®

Check for
updates

Developers’ Perspective
on Trustworthiness of Code Generated
by ChatGPT: Insights from Interviews

Zeinab Sadat Rabani'®™) Hanieh Khorashadizadeh®, Shirin Abdollahzade?,
Sven Groppe!, and Javad Ghofranit

! Universitit zu Litbeck, Liibeck, Germany
zeinab.rabani@uni-luebeck.de
2 University of Guilan, Rasht, Iran

Abstract. The emergence of ChatGPT as a tool for code generation
has garnered significant attention from software developers. Neverthe-
less, the reliability of code produced by Large Language Models (LLMs)
like ChatGPT remains insufficiently explored. This article delves into
the realm of ChatGPT-generated code, aiming to investigate the per-
spectives of esteemed programmers and researchers through interviews.
The consensus among interviewees highlights that code generated by
ChatGPT often lack accuracy, necessitating manual debugging and sub-
stantial time investment, particularly when dealing with complex code
structures. Through a comprehensive analysis of the interview findings,
this article identifies five primary challenges inherent to ChatGPT’s code
generation process. The core objective of this research is to engage in
an exploration of ChatGPT’s code generation trustworthiness, drawing
insights from interviews with experts. By facilitating insightful discus-
sions, the research aims to pave the way for proposing impactful enhance-
ments that bolster the reliability of ChatGPT’s code outputs. To enhance
the performance and overall dependability of LLLMs, the article presents
seven potential solutions tailored to address these challenges.

Keywords: Large Language Model (LLM) - ChatGPT -
Trustworthiness -+ Code Generation

1 Introduction

OpenAl has developed ChatGPT, a chatbot based on a large language model
(LLM) tailored for conversational purposes. OpenAl is improving the LLM con-
tinuously. It has been started with the first version of this model which is called
Generative Pre-trained Transformer(GPT) in 2018 [15]. ChatGPT is using ver-
sion 3.5 and 4 of GPT while version 5 is going to release in the near future. By
leveraging its comprehension of the context and conversation history, ChatGPT
is capable of generating responses that closely resemble those of a human [11].

ChatGPT has gained significant global attention and is widely discussed and
utilized across various domains and applications [3]-particularly programmers
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

M. A. Jabbar et al. (Eds.): AMLDA 2023, CCIS 2047, pp. 215-229, 2024.
https://doi.org/10.1007/978-3-031-55486-5_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-55486-5_16&domain=pdf
https://doi.org/10.1007/978-3-031-55486-5_16

216 7. S. Rabani et al.

who find it valuable for code generation and error identification purposes [20].
ChatGPT has been utilized for various purposes in code generation, including
code writing and debugging, preparing for programming interviews, working on
programming-related assignments, and other related tasks [4]. Various other AI-
based code generation tools, such as Amazon’s CodeWhisper and Google’s Bard,
are also available. Table 1 presents some of the existing code generation Al tools.

Table 1. Existing Code Generation AI Tools

Tools
OpenAl ChatGPT, OpenAl Codex
Google BARD
Tabnine Tabnine
CodeT5 Salesforce
GitHub Copilot GitHub, OpenAl, and Microsoft
Amazon CodeWhisperer | Amazon

Many developers commonly reuse code they find in open-access repositories
like GitHub, online forums, and websites such as Stack Overflow. Large Language
Models (LLMs) are now being used by software developers to speed up their
projects by generating code. However, it’s important to be cautious about the
quality of code generated by LLMs or other third-party sources, even if it seems
to be free from major bugs or vulnerabilities in experimental situations. [11].
Copying code snippets from such sources can introduce security vulnerabilities,
compatibility issues, and make project maintenance more challenging. Several
studies, tools, and projects have delved into the reliability of reused code from
third-party sources and its impact on project development and maintenance.
It’s worth noting that ChatGPT has its limitations, particularly in terms of the
accuracy and trustworthiness of the code it generates. Occasionally, the model
may produce responses that sound plausible but are factually incorrect or non-
sensical, a phenomenon referred to as “hallucination.” [19]. It is also sensitive to
input phrasing and can exhibit biases present in the training data. For this rea-
son, reusing the generated code by ChatGPT can cause security or maintenance
issues in software projects. If we assume that the generated code is correct and
explainable, then there is no guarantee that this code will not cause problems in
the future of the project. This issue which is addressed as the trustworthiness of
generated code by ChatGPT-as well as other LLM-based models—is overlooked
amid the excitement over ChatGPT’s capabilities.

In this paper, we address the problem of the trustworthiness of generated
code by ChatGPT. In software development, “trustworthiness” refers to the
quality of a software system or application in terms of its reliability, security,
and overall performance. Trustworthiness encompasses several key aspects such
as security, stability, or performance. Achieving trustworthiness often involves



Trustworthiness of ChatGPT Generated Code 217

rigorous testing, security assessments, adherence to coding standards, and ongo-
ing maintenance and updates to address emerging issues. Our contribution is
to provide an overview of challenges and opportunities for starting the research
on issues related to this topic. Because the subject is relatively new, there is a
limited body of research and resources addressing the challenges associated with
reusing the code generated by ChatGPT. As a result, we initiated our investi-
gation of this field by conducting a study based on interviews. We interviewed
20 developers who use ChatGPT for code generation and asked their opinion
about trusting the generated code of ChatGPT. We analyzed the results of the
interviews with the aim of examining the strengths and weaknesses of ChatGPT
in code generation. Drawing from their expertise, we have identified various chal-
lenges and provided recommendations to mitigate potential issues regarding the
trustworthiness of the generated code of ChatGPT.

The results of our interview-based study can be used as a starting point for
further studies and development of methods and tools regarding automated con-
trolling and checking the trust issues in generated code with LLMs. Furthermore,
this study fills the gap of knowledge and communication between software devel-
opers who are using the development tools and the machine learning experts who
are developing tools like ChatGPT.

The rest of this paper is structured as follows. In Sect. 2, we review prior
research carried out in this domain. In Sect. 3 we delve into the interviews and the
concerns raised by the interviewees. In Sect. 4 we discuss potential approaches
that can improve the reliability and authenticity of ChatGPT.

2 Related Work

Within this domain, we delve into two distinct contexts. Firstly, we discuss
articles related to LLMs and mostly ChatGPT, highlighting their relevance.
Secondly, we explore articles that focus on the verification of reliable coding,
providing insights into this particular area.

2.1 ChatGPT

While ChatGPT demonstrates impressive language generation capabilities, it is
important to note that it has limitations. The model can sometimes produce
responses that may be plausible-sounding but factually incorrect or nonsensi-
cal called hallucination [19]. Numerous techniques exist for addressing halluci-
nation within the field of Natural Language Generation (NLG). One strategy
involves considering the degree of hallucination as a manageable characteris-
tic and restraining it to a minimum using controlled generation methods like
controlled re-sampling and control codes, which can either be manually input or
predicted automatically. Another method entails employing metrics to assess the
excellence of the produced text, including factors like factual coherence. Addi-
tionally, refining pre-trained language models using synthetic data containing



218 7. S. Rabani et al.

automatically integrated hallucinations is proposed as an alternative technique
for pinpointing hallucinatory elements in summaries [8].

Sun et al. [18] proposed an evaluation of ChatGPT’s performance in code
summarization using three metrics: BLEU, METEOR, and ROUGE-L. BLEU
measures how much a generated summary is like the provided reference sum-
maries. It looks at the words used and higher scores mean the generated summary
is more similar to the references. METEOR also compares the generated sum-
mary to the reference summaries, but it looks at many aspects like matching
words, and it gives higher scores when the generated summary is more like the
references. ROUGE-L checks the longest shared part between the generated sum-
mary and the references. Higher scores mean the generated summary and refer-
ences have more words in common. These metrics gauge the quality of the gener-
ated comments in comparison to the ground-truth comments. Among these met-
rics, ChatGPT’s performance is inferior to three state-of-the-art models (NCS,
CodeBERT, and CodeT5) in terms of BLEU, METEOR, and ROUGE-L scores.
However, it is noteworthy that ChatGPT achieves a higher METEOR score com-
pared to the other models, implying that its generated comments may possess
specific linguistic qualities captured by METEOR, but not entirely reflected in
the other metrics [18]. Despite this, recent studies have revealed limitations in
match-based metrics when evaluating code. For example, [16] discovered that
BLEU struggles to capture code-specific semantic features and proposed various
semantic adjustments to improve the scoring accuracy [1]. As a result recent
studies have shifted their focus to prioritize functional correctness. Under this
approach, a code sample is deemed correct only when it successfully passes a
predefined set of unit tests [1]. In their assessment, Kul [10] utilized the pass@k
metric to asses functional correctness. They produced k-code samples for each
problem and deemed a problem solved if any of the samples generated passed
the unit tests. The reported metric reflects the overall fraction of successfully
solved problems using this particular criterion.

Liu et al. [11] state that the effectiveness of ChatGPT in generating code is
often influenced by how prompts are designed. Two main factors affect prompt
design:

1. Chain-of-Thought (CoT) prompting: This strategy allows an LLM to solve
problems by guiding it to produce a sequence of intermediate steps before
providing the final answer. CoT prompting has been extensively studied and
applied to guide ChatGPT in code generation tasks.

2. Manual Prompt Design: Prompt design and multi-step optimizations are
based on human understanding and observations. The knowledge and exper-
tise of the designer can impact the performance of the prompts used. To
minimize bias, prompt design, and combination choices should be based on a
large and randomized sample size.

To enhance generation performance through prompt design, they propose a
two-step approach:

1. Prompt Description: Analyze the requirements of a code generation task and
create a basic prompt in a natural manner. Then, present the basic prompt



Trustworthiness of ChatGPT Generated Code 219

to ChatGPT and ask for suggestions on how to improve it. Incorporate Chat-
GPT’s suggestions to refine the prompt further.

2. Multi-Step Optimizations: Evaluate the prompt designed in the first step
using samples from the training data of the relevant dataset. Analyze the
generation performance by comparing it with the ground-truth results. Con-
tinuously optimize the generation results by providing ChatGPT with a series
of new prompts.

It is important to acknowledge that the prompt design and combination
choices were based on a limited number of tests. Conducting more tests can
contribute to further enhancing the effectiveness of the designed prompts and
reinforcing the conclusions and findings [11].

Jansen et al. [7] assert that large language models (LLMs) have the potential
to tackle certain issues related to survey research, such as question formulation
and response bias, by generating responses to survey items. However, LLMs
have limitations in terms of addressing sampling and nonresponse bias in survey
research. Consequently, it is necessary to combine LLMs with other methods
and approaches to maximize the effectiveness of survey research. By adopting
careful and nuanced approaches to their development and utilization, LLMs can
be employed responsibly and advantageously while mitigating potential risks [7].

Feng et al. [4] introduces a crowdsourcing data-driven framework that inte-
grates multiple social media data sources to assess the code generation per-
formance of ChatGPT, a generative language model. The framework consists
of three main components: keyword expansion, data collection, and data ana-
lytics. The authors utilized topic modeling and expert knowledge to identify
programming-related keywords specifically relevant to ChatGPT, thus expand-
ing its initial seed keyword. With these expanded keywords, they collected 316K
tweets and 3.2K Reddit posts discussing ChatGPT’s code generation between
December 1, 2022, and January 31, 2023. The study discovered that Python was
the most widely used programming language in ChatGPT, and users primarily
employed it for tasks such as generating code snippets, debugging, and pro-
ducing code for machine learning models. The study also analyzed the temporal
distribution of discussions related to ChatGPT’s code generation and found that
peak activity occurred in mid-January 2023. Furthermore, the research exam-
ined stakeholders’ perspectives on ChatGPT’s code generation, the quality of
the generated code, and the presence of any ethical concerns associated with the
generated code [4].

2.2 Trustworthiness

Dener and Batisti [2] discuss the security and ethical considerations surrounding
the use of LLMs such as ChatGPT. While artificial intelligence (AI) advance-
ments in natural language processing (NLP) have been remarkable, there is
a growing apprehension regarding the potential safety and security risks and
ethical implications associated with these models. The article points out that
ChatGPT’s filters are not completely foolproof and can be circumvented through



220 7. S. Rabani et al.

creative instructions and role-playing. Utilizing large language models like Chat-
GPT raises ethical concerns related to privacy, security, fairness, and the pos-
sibility of generating inappropriate or harmful content. The paper emphasizes
the necessity for further research to address the ethical and security implications
of large language models. It also presents a qualitative analysis of ChatGPT’s
security implications and explores potential strategies to mitigate these risks.
The intention of the paper is to provide insights to researchers, policymakers,
and industry professionals about the complex security challenges posed by LLMs
like ChatGPT. Additionally, the paper includes an empirical study that assesses
the effectiveness of ChatGPT’s content filters and identifies potential methods
to bypass them. The study demonstrates the existence of ethical and security
risks in LLMs, even when protective measures are implemented. In summary,
the paper underscores the ongoing need for research and development efforts
to address the ethical and security implications associated with large language
models like ChatGPT [2].

Mylrea and Robinson [13] assert that the AI Trust Framework and Matu-
rity Model (AI-TFMM) is a method aimed at enhancing the measurement of
trust in AT technologies used by Autonomous Human Machine Teams & Sys-
tems (A-HMT-S). The framework addresses important aspects like security, pri-
vacy, explainability, transparency, and other ethical requirements for the devel-
opment and implementation of Al technologies. The maturity model framework
employed in this approach helps quantify trust and associated evaluation metrics
while identifying areas that need improvement. It offers a structured assessment
of an organization’s current trust in Al technologies and provides a roadmap for
enhancing that trust. By utilizing the maturity model framework, organizations
can track their progress and continually improve trust in Al technologies. Over-
all, the maturity model framework is an invaluable tool for quantifying trust in Al
technologies and ensuring ethical practices in their development and use. The Al-
TFMM is also examined in relation to a popular Al technology, ChatGPT, and
the article concludes with results and findings from testing the framework. The
ATI-TFMM serves as a critical framework in addressing key questions about trust
in AI technology. Striking the right balance between performance, governance,
and ethics is essential, and the AI-TFMM provides a method for measuring trust
and associated evaluation metrics. The framework can be utilized to enhance the
accuracy, efficacy, application, and methodology of the AI-TFMM. The article
also identifies areas for future research to fill gaps and improve the AI-TFMM
and its application to Al technology. In summary, the AI Trust Framework and
Maturity Model is a valuable tool for enhancing trust in Al technologies and
ensuring their ethical development and application [13].

Ghofrani et al. [5] conducted a study focusing on trust-related challenges
when reusing open-source software from a human factors perspective. The objec-
tive of the study was to gain insights into the concerns of developers that hinder
trust and present potential solutions suggested by developers to enhance trust
levels. Sixteen software developers with 5 to 10 years of industry experience
participated in exploratory interviews for the study. The findings indicate that



Trustworthiness of ChatGPT Generated Code 221

developers possess a good understanding of the associated risks and have a rea-
sonable level of trust in third-party open-source projects and libraries. However,
the proposed solutions generally lack recommendations for utilizing automated
tools or systematic methods. Instead, the suggested solutions primarily rely on
developers’ personal experiences rather than existing frameworks or tools. The
study concludes that these limitations are interconnected, and the absence of
ongoing support can gradually lead to security vulnerabilities. In turn, a project
with numerous vulnerabilities may become prohibitively expensive to maintain,
ultimately resulting in abandonment [5].

Wermke et al. [21] explore the advantages and difficulties associated with
integrating open-source components (OSCs) into software projects. The research
reveals that OSCs have a significant role in numerous software projects, with
most projects implementing company policies or best practices for including
external code. However, the inclusion of OSCs presents specific security chal-
lenges and potential vulnerabilities, such as the use of code contributed by indi-
viduals without proper vetting and the obligation to assess and address vulner-
abilities in external components. The study also indicates that many developers
desire additional resources, dedicated teams, or tools to effectively evaluate the
components they include. Additionally, the article outlines the study’s approach,
which involved conducting 25 detailed, semi-structured interviews with software
developers, architects, and engineers involved in various industrial projects. The
participants represented a diverse range of projects and backgrounds, spanning
from web applications to scientific computing frameworks. Overall, the findings
emphasize the importance of thoroughly considering the security implications of
incorporating OSCs into software projects and the necessity for companies to
establish policies and best practices to mitigate the impact of vulnerabilities in
external components [21].

In contrast to above mentioned contributions, we focus on trustworthiness in
generated code by LLMs in particular ChatGPT in the practical stage. The focus
of the previous studies are mainly on security concerns of code from third parties
which are written by a human or generated from Models which are created by
human. This kind of code is different than written code by LLM-based tools.
Therefore, it is necessary to investigate the measures which may be required for
trust in the code generated with new LLM-based tools.

3 Methodology

Because our research topic has not been extensively explored, interview-based
studies align effectively with our chosen research methodology. This approach
allows us to thoroughly investigate the subject and gather valuable insights
due to its suitability for exploring uncharted areas of inquiry. Consequently,
among the spectrum of available research methods, interviews are selectively
employed to elicit a more comprehensive array of viewpoints pertaining to the
research subject, thereby serving as a foundational step for the progression of
future investigations in this domain. [12]. In this context, we distributed a set



222 7. S. Rabani et al.

of interview questions to programmers with the aim of collecting their insights
and viewpoints regarding the generation of code using ChatGPT. To fulfill this
objective, we formulated interview questions specifically tailored for individuals
with diverse expertise in this particular. We conducted interviews with 20 indi-
viduals, including developers, engineers, students, and researchers, who work in
reputable companies with large teams. As stated by Saunders and Townsend [17],
the most common sample size in qualitative research typically falls between 15
and 60 participants. To gather their perspectives, we posed a set of 10 questions
that delved into their positions, programming expertise, frequency of ChatGPT
usage, reliability of the generated code, and suggestions for future improvements.
Our Interviews are inspired by a questionnaire from Parnel et al. [14]. Here are
the questions:

— What is your expertise?

— What is your current activity?

— How big is your working company?

— Do you employ generative Al models, like ChatGPT, for the purpose of code
generation? Furthermore, what is the frequency of utilization for code pro-
duced by ChatGPT, and in which typical scenarios does this usage occur?

— Can you recall a point in this situation when you did not trust the generated
code by ChatGPT?

— Would you generally tend to trust the generated code by ChatGPT? Please
expand on why.

— Do you have any distrust in the generated code by ChatGPT? What is the
cause of this distrust? How could it be repaired?

— Would you have any reason not to trust the generated code by ChatGPT in
the future?

— For the future, how reliable/dependent do you view the generated code by
ChatGPT to be?

— What information /knowledge would you need to trust the generated code by
ChatGPT?

Table 2 lists the summary of the various backgrounds and expertise of the
interviewees.

Table 2. Overviewing of the interviewees’ expertise

Expertise Count

Frontend Engineer

Software Engineer
Student

Android/iOS Developer
Backend Developer

Data Scientist

RN W&




Trustworthiness of ChatGPT Generated Code 223

The majority of participants reported using ChatGPT on a daily basis, with
some utilizing tools like the GitHub Co-pilot plugin and Tabnine. However, all
interviewees shared instances where the generated code proved to be unreliable
and inaccurate, necessitating manual verification and extensive time investment.
Some participants mentioned using ChatGPT-generated code as a starting point,
but modifying it extensively to suit their specific use cases. Overall, the consensus
among the interviewees was that the generated code should not be blindly trusted
or relied upon, and thorough checking and review are essential. Fig. 1 shows one
instance provided by interviewees highlighting the unreliability of ChatGPT. He
first asked ChatGPT to write code in Python to implement a box plot for a
dataframe. The output worked fine, but on the second step, he asked ChatGPT

m I want to have different colors for each quartle

Certainly! You can achieve this by specifying the "boxprops™ parameter in “boxplot”
function of “matpletlib . This allows you to customize various properties of the boxes,
including their colors. Here's an example of how to create a box plot with different colors for

each quartile using Matplotlib:

rt pandas as pd
malploLllib.pyploL plL

df = pd.DataFrame(data)

box_colors = [

plt.title(
plt.ylabel(
plt.show()

Fig. 1. Asking ChatGPT to provide different colors for each quartile in a box plot



224 7. S. Rabani et al.

to provide that box plot with different colors for each quartile which is depicted
in Fig. 1 where ChatGPT provided some code that resulted in errors. The error
states that Line2D.set() got an unexpected keyword argument ’facecolor’. So
ChatGPT might hallucinate when it has no idea what to produce as output [9].

It’s important to highlight that all interviewees have experience with Chat-
GPT 3.5, but it is important to recognize the advancements made in the updated
model, ChatGPT 4.0. This newer version has made strides in addressing some
of the issues and bugs that were present in the initial release. However, it is
pertinent to acknowledge that accessibility to ChatGPT 4.0 is limited, as it is
not available for free. This limitation poses a challenge for certain students and
programmers who may lack the financial resources to afford the updated version.

Lack of Precision

User

Long

Intent
Sequences

Ambiguity

Diverse Addressing

Programming Complex

Languages Queries

Fig. 2. Main problems of ChatGPT for generating reusable code according to our
interviews

After analyzing these questions, we identified five issues that were unani-
mously agreed upon by all interviewees. These problems undermine the trust-
worthiness of ChatGPT and its ability to provide accurate answers. Figure 2
illustrates these problems briefly. The full description of each problem is as fol-
lows:

1. Lack of Precision: ChatGPT may not generate code that is as precise and
efficient as what experienced developers can produce. Code requires strict
adherence to syntax, logic, and optimization, which might not always be
guaranteed by the model.

2. Long Sequences: ChatGPT has a token limit that can restrict the length
and complexity of code generated in a single prompt. This can limit the



Trustworthiness of ChatGPT Generated Code 225

model’s ability to generate longer or more complex code segments. This might
necessitate breaking down the task into smaller parts.

3. User Intent Ambiguity: ChatGPT might misinterpret user intent, leading to
code that doesn’t accurately address the user’s needs.

4. Diverse Programming Languages, Libraries, and Frameworks: The realm of
programming encompasses an extensive spectrum of languages tailored to
diverse applications, ranging from versatile options like Python, Java, and
C++ to specialized alternatives such as R and MATLAB. However, it is
imperative to acknowledge that while ChatGPT has been extensively trained
on a substantial corpus of internet text, its mastery is not all-encompassing.
Its competence across programming languages is not uniform, exhibiting vari-
ations, and certain languages may command a more limited familiarity. Addi-
tionally, its grasp may be less robust concerning nascent or niche programming
languages. Thus, it is advisable to provide contextual specifics when dealing
with relatively uncommon or specialized technologies, as ChatGPT’s expo-
sure during training might not encompass these facets comprehensively. Also,
many projects rely on specific libraries or frameworks. The model might not
be up-to-date on these tools, causing it to generate code that doesn’t effec-
tively leverage available resources.

5. Addressing Complex Queries: The queries presented to ChatGPT are intri-
cate, spanning from inquiries about solving theoretical mathematical concepts
to abstract ideas that even experts might find challenging. It’s crucial to rec-
ognize that ChatGPT’s training and intended purpose are distinct, which
limits the range of questions it can adeptly address.

4 Future Research Directions

Considering the issues and shortcomings discussed earlier, we can suggest poten-
tial solutions and future research to enhance the performance of ChatGPT and
formulate a roadmap and policy for its continuous development and improve-
ment. Figure3 presents a visual representation of recommendations aimed at
enhancing the performance of LLMs in code generation.

1. Fine-Tuning for Code Generation: Tailoring ChatGPT’s training on specific
programming domains and languages could enhance its code generation accu-
racy within those areas, addressing challenges related to syntax and seman-
tics.

2. Standardize ChatGPT: To ensure clarity and facilitate effective usage of Chat-
GPT, it is important to establish and publish documents and standards that
outline guidelines for its utilization. Currently, there is a lack of standardized
documentation that clearly defines how to use ChatGPT and sets expec-
tations regarding its capabilities and limitations. By creating comprehen-
sive documentation, developers and users would have access to a clear set
of instructions, best practices, and recommended approaches for interacting
with ChatGPT. This would encompass guidance on various aspects, such as



226 7. S. Rabani et al.

Fine-Tuning for
Code Generation

Transfer Learning

Q from Open Source

Repositories

Memorial
Capability

Using Better-Suited
Data Formats

than Textual

Source Code

Standardize
ChatGPT

Dynamic Learning
from Developer

Feedback

Test Cases with
Highly Coverage

Fig. 3. Suggestion for enriching LLMs for generating code

input format, understanding response types, addressing potential biases, and
providing context to optimize the quality of responses. The availability of such
documents and standards would promote consistent and informed utilization
of ChatGPT, enabling users to leverage its potential effectively and navigate
its capabilities with confidence.

3. Dynamic Learning from Developer Feedback: Developing methods for Chat-
GPT to learn from developers’ corrections and suggestions, allowing the
model to continuously improve its code generation abilities.

4. Test Cases with High Coverage: To validate the quality of the generated
code, it is imperative to develop exhaustive test cases that achieve high cov-
erage. These test cases play a crucial role in confirming the functionality
and accuracy of the code produced by ChatGPT. By formulating test cases
that encompass a diverse range of scenarios, including edge cases and poten-
tial inputs, we can thoroughly scrutinize the reliability and precision of the
generated code. Robust test coverage ensures a comprehensive examination
of various code aspects, including corner cases and potential pitfalls. This
scrutiny allows us to detect any inconsistencies or errors within the gener-
ated code and implement corrective measures as needed. Through meticulous
testing, we can establish a high level of confidence in the authenticity and
effectiveness of the generated code, thus validating its applicability to real-
world contexts



Trustworthiness of ChatGPT Generated Code 227

5. Transfer Learning from Open Source Repositories: Exploring the use of open-
source code repositories to train the model on real-world coding patterns and
practices, improving its understanding of actual coding conventions.

6. Memorial Capability: The suggestion is to enhance the ChatGPT model by
enabling it to remember previous searches and provide tailored solutions
based on previous questions and the user’s skill level. For example, if some-
one asks multiple programming-related questions involving various libraries
and frameworks, the response should include generated code incorporating
sophisticated algorithms and a broader perspective.

7. Using Better-Suited Data Formats than Textual Source Code: Contributions
like [6] show that textual source code might not be the best choice for the
training of machine learning tasks on source code. Actually in the experi-
ments of [6], higher accuracies with less memory consumption are achieved
for the same amount of training data when eliminating variable names but
still maintaining declaration-usage relations in a graph representation of the
source code. Future Large Language Models may be based on these or similar
techniques for the purpose of generating better code with less training data.

5 Discussion

The purpose of the interview is to gather valuable insights and opinions of promi-
nent programmers and researchers in relation to the code generated by Chat-
GPT. Great care was taken in the selection process to ensure a comprehensive
representation of diverse perspectives, avoiding any potential biases towards spe-
cific individuals. Although the number of participants in the interviews may
not have been extensive, their feedback still provides significant and mean-
ingful information about the current state of LLMs and especially ChatGPT.
Through these interviews, various problems and weaknesses of the model have
been brought to light, shedding light on areas that require improvement.

Nonetheless, the research conducted through these interviews serves as a
significant starting point for initiating discussions within the researchers’ com-
munity. The aim is to explore the reliability and trustworthiness of ChatGPT
and brainstorm potential solutions to enhance the model. By fostering a collab-
orative environment for knowledge sharing and problem-solving, this research
endeavor hopes to contribute to the ongoing efforts to improve LLMs and ensure
its effectiveness and usability for a wider range of users.

6 Conclusion

This article delves into a topic that has sparked considerable debate: trustworthi-
ness of the code generated by ChatGPT. By conducting interviews with esteemed
programmers and researchers, the authors aim to delve into their perspectives
regarding the trustworthiness of the code produced by the model. The consensus
emerging from these interviews is that ChatGPT’s generated code frequently



228 7. S. Rabani et al.

lacks precision, necessitating manual debugging, and substantial time invest-
ment, particularly when handling complex code scenarios. Through a meticulous
analysis of the interview data, the article identifies five key challenges inherent to
ChatGPT’s code generation process. These challenges encompass issues related
to the accuracy, code length limitations of a single prompt, interpreting user
intent, accommodating diverse programming languages, tools, and methodolo-
gies, as well as addressing intricate inquiries. Each challenge is thoroughly scru-
tinized to provide a comprehensive grasp of the encountered hurdles. To enhance
the performance of Large Language Models (LLMs) and elevate precision, the
article proposes seven potential solutions. These solutions are meticulously tai-
lored to tackle the identified challenges and enhance the model’s overall reliabil-
ity. The fundamental aim of this research is to cultivate an inclusive environment
conducive to evaluating the trustworthiness of ChatGPT’s code generation out-
puts.

Acknowledgments. This work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - Project-ID 490998901.

References

1. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021)

2. Derner, E., Batisti¢, K.: Beyond the safeguards: exploring the security risks of
ChatGPT. arXiv preprint arXiv:2305.08005 (2023)

3. Dinesh, K., Nathan, S.: Study and analysis of chat GPT and its impact on different
fields of study (2023)

4. Feng, Y., Vanam, S., Cherukupally, M., Zheng, W., Qiu, M., Chen, H.: Investigat-
ing code generation performance of chat-GPT with crowdsourcing social data. In:
Proceedings of the 47th IEEE Computer Software and Applications Conference,
pp- 1-10 (2023)

5. Ghofrani, J., Heravi, P., Babaei, K.A., Soora-ti, M.D.: Trust challenges in reusing
open source software: an interview-based initial study. In: Proceedings of the 26th
ACM International Systems and Software Product Line Conference-Volume B, pp.
110-116 (2022)

6. Groppe, J., Groppe, S., Méller, R.: Variables are a curse in software vulnerability
prediction. In: The 34th International Conference on Database and Expert Systems
Applications (DEXA), Panang, Malaysia (2023)

7. Jansen, B.J., Jung, S.G., Salminen, J.: Employing large language models in survey
research. Nat. Lang. Process. J. 4, 100020 (2023)

8. Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput.
Surv. 55(12), 1-38 (2023)

9. Khorashadizadeh, H., Mihindukulasooriya, N., Tiwari, S., Groppe, J., Groppe,
S.: Exploring in-context learning capabilities of foundation models for generating
knowledge graphs from text. arXiv preprint arXiv:2305.08804 (2023)

10. Kulal, S.; et al.: SPOC: search-based pseudocode to code. In: Advances in Neural
Information Processing Systems, vol. 32 (2019)

11. Liu, C., et al.: Improving ChatGPT prompt for code generation. arXiv preprint
arXiv:2305.08360 (2023)


http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2305.08005
http://arxiv.org/abs/2305.08804
http://arxiv.org/abs/2305.08360

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Trustworthiness of ChatGPT Generated Code 229

Magnusson, E., Marecek, J.: Doing Interview-based Qualitative Research: A
Learner’s Guide. Cambridge University Press, Cambridge (2015)

Mylrea, M., Robinson, N.: Ai trust framework and maturity model: improving
security, ethics and trust in AI. Cybersecur. Innov. Technol. J. 1(1), 1-15 (2023)
Parnell, K.J., et al.: Trustworthy UAV relationships: applying the schema action
world taxonomy to UAVs and UAV swarm operations. Int. J. Hum.-Comput. Inter-
act. 39, 1-17 (2022)

Radford, A., Narasimhan, K., Salimans, T., Sutskever, ., et al.: Improving lan-
guage understanding by generative pre-training (2018)

Ren, S., et al.: Codebleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297 (2020)

Saunders, M.N., Townsend, K.: Reporting and justifying the number of interview
participants in organization and workplace research. Br. J. Manag. 27(4), 836-852
(2016)

Sun, W., et al.: Automatic code summarization via ChatGPT: how far are we?
arXiv preprint arXiv:2305.12865 (2023)

Tao, H., Cao, Q., Chen, H., Xian, Y., Shang, S., Niu, X.: A novel software trustwor-
thiness evaluation strategy via relationships between criteria. Symmetry 14(11),
2458 (2022)

Tao, H., Fu, L., Chen, Y., Han, L., Wang, X.: Improved allocation and realloca-
tion approaches for software trustworthiness based on mathematical programming.
Symmetry 14(3), 628 (2022)

Wermke, D., et al.: “Always contribute back”: a qualitative study on security
challenges of the open source supply chain. In: Proceedings of the 44th TEEE
Symposium on Security and Privacy (S&P 2023). IEEE (2023)


http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2305.12865

	Developers' Perspective on Trustworthiness of Code Generated by ChatGPT: Insights from Interviews
	1 Introduction
	2 Related Work
	2.1 ChatGPT
	2.2 Trustworthiness

	3 Methodology
	4 Future Research Directions
	5 Discussion
	6 Conclusion
	References


