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Preface

This volume contains the proceedings of the third international challenge on Kidney and
Kidney Tumor Segmentation (KiTS 2023), held in conjunction with the 2023 Interna-
tional Conference on Medical Image Computing and Computer Assisted Interventions
(MICCAI) in Vancouver, Canada. By “proceedings”, we mean to say that this volume
contains the papers written by participants in the challenge to describe their approach to
developing a semantic segmentation approach for kidneys, kidney tumors, and kidney
cysts, using the official training dataset released by the organizing team for this purpose.

Machine learning competitions like KiTS have become a mainstay at major machine
learning and computer vision conferences, and it’s hard to imagine where the field would
be without them.With the unending appetite that state-of-the-art machine learningmeth-
ods have for computing resources, the need for high-quality benchmarks to efficiently
compare one approach to the next has never been greater. In many ways, these compe-
titions have taken a role analogous to the cell lines and model organisms found in basic
biological science research – with experiments being expensive and difficult to repeat,
the need arises for a set of standardized subjects to study. For biologists, those subjects
are cells and organisms. For us, those subjects are curated, high-quality test sets.

In comparison with the two KiTS challenges before it, KiTS23 featured a larger
dataset and a more diverse distribution of images, and therefore a greater generalization
challenge. Where KiTS19 and KiTS21 included scans only in the corticomedullary
contrast phase, KiTS23 included the nephrogenic phase as well. The winning methods,
as you will see, are eerily similar to those used by the winning team two and four years
ago. While visual transformers are seen by many as the future of this field, they have still
failed to surpass convolutional nets for this particular problem. Similarly, while large-
scale pretraining has captured our imagination with generative models, the vast majority
of teams still trained their models with a random initialization on the KiTS23 training
set alone. We leave it for the reader to interpret whether this reflects a fundamental truth
about the problem at hand or a simple practical limitation in the lack of large-scale
datasets with segmented cross-sectional imaging. What is certain, however, is that large,
high-quality medical datasets remain an unmet need that these competitions continue to
steadily fill.

This volume includes 22 accepted papers out of 29 teamswho attempted a submission
to the challenge. Teams were required to submit not only a complete paper which was
reviewed by at least two reviewers in a single blind manner, but also a complete set of
predictions to be scored against the private test set. Our sincere gratitude is offered to
those who participated in this competition. Kidney cancer does not represent the largest
share of either new cancer diagnoses or cancer deaths, but it is a substantial problem
nonetheless, affecting hundreds of thousands of individuals around the world. Through
collaborations like KiTS, we have made major strides in automatically segmenting these
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tumors, and subsequently in understanding how tumor morphology relates to natural
history and treatment outcomes.
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Automated 3D Segmentation of Kidneys
and Tumors in MICCAI KiTS 2023

Challenge

Andriy Myronenko(B), Dong Yang, Yufan He, and Daguang Xu

NVIDIA, Santa Clara, USA

amyronenko@nvidia.com

Abstract. Kidney and Kidney Tumor Segmentation Challenge (KiTS)
2023 [6] offers a platform for researchers to compare their solutions to seg-
mentation from 3D CT. In this work, we describe our submission to the
challenge using automated segmentation of Auto3DSeg (https://monai.
io/apps/auto3dseg) available in MONAI (https://github.com/Project-
MONAI/MONAI). Our solution achieves the average dice of 0.835 and
surface dice of 0.723, which ranks first and wins the KiTS 2023 challenge
(https://kits-challenge.org/kits23/#kits23-official-results).

Keywords: Auto3DSeg · MONAI · Segmentation

1 Introduction

Almost half a million people are diagnosed with kidney cancer annually. Each
year, a larger number of kidney tumors are detected, and currently, it is difficult
to determine whether a tumor is malignant or benign using radiographic meth-
ods. The risk of metastatic progression remains a serious concern, highlighting
the need for reliable systems to objectively characterize kidney tumor images
and predict treatment outcomes.

For almost five years, the KiTS [5] initiative has maintained and expanded a
publicly available collection of hundreds of segmented CT scans featuring kidney
tumors. This year’s KiTS’23 [6] competition includes an expanded training set
consisting of 489 cases. The goal of the challenge is to develop an automated
method to segment kidneys, tumors and cysts.

2 Methods

We implemented our approach with MONAI [1] using Auto3DSeg open source
project. Auto3DSeg is an automated solution for 3D medical image segmen-
tation, utilizing open source components in MONAI, offering both beginner
and advanced researchers the means to effectively develop and deploy high-
performing segmentation algorithms.

The minimal user input to run Auto3DSeg for KiTS’23 datasets, is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Heller et al. (Eds.): KiTS 2023, LNCS 14540, pp. 1–7, 2024.
https://doi.org/10.1007/978-3-031-54806-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54806-2_1&domain=pdf
https://monai.io/apps/auto3dseg
https://monai.io/apps/auto3dseg
https://github.com/Project-MONAI/MONAI
https://github.com/Project-MONAI/MONAI
https://kits-challenge.org/kits23/#kits23-official-results
https://doi.org/10.1007/978-3-031-54806-2_1
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1 #!/bin/bash

2 python -m monai.apps.auto3dseg AutoRunner run \

3 --input="./input.yaml"

where a user provided input config (input.yaml) includes only a few lines:

1 # This is the YAML file "input.yaml"

2 modality: CT

3 datalist: "./ dataset.json"

4 dataroot: "/data/kits23"

5

6 class_names:

7 - { "name": "kidney_and_mass", "index": [1,2,3] }

8 - { "name": "mass", "index": [2,3] }

9 - { "name": "tumor", "index": [2] }

10 sigmoid : true

When running this command, Auto3DSeg will analyze the dataset, generate
hyperparameter configurations for several supported algorithms, train them, and
produce inference and ensembling. The system will automatically scale to all
available GPUs and also supports multi-node training.

The 3 minimum user options (in input.yaml) are data modality (CT in this
case), location of the downloaded KiTS’23 dataset (dataroot), and the list of
input filenames with an associated fold number (dataset.json). We generate the
5-fold split assignments randomly. Since KiTS defines its specific label mapping
(from integer class labels to 3 subregions, see Fig. 1), we have to define it in the
config, and since these subregions are overlapping, we use “sigmoid: true” to
indicate multi-label segmentation, where the final activation is sigmoid (instead
of the default softmax).

Currently, the default Auto3DSeg setting trains three 3D segmentation algo-
rithms: SegResNet [8], DiNTS [4] and SwinUNETR [3,9] with their unique train-
ing recipes. SegResNet and DiNTS are convolutional neural network (CNN)
based architectures, whereas SwinUNETR is based on transformers. Each is
trained using 5-fold cross validation.

For model inference, a sliding-window scheme is used to create probability
maps, which are re-sampled back to its original spacing. This allows ensem-
bling prediction from different algorithms even if there were trained at different
resolutions.

The simplicity of Auto3DSeg is a very minimal user input, which allows even
non-expert users to achieve a great baseline performance. The system will take
care of most of the heavy lifting to analyze, configure and optimally utilize the
available GPU resources. And for expert users, there are many configuration
options that can be manually provided to override the automatic values, for
better performance tuning.

In the final prediction, we ensemble the best model checkpoints only
from SegResNet and DiNTS algorithms, since they performed better during
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Fig. 1. KiTS’23 data example of an axial slice with the provided annotations of kidneys
(red), tumors (green) and cysts (blue). The classes of interest that KiTS tasks to
segment are: a) all foreground combined b) tumors + cysts (green and blue) c) tumors
only (green). (Color figure online)

cross-validation. We also applied a few small customizations to the baseline
Auto3DSeg workflow. We describe the baseline Auto3DSeg method and the cus-
tomization below.

2.1 Training and Validation Data

Our submission made use of the official KiTS’23 training set alone.

2.2 SegResNet

SegResNet1 is an encode-decoder based semantic segmentation network based
on [8]. It is a U-net based convolutional neural network with deep supervision
(see Fig. 2).

The default Auto3DSeg SegResNet configuration was used, which includes
5 levels of 1, 2, 2, 4, 4 blocks. It follows a common CNN approach to downsize
1 https://docs.monai.io/en/stable/networks.html.

https://docs.monai.io/en/stable/networks.html
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Fig. 2. SegResNet network configuration. The network uses repeated ResNet blocks
with batch normalization and deep supervision

image dimensions by 2 progressively (down to 16× smaller) and simultaneously
increase feature size by. All convolutions are 3× 3× 3 with an initial number of
filters equal to 32. The encoder is trained with a 256 × 256 × 256 input region.
The decoder structure is similar to the encoder one, but with a single block
per each spatial level. Each decoder level begins with upsizing with transposed
convolution: reducing the number of features by a factor of 2 and doubling the
spatial dimension, followed by the addition of encoder output of the equivalent
spatial level. The number of levels and the region size is automatically configured.
We use spatial augmentation including random affine and flip in all axes, random
intensity scale, shift, noise and blurring. We use the dice loss, and sum it over
all deep-supervision sublevels:

Loss =
4∑

i=0

1
2i
Loss(pred, target↓) (1)

where the weight 1
2i is smaller for each sublevel (smaller image size) i. The target

labels are downsized (if necessary) to match the corresponding output size using
nearest neighbor interpolation.

We use the AdamW optimizer with an initial learning rate of 2e−4 and
decrease it to zero at the end of the final epoch using the Cosine annealing
scheduler. We use batch size of 1 per GPU, We use weight decay regularization
of 1e−5. Input images were re-scaled from [−54, 242] to the [−1, 1] CT inter-
val, followed by a sigmoid function. The range was determined automatically
by the data analysis step to include the intensity pattern variations within the
foreground regions.

2.3 DiNTS

DiNTS stands for Differentiable Network Topology Search (DiNTS) scheme, an
advanced methodology that fosters more dynamic topologies and an integrated
two-level search. DiNTS has demonstrated superior performance, achieving top-
tier results in the Medical Segmentation Decathlon (MSD) challenge [2].
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The DiNTS algorithm utilizes a densely-connected lattice-based network,
training with a 96 × 96 × 96 model input for both training and inference. It
leverages automatic mixed precision (AMP) and the SGD optimizer, with an
initial learning rate of 0.2 and a loss defined by the Dice plus focal Loss. For the
data processing, we utilize intensity normalization and random cropping, as well
as random rotation, zoom, Gaussian smoothing, intensity scaling and shifting,
Gaussian noising, and flipping.

In the quest for enhanced model performance, we fine-tuned the checkpoints
that were initially trained using the default training recipe, adjusting them with
various patch sizes for a span of 25 epochs. Our observations suggest that a larger
patch size often leads to improved model performance. Taking into account our
computational budget, we have selected a patch size from a range between 1923

and 192× 192× 288 for each fold of the model (based on validation Dice scores)
as the configuration in our final model inference.

2.4 Metrics

The output of the network has 3 channels followed by a sigmoid, to segment
each of the 3 KiTS’23 expected classes: a) Kidney + Tumor + Cyst; b) Tumor
+ Cyst; c) Tumor only. This creates a multi-label segmentation, where each
voxel can belong to more than one label. We use an average dice metric of these
3 classes to select the best validation checkpoints (without considering surface
distances).

2.5 Auto3DSeg Customizations for KiTS’23

Even though the default Auto3DSeg configuration achieved a good baseline
cross-validation performance automatically, we did a few customization includ-
ing cropping to kidneys region and post-processing.

Training on the full size 3D CT images can be time consuming, so we pre-
cropped the images around the kidneys region. A simple rectangular box was
used, based on the ground truth labels. Since we used only 1 cropping per image,
the cropped region included not only kidneys but everything in between including
the spine. Training on such cropped images has 2 advantages: firstly, it allowed
for faster training, since smaller images can be cached in RAM, and secondly,
it simplified the task for the network. The disadvantage of such an approach is
that it requires finding the bounding box of the kidneys region first.

We trained a separate segmentation network to find the foreground and cal-
culate the kidneys bounding box coordinates. For all the tasks we used the same
exact network architecture, trained all at 0.78 × 0.78 × 0.78mm3 CT resolu-
tion. Arguably, bounding box detection could have been done faster, using a
simpler detection network and at a lower CT resolution, but here we saved on
coding time, by reusing the framework. We trained the first round of models
fast (using a smaller number of epochs), to be used as a bounding box detector.
And after that trained longer, using only the cropped (around kidneys) regions.
This approach is somewhat similar in spirit to the KiTS 2021 champion solution
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of coarse-to-fine training [10] (based on nnU-net [7]), but here we do not re-use
or concatenate masks detected at a coarse level, we simply use it to detect the
bounding box for faster training.

We also added binary post-processing on the final segmentation masks.
Firstly, we remove small connected components (smaller then 100 voxels total)
based on the foreground (merged labels). Secondly, we correct for “outline” of
some tumor region. During a training stage, we noticed that on a small set of
images, network predictions of the tumor label have a small rim (1–2 voxels) of
cyst label. This happened mostly because the network was trained as a multi-
label task, where each voxel can be assigned to several classes. Since, it’s not
possible for a tumor to have a “cystic” outline (even if it looks like a cyst image
pattern), by definition, we decided to correct such cases with a simple binary
post-processing. In our cross-validation tests, this final post-processing did not
actually affect the accuracy metrics, but we still decided to include it.

Finally, we increased the size of the network input patch during training to
256× 256× 256 for SegResNet and to 192× 192× 288 for DiNTS, which allowed
for faster training and also slightly increased the cross-validation performance.

2.6 Optimization

We train the method on an 8-GPU 48 GB NVIDIA A40 machine, with a batch
size of 1 per GPU, which is equivalent to batch size of 8 single GPU training.
Auto3DSeg caches on-the-fly all the resampled data in RAM during the first
training epoch, when sufficient amount of RAM is available (otherwise a fraction
of the data is cached). This way only the first epoch suffers a slow-down due to
disk i/o and resampling, and the rest of the training process is fast.

3 Results

Based on our random 5-fold split, the average dice scores per fold are shown in
Table 1. For the final submission we used an ensemble of 15 models: 10 models
of SegResNet (5 folds trained twice), and 5 models of DiNTS. SegResNet A and
B training runs in Table 1 had the same configurations.

Table 1. Average Dice results of the 15 trained models based on our 5-fold data split.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

SegResNet A 0.8997 0.8739 0.8923 0.8911 0.8892 0.88924

SegResNet B 0.8995 0.8773 0.8913 0.889 0.8865 0.88872

DiNTS 0.8810 0.8647 0.8806 0.8752 0.8822 0.8767

On the final hidden challenge dataset, our submission achieved an average
Dice score of 0.835, which ranked first among other submissions.
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4 Conclusion

We described our winning solution to KiTS 2023 challenge using Auto3DSeg
from MONAI. Our final submission is en ensemble of 15 CNN models, 10 of
SegResNet and 5 of DiNTS. We hope that open source tools in MONAI will
help more researchers to achieve good baseline 3D segmentation results on their
particular task. Our solution achieves the average dice of 0.835 and surface dice
of 0.723, which ranks first on the KiTS 2023 leaderboard2.
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Abstract. In 2023, it is estimated that 81,800 kidney cancer cases will
be newly diagnosed, and 14,890 people will die from this cancer in the
United States. Preoperative dynamic contrast-enhanced abdominal com-
puted tomography (CT) is often used for detecting lesions. However,
there exists inter-observer variability due to subtle differences in the
imaging features of kidney and kidney tumors. In this paper, we explore
various 3D U-Net training configurations and effective post-processing
strategies for accurate segmentation of kidneys, cysts, and kidney tumors
in CT images. We validated our model on the dataset of the 2023 Kidney
and Kidney Tumor Segmentation (KiTS23) challenge. Our method took
the second place in the final ranking of KiTS23 challenge on unseen test
data with an average Dice score of 0.820 and an average Surface Dice of
0.712.

Keywords: Kidney cancer · Medical image segmentation · 3D U-Net

1 Introduction

In 2023, it is estimated that 81,800 kidney cancer cases will be newly diagnosed,
and 14,890 people will die from this cancer in the United States [1]. Kidney can-
cer is one of the 10 most common cancers, and by far the most common type of
kidney cancer is renal cell carcinoma (RCC), which occurs in 9 out of 10 cases of
all kidney cancer [7]. Preoperative dynamic contrast-enhanced abdominal com-
puted tomography (CT) is often used for the detection and evaluation of renal
tumors [6]. However, there are some overlaps in image-level features between kid-
neys, cysts, and renal tumors, which make accurate segmentation difficult and
cause inter-observer variation. These clinical issues point to the need to develop
automatic systems that can reduce misdiagnosis and inter-observer variation.

In this paper, we explore various 3D U-Net training configurations and effec-
tive post-processing strategies for accurate segmentation of kidneys, cysts, and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Heller et al. (Eds.): KiTS 2023, LNCS 14540, pp. 8–13, 2024.
https://doi.org/10.1007/978-3-031-54806-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54806-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-54806-2_2
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Fig. 1. Overview of our multi-scale prediction fusion framework.

kidney tumors in CT images. We investigate a wide variety of training config-
urations including training at different scales, cascade training approaches, and
region-based training. We also introduce post-processing approaches which aim
at improving the performance by effectively combining the predictions from the
models trained in different training configurations. We validated our model on
the dataset of 2023 Kidney and Kidney Tumor Segmentation (KiTS23) chal-
lenge, which includes data from previous challenges, e.g., KiTS19 [3].

2 Methods

In this paper, we propose to perform segmentation at both low-resolution and
full-resolution and then combine those two predictions based on a task-specific
post-processing scheme, as shown in Fig. 1. Low-resolution 3D CT volumes are
generated by resampling original input CT images. Two independent 3D U-Nets
are utilized to produce low-resolution segmentation maps and full-resolution seg-
mentation maps from low-resolution 3D CT volume and full-resolution CT vol-
ume, respectively. The final segmentation map is produced by multi-scale post-
processing which takes the predictions of low- and full-resolution segmentation
maps and combines them with domain-specific procedures.
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2.1 Training and Validation Data

Our submission made use of the official KiTS23 training set alone [4]. We divide
the provided data into a training set and a validation set at a ratio of 4:1.

2.2 Preprocessing

We follow the way in the nnU-Net [5] to preprocess the training data. The spacing
of all official CT images is the same on the x-axis and y-axis, but different on
the z-axis. The original training data have a median voxel spacing of 0.78 × 0.78
× 3.0 mm3, and the median volume shape of 512 × 512 × 104 voxels. For the
training of low-resolution segmentation network, input data is resampled to have
a spacing of 1.84 × 1.84 × 2.36 mm3, which results in a median volume of 217
× 217 × 177 mm3 voxels. On the other hand, for the training of full-resolution
segmentation network, input data is resampled to have a spacing of 0.78 × 0.78
× 1.0 mm3, which results in a median volume of 512 × 512 × 417 mm3 voxels.

We clip each case’s intensity values to the 0.5 and 99.5 percentiles of the
intensity values in the foreground regions across the training set, i.e., the range
of [−58, 302]. We subtract the mean value of 103 and then divide it by the
standard deviation of the intensities in the foreground regions, which is 73.3.
The foreground class oversampling is used to enforce more than a third of the
samples in a batch contain at least one randomly chosen foreground class. During
training, patches with shape 128 × 128 × 128 are sampled and input to the
network. A variety of data augmentation techniques are applied on the fly during
training: rotations, scaling, mirroring, etc.

2.3 Proposed Method

Network Architecture. We use 3D U-Net architecture [2] for both low-
resolution and full-resolution segmentation networks. The U-Net consists of an
encoder and decoder, where for all convolutions in the network we use 3 × 3
× 3 convolution kernels. Each block in the encoder consists of a sequence of
two convolutional layers each of which followed by instance normalization and
LeakyReLU activations. In the decoder, upsampling is done by 3 × 3 × 3 trans-
posed convolutions. At the last convolutional layer, it outputs the probability
distributions for background, kidney, cyst, and tumor for each voxel. There are
a total of 6 stages for each encoder and decoder. We use cross-entropy loss and
dice loss for the training. The stochastic gradient descent strategy is used for
the optimization. We investigate various network configurations. For example,
we increase all the channel numbers of convolutions in the network by two times.
This increases the model parameter by two times, and also the training time.
Another variant is a residual 3D U-Net which replaces plain convolution blocks
in the encoder with residual blocks. Also, we tested the region-based training,
which uses three sigmoid activations after the final convolutional layer to produce
probabilities for each region, where regions are defined by “kidney and masses”,
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Table 1. Results of experiments on the validation set.

Method Kidney Masses Tumor Average

Low-resolution 0.973 0.858 0.794 0.875

Low-resolution - channel × 2 0.973 0.851 0.771 0.865

Low-resolution - residual 0.973 0.856 0.794 0.874

Full-resolution 0.977 0.840 0.790 0.869

Full-resolution - channel × 2 0.975 0.840 0.790 0.868

Full-resolution - residual 0.979 0.858 0.803 0.880

Full-resolution - batch 4 0.978 0.857 0.801 0.879

Cascade 0.979 0.858 0.804 0.880

Region-based training 0.975 0.851 0.790 0.872

Ours (w/ post-processing) 0.979 0.857 0.826 0.887

“masses”, and “tumor”. For the cascade model, the output of the low-resolution
segmentation network is concatenated to the input image and then fed to the
high-resolution segmentation network.

Multi-scale Post-processing. Based on our analysis of the results of the
validation set, the low-resolution segmentation network produces well-localized
segmentation parts but lacks sufficient details, while the full-resolution segmen-
tation model provides finely detailed boundaries of kidneys and masses but gen-
erates some false positives around backgrounds. Therefore, we remove segmented
foreground blobs in full-resolution segmentation maps which do not belong to
the foreground blobs in low-resolution segmentation maps. Moreover, to reduce
tumor false positives (FPs), we first perform the connected component analysis
for the tumor class, and then we treat the tumor regions in each segmentation
map as true positives if they have sufficient overlap with the tumor regions of the
segmentation map from another scale. Specifically, the two tumor regions from
low- and full-resolution segmentation maps should have a Dice coefficient greater
than 0.3 to be determined as true tumor regions. Finally, we join the regions of
predicted segmentation parts from both the full-resolution and low-resolution
segmentation maps to complement each other. This enables us to take advan-
tage of both the low-resolution and high-resolution segmentation predictions,
boosting the final segmentation performance. In addition, we find the convex
hulls of tumor blobs in the predicted segmentation maps and then merge the
labels inside the detected hulls to reduce noisy prediction results. We remove
foreground blobs that have an area smaller than 10,000 mm3.

3 Results

We validated our model on the dataset of the 2023 Kidney and Kidney Tumor
Segmentation (KiTS23) challenge. We report performances of baselines and our
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Table 2. KiTS23 leaderboard for final results on test data (top-5).

Rank Team Affiliation Dice Surface
Dice

Tumor
Dice

1 Andriy Myronenko et al. NVIDIA 0.835 0.723 0.756

2 Kwang-Hyun Uhm Korea University 0.820 0.712 0.738

3 Yasmeen George Monash University 0.819 0.707 0.713

4 Shuolin Liu Independent Researcher 0.805 0.706 0.697

5 George Stoica et al. University of Lasi, SenticLab 0.807 0.691 0.713

models evaluated on the validation set. We report Dice scores for regions of
“Kidney and Masses”, “Kidney Masses”, and “Kidney Tumor”. For brevity, we
denote in the tables in this section the dice scores as “Kidney”, “Masses”, and
“Tumor”.

We summarize the quantitative results in Table 1. All the results are based
on the validation set, which contains 98 cases. We can see that our method
outperforms other baselines by a large margin in terms of average Dice score. The
average Dice is 0.887, and Dice for kidney, kidney masses, and kidney tumors are
respectively 0.979, 0.857, and 0.826. For the tumor segmentation, our algorithm
performs significantly better than the baseline. These results demonstrate the
effectiveness of our multi-scale post-processing strategy.

Our final submission involves three base networks including “Low-
resolution”, “Low-resolution - residual”, and “Full-resolution - batch 4” which
show better performance than others in several folds. We apply our multi-scale
post-processing strategy to two possible pairs of low- and full-resolution segmen-
tation results and join the two post-processed results to make the final segmen-
tation map (Table 2).

4 Discussion and Conclusion

In this paper, we explore various 3D U-Net training configurations and effec-
tive post-processing strategies for accurate segmentation of kidneys, cysts, and
kidney tumors in CT images. We investigate a wide variety of training config-
urations including training at different scales, cascade training approaches, and
region-based training. We also introduce post-processing approaches that aim at
improving performance by effectively combining the predictions from the mod-
els trained in different training configurations. We validated our model on the
dataset of 2023 Kidney and Kidney Tumor Segmentation (KiTS23) challenge.

Our approach won second place in KiTS23 Challenge. On the test set, our
final model obtained Dice scores of 0.948, 0.776, and 0.738 and Surface Dice (SD)
scores of 0.899, 0.635 and 0.602 for kidney, masses, and tumors, respectively. It is
important to note that by carefully combining the results of 3D U-Nets trained
from different scale settings, we can obtain much better performance than the
results of individual models. Specifically, we achieved a much higher tumor dice
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score than lower-ranked teams, which demonstrates that our multi-scale tumor
prediction aggregation strategy is effective for accurate tumor segmentation.
Our method can be applied to other multi-scale approaches in current literature
to improve the segmentation performance for accurate diagnosis. Our work is
only validated on KiTS23 Challenge dataset and lacks sufficient experimental
validation on multiple datasets. In the future, we will expand the experiment
settings of our method to different datasets for comprehensive evaluation of
generality.
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Abstract. Segmentation of kidneys, kidney tumors and kidney cysts
from contrast-enhanced CT images has significant potential to facili-
tate large-scale imaging and radiological analysis. However, the task is
challenging due to the considerable variation in tumor scales between
different cases, which is not effectively addressed by conventional seg-
mentation methods. In this paper, we propose a method called dynamic
resolution that addresses this issue by dynamically adjusting the image
resolution for each sample during training and testing, thus achieving a
balance between targets with different scales. We also present a technique
that uses publicly available unlabelled datasets to improve the robustness
of the model without requiring additional manual labelling. We evalu-
ated our method on the KiTS23 competition dataset and the results
demonstrate its superiority over the existing state-of-the-art nnUnet,
with improvements of 1.2%, 3.9% and 4.9% on kidney, tumor+cyst and
tumor respectively.

Keywords: Kidney tumor segmentation · Dynamic resolution ·
Semi-supervised learning

1 Introduction

High-quality semantic segmentation of the kidneys, kidney tumors and kid-
ney cysts from contrast-enhanced CT images has enormous potential for large-
scale radiological analysis of kidney tumor imaging and its correlation with
tumor molecular features and disease-specific outcomes [2]. Unfortunately, man-
ual semantic segmentation of these structures is very time-consuming in routine
clinical practice. There is still an unmet need for highly accurate and versatile
automated segmentation of these structures, which can significantly reduce the
repetitive manual work for human during the analysis process.

Deep learning methods, particularly fully convolutional neural networks
(FCNs) [6], have emerged as powerful tools in the field of medical image analy-
sis [3–5]. Among the various approaches, U-Net [5] and its variants have demon-
strated exceptional success in segmenting anatomical structures such as organs
and lesions. Notably, nnUnet [3] stands out as one of the most effective varia-
tions of U-Net, as it incorporates a self-configuring method that enhances the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Heller et al. (Eds.): KiTS 2023, LNCS 14540, pp. 14–21, 2024.
https://doi.org/10.1007/978-3-031-54806-2_3
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adaptability of the algorithm to diverse datasets and tasks, resulting in improved
versatility and high accuracy. Despite these advancements, there are still persis-
tent challenges that need to be addressed. Specifically, existing methods struggle
with preserving fine structures and effectively handling significant variations in
the scale of the target being segmented. We argue that a limitation of current
methods lies in their handling of multi-scale targets, where the same parameters
are applied indiscriminately to targets of different scales. As shown in Fig. 1,
when identical patch sizes and resolutions are used to process tumor A and
tumor B, the field of view (FOV) for tumor A is too small, while that for tumor
B is too large. Consequently, this discrepancy affects the accuracy of the final
segmentation results.

Fig. 1. Examples of patches used for training and testing. From left to right are patches
obtained using the fixed resolution and dynamic resolution methods.

In this study, we present a novel approach, called dynamic resolution, to
address above challenges associated with medical image analysis. Inspired by the
practices of medical professionals, our method (called DR-Net hereafter)involves
dynamically adjusting the field of view (FOV) based on the size of the target
being observed. Specifically, the FOV is increased for larger targets and decreased
for smaller ones. By incorporating dynamic resolution, the DR-Net enables adap-
tive resolution adjustment for all targets during both training and testing phases.
This adaptability ensures the selection of an appropriate FOV size, ultimately
improving the accuracy of segmentation. Furthermore, we propose the integra-
tion of exclusion learning into the task of kidney tumor segmentation. This
technique enhances the robustness of our model by leveraging other publicly
available CT image datasets, even in the absence of kidney tumor annotations.
Our approach offers a promising solution to improve the performance of kidney
tumor segmentation in clinical practice.

We conducted a comprehensive evaluation of the proposed method on the
KiTS20231 competition dataset. Our results demonstrate that our approach out-
performs the current state-of-the-art method.

1 https://kits-challenge.org/kits23/.

https://kits-challenge.org/kits23/
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2 Method

Figure 2 illustrates the comprehensive framework of DR-Net, which is developed
for the purpose of kidney tumor segmentation. In kidney tumor segmentation,
the background region of the image typically occupies the majority of the image.
To enhance the framework’s speed and robustness, inspired by Zhao et al. [8],
DR-Net is constructed in four distinct stages. The first stage involves ROI local-
ization, where a low-resolution model is employed to detect the Region of Interest
(ROI) within the CT image. The identified ROI is then forwarded to the Stage
2 model, which generates precise kidney segmentation results. Moving forward,
the third stage encompasses mass segmentation, which takes the ROI CT image
and the predicted kidney segmentation outcome as inputs, and produces the
mass segmentation result. Lastly, the fourth stage involves the utilization of the
ROI CT image in conjunction with the predicted mass mask, which are fed into
the tumor segmentation model to generate the final tumor prediction outcome.

Fig. 2. Overall framework of DR-Net. “Mass” indicates tumor+cyst.

2.1 Dynamic Resolution for Medical Segmentation

To address the variations in sizes and shapes of different targets, dynamic reso-
lution was employed for stage2 and stage3. This approach emulates the segmen-
tation process performed by human doctors when analyzing medical images.
Specifically, for large targets, they are labeled at a regular scale, whereas for
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Table 1. Model parameters used for each stage.

Stage Resolution(mm) Patch size

ROI location (3.0, 1.5, 1.5) (96, 192, 192)
Kidney segmentation Dynamic (160, 128, 128)
Mass segmentation Dynamic (128, 128, 128)
Tumor segmentation (0.78, 0.78, 0.78) (128, 128, 128

small organs, a two-step approach is adopted. First, the small organs are local-
ized, and then a zoom-in technique is applied to achieve more precise segmenta-
tion (Fig. 3).

Fig. 3. The illustration of dynamic resolution.

In the task of kidney tumor segmentation, our findings indicate that when
the tumor size is excessively large, it leads to an increase in the overall kidney
volume. Consequently, we have chosen the length of the kidney bounding box
(bbox) as the criterion for assessing the size of the target. For medical images,
modifying the image resolution is equivalent to adjusting the voxel spacing. To
determine the dynamic voxel spacing for training and testing purposes, we can
calculate it based on the average length, denoted as L, of the bounding box in
the x, y, and z directions.

V oxelSpacing = max(a,min(b, Sk × L/Lk)) (1)

Here, Sk represents the median spacing of the training set (0.78), while a,
b, and Lk are hyperparameters specifically chosen for this paper. In our study,
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these hyperparameters are set to 0.5, 1.4, and 110, respectively. Based on Eq. 1,
it can be observed that in instances where the kidneys are exceptionally large,
the model will be trained and inferred using a lower resolution. Conversely, when
the kidneys are relatively small, the model will be trained and inferred using a
higher resolution. The bounding box length L is calculated using the ground
truth of kidney during training, and calculated using model’ prediction during
testing.

2.2 Model Architecture

The various stages of the model employ a similar model structure, all of which
are variants of U-Net. The following Table 1 are the model parameters utilized
for each stage:

2.3 Exclusion Learning

There are currently large amounts of publicly available datasets of abdominal CT
scans, such as the Medical Segmentation Decathlon (MSD) dataset [1,7]. How-
ever, most of these datasets lack specific annotations for kidney or renal tumor
segmentation and therefore cannot be directly applied to the task of this paper.
In order to fully utilise the potential of these datasets, an exclusion learning
method with pseudo-labels is employed. This approach is based on the principle
that, in general, a pixel cannot belong to two different organs at the same time.
For example, the MSD task03 dataset labels only the liver or liver tumor, and
we can infer that regions belonging to the liver cannot be attributed to the kid-
ney or kidney mass. Similarly, information from the MSD task09 (spleen), MSD
task07 (pancreas) and MSD task 08 (liver vessel and tumors) datasets can also
facilitate the segmentation of kidney tumors to some extent.

To start exclusion learning, a baseline model is trained. Then, this model is
employed to conduct inference on the public dataset, comparing its predictions
with the original non-kidney region labels provided by the dataset. A voxel is
considered an over-segmentation voxel if it is labeled by both the model predic-
tion and the original label of the MSD dataset. Cases exhibiting notable over-
segmentation (with over 8000mm3 over-segmented area) were selected, and the
labels of the original non-renal regions from the public dataset were subtracted
from the model’s predictions, resulting in corrected pseudo-labels. Finally, a
total of 29 CT images and corresponding pseduo labels are generated from MSD
dataset were chosen for next round training.

2.4 Optimization

We employed nnUnet framework to train all models. DICE loss and CrossEn-
tropy Loss is used as the loss function. Stochastic gradient descent (SGD) was
used as an optimizer with a batch size of 2. All models are trained for 250k
iterations with the initial learning rate of 1e−2, which takes around 2 days using
a NVIDIA V100 GPU.
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2.5 Pre-processing

We use nnUnet [3] auto-processing to process all the data, each case is clipped
to the range calculated by nnUnet auto-planning. And then these data are sub-
tracted from the mean and divided by the standard deviation.

2.6 Post-processing

For post-processing, we implemented a two-step approach. Firstly, we removed
regions of the kidney where the predicted connectivity domain was less than
20,000mm3. This step helped eliminate small, isolated regions that may not
correspond to actual kidney structures. Next, similar to KiTS23 official post-
processing method2, we applied Gaussian filtering to the entire CT image, specif-
ically targeting regions where the CT value was less than -30 HU. This filtering
process effectively removed predicted values in regions with low CT attenuation,
which are less likely to correspond to kidney tissues.

2.7 Dataset and Evaluation Metrics

We conducted validation of our method using the KiTS2023 competition data,
consisting of a total of 489 renal enhancement CT images. Out of these, a ran-
domly selected subset of 98 cases was used as the validation set. For evaluation
purposes, we employed the Dice and Surface Dice metrics.

3 Experiments Results

3.1 Ablation Studies

Table 2 presents an analysis of the impact of each proposed component by com-
paring the DICE scores. The baseline model was constructed according to the
details outlined in Sect. 2. We can observed that the dynamic resolution tech-
nique leads to improved performance, particularly in regions with high variability
in scale and shape, such as tumor and cyst. Furthermore, the proposed exclu-
sion learning architecture further enhances the performance, with significant
improvements observed across all structures.

As shown in Fig. 4, our method shows greater robustness in some cases with
specific shapes and scales.

3.2 Comparison of Existing Methods

We conducted a comparison with nnUnet-HighRes as a reference. The nnUnet-
HighRes model utilizes parameters automatically generated by the nnUnet plan-
ner, where the voxel spacing is set to (1.0, 0.78, 0.78) and the patch size is set
as (128, 128, 128). As shown in Table 3, proposed method has a significant
improvement over nnUnet on all targets.
2 https://github.com/neheller/kits23.

https://github.com/neheller/kits23
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Table 2. Ablation results of dynamic resolution and exclusion learning. DR indicates
the dynamic resolution, EL indicates the exclusion learning, TTA indicates the test-
time augmentation. The inference time is the average results for 98 validation cases
tested on single NVIDIA GeForce RTX 3080 GPU.

Method Kidney+Tumor+Cyst Tumor+Cyst Tumor Inference time

Baseline 0.9802 0.8437 0.7993 12 s/case
Baseline+DR 0.9810 0.8530 0.8077 15 s/case
Baseline+DR+EL 0.9831 0.8613 0.8188 15 s/case
Baseline+DR+EL+TTA 0.9833 0.8700 0.8290 73 s/case

Fig. 4. Visualization of predictions generated by different approaches. From left to right
are: a) the CT images. b) predictions by nnUnet. c) our predictions. d) the ground truth
(GT).

Table 3. Proposed method vs. other methods. All methods do not use the test-time
augmentation technique. The inference time is the average results for 98 validation
cases tested on single NVIDIA GeForce RTX 3080 GPU.

Method Kidney+Tumor+Cyst Tumor+Cyst Tumor Inference time

nnUnet-HighRes [3] 0.9708 0.8200 0.7700 40 s/case
Ours 0.9831 0.8613 0.8188 15 s/case
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4 Conclusion

In this study, we propose a new segmentation method for dealing with multi-scale
kidney tumors. Compared to existing methods, the proposed method provides
improvements in kidney, tumor prediction. It is expected to provide a powerful
tool in large-scale radiomics analysis of renal tumor imaging and its relationship
with tumor molecular features and disease-specific outcomes.
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Abstract. Using additional training data is known to improve the
results, especially for medical image 3D segmentation where there is a
lack of training material and the model needs to generalize well from
few available data. Unlike transfer learning in which a model pretrained
on huge datasets is fine-tuned for a specific task using limited data, we
research the case in which we acquire supplementary training material
and combine it with the original training data. However, the new data
could have been obtained using other instruments and preprocessed such
its distribution is significantly different from the target domain. There-
fore, we study techniques which ameliorate domain shift during training
so that the additional data becomes better usable for preprocessing and
training together with the original data. We opt for using statistical cri-
teria for reducing the distribution shift for domain adaptation in the
context of having more data from the target domain than additional
training data. Our results show that transforming the additional data
using histogram matching has better results than using simple normal-
ization. We achieved the 5th place on the official test dataset with a
Dice score of 0.807 and Surface Dice of 0.691. On the validation set, we
additionally report the Dice score for cysts (0.512) and kidney (0.946)
besides the official metrics.

Keywords: 3D Segmentation · Domain Shift · Domain Adaptation

1 Introduction

The segmentation of renal structures (kidney, tumor, cyst) has gained interest
in the recent years, starting from the KiTS19 Challenge [4] and continuing with
KiTS21, KiPA221 and currently with KiTS23. The accurate segmentation of
renal tumors and renal cysts is of important clinical significance and can benefit
the clinicians in preoperative surgery planning.

1 https://kipa22.grand-challenge.org/home/.
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Deep learning leverages on huge amount of training data for learning domain
specific knowledge which can be used for predicting on previously unseen data.
In medical image segmentation, a smaller amount of training data is available
when compared to other domains of deep learning. Therefore, using additional
training data has a greater impact on the end results.

In transfer learning, knowledge gathered from one or more source domains is
used to execute new tasks in a different target domain. In deep learning, mod-
els are typically pretrained on a huge collection of data and fine-tuned on a
downstream task. This procedure capitalizes on the previously learnt features to
improve the performance on the new task, both in terms of results and compu-
tational resources needed for training. While pretrained models are available for
many CV tasks on 2D images, for 3D medical images transfer learning is more
challenging due to limited availability of publicly available annotated data. Using
pretrained models on 2D slices from 3D volumes is certainly feasible, however
with this approach the deep learning model learns only the intra-slice informa-
tion and loses inter-slice correlations, resulting in weaker performance in general.
Only recently [6] and [11] have studied pretraining for 3D medical images and
achieved good results.

Domain adaptation is a particular case of transfer learning. In domain adap-
tation, the usual scenario entails learning from a source distribution and pre-
dicting on a related target distribution. The change in the distribution of the
training dataset and the test dataset is called domain shift. In the case of super-
vised domain adaptation, labeled data from the target domain is available [10].

The medical image acquisition process is not uniform across different insti-
tutions and CT images may have different HU values and various amount of
noise depending on the acquisition device, the acquisition time and other exter-
nal factors. As a consequence, distribution shifts are easily encountered and
this affects models that perform well on validation sets but encounter different
data in practice. Creating a model which is robust to different types of distribu-
tions requires training on enough data, coming from all the target domains and
learning domain invariant representations or a common shared space. Another
approach is to preprocess and transform the production data, extracting features
that match the already learnt distribution.

When training under domain shift and using two datasets with different
distributions, the data ought to be preprocessed in order to mitigate the data
mismatch error which happens due to the distribution shift. Characteristics of
the target dataset have to be incorporated into the training dataset, which could
be done either by collecting more data from the target distribution, or by arti-
ficial data synthesis. Our solution consists of transforming the additional data
taken from the KiPA22 challenge to the target distribution which is represented
by the data from the KiTS23 challenge.

This is a particular case of homogeneous domain adaptation in which the
feature space between source and target are the same and labelled data from
both domains is available. Unlike the usual scenario, in our case we have more
labelled data from the target domain, 489 CTs and less labelled data from the
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source domain, 70 CTs. Therefore, our approach consists of translating the source
distribution to the target distribution instead on focusing on learning a common
shared space or domain invariant features.

We compare two transformations, dataset normalization, which preserves the
original but different distribution, with histogram matching, which translates the
additional data making both the source and target distribution the same.

2 Methods

Our approach consists of applying initial preprocessing to an additional dataset
which was used for training. The aim of the preprocessing was to reduce the
distribution shift between the additional data and the target domain, and will
be fully-detailed in Sect. 2.2. After bridging the distributions of the original and
additional data, we preprocess and normalize the whole data together and train
a 3D U-Net [1] using multiple data augmentation techniques. Ultimately, we
predict on the validation set and postprocess the prediction before evaluating
them.

2.1 Training and Validation Data

Our submission uses the official KiTS23 training set, built upon the training and
testing data from the KiTS19 [5] and KiTS21 competitions. In addition to the
official KiTS23 data, our submission made use of the public KiPA22 competition
training set [2,3,8,9].

The KiTS23 training dataset contains 489 CTs which include at least one
kidney and tumor region and usually include both kidneys and optionally one or
more cyst regions. In contrast, the KiPA22 training data contains only 70 CTs in
which only the diseased kidney is selected. KiPA22 images have 4 segmentation
targets: kidney, tumor, artery and vein. Unlike KiTS23, benign renal cysts are
segmented as part of the kidney class for KiPA22. The initial preprocessing for
the KiPA22 images consists of removing the artery and vein segmentation masks
and keeping only the kidney and tumor class.

We have randomly chosen 342 images from KiTS23 and 70 images from
KiPA22 for training and 147 images from KiTS23 for validation.

2.2 Preprocessing

Initial exploratory data analysis illustrate the fact that images from KiPA22
have a totally different distribution than images from the KiTS23 training set
on the HU scale.

While the values for the KiTS23 CT images are mostly centered around -1000
and 0 on the HU scale, KiPA22 images are situated between 800 and 1500 while
also having a visible different distribution (Fig. 1a). Training under domain shift
using the original distribution for the second dataset is challenging, therefore we
have taken steps towards ameliorating the effects of distribution shift.
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Fig. 1. Histograms for both datasets before and after initial preprocessing.

To mitigate the impact of the huge distance between the values of the voxels,
the simplest solution is shifting the mean and standard deviation of KiPA images
to match those of KiTS (Fig. 1b). Nevertheless, the distributions are still visibly
different, therefore we also applied histogram matching to transform the KiPA
images to the KiTS domain (Fig. 1c).

We choose to transform the KiPA images because the test data will be
made of images which are expected to match the original KiTS distribution.
When training under domain shift, only data from the target distribution should
be used for validation. Otherwise, we would risk having data mismatch error
between the validation set and the test set.

For the KiPA dataset, shifting the mean maintains the original shape of the
curve, scaled by the factor which changed the standard deviation, spreading the
values evenly. Histogram matching, on the other side, is destructive and the
HU values of voxels are spread unevenly to match the KiTS distribution. To
choose the best transformation, we have created two datasets to evaluate them
separately in order to choose the more suitable one.

1. Dataset 1: 342 images from KiTS and 70 images from KiPA whose values
are shifted by changing the mean and standard deviation.

2. Dataset 2: the same 342 images from KiTS and 70 images from KiPA whose
values are transformed by histogram matching.

For both datasets, the same preprocessing steps are applied, using the
nnUNet framework [7]. Values are clipped at the 0.5th and 99.5th percentile
to remove outliers. Then, images are normalized to have the mean 0 and stan-
dard deviation 1 and three order-interpolation is used to resample all images
into a space of 0.7636 × 0.7636 × 0.7636mm3.

2.3 Proposed Method

After preprocessing each dataset, we have trained the model using the default
nnUNet v2 configuration for training, which uses a classic 3D U-Net. We have
trained a single model on all the available data instead of opting for an ensemble
trained on 5 folds.
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We have used region based training, defining the 3 learning targets: Kid-
ney & Tumor & Cyst, Tumor & Cyst and Tumor. While this approach directly
optimizes the official evaluation metrics, it does not yield good results for pre-
dicting the cyst class. We have used the Dice & Cross Entropy Loss, but also
experimented with Dice & Focal Loss which yielded worse segmentation results.

We have trained the model for 1000 epochs using a patch size of 128 ×
128 × 128 and a batch size of two. We started the training using SGD and
Nesterov momentum with a learning rate of 0.01 and used a Polynomial Learning
Rate Scheduler to decrease the learning rate evenly until it reaches a value of
0.001 at the end of the 1000 epochs. To prevent overfitting, we applied multiple
data augmentation techniques integrated in nnUNet: Rotation, Scaling, Gaussian
noise, Gaussian blur, Random brightness, Gamma Correction and Mirroring.

For our custom postprocessing, we generate all the connected components
from a prediction in order to determine all kidney candidates, and we choose two
candidates using a heuristic for determining whether a connected component is a
kidney or not. In our heuristic, we use the mean of all voxel positions to calculate
the center of each connected component, and we choose the two candidates which
have their center at a similar position on the y and z axis (sagital and axial plane)
and are symmetric compared to the centre on the x axis (coronal plane). All other
connected components are removed. Furthermore, we also generate all connected
components of the lesion area and eliminate all areas with less than 10 voxels,
considering that they are noise. Additionally, all voxels inside a lesion area are
set to one class (tumor or cyst) by using majority voting, in order to remove all
cases in which cyst and tumor voxels are predicted for the same lesion.

3 Results

We have trained on both Dataset 1 and Dataset 2 and have used 147 images
from KiTS23 for validation. The results are displayed in Table 1. The official
metrics used in competition are in italic, but we also report the Dice score for
kidney and cyst segmentation.

Our experiments show that applying histogram equalization (Dataset 2)
on the additional dataset improves the results for all the target metrics. Using
simple normalization (Dataset 1) has better results only when calculating the
Dice score for the kidney area. However, the Dice score for tumors and cysts is
worse by 2 and 3%. Using the original distribution of the KiPA dataset results in
a lower Dice score for cysts also because possible cysts are labeled as the kidney
class. Nonetheless, since the two distributions are still very different even after
normalization and preprocessing, the scores are heavily impacted.

Evaluating the results on both configurations, the model does not distinguish
the cyst class and many cysts are classified as tumors. There is a class imbal-
ance between cysts and tumors, as cysts generally encompass a smaller area.
In our case, the low dice score for cysts is a result of many false positives. We
presume that our learning target is the culprit, because we directly minimize
the Dice and Cross Entropy loss for the whole segmentation area (kidney and
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Table 1. Validation results for Dataset 1 and Dataset 2 and postprocessing results
on Dataset 2. The test results on the official test dataset are also displayed for com-
parison.

Dataset/Dice score kidney&masses masses kidney tumor cyst

Dataset 1 95.310904 79.072143 94.101086 76.891783 17.012944

Dataset 2 95.453839 80.760511 94.024749 78.960431 20.766421

Postprocessing 97.075388 85.229431 94.679921 82.734208 51.224890

Test results 94.7 76 – 71.3 –

masses), the lesion area (masses, both tumor and cyst) and ultimately, tumor.
As a consequence, the cyst area is indirectly learnt, therefore the accuracy is
lower. To make the model discriminate between the two classes and reduce the
false positives, we suggest changing the learning target to directly minimize the
Dice and Cross Entropy loss for the cyst class.

By applying postprocessing on Dataset 2 we greatly increase all our results,
especially the Dice score for the cyst areas which is more than doubled. This is
due to the fact that we eliminate spurious voxels with the cyst class, predicted
by our model in tumor areas, or tumor voxels predicted in cyst areas. The Dice
score for tumors is also increased by 3.7 for the same reasons as above, but the
impact of postprocessing is lower. Nevertheless, all official metrics benefit from
postprocessing and provide a promising growth.

We have achieved the 5th place on the official testing dataset with a Dice
score of 0.807 and Surface Dice of 0.691. The Dice score is the average of the
three official metrics displayed on the last row of Table 1 and the results for the
kidney and cyst area are not available on the official leaderboard. Compared to
the validation results, there is a decrease in score, especially for the masses and
tumor areas. Motivated by the difference in Dice score for masses and tumor
and considering that the cyst class is usually less predominant and has a smaller
volume in general, we presume that the worse performance is explained by less
accurate predictions for the tumor area on the provided test set. The culprit is
most probably a harder test dataset, with cases for which tumors are not easily
identifiable. Nevertheless, this illustrates that further research and model fine-
tuning is to be done to improve the performance and robustness of the model.

For training and inference we have used a workstation with an RTX 3090
GPU, an AMD Ryzen Threadripper 2970WX 24-Core Processor CPU, SSD and
31 GB RAM memory available. Training the model took around 3.4 days. For
prediction, the average inference time was less than 10 min per case.

4 Discussion and Conclusion

Distribution shift is a recurring issue that often appears in practice. The model
underperforms when encountering data coming from a different distribution
other than the source distribution on which the model was trained. The best
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performance is achieved when the source and target distribution is the same,
but this is not always the case in real life scenarios. Therefore, we propose pre-
processing the source distribution using statistical criteria in the context of 3D
medical images with similar features but different values due to different acqui-
sition processes.

We have explored suitable transformation techniques for mitigating distri-
bution shift when using additional data for the kidney tumor 3D segmentation
task. We have identified histogram matching as an initial preprocessing step
of artificial data synthesis that completely transforms the source distribution
to the target domain. Compared to simple normalization, this approach has the
advantage of training only on the target distribution, which improves the results,
especially for the least frequent classes, cyst and tumor. Our postprocessing tech-
niques also greatly increase the score by correcting visible mistakes done by our
model in a deterministic manner using domain specific knowledge.

Our approach yields good results on the official test dataset, achieving the
5th place on the final Leaderboard. We believe that more stable results can
be achieved by training an ensemble, and the discriminative power between
cysts and tumors can be enhanced by changing the training target and using
techniques that deal with class imbalance.
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Abstract. Kidney cancer is one of the most common cancers. Precise
delineation and localization of the lesion area play a crucial role in the
diagnosis and treatment of kidney cancer. Deep learning-based auto-
matic medical image segmentation can help to confirm the diagnosis.
The traditional 3D nnU-net based on convolutional layers is widely used
in medical image segmentation. However, the fixed receptive field of con-
volutional neural networks introduces an induction bias limiting their
ability to capture long-range spatial information in input images. The
Swin Transformer addresses this limitation by leveraging the global con-
textual modeling ability obtained through self-attention computation.
However, it requires a large amount of training data and lacks in local
feature encoding. To overcome these limitations, our paper proposes a
hybrid network structure called STransUnet, which combines the nnU-
net with Swin Transformer. STransUnet retains the local feature encod-
ing capability of nnU-net while introducing the Swin Transformer to
capture a broader range of global contextual information, resulting in
a more powerful modeling ability for image segmentation tasks. In the
KiTS23 challenge, our average Dice and average Surface Dice of segmen-
tation on the test are 0.801 and 0.680 ranked the 6th and 8th respectively
and our Tumor Dice is 0.687.

Keywords: Convolutional neural network · nnU-Net · Swin
Transformer

1 Introduction

Kidney cancer is one of the most common cancers, with over 430,000 people
diagnosed each year, of which approximately 180,000 cases result in death [5].
Computerized tomography (CT) imaging plays a crucial role in the diagnosis
and understanding of the characteristics of kidney tumors. The segmentation
of kidney tumors is an important basis for doctors to determine diagnosis and
treatment plans. The delineation and segmentation of most medical images are
performed by radiologists. However, due to human subjectivity, significant vari-
ations among doctors, and factors such as fatigue, the accuracy and quantity of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Heller et al. (Eds.): KiTS 2023, LNCS 14540, pp. 30–39, 2024.
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image annotations by humans are limited. This greatly restricts the ability of
the medical field to progress towards more digitized and personalized healthcare.
Deep learning-based medical image segmentation, through learning and training
on a large number of parameters, can achieve automatic segmentation of medi-
cal images and has many applications in clinical quantification, treatment, and
surgical planning [18].

Convolutional Neural Networks (CNNs) trained on large annotated datasets
have shown superior performance, surpassing traditional algorithms and even
human capabilities. CNNs have many outperforming representations such as
AlexNet [9], VGGNet [13], Inception Net [15] and ResNet [7]. Among all CNNs,
nnU-Net [8] has achieved remarkable results in the segmentation of three-
dimensional medical images. The key factor behind the success of nnU-Net is
their inductive bias in dealing with scale-invariant local visual structures. While
this inherent locality (limited receptive field) brings efficiency to nnU-Net, it
weakens their ability to capture long-range spatial information in input images,
thereby bottlenecking their performance [11]. This calls for an alternative archi-
tectural design that can model relationships between distant pixels for better
representation learning.

To overcome the limitations of fixed receptive fields, one approach is to
integrate attention mechanisms into CNN-inspired architectures [2,4]. These
attention-based models have become an attractive solution as they can encode
long-range dependencies and learn efficient feature representations. The global
context modeling ability of Transformer [16] is crucial for accurate medical image
segmentation since it allows for effective segmentation of regions distributed
across a large field by capturing relationships between distant pixels. By oper-
ating on a set of image patches, Alexey Dosovitskiy et al. proposed the Vision
Transformer (ViT) [3], which completely replaces standard convolutions in deep
neural networks. However, the Transformer architecture was originally proposed
in the field of natural language processing (NLP), where the pixel resolution of
images is much higher than the resolution of text paragraphs. When used for
visual tasks, dense predictions at the pixel level are required, which is challeng-
ing for Transformer on high-resolution images due to the quadratic complexity
of self-attention computations with respect to image size. In order to control the
model size and inference time, our paper adopts the Swin Transformer proposed
by Liu et al. [10] to extract contextual information. Swin Transformer is an image
processing model based on the Transformer architecture, specifically designed for
handling high-resolution image tasks. It improves upon the Vision Transformer
to address the computational and memory overhead of traditional Transformers
when dealing with large-sized images. It divides the image into windows and per-
forms self-attention operations within each window. This approach reduces the
length of the input sequence, thereby reducing computational and memory costs
while being able to handle high-resolution images. Meanwhile, Transformers face
challenges in handling local information and extracting local features, where tra-
ditional approaches like nnU-Net may be more suitable. Therefore, the applica-
tion of Transformer in image segmentation is often accompanied by convolutional
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layers, such as TransUNet proposed by Chen et al. [1], Transformer-Unet by Sha
et al. [12], and Swin UNETR by Hatamizadeh et al. [6].

To encode contextual information without sacrificing local feature extrac-
tion and to ensure a manageable number of parameters without compromising
accuracy, we introduces STransUnet.

2 Methods

Our model adopts a hybrid approach, combining the nnU-Net framework and
the Swin Transformer framework. It adopts an encoder-decoder architecture,
where the intermediate output layers of the encoder are composed with the
outputs of nnU-Net and Swin Transformer. The decoder follows the architecture
of nnU-Net, and there are skip connections between the encoder and decoder.
The network architecture is illustrated in the diagram below (Fig. 2):

Fig. 1. STransUnet architecture

Fig. 2. Architecture of the Swin Transformer Component
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2.1 Training and Validation Data

Our submission made use of the official KiTS23 training set alone. We randomly
selected 23 cases from the official KiTS23 training set as the test set, 372 cases
as the training set, and 94 cases as the validation set.

2.2 Preprocessing

The original image dimensions range from (512, 512, 1059) to (512, 512, 29).
The voxel sampling spacing varies for each axis, with the x-axis ranging from
0.39 to 1.04, the y-axis ranging from 0.39 to 1.04, and the z-axis ranging from
0.50 to 5.00. The image dimensions determine the size of the image, which in
turn affects the computational complexity and inference time. Different sampling
spacings affect the resolution of the image. A larger sampling spacing results in
lower resolution and less detailed information but retains more contextual infor-
mation. A smaller sampling spacing provides higher resolution and more detailed
information but sacrifices contextual information. Due to the non-uniform voxel
sampling spacing in the dataset, we followed the approach of nnU-Net by select-
ing the median value of the sampling spacing for each axis as the target sampling
spacing. In this paper, the final target sampling spacing is selected as (1.00, 0.78,
0.78). Since we adopted the low-resolution nnU-Net, the voxel target sampling
spacing is chosen as (2.38, 1.86, 1.86). According to the selected target sampling
spacing, third-order spline interpolation is employed for resampling.

Considering the limited memory budget of the GPU, the non-zero region
cropping technique can be applied to reduce memory consumption by focus-
ing on the region of interest. Additionally, to reduce memory requirements and
computational complexity due to the large size of the images, the image can be
divided into patches, decomposing the problem into handling multiple smaller
patches. In this paper, the patch size is (128, 128, 128), and the batch size is set
to 2.

Furthermore, intensity normalization is performed. Since the intensity scale
of CT scans is absolute, all CT images are automatically normalized based on
the statistical data of the entire dataset. We collected all intensity values present
in the training dataset and standardizes the entire dataset by clipping these
intensity values at the 0.5th percentile and 99.5th percentile, followed by z-score
normalization based on the mean and standard deviation of all collected intensity
values. The implementation of z-score normalization is as follows:

Z =
(X − μ)

σ
(1)

where X is the original data, μ is the mean, and σ is the standard deviation.
To train large neural networks with limited training data, preventing overfit-

ting is crucial. To augment the training set and prevent overfitting, the follow-
ing data augmentation techniques are applied in this paper: random rotation,
random scaling, random elastic deformation, gamma correction, and mirroring.
Random rotation involves randomly rotating the image by a certain angle, which
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increases the model’s ability to recognize objects from different angles. By rotat-
ing the image, samples with different angles and orientations can be generated.
In this study, the probability of random rotation is set to 0.2, with a rotation
angle range of (−0.52, 0.52).

Random scaling involves randomly scaling the image. By varying the size
and scale of the image, the model’s ability to segment objects of different scales
is enhanced. The probability of random scaling is set to 0.2, with a scaling range
of (0.7, 1.4).

Random elastic deformation involves randomly deforming the image. By
introducing random deformation parameters within a certain range, the model’s
tolerance to deformations and distortions is increased, improving its robustness.
This method simulates the influence of various deformation factors on the image
in the real world, such as deformation, distortion, shape distortion, etc. In this
study, the probability of random elastic deformation is set to 0.2, with a defor-
mation strength parameter range of (0, 900) and a smoothness parameter range
of (9.0, 13.0).

Gamma correction is an enhancement technique used to adjust the bright-
ness and contrast of the image. By changing the pixel value distribution of the
image, the model’s adaptability to different brightness conditions is improved.
The implementation formula is as follows:

Y = cXγ (2)

where Y is the transformed output, X is the pixel value of the image, c is the
grayscale scaling coefficient (set to 1 in this study), and γ is the adjustment
constant that controls the degree of scaling for the gamma transformation. It
has a significant impact on the characteristics of the transformation function. In
this study, γ ranges from 0.7 to 1.5, and the probability of gamma correction
is 0.3. When γ > 1, grayscale compression is applied to brighter images, while
when γ < 1, contrast enhancement is applied to darker images, strengthening
the image details.

Mirroring involves flipping the image horizontally or vertically, generating
mirror-symmetric samples. Mirroring increases the invariance and robustness of
the model to object segmentation.

2.3 Proposed Method

We selected the first stage of the low-resolution cascaded nnU-Net as the baseline
network. Swin Transformer is integrated into the nnU-Net framework to incor-
porate long-range feature information to overcome the limitations of nnU-Net’s
local receptive field. In order to combine the feature maps extracted by nnU-Net
and Swin Transformer, while maintaining the integrity of the nnU-Net frame-
work, we concatenated the feature maps of second, third, fourth and fifth levels
from nnU-Net and first, second, third and fourth levels from Swin Transformer
along the channel dimension. The final output feature map sizes of the encoder
are as follows (Table 1):
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Table 1. Size of the fused encoder output feature maps

Output Level Size

1 (32, 128, 128, 128)

2 (96, 64, 64, 64)

3 (192, 32, 32, 32)

4 (384, 16, 16, 16)

5 (576, 8, 8, 8)

The overall network framework is illustrated Fig. 1. Our network architecture
adopts an encoder-decoder structure, which is a common neural network archi-
tecture consisting of two parts: an encoder and a decoder. The encoder encodes
the input image into a fixed-length vector representation, while the decoder uses
this vector representation to generate the output image. In this study, training
is performed in an end-to-end manner, where the entire process from input to
output is completed by a single model without any apparent stages or manual
intervention. The input image is directly mapped to the output, eliminating the
tedious process of manually designing features or intermediate steps, making the
entire training process more concise and efficient.

In the encoder stage, two stacked convolutional layers are used to encode the
feature maps. The first convolutional layer has a stride of 2 and an output chan-
nel twice that of the input channel, which performs downsampling. The second
convolutional layer has a stride of 1 and an output channel equal to the input
channel, which further extracts features. The convolutional layers have a kernel
size of 3, and each is followed by an Instance Normalization layer and a Leaky
ReLU layer to normalize the feature sequence and increase the model’s nonlin-
earity. The construction of the Swin Transformer part remains the same as the
original Swin Transformer encoder part. Swin Transformer Blocks are composed
of multi-head self-attention modules with regular and shifted windowing config-
urations. After the Swin Transformer Block, the output features maps of each
stage are concatenated with the corresponding feature maps of nnU-Net.

In the decoder stage, upsampling is first performed using a transposed con-
volution to reduce the channel and double the resolution. The transposed con-
volution has a kernel size and stride of 2. Then, a decoding block is formed by
stacked two convolutional layers, where the output channel of the first convolu-
tional layer is halved and the output channel of the second convolutional layer
remains the same. Both layers have a stride of 1 and are followed by an Instance
Normalization layer and a Leaky ReLU layer.

StransUnet employs a deep supervision strategy, which is a training technique
aimed at improving the training effectiveness and optimizing gradient propaga-
tion in neural networks. In addition to the final segmentation result, additional
supervision signals are added to the intermediate layers of the neural network to
better guide network learning. The loss function is computed on the four output
layers, and the predicted feature maps from these outputs, obtained through a
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1× 1× 1 convolution and a Softmax layer, are compared with the ground truth
labels. Deep supervision can alleviate the problem of vanishing or exploding gra-
dients, allowing gradients to propagate better in the network. Moreover, since
deep supervision can guide the learning process more directly at different levels,
it can help the network converge faster. The four-level losses in this study are
weighted to obtain the final loss, with weights assigned based on the output
sizes. Specifically, the loss weights from level 1st to level 4th are 0.53, 0.27, 0.13,
and 0.07.

In this paper,we chose Cross-entropy loss [17] and Dice loss [14] as our com-
posite original loss and introduced weight decay, the final expression is as follows:

L = − 1
N

N∑

i=1

(wce · yi · log(ŷi) + wdice · 2 · yi · ŷi

yi + ŷi
) + λ · ||w||2 (3)

where L is the loss function with weight decay, N is the number of samples
in the batch, yi represents the ground truth segmentation mask for sample i,
ŷi represents the predicted segmentation mask for sample i, wce and wdice are
the weighting factors for the Cross-Entropy loss and Dice loss, respectively. The
Cross-Entropy loss term measures the pixel-wise dissimilarity between the pre-
dicted and ground truth masks, while the Dice loss term calculates the overlap
between them. The weights control the relative importance of each loss term
in the overall loss function (in this paper, both set to 1). λ is the coefficient of
the weight decay term controlling the strength of regularization (set to 3e−05
in this paper), and ||w||2 is the squared L2 norm of the model’s weight parame-
ters, representing the sum of squared weights. By adding the weight decay term
to the original loss function, the optimization process not only minimizes the
original loss but also constrains the size of the weight parameters through the
influence of the regularization term. This way, the optimization process tends to
select smaller weight values, limiting the complexity of the model and reducing
the risk of overfitting.

The optimization algorithm used in this paper is Stochastic Gradient Descent
(SGD) with Nesterov momentum. SGD estimates the gradient of the entire train-
ing set by using random subsets of training samples. For each mini-batch, the
gradients of the model parameters are computed for the loss function. The gradi-
ent represents the rate and direction of change of the loss function at the current
parameter values. SGD with momentum accelerates convergence and reduces
oscillation by introducing the concept of momentum, which can be understood
as the inertia of parameter updates, similar to the concept of momentum in
physics. Nesterov momentum is an improvement over standard momentum, used
to estimate the gradient more accurately and guide parameter updates better.
Unlike standard momentum, Nesterov momentum first calculates the gradient
of the position obtained by adding the momentum term to the current parame-
ter position, and then uses that gradient for parameter updates. This additional
step improves the accuracy of gradient estimation and thereby improves the
direction of parameter updates. Nesterov momentum converges more quickly to
the optimal solution, especially in cases with large curvature or flat regions. In
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this paper, the momentum is set to 0.99 and the initial learning rate chosen
is 0.01. In all experiments, the official evaluation code is used, which computes
the average scores of Dice and Surface Dice metrics. After the model training
is completed, inference is performed on the test set, and the model with the
highest average scores for Dice and Surface Dice metrics is selected as the final
submission model.

3 Results

For simplicity, in the table of this paper, we represent the Dice scores of each
Hierarchical Evaluation Class (HEC) for “Kidney + Tumor + Cyst”, “Tumor +
Cyst”, and “Tumor Only” as D1, D2, D3, and their average as MD. Similarly,
the Surface Dice metric scores are represented as S1, S2, S3, and their average
as MS. The experimental results are shown in the following Table 2:

Table 2. Results of nnU-Net and StransUnet

Network D1 D2 D3 MD S1 S2 S3 MS

nnU-Net 0.9751 0.8787 0.8484 0.9001 0.9467 0.7651 0.7227 0.8115

StransUnet 0.9748 0.8822 0.8541 0.9037 0.9437 0.7685 0.7310 0.8144

We ran 1000 epochs using a 4090 GPU. For nnU-net, the time taken for one
epoch was approximately 280 s, and the inference time for one case was around
27 s. For StransUnet, the time taken for one epoch was approximately 380 s, and
the inference time for one case was around 30 s.

On the official test set of KiTS23, the prediction results of StransUnet are
as follows (Table 3):

Table 3. Results on official test set

Network MD MS D3

StransUnet 0.801 0.680 0.687

Compared to the test set we partitioned ourselves, the official results have
shown a certain degree of decline, indicating that our model’s generalization
ability needs improvement, and we need to expand the training dataset. Since
our current training set consists of 372 cases, accounting for 0.76 of all data,
we will consider increasing the proportion of the training set and increasing the
probabilities of data augmentation in the future.
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4 Discussion and Conclusion

From the experiment results, it can be observed that our model performs better
than nnU-Net in the two HECs with smaller segmentation labels, “Tumor +
Cyst” and “Tumor Only”. This indicates that incorporating the output feature
maps of Swin Transformer during the feature extraction process in the encoder
is beneficial for segmenting small target regions. Swin Transformer performs
attention calculation in each shifted window. In this paper, the window size of
Swin Transformer is set to (7, 7, 7), which can be understood as the receptive field
size of Swin Transformer being (7, 7, 7). By integrating contextual information
through sliding windows, the model retains the detailed and complete nature of
local features to some extent, thereby improving the model’s performance.

However, our official results are lower than the experimental results, showing
that our model’s generalization ability and robustness need further improvement.
The first measure is to adjust the proportions of the training set, validation set,
and test set in the future. The second measure is to increase the probabilities
of data augmentation transformations to expand the dataset. Finally, we are
considering that the complexity of the model may be too high. In the future, we
will reduce the number of stacked convolutional layers to decrease the model’s
parameter count and improve its robustness.

Our model is trained in an end-to-end manner and is a non-cascaded model
that does not require manual intervention. In the future, we plan to per-
form model reparameterization. During the inference stage, we aim to sim-
plify operations such as normalized convolution, continuous convolution and
convolution concatenation into a single convolution using the principle of re-
parameterization. This will reduce the inference time of the model and make our
model more concise.
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Abstract. In the field of medical imaging, computed tomography (CT)
scans have become crucial for the detection and management of anatom-
ical abnormalities. This study presents an improved cascaded nnUNet
framework incorporating a cropping strategy and uncertainty estimation
for effective segmentation of kidneys, kidney tumors, and kidney cysts in
computed tomography scans. The proposed method is evaluated on the
KiTS23 dataset, consisting of 489 CT scans with accompanying masks
for the kidney, tumor, and cyst. We exploited a low-resolution nnUNet
for initial kidney segmentation, and the resulting predictions were used
to crop a bounding box area to decrease data dimensionality, which facil-
itated faster training and inference. A cyclic learning rate was applied
along with posterior sampling of the weight space, enabling an ensemble
of five models from different training cycles. This approach showed supe-
rior performance, particularly in the segmentation of tumors and masses,
as compared to other models such as the standard nnUNet, the cascaded
nnUNet, and the BANet. Moreover, our ensemble model, including mod-
els from different training cycles, indicated a strong correlation between
predicted uncertainty maps and false positive detection, holding promis-
ing potential for enhanced clinical utility.

Keywords: 3D UNet · Uncertainty Estimation · Multi-stage
Segmentation · Kidney Tumor · Interpretability

1 Introduction

In recent decades, with the advancement of medical imaging techniques, com-
puted tomography (CT) scans have started to play a major role in clinical set-
tings for the detection of anatomical abnormalities, as well as for the manage-
ment and follow-up of patients, especially in medical oncology. The number of
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patients diagnosed with kidney cancer is increasing with more than 430,000
patients diagnosed each year [1]. Active surveillance of potentially malignant
tumors using medical imaging also results in increased radiological burden. It
is not possible to determine the tumor characterization as malignant or benign
directly from the CT scan with the use of automated segmentation methods
[8]. There is a need for an automated segmentation algorithm that is able to
accurately detect and segment the kidney and the relevant tumors and cysts.
The automated delineations of these regions of interest also pave the way for
radiomics studies for characterizing tumors and cysts as benign or malignant [7].

Deep Neural Networks have demonstrated state-of-the-art performance
in various segmentation tasks for medical image analysis [9]. No-new-UNet
(nnUNet) is as a self-configuring method that makes automatic design choices
related to pre-processing, network architecture, and hyper-parameter tuning [5].
Different variants of nnUNet have demonstrated state-of-the-art performance
on previous editions of the Kidney and Kidney tumor segmentation challenge
(KiTS) [2,3]. A modified cascaded coarse-to-fine framework of nnUNet demon-
strated the best performances on the 2021 editions of the KiTS challenge. KiTS
2023 edition uses an expanded training set comprising 489 cases and a test set
comprising 110 cases. KiTS 2023 dataset contains CT scans in both nephrogenic
contrast and late arterial phases.

The is a lot of heterogeneity present in the medical data and the deep
learning-based segmentation algorithms can fail silently when they encounter
out-of-distribution data thereby undermining the reliability of these algorithms
[6]. It is important to incorporate uncertainty estimation in the segmentation
algorithms to avoid silent failures and improve robustness and reliability for
clinical adoption. There is also a positive correlation between uncertainty and
false positives [10].

In this paper, we propose a modified version of a cascaded nnUNet framework
that incorporates cropping to reduce the dataset and uncertainty estimation
for the segmentation of kidney, kidney tumors, and kidney cysts in computed
tomography scans.

2 Material and Methods

2.1 Data

We utilized the KiTS23 dataset which is comprised of 489 CT scans, obtained
from patients suspected of renal malignancy, collected between 2010 and 2022
at an M Health Fairview medical center. Each CT scan in this dataset is accom-
panied by the corresponding masks for the kidney, tumor, and cyst. Each CT
scan includes between 29 to 1059 axial slices, with a voxel size ranging from
(0.61 × 0.61 × 0.5 mm3) to (1.0 × 1.0 × 5.0 mm3) (Fig. 1).
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Fig. 1. Our proposed method for kidney segmentation. (a) Low-resolution uuUNet for
first-stage kidney segmentation. (b) Bounding box generation based on minimum patch
distribution (c) High-resolution nnUNnet for second-stage multi-class segmentation (d)
Ensemble prediction after posterior sampling of network weights.

2.2 Proposed Method

The CT images are resampled to the median resolution of 0.78mm× 0.78mm×
1 mm3. The images are resampled using spline interpolation, while the corre-
sponding segmentations are resampled using nearest-neighbor interpolation. The
intensity values of the CT images are clipped at the 0.5 and 99.5 percentiles,
and z-score normalization is applied.

In the first step, the low-resolution nnUNet is utilized, and five-fold cross-
validation is performed on the training set. The low-resolution nnUNet is trained
for 400 epochs. The predictions from nnUNet are then used to crop a bounding
box area that includes the kidney structures from both kidneys. It is ensured that
the minimum bounding box area is equivalent to at least the median area of the
bounding boxes to guarantee sufficient coverage of the kidney structures, even if
the low-resolution nnUNet fails. This cropping step reduces the dimensionality
of the data and enables faster training and inference.

In the second step, the dataset was divided into a training set with 391 sub-
jects and a validation set with 98 subjects. The cropped full resolution nnUNet
was trained for 1000 epochs. We also evaluated the performance of boundary-
aware network (BANet) [4]. We implemented a cyclic learning rate strategy
and sampled posterior model weights around multiple local peaks for training
our model [10]. We allocated a total training budget of 1200 units to ensure
adequate model convergence within each training iteration. We segmented this
training budget into three distinct training cycles. To estimate the uncertainty
of our model’s predictions, we saved 10 model checkpoints per training cycle,
resulting in a total of 30 checkpoints. From these 30, we selected the top five
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best-performing checkpoints across all cycles, ensuring representation from each
of the three training cycles. To derive the final prediction, we took the average
of the probability outputs from these five checkpoints. For the post-processing
stage, we retained the two most substantial connected components result.

The investigation into the relationship between predicted uncertainty and
false positives was conducted for tumors and masses (comprising both cysts
and tumors). The predicted segmentation masks were multiplied by the uncer-
tainty predictions. Uncertainty density was determined by summing the uncer-
tainty and then dividing by the volume. A threshold, determined by percentile,
was applied to examine the relationship between the true positive rate of both
retained and excluded lesions.

Table 1. Dice similarity metric (DSC) and Surface Dice (SD) for different models on
the validation dataset.

Model DSC
Kidney

DSC
Masses

DSC
Tumor

SD
Kidney

SD
Masses

SD
Tumor

Low Resolution nnUNet 0.971 0.843 0.781 0.942 0.740 0.681

Cascade nnUNet 0.979 0.854 0.802 0.962 0.758 0.704

Cropped Full
Resolution nnUNet

0.971 0.852 0.812 0.947 0.752 0.707

BANET 0.970 0.840 0.798 0.949 0.740 0.694

Uncertainty Multi
Checkpoint (Best 5)

0.971 0.865 0.835 0.945 0.767 0.737

2.3 Evaluation Metric

The Dice similarity coefficient (DSC) and Surface DCS (SD) are used as the
main evaluation metrics. The mean values of these metrics are reported.

2.4 Results

Table 1 summarizes the segmentation performance of our models. In terms of
Dice similarity coefficient (DSC), the cascaded nnUNet architecture achieved a
mean kidney DSC of 0.979, which is higher than the single-stage low-resolution
nnUNet model (0.971) and the cropped full-resolution nnUNet model (0.971). It
also performed better than the BANET model (0.970).

For mass segmentation, the ensemble of our uncertain multi-checkpoint model
(0.865) showed a significant improvement over the single-stage low-resolution
nnUNet model (0.843), the cascaded nnUNet model (0.854), the cropped full-
resolution nnUNet model (0.852), and the BANET model (0.840).

In the tumor segmentation task, the uncertain multi-checkpoint ensem-
ble (0.835) again outperformed all other models, including the low-resolution
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nnUNet model (0.781), the cascaded nnUNet model (0.802), the cropped full-
resolution nnUNet model (0.812), and the BANET model (0.798).

With respect to Surface Dice (SD), the cascaded nnUNet model (0.962)
exhibited superior performance in the kidney segmentation task when compared
to other models. However, in the mass and tumor segmentation tasks, the uncer-
tain multi-checkpoint ensemble model demonstrated better performance with
scores of 0.767 and 0.737 respectively, outperforming all other models.

Fig. 2. Visualization of the CT scans, ground truth labels, predicted segmentation,
and uncertainty maps.

Figure 2 shows the CT scan, corresponding prediction, and the associated
uncertainty with the tumor prediction. The uncertainty predictions in rows 1
and 2 emphasize the regions where the predicted segmentation is absent, yet
the ground truth exists. The third row demonstrates high uncertainty for a
tumor prediction that turns out to be a false positive. Figure 3 depicts the true
positive rate for both retained and excluded tumor and cysts after applying an
uncertainty threshold determined by various percentiles.
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Fig. 3. The relationship between true positive rate and the volume of lesions after
applying uncertainty threshold based on 95 percentile.

3 Discussion

In this study, we leveraged the low-resolution nnUNet to reduce the dimensional-
ity of CT images. This strategic approach not only focused the network’s atten-
tion on the crucial regions of the input image but also expedited the training and
inference time compared to the cascaded nnUNet. Moreover, the introduction
of a cyclic learning rate and posterior sampling of the weight space was helpful
in quantifying the uncertainty of the predicted segmentation. We ensembled five
models from different training cycles for our final model.

The ensemble model with uncertainty estimation outperformed other models
in terms of the tumor and mass dice and surface dice metrics. In contrast, the
cascaded nnUNet configuration outperformed in terms of the kidney dice and
surface dice measurements. Furthermore, the predicted uncertainty maps indi-
cated a positive correlation with the false positive detection. In future work, a
post-processing step could be applied to eliminate false positives based on the
uncertainty density of the masses.

4 Conclusion

In this research, we proposed a modified cascaded nnUNet framework for seg-
menting kidneys, kidney tumors, and kidney cysts in CT scans, which employs
a cropping strategy to reduce data dimensionality and uncertainty estimation.
Our approach demonstrated superior performance, particularly in the tumor
and mass segmentation tasks, outperforming other tested models, such as the
standard low-resolution nnUNet, the cascaded nnUNet, and the BANet. More-
over, our ensemble model, utilizing models from different training cycles, showed
promising potential for detecting false positives.



46 Z. Salahuddin et al.

Acknowledgements. We acknowledge financial support from ERC advanced
grant (ERC-ADG-2015 n◦ 694812 - Hypoximmuno), ERC-2020-PoC: 957565-
AUTO.DISTINCT. Authors also acknowledge financial support from the European
Union’s Horizon 2020 Research and Innovation Programme under grant agreement:
ImmunoSABR n◦ 733008, CHAIMELEON n◦ 952172, EuCanImage n◦ 952103, JTI-
IMI2-2020-23-two-stage IMI-OPTIMA n◦ 101034347. This work was supported by the
Dutch Cancer Society (KWF Kankerbestrijding), Project number: 14449/2021-PoC.

References

1. Ferlay, J., et al.: Estimating the global cancer incidence and mortality in 2018:
Globocan sources and methods. Int. J. Cancer 144(8), 1941–1953 (2019)

2. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in
contrast-enhanced CT imaging: results of the KiTS19 challenge. Med. Image Anal.
67, 101821 (2021)

3. Heller, N., et al.: The KiTS21 challenge: automatic segmentation of kidneys,
renal tumors, and renal cysts in corticomedullary-phase CT. arXiv preprint
arXiv:2307.01984 (2023)

4. Hu, S., Liao, Z., Ye, Y., Xia, Y.: Boundary-aware network for kidney parsing. In:
Xiao, Y., Yang, G., Song, S. (eds.) CuRIOUS KiPA MELA 2022. LNCS, vol. 13648,
pp. 9–17. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-27324-7 2

5. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nat. Methods 18(2), 203–211 (2021)

6. Jungo, A., Reyes, M.: Assessing reliability and challenges of uncertainty estimations
for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019, Part II.
LNCS, vol. 11765, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-32245-8 6

7. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized
medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017)

8. de Leon, A.D., Pedrosa, I.: Imaging and screening of kidney cancer. Radiol. Clin.
55(6), 1235–1250 (2017)

9. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.:
Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal.
Mach. Intell. 44(7), 3523–3542 (2021)

10. Salahuddin, Z., et al.: From head and neck tumour and lymph node segmentation
to survival prediction on PET/CT: an end-to-end framework featuring uncertainty,
fairness, and multi-region multi-modal radiomics. Cancers 15(7), 1932 (2023)

http://arxiv.org/abs/2307.01984
https://doi.org/10.1007/978-3-031-27324-7_2
https://doi.org/10.1007/978-3-030-32245-8_6
https://doi.org/10.1007/978-3-030-32245-8_6


An Ensemble of 2.5D ResUnet Based
Models for Segmentation of Kidney

and Masses

Cancan Chen1 and Rongguo Zhang1,2(B)

1 Infervision Advanced Research Institute, Beijing, China
2 Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China

zrongguo@cnu.edu.cn

Abstract. The automatic segmentation of kidney, kidney tumor and
kidney cyst on Computed Tomography (CT) scans is a challenging task
due to the indistinct lesion boundaries and fuzzy texture. Considering
the large range and unbalanced distribution of CT scans’ thickness, 2.5D
ResUnet is adopted to build an efficient coarse-to-fine semantic segmen-
tation framework in this work. A set of 489 CT scans are used for training
and validation, and an independent never-before-used CT scans for test-
ing. Finally, we demonstrate the effectiveness of our proposed method.
The dice values on test set are 0.954, 0.792, 0.691, the surface dice values
are 0.897, 0.591, 0.541 for kidney, tumor and cyst, respectively. The aver-
age inference time of each CT scan is 20.65 s and the max GPU memory
is 3525 MB. The results suggest that a better trade-off between model
performance and efficiency.

Keywords: Coarse-to-fine · Semantic-segmentation · ResUnet ·
KiTS23

1 Introduction

In recent years, over 430,000 people are diagnosed with kidney cancer and
roughly 180,000 deaths are caused by kidney cancer annually [10]. Kidney tumors
are found in an even larger number each year, and in most circumstances, it’s
not currently possible to radiographically determine whether a given tumor is
malignant or benign [1]. Computer tomography (CT) scans is an import clin-
ical tool to diagnose and detect kidney tumors. Surgery is the most common
treatment option. Radiologists and surgeons are also dedicated to study kidney
tumors on CT scans to design optimal treatment schedule by annotating the
kidney and its masses manually. However, the manual annotation is a repetitive
heavy laborious work and always subjective and varied from the different radi-
ologists. Considering this, automatic segmentation of kidney and kidney tumors
is a promising tool for alleviating these clinical problems.

Based on the 2019 and 2021 Kidney Tumor Segmentation Challenge [3,4],
KiTS23 features an expanded training set (489 cases) with a fresh never-before-
used test set (110 cases), and aims to serve a stronger benchmark and develop
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the best automatic semantic segmentation system for kidney tumors. Besides,
hardware (GPU, CPU, etc.)about average inference time of each case are also
real factors in clinical application scenes, so it is important to balance the per-
formance and efficiency of the automatic semantic segmentation system.

In this paper, based on the original ResUnet [2], we propose an efficient
coarse-to-fine semantic segmentation framework to automatically segment kid-
neys and tumors. In the coarse segmentation stage, the whole CT images are
re-sampled to 128 × 128 × 128 as the input. In the fine segmentation stage, we
firstly obtain regions of interest (ROIs) for the kidney on the whole CT images
based on the coarse segmentation mask, and according to this, randomly crop
cubes along z-axis, which are re-sampled to 48×224×384 as the input. Besides,
a cascaded model, consisting of the kidney segmentation model and the kidney-
tumor-cyst segmentation model, is applied on the second stage.

The main contributions of this work are summarized as follows:

– We propose a coarse-to-fine semantic segmentation framework, which can
effectively segment kidney, kidney tumor and kidney cyst from the abdominal
CT images.

– We firstly conduct a statistical analysis on the spacing resolution of all CT
images, especially the thickness distribution at the z-axis, which sparks the
major design ideas about the random cropping method, patch size and 2.5D
ResUnet structure on the fine segmentation stage.

– We evaluate our proposed framework by 5-fold cross validation on Kits23
data set.

2 Methods

Semantic segmentation of organs and lesions is a common task for medical image
analysis. There are already numerous accurate and efficient algorithms for medi-
cal image segmentation, such as U-Net [9], ResUNet [2], nnU-Net [5], et al. Based
on the natural properties of Kits23 CT images and the strong baseline [3], we
develop a whole-volume-based coarse-to-fine framework as follows, which con-
sists of coarse segmentation, fine kidney segmentation (two-classification task of
kidney and others) and fine tumor-mass segmentation (three-classification task
of tumor, cyst and other kidney regions).

2.1 Preprocessing

Our proposed method includes the following preprocessing steps:

– Cropping strategy:

In the coarse segmentation stage, the input is the whole volumes. In the
fine segmentation stage, the kidney ROIs are firstly cropped from the whole
volumes based on the coarse segmentation mask, and after that, we randomly
crop 3D cubes from the kidney ROIs only along z-axis to ensure 2D kidney
scans’ structural integrity.
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Fig. 1. An overview of our coarse-to-fine segmentation framework.

– Re-sampling method for anisotropic data:
The original images are re-sampled to 128×128×128 for coarse segmentation.
In the fine segmentation stage, if the shape of the cropped kidney ROI is
d × w × h, it will be resampled to d × 224 × 384 (in this work, d = 48), i.e.,
no-re-sampling at z-axis direction, and re-sampling at x/y-axis direction due
to the shape distribution of all kidneys.

– Intensity normalization method:
Images are clipped to range [−200, 400] and normalized to range [−1, 1].

– Others:
To improve the training and testing efficiency, mixed precision is adopted in
the whole process of our framework working.

2.2 Proposed Method

Our proposed framework is shown in Fig. 1. The details of two stages are
addressed as follows.

Coarse Segmentation. We firstly use a original ResUnet [2] to obtain the
coarse segmentation mask of all kidneys, and the input size is 128 × 128 ×
128. The kidney tumor and masses are always located in the kidney region.
Based on this, the kidney ROI of each CT image is cropped as the input of the
next segmentation stage. This step reduces the computational cost of irrelevant
information on this task and preserves all segmentation target.

Fine Segmentation. The fine segmentation consists of kidney fine segmenta-
tion and lesion fine segmentation. Notably, the thickness range of all CT scans
is between 0.5 mm and 5 mm. To resolve the data heterogeneity, cropping or
re-sampling should be used. Considering the framework efficiency, the kidney
ROIs are re-sampled to the fixed size at x and y direction, and then, we crop
the cubes from kidney ROIs only along z axis. That’s to say, if the shape of
the kidney ROI is d × w × h, it will be re-sampled to d × 224 × 384, and the
re-cropped cube size for fine segmentation is 48×223×384 in this work. Finally,
we adopt 2.5D ResUnet as the segmentation backbone. Network architecture has
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3 down-sample layers, 3 up-sample layers, and no down-sample at z direction for
the high-performance and high-efficiency of our framework, which is shown in
Fig. 2.

3D Conv Block

[b,32,48,112,192]

3D Res Block 3
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Fig. 2. Our proposed network architecture.

Loss Function. We use the summation of the weighted Dice loss and Cross-
Entropy loss as the final compound loss function which has been proved to be
robust in various medical image segmentation tasks [7].

Other Tricks. The mixup [12] and hard examples mining are adopted in the
model training process, both of which significantly improve the ResUnet’s fitting
capability.

2.3 Post-processing

In the inference process, the connected component analysis [11] is applied to
avoid the influence of noise. Based on the natural attributes of the kidney and
lesions, we choose connected component regions larger than 10000 pixels as
the final segmentation results. Notably, we abandon the multi-models ensemble
method for efficient inference. Our method consists of the coarse segmentation
model, the kidney fine segmentation model (background, kidney) and the lesion
fine segmentation model (kidney, cyst, tumor). The final result is the average of
the two predictions for the original image and the mirror image along the z-axis.

3 Results

3.1 Dataset and Evaluation Measures

The KiTS23 organizer has publicly released an expanded training set, totally
489 cases, based on KiTs19 and KiTs21. The volumetric Dice coefficient and
the Surface Dice are used to evaluate algorithms, and the following Hierarchical
Evaluation Classes (HECs) will be used: Kidney + Tumor + Cyst, Tumor +
Cyst and Tumor only.
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3.2 Implementation Details

Environment Settings. The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 18.04.06 LTS
CPU Intel(R) Core(TM) i9-10900X CPU @ 3.70 GHz
RAM 96 GB
GPU (number and type) Four NVIDIA RTX A4000 16G
CUDA version 11.5
Programming language Python 3.7
Deep learning framework Pytorch (Torch 1.7.1+cu110, torchvision 0.8.2)
Specific dependencies
(Optional) Link to code

Training Protocols. In our training process, we performed the following data
augmentation with project MONAI [8]: 1) randomly crop the volumes with range
[0.6, 1.3]; 2) add brightness, contrast and gamma augmentation on the volumes
and lesions with range [0.6, 1.5], respectively. 3) random elastic transform with
prob=0.5 and with sigma from range 3 to 5 and magnitude from range 100 to
200; 4) clip volumes to range [−1, 1]. Details of our training protocols are shown
in Table 2 and Table 3.

Table 2. Training protocols for coarse segmentation.

Network initialization “he” normal initialization
Batch size 4
Patch size 128 × 128 × 128
Total epochs 300
Optimizer ADAMW [6] (weightdecay = 1e− 4)
Initial learning rate (lr) 1e−4
Lr decay schedule CosineAnnealing
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Table 3. Training protocols for fine segmentation.

Network initialization “he” normal initialization
Batch size 4
Patch size 48 × 224 × 384
Total epochs 600
Optimizer ADAMW [6] (weightdecay = 1e− 4)
Initial learning rate (lr) 1e−4
Lr decay schedule CosineAnnealing

3.3 Results on Cross Validation and Test Data

Originally, our proposed framework would be evaluated by 5-fold cross valida-
tion. However, we only train and evaluate model on fold-0 data set due to the
time and computation resource constraints, and all scores are listed in Table 4.
The average inference time on fold-0 validation (98 cases) and test set (110 cases)
is 19.22 s and 20.65 s, respectively. The max GPU memory at inference step is
3525 MB.

Table 4. Results of our proposed method on fold-0 and test set.

Targets Dice (Fold-0) Surface Dice (Fold-0) Dice (Test) Surface Dice (Test)

Kidney 0.9661 0.9408 0.954 0.897

Cyst 0.8580 0.7365 0.792 0.591

Tumor 0.8591 0.7329 0.691 0.541

4 Conclusion

Based on 2.5D ResUnet, we propose a efficient coarse-to-fine framework for the
automatic segmentation of kidney and masses. The experimental results indi-
cate that our framework is effective, but the segmentation robustness of kidney
tumors and cysts need further improvement. One possible reason is that the
capability level of single model has a lower upper-limit for the hard segmenta-
tion task. Thus, the ensemble of multi-models is an alternative solution after
balancing performance and efficiency.
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Abstract. Kidney cancer occurrence increases since 1990’s and its main
treatment is surgery. According to this, performing automatic segmen-
tation is an important tool to develop. In this paper, we used a two
stages pipeline to get the segmentation of kidney, tumor and cyst. The
first stage is used to segment the kidney region to allow us to crop the
data. The second stage leverages uncertainty using Monte-Carlo dropout
during training by introducing an uncertainty estimate term in the loss
function.

Keywords: Kidney semantic segmentation · 3D U-Net · Uncertainty

1 Introduction

Kidney cancer is the 14th most common cancer worldwide, 9th in men and
14th in women. With more than 430,000 new cases in 2020 its incidence is
increasing since 1990’s. Its main treatment is surgery. Therefore, segmentation is
a very important step that can be laborious and time-consuming when performed
manually. That is why automatic segmentation of kidney and kidney masses can
be powerful and help practitioners in patient management. Deep learning is very
helpful in this domain as we can see with the widely used nnUNet framework [6].

2 Methods

The open source framework nnUNet [6] is a very powerful tool to perform medical
image segmentation massively used for this kind of tasks. Its efficiency has been
demonstrated on several datasets and particularly it has shown very good results
on kidney tumor segmentation [6]. We decided to use this framework to develop
our segmentation pipeline in two stages inspired by the winner of the previous
challenge KiTS21 [9].

The first stage uses a 3D U-net to segment kidney region in order to crop
the data in smaller images. Then, the cropped images are fed into a second 3D
U-net to get the final segmentation.
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In addition to this we used a loss function with an additional term to leverage
uncertainty during training, using Monte-Carlo dropout (MC-dropout).

2.1 Training and Validation Data

Our submission made use of the official KiTS23 training set alone, composed
of 489 cases. The semantic labels are kidney, tumor, and cyst. We performed
a 5-fold cross validation to evaluate our method during training. All following
results are means over the five folds used during the training.

2.2 Preprocessing

We followed the baseline process of nnUNet to preprocess the dataset. A variety
of data augmentation is applied on the fly during training like rotation, scaling,
low resolution simulation, etc.

2.3 Proposed Method

Our method is build in two stages. The first segments the kidney region to allow
data to be cropped around kidney region. Then we trained a second network
with the cropped dataset to get the final segmentation.

Cropping Step. The first stage uses a conventional 3D U-Net network to seg-
ment only the kidney area. Then we cropped the dataset with small boundaries
around the kidney segmentation. This model is trained during 1000 epochs on
Nvidia GPUs V100, using a batch-size of 2. 3D convolutions of the network was
performed with 3× 3× 3 kernel.

Final Segmentation. To get the final segmentation of all needed structures,
we trained a 3D U-Net fed with the cropped dataset. This network is trained
following the MC-dropout method. The 3D U-Net network is slightly modified
by adding dropout layers after the four middle stages, according to literature
[4,5,7,8]. These dropout layers allow us to sample the network N times during
training, and to compute uncertainty [1–3] estimate to add to the loss function.

Uncertainty Loss. According to MC-dropout method, the network is trained
with dropout layers. During training, the network is sampled N times and the
mean of the N segmentations is used as final segmentation.
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The loss function is a combination of segmentation loss and uncertainty esti-
mate (Eq. 1), where α is an hyper-parameter that controls the contribution of
uncertainty to the final loss. The segmentation loss is a weighted sum of Dice
and Focal loss (Eq. 2).

LTotal = LSeg + α × LUncertainty (1)

LSeg = λDiceLDice + λFocalLFocal (2)

The uncertainty estimate used in the loss function is computed from the N
MC-dropout samples. Each pixel i has predictions (y1, . . . , yN ), from which we
can compute pixel-wise mean μi (3) and variance σ2

i (4). To compute image-
level uncertainty, the per-pixel uncertainty is averaged over all pixels in the
image (Eq. 5).

μi =
N∑

n=1

(yi,n) (3)

σ2
i =

1
N

N∑

n=1

(yi,n − μi)2 (4)

LUncertainty =
1
I

I∑

i=1

(σ2
i ) (5)

During inference, dropout layers stay activated and the segmentation output
of the network is the average of the N samples (Fig. 1).

Fig. 1. U Net with additional dropout layers for MC-dropout
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3 Results

We evaluate the results of our different losses with the Dice coefficient met-
ric, averaged over the 5 folds of the 5-fold cross validation. This score is com-
puted using Hierarchical Evaluation Classes (HEC) for the three classes (Kidney,
Tumor, Cyst) defined as follow: the first class, Kidney and Masses, includes Kid-
ney, Tumor and Cyst. The second class is Kidney Mass and includes Tumor and
Cyst. The last class is only Tumor.

In this paper, we compare nnUNet Baseline (Dice and Cross-Entropy), Focal
loss, weighted sum of Focal and Dice, and same losses with an additional term
representing uncertainty contribution. Results are shown in Table 1.

Our method achieved the 10th position for the KiTS23 challenge on the
official test set. The detailed scores can be found in Table 2.

Table 1. Segmentation performance in term of Dice score. The bold results are better.

Method Kidney Masses Tumor

Baseline 0.9651 0.8361 0.7959

Focal 0.9652 0.818 0.7655

Dice+Focal 0.9604 0.8363 0.7891

Proposed (Focal+Uncertainty) 0.9658 0.8156 0.7594

Proposed (Dice+Focal+Uncertainty) 0.9601 0.8356 0.7929

Proposed (Baseline+Uncertainty) 0.9659 0.8394 0.8018

Table 2. Official KiTS23 results on test set

Average Tumor Masses Kidney and Masses

Dice 0.790 0.670 0.750 0.949

Surface Dice 0.678 0.531 0.603 0.899
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Fig. 2. Segmentation examples on the different losses

4 Discussion and Conclusion

The Table 1 shows results for different tested methods. The best scores are
achieved using a combination of the nnUNet baseline loss (Dice loss and Cross-
Entropy) for the segmentation loss, and adding a term representing the uncer-
tainty level for the segmentation using MC-dropout. The weight α has been
empirically choose with the value 1.0 (Fig. 2).

This method improves by a little the nnUNet baseline and shows that using
uncertainty estimate can improve the results. This information could be useful in
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clinical practice. For future works, it could be interesting to integrate to integrate
the uncertainty information in the post-processing step in order to improve the
final segmentation performance.
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Abstract. In the realm of kidney cancer, accurate segmentation is piv-
otal for effective diagnosis and treatment. Participating in the 2023 KiTS
Challenge as a platform, our research introduces a two-stage strategy
combining the strengths of nnU-Net and nnFormer for enhanced tumor
segmentation. Our approach focuses on the kidney region, facilitating the
learning of tumor-influenced areas, and employs an ensemble of two nnU-
Net models for precise segmentation. Evaluated on the KiTS23 dataset,
which emphasizes the segmentation of the kidney, tumor, and cyst, our
method demonstrated its potential in addressing complex medical image
segmentation challenges.

Keywords: Automatic kidney segmentation · Two-stage framework ·
Model ensembling

1 Introduction

Recently, advancements in deep neural networks have significantly accelerated
research [3,7,8] in the segmentation of CT and MRI medical images. Kidney-
related diseases, especially tumors and cysts, have been a significant concern
in the medical community. Accurate segmentation of the kidney, its tumors,
and cysts is crucial for effective diagnosis and treatment. With the advent of
deep learning techniques, there has been an increase in the development of auto-
mated tools that can assist radiologists in segmenting medical images with high
precision. Among these techniques, the U-Net [6] based segmentation methods,
particularly nnU-Net [2], have shown promising results in various medical image
segmentation tasks. Alongside these, transformer-based [1] methods, especially
nnFormer [10], are also being extensively researched and have begun to demon-
strate their potential in medical image segmentation tasks. However, with the
increasing complexity of medical images and the need for accurate segmentation,
there’s a growing demand for more advanced and hybrid models [4].
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In this context, the 2023 KiTS Challenge provides an excellent platform for
researchers to showcase and test their innovative methods in tumor segmen-
tation. Our paper presents an approach that combines the strengths of both
nnU-Net and nnFormer. We utilize nnFormer, capable of capturing foreground
objects without omitted regions, and nnU-Net, which excels in finer segmenta-
tion, at different stages. By combining the two models, we anticipate achieving
more precise segmentation of regions. Harnessing the advantages of these models
in a two-stage strategy, we aim to achieve superior segmentation performance
in the challenging task of tumor segmentation. Our research provides various
contributions by improving existing models in the following ways:

1. We propose a two-stage method aimed at focusing on a model that focuses
more on learning the kidney and masses(tumor, and cyst). This approach
enabled the model to effectively learn the representation of the tumor within
the kidney.

2. In the stage 2, we used ensembling approach with two models employing nnU-
Net, including whole CT image and tumor only segmentation model. Signifi-
cantly, the combination of this tumor-focused model led to an enhancement
in tumor dice similarity coefficient (DSC) for tumor segmentation.

The KiTS23 challenge is a segmentation competition that involves segmenting
three classes: kidney, tumor, and cyst. In this challenge, this includes the DSC
and surface dice (SD) for the three hierarchical evaluation classes (HEC)’s kid-
ney and masses, masses and tumor. Upon evaluating these metrics, our team
achieving the 11th place overall.

2 Methods

This study was inspired by nnU-net and nnFormer, The nnU-Net is a U-
Net based segmentation method that provides automatically optimized con-
figurations for various datasets and tasks. On the other hand, nnFormer is a
transformer-based segmentation approach that leverages an empirical integration
of self-attention and convolution within a cross-architecture. Using nnFormer
and nnU-net, we cropped the RoI regions and devised a method to selectively
combine two models yielding the outstanding performance by exploring their
performance on the tumor segmentation. The proposed method is visualized in
Fig. 1.

2.1 Training and Validation Data

Our submission made use of the official KiTS23 training set alone.

2.2 Preprocessing

To preprocess the training data, we carry out several preprocessing steps. We
firstly crop the non-zero regions to extract a clear foreground. Then we normal-
ized CT images which is important to medical image processing [5]. To uniformly
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convert all CT data to a common spatial resolution, we recognize the shape of
the original data and the original spatial resolution, and calculate a new data
shape based on the target spatial resolution of target voxel spacing [3.0, 0.78125,
0.78125]. The new shape of each axis is obtained by multiplying the ratio of the
original spatial resolution to the target spatial resolution by the number of pixels
in the original axis, and resampling is performed accordingly.

Fig. 1. An overview of our two-stage segmentation framework
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2.3 Proposed Method

The proposed method consists of two-stage, employing nnFormer in the first
stage and nnU-Net in the second stage.

Stage 1. Coarse segmentation for RoI
In the Stage 1 of the method, we used nnFormer trained on the entire dataset
to perform a coarse segmentation for using crop the foreground region [9]. Then,
we utilized a mass center crop mechanism in our hard coding to crop from the
original data in such a way that bilateral kidneys are included. For adequate
learning, we set a buffer of 10 slices on both sides of the axis. This stage is
essential to ensure that the learning focuses on the foreground regions.

Post-processing. The post-processing approach is as follows, counting the num-
ber of voxels in connected components and retaining only the two components
with the highest voxel counts, while deleting the rest. Post-processing is used
exclusively to first stage, aiming for a more precise and detailed cropping of the
kidney region. We refrain from using post-processing in second stage due to the
potential risk of erroneously removing the regions of interest.

Stage 2. Improved Segmentation via Dual nnU-Net Ensemble
We employ two nnU-Net models trained on cropped images. One model segments
kidney, tumor, cyst, and background regions, while the other segments tumor and
background. This way is expected to benefit from the focused training approach
on the tumor area, a key aspect of tumor diagnosis.
The integration of a dedicated tumor-focused nnU-Net model into our ensem-
ble approach leads to enhanced tumor segmentation. The specialized model’s
contribution enhances the Tumor DSC, underscoring the benefits of integrated
models in ensemble setups for accurate medical image segmentation.

Ensembling Strategy. An ensembling strategy takes advantage of the indi-
vidual strengths of the models while compensating for their individual weak-
nesses, thereby creating an ensemble model with superior predictive power. To
better capture the most crucial tumor region, we used the tumor class from a
model trained solely on the tumor, ignoring other foregrounds, instead of the
tumor class from a model trained on 4-classes. When ensembling the models, we
employ a weighted sum approach, using a ratio of 7:3 between the bilateral kid-
ney cropped model and the tumor-only model to generate the final segmentation
model.

Validation Strategy. The validation strategy is based on the 5-fold cross-
validation method. The approach mitigates the risk of overfitting and to ensure
that our models are trained and validated across the entire dataset. The dataset
is split into 8:2 ratio for train and validation. After assessing the performance
on the validation dataset, the fold that achieved the highest DSC was identified
and selected as the optimal model.

Implementation Details. Our process is divided into two steps: using the
nnForemr, nnU-net in stage 1, 2. We trained the nnFormer model with the
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convolution kernel set to 3× 3×3 and the pooling kernel set to 2× 2× 2. In the
nnU-Net, we applied a convolutional kernel of size 3× 3× 3 and a pooling kernel
of 1× 1× 1 in the initial layer. For the subsequent layers, a pooling kernel of size
2× 2× 2 was employed.

All models were trained using randomly sampled patches of size 128× 128× 128
from the resampled volumes as input. Each model was trained for 1000 epochs
using Stochastic Gradient Descent (SGD) as the optimizer, Instance Normal-
ization to normalize the inputs across the layers, LeakyReLU as the activation
function. with a batch size of 2 and 250 iterations per epoch. The models were
trained to minimize a combined loss, which is the sum of cross-entropy and dice
loss.

3 Results

We evaluated our proposed method using the KiTS23 dataset. In Table 1, we
summarized the results for the kidney and masses, masses, and tumor based on
the KiTS23 Test set for the following two metrics. Our Tumor Dice score stands
at 0.697, which is on par with the team ranked 4th.

Table 1. Quantitative evaluation on the test dataset

Kidney + Masses Masses Tumor

Dice 0.930 0.752 0.697
Surface Dice 0.874 0.597 0.548

Fig. 2. Comparison of test set predictions between nnFormer and nnU-Net. It shows
that nnFormer segments the wider the kidney and masses regions than nnU-Net.
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4 Discussion and Conclusion

In this paper, we propose a framework which consists of two stage framework.
In the first stage, we take advantage of nnFormer to extract the RoI using the
segmentation results. In the second stage, we train nnU-Net with the bilateral
kidney cropped data. At this juncture, we perform an ensemble of two mod-
els: one nnU-Net model trained on the 4-class dataset and another specifically
trained considering only the tumor as the foreground.

The reason for using different models at each stage is to leverage the strengths
of two distinct models. In our experiments, we find that nnFormer captures
foreground objects in a rough manner compared to nnU-Net. We judge this to
be unsuitable for precisely segmenting the kidney, tumor, and cyst in stage 2.
Figure 2 aptly illustrates this observation. In this manner, we devised an opti-
mal network suited for hierarchical evaluation. We hope that our research will
contribute to future advancements in kidney cancer segmentation.
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Abstract. Automatic segmentation of the kidney, tumor, and cysts is
crucial for the treatment of renal cancer. In this paper, we employed a
3D residual U-Net architecture as the pre-processing method to extract
the region of interest (ROI) and segment the kidney. Then, we propose
Global Spatial Channel Attention Network (GSCA-Net) with global spa-
tial attention (GSA) and global channel attention (GCA) for the segmen-
tation of tumors and cysts. Global spatial attention improves the global
spatial representation ability, and global channel attention learns features
between different channels. The GSCA module enhances the segmen-
tation accuracy of tumors and cysts through the fusion of two parallel
global attention modules. Furthermore, we employ a novel boundary loss
function in GSCA-Net to improve the Surface Dice. On the official test
set including cases 589–698, our approach achieves Dice coefficients of
0.933, 0.744, and 0.679 for the kidney, masses, and tumor, respectively.

Keywords: Global channel attention · Global spatial attention ·
Kidney tumor and cyst segmentation

1 Introduction

According to statistics, the annual number of deaths attributed to the kidney
tumors exceeds 140,000 individuals [1]. Computed tomography (CT) images play
a crucial role in detecting renal tumors and making accurate diagnoses. KiTS23
introduced nephrogenic contrast phase kidney CT data for image segmentation
for the first time. In addition to the late arterial cases in KiTS2021, KiTS2023
also includes cases from the nephrogenic contrast phase of renal imaging. The key
to distinguishing between renal tumors and renal cysts lies in the morphological
differences observed in CT images. Cysts primarily result from fluid accumula-
tion within the kidneys, forming fluid-filled sacs, while tumors are caused by the
proliferation of cells [2].
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3D residual U-Net

ROI extraction

Fusion

3D residual U-Net

GSCA-Net

CT image

prediction

ROI extraction and fine kidney segmentation 

Fine Tumor and Cyst segmentation

Fig. 1. Flow scheme of kidney and tumor segmentation method.

In the KiTS2019 [3], nnU-Net demonstrated strong adaptive capability and
was validated to sufficiently segment kidney and tumor regions [4]. In the
KiTS2021, Zhao et al. [5] employed four separate nnU-Net architectures and uti-
lized a coarse-to-fine strategy for kidney, mass and tumor segmentation. Extract-
ing ROIs helps avoid the network learning irrelevant region. By using multiple
nnU-Net networks to segment the kidney, tumor and mass segmentation, the
segmentation can be enhanced. The coarse-to-fine approach and the nnUNet
structure have been proven to be highly effective for kidney and tumor segmen-
tation [6,7]. Due to the similarity in appearance between some renal tumors and
cysts, achieving precise segmentation of tumors and cysts are also challenging.

To this end, we use 3D residual U-Net to segment the ROIs for the kidneys.
Within the ROIs, we further employ 3D residual U-Net for fine segmentation
of kidney region. After two 3D residual U-Net, the segmentation of kidney has
been very precise. Then using GSCA-Net can more accurately improve the seg-
mentation accuracy of tumors and cysts. In our experiments, GSCA-Net needs
to segment kidneys, tumors and cysts to get the best tumor and cyst results
(kidney segmentation results in GSCA-Net are not good enough, so it needs to
be fused with 3D residual U-Net’s kidney results).

2 Methods

As shown in Fig. 1, in the pre-processing step, we employ 3D residual U-Net
to generate the kidney region and extract the region of interest (ROIs) based
on the kidney region. Then, we use 3D residual U-Net again within the ROIs to
improve the kidney segmentation results. In the accurate segmentation results of
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Fig. 2. 3D Residual U-Net for coarse and fine kidney segmentation.

Fig. 3. 3D GSCA-Net for fine tumor and cyst segmentation.

the kidney, we adopted the Global Spatial Channel Attention Network (GSCA-
Net) for fine kidney, tumor and cyst segmentation. Finally, we fuse the fine
kidney segmentation results from 3D residual U-Net with the tumor and cyst
segmentation from GSCA-Net to obtain the final segmentation result.
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2.1 Training and Validation Data

Our dataset only include the official KiTS2023 dataset. 320 cases are training
dataset and 80 cases are validation dataset. The training and validation set were
randomly split from case ID 0 to 499. case ID from 500 to 588 are our test set.

2.2 Preprocessing

In each case, we follow the same preprocessing as nnUNet. In KiTS2023, The
spacing varies in z-axis. We need a tradeoff between different segmentation steps.
In the ROI extraction step, our objective is to segment the kidney region only,
so we used a larger spacing [1.99, 1.99, 1.99]. In the fine segmentation step, to
generate more detailed segmentation results, we employed a spacing of [0.78,
0.78, 0.78]. We applied B-spline interpolation to resample the data.

We applied intensity clipping to the 0.5% and 99.5% foreground intensity lev-
els, with a clipping range of [-61, 309] Hounsfield Units (HU). We subtracted the
mean value of 103.8 and divided by the standard deviation of 75.13 to normalize
the input images.

In the 3D residual U-Net, our shape of patches is 128 × 128 × 128. In the
GSCA-Net, we extract the regions of interest for the left kidney and right kidney
separately and the patch size is 112 × 128 × 160.

2.3 Proposed Method

3D Residual U-Net. As shwon in Fig. 2, the 3D Residual U-Net [8], with its
increased parameter capacity, has demonstrated superior performance in kidney
segmentation based on our experimental results. In the encoder, we incorporate
more residual blocks in deeper layers, while in the decoder, we use two traditional
convolutional blocks for information extraction. The instance normalization and
Leaky ReLU remain consistent with nnUNet. The fusion of dice loss and cross-
entropy loss is used for 3D Residual U-Net and the formula can be defined as:

Lresidual = α

(
1 − C × ∑C

i=1 (pi × ti)∑C
i=1 (pi + ti) + θ

)
+ β

(
− 1

C

C∑
i=1

log (pi) ti

)
(1)

where pi, ti, i ∈ 0, 1 is the prediction and ground truth (GT) of kidney region,
θ is a small number to avoid division by zero and C equals 2. α and β are two
learnable factors.

Proposed GSCA-Net. The architecture of GSCA-Net is shown in Fig. 3. We
proposed a global attention block in GSCA-Net. Through our experiments, we
have validated that the residual blocks enhances the precision of the network.
Consequently, in our encoder architecture, similar to the 3D residual U-Net,
we progressively increase the number of residual blocks into the encoder layers
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Fig. 4. Detail of Global Spatial Channel Attention block.

which is shown in Fig. 3. At the bottom layer of GSCA-Net, we integrate both
global channel attention and global spatial attention in one module. This module
significantly enhances the segmentation results of our network. To increase the
parameter capacity of our network, each layer in our decoder consists of two
residual blocks, which are consistent with the ones used in the encoder. Following
this, we apply a 1× 1× 1 3D convolution to obtain the final prediction results.
Next, we will focus on introducing our GSCA (Global Spatial Channel Attention)
module.

Global Spatial Channel Attention. Attention mechanisms have proven to
be a key approach for improving image segmentation performance, with channel
attention and spatial attention being two popular directions [9–11]. Recently,
with the adoption of transformer-based methods in the field of image segmenta-
tion, global attention has emerged as a new research direction [12,13]. As shown
in Fig. 4, GSCA mainly composed of two parts: A Global Channel Attention
(GCA) module for channel information extraction and a Global Spatial Atten-
tion (GSA) for spatial information extraction.

In GCA module, the input is reshaped to generate query and key Q,K ∈
RC∗HWD. Q is transposed and multiplied with K. After softmax operation, we
get weight matrix of GCA Wgc ∈ RC∗C . Wgc is multiplied with input and added
with input to get the output of GCA.

In GSA module, the input is reshaped to generate query, key and value
Q,K, V ∈ RC∗HWD. Q is transposed. Different with GCA, K is multiplied by
transposed Q to get the spatial matrix. After softmax operation, we get weight
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matrix of GSA Wgs ∈ RHWD∗HWD. Wgs is multiplied with V and added with
input to get the output of GSA. The output of GCA and GSA are added together
and get the output of GSCA.

2.4 Loss Function

Considering the recent evaluation metric, Surface Dice, we have extracted the
boundaries of the kidneys, tumors, and cysts as labels. We use the distance map
loss penalty to constrain the boundary loss. Additionally, we still employ the
fusion of Dice Loss and cross-entropy loss to achieve label fusion. The formula
can be defined as:

LGSCA = Lresidual + γ

(
1
C

C∑
i=1

(1 + φ) � − 1
C

2∑
i=1

log (pi) Bi

)
(2)

Bi means the boundary ground truth of kidney, tumor and cyst. γ is a learn-
able factor and C equals 4. φ is the generated maps that were used to penalize
prediction errors.

2.5 Training and Validation Strategies

During the training phase, we utilized a base experimental environment with
an RTX 2080 Ti GPU having 12 GB of memory and Python 3.6. Consequently,
our maximum batch size was set to 2. We followed the configuration of nnUNet
for the learning rate and optimizer. Each step of the network was trained for a
total of 1000 epochs. Due to the time-consuming nature of the training process,
we randomly selected training and testing sets without performing 5-fold cross-
validation.

2.6 Ensembling and Post-processing Method

In our approach, we utilize the results of kidney segmentation from the fine
segmentation by 3D residual U-Net as the final kidney segmentation. Then, we
incorporate the results of tumor and cyst segmentation from the GSCA-Net
into the kidney segmentation region. If the identified tumor or cyst regions are
located outside the boundaries of the kidneys, they are directly discarded.

3 Results

3.1 Metric

Our method employs the official evaluation metrics from KiTS2023, which
include the Sørensen-Dice score and surface Dice. The Dice coefficient is the most
commonly used evaluation metric in the field of image segmentation. Sørensen-
Dice can be write as:

Dice =
2TP

FP + FN + 2TP
(3)
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where TP represents True Positive regions, FP represents False Positive regions,
and FN represents False Negative regions. The surface Dice measures the differ-
ence on the surface of the segmented regions and the ground truth.

3.2 Experiment Results

Table 1. Ablation study on the KiTS2023 for GSCA-Net.

Network Sørensen-Dice Surface Dice

kidney masses tumor kidney masses tumor

3D U-Net 0.9079 0.6348 0.5488 0.8454 0.4888 0.3997

3D residual U-Net(baseline) 0.9080 0.6367 0.5634 0.8503 0.4940 0.4174

GSCA-Net 0.9605 0.7755 0.7126 0.8734 0.5816 0.5108

GSCA-Net+CBAM 0.9591 0.7680 0.6997 0.8604 0.5676 0.4874

GSCA-Net+Boundary Loss 0.9606 0.7756 0.7189 0.9056 0.6468 0.5874

In this study, we present an improved segmentation model for kidney tumor seg-
mentation by incorporating a boundary loss function and evaluating the impact
of different attention mechanisms. As shown in Table 1, Our experiments were
conducted on the local test set including cases 500–588. In GSCA-Net, We
achieved remarkable results, with Sørensen-Dice coefficients of 0.9591, 0.7755,
and 0.7126 for the kidney, masses, and tumor respectively. Surprisingly, the
addition of the CBAM (Convolutional Block Attention Module) [14] for local
attention led to a reduction in our test results. The inclusion of the boundary
loss function yielded significant improvements in Surface Dice, elevating them
to 0.9506, 0.6468, and 0.5874 for the kidney, masses, and tumor respectively.
As shown in Fig. 5, we presented the segmentation results of some CT image
slices, where the red color represents the kidney region, yellow represents the
tumor region, and blue represents the cyst region. We observed that GSCA-Net
achieves precise segmentation of tumor and cyst shapes.

We have redefined the test sets, with cases 0–99 now being allocated to
the test set and case 100–588 as training and validation set. The experimental
results obtained are as follows: Sørensen-Dice coefficients of 0.9601, 0.8408, and
0.8466, respectively, for the kidney, tumor, and cyst. Additionally, the Surface
Dice coefficients are 0.9273, 0.7298, and 0.7315 for the kidney, tumor, and cyst,
respectively.
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Fig. 5. Examples of segmentation results. Each row from top to bottom represents the
sample cases of patients: case580, case588, case503, and case510.

Table 2. Final resoult of GSCA-net on official test set.

Network Rank Sørensen-Dice Surface Dice

kidney masses tumor kidney masses tumor

GSCA-Net+Boundary Loss 12.5 0.933 0.744 0.679 0.893 0.598 0.534

The results of our network on the official test set are presented in Table 2.
Our overall ranking is 12th, with a ranking of 11th for surface Dice and 14th for
Dice coefficient. This discrepancy arises due to the implementation of the Bound-
ary Loss, which effectively improves the boundary optimization and results in
an increase in Surface Dice. However, it also leads to a decrease in the Dice
coefficient.

Since there is no official test set label, we adopt two different networks that
have been trained before to show the official test set segmentation results. The
segmentation results of GSCA-Net and 3D residual U-Net are compared in Fig. 6.
After comparison, our GSCA-Net network is more prone to identifying abnormal
areas as cysts (cases 665 and 666), and the identified mass region is larger (cases
638 and 684). In Case 647, the region of renal pelvis dilation or hematoma may
have been identified as cyst and tumor region. Our GSCA-Net also tends to
classify the same abnormal region as a coexistence of tumor and cyst (case 612
and 665), although tumors and cysts are rarely found in the same connected
area.
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Fig. 6. Special examples of official test set results. The red region represents cysts, the
yellow region represents tumors, and the green region represents the kidney. (Color
figure online)

4 Discussion and Conclusion

In this paper, we use 3D residual U-Net for ROI extraction and fine kidney
segmentation. Then, we propose a GSCA-Net for fine segmentation of tumors
and cysts. We also employ 3D residual block as our main block in GSCA-Net,
with an increasing number of residual modules in the encoder and two residual
blocks in each decoder layer for information extraction. We utilize GSCA module
to enhance information extraction capabilities. Finally, we employ a boundary
loss to improve Surface Dice results.

Based on the analysis of the official test set, I believe that our method pri-
marily lacks in the classification of tumor or cyst regions. I think that by incor-
porating an object detection network after the segmentation network, we can
assign all segmented connected regions to the same class (tumor or cyst), which
should lead to an improvement in the segmentation results.

In the KiTS2023 competition, we would like to provide some suggestions.
The extraction of ROIs is time-consuming for participants and does not con-
tribute significantly to innovation. We suggest that the competition organizers
provide ROIs. This would allowing participants to allocate more time and effort
to focus on improving segmentation results with in ROIs. In addition, after KiTS
competition, it would be beneficial to provide individual rankings for cases with
overall poorer results. This would allow participants to become familiar with the
best outcomes for these special cases, enabling them to better design their own
methods to tackle these challenging cases.
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Abstract. Deep learning-based segmentation techniques have been gaining
increasing attention in recent years due to their potential in various medical image
segmentation tasks, particularly in the segmentation of kidneys, renal tumors,
and renal cysts. One of the major challenges in medical image segmentation is
the scarcity of high-quality training data, which often limits the effectiveness
and robustness of segmentation algorithms. To address this issue, a novel genetic
algorithm (GA) based approach that combines nnU-Net framework is proposed
to improve the robustness of medical image segmentation. The proposed approach
involves a two-stage process. In the first stage, a set of convolutional neural net-
work (CNN) models are trained with loss function. In the second stage, GA is
applied to evolve a population of CNN models with different sets of hyperpa-
rameters. This results in a final CNN model with improved robustness and better
segmentation performance.

Keywords: genetic algorithm · semantic segmentation · nnU-Net

1 Introduction

Deep learning-based segmentation is a challenging medical image analysis task because
medical images are complex and contain multiple features that need to be taken
into consideration. To overcome this challenge, researchers have developed vari-
ous deep learning models such as Convolutional Neural Networks (CNNs) [1], Sup-
port Vector Machines (SVMs), and Random Forests (RFs) to segment the images.
However, these models are limited by the availability of high-quality training data.
In some cases, the training data is insufficient or biased, leading to suboptimal segmen-
tation performance. Therefore, there is a need to develop a robust approach that can
handle the limited training data effectively.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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2 Methods

In this paper, we proposed a novel GA-based approach that combines Genetic Algorithm
[2] with nnU-Net [3] framework to improve the robustness of deep learning-based seg-
mentation systems.

2.1 Training and Validation Data

Our submission made use of the official KiTS23 [4] cohort dataset alone.
The dataset includes patients who underwent cryoablation, partial nephrectomy, or

radical nephrectomy for suspected renal malignancy between 2010 and 2022 at an M
Health Fairviewmedical center. Each case’s most recent contrast-enhanced preoperative
scan (in either corticomedullary or nephrogenic phase) was segmented for each instance
of the following three semantic classes. 1.) Kidney: Includes all parenchyma and the
non-adipose tissue within the hilum; 2.) Tumor: Masses found on the kidney that were
pre-operatively suspected of being malignant; 3.) Cyst: Kidney masses radiologically
(or pathologically, if available) determined to be cysts. In modeling, we utilize the pre-
released training dataset consisting of 489 cases for the process. As for the competition
results, we leverage the remaining 110 cases of validation dataset to generate the pre-
diction results by MICCAI 2023 Leaderboard, as shown in the attached Supplementary
Material file.

2.2 Preprocessing

Our submission made use of the official nnU-Net framework preprocessing data for-
mat. We download the training dataset and store it in a specific format as nnU-Net
requirements. Due to nnU-Net’s roots in the Medical Segmentation Decathlon (MSD),
its dataset is heavily inspired but has since diverged from the format used in the MSD.

Datasets consist of three components: raw images, corresponding segmentationmaps
and a dataset.json file specifying some metadata. (More details can be found at [5].)

Specially, in our preprocessing, we split the pre-released training dataset into local
training dataset with 410 cases and local test dataset with 79 cases.

2.3 Proposed Method

Our proposed approach is a GA-based method for improving the robustness of deep
learning-based nnU-Net segmentation systems. GA-nnUNet consists of two main com-
ponents: Genetic Algorithm (GA) and nnU-Net. The GA-nnUNet algorithm generates a
population of solutions to a given problem by using a set of candidate solutions. nnU-Net
is a unifying architecture that is used to integrate different GA population.

In our proposed approach, we first train a set of CNNs using the local trainining
dataset alone, which contains 410 images of kidney tumors, renal cysts, and renal lesions.
The CNNs are trained using a backpropagation algorithm with a set of different hyper-
parameters. The CNN architecture consists of an input layer, a convolutional layer, and
a pooling layer. The loss function used during training is the binary cross-entropy loss
(Fig. 1).
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Fig. 1. The brief introduction of GA-nnUNet approach. There are n parallel models are trained
on local training dataset, and evaluated on local test dataset for HEC ranking. The top m models
are selected for variation to generate next population.

The GA components including gene encoding of hyperparameters (parameters in
input layer, convolutional layer size and pooling layer size) for genetic operations
(selection, crossover and mutation), and fitness function using “Hierarchical Evaluation
Classes” (HECs) ranking score.

After training the CNN models, we apply GA to evolve a population of CNN mod-
els with different sets of gene encoded hyperparameters encoded within gene. The GA
components used in our approach are two-stage processes: the selection and variation.
The GA component selection process selects a subset of parent population to be used
in the next generation. The GA component variation process applies different selection
rules and variation strategies to the selected individuals.

The selection rules and variation strategies used in our approach are based on a
genetic algorithm optimization technique. We use the selection function to evaluate the
fitness of the CNNmodels and select the best candidates for the GA.We use the variation
function to combine different hyperparameters and create new population.

Finally, we applyGA to evolve a final CNNmodel with improved robustness and bet-
ter segmentation performance.

3 Results

3.1 Dataset

We evaluated the proposed method on the KiTS23 dataset. The KiTS23 dataset includes
patients who underwent partial or radical nephrectomy for suspected renal malignancy
between 2010 and 2022 at an M Health Fairview medical center. KiTS23 dataset is
composed of 599 cases with 489 allocated to the training set and 110 in the test set.
Many of these in the training set were used in previous challenges. Note that we first
perform the evaluation of our method on the training set because the test set is not
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publicly available, and retrieved the evaluation result on the test set fromMICCAI 2023
Leaderboard.

3.2 Metrics

We used the same evaluation metrics as advocated by KiTS23 challenge, which include
Sørensen-Dice and Surface Dice (SD) [6]. KiTS23 leverages the hierarchical evaluation
classes “Hierarchical Evaluation Classes” (HECs) to obtain a relative comprehensive
measure. In an HEC, classes that are considered subsets of another class are combined
with that class for the purposes of computing a metric for the superset. HECs: 1. Kidney
and Masses:(Kidney + Tumor + Cyst) 2. Kidney Mass: (Tumor + Cyst) 3. Tumor:(
Tumor only).

3.3 Results on KiTS23

We reported the results onKiTS23 challenge training set through selected fold validation
and five-fold cross-validation. All the models are evolved with the fitness function of
HECs presented in Sect. 3.2 (Fig. 2).

Table 1. Top 8 models of final population of evovling that every model is trained 200 epochs
in each generation, all model evaluated on the local test dataset is selected from pre-released
training dataset. The simple-net is the model evolved with simpler pool_op_kernel_sizes &
conv_kernel_sizes than default setting, while the complex-net is the one evolved with more
complex pool_op_kernel_sizes & conv_kernel_sizes.

Evolved Model Local Rank Mean_Dice Mean_SD Tumor_Dice

3d_lowres_simple-net_on_fold3 1 0.826 0.741 0.73

3d_lowres_simple-net_on_fold0 2 0.822 0.733 0.73

3d_lowres_on_five-fold 3 0.821 0.729 0.728

3d_lowres_complex-net_on_fold3 4 0.804 0.702 0.699

3d_lowres_simple-net2_on_fold0 5 0.749 0.635 0.635

2d_simple-net_on_fold1 6 0.736 0.619 0.603

2d_on_five-fold 7 0.712 0.6 0.565

2d_w_lr5-e5_on_five-fold 8 0.704 0.591 0.552

Based on local ranking in Table 1, we noticed that model with simpler architecture-
based parameters shows better performance, and some special training dataset split
(such as fold3 in the case) can help to improve the efficiency of training with fewer
cross-validation (all of the populations training work done within 2 weeks on single
NVIDIA A40 GPU, and the project took 1 month in total.). Finally, we selected the
model “3d_lowres_simple-net_on_fold3” to submit evaluation on KiTS23 test dataset.
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Fig. 2. Examples of predictions next to human-labels on case_00588 used in the local test set.
The above is 3D ground truths labeled by human, below is the predictions with our final model.

4 Discussion and Conclusion

This paper presents a novel approach, referred to as GA-nnUNet, to tackle kidney and
tumor segmentation tasks. Existing nnU-Net frameworks are found to have limited fur-
ther improvements, and often possess extensive architecture-based parameters, making
them difficult to optimize. GA-nnUNet, on the other hand, employs a refined genetic
algorithm (GA) to evolve a model that outperforms mainstream methods in the segmen-
tation of kidneys, renal tumors, and renal cysts. The GA-nnUNet framework utilizes a
condensed but flexible search space to restrict the number of architecture-based parame-
ters within a small range, resulting in a significant reduction in the number of parameters
and computational cost. To accelerate the convergence process, the fitness function used
is Heaps’ Correlated Gaussian Filtering (HECs). The experimental results demonstrate
the effectiveness of the proposed approach in achieving improved performance compared
to existing methods.

Despite the explicit modeling of global information by the GA, it necessitates a
substantial amount of memory due to the parallel evolution of CNN models compared
to the nnU-Net process. Our future research endeavors will focus on reducing memory
consumption while developing a more efficient and accurate segmentation framework.

Furthermore, by analyzing the evolved results, we discovered that the utilization
of various effective architecture and parameter patterns in the model’s building blocks
significantly enhanced the performance of theKiTS23 segmentation task,which provides
instrumental domain knowledge for use in future studies.

Acknowledgements. We would like to express our gratitude to the KiTS2023 organizers and the
nnU-Net team. We also want to say thanks to Nicholas Heller for his kind help.
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Abstract. Kidney cancer is one of the most common cancers world-
wide. Automated segmentation of kidneys, tumors, and cysts from CT
images is an important pathway to assist doctors in diagnosis. However,
the diverse morphologies of tumors and cysts pose challenges regarding
their difficult identification and unpredictable behavior. This paper pro-
poses a two-stage segmentation method, proceeding from coarse to fine.
In the first stage, we obtain the kidney region of interest (ROI) based on
nnU-Net as input for the second stage. In the second stage, we design a
parallel encoder structure. It employs a dual-stream end-to-end training
approach, simultaneously monitoring and segmenting boundary informa-
tion and targets. In particular, a residual channel attention mechanism
was incorporated with the boundary prediction branch, highlighting the
most relevant feature channels. The method has been experimentally
demonstrated to be significantly superior to the baseline nnU-Net. On
the official test set, our Kidney + Masses Dice and Tumor Dice are 0.936
and 0.670, respectively, ranking 14th on the leaderboard.

Keywords: Kidney segmentation · Coarse-to-fine framework ·
Channel attention

1 Introduction

Kidney cancer is one of the top 13 common cancers worldwide. More than 330,000
new cases are diagnosed each year, and its incidence continues to show an increas-
ing trend [1]. Kidney masses, including tumors and cysts, have been the lead-
ing cause of Kidney cancer, and precise and quantitative assessment of Kidney
masses has become a practical approach for future treatments. Due to the unpre-
dictable shape, the unclear texture and boundaries of the tumor masses within
the patient’s body, accurately segmenting tumors and cysts from 3D CT images
remains a challenging task [2,3]. Semantic segmentation plays a vital role in
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aiding diagnosis in the medical field. In this paper, we employ semantic segmen-
tation for Kidney tumor diagnosis, where each voxel in the CT scan is annotated
as background, kidney, renal tumor, or cyst.

U-Net [4] is one of the most commonly used convolutional neural network
(CNN) architectures for semantic segmentation in biomedical image segmenta-
tion applications. It can accurately capture feature information at different scales
and, through fusion operations, combine the low-level semantic features from the
encoder with the high-level semantic features from the decoder, thereby enhanc-
ing segmentation accuracy. A variant of U-Net, nnU-Net [5], demonstrated supe-
rior segmentation performance in the 2019 KiTS competition. In the 2021 KiTS
Challenge, Zhao et al. [6] proposed a coarse-to-fine segmentation structure based
on the nnU-Net as the underlying segmentation network and achieved first place
in the competition. George et al. [7] proposed a cascaded U-Net segmentation
network from coarse to fine. A two-stage approach is implemented, where the
ROI regions are extracted first, and the second stage is trained using the ROI
regions. Zhou et al. [8] created a boundary prediction network to address the
problem of ambiguous tumor boundaries by generating boundary-aware features
and using the boundary information for accurate tumor segmentation.

Fig. 1. Flowchart of the two-stage segmentation method from coarse to fine

However, the above methods focus on segmenting the tumor of the whole
region and ignore some valuable boundary information. To address the above
problems, some works have introduced region boundary constraints [9] or con-
structed a multitasking framework to extract contour information [10] to improve
the segmentation performance. Following the coarse-to-fine segmentation frame-
work, Zhou et al. [11] created a boundary prediction network to address the
problem of ambiguous tumor boundaries by generating boundary-aware features
and using the boundary information for accurate tumor segmentation. Further-
more, in order to improve the segmentation of foreground regions, an attention
mechanism was introduced into the original U-Net. Attention mechanisms have
been shown to be effective in natural language processing and computer vision.
Several variants based on the fusion attention mechanism of U-Net have been
proposed in medical image segmentation tasks [12–14]. The attention mecha-
nism guides the network to focus on essential features, improving parameter
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efficiency and segmentation accuracy. A residual channel attention mechanism
is added for the jump connections of the boundary extraction network. The
boundary segmentation is refined by using more boundary information retained
in the low-level features to supplement the boundary information extracted in
the upsampling process. In this paper, we propose a dual decoder structure that
adds a residual channel attention mechanism to the jump connections of the
boundary network to capture more boundary information and better assist in
target segmentation.

2 Methods

The two-stage segmentation method from coarse to fine is shown in Fig. 1. In
the first stage, the raw image is subjected to coarse segmentation to extract a
partial CT image containing only the kidney region, i.e., extracting the Region
of Interest (ROI). In the second stage, the segmentation network focuses only on
the area of interest (ROI) and performs fine segmentation to generate a detailed
segmentation map. Specifically, we employed an extended nn-UNet network in
the first stage for coarse segmentation, and in the second stage, we used PDA-
net for fine segmentation. The network architecture of the first stage is shown
in Fig. 2, and the network architecture of the second stage is shown in Fig. 3.

Fig. 2. Coarse segmentation framework employs the extending nnUNet.
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Fig. 3. Parallel-decoder residual channel attention network architecture. A channel
attention module was added at the skip connections of the boundary prediction net-
work, highlighting important feature channels of the boundaries, enriching boundary
information, and better assisting the overall segmentation objective.

2.1 Training and Validation Data

In this paper, we only used the training set provided by the official KiTS23
dataset for submission. The dataset is divided into training sets and validation
sets in the ratio of 4:1.

2.2 Preprocessing

We followed the nnU-Net [5] approach to pre-process the training data. Specif-
ically, in the first stage, coarse segmentation was performed by resampling CT
images using cubic spline interpolation to achieve a consistent target spacing
of [3.22 1.92 1.92]. In the fine segmentation stage, we extend the bounding box
obtained after cropping outward by 10-pixel values as input. In addition, unlike
the first stage, the target spacing for resampling is [0.80 0.80 0.80].

During the training process, in the first stage, the size of the extracted blocks
from the regions of interest is 128 × 128 × 128, and in the second stage, the sam-
pled block size is 128 × 224 × 85. Subsequently, intensity clipping was performed
using the default settings of nnU-net (0.5 and 99.5 percentiles) with a clipping
range of [−90, 405] Hounsfield Units (HU). We subtract the mean value of 101.9
and divide by the standard deviation of 72.63 to perform normalization on the
input images, data augmentation techniques such as rotation, scaling, intensity
transformations, and others were applied.
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2.3 Proposed Method

Coarse Segmentation. Through experiments, we have found that cropping
out the portion of the CT image containing only the kidney region from the
original complete CT image can improve the segmentation results of the kidneys
and renal masses (tumors and cysts) to a certain extent. Therefore, we first
utilize the extending nnU-Net [15] to obtain kidney ROIs from CT images of
each case, aiming for more precise segmentation results.

Fine Segmentation. Analyzing the provided dataset, we discovered valuable
boundary information that should be addressed. Therefore, our dual-decoder
architecture consists of boundary prediction and object segmentation branches.
We use the kidney ROI as input and segment the boundary mask, kidney mask,
tumor mask, and cyst mask separately on the fine segmentation network with
dual decoders. The encoder part adopts the concept of extending nnU-Net,
increasing the number of channels, and includes five levels of convolutional layers
with the same resolution. Each layer consists of a 3D convolution with a 3× 3 × 3
kernel and strides of 1 in each dimension. Expressly, a residual channel attention
mechanism is incorporated at the skip connections of the boundary prediction
network, which enhances the extraction and supplementation of boundary infor-
mation. Additionally, we utilize residual blocks instead of regular convolutional
blocks in the convolutional layers of the target segmentation branch.

Residual Channel Attention Module. Channel attention has effectively
utilized the most informative feature channels while suppressing irrelevant ones,
automatically identifying and emphasizing the relevant feature channels [16].
Therefore, we introduced residual channel attention at the skip connections in
our fine segmentation network to align the low-level features from the encoder
with the high-level features from the decoder. The feature channels from the
encoder contain richer low-level information, while the feature channels from the

Fig. 4. Structure of our residual channel attention module with the residual connection.
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decoder contain more high-level information. We employ this attention mecha-
nism to compensate for the lost low-level information during the upsampling
process, thus complementing the boundary information. As shown in Fig. 3.

We assume X represents the concatenated input feature maps with C chan-
nels. First, global average pooling and global maximum pooling are utilized to
obtain global information for each channel, and then output and represent it as
pavg (x) ∈ RC×1×1 and . To obtain the channel coefficient γ ∈ [0, 1]C×1×1 using
Multi-Layer Perceptron (MLP) Mr, and Mr consists of two fully connected lay-
ers, with the first layer having an output channel number of C/r, followed by
ReLU, and the second layer having an output channel number of C. pavg(x)
and pmax(x) share the use of Mr, and their results are summed and fed into a
Sigmoid function to obtain γ. Our residual channel attention module’s output
is: yRCA = x · γ + x. We added residual channel attention modules at the skip
connections of the network, as shown in Fig. 4.

Loss Function. During the training process, the target detection branches
of our coarse and fine segmentation models were trained using a combination
of Dice loss and cross-entropy loss. The following equation represents the loss
function:

Lseg = αLdice + (1 − α) LBCE (1)

The weight α was set to 0.5 in the experiments. The detailed formulas for
the Dice loss and cross-entropy loss are as follows:

Ldice = 1 − 2
3

∗
∑

3
i=1

∑
N
n=1 (pin ∗ qin)

∑
3
i=1

∑
N
n=1 (pin + qin)

(2)

LBCE =
3∑

i=0

Bi

N∑

n=1

(qin log(pin) + ((1 − pin) log(1 − qin))) (3)

N represents the voxel number, and i represents the index of each voxel. pin
and qin represent the predicted result and target label of voxel n on class i,
Bi is the weight in the binary cross-entropy (BCE) loss. Only the Dice loss is
employed in the boundary branch of the fine segmentation network. Therefore,
the total training loss of the fine segmentation network is represented as:

Ltotal = βLboundarydice + (1 − β)Lseg (4)

where the weight β is set to 0.2.

Training Details. The network utilizes the stochastic gradient descent (SGD)
optimizer with an initial learning rate 0.01. A total of 1000 epochs are trained
with a batch size of 2 (250 batches per epoch). Due to the time-consuming train-
ing process, we did not employ the 5-fold cross-validation in nnU-Net. Instead,
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we used the first 398 training data as the training set, while the rest were allo-
cated as the validation set. The remaining hyperparameters mainly follow the
default values of nnU-Net. We implemented our network using PyTorch on a
single NVIDIA GeForce RTX 3090 GPU with 24 GB of memory.

3 Results

We summarize all our experimental results in Table 1. All results are based on
the validation set of the last 100 cases. The Dice coefficients for the kidneys,
renal masses, and renal tumors are 0.96056, 0.755431, and 0.677995, respectively;
the average Dice coefficient is 0.8037. The surface Dice scores for the kidney,
renal masses, and renal tumors were 0.9054, 0.6304, and 0.5674, respectively.
The average surface Dice score is 0.7010. Our method outperforms the baseline
nnU-Net significantly in the segmentation of masses and tumors, while there
is a slight improvement in the segmentation of the kidneys. Additionally, we
selected two variants of nnU-Net as comparative experiments, and the results
demonstrated that, under the same experimental conditions, our network model
outperforms their models. We selected four representative cases and visualized
the segmentation results of all models on them, as shown in Fig. 5.

In Table 2, we showcase the results on the official test set. Based on the
visualized results of the predicted labels, the analysis primarily attributes to
the incompleteness in tumor recognition, particularly in cases where tumors and
cysts overlap. These instances only identify the boundaries of the tumor as well
as some scattered portions, failing to recognize the entirety of the tumor. As a
result, this leads to a lower Dice score for tumor segmentation.

Table 1. Dice score and Surface Dice of the proposed method and other baselines
methods on the validation set.

Model Dice Surface Dice

Kidney Mass Tumor Ave Kidney Mass Tumor Ave

Baseline 0.9525 0.7058 0.6179 0.7587 0.8996 0.5832 0.4615 0.6481

3D Extending U-Net 0.9467 0.7124 0.6265 0.7618 0.8982 0.5960 0.5084 0.6675

3D Large U-Net 0.9593 0.7494 0.6745 0.7944 0.9017 0.6107 0.5330 0.6818

Ours 0.9612 0.7554 0.6953 0.8037 0.9054 0.6304 0.5674 0.7010



90 Z. Li et al.

Fig. 5. We sequentially selected four different cases and visualized their segmentation
results on different models. Red represents the kidneys, yellow represents tumors, and
green represents cysts. (Color figure online)

Table 2. Dice score and Surface Dice of the proposed method on the official test set.

Model Dice Surface Dice
Kidney Mass Tumor Ave Kidney Mass Tumor Ave

Ours 0.936 0.751 0.670 0.786 0.888 0.599 0.527 0.671

4 Discussion and Conclusion

This paper presents a two-stage segmentation framework, from coarse to fine, for
segmenting the kidneys, tumors, and cysts from CT images. nnU-Net serves as
the baseline for our model, and we improve it by employing ROI cropping, adding
residual channel attention blocks at skip connections, and utilizing an end-to-end
training approach with dual-stream. We crop the original images to a suitable
size for model training and provide more supervision and supplementation for
valuable boundary information, thus aiding in target segmentation. The obtained
experimental results are significantly superior to the baseline and the other two
variants of nnUNet.
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We performed visualizations on the predicted results and observed that in
certain samples, the model tends to confuse tumor and cyst identification. In
most cases, the tumor recognition region was either too small or misidentified as
a cyst. This discovery provides significant assistance for the improvement of our
subsequent models. I believe we should not only focus on extracting local infor-
mation but also consider the integration of global information. Perhaps, we can
start with classification and use the classification results to aid in segmentation,
emphasizing the importance of a holistic understanding of the target. Further-
more, I believe we can enhance the model performance by improving the loss
function. I believe our model has room for improvement, and we will continue
optimizing it to contribute to the automated segmentation of renal cancer.
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Abstract. This project focuses on automatic kidney, tumor and cyst
segmentation to assist doctors in diagnosing kidney cancer. We created
a deep learning model using methods to first isolate the region of inter-
est of the kidneys, then to segment the kidney and its masses. We used
the TotalSegmentator tool to obtain a rough segmentation of the kid-
neys, then during pre-processing, expanded this region of interest by 18
pixels. This new region of interest was inputted into a 3d segmentation
network trained using the nnU-Net library to fully segment the kidneys
and masses within them. The current model achieved an average DICE
score on validation data of 0.95 for kidney segmentations, and around a
0.8 for tumour and cyst segmentations. On the KiTS23 testing data, the
model achieved a 0.94 DICE for kidney segmentations and a 0.73 DICE
for mass segmentations.

Keywords: Semantic Segmentation · Kidney Cancer · nnU-Net

1 Introduction

In 2023, there will be an estimated 81,800 new cases of invasive kidney cancer in
the United States alone, with an estimated 14,890 deaths resulting from kidney
cancer [2]. The early diagnosis of kidney cancer is considered to be an effective
way to reduce the incidence and deaths. Clinically, doctors also need to differenti-
ate tumour types, such as slow-growing primary tumors or aggressive metastatic
tumors, to determine the most effective treatment. Therefore, an accurate and
automatic approach to identify the kidney tumour is the current unmet need.
In this project, which takes advantage of deep learning techniques, we propose
a U-Net-based workflow with Region of Interest (ROI) masking trained on the
KiTS23 dataset to perform semantic segmentations on kidneys and any masses
within them.

2 Methods

The method used to segment the kidneys and masses can be broken up into
two sections: preprocessing, and semantic segmentation using our U-Net-based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Heller et al. (Eds.): KiTS 2023, LNCS 14540, pp. 93–96, 2024.
https://doi.org/10.1007/978-3-031-54806-2_13
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segmentation models. The preprocessing of the images consists of first isolating
a “region of interest”, or a subset of the original 3d image to isolate a smaller
region containing both kidneys. The goal of this is to try to isolate the kidneys
and kidney masses in hopes that the accuracy of the deep learning model will
be improved in comparison to a model that inputs the entire CT scan during
training. Then data augmentation was performed on the isolated regions. Next
the region of interest data was used to train a 3d convolutional U-Net developed
from the nnU-net [1] framework to segment the kidneys and any masses inside
them (Fig. 1).

Fig. 1. ROI Segmentation Method

2.1 Training and Validation Data

Our submission made use of the official KiTS23 training set alone.

2.2 Preprocessing

The primary improvement to our method in comparison to a standard U-Net
stems from different preprocessing steps. The data was first segmented with
the TotalSegmentator tool. TotalSegmentator is a deep learning model trained
on 1204 CT examinations used to segment 104 different anatomical structures,
including kidneys [3]. It was trained using nnU-Net’s 3d fullres configuration on
4000 epochs. We used TotalSegmentator to obtain a rough, and fairly inaccu-
rate segmentation of the left and right kidneys. Next, we loaded the original CT
data and the newly acquired TotalSegmentator masks into Python using Sim-
pleITK’s ReadImage function. Binary expansion was performed on each mask
to obtain a much broader ROI mask, which was then multiplied by each slice in
the original CT volumes using Python’s NumPy library. Specifically, this ROI
was an expansion of 18 pixels from the original segmentation mask. We used the
binary dilation method, which is a part of SciPy’s ndimage module to perform
the binary expansion in Python. This removed any unnecessary information from
the CT images for the kidney segmentation task. Because of this transform, the
HU values for the background space were set to 0, while the HU values within the
ROI were left unchanged. Some standard data augmentation was performed on
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the training data. nnU-Net has some standard preprocessing for the input data,
which includes data augmentation. Gaussian blurring, Gaussian noise, rotations,
scaling, zooming, and mirroring were all applied.

2.3 Proposed Method

nnU-Net uses a standard U-Net architecture, which was used in both the
TotalSegmentator tool during preprocessing, and in the network to train the
cropped images on kidney and mass segmentation. Batch normalization is not
used in nnU-Net architectures, instead instance normalization is used. DICE
loss is used as the metric for the loss function. The network kernel size is 3× 3
in every convolutional layer. The dataset of 489 volumes was trained on 5-fold
cross validation, each with 1000 epochs. So 5 models trained with 5 different
test/validation splits were trained and predictions will be run on an average of
the best checkpoints from those 5 models. nnU-Net also makes use of connected
component analysis to remove non-connected regions predicted to be a part of
the kidney or mass, which are smaller than the largest prediction.

3 Results

Fig. 2. Change in Pseudo DICE and Loss for Training and Validation Data During
Training

The average DICE score on the validation set over the 5 folds of training after
1000 epochs was as follows: for fold 1: 0.76, fold 2: 0.75, fold 3: 0.72, fold 4: 0.73,
and fold 5: 0.69. These are aggregated averages over the kidney segmentation,
tumor segmentation and cyst segmentations. Additionally, Fig. 2 presents a plot
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of how the DICE score changes on validation data during the training process
for the first fold. We can observe that it as we trained the model for longer the
accuracy of the model followed almost a logarithmic curve. It would likely still be
beneficial to train the model for longer, if time permitted, in order to get a better
overall accuracy. Training all folds took 2 days running on an NVIDIA GRID
V100D-32Q. When presented with the KiTS23 test data, our model performed
as we expected based on the validation scores. More specifically, we achieved
a DICE score of 0.777, with a surface DICE of 0.648. Our DICE score for the
kidney and masses together was 0.94, and our DICE score for just the masses
(tumor and cysts) was 0.73.

4 Discussion and Conclusion

As the nnU-Net model is already one of the leading models for semantic medical
image segmentation, it is very difficult to improve on it. The main limitation to
our model was the model architecture. It is possible that using a different type
of 3d U-Net, such as the 3d cascade fullres architectures, which is another archi-
tecture within nnU-Net, would improve the overall performance of the model
[4], however the computation cost and training time for this model would be
impractical for the period of time we had for building the model.

Previously, our team created a 2d nnU-Net segmentation model using the
same workflow as described in this paper. The 2d model’s performance was
significantly worse than the 3d model’s, since it was trained over only 250 epochs
in each fold. If time allowed, an ensemble approach to compare the 3d and a 2d
model, trained over the same number of epochs, would provide more consistent
results. Additionally, training with more epochs for the 3d model in general may
yield slightly better DICE loss results. As an extension to this project, it would
be interesting to see how much our model could improve if we trained it on more
than 1000 epochs.
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Abstract. Kidney cancer is among the most prevalent forms of cancer.
Recent studies have investigated the use of machine learning, especially
deep learning, in detecting tumors from kidney CT scans. This paper
introduces a hierarchical pipeline for segmenting kidneys, tumors, and
cysts in CT images. Our method demonstrates promising outcomes in
the segmentation of kidneys, renal cysts, and tumors, showcasing its
potential to accurately identify and localize tumors and cysts in CT
scans. This can significantly aid early diagnosis and treatment planning.

Keywords: Semantic Segmentation · Medical Imaging · Computer
Vision

1 Introduction

Kidney cancer is among the most prevalent forms of cancer. An estimated 81,800
new cases are expected to be diagnosed in the US in 2023 [6], representing only
a small fraction of the cases expected worldwide. Accurate diagnosis and timely
treatment of kidney cancer are crucial for enhancing patient outcomes and reduc-
ing mortality rates. Recent advancements in machine learning, particularly deep
learning techniques, have demonstrated tremendous potential in the detection
and segmentation of tumors in CT scans [1,2,4,7].

The 2023 Kidney and Kidney Tumor Segmentation Challenge, known as
KiTS23, aims to identify the most effective system for the automatic segmenta-
tion of kidneys, renal tumors, and renal cysts. This paper represents our submis-
sion for the KiTS23 challenge, which was ranked 16th. The primary objective
of this research is to develop an accurate and efficient deep-learning solution for
kidney tumor segmentation in CT scans. We utilize a hierarchical pipeline that
incorporates three models. These models are based on nnU-Net v2 [3]—an auto-
mated approach for configuring a U-Net model [5] designed for biomedical image
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segmentation. By consolidating the predictions from all models, we generate a
single, cohesive prediction.

The remainder of this paper is organized as follows: Sect. 2 presents the
methodology and the model architecture in detail. In Sect. 3, we present the
results, and, finally, in Sect. 4, we discuss the results and conclude the paper.

2 Methods

In the previous KiTS challenge, an analysis of the top-performing submissions
revealed that an overwhelming majority of them, specifically 4 out of the top
5, utilized nnU-Net as the foundational framework for their models. This trend
serves as strong evidence of the potential of nnU-Net in effectively addressing
the challenging task of segmenting kidneys, tumors, and cysts.

The winning submission in the KiTS21 challenge employed a strategy that
involved using kidney segmentation as a foundation for predicting tumors and
cysts [8]. Recognizing the effectiveness of this approach, we have incorporated
a similar logic into our methodology to enhance performance; however, instead
of performing a coarse rectangular crop followed by a kidney segmentation, we
have devised a hierarchical approach, which is shown in Fig. 1. Initially, model
K identifies the kidneys as the region of interest (ROI). Afterward, we perform
a post-processing step to remove any object from the segmentation that is not
of the desired region. Following this we remove objects which have a voxel count
below one-quarter the total count in the predicted mask. We then conduct a
dilation operation on the predicted masks using a max-pooling operator with a
stride of one and a kernel size of 11. This dilated version is used to mask the
raw image, after which we extract each extended kidney region. This produces
a new dataset to train our subsequent models for tumor segmentation. Model
M predicts the mass region, i.e., tumors and cysts, within each kidney, and then
undergoes similar dilation and masking processes. The final model, model T,
differentiates tumors from the mass ROIs. We then consolidate these predictions
to produce a semantic mask that delineates kidneys, mass, and tumors.

While models M and T operate on relatively small ROIs-cropped versions
of the kidneys or mass-model K is applied to the entire image. This poses a
challenge, as a typical GPU may not support 3D analysis of full CT images
due to its limited VRAM (Video Random Access Memory), even at a batch
size of one. To address this, we implemented two strategies. First, we utilized a
3D U-Net architecture with a small patch size of 224× 320× 256. Secondly, we
developed a 2D U-Net model to segment the kidney on each axial slice of a CT
image. Both methods ensure that the analysis can be conducted irrespective of
the availability of a high-end GPU.

2.1 Training and Validation Data

Although the use of external datasets for model training was permitted in the
KiTS23 challenge, we only utilized the training subset of KiTS23 for model
training and validation.
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Fig. 1. Our hierarchical pipeline. Kidney prediction is represented in green, mass pre-
diction in yellow, and tumor prediction in pink. (Color figure online)

2.2 Preprocessing

In order to preprocess the CT images, we utilize the preprocessing pipeline pro-
vided by nnU-Net. This includes normalization and harmonizing voxel spacing.
Normalization is achieved by first clipping the voxel intensity values to fall within
the 0.5th and 99.5th percentiles. Subsequently, a conventional z-score normaliza-
tion is applied.

2.3 Network Architecture

Initially, we adopted nnU-Net v2 as our baseline model to simultaneously
segment all regions of interest: kidneys, masses, and tumors. However, we
observed a substantial discrepancy in accuracy between kidney segmentation
and tumor/mass segmentation. The kidney segmentation exhibited high accu-
racy, while the segmentation of tumors and masses lagged behind. Recognizing
the hierarchical nature of the classes, we sought to enhance our mass and tumor
segmentations. As a result, we crafted a pipeline composed of three models, all
derived from nnU-Net v2 full-res.

The nnU-Net v2 contains six stages in both encoder and decoder, with skip
connections in the form of concatenation at each stage. A stage of the encoder
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starts with a 3D convolution layer, utilizing a stride of 2 in each dimension.
Following this, there is one instance of normalization block and a leaky ReLU,
followed by another convolution with a stride of one, another normalization, and
another leaky ReLU. The output from this second ReLU is used for the skip con-
nection. Each of these convolutions utilizes a kernel of size 3 in each dimension.
Each stage of the decoder mirrors the structure of the encoder. Note that at
each stage, the first convolution acts upon the features from the previous stage,
which have been concatenated in the channel dimension to the skip connection
from the encoder. A convolution of kernel size 3× 3× 3 is applied, followed by
a normalization and a leaky ReLU. This happens twice. Finally, a transposed
convolution with a kernel size of two is employed to up-sample the image.

2.4 Loss Function

We utilize a combined loss function, hereafter referred to as Dice Cross-Entropy
loss, which merges both Dice loss and cross-entropy loss. This hybrid loss func-
tion incorporates the advantages of these two metrics, thereby optimizing the
performance of our models. The Dice loss, also known as the Sørensen-Dice coef-
ficient, evaluates the overlap between the predicted segmentation and the ground
truth. This encourages the model to produce segmentation masks that closely
align with the ground truth, leading to more accurate segmentations. On the
other hand, the Cross-Entropy loss gauges the pixel-wise dissimilarity between
the predicted classes and the ground truth. By minimizing this loss, the model
is prompted to assign higher probabilities to the correct pixel classes, thereby
enhancing the accuracy of the segmentation results.

2.5 Optimization Strategy

In our optimization strategy, we employ Stochastic Gradient Descent (SGD). To
further enhance the optimization process, we adopt a polynomial learning rate
schedule. The learning rate is a crucial hyperparameter that dictates the step
size during parameter updates. The polynomial learning rate schedule typically
involves decreasing the learning rate gradually as training progresses. This app-
roach helps the model converge more effectively by initially taking larger steps to
explore the parameter space and then gradually reducing the step size to make
smaller, fine-tuned adjustments. The schedule is as follows:

i× (1 − e

t
)0.9

where i is the initial learning rate, e is the current epoch, and t is the total
number of epochs. For this and the remaining optimizer hyperparameters, we
used the default values as suggested by the nnU-Net pipeline.

2.6 Validation Strategy

We trained a semantic segmentation model using a randomly selected valida-
tion fold, which constituted one-fifth of the total training dataset. Due to our
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limited access to computational resources, we opted to not conduct a K-fold
cross-validation. While a single train-validation split might not capture the vari-
ability of the data as effectively as full cross-validation would, it nonetheless
allows us to progress in the development and evaluation of our models for this
segmentation task.

2.7 Post-processing

In the post-processing step during inference, we use a method to refine the
predicted total region by removing any portions where the predicted volume
constitutes less than one quarter of the overall predicted mass. This step helps
filter out the small regions of the images where the models may make extraneous
predictions.

Additionally, in our hierarchical approach, we apply a dilation operation to
the resulting masks to further enhance the downstream predictions. By dilating
the mask, we expand the ROI, effectively enlarging the area surrounding the
remaining kidney or mass. This approach allows us to improve the prediction
on kidneys and focus the tumor or cyst prediction on the pertinent ROIs. By
omitting irrelevant regions, we consequently reduce computational costs.

Fig. 2. The prediction of model K for case 97 of KiTS23 dataset compared to the
ground truth. The area with red color represents the kidney and masses predicted, and
the area with green color represents the ground truth. (Color figure online)

3 Results

As required by the KiTS organizers, we use “Hierarchical Evaluation Classes”
(HECs) instead of each ROI alone. The HECs are (1) Kidney and Masses (Kidney
+ Tumor + Cyst), (2) Kidney Mass (Tumor + Cyst), and (3) Tumor only.
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Fig. 3. Left: the ground truth. Right: The prediction of model M for case 10 (red
represents kidney and blue represents mass). (Color figure online)

We employ the Sørensen-Dice coefficient and Surface Dice score to assess
the efficacy of our approach. We draw comparisons with the standard nnU-Net
model—i.e., our baseline—to gain deeper insight into our pipeline’s performance.
As shown in Table 1, our model consistently improves prediction accuracy for
kidneys, masses, and tumors.

Table 1. The Sørensen-Dice coefficient and Surface Dice scores of our approach com-
pared to those of the baseline on our validation set.

Sørensen-Dice Surface Dice

Kidney Mass Tumor Kidney Mass Tumor

Baseline 0.965 0.780 0.741 0.941 0.653 0.621

Our approach 0.971 0.829 0.816 0.949 0.693 0.641

As can be seen from the results, our pipeline works well in predicting the
regions of interest. Visualizations of the models’ predictions were conducted to
understand the areas of struggle. Figure 2 illustrates the performance of model
K in predicting kidney and masses, Fig. 3 shows the performance of model M
in predicting kidney mass, and Fig. 4 showcases the performance of model T in
predicting tumors.

The example in Fig. 2 shows that model K can segment the kidney with
high accuracy. However, as shown in Fig. 5, the models tend to have difficulty
accurately capturing small parts that branch off distantly from the main area
of the kidneys. Figure 3 and Fig. 4 show that our models’ predictions of masses
and tumors are precise. In case 244, for example, our model seems to generate a
better result than the ground truth. However, in some cases, they may struggle
to locate and segment small or complex tumors and masses.

Notably, in anomaly cases, for example, in case 194, where there is only
one kidney in the image, our models are able to detect it correctly without
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Fig. 4. The prediction from model M for case 244 is depicted in red, in contrast to
the ground truth in green. We visualized this case with both outlining (left) and filling
(right) the ROIs. (Color figure online)

Fig. 5. The prediction of model K (red) for case 194 compared to the ground truth
(green). (Color figure online)

segmenting another region as a kidney, as evidenced in Fig. 5. The correct seg-
mentation in anomaly cases like this provides strong evidence that our model is
effectively learning the distinguishing features and patterns associated with the
target structures.

We also assessed our hierarchical approach on the KiTS23 using the test set
provided by the KiTS23 organizers. These results, calculated by the KiTS23
organizing team, are presented in Table 2.

After a comprehensive analysis of our initial submission to KITS23, we rec-
ognized certain limitations in our pipeline, as shown in Fig. 6. In light of these
observations, we have conducted an additional experiment by deploying a 2D
model for model K. Given the inherent characteristics of 2D convolutions, a 2D
model can utilize the entire axial slice as input, as opposed to the small patch
sizes used in 3D models. This reduces the likelihood of erroneously predicting
extensive regions that are not truly representative of kidneys. It is imperative to
note that our post-processing steps demonstrated efficacy during the validation
phase, as evidenced by the validation results. We used a 2D U-Net architecture
for model K. Table 3 showcases the outcomes derived from this model. As evi-
dent from the result, this methodology exhibits a marginal improvement over
our earlier approach—i.e., 3D U-Net architecture for model K. The 2D model
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Fig. 6. Incorrect prediction made by 3D pipeline (left) and correct prediction from 2D
pipeline (right). (Color figure online)

solved the issue in the 3D pipeline, as shown in Fig. 6. The measures in Table 3
were provided by the KiTS23 organizers based on our submissions.

Table 2. Our test set results with 3D models

Kidney Mass Tumor Mean

Dice 0.938 0.743 0.624 0.768

Surface Dice 0.892 0.602 0.490 0.661

Table 3. Comparison of Dice and Surface Dice Metrics for 2D vs. 3D

Dice Surface Dice

Kidney Mass Tumor Overall Kidney Mass Tumor Overall

3D 0.938 0.743 0.624 0.768 0.892 0.602 0.490 0.661

2D 0.937 0.749 0.629 0.772 0.893 0.605 0.489 0.662

We trained our final models on two NVIDIA RTX A6000 GPUs. For model
K, each epoch took, on average, 30 s to complete. For models M and T, the pro-
cessing time for each epoch varied between 5 and 10 s. This substantial reduction
in processing time was due to the large reduction in spacial size. We trained each
model for 1000 epochs.
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Fig. 7. Noise in the ground truth in case 102(left) and case 426(right). Kidney tissue
is represented in green, tumor yellow, and cyst red. (Color figure online)

4 Discussion and Conclusion

We developed an efficient hierarchical deep-learning pipeline for the segmen-
tation of kidneys, renal cysts, and renal tumors. We demonstrated the high
performance of our approach both quantitatively and qualitatively.

Though we utilized three models in our pipeline, models M and T require
little computational resources due to the isolation of the kidney data in model
K, resulting in a substantial reduction in spatial dimension. Consequently, it
requires little memory and computation to train these models. Additionally,
cropping the kidney ROI allows for a larger and more diverse batch. In particular,
we trained our 3d U-Net with a batch size of 2, and our 2d U-Net with a batch
size of 99. We believe that the slight increase in computation that our pipeline
introduces is justified by the performance gained in tumor and cyst segmentation.
A notable limitation of this work pertains to the quality of the annotations used
for model training, particularly regions of interest that have been missed or over-
contoured during the manual annotation. Figure 7 shows two examples where
small parts of the kidney are missed in the ground truth. Such inconsistencies
within the training dataset pose challenges for training reliable and accurate
segmentation models. These irregularities can impede the model’s ability to learn
and generalize effectively, potentially leading to sub-optimal performance during
inference.

In conclusion, our hierarchical pipeline, which contains three models based
on nnU-Net v2, demonstrates promising performance in segmenting kidneys,
renal tumors, and renal cysts. We leverage the predicted kidney mask to refine
the segmentation of tumors and cysts, effectively improving the accuracy of
these classes. While our pipeline achieves high accuracy in kidney and mass
segmentations, there is room for improvement in tumor and cyst predictions.
Future work, including refining the manual segmentations or ensembling multiple
predictions, can be performed to achieve better performance.
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Abstract. Kidney and kidney tumor delineation constitutes an essen-
tial and labor-intensive task performed by expert radiologists and clini-
cians in order to diagnose renal-related pathologies, optimize radiother-
apy treatment and speedup surgical planning. In this work, we address
the problem of kidney delineation using 3D UNets to automatically seg-
ment the kidneys and kidney tumors and cysts in Computed Tomogra-
phy (CT) series. A 3-stage cascade approach of UNets was applied to
first segment kidneys and masses at low resolution with a coarse net-
work, followed by a fine segmentation step at the second stage. During
this refinement step, the predicted labelmap from the first stage is used
as shape prior knowledge in order to guide the training of the model.
At last, two independent UNets segment separately masses and tumors
using the prior knowledge of the refinement step. Post-processing oper-
ations consist of 3D connected component analysis in order to remove
false positive voxels out of the final predicted labelmap. We train our
networks and evaluate the effectiveness of this approach in the KiTS23
challenge and dataset.

Keywords: Kidney and kidney mass segmentation · Cascade UNets ·
Deep learning

1 Introduction

Renal cell carcinoma (RCC) was the ninth most common cancer in 2012 [4]. Par-
tial or radical nephrectomy, deduction of the malignant tissue or active tumor
surveillance are common ways to tackle RCC [3] and all of them require an
accurate segmentation of the kidney and kidney tumor area. Manually delin-
eating kidneys and kidney masses to obtain a precise segmentation is quite
labor-intensive and time-consuming when performed by expert radiologists or
clinicians. Additionally, manual segmentations tend to suffer from interobserver
variability whilst deep learning-based approaches show more promising results
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in terms of consistency [7]. Therefore, automating the process of kidney and
kidney tumor segmentation can provide significant benefits.

In this study, we develop a multi-stage segmentation approach inspired by
Zhao et al. [8] to accurately segment kidneys and kidney masses, i.e. kidney
tumors and kidney cysts, in CT images. During the multi-stage segmentation,
firstly a coarse labelmap is generated and it is passed through to the downstream
UNet as shape prior, to guide the fine segmentation step. Tumors and masses are
segmented separately during the third step in order to obtain the final labelmap
comprising kidneys, tumors and cysts.

2 Methods

Figure 1 outlines the structure of our method. Since the desired foreground vox-
els account for only a fraction of the whole CT series, we firstly segment the
kidneys in a coarse manner in order to locate them. It is based on this coarse
segmentation step that a region of interest (ROI) is generated from the original
volume that is then passed to the downstream segmentation models where the
initial segmentation map is refined and then separately segmented into tumors
and cysts.

Fig. 1. Multi-stage cascaded approach for coarse to fine kidney and kidney masses
segmentation

2.1 Training and Validation Data

During training, we made use only of the original dataset released as part of the
KiTS23 challenge. This dataset is based on the one used for KiTS19 challenge
[2], with additional cases included. It consists of 489 CT examinations, acquired
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during either late arterial or nephrogenic phase of contrast imaging. In order
to select a good model architecture, an optimal set of hyperparameters and
obtain a rough estimation of generalization error, we split the data into training,
validation and test sets of 359, 65 and 65 cases respectively.

2.2 Preprocessing

Similar data preprocessing pipelines were used to train all four models of our
method. HU values were normalized according to the winning submission of
the KiTS19 challenge [1] for all stages. During the coarse segmentation step,
images were resampled to 3mm isotropic resolution. For the downstream fine
segmentation task, images were resampled to 0.8mm at off-plane resolution while
the in-plane resolution was maintained according to the original pixel spacing.
This choice seemed natural as the surface dice coefficient [6] is one of the metrics
used to evaluate the predicted segmentations and we aimed for this network to
correct the predicted contours as much as possible. During the final tasks of
tumor and masses segmentation, images where resampled to 0.8mm isotropic
voxels. All networks were trained using randomly cropped patches from the CT
volumes, and data augmentation techniques were used, including random flipping
in all axes, random intensity shifting and addition of Gaussian noise.

2.3 Proposed Method

All four models of our method were identical and trained in a similar manner.
The UNet architectures were based on [5] using additional residual blocks in
each layer. At each encoding layer, we first downsampled the image using strided
convolutions. The following part of the layer consists of 3 subsequent blocks of
Conv3D-BatchNorm-PRelu followed by a residual skip connection. We did
not downsample the image after the last encoding layer, before the bottleneck.
Similarly at the decoding side, we first used transpose convolutions of size 3×3×3
to upsample the image, followed by a single block of same structure as in the
encoder layers. All convolution kernels are of size 3 × 3 × 3.

Fig. 2. UNet architecture
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2.3.1 Coarse Segmentation

At the first stage of the proposed approach, the input to the UNet consists of a
CT volume I ∈ R

64×64×64 resampled to a 3mm isotropic resolution. The UNet
architecture is depicted in Fig. 2. The loss function used is the combination of
Dice and Cross entropy, the batch size was set to 120 patches and the learning
rate was kept at a constant value of 10−3 while no scheduling scheme was applied
at this stage. A dropout rate of 0.4 was applied.

2.3.2 Fine Segmentation

At the second stage, the input to the UNet consists of a CT volume I ∈
R

2×96×96×96 resampled at 0.8mm off-plane resolution while the in-plane pixel
spacing was kept constant. The dual-channel input contains a cropped volume
from the original CT around the kidney area, along with the generated segmen-
tation map from the first stage which acts as shape prior knowledge, helping
the network to quickly focus on the structures of interest. In this way, the main
purpose of the second stage is to refine the boundaries of the coarse segmenta-
tion map and correct any false positives or false negatives that were predicted
during the initial step. The UNet architecture is the same as in the first stage
and depicted in Fig. 2. The loss function used is the combination of Dice and
Cross entropy and the batch size was set to 100 patches. The learning rate was
initially set to 10−3 and after 100 epochs it followed a cosine annealing scheme,
decreasing to 10−5 during 50 epochs. The dropout rate applied to this stage was
0.3.

2.3.3 Tumor Segmentation

At the tumor segmentation stage, the input to the UNet consists of a CT volume
I ∈ R

2×96×96×96 resampled at 0.8mm isotropic resolution. At this point, the
second channel of the input volume is the refined mask obtained during the
second stage and the input volume is a cropped patch based on the refined
mask. The UNet architecture is the same as in the first and second stages. The
loss function used is the combination of Dice and Cross entropy and the batch
size was set to 48 patches. The learning rate was initially set to 10−3 and after
200 epochs it followed a cosine annealing with warm restarts scheme, decreasing
to 10−4 during 30 epochs. The dropout rate applied to this stage was 0.3.

2.3.4 Mass Segmentation

At the mass segmentation stage, the input to the UNet consists of a CT volume
I ∈ R

2×96×96×96 resampled at 0.8mm isotropic resolution. For this model, the
dual-channel input contains the refined mask generated before, and a cropped
patch from the original volume (based on this mask) with most of its back-
ground area masked out. The reasoning behind this masking is that upon visual
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inspection of the dataset we found that in some cases, parts of the cysts have
similar texture with surrounding tissues. It is these similarities that we tried
to eliminate by forcing the network to regard them as background. The UNet
architecture is the same as in the first and second stages. The loss function used
is the combination of Dice and Cross entropy and the batch size was set to 24
patches. The learning rate was initially set to 3 × 10−4 and after 200 epochs
it followed a cosine annealing with warm restarts scheme, decreasing to 10−4

during 30 epochs. The dropout rate applied to this stage was 0.3.

2.4 Post Processing

As part of our post processing we performed 3D connected component analysis
after the mask refinement step, in order to remove any false positives. Following
the tumor and mass prediction, we removed false negatives by keeping only
segmented parts that are located inside the refined mask. We then combined the
tumors and masses predictions into a single segmentation map by keeping all
remaining predicted voxels. Ultimately, we used trilinear interpolation to obtain
a final segmentation map with the same resolution as the original CT image.

3 Results

Multiple models and multiple set-ups and post-processing pipelines were eval-
uated in order to pick the best performing model for the challenge. Table 1
summarizes quantitative results on test set 1, which originates directly from the
train, eval, test split performed on the dataset released publicly by the challenge
organizers. Model crf model utilizes a Conditional Random Field (CRF) at the
end of the post-processing mentioned in Sect. 2.4 in order to refine the segmenta-
tion output. Models overlap 0.50 and overlap 0.75 utilize an ensemble prediction
scheme based on overlapping windows during inference time with 50% and 75%
overlap respectively. It can be observed that the crf model demonstrates similar
performance when used to refine the KTC mask while for TC and T separately
the Dice and Surface Dice scores dropped.

Table 1. Hierarchical class evaluation for distinct trained models.

Model Dice KTC Dice TC Dice T SDice KTC SDice TC SDice T

crf model 0.967 0.780 0.726 0.930 0.622 0.571

overlap 0.50 0.968 0.790 0.736 0.931 0.633 0.583

overlap 0.75 0.971 0.789 0.736 0.934 0.633 0.582

Model overlap 0.75 was used to segment the hidden test set’s cases and the
results can be found in Table 2. Our overall method ranked 17th on the official
KiTS23 leaderboard.
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Table 2. Results of our proposed method on the official KiTS23 leaderboard.

Model Dice KTC Dice TC Dice T SDice KTC SDice TC SDice T

overlap 0.75 0.939 0.728 0.643 0.885 0.561 0.482

Figure 3 demonstrates two cases of test set 1, for which the ground truth
segmentation map is known. It can be observed that the overall mask for kidneys
and masses (KTC) shows acceptable agreement when compared with the ground
truth segmentation map. On the contrary, masses and tumors masks (TC and T)
can be over or under-segmented in some cases, especially when the surrounding
tissue HU values are similar to the kidney ones.

Fig. 3. Ground truth (a), (c) and predicted (b), (d) segmentation maps.

Every stage of the proposed method was trained independently from each
other and all experiments utilized 3 NVIDIA GeForce GTX 1080 Ti with 11 GB
of memory. All models were trained for 1500 epochs without early stopping and



Cascade UNets for Kidney and Kidney Tumor Segmentation 113

each model took 4 days to train. Inference was performed in a single NVIDIA
GeForce RTX 2080 Ti with 11 GB of memory and each case took approximately
45 s.

4 Discussion and Conclusion

In this paper, we proposed a cascaded approach to address the segmentation of
kidneys and kidney masses in CT images acquired during either late arterial or
nephrogenic phases of contrast imaging. Our method is based on first coarsely
segmenting the kidneys and kidney masses together in a low-resolution setup,
then refine the segmentation mask during the second stage to obtain a high res-
olution segmentation map. Lastly, two separate networks were used to segment
tumors and masses in the third stage. The overall approach was implemented
using the official KiTS23 dataset and upon validation with the challenge’s hidden
test set, our method ranked 17th on the KiTS23 leaderboard.
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Abstract. Kidney cancer has been recognized as one of the top ten
prevalent neoplastic conditions, ranking as the third most frequent malig-
nant tumor within the genitourinary system. Its high mortality rates pose
a significant risk to human health. Accurate and automated segmenta-
tion of the kidneys, kidney tumors, and kidney cysts in CT scans is of
paramount importance, as it provides medical professionals with valu-
able assistance in their diagnostic and therapeutic efforts. In KiTS23,
this work presents a novel two-stage cascaded framework based on the
nnU-Net architecture. Between the two stages of the cascaded network,
a cropping process is implemented. This process involves extracting a
region of interest (ROI) that encompasses the kidneys from the initial
segmentation. The extracted ROI is subsequently utilized as input for
the second stage, facilitating more focused and refined segmentation of
kidney tumors and cysts. Furthermore, to tackle the inherent challenge
of class imbalance, Focal Loss is employed as a mitigation strategy. The
network achieved average Sørensen-Dice scores of 0.933, 0.709, and 0.645
for the classes kidney, masses and tumor respectively. Similarly, the aver-
age surface Dice scores for these classes were 0.866, 0.545, and 0.490. This
led to the 18th position in the KiTS23 challenge.

Keywords: nnU-Net · cascaded network · imbalanced segmentation

1 Introduction

According to the Global Cancer Statistics 2022, the prevalence of kidney tumors
surpasses 420,000 individuals, resulting in approximately 180,000 deaths [2].
Accurate delineation of tumor boundaries provides medical professionals with
essential information regarding size, shape, volume, and spatial characteristics.
This information aids in diagnosis, treatment planning, and monitoring tumor
progression. It significantly influences clinical decision-making, allowing tailored
treatment strategies for individual patients.

Manual segmentation of kidney tumors is a time-consuming and laborious
task, compounded by potential inter-observer variability arising from subjective
perceptions among different medical professionals. Therefore, automated and
precise kidney tumor segmentation holds immense importance in the field of
medical image analysis.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Segmenting small tumors within a large background poses challenges. This
paper primarily focuses on mitigating the issue of class imbalance in medical
image segmentation. A two-stage cascaded framework based on the nnU-Net [4]
architecture is proposed. In the initial stage, a 3D full-resolution U-Net model
accurately delineates the kidney region and extracts the region of interest (ROI).
Subsequently, another 3D full-resolution U-Net model is employed in the follow-
ing stage to further segment kidney tumors and cysts within the extracted ROI.
To address the challenge of class imbalance, Focal Loss is utilized as a mitigation
strategy.

2 Methods

The proposed method focuses on addressing the issue of class imbalance, and
it primarily involves a two-stage segmentation approach using two 3D full-
resolution U-Net models based on nnU-Net. The kidneys, tumors and cysts are
segmented in separate stages, with an intermediate cropping step to extract a
Region of Interest (ROI) containing the kidneys. Finally, an ensemble method
is employed to generate the segmentation results. See Fig. 1.

Fig. 1. Network Architecture

The key of the method can be summarized as follows:

1. A cropping technique is applied to mitigate the volume disparity between the
kidneys and tumors/cysts, thereby reducing the impact of smaller tumor and
cyst volumes on the segmentation of the kidneys and background.

2. The Focal loss function [5] is utilized, which incorporates a weighting mech-
anism based on the difficulty of segmentation. This weighting strategy helps
address the challenges posed by class imbalance.
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2.1 Training and Validation Data

Our submission made use of the official KiTS23 [1] training set alone.

2.2 Preprocessing

In the data preprocessing phase, a pipeline configuration method based on nnU-
Net is employed, incorporating crop, re-sampling, and HU normalization proce-
dures. Initially, the training set was cropped to retain solely the non-zero regions.

Given the presence of anisotropy in the KITS23 data, resampling was per-
formed to achieve a target spacing of [0.98, 0.78125, 0.78125]. Subsequently,
statistical analysis was conducted on the foreground information of the entire
CT image training set. Specifically, the Hounsfield Unit (HU) values of each
image data are clipped to the range of the 0.5 to 99.5 percentiles, computed
from all foreground voxels. Additionally, mean and standard deviation (s.d.) are
calculated based on the global foreground information for subsequent Z-score
standardization.

Moreover, a series of data augmentation operations are integrated into the
training process. These operations, including rotations, scaling, Gaussian noise,
Gaussian blur, brightness adjustments, low-resolution simulation, gamma adjust-
ments, and mirroring, were probabilistically applied to enhance the diversity of
the training samples.

2.3 Proposed Method

Network Architecture
The proposed method employs a two-stage cascaded network structure, utiliz-
ing a 3D full-resolution U-Net based on nnU-Net. Both stages of the network
employ the same 3D full-resolution U-Net architecture. This design aims to avoid
information loss caused by resampling between the two stages due to disparate
resolutions.

In the first stage, following the aforementioned preprocessing operations, the
first 3D full-resolution U-Net architecture is employed to perform kidney seg-
mentation on CT images. Utilizing the obtained segmentation results, extreme
coordinates in six directions are determined, defining the minimum cubic region
that encompasses the kidneys. This region is further expanded by a factor of
1.5 [6] to acquire a Region of Interest (ROI) that fully encapsulates the kidneys.
Subsequently, the ROI is passed as an input into the second stage.

In the second stage, the same 3D full-resolution U-Net architecture based on
nnU-Net is used to further segment the kidneys, tumors, and cysts. Finally, an
ensembling process is applied to combine the segmentation results. By utilizing
the recorded positional information, the results are reconstructed in the original
image, yielding the final segmentation outcome.
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Loss Function
In the first stage, the Dice Loss and Cross-Entropy Loss functions are employed.

In the second stage, the Focal Loss and Cross-Entropy Loss functions are
employed.

Optimization Strategy
During the network initialization phase, to accelerate the convergence speed, we
utilize pre-training weights from “Task135 KiTS2021” on nnU-Net. This choice
is based on the fact that the initial 300 cases of the KiTS23 dataset are identical
to the KiTS21 dataset, and our training set already includes all of these cases.
By incorporating the pre-training weights, the objective was to improve the
network’s convergence rate and facilitate efficient learning.

During the training process, the models are trained using the stochastic gra-
dient descent (SGD) optimizer for a total of 450 epochs. Each epoch comprises
250 batches, with a batch size of 2. The initial learning rate is set to 0.01, and it
is decayed according to the function 0.01×(1− epoch

max epochs )
0.9. The patch size for

both stages is set to [128, 128, 128]. Considering the scarcity of expert-annotated
medical image data and the extensive training time associated with nnU-Net’s
five-fold cross-validation, we aim to maximize the utilization of available cases for
network training while minimizing the time consumption. As a result, the train-
ing data is not partitioned into separate training and validation sets. Instead,
the entire training dataset is exclusively utilized for model training, reserving
the test set solely for the purpose of evaluating the network’s segmentation per-
formance. Furthermore, all other hyperparameters follow the default settings of
nnU-Net.

3 Results

The proposed models are implemented using nnU-Net framework with Python
3.7 and PyTorch framework on NVIDIA RTX3090 GPU with 25.4 GB Memory.

A total of 489 cases were included in KiTS23 dataset, with 450 cases used
for training and 39 cases reserved for testing purposes. The segmentation results
for each class is evaluated using the Sørensen-Dice and Surface Dice coefficient.
On the test set, we use the official test program [3] of KiTS23 and the net-
work achieved Sørensen-Dice scores are 0.921, 0.727, and 0.708 for the kidney,
masses and tumor respectively. Additionally, the mean Surface Dice scores for
the same classes were 0.854, 0.573, and 0.544, respectively. Detailed test results
are presented in Table 1.

In the evaluation conducted on the additional 100 test sets provided by
KiTS23 official dataset, our network achieved an average Sørensen-Dice of 0.763,
an average Surface Dice of 0.634, and a tumor Dice of 0.645. Detailed official
results are presented in Table 2.

Some of the results predicted by the model are illustrated in Fig. 2.
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Table 1. Experiment results on the test set (splitted by ourselves)

Kidney Masses Tumor Average

Dice 0.921 0.727 0.708 0.785

Surface Dice 0.854 0.573 0.544 0.657

Table 2. Official results from the leaderboard

Kidney Masses Tumor Average

Dice 0.933 0.709 0.645 0.763

Surface Dice 0.866 0.545 0.490 0.634

Fig. 2. Segmentation results from our Network

However, there are some cases where the segmentation results are not sat-
isfactory due to certain reasons. For instance, in case 582, an extremely rare
morphology of the kidney was observed, known as horseshoe kidney, where the
two kidneys are fused together and form a U-shaped structure. See Fig. 3.

Fig. 3. Unusual anomaly observed in case 00582
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For example, in case 586, the symptom pattern of the patient is significantly
different from the majority. The volume of the cysts is much larger than that
of the tumors, and the majority of the cysts are located outside the kidneys.
Unfortunately, our segmentation results erroneously classified some of the cysts
as tumors. See Fig. 4.

Fig. 4. Unusual example and our segmentation results

4 Discussion and Conclusion

In the work, a novel two-stage cascaded framework based on the nnU-Net archi-
tecture was proposed to address the challenge of accurate and automated seg-
mentation of kidneys, kidney tumors, and kidney cysts in CT scans. The key
contributions of the proposed method were the implementation of a cropping
technique to mitigate volume disparity and the utilization of Focal Loss to
address class imbalance. The average Dice and Sørensen-Dice coefficients for
the segmentation results are 0.785 and 0.657, respectively.

As newcomers in this field and facing time constraints, there is ample room
for improvement in our results. We would like to express our gratitude to the
organizers for providing us with this valuable opportunity. Although our results
may not be flawless, our participation has allowed us to gain valuable insights
and knowledge in the process.
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Abstract. Kidney cancer, also known as renal cell carcinoma, is a malig-
nant tumor that originates in the kidneys. It is one of the most common
types of cancer affecting the urinary system. Kidney tumors can vary in
size, location, and aggressiveness, making early detection and accurate
diagnosis crucial for effective treatment planning. The proposed method
makes use of nnU-Net which is a self-adapting semantic segmentation
method, to segment the kidney, tumor and cyst. The proposed neu-
ral network model was trained using the datasets provided by the 2023
Kidney and Kidney Tumor Segmentation Challenge hosted by MICCAI
2023 conference. The proposed methodology leveraged the power of deep
learning to yield high segmentation accuracy.

Keywords: computed tomography scans · deep convolutional neural
network · kidney · tumor · cyst · image segmentation

1 Introduction

Kidney cancer, also known as renal cell carcinoma (RCC), is one of the most
prevalent malignancies worldwide, with more than 330,000 new cases being diag-
nosed annually [6]. The number of cases for kidney tumors have been increasing
since the past few decades [2]. It is characterized by the uncontrolled growth of
abnormal cells within the kidney. Accurate and precise segmentation of kidney
tumors and cysts plays a crucial role in the diagnosis, treatment planning, and
monitoring of kidney cancer [7]. In recent years, deep learning techniques, such as
the nnU-Net framework [3], have shown remarkable potential in medical image
segmentation tasks. nnU-Net is a state-of-the-art deep convolutional neural net-
work architecture that has been successfully applied to various medical imaging
tasks. The framework leverages a cascaded U-Net architecture [5], which consists
of multiple nested U-Net subnetworks. The network is trained using a combina-
tion of dice and cross-entropy loss functions, with extensive data augmentation
techniques to enhance robustness and generalization. nnU-Net has demonstrated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Heller et al. (Eds.): KiTS 2023, LNCS 14540, pp. 120–125, 2024.
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remarkable success in various medical imaging applications, including segmen-
tation of organs, tumors, lesions, and abnormalities. Its flexibility, adaptabil-
ity, and superior performance make it a valuable tool for precise and accurate
medical image segmentation tasks. This paper presents an approach for kid-
ney, tumor, and cyst segmentation through deep convolutional neural networks
(CNNs), using the nnU-Net architecture. The proposed methodology aims to
leverage the power of deep learning to achieve accurate and robust segmenta-
tion of the kidney, tumor and cyst structures in medical images, particularly
in computed tomography (CT) scans. The proposed neural network utilized for
this challenge was trained on a dataset consisting of 489 cases of patients who
underwent cryoablation, partial nephrectomy, or radical nephrectomy for sus-
pected renal malignancy. These cases were collected from the years 2010 to 2022
at a M Health Fairview medical center. The CT scan dataset was provided by
the 2023 Kidney and Kidney Tumor Segmentation Challenge organizers.

2 Methods

The complete workflow, encompassing both the training and inference stages, is
visually illustrated in Fig. 1. Our segmentation approach for kidney, tumor, and
cyst regions employed the nnU-Net architecture, without any modifications or
adaptations.

Fig. 1. The proposed neural network based solution to segment the kidney, tumor and
cyst from abdomen CT scans.
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2.1 Training and Validation Data

Our submission made use of the official KiTS23 training set alone. The dataset is
composed of 599 cases with 489 allocated to the training set and 110 in the test
set. Only the training set images and ground truths were available, whereas the
test set images and ground truths were not revealed to the challenge participants.
The challenge training set data (489 cases) was split to 391 training and 98
validation cases for the model. The CT scans are saved as 3D volumes and the
dimension range from (512 × 512 × 29) to (512 × 512 × 1059). The annotated
ground truths contain labels comprised of the kidney, tumor and cyst.

2.2 Preprocessing

The dataset’s header information containing the position and orientation details
of the 3D volume, was removed before the preprocessing step, as we found it
to give improved model performance. The preprocessing method involves using
the pipeline built with in the nnU-Net architecture. The steps carried out are as
follows:

1. Cropping. Data undergoes cropping to regions of non-zero values. This crop-
ping process is particularly beneficial as it reduces the size of the data and
subsequently minimizes the computational burden.

2. Resampling. All data is adjusted to median voxel spacing of the dataset.
This ensures uniformity across different scans. Image data is resampled using
third-order spline interpolation, which allows for smooth transformations,
while the corresponding segmentation masks are resampled using nearest
neighbor interpolation to maintain the integrity of the binary segmentation
information.

3. Normalization. All intensity values within the segmentation masks of the
training dataset are collected. The entire dataset is normalized by clipping the
intensity values to the 0.5th and 99.5th percentiles of the collected values. This
helps to mitigate the impact of outliers. Additionally, a z-score normalization
is applied using the mean and standard deviation of all the collected intensity
values.
If the cropping step significantly reduces the average size of patients in the
dataset by 1/4 or more in terms of voxels, the normalization is performed
only within the mask of nonzero elements and all values outside the mask are
set to 0.

2.3 Proposed Method

The model is trained from scratch and evaluated using 5-fold cross validation on
the training set. The network uses a combination of dice and cross-entropy loss
as the loss function [3].

Ltotal = Ldice + LCE
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In our optimization strategy, we employ the Adam optimizer with an initial learn-
ing rate of 3 × 10−4 for all experiments. To ensure efficient learning, we monitor
the exponential moving average of the training loss. If there is no improvement
in this loss for 30 epochs, we adjust the learning rate by reducing it by a factor
of 5. If the exponential moving average of the validation loss does not improve
by more than 5 × 10−3 within the last 60 epochs and the learning rate drops
below 10−6, the training process is stopped.

To prevent overfitting, the nnU-Net performs a variety of data augmentation
techniques during training, which includes random rotations, random scaling,
random elastic deformations, gamma correction augmentation and mirroring.

To increase the stability of the network, patch sampling is done, where a
third of the samples in a batch have atleast one randomly chosen foreground
class.

The neural network is trained for 1000 epochs, where an epoch is the iteration
over 250 training batches. The training took around 3 days (∼70 h) on the dataset
using NVIDIA Tesla A100 (40 GB memory) GPU.

3 Results

The proposed method was quantitatively evaluated over validation CT dataset
from over 98 patients. The validation set was derived from the original training
set, and the ground truth annotations were available. Evaluation criteria in this
research study were based on a method called “Hierarchical Evaluation Classes”
(HECs) employed by the organizers. HECs involve combining classes that are
subsets of another class to compute metrics for the superset. The HECs used in
this study were as follows:

1. Kidney and Masses, which included Kidney, Tumor, and Cyst
2. Kidney Mass, comprising Tumor and Cyst
3. Tumor, focusing solely on Tumor segmentation

Evaluation metrics being used are the Sørensen-Dice and Surface Dice [4]. The
class-wise dice scores are shown below:

Table 1 presents the average Sørensen-Dice and Surface Dice values obtained
on the validation set of CT scans. The algorithm achieved Sørensen-Dice values
of 97.48%, 86.82%, and 84.86% for the kidney and masses, kidney mass, and
tumor HECs, respectively. The Surface-Dice values were similar with 96.70%,
77.97% and 73.98% respectively.

Table 2 presents the average Sørensen-Dice and Surface Dice values obtained
on the test set of CT scans. The algorithm achieved Sørensen-Dice values of
91.8%, 68.5%, and 60.0% for the kidney and masses, kidney mass, and tumor
HECs, respectively. The Surface-Dice values were 84.6%, 53.3% and 45.4%
respectively.

The dice and surface-dice score overall were 0.734 and 0.611 respectively.
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Table 1. The performance of the proposed algorithm on the validation CT datasets in
terms of the Sørensen-Dice and Surface Dice metric. The table reports mean evaluation
metrics for each of the HECs on the validation set as defined by the organizers.

Evaluation Metric Kidney and Masses HEC Kidney Mass HEC TumorHEC

Sørensen-Dice (%) 97.485 81.933 78.272

Surface Dice (%) 96.709 77.979 73.989

Table 2. The performance of the proposed algorithm on the test CT datasets in
terms of the Sørensen-Dice and Surface Dice metric. The table reports mean evaluation
metrics for each of the HECs on the validation set as defined by the organizers.

Evaluation Metric Kidney and Masses HEC Kidney MassHEC TumorHEC

Sørensen-Dice (%) 91.8 68.5 60.0

Surface Dice (%) 84.6 53.3 45.4

Fig. 2. Segmentation results on some test set abdomen CT scan images.

4 Conclusion

In this research study, we employed an nnU-Net approach based on deep con-
volutional neural networks to automatically segment the kidney, tumor, and
cyst regions in CT scans. The proposed methodology was evaluated on a val-
idation dataset comprising scans from 98 patients. To assess the performance,
we converted the ground truth and predicted images into the three hierarchical
evaluation classes (HECs) and employed Deepmind’s Surface Distance library
for evaluation metrics. The results demonstrated a strong agreement between

https://github.com/deepmind/surface-distance
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the automated predictions and manual delineations, as indicated by Sørensen-
Dice coefficient and Surface Dice values. Moving forward, our future work will be
directed towards further improving the model’s performance, specifically focus-
ing on enhancing the dice score for cyst segmentation. This could be achieved by
implementing a nested nnU-Net architecture, utilizing dedicated sub-networks
for segmenting each individual component [1].
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Abstract. The following short paper is an attempt to automate the CT image
segmentation process, through a Deep Learning-based approach, with the aim
of segmenting the kidney and its possible pathological masses as accurately as
possible. It was decided to use a segmentation model of the Encoder-Decoder
type, it was decided to use an EfficientNet-B5 as encoder, and an Unet as decoder,
suitably set up andmodified. It was decided to perform several cascade trainings of
the model, which will be called rounds, at the beginning of each of which a refined
redefinition of the training and validation images was set up, allowing the model
to deal with a large amount of data, increasing its generalisation capacity. Finally,
following a careful search for the best training configurations of the models and
the various training rounds, good results were obtained on the test set, with a
segmentation accuracy of the Kidney + Tumor + Cyst, Tumor + Cyst, Tumor of
97.71%, 81.39% and 73.81% respectively.

Keywords: Segmentation · TensorFlow · Keras

1 Introduction

Kidney cancer is the most common malignancy of the kidney, one of the most common
cancers today andwith highestmortality rate.Generally, the diagnosis is confirmed based
on computed tomography (CT) ormagnetic resonance imaging (MRI), occasionallywith
biopsy. Detecting the possible presence of lesions is a key step in assessing a targeted
treatment with greater likelihood of success for the patient. Segmentation methods are
widely used in this field as they make it possible to identify the organ of interest and,
eventually, malignant, or abnormal bodies. Among the different ways one could consider
manually segmenting the images, as shown below (Fig. 1):

Note that each colour in the segmentation, whethermanual or automatic, corresponds
to a precise class. Shown below is the legend establishing the class-colour association,
which will remain the same throughout the whole paper (Table 1).

Manual segmentation, while being a high-precision method, has significant disad-
vantages both in terms of timing and operator dependence. There is therefore a clear
need for an automatic segmentation method that overcome these limitations.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Heller et al. (Eds.): KiTS 2023, LNCS 14540, pp. 126–138, 2024.
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Fig. 1. Examples of abdominal CT images and corresponding manual segmentation.
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Table 1. Colour-class association of this work.

Background

Kidney

Tumor

Cyst

2 Methods

The method adopted consists of cascade trainings, where the next model is always
better than the previous one in terms of loss on the validation set. At the beginning
of each training session, there is a redefinition of the training and validation volumes,
significantly increasing the number of new images the model sees. More details of this
approach will be given below.

2.1 Training and Validation Data

My submission made use of the official KiTS23 training set alone.

2.2 Preprocessing

In this work each volume represents the set of images of a subject and consists of several
variable sliceswith a size of 512× 512; in case of dimensions different from the common
ones, a resize is performed. The manual mask associated with each image is composed
of four classes: background, kidney, tumor, cyst. The number of slices for each subject
in the CT images varies widely, as can be seen in the following histogram (Fig. 2):

For this reason, in the phase of creating the training volume, it was decided to
randomly take a number of slices from each subject proportional to the number of slices
that each subject has: taking a lot from those who have a lot of slices and a little from
those who have few slices. Proceeding in this way has a twofold advantage:

• You have the possibility of partially taking images from all the subjects in the training
set.

• Each time you redefine the train and validation volume, it will be very different from
time to time.

This happens because the train and validation slices are taken randomly and uniquely;
therefore, in the train volume the images are all different, and furthermore if I redefine
the train and validation volume again, it will be very different from the previous one.
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Fig. 2. Histogram of numerosity of slices per subject in the whole dataset.

This mechanism lends itself very well to cascading training, redefining the train
volumes each time with each training round: in this way the model, after the various
training rounds, gets to see a very large number of images from the dataset, getting better
and better.To reduce the over-fitting of the model that leads to a loss in the ability to
generalize and adapt to new situations, data augmentation of the training set was carried
out. New images were obtained by applying the following operations to the original
training images:

• Random rotations in a maximum range of 23°.
• Random zoom of the images in a range of 28%.
• Randomly changed the width and height dimensions of the images in a range of 21%.
• Randomized horizontal flipping of images.

Finally, it should be noted that no normalisations or subject selections were per-
formed, neither in the train nor in the test phase, not to compromise generalisation
capacity.

2.3 Proposed Method

Through a complete redefinition of the train and validation volume at each successive
round (each round 8000 new images for the training volume and 1200 new images for the
validation volume), the model gets to see a large amount of data, promoting robustness
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of training. In addition, using a highly refined model (EfficientNet-B5 as encoder and
Unet as decoder) appropriately modified and adjusted their parameters, and through a
progressive reduction of the learning rate during the various rounds, great results were
achieved.

2.3.1 Model Architecture

The segmentation model that was used consists of the classical Encoder-Decoder app-
roach. The encoder,which can be considered as theBackbone of themodel, is responsible
for the Feature-Extraction of the CT images; while the decoder, which can be assimilated
to the head, is responsible for the actual segmentation.

The main criterion that was considered to choose the best architecture was the search
for the best segmentation quality vs. computational cost ratio. Various configurations
were observed, combined with each other, and the one that performed best was sought,
keepingmemory occupation as low as possible. Themodels that were tested as backbone
were the known architectures such as: ResNet, the DenseNet, the Inception-v3.

In the end, the backbone that gave the best results for feature extraction fell on the
famous EfficientNet-B5 [3] (Fig. 3).

Fig. 3. Simplifying diagram of the EfficientNet-B5 model.

The MBConv operation is nothing more than a combination of operations that sim-
plify the visualisation of the architecture. Note that the EfficientNet-B5 was trained from
scratch.

Regarding the decoder (also trained from scratch), several architectures were tried,
including Linknet, FPN, PSPNet. Finally, for the same reasons just explained, the best
results were obtained from the Unet architecture, therefore it was chosen [1] (Fig. 4).

Furthermore, the decoder was modified, increasing the number of filters, to have a
more detailed fit to the data distribution, increasing the final performance of the model.
In particular, the number of filters used for the Unet that gave the best results was 512,
256, 128, 64, 32.
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Fig. 4. Simplifying diagram of the Unet model.

2.3.2 Training Schedule

At this point, the details of the organisation of the various training sessions are shown.
Let’s say we run six successive training rounds of the model: the train and validation
volume will be defined six different times. Clearly, for each training round, the model
that forms the initialisation of the next round it is which one that performs better on the
previous round, in terms of loss calculated on the validation set. In the end, the model
that will be taken as the best of all will be the one with the lowest loss calculated on the
validation set.

The pattern of cascading trainings, one after the other, after a redefinition of the train
and validation volume at each round is summarised in the following flow chart (Fig. 5):

It should be clear that the overall training is the result of several rounds performed
one after the other. Regarding individual rounds, it was decided to use the NADAM
optimiser, or Nesterov-accelerated Adaptive Moment Estimation.

The hyper-parameters of the chosen optimisation mechanism were left as the default
ones [2] as some variations in them led to worsening of the results. The learning rate
schedule was changed manually at the beginning of each round. The criterion by which
decreases in the learning rate were made consisted in observing the loss on the validation
set: where this stabilized, it was decreased at the next round. The decreases in the learning
rate were dosed so as not to be too abrupt: every two steps, the learning rate decreases
by one decade. In the first round, the initial value of the learning rate is 0.001, in the
third it is 0.000316, and in the last it is 0.0001, as is shown in the figure below (Fig. 6).
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Fig. 5. Summary flow chart of the overall process of this work.

In the following, the trend in loss (Mean Squared Error) during all training rounds
(six training rounds in cascade in the case of the model recounted in this paper) is
shown. The losses calculated on the training set and on the validation set, as the epochs
of the various training rounds vary:

Although it is not very noticeable from the graph, the loss values on the validation
set are smaller and smaller, confirming that the chosen approach results in a slight
improvement of the model as it progresses. Finally, it should be noted that the model
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Fig. 6. Loss trend on the training set and validation set during the different training rounds.

that is saved during the training set is the one that has a lower loss on the validation
set than the previous models; thus, each successive model is necessarily better than the
previous one, without incurring overfitting problems, since the criterion for choosing
whether or not to save the model depends on the loss on the validation set, and not on
the training set. Therefore, due to the logic of saving, the best model, which was then
used to calculate the results of this paper, is the last model of the last round.

3 Results

As can be seen, the training lasted six rounds, each lasting about 10 h, using an A100
GPU, and the inference times of the trained model are about 50 ms per image.

To evaluate the performance of the model, it was decided to adopt two evaluation
metrics:

• Dice Similarity Coefficient (DSC)
• Relative Volume Difference (RVD)

These metrics have been implemented for the following class groups:

• Kidney and Masses: Kidney + Tumor + Cyst
• Kidney Mass: Tumor + Cyst
• Tumor: Tumor only
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DSC: It is a statistical tool that measures the similarity between two datasets. It is
defined as:

DSC(X ,Y ) = 2|X ∩ Y |
|X | + |Y |

In our case X represents the manual 3D mask of the subject in the dataset and Y the
automatic 3D mask obtained from the model. The values that this parameter can assume
are between 0 and 1. It takes on a value of 1 in the case of a perfect overlap between the
two sets and 0 in the case of no overlap.

RVD: This is a statistical tool that measures the difference between two data sets. It
is defined as:

RVD(X ,Y ) = |Y | − |X |
|X |

where X represents the manual 3Dmask of the subject in the dataset and Y the automatic
3D mask automatic mask obtained from the network output. This parameter has only a
lower bound equal to -1. A negative value indicates under-segmentation while the more
positive the value, the more the algorithm over-segments. Zero represents the optimal
situation.

The one giving the best results in terms of loss was chosen as the final model, with
which the final performances were calculated. The results shown below were calculated
on the entire test and training set (Tables 2 and 3).

Table 2. Metrics that measure the goodness of the segmentation obtained from the model on the
whole test set.

Test Set Mean DSC (%) ± STD Mean RVD

Kidney + Tumor + Cyst 97.71 ± 1.1 −0.0112 ± 0.017

Tumor + Cyst 81.39 ± 17.4 −0.0215 ± 0.659

Tumor 73.81 ± 24.6 −0.1065 ± 0.491

Table 3. Metrics that measure the goodness of the segmentation obtained from the model on the
whole training set.

Training Set Mean DSC (%) ± STD Mean RVD

Kidney + Tumor + Cyst 97.80 ± 0.8 0.0040 ± 0.020

Tumor + Cyst 80.98 ± 19.2 −0.0383 ± 0.622

Tumor 80.74 ± 20.4 −0.1503 ± 0.257

Below are some examples of model segmentation on images belonging to the test
set (Figs. 7 and 8):
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Fig. 7. Comparison between some CT images (1st column), their automatic segmentation made
by the model of this work (2nd column) and their manual segmentation (3rd column).

As can be seen, on average, the model fits the actual distribution rather well.
Let’s talk about the disadvantages of the model.
As might be expected, the results on the Kidney+ Tumor+ Cyst complex are better

than the others, since kidney is the most represented class. It should be noted that the
standard deviations of the Tumor + Cyst and Tumor are particularly high (~20%); this
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Fig. 8. Comparison between some CT images (1st column), their automatic segmentation made
by the model of this work (2nd column) and their manual segmentation (3rd column).

happens because sometimes the model predicts segmentation very accurately, others it
does so less accurately. An example that shows this very clearly is the following situation:

In these cases, the model disregards the presence of the tumor. This causes a decrease
of theDSCmetric, which explains the great variability of the latter in some cases (Fig. 9).
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Fig. 9. Drawbacks. Example of how the model sometimes (rarely) loses sight of the tumor.

Another noteworthy aspect concerns the RVD values, which are more variable in
the masses case; this means that the model sometimes tends to over-segment and sub-
segment approximately symmetrically. In the following is shown a case of over-segment
(Fig. 10):

Fig. 10. Drawbacks. Example of how the model sometimes over-segments pathological masses,
in this case the tumor.

3.1 Performance on Official Test Set

The final proof that measures the model’s actual ability to generalise its task to real
data is to run it on an official test set provided by the challenge organisers. The results
obtained by the author of this paper, taken from the Leaderboard, are shown in the table
below (Table 4).

https://kits-challenge.org/kits23/#kits23-official-results
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Table 4. Metrics that measure the goodness of the segmentation obtained on the official test set
from MICCAI 2023 Leaderboard.

Place Team Average
Rank

Dice Surface
Dice

Tumor
Dice

Kidney
+
Masses
Dice

Masses
Dice

Kidney
+
Masses
SD

Masses
SD

Tumor
SD

20 Antonio
Vispi

20.0 0.719 0.572 0.570 0.941 0.645 0.869 0.453 0.393

As can be seen from the table, all the choices and all the research carried out led the
trained model to reach 20th position in the overall ranking, denoting a fair degree of skill
of the model when compared to real situations. The generalisation ability of the model
is not excellent, albeit discrete. The hypothesised reason for this behaviour is probably
attributable to some overfitting of the model with respect to the data with which it was
trained, together with the sub-optimal combination of training hyperparameters (such as
the loss function, or the optimisation algorithm etc.) or even the architecture itself, for
this model and these data.

4 Discussion and Conclusion

One of the major conceptual problems with the proposed model is that it only makes
inferences about one image at a time, whereas there are correlations between one image
and the next. This limits the skill of themodel as it has no ideawhat is in the previous slice
or the next one, which instead could significantly aid the final segmentation. Moreover,
another limitation of this challenge lies in the nature of the processed images: CT images.
In fact, the latter are affected by a considerable amount of noise, which makes the task
of automatic segmentation rather arduous. Probably to train a model with MR images
instead, would lead to much better results, as the better definition would enable the
models to capture much more intimately the features of the classes of interest in this
challenge.

This short paper discussed the possibility of using an automatic approach, based on
deep learning, for the segmentation of the kidney and its possible pathological masses.
The results obtained bode well for the reliability of this approach, which could become a
significant aid to medical personnel, with the aim of increasingly improving the quality
and efficiency of diagnosis.
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Abstract. We proposed new attention method using attention- unet architectures
that reflects the 3d axial information to learn the spatial features of 3D images. It
showed better performance than baseline unet.
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1 Introduction

In the field of 3Dmedical image segmentation,manymethods includingU-Net is applied
to various applications like cancer diagnosis. Especially, success of image segmentation
using 3DCT Image is important to increase the accuracy of cancer diagnosis by assisting
the doctors. In many medical image challenges, many attendees used u-net [1] architec-
ture and using nn-unet library. nn-unet is very powerful and showed good results in many
applications of 3d Medical Image Segmentation tasks. However, it is hard to modify the
architecture and difficult to experiment various settings because it is too “black-box”.
And attention based architecture showed good performances on many applications like
NLP, Computer vision, and also in medical image segmentation. Thus we proposed new
attention method using attention- unet architectures [2] that reflects the 3d axial infor-
mation to learn the spatial features of 3D images. For implementation, we reconstructed
the learning architectures based on nn-unet and experimented the proposed attention
algorithms. It showed better performance than baseline unet.

2 Methods

2.1 Training and Validation Data

Our submission made use of the official KiTS2023 training set alone.

2.2 Preprocessing

We changed all images into the same resolution because each image has a different
resolution. We resample all cases to a common voxel spacing of 1.8410 × 1.8410 ×
2.3565, and train the network with a patch size 128 × 128 × 128. To deal with the
class imbalance problem, we oversampled the foregroud part which has kidney with
probability of 0.5. Also, to improve the diversity of training data and robustness of
the trained model, we augmented the training dataset with probability of 0.5, such as
Gaussian Noise, GammaTransform, GammaGaussian- blur and so on.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Heller et al. (Eds.): KiTS 2023, LNCS 14540, pp. 139–142, 2024.
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Fig. 1. 3D U-Net architecture and block parameters

Fig. 2. Attention Gate Block

2.3 Proposed Method

Network Architecture. Our Method is based on 3D U-net [1] and Attention U-net [2],
the pipeline consist of two part. First, We use the 3D U-Net as the baseline network
architecture, the block information and some parameter information as shown in the
Fig. 1. To improve the accuracy of the segmentation result, At first we thought of apply-
ing attention to each other in the images. We constructed a model based on the Attention
U-net structure as shown in the Fig. 2. Also we assumed that the image should have
information corresponding to each axis. We present a new methodology for applying
attention based on different axes as shown in the Fig. 3. The axial attention module
composed of convolution and batch normalize each axis. in ZX, YZ and ZY axis respec-
tively. and concatenated same demension of input size. These axial attention module
blocks implemented in every stages of decoder before applying attention gate block of
Attention U-net.

Loss Function and Strategy. We train the model with the combination of dice loss and
cross entropy loss. For cross entropy, we multiplied same weights on all classes. The
stochastic gradient descent (SGD) algorithm with a momentum of 0.99 was adopted as
the optimizer. The learning rate was initialized to 0.01.
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Fig. 3. Pipeline of our proposed method

3 Results

We summarize the quantitative results in Table 1. Dice for kidney, kidneymasses, kidney
tumor are respectively 0.9565, 0.7074, and 0.6388. Surface Dice for masses, kidney
tumor are respectively 0.8240, 0.4350, and 0.3834.
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Table 1. Experiment results

Model Dice Surface Dice

kidney masses tumor kidney masses tumor

Baseline 0.9547 0.7092 0.5805 0.8283 0.4544 0.3594

our 0.9565 0.7074 0.6388 0.824 0.4350 0.3834

4 Discussion and Conclusion

In this challenge, we compared the results of applying the methodology of applying the
Axial Attention module based on 3D U-net. The problem found with the application of
this methodology was still the low surface die score for the tumor class. In order to solve
this problem, we are considering applying attention at the encoder level as well as at the
decoder level.

Acknowledgment. We would like to express our gratitude to the KiTS2023 organizers.
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Abstract. Accurate segmentation of kidney tumors in medical images is crucial
for effective treatment planning and patient outcomes prediction. The Kidney and
Kidney Tumor Segmentation challenge (KiTS23) serves as a platform for evaluat-
ing advanced segmentation methods. In this study, we present our approach utiliz-
ing a Multi-Planner U-Net for kidney tumor segmentation. Our method combines
the U-Net architecture with multiple image planes to enhance spatial information
and improve segmentation accuracy. We employed a 3-fold cross-validation tech-
nique on the KiTS23 dataset, evaluating Mean Dice Score, precision, and recall
metrics. Results indicate promising performance in segmenting Kidney+ Tumor
+ Cyst and Tumor-only classes, while challenges persist in segmenting Tumor+
Cyst cases. Our approach demonstrates potential in kidney tumor segmentation,
with room for further refinement to address complex coexisting structures.

Keywords: Multi-Planner U-Net · kidney tumor · segmentation · KiTS23
challenge

1 Introduction

Kidney cancer represents a significant global health burden, affecting a substantial num-
ber of individuals and resulting in a considerable number of deaths each year. With
kidney tumors being even more prevalent, accurate and efficient radiographic character-
ization of these tumors is of paramount importance for guiding treatment decisions and
predicting patient outcomes. The Kidney and Kidney Tumor Segmentation challenge
(KiTS23) serves as a platform for the development and evaluation of state-of-the-art
automatic semantic segmentation systems to address this critical need.

According to recent statistics [1], kidney cancer is diagnosed in over 430,000 indi-
viduals annually, resulting in approximately 180,000 deaths. Distinguishing between
malignant and benign tumors remains a challenge in current radiographic assessments
[2]. Moreover, while certain tumors are indolent and exhibit slow growth, the risk of
metastatic progression necessitates accurate risk stratification and personalized treat-
ment planning [3]. There is a pressing need for objective and reliable systems capable of
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characterizing kidney tumor images to improve risk stratification and predict treatment
outcomes.

For nearly five years, the KiTS initiative has cultivated a comprehensive, multi-
institutional dataset consisting of hundreds of segmented CT scans featuring kidney
tumors, alongside anonymized clinical information for each case [4]. This publicly avail-
able dataset has not only served as a benchmark for evaluating 3D semantic segmentation
methods [5, 6], but also facilitated translational research in kidney tumor radiomics [7,
8].

KiTS23, the third iteration of the KiTS challenge, builds upon the success of its
predecessors by introducing an expanded training set comprising 489 cases and an
entirely new and previously unused test set encompassing 110 cases. Furthermore, this
year’s competition incorporates cases captured during the nephrogenic contrast phase, in
addition to the previously utilized late arterial phase. This expansion and diversification
of the dataset present a more challenging and clinically relevant context, providing an
opportunity to assess the performance of modern approaches.

In this paper, we present our approach utilizing a Multi-Planner U-Net [9] for kid-
ney and kidney tumor segmentation in the KiTS23 challenge. The proposed method
leverages the advantages of the U-Net architecture, a popular choice for medical image
segmentation tasks. However, we enhance the model by incorporating multiple image
planes, capturing complementary spatial information to improve segmentation accuracy.
By utilizing both axial and coronal planes, our Multi-Planner U-Net aims to provide a
more comprehensive representation of kidney structures and tumors.

2 Methods

The methodology employed in this study can be outlined as follows:

2.1 Training and Validation Dataset

Our submission made use of the official KiTS23 training set alone.

2.2 Pre and Post-Processing

In this step, we took the following steps and during this process, we made sure that the
affine of the images and labels remained the same:

1. Resizing and Normalizing: To overcome limitations in GPU memory and address
inconsistencies in the third dimension of images, the initial step was to resize both
the images and labels to dimensions of (256, 256, 256). Furthermore, the pixel values
of the images were normalized to fall within a range of 0 to 256.

2. Label transformation: For the final data analysis, after completing the training, the
data labels were modified as follows: Kidney, Tumor, and Cyst (if available) were
transformed into Kidney + Tumor + Cyst, Tumor + Cyst, and Tumor only.
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2.3 Proposed Method

MPUnet is based on a modified version of the U-Net architecture, which is a convolu-
tional neural network commonly used for image segmentation. It utilizes a technique
called multi-planar training, where the input image is rotated along different axes to
generate multiple views of the image as shown in Fig. 1. This allows the model to learn
a representation of the 3D image volume and improve generalization.

Fig. 1. This figure shown the two-step process of Multi-planner UNet [9]

The system has a fixed model architecture and a fixed set of hyperparameters, elim-
inating the need for extensive model selection and optimization. It performs well across
different segmentation tasks without task-specific modifications, often achieving state-
of-the-art performance compared to specialized deep learning methods. The MPUnet
framework is open-source and can be used by practitioners without deep learning
expertise.

In this study, a robust evaluation of the proposed methodology for kidney and kidney
tumor segmentationwas conducted using a 3-fold cross-validation technique. The dataset
was randomly divided into three subsets: training, testing, and validation datasets. This
division was performed three times, ensuring comprehensive coverage of the dataset
while minimizing the impact of bias.

During each fold of the cross-validation process, two subsets were utilized for train-
ing themodel, one for testing themodel’s performance, and the remaining subset for vali-
dation purposes. This approach allowed for an accurate assessment of themethodology’s
generalization capabilities and ability to handle diverse cases within the dataset.

3 Results and Discussion

In this study (as shown in Fig. 2), we evaluated the performance of a segmentation
algorithm on three different classes: Kidney + Tumor + Cyst, Tumor + Cyst, and
Tumor only. The evaluation was done using the Mean Dice Score, precision, and recall
metrics.

As shown in Table 1, the evaluation of the semantic segmentation model for kidney
lesion detection revealed varying levels of performance across different classes. In the
training set, the model achieved the highest Mean Dice Score (0.831) in the Kidney
+ Tumor + Cyst class, indicating accurate segmentation of kidney, tumor, and cyst
regions. However, the Mean F1 Score (0.8203) suggested a trade-off between precision
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Fig. 2. The diagram depicts three components: the original image, a ground truthmask displaying
the kidney (in red), tumor (in green), and cyst (in blue) superimposed on the image, and a predicted
mask also overlaid on the image. (Color figure online)

and recall. The Tumor + Cyst class exhibited poor performance with a significantly
lower Mean Dice Score (0.130) and relatively lowMean Precision (0.564) and Mean F1
Score (0.097), highlighting challenges in accurately segmenting tumors and cysts when
present together.

Table 1. Summary ofmean dice score, precision, and Recall score for training and testing dataset.

Training set

Classes Mean Dice Score Mean Precision Mean F1 Score

Kidney + Tumor + Cyst 0.831 0.932 0.8203

Tumor + Cyst 0.130 0.564 0.097

Tumor only 0.26 0.46 0.237

Testing set

Classes Mean Dice Score Mean Precision Mean Recall

Kidney + Tumor + Cyst 0.832 0.936 0.78

Tumor + Cyst 0.19 0.663 0.14

Tumor only 0.35 0.455 0.36

In the exclusive Tumor class within the training dataset, the model achieved a mod-
erate performance level, as evidenced by a Mean Dice Score of 0.26. This suggests a
reasonable ability to detect tumors. A similar pattern was observed in the testing dataset,
where the model effectively segmented instances of the Kidney + Tumor + Cyst class,
achieving a Mean Dice Score of 0.832, accompanied by strong precision (0.936) and
recall (0.78) metrics.

However, when it came to the Tumor + Cyst class, the model’s performance was
notably lower (Mean Dice Score: 0.19, Mean Precision: 0.663, Mean Recall: 0.14).
This indicates challenges in distinguishing between tumors and cysts when they coexist.
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Analyzing the challenge results on the Final test set, the model exhibited a Mean Dice
Score of 0.816 for the Kidney+ Tumor+Cyst class and aMean Dice Score of 0.364 for
masses. By comparing these scores between the training and test sets, it can be deduced
that the model didn’t suffer from overfitting.

Nonetheless, it’s evident that further refinement is required to achieve precise seg-
mentation. While these findings underscore the potential of semantic segmentation
models for detecting kidney lesions, the task of accurately segmenting tumors and
cysts remains intricate, particularly in cases of coexistence. To enhance segmentation
performance, especially for the challenging Tumor + Cyst class—where scores were
consistently low across both training and testing sets—additional research and model
enhancements are imperative.

4 Conclusion

In this study, we introduced a Multi-Planner U-Net approach for kidney tumor segmen-
tation in the KiTS23 challenge. Leveraging multiple image planes, our method exhibited
promising results in segmenting kidney tumors, especially in cases of Kidney + Tumor
+Cyst and Tumor-only. However, the segmentation of Tumor+Cyst cases proved chal-
lenging, revealing the difficulty of distinguishing between closely associated structures.
The cross-validation evaluation highlighted the model’s robustness and generalization
capabilities. While our approach demonstrates potential, future work should focus on
refining segmentation for complex cases, such as Tumor+Cyst, through advanced tech-
niques and additional research.Accurate kidney tumor segmentation holds immense clin-
ical significance, aiding treatment decisions and patient outcomes prediction in kidney
cancer management.
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Abstract. Renal tumor, along with renal cyst, is one of the most com-
mon kidney diseases. As the kidney tumor incidence is increasing, there
is a need for efficient diagnosis and reliable treatment outcomes pre-
dictions. Automatic kidney images characterization and differentiating
between tumors and cysts could help clinicians with these procedures,
providing rapid and repeatable results, free from interobserver variabil-
ity. The aim of this study is to develop a model for segmentation of
kidneys, kidney tumors and cysts on CT scans. For this task we employ
a transformer based architecture - Swin UNETR. We conducted a series
of experiments to determine which hyperparameters improve the overall
model performance measured by Dice score and the model metrics for
each class separately. Our best performing model achieves the following
Dice scores on test dataset: overall: 51.3, kidney + masses: 78.8, masses:
39.6, tumor: 35.5 and the following Surface Dice scores: overall: 22.6, kid-
ney + masses: 36.7, masses: 16.7, tumor: 14.5. Our model ranked 24th
on the leaderboard. The code for our solution is publicly available at
https://github.com/deepdrivepl/kits23.

Keywords: Kidney Segmentation · Renal Tumors · Swin UNETR

1 Introduction

Kidney tumor and cyst are two of the most frequent kidney diseases [5]. Once
detected, the mass is evaluated to be benign or malignant, which determines the
further treatment strategy. The basis for this assessment are Computed Tomog-
raphy (CT) images [3]. To help with risk assessment and prognosis, a number of
nephrometry scores have been developed that use radiomic features [4]. These
scores require segmentation of said structures. However, manual annotation is
time consuming and expensive and thus, automated methods are preferred. The
development of robust kidney, renal tumor and cyst segmentation model would
enable fast score evaluation which would improve the efficiency and quality of
kidney tumor treatment and surveillance.
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2 Methods

2.1 Training and Validation Data

Our submission made use of the official KiTS23 training set alone. We made
split on a sorted list of samples by name and used first 80% as training set. The
rest 20% of training data were used as a validation set and were not used in
training for the final submission.

2.2 Preprocessing

All images’ orientation is changed to RAS. The images are resampled to median
spacing values of 0.78125× 0.78125× 3.0 mm. The HU values are clipped at –200
and 300. To select these values we started with abdomen soft tissue window
(W:400 L:50) as a reference and added an offset to account for possible distribu-
tional shift (eg. due to tumor subtype). Then, the values are normalized.

For inference the image undergoes foreground cropping after aforementioned
preprocessing. The foreground is determined by selecting image values grater
than 0.

2.3 Proposed Method

Network Architecture. As a model architecture we chose Swin UNETR [2]
implemented in MONAI framework [1]. The model consists of 4 stages with 2
layers on each stage. There are 3, 6, 12 and 24 attention heads at each stage
respectively.

Optimization Strategy. We performed a series of experiments and tuned the
following hyperparameters:

– patch size: 64× 64× 64, 128× 128× 128, 256× 256× 32, 512× 128× 32,
– dimension of network feature size: 12, 24, 36, 48,
– class weights: assigned based on classes’ volume percentage or selected by us

after exploratory data analysis and first experiments,
– accumulated batch size: 4, 64,
– label smoothing: 0, 0.1,
– number of training epochs: 100, 200, 300, 400,
– learning rates changes according to OneCycle learning rate policy.

Loss Function. For the loss function we used sum of Dice and Cross Entropy
loss. We addressed class inbalance while performing patches extractions - drawn
patch’s center is a specific class based on the chosen classes’ ratios. Thus, we did
not incorporate class weighting in loss function calculation.

Validation Strategy. We evaluated models performance by calculating overall
Dice score and Dice scores for each class separately. We selected only one model
with the highest Dice scores to be our final solution. We do not make a models
ensemble.
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Table 1 shows results on validation set broken down by class for some of
our models trained with different hyperparameters listed under Optimization
strategy subsection. Our best performing model is marked in bold.

Table 1. Models metrics on validation set. Lower indices denote: k - kidney, t - tumor,
c - cyst. Default setting: One Cycle Learning Rate and 100 epochs, max LR at 10%,
accumulated batch size 4, no class weighting. Abbreviations: f - dimension of network
feature size, CW - class weighting, BG - loss including background score calculation,
E - epochs, Acc - gradient accumulation after given number of batches.

Architecture Schedule Patch size Dice Dicek Dicet Dicec

SwinUNETR f24 3e-4 643 39.3 62.9 13.2 41.8

SwinUNETR f24 3e-4 1283 42.3 80.3 34.9 11.8

SwinUNETR f24 CW 3e-4 2562× 32 41.3 61.8 18.1 43.9

SwinUNETR f24 200E CW 3e-3 BG Acc64 1283 48.3 73.6 27.5 43.9

SwinUNETR f24 CW 3e-4 2562× 32 44.3 66.7 22.2 43.9

SwinUNETR f24 CW 3e-4 BG 2562× 32 47.3 72.0 26.0 43.9

SwinUNETR f12 200E CW 3e-3 BG Acc64 1283 47.4 77.8 28.6 35.7

SwinUNETR f24 200E CW 3e-3 BG Acc64 1283 46.3 72.6 22.3 43.9

SwinUNETR f36 CW 3e-3 BG Acc64 1283 46.1 72.1 22.2 43.9

SwinUNETR f48 CW 3e-3 BG Acc64 1283 43.7 69.8 21.4 39.8

SwinUNETR f12 400E CW 3e-3 BG Acc64 1283 51.5 76.2 34.3 43.9

3 Results

Our best model takes as an input 3D CT scan divided into smaller patches of
size 128× 128× 128. During training random patches were extracted from the
volume with the following ratios determining the specific class to be the center
of the patch: background - 1, kidney - 5, tumor - 10, cyst - 20. During inference
sliding window method was used with 0.5 patches overlap and Gaussian-weighted
averaging. The model was trained for 400 epochs with RAdam optimizer, weight
decay 1× 10-6 and OneCycle learning rate policy (learning rates: initial 3× 10-4,
maximum 3× 10-3 at 20th epoch, final 3× 10-5). We performed gradient accu-
mulation every 64 batches. For Cross Entropy loss we used label smoothing 0.1.

The inference of a single 3D image requires 6 GB on a GPU and takes 15 s
with sliding window batch size 1 and 0.5 overlap using 16-bit floating-point
precision.
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Table 2. Challenge specific metrics of our best model on validation and test set.

dataset Dice ↑ Surface Dice ↑
overall kidney +

masses
masses tumor overall kidney +

masses
masses tumor

validation 52.3 85.9 36.6 34.3 31.9 62.6 17.5 15.6

test 51.3 78.8 39.6 35.5 22.6 36.7 16.7 14.5

Metrics of the best model on validation and test set are shown in the Table 2.
These are challenge specific metrics which determine the challenge ranking. We
observe a decrease in almost all metrics for the test set. There is a slight increase
in Dice for masses and tumor.

An example of our best model predictions is shown in the Fig. 1. It shows
potential for improvement, yet the kidney area is correctly determined, thus it
can be a promising baseline for further automatic kidney/tumor/cyst segmenta-
tion model development.

Figures 2, 3 and 4 show examples of errors the segmentation model makes.
Apart from inaccurate objects boundaries, there are difficulties in differentiating
between various types of tissues. Small cysts are often omitted. There also occur
false positive masses located not in the vicinity of the kidneys, however depending
on the target image viewer they may be easily removed during segmentation
analysis by the clinician.

Fig. 1. An example of model prediction shown in axial plane. On the left there are
true masks and on the right there are predicted masks overlayed on the image. Colors
denote: green - kidney, red - tumor, blue - cyst. It can be seen that cyst is confused
with tumor. There is a false positive tumor within the left kidney and small ones above
the right kidney. There is also small false positive kidney tissue above the right kidney.
The slice comes from image case 00494 . (Color figure online)
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Fig. 2. An example of inaccurate predicted kidney boundaries. The colors denote: green
- true positive, red - false negative, yellow - false positive. The false positive region in
the upper fragment of the kidney on the left is false negative cyst. The slice comes
from image case 00496 . (Color figure online)

Fig. 3. An example of a cyst mislabeled
as a tumor. Green mask is true cyst mask
and red mask is predicted tumor mask.
The slice comes from image case 00494 .
(Color figure online)

Fig. 4. An example of inaccurate pre-
dicted tumor boundaries. The colors
denote: green - true positive, red - false
negative, yellow - false positive. The slice
comes from image case 00495 . (Color
figure online)
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Fig. 5. An example of a doubtful cyst label. The slice comes from image case 00491 .

4 Discussion and Conclusion

In this study we evaluated transformer based model for the segmentation of
kidneys and two of their pathologies: tumors and cysts. The model performs best
on kidney, while there is a difficulty with proper tumor and cyst segmentation.
There are challenges like differentiating between tumor and cyst and between
healthy tissue and masses. Moreover, the cyst is underrepresented in the dataset
and occurs only in around half of the images, which contributed to poor cyst
tissue recognition by the model. More experiments on the hyperparameter search
space for the model should be performed.

It would be valuable to consider postprocessing as well, like connected compo-
nent analysis or only specified ROI around kidneys analysis, because our method
suffers from false positive mass detections located further away from the kidneys.
They may be especially numerous when the scan has wide range and apart from
abdomen region contains for example legs or lungs. Eliminating such false posi-
tives in a postprocessing step could greatly improve our performance metrics.

The performance of the model may be impacted by true labels inaccuracies.
We found doubtful labels in the dataset, unfortunately due to lack of a radiologist
in the team we are not able to determine them valid or not. Figure 5 shows an
example of such label.

The future work could include verifying another promising transformer based
architecture - XUnet1. Another curious approach to the problem would be pre-
training the network in a self-supervised manner on a larger, unlabelled dataset.

1 https://github.com/lucidrains/x-unet.

https://github.com/lucidrains/x-unet
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Abstract. Recently Segment anything model (SAM) has shown great
promise for natural image segmentation. This model was trained on by
far the largest segmentation dataset, consisting of over 11 million diverse
images and 1 billion corresponding masks. The dataset’s impressive size
and high quality, combined with the powerful Transformer-based archi-
tecture, enabled the model to grasp a general understanding of objects
and achieve exceptional zero-shot performances, sometimes even outper-
forming fully supervised models.

However, despite the significant advancements within the zero-shot
framework, there are challenges when applying it to more specialized
domains like medical and satellite imaging. Due to the scarcity of images
from those domains in the training corpus, the model is not as accu-
rate as it could be. Additionally in the fields where the segmentation
of only certain, critical areas is desired using the SAM model can be
overwhelming.

In this paper, We aim to make use of different Transfer Learning tech-
niques, such as Feature Extraction and Fine-tuning, and investigate dif-
ferent slight adaptations of the architecture to improve the performance
of the SAM model and achieve high performance on a given medical
image segmentation task.

Keywords: Segment Anything[2] · Semantic Segmentation · Transfer
Learning

1 Introduction

Kidney cancer is a prevalent disease affecting a substantial number of individuals
worldwide, with more than 430,000 new diagnoses and approximately 180,000
deaths reported annually. Detecting and accurately characterizing kidney tumors
presents a significant challenge in clinical practice, as radiographically distin-
guishing between malignant and benign tumors remains a complex task. For
this reason, active surveillance of small renal masses using modern computer
vision techniques is becoming increasingly popular by proving its effectiveness.

This paper aims to address the automated semantic segmentation method
on the dataset provided by the KiTS23 challenge [1] and existing research to
contribute to the improvement of tumor segmentation tasks by utilizing the
latest advancements in the field of computer vision.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. Heller et al. (Eds.): KiTS 2023, LNCS 14540, pp. 156–162, 2024.
https://doi.org/10.1007/978-3-031-54806-2_22
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2 Method

For our project, we have decided to work with the smallest pre-trained model
from the Segment Anything Series, specifically the “vit-b” model. The model
checkpoint is publicly available in Facebook research’s official GitHub repository,
allowing us to access its pre-trained weights.

2.1 Model Architecture

The model has the following network architecture:F1 (Fig. 1).

Fig. 1. Model Architecture [2]

In the first stage, it uses an MAE pre-trained Vision Transformer to produce
high-quality image embeddings. In the second stage, The embeddings together
with the output of the prompt encoder, which encodes the positional information
of the desired area on the image are fed to the lightweight mask decoder, which
is a modified Transformer decoder block followed by a prediction head, generates
the mask prediction.

The SAM model gives an option to incorporate different types of prompts to
provide positional and contextual information. It can be prompted using sparse
prompts in the form of point coordinates (x, y) or bounding box coordinates (x1,
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x2, y1, y2) as well as dense mask prompts. In our study, we opted for bounding
box prompts because of their flexibility and the clarity of emphasis on areas of
interest compared to the potentially ambiguous nature of point prompts.

In a nutshell, given a 3-channel RGB image of shape 3 × 1024 × 1024, the
MAE Vision Transformer generates image embeddings of size 256×64×64. Sub-
sequently, the importance of the regions in the image (and in the feature space) is
emphasized and injected using prompt encoder-generated sparse prompt embed-
dings of size 2×256. These two combined yield a low-resolution prediction mask
of size 256 × 256, which in the final step is post-processed to match the ini-
tial input image. After reviewing the zero-shot performance illustrated in Figure
F2, which was generated using the “Automatic Mask Generation” framework
described in the official segment anything paper [2], we believe, that the embed-
dings generated by the image encoder are of high quality. As a result, we have
made the decision to freeze its parameters. This strategic move will prove advan-
tageous as it significantly reduces computational overhead, especially considering
that the image encoder alone accounts for about 85 % of the total parameters in
the architecture, enabling us to allocate our resources and time efficiently, focus-
ing on re-training or fine-tuning the mask decoder for optimal results (Fig. 2).

Fig. 2. Zero-shot performance of SAM vit-b

2.2 Training and Validation Data

Our submission made use of the official KiTS23 training set alone. We will
use 90% of the available data for training purposes and the remaining 10%
will be reserved for validation purposes, allowing us to assess the effectiveness
and generalization capabilities of the resulting trained models across different
experiments.
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2.3 Understanding and Cleaning Data

Before beginning to process the data, as a first step, we analyzed the dataset and
found 3 outliers in terms of image resolution (case 00160; case 00419; case 00425)
that did not correspond to the 512 × 512 image size. To keep the consistency in
the dataset, we reshaped them using bilinear interpolation.

Moreover, we visualized the average pixel distributions of each case and inves-
tigated the positive and negative sample ratios across different cases. By conduct-
ing this analysis, we gained valuable insights into the class imbalances present
in the dataset. These findings played a crucial role in determining the appropri-
ate resampling strategies and selecting suitable loss functions to tackle the class
imbalance problem.

2.4 Preprocessing

Our approach consists of two main stages. In the first stage, we generate image
embeddings using the image encoder described above. To ensure compatibility
with the Vision Transformer, we perform several preprocessing steps on the
images: Firstly, we convert the images into RGB format, after that we change the
resolution to 1024 × 1024 pixels and finally, we normalize the pixel values of the
images and feed them to the image encoder network. The resulting embeddings
are then saved on the disk and we move on to the second stage and start training
the mask decoder.

2.5 Training

Resampling. In our training process, we handle the batch size as a HyperPa-
rameter and are experimenting with different values, whereas the values of 64
or 128 slices have shown very promising results. Every slice within the batch
is treated as an independent 2D image. This assumption, although restric-
tive, is imperative due to the inherent limitation of the SAM model, which
can only handle 2D images as input. Additionally, efforts to explore alterna-
tive approaches for integrating sagittal or coronal views during training were
unsuccessful. Hereby, we will sample batches by shuffling all cases, nevertheless
maintaining the positive-negative sample ratio in the batch according to our
analysis mentioned in the previous subsection. Moreover, we incorporate several
data augmentation techniques to improve the generalization performance of the
model. These techniques include rotation, scaling, and contrast adjustment.

Optimizer and Loss Function. We train the mask decoder using the AdamW
optimizer with the beta coefficients set to [0.9, 0.999], a weight decay of 0.1, and
a dynamic learning rate. Initially, we set a high learning rate of 5e-5 for a specific
number of warm-up steps. After the warm-up period, the learning rate is decayed
over time using cosine annealing to facilitate effective learning and convergence
of the mask decoder. Regarding the Loss Function, we explored various loss func-
tions to address the class imbalance issue. However, as our primary criterion, we
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selected the weighted sum of Dice and categorical Cross-Entropy loss with class
weights, which were set according to our analysis of average pixel distributions
mentioned in the subsection Understanding and Cleaning Data.

Models. In total 3 different mask decoders were trained.

1. ROI Decoder was trained using a fixed, large box promptF3a to identify
regions of interest (Kidneys) in the given 2D slice. The binary masks pro-
duced by this model aid in the creation of prompts for the second phase of
training, geared towards identifying cysts and tumors. To ensure comprehen-
sive coverage of the complete kidney area, the bounding boxes drawn around
the binary mask instances are intentionally expanded by incorporating a slight
random factor.F3b

2. Tumor/Cyst Decoders were trained separately due to SAM’s difficulty
in identifying multiple objects within a single prompt framework. This issue
will be further discussed, along with other relevant challenges and limitations,
within the upcoming “Discussion and Conclusion” section (Fig. 3).

(a) Prompt used in training of ROI
Decoder

(b) Prompt used in training of Tu-
mor/Cyst Decoders

Fig. 3. Overview of Prompts in different decoders.

Resources. The training process of a single mask-decoder was carried out on a
single GPU with 40 GB of GPU memory, spanning a total duration of two days
(Fig. 4 and Table 1).
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3 Results

(a) Training ROI Decoder

(b) Training Tumor Decoder

(c) Training Cyst Decoder

Fig. 4. Training Overview

Table 1. Results on the official test set

Dice Surface Dice Tumor Dice Kidney+Masses Dice Masses Dice

0.432 0.239 0.222 0.807 0.268

For a detailed overview of the training results, including the model checkpoint
and an example notebook, please refer to the “TransferSAM” repository [4].

4 Discussion and Conclusion

Back in April, when Meta AI introduced the SAM model, discussions began to
circulate about its exceptional performance in segmenting natural images. This
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paper and the method it proposes serve as an experiment to test the model’s
effectiveness in a scenario where the goal is to solely identify certain objects (in
our case kidneys and their masses) in a fully automated fashion without any
human intervention.

Adapting the model for this particular objective posed a formidable chal-
lenge, primarily due to the difficulty of automatically choosing suitable box
prompts. We could not employ “Automatic Mask Generation” framework as
shown in FigureF2, since we were only interested in certain objects and not
all of them. To tackle this hurdle, it was necessary to divide the segmentation
into two phases. In the initial phase, we used fixed-box prompts which enclosed
the complete 2D slice to identify the kidney regions. It is noticeable, that the
model has performed comparably well in this part, considering the fact, that it
handled every slice of a 3D scan as an independent image. This success might
be attributed to kidneys often occupying similar regions as large dense objects,
which allowed the model to generalize prompt encoded information during train-
ing much better as opposed to the second stage where kidney masses were widely
scattered into multiple instances.

From my perspective, the current state of the SAM model is not well-suited
for tackling these kinds of segmentation challenges. The model stands out the
most when employed in combination with human interaction, where the user
provides a precise prompt for a specific object. A comprehensive exploration
of this framework is presented in the MedSAM publication [3] and is definitely
worth checking out.
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