve good
time/space trade-offs, we design two strategies to decide what skipping pointers
to construct for each level. Henceforth, let h = O(lg n) denote the height of CT .
Let B ∈ [2, h] be an integer parameter to be chosen later, and let τ = logB h;
for simplicity, assume that τ is an integer.

In the first strategy, consider level l of the component tree CT . For each
integer i ∈ [0, τ −1] such that l is a multiple of Bi but l+Bi is not a multiple of
Bi+1, we build an array of length Bi skipping pointers for each level-l component.
See Fig. 1 for an example. Since at most h

Bi levels of CT have skipping pointers
of length Bi, the total space cost of all the skipping pointers in this strategy is∑τ−1

i=0 (
h

Bi) · O(nBi) = O(n lg n logB lg n) bits, which is O(n logB lg n) words.
To use these skipping pointers to compute locate(v, x), let bτ−1bτ−2 · · · b0

denote the base-B expression of the depth4, lv, of node v in CT . That is, each bi

is in [0, B−1] and lv =
∑τ−1

i=0 biB
i. We then compute locate(v, x) in τ phases. In

phase-1, we start from the root of CT and follow length Bτ−1 skipping pointers
bτ−1 times. Each time after we follow a skipping pointer to reach a level of CT ,
we use level_anc to locate the ancestor, u, of v at that level. We then follow
the skipping pointers in SPBτ−1(u) to continue this phase. At the end of phase-
1, we have located the ancestor of v at level bτ−1B

τ−1 of CT and computed
the preorder rank of node x in the component that this ancestor represents. In
phase-2, we start from this ancestor and follow length Bτ−2 skipping pointers
bτ−2 times, and so on. In general, in phase-p, we follow length Bτ−p skipping
pointers bτ−p times, reach the ancestor of v at level

∑p
j=1 bτ−pB

τ−p of CT and
compute the preorder rank of node x in the component represented by this
ancestor. Thus, we reach v and compute the answer after τ phases. Since we

4 Note that a component tree has O(lg n) depths and the base-B expression of any
depth can be encoded in O(logB × logB lg n) = O(lg n) bits. Storing the base-B
expressions of all O(lg n) depths uses O(lg n) words of space overall.

On Approximate Colored Path Counting 219

follow at most B − 1 skipping pointers in each phase, the total running time is
O(Bτ) = O(B logB lg n). Setting B = lgλ n for an arbitrary constant λ ∈ (0, 1)
yields a solution with O(n) space and O(lgλ n)-time support for locate.

The second strategy improves the running time of the above process by con-
structing a different set of skipping pointers so that each phase can be completed
by following exactly one skipping pointer. Let l be an arbitrary level of CT . For
each integer i ∈ [0, τ − 1] such that l is a multiple of Bi, we construct for level-l
clusters of skipping pointers of length Bi−1, 2Bi−1, . . . , (B −1)Bi−1. With these
skipping pointers, in phase-p, for each p ∈ [τ], of the above process, we only need
one hop by following a skipping pointer of length bτ−pB

τ−p, decreasing the total
query time to O(τ) = O(logB lg n). The total space cost of these skipping point-
ers is then at most

∑τ−1
i=0

h
Bi · (B − 1)O(nBi) = O(nB lg n logB lg n) bits, which

is O(nB logB lg n) words. Setting B = 2 bounds the space cost by O(n lg lg n)
and query time by O(lg lg n), while setting B = lgλ n bounds the space cost by
O(n lgλ n) and query time by O(λ−1) = O(1) for any constant 0 < λ < 1.

With these three trade-offs for locate, we have the following theorem:

Theorem 1. Let T be an ordinal tree on n nodes in which each node is assigned
a color. A data structure of s(n) words can be constructed in O(n lg n) time
to support 2-approximate colored path counting over T in q(n) time, where a)
s(n) = O(n) and q(n) = O(lgλ n); b) s(n) = O(n lg lg n) and q(n) = O(lg lg n);
or c) s(n) = O(n lgλ n) and q(n) = O(1) for any constant 0 < λ < 1.

4 (1 ± ε)-Approximate Colored Path Counting

We first present in Sect. 4.1 a data structure for optimal colored type-2 path
counting, which implies the support for colored path reporting. This data struc-
ture is further used in our solution to (1 ± ε)-approximate colored path count-
ing. In Sect. 4.2, we perform random sampling of node colors and construct
an extracted tree accordingly. We also determine a condition under which this
extracted tree can be used to compute a (1 ± ε)-approximate answer with high
probability. Then, in Sect. 4.3, we show how to combine the techniques in the
previous two subsections to design a solution for the case in which the number
of distinct colors in a query path is in [κ/2, 2κ], where κ is an integer parameter
specified in the preprocessing stage. Finally, in Sect. 4.4, we construct a set of
data structures from Sect. 4.3, each for a different parameter κ. We then use 2-
approximate colored path counting to determine a range that the exact answer
to the query must be in, so that we can use an appropriate building block to
compute a (1 ± ε)-approximate answer.

4.1 A New Solution to Colored Type-2 Path Counting

Let Px,x′ denote a query path such that x′ is an ancestor of x. Consider colored
type-2 path counting for Px,x′ . Our strategy can be described as follows: For
each color c ∈ C(Px,x′), we locate the lowest node, �c, in Px,x′ whose color is

220 Y. Gao and M. He

c, as well as the highest node, hc, in Px,x′ colored in c. Then the frequency of
color c in Px,x′ is depthc(�c) − depthc(hc) + 1. If we precompute the value of
depthc(v)(v) for each node v, then, after locating �c and hc, we can compute the
frequency of color c in Px,x′ immediately. The details of finding hc’s and �c’s and
extending this method to general query paths are deferred to the full version of
this paper. The result is summarized as Lemma 6.

Lemma 6. Let T be an ordinal tree on n nodes with each node assigned a color
from {0, 1, . . . , C − 1}, where C ≤ n. An O(n)-word data structure can be con-
structed over T in O(n lg n) time to support colored type-2 path counting in
O(occ) time, where occ denotes the number of distinct colors in a query path.

4.2 Random Sampling

We now perform random sampling of node colors and apply tree extraction
accordingly. Set θ = 6(c1+3) lg n

ε2 lg e , where e denotes Euler’s number and c1 ≥ 1
is an arbitrary positive constant. Let κ ∈ (θ, n] be an integer parameter to be
chosen later, and define M = θ/κ. We create a random color set C ′ by choosing
each color that appears in T independently at random with probability M. Then
we construct a tree extraction T ′ from T by removing nodes whose colors are not
in C ′ using the approach described in Sect. 2. All the nodes in T ′ are assigned
their original color in T except for the dummy root; if a dummy root is added, it
is uncolored. For each color c ∈ {0, · · · , C − 1}, let Xc denote a random variable
indicating whether color c is sampled: Xc is set to 1 if c has been sampled and
0 otherwise. Thus, Pr[Xc = 1] = M. Furthermore, for an arbitrary path Px,y

in T , we define a random variable Xx,y =
∑

c∈C(Px,y)
Xc. Lemma 7 states the

conditions under which Xx,y/M is a (1± ε)-approximation of |C(Px,y)| with high
probability; the proof is deferred to the full version of this paper.

Lemma 7. Consider an arbitrary path Px,y in T . If occ ≥ κ/2, where occ

denotes |C(Px,y)|, then Pr[(1 − ε)occ ≤ Xx,y

M
≤ (1 + ε)occ] > 1 − 2

nc1+3 .

4.3 Approximate Colored Path Counting over Canonical Paths

To use Lemma 7 and also due to other considerations, we call a path in T
canonical if the number of colors that appear in the path is in [κ/2, 2κ], for an
integer �θ� ≤ κ ≤ C/2 to be decided later. We first solve the (1±ε)-approximate
problem for canonical paths:

Lemma 8. Let T be an ordinal tree on n nodes represented by Lemma 1. With
success probability more than 1 − 1

nc1+1 , one can construct a data structure in
O(n lg n) worst-case time to answer (1 ± ε)-approximate colored path counting
queries over canonical paths in O(1

ε2 lg n) worst-case time. The space cost is
O(n ·M+n/ lg n) words in the expected case (and O(n) words in the worst case).

On Approximate Colored Path Counting 221

Proof. First, we present the data structures. As described in Sect. 4.2, we choose
a random color set and construct a tree extraction T ′ consisting of nodes whose
colors are sampled. Tree T ′ has O(n · M) expected number of nodes but O(n)
nodes in the worst case. We represent T ′ by Lemma 1 in O(|T ′| lgC) bits to
support fast navigation. We also construct the data structure of Lemma 3 over
T and T ′ to support decompose in constant time. The data structure uses O(n)
bits which is O(n/ lg n) words. Finally, we construct in O(n lg n) time in the
worst case the linear space data structure for colored path reporting queries
over T ′ by applying Lemma 6. The overall space cost is O(n · M+ n/ lg n) words
in the expected case, and O(n) words in the worst case. The construction time
is bounded by O(n lg n).

To describe the query algorithm, let Px,y be a canonical query path. Since
|C(Px,y)| ≥ κ/2, Xx,y/M is a (1 ± ε)-approximate of |C(Px,y)| with probability
greater than 1 − 2

nc1+3 by Lemma 7. Since M is given in preprocessing, we need
only compute Xx,y. Let x′ and y′ be the nodes of T ′ returned by decompose(x, y)
in O(1) time. If x′ and y′ are null, no color in Px,y has been sampled, so we set
Xx,y to be 0. Otherwise, Xx,y is either |C(Px′,y′)| or |C(Px′,y′)| − 1, and we can
determine which case it is by performing these steps: If the color of z = lca(x, y)
in T is sampled, then its corresponding node, z′, in T ′ belongs to Px′,y′ . In this
case, there is a one-to-one correspondence between the nodes in Px′,y′ and the
nodes in Px,y whose colors are sampled, so Xx,y = |C(Px′,y′)|. If the color of
z is not sampled, then the node z′′ = lca(x′, y′) in T ′ does not correspond
to z, but all other nodes in Px′,y′ correspond to nodes with sampled colors in
the query path. Then there are two sub-cases to be considered, depending on
whether the color of z′′ also happens to appear in Px′,y′ \ {z′′}. If it does, then
we have Xx,y = |C(Px′,y′)|, and otherwise, Xx,y = |C(Px′,y′)| − 1. Navigational
operations such as lca can be performed over T and T ′ in constant time, and
whether c(z′′) appears in Px′,y′ \ {z′′} can be tested by two path emptiness
queries in O(lg lgC) time. Therefore, if we know the value of |C(Px′,y′)|, we can
compute Xx,y in O(lg lgC) extra time.

It remains to show how to compute |C(Px′,y′)|. To do it, observe that if Xx,y/M
is a (1±ε)-approximation, then Xx,y ≤ (1+ε) ·M · |C(Px,y)| ≤ (1+ε) ·M ·2κ. Since
Xx,y is at least |C(Px′,y′)|−1, we have |C(Px′,y′)| ≤ (1+ ε) ·M ·2κ+1. With this,
we can apply Lemma 6 to report the distinct colors in C(P ′

x′,y′), and instead of
reporting all these colors, we stop when the number of reported colors reaches
(1+ ε) ·M ·2κ+2. If this happens, we terminate our query algorithm with failure.
Otherwise, the number of colors reported is |C(Px′,y′)|. Since (1+ ε) ·M ·2κ+2 =
O(ε−2 lgn), this process uses O(ε−2 lg n) time.

By Lemma 7, for an arbitrary query path, our data structure fails to return a
(1±ε)-approximation with probability Pr[|X

M
−occ| > ε·occ] < 2

nc1+3 . Since there
are

(
n
2

)
different query paths, the probability of constructing a data structure

that answers all queries correctly is more than 1 −
(
n
2

)
· 2

nc1+3 > 1 − 1
nc1+1 .
�

Next, we keep resampling colors and building the structure of Lemma 8 for
the sample, until we find a data structure that occupies O(n · M+ n

lg n) words in
the worst case and can always return (1±ε)-approximations for canonical paths.

222 Y. Gao and M. He

This process requires O(n2 lg lgC) expected preprocessing time (the analysis is
deferred to the full version of this paper). Therefore, we achieve:

Lemma 9. Let T be an ordinal tree on n nodes represented by Lemma 1. A
data structure occupying O(n · M+ n/ lg n) extra words in the worst case can be
constructed in O(n2 lg lgC) expected time to support (1± ε)-approximate colored
path counting over canonical paths in O(ε−2 lg n) worst-case time.

4.4 Approximate Colored Path Counting over Arbitrary Paths

To solve queries over arbitrary paths, we first represent T by Lemma 1 to support
navigational operations. We also construct the data structures of part a) of
Theorem 1 to support 2-approximate colored path counting over T . In addition,
we build the data structures of Lemma 6 to support colored path reporting.
These data structures use O(n) words and can be built in O(n lg n) time.

Then, for each i ∈ [�lg θ�, �lgC�), let κi be 2i. We refer to a query path as
a tier-i canonical path if the number of distinct colors that appear in it is in
[κi/2, 2κi]. For each possible value of i, we apply Lemma 9 to construct a data
structure DSi to support (1 ± ε)-approximate colored path counting over tier-i
canonical paths. Data structure DSi uses O(nθ/κi+n/ lg n) = O(nθ/2i+n/ lg n)
words in the worst case and can be constructed in O(n2 lg lgC) expected time.
Summing up over all i ∈ [�lg θ�, �lgC�), the overall space cost of these data
structures is O(n) words in the worst case, and they can be constructed in
O(n2 lgC lg lgC) expected time. Theorem 2 summarizes our final result.

Theorem 2. Let T be an ordinal tree on n nodes with each node assigned a
color from {0, 1, . . . , C − 1}, where C ≤ n. A data structure of O(n) words of
space in the worst case can be constructed in O(n2 lgC lg lgC) expected time to
support (1±ε)-approximate colored path counting in O(ε−2 lg n) worst-case time.

Proof. It remains to show the query algorithm. Let Px,y denote the query path.
We first use the colored path reporting structure to report up to θ distinct colors
in C(Px,y). If less than θ colors are reported, then we return the exact number of
colors, taking O(ε−2 lg n) time. Otherwise, occ > θ. In this case, we compute a
2-approximate result, occa, in O(lgλ n) time. Then, occ ≤ occa ≤ 2occ. Observe
that, for any i ∈ [�lg θ�, �lgC�), if κi ≤ occa ≤ 2κi, then κi/2 ≤ occ ≤ 2κi.
This allows us to perform a binary search in O(lg lg n) time to find the value of
i such that Px,y is a tier-i canonical path. Finally, by querying DSi, we can find
a (1 ± ε)-approximation of occ in O(ε−2 lgn) worst-case time.
�

References

1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication.
In: 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (2021). https://
doi.org/10.1137/1.9781611976465.32

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976465.32

On Approximate Colored Path Counting 223

2. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Linear-time string index-
ing and analysis in small space. ACM Trans. Algorithms (2020). https://doi.org/
10.1145/3381417

3. Chan, T.M., He, M., Munro, J.I., Zhou, G.: Succinct indices for path minimum,
with applications. Algorithmica (2016). https://doi.org/10.1007/s00453-016-0170-
7

4. Chan, T.M., He, Q., Nekrich, Y.: Further results on colored range searching. In:
36th Annual Symposium on Computational Geometry (2020). https://doi.org/10.
4230/LIPICS.SOCG.2020.28

5. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the
RAM, revisited. In: 27th Annual Symposium on Computational Geometry (2011).
https://doi.org/10.1145/1998196.1998198

6. Chan, T.M., Nekrich, Y.: Better data structures for colored orthogonal range
reporting. In: 31st Annual ACM-SIAM Symposium on Discrete Algorithms (2020).
https://doi.org/10.1137/1.9781611975994.38

7. Durocher, S., Shah, R., Skala, M., Thankachan, S.V.: Linear-space data structures
for range frequency queries on arrays and trees. Algorithmica (2016). https://doi.
org/10.1007/s00453-014-9947-8

8. El-Zein, H., Munro, J.I., Nekrich, Y.: Succinct color searching in one dimension. In:
28th International Symposium on Algorithms and Computation (2017). https://
doi.org/10.4230/LIPICS.ISAAC.2017.30

9. Ganguly, A., Munro, J.I., Nekrich, Y., Shah, R., Thankachan, S.V.: Categorical
range reporting with frequencies. In: 22nd International Conference on Database
Theory (2019). https://doi.org/10.4230/LIPICS.ICDT.2019.9

10. Gao, Y., He, M.: Faster path queries in colored trees via sparse matrix multiplica-
tion and min-plus product. In: 30th Annual European Symposium on Algorithms
(2022). https://doi.org/10.4230/LIPICS.ESA.2022.59

11. Gupta, P., Janardan, R., Smid, M.: Further results on generalized intersection
searching problems: counting, reporting, and dynamization. J. Algorithms (1995).
https://doi.org/10.1006/jagm.1995.1038

12. He, M., Kazi, S.: Data structures for categorical path counting queries. Theoret.
Comput. Sci. (2022). https://doi.org/10.1016/j.tcs.2022.10.011

13. He, M., Munro, J.I., Rao, S.S.: Succinct ordinal trees based on tree covering. ACM
Trans. Algorithms (2007). https://doi.org/10.1007/978-3-540-73420-8-45

14. He, M., Munro, J.I., Zhou, G.: A framework for succinct labeled ordinal trees over
large alphabets. Algorithmica (2014). https://doi.org/10.1145/2344422.2344432

15. He, M., Munro, J.I., Zhou, G.: Data structures for path queries. ACM Trans.
Algorithms (2016). https://doi.org/10.1145/2905368

16. Jordan, C.: Sur les assemblages de lignes. Journal für die reine und angewandte
Mathematik (Crelles Journal) (1869). https://doi.org/10.1515/crll.1869.70.185

17. Kaplan, H., Rubin, N., Sharir, M., Verbin, E.: Efficient colored orthogonal range
counting. SIAM J. Comput. (2008). https://doi.org/10.1137/070684483

18. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (2002). https://doi.org/
10.5555/545381.545469

19. Nekrich, Y.: Efficient range searching for categorical and plain data. ACM Trans.
Database Syst. (2014). https://doi.org/10.1145/2543924

20. Pătraşcu, M.: Lower bounds for 2-Dimensional range counting. In: 39th Annual
ACM Symposium on Theory of Computing (2007). https://doi.org/10.1145/
1250790.1250797

https://doi.org/10.1145/3381417
https://doi.org/10.1145/3381417
https://doi.org/10.1007/s00453-016-0170-7
https://doi.org/10.1007/s00453-016-0170-7
https://doi.org/10.4230/LIPICS.SOCG.2020.28
https://doi.org/10.4230/LIPICS.SOCG.2020.28
https://doi.org/10.1145/1998196.1998198
https://doi.org/10.1137/1.9781611975994.38
https://doi.org/10.1007/s00453-014-9947-8
https://doi.org/10.1007/s00453-014-9947-8
https://doi.org/10.4230/LIPICS.ISAAC.2017.30
https://doi.org/10.4230/LIPICS.ISAAC.2017.30
https://doi.org/10.4230/LIPICS.ICDT.2019.9
https://doi.org/10.4230/LIPICS.ESA.2022.59
https://doi.org/10.1006/jagm.1995.1038
https://doi.org/10.1016/j.tcs.2022.10.011
https://doi.org/10.1007/978-3-540-73420-8-45
https://doi.org/10.1145/2344422.2344432
https://doi.org/10.1145/2905368
https://doi.org/10.1515/crll.1869.70.185
https://doi.org/10.1137/070684483
https://doi.org/10.5555/545381.545469
https://doi.org/10.5555/545381.545469
https://doi.org/10.1145/2543924
https://doi.org/10.1145/1250790.1250797
https://doi.org/10.1145/1250790.1250797

224 Y. Gao and M. He

21. Rahul, S.: Approximate range counting revisited. J. Comput. Geom. (2021).
https://doi.org/10.20382/JOCG.V12I1A3

22. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms (2007). https://doi.org/10.1016/j.jda.2006.03.011

23. Yu, H.: An improved combinatorial algorithm for Boolean matrix multiplication.
Inf. Comput. (2018). https://doi.org/10.1016/j.ic.2018.02.006

https://doi.org/10.20382/JOCG.V12I1A3
https://doi.org/10.1016/j.jda.2006.03.011
https://doi.org/10.1016/j.ic.2018.02.006

Quick-Sort Style Approximation
Algorithms for Generalizations

of Feedback Vertex Set in Tournaments

Sushmita Gupta1, Sounak Modak1(B), Saket Saurabh1,2,
and Sanjay Seetharaman1

1 The Institute of Mathematical Sciences, Chennai, India
{sushmitagupta,sounakm,saket,sanjays}@imsc.res.in

2 University of Bergen, Bergen, Norway

Abstract. A feedback vertex set (FVS) in a digraph is a subset of ver-
tices whose removal makes the digraph acyclic. In other words, it hits
all cycles in the digraph. Lokshtanov et al. [TALG ‘21] gave a factor
2 randomized approximation algorithm for finding a minimum weight
FVS in tournaments. We generalize the result by presenting a factor
2α randomized approximation algorithm for finding a minimum weight
FVS in digraphs of independence number α; a generalization of tourna-
ments which are digraphs with independence number 1. Using the same
framework, we present a factor 2 randomized approximation algorithm
for finding a minimum weight Subset FVS in tournaments: given a vertex
subset S in addition to the graph, find a subset of vertices that hits all
cycles containing at least one vertex in S. Note that FVS in tournaments
is a special case of Subset FVS in tournaments in which S = V (T).

1 Introduction

Quicksort is a randomized divide-and-conquer algorithm for sorting a list of
numbers. In this we randomly pick a pivot, partition the rest of the list into two
parts, and recursively solve the two parts. The choice of pivot determines the
size of the subproblems and consequently the overall running time. This forms a
central idea in the polynomial time factor 2 randomized approximation algorithm
for finding a minimum weight feedback vertex set in tournaments, given by
Lokshtanov et al. [7]. In this paper one of our goals is to find further problems
for which this approach can be applied in designing approximation algorithms.
Without further ado we formally define the problem studied by Lokshtanov et
al. [7], which we generalize in this article.

A tournament T = (V,E) is a digraph in which there is exactly one arc
between each pair of vertices (an orientation of a clique). A feedback vertex set
is a subset of vertices whose removal makes the digraph acyclic. In the Feedback
Vertex Set in Tournaments (FVST) problem, we are given a tournament
T and a weight function w : V (G) → N≥0. The goal is to find a minimum weight
subset of vertices whose removal makes the digraph acyclic. It is a folklore that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 225–240, 2024.
https://doi.org/10.1007/978-3-031-55598-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_15&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_15

226 S. Gupta et al.

a tournament is acyclic if and only if it has no triangles (directed cycles of
length 3). This together with the local ratio technique [1] gives a simple factor
3 approximation algorithm for FVST. Cai et al. [2] gave the first improvement
over this algorithm and designed a 2.5-approximation algorithm based on the
total dual integral system combined with the local ratio technique. Years later,
Mnich et al. [8] gave a 7/3 approximation algorithm using the iterative round-
ing technique. Finally in 2020, Lokshtanov et al. [7] gave a “quicksort style”
randomized 2-approximation algorithm. It is optimal (i.e. there is no polyno-
mial time approximation algorithm with a better factor) assuming the Unique
Games Conjecture [5].

In this paper we apply this methodology to two generalizations of FVST.

1. Beyond Tournaments. The independence number of a digraph is the size
of a largest independent set in it. In [4], Fradkin and Seymour introduced
the class of digraphs of bounded independence number as a generalization
of tournaments (which are digraphs with independence number 1). Problems
studied in such digraphs include k-Edge Disjoint Paths [4], Edge Odd

Cycle Transversal, and Feedback Arc Set [6]. In the Directed FVS

in graphs with Bounded Independence Number (DFVS-bIN) problem,
we are given a digraph G with independence number α, called α-bounded
digraph, and a weight function w : V (G) → N≥0. We are interested in finding
a minimum weight feedback vertex set in G.

2. Subset Version of FVST. A feedback vertex set is equivalently defined as a
subset of vertices that hits all cycles in a digraph. In the Subset Feedback

Vertex Set in Tournaments (S-FVST) problem, we are given as subset of
vertices S (often called as terminal set) as input, in addition to a tournament
T and a weight function w : V (T) → N≥0. We are interested in finding a
minimum weight subset of vertices that hits all cycles that contain a vertex
in S. Note that FVST is a special case of S-FVST in which S = V (T).

We design non-trivial randomized approximation algorithms for both S-FVST
and DFVS-bIN, with the techniques used in [7] as a starting point. Note that
neither problem is a special case of the other. In DFVS-bIN, we are generalizing
the tournament graph by allowing the independence number to be α and in S-
FVST, we are generalizing the obstruction set to be cycles that contain a vertex
from S. Thus, the algorithm for one does not seem to apply for the other in a
straightforward manner.

1.1 Our Results

Our first result is a randomized 2α-approximation algorithm for DFVS-bIN.
Observe that G has a cycle if and only if G has a cycle of length at most
2α + 1. Due to this fact, we can apply the local ratio technique and obtain a
(2α + 1)-approximate feedback vertex set in polynomial time. Improving upon
this, we present the following.

Theorem 1. DFVS-bIN admits a randomized 2α-approximation algorithm that
runs in time nO(α2).

Quick-Sort Style Approximation Algorithms for Generalizations of FVST 227

Observe that for α = 1, we get a 2-approximation, which is the case of
tournaments. Note that the running time is a polynomial for fixed α. A natural
question that follows from our result is whether there exists an approximation
algorithm that runs in time f(α)nO(1) for some computable function f (i.e., for
a fixed α, the running time is a polynomial in n whose degree does not depend
on α).

Next, we present a randomized 2-approximation algorithm for the S-FVST
problem. We observe that for any vertex s ∈ S, T has a cycle containing s if and
only if T has a triangle containing s. Due to this fact, we can apply the local
ratio technique and obtain a 3-approximate subset feedback vertex in polynomial
time. Improving upon this, we present the following.

Theorem 2. S-FVST admits a randomized 2-approximation algorithm that runs
in time nO(1).

The proof of this theorem uses ideas similar to that of Theorem 1, with
a twist. In both the results, we carefully exploit the fact that the size of the
“obstructions” (to a vertex not being part of a cycle) is bounded.

1.2 Our Methodology

In this section we describe our main ideas in proving Theorems 1 and 2. For sim-
plicity of presentation we present our ideas for the unweighted case. To describe
our methods, we first give a very brief outline of the algorithm of Lokshtanov
et al. [7]. This algorithm starts with the assumption that the tournament T has
a feedback vertex set F of size at most n/2 (else returning all the vertices of
the tournament is a 2-approximation). Observe that if F is a minimum feedback
vertex set of T , then T −F is acyclic and has a unique topological ordering. Next
it selects a vertex v uniformly at random. The probability that v belongs to the
middle n/6 vertices of the topological ordering of T − F is at least 1/6. This v
will act as a pivot. The algorithm first deletes all the vertices that participate
in directed triangles with v (of course not v!). Since, it is known that v does not
belong to F , this step can be carried out at the cost of factor 2 in approxima-
tion. After this step it is guaranteed that there is no directed triangle containing
v and hence the problem decomposes into two disjoint subproblems of size βn
(β < 1 a constant): one on the tournament induced by the in-neighbors of v (i.e.,
T [N−(v)]) and the other on the tournament induced by the out-neighbors of v
(i.e., T [N+(v)]). The algorithm recursively solves these problems and combines
their solutions to obtain a 2-approximation for T .

To generalize the techniques from tournaments to α-bounded digraphs, our
first challenge is to come up with a notion equivalent to the unique topologi-
cal ordering of an acyclic tournament, that was exploited in the algorithm of
Lokshtanov et al. [7].

Towards this we first observe that every α-bounded digraph G on n vertices
has a vertex with both in-degree and out-degree (at least) (n − 2α)/4α (Lemma
4). Thereafter we define an HL-degree ordering (HL stands for high to low) of an

228 S. Gupta et al.

α-bounded digraph G as σ(G) = 〈v1, . . . , vn〉 over the vertices of G by the recur-
sive application of Lemma 4. Thus, for v1 both d+G(v1) and d−

G(v1) are at least
(n − 2α)/4α; for v2 both d+G−{v1}(v2) and d−

G−{v1}(v2) at least (n − 1 − 2α)/4α.
Therefore for any i ∈ {2, . . . , n}, both d+G−{v1,...,vi−1}(vi) and d−

G−{v1,...,vi−1}(vi)
are at least (n − (i − 1) − 2α)/4α.

For our algorithm, given an α-bounded digraph G, we will work with a fixed
feedback vertex set F and a fixed HL-degree ordering σ(G − F). Analogous to
the tournament’s analysis, we can assume that |F | ≤ n

2α (else the whole vertex
set of G is a 2α-approximation). Thereafter, we select a vertex v uniformly at
random. We say that v is good if v belongs to the first (1/3)rd part of σ(G − F).
The probability of v being good is (n− n

2α)/3

n = (13 − 1
6α). This vertex v acts as our

pivot. Now, we either delete all the vertices that participate in directed cycles
of length at most 2α + 1 with v or delete all the vertices of a directed cycle that
is part of the large cycle (i.e., length more than 2α + 1) containing v, of length
at most 2α (follows from Lemma 5). Suppose that v is good. Then this step can
be carried out at the cost of factor 2α in approximation. After this step we are
guaranteed that there is no directed cycle containing v, and hence the problem
decomposes into two disjoint subproblems of size βn, where β < 1 is a constant
depending on α alone: one on the digraph induced by the vertices reachable from
v (denoted by G[RG−P (v)]) and the other on the digraph induced by the vertices
not reachable from v (denoted by G[RG−P (v)]) , where P is a subset of vertices
in G such that the graph G − P does not contain a cycle that contains vertex
v. We recursively solve these problems, and combine their solutions to obtain a
2α-approximation for G.

For the S-FVST problem, given a tournament T and terminal set S, we
again work with a fixed subset feedback vertex set F and an HL-degree ordering
σ(T [S \ F]). But here observe that we only focus on the vertices of S, that is,
we want to see how F interacts with S. First we have observed that hitting
the triangles containing vertices in S is equivalent to hitting the cycles that
contain the vertices of S (Lemma 11). As before, our algorithm starts with
the assumption that |F | ≤ |S|/2 (else returning all the vertices of S gives a
2-approximation). Next it selects a vertex v uniformly at random from S. The
probability that v belongs to the first (1/3)rd of σ(T [S − F]) is at least 1/6.
This vertex v acts as a pivot. We first delete all the vertices that participate in
directed triangles with v. Let the set of vertices which participate in directed
triangles with v be denoted by P . Since we know that v does not belong to
F , this step can be carried out at the cost of factor 2 in approximation. After
this step we are guaranteed that there is no directed triangle containing v, and
hence there is no directed cycle containing v. Thereafter the problem decomposes
into two disjoint subproblems with strictly smaller set of terminals: one on the
tournament induced by RT−P (v) with terminal set S ∩ RT−P (v) and the other
on the tournament induced by RT−P (v) with terminal set S ∩ RT−P (v). We
recursively solve these problems, and combine their solutions to obtain a 2-
approximation for T .

Quick-Sort Style Approximation Algorithms for Generalizations of FVST 229

2 Preliminaries

In this paper, we deal with simple directed graphs (digraphs, in short) containing
no parallel edges/arcs. We work in the setting of vertex weighted digraphs: by
(G,w) we denote a vertex weighted digraph G with weight function w : V (G) →
N≥0. The weight of a subset of vertices is the sum of weights of the vertices in the
subset. Note that the setting of unweighted graphs is a special case of weighted
graphs. For any induced subgraph H of a vertex weighted graph (G,w), we will
assume that w defines a weight function when restricted to V (H). If there is an
arc (u, v) ∈ E(G), then u is an in-neighbor of v, and v is an out-neighbor of u. The
in-neighborhood of a vertex x, denoted by N−(x) = {v | (v, x) ∈ E(G)}, is the set
of in-neighbors of x. The in-degree of a vertex x, denoted by d−

G(x) = |N−(x)|,
is the number of in-neighbors of x. The out-neighborhood and out-degree of a
vertex x, denoted by N+(x) and d+G(x) resp., are defined analogously.

We say a vertex u is reachable from a vertex v, if there is a directed path which
contains both the vertices u and v and vertex v appears before vertex u in the
sequence of the vertices which defines the directed path. By RG(x), we denote the
set of all vertices other than x reachable from x in G. By RG(x), we denote the
set of all vertices not reachable from x in G. Observe that (RG(x), RG(x), {x})
form a partition of V (G).

A feedback vertex set (FVS) in G is a subset of vertices S ⊆ V (G) such that
G − S is acyclic. Given a family X = {S1, . . . , Sl} where Si ⊆ V (G) for each
i ∈ [l], we call Sa ∈ X lightest if for all i ∈ [l] we have w(Sa) ≤ w(Si). Similarly,
we call Sb ∈ X heaviest if for all i ∈ [l] we have w(Si) ≤ w(Sb). An FVS Fopt

in G is an optimal (also minimum) solution of the instance (G,w) if for every
other FVS S in G we have w(S) ≥ w(Fopt) i.e. Fopt is the lightest among all
FVSs in G. An FVS F in G is called a 2α-approximate solution of the instance
(G,w) if w(F) ≤ 2α · w(Fopt).

An algorithm is a randomized factor f approximation algorithm for a problem
P if, for each instance I of P, with probability at least 1/2, it returns a solution
for I of weight at most f ×OPTI where OPTI denotes the weight of an optimal
solution for I.

We will use the following structural results on digraphs with bounded inde-
pendence number throughout our paper1.

Lemma 3 ([4]). Let G be a simple digraph with n vertices and independence
number α ≥ 1. Then there exists a vertex in V (G) with out-degree at least n−α

2α .
Similarly, there exists a vertex in V (G) with in-degree at least n−α

2α .

Lemma 4 (†). Let G be a simple digraph with n vertices and independence
number α ≥ 1. Then there exists a vertex in V (G) which has both in-degree and
out-degree at least (n − 2α)/4α.

Lemma 5. Let G be a simple digraph with n vertices and independence number
α ≥ 1. For a vertex x ∈ V (G), let C ⊆ V (G) denote the shortest cycle containing

1 Missing proofs (marked with †) are in the full version of the paper.

230 S. Gupta et al.

x. Then either |C| ≤ 2α + 1 or there exists an induced cycle C ′ ⊂ C of length at
most 2α that does not contain x (i.e., C ′ ⊆ C \ {x}).
Proof. Consider the case |C| > 2α+1. Assume for the sake of contradiction that
C ′ = 〈v1, . . . , v�〉 is the shortest induced cycle in C that does not contain x with
� ≥ 2α+1. Additionally, assume without loss of generality that C ′ is enumerated
in such a way that it appears in that order in C and x appears before v1 and
after v� in C.

There is no arc xvj ∈ E(G) such that vj ∈ C ′ \ {v1} since such an arc
would imply the existence of the cycle 〈vj , . . . , v�, . . . , x〉 which contradicts the
fact that C is the shortest cycle in G containing x. Since C ′ is an induced cycle,
the set I = {v2, v4, . . . , v2α} forms an independent set of size α. By the previous
argument I ∪ {x} is an independent set of size α + 1 in G, a contradiction. �

3 DFVS in Graphs of Bounded Independence Number

Throughout this section we assume that G is a digraph on n vertices with inde-
pendence number α. The following two observations about FVSs in (G,w) which
we will use throughout our results in this section, follow from the hereditary
property of acyclicity of digraphs.

Observation 1. Let F be an FVS in (G,w); and let S ⊆ V (G). Then, F \ S is
an FVS in (G − S,w).

Observation 2. Suppose that F is an optimal FVS in (G,w) and that S is a
subset of F . Then, F \S is an optimal FVS in (G−S,w), of weight w(F)−w(S).

The following lemma shows the interaction of an FVS F in G with the sub-
graphs G[RG(x)] and G[RG(x)].

Lemma 6 (†). Suppose that x ∈ V (G) is a vertex that is not part of any cycle
in G, then the following holds: F is an FVS in G if and only if F ∩ RG(x) is an
FVS in G[RG(x)] and F ∩ RG(x) is an FVS in G[RG(x)].

3.1 Technical Overview

In this section we will briefly describe the work flow of our recursive algorithm
FindFVS (Algorithm 1) which is formally presented in the following section and
its correctness analyzed in Sect. 3.2. For the base case n ≤ 30α, we compute an
optimal FVS in nO(α) time by checking all subsets of vertices. Let Fopt be an
optimal solution for (G,w) which is an instance for the DFVS-bIN problem. We
consider the following two cases:

– Case 1 (|Fopt| ≥ 2n/3α): Let L ⊆ V (G) be a set of n/6α lightest vertices
in G and r be the heaviest vertex in L. We define the new weight function
w′ : V (G)\L → N≥0 which assigns the weight w(v)−w(r) to each vertex v in
G−L. Our algorithm recursively finds an FVS F in (G−L,w′). Combining F
with L (i.e., F ∪L), we have a 2α-approximate FVS in (G,w) with probability
at least 1/2 (by Claim 8).

Quick-Sort Style Approximation Algorithms for Generalizations of FVST 231

– Case 2 (|Fopt| < 2n/3α): In this case, we randomly pick/sample a vertex
x ∈ V (G) and find a subset of vertices P such that in G − P there is no
cycle that contains x. Then, since any cycle in G−P is contained completely
inside exactly one of G[RG−P (x)] and G[RG−P (x)], we obtain an FV S in G
by combining P with FVSs in those two subgraphs.
With probability at least (n − 2n

3α)/n = (1 − 2
3α), x is not part of Fopt, i.e.,

x ∈ V (G) \ Fopt. Moreover, with probability at least (1 − 2
3α)/3 = (13 − 2

9α),
x is in the first 1/3rd part of σ(G − Fopt). Such a vertex x has in-degree and
out-degree at least n

18α + 1
4α − 1

2 (by Claim 9). Consequently, both |RG−P (x)|
and |RG−P (x)| are at most n(1 − 1/30α) (by Equation (4)).
We perform the following iterative procedure to compute P , which is initial-
ized as ∅. Let C be a shortest cycle in G−P that contains x and let C ′ ⊆ C be
the shortest induced cycle in C. As x /∈ Fopt, therefore Fopt ∩ (C ′ \ {x}) �= ∅.
The crucial point to note here is that |C ′ \ {x}| ≤ 2α regardless of |C| (by
Lemma 5).
Since Fopt is an FV S and x /∈ Fopt, we have |Fopt ∩ (C ′ \ {x})| ≥ 1. Even
though C ′ may not contain x, hitting (i.e., picking vertices from) the cycle C ′

implies hitting the cycle C that contains x. Now observe that if we are in the
unweighted setup of the DFVS-bIN problem, then to hit the cycle C ′ we can
pick all vertices in C ′ \ {x} in P . Therefore, we are getting a 2α-approximate
solution conditioning on the event that x /∈ Fopt.
Observe that this strategy fails if we are in the weighted setup of the DFVS-
bIN problem. We cannot simply pick all the vertices of C ′ \ {x}. We resolve
this issue by using the “local ratio” technique as follows. We find the lightest
vertex (say u) in C ′ \ {x}, add it to P and update the weights of each vertex
v ∈ C ′ \ {x} to w(v) − w(u). We repeat the procedure until there is no cycle
in G − P which contains vertex x.
Let w′ be the weight function at the end of the procedure. Next we
recursively get 2α-approximate FVSs in (G[RG−P (x)], w′) (say F1) and in
(G[RG−P (x)], w′) (say F2) resp., each with probability at least 1/2. There-
after we construct P ∪ F1 ∪ F2 which is a 2α-approximate FVS in (G,w) (by
Claim 10) with probability at least 1/12 − 1/18α (by Equation (3)).
To boost the success probability of the algorithm to the required lower bound
1/2, we repeat the random experiment 28α times, i.e. we repeat the procedure
of sampling the vertex x, computing the set P , and solving the two recursive
subproblems (G[RG−P (x)], w′) and (G[RG−P (x)], w′), 28α times.

But we don’t know Fopt during the execution of the algorithm (and hence which
of the cases we fall into). Thus, we compute 28α + 1 solutions for the instance
(G,w): one solution for the Case 1 and 28α solutions for the Case 2. Thereafter
we take the lightest among all the 28α + 1 solutions. Now to analyse the time
complexity of the algorithm, observe that in the case that |Fopt| < 2n/3α, we

232 S. Gupta et al.

are making two recursive calls on subproblems of size at most n ·(1−1/30α) and
repeating the procedure for 28α times; for the case when |Fopt| ≥ 2n/3α, we are
making one recursive call to the instance (G−L,w′) of size n · (1−1/6α). Thus,
we get the recurrence T (n) ≤ 2 · 28αT

(
n

(
1 − 1

30α

))
+ O(n5) + T

(
n

(
1 − 1

6α

))

for the time complexity of the algorithm FindFVS, which solves to nO(α2).

3.2 The Algorithm

We compute (28α + 1) FVSs {Fi}28α
i=0 and return the lightest set among them.

The algorithm is recursive. Each recursive call is made on a graph with strictly
fewer vertices. When |V (G)| ≤ 30α we solve the problem by brute force searching
over all subsets of vertices.

Definition 7. We use two “weight update” functions both of which take as input
a weight function w and a subset of vertices Q and return a new weight function
defined as follows.

1. update1(w,Q): Let h be the heaviest vertex in Q. It returns w′ : V (G)\Q → N

where
w′(v) = w(v) − w(h) for each v ∈ V (G) \ Q.

2. update2(w,Q): Let � be the lightest vertex in Q. It returns w′ : V (G) → N

where

w′(v) =

{
w(v) − w(�) if v ∈ Q;
w(v) otherwise.

Algorithm 1. FindFVS
Input: a digraph G = (V, E), vertex weights w : V → N≥0
Output: a subset of vertices X
1: if n ≤ 30α then
2: Iterate over all subsets of V (G), and return a optimal FVS of G, say X
3: end if
4: Let L be a set of n/6α lightest vertices in V (G) acc. to w
5: F0 := L ∪ FindFVS (G − L, update1(w, L))
6: for each i ∈ [28α] do
7: Pick xi uniformly at random from V (G)

8: if min
{

d+
G(xi), d−

G(xi)
}

< n
18α + 1

4α − 1
2 then

9: Fi := V (G)
10: continue
11: end if
12: Ci = {}
13: wi = w
14: while there is a cycle in G−Ci containing xi do � Eliminating cycles with xi

15: Let C be a shortest cycle in G − Ci containing xi

16: Let C′ ⊆ C be a shortest induced cycle inside C
17: Let v be a lightest vertex in C′ \ {xi} acc. to wi

18: Ci = Ci ∪ {v}
19: wi = update2(wi, C′ \ {xi})
20: end while
21: Fi := Ci∪ FindFVS(G[RG−Ci

(xi)], wi) ∪ FindFVS(G[RG−Ci
(xi)], wi)

22: end for
23: Return a lightest set among F0, F1, . . . , F28α acc. to w, say X

Quick-Sort Style Approximation Algorithms for Generalizations of FVST 233

Analysis. Proof of Theorem 1. We will prove this by induction on n. For the
base case we consider n ≤ 30α; where by iterating over all subsets of vertices,
we can, in O(230αn2) time, find a minimum weight FVS in G. Hence, from now
on, we will analyze when n > 30α.

Let Fopt be an optimal FVS in G. If |Fopt| ≥ 2n/3α, then we claim that
F0 satisfies the theorem statement. Note that the algorithm returns X such
that w(X) ≤ w(Fi) for each i ∈ [0, 28α], i.e. X is the lightest set among
{F0, . . . , F28α}.

Claim 8 (†). Suppose that |Fopt| ≥ 2n/3α. Then, with probability at least 1/2,
F0 is a 2α-approximate FVS in (G,w).

Proof. Let w′ denote the weight function returned by update1(w,L), Definition
7. Let F ′ denote the set returned by the recursive call FindFVS(G − L,w′). Let
v denote the heaviest vertex in L. By applying the induction hypothesis on
G − L, we have that with probability at least 1/2, F ′ is a 2α-approximate FVS
in (G − L,w′). Therefore, we have w(F0) = w(F ′ ∪ L) ≤ 2α · w(Fopt). �

Thus, from now on we assume that |Fopt| < 2n/3α. Next, we will analyze the
probabilistic events in our algorithm, by which we will obtain a lower bound on
the algorithm accuracy.

Consider the ordering σ(G−Fopt) = 〈v1, . . . , vn−|Fopt|〉 of vertices in G−Fopt.
For each i ∈ [28α], we say that the randomly chosen vertex xi is good if xi �∈ Fopt

and the position of xi in σ(G−Fopt) is in the first (n − |Fopt|)/3 vertices. Let E1
i

denote the event that xi is good. Thus, for each i, E1
i occurs with probability at

least
(

(n−|Fopt|)
3

)
/n ≥ 1

3 − 2
9α . The underlying goal of this definition is to bound

the size of the recursive subproblems. That is, if xi is good for some i ∈ [28α],
then the size of the subproblem in the ith iteration of the for loop is bounded,
established via eq. (4). Towards this, we first show the following.

Claim 9 (†). If xi is good, then both d+G(xi) and d−
G(xi) are at least n

18α + 1
4α − 1

2 .

Thus, if either d+G(xi) or d−
G(xi) is strictly less than n

18α + 1
4α − 1

2 , we conclude
that xi is not good. Then we set Fi = V (G) and continue to find the next FVS
(lines 8–11).

Approximation factor analysis. For a fixed i ∈ [28α], suppose that xi is good
(i.e., we condition on the event E1

i). Let G1 and G2 denote G[RG−Ci
(xi)] and

G[RG−Ci
(xi)], resp. Let F+

i an F−
i denote the FVSs returned by the recursive

calls FindFVS(G[RG−Ci
(xi)], wi) and FindFVS(G[RG−Ci

(xi)], wi), resp.
Observe that all cycles in G − Ci are contained completely inside either G1

or G2. Thus, F+
i ∪F−

i is an FVS in G−Ci and Fi = Ci ∪F+
i ∪F−

i is an FVS in
G. Consequently, each set in {Fi}28α

i=0 is an FVS in G and the algorithm always
returns an FVS in G. Moreover, Fopt ∩ V (G1) and Fopt ∩ V (G2) are FVSs in G1

and G2 resp., by Lemma 6. Thus, Fopt \ Ci = Fopt ∩ (V (G1) ∪ V (G2)) is an FVS
in G1 ∪ G2 = G − Ci, by Observation 1.

234 S. Gupta et al.

Let E2
i and E3

i denote the events that F+
i and F−

i are 2α-approximate FVS in
(G1, wi) and (G2, wi), resp. By applying the induction hypothesis on G1 and G2,
we have that each of E2

i and E3
i happens individually with probability at least

1/2. Since E2
i and E3

i are independent, both E2
i and E3

i happen with probability
at least 1/2 · 1/2 = 1/4.

Suppose that F+
i and F−

i are 2α-approximate FVSs in (G1, wi) and (G2, wi),
resp. Therefore, F+

i ∪ F−
i is a 2α-approximate FVS in (G1 ∪ G2, wi). Conse-

quently, we have that wi(F+
i ∪ F−

i) ≤ 2α · wi(Fopt \ Ci), since Fopt \ Ci is an
FVS in G − Ci, by Observation 1. From now on we condition on the events E1

i ,
E2

i , and E3
i and then prove the following.

Claim 10 (†). The set Fi = Ci ∪F+
i ∪F−

i is a 2α-approximate FVS in (G,w).

Proof Since Fi is an FVS in G, it suffices to show that w(Ci ∪ F+
i ∪ F−

i) ≤
2α · w(Fopt).

Suppose that Ci contains � vertices at the end of the while loop (lines 14–20).
Then, wi, which was initially w, was updated � times using the method update2.
Let w0

i = w. For each j ∈ [�], let wj
i be the function wi after j updates and let

vj denote the jth vertex added to Ci.
We will prove a more general condition, which implies the claim, that for

each j ∈ [�]

wj−1
i (F+

i ∪ F−
i ∪ {vj , . . . , v�} ∪ {v1, . . . , vj−1}) ≤ 2α · wj−1

i (Fopt). (1)

Note that for a fixed i and j = 1, we have w0
i = w and Ci = {v1, . . . , v�} and so

the above condition yields w(F+
i ∪F−

i ∪Ci) ≤ 2α ·w(Fopt). Observe that by the
definition of update2,

wj−1
i (vk) = 0 for all k ∈ [j − 1]. (2)

Then, Eq. (1) is equivalent to the following:

wj−1
i (F+

i ∪ F−
i ∪ {vj , . . . , v�}) ≤ 2α · wj−1

i (Fopt \ {v1, . . . , vj−1}). by eq.(2)

Our proof will use induction on the value of j, in decreasing order. For the
base case j = � + 1 (in which case wj−1

i = w�
i = wi), we have

w�
i (F

+
i ∪ F−

i ∪ {v1, . . . , v�}) = wi(F+
i ∪ F−

i) ≤ 2α · w�
i (Fopt \ Ci). by eq.(2)

We provide a proof of the inductive case in the full version of the paper. This
concludes the proof of the claim. �

We will conclude the proof of the theorem by showing that our algorithm
succeeds with bounded probability within time O(n122α2

).

Probability Analysis. We have conditioned upon three events: (E1
i) xi is good,

(E2
i) F+

i is a 2α-approximate FVS in (G1, wi), and (E3
i) F−

i is a 2α-approximate
FVS in (G2, wi). For a fixed i, these three events happen with probability at least

(1/3 − 2/9α) · 1/2 · 1/2 = 1/12 − 1/18α. (3)

Quick-Sort Style Approximation Algorithms for Generalizations of FVST 235

The probability that for each i ∈ [28α] at least one of {E1
i , E2

i , E3
i } does not

happen is at most (11/12 + 1/18α)28α ≤ 1/2 because α ≥ 1. Thus, with probabil-
ity at least 1/2 there exists i ∈ [28α] such that all the three events occur and
consequently F+

i ∪ F−
i ∪ Ci is a 2α-approximate FVS in (G,w).

Running Time Analysis. If n ≤ 30α, then the algorithm runs in O(230αn2)
time. From now on, consider the case n > 30α. Each iteration of the while loop
(lines 14–20) can be done in O(n3) time since finding a shortest cycle C (line
15), a shortest induced cycle C ′ ⊆ C (line 16), and a lightest vertex in C ′ (line
17) can all be done in O(n3) time.

Since in each iteration, a vertex v ∈ G\Ci is added to Ci (which was initially
empty), the repeat loop is carried out for at most n steps. Therefore, the repeat
loop can be done in time O(n4). Before we consider recursive calls, we would
like to note that finding the n/6α lightest vertices in G (line 4) can be done in
O(n log n) time and finding a lightest set (line 23) can be done in O(nα) time.

If xi is not good, then Fi is set to V (G) and no further recursive calls are
made. Recall that by Claim 9, if xi is good, both d+G(xi) and d−

G(xi) are at
least n/18α + 1/4α − 1/2. Since G − Ci does not contain any cycle that xi is
part of, the number of vertices in G[RG−Ci

(xi))] and G[RG−Ci
(xi)] is at most

n − (n/18α + 1/4α − 1/2). Upon simplification, we note that

n − (n/18α + 1/4α − 1/2) ≤ n(1 − 1/18α) + 1/2 ≤ n(1 − 1/30α), (4)

where the last inequality follows from the assumption that n > 30α.
Thus, the overall running time is given by an application of the Master the-

orem [3] to the recurrence relation

T (n) ≤ 2 · 28αT (n(1 − 1/30α)) + 28αO(n4) + T (n(1 − 1/6α)) = O(n122α2
). (5)

This concludes the proof of the theorem.

4 Subset FVS in Tournaments

In addition to a tournament T on n vertices and a weight function w : V (T) →
N≥0, we are given as input a vertex subset S ⊆ V (T) of size s. We say that
F ⊆ V (T) is a subset feedback vertex set (SFVS, in short) in T if there is no
cycle containing vertices of S in T − F . The goal is to find a minimum weight
SFVS in T . Observe that if S = V (T), then the problem is a case of DFVS-bIN
with α = 1.

By (T, S,w), we denote an instance of S-FVST. The following observations
follow from the hereditary property of subset-acyclicity.

Observation 3. Let F be an SFVS in (T, S,w) and let X ⊆ V (G). Then F \X
is an SFVS in (T − X,S \ X,w).

236 S. Gupta et al.

Observation 4. Suppose that F is an optimal SFVS in (T, S,w) and X is a
subset of F . Then, F \ X is an optimal SFVS in (T − X,S \ X,w), of weight
w(F) − w(X).

In our discussions, a triangle (�, in short) is a directed cycle of length three.
The following structural lemma gives us the fact that, hitting all triangles passing
through the vertices of S is equivalent to hitting all cycles passing through S.
As a consequence, we have that F ⊆ V (T) is an SFVS if and only if in T − F
there is no triangle that contains a vertex of S.

Lemma 11 (†). For a vertex x ∈ S, any shortest cycle containing x is a �.

The following lemma, analogous to Lemma 6, shows the interaction of an
SFVS F in (T, S,w) with T [RT (x)] and T [RT (x)].

Lemma 12 (†). Suppose that x ∈ S is a vertex that is not part of any cycle
in T , then the following holds: F is an SFVS in (T, S,w) if and only if F ∩
RT (x) is an SFVS in (T [RT (x)], S ∩ RT (x), w) and F ∩ RT (x) is an SFVS in
(T [RT (x)], S ∩ RT (x), w).

Next, we present a randomized 2-approximation algorithm for S-FVST that
runs in time nO(1) extending the ideas that we used to solve DFVS-bIN.

The base case of the recursive algorithm is given by s = |S| ≤ 30. Unlike
Algorithm 1, we cannot handle the base case by simply iterating over all sub-
sets of vertices of size at most 30 to find an optimal solution. An SFVS may
contain vertices outside S (i.e., in T − S). To overcome this, we use the notion
of vertex covers. A subset of vertices B ⊆ V (T) is called a vertex cover in T if
for each arc (u, v) ∈ E(T) we have B ∩ {u, v} �= ∅. Towards handling the base
case, we use the well known fact that a 2-approximate minimum weight vertex
cover in a digraph on n vertices can be computed in O(n2) time [1] using the
subroutine FindVertexCover(T ′, w′) which takes T ′ = (V ′, E′) as input together
with a weight function w : V (T ′) → N≥0. From now on, by

(
S

≤30

)
, we denote the

subsets of S of size at most 30.

4.1 Technical Overview

Definition 13. Given a set S ⊆ V (T), we use two “weight update” functions
both of which take as input a weight function w and a set of vertices Q and
return a new weight function:

1. update3(w,Q): Let h be the heaviest vertex in Q. It returns w′ : V (T) \ Q →
N≥0 where

w′(v) =

{
w(v) − w(h) if v ∈ S \ Q;
w(v) otherwise.

2. update4(w,Q): Let � be the lightest vertex in Q. It returns w′ : V (G) → N≥0

where

w′(v) =

{
w(v) − w(�) if v ∈ Q;
w(v) otherwise.

Quick-Sort Style Approximation Algorithms for Generalizations of FVST 237

The high level structure of the solution is similar to the one for DFVS-bIN. In
this overview, we highlight the key differences from the previous algorithm. Let
Fopt be an optimal SFVS in T . We consider the following three cases.

– Case 1 (|S ∩ Fopt| ≤ 30): We “guess” this intersection by iterating over all
Q ∈ (

S
≤30

)
, i.e., we guess the part of S which is inside (say Q) the solution and

the part which is outside (say O) the solution. After the guessing if we find
any � containing only vertices from O, then we cannot extend Q and trivially
set S to be the solution, denoted by FQ. Otherwise, we initially set FQ to be
the vertices which are inside the solution and extend it in two phases. In the
first phase, we deal with �s where two of its vertices are in O and we add
the third vertex of such a � to FQ. In the second phase, we deal with �s
where one vertex is in O: we find a 2-approximate weighted vertex cover using
FindVertexCover() on the (undirected) graph containing the edges between the
end vertices that are not in O, of such �s. We show that the extension FQ

corresponding to Q = S ∩ Fopt is a 2-approximate solution (Claim 14). As
a base case of the recursive algorithm, if s < 30 then we return the lightest
solution in {FQ}Q∈(S

≤30) (say Y).
– Case 2 (|S ∩ Fopt| ≥ 2s/3): Let L be a set of s/6 lightest vertices in S

and F be the SFVS returned by the recursive call FindSFVS(T − L, S \
L, update3(w,L)). We show that F0 = F ∪ L is a 2-approximate SFVS in
(T, S,w) with probability at least 1/2 (Claim 15).

– Case 3 (30 < |S ∩ Fopt| < 2s/3): First, we randomly sample a vertex x ∈ S.
With probability at least 1/3− 2/9, x is in the first 1/3rd part of σ(T [S \Fopt]).
Such a vertex x has in-degree and out-degree at least s/18 + 1/4 − 1/2 in
T [S \ Fopt] (Claim 16). We compute P (and a weight function w′), a set
of vertices such that in T − P there is no cycle that contains x. Conse-
quently, both |S ∩ RT−P (x)| and |S ∩ RT−P | are at most s(1 − 1/30). We
recursively compute SFVSs F1 and F2 in (T [RT−P (x)], S ∩ RT−P (x), w′)
and (T [RT−P], S ∩ RT−P , w′) resp. and obtain an 2-approximate SFVS in
T : P ∪ F1 ∪ F2 (Claim 17). Let F1, . . . , F28 be the solutions that we get by
repeating the random experiment 28 times.

We show that with probability at least 1/2, the lightest set among
{Y, F0, F1, . . . , F28} according to w is a 2-approximate SFVS in T .

For the running time, we show that the number of subproblems is sO(1) and the
time spent at each subproblem is nO(1). Thus, the overall running time is nO(1).

4.2 The Algorithm

The full version of the paper contains the pseudocode of the algorithm for SFVS
in tournaments.

Analysis. Proof of Theorem 2. Let Fopt denote an optimal SFVS in T . We will
prove by induction on n. For the base case, we consider |S ∩ Fopt| ≤ 30 (which
subsumes the case n ≤ 30).

238 S. Gupta et al.

Claim 14 (†). If |S∩Fopt| ≤ 30, then Y is a 2-approximate SFVS in (T, S,w).

From now on, we assume that |S ∩ Fopt| > 30. We will restate the key
statements, claims and definitions. Proofs of the following claims are similar to
that of the claims that we have proved for the DFVS-bIN problem. The only
part of problem which need to be argued is the running time analysis, as in the
S-FVST problem the base case is non-trivial.

Now similar to before, we first consider the case |S ∩ Fopt| ≥ 2s/3.

Claim 15 (†). Suppose that |S ∩ Fopt| ≥ 2s/3. Then, with probability at least
1/2, F0 is a 2-approximate SFVS in (T, S,w).

From now on, we assume that |S ∩ Fopt| < 2s/3. Consider the ordering σ(T [S \
Fopt]) = 〈v1, . . . , vs−|S∩Fopt|〉 of vertices in S \Fopt. For each i ∈ [28], we say that
the randomly chosen vertex xi ∈ S is good if xi �∈ Fopt and the position of xi in
σ(T [S \ Fopt]) is at most (s−|S∩Fopt|)/3. Let E1

i denote the event that xi is good.

Thus, for each i, E1
i occurs with probability at least

(
(s−|S∩Fopt|)

3

)
/s ≥ 1

3 − 2
9 .

Analogous to Claim 9, we have the following.

Claim 16 (†). If xi is good, then min(d+T [S](xi), d−
T [S](xi)) ≥ s

18 + 1
4 − 1

2 .

For a fixed i ∈ [28], suppose that xi is good (i.e., we condition on the event
E1

i). Similar to Algorithm 1, the set Ci and function wi are computed as follows.

Ci = {}, wi = w
while there is a � in T − Ci that contains xi do � Eliminating �s with xi

Let C′ be a � in T − Ci containing xi

Let v be a lightest vertex in C′ \ {xi} acc. to wi

Ci = Ci ∪ {v}
wi = update4(wi, C

′ \ {xi})
end while

Let R1
i = RT−Ci

(xi), R2
i = T [RT−Ci

(xi)], T1 = T [R1
i], and T2 = T [R2

i].
Observe that all cycles passing through a vertex in S in T − Ci are contained
completely inside either T1 or T2; otherwise, xi would form a triangle with an
arc from such a cycle (by Lemma 11). Hence, we can deduce that Fopt \ Ci =
Fopt ∩ (V (T1)∪V (T2)). Moreover, since T1 ∪T2 = T −Ci, we have that Fopt \Ci

is an SFVS in (T − Ci, S \Ci, w) (by Observation 3).
Let F+

i an F−
i denote the solutions returned by the recursive calls Find-

SFVS(T [R1
i , S ∩ R1

i , wi) and FindSFVS(T [R2
i], S ∩ R2

i , wi), resp. Given that
R1

i = RT−Ci
(xi) and R2

i = RT−Ci
(xi), we note that F+

i ∪ F−
i is an SFVS

in (T − Ci, S \ Ci, wi) (by Lemma 12). Thus, Fi = Ci ∪ F+
i ∪ F−

i is an SFVS in
(T, S,wi).

Consequently, each set in {Fi}28i=0 is an SFVS in T . Since each set in
{FQ}Q∈(S

≤30) is also an SFVS, the algorithm always returns an SFVS in T . Next,
we will analyze the quality of the solution Fi.

Quick-Sort Style Approximation Algorithms for Generalizations of FVST 239

Let E2
i and E3

i denote the events that F+
i and F−

i are 2-approximate SFVSs
in (T1, S ∩ R1

i , wi) and (T2, S ∩ R1
i , wi), resp. From now on, we condition on the

events E1
i , E2

i , and E3
i .

By applying the induction hypothesis on T1 and T2, we have that each of E2
i

and E3
i happens individually with probability at least 1/2. As F+

i and F−
i are

2-approximate SFVS in (T1, S ∩ R1
i , wi) and (T2, S ∩ R2

i , wi), resp., F+
i ∪ F−

i is
a 2-approximate SFVS in (T − Ci, S \ Ci, wi). Since, Fopt \ Ci is also an SFVS
in (T − Ci, S \ Ci, wi), we can infer that wi(F+

i ∪ F−
i) ≤ 2 · wi(Fopt \ Ci). The

following result is analogous to Claim 10.

Claim 17 (†). The set Fi = Ci∪F+
i ∪F−

i is a 2-approximate SFVS in (T, S,w).

We will conclude the proof of the theorem by showing that our algorithm
succeeds with bounded probability in time nO(1).

Probability Analysis. With probability at least 1/2 there exists i ∈ [28] such
that all the three events occur and F+

i ∪ F−
i ∪ Ci is a 2-approximate SFVS in

(T, S,w).

Running Time Analysis. If |S ∩ Fopt| ≤ 30, then since there are O(n30)
subsets of S of size at most 30 and for each subset, its extension to a solution
can be computed in time nO(1), the set {FQ}Q∈(S

≤30) can be computed in time

nO(1). Else for each i, the set Ci and function wi can be computed in time O(n4).
Finding the s/6 lightest vertices in S can be done in O(s log s) time.

If xi is not good, then Fi is set to S and no further recursive calls are made.
By Claim 16, if xi is good, both d+T [S](xi) and d−

T [S](xi) are at least s/18+1/4−1/2.
Since T −Ci does not contain any cycle that xi is part of, the number of vertices
in S∩R1

i and S∩R2
i is at most s−(s/18+1/4−1/2) ≤ s(1−1/18)+1/2 ≤ s(1−1/30)

(since we have assumed that s > 30). The total number of recursive subproblems
is given by an application of the Master theorem [3] to the recurrence relation
T (s) ≤ 2 · 28T (s(1 − 1/30)) + T (30) + T (s(1 − 1/6)) = O(s122).

Thus, the overall running time is T (s) · (time spent at each subproblem) =
T (s) · nO(1) = nO(1) (since s ∈ [n]). This concludes the proof of the theorem.

Acknowledgement. We thank the anonymous reviewers for their helpful comments
and suggestions.

References

1. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified frame-
work for approximation algorithms. in memoriam: Shimon even 1935–2004. ACM
Comput. Surv. (CSUR) 36(4), 422–463 (2004)

2. Cai, M.c., Deng, X., Zang, W.: An approximation algorithm for feedback vertex sets
in tournaments. SIAM J. Comput. 30(6), 1993–2007 (2001)

240 S. Gupta et al.

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2022)

4. Fradkin, A., Seymour, P.: Edge-disjoint paths in digraphs with bounded indepen-
dence number. J. Combinatorial Theory, Series B 110, 19–46 (2015)

5. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2- ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008)

6. Lochet, W., Lokshtanov, D., Misra, P., Saurabh, S., Sharma, R., Zehavi, M.:
Fault tolerant subgraphs with applications in kernelization. In: 11th Innovations in
Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2020)

7. Lokshtanov, D., Misra, P., Mukherjee, J., Panolan, F., Philip, G., Saurabh, S.: 2-
approximating feedback vertex set in tournaments. ACM Trans. Algorithms (TALG)
17(2), 1–14 (2021)

8. Mnich, M., Vassilevska Williams, V., Végh, L.A.: A 7/3-approximation for feedback
vertex sets in tournaments. In: 24th Annual European Symposium on Algorithms
(ESA 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

Better Algorithms for Online Bin
Stretching via Computer Search

Matej Lieskovský(B)

Charles University, Ovocný Trh 560/5, Praha 1 116 36, Czechia

ml@iuuk.mff.cuni.cz

Abstract. Online Bin Stretching is a problem closely related to
Online Bin Packing and various scheduling problems. There is exten-
sive history of computer search being used to establish lower bounds
for this problem by identifying difficult sets of inputs. We demonstrate a
novel approach enabling the use of computer search for finding new algo-
rithms and therefore upper bounds for this problem. This not only leads
to improved results for Online Bin Stretching, but also shows that
computer search can be used to find new algorithms, even for problems
that might not appear suitable for this approach.

Keywords: Bin stretching · Multiprocessor scheduling · Bin packing ·
Online algorithms · Computer search

1 Introduction

Online Bin Stretching, introduced by Azar and Regev [1], is a problem
somewhat similar to Online Bin Packing. We are given the number of bins
m and then a sequence of items with sizes between 0 and 1 arrives. Each item
must be assigned to one of the m bins before processing the next item. The goal
is to minimize the total load packed into the largest bin. Importantly, we are
assured that the entire input does fit into m bins of size at most 1. We measure
the performance of an algorithm by the worst-case load of the largest bin which
is known as the stretching factor.

Example: Let us consider the case m = 2. The first item that arrives can be
packed into the first bin without loss of generality. Suppose that first item is of
size 1/3 and the second item is also of size 1/3. If we pack the second item into
the first bin, two items of size 2/3 may then arrive, forcing the total load of the
largest bin to be at least 4/3. If we pack the second item into the second bin, an
item of size 1 may then arrive, forcing the total load of the largest bin to be at
least 4/3.

In the language of scheduling problems, Online Bin Stretching is a vari-
ant of Pm||Cmax where jobs must be assigned in an online manner but there are

Partially supported by GAUK project 234723, and GA ČR project 19-27871X.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 241–253, 2024.
https://doi.org/10.1007/978-3-031-55598-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_16&domain=pdf
http://orcid.org/0000-0002-0058-3133
https://doi.org/10.1007/978-3-031-55598-5_16

242 M. Lieskovský

no release times and we know the optimal makespan of the instance in advance.
We will, however, stick to the original terminology of bins and items.

Since lower bounds for these problems typically consist of sets of inputs utiliz-
ing a finite number of item sizes, computer search for Online Bin Stretching
lower bounds has been successful via constraining the adversary to a finite set of
possible item sizes. This approach cannot be directly used for computing upper
bounds as the resulting algorithm must be able to pack items of arbitrary size,
which prevents both an upper bound on the number of distinct item sizes and on
the number of items. We demonstrate a novel approach that where we instead
limit the decision abilities of the potential algorithms and thus enable computer
search for Online Bin Stretching upper bounds.

1.1 Previous Results

See Fig. 1 for a graphical representation of the best known results.

Fig. 1. Best known results

Let us denote the optimal stretching factor for m bins as αm. Trivially,
α1 = 1. Kellerer et al. [7] showed that α2 = 4/3 < 1.334 by demonstrating
an algorithm using two bins of size 4/3 and a set of inputs such that any deter-
ministic algorithm packs at least 4/3 load into one of the bins for one of the
inputs. (See the example earlier.) They also proved that a similar set of inputs
exists for three bins and thus α3 ≥ 4/3 > 1.333. Azar and Regev [1] generalised
the lower bound further, proving that αm ≥ 4/3 > 1.333 for all m ≥ 2. They
also presented an algorithm proving αm ≤ 5m−1

3m+1 for m ∈ {3, 4, . . . , 21} and
αm ≤ 13/8 = 1.625 for all m.

Better Algorithms for Online Bin Stretching via Computer Search 243

The upper bounds have since been improved by multiple algorithms. Kellerer
and Kotov [8] proved αm ≤ 11/7 < 1.572 for all m, Gabay et al. [5] improved
that to αm ≤ 26/17 < 1.530 for all m, and the latest results are by Böhm et
al. [2] achieving α3 ≤ 11/8 = 1.375 and αm = 3/2 = 1.5 for all m ≥ 5.

Although no better lower bound for general m was found, there are results
for small values of m. Gabay et al. [4] introduced the idea of using computer
search to find new lower bounds, leveraging the fact that online problems can
be viewed as two-player games. This approach was then improved by Böhm
and Simon [3] who proved α3 ≥ 56/41 > 1.365 and αm ≥ 19/14 > 1.357 for
m ∈ {4, 5, 6, 7, 8}. Ongoing efforts to further improve these results have so far
yielded αm ≥ 15/11 > 1.363 for m ∈ {6, 7, 8} [9] with more results known to be
in preparation.

So far, computer search approaches for lower bounds constrain the possible
item sizes to the equally-spaced values 1/k, 2/k, . . . , 1 for some granularity k, and
then view the problem as a two player game where one player generates items
and the other assigns them to the m bins. This game has a finite branching factor
max(m, k) and length O(mk). Unfortunately, placing additional constraints on
the item-generating adversary is not permitted in the search for new algorithms.

1.2 Our Results

We modify the computer search approach so that it can be used for finding new
algorithms for small values of m. This yields new algorithms, improving upper
bounds on αm for m ∈ {4, 5, 6, 7, 8} significantly.

Number of bins 4 5 6 7 8

Previous upper bound 19/13 < 1.462 3/2 = 1.5 3/2 = 1.5 3/2 = 1.5 3/2 = 1.5

Our upper bound 39/28 31/22 20/14 16/11 19/13

(algorithm) < 1.393 < 1.410 < 1.429 < 1.455 < 1.462

Time needed (hours) 91 468 23 3.6 235

The computer search was done using a server with an Intel Xeon E5-2630 v3
CPU and 126 GB of RAM. The time complexity grows rapidly with increasing
m and granularity, but we do not believe that we have reached any fundamental
limit of this method.

For three bins, we found an upper bound of 91/66 < 1.379 with a run time
of 46 h. This is worse than the previous upper bound of 11/8 = 1.375 by Böhm
et al. [2] For m ≥ 9 we did not find any upper bound better than 3/2 = 1.5.

244 M. Lieskovský

2 Reductions Between Games

We view Online Bin Stretching as a game. The game is:

– deterministic
– 2-player – we call the players A (the adversary) and B (the algorithm)
– sequential – players alternate in taking turns with A going first
– partisan – A generates items and B assigns them to bins
– perfect information
– zero-sum – when the game ends, one player is the winner and the other is the

loser

When we talk about winning or losing the game, it will be from the point of
view of B. The following definitions are worded carefully since we shall need to
apply these methods to games with both unbounded branching and unbounded
number of turns.

We shall define a pair of functions, MG
A and MG

B , which will indicate the
possible moves. For example, MG

B (p) will return the set of positions to which B
can move from position p, always including loseG (letting B resign) and possibly
including winG (if B can claim victory).

We formally define the type of games we are interested in as follows.

Definition 2.1. Game G is a 7-tuple (PG
A , PG

B , initG, winG, loseG,MG
A ,MG

B)
where:

– PG
A is the set of all possible game positions where A is the next player to move

– PG
B is the set of all possible game positions where B is the next player to move

– initG ∈ PG
A is the initial position

– winG is the winning position where the game ends and B wins
– loseG is the losing position where the game ends and B loses
– MG

A : PG
A → P (

PG
B ∪ {winG, loseG})

indicates all possible moves of A
– MG

B : PG
B → P (

PG
A ∪ {winG, loseG})

indicates all possible moves of B
We further require that the following constraints hold:

– PG
A , PG

B , {winG} and {loseG} are disjoint sets
– ∀p ∈ PG

A : winG ∈ MG
A (p) – A can resign whenever it is their turn

– ∀p ∈ PG
B : loseG ∈ MG

B (p) – B can resign whenever it is their turn

When talking about positions, we are mostly interested in the case where
the next player to move is A. Since A can make the game of Online Bin
Stretching last for an unbounded number of turns, and an algorithm that can
always pack the next item is satisfactory, we are interested in non-losing rather
than winning positions. Therefore, we define the concept of losing positions as
follows by building up the set of losing positions iteratively.

Definition 2.2. Let G be a game. We define

– LG
0 = {loseG}

Better Algorithms for Online Bin Stretching via Computer Search 245

– LG
n+1 = LG

n ∪ {a ∈ PG
A | (∃b ∈ MG

A (a))(∀c ∈ MG
B (b))(c ∈ LG

n)}
– LG =

⋃∞
i=0 LG

i . We then call LG the set of losing positions.

A position is non-losing if it is not losing and game G is non-losing if initG is
a non-losing position.

Our paper relies on the concept of reductions among games. We say that a game
G reduces to game H if we can translate the moves of the adversary from G to H
and then translate the algorithms response back from H to G in such a way, that
if the algorithm avoids losing H, then the same result is achieved in G.

Definition 2.3 (Reduction). For any two games G and H, we say that f :
PG

A ∪PG
B ∪{winG, loseG} → PH

A ∪PH
B ∪{winH , loseH} is a reduction from game

G to game H if it satisfies the following four conditions:

1. f(initG) = initH , f(winG) = winH , and f(loseG) = loseH

2. f(PG
A) ⊆ PH

A and f(PG
B) ⊆ PH

B
3. (∀a ∈ PG

A)(∀b ∈ MG
A (a))(f(b) ∈ MH

A (f(a)))
4. (∀b ∈ PG

B)(∀c′ ∈ MH
B (f(b)))(∃c ∈ MG

B (b))(f(c) = c′)

We also say that a reduction is computable if there exists an algorithm that
can find

– f(b) for any b ∈ PG
B

– c ∈ MG
B (b) such that f(c) = c′ for any b ∈ PG

B and any c′ ∈ PH
A (f(b))

Theorem 2.4. If f is a reduction from game G to game H, and H is non-
losing, then G is non-losing. Furthermore, if the reduction is computable and we
are given an algorithm for H, this gives an algorithm for G.

Proof. In order to prove that initG ∈ LG implies initH ∈ LH , we prove by
induction on n that (∀a ∈ PG

A)(∀n ∈ N)(a ∈ LG
n =⇒ f(a) ∈ LH

n).
By Definition 2.2, LG

0 = {loseG} and LH
0 = {loseH}. By Condition 1,

f(loseG) = loseH . The basis of the induction thus holds.
For the induction step, suppose that a ∈ LG

n+1. We now need to prove that
f(a) ∈ LH

n+1. By definition of LG
n+1, either position a was already contained in

LG
n or there exists a position b ∈ MG

A (a) such that (∀c ∈ MG
B (b))(c ∈ LG

n). In
the first case, f(a) ∈ LH

n by induction and LH
n ⊆ LH

n+1 by definition of LH
n+1.

In the latter case, let us take an arbitrary b ∈ MG
A (a) such that (∀c ∈

MG
B (b))(c ∈ LG

n). We shall now prove that position f(b) in game H has properties
similar to those of position b in game G.

Condition 3 gives us f(b) ∈ MH
A (f(a)). Condition 4 ensures that (∀c′ ∈

MH
B (f(b)))(∃c ∈ MG

B (b))(f(c) = c′). By induction we already know that (∀c ∈
MG

B (b))(f(c) ∈ LH
n), giving us (∀c′ ∈ MH

B (f(b)))(c′ ∈ LH
n) and thus f(a) ∈

LH
n+1.

Now that we know that a ∈ LG
n+1 implies f(a) ∈ LH

n+1, we simply observe
that if G is losing, then initG is in some LG

n which implies that initH is in LH
n

and thus H is losing.
The resulting algorithm will, when in position b ∈ PG

B , find f(b), observe to
which position c′ ∈ PH

A (f(b)) the algorithm for H moves from f(b), and move
to a position c ∈ MG

B (b) such that f(c) = c′.

246 M. Lieskovský

3 Defining the Games Formally

We view Online Bin Stretching as a game between two players, A and B.
Let us first introduce a version that represents Online Bin Stretching the
most directly. For a given number of bins m and target stretching factor α, we
call this game Real Game(m,α) and it proceeds as follows:

In every round, A either generates an item or resigns. B must then place into
one of the m bins or resign. We keep track of the sequence s of items generated
by A, and their packing t into the bins by B. We restrict A to sequences that
can be packed into m bins of size 1 and B to packings where no bin exceeds load
α, forcing them to resign if they have no other choice.

Definition 3.1 (Real Game). We define Real Game(m,α) as the game G
with the following components:

– each position in PG
A \ {initG} is an ordered triple (n, s, t) where

• n ∈ N is the number of already packed items
• s ∈ (0, 1]n is a sequence of n items that can be packed into m bins of size

at most 1
• t ∈ {1, . . . , m}n such that (∀i)(

∑
j:tj=α sj ≤ 1), which is a packing of

those n items into m bins of size at most α
– each position in PG

B is an ordered triple (n, s, t) where
• n ∈ N is the number of already packed items
• s ∈ (0, 1]n+1 is a sequence of n + 1 items that can be packed into m bins

of size at most 1
• t ∈ {1, . . . , m}n is a packing of the first n items into m bins of size at
most α

– For any position (n, s, t) ∈ PG
A \{initG} the set MG

A ((n, s, t)) of possible moves
by A contains:

• positions (n, (s1, . . . , sn, s′), t) for all s′ ∈ (0, 1] such that the position is
in PG

B
• winG

– The set MG
A (initG) of possible moves by A contains:

• positions (0, (s1), ∅) for all s1 ∈ (0, 1]
• winG

– For any position (n, s, t) ∈ PG
B the set MG

B ((n, s, t)) of possible moves by B
contains:

• positions (n + 1, s, (t0, . . . , tn, t′)) for all t′ ∈ {1, . . . , m} such that the
position is in PG

A
• loseG

Theorem 3.2. An algorithm for Online Bin Stretching with m bins and
stretching factor α exists if a non-losing Real Game strategy exists for B.
Proof. Consider any finite input for Online Bin Stretching. If we have A
play according to the input and the algorithm plays according to B, then at the
end of input no bin exceeds size α.

Better Algorithms for Online Bin Stretching via Computer Search 247

There are several main obstacles to implementing a computer search of Real
Game:

1. A has an infinite selection of item sizes to pick from.
2. By sending arbitrarily small items, A can make Real Game last arbitrarily

many rounds.
3. Computing the maximum size of item A can generate in a given position

requires solving Bin Packing Problem, which is NP-hard.

In order to avoid these problems, we analyse a simplified version of Real
Game that we shall call Rounded Game. We then construct a computable
reduction from Real Game to Rounded Game, proving that a winning strat-
egy for B in Rounded Game implies an algorithm for Online Bin Stretch-
ing. We do this by defining Rounded Game such that it corresponds to Online
Bin Stretching where B is restricted in its decision-making process and A is
permitted to cheat to a limited extent.

In essence, A only informs B about the item sizes and bin loads after rounding
them. A is then allowed to modify the real values afterwards as long as they
remain consistent with what B was told. The branching factor of the game is
thus reduced to the granularity of the rounding. This makes it possible to analyse
Rounded Game using computer search at the price of a lack of a winning
strategy for B no longer resulting in new lower bounds. Perhaps surprisingly,
these modifications do not prevent us from finding new algorithms for Online
Bin Stretching. We shall now first describe and define Rounded Game,
then explain the connection to Real Game and finally describe the reduction
between them.

An instance of Rounded Game is parameterised by three values—the num-
ber of bins m, the granularity level k and the target bin size z. In every round of
Rounded Game(m, k, z), A generates an item of integer size x which B must
then place into one of the m bins. Finally, A chooses whether the load of that
bin increased by x or x − 1. We call the latter case an underflow. We keep track
of the current loads of the individual bins, not letting any exceed z, and of the
multiset of item sizes we have seen so far. B may claim victory when the total
load of the bins exceeds m(k + 1) − 1 or, after decreasing the size of each item
by 1, the items do not fit into m bins of size k − 1. We define these promises
formally below as (A) and (B) and will refer to them later. Finally, B must resign
if it cannot claim victory and an item cannot be packed without a bin exceeding
load z.

Definition 3.3 (Rounded Game). We define Rounded Game(m, k, z) as
the game H with components as follows:

– Each position in PH
A \ {initH} is an ordered triple (v, w, u) where

• v is a multiset of integers from {1, . . . , k} representing item sizes
• w ∈ {0, . . . , z}m is an m-tuple representing the current loads of the indi-
vidual bins

• u ∈ {1, . . . , m} represents the index of the bin the last item was placed
into

248 M. Lieskovský

– Each position in PH
B is an ordered triple (v, w, x) where

• v and w are the same as for PH
A

• x ∈ v is the size of the last generated (and not yet packed) item
– For any position (v, w, u) ∈ PH

A \ {initH} the set MH
A ((v, w, u)) of possible

moves by A contains:
• positions (v∪{x}, w′, x) for all x ∈ {1, . . . , k} such that w′

u ∈ {wu, wu−1}
and w′

i = wi for all i �= u, and the position is in PH
B

• winH

– The set MH
A (initH) of possible moves by A contains:

• positions ({x}, (0, . . . , 0), x) for all x ∈ {1, . . . , k} such that the position
is in PH

B
• winH

– For any position (v, w, x) ∈ PH
B the set MH

B ((v, w, x)) of possible moves by B
contains:

• positions (v, w′, u) for all u ∈ {1, . . . , m} such that w′
u = wu + x and

w′
i = wi for all i �= u, and the position is in PH

A
• loseH

• winH if either of the following two promises is broken:
(A) the total load of the bins

∑
i∈{1,...,m} wi is at most m(k + 1) − 1

(B) after decreasing the size of each item by 1, the items fit into m bins
of size k − 1

We now need to find a reduction from Real Game to Rounded Game.
Consider how we could modify Real Game to make it possible to solve via
computer search. Since we cannot restrict the items A has at their disposal to
a finite number of types, we instead restrict information B has about the game
state. We scale the problem to avoid working with fractional values, selecting a
granularity k ∈ N and target bin size z ∈ N, which will allow us to analyse Real
Game with stretching factor α = z/k.

We now provide B with item sizes and bin loads which have been rounded
by function round(x) = kx� instead of their real loads. Due to the uncertainty
about the real sizes, placing an item of rounded size x into a bin of rounded load
y might result in the new rounded load being merely x + y − 1 instead of x + y.
We call this effect an underflow. In order to ensure we do not restrict A, we let
A decide whether that has happened on their following turn.

The game ends with B losing whenever the rounded load of any bin exceeds z
as this corresponds to that bin having a real load higher than z/k. On the other
hand, B gets the option to claim victory when one of the promises defined above
is broken, as this implies that A is cheating in Real Game. Breaking promise
(A) means that the real total size of all items exceeds m, which is not possible
in Real Game. Since round(x) − 1 < kx, breaking promise (B) means that the
real items cannot be packed into m bins of size 1, which is also not possible in
Real Game.

Definition 3.4. With the above in mind, we define round(x) = kx� and con-
struct the reduction f from G to H where G is Real Game(m, z/k) and H is
Rounded Game(m, k, z) as follows:

Better Algorithms for Online Bin Stretching via Computer Search 249

– f(initG) = initH , f(winG) = winH , and f(loseG) = loseH

– For any (n, s, t) ∈ PG
A \ {initG} we define f((n, s, t)) = (v, w, u) where:

• v is the multiset {round(s1), . . . , round(sn)}
• u = tn
• wu = min(z, round(

∑
j:tj=u∧j �=n sj) + round(sn))

• wi = round(
∑

j:tj=i sj) for i �= u

– For any (n, s, t) ∈ PG
B we define f((n, s, t)) = (v, w, x) where:

• v is the multiset {round(s1), . . . , round(sn)}
• x = round(sn+1)
• wi = round(

∑
j:tj=i sj) for all i

Lemma 3.5. For any position a = (n, (s1, . . . , sn), t) ∈ PG
A \ {initG} and any

successor position (n, (s1, . . . , sn, s′), t) ∈ MG
A (a) \ {winG}, let u = tn, wu =

min(z, round(
∑

j:tj=u∧j �=n sj)+round(sn)), and w′
u = round(

∑
j:tj=u sj). Then

w′
u ∈ {wu, wu − 1}.

Proof. First, observe that round(
∑

j:tj=u∧j �=n sj) + round(sn) is equal to either
round(

∑
j:tj=u sj) or round(

∑
j:tj=u sj)+1. This proves the lemma for all cases

where round(
∑

j:tj=u∧j �=n sj) + round(sn) ≤ z. Since
∑

j:tj=u sj is at most z/k,
round(

∑
j:tj=u sj) must be at most z, and therefore round(

∑
j:tj=u∧j �=n sj) +

round(sn) is z + 1 only if round(
∑

j:tj=u sj) is z.

Theorem 3.6. The function f , as defined by Definition 3.4, is indeed a reduc-
tion from Real Game(m, z/k) to Rounded Game(m, k, z). Furthermore, this
reduction is computable and any algorithm for Rounded Game(m, k, z) thus
gives an algorithm for Real Game(m, z/k).

Proof. Let us go over the conditions from Definition 2.3.
Condition 1 obviously holds.
Condition 2:

– All round(si) are in {1, . . . , k} as all items in Real Game are of size ≤ 1.
Thus {round(s1), . . . , round(sn)} is a multiset of integers from {1, . . . , k}.

– Since
∑

j:tj=u sj is at most z/k, min(z, round(
∑

j:tj=u∧j �=n sj) + round(sn))
and round(

∑
j:tj=i sj) are always in {0, . . . , z}.

– tn is always in {1, . . . , m}.

Condition 3:

– Let us consider a move from a ∈ PG
A to b ∈ MG

A (a).
– The condition obviously holds whenever b = winG.
– If a = initG, then:

• f(a) is initH .
• Any b ∈ MG

A (initG) \ {winG} is (0, (s1), ∅) for some s1 ∈ (0, 1].
• f(b) is ({round(s1)}, (0, . . . , 0), round(s1)).
• Since round(s1) ∈ {1, . . . , k}, we get f(b) ∈ MH

A (f(a)).
– If a is some (n, (s1, . . . , sn), t) from the set PG

A \ {initG}, then:

250 M. Lieskovský

• f(a) is ({round(s1), . . . , round(sn)}, w, u)
• Any position b from MG

A (a)\{winG} is (n+1, (s1, . . . , sn, s′), t) for some
s′ ∈ (0, 1].

• f(b) is ({round(s1), . . . , round(sn), round(s′)}, w′, round(s′)) where
w′

i = wi for all i �= u and, by Lemma 3.5, w′
u ∈ {wu, wu − 1}.

• Since round(s′) ∈ {1, . . . , k}, we get f(b) ∈ MH
A (f(a)).

Condition 4:

– Let us consider some b ∈ PG
B and c′ ∈ MH

B (f(b)).
– The condition obviously holds whenever c′ = loseG.
– Since neither of the two promises is ever broken in state f(b), there are no

moves from any f(b) to winG.
– If b = (n, (s1, . . . , sn, sn+1), ()), then

• f(b) = ({round(s1), . . . , round(sn+1)}, w, round(sn+1)).
• Any position c′ ∈ MH

B (f(b)) is either contained in {winG, loseG} or is
({round(s1), . . . , round(sn+1)}, w′, u) for some u ∈ {1, . . . , m}, where:

* By definition of f(b), wi = round(
∑

j:tj=i sj) ≤ z for all i.
* By definition of MH

B (f(b)), w′
i = wi ≤ z for all i �= u and w′

u =
wu + round(sn+1) ≤ z.

• For any c′ ∈ MH
B (f(b)), since w′

i ≤ z, we know that
∑

j:tj=i sj ≤ z/k for
all i and thus c = (n + 1, (s1, . . . , sn, sn+1), (, u)) is in MG

B (b).

We also observe that f(a) is easily computable for any position a and MG
B (b) is

easily computable for any b ∈ PG
B , making the entire reduction computable.

In order to analyse the game using computer search, we employ some fur-
ther modifications of the game, which will be described in the following section.
However, those modifications are much simpler.

4 Computer Search

Let us first describe the simple modifications of the game that we use to make
the computer search easier.

Rounded Game still has an infinite number of states due to not placing
any limit on the number of items of rounded size 1 as long as almost all of them
underflow. To avoid this problem, we do not include items of size 1 in v, thus
ensuring that the number of positions is finite. This is obviously a reduction as
items of size 1 never affect the set of possible moves. However, this reduction
causes the game to include cycles among the states, caused by adding an item
of rounded size 1 and then having it underflow.

In order to prevent these cycles, we forbid A from making the move from
any (v, w, u) to (v, w′, 1) where w′

u = wu − 1. While this is not a reduction, we
can observe that if A has a winning strategy, then A also has a winning strategy
that never makes such a move. This is because B can pack the new item of size 1
into bin u, returning the game to position (v, w, u). We are now guaranteed that

Better Algorithms for Online Bin Stretching via Computer Search 251

the sum of wi is strictly increasing with every pair of successive moves, ensuring
that the game takes at most O(mk) moves.

The computer search uses special game positions which occur after A chooses
whether an underflow occurred and before they select the size of the next item.
This is because such positions are completely described by the multiset of items
and the m-tuple of current loads, minimizing the number of positions to analyse.
Instead of forbidding, as per the previous paragraph, the generation of an item
of rounded size 1 after an underflow, we can now forbid the underflowing of items
of size 1 with very similar reasoning.

We can now describe the basic version of our computer program, which
searches for a strategy that would allow B to win Rounded Game(m, k, z)
where m, k and z are, for the purposes of the program, global constants. We
have two helper functions:

– Check takes a multiset of item sizes and checks whether promise (B) was
broken

– Add takes (w, x, u) and returns a copy of w with wu increased by x

The program is then a straightforward application of the MiniMax algorithm
first described by von Neumann [11]. Ultimately, if our search returns True
for the initial game state, the whole Rounded Game is winnable for B, an
algorithm for Online Bin Stretching corresponding to the winning strategy
exists and therefore αm ≤ s/k.

5 Optimizations

We observe that permuting the bins does not affect the game significantly. We
thus have the helper function Add sort the bins by their load, decreasing the
number of states. This is trivially a reduction. By sorting the bins in decreasing
order, the search tries BestFit first, further improving overall computation
time.

We implemented custom caching of results for Solve. Since caching for all
possible game states used too much memory, we made use of the fact that, for
a given game state, we can often find either a less favourable game state that
we managed to win previously or a more favourable game state that we could
not win. LRU caching was tried and was clearly inferior when compared to the
following custom caching approach.

Definition 5.1 (Order on v). We define v1 � v2 to be true if the items from
v1 can fit into bins with sizes corresponding to the items in v2 after decreasing
all rounded sizes in both multisets by 1.

Theorem 5.2. If v1 � v2, then Solve(v1, w) implies Solve(v2, w)

Proof. If v1 � v2, then v1 ∪ v′ breaking promise (B) implies v2 ∪ v′ breaking
promise (B) for any multiset of items v′. Otherwise we could pack items of v1
into the spaces occupied by the items of v2, showing that v1 ∪ v′ does not break
promise (B) after all.

252 M. Lieskovský

Algorithm 1. Computer search for a winning strategy for Rounded Game

1: function Solve(v, w) � Return True iff position is winnable.
2: remaining = m(k + 1) − ∑

(wi) − 1 � This ensures promise (A).
3: if remaining + min(w) < z then return True � Put all into emptiest bin.
4: end if
5:
6: limit = min(remaining, k) � Upper bound on largest item that does not let B

win.
7:
8: for item ∈ {1, . . . , limit} do � If there exists an item size...
9: v′ = v ∪ {item}

10: result = False
11: for bin ∈ {1, . . . , m} do � ...which cannot be packed into any bin...
12: w′ = Add(w, item, bin)
13: w′′ = Add(w, item − 1, bin)
14: if Solve(v′, w′) ∧ (item == 1 ∨ Solve(v′, w′′)) then
15: result = True
16: break
17: end if
18: end for
19: if not result and not Check(v) then � ...and B cannot claim victory...
20: return False � ...then declare this position lost.
21: end if
22: end for
23: return True
24: end function

For any given w, we now store only the set of minimal v for which Solve(v, w)
is True and the set of maximal v for which Solve(v, w) is False. When evaluating
Solve(v, w), we query the cache for that w, checking if there is any v′ � v for
which we know Solve(v′, w) to be True, or there is any v′′ � v for which we
know Solve(v′, w) to be False. This is done after line 4 of the algorithm. If the
position needs to be evaluated further, we add v to the relevant cache before
returning the result and remove any v′ made redundant by it.

The comparisons between v are implemented by generalising the function
Check. Indeed, the original use of Check corresponds to comparing v to m
items of rounded size k.

The (now generalised) helper function Check is relatively computation-
ally intensive. We preprocess the input to remove some easy cases and then
use dynamic programming, which proved faster than using an ILP. Results are
cached to avoid repeated computation.

As a final optimisation, the program stores all rounded sizes already
decreased by 1 to simplify some formulae and avoid off-by-one errors.

These optimizations are how we achieved our results. The code is available
on Github [10].

Better Algorithms for Online Bin Stretching via Computer Search 253

6 Conclusions

We found new algorithms for Online Bin Stretching on 4, 5, 6, 7 and 8 bins.
Perhaps surprisingly, these new algorithms were found using discrete computer
search, despite the problem inherently using real-valued input. This was possible
thanks to a reduction from a game with infinite depth and branching factor to
a game with both depth and branching factor being O(mk) where m is the
number of bins and k is our chosen granularity. We expect that these techniques
will prove to be useful for other similar problems.

Acknowledgements. We would like to thank Martin Böhm for consultation and the
reviewers for their valuable feedback.

References

1. Azar, Y., Regev, O.: On-line bin-stretching. Theoret. Comput. Sci. 268(1), 17–41
(2001)

2. Böhm, M., Sgall, J., van Stee, R., Veselý, P.: A two-phase algorithm for bin stretch-
ing with stretching factor 1.5. J. Comb. Optim. 34, 810–828 (2017)

3. Böhm, M., Simon, B.: Discovering and certifying lower bounds for the online bin
stretching problem. arXiv:2001.01125 (2020)

4. Gabay, M., Brauner, N., Kotov, V.: Improved lower bounds for the online bin
stretching problem. 4OR 15, 183–199 (2017)

5. Gabay, M., Brauner, N., Kotov, V.: Semi-online bin stretching with bunch tech-
niques. Theoret. Comput. Sci. 602, 103–113 (2015)

6. Garey, M. R., Graham, R. L., Ullman J. D.: Worst-case analysis of memory alloca-
tion algorithms. In: Proceedings of the Fourth Annual ACM Symposium on Theory
of Computing, STOC’72, pp. 143–150 (1972)

7. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the
partition problem. Oper. Res. Lett. 21(5), 235–242 (1997)

8. Kellerer, H., Kotov, V.: An efficient algorithm for bin stretching. Oper. Res. Lett.
41(4), 343–346 (2013)

9. Lhomme, A., Romane, O., Catusse, N., Brauner, N.: Online bin stretching lower
bounds: Improved search of computational proofs. arXiv:2207.04931 (2022)

10. Lieskovský, M.: BinStretchingAlgorithmicSearch: Computer search for better
bounds on the bin stretching problem. Github code repository. https://github.
com/MatejLieskovsky/BinStretchingAlgorithmicSearch

11. von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Mathematische Annalen
100, 295–320 (1928)

http://arxiv.org/abs/2001.01125
http://arxiv.org/abs/2207.04931
https://github.com/MatejLieskovsky/BinStretchingAlgorithmicSearch
https://github.com/MatejLieskovsky/BinStretchingAlgorithmicSearch

Competitive Searching over Terrains

Sarita de Berg1, Nathan van Beusekom2(B), Max van Mulken2,
Kevin Verbeek2, and Jules Wulms2

1 Utrecht University, Utrecht, The Netherlands
S.deBerg@uu.nl

2 TU Eindhoven, Eindhoven, The Netherlands
{n.a.c.v.beusekom,m.j.m.v.mulken,k.a.b.verbeek,j.j.h.m.wulms}@tue.nl

Abstract. We study a variant of the searching problem where the envi-
ronment consists of a known terrain and the goal is to obtain visibility
of an unknown target point on the surface of the terrain. The searcher
starts on the surface of the terrain and is allowed to fly above the terrain.
The goal is to devise a searching strategy that minimizes the competitive
ratio, that is, the worst-case ratio between the distance traveled by the
searching strategy and the minimum travel distance needed to detect the
target. For 1.5D terrains we show that any searching strategy has a com-
petitive ratio of at least

√
82 and we present a nearly-optimal searching

strategy that achieves a competitive ratio of 3
√

19/2 ≈ √
82+0.19. This

strategy extends directly to the case where the searcher has no knowledge
of the terrain beforehand. For 2.5D terrains we show that the optimal
competitive ratio depends on the maximum slope λ of the terrain, and
is hence unbounded in general. Specifically, we provide a lower bound
on the competitive ratio of Ω(

√
λ). Finally, we complement the lower

bound with a searching strategy based on the maximum slope of the
known terrain, which achieves a competitive ratio of O(

√
λ).

1 Introduction

The development of autonomous mobile systems has garnered a lot of attention
recently. With self-driving cars and autonomous path-finding robots becoming
more commonplace, the demand for efficient algorithms to govern the decision-
making of these systems has risen as well. A class of problems that naturally
arises from these developments is the class of searching problems, also known as
searching games: given an environment, move through the environment to find
a target at an unknown location. Many variants of this general problem have
been studied in literature, typically differing in the type of search environment,
the way the searcher can move through the environment, and the way the target
can be detected. In this paper we consider a variant of the problem that is
motivated by searching terrains using a flying (autonomous) drone with mounted
cameras/sensors, as for example in search-and-rescue operations. Specifically, our
environment is defined by a height function Td : Rd → R. For d = 1 we refer
to the terrain as a 1.5D terrain, and for d = 2 we refer to the terrain as a 2.5D

This research was initiated at the 6th Workshop on Applied Geometric Algorithms
(AGA 2023), Otterlo, The Netherlands, April 7–21, 2023.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 254–269, 2024.
https://doi.org/10.1007/978-3-031-55598-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_17&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_17

Competitive Searching over Terrains 255

p0

t

pt

Fig. 1. Our searching strategy starts from p0 and then follows the blue searching path.
When the searcher reaches pt, it can see the target t. (Color figure online)

terrain. We omit the dimension d from the terrain function Td when it is clear
from the context. The terrain is known to the searcher, and the searcher can fly
anywhere above the terrain. The target t is discovered if it can be seen by the
searcher along a straight line. The goal is to devise a searching strategy (that is, a
search path) that finds the (unknown) target t as quickly as possible (see Fig. 1).
To the best of our knowledge, this natural variant of the searching problem has
not been studied before.

As is common for searching problems, we analyze the quality of the searching
strategy using competitive analysis. For that we consider the ratio between the
travel distance using our searching strategy and the minimum travel distance
needed to detect that target. The maximum value of this ratio over all possible
environments and all possible target locations is the competitive ratio c of the
searching strategy. The goal is to find a searching strategy that minimizes c.

Related Work. Searching problems have been studied extensively in the past
decades. Here, we mostly restrict ourselves to searching problems with a geomet-
ric environment and continuous motion. One of the most fundamental searching
problems is that of searching on an infinite line, where the target is detected
only when the searcher touches it. The following optimal strategy for this prob-
lem was discovered by Beck and Newman [3]: assuming that the distance to the
target is at least one, we first move one to the right from the starting point.
Next, we move back to the starting point and then move two to the left. We
then repeat this process, alternating between moving to the right and left of the
starting point, every time doubling the distance from the starting point. This
searching strategy has a competitive ratio of 9, which is optimal for this problem.

In subsequent work, researchers have studied searching problems for many
other different environments, including lines and grids [1], line arrangements [9],
and graphs [7,8]. Other variants include searching on a line when an upper bound
on the distance to t is known [6,15], when turns contribute to the cost of the
solution [11], or when there are multiple searchers [2].

In settings where the environment is 2-dimensional (or higher), it is not pos-
sible to visit every point in the environment, and hence we need to consider

256 S. de Berg et al.

different ways of detecting the target. In these settings, the target is often con-
sidered detected if it can be seen directly from the searcher’s position along a
straight, unobstructed line. One example is the problem of finding a target point
t inside a simple polygon P with n vertices [21]. For this problem the optimal
competitive ratio is unbounded, as it necessarily depends on n [22,25]. As a
result, researchers have explored this searching problem for special sub-classes
of polygons where a constant competitive ratio can be achieved. A polygon P is
considered a street if there exist two vertices s and t on its border such that the
two boundary chains leading from s to t are mutually weakly visible. Searching
for an unknown point in a street can be done with an optimal competitive ratio
of

√
2 [18,20]. There is ample further work on searching problems in variants of

streets [10,23,26], star-shaped polygons [17,24], or among obstacles [5,19]. For a
comprehensive overview of these variants, see [13]. Specifically, López-Ortiz and
Schuierer [24] obtain a competitive ratio of 11.51 for star-shaped polygons; note
that 1.5D terrains are a special type of unbounded star-shaped polygons.

Other problems strongly related to searching problems are the exploration
problems, for which the goal is to move through the interior of an unknown envi-
ronment to gain visibility of its entire interior. Here, the competitive ratio relates
the length of the searching strategy to the shortest watchman tour. An unknown
simple polygon can be fully explored with competitive ratio 26.5 [16]. For poly-
gons with holes, the competitive ratio is dependent on the number of holes [12],
whereas in a rectilinear polygon without holes a competitive ratio as low as 3/2
can be achieved [14]. Complementary to this problem is the exploration of the
outer boundary of a simple polygon, where a 23.78 or 26.5 competitive ratio can
be achieved for a convex or concave polygon, respectively [27].

Contributions. Given a starting position p0 on the surface of the terrain (we
assume without loss of generality that p0 is at the origin and that Td(p0) = 0),
the goal is to devise an efficient searching strategy to find an unknown target
point t on the surface of the terrain, where the searcher can detect t if it is visible
from the searcher’s position along a straight unobstructed line (see Fig. 1). In
our problem the searcher is not restricted to the surface of the terrain, but it is
allowed to move to any position on or above the terrain.

In Sect. 2 we consider the problem for 1.5D terrains. We first prove that
any searching strategy for this problem must have a competitive ratio of at
least

√
82. We then present a searching strategy with a competitive ratio of

3
√

19/2 ≈ √
82 + 0.19. Our searching strategy is a combination of the classic

searching strategy on an infinite line with additional vertical movement.
In Sect. 3 we consider the problem for 2.5D terrains. We show that no search-

ing strategy can achieve a bounded competitive ratio, as the competitive ratio
necessarily depends on the maximum slope, or Lipschitz constant, λ of the ter-
rain function. Specifically, we show that the competitive ratio of any searching
strategy is at least Ω(

√
λ). We then present a novel searching strategy that

achieves a competitive ratio of O(
√

λ), being asymptotically optimal in λ.
In our searching problems we assume that the terrain Td is known to the

searcher. In Sect. 4 we conclude that our strategy for a 1.5D terrain is directly

Competitive Searching over Terrains 257

applicable if this is not the case, and discuss to what degree the results for the
2.5D case extend as well. Omitted proofs can be found in the full version [4].

2 Competitive Searching on 1.5D Terrains

In this section we consider our searching problem on a 1.5D terrain, defined by
the height function T1. For 1.5D terrains, the visibility region Vis(t) of a target
t can be defined as the set of all points q for which the line segment tq does
not properly intersect the terrain. That is, the region that contains all points
that can see t. There is a half-line originating from t that needs to be crossed to
enter Vis(t) (see Fig. 1). We call this half-line a visibility ray. Thus, the goal of
any searching strategy on 1.5D terrain is to enter Vis(t) by crossing a visibility
ray r originating at the target point t. We first establish a lower bound on the
competitive ratio of any searching strategy.

Theorem 1. The competitive ratio for searching on 1.5D terrains is at
least

√
82.

Proof. Consider a terrain with pits at integer x-coordinates that have infinite
slope, and thus cast (near-)vertical visibility rays. Furthermore, there is a rect-
angular mountain infinitely far away casting a horizontal visibility ray at some
height h (see Fig. 2). Because of the lower bound of 9 on the competitive ratio for
searching on a line [3], there must be a pit at distance d such that the distance
covered by the optimal strategy for searching on a line is 9d. We set h = d.

Now consider a search path P for this terrain. If P does not reach height h
after covering a horizontal distance of 9d, then P travels a distance of more than√

81d2 + h2 =
√

82d before reaching the horizontal ray at height h, resulting in
a competitive ratio of more than

√
82. Otherwise, P travels a distance of at least√

81d2 + h2 =
√

82d before reaching the pit at distance d. Hence the competitive
ratio of P is at least

√
82. ��

Searching Strategy. Our strategy is based on the classic searching strategy
on an infinite line with additional vertical movement. Specifically, we construct
a projected path P ∗ that acts as a guide for the actual searching path P . In
the description of our strategy we make use of infinitesimally small steps at
the start, as this simplifies the description and analysis. We later mention how
to avoid this and make our strategy feasible in practice, under the assumption
that the length of the shortest path to the target is bounded from below by

p0

Fig. 2. The lower bound construction for the 1.5D case.

258 S. de Berg et al.

p0

t

pt

Vis(t)

ST

r

Fig. 3. The strategy P (blue) and the projected path P ∗ (gray). The goal is seen at pt.
(Color figure online)

some positive constant. Starting from p0, P ∗ moves diagonally with slope s to
one side, for a horizontal distance of ε, and then moves back to x = 0, again
with slope s. Subsequently, P ∗ alternates between moving left and right of p0,
doubling the horizontal distance when moving away from p0, and always using
slope s. As a result, P ∗ consists of xy-monotone segments, and turning points
where the x-direction swaps. Specifically, P ∗ is defined by the following functions
for i ∈ Z:

hi
r(x) = s · (2i + x) for i odd and − 2i−2 ≤ x ≤ 2i−1,

hi
�(x) = s · (2i − x) for i even and − 2i−1 ≤ x ≤ 2i−2.

We call the line segments hi
r the right segments of P ∗, and the line segments

hi
� the left segments of P ∗. Observe that for two consecutive segments, the values

at the ends of the domains coincide, which results in P ∗ being a connected path.
Specifically, we get hi

r(2
i−1) = hi+1

� (2(i+1)−2) and hi−1
� (−2(i−1)−1) = hi

r(−2i−2).
The actual search path P follows P ∗ (see Fig. 3). Whenever P hits the terrain, it
follows the terrain upwards until it can continue moving diagonally with slope s
again. This diagonal part of P does not coincide with P ∗, so once P hits P ∗, P
starts following P ∗ again. Observe that P still consists of xy-monotone polyg-
onal chains and turning points, albeit both can differ from P ∗. We refer to the
monotone chains of P as right and left subpaths of P , when they are monotone
in the positive and negative x-direction, respectively. We also refer to a line seg-
ment in such a right or left subpath as a left or right segment. We will choose s
later to optimize the resulting competitive ratio.

Preliminaries and Definitions. The target t can be seen from any point in
Vis(t). We consider all possible visibility rays r(sr, dr) that can separate Vis(t)
and p0, where sr is the slope of r in the positive x-direction, and dr is the distance
between r and p0.

Let S be the line segment between p0 and r that is perpendicular to r, so
|S| = dr. Furthermore, let ST be the shortest geodesic path from p0 to r, taking

Competitive Searching over Terrains 259

the terrain T into account. If S does not properly intersect T , then |ST | = dr.
Note that the last line segment of ST is perpendicular to r. Finally, let pt ∈ P
be the point where P crosses r to enter Vis(t).

We define τ(r) as the distance traversed over P until r is crossed, i.e. from p0
until pt, and c(r) = τ(r)

|ST | as the competitive ratio to cross a ray r. To simplify our
proofs, we additionally introduce the following definitions. Let pt = (x, y), then
we define τ∗(r) = y

√
1 + s2/s. So, τ∗(r) is the length of a path with slope s up

to height y. When P deviates from P ∗, the projected path is intersected by T
and hence P is steeper than P ∗. It follows that τ(r) ≤ τ∗(r). We use the ratio
c∗(r) = τ∗(r)

|ST | in our proofs, and analyze the maximum of c∗(r) over all instances
to bound the competitive ratio of our searching strategy from above.

For computing the competitive ratio, we only need to consider visibility rays
originating from one side. This is due to the symmetric nature of our strategy:
we can take any instance with a visibility ray originating left of p0, and transform
it into a case equivalent to having the visibility ray originating from the right
of p0. We achieve this by scaling all distances in P ∗ by 2 to get the horizontally
symmetrical path. To see this observe that for −2i−2 ≤ x ≤ 2i−1 and x′ = −x

hi
r(x) = s · (2i + x) = 2 · s · (2i−1 + x/2) = 2 · hi−1

� (x′/2).

Additionally, we mirror T horizontally in p0, hence r is also mirrored with respect
to p0. We thus consider only visibility rays that originate to the right of p0.

Finally, since T is a height function, the visibility region of any point above
the terrain includes the vertical ray cast upwards from that point. Thus, for the
visibility ray r that separates Vis(t) from p0 it holds that sr ≤ 0.
Proof Structure. To determine the competitive ratio of our searching strategy,
we analyze the competitive ratio in a worst-case instance (T, r) for c∗(r), where
T is the terrain and r = r(sr, dr) is the visibility ray from the target. To that end
we first establish several properties that must hold in some worst-case instance.
To exclude various instances from consideration, we can use the following lower
bound on the competitive ratio of our strategy. A competitive ratio below this
bound would contradict the lower bound for searching on a line [3].

Lemma 1. The competitive ratio c∗(r) is at least 9
√

1 + s2.

We show that a worst-case instance (T, r(sr, dr)) has the following properties:

– The ray r is arbitrarily close to a turning point p ↪→of P when pt lies on a
right subpath (Lemma 4).

– The ray r satisfies sr ≤ −s and pt lies on a right subpath (Lemma 5).
– If p ↪→is not a turning point of P ∗, and thus a local maximum ∧ of T intersects

P ∗ before p ↪→, then ∧ is at p ↪→and r is vertical (Lemma 6).
– If p ↪→coincides with a turning point of P ∗, then r is vertical (Lemma 10).

After establishing these properties, the remaining cases can easily be analyzed
directly in the proof of Theorem 2.
Close to Turning Point. We first prove two lemmata that help us establish the
properties indicated above. Lemma 2 follows from the quotient rule of derivatives.

260 S. de Berg et al.

Lemma 2. Let f, g, h : R>0 → R>0 be differentiable functions such that f(x) =
g(x)
h(x) and dg

dx , dh
dx > 0 for any x > 0. Then, df

dx < 0 if and only if dg
dx/dh

dx < f(x).

Lemma 3. Let (T, r(sr, dr)) be an instance where pt lies on a right subpath of
P with slope s, and let c∗(dr) = τ∗(r)

|ST | . If 1
9 < s ≤ 1, then dc∗

ddr
< 0.

Proof. By Lemma 2, to prove dc∗
ddr

< 0 it is sufficient to show that dτ∗(r)
ddr

/d|ST |
ddr

<

c∗(dr). Since d|ST |
ddr

≥ 1, we get that dτ∗(r)
ddr

/d|ST |
ddr

≤ dτ∗(r)
ddr

. Consider decreasing
dr, i.e., moving the ray r towards the origin. If s ≤ 1, we can bound the ratio
between the change in τ∗(r) and the change in dr as follows.

dτ∗(r)
ddr

≤
√

s2 + 1
s

< 9
√

1 + s2 ≤ c∗(dr)

The second step holds for s > 1
9 , and the final step follows from Lemma 1. ��

Thus, as long as pt lies on a right subpath of P , decreasing dr increases c∗(r).

Lemma 4. In a worst-case instance (T, r(sr, dr)) where pt lies on a right sub-
path of P , if 1

9 < s ≤ 1, then r is infinitesimally close to a turning point of P .

Proof sketch. Assume for contradiction that r is not infinitesimally close to a
turning point. Then either we can move ray r closer to the origin and increase
the competitive ratio by Lemma 3, leading to a contradiction, or r reaches a
segment of P of slope greater than s. In the latter case, either the competitive
ratio is below the lower bound of Lemma 1, or we can alter T without decreas-
ing the competitive ratio, and apply Lemma 3 again. Both cases contradict
that (T, r(sr, dr)) is a worst-case instance. ��

Flat Visibility Rays. Next, we deal with all visibility rays r(sr, dr) for which
sr > −s, which we call flat visibility rays. All other visibility rays, which have a
slope of at most −s, we define as steep visibility rays. We show that r is never
flat in a worst-case instance, and pt must then lie on a right subpath of P .

Lemma 5. In a worst-case instance (T, r(sr, dr)), if 2
9 < s ≤ 1 then sr ≤ −s

and pt lies on a right subpath of P .

Proof sketch. Assume for contradiction that sr > −s or that pt lies on a left
subpath of P . In the former case, pt can lie on a right or a left subpath. If pt lies
on a right subpath, Lemma 4 implies that in the worst case pt lies infinitesimally
close to a left subpath, so we can apply Lemma 3 until the analysis in the next
case applies. If pt lies on a left subpath, then we can show that the competitive
ratio is below the lower bound of Lemma 1, contradicting that (T, r) is a worst-
case instance. A similar argument applies when pt lies on a left subpath and
sr ≤ −s, proving the latter case. ��

From now on, we thus consider only steep visibility rays with pt on a right sub-
path. Let p ↪→denote the turning point infinitesimally close to r. Note that p ↪→

must lie on the final left segment of P ∗ that is on the search path. We denote
this segment by h

↪→

� .

Competitive Searching over Terrains 261

Obstructed Search Path. For
steep visibility rays, first consider the
case where p ↪→is not a turning point
of P ∗, i.e. T obstructs the right seg-
ment before h

↪→

� (see figure). We
call a local maximum of T a peak,
denoted by ∧. We prove that a worst-
case instance (T, r) has the following
three properties.

1. If a peak lies on P ∗ at p ↪→, then the visibility ray r is vertical (Lemma 7);
2. if the visibility ray r is vertical, then a peak lies on P ∗ at p ↪→(Lemma 8);
3. either a peak lies on P ∗ at p ↪→, or the visibility ray r is vertical (Lemma 9).

The following lemma follows directly from the above statements.

Lemma 6. Let (T, r(sr, dr)) be a worst-case instance where p ↪→is not a turning
point of P ∗. If 2

9 < s < 4
9 , then a peak lies on h

↪→

� at p ↪→, and sr = −∞.

Next we prove Lemmata 7-9, to prove Lemma 6. Let (T, r(sr, dr)) be a worst-
case instance where p ↪→is not a turning point of P ∗ and let ∧ be the last peak on
P before p ↪→. By Lemmata 4 and 5, r is steep and infinitesimally close to p ↪→.
Lemma 7. If the peak ∧ lies on left segment h

↪→

� of P ∗, and hence coincides
with p ↪→, then r is vertical.

Proof. Assume for contradiction that ∧ coincides with p ↪→and that r is not
vertical. We distinguish between two cases: either the line segment through p0
perpendicular to r passes above p ↪→, or not. In the former case, we construct
the terrain T ′ from T by moving ∧ leftwards along h

↪→

� , until we are in the
latter case. This does not affect c∗(r). In the latter case, we rotate r around p ↪→

to become more vertical, resulting in a higher competitive ratio: ST becomes
smaller and τ∗(r) becomes larger. This contradicts that (T, r) is worst case. ��
Lemma 8. If r is vertical, then the peak ∧ lies on left segment h

↪→

� of P ∗, and
hence coincides with p ↪→, for s < 4

9 .

Proof. Assume for contradiction that r is vertical and that ∧ does not lie on left
segment h

↪→

� . The height value of T at the x-coordinate of ∧ can be increased
towards P ∗, so that ∧ will lie slightly higher. This changes P , as the turning
point p ↪→moves to the left by some arbitrarily small distance d (see Fig. 4). By
Lemma 3, in the worst case r also moves to the left by distance d. Due to the
slope s of P ∗, ∧ must have been moved up by a distance of 2ds. This means
|ST | decreases by at least d, due to r moving to the left and being vertical, and
increases by at most 2ds, due to ∧ moving up: in total |ST | decreases by at least
d(1 − 2s) > 0, for s < 1/2.

On the other hand, τ∗(r) also decreases. With r moving d towards ∧,
τ∗(r) decreases by d

√
1 + s2. We now consider the ratio dτ∗(r)

d∧ /d|ST |
d∧ ≤ d

√
1+s2

d(1−2s)

262 S. de Berg et al.

between the decrease of τ∗(r) and |ST |. As this ratio is below the lower bound
of 9

√
1 + s2 of Lemma 1 for s < 4/9, Lemma 2 implies that slightly moving ∧

towards h

↪→

� increases c∗(r), contradicting that (T, r) is a worst-case instance. ��

Fig. 4. Moving ∧ upwards causes p ↪→to
move left. If p ↪→moves a horizontal dis-
tance d, then ∧ must have moved 2ds.

Fig. 5. By moving local maximum ∧ to
the green point ∧′, |ST | (red) strictly
decreases, concatenating the green path
from p0 = q to ∧′ and the yellow path.
(Color figure online)

Lemma 9. At least one of the following holds: the peak ∧ lies on left seg-
ment h

↪→
� of P ∗, and hence coincides with p ↪→, or r is vertical.

Proof. Assume for contradiction that neither of the two properties holds. For
now assume that ST is routed over ∧ and let S∧ be the line perpendicular to r
through ∧. We make a case distinction on whether S∧ intersects r above p ↪→or
not. We first consider the case where S∧ hits r above p ↪→(see Fig. 5). Let popt be
the point where ST hits r, and let p∧ be the vertex before popt on the geodesic ST ,
coinciding with ∧. Let q be the vertex on ST before p∧ (possibly q = p0, as in
Fig. 5). Consider the line segment qpopt. Because ∧ does not lie on h

↪→

� , qpopt
intersects P between ∧ and p ↪→. Let p′

∧ be the intersection point, and let p′
opt

be the point on r hit by the perpendicular on r through p′
∧. Finally, let ST (q)

be the geodesic ST from p0 to q. By the above,

|ST | > |ST (q)| + |qpopt| > |ST (q)| + |qp′
∧| + |p′

∧p′
opt|.

Consider the terrain T ′ where, compared to T , ∧ moved rightward along P
until it coincides with p′

∧ (see Fig. 5). For T ′ we know that |ST ′ | = |ST (q)| +
|p′

∧q| + |p′
optp

′
∧| < |ST |. Additionally, τ∗(r) is unaffected. Thus, the ratio c∗(r)

strictly increases, contradicting that (T, r) is a worst-case instance.
Notice that, when ∧ is not part of ST , then ST hits r above p ↪→. In this

case, the above modification to T ′ does not affect τ∗(r) and |ST ′ | = |ST |. Now
Lemma 7 applies, contradicting that (T, r) is a worst-case instance.

Finally, consider the case where S∧ hits r below or on p ↪→. When we
rotate r around p ↪→to become more vertical, ST decreases and τ∗(r) increases.

Competitive Searching over Terrains 263

This results in a strictly higher ratio c∗(r), contradicting that (T, r) is a worst
case. ��

Unobstructed Search Path. Next we consider all steep visibility rays in the
case that p ↪→is a turning point of P ∗, and show the following.

Lemma 10. In a worst-case instance (T, r(sr, dr)), where p ↪→is a turning point
of P ∗, if 1

9 < s ≤ 1, then r is vertical.

Proof. Assume for contradiction that r is not vertical. If ST intersects r
below p ↪→, rotating r around p ↪→to become more vertical results in a strictly
higher value c∗(r), as |ST | becomes smaller and τ∗(r) becomes larger, contradict-
ing that (T, r) is a worst case. If ST hits r above p ↪→, then this case is equivalent
to having a peak ∧ at exactly p ↪→, because ∧ does not interfere with ST . By
Lemma 7, r is then vertical in the worst-case. ��

Bounding the Competitive Ratio. To finish our analysis, we combine the
previous lemmata, and choose s to minimize the competitive ratio across all
cases. To obtain a strategy that is feasible in practice, we assume that |ST | ≥ 1.
That is, we do not use infinitesimally small steps to start in practice. We then
adapt our strategy by first moving upwards at most one, up to the final time
that P is intersected, and then start following along P . This only shortens the
search path, so the competitive ratio holds for this adjusted path as well.

Theorem 2. Our searching strategy for searching in a 1.5D terrain achieves a
competitive ratio of 3

√
19/2 for s =

√
2/6.

Proof sketch. We have now constructed two possible worst cases, where either P
is obstructed, or P is unobstructed. For the former, careful analysis shows that
competitive ratio c∗ ≤ (8 + dr)

√
1 + s2/

√
d2r + s2(4 − dr)2 for 2

9 ≤ s < 4
9 . For

the latter case, we get c∗ ≤ 9
√

1 + s2 for 1
9 < s ≤ 1.

We now choose s such that c∗ is minimized. To do so, we observe that (8 +
dr)

√
1 + s2/

√
d2r + s2(4 − dr)2 is decreasing in s (when 0 ≤ dr ≤ 1) and 9 ·√

1 + s2 is increasing in s. We can hence equate the two formulas to find that
s =

√
2/6 minimizes c∗ over both cases. Then r(−∞, 4/13) is a worst-case ray,

thus c∗ ≤ 3
√

19/2 using s =
√

2/6. As c ≤ c∗, we conclude that our strategy
has competitive ratio of at most 3

√
19/2. ��

3 Competitive Searching on 2.5D Terrains

In this section we study the searching problem in an environment that is defined
by a 2.5D terrain, which is represented by a function T2. It is easy to see that,
without putting additional restrictions on the terrain, achieving a bounded com-
petitive ratio will be impossible: consider a flat terrain with arbitrarily many
small pits in the terrain that are arbitrarily steep. Any searching strategy would
have to move to the location of each pit in the xy-plane in order to look at the

264 S. de Berg et al.

bottom of the pit. As we can place arbitrarily many pits within a small bounded
distance from the starting point, and the target may be in any of the pits, the
competitive ratio of any searching strategy would always be unbounded. We
make this argument more concrete in the lower bound construction below. To
restrict the set of 2.5D terrains under consideration, we require that the maxi-
mum slope of the terrain, which corresponds to the Lipschitz constant λ of T2, is
bounded. A strategy of moving upwards from p0 results in a competitive ratio of
O(λ). In the remainder of this section we show that we can achieve a competitive
ratio of O(

√
λ), which matching the lower bound for 2.5D terrains.

Lower Bound. We first show a lower bound on the competitive ratio for any
searching strategy on 2.5D terrains. Since this lower bound is a function of λ,
this directly implies that the competitive ratio is unbounded if we do not limit
the maximum slope of the terrain.

Theorem 3. The competitive ratio for searching on 2.5D terrains with maxi-
mum slope λ is at least Ω(

√
λ).

proof. Consider a flat terrain containing a regular grid of k × k pits formed by a
cone of maximum slope λ, where δ = 1/k is the distance between the centers of
two adjacent pits, and ε > 0 is the depth

of each pit, where ε and k will be chosen
later. For convenience we assume that the
starting point of the searching problem is
exactly a distance δ to the left from the
lower-left pit in the grid at height 0. Now
consider a searching strategy for this ter-
rain, represented by a path P .

First assume that the maximum height z that P reaches before being able
to see the bottom of the last pit satisfies z >

√
λ
4 . Then P must travel at least a

distance z >
√

λ
4 before seeing the last pit. The minimum travel distance to see

this pit is less than
√

2. Hence, the competitive ratio is at least
√

λ
4
√
2

= Ω(
√

λ).

Now assume that P stays under the height of z =
√

λ
4 . By construction of

the pits, this implies that the searcher must be within a horizontal distance of
(z+ε)/λ from the center of the pit to see the bottom of the pit (this is the radius
of the cone of a pit when extended to height z). As such, after checking one pit,
the searcher must travel at least a distance δ − 2(z + ε)/λ, which is the distance
between two cones at height z, before being able to check another pit. If we choose
ε =

√
λ
4 , then this distance is at least δ − 1√

λ
. The total (horizontal) distance

traveled by P before seeing the last pit is then at least k2(δ − 1√
λ
) = k − k2√

λ
,

as there are k2 pits in total. By choosing k =
√

λ
2 this total distance is at least√

λ
2 −

√
λ
4 =

√
λ
4 . Since the minimum travel distance to see the last pit is again

less than
√

2, the competitive ratio of P is at least
√

λ
4
√
2

= Ω(
√

λ). ��.

Competitive Searching over Terrains 265

Searching Strategy. We now present a searching strategy for 2.5D terrains
with a maximum slope λ. The aim is to match the dependency on λ that is
shown in the lower bound. We will use the prior known value of λ to determine
our search path Pλ. To simplify the analysis, our searching strategy consists of
separate vertical and horizontal movement phases, explained in detail below.

Fig. 6. Three iterations with grids con-
structed with 2k + 1 by 2k + 1 cells.
Three iterations with grids constructed
with 2k + 1 by 2k + 1 cells.

Fig. 7. Connected component C in red.
Gray area is where T is above the grid.
(Color figure online)

In the description of our search strategy, we again make use of arbitrarily
small steps at the start to simplify the analysis. When a minimum value on the
length of the optimal search path is given, all bounds still hold when we simply
move upwards up to this value and then continuing on the described search path.
Overall, our searching path Pλ works as follows: first, we move vertically up by
a distance ε

√
λ, for some arbitrarily small value ε > 0. Next, we construct a

square horizontal grid Gε with total length 2ε centered (horizontally) around
the starting point. This grid will consist of (2k + 1) × (2k + 1) grid cells, where
k is chosen large enough such that the side length of a single grid cell is at most

ε
2
√
2λ

. Specifically, let k be the smallest integer such that 2k + 1 ≥ 4
√

2λ. We
perform a horizontal search through this grid, described in detail below, and
return to the center of the grid. We then move vertically up again until we are
at a height that is 2ε

√
λ above the previous grid. Here we perform a horizontal

search on a grid G2ε with total length 4ε, but where the number of grid cells
is still (2k + 1) × (2k + 1). We then repeat this process, each time doubling the
vertical distance between grids and doubling the total length of the grid, but
keeping the number of grid cells the same (see Fig. 6). Note that a grid Gx for
some x ≥ ε is at height (2x − ε)

√
λ by construction. Since we assume that ε is

arbitrarily small, we will simply say that Gx is at height 2x
√

λ.
To perform a horizontal search in a grid Gx for some x > 0, we first consider

the height of the terrain within the grid cells. We say a grid cell σ is eligible

266 S. de Berg et al.

if at least one point inside σ has a height at most the height of Gx (which is
2x

√
λ). We consider the connected set of eligible cells C that includes cell σ0

containing the starting point (note that σ0 is always eligible), where two eligible
cells are connected if they share a side. To perform the horizontal search in Gx

we construct a tour that starts in the center of σ0, visits all the centers of cells
in C, is completely contained within the cells of C, and eventually returns to the
center of σ0 (see Fig. 7). During this horizontal search, the terrain may force the
searcher to increase the height, which is allowed. However, the searcher never
moves back down, and hence the height will never decrease anywhere on Pλ.
Analysis. We first establish useful properties on the horizontal searches in grids.

Lemma 11. Let Gx be a horizontal grid used in Pλ for some x > 0.

(1) The number of grid cells in Gx is O(λ).
During a horizontal search in Gx:

(2) The amount of horizontal movement is at most O(x
√

λ).
(3) The amount of vertical movement is at most x

√
λ

2 .

Note that property (3) of Lemma 11 implies that the search path Pλ is indeed
valid, as the distance between grids Gx and G2x is 2x

√
λ, which is greater than

x
√

λ
2 . Thus, it is never necessary to move down again to reach the next grid in

Pλ. We can now bound the length of Pλ at a particular height along the path.

Lemma 12. The length of Pλ up to the point of reaching a horizontal grid Gx

is at most O(x
√

λ).

Proof. The total amount of vertical movement in Pλ simply corresponds to the
height of Gx, which is 2x

√
λ by construction. For the horizontal movement we

have to consider the grids Gx/2, Gx/4, Gx/8, . . ., which by Lemma 11 induce a
horizontal movement of at most

∑∞
i=1 O(x/2i

√
λ) = O(x

√
λ). The stated bound

follows from adding the horizontal and vertical movement in Pλ. ��
Next, we use λ to determine when a point on Pλ can see the target t.

Lemma 13. If p is a point that can see t, then any point p∗ in the upwards cone
starting at p with slope λ can see t.

proof. Since the slope is bounded by λ,
the upwards cone with slope λ aboveany
point that lies above the terrain must be
unobstructed. Furthermore, the line segment
between p and t is unobstructed. Hence,
the upwards wedge with slope λ over the
path between p and t is also unobstructed.
Since the cone above p is unobstructed and
the wedge is unobstructed, the line segment
between p∗ and t is unobstructed. ��

Competitive Searching over Terrains 267

Theorem 4. Our strategy for searching in
a 2.5D terrain with maximum slope λ achieves a competitive ratio of at most
O(

√
λ).

Proof. Let p be the point with the shortest distance to p0 that can see t, and
let d(p0, p) be the distance from p0 to p. Furthermore, let ∨ be the cone cast
upward from p0 with slope

√
λ
2 . For our analysis we consider two different cases:

(1) p lies inside of ∨, or (2) p lies outside of ∨.
Case 1: p lies within ∨. Let z be the height of p and let r be the horizontal
distance from p0 to p. Since p lies within ∨, we know that z ≥

√
λ
2 r. If we cast

a ray directly upwards from p0, we hit the cone from p with slope λ at height
z∗ = z + λr. By Lemma 13, we see t from that intersection point (or any point
directly above it). The next horizontal grid Gx of Pλ is at height ≤ 2z∗, so
2x

√
λ ≤ 2z∗ or x ≤ z∗√

λ
. By Lemma 12 this implies that the searcher travels at

most a distance of O(z∗) before seeing t. Since the minimum distance to reach
p is at least z ≥

√
λ
2 r, we get that z∗/z ≤ 1 + 2

√
λ. Hence, the competitive ratio

in this case is at most O(z∗/z) = O(
√

λ).
Case 2: p lies below ∨. Let again z be the height of p and let r be the horizontal
distance from p0 to p. Since p lies below ∨, we know that z <

√
λ
2 r. Consider

the first time that a cell σ directly above p is visited by Pλ during a horizontal
search of a grid Gx. Since x ≥ r, the vertical distance between p and σ is at least
2x

√
λ − z ≥ √

λ(2x − r
2) ≥ 3x

2

√
λ. Hence, the upwards cone from p with slope

λ intersects the horizontal plane at Gx in a circle with radius 3x
2

√
λ/λ = 3x

2
√

λ
.

Since the side length of σ is at most x
2
√
2λ

, this circle also contains the center of
σ, from which we see t due to Lemma 13. Thus, the target is found at the latest
during the horizontal search on Gx. Lemmata 12 and 11 (property 2 and 3) then
imply that we travel at most a distance of O(x

√
λ) before we find t.

We now consider the distance d(p0, p). By construction, the horizontal search
on grid Gx/2 did not visit a cell above p. We consider two possible cases. If the
grid Gx/2 does not contain any cell directly above p, then r > x/2. In that case
d(p0, p) > x/2 and hence we obtain a competitive ratio of O(x

√
λ)/(x/2) =

O(
√

λ). If Gx/2 does contain a cell σ′ directly above p, then σ′ was not part of C
for Gx/2. But then, in order to reach the point p from p0, we must either reach
a height of x

√
λ (the height of Gx/2), or we must leave the horizontal domain of

Gx/2. In both cases the shortest distance from p0 to p is at least x/2 (or even
x
√

λ in the first case). Thus, we again obtain a competitive ratio of O(
√

λ). ��

4 Conclusion

The lower and upper bound for 1.5D terrain might be improved with a more
intricate example and more extensive analysis respectively. For our search strate-
gies we assumed that the terrain is given beforehand. However, our searching
strategy for 1.5D terrains is affected by the terrain only when obstructed, thus

268 S. de Berg et al.

the searching strategy can handle unknown terrains. This does not hold for our
strategy on 2.5D terrains. Though we can address terrain on the fly, we crucially
use the maximum slope λ to construct our search path. It would be interesting
to study whether an efficient strategy exists that does not require λ to be known.
Another direction for future research is to extend the result on 2.5D terrains to
special types of polyhedral domains, such as star-shaped polyhedra. An impor-
tant question here is how to redefine the parameter λ for polyhedral domains
such that the competitive ratio can be bounded in terms of that parameter.

References

1. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf.
Comput. 106(2), 234–252 (1993)

2. Baeza-Yates, R.A., Schott, R.: Parallel searching in the plane. Comput. Geom. 5,
143–154 (1995)

3. Beck, A., Newman, D.J.: Yet more on the linear search problem. Israel J. Math.
8(4), 419–429 (1970)

4. de Berg, S., van Beusekom, N., van Mulken, M., Verbeek, K., Wulms, J.: Compet-
itive searching over terrains (2024). https://arxiv.org/abs/2401.01289

5. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain.
SIAM J. Comput. 26(1), 110–137 (1997)

6. Bose, P., Carufel, J.D., Durocher, S.: Searching on a line: a complete characteriza-
tion of the optimal solution. Theor. Comput. Sci. 569, 24–42 (2015)

7. Bose, P., Carufel, J.D., Durocher, S., Taslakian, P.: Competitive online routing on
Delaunay triangulations. Int. J. Comput. Geom. Appl. 27, 241–254 (2017)

8. Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Com-
put. Sci. 324(2–3), 273–288 (2004)

9. Bouts, Q.W., Castermans, T., van Goethem, A., van Kreveld, M.J., Meulemans,
W.: Competitive searching for a line on a line arrangement. In: Proceedings of the
29th ISAAC, pp. 49:1–49:12 (2018)

10. Datta, A., Hipke, C.A., Schuierer, S.: Competitive searching in polygons—Beyond
generalised streets. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) Algo-
rithms and Computations, pp. 32–41. Springer Berlin Heidelberg, Berlin, Heidel-
berg (1995). https://doi.org/10.1007/BFb0015406

11. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Com-
put. Sci. 361(2–3), 342–355 (2006)

12. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment.
i: the rectilinear case. J. ACM 45(2), 215–245 (1998)

13. Ghosh, S.K., Klein, R.: Online algorithms for searching and exploration in the
plane. Comput. Sci. Rev. 4(4), 189–201 (2010)

14. Hammar, M., Nilsson, B.J., Persson, M.: Competitive exploration of rectilinear
polygons. Theor. Comput. Sci. 354(3), 367–378 (2006)

15. Hipke, C.A., Icking, C., Klein, R., Langetepe, E.: How to find a point on a line
within a fixed distance. Discret. Appl. Math. 93(1), 67–73 (1999)

16. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem.
SIAM J. Comput. 31(2), 577–600 (2001)

17. Icking, C., Klein, R.: Searching for the kernel of a polygon-a competitive strategy.
In: Proceedings of the 11th SoCG, pp. 258–266 (1995)

https://arxiv.org/abs/2401.01289
https://doi.org/10.1007/BFb0015406

Competitive Searching over Terrains 269

18. Icking, C., Klein, R., Langetepe, E., Schuierer, S., Semrau, I.: An optimal compet-
itive strategy for walking in streets. SIAM J. Comput. 33(2), 462–486 (2004)

19. Kalyanasundaram, B., Pruhs, K.: A competitive analysis of algorithms for search-
ing unknown scenes. Comput. Geom. 3(3), 139–155 (1993)

20. Klein, R.: Walking an unknown street with bounded detour. Comput. Geom. 1(6),
325–351 (1992)

21. Klein, R.: Algorithmische Geometrie, vol. 80. Springer (1997)
22. Kleinberg, J.M.: On-line search in a simple polygon. In: Proceedings of the 5th

SODA, pp. 8–15 (1994)
23. López-Ortiz, A., Schuierer, S.: Generalized streets revisited. In: Diaz, J., Serna,

M. (eds.) Algorithms — ESA ’96, pp. 546–558. Springer Berlin Heidelberg, Berlin,
Heidelberg (1996). https://doi.org/10.1007/3-540-61680-2 81

24. López-Ortiz, A., Schuierer, S.: Searching and on-line recognition of star-shaped
polygons. Inf. and Comput. 185(1), 66–88 (2003)

25. Schuierer, S.: On-line searching in simple polygons. LNCS 1724, 220–239 (1999)
26. Wei, Q., Tan, X., Ren, Y.: Walking an unknown street with limited sensing. Int.

J. Pattern Recognit Artif Intell. 33(13), 1959042 (2019)
27. Wei, Q., Yao, X., Liu, L., Zhang, Y.: Exploring the outer boundary of a simple

polygon. IEICE Trans. Inf. Syst. 104-D(7), 923–930 (2021)

https://doi.org/10.1007/3-540-61680-2_81

Computational Geometry

Minimizing the Size of the Uncertainty
Regions for Centers of Moving Entities

William Evans and Seyed Ali Tabatabaee(B)

Department of Computer Science, University of British Columbia, Vancouver, Canada
{will,salitaba}@cs.ubc.ca

Abstract. In this paper, we study the problems of computing the 1-
center, centroid, and 1-median of objects moving with bounded speed in
Euclidean space. We can acquire the exact location of only a constant
number of objects (usually one) per unit time, but for every other object,
its set of potential locations, called the object’s uncertainty region, grows
subject only to the speed limit. As a result, the center of the objects may
be at several possible locations, called the center’s uncertainty region. For
each of these center problems, we design query strategies to minimize the
size of the center’s uncertainty region and compare its performance to
an optimal query strategy that knows the trajectories of the objects, but
must still query to reduce their uncertainty. For the static case of the
1-center problem in R

1, we show an algorithm that queries four objects
per unit time and is 1-competitive against the optimal algorithm with
one query per unit time. For the general case of the 1-center problem
in R

1, the centroid problem in R
d, and the 1-median problem in R

1,
we prove that the Round-robin scheduling algorithm is the best possible
competitive algorithm. For the center of mass problem in R

d, we provide
an O(log n)-competitive algorithm. In addition, for the general case of
the 1-center problem in R

d (d ≥ 2), we argue that no algorithm can
guarantee a bounded competitive ratio against the optimal algorithm.

Keywords: Data in motion · Uncertain inputs · Center problems ·
Online algorithms

1 Introduction

Many real-world problems, such as controlling air traffic and providing service
to cellular phones, involve moving entities. Therefore, analyzing moving objects
has become a topic of interest within the area of theoretical computer science.
In many problems, the movement of the objects is unpredictable and data pro-
cessing must be done in real-time. Moreover, obtaining the exact location of
an object at any point in time often entails a cost. Hence, knowing the precise
location of all objects at any time is impractical. Instead, for every object, a

This work was partially funded by NSERC Discovery Grants and the Institute for
Computing, Information and Cognitive Systems (ICICS) at UBC.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 273–287, 2024.
https://doi.org/10.1007/978-3-031-55598-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_18&domain=pdf
https://doi.org/10.1007/978-3-031-55598-5_18

274 W. Evans and S. A. Tabatabaee

region of potential locations that we call its uncertainty region is known. Due to
the movement of the objects, the size of the uncertainty region for each object
grows over time unless its exact location is acquired. The target is to design
cost-effective algorithms for highly accurate analysis of moving objects.

Centers have been used to represent a given point set. They have applications
in data clustering and facility location. For a given set of points in the Euclidean
space, the three most common centers are the following:

1. 1-center: Given a set of n points in R
d, the k-center is a set of k facility

locations such that the farthest distance from an input point to its closest
facility, is minimized. For k = 1, this is the center of the smallest ball that
contains the input set.

2. centroid: Given a set of n points in R
d, the k-centroid, which is the solution

to the k-means problem, is a set of k facility locations that minimize the sum
of squared distances between each input point and its closest facility. The
1-centroid is called the centroid. Given a set of n weighted points in R

d, the
center of mass is the average position of all points, weighted according to
their masses. When all input points have unit weights, the center of mass is
the centroid.

3. 1-median: Given a set of n points in R
d, the k-median is the set of k facilities

such that the average distance from an input point to its closest facility is
minimized.

1.1 Model and Definitions

Given a center function and a set of the initial locations of n moving objects
(n ≥ 2) in R

d where the speed of every object is bounded by v, we consider the
problem of finding query strategies (which can query once at the end of each unit
of time) for minimizing a measure which is the maximum size of the uncertainty
region for the specified center over all query times. We define the size of a region
as the maximum pairwise distance between the points of that region. We only
care about the uncertainty regions at the times when a query has just been
made and one object has an uncertainty region of size 0. Considering that for
some instances of the problem the measure is large for every query strategy, we
analyze the performance of our algorithms in a competitive framework, where
the competitive factor is the ratio of our algorithm’s measure to that of the
optimal algorithm. We assume that the optimal algorithm knows the trajectories
of the objects, however it must still query to keep the uncertainty regions for
the moving objects, and hence the uncertainty region of their center, small.

In some parts of this paper, we consider the weighted version of the prob-
lem where each object has a positive weight. However, we mostly discuss the
unweighted version of the problem; hence, we assume that all objects have unit
weights unless stated otherwise. Figure 1 illustrates the weighted version of the
centroid problem (the center of mass problem) for a small set of weighted objects
with uncertain locations. We also consider a version of the problem where objects
have different maximum speeds. But, we assume that all objects have the same

Minimizing the Size of the Uncertainty Regions for Centers 275

maximum speed unless stated otherwise. We define the static case of our prob-
lem as a special case where although objects have a maximum speed of v and
their uncertainty regions grow accordingly, they are actually static (they do not
move). To achieve better and more meaningful competitive ratios, we may allow
our algorithms to query more than one object per unit time.

CtrMass(A,B,C)
5

4

3

2

w(B) = 1

w(A) = 2

w(C) = 4

Fig. 1. The uncertainty regions for three weighted objects A, B, and C, along with the
potential locations (uncertainty region) of their center of mass.

1.2 Contribution and Organization

In this paper, we study the aforementioned center problems with moving entities
in the Euclidean space. We investigate the problem of designing competitive
query strategies for minimizing the size of the uncertainty region of these different
centers. For the static case of the 1-center problem in R

1, we show that there
exists an algorithm that queries a constant number of objects per unit time and
is 1-competitive against the optimal algorithm with one query per unit time. For
the 1-center problem with moving entities in R

1, we provide an algorithm with
the best possible competitive ratio of O(n). For this problem in R

d (d ≥ 2), we
show that no algorithm can guarantee a bounded competitive ratio against the
optimal algorithm. For the centroid problem with moving entities in R

d (d ≥ 1),
we present an algorithm that is 1-competitive against the optimal algorithm. For
the weighted version of the centroid problem (the center of mass problem) in R

d

(d ≥ 1) where objects have different maximum speeds, we provide an O(log n)-
competitive algorithm. For the 1-median problem with moving entities in R

1,
we give an algorithm with the best possible competitive ratio of O(n). Several
of our algorithms use Round-robin scheduling for a subset of the entities, which
repeatedly queries the entities in the subset in a fixed order.

The rest of this paper is organized as follows. Section 2 provides background
information on the introduced center problems and computing functions with

276 W. Evans and S. A. Tabatabaee

uncertain inputs and moving data. Sections 3, 4, and 5 study the 1-center prob-
lem, the centroid problem, and the 1-median problem, respectively, in the pre-
sented model. Finally, Sect. 6 concludes the results presented in this paper and
lists some open problems.

2 Background

The k-center problem and its special case, the 1-center problem (also known as
the minimum enclosing ball problem) have various applications, such as data
classification and facility location. The k-center problem is known to be NP-
hard in the Euclidean plane [28]. However, polynomial-time 2-approximation
algorithms exist for the problem in any metric space [17,20]. The Euclidean
1-center problem always has a unique solution. Exact polynomial-time algo-
rithms [9,30] exist for the problem in fixed dimensions. When the dimension
is not fixed, polynomial-time approximation algorithms with a factor of 1 + ε
exist [31]. The speed of the Euclidean 1-center of moving objects with bounded
speed is unbounded in R

d (d ≥ 2) [6]. Durocher [13] provided bounded-velocity
approximations for the Euclidean k-center of moving objects with bounded speed
when k ≤ 2, and showed that no bounded-velocity approximation is possible for
the problem when k ≥ 3.

The k-means problem has applications in data clustering and facility location.
This problem has been proved to be NP-hard in R

d even for k = 2 [12]. Lloyd’s
method [27] has been widely used to find a local minimum for the objective func-
tion of the k-means problem. This method starts with an arbitrary k-clustering
of input points and computes the centroids of the clusters. Then the method
repeatedly assigns each point to its closest cluster center and recomputes the
cluster centers. Constant factor approximation algorithms have been proposed
for the Euclidean k-means problem [1,24]. The best known approximation guar-
antee for this problem is 6.357 [1]. The center of mass is a unique point where the
aggregate mass of a set of objects is concentrated. The center of mass problem
has applications in various fields including physics, astronomy, and engineering.
The speed of the center of mass is the sum of each object’s momentum divided
by the total weight of all objects. Hence, this speed is bounded by the maximum
speed that objects can have.

The k-median problem is another well-studied problem with applications in
data clustering and facility location. This problem is known to be NP-hard in the
Euclidean plane [28]. Hence, constant factor approximation algorithms have been
proposed for this problem [1,8]. The best known approximation ratio for this
problem is 2.633 [1]. The 1-median problem, also known as the Fermat-Weber
problem [11], is a special case of the k-median problem. The Euclidean 1-median
is unique when the input points are not collinear [26] or when the number of
input points is odd. However, if the number of input points is even and the points
are collinear, then any point that lies on the line segment between the two middle
input points is a 1-median of the points. By convention, the Euclidean 1-median
of such a set of points is defined as the midpoint of the two middle points in the

Minimizing the Size of the Uncertainty Regions for Centers 277

set. In general, the exact position of the Euclidean 1-median cannot be calculated
using radicals over the field of rationals when the number of points is greater
than or equal to five [3]. Consequently, (1 + ε)-approximate solutions have been
designed for this problem [2,10]. The Euclidean 1-median moves discontinuously
in R

d (d ≥ 2) [13]. Durocher [13] provided bounded-velocity approximations
for the Euclidean 1-median of moving objects with bounded speed, and showed
that no bounded-velocity approximation is possible for the Euclidean k-median
problem when k ≥ 2.

Computing functions with uncertain inputs has been the subject of multiple
research projects [18,25,29]. Geometric problems have also been studied with
uncertainty and methods such as witness algorithms have been proposed to
address those problems [7]. Due to the unpredictability of the movements in
many problems that involve moving objects, the real-time processing of moving
data is closely related to computing with uncertainty. Kahan [22,23] studied
the maximum problem, the sorting problem, and some geometric problems with
moving data, where the target was to reduce data acquisition costs. Furthermore,
competitive query strategies have been developed for problems where the number
of queries per unit time is bounded [14,15,32].

3 The 1-Center Problem

In this section, we consider the 1-center problem with moving entities. We first
consider a static version of the problem where all queries happen to return the
object’s original location, though we must query to confirm this. Solutions in
this case are simpler than in the general case, in which the movement of objects
may change their importance in calculating the center, however the static case
is still challenging.

3.1 The Static Case in R
1

For the static case of the 1-center problem in R
1, we prove the existence of an

algorithm that queries four objects per unit time and is 1-competitive against
the optimal algorithm with one query per unit time.

We begin by introducing a lemma which we will use to prove the existence
of an algorithm with the aforementioned guarantee. This lemma considers a
special case of the problem of windows scheduling without migration [5] and
entails the notion of pinwheel scheduling [21]. Given a multiset of positive inte-
gers A = {a1, ..., an}, the pinwheel scheduling problem asks for an infinite
sequence over {1, ..., n} such that any integer i ∈ {1, ..., n} appears at least
once in any ai consecutive entries of the sequence. The density of A is defined
as d(A) =

∑n
i=1

1
ai

. A necessary condition for schedulability is d(A) ≤ 1 [21].
Moreover, d(A) ≤ 0.75 is a sufficient condition for schedulability [19]. Based on
these results, we prove the lemma in the full version of the paper [16].

Lemma 1. Given a multiset of positive integers A where d(A) ≤ 2, it is possible
to partition A into three subsets, which are themselves multisets, such that each
subset has a pinwheel schedule.

278 W. Evans and S. A. Tabatabaee

Windows scheduling without migration is a restricted version of the windows
scheduling problem [4]. Given a multiset of positive integers A = {a1, ..., an} and
a positive integer h, the windows scheduling problem asks whether it is possible
to schedule n pages on h channels, with at most one page on each channel
at any time, such that the time between two consecutive appearances (on any
channel) of the i-th page is at most ai (1 ≤ i ≤ n). In windows scheduling
without migration, all appearances of a page must be on the same channel.
Allowing migration would be fine for our use of Lemma 1 in proving the following
Theorem 1, even though our proof of the lemma does not make use of this
flexibility. It has been shown that windows scheduling is possible on d(A) +
O(ln (d(A))) channels [4]. Nevertheless, Lemma 1 provides a better guarantee
for the special case that it considers.

Now, we are ready to prove the main theorem in this subsection.

Theorem 1. For the static case of the 1-center problem in R
1, there exists an

algorithm that queries four objects per unit time and is 1-competitive against the
optimal algorithm with one query per unit time.

Proof. Without loss of generality, we assume that the maximum speed v is unit.
We sort the objects based on their positions and let xi denote the position of
the i-th object (x1 ≤ ... ≤ xn). We define f(x, y) = �|y − x|� + 1. To prevent
the uncertainty region of a static object at position x from going beyond a point
at position y, we need to acquire the exact location of that object at least once
in every f(x, y) queries. We let b denote the smallest positive value such that∑n

i=1
1

min(f(xi,xn+b),f(xi,x1−b)) ≤ 1. Hence, considering the necessary condition
for schedulability [21], no query strategy can ensure that the uncertainty region
of each object stays within [x1 − b′, xn + b′] for any value b′ < b.

The size of the uncertainty region for the 1-center in R
1 is equivalent to

the average of the size of the uncertainty region for the maximum and the size
of the uncertainty region for the minimum. Given a set of points in R

1, the
maximum problem asks for the position of the maximum point and the minimum
problem asks for the position of the minimum point in the set. Regardless of the
query strategy, at some point in the future, either the uncertainty region for the
maximum will include [xn, xn + b], or the uncertainty region for the minimum
will include [x1 − b, x1]. If |xn − x1| ≤ 1, the union of the uncertainty regions
for the maximum and the minimum will always include [x1, xn]. Otherwise, the
union of the two uncertainty regions will always intersect [x1, x1+1]∪[xn−1, xn]
such that the total size of the intersection is at least 1. Consequently, regardless
of the query strategy, the size of the uncertainty region for the 1-center will be
at least b+min(|xn−x1|,1)

2 at some point in the future. For the optimal algorithm,
this is a lower bound on the maximum size of the uncertainty region for the
1-center.

We now explain how to use four queries per unit time and be 1-competitive
against the optimal algorithm with one query per unit time. First, we show how
to compute b. We know that 0 ≤ b ≤ n (because the Round-robin algorithm can
ensure that the uncertainty region of each object stays within [x1 − n, xn + n]).

Minimizing the Size of the Uncertainty Regions for Centers 279

Furthermore, there exists an index 1 ≤ i ≤ n such that either �xi−x1+b� = xi−
x1+b or �xn+b−xi� = xn+b−xi (otherwise, there exists a query strategy that
can ensure that the uncertainty region of each object stays within [x1−b′, xn+b′],
for some b′ < b). Therefore, there are O(n2) possible values for b and we can find
b using a binary search. Further, we show that f(xi, xn + b) ≤ 2f(xi, xn + b

2).
We have

f(xi, xn + b) = �xn + b − xi� + 1

≤ �xn +
b

2
− xi� + � b

2
� + 2

≤ 2�xn +
b

2
− xi� + 2

= 2f(xi, xn +
b

2
).

Similarly, we have f(xi, x1 − b) ≤ 2f(xi, x1 − b
2). Hence, we deduce that

n∑

i=1

1

min(f(xi, xn + b
2
), f(xi, x1 − b

2
))

≤
n∑

i=1

2

min(f(xi, xn + b), f(xi, x1 − b))
≤ 2.

Therefore, by Lemma 1, we can use three queries per unit time to maintain
the uncertainty regions of all objects within [x1 − b

2 , xn + b
2]. We let the fourth

query repeatedly switch between the object at position x1 and the object at
position xn. This way, the total size of the intersection between [x1, xn] and the
union of the uncertainty regions for the maximum and the minimum will be
at most min(|xn − x1|, 1). Consequently, using this algorithm, the size of the
uncertainty region for the 1-center will be at most b+min(|xn−x1|,1)

2 at any point
in the future. Hence, the presented algorithm that queries four objects per unit
time is 1-competitive against the optimal algorithm with one query per unit
time. �	

3.2 The General Case in R
1

For the general case of the 1-center problem in R
1, we prove that the Round-

robin algorithm for querying objects achieves the best possible competitive ratio
against the optimal algorithm.

Theorem 2. For the 1-center problem in R
1, the Round-robin scheduling algo-

rithm keeps the maximum size of the uncertainty region within O(vn) at any
point in the future and achieves the best possible competitive ratio of O(n) against
the optimal algorithm.

Proof. The Round-robin algorithm keeps the size of the uncertainty region of
each object within O(vn) because it acquires the exact location of each object
once in every n queries. For 1 ≤ i ≤ n, let [si, ei] denote the uncertainty region

280 W. Evans and S. A. Tabatabaee

of the i-th object (si is the starting point and ei is the ending point of the uncer-
tainty region). At any time, let m be the index of the object with the highest
ending point (em = max1≤i≤n ei). Thus, [sm, em] includes the uncertainty region
for the maximum. Consequently, the size of the uncertainty region for the max-
imum is less than or equal to |em − sm| which is bounded by O(vn). Similarly,
the size of the uncertainty region for the minimum is bounded by O(vn) at any
point in the future. Therefore, using the Round-robin algorithm, the size of the
uncertainty region for the 1-center (which is equivalent to the average of the size
of the uncertainty region for the maximum and the size of the uncertainty region
for the minimum) will never exceed O(vn).

For the optimal algorithm, at any point after the first query, between the
object with the maximum last known exact position and the object with the
minimum last known exact position, at least one will have not been queried last;
thus, the size of the uncertainty region of that object will be Ω(v). Consequently,
the size of the uncertainty region for at least one of the maximum or minimum
will be Ω(v). Hence, the size of the uncertainty region for the 1-center will
be Ω(v) at any point after the first query. Considering that the Round-robin
algorithm keeps the maximum size of the uncertainty region within O(vn), it
achieves a competitive ratio of O(n) against the optimal algorithm.

We show that O(n) is the best possible competitive ratio against the optimal
algorithm. We consider an example with n objects initially located at the origin.
One of those objects moves with a speed of v in the positive direction and another
one moves with a speed of v in the negative direction. The rest of the objects do
not move. In this example, the optimal algorithm acquires the exact location of
each of the two moving objects once in every two queries and maintains the size
of the uncertainty region for the 1-center within O(v). However, any algorithm
that does not know the future object trajectories may fail to query the two
moving objects in its first n−2 queries; hence, the size of the uncertainty region
for the 1-center can become Ω(vn). This is true even if we allow the algorithm
to query a constant number of objects (instead of one) per unit time. For this
reason, O(n) is the best possible competitive ratio. �	

The Round-robin algorithm keeps the maximum size of the uncertainty region
for the 1-center within O(vn), and so does the optimal algorithm. We show that
even for the optimal algorithm, the maximum size of the uncertainty region can
be Ω(vn). The proof is presented in the full version of the paper [16].

Proposition 1. The maximum size of the uncertainty region for the 1-center
can be Ω(vn) for the optimal algorithm.

We now provide an upper bound on the competitive ratio of the Round-
robin algorithm for the 1-center problem where objects have different maximum
speeds. The proof is presented in the full version of the paper [16].

Proposition 2. For the 1-center problem in R
1 where objects have different

maximum speeds, the Round-robin scheduling algorithm achieves a competitive
ratio of O(vMn/vm) against the optimal algorithm, where vM is the highest max-
imum speed and vm is the lowest maximum speed.

Minimizing the Size of the Uncertainty Regions for Centers 281

3.3 The General Case in R
d

For the general case of the 1-center problem in R
d (d ≥ 2), we show that the

maximum size of the uncertainty region can be unbounded for the optimal algo-
rithm. The proof of the following proposition is inspired by the proof of Theorem
2 of [6] and can be found in the full version of the paper [16].

Proposition 3. The maximum size of the uncertainty region of the 1-center in
R

d (d ≥ 2) can be unbounded for the optimal algorithm.

Next, we show that it is impossible to find an algorithm that works well
compared to the optimal algorithm.

Theorem 3. The maximum size of the uncertainty region of the 1-center of
points in R

d (d ≥ 2) for any algorithm that does not know the trajectories may
be an arbitrary factor larger than that obtained by the optimal algorithm.

Proof. We provide an example for which we prove that no algorithm that does not
know the trajectories of the objects can guarantee a bounded competitive ratio
against the optimal algorithm. Although we explain the example in R

2 here, we
could consider the same example in more than two dimensions, and the proof would
be very similar. Let a = (0, G), b = (−2L, 0), c = (2L, 0), u = c − a, and e =
c+v(n−3)û, where n ≥ 28, L is arbitrarily large (much larger than n and v), and
G is much larger than L in a way that for y ≥ G

3 , we have
√

100L2 + y2 ≤ y + v.
We consider an example with n objects where one object (denoted by A) is always
located at a, one object (denoted by B) is always located at b, one object (denoted
by E) starts at e and always moves with a maximum speed of v in the direction of
û, and n−3 objects start at e and move with a maximum speed of v in the direction
of −û until they stop at c.

For the above example, the actual 1-center is always the midpoint of the
positions of A and E. Consequently, the x-coordinate of the actual 1-center is
always greater than L. Nevertheless, any algorithm that does not know the future
object trajectories may fail to query E in its first n − 3 queries. Thus, for any
such algorithm after the first n − 3 queries, c is a potential location of each of
the n − 2 objects that were initially at e, a is a potential location of A, and b is
a potential location of B. Therefore, the 1-center could potentially be located on
the line x = 0. Consequently, for any algorithm that does not know the future
object trajectories, the size of the uncertainty region for the 1-center can become
greater than L (which is arbitrarily large), after the (n − 3)-th query.

Now, we only need to prove that the optimal algorithm can keep the maxi-
mum size of the uncertainty region for the 1-center within a function of n and
v for the example mentioned above. We consider an algorithm that queries each
of A, B, and E once in every four queries and each other object once in every
4(n − 3) queries. Hence, the sizes of the uncertainty regions of A, B, and E will
never exceed 6v. Also, the size of the uncertainty region of each of the other
objects will always be O(vn). We prove that using this algorithm, the maximum
size of the uncertainty region for the 1-center is at most some function of n and

282 W. Evans and S. A. Tabatabaee

v for the provided example. This will prove the same for the optimal algorithm
which works at least as well as the aforementioned algorithm.

Let us disregard B for now and analyze the uncertainty region for the 1-center
of the other objects. For those objects, the radius of the minimum enclosing circle
is at most half of the distance between the two farthest points in the uncertainty
regions of A and E. This is because the line segment between those points
is a diameter of a circle that contains the uncertainty regions of all objects.
Therefore, after q queries (q ≥ 0) made by the algorithm described above, the
radius of the minimum enclosing circle is at most rq = 1

2 (3v + |e − a| + qv) =
1
2 |c−a|+ v

2 (n+q). Considering that the distance between the 1-center and some
point in the uncertainty region of A must be at most rq after the q-th query, the
1-center is within distance rq + 3v from a. Furthermore, the distance between
the 1-center and some point in the uncertainty region of E must be at most rq
after the q-th query. Thus, the distance between the 1-center and e+ qvû is less
than or equal to rq + 6v. Consequently, the distance between the 1-center and a
is at least |e − a| + qv − rq − 6v = rq − 9v after the q-th query.

The 1-center of a set of points in the Euclidean space is within the convex
hull of those points (otherwise, there exists a hyperplane that separates the 1-
center from the points, and by moving the 1-center towards that hyperplane, we
are reducing its distance to each point). Therefore, the uncertainty region for
the 1-center is always within the convex hull of the uncertainty regions of the
objects. We deduce that at any time, the uncertainty region for the 1-center of
all objects other than B is within a strip-like region inside the convex hull of the
uncertainty regions of the objects (see Fig. 2). At any time, the length of this
strip is O(vn) because the size of the uncertainty region of each object is O(vn)
and the centers of the uncertainty regions of the objects are collinear. Moreover,
the width of this strip is at most rq +3v − (rq −9v) = 12v. Hence, the maximum
size of the strip-like region is O(vn). Consequently, using the above algorithm,
the maximum size of the uncertainty region for the 1-center of all objects other
than B is O(vn).

Let d represent the location of a point within the strip-like region. If the
y-coordinate of d is within [G3 + 3v, G

2 − 4v], then the distance between d and
any point in the uncertainty region A is at least G

2 + v. Also, in this case, the
distance between d and any point in the uncertainty region B is at most G

2 .
Furthermore, it is easy to see that if the y-coordinate of d is less than G

3 + 3v,
then the distance between d and any point in the uncertainty region of B is less
than the distance between d and any point in the uncertainty region of A. If
rq − 9v (the minimum distance between a and any point in the strip-like region)
is at least G

2 + 5v, then the y-coordinate of any point in the strip-like region
is at most G

2 − 4v, which means that the 1-center of all objects other than B
is exactly the same as the 1-center of all objects including B. Considering that
n ≥ 28, we have

rq − 9v =
1
2
|c − a| +

v

2
(n + q) − 9v ≥ G

2
+

v

2
(28 + 0) − 9v =

G

2
+ 5v.

Minimizing the Size of the Uncertainty Regions for Centers 283

B

A

E

The strip

O(v
· n)

O(v)

c

(a)

B

A

E

The strip

O(v
· n)

O(v)

c

(b)

Fig. 2. The uncertainty regions of the objects and the strip-like region that contains
the 1-center of all objects other than B for the example and the algorithm provided in
the proof of Theorem 3 at the time (a) before the (n − 3)-th query and (b) after the
(5n − 15)-th query.

Hence, using the algorithm described above, the uncertainty region for the 1-
center of all objects including B is always within the strip-like region. Thus,
the optimal algorithm keeps the maximum size of the uncertainty region for the
1-center within O(vn) for the provided example. �	

4 The Centroid Problem

We know that at any time, the uncertainty region of each object is a ball centered
at the last known exact position of the object. We introduce a lemma which we
will use to obtain the size of the uncertainty region for the center of mass or its
special case, the centroid. The proof is provided in the full version [16].

Lemma 2. Given a set of n weighted objects in R
d (d ≥ 1) with uncertain

locations, the uncertainty region for the center of mass is a ball centered at the
weighted average of the centers of the objects’ uncertainty regions. The radius of
this ball is equivalent to the weighted average of the radii of the objects’ uncer-
tainty regions.

Lemma 2 shows that the size of the uncertainty region for the center of mass is
equivalent to the weighted average of the sizes of the objects’ uncertainty regions.
Now, for the centroid problem, we prove that the Round-robin algorithm is 1-
competitive against the optimal algorithm. The proof of the following theorem
is provided in the full version of the paper [16].

284 W. Evans and S. A. Tabatabaee

Theorem 4. For the centroid problem in R
d (d ≥ 1), the maximum size of the

uncertainty region for the Round-robin scheduling algorithm is Θ(vn) and the
Round-robin algorithm is 1-competitive against the optimal algorithm.

For the center of mass problem, the competitive ratio of the Round-robin
algorithm is Ω(n) against the optimal algorithm. This can be easily proved by
considering an example where the weight of one of the objects is much higher
than the weight of the other objects. Next, we provide an algorithm for the
center of mass problem where objects have different maximum speeds and prove
that it guarantees a competitive ratio of O(log n) against the optimal algorithm.

Theorem 5. For the center of mass problem in R
d (d ≥ 1) where objects have

different maximum speeds, there exists an algorithm that achieves a competitive
ratio of O(log n) against the optimal algorithm.

Proof. We sort the objects in a way that we have v1w1 ≥ ... ≥ vnwn. We then
partition the objects into �log n� + 1 groups. For 1 ≤ i ≤ n, we assign the i-th
object to the (�log i� + 1)-th group. Now, we describe the query strategy. We
query objects from different groups in a cyclic way. Also, within each group,
we choose the objects to query in a cyclic way. For example, if we have seven
objects, we partition the objects into three groups. We assign the first object
to the first group, the second and third objects to the second group, and the
remaining objects to the third group. Consequently, our algorithm repeatedly
follows the sequence 1, 2, 4, 1, 3, 5, 1, 2, 6, 1, 3, 7 for querying the objects (entries
of the sequence indicate the objects that our algorithm queries).

The algorithm described above acquires the exact location of one object from
the group that contains the i-th object (1 ≤ i ≤ n) in every �log n�+1 queries and
that group contains at most 2�log i� objects. Therefore, the algorithm acquires the
exact location of the i-th object at least once in every (�log n�+1)2�log i� queries.
Hence, using this algorithm, the maximum size of the uncertainty region for the
center of mass is at most 1

W

∑n
i=1 2((�log n� + 1)2�log i� − 1)viwi (by Lemma 2),

where W =
∑n

i=1 wi is the total weight of all objects.
On the other hand, to keep the maximum size of the uncertainty region for

the center of mass finite, the optimal algorithm has to query the n-th object
at some point. At that time, the size of the uncertainty region for the center of
mass will be at least 1

W

∑n−1
i=1 2iviwi (by Lemma 2). We have

3(�log n� + 1)
W

n−1∑

i=1

2iviwi ≥ �log n� + 1
W

n∑

i=1

2iviwi

≥ 1
W

n∑

i=1

2((�log n� + 1)i − 1)viwi

≥ 1
W

n∑

i=1

2((�log n� + 1)2�log i� − 1)viwi.

Therefore, for the center of mass problem, the competitive ratio of the algorithm
described above is O(log n) against the optimal algorithm. �	

Minimizing the Size of the Uncertainty Regions for Centers 285

5 The 1-Median Problem

Given a set of n points in R
1, the 1-median is the
n

2 �-th smallest point if n is
odd and the midpoint of the n

2 -th and (n2 + 1)-th smallest points if n is even.

Theorem 6. For the 1-median problem in R
1, the Round-robin scheduling algo-

rithm keeps the maximum size of the uncertainty region within O(vn) at any
point in the future and achieves the best possible competitive ratio of O(n) against
the optimal algorithm.

Proof. (sketch) Let sk (ek) be the k-th smallest starting (ending) point of all
n objects’ uncertainty regions. Even though the region [sk, ek] may not be the
uncertainty region of any particular object, the k-th smallest object lies within
this region, which has size O(vn), since Round-robin keeps the size of every
object’s uncertainty region within O(vn). The rest of the theorem follows from
a lower bound of Ω(v) on the size of [sk, ek] and examples that show O(n) is the
best possible competitive ratio. (See the full version of the paper [16]). �	

The Round-robin algorithm keeps the maximum size of the uncertainty region
for the 1-median within O(vn). We argue that even for the optimal algorithm,
the maximum size of the uncertainty region can be Ω(vn). The proof is presented
in the full version of the paper [16].

Proposition 4. For the 1-median problem in R
1, the maximum size of the

uncertainty region can be Ω(vn) for the optimal algorithm.

Next, we provide an upper bound on the competitive ratio of the Round-
robin algorithm for the 1-median problem where objects have different maximum
speeds. The proof is presented in the full version of the paper [16].

Proposition 5. For the 1-median problem in R
1 where objects have different

maximum speeds, the Round-robin scheduling algorithm achieves a competitive
ratio of O(vMn/vm) against the optimal algorithm, where vM is the highest max-
imum speed and vm is the lowest maximum speed.

Now, we consider the 1-median problem in R
d (d ≥ 2). The proof of the

following proposition is inspired by the proof of Theorem 5.1 of [13] and can be
found in the full version of the paper [16].

Proposition 6. For the 1-median problem in R
d (d ≥ 2), the maximum size of

the uncertainty region can be unbounded for the optimal algorithm.

6 Conclusion

We conclude that in the worst case, adjusting query strategies based on the
answers to the previous queries and the perceived locations of the objects does
not help in achieving better competitive algorithms for any of the center prob-
lems discussed in this paper.

Here we list a handful of interesting problems that remain open:

286 W. Evans and S. A. Tabatabaee

– For the static case of the 1-center problem in R
1, does there exist an algorithm

that queries less than four objects per unit time and is 1-competitive against
the optimal algorithm with one query per unit time, or an algorithm that
queries one object per unit time and achieves a competitive ratio of o(n)?

– For the 1-center (1-median) problem in R
1 where objects have different maxi-

mum speeds, can we find an algorithm with a competitive ratio of o(vMn/vm),
where vM is the highest maximum speed and vm is the lowest maximum
speed?

– For the 1-median problem in R
d (d ≥ 2), is there an algorithm that guarantees

a bounded competitive ratio against the optimal algorithm?

References

1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for
k-Means and Euclidean k-Median by primal-dual algorithms. SIAM J. Comput.
49(4), FOCS17-97 (2019)

2. Bādoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Pro-
ceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing,
pp. 250–257 (2002)

3. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Com-
put. Geom. 3(2), 177–191 (1988)

4. Bar-Noy, A., Ladner, R.E.: Windows scheduling problems for broadcast systems.
SIAM J. Comput. 32(4), 1091–1113 (2003)

5. Bar-Noy, A., Ladner, R.E., Tamir, T.: Windows scheduling as a restricted version
of bin packing. ACM Trans. Algorithms (TALG) 3(3), 28-es (2007)

6. Bereg, S., Bhattacharya, B., Kirkpatrick, D., Segal, M.: Competitive algorithms
for maintaining a mobile center. Mobile Networks Appl. 11(2), 177–186 (2006)

7. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies
for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423
(2005)

8. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-Median problem. In: Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, pp. 1–10 (1999)

9. Chrystal, G.: On the problem to construct the minimum circle enclosing n given
points in the plane. Proc. Edinb. Math. Soc. 3(1885), 30–33 (1885)

10. Cohen, M.B., Lee, Y.T., Miller, G., Pachocki, J., Sidford, A.: Geometric median in
nearly linear time. In: Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing, pp. 9–21 (2016)

11. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory.
Springer, Cham (2004)

12. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs
via the singular value decomposition. Mach. Learn. 56(1), 9–33 (2004)

13. Durocher, S.: Geometric facility location under continuous motion. Ph.D. thesis,
University of British Columbia (2006)

14. Evans, W., Kirkpatrick, D., Löffler, M., Staals, F.: Query strategies for minimizing
the ply of the potential locations of entities moving with different speeds. In: 30th
European Workshop on Computational Geometry (2014)

Minimizing the Size of the Uncertainty Regions for Centers 287

15. Evans, W., Kirkpatrick, D., Löffler, M., Staals, F.: Competitive query strategies for
minimising the ply of the potential locations of moving points. In: Proceedings of
the Twenty-Ninth Annual Symposium on Computational Geometry, pp. 155–164
(2013)

16. Evans, W., Tabatabaee, S.A.: Minimizing the size of the uncertainty regions for
centers of moving entities. arXiv preprint arXiv:2304.10028v2 (2024)

17. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
434–444 (1988)

18. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the
median with uncertainty. In: Proceedings of the Thirty-Second Annual ACM Sym-
posium on Theory of Computing, pp. 602–607 (2000)

19. Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorith-
mica 34(1), 14–38 (2002)

20. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-Center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

21. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time
scheduling problem. In: Proceedings of the 22nd Hawaii International Conference
of System Science, pp. 693–702 (1989)

22. Kahan, S.: A model for data in motion. In: Proceedings of the Twenty-Third
Annual ACM Symposium on Theory of Computing, pp. 265–277 (1991)

23. Kahan, S.H.: Real-time processing of moving data. Ph.D. thesis, University of
Washington (1991)

24. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: A local search approximation algorithm for k-Means clustering. In: Proceed-
ings of the Eighteenth Annual Symposium on Computational Geometry, pp. 10–18
(2002)

25. Khanna, S., Tan, W.-C.: On computing functions with uncertainty. In: Proceedings
of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pp. 171–182 (2001)

26. Kupitz, Y., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli
problem. Bolyai Soc. Math. Stud. 6, 55–129 (1997)

27. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

28. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13(1), 182–196 (1984)

29. Suyadi, S.A.: Computing functions of imprecise inputs using query models. Mas-
ter’s thesis, University of British Columbia (2012)

30. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0038202

31. Yildirim, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J.
Optim. 19(3), 1368–1391 (2008)

32. Zheng, D.W.: Scheduling queries to moving entities to certify many are distant
from a region. Master’s thesis, University of British Columbia (2020)

http://arxiv.org/abs/2304.10028v2
https://doi.org/10.1007/BFb0038202

Guarding Polyominoes Under k-Hop
Visibility

Omrit Filtser1 , Erik Krohn2 , Bengt J. Nilsson3 , Christian Rieck4 ,
and Christiane Schmidt5(B)

1 Department of Mathematics and Computer Science, The Open University of Israel,
Tel Aviv, Israel

2 Department of Computer Science, University of Wisconsin - Oshkosh, Oshkosh,
WI, USA

krohne@uwosh.edu
3 Department of Computer Science and Media Technology, Malmö University,

Malmö, Sweden
bengt.nilsson.TS@mau.se

4 Department of Computer Science, TU Braunschweig, Braunschweig, Germany
rieck@ibr.cs.tu-bs.de

5 Department of Science and Technology, Linköping University, Norrköping, Sweden

christiane.schmidt@liu.se

Abstract. We study the Art Gallery Problem under k-hop visibility
in polyominoes. In this visibility model, two unit squares of a polyomino
can see each other if and only if the shortest path between the respective
vertices in the dual graph of the polyomino has length at most k.

In this paper, we show that the VC dimension of this problem is 3 in
simple polyominoes, and 4 in polyominoes with holes. Furthermore, we
provide a reduction from Planar Monotone 3Sat, thereby showing
that the problem is NP-complete even in thin polyominoes (i.e., poly-
ominoes that do not a contain a 2 × 2 block of cells). Complementarily,
we present a linear-time 4-approximation algorithm for simple 2-thin
polyominoes (which do not contain a 3 × 3 block of cells) for all k ∈ N.

Keywords: Art Gallery problem · k-hop visibility · polyominoes ·
VC dimension · approximation · k-hop dominating set

1 Introduction

“How many guards are necessary and sufficient to guard an art gallery?” This
question was posed by Victor Klee in 1973, and led to the classic Art Gallery
Problem: Given a polygon P and an integer �, decide whether there is a guard
set of cardinality � such that every point p ∈ P is seen by at least one guard,
where a point is seen by a guard if and only if the connecting line segment is
inside the polygon.

Now picture the following situation: A station-based transportation service
(e.g., carsharing) wants to optimize the placement of their service stations.

Due to space constraints, all missing details can be found in the full version [15].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 288–302, 2024.
https://doi.org/10.1007/978-3-031-55598-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_19&domain=pdf
http://orcid.org/0000-0002-3978-1428
http://orcid.org/0000-0002-5832-8135
http://orcid.org/0000-0002-1342-8618
http://orcid.org/0000-0003-0846-5163
http://orcid.org/0000-0003-2548-5756
https://doi.org/10.1007/978-3-031-55598-5_19

Guarding Polyominoes Under k-Hop Visibility 289

Assume that the demand is given in a granularity of (square) cells, and that
customers are willing to walk a certain distance (independent of where they are
in the city) to a station. Then, we aim to place as few stations as possible to
serve an entire city for a given maximum walking range of k cells. We thus repre-
sent the city as a polyomino, potentially with holes, and only walking within the
boundary is possible (e.g., holes would represent water bodies or houses, which
pedestrians cannot cross).

A polyomino P is a connected polygon in the plane formed by joining together
|P | = n unit squares (also called cells) on the square lattice. The dual graph GP

of a polyomino has a vertex at the center point of each cell of P , and there is an
edge between two center points if their respective cells share an edge. Note that
GP is a grid graph. A polyomino is simple if it has no holes, that is, every inner
face of its dual graph has unit area. A polyomino is t-thin if it does not contain
a block of squares of size (t + 1) × (t + 1). In particular, a simple polyomino is
1-thin if its dual graph is a tree.

Our real-world example motivates the following type of visibility: a unit
square u of a polyomino P is k-hop visible to a unit-square guard v ∈ P if
the shortest path from u to v in GP has length at most k. For k ≥ 2, this
allows a guard to look around corners of the polyomino, as visualized in Fig. 1.
The k-hop-visibility region of a unit square u ∈ P , is the set of all unit squares
that are k-hop-visible from u. Note that this is a subset of the L1-diamond with
diameter 2k—the maximal k-hop-visibility region.

Fig. 1. A unit square in green with its k-hop-visibility region for k = 6 (shaded in
dark green) within a polyomino—a subset of the diamond shown in light green. (Color
figure online)

In this paper, we investigate the Minimum k-Hop Guarding Problem in
Polyominoes (MkGP): Given a polyomino P and an integer k, find a minimum-
cardinality unit-square guard cover in P under k-hop visibility.

As the dual graph of a polyomino is a grid graph, we analogously formulate
the problem as the Minimum k-Hop Dominating Set Problem in Grid
Graphs (MkDSP): Given a grid graph G and an integer k, find a minimum-
cardinality subset Dk ⊆ V (G), such that for any vertex v ∈ V (G) there exists a
vertex u ∈ Dk within hop distance of at most k.

290 O. Filtser et al.

While we formulated the optimization problems, the associated decision prob-
lems are defined as expected with an upper bound on the number of guards or
dominating vertices.

Our Contributions. For the MkGP in polyominoes, we give the following results.

(1) The VC dimension of the problem is exactly 3 in simple polyominoes,
and 4 in polyominoes with holes; see Theorems 3 and 4, respectively.

(2) The decision version of the problem is NP-complete for k ≥ 2, even in 1-thin
polyominoes with holes, see Theorem 5.

(3) A linear-time 4-approximation for simple 2-thin polyominoes, see Theorem6.

We state our results in terms of the guarding problem. However, they also
hold true for the equivalent k-hop dominating set problem in grid graphs.

Related Work. The classic Art Gallery Problem is NP-hard [24,26], even
in the most basic problem variant. Abrahamsen, Adamaszek, and Miltzow [1]
recently showed that the AGP is ∃R-complete.

Guarding polyominoes and thin (orthogonal) polygons has been considered
for different definitions of visibility. Tomás [28] showed that computing a min-
imum guard set under the original definition of visibility is NP-hard for point
guards and APX-hard for vertex or boundary guards in thin orthogonal poly-
gons; an orthogonal polygon is defined as thin if the dual graph of the partition
obtained by extending all edges of P through incident reflex vertices is a tree.
Biedl and Mehrabi [8] considered guarding thin orthogonal polygons under rec-
tilinear visibility (two points can see each other if the axis-parallel rectangle
spanned by these two points is fully contained in the polygon). They showed
that the problem is NP-hard in orthogonal polygons with holes, and provided
an algorithm that computes a minimum set of guards under rectilinear vision
for tree polygons in linear time. Their approach generalizes to polygons with h
holes or thickness t (the dual graph of the polygon does not contain an induced
(t+1)×(t+1) grid)—the problem is fixed-parameter tractable in t+h. Biedl and
Mehrabi [9] extended this study to orthogonal polygons with bounded treewidth
under different visibility definitions usually used in orthogonal polygons: rectilin-
ear visibility, staircase visibility (guards can see along an axis-parallel staircase),
and limited-turn path visibility (guards can see along axis-parallel paths with
at most b bends). Under all these visibility definitions, they showed the guard-
ing problem to be linear-time solvable. For orthogonal polygons, Worman and
Keil [30] gave a polynomial time algorithm to compute a minimum guard cover
under rectilinear visibility by showing that an underlying graph is perfect.

Biedl et al. [7] proved that determining the guard number of a given simple
polyomino with n unit squares is NP-hard even in the all-or-nothing visibility
model (a unit square s of the polyomino is visible from a guard g if and only if g
sees all points of s under ordinary visibility), and under ordinary visibility. They
presented polynomial time algorithms for thin polyominoes, for which the dual is
a tree, and for the all-or-nothing model with limited range of visibility. Iwamoto
and Kume [20] complemented the NP-hardness results by showing NP-hardness

Guarding Polyominoes Under k-Hop Visibility 291

for polyominoes with holes also for rectilinear visibility. Pinciu [27] generalized
this to polycubes, and gave simpler proofs for known results and new results for
guarding polyhypercubes.

The Minimum k-Hop Dominating Set Problem is NP-complete in gen-
eral graphs [3,5]. For trees, Kundu and Majunder [22] showed that the prob-
lem can be solved in linear time. Recently, Abu-Affash et al. [2] simplified that
algorithm, and provided a linear-time algorithm for cactus graphs. Borradaile
and Le [10] presented an exact dynamic programming algorithm that runs in
O((2k + 1)tw · n) time on graphs with treewidth tw. Demaine et al. [12] con-
sidered the (�, k)-center problem on planar and map graphs, i.e., the question
whether a graph has at most � many center vertices such that every vertex of
the graph is within hop distance at most k from some center. They showed that
for these graph families, the problem is fixed-parameter tractable by providing
an exact 2O(k log k)

√
OPT · poly(n) time algorithm, where OPT is the size of an

optimal solution. They also obtained a (1 + ε)-approximation for these families
that runs in kO(k/ε) · m time, where m is the number of edges in the graph.

In the general case where the edges of the graph are weighted, the problem is
typically called the ρ-Dominating Set Problem. Katsikarelis et al. [21] pro-
vided an FPT approximation scheme parameterized by the graphs treewidth tw,
or its clique-width cw: In particular, if there exists a ρ-dominating set of size s
in a given graph, the approximation scheme computes a (1+ ε)ρ-dominating set
of size at most s in time (tw/ε)O(tw) ·poly(n), or (cw/ε)O(cw) ·poly(n), respectively.
Fox-Epstein et al. [16] provided a bicriteria EPTAS for ρ-domination in planar
graphs (later improved and generalized by Filtser and Le [14]). Their algorithm
runs in O(nc) time (for some constant c), and returns a (1 + ε)ρ-dominating set
of size s ≤ (1 + ε)OPTρ, where OPTρ is the size of a minimum ρ-dominating
set. Filtser and Le [13] provided a PTAS for ρ-dominating set in H-minor-free
graphs, based on local search. Their algorithm runs in nOH(ε−2) time, and returns
a ρ-dominating set of size at most (1 + ε)OPTρ.

Meir and Moon [25] showed an upper bound of � n
k+1� on the number of

vertices in a k-hop dominating set of any tree. This bound holds for general
graphs by using any spanning tree. We provide a simple matching lower bound
that can be found in the full version.

2 VC Dimension

The VC dimension is a measure of complexity of a set system. In our setting,
we say that a finite set of (guard) unit squares D in a polyomino P is shattered
if for any of the 2|D| subsets Ds ⊆ D there exists a unit square u ∈ P , such that
from u every unit square in Ds but no unit square in D \Ds is k-hop visible (or,
by symmetry: from every unit square in Ds the unit square u is k-hop visible,
but from no unit square in D \Ds u is k-hop visible). We then say that the unit
square u is a viewpoint. The VC dimension is the largest d, such that there exists
a polyomino P and a set of d unit-square guards D that can be shattered. For
detailed definitions, we refer to Haussler and Welzl [19].

292 O. Filtser et al.

In this section, we study the VC dimension of the MkGP in both sim-
ple polyominoes and polyominoes with holes, and provide exact values for
both cases. The VC dimension has been studied for different guarding problems,
e.g., Langetepe and Lehmann [23] showed that the VC dimension of L1-visibility
in a simple polygon is exactly 5, Gibson et al. [17] proved that the VC dimension
of visibility on the boundary of a simple polygon is exactly 6. For line visibil-
ity in a simple polygon, the best lower bound of 6 is due to Valtr [29], the best
upper bound of 14 stems from Gilbers and Klein [18]. Furthermore, given any set
system with constant VC dimension, Brönnimann and Goodrich [11] presented
a polynomial time O(log OPT)-approximation for Set Cover.

For analyzing the VC dimension, we define the rest budget of a unit square
g ∈ P at a unit square c ∈ P to be rb(g, c) = max{k−d(g, c), 0}, where d(g, c) is
the minimum distance between g and c in GP , and k the respective hop distance.
We first state two structural properties which are helpful in several arguments.

Observation 1 (Rest-Budget Observation). Let P be a polyomino, and let
g and u be two unit squares in P such that a shortest path between them contains
a unit square c. Then the following holds:

(1) The unit square g covers u, if and only if u is within distance rb(g, c) from c.
(2) For any unit square q′ with rb(g′, c) > rb(g, c), if q covers u, then so does g′.

Fig. 2. Location of unit squares used in the proof of Lemma 2.

Lemma 2 (Rest-Budget Lemma). Let a, c be two unit squares in a simple
polyomino P , such that the boundary of P does not cross the line segment ac that
connects their center points. Let Pac be some path in the dual graph GP between
the center points of a and c, and let b be a unit square whose center point belongs
to the area enclosed within Pac ◦ ac. Then, there exists a unit square x on Pac

such that rb(b, x) ≥ rb(a, x) and rb(b, x) ≥ rb(c, x).

Proof. Without loss of generality, assume that the center of a is placed on the
origin, c lies in the first quadrant, and b is above the line through the centers
of a, c; see Fig. 2. If b is above c, then let x be the unit square on Pac directly
above b. As P is simple, and the boundary of P does not cross ac, the area
enclosed within Pac ◦ ac does not contain any boundary piece of P . Thus, the
path in GP from b to x is a straight line segment, and we have rb(b, x) ≥ rb(a, x)

Guarding Polyominoes Under k-Hop Visibility 293

and rb(b, x) ≥ rb(c, x), as required. Symmetrically, if b is to the left of a, then
let x be the unit square on Pac directly to the left of b, and again we have
rb(b, x) ≥ rb(a, x) and rb(b, x) ≥ rb(c, x), as required.

The only case left is when b lies in the axis-aligned bounding box of a, c.
In this case, let bc (resp. ba) be the unit square on Pac directly above (resp.
to the left of) b. Denote the center point of b by (bx, by), and the center point
of c by (cx, cy). As b is above the line through a, c, we get that (i) by ≥ cy

cx
bx.

If both d(b, ba) > d(a, ba) and d(b, bc) > d(c, bc) hold, then (ii) bx > by and (iii)
cy − by > cx − bx. By (ii) and (iii) we get cy > cx. On the other hand, by (i) and
(ii) we get by >

cy

cx
by, and thus cy < cx, a contradiction.

We conclude that either d(a, ba) ≥ (b, ba) or d(c, bc) ≥ d(b, bc), which means
that either rb(b, ba) ≥ rb(a, ba) or rb(b, bc) ≥ rb(c, bc). Furthermore, as b lies
above a, we have d(a, bc) > d(b, bc), and as b lies also to the left of c, we have
d(c, ba) > d(b, ba). Therefore, the claim holds for one of ba or bc.
�

2.1 Simple Polyominoes

In this section, we investigate the VC dimension of k-hop visibility of simple
polyominoes. In particular, we show the following.

Theorem 3. For any k ∈ N, the VC dimension of k-hop visibility of a simple
polyomino is 3.

Proof. A lower bound construction with k = 1 and three guards, indicated by
the green 1, the blue 2, and the red 3, is visualized in Fig. 3. All 23 = 8 viewpoints
are highlighted, and we denote the guards that see each viewpoint. For larger
k, we keep the placement of guards, but the polyomino will be a large rectangle
that contains all k-hop-visibility regions. Because of the relative position of the
guards they are shattered as before.

Fig. 3. A lower bound construction for the VC dimension of k-hop visibility of simple
polyominoes with k = 1. The positions of the guards 1, 2, 3 are shown as squares
in green, blue, and red, respectively. The k-hop-visibility regions are shown in a light
shade of those colors. The 8 viewpoints are indicated by circles, and labeled accordingly.
(Color figure online)

We now show that four guards cannot be shattered in simple polyominoes. To
this end, consider four guards g1, g2, g3, g4 to be placed in the simple polyomino,

294 O. Filtser et al.

and denote the potential viewpoints as vS with S ⊆ {1, 2, 3, 4}. For two unit
squares x, y ∈ P , we denote by sp(x, y) a shortest path between x and y in P .
For i, j ∈ {1, 2, 3, 4}, let Pi,j = sp(gi, vi,j) ◦ sp(vi,j , gj). We now distinguish two
cases depending on how many of the four guards lie on their convex hull.

Fig. 4. Case 1 in the proof of Theorem 3, with P1,3, P2,4 and P2,3 shown in orange, pink
and turquoise, respectively. (a) P1,3 and P2,4 cannot cross. (b) P2,4 goes around g1. (c)
The boundary of P must pierce g2g4 and both P2,4 and P2,3 must go around a square
x̂ in the exterior of P .

Case 1: The guards lie in convex position. That is, the four center points
of their corresponding grid squares are in convex position. Pick any guard
and label it g1 and then label them in clockwise order around the convex hull
g2, g3 and g4, see Fig. 4a. Assume, without loss of generality, that g4 is to the
left of g1 and that g1 is above the line through g2 and g4.
First, we claim that the paths sp(gi, v1,3) and sp(gj , v2,4) cannot cross for
i ∈ {1, 3}, j ∈ {2, 4}. Indeed, if the paths have unit square x in common
(see Fig. 4a), then one of gi, gj has a larger rest budget at x (or an equal rest
budget). Assume, without loss of generality, that rb(gi, x) ≥ rb(gj , x), then
gi would also cover v2,4, which is a contradiction as i /∈ {2, 4}. Therefore,
the paths P1,3 = sp(g1, v1,3) ◦ sp(v1,3, g3) and P2,4 = sp(g2, v2,4) ◦ sp(v2,4, g4)
cannot cross, and one of them must “go around” a guard in order to avoid a
crossing. Without loss of generality, assume that P2,4 goes around g1, that is,
g1 belongs to the area enclosed within P2,4 ◦ g2g4; see Fig. 4b. Assume that
the boundary of P does not pierce g2g4. In this case, as P is simple, we get by
Lemma 2 that there exists a square x on P2,4 such that rb(g1, x) ≥ rb(g2, x)
and rb(g1, x) ≥ rb(g4, x). Hence, g1 covers v2,4, a contradiction.
We therefore assume that the boundary of P does pierce g2g4 (see Fig. 4c),
and, hence, there exists a square x̂ /∈ P , which blocks g1 from reaching the
square x on P2,4 from Lemma 2. As P is simple, the boundary of P must also
cross either g2g3 or g3g4 in a way that any path in P between the endpoints
of this segment must go around x̂. In other words, assume, without loss of
generality, that the boundary of P crosses g2g3. Then there exists a path in
the exterior of P connecting g2g3 and x̂, and because P is simple, any path
in P from g2 to g3 must go around x̂ (see Fig. 4c). In particular, the path
P2,3 = sp(g2, v2,3) ◦ sp(v2,3, g3) also goes around x̂. We get that both P2,3

Guarding Polyominoes Under k-Hop Visibility 295

and P2,4 go around x̂; however, sp(g3, v2,3) and sp(g4, v2,4) cannot intersect.
Moreover, consider the region A2

3,4 enclosed by g3g4◦sp(g3, v2,3)◦sp(v2,3, v2,4)◦
sp(g4, v2,4), and assume that sp(g3, v2,3) is above sp(g4, v2,4) (the other case
is argued analogously). As P is simple, the region A2

3,4 does not contain any
polyomino boundary. Consider the line � through g4 of slope −1. If g3 is below
�, then for any unit square s to the right of g4 inside A2

3,4, we have rb(g4, s) ≥
rb(g3, s). As g3 also lies below g2g4 and to the left of g4 (and because k-
hop-visibility regions are diamond-shaped without boundary), we get that g4
reaches v2,3, a contradiction. On the other hand, if g3 is above �, consider
the region A1

3,4 enclosed by g3g4 ◦ sp(g3, v1,3) ◦ sp(v1,3, v1,4) ◦ sp(g4, v1,4) and
assume that sp(g3, v1,3) is below sp(g4, v1,4). By the same arguments, the
region A1

3,4 does not contain any polyomino boundary, and for any square s
below g4 inside A1

3,4, we have rb(g4, s) ≥ rb(g3, s). In this case, g4 reaches
v1,3, a contradiction.

Case 2: Exactly three guards lie on their convex hull. That is, the three
center points of their corresponding grid squares are in convex position, and
the center point of the fourth guard lie in the convex hull. We label the three
guards on the convex hull g1, g2, g3, and g4 is the guard placed inside the
convex hull. We show that the viewpoint v1,2,3 is not realizable.
Let T be the triangle of grid points that connects the centers of g1, g2, and g3.
Consider the three shortest paths connecting g1, g2, g3 to v1,2,3. As g4 lies in T ,
for any placement of v1,2,3, we would get that for some i, j ∈ {1, 2, 3}, the area
enclosed within sp(gi, v1,2,3) ◦ sp(v1,2,3, gj) ◦ gigj contains the center point of
g4. If the boundary of P does not pierce T , then, similar to Case 1, we get by
Lemma 2 that g4 reaches v1,2,3, a contradiction. Otherwise, assume that the
convex hull of the three guards is pierced by the boundary. Then it is possible
to realize the v1,2,3 viewpoint. However, similar to the argument in Case 1,
the boundary will prevent the realization of a viewpoint of g4 and one of the
other guards (g4 taking the role of g1 from Case 1 here).
�

2.2 Polyominoes with Holes

Aronov et al. [4] showed an upper bound of 4 for the VC dimension of hyper-
graphs of pseudo disks. And while, intuitively, one might suspect that k-hop-
visibility regions of unit squares in polyominoes with holes are pseudo disks;
that is not the case, as illustrated in Fig. 5a.

Hence, we need to show an upper bound for the VC dimension in this case in
another way. In fact, even here, we provide matching upper and lower bounds.
These are valid for large enough values of k (e.g., for k = 1 we do not gain
anything from the holes). In particular, we show the following.

Theorem 4. For large enough k ∈ N, the VC dimension of k-hop visibility of a
polyomino with holes is 4.

Proof. A lower bound with k = 18 is visualized in Fig. 5c: the four guards are
indicated by the green 1, the blue 2, the red 3, and the yellow 4. We highlighted

296 O. Filtser et al.

Fig. 5. (a) The k-hop-visibility regions (for k = 6) of the two guards intersect more
than twice. (b) The lower bound construction for the VC dimension of non-simple
polyominoes for k = 18. The positions of the four guards 1, 2, 3, 4 are shown as squares
in green, blue, red, and yellow, respectively. Visibility regions are shown in a light shade
of those colors. The 16 viewpoints are indicated by circles, and labeled accordingly.
The gray and black ×’s and boxed ×’s indicates where we insert 2 and 1 unit squares,
respectively, to increase the value of k by 2. We alternate between using the gray
and black markings. (c) The graph G4p with vertices g1, . . . , g4 shown in green, blue,
red, and yellow, respectively. Gray circles indicate the “pair”-viewpoints, and are not
vertices of the graph. (Color figure online)

the 24 = 16 viewpoints, and denoted the guards that see each viewpoint. For
larger (even) values of k, we extend the corridors in Fig. 5b at the location
marked by “×”: We alternate between using the gray and black unit squares.
At locations with a simple “×”, we insert two unit squares, at locations with a
boxed “×”, we insert a single unit square. One can verify that by alternating
between the gray and black insertions for k = 18+2i, all viewpoints are realized.

For the upper bound, assume that we can place a set with five unit-square
guards g1, g2, g3, g4, g5 that can be shattered. We denote viewpoints as vS with
S ⊆ {1, 2, 3, 4, 5}. Let Pi,j , i �= j ∈ {1, . . . , 5} denote the shortest path from guard
gi to gj along which the viewpoint v{i,j} is located. In particular, Pi,j includes
the shortest paths from gi to v{i,j} and from gj to v{i,j} (as this determines the
rest budget for both guards at v{i,j}).

We start with four guards g1, . . . , g4. To generate all the “pair” viewpoints,
v{i,j}, {i, j} ⊆ {1, 2, 3, 4}, we need to embed the graph G4p shown in Fig. 5c
where each edge represents a path Pi,j (the color of each guard reaches equally
far into each edge, e.g., some of the paths reflected in these edges include wiggles).

Of course, in the resulting polyomino, the edges could be embedded in larger
blocks of unit squares. However, given the upper bound of 3 on the VC dimension
for simple polyominoes, we know that at least one of the four faces f1, . . . , f4
(and in fact one of f1, f2, f3) of G4p must contain a hole. A fifth guard g5 must
be located in one of the four faces. Let this be face fi. As gi is not incident to fi,

Guarding Polyominoes Under k-Hop Visibility 297

the path from g5 to gi, Pi,5, must intersect one of the other paths represented
by the edges in G4p, let this be the path Pj,�. By Observation 1, one of the
viewpoints v{i,5} and v{j,�} cannot be realized, as a guard from the other pair
will always see such a viewpoint too; a contradiction to our assumption.
�

3 NP-Completeness for 1-Thin Polyominoes with Holes

In this section, we note that the decision version of the MkGP is NP-complete,
even in 1-thin polyominoes with holes. However, as the dual graph of a 1-thin
polyomino without holes is a tree, an optimal solution can be obtained in linear
time [2,22].

Theorem 5. The decision version of the MkGP is NP-complete for k ≥ 2, even
in 1-thin polyominoes with holes.

Our reduction is from Planar Monotone 3Sat, which de Berg and Khos-
ravi [6] proved to be NP-complete. Due to space constraints, the proof can be
found in the full version [15]. Figure 6 depicts the variable and clause gadgets;
the high-level idea is that five guards can be placed in a variable gadget in such
a way that one of its exits is already guarded, and a satisfied clause only requires
two additional guards, whereas three are needed for an unsatisfied clause. Note
that both gadgets scale with k.

Fig. 6. Let k = 2: (a) depicts the variable gadget, and (b) the clause gadget.

4 A 4-Approximation for Simple 2-Thin Polyominoes

As already mentioned, there exists a PTAS for k-hop domination in H-minor free
graphs [13]. However, the exponent of n in the running time may be infeasible for
realistic applications, where n is extremely large. On the other hand, the exact
algorithm for graphs with treewidth tw has running time O((2k + 1)tw · n) [10],
which may be too large if k = Ω(n), even for small tw (in fact, it is not hard to
show that 2-thin polyominoes have constant tw: K4 is not a minor, hence, we
have tw = 2 for 2-thin polyominoes).

Therefore, we present a linear-time 4-approximation algorithm for the MkGP
in simple 2-thin polyominoes, for any value of k ∈ N. The running time of our

298 O. Filtser et al.

algorithm does not depend on k. The overall idea is to construct a tree T on P ,
and let T lead us in placing guards in P (inspired by the linear-time algorithm
for trees by Abu-Affash et al. [2] for the equivalent problem of k-hop dominating
set). In each iteration step, we place 1, 2, or 4 guards and 1 witness. A witness set
is a set of unit squares W , such that the k-hop-visibility regions of the elements
in W are pairwise disjoint. Because the cardinality of a witness set is a lower
bound on the cardinality of any guard set, this yields a 4-approximation.

Skeleton Graph Construction. Let P be a simple 2-thin polyomino. A vertex v
of a unit square s ∈ P is called internal if it does not lie on the boundary of P .
Because P is 2-thin, any square s ∈ P can have at most 3 internal vertices. Let I
be the set of internal vertices of unit squares in P . For any u, v ∈ I, we add the
edge {u, v} to EI if one of the following holds:

1. u, v belong to the same unit square and ‖u − v‖ = 1.
2. u, v belong to two different unit squares that share an edge and both vertices

of this edge are not internal.
3. u, v belong to the same unit square s and both other vertices belonging to s

are not internal.

Because P is a simple 2-thin polyomino, the edges of EI form a forest TI on I.
For each unit square s ∈ P that does not have any internal vertex, place a

point bs in the center of s. We call s a boundary square, bs a boundary node,
and denote by B the set of all boundary nodes. For any bs, bs′ ∈ B such that
s, s′ ∈ P share an edge, add the edge {bs, bs′} to EB . Notice that the edges of EB

form a forest TB on B.
We now connect TB and TI . Let s be a boundary square that shares an edge

with a non-boundary square s′. Then, bs must be a leaf in TB, and s′ has at
most two internal vertices. If s′ has a single internal vertex v, we simply add
{bs, v} to Econ. Else, s′ has two internal vertices v, u, and we add an artificial
node xv,u to the set X, and the edges {bs, xv,u}, {u, xv,u}, and {v, xv,u} to Econ.

Let T be the graph on the vertex set V = I ∪ B ∪ X and the edge set
E = EI ∪ EB ∪ Econ. Note that, as P is simple, we did not create any cycles
when connecting TI and TB , thus, T is a tree. Moreover, the maximum degree
of a node in T is 4 (for some nodes in X and I).

Associated Squares. Associate with each node v ∈ T a block S(v) of unit squares
from P as follows:

1. For v = xu,v ∈ X, S(v) consists of a two unit squares with the edge {u, v}.
2. For v ∈ I, S(v) consists of a 2×2 block of unit squares with internal vertex v.
3. For v = bs ∈ B, S(v) = {s}.

The Algorithm. As already mentioned, we basically follow the lines of the algo-
rithm of [2] for k-hop dominating sets in trees, with several important changes.

We start by picking an arbitrary node r from T as a root. For a node u ∈ T ,
denote by Tu the subtree of T rooted at u. Notice that any path between a

Guarding Polyominoes Under k-Hop Visibility 299

unit square associated with a node in Tu, and a unit square associated with
a node in T \ Tu, includes a unit square from S(u). For every node u ∈ T ,
let h(Tu) = maxv∈Tu,s∈S(v) mins′∈S(u) dP (s, s′), where dP (s, s′) denotes the hop
distance between the cells s and s′ in P . In other words, h(Tu) is the largest hop
distance from a unit square in

⋃
v∈Tu

S(v) to its closest unit square from S(u).
For each cell s′ ∈ ⋃

v∈Tu
S(v), the minimum distance mins∈S(u) dP (s, s′) is

assumed at a particular unit square s, we denote by M(s) the set of all these cells
for which that distance is assumed for s, and set hs(Tu) = maxs′∈M(s) dP (s, s′).
Note that if h(Tu) = k, and we pick S(u) for our guard set, then every unit
square associated with a node in Tu is guarded.

Initialize an empty set D (for the k-hop-visibility guard set), and compute
h(Tu) for every u ∈ T and hs(Tu) for every s ∈ S(u). In addition, for every unit
square s ∈ P set rbD(s) = −1 (up to a rest budget of 0, s is k-hop visible to
the nodes in D). This parameter marks the maximum rest budget of the unit
square s over all squares in the guard set D. We run a DFS algorithm starting
from r, as follows; let u be the current node in the DFS call.

1. If h(Tu) = k, we add S(u) to D, remove Tu from T , and set rbD(s) = k for
every s ∈ S(u).

2. Else if, h(Tu) ≥ k − 2 and mins∈S(p(u)) d(s, s′) > k for the parent p(u) of u
and s′ ∈ Tu being the unit square that realizes h(Tu), we add S(u) to D,
remove Tu from T , and set rbD(s) = k for every s ∈ S(u).

3. Else, for each child v of u with h(Tv) ≥ k − 2, we run the DFS algorithm on
v. Then we update h(Tu) and hs(Tu), rbD(s) for every s ∈ S(u), according
to the values calculated for all children of u.

4. We check if the remaining Tu is already guarded by D, by considering hs(Tu)
and rbD(s) for every s ∈ S(u), where we only consider associated unit squares
with negative rest budget.

5. Else, if the new h(Tu) is now exactly k or if the condition from point 2 holds,
then again we add S(u) to D, remove Tu from Tr, and set rbD(s) = k for
every s ∈ S(u).

If, at the end of the DFS run for r, we have rbD(s) = −1 for some s ∈ S(r),
then we add S(r) to D. We give an example of our algorithm in Fig. 7.

We show that, after termination of the algorithm, D is a k-hop-visibility
guard set for the given polyomino P of size at most 4 ·OPT for all k ∈ N, where
OPT is the size of an optimal solution.

Theorem 6. There is a linear-time 4-approximation for the MkGP in simple
2-thin polyominoes.

Proof. During the algorithm, we remove a node v from T only if S(v) is covered
by cells in D. Since ∪v∈T S(v) = P , D is a k-hop-visibility guard set for P .

Next, let u1, . . . u� be the sequence of nodes of T such S(ui) was added to the
set D during the algorithm. We show that in each Tui

we can find a witness unit
square si, such that no two witness unit squares si �= sj have a single unit square
in P within hop distance k from both si and sj . This means that any optimal

300 O. Filtser et al.

solution has size at least � (W = {s1, . . . , s�} is a witness set with |W | = �).
Since in each step of the algorithm we add at most 4 squares to D, we get a
solution of size at most 4�, as required.

We choose si to be the unit square from Tui
with maximum distance to its

closest unit square from S(ui)—the unit square that realizes h(Tui
). We claim

that there is no cell in P within hop distance k from both si, sj for any j < i.
If S(ui) was added to D because Tui

= k, we had si being the node realiz-
ing Tui

. Hence, we have rbD\{ui}(si) = −1, and thus, the distance from si to
any sj , j < i is at least 2k + 1.

If S(ui) was added to D because h(Tui
) ≥ k −2 and mins∈S(p(u)) d(s, si) > k

for the parent p(u) of u and si ∈ Tui
being the unit square that realizes h(Tui

),
we know (because each unit square of the polyomino is an associated unit square
of at least one node) that there is a unit square s′′ ∈ S(ui) with d(s′′, si) = k.
Thus, any witness placed after si has distance to it of at least 2k + 1. Moreover,
rbD\{ui}(si) = −1 and, thus, si’s distance to any sj , j < i is at least 2k + 1.

We initialize h(Tu) for every u ∈ T and hs(Tu) for every s ∈ S(u) with BFS,
and we update the values at most once for each square in linear time.
�

Fig. 7. Example for our algorithm for k = 3: (a) Polyomino P , in black, with the
associated vertices: vertices in I in blue, vertices in B in red, the root r is indicated
in magenta, the trees TI and TB with edges in EI are shown in blue, edges in EB

are shown in red; (b) connecting TI and TB , vertices xv,u and their incident edges are
shown in green, all other connecting edges are shown in black; (c) unit squares added
to D in light pink; (d) placement of witnesses from the proof of Theorem 6 in turquoise.
(Color figure online)

Guarding Polyominoes Under k-Hop Visibility 301

Funding. B. J. N. and C. S. are supported by grants 2021-03810 and 2018-04001

from the Swedish Research Council (Vetenskapsr̊adet). C. S. was supported by grant

2018-04101 from Sweden’s innovation agency VINNOVA.

References

1. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is ∃R-
complete. J. ACM 69(1), 4:1–4:70 (2022). https://doi.org/10.1145/3486220

2. Abu-Affash, A.K., Carmi, P., Krasin, A.: A linear-time algorithm for minimum k-
hop dominating set of a cactus graph. Discret. Appl. Math. 320, 488–499 (2022).
https://doi.org/10.1016/j.dam.2022.06.006

3. Amis, A.D., Prakash, R., Huynh, D.T., Vuong, T.H.: Max-Min d-cluster formation
in wireless ad hoc networks. In: Conference on Computer Communications, pp.
32–41 (2000). https://doi.org/10.1109/INFCOM.2000.832171

4. Aronov, B., Donakonda, A., Ezra, E., Pinchasi, R.: On pseudo-disk hypergraphs.
Comput. Geom. 92, 101687 (2021). https://doi.org/10.1016/j.comgeo.2020.101687

5. Basuchowdhuri, P., Majumder, S.: Finding influential nodes in social net-
works using minimum k-hop dominating set. In: International Conference on
Applied Algorithms (ICAA), pp. 137–151 (2014). https://doi.org/10.1007/978-3-
319-04126-1 12

6. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl. 22(03), 187–205 (2012). https://doi.org/10.
1142/S0218195912500045

7. Biedl, T.C., Irfan, M.T., Iwerks, J., Kim, J., Mitchell, J.S.B.: Guarding polyomi-
noes. In: Symposium on Computational Geometry (SoCG), pp. 387–396 (2011).
https://doi.org/10.1145/1998196.1998261

8. Biedl, T.C., Mehrabi, S.: On r-guarding thin orthogonal polygons. In: International
Symposium on Algorithms and Computation (ISAAC), pp. 17:1–17:13 (2016).
https://doi.org/10.4230/LIPIcs.ISAAC.2016.17

9. Biedl, T.C., Mehrabi, S.: On orthogonally guarding orthogonal polygons with
bounded treewidth. Algorithmica 83(2), 641–666 (2021). https://doi.org/10.1007/
s00453-020-00769-5

10. Borradaile, G., Le, H.: Optimal dynamic program for r-domination problems over
tree decompositions. In: International Symposium on Parameterized and Exact
Computation (IPEC), pp. 8:1–8:23 (2017). https://doi.org/10.4230/LIPIcs.IPEC.
2016.8

11. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. Discrete Comput. Geom. 14(4), 463–479 (1995). https://doi.org/10.
1007/BF02570718

12. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Fixed-parameter
algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algo-
rithms 1(1), 33–47 (2005). https://doi.org/10.1145/1077464.1077468

13. Filtser, A., Le, H.: Clan embeddings into trees, and low treewidth graphs. In:
Symposium on Theory of Computing (STOC), pp. 342–355 (2021). https://doi.
org/10.1145/3406325.3451043

14. Filtser, A., Le, H.: Low treewidth embeddings of planar and minor-free metrics. In:
Symposium on Foundations of Computer Science (FOCS), pp. 1081–1092 (2022).
https://doi.org/10.1109/FOCS54457.2022.00105

https://doi.org/10.1145/3486220
https://doi.org/10.1016/j.dam.2022.06.006
https://doi.org/10.1109/INFCOM.2000.832171
https://doi.org/10.1016/j.comgeo.2020.101687
https://doi.org/10.1007/978-3-319-04126-1_12
https://doi.org/10.1007/978-3-319-04126-1_12
https://doi.org/10.1142/S0218195912500045
https://doi.org/10.1142/S0218195912500045
https://doi.org/10.1145/1998196.1998261
https://doi.org/10.4230/LIPIcs.ISAAC.2016.17
https://doi.org/10.1007/s00453-020-00769-5
https://doi.org/10.1007/s00453-020-00769-5
https://doi.org/10.4230/LIPIcs.IPEC.2016.8
https://doi.org/10.4230/LIPIcs.IPEC.2016.8
https://doi.org/10.1007/BF02570718
https://doi.org/10.1007/BF02570718
https://doi.org/10.1145/1077464.1077468
https://doi.org/10.1145/3406325.3451043
https://doi.org/10.1145/3406325.3451043
https://doi.org/10.1109/FOCS54457.2022.00105

302 O. Filtser et al.

15. Filtser, O., Krohn, E., Nilsson, B.J., Rieck, C., Schmidt, C.: Guarding polyominoes
under k-hop visibility (2023). https://arxiv.org/abs/2308.00334

16. Fox-Epstein, E., Klein, P.N., Schild, A.: Embedding planar graphs into low-
treewidth graphs with applications to efficient approximation schemes for metric
problems. In: Symposium on Discrete Algorithms (SODA), pp. 1069–1088 (2019).
https://doi.org/10.1137/1.9781611975482.66

17. Gibson, M., Krohn, E., Wang, Q.: The VC-dimension of visibility on the boundary
of a simple polygon. In: International Symposium on Algorithms and Computation
(ISAAC), pp. 541–551 (2015). https://doi.org/10.1007/978-3-662-48971-0 46

18. Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility
regions. Comput. Geom. 47(1), 61–74 (2014). https://doi.org/10.1016/j.comgeo.
2013.08.012

19. Haussler, D., Welzl, E.: ε-nets and simplex range queries. Discrete Comput. Geom.
2(2), 127–151 (1987). https://doi.org/10.1007/BF02187876

20. Iwamoto, C., Kume, T.: Computational complexity of the r-visibility guard set
problem for polyominoes. In: Japanese Conference on Discrete and Computational
Geometry and Graphs (JCDCGG), pp. 87–95 (2013). https://doi.org/10.1007/978-
3-319-13287-7 8

21. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds,
and approximation for (k, r)-center. Discret. Appl. Math. 264, 90–117 (2019).
https://doi.org/10.1016/j.dam.2018.11.002

22. Kundu, S., Majumder, S.: A linear time algorithm for optimal k-hop dominating
set of a tree. Inf. Process. Lett. 116(2), 197–202 (2016). https://doi.org/10.1016/
j.ipl.2015.07.014

23. Langetepe, E., Lehmann, S.: Exact VC-dimension for L1-visibility of points in
simple polygons (2017). https://arxiv.org/abs/1705.01723

24. Lee, D., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans.
Inf. Theory 32(2), 276–282 (1986). https://doi.org/10.1109/TIT.1986.1057165

25. Meir, A., Moon, J.W.: Relations between packing and covering numbers of a tree.
Pac. J. Math. 61(1), 225–233 (1975). https://doi.org/10.2140/pjm.1975.61.225

26. O’Rourke, J., Supowit, K.: Some NP-hard polygon decomposition problems.
IEEE Trans. Inf. Theory 29(2), 181–190 (1983). https://doi.org/10.1109/TIT.
1983.1056648

27. Pinciu, V.: Guarding polyominoes, polycubes and polyhypercubes. Electron. Notes
Discrete Math. 49, 159–166 (2015). https://doi.org/10.1016/j.endm.2015.06.024

28. Tomás, A.P.: Guarding thin orthogonal polygons is hard. In: Gasieniec, L., Wolter,
F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 305–316. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40164-0 29

29. Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math.
104(1), 1–16 (1998). https://doi.org/10.1007/BF02897056

30. Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery
problem. Int. J. Comput. Geom. Appl. 17(2), 105–138 (2007). https://doi.org/10.
1142/S0218195907002264

https://arxiv.org/abs/2308.00334
https://doi.org/10.1137/1.9781611975482.66
https://doi.org/10.1007/978-3-662-48971-0_46
https://doi.org/10.1016/j.comgeo.2013.08.012
https://doi.org/10.1016/j.comgeo.2013.08.012
https://doi.org/10.1007/BF02187876
https://doi.org/10.1007/978-3-319-13287-7_8
https://doi.org/10.1007/978-3-319-13287-7_8
https://doi.org/10.1016/j.dam.2018.11.002
https://doi.org/10.1016/j.ipl.2015.07.014
https://doi.org/10.1016/j.ipl.2015.07.014
https://arxiv.org/abs/1705.01723
https://doi.org/10.1109/TIT.1986.1057165
https://doi.org/10.2140/pjm.1975.61.225
https://doi.org/10.1109/TIT.1983.1056648
https://doi.org/10.1109/TIT.1983.1056648
https://doi.org/10.1016/j.endm.2015.06.024
https://doi.org/10.1007/978-3-642-40164-0_29
https://doi.org/10.1007/BF02897056
https://doi.org/10.1142/S0218195907002264
https://doi.org/10.1142/S0218195907002264

Minimum-Width Double-Slabs and Widest
Empty Slabs in High Dimensions

Taehoon Ahn1 , Chaeyoon Chung1 , Hee-Kap Ahn2 , Sang Won Bae3(B) ,
Otfried Cheong4 , and Sang Duk Yoon5

1 Department of Computer Science and Engineering, Pohang University of Science
and Technology, Pohang, Korea

{sloth,chaeyoon17}@postech.ac.kr
2 Graduate School of Artificial Intelligence, Department of Computer Science and

Engineering, Pohang University of Science and Technology, Pohang, Korea
heekap@postech.ac.kr

3 Division of Computer Science and Engineering, Kyonggi University, Suwon, Korea
swbae@kgu.ac.kr

4 SCALGO, Aarhus, Denmark
otfried@scalgo.com

5 Department of Service and Design Engineering, Sungshin Women’s University,
Seoul, Korea

sangduk.yoon@sungshin.ac.kr

Abstract. A slab in d-dimensional space R
d is the set of points enclosed

by two parallel hyperplanes. We consider the problem of finding an opti-
mal pair of parallel slabs, called a double-slab, that covers a given set P of
n points in R

d. We address two optimization problems in R
d for any fixed

dimension d � 3: the minimum-width double-slab problem, in which one
wants to minimize the maximum width of the two slabs of the resulting
double-slab, and the widest empty slab problem, in which one wants to
maximize the gap between the two slabs. Our results include the first
nontrivial exact algorithms that solve the former problem for d � 3 and
the latter problem for d � 4.

Keywords: computational geometry · hyperplane · slab ·
double-slab · widest empty slab · minimum-width double-slab

1 Introduction

A slab in d-dimensional space R
d is the set of points enclosed by two parallel

hyperplanes. A double-slab is a pair of parallel slabs, that is, all four hyperplanes

C. Chung, T. Ahn, and H.-K. Ahn were supported by the Institute of Information
& communications Technology Planning & Evaluation(IITP) grant funded by the
Korea government(MSIT) (No. 2017-0-00905, Software Star Lab (Optimal Data Struc-
ture and Algorithmic Applications in Dynamic Geometric Environment)) and (No.
2019-0-01906, Artificial Intelligence Graduate School Program(POSTECH)). T. Ahn,
S.W. Bae, and C. Chung were supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-00251168).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 303–317, 2024.
https://doi.org/10.1007/978-3-031-55598-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_20&domain=pdf
http://orcid.org/0000-0001-6588-4431
http://orcid.org/0009-0008-3363-2406
http://orcid.org/0000-0001-7177-1679
http://orcid.org/0000-0002-8802-4247
http://orcid.org/0000-0003-4467-7075
http://orcid.org/0000-0002-4664-7921
https://doi.org/10.1007/978-3-031-55598-5_20

304 T. Ahn et al.

bounding the two slabs are parallel. We consider the problem of finding an
optimal double-slab that covers a given set P of n points in R

d, for any fixed
dimension d � 3. We consider two optimization problems. In the first problem,
which we call the minimum-width double-slab problem, we wish to minimize the
width of the resulting double-slab, where the width of a double-slab is defined
as the maximum width of its two slabs. In the second problem, which we call
the widest empty slab problem, we wish to maximize the gap of the double-slab,
which is defined as the distance between the two slabs.

The two optimization problems concerning double-slabs extend and/or gen-
eralize several fundamental geometric problems, which have been extensively
studied mostly in R

2 or R
3, and sometimes in higher dimensions.

The width of a point set P in R
d is defined as the minimum width of a slab

that covers P . The width is considered one of the most fundamental extent mea-
sures describing a point set, together with the diameter and the radius. The width
of a set of n points in the plane can be computed easily in optimal O(n log n)
time [29]. If the convex hull of P is already given, this can be improved to O(n)
time using rotating calipers [31]. For d = 3, Houle and Toussaint [23] presented
an O(n2)-time algorithm, and the first subquadratic-time algorithm was given
by Chazelle et al. [13]. The currently best algorithm by Agarwal and Sharir runs
in O(n3/2+ε) expected time [2]. In higher dimensions, Chan [9] discussed a simple
formulation that reduces the width problem to searching a (d + 1)-dimensional
convex polytope, resulting in an O(n�d/2�)-time exact algorithm for d � 4. Effi-
cient approximation schemes are also known [1,9].

By definition, computing the width is equivalent to fitting a line for d = 2
(a plane for d = 3, or in general a hyperplane) to the given point set P . In
particular, for d = 2, this problem is also known as the line center problem.
For k � 1, the k-line center problem asks to find a set of k lines such that
the maximum distance of a point in P to its nearest line center is minimized.
Like the k-center problem, this problem is known to be NP-hard when k is part
of the input, even in the plane R

2 [28]. In spite of its fundamental position in
theory and applications, little is known about exact algorithms for the k-line
center problem. Even for d = 2, efficient algorithms are known only for k � 2:
algorithms with running time O(n2 log2 n) were found in the 1990 s [20,25] and
there has been no improvement since then. For d � 3, we are not aware of any
nontrivial exact algorithm to compute a k-line center for k � 2 in the literature.
Agarwal et al. [5] presented an efficient approximation algorithm for any k � 1
and d � 2. Recently, some results on constrained variants of the k-line center
problem in the plane R

2 have been published: Bae [6] showed that a parallel 2-
line center can be computed in O(n2) time, where the two lines are restricted to
be parallel. Das et al. [17] presented an approximation algorithm for orthogonal
line centers and Chung et al. [15] studied a variant of parallel k-line centers for
k � 2 considering gaps between the induced clusters.

The generalization to higher dimensions is the k-hyperplane center problem.
Given a set P of n points in R

d, we want to find k hyperplanes that minimize
the maximum distance from a point in P to its nearest hyperplane. This is

Double-Slabs and Empty Slabs in High Dimensions 305

equivalent to finding k slabs of minimum width that cover P . This problem has
been studied in the context of the projective clustering problem and, except for
the variants in R

2 mentioned above, only approximation algorithms are known
(see e.g. [4] and the references therein). As discussed in [4] and [5], an exact
algorithm with running time nO(dk) can be easily obtained for both the k-line
center and the k-hyperplane center problems. To our best knowledge, no better
algorithms are known, not even for small constants k � 2 and d � 3.

Our first problem, namely the minimum-width double-slab problem, can be
seen as a constrained variant of the 2-hyperplane center problem, in which the
two hyperplane centers must be parallel, while it extends and generalizes the
fundamental geometric problems mentioned above. We give the first exact algo-
rithm for this problem.

Covering P by a double-slab induces two clusters on P . In some applications,
such as in obnoxious facility location [16], it is considered more important to
achieve a maximum possible separation between the resulting clusters of P . This
motivates us to find a double-slab cover of P with the maximum possible gap,
or a widest empty slab through P . In the planar case d = 2, this problem is well
known as the widest empty corridor problem. Houle and Maciel [22] presented
the first O(n2)-time algorithm for the widest empty corridor problem. Many
variants of the problem have been studied since, including corridors containing
at most k input points [10,24,30], dynamic maintenance of corridors [24,30], and
more. Díaz-Báñez et al. [18] studied the widest empty slab problem in R

3, and
presented an O(n3)-time algorithm. We are not aware of any known algorithm
for the widest empty slab problem in R

d for any fixed dimension d � 4. We
present the first exact algorithm.

We summarize our results as follows:

(1) We solve the minimum-width double-slab problem in O(nd) time for d = 3, 4,
and in O(nd+1) time for any fixed dimension d � 5.

(2) We solve the widest empty slab problem in O(nd log n) time for any fixed
dimension d � 4.

We characterize combinatorial properties of optimal solutions to both prob-
lems, and find the optimal solution by efficiently enumerating all candidates. We
make a heavy use of geometric duality, mapping points in R

d into non-vertical
hyperplanes in R

d, and known algorithms and data structures for hyperplanes
and their arrangement in high dimensions.

Due to page limit, most proofs are omitted and will be seen in a full version.

2 Preliminaries

Let d � 2 be an arbitrary fixed dimension. We consider the d-dimensional
Euclidean space R

d with the d coordinate axes, called the x1, x2, . . . , xd-axes.
We consider the xd-axis as the vertical direction. We also treat R

d as a vector
space equipped with the standard inner product and the induced Euclidean norm
‖ ·‖. Hence, for any two points p, q ∈ R

d, the length of segment pq is ‖p−q‖. For

306 T. Ahn et al.

any subset A ⊂ R
d, let aff(A) be the affine hull of A, that is, the intersection of

all affine subspaces containing A.
For any affine subspace A of Rd, we denote by A⊥ the orthogonal complement

of A in R
d, the vector subspace consisting of all vectors in R

d that are orthogonal
to every vector a − a0 for a, a0 ∈ A. Note that dim(A) + dim(A⊥) = d. Let
πA : Rd → A denote the orthogonal projection onto A. In particular, if A =
R

d−1 = {xd = 0}, then we simply write π = πRd−1 . The projection π drops the
xd-coordinate, so that for any (a1, . . . , ad) ∈ R

d, we have π(a1, . . . , ad−1, ad) =
(a1, . . . , ad−1) ∈ R

d−1.

Hyperplanes and orientations. We call a k-flat vertical if it is parallel to the xd-
axis. A hyperplane in R

d is a (d − 1)-flat. Any non-vertical hyperplane h ⊂ R
d

can be seen as the graph of a (d − 1)-variate linear function h : Rd−1 → R:
h : xd = u1x1+u2x2+ · · ·+ud−1xd−1+b, for some u = (u1, u2, . . . , ud−1) ∈ R

d−1

and b ∈ R. We call u the orientation of h, and b its displacement. Any non-
vertical hyperplane h can be uniquely determined by an orientation u and a
displacement b in this way, and we have the following.

Observation 1. Let h be a non-vertical hyperplane in R
d with orientation u ∈

R
d−1. Then, the vector (u,−1) ∈ R

d is a normal of h.

In particular, hyperplanes with equal orientation are parallel. We can thus iden-
tify the space of possible orientations of non-vertical hyperplanes with R

d−1. For
any orientation u ∈ R

d−1, let θ(u) be the angle between the vector (u,−1) ∈ R
d

and the negative direction of the xd-axis. For any two parallel hyperplanes h1

and h2, let w(h1, h2) denote the distance between h1 and h2. We observe that
w(h1, h2) = |b1 − b2| · cos(θ(u)) = |b1−b2|

‖(u,−1)‖ , where u denotes their common ori-
entation and bi the displacement of hi, for i = 1, 2.

A slab S is the closure of the region between two parallel hyperplanes h1 and
h2, denoted by S = (h1, h2). The width of S, denoted by w(S), is w(h1, h2). A
double-slab D = (S1, S2) is the union of two disjoint parallel slabs S1 and S2.
The width of D, denoted by w(D), is max{w(S1), w(S2)}. We say that a slab or
double-slab is vertical if its defining hyperplanes are vertical. For any non-vertical
slab or double-slab, its orientation is the orientation of its defining hyperplanes.

Duality. We recall the classic point-to-hyperplane duality transform: for any
point p = (a1, a2, . . . , ad) ∈ R

d, the dual transformation maps p into its dual
hyperplane p� : xd = a1x1 + · · · + ad−1xd−1 − ad. Conversely, any non-vertical
hyperplane h ⊂ R

d is mapped to a point h� ∈ R
d. It is well known that the

duality transform a �→ a� preserves the point-hyperplane incidence relation and
the vertical order among points and hyperplanes [8].

Observation 2. Let S = (h1, h2) be a non-vertical slab with orientation u.

– The segment h�
1h

�
2 is vertical, that is, it is parallel to the xd-axis in R

d.
– It holds that w(S) = ‖h�

1 − h�
2‖ cos(θ(u)).

– The first d − 1 coordinates of h�
1 and h�

2 are equal to those of u, that is,
π(h�

1) = π(h�
2) = u.

Double-Slabs and Empty Slabs in High Dimensions 307

– For any point p ∈ R
d, p ∈ S if and only if the segment h�

1h
�
2 intersects p�.

Therefore, there is a one-to-one correspondence between non-vertical slabs and
vertical segments under the duality transform.

Arrangement of Hyperplanes. Let H be a set of n hyperplanes in R
d. Consider

the arrangement A(H) of these n hyperplanes. We introduce some algorithms
and data structures for hyperplane arrangements that we will be using.

The arrangement A(H) consists of O(nd) faces for d � 2 [21]. The upper and
lower envelopes of H, denoted by U(H) and L(H), correspond to the convex hull
of points that are dual to H, so their complexity is bounded by O(n�d/2�). It is
well known that A(H) can be computed in O(nd) time [21] and the envelopes
U(H) and L(H) can be computed in O(n log n+n�d/2�) time, using any optimal
convex hull algorithm, such as the one by Chazelle [12].

The zone Z(h;H) of another hyperplane h in the arrangement of H is the
set of all cells in A intersected by h and their incident faces. Edelsbrunner et
al. [19] showed that the complexity of the zone Z(h;H) is Θ(nd−1).

Lemma 1. (de Berg et al. [7]). For any fixed d � 2, the zone of a hyper-
plane h in an arrangement A(H) of n hyperplanes H can be computed in
O(nd−1 + n log n) time, without computing the whole arrangement A.

In our algorithms, it is often required to test the feasibility of a candidate
slab. The following query structure for point location in the arrangement will be
used for our purpose.

Lemma 2. (Chazelle [11] and Matoušek [26]). A set H of n hyperplanes
in R

d can be preprocessed in O(nd/ logd n) time into a data structure of size
O(nd/ logd n) that answers the following query in O(log n) time: Given a query
point q ∈ R

d, locate the face in A(H) that contains q and count the number of
hyperplanes in H above q.

By the duality transform, this data structure can answer the half-space counting
query [3]. Thus, given a set P of n points in R

d, by using the query structure
in Lemma 2 for the set of n hyperplanes dual to points in P , we can count the
number of points in P contained in a query slab S = (h1, h2) in O(log n) time,
according to Observation 2.

General Position Assumption. In the following, P will be a set of n input points
in R

d. For simplicity, we will assume that P is in general position, meaning that
no hyperplane in R

d contains more than d points of P or, equivalently, that
any d + 1 points in P are affinely independent. Hence, for any subset Q ⊆ P of
k � d + 1 points, its affine hull aff(Q) is a (k − 1)-flat in R

d. This also implies
that the orthogonal complement (aff(Q))⊥ is of dimension d−k+1. Throughout
the paper, we often discuss the intersection of two orthogonal complements V =
(aff(Q1))⊥ ∩ (aff(Q2))⊥ for two nonempty disjoint subsets Q1, Q2 ⊂ P with
k = |Q1|+ |Q2| � d+1. We shall call V the (linear) subspace orthogonal to both
aff(Q1) and aff(Q2). The general position also implies that the subspace V is
always of dimension d − k + 2 for any two subsets Q1, Q2 ∈ P .

308 T. Ahn et al.

3 Widest Empty Slabs

Let us call a slab S empty if it contains no point of P in its interior while
separating P into two nonempty subsets. Our goal in this section is to compute
an empty slab S of maximum width. The following is an easy observation on
empty slabs.

Lemma 3. Suppose that S is a maximum-width empty slab for P in R
d for d �

3. Let h ⊂ R
d be any hyperplane parallel to the normal of S. Then, πh(S) is a

maximum-width empty slab for πh(P) in the (d − 1)-dimensional space h.

Lemma 3 allows us to find the widest vertical empty slab by projecting the
point set to R

d−1 and solving the problem there. We can therefore concentrate on
finding the widest non-vertical empty slab, and in the remainder of this section
all slabs will be non-vertical. We represent a non-vertical slab S by a pair (h1, h2)
of hyperplanes such that h1 is above h2.

We prove the following characterization of optimal empty slabs.

Lemma 4. For any d � 2, if S = (h1, h2) is an empty slab of maximum width,
then one of the following must hold:

(i) At least d+1 points lie on the boundary of S, that is, |P ∩ (h1 ∪h2)| � d+1.
(ii) The normal vector to S is parallel to aff(P ∩ (h1 ∪ h2)).

Proof. Let S = (h1, h2) be a maximum-width empty slab for P , and let k :=
|P ∩(h1∪h2)| be the number of points in P that lie on the boundary of S. Clearly
at least one point of P lies on each of h1 and h2, so k � 2. Let u ∈ R

d−1 be the
orientation of S. Then, û := (u,−1) is a normal vector of S by Observation 1.

We will prove by induction on k and d that whenever k � d, the statement
in the second case holds, that is, the normal û is parallel to aff(P ∩ (h1 ∪ h2)).

Consider first the case k = 2. The planar case of the statement was proven
by Houle and Maciel [22], see also Janardan and Preparata [24, Theorem 2.1].
Consider now d > 2 and assume the claim holds in R

d−1 (for k = 2). Let
q1, q2 ∈ P be the two points such that q1 ∈ h1 and q2 ∈ h2, and suppose for
a contradiction that û is not parallel to � := aff(P ∩ (h1 ∪ h2)). In this case, �
is the line through q1 and q2. Let �′ be the line parallel to û going through q1.
The two lines � and �′ make a positive angle φ > 0. We consider a hyperplane h
containing both lines � and �′. Since the normal of h is parallel to S, Lemma 3
implies that πh(S) is a maximum-width empty slab for πh(P) in h. The two
points q1 and q2 lie in h and are still the only two points of P on the boundary
of πh(S). The normal of πh(S) is identical to û and still makes a positive angle φ
with �, a contradiction to the optimality of πh(S). See Fig. 1(a). It follows that
the claim holds for k = 2 in any dimension.

Consider now the general case d > 2 and 2 < k � d, and assume that
the claim holds for all smaller dimensions and smaller values of k. In this case
there are at least two points in P ∩ h1 or P ∩ h2. Without loss of generality, we
let |P ∩h1| � 2. Let f be the (k−1)-flat f = aff(P ∩(h1∪h2)). We pick two points
q1, q2 ∈ P ∩ h1. Let � be the line through q1 and q2, and let h be the hyperplane

Double-Slabs and Empty Slabs in High Dimensions 309

Fig. 1. Illustration to the proof of Lemma 4.

normal to � containing q1. Since the normal of h is parallel to S, we again apply
Lemma 3 to conclude that πh(S) is a maximum-width empty slab for πh(P) in h.
Since πh(q1) = πh(q2), there are k − 1 points of πh(P) lying on the boundary
of πh(S). By the inductive assumption, the normal û of πh(S) is parallel to the
(k−2)-flat f ′ = aff(πh(P)∩(πh(h1)∪πh(h2)). Since our projection direction lies
in f , we have f ′ ⊂ f , and so û is parallel to f , completing the inductive step.
See Fig. 1(b) for an illustration when d = 3 and k = 3.

We will now describe our algorithm that computes a maximum-width empty
slab for a given set P of n points in R

d. It enumerates all candidate slabs that
satisfy one of the two conditions described in Lemma 4. We will show that the
number of candidates is bounded by O(nd) and we will spend O(log n) time per
candidate for the emptiness test.

Let P � be the set of n hyperplanes dual to the points P , and let A = A(P �)
be their arrangement. We first build the query structure of Lemma 2 for A. We
will separately enumerate all candidates that fall in case (i) and those that fall
in case (ii) of Lemma 4.

3.1 Case (i)

Let us call an empty slab S a candidate slab if it satisfies the condition of case (i)
in Lemma 4. In dual space, Observation 2 immediately implies the following.

Lemma 5. A candidate slab corresponds to a maximal vertical segment con-
tained in a d-dimensional cell of A, whose endpoints lie in the relative interior1
of two faces f1 and f2 with dim(f1) + dim(f2) � d − 1.

We call such a vertical segment a candidate stick. Our algorithm collects all can-
didate sticks from the arrangement A, computes the width of the corresponding
slab for each candidate stick, and returns one that maximizes this width.

The candidate sticks are closely related to a vertical decomposition of the
arrangement of hyperplanes. Chazelle and Friedman [14] showed that the number
1 Note that the relative interior of a 0-flat (a point) is by definition the point itself.

310 T. Ahn et al.

of candidate sticks is O(nd) and argued that they can be computed by overlaying
the orthogonal projections of all the faces incident to each d-dimensional cell of A
onto the horizontal hyperplane {xd = 0}. They also described an algorithm that
computes all candidate sticks in O(n�3d/2� log�d/2� n) time,2 which is too slow
for our purpose.

Consider a candidate stick s between two faces f1 and f2 of A. By Lemma 5,
their dimensions sum up to at most d − 1, so the smaller dimension of the two,
say dim(f2), is at most
(d−1)/2�. Let k := dim(f2)+1. Then, we have dim(f1) �
d−k, and so f1 lies on (is a subface of) a face f ′ of A of dimension dim(f ′) = d−k.
The face f ′ is a face on the (d − k)-flat fQ :=

⋂
q∈Q q� for some subset Q ∈ P

with |Q| = k. Let now f̂Q be the (d − k + 1)-flat spanned by fQ and the vertical
direction, and observe that s lies in f̂Q, with one endpoint in fQ.

Every hyperplane q� intersects f̂Q in a (d − k)-flat q′. The face f2 of A
has dim(f2) = k−1 and therefore lies on the intersection of d−k+1 hyperplanes
of A. The intersection of these hyperplanes with the (d−k+1)-flat f̂Q is therefore
zero-dimensional, that is, a vertex of the arrangement AQ of the (d− k)-flats q′,
for q ∈ Q, inside the (d − k + 1)-flat f̂Q.

To summarize, for our candidate stick s there is a subset Q ⊂ P of size |Q| =
k, for some 1 � k �
(d − 1)/2� + 1 = �d/2, such that one endpoint of s is
a vertex v of the arrangement AQ in f̂Q and the other endpoint is the vertical
projection of v on the (d − k)-flat fQ. No hyperplane q′ crosses the relative
interior of s, so the entire segment lies in the zone of fQ in the arrangement AQ.

Our algorithm enumerates all possibilities: We consider all non-empty sub-
sets Q ⊂ P of size at most �d/2. For each Q, we compute the flat fQ and its
vertical extension f̂Q, and intersect all hyperplanes with f̂Q. We then compute
the zone Z of fQ in the arrangement AQ, and for each vertex v of Z, gener-
ate a vertical segment connecting v with its vertical projection on fQ. Finally,
we test whether the segment actually is a candidate stick by verifying whether
its relative interior intersects any hyperplane of A using the data structure of
Lemma 2.

There are
(
n
k

)
= O(nk) different subsets of k points. Computing the zone of n

hyperplanes in the (d−k+1)-dimensional space f̂Q takes time O(nd−k +n log n)
time by Lemma 1. By the zone theorem [19], the zone has at most O(nd−k)
vertices, so we can test all the resulting vertical segments in time O(nd−k log n).
Summing over all O(nk) subsets Q of size k results in time O(nd log n +
nk+1 log n), and summing over k from 1 to �d/2 results in total time O(nd log n).

3.2 Case (ii)

We now turn to the second case. We will enumerate all slabs S (not just empty
ones) that are determined by a subset Q of at most d points of P in the following
way: The intersection of the boundary of S with P is exactly Q, and the normal

2 In fact they construct a vertical decomposition of the entire arrangement.

Double-Slabs and Empty Slabs in High Dimensions 311

of S is parallel to aff(Q). We then test whether the slab is actually empty using
the data structure of Lemma 2, and return an empty slab maximizing the width.

The following lemma shows that given the boundary points, the unique slab
satisfying the condition can be found in constant time.

Lemma 6. Let Q1, Q2 ⊂ P be two disjoint subsets such that 2 � |Q1|+|Q2| � d.
There exists a unique orientation u of a slab S = (h1, h2) such that P ∩h1 = Q1,
P ∩ h2 = Q2, and the normal of S is parallel to aff(Q1 ∪ Q2). Moreover, such a
unique orientation can be computed in O(d3) = O(1) time.

Let Q1, Q2 ⊂ P be a pair of disjoint subsets of P with 2 � |Q1 ∪ Q2| � d. In
constant time we can compute the unique orientation described in Lemma 6,
denoted by u(Q1, Q2), and construct a slab S = (h1, h2) with orientation
u(Q1, Q2) such that P ∪ h1 = Q1 and P ∪ h2 = Q2. We can then test in
O(log n) time if the relative interior of S is empty using the data structure of
Lemma 2. We return the widest slab among all slabs passing the test.

We run the above procedure for all valid pairs (Q1, Q2). The number of such
pairs is bounded by

∑
2�k�d

(
n
k

) · 2k = O(nd), since d is a constant. Hence, the
total running time for case (ii) is also bounded by O(nd log n).

Theorem 1. For any constant dimension d � 4, a widest empty slab for a set
of n points in R

d can be computed in O(nd log n) time.

Our algorithm can be implemented faster for d � 3, because the emptiness of
a candidate slab can be tested in O(1) amortized time. This results in algorithms
with O(n2) and O(n3) time for d = 2 and d = 3, respectively, matching the
previously known time bounds [18,22]. The space requirement of our algorithm,
however, is larger.

4 Minimum-Width Double-Slabs

In this section, we present algorithms that compute a minimum-width double-
slab enclosing P in R

d for d � 3. Throughout this section, we assume that there
exists a minimum-width double-slab enclosing P that is non-vertical. As in the
previous section, if this is not the case, we can solve the problem by reducing it
to an instance in R

d−1 after orthogonally projecting P onto R
d−1. In addition,

we also assume that P consists of at least d+2 points, since the problem becomes
trivial when |P | � d + 1.

Let P � be the set of n hyperplanes dual to points in P , A = A(P �) be their
arrangement A, L = L(P �) be the lower envelope of A, and U = U(P �) be the
upper envelope of A. We represent any non-vertical double-slab D by a 4-tuple
(h1, h2, h3, h4) of hyperplanes such that hi is above hi+1 in R

d for each i = 1, 2, 3.
It is obvious that there exists a minimum-width double-slab enclosing P such

that at least one point in P lies on each of its four hyperplanes. The following
lemma describes a characterization of optimal double-slabs for our problem. See
also Fig. 2.

312 T. Ahn et al.

Fig. 2. Two possible configurations of minimum-width double-slabs D = (h1, h2, h3, h4)
in R

3. (a) Case (i) of Lemma 7: There are six points on the four planes. (b) Case (iii):
There are five points on the four planes, while we have w(h1, h2) = w(h3, h4).

Lemma 7. For any d � 2, if D = (h1, h2, h3, h4) is a minimum-width double-
slab enclosing P such that |P∩hi| � 1 for each i ∈ {1, 2, 3, 4}. Then, the following
conditions must hold:

–
∑

i |P ∩ hi| � d + 2.
– Exactly one of the following cases holds:

(i) w(h1, h2) > w(h3, h4) and |P ∩ h1| + |P ∩ h2| � d + 1.
(ii) w(h1, h2) < w(h3, h4) and |P ∩ h3| + |P ∩ h4| � d + 1.
(iii) w(h1, h2) = w(h3, h4).

Consider any minimum-width double-slab D = (h1, h2, h3, h4) enclosing P
that satisfies the conditions described in Lemma 7. Let Qi := P ∩ hi for i =
1, 2, 3, 4. Since the outer slab Sout = (h1, h4) also encloses P , it is obvious that a
portion of

⋂
q∈Q1

q� appears as a face of L and a portion of
⋂

q∈Q4
q� appears in

U in the same way. Hence, we have h�
1 ∈ L and h�

4 ∈ U . On the other hand, the
inner slab Sin = (h2, h3) should be empty, so the vertical segment h�

2h
�
3 crosses

no hyperplane in P �. Observe also that the dual point h�
i for each i lies in the

relative interior of a (d − |Qi|)-face of A that is a portion of the flat
⋂

q∈Qi
q�.

We will often discuss the overlay M of the orthogonal projections π(U) and
π(L) of the envelopes U and L onto the hyperplane {xd = 0} = R

d−1. Each face
f of the overlay M is associated with a pair (Q1, Q4) of subsets of P such that:
for any orientation u ∈ f , if (h1, h4) is the minimum-width slab of orientation u
that encloses P , then it always holds that P ∩ h1 = Q1 and P ∩ h4 = Q4.

Lemma 8. For any fixed d � 2, the overlay M consists of O(n�d/2�) many faces
and can be computed in O(n�d/2� + n log n) time.

In the following, we describe our algorithms for d � 3.

4.1 Three-Dimensional Case

First, we consider the case of d = 3. For any point q ∈ P and any orientation
u ∈ R

2, we consider the double-slab Dq(u) = (h1, h2, h3, h4) with orientation u
such that P ⊂ Dq(u), h�

1 ∈ L, q′ ∈ h2 (that is, h�
2 ∈ q′�) for some q′ ∈ P \ {q},

q ∈ h3 (that is, h�
3 ∈ q�), and h�

4 ∈ U . Since Dq(u) encloses P , the point q′ on h2 is

Double-Slabs and Empty Slabs in High Dimensions 313

determined as the first point in P hit by translating h3 upwards or, equivalently,
as the first hyperplane q′� in A hit by the ray emanating downwards from h�

3.
By Lemma 7, there exist some q ∈ P and u ∈ R

2 such that Dq(u) is indeed a
minimum-width double-slab enclosing P .

Let wq(u) := w(Dq(u)) be its width. Then, we have wq(u) = max{‖h�
1 −

h�
2‖, ‖h�

3 − h�
4‖} · cos(θ(u)). Let vq(u) := wq(u)/ cos(θ(u)) be the linear part of

the right side of the above equation. Observe that the function vq : R2 → R is
piecewise linear, since its values are determined by the vertical distances between
faces in A, while cos(θ(u)) = 1/

√‖u‖2 + 1 is a continuous function over u ∈ R
2.

Lemma 9. The number of linear pieces in function vq is O(n2) and an explicit
description of function vq can be computed in O(n2) time.

By Lemma 9, we also obtain the planar subdivision Mq induced by the break-
points of vq such that vq restricted to any face of Mq (of any dimension) is a
linear function. Lemma 7 for d = 3 implies the existence of a minimum-width
double-slab enclosing P whose orientation lies on a vertex or an edge of Mq.
Since the function vq restricted to each face of Mq (of any dimension) is linear
and thus of constant complexity, we can find an optimal double-slab constrained
about q ∈ P in total O(n2) time. By iterating all q ∈ P , we obtain the following.

Theorem 2. Given a set P of n points in R
3, a minimum-width double-slab

enclosing P can be computed in O(n3) time.

4.2 Four-Dimensional Case

We then consider the four-dimensional case, d = 4. Consider an optimal solution
D = (h1, h2, h3, h4) that satisfies the conditions of Lemma 7. We distinguish two
cases: when (a) |P ∩h2| = |P ∩h3| = 1 or (b) either |P ∩h2| � 2 or |P ∩h3| � 2.
Our goal is to find an optimal double-slab that falls into each case.

In the former case (a), we first compute the overlay M of π(U) and π(L)
by applying Lemma 8. Then, for each face of M, consider its associated pair
(Q1, Q4) of subsets and a minimum-width double-slab D enclosing P such that
P ∩ h1 = Q1, P ∩ h4 = Q4, and it falls into case (a). Since we must have |Q1| +
|Q4| � 4 by Lemma 7, we ignore those faces of M whose associated pair (Q1, Q4)
consists of at most three points. Since our target double-slab contains Q1 and
Q4 on its outer boundary, its normal should be orthogonal both to aff(Q1) and
aff(Q4). Hence, we consider the subspace f = (aff(Q1))⊥∩(aff(Q4))⊥ orthogonal
to both aff(Q1) and aff(Q4). As discussed in Sect. 2, such a flat f exists and its
dimension is always 6−|Q1|−|Q4| � 2. Hence, f is a line or a plane in R

4. If f is
a line, then we can find our solution in O(n) time by scanning all points in P ; if
f is a plane, then we project P orthogonally onto f and solve the 2-dimensional
problem instance in O(n2) time [6]. Since M consists of O(n2) faces (Lemma 8),
we can handle case (a) in a total of O(n4) time.

Next, we consider the latter case (b). Assume without loss of generality that
we have |Q3| � 2 in an optimal double-slab of this case. We fix a pair of points

314 T. Ahn et al.

q, q′ ∈ P and consider the case where q, q′ ∈ Q3. For the purpose, we consider any
hyperplane h in R

4 orthogonal to the line through q and q′, and the orthogonal
projections of P onto h. Note that q and q′ are projected to a common point q̄
on h. We then have a problem instance in R

3 with the constraint that q̄ should
lie on the third plane in the resulting slab. Therefore, we apply Lemma 9 to solve
this instance in O(n2) time. We can thus handle case (b) by iterating all pairs
(q, q′) of two points in P , taking O(n4) time.

Theorem 3. Given a set P of n points in R
4, a minimum-width double-slab

enclosing P can be computed in O(n4) time.

4.3 Algorithm for Higher Dimension

Finally, we consider higher dimensions for d � 5. The algorithm starts with
some preprocessing, including the initialization of the point location structure
of Lemma 2 and the query structure by Matoušek and Schwarzkopf [27] for ray
shooting for U and L. The cost of preprocessing is not more than O(nd) time.
In the main part of the algorithm, we handle each of the three cases described
in Lemma 7.

Cases (i) and (ii). First, we handle double-slabs D = (h1, h2, h3, h4) enclosing
P of case (i): w(h1, h2) > w(h3, h4) and |P ∩ h1| + |P ∩ h2| � d + 1. For the
purpose, we consider those D = (h1, h2, h3, h4) with the additional constraint
that only one fixed point q ∈ P lies on h2.

Lemma 10. Let d � 2 be any fixed integer and q ∈ P be any fixed point.
A minimum-width double-slab D = (h1, h2, h3, h4) enclosing P such that
w(h1, h2) > w(h3, h4) and P ∩ h2 = {q} can be computed in O(n�d/2� log n)
time, provided the query structure of Lemma 2.

For each 1 � k � d, consider an optimal double-slab D of this case such
that |P ∩ h2| = k. Such an optimal solution D can be computed as follows:
For each subset Q2 ⊂ P with |Q2| = k, let f := (aff(Q2))⊥ be the orthogonal
complement of aff(Q2). Note that f is a (d − k + 1)-flat, as discussed in Sect. 2.
We then orthogonally project P onto f by the projection operator πf , and
find an optimal double-slab D′ = (h′

1, h
′
2, h

′
3, h

′
4) of case (i) with the additional

constraint that πf (P) ∩ h′
2 = πf (Q2). This constrained problem can be solved

by Lemma 10 if 1 � k � d − 1, since the projection πf maps all points in Q2

to a common point in f and thus πf (Q2) consists of a single point. Since there
are

(
n
k

)
different choices of Q2 and we spend O(n�(d−k+1)/2� log n) time per each

(Lemma 10), it takes O(nd log n) time in total over all 1 � k � d − 1.
In case of k = d, the dimension of flat f is 1, so it gives us a unique orientation

u ∈ R
d−1. Hence, this case can be solved in O(log n) time as follows: Using the

ray shooting queries for L and U [27], we locate the points h�
1 and h�

4 on L and U ,
respectively, at u in O(log n) time, and then test if the vertical segment with top
endpoint at h�

4 and length ‖h�
1−h�

2‖ crosses the correct number of hyperplanes in

Double-Slabs and Empty Slabs in High Dimensions 315

A. This query can be answered in O(log n) time by Lemma 2. The total running
time for case (i) is thus bounded by O(nd log n).

Case (ii) can be handled in the same way as above.

Case (iii). Finally, consider double-slabs D = (h1, h2, h3, h4) enclosing P of
case (iii): w(h1, h2) = w(h3, h4) and

∑
i |P ∩ hi| � d + 2. For any four sub-

sets Q1, Q2, Q3, Q4 ⊆ P , we define D(Q1, Q2, Q3, Q4) = (h1, h2, h3, h4) to be a
minimum-width double-slab such that w(h1, h2) = w(h3, h4) and P ∩hi = Qi for
i = 1, 2, 3, 4. Note that D(Q1, Q2, Q3, Q4) does not have to enclose P and it may
be undefined when all the conditions cannot be fulfilled at the same time or there
is no minimum width even though there are infinitely many such double-slabs.
If D(Q1, Q2, Q3, Q4) is well defined, then we call it a candidate double-slab. Our
strategy is to collect all candidate double-slabs over all possible combinations of
four subsets and then to test the feasibility of each of them, that is, if it encloses
P by Lemma 2.

It turns out that the case of |Q2| = |Q3| = 1 can be handled efficiently.

Lemma 11. Let d � 2 be any fixed integer and q2, q3 ∈ P be two fixed points.
The number of candidate double-slabs of the form D(Q1, {q2}, {q3}, Q4) for some
Q1, Q4 ⊂ P is O(n�d/2�), and all of them can be computed in O(n�d/2� +n log n)
time. In case of d � 3, given the lower and upper envelopes L and U , all candi-
dates can be reported in O(n) time.

Now, we fix 2 � k � d and any pair (Q2, Q3) of nonempty subsets of P
with |Q2| + |Q3| = k. We enumerate all candidate double-slabs of the form
D(Q1, Q2, Q3, Q4) for some Q1, Q4 ⊂ P in the following way. Compute the
subspace f = (aff(Q2))⊥ ∩ (aff(Q3))⊥ orthogonal to both aff(Q2) and aff(Q3).
As discussed in Sect. 2, we always have dim(f) = d − k + 2. As done above
for case (i), we project points in P orthogonally onto f by projection operator
πf . Observe that all points in Q2 are projected to a common point q̄2 ∈ f and
all points in Q3 are projected to a common point q̄3 ∈ f . Hence, we can apply
Lemma 11 in the (d−k+2)-dimensional space f . This results in O(n�(d−k+2)/2�)
candidate double-slabs, taking the same amount of time if 2 � k � d − 2, or
O(n log n) time if k = d − 1 or d. By iterating all 2 � k � d and all

(
n
k

) · (2k − 2)
pairs (Q2, Q3), we collect a total of O(nd+1) candidate double-slabs. We then
test each candidate double-slab if it encloses P by point location in A (Lemma 2)
in O(log n) time per each.

It remains to consider those double-slabs D = (h1, h2, h3, h4) of case (iii)
such that k = |P ∩h2|+ |P ∩h3| � d+1. In this case, observe that (h2, h3) is an
empty slab and its dual segment h�

2h
�
3 is a candidate stick defined in Sect. 3. (See

also Lemma 5.) Thus, we run the algorithm described in Sect. 3.1 to compute all
O(nd) candidate sticks and, for each candidate sticks s, we build a corresponding
double-slab that encloses P in O(log n) time by ray shooting queries on L and
U at u = π(s) ∈ R

d−1. So, we can handle this case in O(nd log n) time.
The algorithm described above takes O(nd+1 log n) time in total to compute

an optimal double-slab of case (iii). The most time-consuming part of the algo-
rithm is the case of k = d: for k = d, we collect O(n) candidates for each of O(nd)

316 T. Ahn et al.

pairs (Q2, Q3) and spend O(nd+1 log n) time, including the feasibility test. The
other cases for 2 � k � d − 1 and for k � d + 1 take only O(nd log n) time in
total.

In order to improve the running time, remark that, when k = d, we reduce
the problem in R

d to an instance in R
2. In the following, we show that these

2-dimensional instances can be handled efficiently in a 3-dimensional instance.

Lemma 12. Let d = 3 and q2, q3 ∈ P be two fixed points. A minimum-width
double-slab D = (h1, h2, h3, h4) enclosing P such that w(h1, h2) = w(h3, h4),
q2 ∈ h2, q3 ∈ h3, and |P ∩ h2| + |P ∩ h3| = 3 can be computed in O(n2) time.

We exploit Lemma 12 as follows: For each pair (Q2, Q3) with |Q2| + |Q3| =
d−1, we apply Lemma 12. Then, it also handles the pairs (Q′

2, Q3) and (Q2, Q
′
3)

such that Q′
2 = Q2 ∪ {q} and Q′

3 = Q3 ∪ {q} for any point q ∈ P \ (Q2 ∪ Q3).
Hence, we can now handle those pairs including d points in bundles. Since we
spend only O(nd log n) time for the cases of 2 � k � d − 1, the final running
time is thus improved to O(nd+1).

Theorem 4. Given a set P of n points in R
d for any fixed d � 5, a minimum-

width double-slab enclosing P can be computed in O(nd+1) time.

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. J. ACM 51(4), 606–635 (2004)

2. Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric
optimization problems. Discr. Comput. Geometry 16(4), 317–337 (1996)

3. Agarwal, P.K.: Range searching. In: Goodman, J., O’Rourke, J., Tóth, C. (eds.)
Handbook of Discrete and Computational Geometry, chap. 40, pp. 1057–1092. CRC
Press, 3rd edn. (2018)

4. Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective cluster-
ing. J. Algorithms 46(2), 115–139 (2003)

5. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms for
a k-line center. Algorithmica 42(3), 221–230 (2005)

6. Bae, S.W.: Minimum-width double-strip and parallelogram annulus. Theor. Com-
put. Sci. 833, 133–146 (2020)

7. de Berg, M., Dobrindt, K., Schwarzkopf, O.: On lazy randomized incremental con-
struction. Discr. Comput. Geometry 14, 261–286 (1995)

8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77974-2

9. Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. Int. J. Comput. Geom. Appl. 12(1–2), 67–85 (2002)

10. Chattopadhyay, S., Das, P.: The k-dense corridor problems. Pattern Recogn. Lett.
11, 463–469 (1990)

11. Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discr. Comput. Geom-
etry 9(2), 145–158 (1993)

12. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discr.
Comput. Geometry 10, 377–409 (1993)

https://doi.org/10.1007/978-3-540-77974-2

Double-Slabs and Empty Slabs in High Dimensions 317

13. Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: Diameter, width, closest
line pair and parametric searching. Discr. Comput. Geometry 10, 183–196 (1993)

14. Chazelle, B., Friedman, J.: Point location among hyperplanes and unidirectional
ray-shooting. Comput. Geometry: Theor. Appl. 4(2), 53–62 (1994)

15. Chung, C., Ahn, T., Bae, S.W., Ahn, H.K.: Parallel line centers with guaranteed
separation. In: Proceedings of the 35th Canadian Conference on Computational
Geometry (CCCG 2023), pp. 153–160 (2023)

16. Church, R.L., Drezner, Z.: Review of obnoxious facilities location problems. Com-
put. Oper. Res. 138, 105468 (2022)

17. Das, A.K., Das, S., Mukherjee, J.: Approximation algorithms for orthogonal line
centers. Discret. Appl. Math. 338, 69–76 (2023)

18. Díaz-Báñez, J.M., López, M.A., Sellarés, J.A.: Locating an obnoxious plane. Eur.
J. Oper. Res. 173(2), 556–564 (2006)

19. Edelsbrunner, H., Seidel, R., Sharir, M.: On the zone theorem for hyperplane
arrangements. SIAM J. Comput. 22(2), 418–429 (1993)

20. Glozman, A., Kedem, K., Shpitalnik, G.: On some geometric selection and opti-
mization problems via sorted matrices. Comput. Geom.: Theory Appl. 11(1), 17–28
(1998)

21. Halperin, D., Sharir, M.: Arrangements. In: Goodman, J., O’Rourke, J., Tóth, C.
(eds.) Handbook of Discrete and Computational Geometry, chap. 28, pp. 723–762.
CRC Press, 3rd edn. (2018)

22. Houle, M.E., Maciel, A.: Finding the widest empty corridor through a set of points.
Snapshots of computational and discrete geometry, pp. 210–213 (1988)

23. Houle, M., Toussaint, G.: Computing the width of a set. In: Proc. 1st ACM Sympos.
Comput. Geom. (SoCG 1985), pp. 1–7 (1985)

24. Janardan, R., Preparata, F.P.: Widest-corridor problems. Nordic J. Comput. 1(2),
231–245 (1994)

25. Jaromczyk, J., Kowaluk, M.: The two-line center problem from a polar view: a new
algorithm and data structure. In: Proc. 4th International Workshop Algorithmic
Data Structure (WADS 1995). Lecture Notes Comput. Sci., vol. 955, pp. 13–25
(1995)

26. Matoušek, J.: Range searching with efficient hierarchical cuttings. Discr. Comput.
Geometry 10, 157–182 (1993)

27. Matoušek, J., Schwarzkopf, O.: On ray shooting in convex polytopes. Discr. Com-
put. Geometry 10, 215–232 (1993)

28. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane.
Oper. Res. Lett. 1(5), 194–197 (1982)

29. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer New York, New
York, NY (1985). https://doi.org/10.1007/978-1-4612-1098-6

30. Shin, C.S., Shin, S.Y., Chwa, K.Y.: The widest k-dense corridor problems. Inf.
Process. Lett. 68(1), 25–31 (1998)

31. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceed-
ings of the IEEE MELECON (1983)

https://doi.org/10.1007/978-1-4612-1098-6

Complexity Theory

The Complexity Classes of Hamming
Distance Recoverable Robust Problems

Christoph Grüne(B)

Department of Computer Science, RWTH Aachen University, Aachen, Germany

gruene@algo.rwth-aachen.de

Abstract. The well-known complexity class NP contains combinatorial
problems, whose optimization counterparts are important for many prac-
tical settings. In reality, however, uncertainty in the input data is a usual
phenomenon, which is typically not covered in NP problems.

One concept to model the uncertainty in the input data, is recoverable
robustness. The instance of the recoverable robust version of a combina-
torial problem P is split into a base scenario σ0 and an uncertainty
scenario set S. The task is to calculate a solution s0 for the base scenario
σ0 and solutions s for all uncertainty scenarios σ ∈ S such that s0 and
s are not too far away from each other according to a distance measure,
so s0 can be easily adapted to s.

We analyze the complexity of Hamming distance recoverable robust
versions of problems in NP for different scenario encodings. The complex-
ity is primarily situated in the lower levels of the polynomial hierarchy.
The main contribution of the paper is a gadget reduction framework that
reveals that the recoverable robust version of problems in a large class of
combinatorial problems is Σp

3 -complete. We show that this class includes
over 20 problems such as Vertex Cover, Independent Set, Hamiltonian
Path or Subset Sum. We expect that the number of problems can be
easily extended with the help of the gadget reduction framework. Addi-
tionally, we expand the results to Σp

2m+1-completeness for multi-stage
recoverable robust problems with m ∈ N stages.

Keywords: Computational Complexity · Polynomial Hierarchy ·
Robust Optimization · Recoverable Robustness · Optimization under
Uncertainty

1 Introduction

The concept of robustness in the field of optimization problems is a collection
of models that consider uncertainties in the input. These uncertainties may for

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)–GRK 2236/1. I would like to thank Marc Goerigk, Stefan Lendl and Lasse
Wulf for helpful comments and discussions on the paper. Furthermore, I would like to
thank the anonymous reviewers for their helpful comments.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 321–335, 2024.
https://doi.org/10.1007/978-3-031-55598-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_21&domain=pdf
http://orcid.org/0000-0002-7789-8870
https://doi.org/10.1007/978-3-031-55598-5_21

322 C. Grüne

example arise from faulty or inaccurate sensors or from a lack of knowledge.
Robustness measures can model these types of uncertainty that occur in practi-
cal optimization instances into an uncertainty set. The goal is to find solutions
that are stable over all possible scenarios in the uncertainty set. That is, these
solutions remain good but not necessarily optimal regardless what the uncer-
tainties turn out to be in reality.

One specific robustness concept is recoverable robustness, which is a recently
introduced concept [15] by Liebchen et al. The input of a recoverable robust
version of a problem P is a base scenario σ0, which is an instance of problem P ,
as well as a set of uncertainty scenarios S, whose members are again instances of
P . The set of uncertainty scenarios S is the uncertainty set of the problem. We
are asked to compute a base solution s0 to the base scenario σ0 and to compute
recovery solutions s to all members of the uncertainty scenarios σ ∈ S such that
s0 and s are not too far away from each other according to a distance measure.
The solution on the base scenario does not directly include the uncertainties
but needs to include the potential to adapt the base solution s0 to solutions s
within the given distance between the solutions. Thus, the base solution s0 may
be restricted by these possibly harmful scenarios.

From a worst-case-analysis point of view, we assume that the uncertainty
scenarios are chosen by an adversary. The algorithm computes a base solution
with the potential to adapt to all scenarios. Then, the adversary chooses the most
harmful scenario based on the base solution. Finally, the algorithm computes a
recovery solution to adapt to the chosen scenario.

A more general concept is multi-stage recoverable robustness, in which not
only one set of uncertainty scenarios is provided but m sets of scenarios. This
concept was introduced by Cicerone et al. [8]. The m-stage recoverable robust
problem asks to solve the recoverable robust problem on the individual sets of
scenarios inductively. That is, a base solution s0 has to be found such that one
can recover from s0 for the first set of scenarios S1 to a solution s1 such that
one can recover from s1 for the second set of scenarios S2 and so forth such that
one can recover from sm−1 for the m-th set of scenarios Sm to a solution sm.

Related Work. Recoverable robustness is used in many practical settings such as
different optimization areas in air transport [9,11,17] or in railway optimization,
for which a survey can be found in [16]. Our focus lies on the complexity of recov-
erable robust problems. In parallel to this paper, Goerigk et al. [12] analyzed the
Hamming distance recoverable robust Independent Set, TSP and Vertex Cover.
Hamming distance means that at most k elements may be added to or deleted
from the base solution in total to obtain a recovery solution. They showed the
Σp

3 -hardness of the variant with discrete budgeted uncertainty over the costs
of the elements. To the best of the author’s knowledge, this is the only con-
tribution investigating the complexity within the polynomial hierarchy beyond
NP-hardness. All other contributions study primarily algorithms and analyze
the problems only on their NP-hardness or their approximability, where differ-
ent distance measures between the solutions are of interest. The concept of k-dist
recoverable robustness, allowing at most k new elements in recovery solutions, was

The Complexity Classes of Hamming Distance Recoverable Robust Problems 323

introduced in [3] but was also used in [14]. Besides the k-dist measures, there are
also measures which limit the number of deleted elements [5] or exchanged [7]
elements. Furthermore, combinations of these distance measures are analyzed
as well in the literature [6]. Further usages of Hamming distance recoverable
robustness can be found in [10]. Among the studied recoverable robust prob-
lems is Knapsack, which is NP-hard for different distance measures between the
solutions [4–6]. Recoverable robust versions of problems that are in PTIME are
shown to be NP-complete as well such as Shortest Path, which is NP-hard for
k-dist [3], or Matching [10]. Furthermore, the recoverable robust Single Machine
Scheduling problem is 2-approximable [2] and the recoverable robust TSP is 4-
approximable [7]. Moreover, a recoverable robust version of Spanning Tree [14]
is shown to be in PTIME.

For the complexity analysis, we introduce a gadget reduction framework. Dif-
ferent gadget reduction concepts were studied for example by Agrawal et al. [1],
who defined gadget reductions under AC0 for NP-completeness mapping one bit
of the input of one problem to a bounded number of bits in the other problem. A
further form of gadget reduction was introduced by Trevisan et al. [19], who for-
malized constraints of a linear program to be a gadget in the reduction between
linear programs.

Contribution. We study Hamming distance recoverable robust problems with dif-
ferent forms of elemental uncertainty. That is, it is uncertain whether an element
(e.g. a vertex or object) is included in a scenario or not. This form of uncertainty
is different to cost uncertainty, where all elements are present in all scenarios but
the costs of the elements are uncertain. We show that recoverable robust versions
of typical NP-complete combinatorial problems with xor-dependencies or Γ -set
scenarios are Σp

3 -complete and the corresponding multi-stage recoverable robust
versions are Σp

2m+1-complete, where m ∈ N is the number of stages.
We do this by defining a gadget reduction framework, which uses a specific

definition of combinatorial problems. These problems are defined over combina-
torial elements, which are defined over a universe U , and nested relations R(U)
over that universe. We show that this framework is able to “upgrade” many
already exsiting NP-hardness reductions by applying it to over 20 well-known
problems. Thus, we expect that the results are easily extendable beyond those
problems.

In order to explain the idea of these universe gadget reductions, consider a
problem A for which we want to reduce to another problem B. A gadget reduc-
tion creates a gadget for each combinatorial element from UA and RA(UA) to
simulate the behavior of this element in B. This gadget consists of universe ele-
ments from UB and/or relation elements RB(UB) and is disjoint from all other
gadgets. That is, no element from B is in two gadgets at the same time. Addi-
tionally, we demand that if we remove a combinatorial element in A, we are able
to remove the corresponding gadget in B without invalidating the correctness of
the reduction.

This form of reduction preserves the scenarios structurally independent of
the underlying encoding. Thus, this gadget reduction framework allows for

324 C. Grüne

reductions between Hamming distance recoverable robust problems. Indeed these
properties are already achieved by typical polynomial reductions (or slight mod-
ifications) of it.

Paper Summary. In Sect. 2, we define necessary complexity theoretical concepts.
In Sect. 3, we build a framework for combinatorial decision problems to define
Hamming distance recoverable robust problems. Then, we consider typical prob-
lems, which are in NP or NP-complete, and analyze their complexity for poly-
nomially computable scenario encodings in Sect. 4. Section 5 consists of the com-
plexity analysis of succinctly encoded scenarios as well as multi-stage recoverable
robustness. At last in Sect. 6, we establish a whole class of Hamming distance
recoverable robust problems by using our combinatorial decision problem frame-
work and by introducing universe gadget reductions. With Sect. 7, we conclude
the paper. The full version of this paper can be found on arXiv [13].

2 Preliminaries

We define a language L as a subset of {0, 1}∗. The class Σk
p contains all languages

L such that there is a Turing machine V (the “verifier”) and polynomial p such
that for all x ∈ {0, 1}∗, it holds x ∈ L iff

∃y1 ∈ {0, 1}p(|x|)∀y2 ∈ {0, 1}p(|x|) . . . Qyk ∈ {0, 1}p(|x|) V (x, y1, y2, . . . , yk) = 1,

where Q = ∃, if k odd, and Q = ∀, else. This family of classes is part of the
polynomial-time hierarchy defined by Stockmeyer [18]. A many-one reduction
(or Karp reduction) from some language L1 to some language L2 is defined
as a function f : {0, 1}∗ → {0, 1}∗ such that x ∈ L1 iff f(x) ∈ L2 for all
x ∈ {0, 1}∗. A language L1 is Σk

p -hard if all languages L2 ∈ Σk
p can be reduced

to L1 via a polynomial time many-one reduction. A problem is Σk
p -complete if

it is contained in Σk
p and Σk

p -hard. The canonical complete problems for Σk
p are

∃1∀2 . . . ∃kCNF-Sat, for odd k, and ∃1∀2 . . . ∀kDNF-Sat, for even k.

3 Combinatorial Problem Framework

In theoretical computer science, problems are defined as languages, which consist
of all YES-instances of the problem. The instances are encoded as words from
{0, 1}∗. For combinatorial problems, we may assume that an instance contains
a universe U = {1, . . . , n}, which consists of the encoding atoms of the instance.
Furthermore, an instance includes (nested) relations between these atoms. To
encode the relations, the atoms are used together with a delimiter symbol.

One example of such a problem is the problem Undirected s-t-Connec-

tivity (UstCon). Its input is an undirected graph G = (V,E) together with
two vertices s, t ∈ V . The corresponding instance is then encoded by the vertices
V = U as universe and three relations s, t ⊆ V and E ⊆ V ×V . The instance is a
YES-instance iff there is path from s to t in G. Another example is the problem

The Complexity Classes of Hamming Distance Recoverable Robust Problems 325

Vertex Cover. Again, the vertices V = U are the universe and E ⊆ V × V is
a relation. The instance is a YES-instance iff there is a small vertex cover in G.

In mathematical optimization, a problem is often defined over its feasible
solutions F together with a cost function c. The goal is then to find a solution
that achieves the minimum (resp. maximum) of all feasible solutions. Oftentimes,
an additional ground set of combinatorial elements X is given. For simplicity, the
feasible solutions are then combinations of that ground set, that is F (X) ⊆ 2X .
We apply this to UstCon by interpreting the edges as the ground set X = E
and all paths F (X) ⊆ 2E from s to t as the feasible solutions. For Vertex

Cover, we define the vertices as ground set X = V and the feasible solutions
F (X) ⊆ 2V are all small vertex covers in the graph. For simplicity, we ignore
cost or weight functions and ask for the mere existence of a solution (here: a
path, a small vertex cover).

While this is not a general definition, many typical combinatorial problems
can be defined this way such as Independent Set (an independent set is a
subset of vertices), Hamiltonian Path (a Hamiltonian path is a subset of
edges), Subset Sum (a solution for subset sum is a subset of numbers).

We distinguish the natural encoding universe U from the solution ground
set X over which the solutions are defined. Thereby, we reach a larger class of
problems. In Vertex Cover, the encoding universe U = V is the same as
the solution ground set X = V , because a vertex cover is a set of vertices and a
graph is a set of vertices which are in relation via edges. In contrast, the instances
of UstCon are still graphs while the solutions are subsets of edges. Thus for
UstCon, the solution ground set and the universe do not coincide.

We begin with the definition of nested relations in order to define the
instances of combinatorial problems. With these nested relations, we are able
to define all possible associations of universe elements as well as between uni-
verse elements and relational elements. Thus in a graph G = (V,E), we are not
only able to for example encode edges E ⊆ V × V but also an incidence relation
I ⊆ V × E or the neighborhood relation N ⊆ V ≤|V |.

Definition 1 (Nested Relations). Let U be a set. Then R(U) is the set of
nested relations over U defined by the smallest set fulfilling:

U ∈ R(U) (1)
A ∈ R(U), if A ⊆ B for some B ∈ R(U) (2)

×
i

Ai ∈ R(U), if for all i, Ai ∈ R(U) (3)

We denote the set of relation elements that include r ∈ A ∈ R(U) by R(r).

With access to all nested relations over the universe, we are able to define
not only a variety of problems but we are also able to meaningfully define gadget
reductions between problems. The solution ground set X = R is then a subset of
relational elements of one (nested) relation R ∈ R(U) over the gadget reduction
universe U . Thus the solutions are of the form F (R) ⊆ 2R.

326 C. Grüne

Definition 2 (Combinatorial Decision Problem). A combinatorial deci-
sion problem PA is a set of tuples (UA, RA, FA(RA)) with the set of universe
elements UA, relations RA ∈ R(UA)r, r ∈ N, and the set of feasible solutions
FA(RA) ⊆ 2Ri

A for some 1 ≤ i ≤ r. We assume that R1
A = UA. We call RA the

instance of the problem and RA is a YES-instance if and only if FA(RA) �= ∅.
We use an index set IA to easily address the members of the tuple RA.

For simplicity, we may omit the problem in the index of UA, RA and FA(RA)
as well as the dependence of the feasible solutions F (R) on the relations R and
write F . For a better understanding, we again use UstCon as an example.

Example 1 (Undirected s-t-Connectivity Problem). The input of UstCon is a
graph G = (V,E) and two vertices s, t ∈ V . A feasible solution is a path from
s to t in G. This translates to the following tuple (U,R, F). The universe U
consists of the vertices V . The relations in R are the edges E and the vertices s
and t, that is, R = (V,E, s, t). The feasible solutions are all s-t-paths p ∈ F ⊆ 2E

in G defined as subsets of edges.

Observe that for combinatorial problems, the encoding of the input and the
solutions depends only on the universe of elements. Thus, the universe elements
in U build the atoms of the problem. The (nested) relations R model the relations
between these atoms. The feasible solutions F model all possible combinations
of solution elements that are feasible.

3.1 Scenarios for Robust Problems

Before we are able to define recoverable robust problems, we need to define
scenarios. Scenarios are a central concept in robust optimization, which model
the uncertainty. A Hamming distance recoverable robust problem PHDRR

A is based
on a combinatorial problem PA. We then define a scenario as follows.

Definition 3 (Scenarios). A scenario of the problem PHDRR
A is a problem

instance (UA, RA, FA(RA)) of the problem PA.

Encoding of Scenarios. For scenarios, we use explicit encodings, implicit encod-
ings or succinct encodings. We consider elemental uncertainty, for which it is
uncertain whether a combinatorial element is part of a scenario or not. Thus,
all of these encodings are based on combinatorial elements of an instance, which
include the universe and all relation elements. This is different to uncertainty
over the costs of elements, where the underlying combinatorial elements remain
the same for all scenarios. If a combinatorial element is not part of a scenario,
then all relation elements that include this combinatorial element are discarded
as well in the scenario. For example, if a vertex v in a graph problem is dis-
carded, then all edges incident to v are discarded, too. We denote this removal
of combinatorial elements with U \ {r} and R \ R(r), whereby the removal of r
removes all relation elements R(r) that contain r. We call the elements that are

The Complexity Classes of Hamming Distance Recoverable Robust Problems 327

part of the current scenario the active elements, otherwise we call the elements
inactive.

First, we will use explicit encodings by providing the complete instance
encoding over the base problem PA. Additionally, we use implicit encodings
by providing a set of all elements that are different from base scenario σ0. Fur-
thermore, we address succinct encodings of scenarios as well. These encodings
usually encode an exponential number of scenarios in polynomial space. The
well-known Γ -scenarios fall into this last category as well as later defined xor-
dependencies, which use logical operators between the elements to encode which
element is active, i.e. part of a scenario.

3.2 Hamming Distance Recoverable Robust Problems

Now, we define Hamming distance recoverable robust problems. For this, we
need a definition of the Hamming distance over a set.

Definition 4 (Hamming Distance of Sets). Let A,B be two sets. Then, we
define the Hamming distance H(A,B) of set A and B to be

H(A,B) := |A � B| = |{x | either x ∈ A or x ∈ B}|
Intuitively, a Hamming distance recoverable robust problem PHDRR

A is based
on a normal combinatorial decision problem PA, e.g. UstCon. We distinguish
the base scenario from recovery scenarios. The base scenario σ0 is the instance on
which the first solution s0 has to be computed. The recovery scenarios σ ∈ S are
the scenarios for which the solution s, that has to be adapted from s0, have to
be computed. All scenarios of a problem may share universe elements or relation
elements. In conclusion, we not only have to find a solution for one instance,
but for one base scenario σ0 and for all recovery scenarios in S. That is, we can
recover from every possible scenario with a new solution to the problem. The
recovery solutions, nonetheless, may have a Hamming distance of at most κ to
the solution of the base scenario. We always define the Hamming distance over
the solution ground set X between the solutions from F (X) ⊆ 2X . Formally, we
obtain the following definition.

Definition 5 (Hamming Distance Recoverable Robust Problem). A
Hamming distance recoverable robust problem PHDRR

A is a combinatorial prob-
lem based on a combinatorial problem PA. PHDRR

A is defined as a set of tuples
(U,R, F (R)) with

U = U0 ∪ ⋃
σ∈S Uσ is the universe. The universe is the union over all universe

elements that occur in the scenarios.
R = (R0, (Rσ)σ∈S) = ((U0, R

2
0, . . . , R

r
0), (Uσ, R2

σ, . . . , Rr
σ)σ∈S) are the relations.

The relations are separate for each scenario.
F (R) = {(s0, (sσ)σ∈S) ∈ F0(R0) × (Fσ(Rσ))σ∈S | H(s0, sσ) ≤ κ for all σ ∈ S})

are the feasible solutions. The Hamming distance H(s, s′) is defined over the
elements in the solutions s, s′.

328 C. Grüne

The feasible solutions are not subsets of some relation R but consist of tuples
including the solution for each scenario in F , which also adhere to the Hamming
distance. In general, we assume that the bound on the Hamming distance κ
is part of the input. Observe that the specifications are no restriction because
every decision problem can be formulated as one base scenario and no recovery
scenarios, that is S = ∅. On the other hand, the base problem PA is a restriction
of PHDRR

A by setting S = ∅. Furthermore, the base scenario is defined by σ0 =
(U0, R0, F0) and all uncertainty scenarios σ ∈ S are defined by σ = (Uσ, Rσ, Fσ).
Again, we provide an example for a better understanding of the definition and
again, we use the UstCon problem.

Example 2 (Hamming Distance Recoverable Robust UstCon). Let G = (V,E)
be a graph, s, t ∈ V and κ ∈ N. UstCon

HDRR is a Hamming distance recoverable
robust problem with feasible solutions F ⊆ 2E . Thus, the Hamming distance is
defined over the edges. The start and end vertices s and t remain the same for
all scenarios. The input R contains the following: Each scenario σ ∈ S encodes
the set of active vertices Vσ and edges Eσ. The feasible solutions F consists of
all s-t-paths (p0, pσ∈S) ∈ 2Eσ0 × 2Eσ∈S such that H(p0, pσ) ≤ κ, for all σ ∈ S. In
other words, the question is

∃p0 ∈ 2Eσ0 : ∀σ ∈ S : ∃pσ ∈ 2Eσ : p0 ∈ F0, pσ ∈ Fσ and H(p, pσ) ≤ κ.

4 Recoverable Robust Problems with Polynomially
Computable Scenario Encodings

We now consider problems with polynomially computable scenario encodings.
A scenario encoding is polynomially computable if the set of scenarios is trans-
formable into a set of explicitly encoded instances in polynomial time. (Conse-
quently, the number of scenarios is bounded by a polynomial.)

Lemma 1. Let PA ∈ NP. Then PHDRR
A ∈ NP if the set of scenarios S of PHDRR

A

is polynomially computable.

Besides general polynomially computable scenarios, we may consider the pop-
ular concept of Γ -scenarios. These consist of all scenarios that deviate in at most
Γ many elements from the base instance corresponding to a set of activatable
elements. If Γ is constant, we may use Lemma 1 to obtain the following result.

Corollary 1. Let PA ∈ NP. Then PHDRR
A ∈ NP if the set of scenarios S of

PHDRR
A consists of all possible Γ -scenarios for a constant Γ .

Theorem 1 follows directly from by Lemma 1 by reusing the original reduction
to PA and setting the scenario set S = ∅.

Theorem 1. Let PA be an NP-complete problem. Then, PHDRR
A is NP-complete

if the set of scenarios S of PHDRR
A is polynomially computable.

The Complexity Classes of Hamming Distance Recoverable Robust Problems 329

4.1 Reduction for Undirected S-t-Connectivity

Theorem 2. There is a deterministic logarithmic space computable reduction
from 3-Satisfiability to UstCon

HDRR with one base and one recovery sce-
nario. In short, 3-Satisfiability ≤L UstCon

HDRR

5 Recoverable Robust Problems and the Polynomial
Hierarchy

In this section, we investigate the connection between multi-stage Hamming
distance recoverable robust problems and the polynomial hierarchy. For this,
we introduce two succinct encodings: xor-dependencies and Γ -set scenarios. We
first prove that the Hamming distance recoverable robust version of problems,
which are in NP, are in Σp

3 for both encodings. Then, we prove the hardness of
the Hamming distance recoverable robust 3-Satisfiability for both encodings.

Definition 6 (Hamming Distance Recoverable Robust
3-Satisfiability). The problem 3-SatisfiabilityHDRR with Hamming distance
over the literals L is defined as follows.

Input: Literals L, clauses C, base scenario σ0 ⊆ L, recovery scenarios S ⊆ 2L,
κ ∈ N

Question: Are there solutions s0 ⊆ σ0 and sσ ⊆ σ for all σ ∈ S such that
H(s0, sσ) ≤ κ for all σ ∈ S and setting s0 and sσ to true, all corresponding
formulae of clauses C|σ0 and C|σ are satisfied?

At last, we extend these results to the multistage recoverable robustness case
by showing the Σp

2m+1-completeness of the Hamming distance recoverable robust
3-Satisfiability with m recovery stages. We begin with the xor-dependency
scenarios.

Definition 7 (xor-Dependency Scenarios). Let S = (E′, {(E1,1, E1,2), . . . ,
(En,1, En,2)}) be the scenario-encoding, whereby E′ and Ei,j are pairwise disjoint
sets of combinatorial elements for all i, j. Then the corresponding scenario set
S includes all σ of the form σ = E′ ∪ E1 ∪ . . . ∪ En with either (Ei = Ei,1) or
(Ei = Ei,2) for all i = 1, . . . , n and E′ is a fixed set of combinatorial elements,
which are activated (resp. deactivated) in all recovery scenarios iff the element
is inactive (resp. active) in the base scenario.

Observe that with a linear sized encoding, exponentially many scenarios
may be encoded. We study this combinatorial explosion with the result that it
introduces more complexity for Hamming distance recoverable robust problems.
For this, we use 3-Satisfiability as base problem and show the Σp

3 -hardness
of 3-SatisfiabilityHDRR with a linear number of xor-dependencies. Further-
more, we show also that if PA ∈ NP, then PHDRR

A with a linear number of
xor-dependencies is in Σp

3 .

330 C. Grüne

Theorem 3. If PA ∈ NP, then PHDRR
A with xor-dependencies is in Σp

3 .

Theorem 4. 3-SatisfiabilityHDRR with xor-dependency scenarios is Σp
3 -

hard.

While the other parts of the paper are developed independent from Goerigk
et al. [12], the results for Γ -set scenarios are built upon it. The results based
on xor-dependencies are adaptable to the Γ -set scenarios as described in this
section. For the Γ -set scenarios, we use the definition over sets instead of elements
as in Γ -scenarios, which is defined as follows.

Definition 8 (Γ -set Scenarios). Let S = (E′, {E1, E2, . . . En}) be the
scenario-encoding, whereby E′ and Ei are pairwise disjoint sets of combinatorial
elements for all i. Then, the corresponding scenario set S includes all σ of the
form σ = E′ ∪ ⋃

E∈E E with E ⊆ {E1, E2, . . . , En}, |E| ≤ Γ , and E′ is a fixed set
of combinatorial elements, which are activated (resp. deactivated) in all recovery
scenarios iff the element is inactive (resp. active) in the base scenario.

Again, with a linear sized encoding, exponentially many scenarios may be
encoded. We show the Σp

3 -hardness of 3-SatisfiabilityHDRR with Γ -set scenar-
ios. A proof on the so-called Robust Adjustable Sat was already conducted
by Goerigk et al. [12]. This version of 3-Satisfiability uses uncertainties over
the costs instead of the elements as in Σp

3 -hardness of 3-SatisfiabilityHDRR

with Γ -set scenarios. Thus, the proof is not analogous as it is different in techni-
calities, nevertheless, we reuse their basic idea of introducing the s-variables for
our proof. Furthermore, we show also that if PA ∈ NP, then PHDRR

A with Γ -set
scenarios is in Σp

3 .

Theorem 5. If PA ∈ NP, then PHDRR
A with Γ -set scenarios is in Σp

3 .

Theorem 6. 3-SatisfiabilityHDRR with Γ -set scenarios is Σp
3 -hard.

5.1 Multi-stage Recoverable Robustness

In multi-stage recoverable robustness, the uncertainty is not only modeled by one
set of scenarios but multiple sets that are connected inductively.

Definition 9 (Multi-stage Recoverable Robust Problem). A multi-stage
recoverable robust problem with m recoveries Pm-HDRR

A is inductively defined as

Pm-HDRR
A := PA for m = 0,

Pm-HDRR
A := (P (m−1)-HDRR

A)HDRR for m > 1.

The complexity results naturally extend to the multiple recoverable robust-
ness concept. We make use of the inductive nature of the definition by proving
the following theorems by induction. For this, we reuse Theorems 3 to 6 as
induction base.

Theorem 7. 3-Satisfiabilitym-HDRR with xor-dependency scenarios
is Σp

2m+1-complete. 3-Satisfiabilitym-HDRR with Γ -set scenarios is Σp
2m+1-

-complete.

The Complexity Classes of Hamming Distance Recoverable Robust Problems 331

6 Classes of Recoverable Robust Problems

We have shown that 3-SatisfiabilityHDRR is the canonical Σp
3 -complete Ham-

ming distance recoverable robust problem. The goal is to “upgrade” the existing
reductions on the NP-level to reduce the corresponding Hamming distance recov-
erable robust problems to each other. If we are additionally able to guarantee
transitivity, we are also able to easily achieve complexity results for a large class
of problems. Essentially, the reduction between Hamming distance recoverable
robust problems needs to preserve the structure of the scenarios. For this, con-
sider problems PA and PB. We need to achieve that a combinatorial element
eA in PA is active if and only if the combinatorial elements EB , to which eA is
mapped in PB , are active. Then, we can use this one-to-many correspondence
to (de)activate the corresponding elements in the instance of PB .

Many of the properties from above are already constituted by the informal
concept of gadget reductions. Gadget reductions describe that each part of the
problem PA is mapped to a specified part of the problem PB that inherits the
behavior in problem PA. We adjust this concept to combinatorial elements, that
is universe elements and relation elements, for our purpose. The goal is that
a gadget is a subset of combinatorial elements in PB for every combinatorial
element in PA. Thereby, we preserve the (in)activeness of elements in a scenario.
We call reductions that fulfill this property modular in the sense that all gadgets
are easily (de)activatable. Furthermore, the solution size, which is the number
of universe elements in a solution, has to adapt accordingly while being easy to
compute in order to define the Hamming distance in the reduction correctly. We
approach this later by demanding that the solution size of every gadget has to
be a constant.

6.1 Universe Gadget Reduction

Let PA be a combinatorial decision problem with instance tuples (UA, RA, FA)
and PB a combinatorial decision problem with instance tuples (UB , RB , FB). A
Universe Gadget Reduction f� that many-one-reduces PA to PB is composed of
a (possibly empty) constant gadget Yconst, which is the same for every instance,
and of the independent mappings: fRi

A,Rj
B

: Ri
A → 2Rj

B for all (i, j) ∈ IA × IB.

We, then, call the substructure

Yx = f�(x) =
⋃

(i,j) ∈ IA×IB

fRi
A,Rj

B
(x)

the gadget for the specific universe element or relation element x ∈ ⋃
i Ri

A.
Additionally, we denote the set of all gadgets by Υ (RA) = {Yr | r ∈ RA} ∪
{Yconst} for the instance RA. The mappings must fulfill the following properties.

1. Pre-image uniqueness: Let y ∈ Rj
B for some j ∈ IB , then either y ∈ Yconst

or there is exactly one (i, j) ∈ IA × IB and exactly one x ∈ Ri
A such that

y ∈ fRi
A,Rj

B
(x).

332 C. Grüne

2. Modularity: If a combinatorial element r ∈ Ri
A from (UA, RA, FA) is removed

to form a new instance (U ′
A, R′

A, F ′
A), the removal of the gadget of r in

(UB , RB , FB) induces a correct reduction instance (U ′
B , R′

B , F ′
B). A removal

of r ∈ Ri
A corresponds to the substitution by a (possibly empty) removal

gadget Y rem
r in PB:

f�(RA \ R(r)) = (RB \ f�(R(r))) ∪ Y rem
r .

If the removal gadget is empty for all combinatorial elements, we call the
modularity strong, otherwise weak. We substitute the gadgets Yx, for x ∈
R(r), with the removal gadget Y rem

r in Υ (RA) correspondingly.

This definition of a gadget reduction for combinatorial decision problems
ensures that the gadgets are uniquely relatable to the generating combinatorial
elements and are modular. Note that only combinatorial elements from PA can
be removed such that the new instance P ′

A is a validly encoded instance. That
is, combinatorial elements cannot be removed in general as this may void the
validity of the instance, e.g. in UstCon the universe elements s and t cannot
be deleted.

Additionally, the solution size has to adapt to the modularity of the gadgets
in the universe gadget reduction. That is, if a combinatorial element in PA is
removed such that the corresponding gadgets in PB is removed, the solution
size of the instance of PB is well-defined. For the sake of simplicity and because
we later only use reductions originating from 3-Satisfiability, we define this
property only for 3-Satisfiability.

Solution Size. In order to correctly define the Hamming distance κ for a reduc-
tion from a problem PHDRR

A to PHDRR
B based on a universe gadget reduction from

PA to PB, we need to find a solution size function. We demand that each gadget
Y ∈ Υ has a constant local solution size, which is defined by the universe gadget
reduction. A Yes-instance has a solution size, which is defined by the sum of all
local solution sizes defined as follows.

Definition 10 (3-Satisfiability-Reduction Solution Size Function). Let
PB be a problem such that a universe gadget reduction f from 3-Satisfiability
to PB exists. Let (L,C) be a 3-Satisfiability-instance. The gadgets have a
local solution size of size(Y) for each Y ∈ Υ (L,C). The function

sizef : 3-Sat → N : (L,C) �→
∑

Y ∈Υ (L,C)

size(Y)

describes the target solution size over universe elements of f((L,C)) = RB for
RB to be a YES-instance of PB.

In the following, we only consider universe gadget reductions that have such a
solution size function, which is additionally polynomial time computable. While
this is necessary, it is not a serious restriction as we see later. Most of the
reductions inherently have this property.

The Complexity Classes of Hamming Distance Recoverable Robust Problems 333

6.2 Properties of Universe Gadget Reductions

The definitions of universe gadget reductions and its solutions size function imply
the following three properties, which are specifically desired as illustrated before.

Lemma 2. A universe gadget reduction is total and one-to-many. The inverse
to a universe gadget reduction is many-to-one.

Thus by definition, it is ensured that each element y ∈ Yconst ∪ ⋃
j Rj

B of PB

is left unique and thus belongs to exactly one gadget.

Lemma 3. Polynomial Universe gadget reductions are transitive. That is, if
there are problems PA, PB, PC with PA �UGR

p PB and PB �UGR
p PC , then

PA �UGR
p PC .

Furthermore, the solution size function adheres to the modularity of the
universe gadget reduction.

Lemma 4. The solution size function is modular. In other words, let (L,C) and
(L′, C ′) be instances of 3-Satisfiability with L′ ⊆ L and C ′ ⊆ C. Further-
more, let f be a universe gadget reduction from 3-Satisfiability to PB such
that f(L′, C ′) results from f(L,C) by removing the corresponding gadgets. Then,

sizef (L′, C ′) =
∑

Y ∈Υ (L′,C′)

size(Y).

Now, we present a general reduction from 3-Satisfiability based on the
structure that a universe gadget reduction provides. If there is a polynomial
time universe gadget reduction f from 3-Satisfiability to PB with a corre-
sponding polynomial time solution size function sizef , then there is a polyno-
mial time reduction for the Hamming distance recoverable robust version of PB

with Hamming distance over the universe elements, transforming the scenarios
accordingly.

Theorem 8. If 3-Satisfiability �UGR
p PB and there is a corresponding solu-

tion size function, then 3-Satisfiabilitym-HDRR �p Pm-HDRR
B , where the Ham-

ming distance is defined over the universe elements and the scenario encodings
are either xor-dependency scenarios or Γ -set scenarios.

With these structural properties in mind, we can construct a whole set of
Hamming distance recoverable robust problems. Note that the transitivity of
the universe gadget reduction can be used to deduce further reductions.

6.3 Gadget Reductions for Various Combinatorial Decision
Problems

In this section, we examine various but not all problems that are universe gadget
reducible from 3-Satisfiability. The reductions are all well-known results or

334 C. Grüne

modifications of well-known results. We adapt these results to the universe gad-
get reduction framework to indicate that Theorem 8 is a general statement. We
prove the following theorem by showing that a universe gadget reduction from
3-Satisfiability exists for all the problems. For this, we use the transitivity of
the reductions as illustrated in Fig. 1.

Theorem 9. The m-Hamming distance recoverable robust version of the fol-
lowing problems are NP-complete with polynomially computable scenarios and
Σp

2m+1-complete with xor-dependency scenarios or Γ -set-scenarios: Vertex

Cover, Dominating Set, Feedback Arc Set, Feedback Vertex Set,
Hitting Set, Independent Set, Clique, Subset Sum, Knapsack, Par-

tition, Two Machine Scheduling, (Un)directed Hamiltonian Cycle,
(Un)directed Hamiltonian Path, Traveling Salesman, 3-Dimensional

Matching, Exact Cover By 3-Sets, k-Disjoint Directed Path (k ≥ 2).

Fig. 1. The tree of gadget reductions for all considered problems.

7 Conclusion

We have defined Hamming distance recoverable robust problems with elemental
uncertainty and applied this concept to various well-known problems in NP. Fur-
ther, we have defined universe gadget reductions to build a framework for a large
class of Hamming distance recoverable robust problems. The complexity results
are that the Hamming distance recoverable robust versions of NP-complete prob-
lems remain NP-complete if the scenarios are polynomially computable and that
the NP-complete problems are Σp

3 -complete for xor-dependency scenarios and
Γ -set scenarios if 3-Satisfiability is universe gadget reducible to them and a
corresponding solution size function exists. Furthermore, multi-stage problems
with m stages result in Σp

2m+1-completeness if the encoding of scenarios are
xor-dependency scenarios or Γ -set scenarios.

Remaining interesting questions are whether there is a (light-weight) reduc-
tion framework for other adversial problems or robustness concepts, for example
for interdiction problems or two-stage adjustable problems, to derive complete-
ness for higher levels in the polynomial hierarchy than NP. Furthermore, it is of
interest whether this concept is adaptable to problems with cost uncertainty and
for other distance measures. A more special question is, which succinct encodings
also result in Σp

3 -completeness or if there are succinct encodings which result in
the NP-completeness of the problem.

The Complexity Classes of Hamming Distance Recoverable Robust Problems 335

References

1. Agrawal, M., Allender, E., Impagliazzo, R., Pitassi, T., Rudich, S.: Reducing the
complexity of reductions. Comput. Complex. 10(2), 117–138 (2001)

2. Bold, M., Goerigk, M.: Investigating the recoverable robust single machine schedul-
ing problem under interval uncertainty. Discret. Appl. Math. 313, 99–114 (2022)

3. Büsing, C.: Recoverable robust shortest path problems. Networks 59(1), 181–189
(2012)

4. Büsing, C., Goderbauer, S., Koster, A.M.C.A., Kutschka, M.: Formulations and
algorithms for the recoverable Γ -robust knapsack problem. EURO J. Comput.
Optim. 7(1), 15–45 (2019)

5. Büsing, C., Koster, A.M.C.A., Kutschka, M.: Recoverable robust knapsacks: Γ -
scenarios. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp.
583–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21527-
8 65

6. Büsing, C., Koster, A.M.C.A., Kutschka, M.: Recoverable robust knapsacks: the
discrete scenario case. Optim. Lett. 5(3), 379–392 (2011)

7. Chassein, A.B., Goerigk, M.: On the recoverable robust traveling salesman prob-
lem. Optim. Lett. 10(7), 1479–1492 (2016)

8. Cicerone, S., Stefano, G.D., Schachtebeck, M., Schöbel, A.: Multi-stage recovery
robustness for optimization problems: a new concept for planning under distur-
bances. Inf. Sci. 190, 107–126 (2012)

9. Dijk, B., Santos, B.F., Pita, J.P.: The recoverable robust stand allocation problem:
a GRU airport case study. OR Spectr. 41(3), 615–639 (2019)

10. Dourado, M.C., Meierling, D., Penso, L.D., Rautenbach, D., Protti, F., de Almeida,
A.R.: Robust recoverable perfect matchings. Networks 66(3), 210–213 (2015)

11. Froyland, G., Maher, S.J., Wu, C.: The recoverable robust tail assignment problem.
Transp. Sci. 48(3), 351–372 (2014)

12. Goerigk, M., Lendl, S., Wulf, L.: On the complexity of robust multi-stage problems
in the polynomial hierarchy. CoRR abs/ arXiv: 2209.01011 (2022)

13. Grüne, C.: The complexity classes of hamming distance recoverable robust prob-
lems. CoRR abs/ arXiv: 2209.06939 (2022)

14. Hradovich, M., Kasperski, A., Zielinski, P.: Recoverable robust spanning tree prob-
lem under interval uncertainty representations. J. Comb. Optim. 34(2), 554–573
(2017)

15. Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable
robustness, linear programming recovery, and railway applications. In: Ahuja, R.K.,
Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimiza-
tion. LNCS, vol. 5868, pp. 1–27. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05465-5 1

16. Lusby, R.M., Larsen, J., Bull, S.: A survey on robustness in railway planning. Eur.
J. Oper. Res. 266(1), 1–15 (2018)

17. Maher, S.J., Desaulniers, G., Soumis, F.: Recoverable robust single day aircraft
maintenance routing problem. Comput. Oper. Res. 51, 130–145 (2014)

18. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22
(1976)

19. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approxima-
tion, and linear programming (extended abstract). In: 37th Annual Symposium on
Foundations of Computer Science, FOCS 1996, Burlington, Vermont, USA, 14–16
October, 1996, pp. 617–626. IEEE Computer Society (1996)

https://doi.org/10.1007/978-3-642-21527-8_65
https://doi.org/10.1007/978-3-642-21527-8_65
http://arxiv.org/abs/2209.01011
http://arxiv.org/abs/2209.06939
https://doi.org/10.1007/978-3-642-05465-5_1
https://doi.org/10.1007/978-3-642-05465-5_1

Geometric Thickness of Multigraphs is
∃R-Complete

Henry Förster1(B) , Philipp Kindermann2 , Tilmann Miltzow3 ,
Irene Parada4 , Soeren Terziadis5 , and Birgit Vogtenhuber6

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

henry.foerster@uni-tuebingen.de
2 FB IV - Computer Science, Trier University, Trier, Germany

3 Department of Information and Computing Sciences, Utrecht University,
Utrecht, Netherlands

4 Departament de Matemàtiques, Universitat Politècnica de Catalunya,
Barcelona, Spain

5 Institute of Logic and Computation, Technische Universität Wien , Vienna, Austria
6 Institute of Software Technology, Graz University of Technology, Graz, Austria

Abstract. We say that a (multi)graph G = (V, E) has geometric thick-
ness t if there exists a straight-line drawing ϕ : V → R

2 and a t-coloring
of its edges where no two edges sharing a point in their relative interior
have the same color. The Geometric Thickness problem asks whether
a given multigraph has geometric thickness at most t. In this paper,
we settle the computational complexity of Geometric Thickness by
showing that it is ∃R-complete already for thickness 57. Moreover, our
reduction shows that the problem is ∃R-complete for 8280-planar graphs,
where a graph is k-planar if it admits a topological drawing with at most
k crossings per edge. In this paper we answer previous questions on
geometric thickness and on other related problems, in particular that
simultaneous graph embeddings of 58 edge-disjoint graphs and pseudo-
segment stretchability with chromatic number 57 are ∃R-complete.

1 Introduction

The thickness of a graph G is the minimum number of planar subgraphs whose
union is G. It is an old concept; it was formally introduced by Tutte [24] in
1963, but the concept of biplanarity (i.e., geometric thickness 2) had already
appeared before, most relevantly, in connection with two open problems: First,
Ringel’s Earth-Moon problem on the chromatic number of biplanar graphs [20]
and second, a question by Selfridge, formulated by Harary, asking whether K9

is biplanar [16]. In 1983, Mansfield [18] showed that deciding whether a graph is
biplanar is NP-complete.

In this article we study the geometric or straight-line version of thickness,
which requires that all planar subgraphs are embedded simultaneously with

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 336–349, 2024.
https://doi.org/10.1007/978-3-031-55598-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55598-5_22&domain=pdf
http://orcid.org/0000-0002-1441-4189
http://orcid.org/0000-0001-5764-7719
http://orcid.org/0000-0003-4563-2864
http://orcid.org/0000-0003-3147-0083
http://orcid.org/0000-0001-5161-3841
http://orcid.org/0000-0002-7166-4467
https://doi.org/10.1007/978-3-031-55598-5_22

Geometric Thickness of Multigraphs is ∃R-Complete 337

Fig. 1. The (geometric) thickness of K8 is 2 and of K9 is 3.

straight-line edges. More precisely, a multigraph G = (V,E) has geometric thick-
ness t if there exists a straight-line drawing ϕ : V → R

2 of G and a t-coloring of
all the edges such that no two edges of the same color share a point other than
a common endpoint. Figure 1 shows an illustration. Note that by definition, two
edges connecting the same two endpoints must be assigned distinct colors in the
t-coloring.

The concept of geometric thickness was first introduced by Kainen in
1973 [17] as real linear thickness. It was later named geometric thickness in
Dillencourt, Eppstein, and Hirschberg’s study [5] on the geometric thickness
of complete and complete bipartite graphs which sparked an increased interest
in the topic. Dillencourt et al. already asked about the computational com-
plexity of Geometric Thickness, the problem of deciding whether given a
graph G and a value t, G has geometric thickness at most t. Durocher, Gethner,
and Mondal [10] partially answered this question by showing that Geometric

Thickness is NP-hard even for geometric thickness 2.
Figure 1 shows straight-line drawings of K8 and K9 decomposed into two and

three plane subgraphs, respectively; these bounds are tight for both the thickness
and the geometric thickness. For n > 10 the thickness of Kn is �n+2

6 � [1,2] while
the geometric thickness, for which no closed formula is known, is lower bounded
by n

5.646 [5]. In general, the geometric thickness of a graph is not bounded by
any function of its thickness [11].

Motivation. The Geometric Thickness problem consists of a combination
of two computationally hard problems: splitting the edges into color classes and
positioning the vertices. The first problem, where we are given the straight-line
drawing and the goal is to decompose it into the minimum number of plane sub-
graphs, corresponds to a graph coloring problem for the corresponding segment
intersection graph of the drawing. The 2022 Computational Geometry Challenge
focused on this problem [14].

The second problem, when we are given the color classes and the goal is to
position the vertices such that no two edges of the same color class intersect
in their relative interior, is the Simultaneous Graph Embedding problem,
which we will formally define later. Both Simultaneous Graph Embedding

and Geometric Thickness connect to applications.

338 H. Förster et al.

In network visualization, in particular of infrastructure, social, and trans-
portation networks, one often has to deal with intersecting systems of connections
belonging to different subnetworks. To represent them simultaneously, different
visual variables such as colors are used to indicate edge classes. Drawing the
edges with straight-line segments and removing/minimizing same-class crossings
is often desirable for readability.

In some settings, the vertex positions can be freely chosen, while the edge
classes are given. An example would be visualizing a system of communica-
tion channels (phone, email, messenger services) between a set of persons. This
case corresponds to the Simultaneous Graph Embedding problem. In other
settings, both the positions and the edge classes can be freely chosen, which
corresponds to the Geometric Thickness problem. It appears in applications
such as VLSI design, where a circuit using uninsulated wires requires crossing
wires to be placed on different layers.

Since its introduction as a natural measure of approximate planarity [5], geo-
metric thickness keeps receiving attention in Computational Geometry. However,
some fundamental questions remain open, including determining the geometric
thickness of Kn and the complexity of Geometric Thickness. Moreover, the
computational methods currently available are not able to provide straight-line
drawings of low geometric thickness for graphs with more than a few vertices.
Our results show that, even for small constant values of geometric thickness,
computing such drawings is, under widely-believed computational complexity
assumptions, harder than any NP-complete problem.

1.1 Results and Related Problems

In this section we state all our results, starting with our main result. To this
end, we first need to introduce the complexity class ∃R. The class ∃R can be
defined as the set of problems that are at most as difficult as finding a real root
of a multivariate polynomial with integer coefficients. A problem in ∃R is ∃R-
complete if it is as difficult as this problem. We give a more detailed introduction
to ∃R in an extended version of this paper [15].

Theorem 1. Geometric Thickness is ∃R-complete for multigraphs already
for any fixed thickness t ≥ 57.

Assuming ∃R �= NP, Theorem 1 shows that Geometric Thickness is even
more difficult than any problem in NP. This implies that even SAT solvers should
not be able to solve Geometric Thickness in full generality. Even more, while
a planar graph on n vertices can be drawn on an n×n grid, there are graphs with
geometric thickness ≥ 57 that will need more than exponentially large integer
coordinates for any drawing.

We prove Theorem 1 in Sect. 2 via a reduction from the problem Pseudo-

Segment Stretchability, which we discuss next.

Geometric Thickness of Multigraphs is ∃R-Complete 339

Fig. 2. A stretchable (right) and a non-stretchable (left) pseudo-segment arrangement
with the same intersection pattern but different cyclic order around the intersections.

Pseudo-Segment Stretchability. Schaefer showed that the problem Pseudo-

Segment Stretchability (see below for a definition) is ∃R-complete [23]. We
closely inspected the proof by Schaefer and observed some small extra properties
that we use for our bound in Theorem 1. To state them we first introduce the
corresponding definitions.

A pseudo-segment arrangement in R
2 is an arrangement of Jordan arcs such

that any two arcs intersect at most once. (A Jordan arc is a continuous injec-
tive curve from a closed interval to the plane.) A pseudo-segment arrangement
A is called stretchable if there exists a segment arrangement S such that A
and S are isomorphic. The curves can be encoded using a planar graph, as
it completely determines the isomorphism type which describes the order in
which each pseudo-segment intersects all other pseudo-segments. However, in
contrast to (bi-infinite) pseudolines, this information is not enough. For example
the pseudo-segment arrangement in Fig. 2 (left) cannot be stretched, although
there exists a segment arrangement with the same intersection pattern (right).
Additionally, we require the cyclic order around each intersection point to be
maintained.

Pseudo-Segment Stretchability asks whether a given pseudo-segment
arrangement is stretchable. Schaefer [23] showed that Pseudo-Segment

Stretchability is ∃R-hard, even if each pseudo-segment intersects at most 72
other pseudo-segments. We consider the intersection graph G of all the pseudo-
segments, and we say a pseudo-segment arrangement has chromatic number χ if
and only if the underlying intersection graph G has this chromatic number. We
prove the following based on and strengthening the results of Schaefer [23] in an
extended version [15].

Corollary 1. Pseudo-Segment Stretchability is ∃R-hard even for
pseudo-segment arrangements of chromatic number 57.

Simultaneous Graph Embedding. Our main result happens to also resolve
a question by Schaefer about simultaneous graph embeddings in the sunflower
setting [23]. Before stating the result, we need further definitions. Given simple
graphs G1, . . . , Gk on the same vertex set V , we say ϕ : V → R

2 is a simultaneous
graph embedding, if the straight-line drawing of each Gi, i = 1, . . . , k, on this
vertex set is crossing-free. We say G1, . . . , Gk form a sunflower if every edge is

340 H. Förster et al.

either in all graphs or in exactly one of the graphs. An edge that is present in
all graphs is in the center of the sunflower or a public edge. Edges that are only
in one graph are private edges or belonging to a petal of the sunflower. If all
edges are private, we say that G1, . . . , Gk form an empty sunflower. We define
Simultaneous Graph Embedding as the algorithmic problem with k graphs
as input that asks if there exists a simultaneous graph embedding.

Theorem 2. Simultaneous Graph Embedding is ∃R-complete already with
k = 58 and G1, . . . , Gk forming an empty sunflower.

The proof can be found in Sect. 3. In a series of papers it was shown that
Simultaneous Graph Embedding is ∃R-complete [4,13,22,23], already for
k = 240. We contribute to this line of research by lowering the bound to 58 and
by restricting it to families of graphs that form an empty sunflower. Lowering the
number of graphs from 240 to 58 is not so significant as 240 did not appear to be
tight bound before. The significance lies in the fact that we show ∃R-hardness
also for the case that the input graphs form an empty sunflower, which answers
a question of Schaefer [23].

Relation Between Geometric Thickness and k-Planarity. In a k-planar
drawing of a graph each edge can be crossed at most k times. A k-planar graph is
a graph admitting such a drawing. For the class of 1-planar graphs, 2 is a tight
upper bound for both the thickness and the geometric thickness. The upper
bound for the thickness follows immediately from the degree of the intersection
graph. The upper bound of 2 for the geometric thickness is non-trivial since not
every 1-planar graph has a straight-line 1-planar drawing and was only recently
shown [3]. This in particular means that the (geometric) thickness of 1-planar
graphs can be decided in polynomial time. In contrast, we show at the end of
Sect. 2 that determining the geometric thickness of 8280-planar multigraphs is
∃R-complete.

Corollary 2. Geometric Thickness is ∃R-complete for 8280-planar
multigraphs.

Brandenburg [3] explicitly asked about the geometric thickness of k-planar
graphs. A combination of previous results [7] shows that simple k-planar graphs
have bounded geometric thickness: A queue layout of a graph G is a total vertex
ordering and a partition of the edges into queues such that no queue contains two
nested edges ad, bc such that a < b < c < d. The queue number qn(G) of G is the
minimum number of queues in such a queue layout. First, geometric thickness
is known to be bounded by queue number: any graph G with queue number
qn(G) has geometric thickness θ(G) ≤ 8 qn(G)3 [9, Corollary 9]. Second, it was
recently shown that any k-planar graph G has bounded queue number [6,8],
more precisely qn(G) ≤ 2 · 490k+2. Together, this yields:

Theorem 3. Any k-planar graph has geometric thickness at most 64 ·4903(k+2).

Geometric Thickness of Multigraphs is ∃R-Complete 341

2 Geometric Thickness is ∃R-Complete

In this section, we first show ∃R-membership. Then we show ∃R-hardness, split-
ting the proof into construction, completeness, and soundness.

∃R-membership. To prove that Geometric Thickness is in ∃R, we follow
the characterization provided by Erickson, Hoog, and Miltzow [12]. According
to this characterization, a problem P is in ∃R if and only if there exists a real
verification algorithm A for P that runs in polynomial time on the real RAM.
Moreover, for every yes-instance I of P , there should be a polynomial-size witness
w for which A(I, w) returns “yes”. For every no-instance I and any witness w,
A(I, w) should return “no”.

We now describe a real verification algorithm A for Geometric Thickness.
Given an instance I = (G, t), the witness w consists of the coordinates of the
vertices of G and a t-coloring of the edges χ : E → [t].

A then verifies that there are no monochromatic crossings in the induced
drawing by examining every pair of edges e and e′ that cross. Furthermore,
A checks that all edges with higher multiplicity receive distinct colors. This
verification can be done on a real RAM in O(|E|2) time.

Hence, A runs in polynomial time on the real RAM, confirming that Geo-

metric Thickness is in ∃R.

Fig. 3. Left: The pseudo-segment arrangement is drawn in red. The tunnel paths are
drawn in green. The crossing boxes are drawn in blue and the blockers are not drawn.
The connectors are drawn in purple (dotted). Right: Depiction for adding the blockers.

Construction. We reduce Pseudo-Segment Stretchability to Geomet-

ric Thickness. For an illustration of this reduction, we refer to Fig. 3. Let A
be a given pseudo-segment arrangement with n pseudo-segments and let t ≥ 57
be the geometric thickness we are aiming for. We construct a graph G as follows.

342 H. Förster et al.

– For each pseudo-segment in A, we add one long edge (just a single edge) with
multiplicity 1.

– For each crossing, we add a crossing box (4-cycle) with multiplicity t − 1.
– We connect the endpoints of each long edge with the corresponding crossing

boxes by tunnel boundaries (paths of length n) Tunnel boundaries also connect
consecutive crossing boxes.

– We add four blockers (edges with multiplicity 1) to each crossing box, s.t.
they connect corresponding tunnel paths around each crossing box and two
blockers cross each pair of opposite crossing box edges.

– We add connectors (paths of length n) of multiplicity t between the endpoints
of the long edges and the crossing boxes. First, we add a cycle of them between
the endpoints of the long edges on the outer face. Then, we “triangulate” the
faces that are bounded by tunnel boundaries and connectors by adding con-
nectors such that each such face is incident to three vertices of degree larger
than 2. In other words, each such face becomes a triangle after contracting
edges incident to degree-2 vertices. Furthermore, we add the paths in such a
way that no triangle contains both endpoints of a long segment.

This finishes the construction. Clearly, it can be done in polynomial time.
Note that the illustrations of the graph G in Fig. 3 are meant to help to under-
stand the definition of G. However, we do not know (yet) that the graph G needs
to be embedded in the way depicted in the figures.

Completeness. Let S be an arrangement of (straight-line segments) such that
S is isomorphic to A. We need to show that there is a drawing of G such that
we can color it with t colors avoiding monochromatic crossings.

We start by adding all the edges described in the construction. Note that
all added parts are very long, thus, it is easy to see that they offer enough
flexibility to realize each edge as a straight-line segment. Next we need to describe
a coloring of all edges. The tunnel edges have multiplicity t, but they cross no
other edges so this is fine. We know that we can color the long edges with t colors
due to Corollary 1. Each crossing box edge has multiplicity t − 1. We use the
t − 1 colors different from the color of the long edge crossing it. Each crossing
box has four edges. The two opposite edges receive the same set of colors. The
blockers receive the colors of the corresponding long edge that crosses the same
crossing box edges. It can be checked that no two edges that cross or overlap
have the same color.

Soundness. We now argue that if G has geometric thickness t then A is stretch-
able. Let Γ be a straight-line drawing of G with a t-coloring of E.

Frame. Let the frame H of G be the subgraph of G that consists only of the
crossing boxes, tunnel boundaries, and connectors. Since all edges in H have
multiplicity at least t− 1, no two edges may cross, so H has to be drawn planar.
As a first step, we will argue that the frame of G has a unique combinatorial
embedding. It is well-known that a planar graph has a unique combinatorial
embedding if and only if it is the subdivision of a planar 3-connected graph [19].

Geometric Thickness of Multigraphs is ∃R-Complete 343

Lemma 1. The frame H of G has a unique combinatorial embedding.

Proof. First, consider the contracted frame H∗ obtained as follows; see Fig. 4a.
First, contract each tunnel boundary and each connector to a single edge. Then,
contract each crossing box to a single vertex and remove multi-edges that appear
by the contraction. By construction of the connectors, the resulting graph H∗ is
a planar triangulated graph where each vertex v∗ corresponds to the endpoint of
a long edge or to a crossing box in H, and each edge e∗ corresponds to either a
connector or to two boundary paths in H. As H∗ is a planar triangulated graph,
it has a unique embedding.

Fig. 4. Illustration for the proof of Lemma 1.

We now argue that H also has a unique embedding by proving that it is
the subdivision of a planar 3-connected graph. Obviously, H has no vertices of
degree 1. Hence, we only have to prove that there are three vertex-disjoint simple
paths between any two vertices of degree at least 3. Let u, v be two such vertices
of H.

First, assume that u and v belong to the same crossing box. If u and v are
adjacent, then they share two common faces. One of the two faces is the interior
of the crossing box, the other face is bounded by two tunnel boundaries and
the endpoint of a long edge or an edge of a different crossing box. We obtain
the three paths from the edge (u, v) and from following the boundaries of the
common faces. If u and v are not adjacent, we find two paths following the edges
of the crossing box. For the third path, let w∗ be the corresponding vertex in
H∗, let eu and ev be tunnel paths incident to u and v, respectively, and let e∗

u

and e∗
v be the edges of H∗ that correspond to eu and ev, respectively. Since H∗

is 3-connected, there exists a cycle C∗ = 〈w∗, e∗
0, w

∗
1 , e

∗
1, . . . , e

∗
k−1, w

∗
k, e∗

k, w∗〉 in
H∗ through e∗

u = e∗
0 and e∗

v = e∗
k. We find a path P from u to v in H by replacing

each edge e∗
i of C∗ by the corresponding tunnel path or connector in H, and

each vertex w∗
k by the corresponding vertex or a path through the corresponding

crossing box.

344 H. Förster et al.

Now, assume that u and v do not belong to the same crossing box. Let u∗ and
v∗ be the vertices of H∗ corresponding to u and v, respectively. Let P ∗

1 , P ∗
2 , P ∗

3

be three vertex-disjoint paths between u∗ and v∗ in H∗. Similar to the previous
case, we aim to find three paths P1, P2, P3 by replacing the edges of P ∗

1 , P ∗
2 , P ∗

3 by
corresponding tunnel paths or connectors and interior vertices by paths through
corresponding crossing boxes, if necessary. Since the paths are vertex-disjoint,
we do not visit any crossing boxes more than once, except those of u and v. In
fact, if u is a vertex of a crossing box, it might happen that the tunnel paths
that correspond to the first edges of P1, P2, P3 do not start in u, but in different
vertices of the crossing box of u.

To get rid of this problem, we now prove a slightly stronger version of
Menger’s theorem. Let G be a 3-connected graph with vertices u and v and
edges eu = (u, u′) and ev = (v, v′). Then there exist three interior-vertex-disjoint
paths P1, P2, P3 from u to v such that eu, ev ∈ P1 ∪ P2 ∪ P3. First, find three
interior-vertex-disjoint paths P ′

1, P
′
2, P

′
3 from u to v. If these paths contain eu

and ev, we are done. Otherwise, assume that they do not contain eu. By 3-
connectivity, there are three vertex-disjoint paths from u′ to v, so at least one
of them does not visit u. Let Q be this path. If Q is interior-vertex-disjoint from
two of P ′

1, P
′
2, P

′
3, say P ′

2 and P ′
3, then P1 = 〈u, eu, Q〉, P ′

2, P
′
3 are three interior-

vertex-disjoint paths from u to v with eu ∈ P1. Otherwise, follow Q until it
reaches an interior vertex of P ′

1, P
′
2, P

′
3 for the first time, say vertex w on P ′

1.
Create a path P1 from u to v by following eu, then Q until reaching w, then P ′

1

until reaching v. Then P1, P
′
2, P

′
3 are three interior-vertex-disjoint paths from u

to v with eu ∈ P1. We can force ev to be part of one of the paths analogously.
Hence, we can assume that at least one of P1, P2, P3 starts with a tunnel path

at u and at least one of P1, P2, P3 ends with a tunnel path at v. For the other
two paths at u, we can reach the endpoint of the first tunnel path by following
the crossing box, if necessary. An analogous argument works for the last edges
to reach v. �

Tunnels. In Fig. 5, we illustrate the regions in the plane that we refer to as
middle tunnel segments, end tunnel segments, and crossing boxes. We believe
that those notions are very easy to understand for the reader from the figure
and thus we avoid a formal definition. (End or middle) tunnel segments incident
to the same crossing box are called consecutive.

Fig. 5. Each tunnel consists of two end tunnel segments and various middle tunnel
segments, separated by crossing boxes.

We say that a tunnel segment has color c, if it contains a long segment with
color c. We will show that each tunnel segment has exactly one color.

Geometric Thickness of Multigraphs is ∃R-Complete 345

Claim 1. Each end tunnel segment contains at least one long segment.

Consider any long edge � and the frame H ′ without the blockers, and any embed-
ding of H ′ ∪ {�}. Since the frame has a unique combinatorial embedding and a
long edge cannot cross a tunnel boundary or connector (as they have multiplic-
ity t), this embedding must be plane and coincide with the unique combinatorial
embedding of H on H ′. The only way to add � into the embedding of H ′ is
through its end tunnel segment.

Claim 2. Each tunnel segment has at most one color c and its bounding crossing
box edges have all the remaining colors.

Note that each tunnel segment can only be entered or left by a long segment
using the multiedges of the crossing box. As those have multiplicity t − 1, it
follows that the edges of the crossing box are colored with all colors except the
color of the long segment. Now, we see that each tunnel segment is completely
surrounded by edges of all but one colors.

Fig. 6. Consecutive tunnel segments must have the same color.

Claim 3. Consecutive tunnel segments have the same color.

See Fig. 6, for an illustration. Denote by S, T the two consecutive tunnel segments
and by C = [t] the set of all colors. Say tunnel S has color c. We show that
tunnel T has the same color. Due to the unique embedding there is a blocker
that intersects both tunnels. As the blocker is in a tunnel with color c, the
bounding crossing box edges have colors C \c. Thus, the blocker must have color
c as well. Hence, also T must have color c as all bounding crossing box edges
must have colors C \ c (unless they are uncrossed). This proves the claim and
also immediately the following:

Claim 4. All tunnel segments of a tunnel have the same color.

We are now ready to show our central claim:

Claim 5. Each long segment stays in its respective tunnel.

First, we note that all the blockers of a tunnel have the same color as the
long edge. Furthermore, due to the combinatorial embedding, the tunnel paths
together with the blockers form a cycle surrounding the long segment. It remains
to show that the blockers cannot leave the tunnel, to show that the long seg-
ments cannot leave the tunnel. To this end, notice that a blocker cannot cross
a crossing box edge twice, because they are both line segments and two line
segments can cross at most once.

346 H. Förster et al.

Claim 6. The arrangement S formed by the long segments is combinatorially
equivalent to the arrangement A of pseudo-segments.

This follows from the tunnels crossing combinatorially as in arrangement A
and the long segments staying within their respective tunnels.

Claim 6 concludes the proof of Theorem 1. Notice that in our construction,
for every crossing, we add 2t more crossings (2(t − 1) from the parallel crossing
box edges and two from the blockers). Since the pseudo-segment graph from
Schaefer’s construction has maximum degree 72 [21], the graph in our reduction
is 8280-planar, which proves Corollary 2.

3 Sunflower Simultaneous Graph Embedding

This section is devoted to proving Theorem 2 by slightly modifying our construc-
tion in the proof of Theorem 1. We reduce Pseudo-Segment Stretchabil-

ity to Simultaneous Graph Embedding with the additional restriction that
the input graphs of the Simultaneous Graph Embedding instance form an
empty sunflower. To this end, let A denote a pseudo-segment arrangement with n
pseudo-segments. Further, let c be the chromatic number of the pseudo-segment
intersection graph induced by A and let χ : A → [c] denote a corresponding
c-coloring.

We construct an instance of Simultaneous Graph Embedding consisting
of k := c+ 1 simple graphs H,G1, . . . , Gc on a shared vertex set as follows. The
graph H contains exactly the edges belonging to the frame graph as defined
above, i.e., the crossing boxes, the tunnel boundaries and the connectors. More-
over, for i ∈ [c], the graph Gi contains the long edges corresponding to each
pseudo-segment S ∈ A for which χ(S) = i and a 1-subdivision of the edges of H
aside from the crossing box edges bounding tunnel segments corresponding to
pseudo-segments S ∈ A for which χ(S) = i. More precisely, in the 1-subdivision
of the subgraph of H belonging to Gi, each edge e = (u, v) of H is replaced
by a path (u, xi(e), v) of length 2 where xi(e) does not belong to H, i.e., xi(e)
is an isolated vertex in all graphs except for Gi. Since χ is a proper c-coloring,
the graphs G1, . . . , Gc do not share any long edges, while their 1-subdivisions of
H are edge-disjoint by construction. As also H is edge-disjoint from any of the
1-subdivisions, we observe that H,G1, . . . , Gc form an empty sunflower. Note
that the construction here does not require any blockers.

It remains to discuss that A is stretchable if and only if H,G1, . . . , Gc admit
a simultaneous geometric embedding. First, completeness can be easily shown
following the argumentation in the corresponding paragraph in Sect. 2. In par-
ticular, we need to discuss how to place the subdivision vertices of edges of
H. Namely, for an edge e = (u, v) of H, we can place all subdivision vertices
xi(e) arbitrarily close to the straight-line segment representing (u, v). Complete-
ness now immediately follows by observing that Gi contains no subdivisions
of crossing-box edges that bound tunnel segments corresponding to a pseudo-
segment S ∈ A for which χ(S) = i, i.e., the tunnel of a segment S ∈ A with
χ(S) = i is a single face in Gi minus the long edge representing S.

Geometric Thickness of Multigraphs is ∃R-Complete 347

Fig. 7. In our construction for proving Theorem 2, subdivided tunnels do not contain
subdivisions of crossing box edges shared by consecutive segments. While subdivided
tunnels may cover not all of the tunnel and also additional parts of the plane, each
curve connecting between both end segments traverses all segments in order.

Finally, we show soundness. Let ϕ be a simultaneous geometric embedding of
H,G1, . . . , Gc. For a pseudo-segment S ∈ A, we define the subdivided tunnel as
the 1-subdivision of the outer cycle of its tunnel belonging to Gχ(S); see Fig. 7.
Note that Gχ(S) does not contain a subdivision of the crossing box edges shared
by consecutive segments of a subdivided tunnel; see dotted edges in Fig. 7. We
now prove the equivalent of Claim 5:

Claim 7. Each long segment traverses all segments and crossing boxes of its
respective tunnel in order.

First note that by Lemma 1, we know that H has a unique combinatorial
embedding. Now consider a pseudo-segment S with χ(S) = i. Since Gi contains
subdivisions of all tunnel boundaries and all connectors, the corresponding long
edge � must be drawn completely inside tunnels. By construction, the endpoints
of � are contained only on the boundary of the subdivided tunnel corresponding
to S, i.e., it must start and end inside its respective subdivided tunnel. Moreover,
by construction, the entire subdivided tunnel belongs to Gi. Thus, � cannot
enter other tunnels in between. While the subdivided tunnel may be covering a
superset of the tunnel, � must still traverse all of its segments as the crossing
box edges between consecutive segments still separate subdivided segments.

The fact that each long edge still traverses each crossing box in order implies
immediately Lemma 6 in our reduction to Simultaneous Graph Embedding

and the theorem follows.

4 Conclusion and Discussion

In this paper, we have resolved the algorithmic complexity of Geometric

Thickness for multigraphs. Our aim is to resolve the complexity also for simple
graphs and in particular for geometric thickness two. It is noteworthy that our
result for Simultaneous Graph Embedding provides additional evidence for
Geometric Thickness being ∃R-hard for simple graphs as one can interpret
Simultaneous Graph Embedding as the subproblem that arises once the
coloring has been fixed. Further, the union of simple graphs forming an empty
sunflower is again a simple graph.

348 H. Förster et al.

The main followup problem of our work is adapting our reduction for Geo-

metric Thickness to simple graphs. For that, we would need to construct a
graph in a way that we have some control bot about the geometric embedding
as well as how the edges are colored. Ideally, we would like to construct a graph
in a way that any coloring realizing its geometric thickness leads to the vertices
being connected in all colors.

Question 1. Given t ∈ N, does there always exist a graph with geometric thick-
ness t such that any t-colored drawing of G realizing its geometric thickness is
connected in all t colors?

Such a connected construction seems elusive and might not even be possible.
However, we remark that connectivity in every color is not necessary in the
geometric setting that we are considering.

Another intriguing question related to our reduction is the following:

Question 2. Is Pseudo-Segment Stretchability ∃R-hard even for pseudo-
segment arrangements of chromatic number 2?

In this direction, we showed that some modifications of Schaefer’s reduction
lower the current best bound on the chromatic number for ∃R-hardness from 73
to 57 in an extended version [15]. We are convinced that we can further reduce
the bound on the chromatic number to at most 48.

We remark that, using our techniques, positive answers to the above questions
have the following implications:

(i) Assuming a positive answer to Question 2, our proof in Sect. 3 implies that
Simultaneous Graph Embedding is ∃R-complete for three graphs form-
ing an empty sunflower.

(ii) Assuming positive answers to Questions 1 and 2, it holds that Geometric

Thickness is ∃R-complete already for simple input graphs and thickness
2; see also the extended version of our paper [15].

References

1. Alekseev, V.B., Gončakov, V.S.: The thickness of an arbitrary complete graph.
Math. USSR-Sbornik 30(2), 187 (1976)

2. Beineke, L.W., Harary, F.: The thickness of the complete graph. Canadian J. Math.
17, 850–859 (1965)

3. Brandenburg, F.J.: Straight-line drawings of 1-planar graphs. arXiv preprint
arXiv:2109.01692 (2021)

4. Cardinal, J., Kusters, V.: The complexity of simultaneous geometric graph embed-
ding. J. Graph Algor. Appl. 19(1), 259–272 (2015)

5. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete
graphs. J. Graph Algor. Appl. 4(3), 5–17 (2000)

6. Dujmovic, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar
graphs have bounded queue-number. J. ACM 67(4), 22:1–22:38 (2020)

7. Dujmovic, V., Morin, P.: Personal communication (2022)

http://arxiv.org/abs/2109.01692

Geometric Thickness of Multigraphs is ∃R-Complete 349

8. Dujmovic, V., Morin, P., Wood, D.R.: Graph product structure for non-minor-
closed classes. J. Comb. Theory, Ser. B 162, 34–67 (2023)

9. Dujmovic, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discret. Math. Theor.
Comput. Sci. 6(2), 497–522 (2004)

10. Durocher, S., Gethner, E., Mondal, D.: Thickness and colorability of geometric
graphs. Comput. Geom. 56, 1–18 (2016)

11. Eppstein, D.: Separating thickness from geometric thickness. In: Towards a Theory
of Geometric Graphs, Contemporary Mathematics, vol. 342, pp. 75–86. American
Mathematical Society (2004)

12. Erickson, J., van der Hoog, I., Miltzow, T.: Smoothing the gap between NP and
ER. In: Proceedings 61st IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 1022–1033. ACM (2020)

13. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz,
M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T.,
Quan, W. (eds.) Graph Drawing. LNCS, vol. 4875, pp. 280–290. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-77537-9_28

14. Fekete, S., Keldenich, P., Krupke, D., Schirra, S.: CG:SHOP 2022. https://cgshop.
ibr.cs.tu-bs.de/competition/cg-shop-2022

15. Förster, H., Kindermann, P., Miltzow, T., Parada, I., Terziadis, S., Vogten-
huber, B.: Geometric thickness of multigraphs is ∃R-complete. arXiv preprint
arXiv:2312.05010 (2023)

16. Harary, F.: Research problem. Bull. Am. Math. Soc. 67, 542 (1961)
17. Kainen, P.C.: Thickness and coarseness of graphs. Abh. Math. Semin. Univ.

Hambg. 39, 88–95 (1973)
18. Mansfield, A.: Determining the thickness of graphs is NP-hard. Math. Proc. Camb.

Philos. Soc. 93(1), 9–23 (1983)
19. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Elsevier (1988)
20. Ringel, G.: Färbungsprobleme auf Flächen und Graphen, Mathematische Mono-

graphien [Mathematical Monographs], vol. 2. VEB Deutscher Verlag der Wis-
senschaften, Berlin (1959)

21. Schaefer, M.: Complexity of some geometric and topological problems. In: Epp-
stein, D., Gansner, E.R. (eds.) Graph Drawing. LNCS, vol. 5849, pp. 334–344.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0_32

22. Schaefer, M.: Complexity of geometric k-planarity for fixed k. J. Graph Algor.
Appl. 25(1), 29–41 (2021)

23. Schaefer, M.: On the complexity of some geometric problems with fixed parameters.
J. Graph Algor. Appl. 25(1), 195–218 (2021)

24. Tutte, W.T.: The thickness of a graph. Indagat. Math. (Proc.) 66, 567–577 (1963)

https://doi.org/10.1007/978-3-540-77537-9_28
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022
http://arxiv.org/abs/2312.05010
https://doi.org/10.1007/978-3-642-11805-0_32

Author Index

A
Abboud, Amir I-193
Acharyya, Ankush I-81
Adamson, Duncan I-35, II-61
Adauto, Matheus II-46
Agrawal, Akanksha II-208
Ahn, Hee-Kap I-303
Ahn, Taehoon I-303
Antony, Dhanyamol I-97
Aute, Shubhada II-193
Ayad, Lorraine A. K. I-162

B
Bae, Sang Won I-303
Baiou, Mourad II-304
Baláž, Andrej I-178
Bardenova, Viktoriya II-46
Bérczi, Kristóf II-334
Brihaye, Thomas II-257

C
Cao, Yixin II-3
Chandran, L. Sunil I-97
Chen, Haowei II-3
Cheong, Otfried I-303
Chung, Chaeyoon I-303
Cunha, Luís II-147

D
da Cruz, Mariana II-46
da Silva, Samuel Eduardo I-19
de Berg, Sarita I-254
de Figueiredo, Celina II-46
Dey, Palash II-162, II-289
Di Giacomo, Emilio I-3
Donoso Leiva, Isabel II-272
Duarte, Gabriel II-147

E
Evans, William I-273

F
Fernandes, Cristina G. II-98
Filtser, Omrit I-288
Fischer, Nick I-193
Flaherty, Nathan II-61
Förster, Henry I-3, I-336

G
Gagie, Travis I-146, I-178
Gao, Younan I-209
Gawrychowski, Paweł I-35
Gayen, Ankit I-97
Goga, Adrián I-146, I-178
Goles, Eric II-272
Gosavi, Shirish I-97
Grüne, Christoph I-321
Gupta, Sushmita I-225

H
He, Meng I-209
Hell, Pavol II-31
Heumos, Simon I-178
Hoffjan, Matthias II-320
Hurlbert, Glenn II-46

J
Jacob, Dalu I-97
Jain, Pallavi II-131, II-223
Jana, Satyabrata II-208
Jeż, Artur I-146

K
Kanesh, Lawqueen II-223
Keikha, Vahideh I-81
Kerkmann, Anna Maria II-320
Kindermann, Philipp I-336
Kokhovich, Daria I-3
Kolay, Sudeshna II-162
Kozachinskiy, Alexander II-114
Krohn, Erik I-288

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
J. A. Soto and A. Wiese (Eds.): LATIN 2024, LNCS 14578, pp. 351–352, 2024.
https://doi.org/10.1007/978-3-031-55598-5

https://doi.org/10.1007/978-3-031-55598-5

352 Author Index

L
Lieskovský, Matej I-241
Lipták, Zsuzsanna I-130
Loukides, Grigorios I-162

M
Maiti, Arnab II-289
Maldonado, Diego I-51
Mandal, Soumen II-177
Manea, Florin I-35
Mchedlidze, Tamara I-3
Mendoza-Cadena, Lydia Mirabel II-334
Milani, Marcelo Garlet II-77
Miltzow, Tilmann I-336
Misra, Pranabendu II-177
Modak, Sounak I-225
Montealegre, Pedro I-51
Montecchiani, Fabrizio I-3
Mota, Guilherme Oliveira II-98

N
Navarro, Gonzalo I-66, I-146, I-178
Nguyen, Minh Hieu II-304
Nguyen, Viet Hung II-304
Nilsson, Bengt J. I-288
Nogueira, Loana II-147

O
Ortlieb, Christian II-19

P
Panolan, Fahad II-193, II-223
Parada, Irene I-336
Parmigiani, Luca I-130
Petescia, Alessia I-178
Pinchinat, Sophie II-257
Pissis, Solon P. I-162
Potapov, Igor II-61
Protti, Fábio II-147

Q
Qiu, Yuan I-114

R
Rafiey, Akbar II-31
Rafiey, Arash II-31
Rai, Ashutosh II-177
Rathore, Manveer Singh II-131
Rieck, Christian I-288

Ríos-Wilson, Martín I-51, II-272
Rothe, Jörg II-320

S
Saha, Souvik II-223
Sahu, Abhishek II-208, II-223
Sanhueza-Matamala, Nicolás II-98
Sasaki, Diana II-46
Saumell, Maria I-81
Saurabh, Saket I-225, II-177, II-223
Schmidt, Christiane I-288
Seetharaman, Sanjay I-225
Sené, Sylvain II-272
Shechter, Yarin I-193
Silveira, Rodrigo I. I-81
Singh, Sipra II-162
Sirén, Jouni I-178
Souza, Uéverton II-147
Souza, Uéverton S. I-19
Spirakis, Paul G. II-61
Symvonis, Antonios I-3

T
Tabatabaee, Seyed Ali I-273
Terefenko, Alexandre II-257
Terziadis, Soeren I-336
Turau, Volker II-241

U
Upasana, Anannya II-223
Urbina, Cristian I-66

V
van Beusekom, Nathan I-254
van Mulken, Max I-254
Varga, Kitti II-334
Verbeek, Hilde I-162
Verbeek, Kevin I-254
Villedieu, Anaïs I-3
Vo, Thi Quynh Trang II-304
Vogtenhuber, Birgit I-336

W
Wang, Shenghua II-3
Williams, Aaron I-114
Wulms, Jules I-254

Y
Yoon, Sang Duk I-303

	Preface
	The Imre Simon Test-of-Time Award
	Organization
	Contents – Part I
	Contents – Part II
	Algorithms and Data Structures
	On 1-Bend Upward Point-Set Embeddings of st-Digraphs
	1 Introduction
	2 Preliminaries
	3 Conditions for the Existence of a 1-Bend UPSE
	4 1-Bend UPSE of st-Outerplanar Graphs
	5 1-Bend UPSE Are Not Always Possible
	6 Open Problems
	References

	Decoding Tree Decompositions from Permutations
	1 Introduction
	2 Related Works
	3 Leaf Decoder Algorithm
	3.1 Determining Descendant Leaves for Each Node
	3.2 Determining the Width of the Encoded Tree Decomposition

	4 Optimizing Running Time: The Set Decoder Algorithm
	References

	Enumerating m-Length Walks in Directed Graphs with Constant Delay
	1 Introduction
	2 Preliminaries: Definitions and Sketch of the Algorithm
	3 Toolbox: Default Graphs and Data Structures
	4 Enumeration
	References

	The Hardness of Local Certification of Finite-State Dynamics
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Communication Complexity

	3 Finite-State Dynamics on Arbitrary Graphs
	4 Finite-State Dynamics in Graphs of Bounded Degree
	5 Discussion
	References

	Iterated Straight-Line Programs
	1 Introduction
	2 Preliminaries
	3 Iterated Straight-Line Programs
	4 Accessing ISLPs
	4.1 Data Structures
	4.2 Direct Access in Time O((h+logn)dlogd)
	4.3 Extracting Substrings

	5 Balancing ISLPs
	6 Conclusions
	References

	Computing Largest Minimum Color-Spanning Intervals of Imprecise Points
	1 Introduction
	1.1 Preliminaries

	2 Disjoint Case
	3 Case k=2: Decision Problem
	3.1 Decision Problem for q(1,2]
	3.2 Decision Problem for q(34, 1]

	4 Case k=2: Decision Problem for q(12,34]
	4.1 Basic Algorithm
	4.2 Speed Up of the Algorithm

	5 Case k=2: Optimization Problem
	References

	Total Domination, Separated-Cluster, CD-Coloring: Algorithms and Hardness
	1 Introduction
	1.1 Total Domination and cd-Coloring
	1.2 Separated-Cluster and cd-Coloring

	2 Preliminaries and Notations
	3 Total Domination and cd-Coloring in Triangle-Free d-Regular Graphs
	4 Separated-Cluster and cd-Coloring: cd-Perfectness
	4.1 A Unified Approach for Algorithmic Complexity on Some Special Graph Classes

	References

	Generating Signed Permutations by Twisting Two-Sided Ribbons
	1 Generating Permutations and Signed Permutations
	1.1 Outline

	2 Combinatorial Generation
	2.1 Gray Codes and Loopless Algorithms
	2.2 Binary Reflected Gray Code and Plain Changes
	2.3 The Greedy Gray Code Algorithm

	3 A Signed Plain Change Order: Twisted Plain Changes
	3.1 2-Twisted Permutohedron and Signed Permutohedra
	3.2 Global Structure

	4 Ruler Sequences
	4.1 Ruler Sequences, Mixed-Radix Words, and Lexicographic Orders
	4.2 Signed Ruler Sequences and (Reflected) Gray Codes

	5 Loopless Generation of Gray Codes via Ruler Sequences
	6 Final Remarks
	A Python Implementation
	References

	A BWT-Based Algorithm for Random de Bruijn Sequence Construction
	1 Introduction
	1.1 Related Work

	2 The Burrows-Wheeler Transform of a dB Sequence
	3 Swapping Characters in the eBWT
	4 Algorithm
	5 Experimental Results
	6 A Case Study: Estimating the Discrepancy of a Random de Bruijn Sequence
	7 Conclusion
	References

	Space-Efficient Conversions from SLPs
	1 Introduction
	2 Preliminaries
	3 Building the LZ Parse from an SLP in (n) Time
	4 Building the LZ Parse from an SLP in (g z) Time
	5 Building an LCG from an SLP in (n) Time
	6 Building the LZ Parse from an LCG in (z) Time
	7 Conclusions
	References

	Sparse Suffix and LCP Array: Simple, Direct, Small, and Fast
	1 Introduction
	2 Preliminaries
	3 Main Algorithm
	3.1 Computing and Sorting the LCP Groups
	3.2 Constructing the SSA and SLCP Array
	3.3 Analysis

	4 A Simple Parameterized Algorithm
	References

	Wheeler Maps
	1 Introduction
	2 Preliminaries
	3 Computing Tag Statistics
	4 Using Tag Statistics
	5 Optimal-Time Tag Reporting
	6 Discussion and Future Work
	References

	Faster Combinatorial k-Clique Algorithms
	1 Introduction
	1.1 Our Results
	1.2 Outline

	2 Preliminaries
	3 Combinatorial Log-Shaves for k-Clique
	4 Combinatorial Log-Shaves for Triangle Listing by Weak Regularity
	5 Combinatorial Log-Shaves for k-Hyperclique
	References

	Approximation and Online Algorithms
	On Approximate Colored Path Counting
	1 Introduction
	2 Preliminaries
	3 2-Approximate Colored Path Counting
	3.1 Counting over a Path that Contains a Fixed Node
	3.2 Counting over Arbitrary Paths
	3.3 Speeding Up the Query

	4 (1)-Approximate Colored Path Counting
	4.1 A New Solution to Colored Type-2 Path Counting
	4.2 Random Sampling
	4.3 Approximate Colored Path Counting over Canonical Paths
	4.4 Approximate Colored Path Counting over Arbitrary Paths

	References

	Quick-Sort Style Approximation Algorithms for Generalizations of Feedback Vertex Set in Tournaments
	1 Introduction
	1.1 Our Results
	1.2 Our Methodology

	2 Preliminaries
	3 DFVS in Graphs of Bounded Independence Number
	3.1 Technical Overview
	3.2 The Algorithm

	4 Subset FVS in Tournaments
	4.1 Technical Overview
	4.2 The Algorithm

	References

	Better Algorithms for Online Bin Stretching via Computer Search
	1 Introduction
	1.1 Previous Results
	1.2 Our Results

	2 Reductions Between Games
	3 Defining the Games Formally
	4 Computer Search
	5 Optimizations
	6 Conclusions
	References

	Competitive Searching over Terrains
	1 Introduction
	2 Competitive Searching on 1.5D Terrains
	3 Competitive Searching on 2.5D Terrains
	4 Conclusion
	References

	Computational Geometry
	Minimizing the Size of the Uncertainty Regions for Centers of Moving Entities
	1 Introduction
	1.1 Model and Definitions
	1.2 Contribution and Organization

	2 Background
	3 The 1-Center Problem
	3.1 The Static Case in R1̂
	3.2 The General Case in R1̂
	3.3 The General Case in Rd̂

	4 The Centroid Problem
	5 The 1-Median Problem
	6 Conclusion
	References

	Guarding Polyominoes Under k-Hop Visibility
	1 Introduction
	2 VC Dimension
	2.1 Simple Polyominoes
	2.2 Polyominoes with Holes

	3 NP-Completeness for 1-Thin Polyominoes with Holes
	4 A 4-Approximation for Simple 2-Thin Polyominoes
	References

	Minimum-Width Double-Slabs and Widest Empty Slabs in High Dimensions
	1 Introduction
	2 Preliminaries
	3 Widest Empty Slabs
	3.1 Case (i)
	3.2 Case (ii)

	4 Minimum-Width Double-Slabs
	4.1 Three-Dimensional Case
	4.2 Four-Dimensional Case
	4.3 Algorithm for Higher Dimension

	References

	Complexity Theory
	The Complexity Classes of Hamming Distance Recoverable Robust Problems
	1 Introduction
	2 Preliminaries
	3 Combinatorial Problem Framework
	3.1 Scenarios for Robust Problems
	3.2 Hamming Distance Recoverable Robust Problems

	4 Recoverable Robust Problems with Polynomially Computable Scenario Encodings
	4.1 Reduction for Undirected S-t-Connectivity

	5 Recoverable Robust Problems and the Polynomial Hierarchy
	5.1 Multi-stage Recoverable Robustness

	6 Classes of Recoverable Robust Problems
	6.1 Universe Gadget Reduction
	6.2 Properties of Universe Gadget Reductions
	6.3 Gadget Reductions for Various Combinatorial Decision Problems

	7 Conclusion
	References

	Geometric Thickness of Multigraphs is R-Complete
	1 Introduction
	1.1 Results and Related Problems

	2 Geometric Thickness is R-Complete
	3 Sunflower Simultaneous Graph Embedding
	4 Conclusion and Discussion
	References

	Author Index

