
8Graph Colouring 

Colouring is, alongside planarity, one of the classical topics in graph theory. One of 
its most celebrated results is the four colour theorem that states that planar graphs 
can be coloured with just four colours. In this chapter, we first discuss upper bounds 
on the chromatic number of a graph in terms of the degrees of the vertices, those 
arising from the greedy colouring algorithm, the Szekeres–Wilf bound and Brooks’ 
theorem. The weaker theorem of Heawood on planar graphs and the characterisation 
of planar graphs of low chromatic numbers illustrate the framework of the colouring 
problem for planar graphs. The better bound given by Vizing’s theorem on the 
related edge-chromatic number is also discussed, and the equivalence of the four 
colour theorem with edge-colourings is considered following on from that. The 
chapter concludes with the list colouring problem, a proof by Thomasen of the 
5-choosability of planar graphs and Galvin’s theorem on the edge-choosability of 
bipartite graphs. 

8.1 Vertex Colouring 

A vertex colouring of a graph .𝚪 = (V ,E) is a map 

. c : V (𝚪) → {1, . . . , k}.

The colouring is proper if no edge is monochromatic, that is adjacent vertices 
receive distinct colours. The minimum number of colours in a proper vertex 
colouring of a graph . 𝚪 is its chromatic number, denoted by .χ(𝚪). 

We denote by .ω(𝚪) the cardinality of the largest clique (complete subgraph of 
. 𝚪) and by .α(𝚪) the cardinality of the largest coclique (independent set of . 𝚪). A 
proper k-colouring of . 𝚪 using the k colours induces a partition of its vertex set into 
k independent sets .c−1(1), . . . , c−1(k). 
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Lemma 8.1 For every graph . 𝚪 of order n, 

. χ(𝚪) ⩾ max{ω(𝚪), n/α(𝚪)}.

Proof Let c be a proper colouring of . 𝚪 with .k = χ(𝚪) colours. Since each vertex 
of a clique of size .ω(𝚪) receives a distinct colour, .k ⩾ ω(𝚪). 

On the other hand, .c−1(1), . . . , c−1(k) is a partition of .V (𝚪) into stable sets, so 

. n =
∑

i

|c−1(i)| ⩽ kα(𝚪).

⨅⨆

A graph . 𝚪 is k-critical if .χ(𝚪) = k and if by deleting any edge or vertex we 
obtain a graph which is .(k − 1)-colourable. Observe that, step-by-step removing 
an edge which does not decrease the chromatic number, it is immediate that every 
graph with chromatic number k contains a k-critical subgraph. 

Lemma 8.2 If . 𝚪 is k-critical then .δ(𝚪) ⩾ k − 1. 

Proof By deleting a vertex of minimum degree we obtain a graph which is .(k − 1)-
colourable. Thus, if .δ < k − 1 we can colour the deleted vertex with one of . k − 1
colours, contradicting the fact that .χ(𝚪) = k. ⨅⨆

The following upper bounds are classical results in graph colouring. 
Let .{x1, . . . , xn} be an ordering of the vertices of a graph . 𝚪. The so-called greedy 

colouring algorithm proceeds by giving colour 1 to . x1 and, once . xi is coloured, give 
to .xi+1 the smallest available colour among .{1, 2, . . . , i + 1}. 

Theorem 8.3 (Szekeres-Wilf) For every graph . 𝚪

. χ(𝚪) ⩽ 1 + max
𝚪'⊆𝚪

δ(𝚪').

Proof Let .d = max𝚪'⊆𝚪 δ(𝚪'). We define an ordering of the vertices as follows. We 
choose a vertex . xn with degree at most d in . 𝚪. Once .xi+1 is defined, we choose a 
vertex with degree at most d in the subgraph .𝚪[V \ {xi+1, . . . , xn}] of . 𝚪 induced 
by the unchosen vertices. Now the greedy algorithm on .x1, . . . , xn, which starts 
colouring . x1 with 1 and colours each . xi with the least available colour to make a 
proper colouring of .𝚪[x1, . . . , xi], uses at most  .d + 1 colours because every . xi is 
adjacent at most to d previous vertices. ⨅⨆
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It follows from the Szekeres–Wilf theorem that .χ(𝚪) ⩽ 1+Δ(𝚪). The following 
theorem of Brooks states that complete graphs and odd cycles are the only graphs 
for which the above bound is tight. 

Theorem 8.4 (Brooks) If . 𝚪 is a connected graph different from a complete graph 
or an odd cycle then 

. χ(𝚪) ⩽ Δ(𝚪).

Proof Suppose that . 𝚪 is not a cycle or a complete graph. 
If . 𝚪 is not regular then Theorem 8.3 implies .χ(𝚪) ⩽ Δ(𝚪), since the minimum 

degree would be less than . Δ. 
By Lemma 6.3, since . 𝚪 is connected, it is a tree of blocks where we recall that a 

block is a single vertex, an edge or a 2-connected graph. Observe that the chromatic 
number of . 𝚪 is equal to the maximum of the chromatic numbers of the blocks. Thus, 
we can assume that . 𝚪 is 2-connected, since the statement is trivial if .χ(𝚪) = 2. 
Moreover, from the previous paragraph, we can assume . 𝚪 is regular. 

Case 1 . 𝚪 is 3-connected. Choose . xn and two non adjacent vertices .x1, x2 in its 
neighbourhood (such a choice exists since . 𝚪 is not complete). We have that . 𝚪 −
{x1, x2} is connected, .x1x2 /∈ E(𝚪) and .x1xn, x2xn ∈ E(𝚪). For each i, starting 
at .i = n − 1, choose .xi ∈ V (𝚪) \ {x1, x2, xi+1, . . . , xn} adjacent to some vertex 
in .{xi+1, . . . , xn}, which must exist by connectedness. Now the greedy algorithm 
allows us to colour .x1, x2 with 1 and, at each step, . xi is only adjacent to at most 
.Δ(𝚪) − 1 preceding vertices since it is adjacent to . xj for some .j > i. In the  last  
step we have to colour . xn, which is adjacent to .Δ(𝚪) vertices but two of them, . x1
and . x2, have the same colour, leaving one colour available for . xn (Fig. 8.1, left).  

Case 2 . 𝚪 is 2-connected but not 3-connected. Choose a vertex . xn in a minimal 
separating set S of . 𝚪, so that .𝚪' = 𝚪 − xn is connected but not 2-connected. By 
Lemma 6.3, . 𝚪' is a tree of blocks and, by the minimality of . |S|, the vertex . xn is 
adjacent to two distinct blocks of this block decomposition of . 𝚪', moreover it is 
adjacent to vertices . x1 and . x2 which are not articulation vertices of . 𝚪'. Since they 
belong to distinct blocks of . 𝚪 and are not articulation points, . x1 and . x2 are not 
adjacent in . 𝚪. Moreover, .𝚪 −{x1, x2} is connected as the blocks are 2-connected 
(Fig. 8.1, left). We can now repeat the argument in Case 1 to produce an ordering 
of the vertices for which the greedy algorithm uses at most .Δ(𝚪) colours. 

⨅⨆

Fig. 8.1 The two cases of the proof of Brooks Theorem
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8.2 Planar Graphs 

A central result which fostered the development of graph theory is the four colour 
theorem stating that planar graphs have chromatic number at most four. All known 
proofs rely on extensive computer checking of hundreds of cases. The following 
theorem has a much easier proof. 
Theorem 8.5 (Heawood) Every planar graph . 𝚪 is 5-colourable. 

Proof The proof is by induction on .n = |V (𝚪)|, the result being trivial for . n ⩽
5. We may assume that . 𝚪 is maximal planar, i.e. a graph for which adding any 
additional edges will give a graph which is not planar. By Corollary 7.7, a planar 
graph has at most .3n − 6 edges, which implies that the minimum degree of a planar 
graph satisfies .δ(𝚪) ⩽ 5. 

If . 𝚪 has a vertex x such that the degree of x, .d(x) ⩽ 4 then every 5-colouring of 
.𝚪[V \ {x}] can be extended to a 5-colouring of . 𝚪. Suppose that . d(x) = δ(𝚪) = 5
and let .x1, . . . , x5 be the five neighbours of x listed in clockwise order in a planar 
embedding of . 𝚪. 

If there is a 5-colouring of .𝚪' = 𝚪[V \ {x}] which does not use the five colours 
in the neighborhood of x then we can extend the colouring to . 𝚪. We may therefore 
assume that .χ(xi) = i for .1 ⩽ i ⩽ 5 in a 5-colouring of . 𝚪'. Let  .𝚪'[1, 3] be the 
subgraph . 𝚪' induced by the colour classes 1 and 3. This is a graph with maximum 
degree 2, so that all connected components are either cycles or paths. 

If . x1 and . x3 belong to distinct connected components of .𝚪'[1, 3] then we can 
switch the colours in one of the components and get a proper 5-colouring which 
uses 4 colours on the neighborhood of x. 

Hence, we can assume that . x1 and . x3 belong to the same connected component 
of .𝚪'[1, 3], see Fig. 8.2. Consider the subgraph .𝚪'[2, 4] of . 𝚪' induced by the colour 
classes 2 and 4. This time . x2 and . x4 cannot be in the same connected component 
because every path from . x2 to . x4 must cross a path joining . x1 and . x3, all of whose 
vertices are not in .𝚪'[2, 4]. We again can complete the 5-colouring by switching 
colours in one of the connected components. ⨅⨆

Fig. 8.2 An illustration of 
the proof of Theorem 8.5
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The degree of a face in a planar graph is the number of edges in its boundary. 
The following theorem gives a characterization of planar 2-connected graph with 
chromatic number two. 

Theorem 8.6 A planar 2-connected graph . 𝚪 is bipartite if and only if every face of 
a planar embedding of . 𝚪 has even degree. 

Proof Suppose . 𝚪 is 2-connected and bipartite. By Proposition 7.4, the boundary of 
every face is a cycle of the graph (a facial cycle), which must have even degree since 
. 𝚪 is bipartite. 

To show the reverse implication, note that the edge set of every cycle in a planar 
2-connected graph is the symmetric difference of the edge sets of the facial cycles 
it contains (the boundaries of faces contained in the cycle in a plane embedding of 
the graph). If all facial cycles have even length, then the same holds for all cycles in 
. 𝚪 and so . 𝚪 is bipartite. ⨅⨆

The following theorem gives a characterization of maximal planar graphs with 
chromatic number three. 

Theorem 8.7 (Heawood) A maximal planar graph has chromatic number 3 if and 
only if every vertex has even degree (the graph is Eulerian). 

Proof If . 𝚪 is not Eulerian then a vertex z of odd degree and its neighbours induce an 
odd wheel in . 𝚪. Three colours are needed to colour the odd cycle of this wheel and 
z requires a fourth colour. This shows that a maximal planar graph with chromatic 
number three must be Eulerian. 

For the reverse implication we show the stronger statement that a 2-connected 
near triangulation . 𝚪 (all faces but the external one are triangles) in which all internal 
vertices have even degree has chromatic number three. This we prove by induction 
on the number f of internal faces. When .f = 1 then .𝚪 = K3. Suppose .f > 1 and 
let .e = xy be an edge in the external face of . 𝚪. The edge e is in a unique triangle of 
. 𝚪, let  z be the third vertex of this triangle in addition to x and y. 

If z is also a vertex on the external face, then one of x and y has degree two, say x 
(Fig. 8.3, left). Then .𝚪 − x is still 2-connected, has one less internal face, and every 
internal vertex has even degree. By induction, .𝚪 − x is 3-colourable. By giving x a 
colour different from y and z we obtain a 3-colouring of . 𝚪. 

Fig. 8.3 The two cases in the 
proof of Theorem 8.7
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If z is an internal vertex then it has even degree. Consider the even wheel induced 
by z and its neighbours (Fig. 8.7, right). Now .𝚪 − e is still 2-connected, has one less 
internal face and all internal vertices still have even degree. By induction .𝚪 − e is 
3-colourable. If z receives colour 1 with a 3-colouring then the rim of the wheel 
receives colours 2 and 3. Since the vertices x and y are connected by a path of 
odd length, they receive distinct colours under this 3-colouring of .𝚪 − e, which is 
therefore also a 3-colouring of . 𝚪. ⨅⨆

8.3 Edge Colouring 

An edge-colouring is a map 

. χ ' : E(𝚪) → k.

An edge-colouring is proper if incident edges receive different colours. The 
minimum number of colours in a proper edge-colouring of . 𝚪 is its edge-chromatic 
number, denoted by .χ '(𝚪). We have  

. χ '(𝚪) = χ(L(𝚪)),

where .L(𝚪) denotes the line graph of . 𝚪. Since all edges incident to a vertex must 
receive distinct colours under a proper edge-colouring, we clearly have 

. χ '(𝚪) ⩾ Δ(𝚪).

Perhaps surprisingly, this lower bound is never far from the true value of .χ '(𝚪). 

Theorem 8.8 (Vizing) For every graph . 𝚪, 

. χ '(𝚪) ⩽ Δ(𝚪) + 1.

Proof For every fixed . Δ we will prove the bound by induction on m, the number of 
edges of graphs with maximum degree at most . Δ. 

If .m = Δ then . 𝚪 is a star (and isolated points) which is clearly edge-colourable 
with . Δ colours. 

Let .m ⩾ Δ+1, choose a vertex . x0 with degree . Δ and remove an edge .x0y0 from 
. 𝚪. Let  . χ0 be a proper .(Δ + 1)-edge colouring of .𝚪 − x0y0 (which has maximum 
degree at most . Δ). This is a proper edge-colouring of . 𝚪 except that one edge, .x0y0, 
is still uncoloured. 

For every vertex .x ∈ V (𝚪) denote by .β(x) the set of colours not used in the 
edges incident to x. We have .β(x) /= ∅ since we are using .Δ + 1 colours. 

If .β(x0)∩β(y0) /= ∅ then we can use a colour in the intersection to complete the 
colouring of the edge .x0y0.
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Fig. 8.4 Case 1 of the proof 

Suppose that .β(x0) ∩ β(y0) = ∅. Choose a colour .c0 ∈ β(y0) and let .x0y1 be an 
edge incident to . x0 coloured with . c0. If .β(x0)∩β(y1) /= ∅ we can use a colour in the 
intersection to recolour .x0y1 and use . c0 to colour .x0y0 (which after the recolouring 
will be available for . x0 and for . y0). Otherwise we construct a maximal sequence 
.y0, y1, . . . , yk satisfying (i) .β(x0) ∩ β(yi) = ∅ and (ii) .ci ∈ β(yi) is different from 
.c1, . . . , ci−1 and .x0yi+1 has colour . ci . 

By the maximality of the length of the chain one of the two cases occur: 

Case 1 The chain stopped because we reached a vertex . yk with .β(x0)∩β(yk) /= ∅. 
In this case we use a colour . α in the intersection to recolour .x0yk and use colour 
. ci for .x0yi in the vertices .y0, . . . , yk−1, reaching a good edge-colouring for . 𝚪
(we push the colours back) (Fig. 8.4). 

Case 2 The chain stopped because .β(x0) ∩ β(yk) = ∅ but the colours in . β(yk)

have already appeared in the chain, say .cj−1 ∈ β(yk) for some .j < k. In this  
case we recolour the edges .x0yi with . ci for .i = 0, . . . , j − 1 and leave the edge 
.x0yj uncoloured. 

Choose a colour .α ∈ β(x0) and consider the subgraph .𝚪[α, cj−1] of . 𝚪 induced 
by the edges coloured . α and .cj−1 after the last recolouring. The graph . 𝚪[α, cj−1]
has maximum degree two so that the connected components are cycles and paths or 
isolated vertices. Moreover, the vertices .x0, yj , yk have degree one in this subgraph 
(because .cj−1 /∈ β(x0) implies .d(x0) = 1 and .α /∈ β(yj ) ∪ β(yk) implies . d(yj ) =
d(yk) = 1). Therefore, the three vertices can not belong to the same connected 
component of .𝚪[α, cj ]. 

Suppose that . yj and . x0 belong to different components. We can exchange the 
colours of the edges .cj−1 and . α in the connected component containing . yj and the 
resulting colouring will still be proper. Moreover, after the renaming, . α becomes 
unused at . yj and we can use . α to colour the edge .x0yj completing the colouring 
of . 𝚪. 

Suppose that . yk and . x0 belong to different components. We can exchange the 
colours of the edges .cj−1 and . α in the connected component containing . yk and the 
resulting colouring will still be proper. Now we recolour the edges .x0yi with . ci for 
.i = j, j + 1, . . . , k − 1 leaving .x0yk uncoloured, and colour this edge with . α. ⨅⨆

By Vizing’s theorem, .χ '(𝚪) ∈ {Δ(𝚪),Δ(𝚪) + 1}. We observe that each colour 
class is a matching, so Vizing’s theorem can be rephrased by saying that every graph 
admits a partition of its edge set into at most .Δ(𝚪) + 1 edge-disjoint matchings. 
For instance, for the complete graphs .K2n of even order it can easily be seen that 
.χ '(𝚪) = Δ(𝚪), while the ones of odd order can not be coloured with . Δ colours
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because the largest matching in .K2n+1 has n edges and the total number of edges is 
.n(2n + 1). Thus, for .K2n+1, .χ '(𝚪) = Δ(𝚪) + 1. The fact that for bipartite graphs, 
.χ '(𝚪) = Δ(𝚪), is a consequence of Hall’s theorem. 

Proposition 8.9 A bipartite graph . 𝚪 has edge-chromatic number .χ '(𝚪) = Δ(𝚪). 

Proof If . 𝚪 is .Δ-regular then, by Theorem 4.3, it contains a perfect matching . M1. Its  
removal leaves a .(Δ − 1)-regular bipartite graph which contains a perfect matching 
. M2. By iterating this procedure, we decompose the edge set of . 𝚪 into . Δ edge-
disjoint matchings. 

If .𝚪 = (A ∪ B,E) is not .Δ-regular we show that there is .𝚪' ⊃ 𝚪 which is 
bipartite and .Δ-regular and .χ '(𝚪) ⩽ χ '(𝚪') = Δ. By adding isolated vertices if 
needed, we may assume that .|A| = |B|. If there is a vertex .x ∈ A with degree 
smaller than . Δ then there must be .y ∈ B with the same property and we can add the 
edge xy to . 𝚪 and still get a bipartite graph with maximum degree . Δ. By repeating 
the argument we eventually end up with a bipartite .Δ-regular graph .𝚪' ⊃ 𝚪. By the  
previous paragraph, the edges of . 𝚪' decompose into . Δ edge disjoint matchings. ⨅⨆

A final observation on the four colour theorem is the following equivalence. 

Theorem 8.10 The four colour theorem is equivalent to the following statement: 
every bridgeless cubic planar graph has edge-chromatic number .χ '(𝚪) = 3. 

Proof Every planar graph can be coloured with four colours if and only if every 
maximal planar graph can be coloured with four colours, so we may restrict 
ourselves to maximal planar graphs. The dual of a maximal planar graph is a 
bridgeless cubic graph. Reciprocally, the dual of a bridgeless cubic planar graph 
is a triangulation, a maximal planar graph. 

Let . 𝚪 be an embedded cubic planar graph and suppose that there is a 4-colouring 
. χ of its dual . 𝚪∗ with elements of .Z2 × Z2. Each .e ∈ E(𝚪) determines an edge 
.e∗ = xy ∈ E(𝚪∗), joining the two faces which have the edge e on their boundaries, 
see Fig. 8.5. We colour e with .χ '(e) = χ(x) + χ(y), which is not .(0, 0) since x 
and y (faces of . 𝚪) are coloured with different colours. If e and . e' are incident in . 𝚪
then the corresponding edges .e∗ = xy, (e')∗ = yz are also incident in . 𝚪∗ and xyz 
form a triangle in . 𝚪∗, since . 𝚪∗ is a triangulation. Since .χ(x) /= χ(z), it follows that 

Fig. 8.5 The edge e 
determines de edge . e∗ in 
Theorem 8.10
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Fig. 8.6 The 4-colouring of 
a maximal planar graph . 𝚪∗
(with black vertices) induced 
by a 3-edge-colouring of its 
dual . 𝚪 (with white vertices) 

.χ '(e) = χ(x) + χ(y) /= χ(y) + χ(z) = χ '(e'). Thus we obtain a 3-colouring of . 𝚪

with elements of .Z2 × Z2 \ {(0, 0)}. 
Reciprocally, let . 𝚪 be a maximal planar graph and suppose that there is a 3-edge-

colouring . χ∗ of its dual . 𝚪∗. Identify the edge colours of . 𝚪∗ with the elements of 
.Z2 × Z2 \ {(0, 0)} (Fig. 8.6). 

Since . 𝚪 is a triangulation, every edge e in . 𝚪 uniquely defines a dual edge . e∗ in 
. 𝚪∗ joining the two faces of . 𝚪 that have e in common in their boundaries. 

Consider a spanning tree of . 𝚪, choose a vertex as a root and colour it with .(0, 0). 
For every pair .v, v' of adjacent vertices in the spanning tree define the map . χ(v) =
χ(v')+χ∗(e∗) where . e∗ is the dual edge of .e = vv' and the sum is in .Z2 ×Z2. This  
is a well defined 4-colouring of . 𝚪. We claim that, for every pair .v, v' of adjacent 
vertices in . 𝚪 joined by the edge . evv' , we have  .χ(v) = χ(v') + χ∗(e∗

vv'), so the  
colouring is proper. 

⨅⨆

This is the case if .evv' is an edge of the spanning tree, by definition. Otherwise, 
consider the cycle induced in the tree by this edge e. 

Suppose the cycle is facial, namely a triangle .vv‘w. Then .evw and .ev'w are edges 
of the spanning tree and we have that 

. χ(v) = χ(w) + χ∗(e∗
vw)

and 

. χ(v') = χ(w) + χ∗(e∗
v'w).

Therefore, we have that 

. χ(v) = χ(v') + χ∗(e∗
vw) + χ∗(e∗

v'w) = χ(v') + χ∗(e∗
vv'),

since the sum of any elements of .Z2 × Z2 \ {(0, 0)} gives the third one. 
Finally, if the cycle is not facial then it is the symmetric difference of r facial 

cycles for some r . Each one of the edges in these faces when added to the spanning 
tree induces a cycle which is the symmetric difference of less than r facial cycles. 
By induction on r , we can assume that for these edges .ew'w
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. χ(w) = χ(w') + χ∗(e∗
ww').

Then, since we are summing modulo two, when we take the symmetric difference 
of r facial cycles, we also conclude that 

. χ(v) = χ(v') + χ∗(e∗
vv').

8.4 List Colouring 

Let . 𝚪 be a graph and let .L(v) be a list of colours associated to each vertex .v ∈ V (𝚪). 
A list colouring of . 𝚪 is a proper colouring . χ such that 

. χ(v) ∈ L(v), ∀v ∈ V (𝚪).

A graph . 𝚪 is k-choosable if, for every set of lists .{L(v) : v ∈ V (𝚪)} with . |L(v)| ⩾
k, there is a list colouring with this set of lists. The minimum integer k such that . 𝚪 is 
k-choosable is the list chromatic number .χL(𝚪) of . 𝚪. An ordinary k-colouring can 
be seen as a list colouring where the list of each vertex is .{1, 2, . . . , k}. Therefore, 

. χ(𝚪) ⩽ χL(𝚪).

The difference between the two quantities can be arbitrarily large. For 
example, the list chromatic number of the complete bipartite graph satisfies 
.lim infn→∞ χL(Kn,n) = ∞, even if the graph is bipartite (see Exercise 8.17). 
The list assignment to .K3,3 in Fig. 8.7 shows that .χL(K3,3) > 2. 

The arguments using the greedy colouring algorithm, where only the number of 
colours available at one vertex is significant, show that the statement of the theorems 
of Szekeres–Wilf and of Brooks still hold for list colourings. The next celebrated 
theorem by Thomassen shows that list colouring of planar graphs is at most five. 

Theorem 8.11 (Thomassen) For every planar graph . 𝚪 we have . χL(𝚪) ⩽ 5.

Proof We need to prove that given lists .L(v) of size at least 5 for each vertex v, 
we can choose a colour from .L(v) so that the colouring is proper. If we can find a 
proper list colouring for a graph which contains . 𝚪 then we will have found a list 
colouring for . 𝚪. Thus, we can assume that . 𝚪 is a near-triangulation (all faces except 
the outer one are triangles). ⨅⨆

Fig. 8.7 There is no list 
colouring of .K3,3 with the 
displayed list assignment
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Claim 8.12 For every list assignment of a near triangulation in which two pre-
scribed adjacent vertices in the outer face have distinct lists of size one, the 
remaining vertices in the outer face have lists of size three and all inner vertices 
have lists of size five, there is a list colouring of the graph with these lists. 

Proof We will prove this by induction on the number n of vertices. The claim 
follows for .n = 3. Suppose .n > 3. 

Let .x, y be the vertices with lists of size one. We consider two cases. 

Case 1. There is a chord .e = uv joining two vertices in the outer face (Fig. 8.8 
left). 
We consider the two near triangulations .𝚪1, 𝚪2 which are split by the chord and 
share this chord in their outer boundary. We may assume that . 𝚪1 is the near 
triangulation which contains both of them. We apply induction on . 𝚪1 and find a 
list colouring . χ1 of . 𝚪1. We now apply induction on . 𝚪2 by redefining the lists of 
u and v as .L'(u) = {χ1(u)} and .L'(v) = {χ1(v)} to find a list colouring . χ2 with 
these new lists. The colouring whose restriction to . 𝚪i is . χi is a list colouring of 
. 𝚪. 

Case 2. There is no chord joining two vertices in the outer face (Fig. 8.8 right). 
Let .x, y, u, v be consecutive vertices in the clockwise order in the outer face (it 
may be that .v = x). Let .y = u1, u2, . . . , uk = v be the neighbours of u also 
in clockwise order. Consider the new lists .L'(u) = L(u) \ L(y) and . L'(ui) =
L(ui) \ L'(u), .1 ⩽ i ⩽ k − 1, which provide the induction hypothesis for the 
graph .𝚪 − u. A list colouring . χ of .𝚪 − u can be completed to a list colouring of 
. 𝚪 with the original lists since none of the . ui’s uses the two colours of .L'(u) and 
one can be chosen different from .χ(v). 

The statement of the theorem now follows from the Claim 8.12, since an 
assignment of lists of length five to every vertex fulfils the hypothesis of the claim. 

⨅⨆

There are examples of planar graphs whose list chromatic number is five, so the 
bound in Theorem 8.11 is tight. 

Analogous notions for edge-colourings lead to k-edge choosability and edge-list 
chromatic number .χ '

L(𝚪). Clearly, .χ '
L(𝚪) = χL(L(𝚪)). A famous open problem in 

the area is the list colouring conjecture. 

Fig. 8.8 The two cases in the 
proof of Theorem 8.11
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Conjecture 8.13 (List Colouring Conjecture) For every graph . 𝚪 we have . χ '
L(𝚪) =

χ '(𝚪). 

Remarkably, the conjecture has been proved for bipartite graphs. 

Theorem 8.14 (Galvin) If . 𝚪 is bipartite then .χ '
L(𝚪) = χ '(𝚪). 

One proof uses the following result. A kernel in an oriented graph . →𝚪 = (V , →E)

is a nonempty independent set U such that every vertex in .V \U has an arc directed 
to some vertex in U . 

Lemma 8.15 Let .{L(v) : v ∈ V } be a set of lists assigned to vertices of a graph 
.𝚪 = (V ,E). If there is an orientation . →𝚪 such that every induced subgraph . →𝚪' of . →𝚪
has a kernel and the out-degree of every vertex satisfies .d+(v) < |L(v)|, then . 𝚪 can 
be coloured from the lists. 

Proof The proof is by induction on n. The result is trivial for .n = 1. Assume 
.n > 1. Choose a colour c which occurs in some list and let C be the set of vertices 
in . 𝚪 which have the colour c in their lists. By the hypothesis, .→𝚪[C] has a kernel 
U . Colour the vertices of U by c and remove the colour c from all lists in C. The  
subgraph .𝚪[V \ U ] satisfies the hypothesis of the lemma, since the out degree of 
every vertex in .𝚪[V \ U ] is one less than its out degree in .𝚪[V ]. whereas .|L(v)| has 
decreased by at most one since we have only removed the colour c from the lists. 
Hence, by induction, .𝚪[V \ U ] admits a list colouring with the new lists and this 
provides a list colouring of . 𝚪 with the original lists. ⨅⨆

Proof of Theorem 8.14 Let . χ be an edge-colouring of . 𝚪 with .{1, 2, . . . , k}, where 
.k = χ '(𝚪). We will prove that the colouring can be used to construct an orientation 
of the line graph .L(𝚪) of . 𝚪 satisfying the hypothesis of Lemma 8.15. The statement 
then follows from Lemma 8.15. 

Let .V (𝚪) = A ∪ B be the bipartition of . 𝚪. Let  e and . e' be two incident edges in 
. 𝚪 with .χ(e) < χ(e') (since . χ is a proper edge-colouring, equality does not hold). 
We orient the edge .ee' ∈ E(L(𝚪)) from e to . e' if .e ∩ e' ∈ A and from . e' to e if 
.e ∩ e' ∈ B (Fig. 8.9). 

The out-degree of an edge e in this orientation is at most . (k−χ(e))+(χ(e)−1) <

k. So we only have to show that every subgraph of .L(𝚪) with this orientation has a 

Fig. 8.9 The orientation of 
.L(𝚪) in the proof of 
Theorem 8.14 when 
.χ(e'') < χ(e) < χ(e')
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kernel. We prove that this is the case by induction on . |E'|, the case .|E'| = 1 being 
trivial. Suppose .|E'| > 1. 

Let .E' ⊂ E(𝚪) be a subset of edges and consider the oriented subgraph . 𝚪' of 
.L(𝚪) induced by . E'. Let  .A' ⊂ A be the set of vertices incident with some edge in 
. E'. For each .x ∈ A', let  .ex ∈ E' be the edge incident with x with smallest colour. 
Let .U = {ex : x ∈ A'}. By construction, every edge in .E' \ U has a directed edge 
in . 𝚪' to some element in U . 

If U is an independent set then we are done. 
If not, suppose that two edges . ex and . ex' in U meet in some vertex y. Necessarily, 

by the construction of U , .y ∈ B. Suppose .χ(ex) < χ(ex'), so  . ex is directed to . ex'
in . 𝚪'. By induction, the subgraph .𝚪' \ ex has a kernel . U '. If  .ex' ∈ U ' then . U ' is a 
kernel for . 𝚪' and we are done. Otherwise there is an edge . e'' incident with . ex' such 
that . ex' is directed to . e'' in . 𝚪'. Since . ex' is the edge incident with . x' with minimum 
colour it must be that . e'' is incident with . ex' in B, which implies it is incident with 
y. Thus, .χ(e'') > χ(ex') which implies .χ(ex'') > χ(ex) and so . ex is directed to . e''
in . 𝚪'. Hence . U ' is a kernel for . 𝚪'. ⨅⨆

By Proposition 8.9 and Theorem 8.14, the edge list chromatic number of a 
bipartite graph . 𝚪 is .χ '

L(𝚪) = Δ(𝚪). In particular, .χ '
L(Kn,n) = n, a statement which 

had been conjectured by Dinitz in the language of Latin squares. Suppose that each 
entry of a square .n × n matrix may take one of n distinct values. Dinitz conjectured 
that one can choose entries such that elements in a row and in a column are pairwise 
distinct. Observe that when the choices are .{1, 2, . . . , n} for each entry we get a 
Latin square. 

8.5 Notes and References 

The proof of Brooks’ theorem, Theorem 8.4, follows Lovász (1975). A simplified 
version which avoids the use of 3-connectivity and has further applications is given 
in Zaja̧c  (2018). The characterization of 3-chromatic triangulations by Heawood 
can be complemented by a theorem by Grötzsch that states that every triangle-free 
planar graph can be 3-coloured, see Thomassen (2003) for a simplified proof. The 
proof by Thomassen (2004), Theorem 8.11, of the 5-choosability of planar graphs 
has become a classic in graph theory with wide applications. The proof by Galvin 
(1995) of the list colouring conjecture also extends to bipartite multigraphs. 

8.6 Exercises 

Exercise 8.1 

i. Show that every graph admits an ordering of the vertices for which the greedy 
colouring algorithm uses χ(𝚪)  colours.
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ii. Let 𝚪 be the complete bipartite graph Kn,n minus a perfect matching. Show that 
there is an ordering of the vertices such that the greedy colouring algorithm uses 
n colours. 

Exercise 8.2 Let 𝚪 + 𝚪' denote the graph resulting from the disjoint union of 𝚪

and 𝚪' and adding all edges between V (𝚪)  and V (𝚪'). Prove that χ(𝚪 + 𝚪') = 
χ(𝚪) + χ(𝚪'). 

Exercise 8.3 The cartesian product 𝚪□𝚪' has vertex set V (𝚪)  × V (𝚪') and (x, y) 
i (x', y') are adjacent if and only if either x = x' and y ∼ y' or y = y' and x ∼ x'. 
Show that χ(𝚪□𝚪') = max{χ(𝚪),  χ(𝚪')}. 

Exercise 8.4 The direct product 𝚪 × 𝚪' has vertex set V (𝚪)  × V (𝚪') and (x, y) 
i (x', y') are adjacent if x ∼ x' and y ∼ y'. Show that χ(𝚪 × 𝚪') ≤ 
min{χ(𝚪),  χ(𝚪')}. 

[Hedetniemi conjecture, recently disproved, stated that equality holds.] 

Exercise 8.5 A graph 𝚪 is k-critical if it has chromatic number k and every proper 
subgraph of 𝚪 has smaller chromatic number. Show that a k-critical graph is (k−1)-
edge connected (the graph remains connected after deletion of any set of k − 1 
edges). 

Exercise 8.6 Let 𝚪 be a k-critical graph. 

i. Show that, for every pair x, y of non adjacent vertices, there is a k-colouring χ 
of 𝚪 such that χ(x)  = χ(y). 

ii. Show that 𝚪 must be 2-connected. Moreover, if S, with |S| =  2 separates X ⊂ V 
from Y = V \ (X ∪ S), then the induced subgraphs 𝚪1 = 𝚪[X ∪ S] and 𝚪2 =
𝚪[Y ∪ S] have the property that any (k − 1)-coloring of 𝚪1 gives distinct colours 
to S while any k-colouring of 𝚪2 gives the same colour to the vertices in S. Give  
an example of a 2-connected critical graph with k = 4. 

Exercise 8.7 (Mycielski construction) Given a graph 𝚪 with vertex set V = 
{v1, . . . , vn}, denote by M(𝚪) the graph with vertex set V ∪ {u1, . . . , un} ∪ {w} 
where 

i. {u1, . . . , un} is an independent set; 
ii. For each i, ui is adjacent to every vertex adjacent to vi . 
iii. w is adjacent to each ui . 

Show that, if 𝚪 is triangle free and χ(𝚪)  = k, then M(𝚪) is also triangle-free and 
χ(M(𝚪))  = k + 1. 

Exercise 8.8 Show that χ(𝚪)  = k if and only if there is an orientation →𝚪 of 𝚪

whose longer directed path has length k.
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Exercise 8.9 For a graph 𝚪 = (V , E) and a vertex x0 ∈ V let Si = {x ∈ V (𝚪)  : 
d(x0, x)  = i} denote the sphere of radius i centered at x0. 

1. Show that 

. χ(𝚪) ⩽ max
i

{χ(𝚪[Si]) + χ(𝚪[Si+1])},

where the maximum is taken from i = 0 to the eccentricity of x0 minus one. Give 
examples showing that the inequality is tight. 

2. Show that a graph 𝚪 with chromatic number χ(𝚪) ⩾ 2t has the complete graph 
Kt as a minor. 

Exercise 8.10 Let f𝚪(x) be a function such that, fo each positive integer k, f𝚪(k) 
is the number of proper k-colourings of 𝚪. 

i. Show that 

. f𝚪(k) = f𝚪−e(k) − f𝚪/e(k).

ii. Deduce that f𝚪 is a polynomial and that f𝚪(x) = xn − mxn−1 + 
terms of lower degree, where n = |V (𝚪)| and m = |E(𝚪)|. 

iii. Compute the polynomial for 𝚪 = Kn and for 𝚪 a tree. 

Exercise 8.11 Show that a graph 𝚪 with m edges satisfies 

. χ(𝚪) ⩽ 1

2
+

√
2m + 1

4
.

Exercise 8.12 Show that an outerplanar graph 𝚪 has chromatic number χ(𝚪) ⩽ 3. 

Exercise 8.13 Show that a regular graph 𝚪 with an odd number of vertices satisfies 
χ '(𝚪) = Δ(𝚪) + 1. 

Exercise 8.14 Show that if 𝚪 is a cubic graph with a bridge then χ '(𝚪) = 4. 

Exercise 8.15 Prove that χ '(K2n) = 2n−1 and χ '(K2n+1) = 2n+1. Describe the 
edge-colourings reaching these values. 

Exercise 8.16 Let 𝚪 be the graph obtained from the complete bipartite graph Kn,n 
by subdividing one edge by a vertex. Show that χ '(𝚪) = Δ(𝚪)+1, but χ '(𝚪−e) =
Δ(𝚪) for every edge e. 

Exercise 8.17 Show that lim infn→∞ χL(Kn,n) = ∞.
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Exercise 8.18 Show that χ '
L(𝚪) ⩽ 2Δ(𝚪) − 1. 

Exercise 8.19 Let L be a list assignment to the vertices of a graph 𝚪 such that 
d(v) ⩽ |L(v)| and the strict inequality holds for at least one vertex. Show that 𝚪

admits a list colouring from these lists. 

Exercise 8.20 A graph is k-degenerated if every subgraph has a vertex of degree 
at most k. 

i. Prove that the list colouring number of a k-degenerated graph G satisfies 
χL(G) ⩽ k + 1. 

ii. Show that a k-degenerated graph G of order n > k  with maximal number of 
edges has kn − (

k+1 
2

)
edges, connectivity κ(G) = k and χ(G)  = k + 1. 

iii. Prove that a non-bipartite outerplanar graph has χL(G) = 3 

Exercise 8.21 Show that any assignment of lists of length 2 to the vertices of an 
odd cycle admits a proper list coloring, except when all the lists are the same.
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