
6Connectivity 

Connectivity is a key property of graphs. The central result on connectivity of graphs 
is the theorem of Menger, a result of min–max type with several connections in other 
areas of combinatorics and of combinatorial optimization, besides its relevance in 
graph theory itself. Some structural results related to connectivity are also presented 
in this chapter, including a theorem of Tutte on 3-connected graphs. The close notion 
of edge-connectivity is also discussed at the end of the chapter. 

6.1 Vertex Connectivity 

A graph is connected if there is a path connecting any pair of vertices. A connected 
component of a graph is a connected subgraph which cannot be extended (by adding 
edges or vertices). Every graph is the disjoint union of its connected components. 
For a subset .X ⊂ V (𝚪), we denote by .𝚪[X] the subgraph of . 𝚪 induced by the 
vertices in X. 

A tree is a connected acyclic graph. The following are equivalent definitions of 
a tree. The proof is a simple exercise. 

Proposition 6.1 For a graph T , the following statements are equivalent: 

i. T is a tree. 
ii. T is an edge-maximal acyclic graph: the addition of any edge to T results in a 

graph which is no longer acyclic. 
iii. T is an edge-minimal connected graph: the suppression of any edge of T results 

in a graph which is no longer connected. 
iv. For every pair of vertices in T there is a unique path joining them. 
v. .|E(T )| = |V (T )| − 1 and T is acyclic. 
vi. .|E(T )| = |V (T )| − 1 and T is connected. 
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A subgraph T of a graph . 𝚪 is a spanning tree of . 𝚪 if it is a tree and .V (T ) = V (𝚪). 
A simple characterization of connected graphs is the following one. 

Lemma 6.2 A graph . 𝚪 is connected if and only if there is an ordering . {v1, . . . , vn}
of the vertices such that .𝚪[v1, . . . , vi] is connected for each .i = 1, . . . , n. In  
particular, . 𝚪 is connected if and only if it contains a spanning tree. 

Proof The first part is a direct consequence of the definition: if . 𝚪 is not connected 
then the condition fails for .i = n and every ordering. 

Reciprocally, if . 𝚪 is connected one can start in any vertex . v1 and define .vi+1 as 
the first vertex not in .{v1, . . . , vi} in a path connecting . v1 with some vertex not in 
that initial segment. 

For the second part, we can choose, for every i, one edge joining . vi with some 
vertex in .{v1, . . . , vi−1}. In this way we obtain a spanning subgraph (a graph with 
vertex set .V (𝚪)) which has .|V (𝚪)| − 1 edges, and it is therefore a tree. ⨅⨆

A natural measure of connectivity of a graph is given by the minimum number of 
vertices whose deletion disconnects the graph. A subset .S ⊂ V (𝚪) is a separator 
of . 𝚪 if .𝚪[V \ S] is not connected. A graph is k-connected if .|V (𝚪)| ⩾ k + 1 and 
every separator of G has at least k vertices. For example a tree is 1-connected but 
not 2-connected. A cycle is 1-connected and also 2-connected but not 3-connected. 
For the complete graph, which has no separators, the definition is to be seen as a 
convention: the complete graph . Kn is k-connected for every .k ⩽ n − 1. 

6.2 Structure of k-Connected Graphs for Small k 

A cut vertex v of a connected graph . 𝚪 is a vertex such that .𝚪[V (𝚪) \ {v}] is not 
connected, i.e. .S = {v} is a separator of size one. 

A block of . 𝚪 is a connected subgraph of . 𝚪 which contains no cut vertices and 
cannot be extended to a larger subgraph which contains no cut vertices. 

Thus, a block is either an isolated vertex, an edge with its two end vertices or 
a maximal 2-connected subgraph. By maximality, if two blocks intersect then they 
have a unique common vertex, which is a cut vertex of the graph. Connected graphs 
can be structured in a tree of blocks. 

Lemma 6.3 Let . 𝚪 be a connected graph and let A be its set of cut vertices. Let 
.B(𝚪) be the bipartite graph with bipartition .V1 = A and . V2 = {B ⊂ 𝚪 :
B is a block of 𝚪} where there is an edge joining a cut vertex .a ∈ A with a block 
.B ∈ V2 if and only if .a ∈ B. Then .B(𝚪) is a tree. 

Proof The block graph is connected since . 𝚪 is connected. If it has a cycle then this 
cycle contains .r ⩾ 2 blocks of . 𝚪 with r cut points, which together form a block, 
contradicting the maximality of the existing blocks. ⨅⨆
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Fig. 6.1 A graph (left) and 
its block graph (right) 

Figure 6.1 shows an example of a graph and its block graph. 
As for a block, its structure can be described as follows. 

Lemma 6.4 A graph is 2-connected if and only if it can be recursively constructed 
starting from a cycle by successively adding a path between two vertices previously 
constructed. 

Proof Suppose that . 𝚪 has been recursively constructed starting from a cycle by 
successively adding a path between two vertices previously constructed. Then every 
vertex is contained in a cycle, so . 𝚪 has no cut vertices. Hence, it is 2-connected. 

Suppose that . 𝚪 is 2-connected. Let . 𝚪' be a maximal subgraph of . 𝚪 constructed 
as stated. Then . 𝚪' is an induced subgraph of . 𝚪, since we can always add an edge 
between two vertices of . 𝚪' under the recursion rule, if that edge is an edge of . 𝚪. 

If there is a vertex .v ∈ V (𝚪) \ V (𝚪') then there is a path from v to some vertex 
in . 𝚪'. Suppose that w is the first vertex of . 𝚪' on such a path. Since . 𝚪 is 2-connected, 
there is another path from v to another vertex .w' /= w in . 𝚪' sharing no other vertices 
than v with the above path. Thus, v lies on a path joining two previously constructed 
vertices, which contradicts the maximality of . 𝚪'. ⨅⨆

Thus, if a graph is 2-connected, then there is a sequence 

. 𝚪0 ⊂ 𝚪1 ⊂ · · · ⊂ 𝚪k = 𝚪

such that . 𝚪0 is a cycle and . 𝚪i is obtained from .𝚪i−1 by adding a path (possibly with 
internal vertices not in .𝚪i−1) joining two vertices in .𝚪i−1. 

We next discuss the more substantial structural characterisation of 3-connected 
graphs. 

The contraction of an edge .e = xy ∈ E(𝚪) consists in identifying its 
two endpoints and the possible multiple edges which may be created by this 
identification, see Fig. 6.2. The resulting graph is denoted by .𝚪/e. Contraction is 
an important notion in the theory of graphs.
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Fig. 6.2 A graph  G on the 
left and the contraction . G/e

on the right 

Fig. 6.3 An example of a 
separation defined by the 
separator S 

We will often use the following view on separators of a graph. If S is a separator 
of . 𝚪 and C is a connected component of .𝚪[V \ S] then . 𝚪 can be written as . 𝚪 =
𝚪1 ∪ 𝚪2 where .𝚪1 = 𝚪[C ∪ S] and .𝚪2 = 𝚪[V \ C] are two graphs whose vertex 
sets intersect in S with the property that there are no edges in . 𝚪 connecting vertices 
in C with vertices in .V \ (C ∪ S). The pair .{𝚪1, 𝚪2} is a separation of . 𝚪 defined by 
S and C. Figure 6.3 shows an example of such a separation. 

The following simple lemma will be useful. 

Lemma 6.5 Let S be a minimum separating set of . 𝚪. Then, every vertex in S is 
adjacent to a vertex in each connected component of .𝚪 − S. 

Proof Suppose that .x ∈ S is not adjacent to a component C of .𝚪 − S. Then, with 
.S' = S \ {x}, C is still a connected connected component of .𝚪 − S', contradicting 
the minimality of . |S|. ⨅⨆

Lemma 6.6 Let . 𝚪 be a 3-connected graph, .𝚪 /= K4. There is an edge .e ∈ 𝚪 such 
that .𝚪/e is still 3-connected. 

Proof Suppose that .𝚪/e is not 3-connected for every edge .e = xy ∈ E(𝚪). 
Let .vxy be the vertex of .𝚪/e resulting from the contraction of e. Every separator 

of .𝚪/e not containing .vxy is also a separator of . 𝚪. Moreover, for every minimum 
separator .{vxy, z} of . 𝚪/e, the set .S = {x, y, z} is a minimum separator of . 𝚪. 
Therefore, every separator of .𝚪/e with cardinality less than three must contain . vxy

and, once this vertex is split, it corresponds to a minimal separator of . 𝚪. It follows 
that .𝚪/e is 2-connected. Moreover, for every minimal separator .{vxy, z} of .𝚪/e the 
set .S = {x, y, z} is a minimal separator of . 𝚪.
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For every edge .e = xy choose .z ∈ V (𝚪) such that .{vxy, z} is a separator of 
.𝚪/e and choose the smallest component C of .(𝚪/xy) − {vxy, z}. From all such 
possibilities of .e = xy, z and C, choose one in which C has the smallest possible 
cardinality. 

Since .{vxy, z} is a minimal cut in .𝚪/xy, z is adjacent to a vertex .u ∈ C. We will 
show that the choice of .e' = uz and some . z' results in a separator .{vuz, z

'} of . 𝚪/uz

with a component . C' with .|C'| < |C|, contradicting the minimality of . |C|. 

Since .{x, y, z} is a separator of . 𝚪 and C is one of its components, all neighbours 
of .u ∈ C different from .x, y and z belong to C. 

There is some vertex . z' such that .{vuz, z
'} is a separator of .𝚪/uz and, as discussed 

before, .{u, z, z'} is a separator of . 𝚪. Since x and y are adjacent, they belong to the 
same connected component of .𝚪−{u, z, z'}. By Lemma 6.5, u is adjacent to all other 
connected components. Let . C' be such a connected component. Since all neighbours 
of u different from x and y are contained in C, it follows that .C' ⊂ C \ {u}, giving  
the claimed contradiction in our choice of C and hence, to the initial assumption. 

⨅⨆

We are now in a position to prove a structural characterisation of 3-connected 
graphs. 

Theorem 6.7 (Tutte) Every 3-Connected Graph . 𝚪 contains a sequence 

. 𝚪0 ⊂ 𝚪1 ⊂ · · · ⊂ 𝚪n = 𝚪

such that 

1. .𝚪0 = K4, 
2. .𝚪i = 𝚪i+1/xy for some .e = xy ∈ E(𝚪i+1) such that .d𝚪i+1(x), d𝚪i+1(y) ⩾ 3. 

Proof Suppose that . 𝚪 is 3-connected. By Lemma 6.6, there is an edge . e ∈ E(𝚪)

whose contraction .𝚪/e results in a graph which has one vertex less and is still 3-
connected. By iterating this procedure, we obtain a sequence as claimed. Note that 
the only 3-connected graph with four vertices is . K4. 

Reciprocally, a graph containing a sequence as described is 3-connected. To see 
this it suffices to show that, if . 𝚪i is 3-connected, then a graph .𝚪i+1, with the property 
that .𝚪i = 𝚪i+1/xy for some edge xy, such that .d𝚪i+1(x), d𝚪i+1(y) ⩾ 3, is also 3-
connected. Suppose not and let S be a separator of .𝚪i+1 with two vertices. It cannot
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Fig. 6.4 A construction of a 
3-connected graph with 6 
vertices starting from . K4

be that .S = {x, y}, since otherwise the contracted edge .vxy would be a separator 
of . 𝚪i . It also cannot be that S is disjoint from .{x, y}, since S otherwise would be a 
separator of . 𝚪i . If .S ∩ {x, y} = {x} then y is isolated in a singleton component of 
.𝚪i+1 \S since other vertices of that component would be separated by . S \{x}∪{vxy}
in . 𝚪i . But then this implies that y has degree at most two. ⨅⨆

It follows from Tutte’s theorem that every 3-connected graph can be constructed 
from . K4 by splitting a vertex into two adjacent vertices and connecting them to the 
old neighborhood distributing the edges among the new two vertices such that each 
one has degree at least three (Fig. 6.4). 

6.3 Menger’s Theorem 

Menger’s theorem connects two dual notions of connectivity: separating sets and 
number of disjoint paths connecting two sets. Let .A,B ⊂ V (𝚪) be two sets 
of vertices. An AB-separator is a set S of vertices such that there are no paths 
connecting A with B in .𝚪 − S. A vertex in .A ∩ B is connected by itself by a path of 
length 0 in this definition, which implies that every AB-separator contains .A ∩ B. 
An AB-connector is a subgraph .𝚪' ⊂ 𝚪 each of its connected components is a path 
containing precisely one vertex in A and one vertex in B. A graph with no edges 
can also be an AB-connector, formed by isolated vertices in .A ∩ B. 

Theorem 6.8 (Menger, Local Version) Let .A,B be two nonempty subsets of 
vertices of a graph . 𝚪. The cardinality of a minimum AB-separator equals the 
maximum number of components (paths) in an AB-connector. 

Proof Let S be a minimal AB-separator and . 𝚪' an AB-connector containing c 
paths. It is clear that every separator must contain one point of every path in . 𝚪'
so .|S| ⩾ c. 

We will prove that there is an AB-connector with . |S| paths, by induction on the 
number of edges of . 𝚪. If . 𝚪 is edgeless one can take .A ∩ B as both, a maximal 
AB-connector and minimal AB-separator. 

Suppose . 𝚪 is not edgeless and let s be the cardinality of a minimum AB-separator 
in . 𝚪.
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Fig. 6.5 The construction of 
the AB-connector 
.𝚪1 ∪ 𝚪2 ∪ {xy} in 
Theorem 6.8 

Let .e = xy be an edge of . 𝚪. The statement holds in .𝚪 − e by induction. If a 
minimum separator of .𝚪 − e has the same cardinality s as in . 𝚪 then we are done, as 
an AB-connector in .𝚪 − e is also an AB-connector in . 𝚪. 

Suppose that . S' is an AB-separator in .𝚪 − e with .|S'| < s. Since . S1 = S' ∪ {x}
and .S2 = S' ∪ {y} are both AB-separators in . 𝚪, they both have s vertices which 
implies that .|S'| = s − 1. 

Let . S'' be an .AS1-separator in .𝚪 − e. Observe that . S'' is also an AB-separator in 
. 𝚪, since every path connecting A and B either uses the edge .e = xy or intersects 
a vertex of . S'. In particular .|S''| ⩾ s. By induction, there is an .AS1-connector 
. 𝚪1 in .𝚪 − e with s paths, thus meeting each point of . S1 precisely once. The same 
argument applied to an .S2B-separator gives an .S2B-connector . 𝚪2 with s paths. Now 
.𝚪1 ∪ 𝚪2 ∪ {xy} is an AB-connector with s paths (Fig. 6.5). ⨅⨆

Theorem 6.9 (Menger, Global Version) A graph . 𝚪 with .|V (𝚪)| > k is k-
connected if and only if every pair of vertices is joined by k internally disjoint paths. 

Proof Let .x, y ∈ V (𝚪). Take .A = N(x) and .B = N(y). Let S be an AB-separator. 
If .|S| < k then we can separate x and y by S contradicting that the graph is k-
connected. By Theorem 6.8, there is an AB-connector with k paths. Together with 
the edges joining A with x and B with y one obtains k internally disjoint paths. ⨅⨆

Menger’s theorem is a central result in combinatorics belonging to a family 
of results called min–max theorems. The theorem of Hall, Theorem 4.3, on the  
existence distinct representatives of a family of sets, or on the existence of a 
matching in bipartite graphs, Theorem 5.3, are examples of such results. As an 
illustration, we show an application of Menger’s theorem to prove the following 
theorem of Ford and Fulkerson. 

Let .{A1, . . . , Am} and .{B1, . . . , Bm} be two families of subsets of a ground set 
X. A common system of distinct representatives is a set .{x1, . . . , xm} ⊂ X such 
that, for some permutations .σ, τ of .{1, . . . , m}, we have .xi ∈ Aσ(i) ∩ Bτ(i) for each 
i. 

Theorem 6.10 The families of subsets .{A1, . . . , Am} and .{B1, . . . , Bm} have a 
common system of distinct representatives if and only if for each pair . I, J ⊂
{1, . . . , m},
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. |(∪i∈IAi) ∩ (∪j∈J Bj )| ⩾ |I | + |J | − m.

Proof Construct the graph . 𝚪 with vertex set 

. V (𝚪) = {s} ∪ {A1, . . . , Am} ∪ {v1, . . . , vm} ∪ {B1, . . . , Bm} ∪ {t},

and edge set 

. E(𝚪) = {sAi : i ∈ {1, . . . , m}} ∪ {Aivx : i ∈ {1, . . . , m}, x ∈ Ai}

. ∪ {Bjvy : i ∈ {1, . . . , m}, y ∈ Bi} ∪ {Bj t : j ∈ {1, . . . , m}}.

See Fig. 6.6 for an example. 
We observe that there is a common system of distinct of representatives if and 

only if there are m internally disjoint paths joining s and t in . 𝚪. Indeed, for any 
such path with vertices .s, Ai, x, Bj , t , the vertex x can be taken to be the common 
representative of . Ai and . Bj . 

By Menger’s theorem, such a set of paths exists if and only if every .{s, t}-
separator of . 𝚪 has more than m vertices. 

Let S be an .{s, t}-separator and set 

. I = {vi ∈ {v1, . . . , vm} : Ai /∈ S}

and 

. J = {vj ∈ {v1, . . . , vm} : Bj /∈ S}.

By the definition of I and J , we have that S contains .{v1, . . . , vm} \ I and 
.{v1, . . . , vm} \ J . 

Moreover, S must contain 

. (∪i∈IAi) ∩ (∪j∈J Bj )

since if there is a 

. k ∈ (∪i∈IAi) ∩ (∪j∈J Bj ) \ S

then there is a path joining s and t which passes through . vk . 
Therefore 

. |S| ⩾ |(∪i∈IAi) ∩ (∪j∈J Bj )| + (m − |I |) + (m − |J |)

which implies 

.|S| ⩾ |I | + |J | − m + (m − |I |) + (m − |J |) = m.
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Fig. 6.6 An example of the 
graph in the proof of 
Theorem 6.10 for the sets 
. A1 = {1, 3, 4}, A2 =
{2, 3}, A3 = {3, 5} and 
. B1 = {1, 2}, B2 =
{2, 3}, B3 = {2, 5}

⨅⨆

The connectivity .κ(𝚪) of a graph . 𝚪 is the largest k such that . 𝚪 is k-connected. 
It follows from Menger’s theorem (or from the definition) that .κ(𝚪) ⩽ δ(𝚪), 
the minimum degree of . 𝚪. Even if large minimum degree does not ensure high 
connectivity, the following theorem of Mader gives some connection. Recall that 
.Δ(𝚪) indicates graph’s maximum degree. 

Theorem 6.11 (Mader) A graph . 𝚪 with average degree .d̄(𝚪) = 4k contains a 
k-connected subgraph . 𝚪' with average degree .d̄(𝚪') > d̄(𝚪) − 2k. 

Proof We observe that 

. n > Δ(𝚪) ⩾ d̄(𝚪) ⩾ 4k

and 

. m = nd̄(𝚪)

2
⩾ 2kn.

We will prove, by induction, the stronger statement that if .n ⩾ 2k − 1 and 

. m ⩾ (2k − 3)(n − k + 1) + 1

then . 𝚪 has a k-connected subgraph with average degree larger than .d̄(𝚪) − 2k. 
If .n = 2k − 1 then .m ⩾ n(n − 1)/2 so that .𝚪 = Kn satisfies the claim. 
Suppose .n ⩾ 2k. If . 𝚪 is k-connected then there is nothing to prove. Furthermore, 

if .δ(𝚪) ⩽ 2k −3, we can apply induction on .𝚪 −x, where x is a vertex of minimum 
degree in . 𝚪. Therefore, we can suppose that .δ(𝚪) ⩾ 2k − 2. 

Let S be a separator in . 𝚪 with cardinality .|S| < k and let .𝚪1, 𝚪2 ⊂ 𝚪 such 
that .𝚪 = 𝚪1 ∪ 𝚪2 and .𝚪1 ∩ 𝚪2 = 𝚪[S]. Let .ni = |V (𝚪i)| and .mi = |E(𝚪i)|. 
Since .δ(𝚪) ⩾ 2k − 2 and all neighbours of a vertex in .𝚪1 \ 𝚪2 are in . 𝚪1 we have 
.n1 ⩾ 2k−2 and .n2 ⩾ 2k−2 for the analogous reason. Since .n ⩾ n1 +n2 − (k−1),
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one of the two satisfies the induction hypothesis, otherwise 

. m ⩽ m1 + m2 < (2k − 3)(n1 + n2 − 2k + 2) ⩽ (2k − 3)(n − k + 1).

⨅⨆

6.4 Edge Connectivity 

The notion of vertex connectivity can be translated to edge-separators. A set . L ⊂
E(𝚪) is an edge-separator of a graph . 𝚪 if .𝚪 − L is not connected. A graph . 𝚪 is 
k-edge-connected if .𝚪 − L is connected for every set .L ⊂ E(𝚪) with . |L| < k

edges. If an edge e has the property that .𝚪 − e has more connected components than 
. 𝚪 then we say that e is a bridge. The minimum k such that . 𝚪 is k-edge-connected 
is the edge-connectivity of . 𝚪, which is denoted by .λ(𝚪). 

The following proposition lists some basic properties of edge connectivity. 

Proposition 6.12 For any graph . 𝚪, 

i. .κ(𝚪) ⩽ λ(𝚪) ⩽ δ(𝚪). 
ii. every minimal edge-separator of a connected graph separates the graph in two 

connected components. 
iii. if . 𝚪 is k-edge-connected then, for every edge .e ∈ E(𝚪), the graph .𝚪 − e is 

.(k − 1)-edge-connected. 

Proof 

i. Suppose L is an edge-separator of . 𝚪. A subset S of vertices which cover the 
edges of L is a (vertex) separator for . 𝚪 and there is some such separator such 
that .|S| ⩽ |L|. Hence, .κ(𝚪) ⩽ λ(𝚪). If  v is a vertex of minimum degree then the 
set of edges L, incident with v, is an edge-separator of . 𝚪 of size .δ(𝚪). Hence, 
.λ(𝚪) ⩽ δ(𝚪). 

ii. Suppose L is an edge-separator of . 𝚪. If .𝚪 − L is has more than two connected 
components then .L − e is an edge separator for .𝚪 − L. 

iii. This is immediate. 
⨅⨆

We now use Menger’s theorem (local version), Theorem 6.8 to prove a similar 
result for edge-connectivity. 

Theorem 6.13 (Menger) A graph . 𝚪 is k-edge-connected if and only if every pair 
of vertices can be joined by k edge-disjoint paths. 

Proof If every pair of vertices can be joined by k edge-disjoint paths then we must 
remove at least k edges to disconnect . 𝚪. Hence, . 𝚪 is k-edge-connected.
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Suppose . 𝚪 is k-edge-connected. 
Recall that the line graph .L(𝚪) of . 𝚪 has the edge set .E(𝚪) as vertex set and 

two edges are adjacent whenever they are incident in . 𝚪. A set .S ⊂ E(𝚪) is an 
edge-separator of . 𝚪 if and only if it is a (vertex) separator of .L(𝚪). 

Take two vertices .x, y ∈ V (𝚪) and let A be the set of edges incident with x and 
let B be the set of edges incident with y. The sets  A and B are subsets of vertices 
of .L(𝚪). From the previous paragraph, an AB-separator of .L(𝚪) has size at least k. 
Thus, by Theorem 6.8, there is an AB-connector with at least k components (paths). 

The vertices on these paths in .L(𝚪) describe the edges on disjoint paths in . 𝚪
which join a neighbour of x to a neighbour in y. Each of these can then be extended 
to a path from x to y by adding an edge incident with x and an edge incident with 
y. ⨅⨆

6.5 Notes and References 

Menger’s theorem is one of the central theorems in graph theory. The simple proof 
of the theorem is taken from Goring (2000). The theorem on common distinct 
representatives was obtained by Ford and Fulkerson (1958), as an application 
of their max-flow/min-cut theorem, which is one of many min-max theorems 
equivalent to Menger theorem. 

6.6 Exercises 

Exercise 6.1 Let 𝚪 be 2-connected. Show (without using Menger’s theorem) that 
every pair of edges is contained in a cycle. 

Exercise 6.2 Let 𝚪 be 2-connected different from K3. Show that, for each edge e, 
either 𝚪 − e or 𝚪/e is 2-connected. 

Exercise 6.3 Let 𝚪 be 3-connected and let xy be an edge of 𝚪. Show that 𝚪/xy is 
3-connected if and only if 𝚪 − {x, y} is 2-connected. 

Exercise 6.4 Show that if 𝚪 is k-connected, k ⩾ 2, then for every k vertices there 
is a cycle containing them. 

Exercise 6.5 Let 𝚪 be k-connected. Show that, for every edge e ∈ E(𝚪), 𝚪 − e is 
(k − 1)-connected. 

Exercise 6.6 Let S, S' be distinct minimal separating sets of a graph 𝚪. Show that, 
if S intersects at least two connected components of 𝚪 − S' then S' intersects each 
component of 𝚪 − S (and S intersects every component of 𝚪 − S').
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Exercise 6.7 Give an example of a k-edge-connected graph 𝚪 with vertex connec-
tivity κ(𝚪) = 1. 

Exercise 6.8 Show that a cubic 3-edge connected graph is also 3-connected. 

Exercise 6.9 Prove Hall’s theorem on the existence of a perfect matching in a 
bipartite graph by using Menger’s theorem. 

Exercise 6.10 Show that the n-cube Qn = K2 ×  · · ·  ×  K2 (n-times, cartesian 
product) is n-connected. 

Exercise 6.11 A k-split of a graph 𝚪 is the graph H obtained from 𝚪 by replacing 
one vertex x by two adjacent vertices x1, x2 such that NH (x1)∪NH (x2) = N𝚪(x)∪ 
{x1, x2} and dH (x1), dH (x2) ⩾ k. Show that, if 𝚪 is k-connected then every k-split 
of 𝚪 is k-connected. 

Exercise 6.12 Let 𝚪 be a k-regular, k-connected graph with an even number of 
vertices. 

For each non-empty subset W of vertices of 𝚪, let  U be the set of odd components 
of 𝚪 \W . Consider the bi-partite graph 𝚪W with stable sets U and W , where ui ∈ U 
is joined by an edge to wj ∈ W if and only if the odd component ui is joined to wj 
in the graph 𝚪. 

i. Prove that if W is separating then deg ui ⩾ k, deg wj ⩽ k and hence |U | ⩽ |W |. 
ii. Prove that 𝚪 has a perfect matching. 

iii. Prove that a 3-connected graph with an even number of vertices which does not 
have a perfect matching has at least 8 vertices and construct such a graph with 8 
vertices.
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