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Abstract. One approach for scaling blockchains is to create bilateral,
offchain channels, known as payment/state channels, that can protect
parties against cheating via onchain collateralization. While such chan-
nels have been studied extensively, not much attention has been given
to programmability, where the parties can agree to dynamically enforce
arbitrary conditions over their payments without going onchain.

We introduce the notion of a programmable payment channel (PPC)
that allows two parties to do exactly this. In particular, our notion of pro-
grammability enables the sender of a (unidirectional) payment to dynam-
ically set the terms and conditions for each individual payment using a
smart contract. Of course, the verification of the payment conditions
(and the payment itself) happens offchain as long as the parties behave
honestly. If either party violates any of the terms, then the other party
can deploy the smart contract onchain to receive a remedy as agreed
upon in the contract. In this paper, we make the following contributions:

– We formalize PPC as an ideal functionality FPPC in the universal
composable framework, and build lightweight implementations of
applications such as hash-time-locked contracts (HTLCs), “reverse
HTLCs”, and rock-paper-scissors in the FPPC-hybrid model;

– We show how FPPC can be easily modified to capture the state chan-
nels functionality FSC (described in prior works) where two par-
ties can execute dynamically chosen arbitrary two-party contracts
(including those that take deposits from both parties) offchain, i.e.,
we show how to efficiently realize FSC in the FPPC-hybrid model;

– We implement FPPC on blockchains supporting smart contracts (such
as Ethereum), and provide several optimizations to enable concur-
rent programmable transactions—the gas overhead of an HTLC PPC
contract is < 100K, amortized over many offchain payments.

We note that our implementations of FPPC and FSC depend on the CRE-
ATE2 opcode which allows one to compute the deployment address of a
contract (without having to deploy it).
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1 Introduction

With the rise of decentralized services, financial products can be offered on
blockchains with higher security and lower operational costs. With its ability
to run arbitrary programs, called smart contracts, and direct access to assets,
a blockchain can execute complex financial contracts and settle disputes auto-
matically. Unfortunately, these benefits all come with a major scalability chal-
lenge due to the overhead of onchain transactions, preventing the adoption of
blockchain services as mainstream financial products.

Payment Channels. A well-known class of mechanisms for scaling blockchain
payments are payment channels [2,14]. Payment channels “off-load” transac-
tions to an offchain communication channel between two parties. The channel is
“opened” via an onchain transaction to fund the channel, followed by any num-
ber of offchain transactions. Eventually, by a request from either or both parties,
the channel is “closed” via another onchain transaction. This design avoids the
costs and the latency associated with onchain operations, effectively amortiz-
ing the overhead of onchain transactions over many offchain ones. While several
proposals improve the scalability of payment channels [3,16,20–22,27–29], they
do not allow imposing arbitrary conditions on offchain payments, which prohibit
fruitful applications requiring programmability.

State Channels. From a feasibility standpoint, the conditions on offchain pay-
ments can be achieved by a stronger notion called state channels. State chan-
nels [4,11,13,15,17,25] allow two parties to perform general-purpose computa-
tion offchain by mutually tracking the current state of the program. The existing
state channel proposals have two major drawbacks in practice.

First, with the exception of [13], state channel constructions require the par-
ties to fix the program, which they wish to run offchain, at the time of channel
setup. This means that no changes to the program are allowed after the parties go
offchain. This is especially problematic in offchain scalability approaches based
on the hub-and-spoke model [10,16,31], where each party establishes a general-
purpose channel with a highly available (but untrusted) hub during setup to
be able to later transact with many other parties without the need to establish
an individual channel with each party (see Fig. 1 Left and Middle). In practice,
parties usually have no a priori knowledge about the specific set of conditions
required to transact with other (unknown) parties.

Second, the complexity of the existing state channel proposals could be
overkill for simple, programmable payments. The authorization of an offchain
transaction via a payment channel is significantly simpler as the flow of the pay-
ments is unidirectional while state channels need to track all state changes from
both parties irrespective of the payment direction. Namely, the state channel is
not a practical solution for achieving programmable payments.

Our Focus. In this paper, we introduce the notion of programmable payment
channels (PPC) that allows the parties to agree offchain on the set of conditions
(i.e., a smart contract) they wish to impose for each of their offchain payments
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Fig. 1. Left: Hub-and-spoke model: Each party creates a single channel with the hub;
Middle: Every pair of parties reuse their channels with the hub to execute different
contracts; Right: PPC between two parties supporting any offchain application.

(see Fig. 1 Right). That is, we achieve lightweight offchain programmable pay-
ments denoted as promises where the logic can be determined on-the-fly after
the channel has been opened.

A classic programmable payment covered by PPC is a hash-time-locked con-
tract (HTLC) [1], which is foundational to the design of (multihop) payment
channels [3,27]. Indeed, most current payment channels already embed HTLCs
for routing. However, many useful applications remain difficult to build on top
of payment channels using HTLCs. Consider the following example. Alice wants
to reserve a room through an established payment channel with the hotel. Alice
would like to send a payment under the following conditions: (1) Alice is allowed
to cancel the reservation within 48 hours of booking to get back all of her funds,
and (2) Alice can get back half of her funds if she cancels the reservation within
24 hours of the stay date. Achieving this simple real-life example of payment
with PPC is simple and straightforward.

Full Version. The full version of this paper is [32].

1.1 Our Contributions

– We propose the notion of a programmable payment channel (PPC) that is
a payment channel allowing two parties to transact offchain according to a
collateral that they deposit onchain and a smart contract that they agree on
offchain. PPC provides the following features:

• Scalability: Only opening and closing the channel require Layer-1 access.
• Offchain Programmability : The PPC protocol stays identical for new pay-

ment logic after the channel is opened.
– We formalize PPC and prove its correctness and security in the universal

composable (UC) framework using a global ledger. In particular, we provide
an ideal functionality FPPC. We then show how to build lightweight imple-
mentations of simple applications such as HTLCs, “reverse HTLCs,” on-chain
betting (and also rock-paper-scissors) in the FPPC-hybrid world.

– We show how PPC can be modified to capture the state channels functionality
where two parties can execute dynamically chosen arbitrary two-party con-
tracts (including those that take deposits from both parties) offchain, namely,



54 R. Kumaresan et al.

to realize FSC in the FPPC-hybrid world. In particular, to launch an offchain
contract, parties only need to make three calls to FPPC to instantiate two
programmable payments.

– We evaluate PPC by instantiating it on Ethereum. We show how the PPC
contract deploys new contracts that embed the conditions of payments. Our
results show that deploying the PPC contract needs about 3M gas, and that
settling onchain in the optimistic case (honest parties) needs only 75K gas. In
the pessimistic case (malicious parties), 700K more gas is needed for a simple
logic such as HTLC.

We note that our implementations of FPPC and FSC depend on the CRE-
ATE2 opcode which allow one to compute the deployment address of a contract
(without having to deploy it). This opcode is available on any EVM (Ethereum
Virtual Machine) based chain (including Ethereum, Polygon, etc.).

Compared to prior formalizations of payment and state channels, our work
shows a practical way to implement a state channel that enables arbitrary
offchain smart contract applications. Additionally, our abstractions of FPPC and
FSC make it more natural to design protocols for applications whose states
depend on the states of other contracts on the blockchain.

We also note that our implementations of FPPC and FSC allow for flexible
reuse of established channels. Exploiting this fact, one can use the abstractions of
FPPC and FSC to efficiently build complex multiparty applications. For instance,
every pair of parties need not establish a PPC channel with each other, and can
instead reuse their existing PPC channels with, say, an untrusted hub.

Similar to payment and state channels, relay nodes (in particular, hub nodes)
in PPC also face scalability concerns, as the money has to be locked for several
rounds. There are known incentivization techniques to mitigate similar issues
that arise in DeFi lending protocols. The same techniques can be applied in our
case as well.

1.2 Related Work

Payment Channels. The key idea behind a payment channel is an onchain
contract: both parties instantiate this contract and transfer digital money to
it. Whenever one party wants to pay another, they simply sign on the other
party’s monotonically-increasing credit. When the two parties want to close the
channel, they submit their final signed credits to rebalance the money in the
channel. No execution happens on the blockchain before closing the channel;
the payment between two parties relies only on exchanging digital signatures.
Payment channels have been heavily studied [2,14,17,23,25,26,29].

State Channels. A proposal for executing arbitrary contracts offchain is state
channels [4,11,13,15,17,25]. The key idea is as follows: (1) the contract can be
executed offchain by exchanging signatures, and (2) the contract can be executed
onchain from the last agreed state to resolve any disagreements. For example,
consider a two-party contract between Alice and Bob, whenever Alice wants to
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update the current state, she simply signs the newer state. Then, she forwards
her signature and requests for Bob’s signature. While Bob may not reply with
his signature, Alice can submit the pre-agreed state to the blockchain with the
contract and execute it onchain. This idea can be naturally extended to multi-
party contracts (e.g., [12,15,25]).

The works of [13,17] are closest to ours. Unlike us, [13] do not provide any
formal proofs or guarantees. As mentioned in [17], their work lacks features
useful for practical implementation. Also, our protocols take advantage of the
CREATE2 opcode which was introduced subsequent to the work of [13]. We fol-
low [5,15–17] to formalize our channel using universal composable (UC) frame-
work with a global ledger. However, these works focus on channel virtualization1

, and are not directly related to this work.

Other Related Work. An excellent systematization of knowledge that explores
offchain solutions can be found in [19]. See Appendix A for the comparison with
rollups, another popular Layer-2 scaling solution [24,30,33]. See Appendix B for
other works that use the CREATE2 opcode.

2 Preliminaries

Network and Time. We assume a synchronous complete peer-to-peer authen-
ticated communication network. Thus, the execution of protocol can be viewed
as happening in rounds. The round is also used as global timestamp. We use

msg
t≤T←↩ P to denote the message will be sent by party P before round T . Sim-

ilarly, we use msg
t≤T
↪→ P to denote that the message will be delivered to party

P before round T .

GUC Model. We model and formalize PPC under global universal composable
(GUC) framework [8,9]. UC is a general purpose framework for modeling and
constructing secure protocols. The correctness and security of protocols rely on
simulation-based proofs. We defer the formal description to Appendix C.1. We
acknowledge that we restrict the distinguisher to a subclass of environments to
simplify the formalizations. This restriction is standard (e.g., [16,17]) and can
be easily removed using straightforward checks.

Cryptocurrency/Contract Functionalities. We follow [15,17] and model
cryptocurrency as a global ledger functionality L̂(Δ) in the GUC framework (cf.
Fig. 9 in Appendix C.2). Parties can move funds from/to the ledger functionality
by invoking other ideal functionalities that can invoke the methods Add/Remove.
Any operation on the global ledger will happen within a delay of Δ rounds,
capturing that this is an onchain transaction.

Adversary. We consider an adversary who can corrupt one party in the two-
party channel. The corrupted party is byzantine and can deviate from the proto-
col arbitrarily. As is standard in the GUC model, the objective of an adversary
1 Virtual channels focus on designing protocols between parties who do not have a

direct channel, but both have a channel with a (common) intermediary.
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is to distinguish the real world from the ideal world. In applications such as ours,
such behaviors could involve stealing funds from a party or a channel, violating
channel restrictions, overriding application logic, state rollback, etc.

3 Programmable Payment Channels

3.1 Defining FPPC

To incorporate programmability into a payment channel, one might hard-code
the logic of an application inside the protocol as a template. However, this app-
roach is not desirable as every new application requires a protocol update that
would also include changes to the existing onchain contract. Motivated by this,
our definition of FPPC allows for on-the-fly programmability as we explain below.

Recall that we call a programmable payment a promise. Concretely, our ideal
functionality FPPC allows the following operations: (1) opening a payment chan-
nel, (2) creating a promise, (3) executing a promise, and (4) closing a payment
channel. Our central observation is that a promise can be viewed as a smart
contract. Specifically, the storage of the promise is captured by the storage of
the contract, and the execution logic of the promise is captured by functions in
the smart contract. The logic in different promises can be different or related,
thereby capturing on-the-fly programmability. Also, importantly, the promise
smart contract itself can be deployed from an appropriately designed payment
channel contract.

Any number of promises can be created by an open channel and may be
concurrently executed. Either party can create a promise to the other party.
Since the payment is unidirectional, we refer to the creating party as the sender
of a promise, and the other party as the receiver of a promise.

Promises can be related to each other in the sense that the state and the
execution logic of a promise can depend on the state and execution logic of other
promises. We capture this by allowing the functions of the promise have access
to its own storage, read access to the storage and functions of other promises
in this channel, and more generally, read access to the storage and functions
of other onchain contracts.2 Note that the execution environment of promises
is quite rich, and we will show various examples of how to use this and certain
caveats associated with what is implementable.

This type of dependence is common in onchain smart contracts especially in
the Decentralized Finance applications. However, capturing this dependence (in
the implementation of FPPC) needs to be done carefully since promises executions
are normally executed offchain, and may sometimes need to be executed onchain
(and the dependence must be preserved even while the execution environment
is changing). Care must be taken to ensure that this change of the execution
environment (i.e., from offchain to onchain) does not affect function output.

2 In Solidity (a high level language for EVM) parlance, promises can also call pure or
view functions in onchain contracts or other promises.
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Promises are executed onchain only if requested by the parties (following
which, further executions related to that promise are carried out onchain).3

Following prior work (e.g., [17]), we differentiate between onchain and offchain
executions in FPPC by the amount of time it takes FPPC to respond to execution
requests. That is, onchain executions are slower and take O(Δ) rounds where
Δ is a blockchain parameter representing the amount of time it takes for the
miners/validators to deliver a new block to the chain.

Each promise resolves to an unsigned integer value denoting the amount that
needs to be transferred from the sender to the receiver. This resolved value is
calculated at the time of payment channel closing, and then the resolved values
of all promises are aggregated to determine the final settlements.

3.2 PPC Preliminaries

Contracts. We define contracts as in [17]. A contract instance consists of two
attributes: contract storage (accessed by key storage) and contract code (accessed
by key code). Contract storage σ is an attribute tuple containing at least the
following attributes: (1) σ.userL and σ.userR denoting the two involved users;
(2) σ.locked ∈ R≥0 denoting the total number of coins locked in the contract;
(3) σ.cash : {σ.userL, σ.userR} → R denoting the coins available to each user. A
contract code is a tuple C := (Λ,Construct, f1, . . . , fs) where (1) Λ denotes the
admissible contract storage; (2) Construct denotes a constructor function that
takes (P, t, y) as inputs and provides as output an admissible contract storage or
⊥ representing failure to construct, where P is the caller, t is the current time
stamp and y denotes the auxiliary inputs; and (3) each f denotes an execution
function that takes (σ, P, t, z) as inputs and provides as output an admissible
contract storage (could be unchanged) and an output message m, where m = ⊥
represents failure.

PPC Parameters. A programmable payment channel is parameterized by an
attribute tuple γ := (γ.id, γ.Alice, γ.Bob, γ.cash, γ.pspace, γ.duration) where (1)
γ.id ∈ {0, 1}∗ is the identifier for the PPC instance (think of this as the address
of the PPC contract); (2) γ.Alice and γ.Bob denote the two involved parties;
(3) γ.cash : {γ.Alice, γ.Bob} → R≥0 denotes the amount of money deposited
by each participant; (4) γ.pspace stores all the promise instances opened in the
channel–it takes a promise identifier pid and maps it to a promise instance; and
(5) γ.duration ≥ 0 denotes the time delay to closing a channel.

Note that the attribute γ.duration was not part of prior channel formaliza-
tions (e.g., [15,17]); we will further clarify it in Sect. 3.3. We further define two
auxiliary functions: (1) γ.endusers := {γ.Alice, γ.Bob}; and (2) γ.otherparty(x) :=
γ.endusers \ {x} where x ∈ γ.endusers.

Promises. We name a programmable payment a promise. Informally, a promise
instance can be viewed as a special contract instance where only one party offers
3 In our implementation, we make the simplifying assumption that once a promise is

executed onchain, all the remaining promise executions happen onchain as well.
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money. Formally, a promise instance consists of two attributes: promise storage
(accessed by key storage) and promise code (accessed by key code). Promise stor-
age σ is an attribute tuple containing at least the following attributes: (1) σ.payer
denotes the party who sends money; (2) σ.payee denotes the party who receives
money; and (3) σ.resolve ∈ R≥0 denotes the amount of money transferred from
payer to payee. A promise code is a tuple C := (Λ,Construct, f1, . . . , fs) similar
to contract code with further restrictions: (1) the unique constructor function
Construct will always set the caller to be the payer in the storage created; and
(2) the constructor function’s output is independent of input argument t, which
is a time parameter capturing the current time of the blockchain. We add these
restrictions to ensure that, even when the promise is registered onchain by CRE-
ATE2, the initial state remains identical.

Diverging from [15,17], we assume that each fi has access to the code and
storage of other promises in the same channel, as well as the code and storage
of all Layer-1 onchain contracts. Formally, we capture this by providing oracle
access to the ideal functionalities. This is why we use the notation fG,γ in the
definition of FPPC (see Fig. 2), i.e., f has oracle access to the storage and the
functions of onchain smart contracts and to the promises in the channel.

3.3 Ideal Functionality FPPC

We propose our PPC protocol under the UC framework following [15–17]. We

first define the ideal functionality F L̂(Δ)
PPC (with dummy parties) which summa-

rizes all the features that our PPC protocol will provide. We use FPPC as an
abbreviation in the absence of ambiguity. See Fig. 2 for the definition of FPPC.
The functionality will maintain a key-value data structure Γ to track all pro-
grammable payment channels between parties. FPPC contains the following 4
procedures.

(1) PPC Creation. Assume party P wants to construct a channel with party Q.
Within Δ rounds, FPPC will take corresponding coins specified by the channel
instance from P ’s account from L̂. If Q agrees to the creation, within another
Δ rounds, FPPC will take Q’s coins. Thus, the successful creation of a initial
programmable payment channel takes at most 2Δ rounds. Note that if Q
does not want to create the channel, P can take her money back after 2Δ
rounds.

(2) Promise Creation. This procedure is used to create a programmable payment
aka promise (offchain) from payer P to the payee Q. The promise instance is
specified by payer’s choice of channel γ, contract code C and arguments for
the constructor function y, and a salt z that is used to identify this promise
instance. Among other things, the ideal functionality ensures that pid :=
(id, C, y, z) does not exist in γ.pspace. Since payee always gains coins in any
promise, we do not need an acknowledgment from the payee to instantiate
a promise. Thus, the creation takes exactly 1 round.4

4 Note that this does not hold for state channels as formalized in [17] where an instance
requires coins from both parties.
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Fig. 2. The ideal functionality F L̂(Δ)
PPC achieved by the PPC protocol.
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(3) Promise Execution. This procedure is used to update the promise instance’s
storage. Specifically, party P can execute the promise pid in channel id as
long as P is one of the participants of the channel. Note that the existence
of pid implies that this instance is properly constructed by the payer via
the promise instance creation procedure. If both parties are honest, the
execution completes in O(1) rounds, inferring no onchain operation (i.e.,
optimistic case). Otherwise, if one of them is corrupt, it relies on onchain
operations which takes O(Δ) rounds (i.e., pessimistic case). Note that, the
adversary can postpone the function execution time, but it cannot block the
honest party from executing it.

In particular, FPPC uses an attribute flag for each promise to trace the
onchain/offchain status. Note that when the promise goes onchain for the first
time, it takes at most 3Δ rounds to put the promise onchain. Once the promise
is onchain, the execution will be taken on Layer-1 in Δ rounds. We follow [17] to
break ties when both parties want to simultaneously execute the same promise,
which includes at most 5 rounds delay.

(4) PPC Closure. When a party of the channel γ wants to close the channel,
FPPC will wait for γ.duration rounds to execute the remaining promises that
have not been finalized. The corresponding procedure in the state channel
functionality of [17] requires that all contract instances in the channel are
finalized in order to close the channel. We cannot imitate this approach
because in our case, the creation of a promise instance need only be authen-
ticated by the payer, and so requiring finality will allow a malicious party
to block closing by simply creating some non-finalizable promise instance.
(Note that in this case it will be the malicious sender who is locking up
its money.) Waiting for γ.duration can be avoided if both parties agree to
cooperatively close the channel.

3.4 Concrete Implementation of FPPC

We show a pseudocode implementation of programmable payment channels con-
tract in Fig. 3. In this subsection, we will detail the methods in the programmable
payment channels contract, and along the way we will discuss the offchain pro-
tocol that is executed to implement FPPC.

The programmable payment channel contract is initialized with a channel id
id, the parties’ public keys vkA and vkB, and an expiry time claimDuration by
which the channel settles the amounts deposited. We track the deposit amount
and the credit amount (which will be monotonically increasing) for the two
parties. We also track a receipt id (i.e., rid) and an accumulator value acc. We will
describe what these are for below, but for now think of receipts as keeping track
of received promises that have been resolved, and the accumulator as keeping
track of received promises that have not yet resolved.

Remark. Since promise executions may take some time (e.g., HTLC, chess), it is
important to support concurrency. Promises issued by a sender are immediately
added to an accumulator associated with the sender (which is maintained by both
parties), and then are removed from the accumulator when they get resolved.
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Fig. 3. PPC Contract
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Just as a regular payment channel, we also provide methods for the parties
to deposit an amount (the pseudocode supports multiple deposits), and also for
initiating the closing of a channel via the Close method. A call to the Close
method will ensure that the channel status is set to “Closing” or “Closed”, and
further, sets the channel expiry time.

During the time that a channel is “Active” parties exchange any number
of payment promises offchain. Each promise P is essentially the smart contract
code describing the logic of the payment. Note that the promise contract logic
may involve multiple steps and parties may concurrently send and receive any
number of promises.

At a high level, the lifecycle of a promise is as follows: the sender sends the
promise offchain, then the sender and the receiver execute the promise contract
offchain. When both parties agree to the value of the final output of the resolve
method on the promise, the sender of the promise signs a receipt signaling the
fulfillment of the promise that reflects the updated credit balance of the receiver.

In more detail, a receipt from a sender consists of

– a monotonically increasing index, which keeps track of the number of fulfilled
promises from the sender,

– a monotonically increasing credit, which keeps track of the sum of all resolved
amounts in the fulfilled promises originating from the sender,

– an accumulator, which keeps track of all the pending promises issued by the
sender, and

– a signature from the sender on all the above values with the channel id.

If the receiver obtains a faulty receipt (or did not receive the receipt, or is
just malicious), then the receiver can deploy the promise onchain via the PPC
contract. Note that in some cases (e.g., promises which involve multiple steps),
it is possible that the sender (as opposed to the receiver) may need to deploy
the promise onchain via the PPC contract.

This brings us to another important detail concerning the offchain execu-
tion of the promises that involve multiple steps (e.g., chess). In honest cases,
parties will need to additionally exchange signatures with each other to commit
to the storage of the promise contract after the offchain execution of individual
steps. If some malicious behavior happens (e.g., some party aborts), to continue
the promise execution onchain (we assume that the party also wishes to sub-
sequently close the channel), the party calls RegisterReceipt with the latest
receipt (along with the signature from the counterparty) that it possesses, and
then calls RegisterPromise with the promise P .
Consistency Between Offchain and Onchain Executions. It is crucial to
ensure that the switching between offchain and onchain is consistent. This is
achieved by allowing parties to submit the latest state to the deployed promise
(as a smart contract). Namely, the smart contract created by the PPC contract
in Fig. 3 using CREATE2 needs to have a function interface to “bypass” its state
to the latest one. This can be trivially realized by including a monotonically
increasing version number to the state, which is signed by both parties during
the offchain execution. (We remark that Item 8 in Fig. 3 will only deploy a smart
contract (as a promise) on its initial state (e.g., an empty chess board).)
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We now detail the components of a promise P :

– P.sender (resp. P.receiver) denotes the sender (resp. receiver) of a promise,
– P.byteCode denotes the smart contract corresponding to the payment logic,
– P.salt denotes a one-time salt chosen by the sender,
– P.addr denotes the address at which the promise will be deployed by the PPC

contract; note that P.addr is derived deterministically from P.byteCode and
P.salt using a collision resistant hash function (e.g., CREATE2 opcode),

– P.rid denotes the latest receipt index at the time of generating this promise,
– P.proof denotes the proof that the promise is contained in the accumulator

(i.e., is unresolved at the time the latest receipt was generated), and
– P.σ denotes the signature of sender on (id, P.rid, P.sender, P.receiver, P.addr).

When RegisterPromise is called (when malicious behaviors happen) with a
valid promise, the PPC contract deploys P.byteCode (i.e., the smart contract asso-
ciated with the payment logic of promise P ) at a predetermined address. The fact
that the contract is deployed at a predetermined address is what makes it possi-
ble to have promises depend on each other (cf. Section 4). Here, we assume that
the PPC contract uses CREATE2 opcode to deploy the contract. In Ethereum,
using the CREATE2 opcode (EIP-1014), contracts can deploy contracts whose
address is set by H(0xFF, sender, salt, bytecode) (where H is a collision resistant
hash function). This capability implies that one can foresee the address of some
yet-to-be-deployed contract.

Following deployment, parties can interact with the deployed promise inde-
pendent of the PPC contract. (Again, they “bypass” to the last agreed state.)
However, note that when a party calls the function RegisterPromise, the chan-
nel automatically goes into a closing state, and then after claimDuration time has
passed, either party can withdraw funds. Thus, it is critical that the promises
exchanged by the parties also meaningfully resolve within claimDuration time.

When a party calls the Withdraw method, the resolve method is called for
each unresolved promise that is registered with the PPC contract. That is, these
promises should be some onchain smart contracts. The value returned by the
resolve method is then added to the credit of the corresponding receiver. Finally,
each party gets transferred an amount that corresponds to its initial deposit and
the difference of the credit that it is owed and the credit that it owes.

We formally state our theorem below. The formal protocols are described in
the full version of our work.

Theorem 1 (Main). Suppose the underlying signature scheme is existentially
unforgeable against chosen message attacks. There exists a protocol working in
GL̂(Δ)-hybrid model that emulates F L̂(Δ)

PPC for every Δ ∈ N such that (1) the
creation of the initial promise instance takes 1 round, and (2) if both parties are
honest, every call to instance execution procedure takes O(1) rounds.

3.5 Lightweight Applications of Programmable Payments

We use programmable payments on PPC to implement many lightweight appli-
cations and report the evaluations in Sect. 3.6. Here, we focus on discussing how
PPC helps us implement these applications as smart contracts.
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Fig. 4. HTLC Contract

HTLC. See Fig. 4 for an implementation of HTLC promises. The constructor
specifies the amount this HTLC is for, and the hash image for which the preim-
age is requested, and the expiry time by which the preimage must be provided.
Observe that these values are specified by the sender of the promise. On send-
ing the preimage to the sender, the receiver will expect a receipt reflecting the
updated credit (i.e., an increase by amount). If such a receipt was not provided,
then the receiver will deploy the HTLC promise contract onchain5 and then exe-
cute the RevealSecret function to lock the final resolved amount to the HTLC
amount. On the other hand, if the secret was not revealed, then when the PPC
channel closes (which we assume happens after the HTLC expiry), the resolve
function will return zero.

Reverse HTLC. See Fig. 5 for an implementation of the reverse HTLC promise.
In reverse HTLC, the sender commits to revealing a hash preimage within a given
expiry time or else stands to lose the promise amount to the receiver. (Note that
the roles are somewhat reversed in a regular HTLC promise.) This is a useful
promise in, e.g., committing a reservation.

To implement reverse HTLC promise, the sender initializes the promise with
the amount, the hash image, the expiry time, and the address of the receiver.
Then the sender would reveal the hash preimage to the receiver offchain, and
provide a receipt amount (reflecting a zero increase in credit). However, unlike
a HTLC promise, here the sender additionally expects an acknowledgment from
the receiver that they received the preimage (in the form of a signature on the
preimage). If the acknowledgment is received, then the sender is assured that the
promise will resolve to zero (since it can always call SubmitAck if the promise gets
deployed onchain after the expiry time), and concludes the promise execution.
Otherwise, the sender continues the promise execution onchain by deploying the
reverse HTLC promise via the PPC contract, and then calling the RevealSecret
method. This ensures that the promise will resolve to zero. Thus, reverse HTLC
is an example (different from HTLC) where the sender might have to deploy the
promise onchain.

5 Note that the deployment byteCode already contains the constructor arguments
hardcoded in it.
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Fig. 5. Reverse HTLC Contract

Fig. 6. Onchain event betting

On-chain Event Betting. See Fig. 6 for an example promise where the sender
is betting that the price of Ethereum will not go above a certain threshold
(say, $2,000) within a certain time period. In such a scenario, the party can
send a promise that reads the price of Ethereum on-chain from an oracle (e.g.,
eth-usd.data.eth). This is an example of a promise that depends on the
state of external onchain contracts. In such cases, it is important to design the
promise carefully as the external contract may change state and cause offchain
and onchain execution of promises to be different. Thus we use the function
getRoundData (say, instead of latestPrice). This way, suppose the receiver
does not send an acknowledgment that the price was indeed above the threshold
(i.e., a receipt reflecting the updated credit), then the sender can deploy the
promise onchain (without worrying about the exact block in which its promise
will appear). In the example, we assume that the roundID values are calculated
offchain and correspond to a time duration that both parties agree on.
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Table 1. Gas prices for invoking PPC contract’s functions.

Function Gas Units HTLC Specific Gas Units

Deploy 3,243,988 Promise 611,296 (w/o. proof)

Deposit 43,010 Promise 626,092 (Merkle-100K txs)

Receipt 75,336 Reveal 66,340

Close 44,324 Withdraw 71,572

Table 2. The gas usage of the different functions of various applications. *:For Resolve
functions we report the execution costs as these functions are view functions. +: The
Reveal functions in the RockPaperScissor contracts need to be called twice to reveal
the commitments for both parties.

HTLC ReverseHTLC OnchainBetting

Deploy 222,795 Deploy 423,265 Deploy 442,479

Reveal 28,391 Reveal 28,413 checkPrice 48,093

Resolve* 4,582 SubmitAck 30,247 Resolve* 4,632

Resolve* 2,499

RockPaperScissor RockPaperScissor-P1 RockPaperScissor-P2

Deploy 534,167 Deploy 598,088 Deploy 381,537

Reveal+ 34,887 Reveal+ 34,773 Resolve* 16,937

Resolve* 9,571 Resolve* 6,573

3.6 Implementation and Evaluation

PPC Gas Usage Costs. We implemented the PPC contract presented in Fig. 3
in Solidity. We evaluate our implementation in terms of Ethereum gas usage. The
PPC contract requires 3, 243, 988 gas to be deployed on the Ethereum blockchain.
While we did not aim to optimize gas costs. the PPC contract is already com-
parable to other simple payment channel deployments 2M+ and 3M+ gas for
Perun [16] and Raiden [3]6 respectively. The gas usage for the remaining func-
tions of the contract are reported in Table 1.

HTLC Application. In the optimistic case after a promise is sent from the
sender, the receiver releases the secret for the HTLC and consequently, the sender
sends a corresponding receipt to the receiver. In such a scenario, the receiving
party will submit the receipt to the contract and close accordingly. However,
in the pessimistic case, where the receiving party releases the secret but does
not receive a receipt, it goes onchain and first submit its latest receipt. Next, it
submits the promise for the HTLC which will be deployed by PPC where the
party can reveal the secret of HTLC. Comparing the two scenarios (cf. Table 1),
we see that the pessimistic case costs about 700K more gas to resolve the promise.

6 https://tinyurl.com/etherscanRaiden.

https://tinyurl.com/etherscanRaiden
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We were able to achieve 110 TPS for the HTLC application end-to-end on a
laptop running 2.6 GHz 6-Core Intel Core i7. The end-to-end process included
random secret creation, hashing of secret, promise creation/verification, secret
reveal/verification, and receipt creation/verification.

Other Applications. For the sake of completeness, we include gas usage costs
for other applications presented in Sect. 3.5, i.e., reverse HTLC, onchain event
betting, and rock-paper-scissors (cf. Appendix D) in Table 2. For the rock-paper-
scissors, we provide two implementations: one using the compiler (cf. Sect. 4),
and one without (i.e., the ad-hoc implementation in Appendix D). This is to
emphasize that our SC from PPC compiler that we present next is highly effi-
cient. Note that all this (i.e., gas cost) is relevant only when one of the parties
is malicious. When both parties are honest, the executions are always offchain,
and the application-specific onchain deployment costs are zero.

Comparing with Prior State Channels. Prior works on state channels
(e.g., [4,17,25]) do not provide concrete implementations, performance num-
bers, or benchmarks. However, we note that, at the very least, state channel
implementations typically require explicit signature verification on the applica-
tion contract—something we avoid in most of our applications above. Further-
more, in multiparty applications where each party has a PPC channel with an
untrusted hub, the onchain complexity in the worst case is only proportional to
the number of malicious parties as opposed to the total number of parties as in
the case with state channels.

4 State Channels from FPPC

On the one hand, our programmable payment channel protocol subsumes reg-
ular payment channel protocols. A simple payment can be captured by payer
P creating an initial promise instance directly constructed as finalized with the
proper amount. On the other hand, it seems that our programmable payment
channel protocol may not subsume protocols for state channels, i.e., execute a
contract where two parties can both deposit coins in. In this section, we first
formalize a variant of state channels that we call FSC that is very similar to
PPC. Then we provide a construction that compiles a contract instance input
to FSC into two promises that can be input to FPPC. That is, we show how to
efficiently realize FSC in the FPPC-hybrid model.

4.1 Modifying FPPC to Capture State Channels

Our formalization of programmable payment channels is heavily inspired by the
formalization of state channels in [17]. In fact, FPPC can be easily modified to
yield a variant of state channel functionality FSC, which can be used to execute
any two-party contract offchain. We call these contracts covenants. Note that
the ideal functionality for state channels FSC allows the following operations:
(1) opening a (state) channel, (2) creating a covenant instance, (3) executing
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a covenant instance, and (4) closing the channel. Covenant instances, unlike
promise instances, do not have a designated sender or receiver. Like FPPC, any
number of covenant instances can be created and executed using FSC. Unlike
FPPC though, the ideal functionality FSC accepts a covenant creation operation
from a party only if the other party consents to it. The covenant instances
allowed by FSC resolve to two integer values (that corresponds to the payout
of each party). Again, this resolved value is calculated at the time of channel
closing, and then the resolved values of all contract instances are aggregated to
determine the final settlements.

4.2 Defining FSC

Just as how FPPC creates and executes promise instances, we will have FSC create
and execute covenant instances.

Covenant Instance. A covenant instance can be viewed as a special contract
instance consisting of two attributes: covenant storage (accessed by key storage)
and covenant code (accessed by key code). Covenant storage σ is an attribute
tuple containing at least the following attributes: (1) σ.resolveA ∈ R≥0 denotes
the amount of money transferred from party B to party A; and (2) σ.resolveB ∈
R≥0 denotes the amount of money transferred from party A to party B. Covenant
code is a tuple C := (Λ,Construct, f1, . . . , fs) similar to contract code. W.l.o.g.,
we assume Construct does not take caller as inputs but it can be incorporated
into y. We note that we do not restrict the independence of the constructor.

See Fig. 7 for the definition of the ideal functionality that captures state
channels. Like FPPC, the functionality FSC contains the following 4 procedures.

(1) State channel creation. Similar to FPPC, a party can instantiate a channel
with another party by sending the channel creation information to FSC. The
operation of this procedure is identical to that of FPPC.

(2) Covenant Creation. The covenant instance is specified by choice of channel
γ, contract code C and arguments for the constructor function y, and a salt
z that is used to identify this promise instance. Among other things, the
ideal functionality ensures that cid := (id, C, y, z) does not exist in γ.cspace.
Note that unlike FPPC, we need an acknowledgment from the counterparty
before creating a covenant instance. Thus, the creation takes more rounds
but optimistically remains O(1).

(3) Covenant Execution. This procedure is used to update the covenant
instance’s storage. The operation of this procedure is identical to that of
FPPC.

(4) State Channel Closure. When a party of the channel instance γ wants to close
the channel, FSC will wait for γ.duration rounds to execute the remaining
covenants that have not been finalized. The crucial difference from FPPC is in
the way in which the credits are calculated (simply because of the difference
in the final values of covenant instances vs. promise instances). We note
that the closure requires extra O(Δ) rounds. Looking ahead, this is because
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Fig. 7. The ideal functionality F L̂(Δ)
SC .
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we “compile” a covenant into two promises on FPPC, and require an extra
function call to settle down the resolved values of them.

Remarks. Our state channel ideal functionality differs from prior formalizations
in many ways. Crucially, it makes explicit the dependence of covenant instances
on other onchain contracts. Also, a covenant instance can depend on other
covenant instances (this is something not considered in prior works).

4.3 Implementing FSC in theFPPC-Hybrid World

Perhaps surprisingly, FPPC can be used to implement FSC. In particular, a
covenant can be compiled into two promises on FPPC that can be used to execute
the covenant offchain.

To implement a covenant creation of a contract c in FSC, we use two promises
p0, p1, one from each endpoint of FPPC. The promise p0 contains all the logic of
the covenant instance c. Note that c will resolve to either (k, 0) or (0, k) (or any
other intermediate value), where k is non-negative. In particular, (k, 0) denotes
that the first party needs to pay k to the second party and (0, k) denotes that
the second party needs to pay k to the first party. Note that the resolved state
of c will be saved in p0 as well. Accordingly, p0 will resolve to 0 in the case of
(0, k), otherwise as k. The resolve method of promise p1 will instead read the
state of p0, and resolves in the opposite direction. That is, p1 resolves to 0 in the
case of (k, 0), otherwise as k. That both parties consent to the contract instance
is captured by requiring each party to provide its promise.

We illustrate this with an example of two-party contract for chess. We assume
that each party puts in $50, and the winner gets $100. Assume that there exists
a smart contract c that contains the entire logic of chess (i.e., checking validity
of a move, checking whether the game has ended, who has won the game, and
the payout to each party, etc.).

To play a game of chess offchain, parties each first create a promise. The
promise from Bob contains all the logic in c and additionally has a resolve method
which will depend on the payout logic in c in the following way: if the winner
is Alice, then the resolve method returns $50, else it returns zero. The promise
from Alice is such that the resolve method invokes the resolve method of Bob’s
promise to get value v and returns $50 − v as the resolved amount.

There exists a protocol that can implement FSC in the FPPC-hybrid model.
The essential step is to compile a covenant into two associated promises
(cf. Figure 8) and then execute them on FPPC. We present this formally as
follows.

Theorem 2. There exists protocol ΠSC working in FPPC-hybrid model that emu-
lates the ideal functionality F L̂(Δ)

SC for every Δ ∈ N. Note furthermore that the
the protocol ΠSC requires only three invocations of FPPC to create a covenant.

Similar to Theorem 1, Theorem 2 can be formally proved by construct-
ing straightforward simulators to translate between covenant and associated
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Fig. 8. The compiled promises from a covenant code C at time t′ and constructor
inputs y, where σ′ := C.Construct(t′, y). CB→A will hard-code σ′.

promises. Note that the crucial point is to argue the rounds taken by the two
worlds are identical. Due to space limitations, we provide the formal description
of the protocol and its analysis in the full version of our work.

5 Conclusions

In this paper we present programmable payment channels (PPC), a new abstrac-
tion that enables payment channels to support lightweight applications encoded
in the form of smart contracts. We show the usefulness of PPC by constructing
several example applications. Our gas cost estimates show us that the applica-
tion implementations are indeed practical on Ethereum (or other EVM chains).
Finally, we also present a modified version of state channels and show how PPC
can also implement state channel applications efficiently.
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