
Mirrored Commitment: Fixing “Randomized
Partial Checking” and Applications

Paweł Lorek1,5, Moti Yung2,3, and Filip Zagórski1,4(B)

1 Wroclaw University, Wrocław, Poland
filip.zagorski@gmail.com

2 Columbia University, New York, USA
3 Google, New York, USA

4 Votifica, Wrocław, Poland
5 Tooploox, Wrocław, Poland

Abstract. Randomized Partial Checking (RPC) [16] was proposed by Jakobs-
son, Juels, and Rivest and attracted attention as an efficient method of verify-
ing the correctness of the mixing process in numerous applied scenarios. In fact,
RPC is a building block for many electronic voting schemes, including Prêt à
Voter [6], Civitas [9], Scantegrity II [5] as well as voting-systems used in real-
world elections (e.g., in Australia [4]). Mixing is also used in anonymous transfers
of cryptocurrencies. It turned out, however, that a series of works [17,18] showed
subtle issues with analyses behind RPC. First, that the actual security level of the
RPC protocol is way off the claimed [16] bounds. The probability of success-
ful manipulation of k votes is (3

4)k instead of the claimed 1
2k

(this difference, in
turn, negatively affects actual implementations of the notion within existing elec-
tion systems. This is so since concrete implemented procedures of a given length
were directly based on this parameter). Further, privacy guarantees [11] that a
constant number of mix-servers is enough turned out [17] to also not be correct.
We can conclude from the above that these analyses of the processes of mixing
are not trivial.

In this paper, we review the relevant attacks, and we present Mirrored-RPC
(mRPC) – a fix to RPC based on “mirrored commitment” which makes it
optimally secure; namely, having a probability of successful manipulation of k
votes 1

2k
.

Then, we present an analysis of the privacy level of both RPC and mRPC.
We show that for n messages, the number of mix-servers (rounds) needed to be
ε-close to the uniform distribution in total variation distance is lower bounded by:

r(n, ε) ≥ log2

(
n
2

)
/ε.

This proof of privacy, in turn, gives insights into the anonymity of various cryp-
tocurrencies (e.g., Zerocash [23]) using anonymizing pools. If a random fraction
q of n existing coins is mixed (in each block), then to achieve full anonymity, the
number of blocks one needs to run the protocol for, is:

rb(n, q, ε) ≥ − log n + log(n − 1) − log(2ε)
log(1 − q2)

.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 3–27, 2024.
https://doi.org/10.1007/978-3-031-54776-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_1

4 P. Lorek et al.

1 Introduction

Mix nets, introduced by Chaum [7], constitute an important technique used in many
privacy-preserving technologies. For instance, mix nets are a crucial part of many
voting systems providing assurance that encrypted ballots posted by voters are cor-
rectly decrypted (and tallied). A list of schemes that use mix nets includes systems
deployed in publicly binding elections: Estonia, Norway, Switzerland, Australia, USA
[4,5,10,13,27]. But applications of mix nets are much wider: anonymous messag-
ing [22], anonymous routing [8], and oblivious RAM [24]. To find a more elaborate
list of applications and techniques for verifiable mix nets the reader is encouraged to
read [15].

This paper focuses on a central prominent technique by Juels, Jakobsson, and Rivest
called Randomized Partial Checking (RPC) [16]. The original Chaumian mix net was
designed in the “honest but curious” model, to guarantee senders’ privacy provided
that at least one mix server is honest. But, a single malicious mix server could replace
any number of ciphertexts. In order to decrease the possibility of this happening, RPC
was proposed. In RPC, the more ciphertexts are replaced by a server the higher the
probability of detecting malfeasance is. The main difference between RPC and other
proof-of-shuffle techniques (like [12,26]) is that RPC is much more efficient than other
techniques, but provides just a strong evidence of correct operations instead of a proof
of correct operations (but luckily, this confidence is sufficient for many applications).
Due to its efficiency, the RPC approach is used in end-to-end voter verifiable systems
like Prêt à Voter [6], Scantegrity II [5], and coercion-resistant Civitas [9]. The above
have been implemented and applied in real elections. Then, as interest in implement-
ing the technique grew, a series of works [17,18] scrutinized it, and showed that the
actual security level of the RPC protocol is way off the initial claim: the probability
of successful manipulation of k votes is (3

4)k instead of 1
2k as claimed in [16]. These

attacks [17] affected the implementations of Scantegrity and Civitas systems. The level
of privacy was affected as well [17]. More on attacks on RPC see Sect. 2.3.

Related Work: Recently [14], a new RPC-type protocol was proposed, where optimal
verifiability tolerance (1

2)k is achieved. The protocol assumes that there is a special audi-
tor that becomes the last mix server. After the auditor/mix server publishes decrypted
messages it reveals its private keys. While such an approach works in theory, the new
protocol role can raise trust-related issues, e.g., now one needs to assume that the special
auditor and the second to last mix server do not cooperate (and this configuration solves
one weakness by introducing another!). Aside from the proposed attacks, the authors
of [18] proposed changes to the protocol that can fix certain attacks, but then they noted
that other attacks (which they, in fact, proposed) are “equally harmful.” Then, given
their finding, they conclude: “This seems to be an inherent problem for RPC mix nets,
without an obvious fix.”

Our Contributions: We present Mirrored Randomized Partial Checking (mRPC), a
protocol that has exactly the same participants, roles, and trust assumptions as the orig-
inal RPC. The only difference is that a (mirrored) commitment (a commitment to a
different value) is published during the protocol execution and one additional value is
opened and checked during the audit phase (per message, per server). These changes,

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 5

in turn, allow us to achieve optimal verifiability tolerance (1
2)k - compared to (3

4)k in
the original RPC. The difference between 1/2k and (3/4)k is highly significant when
considering practical parameters (see Fig. 1). We also show how many mix servers
r(n, ε) are required to mix n messages so that the distribution on permutations (mapping
senders to decrypted messages) is ε-close to the uniform distribution on all n-element
permutations (in total variation distance). Our proof works for both versions of RPC:
Scheme One (Independent Random Selections) and Scheme Two (Pairwise Dependent
Selections)1. Analysis (Lemma 6) of Scheme One is applicable to (un)linkability in
blockchains, while analysis (Lemma 7) of Scheme Two (RPC) is related to anonymity
guarantees of election protocols.

Fig. 1. mRPC guarantees better security level than original RPC. The probability of undetected
manipulation of k messages is (1/2)k for mRPC and (3/4)k for RPC. x-axis corresponds to k-the
number of modified entries; y-axis is the probability of undetectable manipulation.

1.1 Notation

We denote by [n] = {1, . . . , n}. Security analysis uses standard assumptions about
primitives used by Chaumian RPC mix nets: (1) public key encryption scheme
(E = 〈KeyGen,Enc,Dec〉) used for Chaumian RPC to be IND-CCA2-secure [3], (2)
commitment scheme is perfectly hiding and computationally binding (e.g., Pedersen
scheme [21]), (3) the encryption scheme allows for proof of correct decryption.

2 Chaumian Randomized Partial Checking (RPC) Mix Net

We try to closely follow [18] when describing the protocol. A decryption mix net [7]
consists of a public, append-only bulletin board, mix servers M1, . . . ,Mr, message
senders S 1, . . . , S n (sometimes we will call them voters) and auditors.

1 As most authors we refer to Pairwise Dependent Selection scheme as to original RPC.

6 P. Lorek et al.

2.1 Protocol Description

The goal of the protocol: mix servers jointly decrypt messages sent by senders (voters),
while auditors verify if the decryption process was performed correctly. The following
steps are performed.

Setup Phase. Every mix server Mj generates two public/private key pairs
(pk2 j−1, sk2 j−1), (pk2 j, sk2 j) and publishes its public keys pk2 j−1, pk2 j on the bulletin
board.

Submit Phase. Every sender S i chooses her input plaintext mi (sometimes we refer to
mi as to a ballot/vote) and submits to the bulletin board B a ciphertext generated in the
following process. She first encrypts mi using pk2r obtaining ci2r = Enc(pk2r,mi). Then,
she repeats the following process for j = 2r − 1, 2r − 2, . . . , 0:

cij = Enc(pk j, c
i
j+1),

and submits ci0 to the bulletin board B.

Mixing Phase. The sequence C0 =
〈
c1

0, . . . , c
n
0

〉
of ciphertexts submitted by senders to

B is the input to the mixing phase. We denote by C0[i] = ci0 and similarly for other
sequences.

C0 is fetched by the first server M1 which outputs C2 (each Mj performs two mixing
steps C2 j−2 � C2 j−1 and then C2 j−1 � C2 j) that is an input to M2, and so on.

The output produced by Mr (the last mix server): C2r should contain a permuted list
of unencrypted input messages m1, . . . ,mn.

The steps performed by each Mj, j < r are following:

1. Duplicate Elimination. Mj removes duplicate entries from its input C2 j−2, leaving
only a single copy of each entry. Moreover, all messages that correspond to decryp-
tion failures ⊥ are removed. Denote by C′2 j−2 the resulting sequence, and by l ≤ n
the number of messages of C′2 j−2.

2. First Mixing. Mj chooses uniformly at random a permutation π2 j−1 of [l] and posts
on B the sequence C2 j−1, where C2 j−1[i] = Dec(sk2 j−1,C′2 j−2[π2 j−1]).

3. Second Mixing. Mj performs the same steps as during the first mixing: selects uni-
formly at random a permutation π2 j of [l]. Then it posts on B the sequence C2 j where
C2 j[i] = Dec(sk2 j,C′2 j−1[π2 j]).

4. Posting Commitments. Mj posts two sequences of commitments on B:
(a) commitments to the values π−1

2 j−1(1), . . . , π−1
2 j−1(l),

(b) commitments to the values π2 j(1), . . . , π2 j(l).

For the clarity of presentation we assume no duplicate elimination took place, i.e., l = n.

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 7

Fig. 2. Original RPC: commitments to π−1
2 j−1(i) and to π2 j(i) are in shaded squares. Dashed

edges/arrows remain secret.

2.2 RPC Audit

During the audit phase, each mix server Mj opens half of the commitments. A set I j ⊂
{1, . . . , n} is computed by e.g., xor-ing random bit strings provided by the auditors.

AL If i ∈ I j then the mix server Mj is supposed to:
1 open the left link for i, i.e., Mj is supposed to open its i-th commitment from

its first sequence of commitments, which should be a commitment on the value
π−1

2 j−1(i).
2 post a (non-interavtive zero-knowledge) proof demonstrating that indeed
C2 j−1[i] is obtained from decrypting C′2 j−2[π−1

2 j−1(i)] using sk2 j−1.
AR If i � I j then the mix server Mj is supposed to:

1 open the right link: the commitment to the value π2 j(i).
2 post a (non-interactive zero-knowledge) proof that C2 j[π2 j(i)] is obtained from

decrypting C2 j−1[i] using sk2 j.

Set I j defines a corresponding challenge string (also called audit string) Bj =

b j,1b j,2 . . . b j,n for b j,i ∈ {0, 1}, where b j,i = 0 if and only if i ∈ I j.
Example 1 (RPC audit). Let us assume that the jth server committed to the values
presented in the Fig. 2 and during the audit, an audit string Bj = 010 was selected
(I j = {1, 3}). Commitments to π−1

2 j−1(1), π−1
2 j−1(3) and to π2 j(2) are opened. Correspond-

ing proofs of correct decryptions are shown (along solid arrows) e.g., that c2
2 j−1 cor-

rectly decrypts to c1
2 j under the public key pk2 j. It is visualized on Fig. 3.

Fig. 3. RPC audit example for server Mj and audit string Bj = 010. Dashed edges and corre-
sponding commitments remain hidden.

8 P. Lorek et al.

2.3 Attacks on RPC

In this section we describe and analyse attacks on RPC. The first attack was presented
in [18] and later described in [17].

Attacks by the Last Mix Sever. To ilustrate the attack by the last mix-server, let us
consider the following example with n = l = 3 votes. Let m1 = m2 = A (2 votes for
candidate A) while m3 = B (1 vote for B). Say, the honest permutation is π2r = (2, 1, 3)
(Fig. 2), however, Mr is cheating and it publishes commitments to π′2r = (1, 1, 3) (which
is not a permutation) (Fig. 4).

Fig. 4. Example: attack by the last mix server. A vote for B is copied while a vote for A is removed.

The audit string is of the form Br = br,1br,2br,3. The value of br,3 is irrelevant for this
attack, we are thus left with four choices for br,1br,2. All four situations are depicted in
Fig. 5. If br,1 = br,2 = 1 then Mr is asked to open π′2r(1) and π′2r(2) and the cheating
is detected. In all other cases, the cheating is not detected (since there are two entries
pointing to the same element). In other words, one can detect a single message manipu-
lation with probability 1/4.

(a) Challenge: 00 (Ir {1 2}).
Audit passed.

(b) Challenge: 01 (Ir {1}).
Audit passed.

(c) Challenge: 10 (Ir {2}).
Audit passed.

(d) Challenge 11 (Ir).
Audit fails.

Fig. 5. RPC detects a single message manipulation just with probability 1
4 .

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 9

Attacks by Any Mix Server. Here, we present an attack that was proposed in [17].
This attack can be performed by any server. Let l = n = 3 and consider the server Mj

with honest inverse permutation π−1
2 j−1 = (2, 3, 1) (Fig. 2), however the server publishes

commitments to π
′−1
2 j−1 = (1, 3, 1) (Fig. 6).

Fig. 6. Example: attack on any layer by server Mj. The result of the attack can be: a vote for B is
copied while a vote for A is removed.

If the audit string b j,1b j,2b j,3 is such that b j,1 = b j,3 = 0, then the server is asked to
open π

′−1
2 j−1(1) and π

′−1
2 j−1(3) and the manipulation is detected. Note that in any other case

for values of b j,1, b j,3, it is not detected. All four situations for values of b j,1, b j,3 are
depicted in Fig. 7.

Summarizing, such a manipulation is detected with probability 1/4 (and thus it
is undetected with probability 3/4) in case of one manipulation. In general, when k
messages are manipulated, the probability of not detecting it is (3/4)k (for details see
Theorem 1 in [18]).

(a) Challenge: 0 0 (Ir {1 3}).
Audit fails.

(b) Challenge: 0 1.
Audit passed.

(c) Challenge: 1 0.
Audit passed.

(d) Challenge 1 1.
Audit passed.

Fig. 7. RPC detects a single message manipulation just with probability 1
4 .

10 P. Lorek et al.

3 Mirrored Randomized Partial Checking (mRPC)

In this section, we present a fix to RPC which we call Mirrored-RPC (mRPC) protocol
and prove that it guarantees optimal level of manipulation detection i.e., manipulation
of k messages is detected with probability 1 − (1/2)k.

In RPC protocol, each mix server publishes two lists of commitments to the “mid-
dle column” (ciphertexts that are the result of the first mixing phase, see Fig. 2), more
precisely server Mj for each entry i publishes:

– commitments to π−1
2 j−1(i) (where data comes from), and

– commitments to π2 j(i) (where data goes to).

In mRPC commitments are published on the “outer columns” – see Fig. 8. This
change allows for detecting manipulations with higher probability than the original
RPC.

Fig. 8. mRPC: For each entry of a left column, a commitment to “where to” is published and
a commitment to “where from” for entries of a right column is published (In the original RPC
these commitments are only published for the entries that are the result of first mixing.).

3.1 Protocol Description

Setup phase The setup is exactly the same as in the original RPC (Sect. 2.1).

Submit phase This phase is exactly the same as in the original RPC (Sect. 2.1).

Mixing phase The mixing phase stays almost the same as the Mixing phase of the
original RPC (see Sect. 2.1) the only difference is in the part: Posting commitments.

1. Duplicate elimination the same as in original RPC.
2. First mixing – the same as in original RPC.
3. Second mixing – the same as in original RPC.
4. Posting commitments Mj posts two sequences of commitments on B:

(a) commitments to the values π2 j−1(1), . . . , π2 j−1(l),
(b) commitments to the values π−1

2 j (1), . . . , π−1
2 j (l).

Note that RPC in Posting commitments phase in step 4a posts: π−1
2 j−1(1), . . . ,

π−1
2 j−1(l) and in step 4b posts: π2 j(1), . . . , π2 j(l). Similarly as in RPC, for clarity of pre-

sentation, we assume no duplicate elimination took place in mRPC, i.e., l = n.

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 11

3.2 mRPC Audit

During the audit phase, each mix server Mj opens half of the commitments. A set I j ⊂
{1, . . . , n} is computed by e.g., xor-ing random bit strings provided by the auditors. Set
I j defines a corresponding challenge string (also called audit string) Bj = b j,1b j,2 . . . b j,n

for b j,i ∈ {0, 1}, where b j,x = 0 if and only if x ∈ I j.
AL If x ∈ I j i.e., b j,x = 0, then the mix server Mj is supposed to:

1 (bidirectional checking):
(a) publish value y;
(b) then open z = π2 j−1(y) and check if z = x;

2 post a non-interactive zero-knowledge proof demonstrating that indeed C2 j−1[x]
is obtained from decrypting C′2 j−2[y] using sk2 j−1.

AR If x � I j i.e., b j,x = 1, then the mix server Mj is supposed to:
1 (bidirectional checking):

(a) publish value y;
(b) open the commitment to z = π−1

2 j (y) and check if z = x.
2 post a non-interactive zero-knowledge proof that C2 j[y] is obtained from

decrypting C2 j−1[x] using sk2 j.

Example 2 (mRPC Audit). Let us assume that the jth server committed to the values
presented in Fig. 8. The audit is presented in Fig. 9. During the audit phase, an audit
string b = 010 = b1b2b3 (defining the corresponding I j = {1, 3}). The jth server needs
to publish:

AL for x ∈ {1, 3}:
1. for x = 1, y1 = 2, z = π2 j−1(y1) = 1 = x, a non-interactive ZKP that C2 j−1[1] is

obtained from decrypting C2 j−2[2];
2. for x = 3, y3 = 1, z = π2 j−1(y3) = 3 = x, a non-interactive ZKP that C2 j−1[3] is

obtained from decrypting C2 j−2[1];
AR for x ∈ I jc = {2}:

1. for x = 2, y2 = 1, z = π−1
2 j (y2) = 2 = x, a non-interactive ZKP that C2 j[1] is

obtained from decrypting C2 j−1[2].

Fig. 9. mRPC audit example for server Mj with Bj = 010. Dashed edges and corresponding
commitments remain hidden.

12 P. Lorek et al.

3.3 Attack Examples on mRPC

Attack by the Last Mix Server. Let us reconsider the attack described in Sect. 2.3.
The dishonest ”permutation“ together with all commitments is depicted in Fig. 10.

Fig. 10. Attack by the last mix server in mRPC.

For br,1 = br,2 = 1, the cheating is detected (Fig. 11 (d)). However, this is not the
only situation when the manipulation is detected.

– Assume that the server commits to π
′−1
2r = (1, ∗, 3). Consider br,1 = 0, br,2 = 1. In

RPC server Mr is asked to open π′2r(2) = y = 1, in mRPC the server is additionally
asked to open π

′−1
2 j (y) = π

′−1
2 j (1), which is 1 and the cheating is detected – Fig. 11(b).

– Assume that the server commits to π
′−1
2r = (2, ∗, 3). Consider br,1 = 1, br,2 = 0.

Then Mr is asked to open π′2r(1) = y = 1 and additionally π
′−1
2r (1) = 2. This case is

presented in Fig. 15(c).

In any case (for manipulated permutations), the manipulation will caught for 2 audit
strings br,1br,2 out of 4, thus with probability 1/2. All options are depicted in Fig. 11.

(a) Challenge string: 00 .
Audit passed.

(b) Challenge string: 01 . For x 2 value y 1
is published but opened commitment 1 x.
Audit failed.

(c) Challenge: 10 .
Audit passed.

(d) Challenge 11 . For x 2, y 1 is published
but opened commitment is for 1 x. Audit
failed.

Fig. 11. A view of a bulletin board after the audit step of mRPC.

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 13

Attacks by Any Mix Server. Let us continue the setup Sect. 2.3. The attack, in the
presence of additional commitments is presented in Fig. 12.

Fig. 12. Attack on any layer in mRPC.

Again, once b j,1 = b j,3 = 0, the manipulation is detected. Consider cases:

– Assume that server commits to π′2 j−1 = (3, ∗, 2). Consider b j,1 = 0, b j,3 = 1. In RPC

server Mj is asked to open π
′−1
2 j−1(1) = y = 1, in mRPC server is additionally asked

to open π′2 j−1(1) which is 3 and the manipulation is detected.
– Assume now that the commitment is π′2 j−1 = (1, ∗, 2). Then in case b j,1 = 1, b j,3 = 0

the server must open π
′−1
2 j−1(3) which commits to 1.

In any case (for manipulated permutations), the manipulation will be detected in
two out of four possibilities for b j,1 and b j,3, i.e., with probability 1/2. All the situations
(for π′2 j−1 = (3, 1, 2)) are presented in Fig. 13, other cases are ”symmetric“ (see Fig. 15).

(a) Challenge: 0 0.
Adit failed.

(b) Challenge: 0 1.
Audit failed.

(c) Challenge: 1 0.
Audit passed.

(d) Challenge 1 1.
Audit passed.

Fig. 13. mRPC ggdetects a single message manipulation with probability 1
2 . For the same settings,

RPC succeeds in detecting only with probability 1
4 .

14 P. Lorek et al.

The same attack as in Sect. 2.3 (Attacks by the last mix server) is presented, except
in the first row of the last column, commitment is to row 2 from the middle column.
The attack is then detected for different challenge strings but still with 50% probability
(Fig. 14).

Fig. 14. Attack by the last mix server in mRPC.

(a) Challenge: 00 .
Audit passed.

(b) Challenge: 01 .
Audit passed.

(c) Challenge: 10 .
Audit fails.

(d) Challenge 11 .
Audit fails.

Fig. 15. The same attack as in Sect. 3.4 is presented but with attacker committing to different
values.

3.4 Security of mRPC

Lemma 1. For mRPC, the probability of undetectable modification of k entries by any
mix server Mj, during one mixing step is upper bounded by 1

2k .

Proof. We will show the proof for an odd (2 j − 1) mixing step, the reasoning for an
even (2 j) mixing step is similar. The input to the mix server Mj is a list of ciphertexts
C2 j−1 =

〈
c1

2 j−1, . . . , c
n
2 j−1

〉
published by the server Mj−1 (or the users/voters for j = 1).

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 15

During the Mixing phase, Mj posts:

– the result of the First mixing, ciphertexts: C2 j =
〈
c1

2 j, . . . , c
n
2 j

〉
,

– commitments t1, . . . , tn.

If Mj is honest then for some π2 j−1 ∈ S n and y = π2 j−1(x) for all x ∈ [n] the
following equations hold:

tx = Comm(y), (1)

cy2 j = Decsk2 j−1 (cx2 j−1). (2)

During the audit step if bj,y = 0 (y ∈ I j) the following steps are performed:

AL.1 (bidirectional checking):
1. Mj publishes z,
2. Mj opens commitment tz = Comm(y′) to y′,
3. auditor checks if y = y′.

AL.2 (proof of correct decryption):
1. Mj publishes the proof that Eq. 2 holds for y and z,
2. auditor verifies the proof.

If Mj is dishonest and decides to manipulate k entries from positions in a set A ⊂
{1, . . . , n} (|A| = k) it means that Mj will not be able to pass AL.2 part of the audit for
x ∈ A.

Mj may try to post commitments to different positions but since the commitment
check AL.1 is bidirectional, a single entry from C2 j−1 can be mapped only to a single
entry in C2 j. And since C2 j lacks entries corresponding to ciphertexts from positions
in A it will be detected in the AL.2 part of the check whenever for such an entry a
challenge bit 0 will be chosen.

Since there are k positions with that property, the probability of not detecting that k
entries were dropped (replaced) is equal to 1/2k.

The main theorem is a direct conclusion from Lemma 1.

Theorem 1 (mRPC security). For mRPC, the probability of undetectable modifica-
tion of k entries by any mix server is upper bounded by 1

2k .

4 Privacy Guarantees of RPC and mRPC

4.1 Constant Number of Mix-Servers

In [11] it was shown that for a scenario when votes are cast only on one of the two
candidates, the constant number of mix servers is enough.

Here we show that for arbitrary messages (e.g., for Australian-type ballots), a con-
stant number of mix-servers is not enough.

Example 3 (Bulletin board leaks information). RPC auditing process may reveal a lot
of information about voters’ preferences. Figure 16 presents an extreme example. There
are two candidates A, B and 8 voters v1, . . . , v8. With only r = 2 mixing servers, a lot
of information may be available to an adversary, even when he just observes publicly
accessible information.

16 P. Lorek et al.

Fig. 16. RPC for small number of mix servers may reveal a lot of information. Just by observing
bulletin board, an adversary may say that voters {v1, v4, v7, v8} cast votes {A, B, B, B} while voters
{v2, v3, v5, v6} cast votes: {A, A, A, B}.

The situation becomes much worse if an adversary knows exactly how some voters
voted. For the example at Fig. 16, knowlede that v4 voted for A reveals that v1, v7, v8

voted for B.

Example 4 (Anonymity for arbitrary messages.). For a general case, when there are
more types of messages (e.g., ballots in Australia), senders’ privacy is still at risk. In
the most general case, every message is unique. The insight behind privacy definition is
achieved in the following way: for an adversary, every permutation should be possible
with almost the same probability – i.e., distribution on permutations generated by the
RPC process should be close to the uniform distribution.

By π we denote a permutation obtained by applying permutations π1, . . . , π4, and
revealing parts of them during the audit phase (see Fig. 17). It is easy to see that
P [π = (∗, ∗, 5, ∗, ∗, 7, ∗, ∗)] = 0 = P [π = (∗, ∗, 7, ∗, ∗, 5, ∗, ∗)] (it is impossible that mes-
sage 5 was sent by v3 at the same time when message 7 was sent by v6, and vice versa).
There are a lot of other permutations that are impossible to achieve.

Fig. 17. RPC for a small number of mix servers may reveal a lot of information. The probability
that senders v2, v3 sent messages 5, 7 respectively is equal 0. One can exclude a lot of other
combinations. A similar analysis can be applied to linkability of many crypto-currencies, e.g.,
Zerocash [23].

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 17

Definition 1. For mix-server entries xi, x j, we denote by Mat(xi, x j) = t if Mt was the
first mix-server for which entries were both audited during the same step. By audited by
server Mk we mean that both xi and x j were assigned the same audit bits.

Note that if entires xi, x j were audited in Mt then the entries were mixed – someone
observing only revealed links does not know their relative ordering.

Lemma 2. For any entries xi, x j the probability that they will be mixed for the first time

in the k-th mix-server is equal to 1
2k , i.e., P

(
Mat(xi, x j) = k

)
= 1

2k .

Lemma 3. Let r be the number of mix-servers, and n be the number of processed
entries. If

(
n
2

)
≥ 2r then with high probability there exists a pair of entries i, j ∈ {1, . . . , n}

such that Mat(xi, x j) > r.

The proof of Lemma 3 follows from a birthday paradox argument.
By RPCr,n we mean a random permutation obtained by processing n messages

through an RPC cascade of r mix-servers having the knowledge on so far opened links.
By L(RPCk,n) we denote the distribution of the scheme at step k ≤ r and by U(Sn)
we denote the uniform distribution, both on Sn – a set of permutations of n elements.
We will use a total variation distance between two distributions μ, ν on a common finite
state space E as

TVD[μ, ν] =
1
2

∑
e∈E
|μ(e) − ν(e)|.

The conclusion of Lemma 4 is that a constant number of mix-servers is not enough
to privately process arbitrary messages.

Lemma 4. Let r be the number of mix-servers, and n be the number of processed
entries. If

(
n
2

)
≥ 2r and in the last server m left links are open, then

TVD
[
U(Sn),L(RPCr,

√
2r)
]
> 1 − 2m(n − m)

n(n − 1)

(∗)≥ 1
2
− 1

2(n − 1)
,

where equality in (∗) is achieved for m = n/2 (say n is even).

The proof of Lemma 4 is in Appendix A.1, the bound is depicted in Fig. 18.

4.2 Mixing Time

Fig. 18. Lower bound on TVD [U(Sn),
L(RPCr,n)

] ≥ 1
2 − 1

2(n−1) .

In this section, we show the required
number of mix-servers to achieve high
level of privacy. The main result concern-
ing the privacy of RPC and mRPC is the
following.

Lemma 5. Let n be the number of pro-
cessed entries by a r-server RPC mix or
mRPC. If

r = r(n, ε) ≥ log2

[(
n
2

)
/ε

]

18 P. Lorek et al.

then
TVD

[U(Sn),L(RPCr,n)
] ≤ ε.

We start – Lemma 6 – with the RPC/mRPC Scheme One, i.e., the case when each
server is asked to open left/right connections independently. Moreover, we assume that
each entry is opened with some predefined probability p ∈ (0, 1). Note that it is equiv-
alent to actually considering 2r servers, each performing a single permutation – we
consider however r servers, each performing two permutations, to be consistent with
lemmas related to Scheme Two.

Afterwards, in Lemma 7 we show the result for Scheme Two. Lemma 5 is a direct
consequence of the latter (substitute p = 1/2).

Lemma 6. Let n be the number of processed entries by a r-server RPC or mRPC mix
Scheme One. Each server is asked to open any connection independently with proba-
bility p ∈ (0, 1). If

r = r(n, ε) ≥ 1
2

log 1
1−(1−p)2

[(
n
2

)
/ε

]

then
TVD

[U(Sn),L(RPCr,n)
] ≤ ε.

The proof of Lemma 6 is in Appendix A.2, it is based on strong stationary times (SST,
introduced in [1,2]), a tool from a Markov chain theory.

Remark. It is worth mentioning that SST T from Lemma 6 (see its proof) resembles
SST constructed in [19] for riffle shuffle scheme. Note that the RPC and the riffle shuffle
are quite different – in RPC full permutation is applied in each step and each connec-
tion is revealed with probability p, whereas in riffle shuffle only the specific type of
permutation in each step is performed and p corresponds to revealing some bits used to
perform it. Note also that it takes 1

2 log 1
1−(1−p)2

[(
n
2

)
/ε
]

for RPC to mix, whereas it takes

log 2
1−(1−p)2

[(
n
2

)
/ε
]

for riffle shuffle to mix.

Let us consider the following example.

Example 5. Consider n = 6 an assume that B1 = 001010, B2 = 010011, i.e., in first
steps outgoing connections from nodes 1, 2, 4 and 6 are revealed and in the second step
the outgoing connections from nodes 1, 3, and 4. With this knowledge, the adversary
knows that with equal probability one of the permutations is possible:

(4, 1, 6, 3, 2, 5), (4, 1, 2, 3, 6, 5), (4, 6, 1, 3, 2, 5), (4, 2, 1, 3, 6, 5),
(4, 6, 2, 3, 1, 5), (4, 2, 6, 3, 1, 5), (4, 1, 6, 5, 2, 3), (4, 1, 2, 5, 6, 3),
(4, 6, 1, 5, 2, 3), (4, 2, 1, 5, 6, 3), (4, 6, 2, 5, 1, 3), (4, 2, 6, 5, 1, 3).

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 19

st
ep
:1

st
ep
: 2

st
ep
:3

1

2

3

4

5

6

?

1

4

?

6

2
1
2

1
2

1

2

3

4

5

6

3

1

4

5

6

2

4

?

?

3

?

5

1

2

3

4

5

6

5

1

4

3

6

2

4

?

?

5

?

3

1
6

1
6

1
6

1
6

1

2

3

4

5

6

3

1

4

5

6

2

4

1

6

3

2

5

1

2

3

4

5

6

3

1

4

5

6

2

4

1

2

3

6

5

1

2

3

4

5

6

5

1

4

3

6

2

4

1

6

5

2

3

1

2

3

4

5

6

5

1

4

3

6

2

4

1

2

5

6

3

1

2

3

4

5

6

3

1

4

5

6

2

4

6

1

3

2

5

1

2

3

4

5

6

3

1

4

5

6

2

4

2

1

3

6

5

1

2

3

4

5

6

5

1

4

3

6

2

4

6

1

5

2

3

1

2

3

4

5

6

5

1

4

3

6

2

4

2

1

5

6

3

1

2

3

4

5

6

3

1

4

5

6

2

4

6

2

3

1

5

1

2

3

4

5

6

3

1

4

5

6

2

4

2

6

3

1

5

1

2

3

4

5

6

5

1

4

3

6

2

4

6

2

5

1

3

1

2

3

4

5

6

5

1

4

3

6

2

4

2

6

5

1

3

Fig. 19. 3 steps of execution of RPC for n = 6. All options for unrevealed nodes shown. Revealed
connections depicted as solid lines (corresponding nodes are red), unrevealed ones as dashed
lines (corresponding nodes are gray). After these three steps Y3 has the uniform distribution on
12 permutations emphasized by gray regions. (Color figure online)

All possible situations are depicted in Fig. 19. In Fig. 20, one realization of this example
is depicted – then all the pairs are mixed, thus the resulting permutation is random.
(Note that for n = 6 such a situation happens on average after processing by 1

2 log 4
3

(
6
2

)
=

4.7 servers).

20 P. Lorek et al.

Mixed
pairs

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

{3,5} {1,2},{1,6}
{2,6}

{3,5},{3,6}
{5,6}

{2,4},{2,5}
{2,6},{4,5}
{4,6},{5,6}

{1,3},{1,5}
{3,5}

{1,2},{1,3}
{1,4},{2,3}
{2,4},{3,4}

1 4 6 10 12 15
STOP

Total nr of
mixed pairs

1

2

3

4

5

6

3

1

4

5

6

2

4

1

6

3

2

5

3

4

6

1

5

2

3

4

2

5

6

1

4

2

3

6

5

1

3

5

2

4

1

6

Fig. 20. Sample execution of mixing of n = 6 elements. Newly mixed pairs are in bold. In this
example after 6 steps an adversay has no knowledge on the final permutation (all

(
6
2

)
= 15 pairs

are mixed). After three steps his knowledge is depicted in Fig. 19

In the following Lemma 7 we show the result for Scheme Two.

Lemma 7. Let n be the number of processed entries by a r-server RPC or mRPC mix
Scheme Two. Each server is asked to open any left link independently with probability
p ∈ (0, 1), then the right links corresponding to non-opened left ones, are open.

r = r(n, ε) ≥ log 1
2p(1−p)

[(
n
2

)
/ε

]

then
TVD

[U(Sn),L(RPCr,n)
] ≤ ε.

The proof of Lemma 7 is in Appendix A.3. Note that for p close to 0 or 1 there will be
many pairs mixed in step 2k − 1 or 2k. The worst situation i.e., the smallest number of
mixed pairs (on average) will be for p = 1/2. For cases n ∈ {100, 10 000, 1 000 000}
the average number of steps, as a function of p is depicted in Fig. 21.

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 21

Fig. 21. Average number of RPC servers needed to mix n ∈ {100, 10 000, 1 000 000} entries (for
ε = 1

100). In the worst case p = 1/2 we need 19 servers on average.

5 Application: CryptoCurrency Unlinkability

In most popular cryptocurrencies, payments are performed between pseudonyms. Since
transactions are published on a public ledger, payment transactions remain traceable.
There were a couple of approaches that introduce untraceability to blockchain cryp-
tocurrencies: Zerocoin [20], Zerocash [23] (used in ZCash), CryptoNote [25] (used in
Monero).

In this section, we want to show a link between Lemma 6 and the anonymity guaran-
tees of various cryptocurrencies. We assume that the anonymization protocol is similar
to the one that is used in Zerocash. If one wants to measure the anonymity level of a
given system in total variation distance then it corresponds to the mixing time of RPC
Scheme One which is expressed in Lemma 6. Instead of applying the following equa-
tion:

r(n, p, ε) ≥ 1
2

log 1
1−(1−p)2

[(
n
2

)
/ε

]
= − log n + log (n − 1) − log(2ε)

2 log(1 − (1 − p)2)

it seems simpler is simpler think about the function of q = 1 − p – here q corresponds
to the fraction of entries being in a mix. Then let rb(n, q, ε) = r(n, p, ε):

rb(n, q, ε) ≥ 1
2

log 1
1−q2

[(
n
2

)
/ε

]
= − log n + log (n − 1) − log(2ε)

2 log(1 − q2)

One needs to approximate n, e.g., by applying the simplifications (1) and (2) below;
then nq = n(1 − p) would be the average number of transactions (or from/to addresses)
in a single block. The number rb(n, q, ε) denotes the required number of mix-servers so
the resulting permutation is ε close in total variation distance to the uniform distribution
on n elements. Since each server performs two independent permutations, the required
number of steps is equal to 2rb(n, q, ε) (Fig. 22).

22 P. Lorek et al.

Fig. 22. Number of rounds (for cryptocurrencies the number of blocks) 2rb(n, q, ε) needed to be
processed for a system with n entries to be close to the uniform distribution, as a function of q, ε.
The x-axis of the plot is q – the probability of selecting an element to the mix ε = 1/100.

To give insights, we make a series of further simplifications:

(1) each transaction is of a nominal value (e.g., 1 BTC/1 ETH/...),
(2) each pseudonym (public key) is linked with a single nominal value,
(3) each coin is selected to be used in a payment transaction independently, uniformly

at random with probability 1 − p (in the Lemma 6 p corresponds to the opened
links).

Then, assuming that all transactions are “shielded”, with the data of 5/1/2022
(source: https://bitinfocharts.com) the results are following:

– for Ethereum 1.63 · 1013 blocks (For n = 120 606 657, p = 186
n , ε = 1

10) would be
needed (2.56 · 109 days),

– for Bitcoin 6.03 · 109 blocks (3.54 · 107 days).

6 Conclusions

We presented Mirrored Randomized Partial Checking (mRPC), the protocol that elim-
inates attacks on Randomized Partial Checking. Proposed mRPC makes minimal
changes to the original protocol but allows for upper bounding probability of successful
attack by an adversary to (1

2)k - compared to (3
4)k in the original RPC. The presented

approach can be applied to fix Civitas and Scantegrity II voting systems.
We also provided an analysis of privacy guarantees offered by RPC. Our analysis

gives also insights into the level of anonymity of cryptocurrencies. We conclude that
due to the need for many steps (high value of rb(n, q, ε) for small values of q) and the
need for speedy transactions (that enforce low values of q), de-anonymization will be
open to some attacks due to insufficient mixing.

https://bitinfocharts.com

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 23

A Proofs

A.1 Proof of Lemma 4

Proof. Recall that I j is a subset of [n] for which left link is revelead (challenge bit is set
to 0). Let us denote S j,0 = I j and S j,1 = [n] \ I j, i.e., those messages for which right link
is revealed (challenge bit 1). In terms of an audit string Bj = b j,1b j,2 . . . b j,n, we may
rewrite S j,b = {i : b j,i = b}.

If two elements x, y are not mixed in the Mj mix, it means that x ∈ S j,b and y ∈ S j,1−b
for b ∈ {0, 1}.

Let us compare distance between the uniform distributionU(Sn) on n-element per-
mutations to the distribution L(RPCr,n) when n ≥ √2r.

From Lemma 3 there exists two mix entries x, y that are not yet mixed after
r steps, with high probability. It means that x ∈ S 1,b1 , S 2,b2 , . . . , S r,br and y ∈
S 1,1−b1 , S 2,1−b2 , . . . , S r,1−br for b1, . . . , bc ∈ {0, 1}.

Let S0
n be the set of all permutations for which x ∈ S r,b and y ∈ S r,1−b for b = 0, 1.

From the assumptions we have that |S r,0| = m. From Lemma 3, with high probability,
only permutations from S0

n have nonzero probabilities in distribution L(RPCr,
√

2r). In
other words, we can write that the probability of σ under L(RPCr,

√
2r) is f (σ) such that

f (σ)

⎧⎪⎪⎨⎪⎪⎩
> 0 if σ ∈ S0

n,

= 0 otherwise,

for some distribution f on S0 (Fig. 23).

Fig. 23. Representation of sets S 1,0, S 1,1 for M1 and sets S 2,0, S 2,1 for M2. Audit/challenge bits
A1, A2 for M1,M2 are presented next to columns C1,C3. Sets S j,0 are denoted by � and sets S j,1

are denoted by •.

Now, let us compute the distance between uniform distribution and the distribution
L(RPCr,n) for a set of permutations S0

n such that m left links were opened, i.e., |Ir | =
|S r,0| = m.

24 P. Lorek et al.

TVD
[
U(Sn),L(RPCr,n)

∣∣∣ |S r,0| = m
]
=

=
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
σ∈S0

n
|S r,0 |=m

∣∣∣∣∣ f (σ) − 1
n!

∣∣∣∣∣ +
∑
σ�S0

n
|S r,0 |=m

1
n!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
σ∈S0

n
|S r,0 |=m

(
f (σ) − 1

n!

)
+
∑
σ�S0

n
|S r,0 |=m

1
n!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
2
+

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
σ�S0

n
|S r,0 |=m

1
n!
−
∑
σ∈S0

n
|S r,0 |=m

1
n!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
1
2
+

1
2n!

(
n! − 2|{σ ∈ S0

n : |S r,0| = m}|
)

= 1 − |{σ ∈ S
0
n : |S r,0| = m}
n!

Noting that
|{σ ∈ S0

n : |S r,0| = m}| = 2m(n − m)(n − 2)!

we have

TVD
[
U(Sn),L(RPCr,n)

∣∣∣ |S r,0| = m
]
≥ 1 − 2m(n − m)

n(n − 1)
.

The worst-case is exactly half left links are open (say n is even), i.e., m = n/2, then

TVD
[
U(Sn),L(RPCr,n)

∣∣∣ |S r,0| = m
]
≥ TVD

[
U(Sn),L(RPCr,n)

∣∣∣ |S r,0| = n/2
]

≥ 1 − 2 n
2
n
2

n(n − 1)
=

1
2
− 1

2(n − 1)
.

A.2 Proof of Lemma 6

Proof. We will use some tools from Markov chain theory. We will consider two chains
{Xt}t≥0, {Yt}t≥0 on Sn. We set X0 = Y0 to be the identity permutation (note that RPC0,n is
the identity permutation).

Recall that server j performs permutations π2 j−1 and π2 j, in total 2r permutations
are performed.

Concerning Xt+1: it is Xt to which we apply a uniformly random permutation πt =
(πt(1), . . . , πt(n)) (note that then Xt ∼ U(Sn) for any t ≥ 1).

Note that in Scheme One each server performs independently identical (in dis-
tribuion) steps. That is why we will look at the distribution after each application of πt.

Concerning Yt, this is Xt with the following extra knowledge. Let Bt = bt,1, . . . , bt,n
be the n random bits chosen independently from the distribution P(bt,i = 0) = p =
1 − P(bt,i = 1).

Now assume that the entries S j,0 = { j : bt, j = 0} from the permutation πt are
opened. Yt has distribution of Xt provided we have a knowledge of B1, . . . , Bt. This
corresponds to RPCt,n. Since {Yt}t≥0 is ergodic and aperiodic, the uniform distribution
is the stationary distribution. By L(Yt) we denote the distribution of Yt.

We will use the strong stationary times (SST) approach (introduced in [1,2]). We
say that T is an SST for {Yk} if for any permutation σ we have P(Yt = σ|T = t) = 1/n!.
For such SST we have TVD [L(Yk),U(Sn)] ≤ P(T > t) (see, e.g., Theorem 6 in [1]).

Let us define
Ti j = min{t : bt,i = bt, j = 1},

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 25

i.e., this is the first time that both elements i and j were not opened. At this time the
relative ordering of i and j is random (since πk is uniformly random). Note that the
probability that this will not happen in one step is 1 − (1 − p)2 (at least one entry was
opened), thus P(Ti j > t) = (1 − (1 − p)2)t.

Now, let T be the first time when all the pairs of elements were not opened in at
least one step. It means that all

(
n
2

)
pairs are in random relative order – and that means

that the permutation itself is random (since πt’s are uniformly random). In other words,
T is an SST for {Yt}. We may compute

TVD [L(Yk),U(Sn)] ≤ P(T > t) = P
(⋃

1≤i< j≤n{Ti j > t}
)

≤
∑

1≤i< j≤n
P(Ti j > t) =

∑
1≤i< j≤n

(
1 − (1 − p)2

)t
=

(
n
2

) (
1 − (1 − p)2

)t
.

Taking t = log 1
1−(1−p)2

[(
n
2

)
/ε
]
, we have TVD [L(Yk),U(Sn)] ≤ ε. In total there are t = 2r

permutations, thus the proof is completed.

A.3 Proof of Lemma 7

Proof. The proof is similar to the proof of Lemma 6. The t-th server applies two permu-
tations π2t−1 and π2t, then each left link is opened independently with probability p, i.e.,
B2t−1 = b2t−1,1, . . . , b2t−1,n with i.i.d. P(b2t−1, j = 0) = p = P(b2t−1, j = 1), j = 1, . . . , n.
However the audit string B2t is uniquely determined:

B2t = (b2t,1, . . . , b2t,n) = (1 − b2t−1,1, . . . , 1 − b2t−1,n).

The situation is depicted in Fig. 24. Again, let

Ti j = min{t : bt,i = bt, j = 1},
i.e., this is the first moment that elements i and j were not opened in the same permuta-
tion. Consider steps 2t − 1 and 2t: the elements i and j will be both opened in the same
step if i) they are both revealed in step 2t − 1; ii) they are both not opened in step 2t − 1
(since then they surely will be in next step). Thus, the pair will not be mixed in steps
2t − 1 and 2t with probability 2p(1 − p). We have

P(Ti j > 2t) = (2p(1 − p))t .

Again, since all permutations πt’s are random, the first moment T when all the pairs are
mixed is an SST, and we have (consider t even)

TVD [L(Yt),U(Sn)]
≤ P(T > t) = P

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

1≤i< j≤n
{Ti j > t}

⎞⎟⎟⎟⎟⎟⎟⎠
≤
∑

1≤i< j≤n
P(Ti j > 2t/2) =

∑
1≤i< j≤n

(2p(1 − p))
t
2

=

(
n
2

)
(2p(1 − p))

t
2 .

26 P. Lorek et al.

Taking the last step, i.e., t = 2r we have that r = log 1
2p(1−p)

[(
n
2

)
/ε
]

what completes the
proof.

Fig. 24. Situation similar to Fig. 20: π1 and π2 and B1 = 001010 are the same as there, but now
B2 is determined by B1, namely b2

i = 1 − b1
i – opened connections depicted in red.

References

1. Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Am. Math. Mon. 93(5), 333–
348 (1986)

2. Aldous, D., Diaconis, P.: Strong uniform times and finite random walks. Adv. Appl. Math.
8(1), 69–97 (1987)

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for
public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp.
26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055718

4. Burton, C., Culnane, C., Heather, J.: Thea Peacock, Peter YA Ryan, Steve A Schneider,
Vanessa Teague, Roland Wen, Zhe Xia, and Sriramkrishnan Srinivasan. Using prêt à voter in
victoria state elections. EVT/WOTE, 2 (2012)

5. Carback, R.T., et al.: The scantegrity voting system and its use in the takoma park elections.
In: Real-World Electronic Voting, pp. 253–292. Auerbach Publications (2016)

6. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election scheme. In: di
Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp.
118–139. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_8

7. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
mun. ACM 24(2), 84–90 (1981)

8. Chen, C., Asoni, D.E., Barrera, D., Danezis, G., Perrig, A.: Hornet: high-speed onion routing
at the network layer. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1441–1454 (2015)

9. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system. In: 2008
IEEE Symposium on Security and Privacy (S&P 2008), pp. 354–368. IEEE (2008)

10. Gjøsteen, K.: The Norwegian internet voting protocol. In: Kiayias, A., Lipmaa, H. (eds.)
Vote-ID 2011. LNCS, vol. 7187, pp. 1–18. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32747-6_1

11. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Rapid mixing and security of Chaum’s
visual electronic voting. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol.
2808, pp. 132–145. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39650-
5_8

https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/978-3-642-32747-6_1
https://doi.org/10.1007/978-3-642-32747-6_1
https://doi.org/10.1007/978-3-540-39650-5_8
https://doi.org/10.1007/978-3-540-39650-5_8

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 27

12. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle. In:
Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3_22

13. Haenni, R., Koenig, R.E., Locher, P., Dubuis, E.: Chvote system specification (2017)
14. Haines, T., Müller, J.: Optimal randomized partial checking for decryption mix nets. In:

Baek, J., Ruj, S. (eds.) ACISP 2021. LNCS, vol. 13083, pp. 277–292. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90567-5_14

15. Haines, T., Müller, J.: Sok: techniques for verifiable mix nets. In: 2020 IEEE 33rd Computer
Security Foundations Symposium (CSF), pp. 49–64 (2020)

16. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting by ran-
domized partial checking. In: USENIX Security Symposium, San Francisco, USA, pp. 339–
353 (2002)

17. Khazaei, S., Wikström, D.: Randomized partial checking revisited. In: Dawson, E. (ed.) CT-
RSA 2013. LNCS, vol. 7779, pp. 115–128. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36095-4_8

18. Küsters, R., Truderung, T., Vogt, A.: Formal analysis of Chaumian mix nets with randomized
partial checking. In: 2014 IEEE Symposium on Security and Privacy, pp. 343–358. IEEE
(2014)

19. Lorek, P., Kulis, M., Zagórski, F.: Leakage-resilient riffle shuffle. In: Blömer, J., Kotsireas,
I.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 395–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72453-9_32

20. Miers, I., Garman, C., Green, M., Rubinm, A.D.: Zerocoin: anonymous distributed e-cash
from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411. IEEE (2013)

21. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_9

22. Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix anonymity system.
In: 26th {USENIX} Security Symposium ({USENIX} Security 17), pp. 1199–1216 (2017)

23. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014
IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

24. Toledo, R.R., Danezis, G., Echizen, I.: Mix-ORAM: using delegated shuffles. In: Proceedings
of the 2017 on Workshop on Privacy in the Electronic Society, pp. 51–61 (2017)

25. van Saberhagen, N.: Cryptonote v 1.0 (2012). https://cryptonote.org/whitepaperv1.pdf
(2021)

26. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González Nieto, J.
(eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02620-1_28

27. Douglas Wikström. Verificatum (2018). https://www.verificatum.org/

https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-030-90567-5_14
https://doi.org/10.1007/978-3-642-36095-4_8
https://doi.org/10.1007/978-3-642-36095-4_8
https://doi.org/10.1007/978-3-319-72453-9_32
https://doi.org/10.1007/3-540-46766-1_9
https://cryptonote.org/whitepaperv1.pdf
https://doi.org/10.1007/978-3-642-02620-1_28
https://doi.org/10.1007/978-3-642-02620-1_28
https://www.verificatum.org/

	Mirrored Commitment: Fixing ``Randomized Partial Checking'' and Applications
	1 Introduction
	1.1 Notation

	2 Chaumian Randomized Partial Checking (RPC) Mix Net
	2.1 Protocol Description
	2.2 RPC Audit
	2.3 Attacks on RPC

	3 Mirrored Randomized Partial Checking (mRPC)
	3.1 Protocol Description
	3.2 mRPC Audit
	3.3 Attack Examples on mRPC
	3.4 Security of mRPC

	4 Privacy Guarantees of RPC and mRPC
	4.1 Constant Number of Mix-Servers
	4.2 Mixing Time

	5 Application: CryptoCurrency Unlinkability
	6 Conclusions
	A Proofs
	A.1 Proof of Lemma 4
	A.2 Proof of Lemma 6
	A.3 Proof of Lemma 7

	References

