
2Labelled Enumeration 

The symbolic method discussed in Chap. 1 may not always be suitable in addressing 
enumeration problems in combinatorial classes where some natural way of distin-
guishing objects by its labels appears, for example in the class of permutations. In 
this chapter, the notion of labelled classes is introduced and the power and flexibility 
of the symbolic method will again be demonstrated in applications to count classes 
of permutations, set partitions, labelled trees, words and other combinatorial objects. 

2.1 Exponential Generating Functions 

The exponential generating function of a sequence .a = (a1, a2, · · · ) of complex 
numbers is 

. A(z) =
∑

n⩾0

an

n! z
n.

We note that, for exponential generating functions, we have 

. an = n![zn]A(z).

Exponential generating functions turn out to be a more convenient type of generating 
functions for labelled classes. The main reason for this is their behaviour with 
respect to the product. If .A(z), B(z) are exponential generating functions of 
sequences . an and . bn respectively, then their product 

. A(z)B(z) =
∑

n⩾0

(
n∑

k=0

ak

k!
bn−k

(n − k)!

)
zn

is the exponential generating function of the sequence 
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. cn = n![zn]A(z)B(z) =
n∑

k=0

(
n

k

)
akbn−k.

The above expression is sometimes called the binomial convolution of the sequences 
. an and . bn. 

2.2 Labelled Classes 

A combinatorial class . A is labelled if the objects in . A are labelled graphs, the size 
of an object being the number of vertices in the graph, and the labels of an object 
.α ∈ A of size n are distinct labels in .{1, . . . , n} attached to the vertices of the graph. 

For convenience we also consider the null class . ϵ which has a single object of 
size zero and no labels. We also denote by . N the class with a sole object of size one 
with label 1. 

We first consider some important examples of labelled classes. 

The Class . U of Urns The objects of . U are edgeless labelled graphs. There is a 
unique way of labelling the n vertices, so there is a unique object of each size. 

. 

The Class . P of Permutations The objects of . P are labelled directed paths. There 
are . n! different labelings of a directed path with n vertices. 

. 

The Class . C of Cyclic Permutations The objects of . C are labelled directed cycles. 
There are .(n − 1)! different labelings of a directed cycle with .n ⩾ 1 vertices. 

. 

In an analogue of the previous section, the exponential generating function of 
a combinatorial class . A is
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. A(z) =
∑

α

z|α|

|α|! =
∑

n≥0

An

zn

n! ,

where . An is the number of objects in . A of size n. 
As we shall see, the exponential generating function is a more convenient 

generating function for labelled classes. 
For the three examples discussed above, the exponential generating functions are 

. U(z) =
∑

n⩾0

zn

n! = ez,

. P(z) =
∑

n⩾1

zn = 1

1 − z
,

and 

. C(z) =
∑

n⩾1

zn

n
= − log(1 − z).

2.3 Labelled Constructions 

As for the unlabelled case, the power of the symbolic method relies on the possibility 
of describing a class in a formal symbolic way by means of elementary operations. 
The basic ones are described below. 

The sum .A + B of two labelled classes . A and . B is simply its disjoint union. 
Every object in .A + B inherits its size and labels from its class. 

The labelled product is the most interesting operation. We introduce some con-
venient terminology as follows. Given any sequence of n pairwise distinct natural 
numbers .a = (a1, a2, . . . , an), its reduction .ρ(a) is the sequence .σ(1), . . . , σ (n), 
where .σ ∈ Sym(n) is a permutation of .{1, . . . , n}, with the property that . σ(i) <

σ(j) if and only if .ai < aj . In other words, the reduction is an order preserving 
map onto .{1, . . . , n}. For example, .ρ(4, 8, 3, 6, 2) = (3, 5, 2, 4, 1). 

Let .A,B be labelled classes. In order to define the labelled product we must 
define a way to label the pairs .(α, β) ∈ A × B with labels in .{1, 2, . . . , |α| + |β|}. 
The idea is to use all possible labels on .(α, β) whose reductions on . α and . β coincide 
with the original ones. Therefore, we define 

. α ∗ β = {(α', β ') ∈ A × B | ρ(α') = α, ρ(β ') = β}.

For example, if . α is labelled .(1, 2) and . β is labelled .(1, 3, 2) then .α ∗ β consists of 
the objects .(α', β ') with labels
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. (1, 2, 3, 5, 4), (1, 3, 2, 5, 4), (1, 4, 2, 5, 3), (1, 5, 2, 4, 3), (2, 3, 1, 5, 4),

(2, 4, 1, 5, 3), (2, 5, 1, 4, 3), (3, 4, 1, 5, 2), (3, 5, 1, 4, 2), (4, 5, 1, 3, 2).

Note that 

. |α ∗ β| =
(|α| + |β|

|α|
)

.

The labelled product of two labelled classes . A and . B is defined as 

. A ∗ B =
⋃

α∈A
β∈B

(α ∗ β).

If .C = A ∗ B then 

. C(z) =
∑

α∈A,β∈B

∑

(α,β)∈α∗β

z|α|+|β|

(|α| + |β|)!

=
∑

α∈A,β∈B

(|α| + |β|)!
|α|!|β|!

z|α|+|β|

(|α| + |β|)!

=
(

∑

α∈A

z|α|

|α|!

) ⎛

⎝
∑

β∈B

z|β|

|β|!

⎞

⎠

= A(z)B(z),

which explains the use of exponential generating functions instead of ordinary ones. 
The labelled product is the natural product operation of labelled combinatorial 
classes. 

The sequence .Seq(A) of a labelled class . A is defined as 

. Seq(A) = {ϵ} + A + (A ∗ A) + (A ∗ A ∗ A) + · · · =
⋃

k⩾0

Seqk(A),

where 

. Seqk(A) = A ∗ · · · ∗ A ∗ A︸ ︷︷ ︸
k times

.

By the expression of generating functions of labelled products, if . C = Seq(A)

then
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. C(z) = 1 + A(z) + A2(z) + · · · = 1

1 − A(z)
.

The class of k-sets .Setk(A) of a labelled class . A is 

. Seqk(A)/ ∼

where two objects are identified by the equivalence relation . ∼ if they only differ on 
the ordering of its components. The class of sets of . A is 

. Set(A) =
⋃

k≥0

Setk(A).

We observe that, in the labelled product, the number of n-tuples of objects in each 
every equivalence class of .Seqn(A))/ ∼ is . n!. Accordingly, if .D = Set(A) then 

. D(z) = 1 + A(z) + 1

2!A
2(z) + 1

3!A
3(z) + · · · = eA(z).

This is known as the exponential formula in classical enumerative combinatorics, to 
which the symbolic method gives a natural and simple derivation. 

We summarise the above relations between operations in labelled classes and the 
corresponding exponential generating functions in the following theorem. 

Theorem 2.1 Let .A,B, C be labelled classes and denote by .A(z), B(z), C(z) their 
exponential generating functions. 

1. If .A = B + C, then .A(z) = B(z) + C(z). 
2. If .A = B ∗ C, then .A(z) = B(z)C(z). 
3. If .A = Seq(B), then .A(z) = 1

1−B(z)
. 

4. If .A = Set(B), then .A(z) = eB(z). 

2.4 Permutations 

Permutations The class of permutations was defined as the class of labelled 
directed paths. An alternative symbolic description provides a wealth of enumer-
ation possibilities. Recall that a permutation can be expressed as a product of cycles 
in a unique way. 

Let C denote the class of cyclic permutations. The number Cn of cyclic 
permutations of {1, . . . , n} of size n in C is (n − 1)!. Therefore, the exponential 
generating function of C is
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. C(z) =
∑

n⩾1

(n − 1)!z
n

n! = log
1

1 − z
.

A permutation is a set of disjoint cycles. The class P of permutations has the formal 
specification 

. P = Set(C).

It follows that the exponential generating function is 

. P(z) = exp

(
log

1

1 − z

)
= 1

1 − z
,

as we have already seen. However, this specification allows for the flexibility of the 
symbolic method. The following examples illustrate this fact. 

Derangements. A derangement is a permutation with no fixed points (that is, with 
no cycles of length one). The formal specification of the class D of derangements is 

. D = Set

⎛

⎝
∑

n⩾2

Cn

⎞

⎠ ,

and thus the generating function is 

. D(z) = exp

(
log

(
1

1 − z

)
− z

)
= exp(−z)

1 − z
.

Thus, one obtains directly that 

. Dn = n![zn]e−z

(
1

1 − z

)
= n!

n∑

i=0

(−1)i
1

i! ≈ n!
e

.

Involutions. An involution is a permutation σ with the property that σ 2 is the 
identity. The cycle decomposition of an involution has only cycles of lengths one or 
two. The class of involutions is 

. I = Set(C1 + C2),

and its exponential generating function is 

.I (z) = exp(z + z2

2
).
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Therefore, the number of involutions of size n is 

. in = n![zn]I (z) = n![zn]ezez2/2 =
⎿n/2⏌∑

k=0

n!
k!(n − 2k)!2k

.

More generally, the class Ir of permutations satisfying σ r = 1 is  

. Ir = Set(
∑

j |r
Cj )

and its exponential generating function is 

. Ir (z) = exp

⎛

⎝
∑

j |r

zj

j

⎞

⎠ .

Number of Cycles. The class P(k) of permutations with k disjoint cycles is 

. P(k) = Setk(C).

It has exponential generating function 

. P (k)(z) = 1

k!
(
log

1

1 − z

)k

.

The number of such permutations of n is the (signless) Stirling number of first kind, 
or the Stirling cycle number, 

. 

[
n

k

]
= n!

k! [z
n]

(
log

1

1 − z

)k

= n!
k!

∑

i1+i2+···+ik=n

1

i1i2 · · · ik .

Some simple values of the Stirling cycle numbers are 

. 

[
n

1

]
= (n − 1)!,

[
n

n − 1

]
=

(
n

2

)
.

Of course, 

. 

n∑

k=1

[
n

k

]
= n!.

Number of Cycles and Cycle Lengths. We may specify the set PA.B of permuta-
tions which have cycles with length in A ⊂ N and a number of cycles which is an
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integer in B ⊂ N. The formal specification is 

. PA.B =
∏

i∈B

(
∑

j∈A

Cj ),

from which 

. PA,B(z) = β(α(z)),

where 

. α(z) =
∑

a∈A

za

a! , β(z) =
∑

b∈B

zb

b! .

2.5 Set Partitions 

A partition is a collection of nonempty sets. We have already seen an approach 
to enumerate partitions by describing them as an unlabelled combinatorial class. 
However, its description as a labelled combinatorial class is more natural: a partition 
is a set of disjoint subsets. The labelled class of partitions can be described as 

. P = Set(U1),

where . U1 is the class of urns (excluding the empty object). Therefore, the exponen-
tial generating function of the class of partitions is 

. P(z) = exp(exp(z) − 1).

The total number of partitions of .{1, . . . , n} is the Bell number . Bn. The exponential 
generating function provides an expression for this number 

. Bn = n![zn]P(z) = n!
e

[zn]
∑

k⩾0

ekz

k! = n!
e

[zn]
∑

k⩾0

∑

m⩾0

kmzm

m!k! = 1

e

∑

k⩾0

kn

k! ,

from which one can obtain asymptotic expressions. 
The class .P(k) of partitions into k parts is 

. P(k) = Setk(U1).

Hence, 

.P (k)(z) = 1

k! (e
z − 1)k.
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This gives an alternative derivation of the Stirling numbers of second kind, 

. 

{
n

k

}
= n!

k! [z
n](ez − 1)k

= n!
k! [z

n]
k∑

m=0

(
k

m

)
(−1)k−memz

= n!
k! [z

n]
k∑

m=0

(
k

m

)
(−1)k−m

∑

ℓ⩾0

mℓ

ℓ! zℓ

= 1

k!
k∑

m=0

(
k

m

)
(−1)k−mmn.

Additional specializations can be obtained as in the case of permutations. For 
instance, the exponential generating function for the class of partitions with no 
singletons is 

. exp(ez − 1 − z).

2.6 Words 

Words on an alphabet can also be treated from the perspective of labelled combina-
torial classes. A word of length n on an alphabet .A = {a1, . . . , ar } can be seen as a 
map 

. f : {1, . . . , n} → A

and it can be specified by the sequence 

. (f −1(a1), . . . , f
−1(ar )),

a sequence of subsets (including the empty set). Therefore, the class .WA of words 
on A can be specified as 

. WA = (U)r ,

where . U is the class of urns, now including the empty set. This gives 

. WA(z) = erz and wA,n = rn,

as expected.
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If the number of occurrences of the letter i is restricted to a set .Ai ⊂ N then the 
symbolic specification is 

. WA;A1,...,Ar
= UA1 ∗ · · · ∗ UAr

where 

. UAi
=

∑

a∈Ai

(N)a/ ∼,

and so 

. UAi
=

∑

a∈Ai

za

a! .

For example, the class of words on an alphabet of r letters in which each letter 
appears at least twice has exponential generating function 

. W
⩾2
A = (ez − 1 − z)r

2.7 Labelled Trees 

Let . T be the class of rooted labelled trees. There is a distinguished vertex (the root) 
and the nodes of the trees are labelled. The size of the tree is its number of nodes. 

A tree in . T consists of a node and a set of trees. Therefore, 

. T = N ∗ Set(T ).

The generating function satisfies the equation 

. T (z) = zeT (z).

The Lagrange inversion formula provides the classical Cayley formula for the 
number of labelled rooted trees with n vertices. 

. Tn = nn−1

The above is the well-known Cayley formula for the number of labelled trees 
(dividing by the n possible roots of a labelled tree).
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2.8 Notes and References 

For a more comprehensive look at labelled enumeration, see Flajolet and Sedgewick 
(2009, Chapter 2). The general symbolic approach to enumeration problems can 
be traced back to Joyal (1981) who derived the exponential formula for the 
set construction. There are many identities involving the Stirling numbers, for 
partitions and for permutations, which have not been explored here. For the Stirling 
permutation numbers there is a closed formula which is more involved than the one 
obtained here for the Stirling partition numbers. Cayley’s formula for the number of 
spanning trees has many beautiful proofs, see for example Matousek and Nesetril 
(2008). The one given here is probably the simplest one. 

2.9 Exercises 

Exercise 2.1 Compute the number fn(r) of permutations which have no cycles of 
length r (fn(1) is the number of derangements). Prove that limn→∞ fn(r)/n! =  
e−1/r . 

Exercise 2.2 Compute the exponential generating function of the permutations 
which decompose into even cycles. Analogously for the ones decomposing into odd 
cycles. 

Exercise 2.3 Compute the exponential generating function of the permutations 
which decompose into an even number of cycles. Analogously for the ones 
decomposing into an odd number of cycles. 

Exercise 2.4 Show that the number of permutations of {1, . . . ,  2n} whose cycle 
decomposition contains only even cycles is 

. (2n − 1)2(2n − 3)2 · · · 32.

Exercise 2.5 LetW(k,r) denote the class of words over the alphabet {a, b} ∪ {0, 1} 
in which every letter appears at most k times and each number appears at least r 
times. The size of a word is its length. 

i. Compute W (0,r) n for n >  2(r − 1), r ⩾ 1. 
ii. Give an expression of the exponential generating function of W(k,0). 
iii. Compute W (2,2) n for n >  6. 

Exercise 2.6 Compute the exponential generating function of set partitions with an 
odd number of blocks.



32 2 Labelled Enumeration

Exercise 2.7 Compute the exponential generating function of rooted labelled trees 
such that the root has exactly k descendants. Find the number of such trees with n 
nodes. 

Exercise 2.8 Let T2 denote the class of rooted binary labelled trees, that is, every 
node has zero or two childs, the size being the number of nodes. Let F2 denote the 
class of forests in which each connected component is an object in T2. 

i. Find the exponential generating function of T2. 
ii. Give an expression of T2,n in terms of the Catalan numbers. What is the value 

of T2,n for n = 1, 2, 3, 4, 5? 
iii. Use the Bürman–Lagrange formula to obtain an expression of F2,n, and compute 

the first four values. 

Exercise 2.9 A star is a tree where all but at most one vertex is a leaf. Let S be the 
class of rooted labelled star forests (a forest is a set of trees). The size of a star forest 
is the number of vertices it has. 

i. Give a symbolic description of S , the exponential generating function of the 
class and derive the number of rooted labelled star forests with n vertices. 
Compute the first few values of these numbers. 

ii. Use the above to count the number of maps f : {1, . . . , n} → {1, . . . , n} which 
are idempotent: f (f (x))  = f (x)  for all x. 

iii. Let I(3) be the class of maps f : {1, . . . , n} → {1, . . . , n} such that f 3 = f , the  
size of a map being n. Give a symbolic description, the exponential generating 
function of the class and an expression for the number of such maps on 
{1, . . . , n}. Compute the first few values of these numbers. 

Exercise 2.10 Let Pk,2 be the class of partitions of a set into k parts, each of them 
has cardinality at least two. 

1. Find the exponential generating function of Pk,2. 
2. Show that the number sn,k of doubly surjective maps f : {1, . . . , n} → {1, . . . , k} 

(every pre-image has cardinality at least two) is 

. 
∑

i,j,l:i+j+l=k

(
n

j

)
k!
i!l! (−1)i+j kn−j .

3. Give a formula for the number wn of words of length n on the alphabet 
{a1, . . . , ak} such that each symbol appears at least twice.


	2 Labelled Enumeration
	2.1 Exponential Generating Functions
	2.2 Labelled Classes
	2.3 Labelled Constructions
	2.4 Permutations
	2.5 Set Partitions
	2.6 Words
	2.7 Labelled Trees
	2.8 Notes and References
	2.9 Exercises


