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Preface 

This book consists of lecture notes given as a fourth-year undergraduate course of 
the mathematics degree at the Universitat Politècnica de Catalunya. The course 
consists of four classes of one hour each week during a 14 week term. During 
this time, roughly two thirds of the classes are dedicated to lectures and one third 
to solving the exercises. Each exercise is assigned to at least one student, so all 
exercises are solved in class. Most of the exercises are taken from exams which 
we have set over the years. They generally fall into the Goldilocks zone; problems 
which are not too easy whilst being not too difficult or long-winded. In the main 
part, these exercises are original and, together with the organisation and style, form 
the most innovative aspect of the book. 

The students have studied a first-year course in Discrete Mathematics in which 
they learn the definitions and some simple results on graphs and basic combinatorial 
counting, so these are assumed. 

The text falls into three parts. The first chapters are about enumeration, the first 
chapter shows how to count combinatorial objects using generating functions, the 
second deals with how to count labelled combinatorial objects using exponential 
generating functions and the third chapter details how to count combinatorial objects 
up to symmetry. The fourth chapter is a standalone chapter on finite geometries and 
Latin squares. The third part of the book concerns graphs, where in each chapter 
a different graph property is investigated, namely matching, connectivity, planarity 
and colouring. The final chapter is on extremal graph theory, which is the study of 
graphs which have a critical behaviour with respect to some graph parameter. 

We would like to thank all the students who have taken this course at the 
Universitat Politècnica de Catalunya during the many years we have had the 
opportunity to teach this material. Their input and enthusiasm has contributed 
greatly to the quality of the text and the exercises. We would like to thank our 
colleagues Marc Noy, Lluis Vena and Clement Requilé for their comments and 
corrections. 

Barcelona, Spain Simeon Ball 
Barcelona, Spain Oriol Serra 
December 2023
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9.3 Erdős–Stone Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 
9.4 Graphs Without Complete Bipartite Graphs. . . . . . . . . . . . . . . . . . . . . . . . . .  149 
9.5 Graphs Without Even Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 
9.6 Notes and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155



Contents xi

10 Hints and Solutions to Selected Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171



1Symbolic Enumeration 

Generating functions provide a standard tool for enumeration. In this chapter we 
combine the use of generating functions with the so-called symbolic method which 
provides a simple systematic way of obtaining the generating function of a class of 
combinatorial objects by a symbolic description of the class. Generating functions 
can be thought of as analytic complex functions or can be viewed simply as formal 
power series, by disregarding convergence issues. Although we will not completely 
ignore the analytic perspective, we will mostly adopt this latter point of view. Basic 
definitions and results on formal power series are included, which includes the 
useful Lagrange inversion formula. 

1.1 Formal Power Series 

Consider the set of sequences of complex numbers 

. C
N = {(a0, a1, . . .) : ai ∈ C}.

Defining addition coordinate by coordinate, 

. (a0, a1, . . .) + (b0, b1, . . .) = (a0 + b0, a1 + b1, . . .)

and multiplication by convolution, 

. (a0, a1, . . . , an, . . .)(b0, b1, . . . , cn, . . .) = (a0b0, a0b1+a1b0, . . . ,

n∑

k=0

akbn−k, . . .)

one obtains the ring .C[[z]] of formal power series. 
This becomes evident if we identify the sequence .(0, 1, 0, . . .) with the symbol 

z, so that 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Symbolic Enumeration

. (a0, a1, . . .) =
∑

n⩾0

anz
n.

Proposition 1.1 .A(z) ∈ C[[z]] has multiplicative inverse if and only if .a0 /= 0. 

Proof Suppose that there is .B(z) ∈ C[[z]] such that 

. A(z)B(z) = 1.

Then .a0b0 = 1, so .a0 /= 0. 
Reciprocally, if .a0 /= 0 then one can obtain the coefficients of .B(z) such that 

.A(z)B(z) = 1 from the equations 

. a0b0 = 1 implies b0 = a−1
0 , and

n∑

k=0

akbn−k = 0 implies bn = −a−1
0

n∑

k=1

akbn−k,

which provide the values of . bn for all .n ⩾ 0. ⨅⨆

We will use the notation 

. [zn]A(z)

to denote the n-th coefficient . an of the formal power series .A(z). 
A brief recap of expansions in power series will be useful. They can be obtained 

in the context of formal power series, or, in the case of the elementary functions, as 
a shorthand definition of the series. 

.

(
1

1 − az

)k

=
∑

n⩾0

(
n + k − 1

k − 1

)
anzn, k ⩾ 1,

(1 + z)α =
∑

n⩾0

(
α

n

)
zn, α ∈ R,

ez =
∑

n⩾0

zn

n! ,

ln(
1

1 − z
) =

∑

n⩾1

zn

n
,

sin(z) =
∑

n⩾1

(−1)n+1 z2n−1

(2n − 1)! ,



1.2 Combinatorial Classes 3

cos(z) =
∑

n⩾0 

(−1)n z2n 

(2n)! . 

Let .A(z), B(z) be a formal power series with .b0 = 0. We can define the 
composition of two series by 

. A(B(z)) =
∑

n⩾0

an(B(z))n.

This is well defined since the n-th coefficient of .C = A(B(z)) is obtained by the 
finite sum 

. [zn]C(z) =
∑

k⩾0

ak[zn]((B(z))k) =
n∑

k=0

ak[zn](B(z)k).

We note that if .b0 /= 0 then the above expression may lead to a series which can be 
divergent in . C. On the other hand, in analysis one can expand in power series the 
composition .exp(1 + z), say, which would not be admitted in the setting of formal 
power series. 

1.2 Combinatorial Classes 

A combinatorial class . A is a countable family of combinatorial objects equipped 
with a size function 

. | · | : A → N,

with the condition that the number . an of objects in . A with size n is finite for each 
natural n. 

Examples are the class of natural numbers . N with .|n| = n, the class of subsets 
of .{1, . . . , n} with size the cardinality, or the class of permutations,where its size is 
the size of the ground set on which the permutations are defined. 

The ordinary generating function of a class . A is defined as 

. A(z) =
∑

α∈A
z|α| =

∑

n⩾0

anz
n,

where . an is the number of objects of size n in . A. 
The symbolic method in enumeration consists of translating formal (symbolic) 

descriptions of a combinatorial class into algebraic operations of the corresponding 
generating functions. The symbolic method often provides a simple and clean
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method to obtain generating functions of combinatorial classes built upon simpler 
ones. 

The disjoint union .A + B of two combinatorial classes . A and . B is the class 
formed by all objects in . A and all objects in . B. If .γ ∈ C then it is either in . A and its 
size is as it is in . A or it is in . B and its size is as it is in . B. 

Proposition 1.2 If .C = A + B then the ordinary generating function for . C is 

. C(z) = A(z) + B(z).

The cartesian product .A × B of two combinatorial classes is the class 

. C = {(α, β), α ∈ A, β ∈ B},

equipped with the size function 

. |(α, β)|C = |α|A + |β|B.

Proposition 1.3 If .C = A × B then the ordinary generating function for . C is 

. C(z) = A(z)B(z).

Proof We have 

. C(z) =
∑

(α,β)∈A×B
z|(α,β)| =

∑

(α,β)∈A×B
z|α|+|β| =

(
∑

α∈A
z|α|

)⎛

⎝
∑

β∈B
z|β|

⎞

⎠ .

⨅⨆

The sequence .Seq(A) of . A is defined as 

. Seq(A) = {ϵ} + A + (A × A) + (A × A × A) + · · ·

and consists of all k-tuples .(α1, . . . , αk) of elements of . A with .k ⩾ 0. The class . {ϵ}
is a special class containing a single object . ϵ of size zero. 

Proposition 1.4 If .C = Seq(A) then 

. C(z) = 1

1 − A(z)
.

Proof According to the formal description of .Seq(A) we have 

.C(z) = 1 + A(z) + A(z)2 + A3(z) + · · · ,
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which in the ring of formal power series is the multiplicative inverse of .(1 − A(z)). 
⨅⨆

1.3 Examples 

The above three operations of classes already provide the means to address a large 
number of enumerative problems. Some additional operations will be discussed in 
the list of exercises. 

A composition of a number n is a k-tuple .(a1, . . . , ak) of nonzero integers, for 
some .k ⩾ 1, such that 

. n = a1 + · · · + ak.

Its size is the  sum  n of its components. 
The class . C of compositions can be constructed from the class . N of integers (not 

including zero) as 

. C = Seq(N).

If .N(z) = ∑
n⩾1 zn denotes the generating function of . N then 

. C(z) = 1

1 − N(z)
= 1

1 − z
1−z

= 1 − z

1 − 2z
.

By expanding the power series we get 

. [zn]C(z) = 2n−1.

Observe that this result can be easily obtained by considering n dots in row. By 
placing or not placing a separator between two consecutive dots, we obtain a 
composition of n by letting . ai be the number of dots between the .(i−1)-th separator 
and the i-th separator, see Fig. 1.1. 

The flexibility of the symbolic method is illustrated by considering variations of 
an enumeration problem. Consider the class . Ck of compositions of a number into k 
summands. Then 

. Ck = (N)k, and Ck(z) =
(

z

1 − z

)k

,

Fig. 1.1 The composition 
.(2, 3, 1, 2) of the number 8
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from which 

. [zn]Ck(z) =
(

n − 1

k − 1

)
.

One can also consider restrictions on the number of parts and on the nature of the 
parts. 

Proposition 1.5 Let .CA,B be the class of compositions of integers in which the 
number of parts belongs to .A ⊂ N and the parts themselves belong to .B ⊂ N. 
The generating function of .CA,B is 

. CA,B =
∑

k∈A

(B(z))k,

where .B(z) = ∑
b∈B zb is the generating function of B. 

For example, the number of compositions into an odd number of odd parts has 
generating function 

. 
∑

k⩾0

(B(z))2k+1 =B(z)
∑

k⩾0

(B(z))2k = B(z)

1 − B2(z)

=
z

1−z2

1 − z2

(1−z2))2

= z(1 − z2)

(1 − z2)2 − z2

= z(1 − z2)

1 − 3z2 + z4
.

As another example, the number of compositions of n into parts 1 and 2 is 

. C{1,2} = Seq({1} + {2}),

and 

. C{1,2}(z) = 1

1 − z − z2
.

The denominator factorises as 

. 1 − z − z2 = (1 − φz)(1 − φ̄z)

where .φ = −1+√
5

2 and .φ̄ = −1−√
5

2 . By expanding in power series,
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. C{1,2}(z) = 1

(1 − φz)(1 − φ̄z)
= 1√

5

(
φ

1 − φz
− φ̄

1 − φ̄z

)

= 1√
5

∑

n⩾0

(φn+1 − φ̄n+1)zn,

from which 

. [zn]C{1,2}(z) = 1√
5
(φn+1 − φ̄n+1),

is the n-th Fibonacci number. 
An integer partition is a multi-set .{a1, . . . , ak} where .n = a1 + · · · + ak is its 

size. An integer partition can be seen as a sequence of 1, followed by a sequence of 
2’s and so on, where each sequence can be empty. Therefore, 

. P = Seq({1}) × Seq({2}) × · · · ,

where . {k} is the combinatorial class with 1 object of size k, and so has ordinary 
generating function . zk . 

Hence, the generating function of the class of integer partitions is 

. P(z) =
∏

k⩾1

1

1 − zk
.

The Frobenius problem asks for the number of partitions where the parts belong to 
a set .A ⊂ N. The class . PA of partitions with parts in .A = {a1, a2, . . .} is 

. PA = Seq({a1}) × Seq({a2}) × · · · ,

and its generating function is 

. PA(z) =
∏

k∈A

1

1 − zk
.

For example, if .A = {1, 2} then 

. P{1,2}(z) = 1

(1 − z)

1

(1 − z2)
= 1

4

1

(1 − z)
+ 1

2

1

(1 − z)2
+ 1

4

1

(1 + z)
.

By expanding the above as a power series, 

.P{1,2}(z) = 1

4

∑

n⩾0

zn + 1

2

∑

n⩾0

(n + 1)zn + 1

4

∑

n⩾0

(−1)nzn
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=
∑

n⩾0

(
1 + (−1)n 

4 
+ 

n + 1 
2

)
zn , 

which gives 

. [zn]P{1,2}(z) =
{

(n + 2)/2, n even

(n + 1)/2, n odd

again a result which can be obtained by direct analysis. 
A set partition is a partition of .{1, . . . , n} into k parts. The size of a partition is 

n. The class . Πk denotes the combinatorial class of set partitions into k parts. 
A symbolic description of the class of partitions can be obtained with the 

following encoding of set partitions into k parts. Denote by .{b1, . . . , bk} the subsets 
of the partition ordered by its smaller element, so 

. min b1 < min b2 < · · · < min bk.

We construct a word of length n with the letters . bi by placing . bi in the j -th position 
if and only if .j ∈ bi . The resulting word identifies the partition and it has the 
property that, for .i < j , the letter . bj does not appear in the word before . bi . For  
example, 

. {{1, 3, 4}, {2, 8}, {5, 6, 7}} ↔ (b1, b2, b1, b1, b3, b3, b3, b2).

The set of such words has the symbolic description 

. Πk = {b1} × Seq({b1}) × {b2} × Seq({b1, b2}) × · · · × {bk} × Seq({b1, . . . , bk}).

Accordingly, its generating function is 

. Pk(z) = zk

(1 − z)(1 − 2z) · · · (1 − kz)
.

By decomposing into simple fractions, 

. 
1

(1 − z)(1 − 2z) · · · (1 − kz)
=

k∑

j=1

αj

(1 − jz)
,

where the value of . αj can be obtained by multiplying both sides by .(1 − jz) and 
setting .z = 1/j , which gives
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Fig. 1.2 The Dyck paths of length six 

. αj = 1
∏k

i=1,i /=j ((j − i)/j)
= (−1)k−j j k−1

(j − 1)!(k − j)! .

In this way one obtains the formula for the Stirling numbers of the second kind, 

. 

{
n

k

}
= [zn]Pk(z) = 1

k!
k∑

j=1

(−1)k−j

(
k

j

)
jn.

A Dyck path is a sequence of points in the plane integer lattice starting with 
.(0, 0), ending in .(2n, 0), and making steps .(1, 1) or .(1,−1) with the property that 
the path does not cross the x-axis, i.e. all points have non-negative ordinate (y 
coordinate). Its size is 2n. 

Figure 1.2 shows the five Dyck paths of length six. 
If we represent the steps by . ↗ and . ↘ then a Dyck path is a sequence of these 

two symbols such that the number of . ↗’s is never smaller than the number of . ↘’s 
as we make the path from .(0, 0) to .(2n, 0). In order to give a symbolic description 
of this property, we write the following recursive description of the class . D of Dyck 
paths. By considering the first time the path hits the line .{y = 0}, we can describe 
(uniquely) a Dyck path as a step . ↗ followed by a Dyck path followed by a step . ↘
and another Dyck path. Therefore, 

. D = {ϵ} + {↗} × D × {↘} × D.

Note that the use of the class . {ϵ} with an only object of size zero is crucial for the 
correctness of the above description. 

This gives, for the generating function, the functional equation 

. D(z) = 1 + z2(D(z))2.

which gives
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. D(z) = 1 ± √
1 − 4z2

2z2
.

The value .D(0) = 1 indicates the choice of minus sign as the appropriate branch of 
the solution. 

By power expansion we obtain 

. d2n = 1

n + 1

(
2n

n

)
,

the n-th Catalan number, for the number of Dyck paths of length 2n. In Sect. 1.5, we  
will see a more efficient method to obtain this coefficient directly from the functional 
equation. 

1.4 Rooted Plane Trees 

A rooted plane tree is a rooted tree drawn in the plane, so that the order of the 
subtrees pending from the root is taken into account. In other words, a plane tree is 
a rooted tree in which for every node, there is an ordering of its children. Thus, the 
two trees in Fig. 1.3 are distinct as plane trees. 

Let . T be the class of rooted plane trees, its size being the number of nodes. The 
class admits a recursive functional description as 

. T = N × Seq(T ),

where . N is a class with a single object of size one. So, a plane tree is a root together 
with a sequence of plane trees. 

This gives the generating function 

. T (z) = z
1

1 − T (z)

from which we obtain 

. T (z) = 1 − √
1 − 4z

2
,

Fig. 1.3 Two distinct rooted 
plane trees
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where the minus sign is chosen so that .T (0) = 0. By expanding in power series one 
gets 

. Tn = [zn]T (z) = 1

n

(
2n − 2

n − 1

)
,

the .(n − 1)-th Catalan number. 
The symbolic method shows its flexibility once more by allowing one to consider 

restricted classes of plane trees according to the number of children of each node. 

Proposition 1.6 Let . TU be the class of rooted plane trees in which the number of 
children of every node is in .U ⊂ N. Its generating function satisfies the functional 
equation 

. TU(z) = z(U(T (z))), where U(z) =
∑

n∈U

zn.

A binary tree is a rooted plane tree in which every node has either two or zero 
children. Let . B be the class of binary trees where the size of a tree is the number 
of internal nodes (not the number of nodes this time). A binary tree is a root from 
which two binary trees are hanging. The root has now size zero, so 

. B = {ϵ} + N × B × B,

which gives the functional equation 

. B(z) = 1 + zB2(z).

Therefore, 

. B(z) = 1 − √
1 − 4z

2z
,

and 

. bn = 1

n + 1

(
2n

n

)
,

which is again the n-th Catalan number. 

1.5 Lagrange Inversion Formula 

A natural extension of the ring of formal power series is its quotient field. In order 
to obtain a field one can use the formal Laurent series,
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. 
∑

n⩾−k

anz
n,

where .k ∈ N, so the series has a finite number of negative powers. The sum and 
product are defined in the same way as before. The field of formal Laurent series is 
the quotient field of .C[[z]] denoted by .C((z)). 

If .k ∈ Z (in particular if .k < 0) and .A(z) = ∑
n⩾k anz

n, the multiplicative 
inverse of .A(z), in the set of formal Laurent series, can be obtained by writing 

. A(z) = zk(
∑

n⩾0

an+kz
n) = zkA1(z).

If .B1(z) = ∑
n⩾0 bnz

n is the multiplicative inverse of .A1(z) in .C[[z]] then 

. B(z) = z−kB−1
1 (z) = b0

zk
+ b1

zk−1
+ · · · =

∑

n⩾−k

bn+kz
n

is the multiplicative inverse of .A(z) in .C((z)). 
The formal derivation of a power series .A(z)

∑
n⩾0 anz

n is 

. A'(z) =
∑

n⩾1

nanz
n−1,

which can be easily seen to satisfy the usual properties of derivation, for example 
the product and chain rules hold. The usual rule for derivation of quotients also 
holds and extends the notion of derivative to the field of formal Laurent series: if 
.A(z) = ∑

n⩾−k anz
n, where .k > 0, then 

. A'(z) =
∑

n⩾−k

nanz
n−1.

The coefficient .a−1 of .z−1 in .A(z) is called the residue of .A(z) (notation again 
coming from analysis). It is denoted .Res(A(z)) and it plays a significant role. 

Since .[z−1]A'(z) = 0, 

. Res(A'(z)) = 0,

for every formal Laurent series .A(z). 
Moreover, if .A(z) = ∑

n⩾−k anz
n then 

.Res(
A'(z)
A(z)

) = −k. (1.1)
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To see the last equality one can write 

. A'(z) = z−k−1
∑

n⩾−k

nanz
n+k

and 

. A(z) = z−k
∑

n⩾−k

anz
n+k,

so that the quotient 

. 
A'(z)
A(z)

= 1

z
(c0 + c1z + · · · ),

where .−ka−k = c0a−k . 
We can now state the main result of this section. 

Theorem 1.7 Let .A(z) = ∑
n⩾1 anz

n, that is, .a0 = 0 and .a1 /= 0. Let B be the 
functional inverse of A, i.e. 

. B(A(z)) = z.

Then 

. [zn]B(z) = [z−1] 1

nA(z)n
.

Proof Let .B(z) = ∑
n⩾1 bnz

n. The formal derivative of .B((A(z)) = z leads to 

. 
∑

k⩾1

jbjA
'(z)(A(z))j−1 = 1.

For a fixed n we divide both sides of the equality by .nA(z)n and take the residue. 
For .j /= n, 

. (A(z))j−1−nA'(z) = 1

j − n
(A(z)j−n)'

is a derivative and therefore the terms for which with .j /= n have residue zero. 
For .j = n one gets .A'(z)/A(z) whose residue is 1 by (1.1) with .k = −1, which 

proves the lemma. ⨅⨆

The Lagrange inversion formula is one of the consequences of Theorem 1.7.
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Theorem 1.8 (Lagrange inversion) Let . φ be an analytic function with .φ(0) /= 0. 
Let .Y (z) satisfy the functional equation 

. Y (z) = zφ(Y (z)).

Then 

. [zn]Y (z) = 1

n
[wn−1]φ(w)n.

Proof One can write .Y (z)/φ(Y (z)) = z so that .B(w) = w/φ(w) is the functional 
inverse of .Y (z). By Theorem 1.7 we have 

. [zn]Y (z) = [w−1] 1

nB(w)n
= 1

n
[wn−1](φ(w))n,

as claimed. ⨅⨆

Example 1.9 For the class . D of Dyck paths we obtained the functional equation 

. D(z) = 1 + z2D2(z).

By writing .U(z) = zD(z) we get 

. U(z) = z(1 + U2(z)).

By the Lagrange inversion formula, 

. [z2m+1]U(z) = 1

2m + 1
[t2m](1 + t2)2m+1 = 1

2m + 1

(
2m + 1

m

)
.

Therefore, 

.[z2m]D(z) = [z2m+1]U(z) = 1

2m + 1

(
2m + 1

m

)
= 1

m + 1

(
2m

m

)
.

⨅⨆

Example 1.10 AMotzkin path is a path with steps .(1, 1), (1,−1) and .(1, 0)which 
does not cross the x-axis. By considering the first time the path hits the line . {y =
0}, we can describe (uniquely) a Motzkin path either as a step . ↗ followed by a 
Motzkin path followed by a step . ↘ and another Motzkin path, or a horizontal step 
. → followed by a Motzkin path. The combinatorial class . M of Motzkin paths is 
described by the symbolic equation, 

.M = {ϵ} + {→} × M + {↗} × M × {↘} × M.
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Fig. 1.4 The nine Motzkin path of length four 

This leads to the functional equation, 

.M(z) = 1 + zM(z) + z2M2(z). (1.2) 

If we let .U(z) = zM(z) then 

. U(z) = z(1 + U(z) + U2(z)).

By Lagrange inversion formula with .φ(t) = (1 + t + t2) one gets 

. [zn]U(z) = 1

n
[tn−1]φn(t) = 1

n
[tn−1]

∑

i+j+k=n

(
n

i, j, k

)
t2i+j

= 1

n

∑

i⩾0

(
n

i

)(
n − i

i + 1

)
,

and so 

. Mn = [zn+1]U(z) = 1

n + 1

∑

i⩾0

(
n + 1

i

)(
n + 1 − i

i + 1

)
,

which gives the sequence . 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, . . .
This formula implies that .M4 = 9 and Fig. 1.4 shows the 9 Motzkin paths of 

length four.
⨅⨆

Example 1.11 A dissection of a convex polygon P is a decomposition of P into 
polygons by non-crossing diagonals. Let . D be the class of dissections, its size being
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Fig. 1.5 A dissection of the  
regular 12-gon 

the number of vertices of the polygon. We want to find a symbolic description of D 
and deduce a formula for the number . Dn of dissections of a polygon of n sides. 

Let . δ be a dissection of the polygon. Fix a side xy of the polygon and consider 
. ρ the region containing the edge xy. If the polygon has .r + 1 edges then we can 
identify the dissection . δ with a sequence of r dissections (possibly reduced to a 
single edge). In Fig. 1.5, the  r dissections have sizes 2 (the edge between y and . v1), 
4 (from . v1 to . v2), 6 (from . v2 to . v3) and 3 (from . v3 to x). The r-dissections are put 
together in such a way that .r − 1 of the vertices are counted twice, precisely the 
vertices .v1, v2, v3 in the example. Therefore, a dissection consists of r dissections, 
in which .r − 1 of the vertices have been counted twice, which gives the . Dr/zr−1

term in the functional equation for .D(z). Observe that a polygon with two vertices 
is an edge, which has size two and of which there is one dissection. 

Therefore, the generating function satisfies the functional equation 

. D = z2 + D2

z
+ D3

z2
+ · · · + Dr

zr−1 + · · · ,

which leads to 

. 2D2 − z(1 + z)D + z3 = 0.

By writing .D = zU we get 

. U = z
U − 1

2U − 1
.

The coefficients of U can be extracted by the Lagrange inversion formula: 

. [zn]U = 1

n
[tn−1]

(
t − 1

2t − 1

)n

= 1

n − 1

n−2∑

i=0

(−1)i
(

n − 1

i

)(
2n − 4 − i

n − 2 − i

)
2n−2−i .

A useful extension of Lagrange formula is given in the following theorem.
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Theorem 1.12 (Bürmann–Lagrange Inversion Formula) Let . φ be an analytic 
function such that .φ(0) /= 0. Let .Y (z) satisfy the functional equation 

. Y (z) = zφ(Y (z)).

Then, for every analytic function g one has 

. [zn]g(Y (z)) = 1

n
[tn−1]g'(t)φ(t)n.

In particular, if .Y (z) = zφ(Y (z)) one can obtain a direct expression for the 
coefficients of .Y k(z) by taking .g(t) = tk in the Bürman–Lagrange formula and get 

. [zn](Y (z))k = 1

n
[tn−1]ktk−1φ(t)n = k

n
[tn−k](φ(t))n.

1.6 Notes and References 

This symbolic approach to combinatorial enumeration was mostly developed by 
Flajolet and Sedgewick and their book Analytic Combinatorics (Flajolet and 
Sedgewick, 2009) is an excellent reference on the topic. The Catalan numbers 
appear in a host of enumeration problems, see for example Stanley (2015). The 
proof of the Lagrange inversion formula described here is based on Henrici (1964), 
see also van Lint and Wilson (2001, Appendix). 

1.7 Exercises 

Exercise 1.1 (Euler) Show that the number of partitions of an integer n into odd 
parts equals the number of partitions in distinct parts. 

Exercise 1.2 Let Dk be the class of paths in the plane lattice which start at (0, k)  
and end at (n, 0) formed by steps (1, 1) or (1, −1) such that the points have non-
negative ordinate. 

i. Find a symbolic description of Dk in terms of D0. 
ii. Give an explicit formula for the number of paths of length n in Dk . 

Exercise 1.3 (Schroeder paths) Let S be the class of paths in the plane lattice 
starting at (0, 0), ending at (2n, 0) with steps (1, 1), (2, 0), (1,−1) such that the 
ordinate of every point is non-negative. Find the number of such paths with length 
2n. 

Exercise 1.4 Let m be a positive integer and let D⩽m be the class of Dyck paths 
whose height does not exceed m.
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i. Show that the generating function of D⩽m is a rational function. Give the 
generating function for m = 2. 

ii. Let S⩽±m be the class of lattice paths with steps (1, 1) and (1,−1) which start 
at (0, 0) and end at (n, 0) and that are contained between the lines y = m and 
y = −m. Show that the generating function of S⩽±m is a rational function and 
find an expression for m = 3. 

Exercise 1.5 Let D be the class of Dyck paths such that every descent has length 
exactly two (the two such paths of length 8 are depicted below) 

i. Give a symbolic implicit formula for the class and derive a functional equation 
for the ordinary generating function of the class. 

ii. Use the Lagrange inversion to compute D4n the number of paths in the class of 
length 4n in terms of Catalan numbers. 

iii. Use the Bürman–Lagrange inversion formula to calculate the number of ordered 
pairs of paths in D with total length 4n. 

Exercise 1.6 Let A be the class of lattice paths starting at (0, 0) and ending at 
(3n, 0) with steps (1, 2) and (1,−1) which do not cross the x-axis, and let A+ be 
the class of paths in A which do not touch the x-axis except in the initial and last 
points. The size of a path is its length. 

i. Find a symbolic description of A and deduce a functional equation for its 
generating function. 

ii. By using the Lagrange inversion formula find an explicit formula for an. 
Describe all paths in A of length six. 

iii. Find a symbolic description of A+ and deduce a functional equation for its 
generating function. Give an expression for a+

n and check it directly for n = 6. 

Exercise 1.7 Compute the number En of rooted plane trees with n nodes such that 
every node has an even number of children. 

Exercise 1.8 Let W<k be the class of binary words with no k consecutive zeros, 
the size being their length. Find the generating function of the class W<k . 

Exercise 1.9 Let W be the class of words on the alphabet A = {a1, a2, . . . , am}, 
the size of a word is its length (including the empty word of size zero). 

i. Let S ⊂ W be the class of words which contain no pattern of two repeated 
consecutive letters and that do not start with a1.
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(i.a) Justify the symbolic identity 

. W = ((ϵ + {a1}) × S) + ({a1} × S × Z × W) + (S − ϵ) × Z × W).

(i.b) Use the above symbolic description to derive the generating function of S . 
(i.c) Obtain a formula for Sn. Give a direct combinatorial proof of the latter. 

ii Let Πnc be the class of partitions of [n] into k parts so that no part contains two 
consecutive elements, the size of the partition being the cardinality of [n]. 
(ii.a) Write a symbolic description of Πnc (recall the symbolic description of the 

class of all partitions into k parts). 
(ii.b) Obtain the generating function Πnc (z). 
(ii.c) Give an expression for the number of partitions of [n] into blocks not 

containing consecutive elements. Check your answer for n = k and for 
n = k + 1. 

Exercise 1.10 (Euler) Let Πn be a convex n-gon. A triangulation of Πn is a 
subdivision of its interior into triangles by noncrossing diagonals. 

i. Count the number of diagonals and the number of triangles a triangulation fo Πn 
has. 

ii. Find the number of triangulations of Πn. 

Exercise 1.11 Let
([n] 

k

)
⩽d denote the set of k-subsets of [n] such that every two 

consecutive elements are at distance (absolute value of their difference) at most d. 
For instance

([4] 
2

)
<2 = {{1, 2}, {2, 3}, {3, 4}}. Similalry,

([n] 
k

)
>d denotes the set of 

k-subsets of [n] such that every two elements are at distance larger than d. 

i. Find the generating function
∑

n

(
n 
k

)
⩽d z

n. Deduce that 

. 

(
n

k

)

⩽d

=
∑

j

(−1)j
(

k − 1

j

)(
n − jd

k

)
.

ii. Find the generating function
∑

n

(
n 
k

)
>d z

n and an expression for these numbers. 

[Hint: It may be useful to start from the formal specification Seq({0}) × 
Seq(Seq({1} ×  Seq({0})) of the binary sequences.] 

Exercise 1.12 Let k and m be fixed positive integers. Let T be the class of rooted 
plane trees in which every node has at most k children, the number of nodes being 
the size. 

i. Give a symbolic implicit formula for the class T and derive a functional equation 
for the ordinary generating function.
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ii. Use Lagrange inversion to compute Tn, the number of trees in the class with n 
nodes. Check your answer for k = 2 and n = 3. 

iii. Use the Bürman–Lagrange inversion formula for the number of forests (ordered 
sequences) of m trees in T with total number of nodes n. 

Exercise 1.13 Let U be the class of monic polynomials in Fq , the finite field with 
q elements. Denote by I the subclass of irreducible polynomials in U . The size of a 
polynomial is its degree. 

i. Give a symbolic relationship among the two classes and deduce a relation among 
the respective generating functions. 

ii. By taking logarithms and expanding in power series, find a relationship between 
the coefficients of the two generating functions. 

iii. By using theMöbius inversion formula find an explicit form of the number of the 
monic irreducible polynomials of degree n in Fq . How many monic irreducible 
polynomials of degree three are there in F8? 

Exercise 1.14 A permutation σ = σ1 . . . σn ∈ Sym(n) contains the pattern 132 if 
there are subscripts 1 ⩽ i <  j  <  k ⩽ n such that σi < σk < σj . For example, 
the permutation 2143 contains the pattern 132 in 243 and in 143, while 4321 does 
not contain the pattern 132. Let P132 denote the class of permutations avoiding the 
pattern 132. 

i. Justify the equation 

. P132 = E + P132 × N × P132.

ii. By using the Lagrange inversion formula obtain the number of permutations of 
n symbols avoiding the pattern 132.



2Labelled Enumeration 

The symbolic method discussed in Chap. 1 may not always be suitable in addressing 
enumeration problems in combinatorial classes where some natural way of distin-
guishing objects by its labels appears, for example in the class of permutations. In 
this chapter, the notion of labelled classes is introduced and the power and flexibility 
of the symbolic method will again be demonstrated in applications to count classes 
of permutations, set partitions, labelled trees, words and other combinatorial objects. 

2.1 Exponential Generating Functions 

The exponential generating function of a sequence .a = (a1, a2, · · · ) of complex 
numbers is 

. A(z) =
∑

n⩾0

an

n! z
n.

We note that, for exponential generating functions, we have 

. an = n![zn]A(z).

Exponential generating functions turn out to be a more convenient type of generating 
functions for labelled classes. The main reason for this is their behaviour with 
respect to the product. If .A(z), B(z) are exponential generating functions of 
sequences . an and . bn respectively, then their product 

. A(z)B(z) =
∑

n⩾0

(
n∑

k=0

ak

k!
bn−k

(n − k)!

)
zn

is the exponential generating function of the sequence 
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. cn = n![zn]A(z)B(z) =
n∑

k=0

(
n

k

)
akbn−k.

The above expression is sometimes called the binomial convolution of the sequences 
. an and . bn. 

2.2 Labelled Classes 

A combinatorial class . A is labelled if the objects in . A are labelled graphs, the size 
of an object being the number of vertices in the graph, and the labels of an object 
.α ∈ A of size n are distinct labels in .{1, . . . , n} attached to the vertices of the graph. 

For convenience we also consider the null class . ϵ which has a single object of 
size zero and no labels. We also denote by . N the class with a sole object of size one 
with label 1. 

We first consider some important examples of labelled classes. 

The Class . U of Urns The objects of . U are edgeless labelled graphs. There is a 
unique way of labelling the n vertices, so there is a unique object of each size. 

. 

The Class . P of Permutations The objects of . P are labelled directed paths. There 
are . n! different labelings of a directed path with n vertices. 

. 

The Class . C of Cyclic Permutations The objects of . C are labelled directed cycles. 
There are .(n − 1)! different labelings of a directed cycle with .n ⩾ 1 vertices. 

. 

In an analogue of the previous section, the exponential generating function of 
a combinatorial class . A is
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. A(z) =
∑

α

z|α|

|α|! =
∑

n≥0

An

zn

n! ,

where . An is the number of objects in . A of size n. 
As we shall see, the exponential generating function is a more convenient 

generating function for labelled classes. 
For the three examples discussed above, the exponential generating functions are 

. U(z) =
∑

n⩾0

zn

n! = ez,

. P(z) =
∑

n⩾1

zn = 1

1 − z
,

and 

. C(z) =
∑

n⩾1

zn

n
= − log(1 − z).

2.3 Labelled Constructions 

As for the unlabelled case, the power of the symbolic method relies on the possibility 
of describing a class in a formal symbolic way by means of elementary operations. 
The basic ones are described below. 

The sum .A + B of two labelled classes . A and . B is simply its disjoint union. 
Every object in .A + B inherits its size and labels from its class. 

The labelled product is the most interesting operation. We introduce some con-
venient terminology as follows. Given any sequence of n pairwise distinct natural 
numbers .a = (a1, a2, . . . , an), its reduction .ρ(a) is the sequence .σ(1), . . . , σ (n), 
where .σ ∈ Sym(n) is a permutation of .{1, . . . , n}, with the property that . σ(i) <

σ(j) if and only if .ai < aj . In other words, the reduction is an order preserving 
map onto .{1, . . . , n}. For example, .ρ(4, 8, 3, 6, 2) = (3, 5, 2, 4, 1). 

Let .A,B be labelled classes. In order to define the labelled product we must 
define a way to label the pairs .(α, β) ∈ A × B with labels in .{1, 2, . . . , |α| + |β|}. 
The idea is to use all possible labels on .(α, β) whose reductions on . α and . β coincide 
with the original ones. Therefore, we define 

. α ∗ β = {(α', β ') ∈ A × B | ρ(α') = α, ρ(β ') = β}.

For example, if . α is labelled .(1, 2) and . β is labelled .(1, 3, 2) then .α ∗ β consists of 
the objects .(α', β ') with labels
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. (1, 2, 3, 5, 4), (1, 3, 2, 5, 4), (1, 4, 2, 5, 3), (1, 5, 2, 4, 3), (2, 3, 1, 5, 4),

(2, 4, 1, 5, 3), (2, 5, 1, 4, 3), (3, 4, 1, 5, 2), (3, 5, 1, 4, 2), (4, 5, 1, 3, 2).

Note that 

. |α ∗ β| =
(|α| + |β|

|α|
)

.

The labelled product of two labelled classes . A and . B is defined as 

. A ∗ B =
⋃

α∈A
β∈B

(α ∗ β).

If .C = A ∗ B then 

. C(z) =
∑

α∈A,β∈B

∑

(α,β)∈α∗β

z|α|+|β|

(|α| + |β|)!

=
∑

α∈A,β∈B

(|α| + |β|)!
|α|!|β|!

z|α|+|β|

(|α| + |β|)!

=
(

∑

α∈A

z|α|

|α|!

) ⎛

⎝
∑

β∈B

z|β|

|β|!

⎞

⎠

= A(z)B(z),

which explains the use of exponential generating functions instead of ordinary ones. 
The labelled product is the natural product operation of labelled combinatorial 
classes. 

The sequence .Seq(A) of a labelled class . A is defined as 

. Seq(A) = {ϵ} + A + (A ∗ A) + (A ∗ A ∗ A) + · · · =
⋃

k⩾0

Seqk(A),

where 

. Seqk(A) = A ∗ · · · ∗ A ∗ A︸ ︷︷ ︸
k times

.

By the expression of generating functions of labelled products, if . C = Seq(A)

then
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. C(z) = 1 + A(z) + A2(z) + · · · = 1

1 − A(z)
.

The class of k-sets .Setk(A) of a labelled class . A is 

. Seqk(A)/ ∼

where two objects are identified by the equivalence relation . ∼ if they only differ on 
the ordering of its components. The class of sets of . A is 

. Set(A) =
⋃

k≥0

Setk(A).

We observe that, in the labelled product, the number of n-tuples of objects in each 
every equivalence class of .Seqn(A))/ ∼ is . n!. Accordingly, if .D = Set(A) then 

. D(z) = 1 + A(z) + 1

2!A
2(z) + 1

3!A
3(z) + · · · = eA(z).

This is known as the exponential formula in classical enumerative combinatorics, to 
which the symbolic method gives a natural and simple derivation. 

We summarise the above relations between operations in labelled classes and the 
corresponding exponential generating functions in the following theorem. 

Theorem 2.1 Let .A,B, C be labelled classes and denote by .A(z), B(z), C(z) their 
exponential generating functions. 

1. If .A = B + C, then .A(z) = B(z) + C(z). 
2. If .A = B ∗ C, then .A(z) = B(z)C(z). 
3. If .A = Seq(B), then .A(z) = 1

1−B(z)
. 

4. If .A = Set(B), then .A(z) = eB(z). 

2.4 Permutations 

Permutations The class of permutations was defined as the class of labelled 
directed paths. An alternative symbolic description provides a wealth of enumer-
ation possibilities. Recall that a permutation can be expressed as a product of cycles 
in a unique way. 

Let C denote the class of cyclic permutations. The number Cn of cyclic 
permutations of {1, . . . , n} of size n in C is (n − 1)!. Therefore, the exponential 
generating function of C is
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. C(z) =
∑

n⩾1

(n − 1)!z
n

n! = log
1

1 − z
.

A permutation is a set of disjoint cycles. The class P of permutations has the formal 
specification 

. P = Set(C).

It follows that the exponential generating function is 

. P(z) = exp

(
log

1

1 − z

)
= 1

1 − z
,

as we have already seen. However, this specification allows for the flexibility of the 
symbolic method. The following examples illustrate this fact. 

Derangements. A derangement is a permutation with no fixed points (that is, with 
no cycles of length one). The formal specification of the class D of derangements is 

. D = Set

⎛

⎝
∑

n⩾2

Cn

⎞

⎠ ,

and thus the generating function is 

. D(z) = exp

(
log

(
1

1 − z

)
− z

)
= exp(−z)

1 − z
.

Thus, one obtains directly that 

. Dn = n![zn]e−z

(
1

1 − z

)
= n!

n∑

i=0

(−1)i
1

i! ≈ n!
e

.

Involutions. An involution is a permutation σ with the property that σ 2 is the 
identity. The cycle decomposition of an involution has only cycles of lengths one or 
two. The class of involutions is 

. I = Set(C1 + C2),

and its exponential generating function is 

.I (z) = exp(z + z2

2
).
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Therefore, the number of involutions of size n is 

. in = n![zn]I (z) = n![zn]ezez2/2 =
⎿n/2⏌∑

k=0

n!
k!(n − 2k)!2k

.

More generally, the class Ir of permutations satisfying σ r = 1 is  

. Ir = Set(
∑

j |r
Cj )

and its exponential generating function is 

. Ir (z) = exp

⎛

⎝
∑

j |r

zj

j

⎞

⎠ .

Number of Cycles. The class P(k) of permutations with k disjoint cycles is 

. P(k) = Setk(C).

It has exponential generating function 

. P (k)(z) = 1

k!
(
log

1

1 − z

)k

.

The number of such permutations of n is the (signless) Stirling number of first kind, 
or the Stirling cycle number, 

. 

[
n

k

]
= n!

k! [z
n]

(
log

1

1 − z

)k

= n!
k!

∑

i1+i2+···+ik=n

1

i1i2 · · · ik .

Some simple values of the Stirling cycle numbers are 

. 

[
n

1

]
= (n − 1)!,

[
n

n − 1

]
=

(
n

2

)
.

Of course, 

. 

n∑

k=1

[
n

k

]
= n!.

Number of Cycles and Cycle Lengths. We may specify the set PA.B of permuta-
tions which have cycles with length in A ⊂ N and a number of cycles which is an
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integer in B ⊂ N. The formal specification is 

. PA.B =
∏

i∈B

(
∑

j∈A

Cj ),

from which 

. PA,B(z) = β(α(z)),

where 

. α(z) =
∑

a∈A

za

a! , β(z) =
∑

b∈B

zb

b! .

2.5 Set Partitions 

A partition is a collection of nonempty sets. We have already seen an approach 
to enumerate partitions by describing them as an unlabelled combinatorial class. 
However, its description as a labelled combinatorial class is more natural: a partition 
is a set of disjoint subsets. The labelled class of partitions can be described as 

. P = Set(U1),

where . U1 is the class of urns (excluding the empty object). Therefore, the exponen-
tial generating function of the class of partitions is 

. P(z) = exp(exp(z) − 1).

The total number of partitions of .{1, . . . , n} is the Bell number . Bn. The exponential 
generating function provides an expression for this number 

. Bn = n![zn]P(z) = n!
e

[zn]
∑

k⩾0

ekz

k! = n!
e

[zn]
∑

k⩾0

∑

m⩾0

kmzm

m!k! = 1

e

∑

k⩾0

kn

k! ,

from which one can obtain asymptotic expressions. 
The class .P(k) of partitions into k parts is 

. P(k) = Setk(U1).

Hence, 

.P (k)(z) = 1

k! (e
z − 1)k.
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This gives an alternative derivation of the Stirling numbers of second kind, 

. 

{
n

k

}
= n!

k! [z
n](ez − 1)k

= n!
k! [z

n]
k∑

m=0

(
k

m

)
(−1)k−memz

= n!
k! [z

n]
k∑

m=0

(
k

m

)
(−1)k−m

∑

ℓ⩾0

mℓ

ℓ! zℓ

= 1

k!
k∑

m=0

(
k

m

)
(−1)k−mmn.

Additional specializations can be obtained as in the case of permutations. For 
instance, the exponential generating function for the class of partitions with no 
singletons is 

. exp(ez − 1 − z).

2.6 Words 

Words on an alphabet can also be treated from the perspective of labelled combina-
torial classes. A word of length n on an alphabet .A = {a1, . . . , ar } can be seen as a 
map 

. f : {1, . . . , n} → A

and it can be specified by the sequence 

. (f −1(a1), . . . , f
−1(ar )),

a sequence of subsets (including the empty set). Therefore, the class .WA of words 
on A can be specified as 

. WA = (U)r ,

where . U is the class of urns, now including the empty set. This gives 

. WA(z) = erz and wA,n = rn,

as expected.



30 2 Labelled Enumeration

If the number of occurrences of the letter i is restricted to a set .Ai ⊂ N then the 
symbolic specification is 

. WA;A1,...,Ar
= UA1 ∗ · · · ∗ UAr

where 

. UAi
=

∑

a∈Ai

(N)a/ ∼,

and so 

. UAi
=

∑

a∈Ai

za

a! .

For example, the class of words on an alphabet of r letters in which each letter 
appears at least twice has exponential generating function 

. W
⩾2
A = (ez − 1 − z)r

2.7 Labelled Trees 

Let . T be the class of rooted labelled trees. There is a distinguished vertex (the root) 
and the nodes of the trees are labelled. The size of the tree is its number of nodes. 

A tree in . T consists of a node and a set of trees. Therefore, 

. T = N ∗ Set(T ).

The generating function satisfies the equation 

. T (z) = zeT (z).

The Lagrange inversion formula provides the classical Cayley formula for the 
number of labelled rooted trees with n vertices. 

. Tn = nn−1

The above is the well-known Cayley formula for the number of labelled trees 
(dividing by the n possible roots of a labelled tree).
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2.8 Notes and References 

For a more comprehensive look at labelled enumeration, see Flajolet and Sedgewick 
(2009, Chapter 2). The general symbolic approach to enumeration problems can 
be traced back to Joyal (1981) who derived the exponential formula for the 
set construction. There are many identities involving the Stirling numbers, for 
partitions and for permutations, which have not been explored here. For the Stirling 
permutation numbers there is a closed formula which is more involved than the one 
obtained here for the Stirling partition numbers. Cayley’s formula for the number of 
spanning trees has many beautiful proofs, see for example Matousek and Nesetril 
(2008). The one given here is probably the simplest one. 

2.9 Exercises 

Exercise 2.1 Compute the number fn(r) of permutations which have no cycles of 
length r (fn(1) is the number of derangements). Prove that limn→∞ fn(r)/n! =  
e−1/r . 

Exercise 2.2 Compute the exponential generating function of the permutations 
which decompose into even cycles. Analogously for the ones decomposing into odd 
cycles. 

Exercise 2.3 Compute the exponential generating function of the permutations 
which decompose into an even number of cycles. Analogously for the ones 
decomposing into an odd number of cycles. 

Exercise 2.4 Show that the number of permutations of {1, . . . ,  2n} whose cycle 
decomposition contains only even cycles is 

. (2n − 1)2(2n − 3)2 · · · 32.

Exercise 2.5 LetW(k,r) denote the class of words over the alphabet {a, b} ∪ {0, 1} 
in which every letter appears at most k times and each number appears at least r 
times. The size of a word is its length. 

i. Compute W (0,r) n for n >  2(r − 1), r ⩾ 1. 
ii. Give an expression of the exponential generating function of W(k,0). 
iii. Compute W (2,2) n for n >  6. 

Exercise 2.6 Compute the exponential generating function of set partitions with an 
odd number of blocks.
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Exercise 2.7 Compute the exponential generating function of rooted labelled trees 
such that the root has exactly k descendants. Find the number of such trees with n 
nodes. 

Exercise 2.8 Let T2 denote the class of rooted binary labelled trees, that is, every 
node has zero or two childs, the size being the number of nodes. Let F2 denote the 
class of forests in which each connected component is an object in T2. 

i. Find the exponential generating function of T2. 
ii. Give an expression of T2,n in terms of the Catalan numbers. What is the value 

of T2,n for n = 1, 2, 3, 4, 5? 
iii. Use the Bürman–Lagrange formula to obtain an expression of F2,n, and compute 

the first four values. 

Exercise 2.9 A star is a tree where all but at most one vertex is a leaf. Let S be the 
class of rooted labelled star forests (a forest is a set of trees). The size of a star forest 
is the number of vertices it has. 

i. Give a symbolic description of S , the exponential generating function of the 
class and derive the number of rooted labelled star forests with n vertices. 
Compute the first few values of these numbers. 

ii. Use the above to count the number of maps f : {1, . . . , n} → {1, . . . , n} which 
are idempotent: f (f (x))  = f (x)  for all x. 

iii. Let I(3) be the class of maps f : {1, . . . , n} → {1, . . . , n} such that f 3 = f , the  
size of a map being n. Give a symbolic description, the exponential generating 
function of the class and an expression for the number of such maps on 
{1, . . . , n}. Compute the first few values of these numbers. 

Exercise 2.10 Let Pk,2 be the class of partitions of a set into k parts, each of them 
has cardinality at least two. 

1. Find the exponential generating function of Pk,2. 
2. Show that the number sn,k of doubly surjective maps f : {1, . . . , n} → {1, . . . , k} 

(every pre-image has cardinality at least two) is 

. 
∑

i,j,l:i+j+l=k

(
n

j

)
k!
i!l! (−1)i+j kn−j .

3. Give a formula for the number wn of words of length n on the alphabet 
{a1, . . . , ak} such that each symbol appears at least twice.



3Enumeration with Symmetries 

In the previous chapters we saw some powerful tools which allow us to count 
many objects, tools which were especially useful if we wanted to count labelled 
objects. But imagine we wanted to count unlabelled objects, the number of graph 
on n vertices, for example. This is somewhat complicated by the fact that one has 
to ascertain when two graph are essentially the same. That is, there is a bijective 
map from the vertices of one to the vertices of the other which induces a bijection 
between the edges. To be able to count such objects one must be able to account 
for these isomorphic copies. Similarly, suppose we wanted to colour the faces of 
the cube with a set of say r colours. We have to account for the fact that many 
colourings will essentially be the same colourings when we allow for the rotations 
of the cube. In this chapter, we will see that such colourings can be counted if we 
know the symmetries of the object concerned. Polya’s theorem tells us that we need 
only construct a certain polynomial to be able to not only count the number of 
r-colourings but also the number of colourings with a fixed number of elements 
coloured a certain colour. 

3.1 Group Actions 

A group is a set G with an associative binary operation which has an identity 
element e (.xe = ex = x) and for which every element .x ∈ G has an inverse y 
(.xy = yx = e). 

A subgroup H of G is a subset of G which is itself a group. A left coset of H is 

. σH = {σh | h ∈ H },

for some .σ ∈ G. Observe that .σ ∈ σH and that .|H | = |σH | for any coset .σH . 
Thus the cosets of H partition the elements of G and into equal sized parts, from 
which it follows that .|H | divides . |G|. 
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Let G be a group with identity . id and let X be a set. 
We say that G acts on X if for all .σ ∈ G there is a map from X to X satisfying 

. id(x) = x and τ(σ (x)) = (τσ )(x),

for all .x ∈ X and .σ, τ ∈ G. Observe that we use . σ both for the element of G and 
the map from X to X. It should be clear when we are talking about the map since 
we use .σ(x), whereas the group element will be denoted simply as . σ . 

Observe that if .σ(x) = σ(y) then .σ−1(σ (x)) = σ−1(σ (y)) and so .x = y. 
Hence, the map .σ : X → X is a bijection, i.e. a permutation of X. We denote 
by .Sym(X) the set of all permutations of the set X, which forms a group under 
composition. 

If X has some additional structure then G must preserve this structure too. For 
example, if X is a vector space or the cube or, as in the following example, a graph. 

Example 3.1 Let . 𝚪 be a graph and let G be a group of symmetries of . 𝚪. Then G 
acts on the vertices of . 𝚪 and it also acts on the edges of . 𝚪. 

Example 3.2 Let .G = {id, σ, σ 2} be a group with three elements acting on . X =
{a, b}. If .σ(a) = b then .σ(b) = a. Then, applying . σ to .σ(a) = b gives . σ 2(a) = a

which implies (applying . σ ) that .a = σ(a), a contradiction. Hence, the only action 
of G on X is the action .σ(x) = x for all .σ ∈ G. 

An action is faithful if for all .σ ∈ G, .σ /= id, there is an .x ∈ X such that 
.σ(x) /= x. In other words, no element of G, other than the identity, fixes all the 
elements of X. The action in Example 3.2 is not a faithful action. 

For . x ∈ X, the  orbit of X under the action of G 

. orb(x) = {σ(x) | σ ∈ G}.

If there is only one orbit then we say that G acts transitively on X, or the action of 
G on X is transitive. 

Example 3.3 Let . 𝚪 be the graph . K4 and let G be the cyclic group generated by the 
permutation .(1234) (Fig. 3.1). The action of G on the vertices of . 𝚪 is transitive, but 
the action of G on the edges of . 𝚪 has two orbits 

. {(12), (23), (34), (14)} and {(13), (24)}.

Fig. 3.1 The complete graph 
with four vertices
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Observe that even if we extended the group to the di-hedral group by adding the 
four reflections, we still only get two orbits for the action on the edges. 

For .σ ∈ G, we denote the fixed elements of X by 

. fix(σ ) = {x ∈ X | σ(x) = x}.

For all .x ∈ X, we define the stabiliser subgroup of x to be 

. Gx = {σ ∈ G | σ(x) = x}.

It is clear that .Gx is a subgroup of G. 

Lemma 3.4 For .x ∈ X, 

. |G| = |Gx ||orb(x)|

and so if G acts transitively on X then .|G| = |Gx ||X|. 

Proof For all .y ∈ orb(x), there is a .σ ∈ G such that .σ(x) = y, since G acts 
transitively on .orb(x). Therefore, the coset .σGx /= Gx . 

Moreover, if .τ ∈ G then .τ(x) = z for some .z ∈ orb(x). If .σGx = τGx then 
.τ−1σ ∈ Gx which implies .τ−1σ(x) = x and so .σ(x) = τ(x) and therefore that 
.z = y. 

Hence, there are .|orb(x)| cosets of .Gx and so .|Gx ||orb(x)| = |G|. 
If G acts transitively on X then .orb(x) = X. ⨅⨆

The following lemma is called the orbit-counting lemma. It will be a direct 
application of this lemma which will allow us to prove Polya’s theorem, Theo-
rem 3.13. 

Lemma 3.5 The number of orbits of G acting on X is 

. 
1

|G|
∑

σ∈G

|fix(σ )|.

Proof Suppose that G acts transitively on X, i.e. there is only one orbit. 
Count pairs .(x, σ ), where .σ(x) = x. This is  

. 
∑

σ∈G

|fix(σ )|.

It is also
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. 
∑

x∈X

|Gx |.

By Lemma 3.4, .|Gx | = |G|/|X|. 
Hence, 

. 
∑

σ∈G

|fix(σ )| = |G|.

Suppose that G has orbits .X1, . . . , Xt . Then G acts transitively on . Xi . Let  

. fixi (σ ) = {x ∈ Xi | σ(x) = x}.

From above, for all .i ∈ {1, . . . , t}, 

. 
∑

σ∈G

|fixi (σ )| = |G|.

Clearly, 

. 

t∑

i=1

|fixi (σ )| = |fix(σ )|.

Hence, 

. t |G| =
t∑

i=1

∑

σ∈G

|fixi (σ )| =
∑

σ∈G

|fix(σ )|.

⨅⨆

Example 3.6 As in Example 3.3, let . 𝚪 be the graph . K4. 
Let G be the cyclic group of generated by the permutation .(1234) and consider 

the action of G on the edges of . 𝚪. The group 

. G = {id, (1234), (13)(24), (1432)}.

The permutation . id fixes all 6 edges. The permutations .(1234) and .(1432) fix none. 
The permutation .(13)(24) fixes 2 edges. According to Lemma 3.5, the number of 
orbits is .(6 + 2)/4 = 2, which coincides with our observation in Example 3.3. 

Consider what happens when we extend G to the di-hedral group by adding the 
four reflections. Each of these reflections fixes two edges, so the number of fixed 
elements increases to 16. The size of the group is now 8, so Lemma 3.5 verifies that 
there are two orbits.
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Example 3.7 Let . 𝚪 be the graph . K6, let  G be the cyclic group of generated by the 
permutation .(123456) and consider the action of G on the edges of . 𝚪. The group 

. G = {id, (123456), (135)(246), (14)(25)(36), (153)(264), (165432)}.

The permutation . id fixes all 15 edges. The permutations .(123456), .(135)(246), 
.(153)(264) and .(165432) fix none. The permutation .(14)(25)(36) fixes 3 edges. 
Thus, there are 18 elements fixed by the permutations in G. Lemma 3.5 implies that 
G has three orbits in its action on the edges. 

3.2 Group Action on Functions 

Given an action of G on a set X, in this section we will define an action of G on the 
functions defined on the set X. It will be this latter action to which we will apply the 
orbit counting lemma, Lemma 3.5 and so prove Polya’s theorem, Theorem 3.13. 

We begin with an example, which will be a function defined on the vertices of a 
graph and which assigns one of two colours to each vertex. 

Example 3.8 Let . 𝚪 be the 6-cycle graph and G be a group of automorphisms 
(symmetries) of . 𝚪. Let .Bi(G) denote the number of different ways (under the action 
of a group G) to 2-colour the vertices so that there are i vertices coloured blue. If 
. C6 denotes the cyclic group of size 6 then it is fairly easy to calculate . Bi(C6). The  
four different colourings with three blue vertices are given in Fig. 3.2. 

. 
i 0 1 2 3 4 5 6

Bi(C6) 1 1 3 4 3 1 1

Now, consider the different ways to 2-colour the vertices under the action of the 
di-hedral group . D6. The only i for which .Bi(C6) /= Bi(D6) is .i = 3 when the two 
central colourings in Fig. 3.2 are equivalent. This gives the following values. 

. 
i 0 1 2 3 4 5 6

Bi(D6) 1 1 3 3 3 1 1

Fig. 3.2 2-colourings of the vertices of the cyclic graph with six vertices
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An r-colouring is a map from X to a set  C of r colours. Let .CX denote the set of 
maps from X to a set  C of r colours. 

Let G be a group acting on a set X. For any element .σ ∈ G and .f ∈ CX, define 
.σ(f ) to be the element of .CX defined by 

. (σ (f ))(x) = f (σ−1(x)).

Lemma 3.9 Let G be a group acting on a set X. The map .f ⍿→ σ(f ) defined as 
above, defines an action of G on . CX. 

Proof Let .σ, τ ∈ G. Then 

. σ(τ(f ))(x) = τ(f )(σ−1(x)) = f (τ−1σ−1(x)),

and 

. (στ)(f )(x) = f ((στ)−1)(x) = f (τ−1σ−1(x)).

Hence, .σ(τ(f )) = (στ)(f ). ⨅⨆

Example 3.10 As in Example 3.8, let  G be the di-hedral group acting on . 𝚪, the  
6-cycle graph. Consider the reflective symmetry in the vertical axis, given by the 
permutation .(12)(36)(45). If we label the vertices from the top-left with 1 and 
continue labelling cyclically clockwise, then this permitation interchanges the two 
central colourings in Fig. 3.2. The colouring in the left central colouring is given by 
the function f , where 

. f (1) = f (2) = f (5) = grey

and 

. f (3) = f (4) = f (6) = black.

By definition, the function .σ(f ) is the colouring given by .f (σ−1(x)), which gives 

. σ(f )(1) = σ(f )(4) = σ(f )(6) = grey

and 

. σ(f )(2) = σ(f )(3) = σ(f )(5) = black,

which is the colouring in the right central copy of . 𝚪. 
One should check that the image of the permutation .τ = (135)(246) on f in the 

following figure is as claimed (Fig. 3.3).
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Fig. 3.3 An example of a 
permutation acting on a 
function 

3.3 The Cycle-Index Polynomial 

Suppose G acts on a set X. Equivalently, there is a homomorphism from G to 
.Sym(X). Every element of G, as an element of .Sym(X), is the disjoint union of 
cycles. For each . σ ∈ G, let .cX

i (σ ) be the number of cycles of length i in the 
cyclic decomposition of . σ . Observe that .cX

i (σ ) depends on the action of G on X. 
Furthermore, define 

. cX(σ ) =
n∑

i=1

cX
i (σ ),

where .n = |X|. 
The cycle-index polynomial is defined as 

. ZX
G(X1, . . . , Xn) = 1

|G|
∑

σ∈G

n∏

i=1

X
cX
i (σ )

i .

Example 3.11 Let . C6 be the cyclic group acting on .X = {1, 2, 3, 4, 5, 6}. The  
cyclic group is the set of permutations 

. {id, (123456), (135)(246), (14)(25)(36), (153)(264), (165432)}.

Hence, the cycle-index polynomial for this action is 

. ZX
C6

(X1, . . . , X6) = 1

6
(X6

1 + X3
2 + 2X2

3 + 2X6).

Now consider what changes when we extend the group to . D6, the di-hedral group 
acting on .X = {1, 2, 3, 4, 5, 6}. The di-hedral group is the set of permutations of 
the cyclic group together with the permutations 

. {(16)(25)(34), (12)(45)(36), (14)(23)(56), (2)(5)(13)(46),

. (1)(4)(26)(35), (3)(6)(15)(24)}.

Thus, we should add .3X3
2 + 3X2

1X
2
2 to the polynomial above and divide by 2, since 

the size of the group has doubled. This implies that the cycle-index polynomial for
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action of the di-hedral group is 

. ZX
D6

(X1, . . . , X6) = 1

12
(X6

1 + 4X3
2 + 2X2

3 + 2X6 + 3X2
2X

2
1).

Example 3.12 Let .G = C4 be the cyclic group with 4 elements acting on X, the  
edges of .𝚪 = K4, the complete graph with four vertices. 

. 

No. of elements Cyclic decomposition on vertices Cyclic decomposition on edges
1 (.)(.)(.)(.) (.)(.)(.)(.)(.)(.)

2 (. . . .) (. . . .)(..)

1 (..)(..) (..)(..)(.)(.)

The cycle-index polynomial for this action is 

. ZX
C4

(X1, . . . , X4) = 1

4
(X6

1 + 2X2X4 + X2
2X

2
1).

Recall that .CX denotes the set of functions from X to C. 

Theorem 3.13 (Polya) Suppose that G acts on X and let C be a set of r colours. 
The number of orbits of G acting on . CX, the number of r-colourings of X distinct 
under G, is  

. ZX
G(r, . . . , r) = 1

|G|
∑

σ∈G

rcX(σ),

where . ZX
G is the cycle-index polynomial for the action of G on X. 

Proof A colouring is fixed by . σ if all the elements of X in a cycle of the cyclic 
decomposition of . σ receive the same colour. The cyclic decomposition of . σ has 
.c(σ ) cycles and we can choose a colour for each one in .rc(σ ) ways. Therefore, in 
the action of G on . CX, .|fix(σ )| = rc(σ ). Two colourings are equivalent under the 
action of G if and only if they lie in the same orbit of the action of G on . CX. The  
theorem follows by applying Lemma 3.5. ⨅⨆

In the following example, we check that Theorem 3.13 coincides with our 
previous calculation for the number of 2-colourings in Example 3.8. 

Example 3.14 Regarding the action in Example 3.11 of . C6 acting on X, the vertices 
of . 𝚪, the cyclic graph with six vertices, we have 

. ZX
C6

(2, . . . , 2) = 1

6
(26 + 23 + (2 × 22) + (2 × 2)) = 14

different 2-colourings.
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On the other hand, for the action of the di-hedral group .D6 acting on X, the  
vertices of . 𝚪, the cyclic graph with six vertices, we obtain 

. ZX
D6

(2, . . . , 2) = 1

12
(26 + (4 × 23) + (2 × 22) + (2 × 2) + (3 × 24)) = 13

distinct 2-colourings. 

Example 3.15 Consider the action in Example 3.12 of . C4 acting on X, the edges 
of . 𝚪, the complete graph with four vertices. Theorem 3.13 implies that there are 

. ZX
C4

(r, . . . , r) = 1

4
(r6 + r4 + 2r2)

distinct r-colourings. 
Substituting .r = 2, we deduce that there are 22 two colourings of the edges of 

. K4, distinct under the cyclic group with four elements. 
If we define . Ei to be the number of distinct 2-colourings of the edges with exactly 

i blue edges then we can verify that there are 22 distinct 2-colourings by calculating 
manually the value of . Ei . Observe that .Ei = E6−i , so with Figs. 3.4 and 3.5 we get 
the following array. 

. 
i 0 1 2 3 4 5 6

Ei(C4) 1 2 5 6 5 2 1

We will see in Theorem 3.19 that the cyclic index polynomial not only allows 
us to count the number of distinct r-colourings but also the values of the number of 
distinct r-colourings with a specified number of edges of each colour. 

If we extend the cyclic group to the dihedral group then we see that the first two 
colourings in Fig. 3.4 coincide as do the central two colourings in Fig. 3.5. These are 

Fig. 3.4 The 2-colourings with 2 black edges distinct under the cyclic group 

Fig. 3.5 The 2-colourings with 3 black edges distinct under the cyclic group
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the only coincidences which occur when we extend the cyclic group to the di-hedral 
group, so we deduce that the number of 2 colourings with exactly i black edges is 
given by the following array. 

. 
i 0 1 2 3 4 5 6

Ei(D4) 1 2 4 5 4 2 1

Hence, there are 19 different 2 colourings of the edges of .K4 distinct under the 
action of the di-hedral group. 

3.4 The Rotations of the Cube 

The cube has 24 rotational symmetries which are summarised in the following array, 
see Fig. 3.6. 

. 

Type Axis Order No. of elements
1 . 1 1
2 Face 2 3
3 Face 4 6
4 Edge 2 6
5 Vertex 3 8

There are no further rotational symmetries that fix a face. So we can use 
Lemma 3.5 to check that we have not missed any further symmetries. Observe that 
G is transitive on the faces, Type 1 fixes 6 faces, Type 2 and 3 fix 2 faces and Type 
4 and 5 fix none, so 

Fig. 3.6 The cube rotations with axis on a face, edge and vertex respectively
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. 
∑

σ∈G

|fix(σ )| = 24,

and Lemma 3.5 implies that .|G| = 24. 
We could have arrived at the same conclusion by applying Lemma 3.4. The only 

rotational symmetries which fix a face are the face rotations of which there are 4 
(including the identity). Thus, in Lemma 3.4, we have .|Gx | = 4 and .|X| = 6, which 
implies .|G| = 24. 

We can consider G acting on the faces, the edges or the vertices. 
Consider first the action of G on the faces. 

. 

Type c(σ ) Cyclic decomposition No. of elements
1 6 (.)(.)(.)(.)(.)(.) 1
2 4 (.)(.)(..)(..) 3
3 3 (. . . .)(.)(.) 6
4 3 (..)(..)(..) 6
5 2 (. . .)(. . .) 8

Let . Fi is the number distinct 2-colourings of the faces with i faces coloured blue. 
It is a fairly straight-forward task to verify the following array. 

. 
i 0 1 2 3 4 5 6

Fi(G) 1 1 2 2 2 1 1

This implies that there are 10 distinct 2-colourings of the faces of the cube and 
Theorem 3.13 verifies this, 

. Zfaces
G (2, . . . , 2) = (26 + (3 × 24) + (12 × 23) + (8 × 22))/24 = 10.

Now consider the action of G on the edges. 

. 

Type c(σ ) Cyclic decomposition No. of elements
1 12 (.)(.)(.)(.)(.)(.)(.)(.)(.)(.)(.)(.) 1
2 6 (..)(..)(..)(..)(..)(..) 3
3 3 (. . . .)(. . . .)(. . . .) 6
4 7 (.)(.)(..)(..)(..)(..)(..) 6
5 4 (. . .)(. . .)(. . .)(. . .) 8

Theorem 3.13 implies that the number of distinct 2-colourings of the edges is 

.Z
edges
G (2, . . . , 2) = (212 + (6 × 27) + (3 × 26) + (6 × 23) + (8 × 24))/24 = 218.
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3.5 The Number of Non-Isomorphic Graphs 

We can use Polya’s theorem, Theorem 3.13, to calculate the number of graphs 
with n vertices. 

By way of example, let us count the number of distinct (unlabelled) graphs on 
four vertices. Let . Ei denote the number of graphs with four vertices and i edges. 
Then we quickly verify the following array. 

. 
i 0 1 2 3 4 5 6

Ei 1 1 2 3 2 1 1

Let G be the group .Sym(4) and consider the action of G on X, the edges (i.e. the 
pairs of .{1, 2, 3, 4}). 

. 

No. of elements Cyclic decomposition Cyclic decomposition
on vertices on edges

1 (.)(.)(.)(.) (.)(.)(.)(.)(.)(.)

6 (.)(.)(..) (.)(.)(..)(..)

8 (.)(. . .) (. . . .)(. . .)

6 (. . . .) (. . . .)(..)

3 (..)(..) (..)(..)(.)(.)

Therefore, the cyclic decomposition polynomial for G acting on the edges is 

. ZX
G(X1, . . . , X4) = (X6

1 + 6X2
2X

2
1 + 8X2

3 + 6X4X2 + 3X2
2X

2
1)/24.

Applying Theorem 3.13, we deduce that there are 

. ZX
G(2, . . . , 2) = (26 + (6 × 24) + (8 × 22) + (6 × 22) + (3 × 24))/24 = 11

non-isomorphic graphs with four vertices. 
The number of graphs on n vertices can be calculated in the same way by 

considering the action of .Sym(n) on the unordered pairs of .{1, . . . , n}. Once the 
cyclic decomposition is obtained the number of non-isomorphic graphs is equal 
to the number of 2-colouring of the edges of . Kn, which can be determined from 
Theorem 3.13. 

To be able to count the number of directed graphs on n vertices, we consider the 
action of .Sym(n) on the ordered pairs of .{1, . . . , n}. 

We can count the number of directed graphs on three vertices by simply writing 
them down. If we let . Di be the number of directed graphs on three vertices with i 
directed edges then clearly .D0 = 1 and .D1 = 1. The distinct directed graphs with 
two and three edges are drawn below.
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The directed graphs with three vertices and two edges. 

The directed graphs with three vertices and three edges. 
The observation that .Di = D6−i (by taking complements) allows us to fill in the 

rest of the table. 

. 
i 0 1 2 3 4 5 6

Di 1 1 4 4 4 1 1

To verify that there are 16 directed graphs with three vertices, we first work out 
the cyclic decomposition of the elements of .Sym(3) acting on the directed edges. 
This is detailed in the following table. 

. 

No. of Cyclic Cyclic Cyclic
elements decomposition decomposition decomposition

on vertices on unordered pairs on ordered pairs
1 (.)(.)(.) (.)(.)(.) (.)(.)(.)(.)(.)(.)

3 (.)(..) (.)(..) (..)(..)(..)

2 (. . .) (. . .) (. . .)(. . .)

The cyclic decomposition polynomial for G acting on the directed edges is 
therefore 

. ZX
G(X1, . . . , X3) = (X6

1 + 3X3
2 + 2X2

3)/6.

Applying Theorem 3.13, we deduce that there are 

. ZX
G(2, . . . , 2) = (26 + (3 × 23) + (2 × 22))/6 = 16

non-isomorphic directed graphs with three vertices.
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3.6 General Version of Polya’s Theorem 

We can prove a more general version of Polya’s theorem which allows us not 
only to deduce the number of r-colourings, but also the number of r-colourings in 
which i of the objects are coloured blue, and even more generally the number of 
r-colourings in which . kj of the objects are coloured with the j -th colour. 

Let X be a set and let C be a set of colours. 
We define a bijective map h from C to the set of indeterminates .{t1, . . . , tr}. 
We define a function w from .CX to .Z[t1, . . . , tr ], by  

. w(f ) =
r∏

i=1

t
mi(f )
i =

∏

x∈X

h(f (x)),

where f is a function from X to C, and .mi(f ) is the number of elements of X that 
f maps to the i-th colour. 

Before we state and prove the general version of Polya’s theorem, consider the 
following example. 
Example 3.16 Consider again the action of . D6 on the vertices of the cyclic graph 
with 6 vertices, as in Example 3.11. Suppose that .C = {b, r} and that .h(b) = t1 and 
.h(r) = t2, Let .τ = (124)(356). There are four functions fixed by . τ and these are 
given in the following array, along with their corresponding weights. 

. 

f 1 2 3 4 5 6 w(f )

f1 b b b b b b t6
1

f2 b b r b r r t3
1 t3

2
f3 r r b r b b t3

1 t3
2

f4 r r r r r r t6
2

Therefore, 

. 
∑

f ∈fix(τ )

w(f ) = t6
1 + 2t3

1 t3
2 + t6

2 = (t3
1 + t3

2 )2.

Example 3.17 Consider the action of .Sym(6) acting on .{1, 2, 3, 4, 5, 6} and let 
.C = {b, r, w}. Let .τ = (123)(45)(6). There are 27 functions fixed by . τ . For  
example,
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. 

f 1 2 3 4 5 6 w(f )

f1 b b b b b b t6
1

f2 b b b b b r t5
1 t2

f3 b b b b b w t5
1 t3

f4 b b b r r b t4
1 t4

2
f5 b b b r r r t3

1 t3
2

f5 b b b r r w t3
1 t2

2 t3
...

...
...

...
...

...
...

...

f27 w w w w w w t6
3

To be fixed by . τ , we must assign the same colour to 1, 2 and 3, which will contribute 
either . t3

1 , . t3
2 or . t3

3 to .w(f ). Then we must assign the same colour to 4 and 5, which 
will contribute either . t2

1 , . t2
2 or . t2

3 to .w(f ) and finally we can assign a colour to 6, 
which will contribute either . t1, . t2 or . t3 to .w(f ). Thus, 

. 
∑

f ∈fix(τ )

w(f ) = (t3
1 + t3

2 + t3
3 )(t2

1 + t2
2 + t2

3 )(t1 + t2 + t3).

Example 3.18 Consider again the action of .Sym(4) on the edges of . K4 as in Exam-
ples 3.12 and 3.15. Suppose that . τ is a permutation whose cyclic decomposition on 
the edges is of the form .(..)(..)(.)(.). Then, 

. 
∑

f ∈fix(τ )

w(f ) = (t2
1 + t2

2 )2(t1 + t2)
2.

Observe that in the following theorem, if we substitute .ti = 1 for all . i = 1, . . . , n

then we obtain 

. ZX
G(r, r, . . . , r) = |R|,

since .w(f ) = 1 for all f . In this way, we can recover Theorem 3.13, since .|R| is 
the number of r-colourings of X distinct under G. 

Theorem 3.19 (General Version of Polya) Suppose that G acts on X and let C be 
a set of r colours. Let R be a set of representatives of the orbits of the action of G 
on . CX. Then 

. ZX
G(t1 + · · · + tr , t

2
1 + · · · + t2

r , . . . , tn1 + · · · + tnr ) =
∑

f ∈R

w(f ).

Proof Recall that h is the function which maps a colour to its indeterminate and 
that
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. 
∏

x∈X

h(f (x)) = w(f ).

Suppose that .σ ∈ G, acting on .CX fixes the function f . Then f maps all the 
elements of X in the same cycle of the cyclic decomposition of . σ acting on X, 
to the same element in C. 

Therefore, on an m-cycle we have to choose a colour for f , if  f maps an element 
x in the m-cycle to the i-th colour then .h(f (x)) = ti and the contribution that the 
m-cycle makes to 

. 
∏

x∈X

h(f (x))

will be . tmi . As we sum over .Fix(σ ), the set of all functions f that are fixed by . σ we 
get 

. 
∑

f ∈Fix(σ )

w(f ) = (t1 + · · · + tr )
cX

1 (σ )(t2
1 + · · · + t2

r )c
X
2 (σ ) · · · (tn1 + · · · + tnn )c

X
n (σ ).

Hence, 

.

∑

σ∈G

∑

f ∈Fix(σ )

w(f ) = |G|ZG(t1 +· · ·+ tr , t
2
1 +· · ·+ t2

r , . . . , tn1 +· · ·+ tnr ). (3.1) 

Suppose that g and f are in the same orbit of G acting on . CX. Then, for some 
.σ ∈ G, .g = σ(f ), and 

. w(g) =
∏

x∈X

h(g(x)) =
∏

x∈X

h((σ (f ))(x)) =
∏

x∈X

h(f (σ−1(x)))

=
∏

x∈X

h(f (x)) = w(f ).

Switching the order of the sums gives, 

. 
∑

σ∈G

∑

f ∈Fix(σ )

w(f ) =
∑

f ∈CX

∑

σ∈Sf

w(f ) =
∑

f ∈CX

w(f )|Sf |,

where . Sf is the stabiliser group of f in G. Let .orb(f ) denote the orbit of f under 
G. Since G acts transitively on .orb(f ), by Lemma 3.4, . |G| = |Sf ||orb(f )|

.

∑

f ∈CX

∑

σ∈Sf

w(f ) =
∑

f ∈CX

w(f )|G|
|orb(f )| = |G|

∑

f ∈R

w(f ),
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where the last equality follows since we observed that for functions g in the same 
orbit as f , we proved that .w(g) = w(f ). 

The theorem follows by equating the above equalities with (3.1). ⨅⨆

Example 3.20 demonstrates what Theorem 3.19 claims. 

Example 3.20 Make the substitution .Xi = t i1 + t i2 in the cyclic decomposition 
polynomial for the action of . D6 on the vertices of the cyclic graph with 6 vertices 
from Example 3.11. This gives 

. ZX
D6

(t1 + t2, t
2
1 + t2

2 , . . . , t6
1 + t6

2 )

. = 1
12 ((t1 + t2)

6 + 4(t2
1 + t2

2 )3 + 2(t3
1 + t3

2 )2 + 2(t6
1 + t6

2 ) + 3(t2
1 + t2

2 )2(t1 + t2)
2).

. = t6
1 + t5

1 t2 + 3t4
1 t2

2 + 3t3
1 t3

2 + +3t2
1 t4

2 + t1t
5
2 + t6

2 .

The coefficient of .t i1t
6−i
2 is equal to the number of 2-colouring of the vertices with i 

blue vertices, which we calculated in Example 3.8. 

Example 3.21 If we substitute .Xi = t i1+t i2 in the cyclic decomposition polynomial 
for the action of .Sym(4) on the edges of the complete graph with 4 vertices from 
Sect. 3.5 then we obtain 

. ZX
G(t1 + t2, . . . , t

4
1 + t4

2 )

. = 1
24 ((t1 + t2)

6 + 6(t2
1 + t2

2 )2(t1 + t2)
2 + 8(t3

1 + t3
2 )2 + 6(t4

1 + t4
2 )(t2

1 + t2
2 )

+ 3(t2
1 + t2

2 )2(t1 + t2)
2).

. = t6
1 + t5

1 t2 + 2t4
1 t2

2 + 3t3
1 t3

2 + 2t2
1 t4

2 + t1t
5
2 + t6

2 .

The coefficient of .t i1t
6−i
2 is equal to the number of graphs with 4 vertices and i edges. 

Example 3.22 Consider the substitution .Xi = t i1 + t i2 + t i3 in the cyclic index 
polynomial for the action of the cyclic group with four elements acting on the edges 
of the complete graph with 4 vertices, as in Example 3.12. This gives 

. ZX
C4

(t1 + t2 + t3, . . . , t
6
1 + t6

2 + t6
3 )

. = 1
4 ((t1 + t2 + t3)

6 + 2(t2
1 + t2

2 + t2
3 )(t4

1 + t4
2 + t4

3 ) + (t2
1 + t2

2 + t2
3 )2(t1 + t2 + t3)

2).
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The coefficient of .t i1t
j

2 t6−i−r
3 is equal to the number of 3-colourings with i blue 

edges and j red edges, distinct under the action of the cyclic group. 
To count the number of 3-colourings with i blue edges distinct under the action 

of the cyclic group, we need to sum the coefficient of .t i1t
j

2 t6−i−r
3 from .j = 0, . . . , 6. 

This we can do by making the substitution .t1 = t , .t2 = t3 = 1. The coefficient of . t i

is equal to the number of 3-colouring with i blue edges distinct under the action of 
the cyclic group. 

3.7 Notes and References 

Theorem 3.19 was obtained by Pólya (1937) in a celebrated paper, although the 
result had been obtained by Redfield (1927) some ten years earlier. The result was 
to have a profound influence in combinatorics providing a unified tool to solve 
involved problems in counting under symmetries. One of the first applications was 
the counting of unlabelled graphs. 

3.8 Exercises 

Exercise 3.1 

i. Count the number of colourings of the vertices of the cube with r colours. 
ii. Count the number of colourings of faces of the regular octahedron with r 

colours.. 

Exercise 3.2 Let G be the automorphism group of the graph 𝚪, see Fig. 3.7. We  
say that two colourings are equivalent if they are in the same orbit under the action 
of G. 

Fig. 3.7 The graph 𝚪 from 
Exercise 3.2
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i. Using the orbit-counting lemma, or otherwise, prove that G has 12 elements. 
ii. Calculate the number of distinct r-colourings of the vertices of 𝚪. 

iii. Calculate the number of distinct 2-colourings of the edges of 𝚪. 

Exercise 3.3 Prove that the number of permutations of Sym(n) with ki cycles of 
length i is 

. 
n!

1k1 2k2 · · · nnkk1!k2! · · · kn!
Calculate the cycle-index polynomial of Sym(n) acting on {1, . . . , n}. 

Exercise 3.4 Calculate the number of non-isomorphic graphs with 5 vertices. 

Exercise 3.5 

i. Show that there are 4 ways to 2-colour the edges of C7 with 3 blue edges, distinct 
under the action of the dihedral group D7. 

ii. Let p be a prime. Prove that the number of ways to 2-colour the edges of Cp 
with j /∈ {0, p} blue edges, distinct under the action of the dihedral group Dp, is  

. 
1

2p

(
p

j

)
+ 1

2

(
(p − 1)/2

⎿j/2⏌
)

.

Exercise 3.6 Let Wn denote the wheel graph, the graph with a central vertex joined 
to the each vertex of a cycle of length n. 

i. Calculate the number of distinct two-colourings of the edges of W6, distinct 
under the action of the cyclic group . 

ii. Calculate the number of distinct two-colourings of the edges of W6, distinct 
under the action of the dihedral group. 

Exercise 3.7 Calculate the number of directed graphs on 4 vertices. 

Exercise 3.8 Suppose that G acts on A and H acts on B, where A and B are disjoint 
sets of size n and m respectively and n ⩾ m. Then there is a natural action of G×H 
on A ∪ B. 

Prove that for this action, 

.ZG×H (X1, . . . , Xn) = ZG(X1, . . . , Xn)ZH (X1, . . . , Xm).
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Exercise 3.9 

i. The vertices of the Petersen graph are the 2-subsets of {1, 2, 3, 4, 5} where 
vertices u and v are joined by an edge if and only if u ∩ v = ∅. Draw the  
Petersen graph and label the vertices with 2-subsets of {1, 2, 3, 4, 5}. 

ii. Prove that the Petersen graph has a group G of symmetries isomorphic to 
Sym(5). 

iii. Calculate the number of 2-colourings of the edges of the Petersen graph, distinct 
under the action of G. 

iv. Is the answer to iii. equal to the number of non-isomorphic subgraphs of the 
Petersen graph with 10 vertices? 

Exercise 3.10 Let T be a triangular prism as in Fig. 3.8. 

i. Prove that T has 6 symmetries and let G denote this group of symmetries. 
ii. Calculate the cycle-index polynomial for the group G acting on the edges. 

iii. Calculate the number of distinct ways to 2-colour the edges. 
iv. Calculate the cycle-index polynomial for the group G acting on the faces. 
v. Calculate the number of distinct ways to 3-colour the faces. 

Exercise 3.11 

i. Calculate the cycle-index polynomial of G, the cyclic group of 5 elements, 
acting on the edges of 𝚪, the complete graph with 5 vertices. 

ii. Calculate the number of r-colourings of the edges of 𝚪, distinct under G. 
iii. Calculate the number of 2-colourings of the edges of 𝚪 with exactly i blue edges, 

distinct under G. 
iv. Calculate the number of 3-colourings of the edges of 𝚪 with exactly i blue edges, 

distinct under G. 

Exercise 3.12 Consider a carbon atom located in the centre of a regular tetrahedron 
joined to four radicals located at the vertices, which can be either HOCH2, C2H5, 
Cl or H. 

i. Prove that there are 36 possible molecules. 

Fig. 3.8 The triangular 
prism
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Fig. 3.9 An example of a 
benzoic acid 

ii. Find ci , the number of molecules that contain exactly i radicals Cl. 
iii. Find hi , the number of molecules that contain exactly i atoms H. 

Exercise 3.13 The benzoic acid group consists of a benzene ring with a radical 
attached to each carbon which can be any radical in the set {O, H, CH2R, RH2C}. 
An example of such a molecule is given in Fig. 3.9. 

i. Calculate the total number of possible benzoic acids. 
ii. Calculate the total number of possible benzoic acids with i oxygen atoms. 

iii. Calculate the total number of possible benzoic acids with i hydrogen atoms. 

In all cases, express the answer as the coefficient of t i in some polynomial.



4Finite Geometries and Latin Squares 

The study of latin squares stretches far back into history and our fascination with 
them appears undiminished today, evidenced by its appearance in the popular 
Soduku puzzles. As we shall prove in this chapter, there are a very large number 
of .n × n latin squares. There are however, very few sets of mutually orthogonal 
latin squares. The problem of finding two mutually orthogonal latin squares can be 
rephrased in natural terms as the problem of lining up n regiments of n different 
ranking officers, on parade in an .n × n grid, such that in each row and column 
we find exactly one officer from each regiment and one officer of each of the n 
ranks. We will see that there is a solution to this problem for every .n /= 2, 6. 
Finding larger sets of mutually orthogonal latin squares will lead us to consider 
finite geometries, incidence structures of points and lines in which the set of points 
and the set of lines are finite. We will consider properties of geometries defined from 
a finite vector space, focussing on affine and projective planes, as well as higher-
dimensional projective spaces. 

4.1 Systems of Distinct Representatives 

Let X be a set and suppose that .A1, . . . , An are non-empty subsets of X. 
A system of distinct representatives (SDR) for .A1, . . . , An is a subset 

.{a1, . . . , an} of X of size n with the property that .ai ∈ Ai . 

Example 4.1 Let .X = {x1, x2, x3, x4, x5, x6}. 
The subsets .A1 = {x1, x2}, .A2 = {x1, x3, x4}, .A3 = {x2, x5}, .A4 = {x4, x6} and 

.A5 = {x1, x3} have a system of distinct representatives, for example 

. a1 = x1, a2 = x4, a3 = x2, a4 = x6, and a5 = x3.

Example 4.2 Let .X = {x1, x2, x3, x4, x5, x6, x7}. 
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The subsets .A1 = {x1, x2}, .A2 = {x1, x3, x4}, .A3 = {x1, x2, x5, x7}, . A4 =
{x1, x4, x6, x7}, .A5 = {x1, x3}, .A6 = {x2, x3, x4} and .A7 = {x1, x4} have no system 
of distinct representatives, since 

. A1 ∪ A2 ∪ A5 ∪ A6 ∪ A7 = {x1, x2, x3, x4}

and we cannot choose 5 distinct representatives from only four elements. 

For any subset J of .{1, . . . , n} define 

. A(J ) = ∪i∈J Ai.

Theorem 4.3 (Hall’s Marriage Theorem) An SDR exists for .A1, . . . , An if and 
only if 

. |A(J )| ⩾ |J |,

for all subsets J of .{1, . . . , n} (we call this condition Hall’s condition). 

Proof 

(. ⇒) Suppose J is a subset of .{1, . . . , n} and there is an SDR for .A1, . . . , An. 
Then there is a distinct .xi ∈ A for each .i ∈ J , so  

. |A(J )| ⩾ |J |.

(. ⇐) By induction on n. 
Suppose .n = 1. The hypothesis with .J = {1} implies that . A1 is non-empty, so 
we can choose .x1 ∈ A1 as a representative. 

Case 1 There are no subsets .∅ /= J ⊂ {1, . . . , n} such that .|A(J )| = |J |. 
The condition implies that the sets . Ai are non-empty, so we can choose an . an ∈
An. 
Define .A'

i = Ai \ {an} for .i = 1, . . . , n − 1. 
For .J ⊆ {1, . . . , n − 1}, 

. |A'(J )| ⩾ |A(J )| − 1 ⩾ |J | + 1 − 1 = |J |,

where 

. A'(J ) =
⋃

i∈J

A'
i .

Hence, by induction, there is an SDR for .A'
1, . . . , A

'
n−1 (which are subsets of 

.X \ {an}).
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Case 2 There is a subset J for which .∅ /= J ⊂ {1, . . . , n} and .|A(J )| = |J |. 
Choose J so that . |J | is minimal with the property that .|A(J )| = |J |. 
For each .i ∈ {1, . . . , n} \ J , define .A∗

i = Ai \ A(J ). 
Then 

. {A∗
i | i ∈ {1, . . . , n} \ J }

is a set of subsets of .X \ A(J ). 
For .K ⊆ {1, . . . , n} \ J , 

. A∗(K) =
⋃

i∈K

A∗
i =

⋃

i∈K

(Ai \ A(J ))

. = (
⋃

i∈K

Ai) \ (
⋃

j∈J

Aj ) = (
⋃

i∈K∪J

Ai) \ (
⋃

j∈J

Aj ) = A(K ∪ J ) \ A(J ).

Now, 

. |A∗(K)| = |A(K ∪ J )| − |A(J )| ⩾ |K ∪ J | − |J | = |K|,

so by induction there is an SDR for . A∗
i (.i ∈ {1, . . . , n} \ J ). 

Also, by induction, there is an SDR for the sets . Aj , where .j ∈ J , which are all 
subsets of .A(J ). Observe that choosing J so that . |J | is minimal with the property 
that .|A(J )| = |J | implies that we are in Case 1 when we apply the induction to 
the set of subsets (of .A(J )) .{Aj | j ∈ J }. 
Putting these two SDR’s together we get an SDR for .A1, . . . , An. 

⨅⨆

We will see an algorithmic proof of Theorem 4.3 when we study matchings in 
graphs, see Theorem 5.3. An algorithmic proof has the advantage over an inductive 
proof in that it actually tells us how to find the SDR (not only that it exists). However, 
the advantage of the inductive proof is that it allows us to prove the following 
theorem. 

Theorem 4.4 (Hall’s Extended) Suppose that .A1, . . . , An are subsets of a set X, 
satisfy Hall’s condition and .|Ai | ⩾ r , for all .i = 1, . . . , n. If .r ⩽ n then there are 
at least . r! SDR’s. 

Proof If .r = 1 and it follows that there is an SDR by Theorem 4.3. If  .n = r then 
.|Ai | ⩾ n for all i and so there are at least . n! SDR’s. We shall prove that the . (n, r)

case reduces to the .(n − 1, r − 1) case or the .(n − 1, r) case. This suffices to prove 
the statement by induction since it will then eventually reduce to the case .r = 1 or 
.n = r .
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If we are in Case 1 (of the proof of Theorem 4.3) then there are r choices for . an. 
For each choice, .A'

1, . . . , A
'
n−1 consists of .n − 1 sets of size at least .r − 1, so by  

induction there are at least .r(r − 1)! SDR’s. 
If we are in Case 2 (of the proof of Theorem 4.3) then for the J such that 

.|A(J )| = |J | we have that .r ⩽ |J | < n. By induction, .{Aj | j ∈ J }, has at 
least . r! SDR’s. ⨅⨆

Theorem 4.5 Suppose that .|Ai | = r , for each .i = 1, . . . , n, and each element 
.x ∈ X is contained in exactly r of the sets .A1, . . . , An. Then .A1, . . . , An satisfy 
Hall’s condition. 

Proof Note by counting pairs .(x,Ai), where .x ∈ Ai , we have that .|X| = n. 
Now count .(x, j) where .x ∈ Aj and .j ∈ J . 
We have . |J | choices for j and r choices for x, which gives .r|J |. 
Choosing .x ∈ A(J ) first, we have .|A(J )| choices for x. The element x is in r 

sets (not all of which may have an indice in J ) so there are at most r choices for j , 
i.e. counting in this way we have at most .|A(J )|r pairs. 

Hence, .|A(J )| ⩾ |J |. ⨅⨆

4.2 Latin Squares 

A latin square of order n is an .n × n array with entries taken from a set X of size 
n, such that each element of X appears exactly once in each row and column. 

Example 4.6 Let .X = {g1, . . . , gn} be a group with operation . ◦. Recall that a 
group satisfies three axioms, that there is an element e such that . a ◦ e = e ◦ a = a

for all .a ∈ X, that for all .a ∈ X there is a .a−1 such that .a ◦ a−1 = a−1 ◦ a = e and 
for all .a, b, c ∈ X, .a ◦ (b ◦ c) = (a ◦b)◦ c. From this, we deduce that if . a ◦b = a ◦ c

then .a−1 ◦ (a ◦b) = a−1 ◦ (a ◦ c) and so .(a−1 ◦a)◦b = (a−1 ◦a)◦ c which implies 
.b = c. Similarly .b ◦ a = c ◦ a implies .b = c. Thus, the array whose .(i, j)-th entry 
is .gi ◦ gj is a latin square. 

A latin square defines a binary operation . ◦ on the set X by labelling the rows 
and columns with the elements of X and then defining .a ◦ b to the entry in the latin 
square of the row labelled with a and the column labelled with b. The pair .(X, ◦) is 
called a quasigroup. The two concepts are interchangeable. Sometimes it is more 
convenient to think of the latin square as a quasigroup and vice-versa. 

Example 4.7 The following array is a latin square of order four which is not a 
group. There’s no identity element and it’s also not associative. To see that there is 
no identity element, observe that no element commutes with all the others. To prove 
that it is not associative, it is enough to note that .3 = 1 ◦ (1 ◦ 1) /= (1 ◦ 1) ◦ 1 = 0.
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. 

A latin rectangle of size .r × n is an .r × n array with entries taken from a set X 
of size n, such that each element of X appears exactly once in each row and at most 
once in each column. 

Lemma 4.8 A latin rectangle of size .r × n (.r < n) can be extended to a latin 
rectangle of size .(r + 1) × n in at least .(n − r)! ways. 

Proof Let . Ai be the subset of X of elements not appearing in the i-th column of the 
.r × n latin rectangle. 

Then .|Ai | = n−r and each element of X appears in .n−r of the sets .A1, . . . , An. 
Theorem 4.5 implies that .A1, . . . , An satisfy Hall’s condition. Theorem 4.4 implies 
that there are at least .(n − r)! SDR’s. Each SDR allows us to extend to a latin 
rectangle of size .(r + 1) × n. ⨅⨆

Theorem 4.9 There are at least .
∏n

k=1 k! latin squares of order n. 

We can ask ourselves how good is the bound in Theorem 4.9. 
For .n = 2 we have just two latin squares of order two, so the bound is tight. 

. 

Also for .n = 3, once we fix the first row with one of the six possible permutations, 
the second row has exactly two possibilities, both of which complete uniquely to 
a latin square. Thus, we have exactly twelve latin square of order three, which 
coincides with the bound in Theorem 4.9. 

. 

However, for .n ⩾ 4 it is no longer the case that there are .(n− 1)! ways of extending 
a latin rectangle of order .1 × n to a latin rectangle of order .2 × n. Again, we can  
fix the first row with a given permutation, so we choose . σ1 to be the permutation 
.σ1(x) = x. We can then extend the latin rectangle with any permutation . σ2 with the 
property that .σ2(x) /= x, for all .x ∈ X. As we saw in Sect. 2.4, such a permutation 
is called a derangement. We deduced that
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. dn = n!
(

n∑

i=0

(−1)i

i!

)
.

This gives .dn > (n−1)! for .n ⩾ 4, so there are more than .(n−1)!ways of extending 
a latin rectangle of order .1 × n to a latin rectangle of order .2 × n. Observe that 

. 

(
n∑

i=0

(−1)i

i!

)
→ 1

e
,

so .dn ∼ n!/e. 
Given a .r × n latin rectangle . L with entries from the set .X = {1, . . . , n}, let  . Ai

be the subset of X of elements not appearing in the i-th column of the .r × n latin 
rectangle. 

Let .M = (mij ) be the matrix where .mij = 1, if  .i ∈ Aj and zero otherwise, 
.i, j ∈ {1, . . . , n}. 

For example, 

. 

(
1 2 3
3 1 2

)
→ M =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ .

Another example, 

. 

(
1 2 3 4
2 1 4 3

)
→ M =

⎛

⎜⎜⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞

⎟⎟⎠ .

The permanent of an .n × n matrix . M is 

. Perm(M) =
∑

σ∈Sym(n)

n∏

i=1

miσ(i).

Observe that the permanent differs from the determinant since there is no . sign(σ )

in the summand, where .sign(σ ) denotes the sign of the permutation . σ . 

Theorem 4.10 The latin rectangle . L of size .r × n (.r < n) can be extended to a 
latin rectangle of size .(r + 1) × n in .Perm(M) ways. 

Proof Suppose .σ ∈ Sym(n) is such that .
∏n

i=1 miσ(i) is non-zero. Now, 

.

n∏

i=1

miσ(i) /= 0
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if and only if 

. i ∈ Aσ(i)

for all i, which is if and only if 

. σ−1(j) ∈ Aj

for all j . Hence, .{σ−1(j) | j = 1, . . . , n} is an SDR, which gives an extension of . L
to a latin rectangle of size .(r + 1) × n and vice-versa. ⨅⨆

For example, 

. 
(
1 2 3 4

) → M =

⎛

⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟⎟⎠ .

There are nine permutations (written as .(σ (1), σ (2), σ (3), σ (4))) .(2, 1, 4, 3), 
.(2, 3, 4, 1), .(2, 4, 1, 3), .(3, 1, 4, 2), .(3, 4, 1, 2) , .(3, 4, 2, 1), .(4, 1, 2, 3), . (4, 3, 1, 2)
and .(4, 3, 2, 1) which all contribute a 1 to the sum, so .Perm(M) = 9. Note that we 
have simply listed 

. (σ (1), σ (2), σ (3), σ (4)),

where . σ is a derangement. 
The proof of the following theorem falls outside the scope of this book. It follows 

from Bregman’s theorem, which was conjectured by Henryk Mink in 1963 and 
proved by Bregman 10 years later. 

Theorem 4.11 If . M is a matrix of zeros and ones with r ones in each column then 

. Perm(M) ⩽ (r!)n/r .

Theorem 4.10 and Theorem 4.11 imply that an .r × n latin rectangle can be 
extended to a .(r + 1) × n latin rectangle in at most .((n − r)!)n/(n−r) ways. Hence, 
it follows that 

. 

n∏

k=1

(k!)n/k ⩾ L(n) ⩾
n∏

k=1

k!.

We can improve on the lower bound by using Theorem 4.12, a conjecture of Van 
der Waerden, proved by G. P. Egorychev.
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Theorem 4.12 If . M is an .n×n matrix of non-negative real numbers whose columns 
and row each sum to 1 then 

. Perm(M) ⩾ n!/nn.

An .n×n matrix of non-negative real numbers whose columns and rows each sum 
to 1 is called a doubly stochastic matrix. Note that the bound in Theorem 4.12 is 
tight. It is a simple matter to check that the permanent of 

. 
1

n
J,

where J denotes the .n × n matrix all of whose entries are 1, has permanent .n!/nn. 

Theorem 4.13 The number of latin squares of order n satisfies 

. 

n∏

k=1

(k!)n/k ⩾ L(n) ⩾ (n!)2n
(nn)n

.

Proof We have already observed that the upper bound follows from Theorem 4.11. 
Given a latin rectangle . L of size .r × n, construct the matrix . M as before. The 

matrix .M/(n − r) is a doubly stochastic matrix. Therefore, by Theorem 4.12, 

. Perm(M/(n − r)) ⩾ n!/nn,

which implies 

. Perm(M) ⩾ n!(n − r)n/nn.

By Theorem 4.10, L extends to a .(r + 1) × n latin rectangle in .Perm(M) ways. 
Therefore, 

. L(n) ⩾
n−1∏

r=0

n!
(

(n − r)

n

)n

= (n!)n(n!)n
(nn)n

.

⨅⨆

To get a feel for what these exponential bounds imply, we take logarithms. 
Observe that the total number of .n × n matrices over a set of size n is . nn2 , whose 
logarithm is .n2 log n. 

Corollary 4.14 Up to order . n2, 

. logL(n) ∼ (log n − 2 log e)n2.
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Proof Taking logarithms of the lower bound in Theorem 4.13 and we have 

. log
(n!)n(n!)n

(nn)n
= 2n log n! − n2 log n.

Using the approximation .n! ∼ √
(2π)nn+ 1

2 /en, we have that 

. log n! ∼ n log n − n log e + 1
2 log n + 1

2 log(2π),

which gives, up to order . n2, 

. log
(n!)n(n!)n

(nn)n
∼ n2 log n − 2n2 log e

for an asymptotic approximation of the lower bound. 
Meanwhile, 

. log
n∏

k=1

(k!)n/k =
n∑

k=1

n

k
log k!,

which, applying the same approximation for .log k!, gives  

. log
n∏

k=1

(k!)n/k ∼
n∑

k=1

n

k
(k log k − k log e + 1

2 log k + 1
2 log(2π))

. ∼ n

n∑

k=1

log k − (log e)n2,

up to order . n2. 
Note that 

. 

n∑

k=1

log k = log n!

so, up to order . n2, 

. log
n∏

k=1

(k!)n/k ∼ n2 log n − 2n2 log e

for an asymptotic approximation of the upper bound. ⨅⨆
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4.3 Mutually Orthogonal Latin Squares 

Let G and H be two finite sets of the same size. 
Two latin squares (or quasigroups) .(G, ◦) and .(H, ∗) are orthogonal if the 

following does not occur. 

. 

In other words, two latin squares are orthogonal then when we superimpose one on 
the other we see every pair of elements in .G × H exactly once. 
Example 4.15 The following arrays are orthogonal latin squares of order three. 

. 

Observe that permuting the elements in either of the latin squares, does not affect 
the orthogonality property or indeed the latin square property. 

Example 4.16 The following array shows two orthogonal latin squares of order 
four superimposed one on top of the other. Here, .G = {J,Q,K,A} and . H =
{♣,♦,♥,♠}. 

. 

Presenting the problem of finding two orthogonal latin squares of order four, 
as in Example 4.16, can be generalised to the problem of finding two orthogonal 
latin squares of order n by supposing we have . n2 cards from n suits and n different 
numbers. Of course, since a standard deck of cards only has 4 suits, this is only 
feasible with a standard pack of cards for .n ⩽ 4. However, Euler phrased this 
problem in terms of officers and ranks. Given a group of . n2 officers which are from 
n different regiments and within each regiment there is an officer from each of n 
ranks he asked “is it possible to line-up the officers on a .n × n grid in such a way 
that each row and column contains exactly one officer from each regiment and of
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each rank?”. We will return to the problem of finding two mutually orthogonal latin 
squares of order n later in this section. 

Let . Fq denote the finite field with .q = ph elements, where p is a prime and 
h is a positive integer. Recall, that if .q = p then . Fq is isomorphic to .Z/qZ. In  
general, . Fq is isomorphic to .(Z/pZ)[X]/(f ), where f is an irreducible polynomial 
of .(Z/pZ)[X] of degree h and .(f ) is the ideal generated by f . 

Let G be the set of elements of . Fq and define the quasigroup .(G, ∗m), for each 
non-zero .m ∈ Fq , by  

. g ∗m h = mg + h.

Example 4.17 The following arrays are latin squares of order four defined on . F4 =
{0, 1, e, e2}, where .e2 = e + 1. Any two of these latin squares are orthogonal. 

. 

Compare these squares with those in Example 4.16. One readily sees that the first 
two squares are isomorphic to Example 4.16, but now we have another latin square, 
orthogonal to both the previous ones. We can make the three mutually orthogonal 
latin squares into a problem of cards by selecting the cards from four different packs. 
For example, .{J♣,K♦, A♥,Q♠} come from the same pack since they are in the 
position where a “0” appears in the third latin square. Curiously, presenting the 
problem in this way, and insisting that in each row and column we see a card from 
each pack, actually makes the problem easier. 

Lemma 4.18 The quasigroups .(G, ∗m) and .(G, ∗j ) are orthogonal. 

Proof Observe that two quasigroups .(G, ∗) and .(G, ◦) are orthogonal if for all 
.(x, y) ∈ G × G, there is a unique .(g, g') ∈ G × G such that .x = g ∗ g' and 
.y = g ◦ g'. 

Suppose that there exists a pair .(x, y) ∈ G × G for which there exists a . (g, h) ∈
G × G and a .(g', h') ∈ G × G such that 

. x = mg + h = mg' + h' and y = jg + h = jg' + h'.

Then .x − y = (m − j)g = (m − j)g', and so .g = g' and then .h = h'. ⨅⨆

A set of latin squares are mutually orthogonal latin squares if they are pairwise 
orthogonal.
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Theorem 4.19 If .n = ph for some prime p then there are .n−1 mutually orthogonal 
latin squares of order n. 

Proof By Lemma 4.18, and the existence of a finite field with . ph elements. ⨅⨆

Now that we have established that, at least for some n, there are .n − 1 mutually 
orthogonal latin squares of order n, we will now prove that one cannot find n 
mutually orthogonal latin squares of order n. 

Theorem 4.20 There are at most .n − 1 mutually orthogonal latin squares of order 
n. 

Proof Observe that permuting the symbols in a latin square does not affect the fact 
that it is a latin square, nor its orthogonality with another latin square. 

Suppose we have a set of N mutually orthogonal latin squares of order n. We can 
assume that the latin squares are defined over the same set G. In each latin square, 
permute the symbols so that the element x appears in the .(1, 1)-cell in the arrays. 
There are .n − 1 other columns and rows (i.e. .n − 1 columns which are not the first 
column and .n−1 rows that are not the first row). In each of the .(n−1)2 cells of these 
rows and columns, x appears in a different position in each of the latin squares since 
when we take any two of the latin squares, the pair .(x, x) comes from the .(1, 1)-cell. 
There are .n − 1 entries of x in these .(n − 1)2 cells, so .N(n − 1) ⩽ (n − 1)2. ⨅⨆

Suppose that .(G, ◦) and .(H, •) are latin squares. Define .(G × H, ◦•) as . (g1, h1)

.◦• (g2, h2) = (g1 ◦ g2, h1 • h2). 

Lemma 4.21 The pair .(G × H, ◦•) is a latin square. 

Proof Suppose that for some row, Labelled by .(g1, h1) we have 

. (g1, h1) ◦•(g2, h2) = (g1, h1) ◦•(g3, h3).

Then, by definition. .g1 ◦ g2 = g1 ◦ g3 and since .(G, ◦) is a quasigroup, .g2 = g3. 
Similarly, .h2 = h3. The same argument works for the columns. ⨅⨆

Theorem 4.22 Suppose that .(G,Δ) and .(G, ◦) are mutually orthogonal latin 
squares and .(H,▲) and .(H, •) are mutually orthogonal latin squares. Then . (G ×
H,Δ▲) and .(G × H, ◦•) are mutually orthogonal latin squares. 

Proof Suppose they are not orthogonal. Then there is a 

. ((x, y), (x', y')) ∈ (G × H) × (G × H)

with the property that there exist
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. ((g1, h1), (g2, h2)) ∈ (G × H) × (G × H)

and 

. ((g'
1, h

'
1), (g

'
2, h

'
2)) ∈ (G × H) × (G × H)

such that 

. (g1, h1) ◦•(g2, h2) = (g'
1, h

'
1) ◦•(g'

2, h
'
2) = (x, y)

and 

. (g1, h1) Δ▲(g2, h2) = (g'
1, h

'
1) Δ▲(g'

2, h
'
2) = (x', y').

By definition, this implies .g1 ◦ g2 = g'
1 ◦ g'

2 = x and .g1 Δ g2 = g'
1 Δ g'

2 = x', 
which contradicts the orthogonality of .(G, ◦) and .(G,Δ). ⨅⨆

Theorem 4.23 If .n /≡ 2 modulo 4 then there exist two mutually orthogonal latin 
squares of order n. 

Proof If .n /≡ 2 modulo 4 then .n = 2hp1 · · · pr , for  some  .h ⩾ 2 and odd primes 
.p1, . . . , pr or .n = p1 · · ·pr , for some odd primes .p1, . . . , pr . Since there are . 2h−1
MOLS of order . 2h and two MOLS of order p for all odd primes p, the theorem 
follows by repeated applying Theorem 4.22. ⨅⨆

Conjecture 4.24 (Euler) If .n ≡ 2 modulo 4 then there do not exist two orthogonal 
latin squares of order n. 

It would take about 200 years before Euler’s conjecture was shown to be false. 
It was shown to be true by Gaston Tarry in 1901 for .n = 6, by exhaustive search. 
There is still no known proof that there are no two orthogonal latin squares of order 
six that does not involve some exhaustive search. It was Ernie Parker, together with 
R.C. Bose and S. S. Shrikhande, who refuted the conjecture for all .n /∈ {2, 6}. It is  
still not known whether there are three mutually orthogonal latin squares of order 
10. 

Theorem 4.25 Conjecture 4.24 is false for all .n /= 6. 

Proof (for .n = 10.) Consider the two partial latin squares of order 10 below. By 
moving the coloured diagonals to the coloured dots above and to the side, and 
replacing the moved entries by 7, 8 and 9 depending on whether they are yellow, 
blue or red, we can construct two mutually orthogonal latin squares of order 10. 
Observe that we can consider the first array as containing the quasigroup . (Z/7Z, ∗1)
and the second array containing the quasigroup .(Z/7Z, ∗4), where we label the 
columns with .x ∈ Z/7Z and the rows by .y ∈ Z/7Z. The yellow entries in the first
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square are .4 + 2y and in the second square are .5 − 2y. Likewise the blue entries 
in the first square are .2 + 2y and in the second square are .6 − 2y and the red 
entries in the first square are .1 + 2y and in the second square are .−2y. When we 
move the entries to the columns on the right we line up these columns so that the 
sums of the elements in the same column are the same, and in different columns 
they are different. We repeat the process by moving the same elements to the upper 
rows. Thus, we obtain in the first square rows .6 + 2x, .5 + 2x and .3 + 2x and the 
second square .2 − 2x, .4 − 2x and .1 − 2x. Clearly, every pair of elements from 
.{7, 8, 9} × {0, 1, 2, 3, 4, 5, 6} and .{0, 1, 2, 3, 4, 5, 6} × {7, 8, 9} occur exactly once. 
Since in the top-right corner we have two orthogonal latin squares of order 3, every 
pair of elements from .{7, 8, 9} × {7, 8, 9} occurs once. Finally, by lining up the top 
rows and the right-hand columns so the sums are distinct, we can ensure that every 
pair of elements from .{0, 1, 2, 3, 4, 5, 6} × {0, 1, 2, 3, 4, 5, 6} occurs exactly once. 

. 

⨅⨆

4.4 Linear Spaces 

An incidence structure . 𝚪 is a pair .(P,L) where P is a set (of points) and L is a 
multi-set of non-empty subsets of P (called lines). 

We do not rule out the possibility that there are two lines which are incident with 
the same set of points. This is necessary since we want the following definition to 
give an incidence structure. 

The dual . 𝚪∗ of .𝚪 = (P,L) is the incidence structure .(L,M) where for all . x ∈ P

we have a line .m ∈ M such that .x ∈ ℓ if and only if .ℓ ∈ m. This reflexive relation 
ensures that .(𝚪∗)∗ = 𝚪. 

In Fig. 4.1 we see that the dual of four intersecting lines, each incident with three 
points and no three concurrent, is the complete graph on four vertices. 

Observe that the dual of a single line with r points in a single point with r lines 
all of which contain just the single point. 

A linear space is an incidence structure with the property that any two points are 
incident with a unique line. We implicitly assume that a linear space has at least two 
points.
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Fig. 4.1 The dual of an incidence structure 

Fig. 4.2 The number of lines 
incident with a point is at 
least the number of points 
incident with a line 

Theorem 4.26 (Erdős-de Bruijn) If there is no line containing all the points of a 
finite linear space .(P,L) then .|L| ⩾ |P |. 

Proof For any point x, let . rx denote the number of lines incident with x. 
For any line . ℓ, let . kℓ denote the number of points incident with . ℓ. 
Suppose 

.|P | ⩾ |L|. (4.1) 

Since there is no line containing all the points, there is a non-incident pair .(x, ℓ), 
where . ℓ is a line and x is a point. 

For each pair .(x, ℓ), where . ℓ is a line and x is a point not incident with . ℓ, 

.rx ⩾ kℓ, (4.2) 

since any two points are joined by a unique line, see Fig. 4.2. 
Hence, 

. |P |rx ⩾ |L|kℓ,

Then 

.(|P | − kℓ)|L| ⩾ (|L| − rx)|P |.
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Since not all of the points are contained in a line .|P | /= kℓ and since not all lines are 
incident with the same point .|L| /= rx . Hence, 

. 
1

(|L| − rx)|P | ⩾
1

(|P | − kℓ)|L|
Now sum both sides of this inequality over all such pairs .(x, ℓ). 

There are exactly .|L| − rx lines not incident with x, so the left-hand side of the 
inequality gives 

. 
∑

x∈P

∑

ℓ /϶x

1

(|L| − rx)|P | =
∑

x∈P

1

|P | = 1.

There are exactly .|P | − kℓ points not incident with . ℓ, so the right-hand side of 
the inequality gives 

. 
∑

ℓ∈L

∑

x /∈ℓ

1

(|P | − kℓ)|L| =
∑

ℓ∈L

1

|L| = 1.

Therefore, the inequalities (4.1) and (4.2) must be equalities. 
In particular, we have that .|P | = |L|. ⨅⨆

In the next theorem we analyse more carefully the case in which .|P | = |L|. 

Theorem 4.27 In a finite linear space .𝚪 = (P,L) in which .|P | = |L| any two lines 
are concurrent. Equivalently, . 𝚪∗ is also a finite linear space. Moreover, if there are 
four points, no three collinear, then there is an integer n, such that every line is 
incident with .n + 1 points and every point is incident with .n + 1 lines. 

Proof Since .|P | = |L| implies .|P | ⩾ |L|, we can repeat the proof of Theorem 4.26 
and once again conclude that the inequality (4.2) is an equality. Thus, for every 
non-incident pair .(x, ℓ), we have that .rx = kℓ, .  

Case 1 
Suppose there are points x and y for which .rx /= ry . Then every line is either 
incident with x or incident with y, since if there were a line . ℓ incident with 
neither then .rx = kℓ = ry . Let  z be a point not incident with the line joining 
x and y. Since .rx /= ry , . rz must differ from either . rx or . ry , so, without loss of 
generality, let us assume that .rx /= rz. Then, every line is either incident with x 
or z. Therefore, there is a unique line . ℓ, not incident with x, which joins y and z, 
see Fig. 4.3. 

Case 2 
Suppose that .rx = ry = n+ 1 for all points x and y. Then, since . ℓ is not incident 
with some point, .kℓ = n + 1 for all .ℓ ∈ L. Counting the number of points on the
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Fig. 4.3 Case 1 of the proof 
of Theorem 4.27: a  
degenerate projective plane 

Fig. 4.4 The projective 
plane of order two 

lines incident with x, we have that .|P | = 1 + (n + 1)n = n2 + n + 1 and so 
.|L| = n2 + n + 1. 
Let . ℓ be a line and count the number of lines intersecting . ℓ. There are .n+1 points 
incident with . ℓ and each of these points is incident with n other lines. Therefore, 
. ℓ is incident with .(n + 1)n lines, which is all the other lines. 

⨅⨆

4.5 Projective Planes 

A linear space in which any two lines are concurrent is called a projective plane. 
Thus, Theorem 4.27 implies that a linear space .(P,L) for which .|P | = |L| is a 
projective plane. A projective plane is non-denegerate if it contains four points, no 
three of which are collinear. 

Theorem 4.28 A non-degenerate finite projective plane has an order n, with the 
property that every line is incident with .n+1 points and every point is incident with 
.n + 1 lines. 

Proof This follows directly from Theorem 4.27. ⨅⨆

For example, in Fig. 4.4, we have a projective plane of order 2. It is known as the 
Fano plane. 

This example is the first case of the following examples, which are denoted 
.PG(2, q).
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Example 4.29 Let .V3(Fq) denote the three-dimensional vector space over the field 
with q elements. Let P be the set of one-dimensional subspaces of .V3(Fq) and 
let L be the set of two-dimensional subspaces of .V3(Fq) and let incidence be 
containment. i.e. .x ∈ P is incident with .ℓ ∈ L if as subspace of .V3(Fq), .x ⊂ ℓ. 
Then .(P,L) is a projective plane since any two elements of P span an element of 
L and any two elements of L intersect in an element of P . 

The number of points incident with a line is the number of 1-dimensional 
subspaces contained in a 2-dimensional subspace, which is .(q2−1)/(q−1) = q+1. 
We will return to this example in Sect. 4.7. 

Example 4.29 implies that there is a projective plane of order n whenever n is the 
power of a prime. It is not known if there are projective planes of non-prime power 
order. The following is the prime-power conjecture. 

Conjecture 4.30 If there exists a non-degenerate projective plane of order n then n 
is the power of a prime. 

The only evidence we have for the conjecture is Theorem 4.31, which rules out 
many possibilities for n including 6, 14, 21 and 22, and that there is no projective 
plane of order 10, which was proven with the aid of a computer. 

Theorem 4.31 (Bruck–Ryser) If .n ≡ 1 or 2 modulo 4 and there exists a non-
degenerate projective plane of order n then n is the sum of two squares. 

Proof Suppose that .(P,L) is a projective plane of order n and let .m = n2 + n + 1. 
Let . A be the .m × m matrix whose rows are indexed by elements of P and whose 

columns are indexed by elements of L and where the .(x, ℓ) entry is 1 if and only if 
x is incident with . ℓ. Then 

. AAt = J + nI,

where J is the all one matrix and I is the .m × m identity matrix. 
For indeterminates .x1, . . . , xm, define 

. zj =
m∑

i=1

ajixi .

Then, pre and post multiplying the above equality by .x = (x1, . . . , xm) we get 

.z21 + · · · + z2m = w2 + n(x2
1 + · · · + x2

m), (4.3) 

where .w = x1 + · · · + xm. 
By Lagrange’s four-square theorem, n is the sum of four squares. Moreover, for 

any integers . ai , . bi , one can write
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.(a21 + a22 + a23 + a24)(x
2
1 + x2

2 + x2
3 + x2

4) = c21 + c22 + c23 + c24 (4.4) 

where, 

.

⎛

⎜⎜⎝

−a1 a2 a3 a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

c1

c2

c3

c4

⎞

⎟⎟⎠ (4.5) 

Therefore we can write the above as 

.z21 + · · · + z2m + nx2
m+1 = w2 + c21 + · · · + c2m+1, (4.6) 

where we have added .nx2
m+1 to both sides, since .m + 1 ≡ 0 modulo 4. 

Now we can solve .z2j = c2j with either .zj = cj or .zj = −cj , for  .j = 1, . . . , m. 
We eliminate . xj by solving either .zj = cj or .zj = −cj , where solving involves 
substituting . xj as a rational linear combination of the remaining . xi’s. 

Having solved this system of equations for all . xi , .i /= m + 1, we will have 
.zi = aixm+1 and .ci = ±aixm+1 for .i = 1, . . . , m, for some rational numbers . ai . 
Putting .xm+1 = 1, we get 

. n = w2 + c2m+1,

where .cm+1 and w are some rational numbers. 
An elementary number-theoretic argument implies that if an integer n is the sum 

of two rational squares then it is the sum of two integer squares, which is what we 
wanted to prove. 

The only possible problem is that at some stage it may be that . xi no longer 
appears in any expression for the remaining . zj ’s or . cj ’s. However, the matrix 
in (4.5) is non-singular so if we substitute . x1,. . . ,.xj−1 with rational number linear 
combinations of .xj , . . . , xm, the expression for . cj will still have a . xj term. ⨅⨆

4.6 Affine Planes 

An affine plane is a linear space .(P,L) with the property that for all .x ∈ P and 
.ℓ ∈ L, where .x /∈ ℓ, there is a unique line m such that .x ∈ m and . m ∩ ℓ = ∅
(Fig. 4.5). 

Lemma 4.32 Define a relation . ∼ on the lines, by .m ∼ ℓ if .m = ℓ or .m ∩ ℓ = ∅. 
Then . ∼ defines an equivalence relation.
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Fig. 4.5 The affine plane of 
order three 

Proof Clearly .ℓ ∼ ℓ and .ℓ ∼ m if and only if .m ∼ ℓ, so we only have to show 
transitivity. If .ℓ ∼ m amd .ℓ ∼ m' but .m /∼ m' then there is a point .x ∈ m ∩ m'. But  
then .x /∈ ℓ, which contradicts the uniqueness of m. ⨅⨆

Let E denote the set of equivalence classes of L. For .ℓ ∈ L, define .ℓ∗ = ℓ ∪ {e}, 
where e is the equivalence class containing . ℓ. Let  .ℓ∞ = E. Define . L∗ = {ℓ∗ | ℓ ∈
L} ∪ {ℓ∞}.

Theorem 4.33 Given an affine plane .(P,L), the incidence structure . (P ∪ E,L∗)
is a projective plane. 

Proof First we prove that a point of P and a point of E are joined by a line. By the 
parallel axiom, the lines of a parallel class cover all the points in P . Thus, if . x ∈ P

and .e ∈ E then there exists an .m ∈ L with the property that .x ∈ m and .m ∈ e. 
This implies .x, e ∈ m∗. Since an affine plane is a linear space, any two points of P 
are joined by a line of . L∗. Any two points of E are joined by the line . ℓ∞. Hence, 
.(P ∪ E,L∗) is a linear space. 

For .ℓ,m ∈ L either .ℓ ∩ m /= ∅, in which case they intersect in a point, or 
.ℓ ∩ m = ∅. In the latter case, this implies that there is an .e ∈ E such that . ℓ,m ∈ e

and so . ℓ∗ and . m∗ intersect in e. Hence, .(P ∪ E,L∗) is a dual linear space. 
Thus, by Theorem 4.27, .(P ∪ E,L∗) is a projective plane. ⨅⨆

Corollary 4.34 If .(P,L) is a finite affine plane then there is an n such that every 
point is incident with .n + 1 lines and every line is incident with n points.
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Proof Since the projective plane we obtain from Theorem 4.33 is not a degenerate 
projective plane, the projective plane has an order n in which every point is incident 
with .n + 1 lines and every line is incident with .n + 1 points. The corollary follows 
by observing that lines in L have one less point than the lines in . L∗. ⨅⨆

Theorem 4.35 The linear space obtained from a projective plane . π by deleting a 
line .ℓ∞ and all the points on the line . ℓ∞, is an affine plane. 

Proof Suppose that x is a point and . ℓ is a line such that .x /∈ ℓ. Let  e be the 
intersection of . ℓ and . ℓ∞. Then the line m joining x to e in . π is the unique line 
incident with x and skew to . ℓ. ⨅⨆

Example 4.36 Consider the 2 mutually orthogonal latin squares .Am = (am
ij ) of 

order 3 below. 
We construct an affine plane .(P,L) of order 3, where . P = {(i, j) | i, j =

1, 2, 3}. 
There are two parallel classes of lines given by 

. ℓmk = {(i, j) | am
ij = k},

for .k = 1, 2, 3 and .m = 1, 2. 

. A1 =
1 2 3
2 3 1
3 1 2

ℓ11 = {(1, 1), (2, 3), (3, 2)}
ℓ12 = {(1, 2), (2, 1), (3, 3)}
ℓ13 = {(1, 3), (2, 2), (3, 1)}

. A2 =
1 2 3
3 1 2
2 3 1

ℓ21 = {(1, 1), (2, 2), (3, 3)}
ℓ22 = {(1, 2), (2, 3), (3, 1)}
ℓ23 = {(1, 3), (2, 1), (3, 2)}

And two further sets of parallel lines, the horizontal and vertical lines. 

. 

h1 = {(1, 1), (1, 2), (1, 3)}
h2 = {(2, 1), (2, 2), (2, 3)}
h3 = {(3, 1), (3, 2), (3, 3)}

v1 = {(1, 1), (2, 1), (3, 1)}
v2 = {(1, 2), (2, 2), (3, 2)}
v3 = {(1, 3), (2, 3), (3, 3)}

Theorem 4.37 Given .n − 1 mutually orthogonal latin squares of order n one can 
construct an affine plane of order n. 

Proof Let .P = {(i, j) | i, j = 1, . . . , n}. 
Define (horizontal) lines .hj = {(j, x) |x = 1, . . . , n}, for  .j = 1, . . . , n and 

(vertical) lines .vj = {(x, j) |x = 1, . . . , n}, for .j = 1, . . . , n. 
Let .{1, . . . , n} be the set over which the latin squares are defined. 
For each latin square . Am and for each .k ∈ {1, . . . , n}, define a line
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. ℓmk = {(i, j) | (Am)ij = k}.

Let 

. L = {ℓmk | m=1, . . . , n−1, k=1, . . . , n}∪{hj | j=1, . . . , n}∪{vj | j = 1, . . . , n}.

Suppose that .(i, j) and .(i', j ') are joined by both the lines .ℓm,k and .ℓm',k' . 
Then .(Am)ij = (Am)i'j ' = k and .(Am')ij = (Am')i'j ' = k', contradicting the 
orthogonality of the latin squares . Am and . Am' . This implies that any two points are 
joined by at most one line. 

There are .n2 + n lines, each incident with n points and . n2 points in P . Counting 
triples .(x, y, ℓ) where x and y are points incident with the line . ℓ, we have that  

. N = (n2 + n)

(
n

2

)

where N is the number of pairs of points joined by a line. Since . (n2 + n)
(
n
2

) = (
n2

2

)

it follows that any two points are joined by a line. 
Hence, .(P,L) is a linear space. 
If .m /= m' then .ℓm,k and .ℓm',k' intersect in a unique point, since orthogonality 

implies there exists a unique .(i, j) such that .(Am)ij = k and .(Am')ij = k'. 
Suppose that x is a point not incident with the line .ℓm,k . Since x is a point, it is a 

cell of the latin square . Am and there is some . k' such that .ℓm,k' contains x, precisely 
the one in which .Am has entry . k' in the cell x. This proves the parallel axiom for 
the non-horizontal and non-vertical lines. The parallel axiom for the horizontal and 
vertical lines is immediate. ⨅⨆

Theorem 4.38 Given an affine plane of order n one can construct .n − 1 mutually 
orthogonal latin squares of order n. 

Proof An affine plane of order n has . n2 points and .n + 1 parallel classes of lines. 
Select two of these classes .{H1, . . . , Hn} and .{V1, . . . ,Vn}. Any point is incident 
with one horizontal line . Hi and one vertical line . Vj . Give this point the coordinates 
.(i, j). 

Let .{L1, . . . , Ln} be a further parallel class of lines. Define a matrix .A = (aij ) by 
the rule .aij = k if and only if .(i, j) ∈ Lk . Then . A is a latin square, since each line . Lk

meets each horizontal line and each vertical line exactly once. Moreover, . A and . A', 
where . A' is the latin square we obtain from the parallel class of lines .{L'

1, . . . , L
'
n}, 

are orthogonal since each line of .{L1, . . . , Ln} and .{L'
1, . . . , L

'
n} meet in a unique 

point. ⨅⨆

There are affine planes of order .n = ph where .h ⩾ 2 and .ph ⩾ 8, which are 
not isomorphic to .AG(2, q), the affine plane obtained by deleting a line from the 
projective plane .PG(2, q). These planes will give .n − 1 mutually orthogonal latin
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squares of order n which are not isomorphic to the set of mutually orthogonal latin 
squares, 

. {(Fn, ∗m) | m ∈ Fn, m /= 0}.

We shall see some examples of such affine planes in Theorem 4.43. 

4.7 Projective Spaces 

Let .Vn(F) denote the n-dimensional vector space over the field . F. 
Consider the geometry we get which has as points the set of one-dimensional 

subspaces of .Vn(Fq), as lines the set of two-dimensional subspaces of .Vn(Fq), 
as planes the set of three-dimensional subspaces of .Vn(Fq), etc. This structure 
is denoted .PG(n − 1, q). It has a large group of symmetries. We can multiply 
the vectors of .Vn(Fq) by any .n × n non-singular matrix with entries from . Fq

and preserve the subspace structure of the vector space and therefore preserve the 
subspace structure of .PG(n − 1, q). 

We define a symmetry of an incidence structure .(P,L) to be a bijection of P 
which induces a bijection on L. Lemma 4.39 implies that the Fano plane in Fig. 4.4 
has 168 symmetries, since any 3-tuple of linearly independent vectors in . Vn(F2)

will give a .3 × 3 non-singular matrix with entries from . F2. 

In the above figure, we see some substructures contained in the geometry 
.PG(3, 2). The points of this geometry can be labelled by the non-zero vectors of 
.V4(F2) of which there are 15. Since any two points are joined by a unique line, which 
is incident with three points, there are .15.14/3.2 = 35 lines. In Theorem 4.40, we  
will deduce a formula which allows us to count the number of subspaces of a finite 
vector space, and thereby the number of subspaces of .PG(n − 1, q). 

Lemma 4.39 The number of k-tuples of linearly independent vectors in .Vn(Fq) is 
.(qn − 1)(qn − q) · · · (qn − qk−1). 

Proof Consider a k-tuple .(v1, . . . , vk) of linearly independent vectors.
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There are .qn − 1 non-zero vectors, so .qn − 1 choices for . v1. 
There are .qn − q vectors not in the subspace . 〈v1〉, so .qn − q choices for . v2. 
In the same way, there are .qn − qj vectors not in the subspace .〈v1, . . . , vj 〉, so  

.qn − qj choices for .vj+1. ⨅⨆

Theorem 4.40 The number of k-dimensional subspaces of .Vn(Fq) is 

. 

[
n

k

]

q

= (qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
.

Proof Each k-tuple of linearly independent vectors in .Vn(Fq) spans a k-
dimensional subspace. By Lemma 4.39, there are . (qn − 1)(qn − q) · · · (qn − qk−1)

such k-tuples. Again by Lemma 4.39, there are . (qk − 1)(qk − q) · · · (qk − qk−1)

k-tuples which span the same k-dimensional subspace. ⨅⨆

In the following we use the notation .x ⊕ y to denote the line joining x and y and 
.PGk−1(F) denotes the projective space obtained from the vector space .Vn(F). 

Theorem 4.41 Suppose that .x1, x2, x3 and .y1, y2, y3 are two sets of three non-
collinear points of .PGk−1(F), .k ⩾ 3, where there is a point z such that z, . xi , . yi are 
collinear for .i = 1, 2, 3, see Fig. 4.6. 

Then there are points .zij = (xi ⊕ xj ) ∩ (yi ⊕ yj ), for all .i /= j , and . z12, .z13 and 
.z23 are collinear. 

Fig. 4.6 Desargues configuration
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Fig. 4.7 The points . z12, . z13, 
. z23 and . z14 are co-planar 

Proof Suppose that .k ⩾ 4. 
Since the lines .xi ⊕ yi contain the point z, the points .xi, xj , yi, yj are contained 

in a plane. Thus the lines .xi ⊕ xj and .yi ⊕ yj have a point of intersection, which 
we define as . zij , see Fig. 4.6. Furthermore, the whole configuration is contained in 
a three dimensional subspace. 

Suppose the configuration is not contained in a plane of .PGk−1(F). Then . πx =
x1 ⊕ x2 ⊕ x3 and .πy = y1 ⊕ y2 ⊕ y3 are planes of .PGk−1(F) which intersect in a 
line . ℓ of .PGk−1(F). Furthermore, . ℓ contains . z12, . z13 and . z23, so these three points 
are collinear. 

Suppose the configuration is contained in a plane . π of .PGk−1(F). Let  . x4 and 
. y4 be points of .PGk−1(F) \ π such that z, . x4 and . y4 are collinear. By the previous 
paragraph, . z12, . z14, . z24 are collinear, . z13, . z14, . z34 are collinear, and . z23, . z24, . z34 are 
collinear. Therefore, . z12, . z13, . z23 and . z14 are co-planar, see Fig. 4.7. Let  . π4 denote 
the plane containing these points. Then .π4 ∩π is a line of .PGk−1(F) containing . z12, 
. z13 and . z23. 

The same proof works for .k = 3 since we can embed .PG2(F) in .PG3(F). ⨅⨆

A spread of .V2d(Fq) is a set of d-dimensional subspaces which partition the 
non-zero vectors of .V2d(Fq). 

Lemma 4.42 Let .q = ph, where .h ⩾ 2 and p is an odd prime p. Let . η be an 
element of . Fq , such that .η /= c2, for all .c ∈ Fq . For each .a, b ∈ Fq , let  

. Uab = 〈(1, 0, a, b), (0, 1, b, ηap)〉

and let 

. U∞ = 〈(0, 0, 1, 0), (0, 0, 0, 1)〉.

Then 

. {Uab | a, b ∈ Fq} ∪ {U∞}

is a spread of .V4(Fq).
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Proof To prove this is a spread, we have to show that each non-zero vector of . F4
q is 

incident with exactly one of the subspaces 

. {Uab | a, b ∈ Fq} ∪ {U∞}.

It suffices to prove that for all .(x, y) ∈ F
2
q , .(x, y) /= (0, 0), the set of vectors 

. {x(1, 0, a, b) + y(0, 1, b, ηap) | a, b ∈ Fq}

is a set of . q2 (distinct) vectors. Note that this implies that all of the vectors of . V4(Fq)

which are not in .U∞ are contained in some element of the spread. 
If not then there are .a, b and .a', b' such that 

. 

(
a b

b ηap

) (
x

y

)
=

(
a' b'
b' η(a')p

)(
x

y

)

which implies 

. 

(
a − a' b − b'
b − b' ηap − (a')p

)

is a singular matrix. But .ap − (a')p = (a − a')p, so this implies 

. η(a − a')p+1 = (b − b')2,

which contradicts the condition on . η. ⨅⨆

Theorem 4.43 Let P be the set of vectors of .V2d(Fq) and let L be the set of cosets 
of the subspaces of a spread of .V2d(Fq). Then .(P,L) is an affine plane of order . qd . 

Proof Let u and v be two vectors of .V2d(Fq). Then .u − v ∈ U , for  some  U in the 
spread. This implies .v ∈ U + v (since .0 ∈ U ) and .u ∈ U + v (since .u− v ∈ U ) and 
so .(P,L) is a linear space. The set of lines which are cosets of a fixed subspace of 
the spread are parallel lines, so the parallel axiom holds. ⨅⨆

Theorem 4.41 gives us a geometric way of checking if a projective plane is 
isomorphic to .PG(2, q) or not. If one can find two triangles in perspective for 
which the points . zij are not collinear then the projective plane is not isomorphic 
to .PG(2, q); it is called a non-Desarguesian plane. 

The spread in Lemma 4.42, allows us to define an affine plane by applying 
Theorem 4.43, which can be completed to a projective plane of order . q2 according 
to Theorem 4.33. This projective plane is not isomorphic to .PG(2, q2), if we can 
find elements e and . η, so that .a /= a or . ap. The  value of  a is the (unique) solution 
to the equation
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. a − ηap = e.

whereas . a is the (unique) solution to 

. − ηa + ap = ep.

If .q = ph, for  some  .h ⩾ 2, then we can choose .e /= 1 − η then .a /= ap and 
therefore . a is not equal to at least one of a and . ap. Thus, we have constructed non-
Desarguesian planes of order .p2h for all .h ⩾ 2 and odd primes p (Fig. 4.8). 

In fact, there are non-Desarguesian planes of order q known, for all prime powers 
q where q is not a prime and .q ⩾ 9. This has led to the following conjecture, which 
is known to be true only for .p ⩽ 7. 

Conjecture 4.44 A projective plane of prime order p is isomorphic to .PG(2, p). 

Observe that by Theorem 4.35, we can obtain affine planes by removing any line 
from a projective plane, so the non-Desarguesian projective plane, will give non-
Desarguesian affine planes. These affine planes, by Theorem 4.38, will give us sets 
of .n − 1 mutually orthogonal latin squares of order n, which are not isomorphic 
to the sets of .n − 1 mutually orthogonal latin squares of order n constructed in 
Lemma 4.18. 

Fig. 4.8 The two triangles in perspective do not complete to Desargues configuration
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4.8 Notes and References 

Bregman’s theorem, mentioned in the text, which was conjectured by Henryk 
Mink in 1963, a proof of which appeared in Bregman (1973). G. P. Egorychev gave 
the first proof of van der Waerden’s conjecture in Egorychev (1981). The falsity of 
Euler’s conjecture is from Bose et al. (1960) and earned the authors a mention the 
front page of the New York Times on April 26, 1959 and a detailed article with 
photos. The proof of Theorem 4.26, the  Erdős-de Bruijn theorem, is due to J. H. 
Conway. The fact that there is no projective plane of order 10 was proven by Lam 
et al. (1989), with the aid of a computer, in 1989. 

4.9 Exercises 

Exercise 4.1 

i. Prove that a quasi-group of order 4 with an identity element is a group. 
ii. Find a quasi-group of order 5 with an identity element which is not a group. 

Exercise 4.2 

i. Prove that if a latin square of order m contains a latin square of order n then 
m ⩾ 2n. 

ii. Construct a latin square of order 2n that contains Q, a latin square of order n. 

Exercise 4.3 

i. Let L be a latin square of order 2m that contains a latin square of order m. Prove 
that if m is odd then L has no orthogonal mate (i.e. there is no latin square 
orthogonal to L). 

ii. Prove that if m = 2k then there exists a latin square of order 2m which contains a 
sub-latin square of order m and which belongs to a set of 2m− 1 MOLS. (Recall 
that over Fq , La(x, y) = ax + y, a /= 0, forms a set of q − 1 MOLS.)  

Exercise 4.4 Suppose G is an abelian group of order n and L is a latin square of 
order n (indexed by the elements of G) with L(x, y) = x + y. Prove that there is a 
latin square orthogonal to L if and only if there is a permutation σ of the elements 
of G such that the map τ : G → G defined by τ(x)  = σ(x) − x is also bijective. 

Exercise 4.5 Let A = {A1, . . . , Am} and B = {B1, . . . , Bm} be two partitions of a 
set S. Let M  = (mij ) be the matrix where mij = |Ai ∩ Bj |. Prove that the number 
of common systems of distinct representatives ofA and B is equal to the permanent 
of M.
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Exercise 4.6 A latin square L on the ordered set {x1, . . . , xn} is idempotent if its 
(i, i)-th entry is xi , for all i = 1, . . . , n. 

1. Given a set of m mutually orthogonal latin squares of order n, construct a set of 
m − 1 mutually orthogonal idempotent latin squares of order n. 

2. Given a set of n mutually orthogonal idempotent latin squares of order s + 1 and 
a linear space 𝚪 = (P, L) in which for all lines ℓ ∈ L, ℓ is incident with s + 1 
points, construct a set of n mutually orthogonal idempotent latin squares of order 
|P |. 
[Hint: Let f be a bijective map from the elements of P to the set {1, . . . , |P |}. 
Then for each line ℓ of 𝚪, there is a set of n mutually orthogonal idempotent latin 
squares L1, . . . ,  Ln of order s +1 on the  set  Sℓ = {f (x)  | x ∈ ℓ} (so the rows and 
columns are Labelled by elements of the set Sℓ). Construct a (partial) latin square 
L∗

k of order |P |, whose (i, j)-th entry is the (i, j)-th entry in the latin square Lk 
for the line ℓ joining the points f −1(i) and f −1(j) of 𝚪.] 

3. Construct three mutually orthogonal idempotent latin squares of order 21. 
4. By deleting three points from PG(2, 4), construct two mutually orthogonal latin 

squares of order 18. 

Exercise 4.7 Let A be a finite set. 

i. Suppose that C ⊆ An has the property that any two elements of C agree on at 
most 1 coordinate. 

Prove that |C| ⩽ |A|2 and that in the case of equality for all (i, j) ∈ A2, there 
exists a unique element of C such that (u1, . . . , un−2, i, j)  ∈ C. 

ii. Suppose that C ⊆ An has the property that any two elements of C agree on at 
most 1 coordinate and |C| = |A|2. For each m ∈ {1, . . . , n  − 2}, let  Lk be the 
|A| × |A| array whose (i, j) entry is um, where (u1, . . . , un−2, i, j)  ∈ C. 

Prove that {Lm | m ∈ {1, . . . , n  − 2}} is a set of n − 2 mutually orthogonal 
Latin squares of order |A|. 

iii. Suppose that C ⊆ An has the property that any two elements of C agree on at 
most k − 1 coordinates and that |C| = |A|k . 

Prove that n ⩽ k + m, where m is the maximum number of mutually 
orthogonal Latin squares of order |A|. 

Exercise 4.8 Prove that a set of n − 2 mutually orthogonal latin squares of order 
n can be extended to a set of n − 1 mutually orthogonal latin squares of order n. 
Hence, prove that there is no set of four mutually orthogonal latin squares of order 6. 

Exercise 4.9 Prove that a linear space with k2 + k + 1 points in which each line is 
incident with k + 1 points is a projective plane. 

Exercise 4.10 Prove that there is only one projective plane of order 2 and only one 
projective plane of order 3.
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Exercise 4.11 Suppose that π is a projective plane of order n with a subplane π ' of 
order m. 

i. Prove that if m2 < n  then m2 + m ⩽ n. 
ii. Prove that if m2 = n then every line of π is incident with 1 or m + 1 points of 

π '. 
iii. Let S be a set of points of π with the property that every line of π is incident 

with 1 or  t + 1 points of S. Prove that t divides n. 

Exercise 4.12 A difference set of an abelian group G is a subset D with the 
property that every non-zero element of G can be expressed uniquely as the 
difference of two elements of D. 

i. Construct difference sets of Z/7Z and Z/13Z. 
ii. Construct a projective plane from a difference set of Z/(n2 + n + 1)Z. 

Exercise 4.13 Let G be an abelian group of size n2 − 1 with a subgroup N of size 
n − 1. 

A relative difference set is a subset D of G in which every element of G \ N 
can be expressed uniquely as the difference of two elements of D and no non-zero 
element of N can be expressed as the difference of two elements of D. 

i. Find a relative difference set of Z/8Z. 

Suppose that D is a relative difference set of G. 
Let ℓg = {g + d | d ∈ D}. 
Let R be a set of coset representatives of N and let mr = {r + x | x ∈ N} ∪ {∞}, 

for each r ∈ R. 
Let P = G ∪ {∞} and let L = {ℓg | g ∈ G} ∪ {mr | r ∈ R} 

ii. Prove that (P, L) is an affine plane of order n. 

Exercise 4.14 Let A be a randomly chosen n×n matrix with entries from Fq . Prove 
that the probability that A is non-singular tends to some positive constant c(q) as n 
tends to infinity. 

Exercise 4.15 Let
[

n 
k

]

q 
denote the number of k-dimensional subspaces of the n-

dimensional vector space over Fq . 
Let Fq(n) denote the total number of subspaces of the n-dimensional vector 

space over Fq . 

i. Prove that
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. 

[
n + 1

k

]

q

=
[

n

k − 1

]

q

+ qk

[
n

k

]

q

.

ii. Prove that Fq(n) satisfies the relation 

. Fq(n + 1) = 2Fq(n) + (qn − 1)Fq(n − 1),

where Fq(0) = 1 and Fq(1) = 2. 
iii. Prove that 

. Fq(n) ⩾ q⎿n2/4⏌.

Exercise 4.16 An inversive plane is an incidence structure (P, L) with the 
property that every three points are incident with exactly one ℓ ∈ L (the elements 
of L are called circles for an inversive plane) and that if x and y are two points and
ℓ is a circle incident with x and not incident with y then there is a unique circle m 
incident with y with the property that ℓ ∩ m = {x}. 

i. Let x be a point of an inversive plane (P, L) and let 

. L∗ = {ℓ \ {x} | ℓ ∈ L, ℓ ϶ x}.

Prove that (P \ {x}, L∗) is an affine plane. 
ii. Conclude that a finite inversive plane has an order n in which every circle 

contains n + 1 points and any two points are incident with n + 1 circles. 
iii. Prove that if (P, L) is a finite inversive plane of order n then |P | =  n2 + 1 and 

|L| =  n3 + n. 
iv. Construct an inversive plane of order q from an elliptic quadric O of PG(3, q). 

[An elliptic quadric is a set of points 

. O = {(1 : x : y : f (x, y)) | x, y ∈ Fq} ∪ {(0 : 0 : 0 : 1)},

where f (x, y) is an irreducible polynomial of degree 2. In an analogous way to 
an elliptic quadric in real space, you may assume that a planar section of O is 
either a conic or a tangent plane. Thus, a planar section contains either 1 or q+1 
points of O and each point of O is incident with a unique tangent plane.] 

Exercise 4.17 

i. Let η be a non-square element of Fq and define 

.ℓbc = 〈(1, 0, c, b), (0, 1, b, ηc)〉,
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and 

. ℓ∞ = 〈(0, 0, 1, 0), (0, 0, 0, 1)〉.

Prove that 

. {ℓbc | b, c ∈ Fq} ∪ {ℓ∞},

is a spread of F4 
q . 

ii. Define 

. ℓa = 〈(1, a, 0, 0), (0, 0, a, 1)〉,

and 

. ℓ'∞ = 〈(0, 1, 0, 0), (0, 0, 1, 0)〉.

Prove that the subspaces 

. {ℓa | a ∈ Fq} ∪ {ℓ'∞},

contain the same vectors as the subspaces 

. {ℓb0 | b ∈ Fq} ∪ {ℓ∞}.

iii. For every n = p2h, where p is prime, construct two sets of n − 1 mutually 
orthogonal latin squares of order n, which share n − √

n − 2 latin squares.
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Imagine that one is tasked with assigning hotel rooms, which are all for two 
occupants, to n guests, but where there is a list of couples who are incompatible 
and cannot, for some reason, share a hotel room. Is it possible to find a solution 
to this problem? In terms of graphs, this is the matching problem, asking if there 
is a perfect matching of a given graph. In this chapter, we shall study matchings 
and prove Tutte’s theorem, which proves that the existence of a perfect matching is 
equivalent to the connected structure of its subgraphs. We will also consider stable 
matchings for graphs where each vertex has a preference order for its neighbours. 
One can think of this as the real-life situation of singles having an order preference 
for the others singles that they know. Given a set of singles and their preferences, 
one can ask if it is possible to match up the singles in couples in such a way that 
there is no pair, not coupled with each other, who both prefer each other to their own 
partner. We will investigate this problem and give an algorithm to solve this in the 
case of bi-partite graphs. 

5.1 König’s Theorem 

A matching of a graph . 𝚪 is a set of disjoint edges, edges which share no end-vertex. 
A matching is maximal if it cannot be extended and perfect if it covers all the 

vertices. 
A vertex cover of a graph . 𝚪 is a subset U of the vertices of . 𝚪 such that each 

edge has an end-vertex in U . 
Figure 5.1 is a bipartite graph whose largest matching and smallest vertex cover 

have size three. 
Since a vertex cover must cover all the edges of a graph, it is immediate that any 

vertex cover is at least the size of any matching. Thus, if we define .m(𝚪) to be the 
maximum size of a matching of . 𝚪 and .vc(𝚪) to be the minimum size of a vertex 
cover of . 𝚪 then it is immediate that 
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Fig. 5.1 The black edges are 
a matching and the grey 
vertices are a vertex cover 

Fig. 5.2 The black edges are 
a matching and the grey 
vertices are a vertex cover 

.m(𝚪) ⩽ vc(𝚪). (5.1) 

It is, however, possible to find graphs for which this inequality is strict. The graph 
in Fig. 5.2 has a matching of maximum size three, whereas the smallest vertex cover 
has size four. 

Nevertheless, Kőnig’s theorem maintains that if the graph is bipartite then we do 
have equality in the inequality (5.1). 

Theorem 5.1 (Kőnig) If . 𝚪 is a bipartite graph then .m(𝚪) = vc(𝚪). 

Proof Suppose that the statement is not true and let . 𝚪 be the bi-partite graph with 
the least number of vertices, and amongst the graphs with the least number of 
vertices, the least number of edges, which is a counterexample to the statement. 

If . 𝚪 is a path or a even cycle then .m(𝚪) = vc(𝚪), so  . 𝚪 must have a vertex of 
degree at least three. By minimality, . 𝚪 must be connected. 

Let u be a vertex of degree at least three and let v be a neighbour of u. 
Suppose that all matchings of size .m(𝚪) cover v. This implies that 

. m(𝚪 \ {v}) = m(𝚪) − 1.

By the minimality of . 𝚪, the graph .𝚪 \{v} has a vertex cover of size .m(𝚪)−1, which 
implies . 𝚪 has a vertex cover of size .m(𝚪)), which is a contradiction. Therefore, 
there is a matching M of . 𝚪 which does not cover v. 

Since u has degree at least three, there is an edge e of . 𝚪 which is incident with u, 
is not incident with v, and is not an edge of M . Let  W be a minimal vertex cover of
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Fig. 5.3 The vertex u has at 
least three neighbours and 
there is a matching of size 
.m(𝚪) which does not cover v 

.𝚪 \ {e}. Since M is also a matching of .𝚪 \ {e}, and the statement holds for .𝚪 \ {e}, 
by the minimality of . 𝚪, we have that .|W | = m(𝚪) (Fig. 5.3). 

The vertex cover W must cover all the edges of M and has size . |M|, so cannot 
contain v. Thus, since v is not covered by an edge of M , W must contain u and 
cover e too. Hence, W is a vertex cover of . 𝚪 of size .m(𝚪). ⨅⨆

5.2 Hall’s Marriage Theorem 

Recall that a path in . 𝚪 is a set of edges which connect a sequence of vertices which 
are all distinct from one another. 

Let E be the set of edges of . 𝚪. An  alternating path with respect to a matching 
M is a path which starts at an unmatched vertex and whose edges contain alternately 
edges from .E \ M and M . 

An alternating path is augmenting if it ends in an unmatched vertex, i.e. a vertex 
not covered by an edge of the matching. 

Lemma 5.2 If there exists an augmenting path with respect to a matching M then 
M is not of maximum size. 

Proof Suppose that the alternating path is .e1m1e2m2 . . . etmtet+1. Then the set of 
edges .M \ {m1, . . . , mt } ∪ {e1, . . . , et+1} is a matching with more edges than M 
has. ⨅⨆

We have already proved Hall’s theorem, Theorem 4.3, in Chap. 4. Here, we give 
an algorithmic proof of Hall’s theorem by finding a matching of a bipartite graph 
which satisfies Hall’s condition. This is very useful because it actually details an 
algorithm which allows us to find a system of distinct representatives in a number 
of operations which is polynomial in the number of vertices. 

Let X be a set and suppose that .A1, . . . , An are non-empty subsets of X. 
Define a bipartite graph . 𝚪 with vertex partition .X∪A, where .A = {A1, . . . , An}, 

and where .x ∈ X is joined to a vertex .Ai ∈ A if and only if .x ∈ Ai . 
Recall that we defined a system of distinct representatives (SDR) for . A1, . . . , An

as a subset .{x1, . . . , xn} of X with the property that .xi ∈ Ai . Finding an SDR for 
.A1, . . . , An is equivalent to finding a matching in the graph . 𝚪 which covers the 
vertices of A. Note that if the subset .{x1, . . . , xn} of X has the property that .xi ∈ Ai
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(i.e. is an SDR) then the set of edges .M = {xiAi | i = 1, . . . , n} is a matching 
covering the vertices in A. 

For any subset J of .{1, . . . , n}, define 

. A(J ) =
⋃

i∈J

Ai,

so the union of the neighbours of . {aj | j ∈ J }.
Recall that Hall’s condition is 

. |A(J )| ⩾ |J |,

for all subsets J of .{1, . . . , n}. 
In terms of bipartite graphs Hall’s theorem, Theorem 4.3, is the following 

theorem. 

Theorem 5.3 The bipartite graph . 𝚪 with vertex partition .A ∪ X has a matching 
covering the vertices of A if and only if for each subset J of A, the number of 
vertices in X which are neighbour to some vertex in J is at least . |J |. (Again, we call 
this condition Hall’s condition.) 

Proof Start with any matching M , which could be empty. 
We will prove that if M does not cover all the vertices in A then there is a larger 

matching than M . This implies that we will find a matching which covers all the 
vertices of A. 

We will assume the vertices in A are .A1, . . . , An, where we are identifying the 
subset . Ai of X as a set of edges joining . Ai to the elements in . Ai . 

Suppose that, after a suitable relabelling of the indices, . A1 is not covered by an 
edge of M . Then Hall’s condition implies that there is an .x1 ∈ X such that .x1A1 is 
an edge of . 𝚪. 

If . x1 is covered by an edge of M then there is an .A2 ∈ A such that .x1A2 is an 
edge of M . Hall’s condition implies that there is an .x2 ∈ X \ {x1} such that at least 
one of the vertices . A1 or . A2 is joined by . x2 by an edge of . 𝚪. 

We then repeat this process with . x2, and iteratively . xj . i.e. if . xj is covered by 
an edge of M then there is an .Aj+1 ∈ A such that .xjAj+1 is an edge of M . Hall’s 
condition implies there is an .xj+1 ∈ X \ {x1, . . . , xj } such that .xj+1 is a neighbour 
of one of the vertices .A1, . . . , Aj+1. We can then repeat the process again using 
.xj+1. 

Since . A1 is not covered by an edge of M and by Hall’s condition .|X| ⩾ n, 
we will eventually find . xk which is not covered by an edge of M . Furthermore, by 
construction, there is an edge (necessarily not in M) from  . xk to some . Ai , where 
.i ∈ {1, . . . , k}. We construct an augmenting path P from . xk starting on this edge, 
then adjoining the edge .xi−1Ai from M we then choose an edge from .xi−1 to . Aj , 
for some .j ∈ {1, . . . , i−1}, which we know to exist since .xi−1 is neighbour to some
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Fig. 5.4 An augmenting 
path .x5A3x2A2x1A1, with the  
black edges from M 

vertex in .{A1, . . . , Ai−1}. In this way we find P , an alternating path with respect to 
M , leading back to . A1, see Fig. 5.4. 

Since P is an alternating path which leads from one unmatched vertex to another 
unmatched vertex, P is an augmenting path for M , and Lemma 5.2 implies that M 
is not of maximum size. 

⨅⨆

A k-regular graph is a graph in which every vertex has degree k. 
The equivalent theorem to Theorem 4.5 is the following theorem. 

Theorem 5.4 An k-regular bipartite graph . 𝚪 has a perfect matching. 

Proof Suppose that .A∪X is the vertex partition of . 𝚪. Observe that .|A| = |X|. Let  J 
be a subset of A and count .(x, j) where .x ∈ X is a neighbour of .j ∈ J . Considering 
x this is at most .k|A(J )| and considering j , this is  .k|J |. Therefore, . |J | ⩽ |A(J )|
and Hall’s condition holds. Theorem 5.3 implies that . 𝚪 has a perfect matching. ⨅⨆

A k-factor of . 𝚪 is a k-regular subgraph of . 𝚪 whose vertex set is that of . 𝚪. A  k-
factorisation partitions the edges of the graph into disjoint k-factors. In particular, 
a 1-factor is a perfect matching and a 2-factor is the union of disjoint cycles which 
cover all the vertices. 

Corollary 5.5 A k-regular bipartite graph . 𝚪 has a 1-factorisation. 

Proof Theorem 5.4 implies that . 𝚪 has a 1-factor. Removing the 1-factor we obtain 
a .(k − 1)-regular bipartite graph. Theorem 5.4 implies that this subgraph has a 1-
factor. We continue applying Theorem 5.4 k times in all to obtain a 1-factorisation. 

⨅⨆

5.3 Stable Matchings 

Suppose that each vertex in a graph . 𝚪 has an order of preference towards its 
neighbours.
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An edge xy is an unstable edge (with respect to the matching and the 
preferences) if .xy /∈ M and one of following occurs. 

i. x and y are covered by M , x prefers y to the vertex it is matched with in M and 
y prefers x to the vertex it is matched with in M . 

ii. x is covered by M , y is not covered by M and x prefers y to the vertex it is 
matched with in M . 

iii. y is covered by M , x is not covered by M and y prefers x to the vertex it is 
matched with in M . 

iv. neither x nor y is covered by M . 

We call a matching is stable if there are no unstable edges. Observe that by iv, a 
stable matching is maximal. 

The following is an algorithmic proof that not only proves that a stable matching 
exists, it also tells us how to find one. 

Theorem 5.6 A bipartite graph . 𝚪 has a stable matching. 

Proof Let .A ∪ B be the vertex partition of the graph . 𝚪. For each .ai ∈ A, let  . Ai be 
the subset of B consisting of the neighbours of . ai . 

In Round j , each vertex in A proposes to its most preferred vertex in B. If . b ∈ B

receives more than one proposal then it rejects all but the most preferable. Thus if 
.b ∈ Ai and b rejects . ai’s proposal then b is removed from . Ai . Continue until all 
vertices in B receive at most one proposal. Let M be the matching consisting of 
these proposals. 

Suppose that xy is an unstable edge, .x ∈ A, .y ∈ B. We consider four cases as in 
the definition of an unstable edge. 

i. Suppose that x is on the edge .xy' ∈ M and y is on the edge of . x'y ∈ M

(Fig. 5.5). 
This case does not occur since x proposed to y before . y', at which point y 

rejects the proposal from . x'. 
ii. Suppose that x is on the edge .xy' ∈ M and y is unmatched. Since y is unmatched 

it never gets proposed to. However, since xy is unstable x prefers y to . y' so will 
propose to y before it proposes to . y', so this case does not occur (Fig. 5.6). 

iii. Suppose that y is on the edge of .x'y ∈ M and x is unmatched. 

Fig. 5.5 x and y are covered 
by an edge of the matching
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Fig. 5.6 x is  covered by an  
edge of the matching 

Fig. 5.7 y is  covered by an  
edge of the matching 

Figure 5.7 x is unmatched, his proposals must have been rejected, so some 
vertex in B must have received more than one proposal and so the algorithm 
will continue with another round. Therefore, at some point x will propose to y 
and when he does, y will reject . x' proposal. Therefore, this case does not occur 
either. 

iv. Suppose that neither x nor y is covered by M . Since x is connected to y by an 
edge it will propose to y at some point, so y will be matched. Hence, this case 
does not occur. 

Hence, there are no unstable edges and M is a stable matching. ⨅⨆

Corollary 5.7 The complete bipartite graph .Kn,n has a perfect stable matching. 

Proof Any stable matching is maximal and a maximal matching of .Kn,n is perfect. 
⨅⨆

Example 5.8 Consider the graph in Fig. 5.8, with the following preferences. 

. 

Applying the algorithm from the proof of Theorem 5.6, we end up with a stable 
matching, which is not of maximum size. 

Observe that the graph does have a perfect matching but that matching is not 
stable. The petitions in the algorithm are given in the following array.
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Fig. 5.8 A stable matching 
indicated by the black edges 

Fig. 5.9 The black edges are 
a stable matching with respect 
to the given preferences 

. 

Example 5.9 Consider the complete bipartite graph .K4,4 with the following pref-
erences. 

. 

The algorithm from the proof of Theorem 5.6 gives a stable matching after five 
rounds (Fig. 5.9). 

.
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5.4 Tutte’s Theorem 

A graph is connected if there is a path between any two of its vertices. 
A subgraph of . 𝚪 is induced if it can be obtained by taking a subset . V ' of the 

vertices of . 𝚪 and has the same edges as . 𝚪, restricted to the vertices . V '. 
Lemma 5.10 A connected graph .𝚪 /= Kn with at least 3 vertices has an induced 
subgraph isomorphic to .K1,2. 

Proof We have to prove that there is a vertex with two neighbours who are not 
neighbours of each other. If not then the vertices of a vertex v induce a complete 
graph. If the neighbourhood of every vertex is a complete graph then . 𝚪 is a complete 
graph. ⨅⨆

Connectedness is an equivalence relation on the vertices of a graph . 𝚪. A subgraph 
induced by the vertices of an equivalence class is called a component of . 𝚪. 

An odd component is a component which has an odd number of vertices. 
Similarly, an even component is a component which has an even number of 
vertices. 

Let .oc(𝚪) denote the number of odd components of a graph . 𝚪. 
Let S be a subset of the vertices of . 𝚪. The graph .𝚪 \S is the graph obtained from 

. 𝚪 by deleting the vertices of S (and necessarily any edges which have an end vertex 
in S). 

Theorem 5.11 (Tutte) A graph . 𝚪 has a perfect matching if and only if for all 
subsets S of the vertices of . 𝚪, the inequality .oc(𝚪 \ S) ⩽ |S| holds. 

Proof 

(. ⇐) Suppose that . 𝚪 has no perfect matching. 
The condition with .S = ∅ implies that . 𝚪 has an even number of vertices. Let 
. 𝚪∗ be a graph obtained from . 𝚪 by adding edges until adding any other edge will 
give a graph with a perfect matching. Adding edges to . 𝚪 does not change the 
property that the number of odd components of .𝚪 \ S is at most . |S|. Indeed, 
adding edges may join two odd components into a larger even component, but 
this does not affect the property. Hence, for all subsets S of the vertices of . 𝚪∗, 
.oc(𝚪∗ \ S) ⩽ |S|. 
Let K be the set of vertices of . 𝚪∗ which are adjacent to all the other vertices. 
Suppose .𝚪∗ \ K has a non-complete component. By Lemma 5.10, there exists 
three vertices .a, b, c of .𝚪∗ \ K with the property that ab and bc are edges but ac 
is a non-edge. Since b is not in K , there is a vertex d of . 𝚪∗ which is not adjacent 
to b. 
Since we added edges so that adding any other edge will give a graph with 
a perfect matching, both the graphs .𝚪∗ + {ac} and .𝚪∗ + {bd} have perfect 
matchings. Call these perfect matching .Mac and .Mbd respectively. Observe that 
ac is an edge of .Mac and bd is an edge of .Mbd .
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Now, construct the path P which starts at d with the edge of .Mac and alternates 
between an edge of .Mbd and an edge of .Mac. Note that the edge bd is not an 
edge of .𝚪∗ + {ac} and therefore not an edge of the matching .Mac. Now  as  the  
edges alternate between an edge of .Mbd and an edge of .Mac, we cannot return to 
a previous vertex along the path since this vertex is already covered by an edge 
of both matchings .Mac and .Mbd . 
Eventually, either P gets to b or one of a or c. Since P , if completed to a circuit, 
would return to d on an edge of .Mbd which must necessarily be the edge bd, it  
must get to b at some point. 
Suppose that P gets to the vertex b before a or c, see Fig. 5.10. 
Since bd is an edge of .Mbd , the path P arrives at b on an edge of .Mac. Adjust, 
.Mbd removing the edges of .Mbd in P and replacing them with the edges of . Mac

in P and removing the edge bd. Then this set of edges is a perfect matching 
of . 𝚪∗, since it does not contain the edge bd (nor the edge ac, since .Mbd is a 
matching of .𝚪∗ + {bd}). 
Suppose that P gets to one of the vertices a or c before b and without loss of 
generality assume that it is a, see Fig. 5.11. 
The path P arrives at a on an edge of .Mbd since the edge containing a in . Mac

is the edge ac. Adjust, .Mbd removing the edges of .Mbd in P and replacing them 
with the edges of .Mac in P , removing the edge bd and add the edge ab. Then, as 
in the previous paragraph, this set of edges is a perfect matching of . 𝚪∗. 

Fig. 5.10 The path P arrives 
at b before a or c, the grey 
edges are from .Mbd and the 
black edges from . Mac

Fig. 5.11 The path P 
starting at d arrives at a 
before b or c, the grey edges 
are from .Mbd and the black 
edges from .Mac. The edge ab 
is not in either .Mbd nor .Mac
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Suppose .𝚪∗ \K has only complete components. The number of odd components 
of .𝚪∗ \ K is at most . |K|, so we can pair up the vertices in the even components 
and then pair up all but one of the vertices in the odd components. The remaining 
vertices can then be paired to the vertices in K , of which there are sufficient since 
the number of odd components of .𝚪∗ \ K is at most . |K|. Finally, the remaining 
vertices in K can be paired up since, as we observed the beginning of the proof, 
the total number of vertices in . 𝚪∗ is even. Thus, . 𝚪∗ has a perfect matching, a 
contradiction. Hence, . 𝚪 has a perfect matching. 

(. ⇒) Suppose that . 𝚪 has a perfect matching M . An odd component of .𝚪 \S must 
(in . 𝚪) have an edge of M joining it to a vertex of S. Therefore . |S| is at least as 
large as the number of odd components of .𝚪 \ S. 

⨅⨆

The following corollary uses Tutte’s theorem to give a lower bound on the 
number of vertices which are covered by the largest matching. 

Corollary 5.12 (Tutte-Berge) Let .𝚪 = (V ,E) be a graph and for every subset S 
of the vertices of . 𝚪, define 

. d(S) = oc(𝚪 \ S) − |S|.

Let 

. d = max{d(S) | S ⊆ V (𝚪)}.

If . 𝚪 has no perfect matching then there is a matching of . 𝚪 which covers at least 
.|V | − d of the vertices. 

Proof By Theorem 5.11, . 𝚪 has a perfect matching if and only if .d ⩽ 0. 
Suppose .d ⩾ 1. Consider the graph . 𝚪∗ which consists of appending a complete 

graph K on d vertices to . 𝚪 and connecting every vertices in . 𝚪 to every vertex in K 
(Fig. 5.12). 

Let . S∗ be a subset of . 𝚪∗. We will prove that . 𝚪∗ satisfies the hypothesis of 
Theorem 5.11. 

If .S∗ = ∅ then the number of vertices in . 𝚪∗ is .d + |V |. By definition, 

. d + |V | = oc(𝚪 \ S) − |S| + |V |

for some subset S of V . Observe that 

. oc(𝚪 \ S) = |V \ S| (mod 2),

so .d + |V | is even. Hence, the number of vertices in . 𝚪∗ is even. Since . 𝚪∗ is 
connected, it only has one component, so this implies that
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Fig. 5.12 The graph . 𝚪∗
appending the vertices K to . 𝚪
with the black edges giving a 
perfect matching of . 𝚪∗

. oc(𝚪∗ \ S∗) = 0 = |S∗|.

If . S∗ is non-empty and does not contain all the vertices of K then .𝚪∗ \ S∗ is 
connected, so has at most one odd component. Therefore, 

. oc(𝚪∗ \ S∗) ⩽ 1 ⩽ |S∗|.

If . S∗ contains all the vertices of K then .𝚪∗ \ S∗ is .𝚪 \ S for some subset S of V . 
Thus, 

. oc(𝚪∗ \ S∗) = oc(𝚪 \ S) = |S| + d(S) ⩽ |S| + d = |S∗|,

where the inequality follows by the definition of d. 
Theorem 5.11 implies that . 𝚪∗ has a perfect matching and this matching restricted 

to . 𝚪 covers at least .|V | − d of the vertices. ⨅⨆

A graph is cubic if every vertex has degree three. An edge in a graph is a bridge 
if deleting it increases the number of components. 

Corollary 5.13 Every bridgeless cubic graph has a perfect matching. 

Proof It is sufficient to prove this for a connected bridgeless cubic graph. 
Suppose that S is a subset of the vertices of a bridgeless cubic graph . 𝚪 and that 

D is an odd component of .𝚪 \ S (Fig. 5.13). 
The sum of the degrees of the vertices in D, as vertices in . 𝚪, sum to an odd 

number, so there are an odd number of edges between D and .𝚪 \ D. Moreover, S 
disconnects D from the other components of .𝚪 \ S so these edges must be edges 
from D to S. If there is only one such edge, then this edge would be a bridge in . 𝚪, 
so there are three edges from a vertex in D to a vertex in S. Therefore, the number 
of edges between S and .𝚪 \ S is at least .3oc(𝚪 \ S). Clearly, since . 𝚪 is a cubic
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Fig. 5.13 There are at least three edges joining an odd component of .𝚪 \ S to S 

graph, the number of edges between S and .𝚪 \ S is at most . 3|S|, so we have that 
.|S| ⩾ oc(𝚪 \ S). Thus, the hypothesis in Theorem 5.11 is satisfied. ⨅⨆

5.5 Coverings and Independent Sets 

Let .𝚪 = (V ,E) be a graph. An independent set of . 𝚪 is a subset of the vertices with 
the property that no two of the vertices are joined by an edge. This is also known as 
a co-clique. 

Let .is(𝚪) be the maximum size of an independent set. Let .vc(𝚪) be the minimum 
size of a vertex cover. 

Lemma 5.14 For any graph .𝚪 = (V ,E), 

. is(𝚪) + vc(𝚪) = |V |.

Proof Suppose that U is a vertex cover of minimum size. Then .V \ U is an 
independent set, so .|V \ U | ⩽ is(𝚪). Hence, 

.|V | − vc(𝚪) ⩽ is(𝚪).
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Suppose that I is an independent set of maximum size. Since, there is no edge 
between two vertices in I , .V \ I is a vertex cover, .|V \ I | ⩾ vc(𝚪). Hence, 

. |V | − is(𝚪) ⩾ vc(𝚪).

⨅⨆

An edge-covering of a graph .𝚪 = (V ,E) is a subset of the edges that cover all 
the vertices. 

Let .m(𝚪) be the maximum size of a matching. Let .ec(𝚪) be the minimum size of 
an edge covering. 

Lemma 5.15 For any graph .𝚪 = (V ,E) without isolated vertices, 

. m(𝚪) + ec(𝚪) = |V |.

Proof Suppose that L is an edge covering of minimum size. Since L is minimal, 
it contains no paths of length three, since we could delete the middle edge and still 
have an edge covering. Therefore, L is the union of stars, where a star is a . K1,s
for some s. Let  . ℓi count the number of edges in each of the k components of L. A  
component with . ℓi edges has .ℓi + 1 vertices, so 

. 

k∑

i=1

(ℓi + 1) = |V |.

Hence, .|L| = |V |−k. Taking an edge from each component of L, we get a matching 
of size k, so .k ⩽ m(𝚪), which gives the inequality 

. m(𝚪) + ec(𝚪) ⩾ |V |.

Suppose that M is a matching of maximum size. There are .|V | − 2|M| vertices 
not covered by M , so we can make an edge covering of size .|M| + |V | − 2|M|. 
Therefore, 

. |V | − |M| = |V | − m(𝚪) ⩾ ec(𝚪).

⨅⨆

5.6 Notes and References 

Kőnig claimed a proof of Theorem 5.1 in 1914, later publishing the article Kőnig 
(1916). Note that the proof in Theorem 5.3 of Hall’s theorem is somewhat better 
than the proof of Theroem 4.3, since it is a constructive proof and if the algorithm



5.7 Exercises 101

given in the proof is followed then the desired matching will be found. A proof of 
Hall’s theorem first appeared in Hall (1935). 

Stable matchings date back to the 1962 article Gale and Shapley (1962). The 
Tutte–Berge formula from Corollary 5.12 dates back to Berge (1958). 

5.7 Exercises 

Exercise 5.1 Prove that a tree admits at most one perfect matching. 

Exercise 5.2 Prove that if M is not of maximum size then there is an augmenting 
path with respect to M . 

Exercise 5.3 Prove Hall’s theorem using Kőnig’s theorem. 

Exercise 5.4 Prove that if 𝚪 is 2k-regular then 𝚪 has a 2-factor. 

Exercise 5.5 Find a bipartite graph and a set of preferences such that no matching 
of maximum size is stable and no stable matching is of maximum size. 

Exercise 5.6 Find a non-bipartite graph and a set of preferences which has no stable 
matching. 

Exercise 5.7 Prove the the maximum number of rounds that the algorithm in 
Theorem 5.6 has to perform to find a stable matching for Kn,n is n(n − 2) + 2 
and find a set of preferences which requires this number of rounds for the algorithm 
to complete. 

Exercise 5.8 Find a 1-factor of the Petersen graph and prove that the Petersen graph 
has no 1-factorisation. 

Exercise 5.9 Find a cubic graph which has no perfect matching. 

Exercise 5.10 Prove Hall’s theorem using Tutte’s theorem, assuming 𝚪 is a 
bipartite graph with vertex partitions of equal size. 

Exercise 5.11 Recall that oc(𝚪) denotes the number of odd components of a graph
𝚪. 

i. Let S be a subset of the vertices of a graph 𝚪. Prove that 

. |oc(𝚪 \ S)| − |S| = n (mod 2),

where n is the number of vertices of the graph 𝚪.
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ii. Prove that for a cubic graph with no perfect matching there is a subset S of the 
vertices such that 

. |oc(𝚪 \ S)| − |S| ⩾ 2.

iii. Prove that a cubic graph 𝚪 with at most 2 bridges has a perfect matching. 

Exercise 5.12 Let 𝚪0 be a simple connected graph. Let 𝚪 be the line graph of 𝚪0, 
i.e. the graph whose vertices are the edges of 𝚪0 and where two vertices of 𝚪 are 
adjacent if and only if the corresponding edges in 𝚪0 share a vertex. Use Tutte’s 
theorem to prove that if 𝚪 has an even number of vertices then 𝚪 has a perfect 
matching. 

Exercise 5.13 A connected component C of a multipartite graph 𝚪 = (V1 ∪ · · · ∪  
Vk,E)  is unbalanced if |C ∩Vi | > ∑k 

j=1,j /=i |C∩Vj | for some i. Let uc(𝚪), euc(𝚪) 
and oc(𝚪) be the number of unbalanced, even unbalanced and odd components of
𝚪 respectively. 

i. Prove that a multipartite graph 𝚪 of even order has a perfect matching if and 
only if for all subsets S of V (𝚪), 

. oc(𝚪 \ S) + 2euc(𝚪 \ S) ⩽ |S|.

ii. If 𝚪 is bipartite, show that it has a perfect matching if and only if for all subsets 
S of V (𝚪), 

. uc(𝚪 \ S) ⩽ |S|.

iii. Find a tripartite graph 𝚪 which has a perfect matching but for which there is an 
S such that 

. oc(𝚪 \ S) + uc(𝚪 \ S) > |S|,

and a tripartite graph 𝚪' with no perfect matching but for all subsets S of V (𝚪') 

.uc(𝚪' \ S) ⩽ |S|.
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Connectivity is a key property of graphs. The central result on connectivity of graphs 
is the theorem of Menger, a result of min–max type with several connections in other 
areas of combinatorics and of combinatorial optimization, besides its relevance in 
graph theory itself. Some structural results related to connectivity are also presented 
in this chapter, including a theorem of Tutte on 3-connected graphs. The close notion 
of edge-connectivity is also discussed at the end of the chapter. 

6.1 Vertex Connectivity 

A graph is connected if there is a path connecting any pair of vertices. A connected 
component of a graph is a connected subgraph which cannot be extended (by adding 
edges or vertices). Every graph is the disjoint union of its connected components. 
For a subset .X ⊂ V (𝚪), we denote by .𝚪[X] the subgraph of . 𝚪 induced by the 
vertices in X. 

A tree is a connected acyclic graph. The following are equivalent definitions of 
a tree. The proof is a simple exercise. 

Proposition 6.1 For a graph T , the following statements are equivalent: 

i. T is a tree. 
ii. T is an edge-maximal acyclic graph: the addition of any edge to T results in a 

graph which is no longer acyclic. 
iii. T is an edge-minimal connected graph: the suppression of any edge of T results 

in a graph which is no longer connected. 
iv. For every pair of vertices in T there is a unique path joining them. 
v. .|E(T )| = |V (T )| − 1 and T is acyclic. 
vi. .|E(T )| = |V (T )| − 1 and T is connected. 
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A subgraph T of a graph . 𝚪 is a spanning tree of . 𝚪 if it is a tree and .V (T ) = V (𝚪). 
A simple characterization of connected graphs is the following one. 

Lemma 6.2 A graph . 𝚪 is connected if and only if there is an ordering . {v1, . . . , vn}
of the vertices such that .𝚪[v1, . . . , vi] is connected for each .i = 1, . . . , n. In  
particular, . 𝚪 is connected if and only if it contains a spanning tree. 

Proof The first part is a direct consequence of the definition: if . 𝚪 is not connected 
then the condition fails for .i = n and every ordering. 

Reciprocally, if . 𝚪 is connected one can start in any vertex . v1 and define .vi+1 as 
the first vertex not in .{v1, . . . , vi} in a path connecting . v1 with some vertex not in 
that initial segment. 

For the second part, we can choose, for every i, one edge joining . vi with some 
vertex in .{v1, . . . , vi−1}. In this way we obtain a spanning subgraph (a graph with 
vertex set .V (𝚪)) which has .|V (𝚪)| − 1 edges, and it is therefore a tree. ⨅⨆

A natural measure of connectivity of a graph is given by the minimum number of 
vertices whose deletion disconnects the graph. A subset .S ⊂ V (𝚪) is a separator 
of . 𝚪 if .𝚪[V \ S] is not connected. A graph is k-connected if .|V (𝚪)| ⩾ k + 1 and 
every separator of G has at least k vertices. For example a tree is 1-connected but 
not 2-connected. A cycle is 1-connected and also 2-connected but not 3-connected. 
For the complete graph, which has no separators, the definition is to be seen as a 
convention: the complete graph . Kn is k-connected for every .k ⩽ n − 1. 

6.2 Structure of k-Connected Graphs for Small k 

A cut vertex v of a connected graph . 𝚪 is a vertex such that .𝚪[V (𝚪) \ {v}] is not 
connected, i.e. .S = {v} is a separator of size one. 

A block of . 𝚪 is a connected subgraph of . 𝚪 which contains no cut vertices and 
cannot be extended to a larger subgraph which contains no cut vertices. 

Thus, a block is either an isolated vertex, an edge with its two end vertices or 
a maximal 2-connected subgraph. By maximality, if two blocks intersect then they 
have a unique common vertex, which is a cut vertex of the graph. Connected graphs 
can be structured in a tree of blocks. 

Lemma 6.3 Let . 𝚪 be a connected graph and let A be its set of cut vertices. Let 
.B(𝚪) be the bipartite graph with bipartition .V1 = A and . V2 = {B ⊂ 𝚪 :
B is a block of 𝚪} where there is an edge joining a cut vertex .a ∈ A with a block 
.B ∈ V2 if and only if .a ∈ B. Then .B(𝚪) is a tree. 

Proof The block graph is connected since . 𝚪 is connected. If it has a cycle then this 
cycle contains .r ⩾ 2 blocks of . 𝚪 with r cut points, which together form a block, 
contradicting the maximality of the existing blocks. ⨅⨆
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Fig. 6.1 A graph (left) and 
its block graph (right) 

Figure 6.1 shows an example of a graph and its block graph. 
As for a block, its structure can be described as follows. 

Lemma 6.4 A graph is 2-connected if and only if it can be recursively constructed 
starting from a cycle by successively adding a path between two vertices previously 
constructed. 

Proof Suppose that . 𝚪 has been recursively constructed starting from a cycle by 
successively adding a path between two vertices previously constructed. Then every 
vertex is contained in a cycle, so . 𝚪 has no cut vertices. Hence, it is 2-connected. 

Suppose that . 𝚪 is 2-connected. Let . 𝚪' be a maximal subgraph of . 𝚪 constructed 
as stated. Then . 𝚪' is an induced subgraph of . 𝚪, since we can always add an edge 
between two vertices of . 𝚪' under the recursion rule, if that edge is an edge of . 𝚪. 

If there is a vertex .v ∈ V (𝚪) \ V (𝚪') then there is a path from v to some vertex 
in . 𝚪'. Suppose that w is the first vertex of . 𝚪' on such a path. Since . 𝚪 is 2-connected, 
there is another path from v to another vertex .w' /= w in . 𝚪' sharing no other vertices 
than v with the above path. Thus, v lies on a path joining two previously constructed 
vertices, which contradicts the maximality of . 𝚪'. ⨅⨆

Thus, if a graph is 2-connected, then there is a sequence 

. 𝚪0 ⊂ 𝚪1 ⊂ · · · ⊂ 𝚪k = 𝚪

such that . 𝚪0 is a cycle and . 𝚪i is obtained from .𝚪i−1 by adding a path (possibly with 
internal vertices not in .𝚪i−1) joining two vertices in .𝚪i−1. 

We next discuss the more substantial structural characterisation of 3-connected 
graphs. 

The contraction of an edge .e = xy ∈ E(𝚪) consists in identifying its 
two endpoints and the possible multiple edges which may be created by this 
identification, see Fig. 6.2. The resulting graph is denoted by .𝚪/e. Contraction is 
an important notion in the theory of graphs.
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Fig. 6.2 A graph  G on the 
left and the contraction . G/e

on the right 

Fig. 6.3 An example of a 
separation defined by the 
separator S 

We will often use the following view on separators of a graph. If S is a separator 
of . 𝚪 and C is a connected component of .𝚪[V \ S] then . 𝚪 can be written as . 𝚪 =
𝚪1 ∪ 𝚪2 where .𝚪1 = 𝚪[C ∪ S] and .𝚪2 = 𝚪[V \ C] are two graphs whose vertex 
sets intersect in S with the property that there are no edges in . 𝚪 connecting vertices 
in C with vertices in .V \ (C ∪ S). The pair .{𝚪1, 𝚪2} is a separation of . 𝚪 defined by 
S and C. Figure 6.3 shows an example of such a separation. 

The following simple lemma will be useful. 

Lemma 6.5 Let S be a minimum separating set of . 𝚪. Then, every vertex in S is 
adjacent to a vertex in each connected component of .𝚪 − S. 

Proof Suppose that .x ∈ S is not adjacent to a component C of .𝚪 − S. Then, with 
.S' = S \ {x}, C is still a connected connected component of .𝚪 − S', contradicting 
the minimality of . |S|. ⨅⨆

Lemma 6.6 Let . 𝚪 be a 3-connected graph, .𝚪 /= K4. There is an edge .e ∈ 𝚪 such 
that .𝚪/e is still 3-connected. 

Proof Suppose that .𝚪/e is not 3-connected for every edge .e = xy ∈ E(𝚪). 
Let .vxy be the vertex of .𝚪/e resulting from the contraction of e. Every separator 

of .𝚪/e not containing .vxy is also a separator of . 𝚪. Moreover, for every minimum 
separator .{vxy, z} of . 𝚪/e, the set .S = {x, y, z} is a minimum separator of . 𝚪. 
Therefore, every separator of .𝚪/e with cardinality less than three must contain . vxy

and, once this vertex is split, it corresponds to a minimal separator of . 𝚪. It follows 
that .𝚪/e is 2-connected. Moreover, for every minimal separator .{vxy, z} of .𝚪/e the 
set .S = {x, y, z} is a minimal separator of . 𝚪.
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For every edge .e = xy choose .z ∈ V (𝚪) such that .{vxy, z} is a separator of 
.𝚪/e and choose the smallest component C of .(𝚪/xy) − {vxy, z}. From all such 
possibilities of .e = xy, z and C, choose one in which C has the smallest possible 
cardinality. 

Since .{vxy, z} is a minimal cut in .𝚪/xy, z is adjacent to a vertex .u ∈ C. We will 
show that the choice of .e' = uz and some . z' results in a separator .{vuz, z

'} of . 𝚪/uz

with a component . C' with .|C'| < |C|, contradicting the minimality of . |C|. 

Since .{x, y, z} is a separator of . 𝚪 and C is one of its components, all neighbours 
of .u ∈ C different from .x, y and z belong to C. 

There is some vertex . z' such that .{vuz, z
'} is a separator of .𝚪/uz and, as discussed 

before, .{u, z, z'} is a separator of . 𝚪. Since x and y are adjacent, they belong to the 
same connected component of .𝚪−{u, z, z'}. By Lemma 6.5, u is adjacent to all other 
connected components. Let . C' be such a connected component. Since all neighbours 
of u different from x and y are contained in C, it follows that .C' ⊂ C \ {u}, giving  
the claimed contradiction in our choice of C and hence, to the initial assumption. 

⨅⨆

We are now in a position to prove a structural characterisation of 3-connected 
graphs. 

Theorem 6.7 (Tutte) Every 3-Connected Graph . 𝚪 contains a sequence 

. 𝚪0 ⊂ 𝚪1 ⊂ · · · ⊂ 𝚪n = 𝚪

such that 

1. .𝚪0 = K4, 
2. .𝚪i = 𝚪i+1/xy for some .e = xy ∈ E(𝚪i+1) such that .d𝚪i+1(x), d𝚪i+1(y) ⩾ 3. 

Proof Suppose that . 𝚪 is 3-connected. By Lemma 6.6, there is an edge . e ∈ E(𝚪)

whose contraction .𝚪/e results in a graph which has one vertex less and is still 3-
connected. By iterating this procedure, we obtain a sequence as claimed. Note that 
the only 3-connected graph with four vertices is . K4. 

Reciprocally, a graph containing a sequence as described is 3-connected. To see 
this it suffices to show that, if . 𝚪i is 3-connected, then a graph .𝚪i+1, with the property 
that .𝚪i = 𝚪i+1/xy for some edge xy, such that .d𝚪i+1(x), d𝚪i+1(y) ⩾ 3, is also 3-
connected. Suppose not and let S be a separator of .𝚪i+1 with two vertices. It cannot
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Fig. 6.4 A construction of a 
3-connected graph with 6 
vertices starting from . K4

be that .S = {x, y}, since otherwise the contracted edge .vxy would be a separator 
of . 𝚪i . It also cannot be that S is disjoint from .{x, y}, since S otherwise would be a 
separator of . 𝚪i . If .S ∩ {x, y} = {x} then y is isolated in a singleton component of 
.𝚪i+1 \S since other vertices of that component would be separated by . S \{x}∪{vxy}
in . 𝚪i . But then this implies that y has degree at most two. ⨅⨆

It follows from Tutte’s theorem that every 3-connected graph can be constructed 
from . K4 by splitting a vertex into two adjacent vertices and connecting them to the 
old neighborhood distributing the edges among the new two vertices such that each 
one has degree at least three (Fig. 6.4). 

6.3 Menger’s Theorem 

Menger’s theorem connects two dual notions of connectivity: separating sets and 
number of disjoint paths connecting two sets. Let .A,B ⊂ V (𝚪) be two sets 
of vertices. An AB-separator is a set S of vertices such that there are no paths 
connecting A with B in .𝚪 − S. A vertex in .A ∩ B is connected by itself by a path of 
length 0 in this definition, which implies that every AB-separator contains .A ∩ B. 
An AB-connector is a subgraph .𝚪' ⊂ 𝚪 each of its connected components is a path 
containing precisely one vertex in A and one vertex in B. A graph with no edges 
can also be an AB-connector, formed by isolated vertices in .A ∩ B. 

Theorem 6.8 (Menger, Local Version) Let .A,B be two nonempty subsets of 
vertices of a graph . 𝚪. The cardinality of a minimum AB-separator equals the 
maximum number of components (paths) in an AB-connector. 

Proof Let S be a minimal AB-separator and . 𝚪' an AB-connector containing c 
paths. It is clear that every separator must contain one point of every path in . 𝚪'
so .|S| ⩾ c. 

We will prove that there is an AB-connector with . |S| paths, by induction on the 
number of edges of . 𝚪. If . 𝚪 is edgeless one can take .A ∩ B as both, a maximal 
AB-connector and minimal AB-separator. 

Suppose . 𝚪 is not edgeless and let s be the cardinality of a minimum AB-separator 
in . 𝚪.
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Fig. 6.5 The construction of 
the AB-connector 
.𝚪1 ∪ 𝚪2 ∪ {xy} in 
Theorem 6.8 

Let .e = xy be an edge of . 𝚪. The statement holds in .𝚪 − e by induction. If a 
minimum separator of .𝚪 − e has the same cardinality s as in . 𝚪 then we are done, as 
an AB-connector in .𝚪 − e is also an AB-connector in . 𝚪. 

Suppose that . S' is an AB-separator in .𝚪 − e with .|S'| < s. Since . S1 = S' ∪ {x}
and .S2 = S' ∪ {y} are both AB-separators in . 𝚪, they both have s vertices which 
implies that .|S'| = s − 1. 

Let . S'' be an .AS1-separator in .𝚪 − e. Observe that . S'' is also an AB-separator in 
. 𝚪, since every path connecting A and B either uses the edge .e = xy or intersects 
a vertex of . S'. In particular .|S''| ⩾ s. By induction, there is an .AS1-connector 
. 𝚪1 in .𝚪 − e with s paths, thus meeting each point of . S1 precisely once. The same 
argument applied to an .S2B-separator gives an .S2B-connector . 𝚪2 with s paths. Now 
.𝚪1 ∪ 𝚪2 ∪ {xy} is an AB-connector with s paths (Fig. 6.5). ⨅⨆

Theorem 6.9 (Menger, Global Version) A graph . 𝚪 with .|V (𝚪)| > k is k-
connected if and only if every pair of vertices is joined by k internally disjoint paths. 

Proof Let .x, y ∈ V (𝚪). Take .A = N(x) and .B = N(y). Let S be an AB-separator. 
If .|S| < k then we can separate x and y by S contradicting that the graph is k-
connected. By Theorem 6.8, there is an AB-connector with k paths. Together with 
the edges joining A with x and B with y one obtains k internally disjoint paths. ⨅⨆

Menger’s theorem is a central result in combinatorics belonging to a family 
of results called min–max theorems. The theorem of Hall, Theorem 4.3, on the  
existence distinct representatives of a family of sets, or on the existence of a 
matching in bipartite graphs, Theorem 5.3, are examples of such results. As an 
illustration, we show an application of Menger’s theorem to prove the following 
theorem of Ford and Fulkerson. 

Let .{A1, . . . , Am} and .{B1, . . . , Bm} be two families of subsets of a ground set 
X. A common system of distinct representatives is a set .{x1, . . . , xm} ⊂ X such 
that, for some permutations .σ, τ of .{1, . . . , m}, we have .xi ∈ Aσ(i) ∩ Bτ(i) for each 
i. 

Theorem 6.10 The families of subsets .{A1, . . . , Am} and .{B1, . . . , Bm} have a 
common system of distinct representatives if and only if for each pair . I, J ⊂
{1, . . . , m},
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. |(∪i∈IAi) ∩ (∪j∈J Bj )| ⩾ |I | + |J | − m.

Proof Construct the graph . 𝚪 with vertex set 

. V (𝚪) = {s} ∪ {A1, . . . , Am} ∪ {v1, . . . , vm} ∪ {B1, . . . , Bm} ∪ {t},

and edge set 

. E(𝚪) = {sAi : i ∈ {1, . . . , m}} ∪ {Aivx : i ∈ {1, . . . , m}, x ∈ Ai}

. ∪ {Bjvy : i ∈ {1, . . . , m}, y ∈ Bi} ∪ {Bj t : j ∈ {1, . . . , m}}.

See Fig. 6.6 for an example. 
We observe that there is a common system of distinct of representatives if and 

only if there are m internally disjoint paths joining s and t in . 𝚪. Indeed, for any 
such path with vertices .s, Ai, x, Bj , t , the vertex x can be taken to be the common 
representative of . Ai and . Bj . 

By Menger’s theorem, such a set of paths exists if and only if every .{s, t}-
separator of . 𝚪 has more than m vertices. 

Let S be an .{s, t}-separator and set 

. I = {vi ∈ {v1, . . . , vm} : Ai /∈ S}

and 

. J = {vj ∈ {v1, . . . , vm} : Bj /∈ S}.

By the definition of I and J , we have that S contains .{v1, . . . , vm} \ I and 
.{v1, . . . , vm} \ J . 

Moreover, S must contain 

. (∪i∈IAi) ∩ (∪j∈J Bj )

since if there is a 

. k ∈ (∪i∈IAi) ∩ (∪j∈J Bj ) \ S

then there is a path joining s and t which passes through . vk . 
Therefore 

. |S| ⩾ |(∪i∈IAi) ∩ (∪j∈J Bj )| + (m − |I |) + (m − |J |)

which implies 

.|S| ⩾ |I | + |J | − m + (m − |I |) + (m − |J |) = m.
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Fig. 6.6 An example of the 
graph in the proof of 
Theorem 6.10 for the sets 
. A1 = {1, 3, 4}, A2 =
{2, 3}, A3 = {3, 5} and 
. B1 = {1, 2}, B2 =
{2, 3}, B3 = {2, 5}

⨅⨆

The connectivity .κ(𝚪) of a graph . 𝚪 is the largest k such that . 𝚪 is k-connected. 
It follows from Menger’s theorem (or from the definition) that .κ(𝚪) ⩽ δ(𝚪), 
the minimum degree of . 𝚪. Even if large minimum degree does not ensure high 
connectivity, the following theorem of Mader gives some connection. Recall that 
.Δ(𝚪) indicates graph’s maximum degree. 

Theorem 6.11 (Mader) A graph . 𝚪 with average degree .d̄(𝚪) = 4k contains a 
k-connected subgraph . 𝚪' with average degree .d̄(𝚪') > d̄(𝚪) − 2k. 

Proof We observe that 

. n > Δ(𝚪) ⩾ d̄(𝚪) ⩾ 4k

and 

. m = nd̄(𝚪)

2
⩾ 2kn.

We will prove, by induction, the stronger statement that if .n ⩾ 2k − 1 and 

. m ⩾ (2k − 3)(n − k + 1) + 1

then . 𝚪 has a k-connected subgraph with average degree larger than .d̄(𝚪) − 2k. 
If .n = 2k − 1 then .m ⩾ n(n − 1)/2 so that .𝚪 = Kn satisfies the claim. 
Suppose .n ⩾ 2k. If . 𝚪 is k-connected then there is nothing to prove. Furthermore, 

if .δ(𝚪) ⩽ 2k −3, we can apply induction on .𝚪 −x, where x is a vertex of minimum 
degree in . 𝚪. Therefore, we can suppose that .δ(𝚪) ⩾ 2k − 2. 

Let S be a separator in . 𝚪 with cardinality .|S| < k and let .𝚪1, 𝚪2 ⊂ 𝚪 such 
that .𝚪 = 𝚪1 ∪ 𝚪2 and .𝚪1 ∩ 𝚪2 = 𝚪[S]. Let .ni = |V (𝚪i)| and .mi = |E(𝚪i)|. 
Since .δ(𝚪) ⩾ 2k − 2 and all neighbours of a vertex in .𝚪1 \ 𝚪2 are in . 𝚪1 we have 
.n1 ⩾ 2k−2 and .n2 ⩾ 2k−2 for the analogous reason. Since .n ⩾ n1 +n2 − (k−1),
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one of the two satisfies the induction hypothesis, otherwise 

. m ⩽ m1 + m2 < (2k − 3)(n1 + n2 − 2k + 2) ⩽ (2k − 3)(n − k + 1).

⨅⨆

6.4 Edge Connectivity 

The notion of vertex connectivity can be translated to edge-separators. A set . L ⊂
E(𝚪) is an edge-separator of a graph . 𝚪 if .𝚪 − L is not connected. A graph . 𝚪 is 
k-edge-connected if .𝚪 − L is connected for every set .L ⊂ E(𝚪) with . |L| < k

edges. If an edge e has the property that .𝚪 − e has more connected components than 
. 𝚪 then we say that e is a bridge. The minimum k such that . 𝚪 is k-edge-connected 
is the edge-connectivity of . 𝚪, which is denoted by .λ(𝚪). 

The following proposition lists some basic properties of edge connectivity. 

Proposition 6.12 For any graph . 𝚪, 

i. .κ(𝚪) ⩽ λ(𝚪) ⩽ δ(𝚪). 
ii. every minimal edge-separator of a connected graph separates the graph in two 

connected components. 
iii. if . 𝚪 is k-edge-connected then, for every edge .e ∈ E(𝚪), the graph .𝚪 − e is 

.(k − 1)-edge-connected. 

Proof 

i. Suppose L is an edge-separator of . 𝚪. A subset S of vertices which cover the 
edges of L is a (vertex) separator for . 𝚪 and there is some such separator such 
that .|S| ⩽ |L|. Hence, .κ(𝚪) ⩽ λ(𝚪). If  v is a vertex of minimum degree then the 
set of edges L, incident with v, is an edge-separator of . 𝚪 of size .δ(𝚪). Hence, 
.λ(𝚪) ⩽ δ(𝚪). 

ii. Suppose L is an edge-separator of . 𝚪. If .𝚪 − L is has more than two connected 
components then .L − e is an edge separator for .𝚪 − L. 

iii. This is immediate. 
⨅⨆

We now use Menger’s theorem (local version), Theorem 6.8 to prove a similar 
result for edge-connectivity. 

Theorem 6.13 (Menger) A graph . 𝚪 is k-edge-connected if and only if every pair 
of vertices can be joined by k edge-disjoint paths. 

Proof If every pair of vertices can be joined by k edge-disjoint paths then we must 
remove at least k edges to disconnect . 𝚪. Hence, . 𝚪 is k-edge-connected.
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Suppose . 𝚪 is k-edge-connected. 
Recall that the line graph .L(𝚪) of . 𝚪 has the edge set .E(𝚪) as vertex set and 

two edges are adjacent whenever they are incident in . 𝚪. A set .S ⊂ E(𝚪) is an 
edge-separator of . 𝚪 if and only if it is a (vertex) separator of .L(𝚪). 

Take two vertices .x, y ∈ V (𝚪) and let A be the set of edges incident with x and 
let B be the set of edges incident with y. The sets  A and B are subsets of vertices 
of .L(𝚪). From the previous paragraph, an AB-separator of .L(𝚪) has size at least k. 
Thus, by Theorem 6.8, there is an AB-connector with at least k components (paths). 

The vertices on these paths in .L(𝚪) describe the edges on disjoint paths in . 𝚪
which join a neighbour of x to a neighbour in y. Each of these can then be extended 
to a path from x to y by adding an edge incident with x and an edge incident with 
y. ⨅⨆

6.5 Notes and References 

Menger’s theorem is one of the central theorems in graph theory. The simple proof 
of the theorem is taken from Goring (2000). The theorem on common distinct 
representatives was obtained by Ford and Fulkerson (1958), as an application 
of their max-flow/min-cut theorem, which is one of many min-max theorems 
equivalent to Menger theorem. 

6.6 Exercises 

Exercise 6.1 Let 𝚪 be 2-connected. Show (without using Menger’s theorem) that 
every pair of edges is contained in a cycle. 

Exercise 6.2 Let 𝚪 be 2-connected different from K3. Show that, for each edge e, 
either 𝚪 − e or 𝚪/e is 2-connected. 

Exercise 6.3 Let 𝚪 be 3-connected and let xy be an edge of 𝚪. Show that 𝚪/xy is 
3-connected if and only if 𝚪 − {x, y} is 2-connected. 

Exercise 6.4 Show that if 𝚪 is k-connected, k ⩾ 2, then for every k vertices there 
is a cycle containing them. 

Exercise 6.5 Let 𝚪 be k-connected. Show that, for every edge e ∈ E(𝚪), 𝚪 − e is 
(k − 1)-connected. 

Exercise 6.6 Let S, S' be distinct minimal separating sets of a graph 𝚪. Show that, 
if S intersects at least two connected components of 𝚪 − S' then S' intersects each 
component of 𝚪 − S (and S intersects every component of 𝚪 − S').
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Exercise 6.7 Give an example of a k-edge-connected graph 𝚪 with vertex connec-
tivity κ(𝚪) = 1. 

Exercise 6.8 Show that a cubic 3-edge connected graph is also 3-connected. 

Exercise 6.9 Prove Hall’s theorem on the existence of a perfect matching in a 
bipartite graph by using Menger’s theorem. 

Exercise 6.10 Show that the n-cube Qn = K2 ×  · · ·  ×  K2 (n-times, cartesian 
product) is n-connected. 

Exercise 6.11 A k-split of a graph 𝚪 is the graph H obtained from 𝚪 by replacing 
one vertex x by two adjacent vertices x1, x2 such that NH (x1)∪NH (x2) = N𝚪(x)∪ 
{x1, x2} and dH (x1), dH (x2) ⩾ k. Show that, if 𝚪 is k-connected then every k-split 
of 𝚪 is k-connected. 

Exercise 6.12 Let 𝚪 be a k-regular, k-connected graph with an even number of 
vertices. 

For each non-empty subset W of vertices of 𝚪, let  U be the set of odd components 
of 𝚪 \W . Consider the bi-partite graph 𝚪W with stable sets U and W , where ui ∈ U 
is joined by an edge to wj ∈ W if and only if the odd component ui is joined to wj 
in the graph 𝚪. 

i. Prove that if W is separating then deg ui ⩾ k, deg wj ⩽ k and hence |U | ⩽ |W |. 
ii. Prove that 𝚪 has a perfect matching. 

iii. Prove that a 3-connected graph with an even number of vertices which does not 
have a perfect matching has at least 8 vertices and construct such a graph with 8 
vertices.



7Planarity 

Planarity is one of the classical topics in graph theory, partly due to the celebrated 
4-colour theorem which largely fostered the development of graph theory. This 
theorem will be discussed in the next chapter, whilst this chapter will focus solely 
on the planarity property. As a blending of combinatorics and topology, there are 
some topological preliminaries which are necessary, but these will not be discussed 
too deeply. The central result in this chapter is Kuratowski’s theorem, which 
characterises planar graphs in terms of forbidden minors. This is a result with deep 
extensions in graph theory. 

7.1 Plane Graphs 

A plane graph .𝚪 = (V ,E) is a graph where V is a finite set of points of . R2

and E is a set of simple arcs (continuous functions .f : [0, 1] → R
2 such that 

.{f (0), f (1)} an edge of . 𝚪) which are internally pairwise disjoint (only meet at 
incident vertices of edges). A graph is planar if it is isomorphic to a plane graph. 
Such an isomorphism is an embedding of . 𝚪 in the plane. A face of a plane graph 
. 𝚪 is an arc-connected component of .R2 \ E(𝚪), i.e. any two points in the face are 
connected by a continuous, not necessarily straight, line. 

Lemma 7.1 Let . 𝚪 be a planar graph. There is an embedding of . 𝚪 in the plane such 
that edges are polygonal arcs. 

Proof Consider a plane embedding of the graph. For every vertex u let .ϵu > 0 be 
such that the closed disc .D(u, ϵu) centred at u with radius . ϵu intersects only the 
edges incident with u and no other edge in the embedding. For every edge . e = uv

let . ue and . ve be the intersections of the simple arc joining u and v with the boundary 
of the discs .D(u, ϵu) and .D(v, ϵv) respectively. Since, . 𝚪 is planar, for every point 
x in the restriction of this edge joining . ue with . ve, there is an open disc centered 
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at x which does not intersect any other edge of the graph. Since this restriction is a 
compact set in . R2, there is a finite number of these discs which cover it. Now we can 
replace the arc within each such disc by a straight line joining its two intersections 
with the boundary of the disc. Similarly we can replace the arc in .D(u, ϵu) with a 
straight line joining u with . ue. In this way every edge can be replaced by a polygonal 
line and no two of them intersect except at the incident vertices of edges, and we 
obtain a plane embedding of . 𝚪 in which edges are polygonal arcs. ⨅⨆

A basic topological ingredient in what follows is the Jordan Curve theorem, a 
version of which we now prove for polygonal curves. This is sufficient for many 
applications to planar graphs. 

Theorem 7.2 (Jordan Curve Theorem) A closed simple polygonal arc C in the 
plane splits . R2 into precisely two arc-connected components, one of which is 
unbounded, having C as a common boundary. 

Proof Let .P1, . . . , Pn be the straight segments of C. We may assume that none 
of the segments . Pi is horizontal. To each point .z ∈ R

2 \ C we define .π(z) to be 
the number of points of C that a horizontal ray starting at z to the right intersects, 
with the convention that vertices of C are counted as intersections only if the two 
segments meeting in that point lie in different sides of the ray. Let . π̄(z) = π(z)

(mod 2). 
We observe that two points on a segment in .R2 \ C have the same value of . π̄ , 

since the value of . π changes along the segment only when a vertex of C is met and 
the two segments incident to that vertex lie on the same side of the ray, thus not 
changing the parity of . π (see Fig. 7.1 (left)). It follows that a polygonal line joining 
two points with different values of . π̄ must intersect C and these two points lie in 
different arc-connected components of .R2 \ C. 

It remains to show that two points .z1, z2 with .π̄(z1) = π̄(z2) can be connected 
by a polygonal line not intersecting C. If the segment .z1z2 does not intersect C then 
we are done. Otherwise let . z'

1 and . z'
2 be the first and last intersections of the segment 

.z1z2 with C. Consider a sufficiently small .ϵ > 0 such that the set . U = {x ∈ R
2 :

d(x, C) = ϵ} does not intersect C. Let . z'
1' be the point in U at distance . ϵ from . z'

1

Fig. 7.1 Two points in a segment not intersecting C have the same value of . π̄ (left) and two points 
with the same value of . π̄ can be connected by a (dotted) arc in .R2 \ C (right)
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on the segment .z1z
'
1, and follow the polygonal line along U from . z'

1' until we reach 
the point .z''2 in U at distance . ϵ to . z'

2 (see Fig. 7.1 (right)), an arc which does not 
intersect C. Now the segment .z''2z2 does not intersect C either as, if it did, then . z''2
and . z2 would be in different sides of the segment of C containing . z'

2 and would have 
different value of . π̄ . ⨅⨆

It is clear that a graph is planar if and only if each of its connected components 
is planar. For connected graphs the following three results describe properties of the 
faces of . 𝚪. 

Proposition 7.3 Every tree T is planar and a plane embedding of T has only one 
face. 

Proof By induction on the number n of vertices. The result is clear for .n = 1, 2. If  
. n > 2, let  x be a leaf of T and y be its only neighbour in T . By induction . T ' = T −x

is planar and every plane embedding of . T ' has an only face. For every point in . R2\T '
there is an arc joining it with the vertex y, giving a plane embedding of T . Moreover 
such an arc cannot create a new arc-connected component of .R2 − T . ⨅⨆

Proposition 7.4 Let . 𝚪 be a 2-connected planar graph. Every face of . 𝚪 is bounded 
by a cycle. 

Proof By induction on the number of cycles of . 𝚪. If . 𝚪 is a cycle then the statement 
holds. Otherwise, by Lemma 6.4, . 𝚪 can be obtained from some subgraph . 𝚪' of . 𝚪
by adding a path P with its end points in . 𝚪' and no other vertex in . 𝚪'. By induction, 
every face of . 𝚪' is bounded by a cycle. The interior of P lies in a face . f ' of . 𝚪'
which, by induction, is bounded by a cycle C. Hence, every face of . 𝚪 is bounded by 
a cycle. ⨅⨆

One can say more if . 𝚪 is 3-connected. 

Proposition 7.5 (Tutte) Let . 𝚪 be a 3-connected planar graph. A cycle C is the 
boundary of a face in a plane embedding of . 𝚪 if and only if C is induced (it has no 
chords) and nonseparating (.𝚪 − C is connected). 

Proof The reverse implication follows from the Jordan curve theorem, Theo-
rem 7.2. If C is an induced cycle then one of the two faces of C contains no vertices 
of . 𝚪. Hence, C is the boundary of a face of . 𝚪. 

Suppose now that C is a boundary of a face f in a plane embedding of . 𝚪. Suppose 
that C has a chord xy joining two nonconsecutive vertices along C. Then C must 
be the boundary of the external face of the plane embedding. Let . C' be the cycle 
formed by a path from x to y in C and the edge xy. Let .u, v be two vertices in C 
in different segments of .C \ {x, y}, with u on . C', see Fig. 7.2. Every path joining u 
with v in . 𝚪 not using the two edges of C incident to u must cross the cycle . C' and
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Fig. 7.2 If the boundary 
cycle C of a face is not 
induced then u and v are only 
connected by two disjoint 
paths: G is not 3-connected 

therefore the edge xy, contradicting the assumption that . 𝚪 is planar. Therefore there 
are only 2 disjoint paths from u to v in . 𝚪 which, by Theorem 6.9, contradicts the 
assumption that . 𝚪 is 3-connected. Hence, C is induced. 

To show that C is nonseparating, let .x, y be two vertices not in C. Since . 𝚪
is 3-connected, Theorem 6.9 implies that there are three internally disjoint paths 
.P1, P2, P3 joining x and y. The union of these three paths separate the plane into 
three arc-connected components, and every face of . 𝚪 is contained in one of them. 
Therefore, the removal of C from . 𝚪 does not intersect one of the three paths and so 
.𝚪 − C is connected. ⨅⨆

We now prove Euler’s formula for planar graphs. 

Theorem 7.6 (Euler Formula) Let . 𝚪 be a connected plane graph with n vertices, 
m edges and f faces. Then 

. n − m + f = 2.

Proof For each fixed n we prove the result by induction on m. When . m = n − 1
then . 𝚪 is a tree and .R

2 \ E(𝚪) has only one face. For .m > n − 1, the graph has at 
least one cycle. Let e be an edge in this cycle, which is in the boundary of two faces 
of . 𝚪. The removal of this edge in . 𝚪 results in a graph with one less face and one less 
edge. The formula follows by induction. ⨅⨆

As a consequence of Euler’s formula we obtain the following crucial statements 
about planar graphs. In the following statement a maximal planar graph is a graph 
which has a planar embedding but for which adding an edge gives a graph which 
does not. 

Corollary 7.7 A planar graph . 𝚪 has at most .3n− 6 edges with equality if and only 
if . 𝚪 is a triangulation (every face is a triangle). Every planar graph is a spanning 
subgraph of a maximal planar graph, which is a triangulation.
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If . 𝚪 is bipartite then it has at most .2n − 4 edges with equality if and only 
if . 𝚪 is a quadrangulation (every face is a quadrangle). Every bipartite planar 
graph is a spanning subgraph of a maximal bipartite planar graph, which is a 
quadrangulation. 

In particular, . K5 and .K3,3 are not planar. 

Proof Every edge is in two faces and every face is defined by at least three edges, 
so .2m ⩾ 3f . By substituting in Euler’s formula, we have 

. 3n − m ⩾ 3n − 3m + 3f = 6.

Planarity is preserved by the addition of a chord in a cycle of length at least four in 
a planar graph . 𝚪. By successively adding such chords we eventually obtain a planar 
graph . 𝚪' all of whose faces are triangles. Thus, it has .3n − 6 edges, and has . 𝚪 as a 
spanning subgraph. 

If . 𝚪 is bipartite then it is triangle-free, so a similar double counting argument 
gives .2m ⩾ 4f . Substituting in Euler’s formula gives .m ⩽ 2n − 4. Again,  
adding chords to even cycles of length at least 6 in a bipartite planar graph . 𝚪
while preserving bipartiteness leads to a bipartite graph . 𝚪' all of all whose faces 
are quadrangles, so it has .2m − 4 edges, and contains . 𝚪 as a spanning subgraph. 

Since . K5 has .10 > 3 · 5 − 6 edges, it can not be planar. 
Similarly, .K3,3 has .9 > 2 · 6 − 4 edges, so it is not planar. ⨅⨆

7.2 Kuratowski’s Theorem 

A subdivision of an edge .e = xy in a graph . 𝚪 is the substitution of e by a path 
joining x and y (and its internal vertices have degree two). A subdivision of a graph 
. 𝚪 is the graph obtained from . 𝚪 by subdividing some of its edges. We say that a 
graph . 𝚪 is a topological minor of a graph . 𝚪' if . 𝚪' contains a subgraph which is a 
subdivision of . 𝚪. We write .𝚪 ⪯T 𝚪' if . 𝚪 is a topological minor of . 𝚪'. The relation 
.⪯T is a partial order on the class of all graphs. 

It is clear from the definition that if . 𝚪 is a planar graph and .𝚪' ⪯T 𝚪 then . 𝚪' is 
also planar. In other words, planarity is an hereditary property of the topological 
minor relation. In particular, a planar graph can not contain .K5 nor .K3,3 as 
topological minors. The celebrated theorem of Kuratowski characterizes planarity 
in terms of forbidden topological minors. 

Theorem 7.8 (Kuratowski) A graph is planar if and only if it contains no . K5 and 
no .K3,3 as topological minors. 

We first show 3-connected graphs free of .K5,K3,3 topological minors satisfy 
a stronger property. A plane embedding of a graph . 𝚪 is convex if every edge is a 
straight line and every face is a convex polygon (the complement of the outer face 
is also a convex polygon).
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Lemma 7.9 Let . 𝚪 be a 3-connected graph. If .K5,K3,3 ≰T 𝚪 then . 𝚪 admits a plane 
convex embedding. 

Proof The proof is by induction on n. For .n = 4 a 3-connected graph is . K4, which 
admits a convex plane embedding. 

Suppose .n ⩾ 5. By Lemma 6.6, there is an edge .e = xy in . 𝚪 such that .𝚪/e is 
3-connected. We note that .𝚪/e is free of subdivisions of . K5 or .K3,3 (otherwise these 
subdivisions would occur in . 𝚪 as well). By the induction hypothesis, .𝚪/e admits a 
convex embedding in the plane. 

Let .vxy be the vertex of .𝚪/e obtained by contracting the edge e. Since .𝚪/e is 3-
connected, .(𝚪/e) − vxy is 2-connected. Therefore, in the embedding of .𝚪/e, when 
we remove the vertex . vxy , it follows that the face which contains the neighbours 
of .vxy is a cycle C. The cycle C contains all neighbours of x and of y in .𝚪 − e. 
Let .x1, . . . , xk be the neighbours of x in this cycle listed in anti-clockwise order. If 
all neighbours of y are in the segment of the cycle between . xi and .xi+1 for some 
i (modulo k), then the convex embedding of .𝚪/e can be extended to one of . 𝚪 by 
placing x in the position of .vxy and placing y within the triangle .xxixi+1 (here we 
use the property that the embedding of .𝚪/e is convex). We show that, if this is not 
the case, then we reach a contradiction. We consider three cases. 

Since . 𝚪 is 3-connected, the vertex y has at least two neighbours in C. 
Suppose all neighbours of of y are neighbours of x. 

Case (a). The vertex y has three neighbours .z, z', z'' in common with x. Then the 
five vertices .x, y, x0, x1, x2 form a subdivision of . K5 (see Fig. 7.3a). 

Case (b). The vertex y has two nonconsecutive neighbours .xi, xj in common with 
x. Then, the vertices .y, xi−1, xi+1 and .x, xi, xj form a subdivision of .K3,3 (see 

Fig. 7.3 An illustration of the three cases in the proof of Lemma 7.9
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Fig. 7.4 The case that . {u, v}
is a separating set of uv is not 
an edge 

Fig. 7.3b). Note that . xj is joined by disjoint paths (contained in C) to . xi and . xi+1
and these paths do not contain the edges .xixi+1 or .xixi−1. 
In the final case we suppose y has a neighbour which is not a neighbour of x. 

Case (c). The vertex y has a neighbour z in the interior of some segment . xixi+1
and another one . z' in a different segment (here we use that . 𝚪 is 3-connected: 
y has at least two neighbours in the cycle C). Then the vertices .y, xi, xi+1 and 
.x, z, z' form a subdivision of .K3,3 (see Fig. 7.3c). 

⨅⨆

The second step in the proof of Kuratowski’s theorem is to show that 3-
connectedness can be assumed. 

Lemma 7.10 Let . 𝚪 be a graph such that .K5,K3,3 ≰T 𝚪 and . 𝚪 is edge-maximal 
with this property. Then . 𝚪 is either .K1,K2,K3 or 3-connected. 

Proof This is proven by induction on n again, the cases with .n ⩽ 4 being clear. Let 
. 𝚪 be an edge maximal graph with .n > 4 vertices not containing .X ∈ {K3,3,K5} as 
a topological minor. Let S be a minimum separating set of . 𝚪 and let . 𝚪1, 𝚪2 ⊂ 𝚪

such that .𝚪 = 𝚪1 ∪ 𝚪2, .V (𝚪1) ∩ V (𝚪2) = S and .E(𝚪) = E(𝚪1) ∪ E(𝚪2). We  
note that each of . 𝚪1 and . 𝚪2 contain no .X ∈ {K3,3,K5} as topological minor, since 
otherwise it would be present in . 𝚪. 

If .S = ∅ then clearly . 𝚪 is not edge-maximal since any edge xy joining . 𝚪1 with 
. 𝚪2 cannot produce a subdivision of X in .𝚪 + xy that was not present in . 𝚪. 

Suppose that .S = {u}. Let .x ∈ V (𝚪1) ∩ N(u) and .y ∈ V (𝚪2) ∩ N(u). Suppose 
there is a subdivision of .X ∈ {K3,3,K5} in .𝚪 + xy. Since X is 3-connected, . V (X)

must be contained in one of . 𝚪1 or . 𝚪2, say in . 𝚪1. A path P in .𝚪 + xy which is a 
subdivided edge of X using xy must contain a sub-path .Pyu from y to u (possibly 
the edge yu), since it has to come back to . 𝚪1. Thus, the edge xy and the sub-path 
.Pyu in P can be replaced by xu, so that .X ⪯T 𝚪1 ⊂ 𝚪, a contradiction. 

Suppose that .S = {u, v}, see Fig. 7.4. If the edge uv is not in . 𝚪 then there is a 
subdivision of .X ∈ {K3,3,K5} in .𝚪 + uv. As in the previous case when .|S| = 1, 
since X is 3-connected, we can assume that .V (X) is contained in . 𝚪1. A path in 
.𝚪 + uv which is a subdivided edge of X using uv can be replaced by a path in . 𝚪2
joining u and v and such a path must exist by the minimality of . |S|. This would 
imply a subdivision of X in . 𝚪. Therefore, we can assume .uv ∈ E(𝚪).
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Fig. 7.5 The case that . {u, v}
is a separating set of uv is an 
edge 

Fig. 7.6 Plane embedding of 
. 𝚪 in Lemma 7.10 

Suppose .uv ∈ E(𝚪), see Fig. 7.5. Each of . 𝚪1 and . 𝚪2 is edge-maximal, since the 
addition of an edge xy to . 𝚪1 produces a subdivision of .X ∈ {K3,3,K5} in . 𝚪 + xy

which, since X is 3-connected, must have its vertex set contained in . 𝚪1. Every path 
which is a subdivided edge of X using edges in . 𝚪2 can be replaced by a path using 
the edge uv, so that .X ⪯T 𝚪1. By the induction hypothesis, each of . 𝚪1 and . 𝚪2 are 
3-connected or . K3 and, by Lemma 7.9, they are planar. 

Consider convex embeddings of . 𝚪1 and . 𝚪2 such that uv lies in the outer face in 
each embedding, and identify the edge uv in both embeddings. Let .zi ∈ V (𝚪i) be a 
vertex adjacent to u different from v in the outer face for each .i = 1, 2 (see Fig. 7.6). 
Then .𝚪 + z1z2 is planar and so it does not contain .X ∈ {K3,3,K5} as a topological 
minor, contradicting that . 𝚪 is edge-maximal with this property. 

⨅⨆

We are now in a position to prove Kuratowski’s theorem. 

Proof of Theorem 7.8 One implication is clear by Corollary 7.7: . K5 or .K3,3 are not 
planar and planarity is a hereditary property for the topological minor relation. 

For the reciprocal, we can assume that . 𝚪 is edge-maximal, does not contain . K5
and .K3,3 as topological minors and that .n ⩾ 4. By Lemma 7.10, . 𝚪 is 3-connected, 
and by Lemma 7.9, it is planar. ⨅⨆

7.3 Wagner’s Theorem 

A minor . 𝚪' of a graph . 𝚪 is a subgraph of a graph obtained from . 𝚪 by contracting 
some edges. We denote by .𝚪' ⪯ 𝚪 the relation of being a minor. If . 𝚪' is a minor of 
. 𝚪 then there is as a subgraph .𝚪' ⊂ 𝚪 which admits a partition 

.V (𝚪') = X1 ∪ · · · ∪ Xm
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such that each .𝚪'[Xi] is connected and, by contracting all its edges, we obtain . 𝚪'. 
We say that this partition is associated to . 𝚪'. 

We observe that .𝚪' ⪯T 𝚪 implies .𝚪' ⪯ 𝚪. The relation . ⪯ is a partial order on the 
family of all graphs. The deep significance of this partial order in graph theory grew 
partly from Kuratowski’s theorem, or rather by the following equivalent version of 
it. 

Theorem 7.11 (Wagner) A graph is planar if and only if neither . K5 nor .K3,3 is a 
minor of . 𝚪. 

The proof of Theorem 7.11 uses the following lemmas relating minors and 
topological minors. Recall that .Δ(𝚪) indicates the maximum degree of . 𝚪. 

Lemma 7.12 Let K be a graph with maximum degree .Δ(K) ⩽ 3. A graph . 𝚪
containing K as a minor also contains K as a topological minor. 

Proof Let . 𝚪' be a minimal subgraph of . 𝚪 containing a minor of K , and let . V (𝚪') =
X1, . . . , Xm, .m = |V (K)|, be a partition of . 𝚪' such that the contraction of each . Xi

in . 𝚪' gives rise to K . By the minimality of . 𝚪', each induced subgraph .𝚪'[Xi] is a 
tree. Since .Δ(K) ⩽ 3, the edges of K attached to .𝚪'[Xi] use at most three vertices 
of this tree. Again by the minimality of . 𝚪', .𝚪'[Xi] has at most three leaves, namely, 
it is a subdivision of .K1,K2 or .K1,3. Hence, . 𝚪' (and . 𝚪) contains a subdivision of 
K . ⨅⨆

Lemma 7.13 If a graph . 𝚪 contains . K5 as a minor, it also contains .K3,3 or . K5 as a 
topological minor. 

Proof Suppose that .K5 ⪯ 𝚪 and let .𝚪' ⩽ 𝚪 again be a minimal subgraph which 
contains . K5 as a minor. Let .X1, . . . , X5 ⊂ V (𝚪') be a partition of . 𝚪' such that the 
contraction of each . Xi in . 𝚪' results in . K5. By minimality of . 𝚪', each .𝚪'[Xi] is a 
tree and it is connected by a single edge with each .𝚪'[Xj ], .j /= i. In particular, it 
has at most four leaves. If each .𝚪'[Xi] is either one vertex or isomorphic to . K1,4
then . 𝚪' contains a subdivision of . K5. Suppose that .𝚪'[X1] is a tree different from 
a single vertex or .K1,4. Then .𝚪'[X1] together with the four edges joining . X1 with 
.X2, X3, X4, X5 and their end vertices in these copies forms a tree with four leaves 
and maximum degree at most three. Therefore, it contains two vertices . x, y ∈ X1
with degree three. By contracting .𝚪'[X1] on these two vertices and every other 
.H [Xi], .i > 1 to a single vertex, we get .K3,3 ⪯ 𝚪', see the illustration in Fig. 7.7. 
By Lemma 7.12, .K3,3 ⪯T 𝚪' and hence, .K3,3 ⪯T 𝚪. ⨅⨆

Proof of Theorem 7.11 If . 𝚪 is not planar then by Kuratowski’s theorem, Theo-
rem 7.8, it contains a subdivision of .K5 or .K3,3, which, in particular, is a minor 
of . 𝚪.
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Fig. 7.7 The subdivision of 
.K3,3 in the proof of 
Lemma 7.13 

Conversely, if .K3,3 ⪯ 𝚪 or .K5 ⪯ 𝚪 then, by the Lemmas 7.12 and 7.13, 
. 𝚪 contains .K3,3 or .K5 as a topological minor, and by Kuratowski’s theorem, 
Theorem 7.8, . 𝚪 is not planar. ⨅⨆

7.4 Whitney Theorem 

Our last result concerns uniqueness of embeddings. Let . 𝚪 be a planar graph and let 
.𝚪', 𝚪'' be two plane graphs isomorphic to . 𝚪: we say that the two plane embeddings 
are equivalent if there is a graph isomorphism .φ : 𝚪' → 𝚪'' which can be naturally 
extended to faces. In other words, . φ preserves the incidence of vertices, edges and 
faces. There is the stronger notion of topological incidence which requires that . φ is 
additionally an homeomorphism of the sphere . S2. 

Theorem 7.14 (Whitney) Let . 𝚪 be a 3-connected graph. Then all plane embed-
dings of . 𝚪 are equivalent. 

Proof By Proposition 7.5, C is the boundary of a face in a plane embedding of . 𝚪
if and only if C is induced and non-separating. Thus, every two plane embeddings 
of . 𝚪 have the same set of faces, the induced non-separating cycles. Every graph 
isomorphism between two plane embeddings defines a bijection between induced 
non-separating cycles. This bijection preserves the incidence of faces, so the two 
plane embeddings are equivalent. ⨅⨆

7.5 Notes and References 

The Jordan curve theorem is a classical fundamental result in topology. The proof 
of the simpler polygonal version in Theorem 7.2 given here follows Courant and 
Robbins (1979, page 267). Some additional topological preliminaries have been
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omitted here, good references are Diestel (2018, Chapter 4) and the excellent 
monograph by Mohar and Thomassen (2001). 

Kuratowski’s theorem, Theorem 7.8 and its minor version by Wagner are 
fundamental results which form the starting point of graph minor theory, leading 
to deep results in structural and algorithmic graph theory. From the topological 
perspective, Kuratowski’s theorem is a special case of the general result that the 
class of graphs which can be embedded in a compact surface of given Euler 
characteristic are characterised by a finite list of excluded minors. The relatively 
simple proof of Kuratowski’s theorem given here follows Tutte (1963), see also 
Thomassen (1981). 

The fact that the skeleton of a convex polyhedra is a planar 3-connected graph 
is one implication of a theorem by Steinitz showing that the reciprocal implication 
also holds. The fact that maximal planar graphs have the maximum number of edges 
among graphs free from . K5 as a minor is a special case of a theorem by Mader that 
states that every graph with .3n−5 edges contains . K5 as a minor. The decomposition 
of a planar graph into three edge disjoint trees follows from a more general theorem 
of Schynder (1989), which gives a characterisation of planar graphs in terms of 
associated posets. 

7.6 Exercises 

Exercise 7.1 Let 𝚪 be a planar graph. Show that every subgraph 𝚪' ⊂ 𝚪 has 
minimum degree δ(𝚪') ⩽ 5. If 𝚪 is triangle-free then δ(𝚪') ⩽ 4 for every subgraph
𝚪' ⊂ 𝚪. 

Exercise 7.2 Show that a plane 2-connected graph is bipartite if and only if the 
boundary of every face is an even cycle. 

Exercise 7.3 Find a planar graph with an exponential number of distinct plane 
embeddings. 

Exercise 7.4 A graph is outerplanar if it admits a plane embedding with all 
vertices on the outer face. Show that a 2-connected outerplanar graph consists of 
a cycle with nonintersecting chords and it can not be 3-connected. 

Exercise 7.5 Show that K4 and K2,3 are not outerplanar graphs. Show that a graph 
is outerplanar if and only if it does not have subdivisions of K4 or K2,3. 

Exercise 7.6 A triangulation is a plane graph with all faces triangles. Let 𝚪 be a 
triangulation with n ⩾ 4 vertices. 

i. Show that 𝚪 is maximal planar. 
ii. Show that there are at least n edges e ∈ E(G) such that the contraction 𝚪/e is 

also maximal planar.
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iii. Show that 𝚪 is 3-connected. 
iv. Show that, if S is a vertex cutset with |S| =  3 then the subgraph 𝚪[S] induced 

by the vertices in S is a triangle. 

Exercise 7.7 Let 𝚪 be a 3-connected graph with n >  5 vertices. Show that if 𝚪

contains a subdivision of K5 then it also contains a subdivision of K3,3. 

Exercise 7.8 Show that the skeleton of a bounded polyhedra (3-dimensional 
polytope) is a planar 3-connected graph. 

Exercise 7.9 Show that the addition of one edge to a maximal planar graph with at 
least 6 vertices produces both a K5 and a K3,3 minor. 

Exercise 7.10 Show that a maximal planar graph can be decomposed into three 
trees. Show that a maximal planar bipartite graph can be decomposed into two trees.



8Graph Colouring 

Colouring is, alongside planarity, one of the classical topics in graph theory. One of 
its most celebrated results is the four colour theorem that states that planar graphs 
can be coloured with just four colours. In this chapter, we first discuss upper bounds 
on the chromatic number of a graph in terms of the degrees of the vertices, those 
arising from the greedy colouring algorithm, the Szekeres–Wilf bound and Brooks’ 
theorem. The weaker theorem of Heawood on planar graphs and the characterisation 
of planar graphs of low chromatic numbers illustrate the framework of the colouring 
problem for planar graphs. The better bound given by Vizing’s theorem on the 
related edge-chromatic number is also discussed, and the equivalence of the four 
colour theorem with edge-colourings is considered following on from that. The 
chapter concludes with the list colouring problem, a proof by Thomasen of the 
5-choosability of planar graphs and Galvin’s theorem on the edge-choosability of 
bipartite graphs. 

8.1 Vertex Colouring 

A vertex colouring of a graph .𝚪 = (V ,E) is a map 

. c : V (𝚪) → {1, . . . , k}.

The colouring is proper if no edge is monochromatic, that is adjacent vertices 
receive distinct colours. The minimum number of colours in a proper vertex 
colouring of a graph . 𝚪 is its chromatic number, denoted by .χ(𝚪). 

We denote by .ω(𝚪) the cardinality of the largest clique (complete subgraph of 
. 𝚪) and by .α(𝚪) the cardinality of the largest coclique (independent set of . 𝚪). A 
proper k-colouring of . 𝚪 using the k colours induces a partition of its vertex set into 
k independent sets .c−1(1), . . . , c−1(k). 
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Lemma 8.1 For every graph . 𝚪 of order n, 

. χ(𝚪) ⩾ max{ω(𝚪), n/α(𝚪)}.

Proof Let c be a proper colouring of . 𝚪 with .k = χ(𝚪) colours. Since each vertex 
of a clique of size .ω(𝚪) receives a distinct colour, .k ⩾ ω(𝚪). 

On the other hand, .c−1(1), . . . , c−1(k) is a partition of .V (𝚪) into stable sets, so 

. n =
∑

i

|c−1(i)| ⩽ kα(𝚪).

⨅⨆

A graph . 𝚪 is k-critical if .χ(𝚪) = k and if by deleting any edge or vertex we 
obtain a graph which is .(k − 1)-colourable. Observe that, step-by-step removing 
an edge which does not decrease the chromatic number, it is immediate that every 
graph with chromatic number k contains a k-critical subgraph. 

Lemma 8.2 If . 𝚪 is k-critical then .δ(𝚪) ⩾ k − 1. 

Proof By deleting a vertex of minimum degree we obtain a graph which is .(k − 1)-
colourable. Thus, if .δ < k − 1 we can colour the deleted vertex with one of . k − 1
colours, contradicting the fact that .χ(𝚪) = k. ⨅⨆

The following upper bounds are classical results in graph colouring. 
Let .{x1, . . . , xn} be an ordering of the vertices of a graph . 𝚪. The so-called greedy 

colouring algorithm proceeds by giving colour 1 to . x1 and, once . xi is coloured, give 
to .xi+1 the smallest available colour among .{1, 2, . . . , i + 1}. 

Theorem 8.3 (Szekeres-Wilf) For every graph . 𝚪

. χ(𝚪) ⩽ 1 + max
𝚪'⊆𝚪

δ(𝚪').

Proof Let .d = max𝚪'⊆𝚪 δ(𝚪'). We define an ordering of the vertices as follows. We 
choose a vertex . xn with degree at most d in . 𝚪. Once .xi+1 is defined, we choose a 
vertex with degree at most d in the subgraph .𝚪[V \ {xi+1, . . . , xn}] of . 𝚪 induced 
by the unchosen vertices. Now the greedy algorithm on .x1, . . . , xn, which starts 
colouring . x1 with 1 and colours each . xi with the least available colour to make a 
proper colouring of .𝚪[x1, . . . , xi], uses at most  .d + 1 colours because every . xi is 
adjacent at most to d previous vertices. ⨅⨆
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It follows from the Szekeres–Wilf theorem that .χ(𝚪) ⩽ 1+Δ(𝚪). The following 
theorem of Brooks states that complete graphs and odd cycles are the only graphs 
for which the above bound is tight. 

Theorem 8.4 (Brooks) If . 𝚪 is a connected graph different from a complete graph 
or an odd cycle then 

. χ(𝚪) ⩽ Δ(𝚪).

Proof Suppose that . 𝚪 is not a cycle or a complete graph. 
If . 𝚪 is not regular then Theorem 8.3 implies .χ(𝚪) ⩽ Δ(𝚪), since the minimum 

degree would be less than . Δ. 
By Lemma 6.3, since . 𝚪 is connected, it is a tree of blocks where we recall that a 

block is a single vertex, an edge or a 2-connected graph. Observe that the chromatic 
number of . 𝚪 is equal to the maximum of the chromatic numbers of the blocks. Thus, 
we can assume that . 𝚪 is 2-connected, since the statement is trivial if .χ(𝚪) = 2. 
Moreover, from the previous paragraph, we can assume . 𝚪 is regular. 

Case 1 . 𝚪 is 3-connected. Choose . xn and two non adjacent vertices .x1, x2 in its 
neighbourhood (such a choice exists since . 𝚪 is not complete). We have that . 𝚪 −
{x1, x2} is connected, .x1x2 /∈ E(𝚪) and .x1xn, x2xn ∈ E(𝚪). For each i, starting 
at .i = n − 1, choose .xi ∈ V (𝚪) \ {x1, x2, xi+1, . . . , xn} adjacent to some vertex 
in .{xi+1, . . . , xn}, which must exist by connectedness. Now the greedy algorithm 
allows us to colour .x1, x2 with 1 and, at each step, . xi is only adjacent to at most 
.Δ(𝚪) − 1 preceding vertices since it is adjacent to . xj for some .j > i. In the  last  
step we have to colour . xn, which is adjacent to .Δ(𝚪) vertices but two of them, . x1
and . x2, have the same colour, leaving one colour available for . xn (Fig. 8.1, left).  

Case 2 . 𝚪 is 2-connected but not 3-connected. Choose a vertex . xn in a minimal 
separating set S of . 𝚪, so that .𝚪' = 𝚪 − xn is connected but not 2-connected. By 
Lemma 6.3, . 𝚪' is a tree of blocks and, by the minimality of . |S|, the vertex . xn is 
adjacent to two distinct blocks of this block decomposition of . 𝚪', moreover it is 
adjacent to vertices . x1 and . x2 which are not articulation vertices of . 𝚪'. Since they 
belong to distinct blocks of . 𝚪 and are not articulation points, . x1 and . x2 are not 
adjacent in . 𝚪. Moreover, .𝚪 −{x1, x2} is connected as the blocks are 2-connected 
(Fig. 8.1, left). We can now repeat the argument in Case 1 to produce an ordering 
of the vertices for which the greedy algorithm uses at most .Δ(𝚪) colours. 

⨅⨆

Fig. 8.1 The two cases of the proof of Brooks Theorem
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8.2 Planar Graphs 

A central result which fostered the development of graph theory is the four colour 
theorem stating that planar graphs have chromatic number at most four. All known 
proofs rely on extensive computer checking of hundreds of cases. The following 
theorem has a much easier proof. 
Theorem 8.5 (Heawood) Every planar graph . 𝚪 is 5-colourable. 

Proof The proof is by induction on .n = |V (𝚪)|, the result being trivial for . n ⩽
5. We may assume that . 𝚪 is maximal planar, i.e. a graph for which adding any 
additional edges will give a graph which is not planar. By Corollary 7.7, a planar 
graph has at most .3n − 6 edges, which implies that the minimum degree of a planar 
graph satisfies .δ(𝚪) ⩽ 5. 

If . 𝚪 has a vertex x such that the degree of x, .d(x) ⩽ 4 then every 5-colouring of 
.𝚪[V \ {x}] can be extended to a 5-colouring of . 𝚪. Suppose that . d(x) = δ(𝚪) = 5
and let .x1, . . . , x5 be the five neighbours of x listed in clockwise order in a planar 
embedding of . 𝚪. 

If there is a 5-colouring of .𝚪' = 𝚪[V \ {x}] which does not use the five colours 
in the neighborhood of x then we can extend the colouring to . 𝚪. We may therefore 
assume that .χ(xi) = i for .1 ⩽ i ⩽ 5 in a 5-colouring of . 𝚪'. Let  .𝚪'[1, 3] be the 
subgraph . 𝚪' induced by the colour classes 1 and 3. This is a graph with maximum 
degree 2, so that all connected components are either cycles or paths. 

If . x1 and . x3 belong to distinct connected components of .𝚪'[1, 3] then we can 
switch the colours in one of the components and get a proper 5-colouring which 
uses 4 colours on the neighborhood of x. 

Hence, we can assume that . x1 and . x3 belong to the same connected component 
of .𝚪'[1, 3], see Fig. 8.2. Consider the subgraph .𝚪'[2, 4] of . 𝚪' induced by the colour 
classes 2 and 4. This time . x2 and . x4 cannot be in the same connected component 
because every path from . x2 to . x4 must cross a path joining . x1 and . x3, all of whose 
vertices are not in .𝚪'[2, 4]. We again can complete the 5-colouring by switching 
colours in one of the connected components. ⨅⨆

Fig. 8.2 An illustration of 
the proof of Theorem 8.5
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The degree of a face in a planar graph is the number of edges in its boundary. 
The following theorem gives a characterization of planar 2-connected graph with 
chromatic number two. 

Theorem 8.6 A planar 2-connected graph . 𝚪 is bipartite if and only if every face of 
a planar embedding of . 𝚪 has even degree. 

Proof Suppose . 𝚪 is 2-connected and bipartite. By Proposition 7.4, the boundary of 
every face is a cycle of the graph (a facial cycle), which must have even degree since 
. 𝚪 is bipartite. 

To show the reverse implication, note that the edge set of every cycle in a planar 
2-connected graph is the symmetric difference of the edge sets of the facial cycles 
it contains (the boundaries of faces contained in the cycle in a plane embedding of 
the graph). If all facial cycles have even length, then the same holds for all cycles in 
. 𝚪 and so . 𝚪 is bipartite. ⨅⨆

The following theorem gives a characterization of maximal planar graphs with 
chromatic number three. 

Theorem 8.7 (Heawood) A maximal planar graph has chromatic number 3 if and 
only if every vertex has even degree (the graph is Eulerian). 

Proof If . 𝚪 is not Eulerian then a vertex z of odd degree and its neighbours induce an 
odd wheel in . 𝚪. Three colours are needed to colour the odd cycle of this wheel and 
z requires a fourth colour. This shows that a maximal planar graph with chromatic 
number three must be Eulerian. 

For the reverse implication we show the stronger statement that a 2-connected 
near triangulation . 𝚪 (all faces but the external one are triangles) in which all internal 
vertices have even degree has chromatic number three. This we prove by induction 
on the number f of internal faces. When .f = 1 then .𝚪 = K3. Suppose .f > 1 and 
let .e = xy be an edge in the external face of . 𝚪. The edge e is in a unique triangle of 
. 𝚪, let  z be the third vertex of this triangle in addition to x and y. 

If z is also a vertex on the external face, then one of x and y has degree two, say x 
(Fig. 8.3, left). Then .𝚪 − x is still 2-connected, has one less internal face, and every 
internal vertex has even degree. By induction, .𝚪 − x is 3-colourable. By giving x a 
colour different from y and z we obtain a 3-colouring of . 𝚪. 

Fig. 8.3 The two cases in the 
proof of Theorem 8.7
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If z is an internal vertex then it has even degree. Consider the even wheel induced 
by z and its neighbours (Fig. 8.7, right). Now .𝚪 − e is still 2-connected, has one less 
internal face and all internal vertices still have even degree. By induction .𝚪 − e is 
3-colourable. If z receives colour 1 with a 3-colouring then the rim of the wheel 
receives colours 2 and 3. Since the vertices x and y are connected by a path of 
odd length, they receive distinct colours under this 3-colouring of .𝚪 − e, which is 
therefore also a 3-colouring of . 𝚪. ⨅⨆

8.3 Edge Colouring 

An edge-colouring is a map 

. χ ' : E(𝚪) → k.

An edge-colouring is proper if incident edges receive different colours. The 
minimum number of colours in a proper edge-colouring of . 𝚪 is its edge-chromatic 
number, denoted by .χ '(𝚪). We have  

. χ '(𝚪) = χ(L(𝚪)),

where .L(𝚪) denotes the line graph of . 𝚪. Since all edges incident to a vertex must 
receive distinct colours under a proper edge-colouring, we clearly have 

. χ '(𝚪) ⩾ Δ(𝚪).

Perhaps surprisingly, this lower bound is never far from the true value of .χ '(𝚪). 

Theorem 8.8 (Vizing) For every graph . 𝚪, 

. χ '(𝚪) ⩽ Δ(𝚪) + 1.

Proof For every fixed . Δ we will prove the bound by induction on m, the number of 
edges of graphs with maximum degree at most . Δ. 

If .m = Δ then . 𝚪 is a star (and isolated points) which is clearly edge-colourable 
with . Δ colours. 

Let .m ⩾ Δ+1, choose a vertex . x0 with degree . Δ and remove an edge .x0y0 from 
. 𝚪. Let  . χ0 be a proper .(Δ + 1)-edge colouring of .𝚪 − x0y0 (which has maximum 
degree at most . Δ). This is a proper edge-colouring of . 𝚪 except that one edge, .x0y0, 
is still uncoloured. 

For every vertex .x ∈ V (𝚪) denote by .β(x) the set of colours not used in the 
edges incident to x. We have .β(x) /= ∅ since we are using .Δ + 1 colours. 

If .β(x0)∩β(y0) /= ∅ then we can use a colour in the intersection to complete the 
colouring of the edge .x0y0.
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Fig. 8.4 Case 1 of the proof 

Suppose that .β(x0) ∩ β(y0) = ∅. Choose a colour .c0 ∈ β(y0) and let .x0y1 be an 
edge incident to . x0 coloured with . c0. If .β(x0)∩β(y1) /= ∅ we can use a colour in the 
intersection to recolour .x0y1 and use . c0 to colour .x0y0 (which after the recolouring 
will be available for . x0 and for . y0). Otherwise we construct a maximal sequence 
.y0, y1, . . . , yk satisfying (i) .β(x0) ∩ β(yi) = ∅ and (ii) .ci ∈ β(yi) is different from 
.c1, . . . , ci−1 and .x0yi+1 has colour . ci . 

By the maximality of the length of the chain one of the two cases occur: 

Case 1 The chain stopped because we reached a vertex . yk with .β(x0)∩β(yk) /= ∅. 
In this case we use a colour . α in the intersection to recolour .x0yk and use colour 
. ci for .x0yi in the vertices .y0, . . . , yk−1, reaching a good edge-colouring for . 𝚪
(we push the colours back) (Fig. 8.4). 

Case 2 The chain stopped because .β(x0) ∩ β(yk) = ∅ but the colours in . β(yk)

have already appeared in the chain, say .cj−1 ∈ β(yk) for some .j < k. In this  
case we recolour the edges .x0yi with . ci for .i = 0, . . . , j − 1 and leave the edge 
.x0yj uncoloured. 

Choose a colour .α ∈ β(x0) and consider the subgraph .𝚪[α, cj−1] of . 𝚪 induced 
by the edges coloured . α and .cj−1 after the last recolouring. The graph . 𝚪[α, cj−1]
has maximum degree two so that the connected components are cycles and paths or 
isolated vertices. Moreover, the vertices .x0, yj , yk have degree one in this subgraph 
(because .cj−1 /∈ β(x0) implies .d(x0) = 1 and .α /∈ β(yj ) ∪ β(yk) implies . d(yj ) =
d(yk) = 1). Therefore, the three vertices can not belong to the same connected 
component of .𝚪[α, cj ]. 

Suppose that . yj and . x0 belong to different components. We can exchange the 
colours of the edges .cj−1 and . α in the connected component containing . yj and the 
resulting colouring will still be proper. Moreover, after the renaming, . α becomes 
unused at . yj and we can use . α to colour the edge .x0yj completing the colouring 
of . 𝚪. 

Suppose that . yk and . x0 belong to different components. We can exchange the 
colours of the edges .cj−1 and . α in the connected component containing . yk and the 
resulting colouring will still be proper. Now we recolour the edges .x0yi with . ci for 
.i = j, j + 1, . . . , k − 1 leaving .x0yk uncoloured, and colour this edge with . α. ⨅⨆

By Vizing’s theorem, .χ '(𝚪) ∈ {Δ(𝚪),Δ(𝚪) + 1}. We observe that each colour 
class is a matching, so Vizing’s theorem can be rephrased by saying that every graph 
admits a partition of its edge set into at most .Δ(𝚪) + 1 edge-disjoint matchings. 
For instance, for the complete graphs .K2n of even order it can easily be seen that 
.χ '(𝚪) = Δ(𝚪), while the ones of odd order can not be coloured with . Δ colours
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because the largest matching in .K2n+1 has n edges and the total number of edges is 
.n(2n + 1). Thus, for .K2n+1, .χ '(𝚪) = Δ(𝚪) + 1. The fact that for bipartite graphs, 
.χ '(𝚪) = Δ(𝚪), is a consequence of Hall’s theorem. 

Proposition 8.9 A bipartite graph . 𝚪 has edge-chromatic number .χ '(𝚪) = Δ(𝚪). 

Proof If . 𝚪 is .Δ-regular then, by Theorem 4.3, it contains a perfect matching . M1. Its  
removal leaves a .(Δ − 1)-regular bipartite graph which contains a perfect matching 
. M2. By iterating this procedure, we decompose the edge set of . 𝚪 into . Δ edge-
disjoint matchings. 

If .𝚪 = (A ∪ B,E) is not .Δ-regular we show that there is .𝚪' ⊃ 𝚪 which is 
bipartite and .Δ-regular and .χ '(𝚪) ⩽ χ '(𝚪') = Δ. By adding isolated vertices if 
needed, we may assume that .|A| = |B|. If there is a vertex .x ∈ A with degree 
smaller than . Δ then there must be .y ∈ B with the same property and we can add the 
edge xy to . 𝚪 and still get a bipartite graph with maximum degree . Δ. By repeating 
the argument we eventually end up with a bipartite .Δ-regular graph .𝚪' ⊃ 𝚪. By the  
previous paragraph, the edges of . 𝚪' decompose into . Δ edge disjoint matchings. ⨅⨆

A final observation on the four colour theorem is the following equivalence. 

Theorem 8.10 The four colour theorem is equivalent to the following statement: 
every bridgeless cubic planar graph has edge-chromatic number .χ '(𝚪) = 3. 

Proof Every planar graph can be coloured with four colours if and only if every 
maximal planar graph can be coloured with four colours, so we may restrict 
ourselves to maximal planar graphs. The dual of a maximal planar graph is a 
bridgeless cubic graph. Reciprocally, the dual of a bridgeless cubic planar graph 
is a triangulation, a maximal planar graph. 

Let . 𝚪 be an embedded cubic planar graph and suppose that there is a 4-colouring 
. χ of its dual . 𝚪∗ with elements of .Z2 × Z2. Each .e ∈ E(𝚪) determines an edge 
.e∗ = xy ∈ E(𝚪∗), joining the two faces which have the edge e on their boundaries, 
see Fig. 8.5. We colour e with .χ '(e) = χ(x) + χ(y), which is not .(0, 0) since x 
and y (faces of . 𝚪) are coloured with different colours. If e and . e' are incident in . 𝚪
then the corresponding edges .e∗ = xy, (e')∗ = yz are also incident in . 𝚪∗ and xyz 
form a triangle in . 𝚪∗, since . 𝚪∗ is a triangulation. Since .χ(x) /= χ(z), it follows that 

Fig. 8.5 The edge e 
determines de edge . e∗ in 
Theorem 8.10
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Fig. 8.6 The 4-colouring of 
a maximal planar graph . 𝚪∗
(with black vertices) induced 
by a 3-edge-colouring of its 
dual . 𝚪 (with white vertices) 

.χ '(e) = χ(x) + χ(y) /= χ(y) + χ(z) = χ '(e'). Thus we obtain a 3-colouring of . 𝚪

with elements of .Z2 × Z2 \ {(0, 0)}. 
Reciprocally, let . 𝚪 be a maximal planar graph and suppose that there is a 3-edge-

colouring . χ∗ of its dual . 𝚪∗. Identify the edge colours of . 𝚪∗ with the elements of 
.Z2 × Z2 \ {(0, 0)} (Fig. 8.6). 

Since . 𝚪 is a triangulation, every edge e in . 𝚪 uniquely defines a dual edge . e∗ in 
. 𝚪∗ joining the two faces of . 𝚪 that have e in common in their boundaries. 

Consider a spanning tree of . 𝚪, choose a vertex as a root and colour it with .(0, 0). 
For every pair .v, v' of adjacent vertices in the spanning tree define the map . χ(v) =
χ(v')+χ∗(e∗) where . e∗ is the dual edge of .e = vv' and the sum is in .Z2 ×Z2. This  
is a well defined 4-colouring of . 𝚪. We claim that, for every pair .v, v' of adjacent 
vertices in . 𝚪 joined by the edge . evv' , we have  .χ(v) = χ(v') + χ∗(e∗

vv'), so the  
colouring is proper. 

⨅⨆

This is the case if .evv' is an edge of the spanning tree, by definition. Otherwise, 
consider the cycle induced in the tree by this edge e. 

Suppose the cycle is facial, namely a triangle .vv‘w. Then .evw and .ev'w are edges 
of the spanning tree and we have that 

. χ(v) = χ(w) + χ∗(e∗
vw)

and 

. χ(v') = χ(w) + χ∗(e∗
v'w).

Therefore, we have that 

. χ(v) = χ(v') + χ∗(e∗
vw) + χ∗(e∗

v'w) = χ(v') + χ∗(e∗
vv'),

since the sum of any elements of .Z2 × Z2 \ {(0, 0)} gives the third one. 
Finally, if the cycle is not facial then it is the symmetric difference of r facial 

cycles for some r . Each one of the edges in these faces when added to the spanning 
tree induces a cycle which is the symmetric difference of less than r facial cycles. 
By induction on r , we can assume that for these edges .ew'w
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. χ(w) = χ(w') + χ∗(e∗
ww').

Then, since we are summing modulo two, when we take the symmetric difference 
of r facial cycles, we also conclude that 

. χ(v) = χ(v') + χ∗(e∗
vv').

8.4 List Colouring 

Let . 𝚪 be a graph and let .L(v) be a list of colours associated to each vertex .v ∈ V (𝚪). 
A list colouring of . 𝚪 is a proper colouring . χ such that 

. χ(v) ∈ L(v), ∀v ∈ V (𝚪).

A graph . 𝚪 is k-choosable if, for every set of lists .{L(v) : v ∈ V (𝚪)} with . |L(v)| ⩾
k, there is a list colouring with this set of lists. The minimum integer k such that . 𝚪 is 
k-choosable is the list chromatic number .χL(𝚪) of . 𝚪. An ordinary k-colouring can 
be seen as a list colouring where the list of each vertex is .{1, 2, . . . , k}. Therefore, 

. χ(𝚪) ⩽ χL(𝚪).

The difference between the two quantities can be arbitrarily large. For 
example, the list chromatic number of the complete bipartite graph satisfies 
.lim infn→∞ χL(Kn,n) = ∞, even if the graph is bipartite (see Exercise 8.17). 
The list assignment to .K3,3 in Fig. 8.7 shows that .χL(K3,3) > 2. 

The arguments using the greedy colouring algorithm, where only the number of 
colours available at one vertex is significant, show that the statement of the theorems 
of Szekeres–Wilf and of Brooks still hold for list colourings. The next celebrated 
theorem by Thomassen shows that list colouring of planar graphs is at most five. 

Theorem 8.11 (Thomassen) For every planar graph . 𝚪 we have . χL(𝚪) ⩽ 5.

Proof We need to prove that given lists .L(v) of size at least 5 for each vertex v, 
we can choose a colour from .L(v) so that the colouring is proper. If we can find a 
proper list colouring for a graph which contains . 𝚪 then we will have found a list 
colouring for . 𝚪. Thus, we can assume that . 𝚪 is a near-triangulation (all faces except 
the outer one are triangles). ⨅⨆

Fig. 8.7 There is no list 
colouring of .K3,3 with the 
displayed list assignment
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Claim 8.12 For every list assignment of a near triangulation in which two pre-
scribed adjacent vertices in the outer face have distinct lists of size one, the 
remaining vertices in the outer face have lists of size three and all inner vertices 
have lists of size five, there is a list colouring of the graph with these lists. 

Proof We will prove this by induction on the number n of vertices. The claim 
follows for .n = 3. Suppose .n > 3. 

Let .x, y be the vertices with lists of size one. We consider two cases. 

Case 1. There is a chord .e = uv joining two vertices in the outer face (Fig. 8.8 
left). 
We consider the two near triangulations .𝚪1, 𝚪2 which are split by the chord and 
share this chord in their outer boundary. We may assume that . 𝚪1 is the near 
triangulation which contains both of them. We apply induction on . 𝚪1 and find a 
list colouring . χ1 of . 𝚪1. We now apply induction on . 𝚪2 by redefining the lists of 
u and v as .L'(u) = {χ1(u)} and .L'(v) = {χ1(v)} to find a list colouring . χ2 with 
these new lists. The colouring whose restriction to . 𝚪i is . χi is a list colouring of 
. 𝚪. 

Case 2. There is no chord joining two vertices in the outer face (Fig. 8.8 right). 
Let .x, y, u, v be consecutive vertices in the clockwise order in the outer face (it 
may be that .v = x). Let .y = u1, u2, . . . , uk = v be the neighbours of u also 
in clockwise order. Consider the new lists .L'(u) = L(u) \ L(y) and . L'(ui) =
L(ui) \ L'(u), .1 ⩽ i ⩽ k − 1, which provide the induction hypothesis for the 
graph .𝚪 − u. A list colouring . χ of .𝚪 − u can be completed to a list colouring of 
. 𝚪 with the original lists since none of the . ui’s uses the two colours of .L'(u) and 
one can be chosen different from .χ(v). 

The statement of the theorem now follows from the Claim 8.12, since an 
assignment of lists of length five to every vertex fulfils the hypothesis of the claim. 

⨅⨆

There are examples of planar graphs whose list chromatic number is five, so the 
bound in Theorem 8.11 is tight. 

Analogous notions for edge-colourings lead to k-edge choosability and edge-list 
chromatic number .χ '

L(𝚪). Clearly, .χ '
L(𝚪) = χL(L(𝚪)). A famous open problem in 

the area is the list colouring conjecture. 

Fig. 8.8 The two cases in the 
proof of Theorem 8.11
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Conjecture 8.13 (List Colouring Conjecture) For every graph . 𝚪 we have . χ '
L(𝚪) =

χ '(𝚪). 

Remarkably, the conjecture has been proved for bipartite graphs. 

Theorem 8.14 (Galvin) If . 𝚪 is bipartite then .χ '
L(𝚪) = χ '(𝚪). 

One proof uses the following result. A kernel in an oriented graph . →𝚪 = (V , →E)

is a nonempty independent set U such that every vertex in .V \U has an arc directed 
to some vertex in U . 

Lemma 8.15 Let .{L(v) : v ∈ V } be a set of lists assigned to vertices of a graph 
.𝚪 = (V ,E). If there is an orientation . →𝚪 such that every induced subgraph . →𝚪' of . →𝚪
has a kernel and the out-degree of every vertex satisfies .d+(v) < |L(v)|, then . 𝚪 can 
be coloured from the lists. 

Proof The proof is by induction on n. The result is trivial for .n = 1. Assume 
.n > 1. Choose a colour c which occurs in some list and let C be the set of vertices 
in . 𝚪 which have the colour c in their lists. By the hypothesis, .→𝚪[C] has a kernel 
U . Colour the vertices of U by c and remove the colour c from all lists in C. The  
subgraph .𝚪[V \ U ] satisfies the hypothesis of the lemma, since the out degree of 
every vertex in .𝚪[V \ U ] is one less than its out degree in .𝚪[V ]. whereas .|L(v)| has 
decreased by at most one since we have only removed the colour c from the lists. 
Hence, by induction, .𝚪[V \ U ] admits a list colouring with the new lists and this 
provides a list colouring of . 𝚪 with the original lists. ⨅⨆

Proof of Theorem 8.14 Let . χ be an edge-colouring of . 𝚪 with .{1, 2, . . . , k}, where 
.k = χ '(𝚪). We will prove that the colouring can be used to construct an orientation 
of the line graph .L(𝚪) of . 𝚪 satisfying the hypothesis of Lemma 8.15. The statement 
then follows from Lemma 8.15. 

Let .V (𝚪) = A ∪ B be the bipartition of . 𝚪. Let  e and . e' be two incident edges in 
. 𝚪 with .χ(e) < χ(e') (since . χ is a proper edge-colouring, equality does not hold). 
We orient the edge .ee' ∈ E(L(𝚪)) from e to . e' if .e ∩ e' ∈ A and from . e' to e if 
.e ∩ e' ∈ B (Fig. 8.9). 

The out-degree of an edge e in this orientation is at most . (k−χ(e))+(χ(e)−1) <

k. So we only have to show that every subgraph of .L(𝚪) with this orientation has a 

Fig. 8.9 The orientation of 
.L(𝚪) in the proof of 
Theorem 8.14 when 
.χ(e'') < χ(e) < χ(e')
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kernel. We prove that this is the case by induction on . |E'|, the case .|E'| = 1 being 
trivial. Suppose .|E'| > 1. 

Let .E' ⊂ E(𝚪) be a subset of edges and consider the oriented subgraph . 𝚪' of 
.L(𝚪) induced by . E'. Let  .A' ⊂ A be the set of vertices incident with some edge in 
. E'. For each .x ∈ A', let  .ex ∈ E' be the edge incident with x with smallest colour. 
Let .U = {ex : x ∈ A'}. By construction, every edge in .E' \ U has a directed edge 
in . 𝚪' to some element in U . 

If U is an independent set then we are done. 
If not, suppose that two edges . ex and . ex' in U meet in some vertex y. Necessarily, 

by the construction of U , .y ∈ B. Suppose .χ(ex) < χ(ex'), so  . ex is directed to . ex'
in . 𝚪'. By induction, the subgraph .𝚪' \ ex has a kernel . U '. If  .ex' ∈ U ' then . U ' is a 
kernel for . 𝚪' and we are done. Otherwise there is an edge . e'' incident with . ex' such 
that . ex' is directed to . e'' in . 𝚪'. Since . ex' is the edge incident with . x' with minimum 
colour it must be that . e'' is incident with . ex' in B, which implies it is incident with 
y. Thus, .χ(e'') > χ(ex') which implies .χ(ex'') > χ(ex) and so . ex is directed to . e''
in . 𝚪'. Hence . U ' is a kernel for . 𝚪'. ⨅⨆

By Proposition 8.9 and Theorem 8.14, the edge list chromatic number of a 
bipartite graph . 𝚪 is .χ '

L(𝚪) = Δ(𝚪). In particular, .χ '
L(Kn,n) = n, a statement which 

had been conjectured by Dinitz in the language of Latin squares. Suppose that each 
entry of a square .n × n matrix may take one of n distinct values. Dinitz conjectured 
that one can choose entries such that elements in a row and in a column are pairwise 
distinct. Observe that when the choices are .{1, 2, . . . , n} for each entry we get a 
Latin square. 

8.5 Notes and References 

The proof of Brooks’ theorem, Theorem 8.4, follows Lovász (1975). A simplified 
version which avoids the use of 3-connectivity and has further applications is given 
in Zaja̧c  (2018). The characterization of 3-chromatic triangulations by Heawood 
can be complemented by a theorem by Grötzsch that states that every triangle-free 
planar graph can be 3-coloured, see Thomassen (2003) for a simplified proof. The 
proof by Thomassen (2004), Theorem 8.11, of the 5-choosability of planar graphs 
has become a classic in graph theory with wide applications. The proof by Galvin 
(1995) of the list colouring conjecture also extends to bipartite multigraphs. 

8.6 Exercises 

Exercise 8.1 

i. Show that every graph admits an ordering of the vertices for which the greedy 
colouring algorithm uses χ(𝚪)  colours.
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ii. Let 𝚪 be the complete bipartite graph Kn,n minus a perfect matching. Show that 
there is an ordering of the vertices such that the greedy colouring algorithm uses 
n colours. 

Exercise 8.2 Let 𝚪 + 𝚪' denote the graph resulting from the disjoint union of 𝚪

and 𝚪' and adding all edges between V (𝚪)  and V (𝚪'). Prove that χ(𝚪 + 𝚪') = 
χ(𝚪) + χ(𝚪'). 

Exercise 8.3 The cartesian product 𝚪□𝚪' has vertex set V (𝚪)  × V (𝚪') and (x, y) 
i (x', y') are adjacent if and only if either x = x' and y ∼ y' or y = y' and x ∼ x'. 
Show that χ(𝚪□𝚪') = max{χ(𝚪),  χ(𝚪')}. 

Exercise 8.4 The direct product 𝚪 × 𝚪' has vertex set V (𝚪)  × V (𝚪') and (x, y) 
i (x', y') are adjacent if x ∼ x' and y ∼ y'. Show that χ(𝚪 × 𝚪') ≤ 
min{χ(𝚪),  χ(𝚪')}. 

[Hedetniemi conjecture, recently disproved, stated that equality holds.] 

Exercise 8.5 A graph 𝚪 is k-critical if it has chromatic number k and every proper 
subgraph of 𝚪 has smaller chromatic number. Show that a k-critical graph is (k−1)-
edge connected (the graph remains connected after deletion of any set of k − 1 
edges). 

Exercise 8.6 Let 𝚪 be a k-critical graph. 

i. Show that, for every pair x, y of non adjacent vertices, there is a k-colouring χ 
of 𝚪 such that χ(x)  = χ(y). 

ii. Show that 𝚪 must be 2-connected. Moreover, if S, with |S| =  2 separates X ⊂ V 
from Y = V \ (X ∪ S), then the induced subgraphs 𝚪1 = 𝚪[X ∪ S] and 𝚪2 =
𝚪[Y ∪ S] have the property that any (k − 1)-coloring of 𝚪1 gives distinct colours 
to S while any k-colouring of 𝚪2 gives the same colour to the vertices in S. Give  
an example of a 2-connected critical graph with k = 4. 

Exercise 8.7 (Mycielski construction) Given a graph 𝚪 with vertex set V = 
{v1, . . . , vn}, denote by M(𝚪) the graph with vertex set V ∪ {u1, . . . , un} ∪ {w} 
where 

i. {u1, . . . , un} is an independent set; 
ii. For each i, ui is adjacent to every vertex adjacent to vi . 
iii. w is adjacent to each ui . 

Show that, if 𝚪 is triangle free and χ(𝚪)  = k, then M(𝚪) is also triangle-free and 
χ(M(𝚪))  = k + 1. 

Exercise 8.8 Show that χ(𝚪)  = k if and only if there is an orientation →𝚪 of 𝚪

whose longer directed path has length k.
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Exercise 8.9 For a graph 𝚪 = (V , E) and a vertex x0 ∈ V let Si = {x ∈ V (𝚪)  : 
d(x0, x)  = i} denote the sphere of radius i centered at x0. 

1. Show that 

. χ(𝚪) ⩽ max
i

{χ(𝚪[Si]) + χ(𝚪[Si+1])},

where the maximum is taken from i = 0 to the eccentricity of x0 minus one. Give 
examples showing that the inequality is tight. 

2. Show that a graph 𝚪 with chromatic number χ(𝚪) ⩾ 2t has the complete graph 
Kt as a minor. 

Exercise 8.10 Let f𝚪(x) be a function such that, fo each positive integer k, f𝚪(k) 
is the number of proper k-colourings of 𝚪. 

i. Show that 

. f𝚪(k) = f𝚪−e(k) − f𝚪/e(k).

ii. Deduce that f𝚪 is a polynomial and that f𝚪(x) = xn − mxn−1 + 
terms of lower degree, where n = |V (𝚪)| and m = |E(𝚪)|. 

iii. Compute the polynomial for 𝚪 = Kn and for 𝚪 a tree. 

Exercise 8.11 Show that a graph 𝚪 with m edges satisfies 

. χ(𝚪) ⩽ 1

2
+

√
2m + 1

4
.

Exercise 8.12 Show that an outerplanar graph 𝚪 has chromatic number χ(𝚪) ⩽ 3. 

Exercise 8.13 Show that a regular graph 𝚪 with an odd number of vertices satisfies 
χ '(𝚪) = Δ(𝚪) + 1. 

Exercise 8.14 Show that if 𝚪 is a cubic graph with a bridge then χ '(𝚪) = 4. 

Exercise 8.15 Prove that χ '(K2n) = 2n−1 and χ '(K2n+1) = 2n+1. Describe the 
edge-colourings reaching these values. 

Exercise 8.16 Let 𝚪 be the graph obtained from the complete bipartite graph Kn,n 
by subdividing one edge by a vertex. Show that χ '(𝚪) = Δ(𝚪)+1, but χ '(𝚪−e) =
Δ(𝚪) for every edge e. 

Exercise 8.17 Show that lim infn→∞ χL(Kn,n) = ∞.
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Exercise 8.18 Show that χ '
L(𝚪) ⩽ 2Δ(𝚪) − 1. 

Exercise 8.19 Let L be a list assignment to the vertices of a graph 𝚪 such that 
d(v) ⩽ |L(v)| and the strict inequality holds for at least one vertex. Show that 𝚪

admits a list colouring from these lists. 

Exercise 8.20 A graph is k-degenerated if every subgraph has a vertex of degree 
at most k. 

i. Prove that the list colouring number of a k-degenerated graph G satisfies 
χL(G) ⩽ k + 1. 

ii. Show that a k-degenerated graph G of order n > k  with maximal number of 
edges has kn − (

k+1 
2

)
edges, connectivity κ(G) = k and χ(G)  = k + 1. 

iii. Prove that a non-bipartite outerplanar graph has χL(G) = 3 

Exercise 8.21 Show that any assignment of lists of length 2 to the vertices of an 
odd cycle admits a proper list coloring, except when all the lists are the same.



9Extremal Graph Theory 

Extremal graph theory is the study of graphs which have a critical behaviour with 
respect to some graph parameter within a certain class characterized by some graph 
property. The typical example that we will consider in this chapter consists in 
finding the maximum number of edges that a graph can have within the class of 
graphs which do not contain a fixed subgraph H . The main result in this area 
is the Erdős–Stone theorem. This theorem provides an asymptotic expression for 
the maximum number of edges a graph can have which has no subgraph H . This  
expression depends only on the chromatic number of the graph H . The theorem is 
not informative when H is bipartite, and the last part of the chapter is devoted to 
study this case in which finite geometries will reappear. 

9.1 Graphs Without Triangles 

Let H be a fixed graph with less than n vertices. Consider the set of graphs which 
contain no copy of H as a subgraph. Let . 𝚪 be a graph in this set with n vertices. The 
maximum number of edges that . 𝚪 can have is a function of n, which we denote by 
.ex(n,H). Although we may not be able to explicitly give a formula for .ex(n,H), 
we would at least like to know the asymptotic behaviour of the function. 

Example 9.1 In Fig. 9.1, the graph with six vertices and nine edges contains no 
triangle. As we shall see, this is the maximum number of edges a graph with 
six vertices can have, which has the property that it contains no triangle, i.e. 
.ex(6,K3) = 9. 

In general, to avoid a triangle we can take . 𝚪 to be the graph .K 1
2n, 12n

if n is even 
and .K 1

2 (n+1), 12 (n−1) if n is odd. These graphs have . 14n
2 edges and . 14 (n

2 − 1) edges 
respectively, and contain no triangle. 

The following theorem proves that this is best possible. 
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Fig. 9.1 A graph with six 
vertices containing no 
triangle 

Theorem 9.2 (Mantel) A graph . 𝚪 with n vertices which contains no triangle has 
at most . 14n

2 edges. 

Proof (Inductive Proof of Theorem 9.2) A graph with two vertices has no triangle 
and a graph with three vertices and two edges contains no triangle. 

Let xy be an edge of . 𝚪. Since . 𝚪 contains no triangles, the neighbours of x are 
disjoint from the neighbours of y. Hence, 

.d(x) − 1 + d(y) − 1 ⩽ n − 2, (9.1) 

where .d(u) denotes the degree of the vertex u. 
By induction, the graph .H = 𝚪 \ {x, y}, has at most . 14 (n − 2)2 edges, since H is 

a graph with .n − 2 vertices which contains no triangle. Hence, . 𝚪 has at most 

. d(x) − 1 + d(y) − 1 + 1 + 1
4 (n − 2)2

edges. ⨅⨆

Proof (Largest Independent Set Proof of Theorem 9.2) Let A be the largest 
independent set in . 𝚪. Then .d(x) ⩽ |A|, since the neighbourhood of any vertex 
is an independent set. 

Let B be the set of vertices of .𝚪 \ A. Every edge of . 𝚪 must have an end-vertex 
in B, so  

. m ⩽
∑

x∈B

d(x),

where m again denotes the number of edges in the graph . 𝚪. 
Since .d(x) ⩽ |A|, 

. 
∑

x∈B

d(x) ⩽ |A||B| = ab ⩽
(a + b

2

)2 = 1
4n

2,

where .|A| = a and .|B| = b. ⨅⨆

This last proof also classifies the extremal case.
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Suppose n is even. Then .a +b = n and .ab = 1
4n

2 imply .a = b = 1
2n. Moreover, 

equality implies that .d(x) = 1
2n for all .x ∈ B. Counting pairs .(x, e), where x is 

a vertex incident with the edge e, we get . 14n
2 contribution from the vertices in B, 

which implies we get a . 14n
2 contribution from the vertices in A. Since .a = 1

2n and 
.d(x) ⩽ 1

2n for .x ∈ A, we get .d(x) = 1
2n for .x ∈ A too. Hence . 𝚪 is the graph 

.K 1
2n, 12n

. 

Suppose n is odd. Then .a + b = n and .ab = 1
4 (n

2 − 1) implies . {a, b} =
{ 12 (n−1), 1

2 (n+1)} and so .m ⩽ 1
4 (n

2−1). Moreover, equality implies that . d(x) = a

for all .x ∈ B. Counting pairs .(x, e), where x is a vertex incident with the edge e, we  
get ab contribution from the vertices in B, which implies we get a . ab = 1

4 (n
2 − 1)

contribution from the vertices in A. Since .d(x) ⩽ b for .x ∈ A, we get .d(x) = b for 
.x ∈ A. But, then these ab edges with end-vertices in A are all the edges, so . 𝚪 is the 
graph .Ka,b. 

9.2 Graphs Without Complete Subgraphs 

Turán’s theorem concerns the natural generalisation of Mantel’s theorem and 
considers graphs which contain no copy of .Kr+1. The Turán graph is the complete 
multi-partite graph where the vertices are partitioned into r parts of roughly equal 
size (the most equal that they can be). The Turań graph has roughly . 12n(n − n/r) =
1
2n

2(1 − 1/r) edges. By the pigeon-hole principle, it contains no copy of .Kr+1. 

Theorem 9.3 (Turán) A graph with n vertices containing no copy of .Kr+1 has at 
most . 12n

2(1 − 1/r) edges. 

Proof (Induction Proof of Theorem 9.3) Assume that . 𝚪 has the maximum number 
of edges containing no copy of .Kr+1. Since adding an edge to . 𝚪 makes a copy of 
.Kr+1, the graph . 𝚪 contains a copy of . Kr . 

For .n ∈ {r, . . . , 2r − 1}, the  .n − r vertices not in . Kr are incident with at most 
.r − 1 edges incident with a vertex of . Kr . Thus, the number of edges is at most 

. 

(
n

2

)
− r(n − r) ⩽ 1

2n(n − 1) − r(n − r) − 1

2r
(n − r)(n − 2r2) = 1

2n
2(1 − 1/r).

By induction on n. The graph .𝚪 \ Kr has at most 

. 12 (1 − 1/r)(n − r)2

edges. 
A vertex in .𝚪 \Kr has at most .r −1 neighbours in . Kr , since . 𝚪 contains no .Kr+1. 

Therefore, . 𝚪 has at most
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. 12 (1 − 1/r)(n − r)2 + (r − 1)(n − r) + 1
2 r(r − 1) = 1

2 (1 − 1/r)n2.

edges. ⨅⨆

The following proof of Theorem 9.3, also classifies the graphs with n vertices 
which have the maximum number of edges as Turán graphs. 

Proof (Non-Adjacency Proof of Theorem 9.3) Suppose that . 𝚪 is a graph with n 
vertices that contains no copy of .Kr+1 and has the maximum number of edges such 
a graph can have. 

We want to prove that non-adjacency is an equivalence relation. Suppose that y 
is not joined by an edge to neither x nor z. We have to show that x is not adjacent to 
z. Suppose to the contrary that xz is an edge. 

If .d(y) < d(x) then let . 𝚪' be the graph where we delete y and add a copy . x' of 
the vertex x (adjacent to the same neighbours as x). Then . 𝚪' has n vertices, more 
edges than . 𝚪 and contains no copy of .Kr+1, since . 𝚪 does not. This contradicts the 
maximality of the number of edges in . 𝚪. 

Therefore, .d(y) ⩾ d(x) and similarly .d(y) ⩾ d(z). Now, let  . 𝚪' be the graph 
obtained from . 𝚪 by deleting the vertices x and z and adding copies . y' and . y'' of the 
vertex y. Then . 𝚪 has n vertices and 

. m − (d(x) + d(z) − 1) + 2d(y) ⩾ m + 1,

edges, where m denotes the number of edges in . 𝚪. Again,  . 𝚪 contains no copy of 
.Kr+1 since . 𝚪 does not, which contradicts the maximality of the number of edges in 
. 𝚪. 

Therefore, non-adjacency is an equivalence relation and . 𝚪 is a complete multi-
partite graph with at most r parts. Let . ni denote the number of vertices in the i-th 
part of . 𝚪. Then .n = n1 + · · · + nr . The number of edges in . 𝚪 is 

. 12

r∑

i=1

ni(n − ni) = 1
2n

2 −
r∑

i=1

n2i .

The sum 

. 

r∑

i=1

n2i

is minimised when . ni are chosen to be as close to .n/r as possible. 
Hence, the number of edges is maximised when the graph . 𝚪 is the complete r-

partite graph in which each maximum independent subset of vertices has size as 
close to .n/r as possible. ⨅⨆
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9.3 Erdős–Stone Theorem 

In the previous section, we managed to determine which graphs on n vertices, 
which contain no copy of .Kr+1, have the largest number of edges. In this section, 
we consider graphs containing no copy of an arbitrary graph H . 

Recall that .χ(H) denotes the chromatic number of the graph H , the minimum 
number of colours required to colour the vertices of H in such a way that no two 
adjacent vertices receive the same colour. 

The Turán graph . 𝚪, the complete r-partite graph on n vertices, whose stable sets 
are of size roughly . n/r , provides an example of a graph which contains no copy of 
any graph H with chromatic number .χ(H) = r + 1, since . 𝚪 is r-colourable. 

Note that, .χ(Kr+1) = r + 1, so the following theorem is a generalisation of 
Turán’s theorem, Theorem 9.3. The lower bound follows from the existence of the 
Turán graph. 
Theorem 9.4 (Erdős-Stone) For all .ϵ > 0, there is an . n0, such that for all .n > n0, 

. 

(
1 − 1

χ(H) − 1
− ϵ

)
1
2n

2 ⩽ ex(n,H) ⩽
(
1 − 1

χ(H) − 1
+ ϵ

)
1
2n

2.

Proof We show that a graph . 𝚪 with more edges than the stated upper bound contains 
some copy of every graph with chromatic number .r + 1 = χ(H). This is achieved 
by showing that . 𝚪 contains a complete .(r +1)-partite graph with parts of cardinality 
.t = |V (H)|. Note that since H is .(r +1)-colourable, we can place the vertices of H 
coloured with the same colour in the same stable set of the complete .(r + 1)-partite 
subgraph and find a copy of H as a subgraph of . 𝚪. The proof is build upon a series 
of claims. The first one shows that . 𝚪 contains a large subgraph in which every vertex 
has large degree. ⨅⨆

Claim 9.5 Let .r ∈ N and .ϵ ∈ R such that .0 < ϵ < 1/r . There is a .δ = δ(r, ϵ) and 
an .n0 ∈ N such that for all graphs . 𝚪 with .n ⩾ n0 vertices and at least . (1− 1

r
+ϵ) 12n

2

edges, there is a subgraph . 𝚪' of . 𝚪 with at least . δn vertices and minimum degree 
.δ(𝚪') ⩾ (1 − 1

r
+ 1

2ϵ)δn. 

Proof We repeatedly remove vertices of minimum degree until the resulting graph 
. 𝚪' has minimum degree .δ(𝚪') ⩾ (1− 1

r
+ 1

2ϵ)n
', where . n' is the number of vertices 

of . 𝚪'. The number of edges that have been removed to obtain . 𝚪' is at most 

.

n∑

ℓ=n'+1

(1 − 1

r
+ 1

2
ϵ)ℓ = (1 − 1

r
+ 1

2
ϵ)

(
(n − n')(n + n' + 1)

2

)

⩽ (1 − 1

r
+ 1

2
ϵ)

(
n2 − (n')2

2
+ n − n'

2

)
.
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Therefore, 

. |E(𝚪)| ⩽ |E(𝚪')| + (1 − 1

r
+ 1

2
ϵ)

n2 − (n')2

2
+ n − n'

2

⩽ (n')2

2
+ (1 − 1

r
+ 1

2
ϵ)

n2 − (n')2

2
+ n − n'

2

= (1 − 1

r
+ 1

2
ϵ)

n2

2
+ (

1

r
− 1

2
ϵ)

(n')2

2
+ n − n'

2
.

By comparing with the lower bound on .|E(𝚪)| we obtain 

. (
1

r
− 1

2
ϵ)

(n')2

2
− n'

2
> ϵ

n2

4
− n

2
,

which implies .n' ⩾ √
rϵ n. ⨅⨆

The second claim shows that in a graph in which every vertex has sufficiently 
large degree we can find a large blow-up of .K1,r . 

Claim 9.6 Let .r ∈ N and .ϵ ∈ R such that .0 < ϵ < 1/r . Let . t, s such that .s > 2t/rϵ. 
Let . 𝚪 be a graph with n vertices, where n is sufficiently large and minimum degree 
.δ(𝚪) ⩾ (1 − 1

r
+ 1

2ϵ)n. For every family .B1, . . . , Br of r disjoint subsets of . V (𝚪)

of cardinality s there is a subset .Ar+1 of cardinality t disjoint from .B1, . . . , Br and 
subsets .A1 ⊂ B1, . . . , Ar ⊂ Br each of cardinality t such that every vertex in . Ar+1
is adjacent to every vertex in each . Ai . 

Proof Let .B = ∪r
i=1Bi . Let  W be the set of vertices in .U = V (G) \ B which have 

at least t neighbours in each . Bi . Let  .e(U,B) be the number of edges with one end 
in U and one end in B. Then, 

. |B|δ(𝚪) −
(|B|

2

)
⩽ e(U,B) ⩽ |W ||B| + (|U | − |W |)(|B| − (s − t))

= |W |(s − t) + (n − |B|)(|B| − (s − t)),

given that a vertex in .U \ W has at most .|B| − (s − t) neighbours in B, since it has 
at least .s − t non-edges to one of the . Bi . 

Thus we have that 

. |W | ⩾ 1

s − t

(
(s − t) − |B|(1

r
− ϵ

2
)

)
n + |B|((|B| + 1)/2 − (s − t)) = αn + β,

for some constants .α, β which depend only on the parameters .s, t, r . From our 
choice of s we have .α > 0. By choosing n sufficiently large we may assume
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. |W | >

(
s

t

)r

(t − 1).

Every element in W has at least t neighbours in each . Bi . There are .
(
s
t

)r
r-tuples 

.(A1, . . . , Ar), each .Ai ⊂ Bi of cardinality t . For each .w ∈ W , there is such an 
r-tuple. By the pigeonhole principle, there are (at least) t vertices in W which 
are adjacent to all vertices of a common r-tuple .(A1, . . . , Ar), each .Ai ⊂ Bi of 
cardinality t . We can define .Ar+1 as the set of t such vertices. ⨅⨆

Our last claim unveils the existence of a complete .(r +1)-partite subgraph . Kt,...,t

in . 𝚪. 

Claim 9.7 Let .r, t ∈ N and .ϵ ∈ R such that .0 < ϵ < 1/r . Let  . 𝚪 be a graph with 
minimum degree .δ(𝚪) ⩾ (1 − 1

r
+ 1

2ϵ)n. If .n = |V (𝚪)| is sufficiently large then . 𝚪

contains a copy of the complete .(r + 1)-partite subgraph .Kt,...,t . 

Proof The condition on the minimum degree of . 𝚪 in Claim 9.6 is satisfied for each 
.1 ⩽ r ' ⩽ r . For each value of .r ' ∈ {1, . . . , r}, we successively build a complete 
.(r ' + 1)-partite subgraph .Ktr' ,...,tr' with .tr = t and .tr ' ⩾ 2tr '+1/rϵ for .1 ⩽ r ' < r . 
At each step the stable sets of this subgraph play the role of the . Bi’s from Claim 9.6 
in the next one and the conclusion of Claim 9.6 provides the complete multipartite 
graph at this step. 

The above claims provide a proof of the statement of the theorem. By choosing 
n large enough we can find, by Claim 9.5, a sufficiently large subgraph . 𝚪' which 
satisfies the condition on the minimum degree of Claim 9.7 and therefore we find 
a copy of the complete .(r + 1)-partite graph .Kt,...,t for every fixed t . By choosing 
.t = |V (H)| this subgraph contains H as a subgraph. ⨅⨆

Theorem 9.4 tells us the asymptotic behaviour of .ex(n,H) for all graphs H for 
which .χ(H) /= 2. If  .χ(H) = 2 then H is bipartite and Theorem 9.4 only tells 
us that we cannot take some positive proportion of all the edges in the graph . 𝚪 if 
we wish to avoid H ; there is more work to be done in this case. In the remaining 
sections we will consider particular classes of bipartite graphs. 

9.4 Graphs Without Complete Bipartite Graphs 

Consider first the case that H is a star, .H = K1,t , for  some  t . If . 𝚪 contains no copy 
of H then the maximum degree of its vertices is .t −1 and so it has at most . 12n(t −1)
edges. This is realizable if . 12n(t − 1) is an integer. Keep adding edges to a graph 
with n vertices until every vertex has degree .t − 1, except possibly one that has 
degree .t − 2. Then the number of edges is .

1
2n(t − 1) if there is no vertex of degree 

.t − 2. In the case there is a unique vertex of degree .t − 2 then the number of edges 
is .

1
2 ((n − 1)(t − 1) + t − 2) = 1

2n(t − 1) − 1
2 .
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Therefore, .ex(n,K1,t ) is linear in n, whereas for non-bipartite graph the Erdős-
Stone–Simonovits theorem, Theorem 9.4 tells us that .ex(n,H) is quadratic. 

Let us consider the graph .K2,2 = C4. We wish to determine the asymptotic 
behaviour of the function .ex(n,K2,2). 

Example 9.8 Let .(P,L) be a linear space and let . 𝚪 be the bipartite graph with 
vertices .P ∪ L where . xℓ is an edge if and only x is incident with . ℓ, where . x ∈ P

and .ℓ ∈ L. Since two points x and y are joined by a unique line, the graph . 𝚪 contains 
no .K2,2. 

In the case that .(P,L) is a projective plane of order q, see Sect. 4.5, the graph . 𝚪

has .n = 2(q2 + q + 1) vertices and .
1
2n(q + 1) edges which implies 

. ex(n,K2,2) > ( 12n)3/2,

since .(q + 1)2 > 1
2n. 

The Kőváry–Sós–Turán theorem (Theorem 9.9 below) gives an upper bound on 
.ex(n,Ks,t ), the maximum number of edges in a graph with n vertices and no copy 
of .Ks,t as a subgraph. For its proof we will use the fact that, for every positive 
integer t , the function .ft (x) defined as .

(
x
t

) = x(x − 1) · · · (x − t + 1)/t ! for . x ⩾ t

and zero otherwise is a convex function. Thus, for any numbers .d1, . . . , dn, 

. 
1

n

n∑

i=1

(
di

t

)
⩾

(
(
∑n

i=1 di)/n

t

)
.

Theorem 9.9 (Kőváry–Sós–Turán) For all .ϵ > 0, there is a . n0, such that for all 
.n > n0, a graph with n vertices which contains no .Kt,s has at most 

. 12 (s − 1)1/t (1 + ϵ)n2−1/t

edges. In other words, 

. ex(n.Ks,t ) < 1
2 (s − 1)1/t (1 + ϵ)n2−1/t ,

for n large enough. 

Proof Let . 𝚪 be a graph with n vertices, m edges and containing no .Kt,s . 
Let N be the number of copies of .K1,t contained in . 𝚪. 
For every subset T of size t , the vertices in T have at most .s − 1 common 

neighbours. Hence, 

.N ⩽
(

n

t

)
(s − 1) ⩽ nt

t ! (s − 1)(1 + ϵ)t−1.
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Let .d(v) denote the degree of the vertex v and let .δ = 2m/n denote the average 
degree. By the convexity of the binomial coefficients, 

. N =
∑

v

(
d(v)

t

)
⩾ n

(
δ

t

)
> n

δt

t ! − nδt−1,

for n large enough. 
Suppose 

. m >
1

2
(s − 1)1/t (1 + ϵ)n2−1/t .

Then, 

. δ > (s − 1)1/t (1 + ϵ)n1−1/t .

and comparing the inequalities for N , 

. 
nt

t ! (s − 1)(1 + ϵ)t−1 ⩾ nt

t ! (s − 1)(1 + ϵ)t − cnt−(t−1)/t ,

for some constant .c = c(s, t, ϵ). This gives 

. cnt−(t−1)/t ⩾ nt

t ! (s − 1)(1 + ϵ),

and so 

. ct ! ⩾ (s − 1)n1−1/t (1 + ϵ),

which is a contradiction for n large enough. ⨅⨆

Corollary 9.10 For all .ϵ > 0 and n large enough, a graph containing no .K2,2 has 
at most . 12 (1 + ϵ)n3/2 edges. 

In the construction in Example 9.8, we had a lower bound .ex(n,K2,2) ⩾ ( 12n)3/2. 
The next example is a refinement which improves the constant .( 12 )

3/2 to . 12 and 
thereby asymptotically meets the upper bound. 

Example 9.11 Let .(P,L) be a projective plane . A polarity is a bijection . σ : P →
L with the property that .x ∈ ℓ if and only if .σ−1(ℓ) ∈ σ(x). 

Consider the graph . 𝚪 whose vertices are the points P of a projective plane, 
equipped with a polarity . σ . The vertices x and y are joined by an edge if and only 
if .x ∈ σ(y). This defines a simple graph since .x ∈ σ(y) if and only if .y ∈ σ(x).
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A common neighbour of both x and y is a point in the intersection of two lines, 
.σ(x) and .σ(y), which is unique since .(P,L) is a projective plane. 

Suppose that .(P,L) is a projective plane of order q. As we saw in Sect. 4.5, 
.|L| = |P | = n2 + n + 1, so  . 𝚪 has .n = q2 + q + 1 vertices. Since each line is 
incident with .n + 1 points, . 𝚪 has at least . 12nq edges, which is approximately . 12n

3/2

edges, which asymptotically is the bound in Theorem 9.9. 
It only remains to construct a projective plane with a polarity. Consider . PG(2, q)

where . σ is defined by 

. σ(〈(x1, x2, x3)〉) = ker(x1X1 + x2X2 + x3X3).

Then .y ∈ σ(x) if and only if .x1y1 + x2y2 + x3y3 = 0 which is if and only if 
.x ∈ σ(y). 

The proof of the following theorem uses the probabilistic method to prove the 
existence of graphs with no .Kt,s and many edges. For .t ⩾ 6 and .s ⩽ (t − 1)! there 
is no better construction known. 

Theorem 9.12 For some constant c and n large enough, there is a graph with n 
vertices and .cn2−(s+t−2)/(st−1) edges containing no .Kt,s . 

Proof Construct a graph with n vertices in which each edge is there with probability 
p. 

Let X be the random variable which counts the number of copies of .Kt,s . 
Let Y be the random variable which counts the number of edges. 
Then, the expectation of Y is 

. E(Y ) =
(

n

2

)
p ⩾ c'n2p,

for some constant . c'. 
The expectation of X is 

. E(X) =
(

n

s

)(
n − s

t

)
pst < c''ns+tpst ,

for some constant . c'', depending on s and t . 
By linearity of expectation, 

. E(Y − X) ⩾ c'pn2 − c''pstns+t .

Put 

.p =
( c'

2c''
)1/(st−1)

n−(s+t−2)/(st−1).
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Then, 

. E(Y − X) ⩾ 1
2pc'n2 = cn2−(s+t−2)/(st−1),

for some constant c. 
Since the expectation of .Y − X is at least .cn2−(s+t−2)/(st−1), there must be a 

graph . 𝚪' for which .Y −X ⩾ cn2−(s+t−2)/(st−1). Removing an edge from each copy 
of .Kt,s in . 𝚪', we obtain a graph . 𝚪 with at least .cn2−(s+t−2)/(st−1) edges, containing 
no copy of .Kt,s . ⨅⨆

The probabilistic construction only gives a lower bound of .cn4/3 for graphs 
containing no .K2,2, whereas we have seen a deterministic construction with . 12n

3/2

edges. Observe that although our construction only works for .n = q2 + q + 1 and 
q a prime power, the primes are dense enough that, asymptotically, the construction 
for .n0 = q2 + q + 1 and .n − n0 isolated vertices is enough to prove that 

. ex(n,K2,2) ∼ 1
2n

3/2.

Deterministic constructions are known which imply that . ex(n,K2,s ) =
c(s)n3/2+o(n3/2) and .ex(n,K3,s) = c(s)n5/3+o(n5/3). The asymptotic behaviour 
of .ex(n,K4,4) is unknown, although it is known that 

. ex(n,Kt,s) ∼ c(s, t)n2−1/t ,

for .s ⩾ (t − 1)! + 1. 

9.5 Graphs Without Even Cycles 

The following theorem bounds the number of edges that a graph contatining no . C2t
can have. 

Theorem 9.13 A graph with n vertices which contains no copy of .C2t has at most 
.cn1+(1/t) edges, for some constant c. 

As we shall see in the exercises, the probabilistic construction gives a lower 
bound of .c'n1+1/(2t−1). 

There are deterministic constructions known which give a lower bound of 
.cn1+2/(3t−3) edges. 

In this section, we will prove Theorem 9.14. In the proof we will construct a 
generalised quadrangle, an incidence structure .(P,L) with the property that for 
a pair .(x, ℓ) ∈ (P,L), such that .x /∈ ℓ, there is a unique line m incident with x 
and concurrent with . ℓ. Figure 9.2 is an example of a generalised quadrangle with 15 
points and 15 lines.
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Fig. 9.2 A generalised 
quadrangle with 15 points 
and 15 lines  

Theorem 9.14 For all .ϵ > 0, there is a . n0 such that for all .n > n0, there is a graph 
with n vertices and at least .(( 12 )

4/3 − ϵ)n4/3 edges which contains no copy of . C6. 

Proof Let .b(u, v) be a non-degenerate alternating form defined on . F4
q , for example 

. b(u, v) = u1v2 − v1u2 + u3v4 − v3u4.

Consider the incidence structure .(P,L) whose points are the 1-dimensional sub-
space of . F4

q and whose lines are the 2-dimensional totally isotropic subspaces. In 
other words, .ℓ ∈ L is a 2-dimensional subspace with the property that . b(u, v) = 0
for all .u, v ∈ ℓ. We define incidence in .(P,L) to be inclusion as subspaces in . F4

q . 

Then P has size .q3 + q2 + q + 1. A point . 〈u〉 is incident with the .q + 1 lines 
which are the 2-dimensional subspaces contained in the 3-dimensional subspace, 
.ker b(u, v). There are .q + 1 such subspaces, so each point is incident with . q + 1
lines. This implies that there are .q3 + q2 + q + 1 lines in L. 

Let .x = 〈u〉 be a point not incident with a line . ℓ. The points which are collinear 
with x are the 1-dimensional subspaces contained in .ker b(u, v). Moreover, the 
totally isotropic 2-dimensional subspaces contained in .ker b(u, v) all contain x, so  
. ℓ is not contained in .ker b(u, v). Therefore the 3-dimensional subspace . ker b(u, v)

meets the 2-dimensional subspace . ℓ in a 1-dimensional subspace. In the incidence 
structure .(P,L) this implies that there is a unique point .y ∈ ℓ which is collinear 
with x. Therefore, the incidence structure contains no triangles. 

Let . 𝚪 be the bipartite graph with vertices .P ∪ L and where x and . ℓ are joined by 
an edge if and only if .x ∈ ℓ. Then . 𝚪 has roughly .n = 2(q3+q2+q+1) vertices and 
.(q3 + q2 + q + 1)(q + 1) edges. Since .(P,L) contains no triangles, . 𝚪 contains no 
6-cycles and . 𝚪 has n vertices and more than .( 12n)4/3 edges. The statement follows 
from density of primes amongst the integers. ⨅⨆



9.7 Exercises 155

9.6 Notes and References 

Mantel’s theorem was proven by Mantel in 1907 (Mantel 1907) and later 
extended to Turán’s theorem by Turán in 1941 (Turan 1941) and generalized to 
the Erdős-Stone theorem by Erdős and Stone in Erdős and Stone (1946). 

The smallest complete bipartite graph . 𝚪 for which the asymptotic behavious of 
.ex(n, 𝚪) is not known is .ex(n,K4,4). It is known that the asymptotics of the function 
lies between .cn5/3 (see Exercise 9.6) and .c'n7/4 (by Theorem 9.9). 

9.7 Exercises 

Exercise 9.1 Let 𝚪 be a graph with n vertices in which every vertex has degree d 
and suppose 𝚪 contains no C4. 

i. Prove that n ⩾ d2 + 1. 
ii. Let 𝚪 be the graph whose vertices are the points of a Desargues configuration, 

see Fig. 9.3, and where two vertices are joined by an edge if they are not collinear 
in Desargues configuration. Prove that 𝚪 contains no C4 and meets the bound 
in i. 

iii. Suppose that we can label the 35 lines of PG(3, 2) with a triple from a set X 
of size 7 in such a way that two lines of PG(3, 2) intersect if and only if the 
corresponding triples intersect in precisely one element. Let 𝚪 be the graph 
whose vertices are the points and the lines of PG(3, 2). A point x is joined 
to a line ℓ in the graph 𝚪 if and only if x ∈ ℓ. No two points are joined by an 
edge. Two lines are joined to an edge if and only if there corresponding triples 

Fig. 9.3 Desargues 
configuration. It has 10 
points, 10 lines, every point is 
in three lines and every line is 
incident with 3 points
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Fig. 9.4 The Petersen graph 

are disjoint. Prove that every vertex of 𝚪 has degree 7, 𝚪 contains no C4 and 
meets the bound in i. 

The graph constructed in Exercise 9.1 ii. is the Petersen graph (Fig. 9.4). The 
labelling described in Exercise 9.1 iii. is possible and the graph constructed is the 
Hoffman-Singleton graph. 

Exercise 9.2 Let 𝚪 be a graph with n vertices in which every vertex has degree at 
least n/2. Prove that 𝚪 contains a cycle of length n. 

Exercise 9.3 Let E be the set of edges of 𝚪 and let V be the set of vertices of a 
graph 𝚪. 

i. Summing over the edges xy in 𝚪, prove that 

. 
∑

xy∈E

(d(x) + d(y)) =
∑

x∈V

d(x)2,

where d(x) denotes the degree of the vertex x. 
ii. Use the Cauchy-Schwarz inequality to prove that 

. (u21 + · · · + u2n)n ⩾ (u1 + · · · + un)
2.

for (u1, . . . , un) ∈ Rn. 
iii. Use the inequaiities in i. and ii. to prove Theorem 9.2. 

Exercise 9.4 Suppose that ex(n, H) ⩽ ρ
(
n 
2

)
, for  n ⩾ n0 and let V (H)  denote 

the set of vertices of H . Prove that if 𝚪 is a graph with n vertices and more than 
(ρ + ϵ)

(
n 
2

)
edges then it contains at least cn|V (H)| copies of H , for  some  c not 

dependent on n. 

Exercise 9.5 Let (P, L) be a finite linear space with an injective map σ from P to 
L with the property that x ∈ σ(y)  if and only y ∈ σ(x). Let  G be the graph whose 
vertices are the elements of P and where x is joined to y if and only x ∈ σ(y).
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i. Prove that G contains no subgraph isomorphic to C4. 
ii. Using a non-degenerate symmetric bilinear form b(u, v) on F3 

m ×F
3 
m, prove that 

(P, L) = PG(2,m)  has such a map σ . 
iii. Prove that for n = m2 + m + 1, 

. ex(n, C4) ⩾
1

2
(n − 1)(m + 1).

Exercise 9.6 Let S be a set of q2 + 1 points of an ellipsoid in PG(3, q)  embedded 
in the hyperplane X5 = 0 of PG(4, q). Note that no three points of S are collinear. 
Let v = (0, 0, 0, 0, 1) and let σ be a bijective map from the points of S \ {v} to the 
hyperplanes of the space, given by 

. σ((x1, x2, x3, x4, x5)) = x1X1 + x2X2 + x3X3 + x4X4 + x5X5.

For example, the point v is mapped to the hyperplane X5 = 0. 
Let 𝚪 be the graph whose vertices are the points on lines joining S to v (not 

including the point v), where a point x is adjacent to a point y if and only if x is a 
point incident with the hypreplane σ(y). 

i. Prove that 𝚪 contains no K3,3. 
ii. Prove that for all ϵ >  0 and n sufficiently large, 

. ex(n,K3,3) >
1

2
(1 − ϵ)n5/3.

Exercise 9.7 Let exb(n, H) be the maximum number of edges a bipartite graph can 
have which contains no subgraph isomorphic to H . 

i. Prove that for all ϵ >  0 and n large enough, 

. exb(n,Kt,s) ⩽ (1 + ϵ)(s − 1)1/t (
n

2
)2−1/t .

ii. Prove that the bound in (a) is asymptotically tight for K2,2. 
iii. Prove, using a probabilistic construction, that for all ϵ >  0 and n large enough, 

. exb(n,Kt,t ) ⩾ ctn
2−2/(t+1),

for some constant ct depending on t .
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Exercise 9.8 

i. Prove that a bipartite graph with vertex sets of size t and s which contains no C4 
has less than t1/2s + t edges. 

ii. Construct a bipartite graph with vertex sets of size t = s4/3+s+s2/3 and s which 
contains no C4 and has more than t1/2s edges, for every prime power s1/3. 

Exercise 9.9 Let H be the cyclic graph C2t . Prove that for all ϵ >  0, there exists 
an n0 and c = c(t) such that for all n ⩾ n0, 

. ex(n,H) ⩾ c(1 − ϵ)n1+(1/(2t−1)).

Exercise 9.10 Let D be a finite subset of positive numbers and let S be a set of n 
points in the real plane. 

i. Prove that there are at most cn3/2 pairs of points in S that are at distance one 
from each other, for some constant c that does not depend on n. 

ii. Prove that there are at most cn3/2 pairs of points in S that are at distance d ∈ S 
from each other, for some constant c that does not depend on n.



10Hints and Solutions to Selected Exercises 

1.1 
Let . PO be the class of partitions into odd number of parts. Its symbolic description 
is 

. PO = Seq({1}) × Seq({3}) × Seq({5}) × · · ·

On the other hand, the class . Pd of distinct partitions can be written as 

. Pd = (ϵ + {1}) × (ϵ + {2}) × · · ·

1.2 A path in . Dk is a Dyck path followed by a . ↘ step, followed by a second Dyck 
path and . ↘ step and so on up to k times and finally an additional Dyck path: 

. Dk = (D0 × {↘})k × D0.

From the above description one gets 

. Dk(z) = zkDk+1
0 (z),

For .k = 2, the 9 paths of length 6 in . D2 are depicted in Fig. 10.1. 
1.3 

. S = {ϵ} + {→→} × S + {↗} × S × {↘} × S.

The length of the path must be even, so if we declare the size of a path of length 2n 
to be n we get the functional equation 

. S(z) = 1 + z(S(z) + S2(z)).
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Fig. 10.1 . D2 paths 

1.4 
As in the case of Dyck paths, in order to find a recursive formula we consider the 
smallest .i > 0 such that the path contains the point .(i, 0). Every path in .D⩽m can 
be described as a step up followed by a path in .Dm−1 followed by a step down and 
a path in .D⩽m: 

. D⩽m = ϵ + {↗} × D⩽m−1 × {↘} × Dm,

which gives the functional equation 

. D⩽m(z) = 1 + z2D⩽m−1(z)D⩽m(z).

1.6 
Let U denote a step .(1, 2) and D a step  .(1,−1). The first step must be U . By  
decomposing the path by the first passage through the line .y = 1 and then by the 
first passage through the line .y = 0, the path can be uniquely described as 

. A = ϵ + {U} × A × {D} × A × {D} × A.

which gives the equation 

. A(z) = 1 + z3A3(z).

The three paths of length six are depicted below. 

1.7 
If . N denotes the class with a single node, then the class of trees such that the number 
of children at every node belongs to a subset .I ⊂ N can be written as
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. TI = N × (1 +
∑

i∈I

(TI )
i).

1.10 

i. There are .(n − 3) diagonals and .n − 2 triangles. 
ii. Let . T be the class of triangulations. Every triangulation can be described by a 

sequence of a triangulation, a triangle and a triangulation: 

. T = {ϵ} + T × {T } × T .

2.1 
Hint: The class . C of cycles has (exponential) generating function . C(z) = log 1

1−z

and the class of even cycles is its even part 

. 
1

2
(C(z) + C(−z)) = 1

2

(
log

1

1 − z
+ log

1

1 + z

)
= log(

1√
1 − z2

).

The class of permutations which have only even cycles in their cycle decomposition 
is .Peven = Set(Ceven), ans its generating function is 

. Peven(z) = exp(Ceven(z)) = 1√
1 − z2

=
∑

n⩾0

(−1/2

n

)
z2n.

2.5 
The class .Peven of permutations which decompose into an even number of cycles 
can be extracted from the construction . (C) by selecting only the even powers: 

. Peven =
∑

k⩾1

C∗2k

(2k)!

and the generating function is 

. P even(z) = cosh

(
log

1

1 − z

)
= 1

2

(
1

1 − z
+ (1 − z)

)
.

Its number is, for .n > 1, 

. n![zn]P even(z) = n!/2,

as one may expect.
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2.6 
Hint: A word in .W(k,r) can be identified by the 4-tuple . (f −1(a), f −1(b), f −1(α),

.f −1(β)) where .f : [n] → {a, b, α, β} gives the positions of the letters in a word of 
length n, with the condition that .f −1(a), .f −1(b) have size at most k and . f −1(α)

and .f −1(β) have size at least r . 
2.9 
Hint: A labelled rooted star tree is a root together with a set of nodes which are the 
leaves. The class of rooted star trees can be described as .Z ∗ Set(Z). A forest of 
rooted labelled stars is 

. S = Set(Z ∗ Set(Z)).

2.10 

i. Let . U2 be the class of urns of cardinality at least 2. We have 

. Pk,2 =
k︷ ︸︸ ︷

U2 ∗ · · · ∗ U2 / ∼k .

where . ∼k denotes the equivalence relation identifying two k-tuples that differ 
only in a permutation of its entries. 

ii. Every doubly surjective map .f : [n] → [k] is identified by a sequence of k sets 
of cardinality at least two: 

. Sk =
k︷ ︸︸ ︷

U2 ∗ · · · ∗ U2 .

iii. Every word of length n on the alphabet .{a1, . . . , ak} such that each symbol 
appears at least twice is identified with a doubly surjective map . f : [n] →
{a1, . . . , ak}. 

3.1 

i. . 124 (r
8 + 17r4 + 6r2). 

ii. . 124 (r
8 + 17r4 + 6r2). 

3.2 

ii. . 112 (r
6 + 3r4 + 4r3 + 2r2 + 2r).

iii. 74. 

3.4 
34. 
3.6
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i. 700. 
ii. 414. 

3.7 
218. 
3.9 

iii. 396. 
iv. No. 

3.10 

iii. 104. 

3.12 

i. 36. 
ii. The coefficient of . tj in .15 + 11t + 6t2 + 3t3 + t4. 
iii. The coefficient of . tj in 

. 112 ((1+ t + t3+ t5)4+3(1+ t2+ t6+ t10)2+8(1+ t3+ t9+ t15)(1+ t + t3+ t5)).

3.13 

i. The number of 4-colourings is 

. Z(4, 4, 4, 4, 4, 4)

where 

. Z(X1, . . . , X6) = 1

12
(X6

1 + 4X3
2 + 2X2

3 + 2X6 + 3X2
2X

2
1).

ii. The coefficient of . tj in 

. Z(t + 3, t2 + 3, t3 + 3, t4 + 3, t5 + 3, t6 + 3).

iii. The coefficient of . tj in 

. Z(t +2t2+1, t2+2t4+1, t3+2t6+1, t4+2t8+1, t5+2t10+1, t6+2t12+1).

4.1 

i. Prove that they are either .Z/4Z with addition and the second is .Z/5Z with 
multiplication.
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ii. 

4.2 

iii. Let .q = 2m and consider the latin square . La defined on the elements of . Fq with 
binary operation .x ◦ y = ax + y, where a is a non-zero element of . Fq . 
Recall that, by construction, .Fq = F2[X]/(f ), where f is an irreducible 
polynomial over . F2 of degree .k + 1. 
Order the elements of . Fq so that the first m are represented by polynomials 
of degree at most .k − 1. The top-left .m × m array in . L1 will contain only 
these elements, since summing two polynomials of degree at most .k − 1 gives 
a polynomial of degree at most .k − 1. By Theorem 4.19, . L1 belongs to a set of 
.2m − 1 mutually orthogonal latin squares of order 2m. 

4.9 
Count triples .(x, y, 𝓁) where x and y are points incident with the line . 𝓁 in two ways 
and apply the Erdős-De Bruijn theorem. 
4.12 

i. .{0, 1, 3} is a difference set of .Z/7Z and .{0, 1, 3, 9} is a difference set of .Z/13Z. 

4.13 

i. .D = {0, 1, 3} is a relative difference set of .Z/8Z. 

5.1 
Hint: Removing the leaves from the tree and their fathers, we get a smaller tree. 
5.3 
Hint: Let .U = A' ∪ B ' be a vertex cover, of minimum size where .A' ⊆ A and 
.B ' ⊆ B. Since U is a vertex cover, there are no edges between .A \ A' and .B \ B '. 
Show that Hall’s condition fails for .A \ A'. 
5.4 
Hint: Consider an Eulerian circuit C, substituting each vertex v by two vertices . v−
and . v+ and every edge .vivi+1 of C by the edge .v+

i v−
i+1. The resulting graph is 

bipartite k-regular. 
5.7 
Consider the set of preferences in which, for . i /= n

.xi | yi > yi−1 > · · · y1 > yn−1 > · · · yi+1 > yn
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and for . xn

. xn | yn−1 > yn−2 > · · · > y1 > yn

and for .i /= n, 

. yi | xi−1 > xi−2 > · · · x1 > xn > xn−1 > · · · > xi.

5.8 
A 1-factorisation of the Petersen graph is equivalent to a proper 3-colouring of the 
edges. Up to change of colour there is a unique way to colour the outer edges, which 
leaves no choice for the colours of the outer to inner edges. But then the inner edges 
cannot be properly 3-coloured. 
5.10 
Let .X ∪ A be the vertex partition of a bipartite graph . 𝚪, where .|X| = |A|. 

Suppose that . 𝚪 does not have a perfect matching. Then we will find a subset J 
of the vertices of A with the property that .N(J ), the union of the neighbours of J , 
is smaller than J . This suffices to prove that if .|N(J )| ⩾ |J | for all subsets J of A 
then . 𝚪 has a perfect matching. 

Adding all edges between any two vertices of X, does not alter the property that 
. 𝚪 does not have a perfect matching, since a perfect matching is a set of edges which 
have one end-vertex in A and the other in X. Hence, we can assume that the vertices 
X in . 𝚪 form a complete subgraph. 

Theorem 5.11 implies that there is a subset S of the vertices such that the number 
of odd components of .𝚪 \ S is larger than . |S|. An odd component of .𝚪 \ S is either 
an isolated vertex in .N(S ∩X) or one other large component with vertex set C. Note  
that Hall’s condition implies that every vertex in A is connected to some vertex in 
X, so if there is a vertex  in  A not in C, then it is in .N(S ∩ X). 

Let J be the subset of .N(S ∩ X) which are not in C. Then .N(J ) ⊆ S ∩ X. Let  
.T = N(J ). 

Any vertex in .(S ∩ X) \ T is joined to a vertex in C and so is in C. Its  removal  
may change the status of C as an odd component, but it does not change the status 
of any other odd components. Therefore, it is possible that .oc(𝚪 \T ) is one less than 
.oc(𝚪 \ S) but then . |T | is one less than . |S|, so we have that  T also has the property 
that the number of odd components of .𝚪 \ T is more than . |T |. 

If . |C| is even then 

. |J | = oc(𝚪 \ T ) > |T | = |N(J )|.

If . |C| is odd then .|T | /= |J | (since .C = (A ∪ X) \ (J ∪ T ) and .|A| = |X|), so 

. |J | = oc(𝚪 \ T ) − 1 ⩾ |T | = |N(J )|,

implies .|J | > |N(J )|.
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5.11 

i. Counting vertices modulo 2. 
ii. By Tutte’s theorem, there exists a subset S of the vertices such that 

. |oc(𝚪 \ S)| − |S| > 0.

By counting edge-vertex pairs, it follows that a cubic graph has an even number 
of vertices. Now apply i. 

iii. Suppose that . 𝚪 does not have a perfect matching. 
By ii., there exists an S such that 

. |oc(𝚪 \ S)| − |S| ⩾ 2.

Each odd component of .𝚪 \ S has an odd number of vertices and so there are 
an odd number of edges from .𝚪 \ S to S. If this number is 1 then the edge is a 
bridge. If there are at most two bridges we reach a contradiction. 

5.12 
Hint: Consider what happens to the number of components with an odd number of 
edges if we remove an edge of a graph. 
5.13 

i. In every unbalanced even component there are at least two vertices joined by the 
matching to a vertex in S, giving one direction. The converse follows by Tutte’s 
theorem. 

ii. If . 𝚪 is bipartite then odd connected components must be unbalanced. Therefore, 

. uc(𝚪) = oc(𝚪) + euc(𝚪) ⩽ oc(𝚪) + 2euc(𝚪)

and the condition is necessary by part (i). Sufficiency again holds by Tutte’s 
theorem. 

iii. The graph .𝚪 = K1,2,3 has a perfect matching. Let S be one of the vertices in the 
stable set with two vertices. Then .𝚪\S has one odd component and one severely 
unbalanced component. 

6.2 
Hint: If .𝚪/e is not 2-connected then the vertices of e have a neighbour in all 
components of .𝚪 \ e, since . 𝚪 is 2-connected. 
Hint: If .𝚪 \ e is not 2-connected then it has a cut-vertex v. Since . 𝚪 is 2-connected, 
the edge e must join vertices in distinct components of .𝚪 \ v.
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6.3 
Hint: Suppose z is a cut-vertex for .𝚪\{x, y}. Prove that .{z, vxy} is a cut-set of .𝚪/xy, 
where . vxy is the vertex obtained by contracting the edge xy. 
Hint: Suppose .{z,w} is a cut-set of .𝚪/xy. Argue that .w = vxy . 
6.4 
Hint: By induction on k and apply Menger’s theorem. 
6.6 
Hint: Let . Ci be a connected component of .G\S such that .Ci ∩S' = ∅. Every vertex 
of S has a neighbour in . Ci , since otherwise S is not a minimal separating set. Thus, 
.S \ S' is in the same connected component as . Ci in .G \ S'. 
6.9 
Hint: We need to prove that a separator set has size at least n, where .|A| = n and 
A, B is the bipartite partition of the bipartite graph . 𝚪. Suppose there is a separator 
set .SA ∪ SB of size at most .n − 1, where .SA ⊆ A and .SB ⊆ B. Prove that Hall’s 
condition fails for .J = A \ SA. 
6.10 
By induction on k. Note that . Qk splits into two copies of .Qk−1, those whose first 
coordinate is zero and those whose first coordinate is 1. Argue that to separate . Qk

we must separate each of these copies of .Qk−1 and use that fact that .(1, x) is joined 
to .(0, x). 
6.12 

iii. .K3 + E5. 

7.1 
The average degree is smaller than 6. If G is triangle free, the average degree is 
smaller than 4. 
7.2 
Every face is bounded by a cycle. If a cycle is not a face, consider the subgraph 
which has this cycle as outer face. 
7.4 
All vertices must be in the cycle of the outer face. Some vertex has degree two. 
7.5 
Add one vertex in the outer face connected to all vertices of . 𝚪 and apply 
Kuratowski’s theorem. 
7.6 

i. Use Euler’s formula and double counting faces and edges. 
ii. If the end vertices of an edge share more than two neighbours then . 𝚪 has a 

separating triangle. Use induction on .|V (𝚪)|. 
iii. Suppose that .S = {x, y} separates . 𝚪 and let X and Y be two connected 

components of .𝚪−S. Contract edges until we eventually reach a maximal planar 
graph with four vertices and get a contradiction.



168 10 Hints and Solutions to Selected Exercises

7.7 
Let .H ⊂ 𝚪 be a subdivision of . K5. If there is a vertex  v not in H , there are three 
independent paths from v to three branching vertices of H and a subdivision of . K3,3
appears. Otherwise, choose a vertex .v ∈ V (H) in a path P joining two branching 
vertices x and y of H . There is a path from v to a third branching vertex different 
from x and y not using edges from P (by 3-connectedness) and again a subdivision 
of .K3,3 can be formed. 
7.8 
Let .S = {x, y} be a set of two vertices and .a, b arbitrary vertices from the skeleton 
different from x and y. By an appropriate projective transformation we may assume 
that the supporting planes through a and b are parallel. Let P be a plane parallel to 
them containing x and let z be a point on P interior to the polyhedra. The projection 
of the polyhedra to a plane orthogonal to the line xz sends .a, b and y to the boundary 
polygon of the projection and x to its interior. Since a polygon is 2-connected, there 
is a path joining the images of a and b avoiding the images of x and y. Lifting this 
path back to the polyhedra we obtain a path from a to b avoiding S. 
7.9 
First show that a maximal planar graph with an extra edge contains a subdivision 
of . K5. If  xy is an edge not in G, consider the neighborhood of x in G. It induces a 
cycle (with x a wheel) with .k ⩾ 3 vertices. Select three vertices in the boundary and 
three independent paths joining them to y (by 3-connectivity of G). This already 
gives .K−

5 (the complete graph minus one edge) as a subdivision in G. The added 
edge xy provides the subdivision of . K5. (It was proved by Mader that any graph 
with .3n−5 edges contains . K5 as a minor, this is more difficult without the planarity 
condition of the graph minus one edge). 
7.10 
By induction on the number n of vertices, starting with .n = 4. Choose an edge 
.e = xy such that .𝚪/e is maximal planar (a former exercise shows that such an edge 
exists). In a decomposition of three trees of .𝚪/e consider the cases where the edges 
.avxy and .vxyb, where a and b are the only common neighbours of x and y in . 𝚪
and . vxy is the vertex arising from the contraction, belong to the same tree or to two 
distinct trees. Show that the decomposition can be extended to G in both cases. 
8.1 
Order the vertices with a lex order from a given r-colouring of . 𝚪. For the second part 
use an ordering where vertices joined by the edges of the matching are consecutive. 
8.3 
Colour .χ(x, y) = χ𝚪(x) + χ𝚪'(y) (mod max(χ(𝚪), χ(𝚪')}). 
8.4 
There is a graph homomorphism from .𝚪 × 𝚪' to . Kr with .r = min{χ(𝚪), χ(𝚪')}. 
8.5 
An .(r−1) colouring could be extended from the connected components of an . (r−2)
edge-cut.
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8.8 
Given an r-colouring orient every edge from smaller to larger colour of its end 
vertices. For the converse, given the orientation, show that colouring v with the 
length of the longest oriented path ending at v provides a proper colouring. 
8.9 
Hint: Use the first part of the exercise and induction. 
8.10 
[iii.] .fKn(x) = ∏n−1

i=0 (x − i), .fT (x) = x(x − 1)n−1. 
8.11 
If the color classes are .C1, . . . , Cr then .m ⩽

∏
i<j |Ci | · |Cj |. This function is 

maximized under .
∑

i |Ci | = n by taking all . Ci with almost the same size. 
8.12 
It is 2-degenerated. 
8.13 
Every colour class induces a matching and misses at least one vertex. 
8.14 
Each connected component of .𝚪 − e with e a bridge has odd order. 
8.15 
For n odd label the vertices .{0, 1, . . . n − 1} and colour the edges . χ(xy) = x + y

(mod n). For  n even colour .Kn−1 and add one vertex adjacent to all of them. For 
each vertex of . Kn one colour is available for the edge joining it to the new vertex. 
8.17 
For .k ⩾ 2 let .n = (2k−1

k

)
and consider the list assignment of .Kn,n where vertices 

in each stable set have pairwise distinct k-subsets of .{1, . . . , n}. There is no list 
colouring with such an assignment of lists. 
8.20 

i. Run the greedy coloring algorithm on the following order: . xn is a vertex with 
degree at most k; given  .xn, . . . , xn−i+1 choose a vertex of degree of degree at 
most k in .G[V \ {xn, . . . , xn−i+1}] (which exists by degeneracy). At each step 
of the algorithm at most k colors are forbidden. 

ii. Prove by induction. Note that we can add an edge from x to .G − x to obtain a 
k-degenerated graph . G' (every subgraph containing x has . δ(G') ⩽ dG'(x) = k

while a subgraph not containing x is still k degenerated). 
iii. An outer planar graph is 2-degenerate. 

9.4 
Hint: Consider subsets of size . n0 of the vertices of . 𝚪. Prove that at least . 12ϵ

(
n
n0

)
of 

them have at least .(ρ + 1
2ϵ)

(
n0
2

)
edges. 

9.5 
Each vertex has .m + 1 neighbours unless x is an absolute point, i.e. .b(u, u) = 0, in  
which case .x = 〈u〉 has m neighbours. There are .m + 1 absolute points.
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9.6 
Consider two vertices of the graph u and w. The common neighbours of u and w are 
points which are incident with the planes .σ(u) and .σ(w). These two planes intersect 
in a line. A line intersects the ellipsoidal cone either in at most two points or lies 
on the cone. Note that the planes .σ(u) and .σ(w) are not incident with the origin, 
so the line is not lying on the cone. Therefore, u and w have at most two common 
neighbours and so G contains no .K2,3 subgraph. 
9.7 
Let . 𝚪 be a bipartite graph on n vertices which contains no .Kt,s . Let  . V0 be the least 
large of the two stable sets, so .n0 = |V0| ⩽ 1

2n. Let  N be the number of copies of 
.K1,t in which t of the vertices are in . V0. 

Then, since . 𝚪 contains no .Kt,s , 

. N ⩽
(

n0

t

)
(s − 1).

Furthermore, 

. N =
∑

u∈V0

(
d(u)

t

)
⩾ n0⎿(m/n0)⏌t ⩾ n0((m/n0) − t)t /t !.

Combine these two inequalities and take . n0 large enough, 
9.8 
Hint: consider AG.(3, q) as a linear space. 
9.10 
Construct a graph whose vertices are the points of S and where two vertices are 
joined by an edge if and only if the distance between them in in D.
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