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Abstract. Polyhedral linkages are linkages that resemble polyhedral shapes at
different configurations. This paper summarizes the necessary geometrical funda-
mentals of polyhedral geometry and presents a historical and critical review of the
polyhedral linkage designs available in the literature. Basic definitions of polyhe-
dral geometry and operations are needed to comprehend and design polyhedral
linkages. First, early works on polyhedral linkages are presented, where flexible
polyhedra with rigid faces and flexible edges are issued. The final part is reserved
to conformal polyhedral linkages, which go through shape transformations while
plane, dihedral and solid angles are preserved. Conformal polyhedral linkages are
examined in four categories: 1) Jitterbug-like linkages with screwing polygonal
links connected to each other with dihedral angle preserving links, 2) polyhedral
linkages with planar kinematic chains in radial motion planes, 3) polyhedral link-
ages with planar kinematic chains on faces, that are connected to each other with
dihedral angle preserving links, and 4) other conformal polyhedral linkages.

Keywords: Polyhedral Geometry · Flexible Polyhedra · Conformal Polyhedral
Linkages

1 Introduction

A polyhedron can be thought as a linear approximation of a solid. First, polyhedra
appeared as solids in ancient times. Hundreds of carved stone spheres, believed to date to
around 2000BC, have been found in Scotland. Some are carvedwith lines corresponding
to the edges of regular polyhedra [1]. Platon, Euclid, Archimedes andmany other famous
ancient thinkers worked on polyhedral shapes. Folding lattices to obtain polyhedra was
first presented in detail by Dürer in 1525 [2]. A detailed book on historical development
and fundamentals of polyhedra is written by Cromwell [3].

Polyhedral linkages are linkages that resemble polyhedral shapes at different con-
figurations. In the 19th century, polyhedral linkages appeared as a consequence of a dis-
cussion of mathematicians who were trying to answer whether all polyhedra are rigid,
or else how flexible polyhedra can be obtained. The name “polyhedral linkage” was first
coined by Goldberg in 1942 [4]. In 20th century inventors, scientists and engineers came
up with many different types of polyhedral linkages.

Polyhedral linkages have been a hot topic among mathematicians and engineers in
the last three decades. To comprehend and design the transformations for such linkages
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one needs to understand basics of polyhedral geometry and operations. After summariz-
ing the necessary geometrical fundamentals of polyhedral geometry, this paper presents
a historical and critical review of the available polyhedral linkage designs. The funda-
mental definitions of polyhedral geometry are given in Sect. 2. Section 3 presents the
early works on polyhedral linkages. Section 4 presents conformal polyhedral linkages.
Section 5 concludes the paper.

2 Fundamental Definitions of Polyhedral Geometry

Just as a thorough understanding in plane kinematics necessitates a good knowledge
on polygons and circles, in order to study spatial kinematics, one needs to master the
geometry of polyhedra and the sphere. The name polyhedron comes from the two Greek
words poly, meaning many, and hedron, meaning face. Polyhedra are three-dimensional
compact figures bounded by planes. The planar bounds constitute polygonal faces. The
planes intersect along line segments called edges and edgesmeet at points called vertices.
The number of edges that meet at a vertex is called the valency of a vertex and a vertex
with valency n is called an n-valent vertex. A vertex figure is a planar or spherical polygon
which describes how the faces are arranged around a vertex [3]. A 3-valent vertex figure
is depicted in Fig. 1. There are three different fundamental angles of polyhedra. A plane
angle is the inner angle of a polygonal face. The plane angle of a face A is shown, but the
plane angles for faces B and C are not designated in Fig. 1. A dihedral angle is the angle
between two adjacent face of a polyhedron. The dihedral angle between faces B and C
is shown, but the dihedral angles between face pairs A-B and A-C are not designated
in Fig. 1. A solid angle is a quantity assigned to a vertex as the area of the unit sphere
portion corresponding to the vertex. Its unit is steradians. The angle by which the sum of
the plane angles around a solid angle is less than 2π is called its deficiency [3]. Descartes
proved that the sum of deficiencies of the solid angles of a convex polyhedron is 2π [5].
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Fig. 1. A plane angle, a dihedral angle and solid angle around a vertex

Polyhedra that possess some kinds of symmetry are of special interest in polyhedral
linkage design, just as many other applications of polyhedra. The notion of transitivity
makes explicit the intuitive idea that vertices, edges and faces are equivalent or indistin-
guishable, that they all look the same no matter which is focused on. A polyhedron is
said to be face-transitive or isohedral if, for any pair of faces, there is a symmetry of the
polyhedron which carries the first face onto the second. This means that the polyhedron
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looks the same when viewed face on, no matter which face is presented to the eye. A
polyhedron is vertex-transitive or isogonal if any vertex can be carried to any other by
a symmetry operation. A polyhedron is edge-transitive or isotoxal if any edge can be
carried to any other by a symmetry operation. Every edge-transitive polyhedron has to
be either face transitive or vertex transitive [3].

If all vertices of a polyhedron lie on a sphere then the sphere is called its circumscribed
sphere of a circumsphere. If all faces of a polyhedron are tangent to a sphere, the sphere is
called its inscribed sphere or insphere. If there is a sphere that is tangent to the midpoints
of all edges of a polyhedron, it is called a midsphere [6]. Michon calls a polyhedron
with a circumsphere as an equiradial polyhedron, a polyhedron with a midsphere as a
canonical polyhedron and a polyhedron with an insphere as an orthohedral polyhedron
[7] (these definitions are not common in the literature). Another name for an orthohedral
polyhedron is a tangential polyhedron [8, 9].

Descartes observed that, for an equiradial polyhedron, all faces have circumscribed
circles, i.e. they are cyclic polygons. Cyclic faces is a necessary, but not sufficient condi-
tion for an equiradial polyhedron. But it is a sufficient condition for trilinear (or simple)
polyhedra, which comprises trivalent vertices only. On the other hand, polyhedra with
triangular faces only are called simplicial polyhedra [10]. These two types of polyhedra
turn out to be important to construct some polyhedral linkages. Recently Wohlhart [11]
coined a name for polyhedra with cyclic faces: cyclic polyhedra.

There are several relations between polyhedra. A polyhedron can be derived from
another polyhedron via certain operations. An important relation between polyhedra
is duality. In general, duality is a mathematical concept such that if dual of A is B,
then dual of B is A. The dual of a polyhedron is obtained by replacing the faces of a
polyhedron with vertices and vice versa. Theoretically all polyhedra have duals, but not
all are finite polyhedra. If we disregard metric properties, this is combinatorial duality.
Metric properties can be considered via projective duality by applying reciprocation
with respect to a sphere [12]. Some dual polyhedra are illustrated in Fig. 2.

Fig. 2. Tetrahedron (self dual), cube-octahedron duals and dodecahedron-icosahedron duals

Dual polyhedra can be obtained from each other by means of truncations (cuttings
of pyramids on each vertex) and augmentations (or cumulations) (assembling pyramids
on each face) [3]. For the dual polyhedra P and P′, this fact is illustrated in Fig. 3,
where P1-P1′, P2-P2′ and tP-aP are duals of each other; P1-P1′, P2-P2′ are forms in
between P, P′ and tP, aP [13]. The truncation/augmentation series of cube-octahedron
dual pair is illustrated in Fig. 4. There is also edge truncation, which replaces edges
with new rectangular faces, while n-valent vertices are replaced with new n-gons [14].
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Besides truncation and augmentation, there are several other polyhedral operations to
obtain new polyhedra: rectification (or complete truncation), bitrancation, omnitrunca-
tion, alternation (or partial truncation), elevation, stellation, snubbification, cantellation
(or expansion), contraction, etc. (see chapter 21 or [15]). These operations can be used
to design a family of polyhedral linkages (as in [16]) and also they frequently appear as
configuration transformations of polyhedral shapes in a polyhedral linkage.

P

P1 P2

P1P2
aP = (tP)

tP = (aP)

truncations

augmentations

P

Fig. 3. Truncation/augmentation sequence diagram (adopted from [13])

Fig. 4. Truncation/augmentation series between the cube and the octahedron [13]

If the line segment connecting any twopoints inside a polyhedron completely remains
within the polyhedron, it is called a convex polyhedron; otherwise it is called non-
convex or concave. A regular polygon is an equilateral and equiangular polygon. A
vertex transitive polyhedron with regular polygonal faces is called a uniform polyhe-
dron. Face- and edge-transitive uniform polyhedra are isohedral and are called regular
[17]. The 5 regular convex polyhedra are the Platonic solids. Duals of Platonic solids
are Platonic as well: tetrahedron is self-dual, cube and octahedron are duals and dodec-
ahedron and icosahedron are duals (Fig. 2). Each Platonic solid has a circumsphere, a
midsphere and an insphere. The concave regular polyhedra are the four star polyhedra
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calledKepler-Poinsot polyhedra. There are various other definitions such as semi-regular,
quasi-regular, half-regular versi-regular etc. (see for ex. [3] and [18]), but these definitions
differ in different resources. Following [19], there are 77 kinds of uniform polyhedra:
the 5 Platonic solids (convex regular polyhedra), the 13 Archimedean solids (convex
semi-regular polyhedra), the 4 Kepler-Poinsot star polyhedra (concave regular polyhe-
dra), the 53 non-regular star polyhedra, and the 2 infinite families of uniform prisms
and anti-prisms. The 13 convex Archimedean solids are great rhombicuboctahedron,
icosidodecahedron, small rhombicosidodecahedron, small rhombicuboctahedron, snub
cube, snub dodecahedron, truncated cube, truncated dodecahedron, truncated icosahe-
dron, truncated octahedron, truncated tetrahedron. The duals of Archimedean solids are
the 13 Catalan solids. Archimedean solids are isogonal and equiradial, whereas Catalan
solids are isohedral and tangential. Two of the Archimedean solids, the cuboctahedron
and the icosidodecahedron are also isotoxal. Convex polyhedra with regular faces only
are the infinite family of prisms, anti-prisms and the 92 Johnson solids [20]. A poly-
hedron with congruent faces (not necessarily regular) is called a homohedron. Isohedra
are special types of homohedra.

For some polyhedra we encounter, left- or right-handedness. A chiral polyhedron
is one that has two distinct forms or enantiomorphs: laevo (left-handed) and dextro
(right-handed) version [21]. The two Archimedean solids, the snub cube and the snub
dodecahedron are well-known examples of chiral polyhedra.

Euler (1707–1773) investigated topological properties of polyhedra and cameupwith
a general simple formula,which canbederived fromDescartes’s theoremondeficiencies:
V –E +F = 2,whereV,E andF are number of vertices, edges and faces of a polyhedron,
respectively [22]. Among several applications of this formula, in mechanism science it
is used to evaluate the number of independent loops of a mechanism, where V, E and F
correspond to number of joints, links and loops, respectively. Euler’s formula is valid for
most polyhedra, but not all. A polyhedron that satisfies Euler’s formula can be deformed
into a sphere, and vice versa. Euler’s formula can be modified as V – E + F = 2 – 2g,
where g is, roughly speaking, the number of tunnels through the polyhedron and is called
the genus. For example, the genus of a torus-like polyhedron is 1. χ = V – E + F is
called the Euler characteristics of the polyhedron [3]. Some fundamentals of polyhedral
geometry, that are frequently required in polyhedral linkage design are presented in
this section. The reader can refer to [1, 3, 5] and [14] for further details of polyhedral
geometry.

3 First Works on Polyhedral Linkages: Flexible Polyhedra

Euler assumed that two polyhedra are identical if they have the same faces [3]. Then
people started questioning whether all polyhedra are rigid, or whether there are flexible
polyhedra. Here, what we mean by a flexible polyhedron is a polyhedral surface, where
the faces are rigid, but the edges are allowed to flex as if there is a hinge along the edge.
In 1813, Cauchy proved that a closed convex polyhedron is rigid (rigidity theorem)
[23]. In 1987, Bricard presented first examples of flexible polyhedra, which are the three
types of concave octahedrawith self-intersecting faces: line-symmetric octahedra, plane-
symmetric octahedra and doubly collapsible (or skew flexible) octahedra [24]. Each type
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of octahedron comprises 8 faces, 12 edges and 6 vertices (just as a regular octahedron)
and if two of the faces are removed, an over-constrained linkage with 6 revolute (R)
joints (corresponding to the remaining 6 edges) is obtained. Later, Bricard added three
more over-constrained 6R linkages to his list [25]. Goldberg examined Bricard linkages
along with other spatial linkages made of rigid flat plates hinged together [4]. The plates
may be considered as the faces of a polyhedron, not necessarily convex, nor even closed.
This definition would result in linkages with only revolute joints, where all joints axes
of a link are necessarily coplanar (Fig. 5).

Fig. 5. From left to write: line-symmetric, plane-symmetric and doubly collapsible octahedra of
Bricard [24]. For each octahedron the faces are ABC, DEF, BCD, CAE, ABF, AEF, BFD and
CDE.

Bennett presented infinitesimally deformable octahedra [26] and Stachel general-
ized the theory to higher order flexibility of octahedra [27]. Goldberg worked on other
infinitesimally deformable polyhedra, and called them shaky polyhedra [28]. In 1977,
Connelly discovered a mobile polyhedron with nonintersecting rigid faces [29]. Right
after Connelly, Steffen found a simpler example with only 9 vertices and 14 faces [3,
30]. Maksimov proved that all polyhedra with nonintersecting triangular faces and fewer
than nine vertices are rigid, which implies that Steffen’s flexible polyhedron has as few
vertices as possible [3, 31]. Connelly et al. proved that the volume of orientable flex-
ible polyhedra are constant during the flexion [32]. Roth worked on rigid and flexible
frameworks (rods connected but freely pivoting at vertices – not necessarily representing
polyhedra with planar faces) and proved that a framework given by a convex polyhedron
is rigid if and only if all faces are triangular, i.e. a convex simplicial polyhedron [33].

4 Conformal Polyhedral Linkages

Bricard discovered his polyhedral linkage while seeking the answer to the following
question: “Do there exist polyhedra with invariant faces that are susceptible to an infi-
nite family of transformations that only alter solid angles and dihedrals?” [24]. In such
polyhedral linkages, faces remain rigid, whereas dihedral angles change. In the sec-
ond half of 20th century, several over-constrained linkages were invented such that the
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linkages resemble some polyhedral forms, where all angles remain constant, but the
size and/or shape of the faces change. Let us call such linkages as conformal polyhe-
dral linkages. These polyhedral linkages can be classified into categories as follows: 1)
Jitterbug-like linkages, 2) Polyhedral linkages with radial motion planes, 3) Polyhedral
linkages with planar link groups, 4) Other conformal polyhedral linkages.

4.1 Jitterbug-like Linkages

The first conformal polyhedral linkage is discovered in 1948 by Fuller, which he calls
the Jitterbug, since the motion looks like the famous ballroom dance of the time [34].
Fuller discovered the Jitterbug while he was working on sphere packing. The Jitterbug
comprises 24 struts that form8 triangles and the assembly has a single degree-of-freedom
(dof) motion in which the triangles make congruent motions along their axes [35].
Fuller just mentions flexible joints, but does not describe the joint type explicitly. Yet,
he describes the motion from a cuboctahedron to first an icosahedron and finally to an
octahedron in detail (Fig. 6) [36]. Note that the motion can result in a laevo or dextro
version of the linkage. Fuller also mentions that the assembly can be further deformed
to a double tetrahedron and even an eight-fold triangle. Hence, he found an assembly
transforming between the symmetrical figures of Plato and Archimedes [35].

Fig. 6. The Jitterbug motion from maximal to minimal configuration [33]

In 1963, Stuart generalized the Jitterbug transformation as transformations from a
regular/semiregular polyhedron to another and demonstrated that the vertices would
move along intersection of two cylinders with intersecting axes and equal radius, that
is an ellipse [37]. Clinton describes this transformation as follows: By allowing each
surface to rotate about its axis, translate along its axis, and maintain connection with one
of its paired vertices; the surfaces enclosing the polyhedron will transform into another
polyhedral form [38].

In 1979, Verheyen introduced the concept of dipolygonids for Jitterbug-transformers
as a finite set of regular polygons of two types connected one to another by a common
vertex and as a set having a finite group of rotations as its symmetry group [39] and
in 1989 he presented a complete classification of all dipolygonids [40]. If a polygon
rotates clockwise, the adjacent one rotates counter-clockwise. So, the polygons around
a vertex should be even in number. The polyhedra with odd-valent vertices are self-
enantiomorphus (contain both laevo and dextro chiral forms), i.e. the double version
of the polyhedron should be used (such as a double-tetrahedron – which is actually an
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octahedron with 4 pairs of coplanar faces). Recently Roelofs [41] presented a detailed
discussion on even valence requirement for Jitterbug-like linkage and double polyhedra,
where he concluded that “For the Jitterbug transformation to be possible, we should
replace the requirement that all vertices have even valence by the requirement that the
polyhedron is two-colourable. This is a stronger requirement.”. Kovács et al. used one
of Verheyen’s dipolygonids to simulate the motion of polyhedral viruses [42].

In 1974, Dreher designed a two-dof joint, so-called constant dihedral hinge, for the
Jitterbug. The Jitterbug can be constructed with cubic links instead of triangles, such
that the three vertices of the cube correspond to a triangular link of the Jitterbug, as
demonstrated by Tomura and called the Tom cube. De Clippeleir discovered a rhombic
dodecahedral Jitterbug-like linkage [43]. A giant kinetic sculpture with a triangular side
length of 8 m was constructed by Schwabe’s initiation and demonstrated during the
Zurich Expo fair in 1991. The sculpture was called the Heureka octahedron and after
three months in operation it collapsed into the tetrahedral form [34].

After the exhibition of the Heureka octahedron, many mathematicians and engineers
started working on this incredibly over-constrained multi-loop spatial linkage [44–54].
Before this, over-contrained spatial linkages would typically be comprised of a single
loop. The Jitterbug not only has multi loops, but also all loops have multi-dof, yet the
whole assembly has single-dof. For 8 triangular links connected with 12 two-dof joints,
the Chebyshev-Grübler-Kutzbach formula predicts a dof of –6, hence the degree of over-
constaint is 7. The first exactmobility calculation of the 1-dof Jitterbugmotion is given by
Stachel and he also demonstrates the double tetrahedral linkage as a different assembly
mode of the Heureka octahedron [44, 45]. Zsombor-Murray presented the Brussels
folding cube, which is a Jitterbug-like linkage [46]. Wohlhart introduced turning towers
and screwing towers as generalizations of the Jitterbug, where the polygonal faces are
not necessarily identical or even regular [47–50, 55, 56]. Screw joints replace revolute
joints in the screwing towers. In [49], Wohlhart introduced the octoid as a generalization
of the Heureka octahedron with non-regular faces and in [50] he introduced the toroidal
linkages which consist of arbitrary number of equal double octoids to form a torus;
the breathing ball as an assembly of six octoids; the spheroid and the star-cube as the
outer and inner part of the breathing ball and finally the Fulleroid which is obtained by
simplifying the spheroid. Kiper further generalized the Fulleroid by making use of the
cumulation series of the cube and also presented rombohedral, dipyramidal and stellated
linkages [16]. The symmetrical 8R linkage examined in [16]was used as a building block
for polyhedral linkages by Wei and Dai [57].

Röschel presented amethodology to design new Jitterbug-like linkages by combining
an axial Darboux motion or a planar equiform motion with a congruent motion [51–
54]. Röschel’s designs include torus-like linkages as well [54]. Verheyen and Röschel’s
approach to synthesize Jitterbug-like polyhedral linkages was to consider the in-plane
motion of a polygonal element and transfer this motion spatially by transforming them
into neighboring planes. As a different approach, Kiper and Söylemez examined the
spatial loops that comprise the linkages, proposed a formal definition for Jitterbug-
like linkages and listed several properties of these linkages [58, 59]. The definition is
as follows: Let E, F, V, ni denote the number of edges, faces, vertices and valency
of ith vertex (i = 1, …, V ) for a polyhedral shape P. A Jitterbug-like linkage is a
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mobile linkage F-many polygonal links such that the polygonal links remain parallel
to faces, and dap links that remain perpendicular to the edges of P with the joint axes
intersection of a dap link on the corresponding edge. No polygonal (or dap) link is
directly connected to another polygonal (or dap) link. The joint axes of a polygonal link
are all parallel to each other. In any configuration, the planes defined by intersections
of joint axis bound a finite volume, called the supporting polyhedron, and this shape
can be obtained from P by a conformal transformation. The topological shape of the
supporting polyhedron is invariant and it is called the base polyhedron. If all side lengths
of the supporting polyhedron vary proportionally, such linkages are called homothetic
Jitterbug-like linkages. A wholly representative Jitterbug-like linkage is obtained if the
number of dap links isE, hence to each vertex i ofP there corresponds a spatial loop with
2ni revolute joints. Based on these definition, it is shown that the spherical indicatrix of
the linkage is immobile and the link dimensions of the indicatrix of a loop are uniquely
given by the associated dihedral and plane angles. If the base polyhedron has genus
zero, it contains at least one 4-valent vertex. The polygonal links have Schönflies motion
and the dap links are in pure translation. Several results are concluded for homothetic
Jitterbug-like linkages: 1) The instantaneous rotation axes of neighboring faces intersect
each other; 2) A mobile linkage can be obtained if and only if two homothety centers
of neighboring faces are in symmetrical position with respect to the common edge; 3)
The homothety centers on the faces around a vertex are equidistant to the vertex and
the plane angles around a vertex are interrelated; 4) A polyhedron can be used as a
base polyhedron for a homothetic Jitterbug-like linkage if and only if one can locate
spheres centered at vertices of the polyhedron such that on all faces, the associated
spheres meet at a common point. Also, some results are deduced for special cases such
as if the supporting polyhedron is a homohedron, a tangential polyhedron, a trilinear
polyhedron or a polyhedron with 4-valent vertices. Kiper and Söylemez used these
results to analyze Wren platforms, that can be considered as polyhedral shapes with
two n-gons and n diagonal links [60]. They also presented polyhedral linkages obtained
by adding links around the vertices or inside a homothetic Jitterbug-like linkage using
Cardan motion of the polygonal links [61, 62]. Recently Warisaya et al. [63] presented a
design methodology for Jitterbug-like linkages to obtain auxetic behavior for polyhedral
approximation of an arbitrary surface – open or closed. The works of Röschel, Kiper and
Sözlemez andWarisaya et al. set certain rules for possible base polyhedra of Jitterbug-like
linkages, but a certain classification is still an open problem.

4.2 Polyhedral Linkages with Radial Motion Planes

A polyhedral linkage with radial motion plane expands and contracts with links moving
in radial planes, typically all passing through the center of a polyhedral shape. Such
linkages were first presented by Wohlhart – the star transformers [49, 64] (Fig. 7). The
polygonal links of a star-transformer reciprocates between dual polyhedral forms.

The most famous polyhedral linkage with radial motion planes is a toy: Hoberman’s
sphere, where Hoberman introduced the angulated element pairs that constitute the
edges of the polyhedral shape [65]. As oppose to the star-transformers, in Hoberman
sphere, all links radially expand or contract simultaneously. For both type of linkages,
the links connecting the polygonal links realize Cardan motion in their respective radial
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Fig. 7. The star-cube transformer [49]

planes [66]. Wohlhart presented a family of linkages that are similar to the Hoberman
sphere, but with regular scissors along edges rather than angulated scissors [67]. The
scissors may be along radial planes or planes perpendicular to that, such that an edge-
truncation type of transformation occurs. Hoberman also invented the switch-ball toy
that can reconfigure between two different color modes [68]. The kinematic structure
of the switch-ball mechanism is equivalent to that of the star-cube transformer shown
in Fig. 7, except that gear pairs between binary links are added to avoid assembly mode
change. Wei and Dai coined the name polyhedral linkages with radially reciprocating
motion and published a series of papers for analysis and design of these linkages [56,
69, 70]. Li et al. presented reconfigurable polyhedral linkages that have a Hoberman
sphere-like mode and a star transformer-like mode [71].

Recently, Wohlhart introduced cyclic polyhedra and described how to design a poly-
hedral linkage by inserting appropriate streching stars into the faces of a cyclic polyhe-
dron [11, 70]. Star transformers are a special case of these linkages, but in the general
case, the binary links do not necessarily move in planes that all intersect at a center.
These linkages also transform in between dual polyhedral shapes. In [72], Wohlhart
points out that two neighboring cyclic polygonal face centers form a pair of reflection
points via a reflection plane through the common edge. This is the same geometrical
condition presented in [58] for homothetic Jitterbug-like linkages.

4.3 Polyhedral Linkages with Planar Link Groups

Several conformal polyhedral linkages are reported such that open or closed planar
kinematic chains are used to transform the shapes of the faces. Early examples are
presented by Wohlhart [73–77]. The linkages in [73] comprise planar open kinematic
chains with n-many peripheral binary links connected around an n-gonal central link for
scaling an n-gonal face of a regular polyhedron. Binary links meet each other via dap
links (with as many revolute joints as the vertex valency) representing the vertices. In
[74],Wohlhart generalized themethod in [73] to irregular polyhedra.Wei et al. presented
polyhedral linkages for which the planar kinematic chains on the faces are obtained by
combining a planar chain of [73]with itsmirror image such that the laevo and dextro pairs
of central polygonal links and binary links constitute parallelogram loops [78]. Li et al.
[79] showed that there is an assembly mode of these linkages where the corresponding
pair of links coincide and the linkages becomes equivalent to the linkages in [73]. The
planar kinematic chains of [75] are similar to the ones in [73], but instead of binary
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links there are triangular links meeting mirror image links on adjacent faces via dap
links moving along edges of the supporting polyhedron. In [76], the multi-dof planar
single-loop kinematic chains on the faces comprise 2n many right triangles, which are
obtained by dissecting an n-gonal regular face into 2n equal pieces. The planar kinematic
chains of [76] are also used in [75] for double pyramidal linkageswith irregular triangular
faces. In [77],Wohlhartmade use ofKempe’s single-dof over-constrained planar double-
chain linkages with parallelogram loops and a second type of planar double-ring linkage
comprising Hoberman’s angulated elements. Kiper and Söylemez [80] also presented
polyhedral linkages with planar loops of angulated elements on faces, but the linkages
in different faces are connected to each other via dap links at vertices, whereas the
connections in [77] are a pair of dap links on the edges.

Gosselin and Gagnon-Lachance presented polyhedral linkages with single-dof
closed kinematic chains on the faces, where a chain on an n-gonal face comprises n
many 6-link sub-assembly with two of the links common to all sub-assemblies [81].
Kiper and Söylemez presented a general methodology to design polyhedral linkages
with planar kinematic chains on faces, and they demonstrated the method with three
different link groups used for a homohedral and two tangential polyhedral linkages [82].
The three examples of kinematic chains are selected to represent three different kinds
of deployment of central and peripheral link groups: 1) variable + fixed distance, 2)
fixed + variable distance, 3) variable + variable distance from the center to the side
of a face. The planar kinematic chains may be open or closed, as well as single-dof or
multi-dof, but when they are constrained with dap links at vertices or edges, the resulting
polyhedral linkage has single-dof. A recent linkage design by Broeren et al. has skew
pantographs on triangulated faces of an arbitrary closed surface [83].

4.4 Other Conformal Polyhedral Linkages

Agrawal et al. usedprismatic joints along edges, and alongdiagonals of faces if necessary,
to obtain conformal regular and semi-regular polyhedral linkages [84]. Besides [41], in
order tomodelmotions of trilinear polyhedral virusesKovács et al. designed a polyhedral
linkage by connecting regular polygons via a pair of parallel binary links using spherical
joints [85]. Kiper and Söylemez assembled equilateral Bennett 4R loops along sides of
faces of regular and semi-regular polyhedra with triangular faces (square and pentagonal
faces are feasible alongside with triangular faces) [86].

Wang and Kong presented several regular polyhedral linkages with 6R, 8R or 10R
spatial loops on faces connected by spherical joints [87, 88] or non-intersecting 3R
chains [89]. Similarly, Chen et al. designed a tetrahedral and a cubic linkage comprising
threefold symmetric Bricard 6R loops and spherical and revolute joints at other vertices,
which move like a dipolygonid [90, 91]. Zhang et al. obtained cubic linkages by placing
8 threefold-symmetric Bricard loops at the vertices of a cube and connecting the 8 loops
in 4 different ways [92]. Wang et al. implemented Wren platforms at the faces of regular
polyhedra to obtain conformal polyhedral linkages [93]. Gu and Chen constrained the
motion of a 9R loop as an assembly of three 3R chains with parallel axes (9R version
of a Sarrus 6R) using 3 pairs of spherical 4R loops of each face of a 3-valent vertex to
obtain trilinear origami polyhedral linkages [94]. Gu et al. used Sarrus 6R loops along
edges to obtain conformal regular polyhedral linkages [95].
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5 Conclusions

The number ofworks on polyhedral linkages has been rapidly increasing especially in the
last 30 years and the trend shows that there ismuchmore to do.Most of these recentworks
are done by engineers, who first need to properly comprehend polyhedral geometry.
This paper may serve as an initial read to examine the fundamentals of polyhedral
geometry and operations, such as regularity, duality, truncations and augmentations,
that are necessary to design polyhedral linkages, and also presents a historical review.
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