Christina Popper
Lejla Batina (Eds.)

Applied Cryptography
and Network Security

22nd International Conference, ACNS 2024
Abu Dhabi, United Arab Emirates, March 5-8, 2024
Proceedings, Part lli

phy (3‘ n/rﬁ{

1
"/(
4

LN
o)
LN
<r
=
v
@,
=
—

D springer  (MTEIEIG)




Lecture Notes in Computer Science 14585

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, Purdue University, West Lafayette, IN, USA

Wen Gao, Peking University, Beijing, China

Bernhard Steffen@®, TU Dortmund University, Dortmund, Germany
Moti Yung®, Columbia University, New York, NY, USA


https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.



Christina Popper - Lejla Batina
Editors

Applied Cryptography
and Network Security

22nd International Conference, ACNS 2024
Abu Dhabi, United Arab Emirates, March 5-8, 2024
Proceedings, Part III

@ Springer



Editors

Christina Popper Lejla Batina

New York University Abu Dhabi Radboud University Nijmegen
Abu Dhabi, United Arab Emirates Nijmegen, The Netherlands
ISSN 0302-9743 ISSN 1611-3349 (electronic)

Lecture Notes in Computer Science

ISBN 978-3-031-54775-1 ISBN 978-3-031-54776-8 (eBook)

https://doi.org/10.1007/978-3-031-54776-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.


https://orcid.org/0000-0002-2814-962X
https://orcid.org/0000-0003-0727-3573
https://doi.org/10.1007/978-3-031-54776-8

Preface

ACNS 2024, the 22nd International Conference on Applied Cryptography and Network
Security, was held in Abu Dhabi, United Arab Emirates, on March 5-8, 2024. The
conference covered all technical aspects of applied cryptography, network and computer
security and privacy, representing both academic research work as well as developments
in industrial and technical frontiers.

The conference had two submission deadlines, in July and October 2023. We received
a total of 238 submissions over the two cycles (230 unique submissions incl. eight
major revisions from the first submission cycle that were resubmitted as revisions in the
second submission cycle). From all submissions, the Program Committee (PC) selected
54 papers for publication in the proceedings of the conference, some after minor or major
revisions. This led to an acceptance rate of 23.5%.

The two program chairs were supported by a PC consisting of 76 leading experts in
all aspects of applied cryptography and security whose expertise and work were crucial
for the paper selection process. Each submission received around 4 reviews from the
committee. Strong conflict of interest rules ensured that papers were not handled by PC
members with a close personal or professional relationship with the authors. The program
chairs were not allowed to submit papers and did not handle any submissions they were
in conflict with. There were an additional 55 external reviewers, whose expertise the PC
relied upon in the selection of papers. The review process was conducted as a double-
blind peer review. The authors of 10 submissions rejected from the July deadline, but
considered promising, were encouraged to resubmit to the October deadline after major
revisions of their paper. From these 10 papers invited for a major revision, 8 papers got
resubmitted to the second cycle, 5 of which were finally accepted.

Alongside the presentations of the accepted papers, the program of ACNS 2024
featured three invited talks given by Elisa Bertino, Nadia Heninger, and Gene Tsudik.
The three volumes of the conference proceedings contain the revised versions of the 54
papers that were selected, together with the abstracts of the invited talks.

Following a long tradition, ACNS gives a best student paper award to encourage
promising students to publish their best results at the conference. The award recipients
share a monetary prize of 2,000 EUR generously sponsored by Springer.

Many people contributed to the success of ACNS 2024. We would like to thank the
authors for submitting their research results to the conference. We are very grateful to the
PC members and external reviewers for contributing their knowledge and expertise and
for the tremendous amount of work and time involved in reviewing papers, contributing
to the discussions, and shepherding the revisions. We are greatly indebted to Mihalis
Maniatakos and Ozgur Sinanoglu, the ACNS’24 General Chairs, for their efforts and
overall guidance as well as all the members of the organization committee. We thank
the steering committee, Moti Yung and Jianying Zhou, for their direction and valuable
advice throughout the preparation of the conference. We also thank the team at Springer



vi Preface

for handling the publication of these conference proceedings, as well as Shujaat Mirza
for working on the preparation of the proceedings volumes.

March 2024 Lejla Batina
Christina P&pper



Organization

General Co-chairs

Michail Maniatakos New York University Abu Dhabi, UAE
Ozgur Sinanoglu New York University Abu Dhabi, UAE

Program Committee Co-chairs

Christina Popper New York University Abu Dhabi, UAE
Lejla Batina Radboud University, The Netherlands

Steering Committee

Jianying Zhou SUTD, Singapore
Moti Yung Google, USA

Local Arrangements Chair

Borja Garcia de Soto New York University Abu Dhabi, UAE
Publicity Chair

Elias Athanasopoulos University of Cyprus, Cyprus

Web Chair

Christoforos Vasilatos New York University Abu Dhabi, UAE

Poster Chair

Charalambos Konstantinou KAUST, KSA



viii Organization

Registration Chair

Rafael Song

Workshop Chair

Martin Andreoni

Publication Chair

Shujaat Mirza

New York University Abu Dhabi, UAE

Technology Innovation Institute, UAE

New York University, USA

Student Travel Grants Chair

Lilas Alrahis

Program Committee

Adwait Nadkarni
Alexander Koch
Alexandra Dmitrienko
Amr Youssef

An Braeken

Anna Lisa Ferrara
Archita Agarwal
Atefeh Mohseni Ejiyeh
Benjamin Dowling
Chao Sun

Chiara Marcolla
Chitchanok Chuengsatiansup
Christine Utz

Christoph Egger
Claudio Soriente
Colin Boyd

Daniel Dinu
Daniel Gardham

New York University Abu Dhabi, UAE

William & Mary, USA

CNRS and IRIF, Université Paris Cité, France

University of Wuerzburg, Germany

Concordia University, Canada

Vrije Universiteit Brussel, Belgium

University of Molise, Italy

MongoDB, USA

UCSB, USA

University of Sheffield, UK

Osaka University, Japan

Technology Innovation Institute, UAE

The University of Melbourne, Australia

CISPA Helmbholtz Center for Information
Security, Germany

Université Paris Cité and CNRS and IRIF, France

NEC Laboratories Europe, Spain

NTNU-Norwegian University of Science and
Technology, Norway

Intel

University of Surrey, UK



Daniel Slamanig

Dave Singelee
Devashish Gosain
Diego F. Aranha
Dimitrios Vasilopoulos
Dominique Schroder

Eleftheria Makri
Elena Dubrova
Elena Kirshanova
Elif Bilge Kavun
Fatemeh Ganji
Florian Hahn

Francisco Rodriguez-Henriquez

Ghassan Karame
Gustavo Banegas
Hyungsub Kim

Jean Paul Degabriele
Jianying Zhou

Jodo S. Resende
Karim Eldefrawy
Katerina Mitrokotsa
Katharina Krombholz

Kazuo Sakiyama
Kehuan Zhang
Khurram Bhatti

Lukasz Chmielewski
Mainack Mondal

Marc Manzano

Matthias J. Kannwischer
Melissa Azouaoui
Monika Trimoska

Monowar Hasan
Mridula Singh

Murtuza Jadliwala
Nabil Alkeilani Alkadri

Organization ix

Universitidt der Bundeswehr Miinchen, Germany

KU Leuven, Belgium

MPI-INF, Germany

Aarhus University, Denmark

IMDEA Software Institute, Spain

Friedrich-Alexander Universitit
Erlangen-Niirnberg, Germany

Leiden University, The Netherlands

Royal Institute of Technology, Sweden

Technology Innovation Institute, UAE

University of Passau, Germany

Worcester Polytechnic Institute, USA

University of Twente, The Netherlands

Technology Innovation Institute, UAE

Ruhr University Bochum, Germany

Qualcomm, France

Purdue University, USA

Technology Innovation Institute, UAE

Singapore University of Technology and Design,
Singapore

University of Porto, Portugal

SRI International, USA

University of St. Gallen, Switzerland

CISPA Helmbholtz Center for Information
Security, Germany

UEC, Tokyo, Japan

The Chinese University of Hong Kong, China

Information Technology University (ITU),
Pakistan

Masaryk University, Czech Republic

Indian Institute of Technology, Kharagpur, India

SandboxAQ, USA

QSMC, Taiwan

NXP Semiconductors, Germany

Eindhoven University of Technology,
The Netherlands

Washington State University, USA

CISPA Helmbholtz Center for Information
Security, Germany

University of Texas at San Antonio, USA

CISPA Helmbholtz Center for Information
Security, Germany



X Organization

Nils Ole Tippenhauer

Olga Gadyatskaya
Paulo Barreto

Pino Caballero-Gil
Pooya Farshim
Sathvik Prasad
Sebastian Kohler
Shahram Rasoolzadeh
Sherman S. M. Chow
Silvia Mella

Sinem Sav

Sofia Celi

Sudipta Chattopadhyay

Sushmita Ruj

Tako Boris Fouotsa
Tibor Jager

Tien Tuan Anh Dinh
Tran Quang Duc

Valeria Nikolaenko
Vera Rimmer
Willy Susilo
Xiapu Luo

Zheng Yang

Additional Reviewers

Afonso Vilalonga
Alexander Karenin
Anshu Yadav

Astrid Ottenhues
Beatrice Biasioli
Behzad Abdolmaleki
Benjamin Terner
Callum London
Enrique Argones Rida
Erkan Tairi

Fabio Campos
Gareth T. Davies
Gora Adj

CISPA Helmbholtz Center for Information
Security, Germany

Leiden University, The Netherlands

University of Washington — Tacoma, USA

University of La Laguna, Spain

IOG & Durham University, UK

North Carolina State University, USA

University of Oxford, UK

Radboud University, The Netherlands

The Chinese University of Hong Kong, China

Radboud University, The Netherlands

Bilkent University, Turkey

Brave Software, Portugal

Singapore University of Technology and Design,
Singapore

University of New South Wales, Australia

EPFL, Switzerland

University of Wuppertal, Germany

Deakin University, Australia

Hanoi University of Science and Technology,
Vietnam

A16Z Crypto Research, USA

KU Leuven, Belgium

University of Wollongong, Australia

The Hong Kong Polytechnic University, China

Southwest University, China

Gregor Seiler
Jean-Philippe Bossuat
Jelle Vos

Jenit Tomy

Jérdme Govinden
Jiafan Wang

Jodie Knapp

Joel Frisk Girtner
Jorge Chavez-Saab
Karl Southern
Laltu Sardar
Laurane Marco

Li Duan



Lorenz Panny
Marcus Brinkmann
Nada El Kassem
Nan Cheng

Nusa Zidaric
Octavio Pérez Kempner
Okan Seker
Patrick Harasser
Paul Huynh

Paul Gerhart
Pradeep Mishra
Quan Yuan
Raghav Bhaskar
Ritam Bhaumik
Robert Merget

Organization

Sacha Servan-Schreiber
Sebastian Faller
Sebastian Ramacher
Semyon Novoselov
Shahram Rasoolzadeh
Sylvain Chatel
Tianyu Li

Valerio Cini

Victor Miller

Viktoria Ronge

Vir Pathak

Vojtech Suchanek
Vukasin Karadzié
Yangguang Tian

Xi



Abstracts of Keynote Talks



Applying Machine Learning to Securing Cellular
Networks

Elisa Bertino
Purdue University, Indiana, USA

Abstract. Cellular network security is more critical than ever, given the
increased complexity of these networks and the numbers of applications
that depend on them, including telehealth, remote education, ubiqui-
tous robotics and autonomous vehicles, smart cities, and Industry 4.0.
In order to devise more effective defenses, a recent trend is to lever-
age machine learning (ML) techniques, which have become applicable
because of today’s advanced capabilities for collecting data as well as
high-performance computing systems for training ML models. Recent
large language models (LLMs) are also opening new interesting direc-
tions for security applications. In this talk, I will first present a compre-
hensive threat analysis in the context of 5G cellular networks to give a
concrete example of the magnitude of the problem of cellular network
security. Then, I will present two specific applications of ML techniques
for the security of cellular networks. The first application focuses on the
use of natural language processing techniques to the problem of detecting
inconsistencies in the “natural specifications” of cellular network proto-
cols. The second application addresses the design of an anomaly detection
system able to detect the presence of malicious base stations and deter-
mine the type of attack. Then I’ll conclude with a discussion on research
directions.



Real-World Cryptanalysis

Nadia Heninger
University of California, San Diego, USA

Abstract. Cryptography has traditionally been considered to be one of the
strong points of computer security. However, a number of the public-key
cryptographic algorithms that we use are fragile in the face of implemen-
tation mistakes or misunderstandings. In this talk, I will survey “weapons
of math destruction” that have been surprisingly effective in finding bro-
ken cryptographic implementations in the wild, and some adventures in
active and passive network measurement of cryptographic protocols.



CAPTCHASs: What Are They Good For?

Gene Tsudik
University of California, Irvine, USA

Abstract. Since about 2003, CAPTCHAs have been widely used as
a barrier against bots, while simultaneously annoying great multitudes
of users worldwide. As their use grew, techniques to defeat or bypass
CAPTCHAs kept improving, while CAPTCHAS themselves evolved in
terms of sophistication and diversity, becoming increasingly difficult
to solve for both bots and humans. Given this long-standing and still-
ongoing arms race, it is important to investigate usability, solving per-
formance, and user perceptions of modern CAPTCHAs. This talk will
discuss two such efforts:

In the first part, we explore CAPTCHAs in the wild by evaluating
users’ solving performance and perceptions of unmodified currently-
deployed CAPTCHASs. We obtain this data through manual inspection
of popular websites and user studies in which 1,400 participants collec-
tively solved 14,000 CAPTCHAs. Results show significant differences
between the most popular types of CAPTCHAS: surprisingly, solving
time and user perception are not always correlated. We performed a com-
parative study to investigate the effect of experimental context — specifi-
cally the difference between solving CAPTCHAs directly versus solving
them as part of a more natural task, such as account creation. Whilst there
were several potential confounding factors, our results show that experi-
mental context could have an impact on this task, and must be taken into
account in future CAPTCHA studies. Finally, we investigate CAPTCHA-
induced user task abandonment by analyzing participants who start and
do not complete the task.

In the second part of this work, we conduct a large-scale (over 3,600
distinct users) 13-month real-world user study and post-study survey.
The study, performed at a large public university, was based on a live
account creation and password recovery service with currently prevalent
captcha type: reCAPTCHAV2. Results show that, with more attempts,
users improve in solving checkbox challenges. For website developers
and user study designers, results indicate that the website context directly
influences (with statistically significant differences) solving time between
password recovery and account creation. We consider the impact of par-
ticipants’ major and education level, showing that certain majors exhibit
better performance, while, in general, education level has a direct impact
on solving time. Unsurprisingly, we discover that participants find image
challenges to be annoying, while checkbox challenges are perceived as



XX

CAPTCHASs: What Are They Good For?

easy. We also show that, rated via System Usability Scale (SUS), image
tasks are viewed as “OK”, while checkbox tasks are viewed as “good”.
We explore the cost and security of reCAPTCHAvV2 and conclude that
it has an immense cost and no security. Overall, we believe that this
study’s results prompt a natural conclusion: reCAPTCHAV?2 and similar
reCAPTCHA technology should be deprecated.



Contents — Part II1

Blockchain

Mirrored Commitment: Fixing “Randomized Partial Checking”
and ApPlICAtIONS ... ..ottt
Pawet Lorek, Moti Yung, and Filip Zagorski

Bitcoin Clique: Channel-Free Off-Chain Payments Using Two-Shot
Adaptor SIgNatures . ... ... ... .......ie e
Siavash Riahi and Orfeas Stefanos Thyfronitis Litos

Programmable Payment Channels ............. ... it
Ranjit Kumaresan, Duc V. Le, Mohsen Minaei,
Srinivasan Raghuraman, Yibin Yang, and Mahdi Zamani

Fair Private Set Intersection Using Smart Contracts .........................
Sepideh Avizheh and Reihaneh Safavi-Naini

Powers-of-Tau to the People: Decentralizing Setup Ceremonies ..............
Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

Smart Infrastructures, Systems and Software

Self-sovereign Identity for Electric Vehicle Charging .......................
Adrian Kailus, Dustin Kern, and Christoph Krauf3

“Hello? Is There Anybody in There?” Leakage Assessment of Differential
Privacy Mechanisms in Smart Metering Infrastructure ......................
Soumyadyuti Ghosh, Manaar Alam, Soumyajit Dey,
and Debdeep Mukhopadhyay

Security Analysis of BigBlueButton and eduMEET ........................
Nico Heitmann, Hendrik Siewert, Sven Moog, and Juraj Somorovsky

An In-Depth Analysis of the Code-Reuse Gadgets Introduced by Software
ODbfUSCAtION . . ..ottt
Naigian Zhang, Zheyun Feng, and Dongpeng Xu



xxii Contents — Part IIT

ProvIoT : Detecting Stealthy Attacks in IoT through Federated Edge-Cloud

SECUIILY v ettt ettt e e e e e e e 241
Kunal Mukherjee, Joshua Wiedemeier, Qi Wang, Junpei Kamimura,
John Junghwan Rhee, James Wei, Zhichun Li, Xiao Yu, Lu-An Tang,
Jiaping Gui, and Kangkook Jee

Attacks

A Practical Key-Recovery Attack on LWE-Based Key-Encapsulation

Mechanism Schemes Using Rowhammer ................................. 271
Puja Mondal, Suparna Kundu, Sarani Bhattacharya,
Angshuman Karmakar, and Ingrid Verbauwhede

A Side-Channel Attack on a Higher-Order Masked CRYSTALS-Kyber
Implementation . ...............uuu 301
Ruize Wang, Martin Brisfors, and Elena Dubrova

Time Is Money, Friend! Timing Side-Channel Attack Against Garbled
Circuit CONStrUCtIONS . ..ttt ettt et e e e e e e e e e e 325
Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 ...... 355
Yunxue Lin and Ling Sun

Users and Usability

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues ... 381
Daniel Kohler, Wenzel Piinter, and Christoph Meinel

Usable Authentication in Virtual Reality: Exploring the Usability of PINs

and GeSHUIES . .. ..ottt 412
H. T. M. A. Riyadh, Divyanshu Bhardwaj, Adrian Dabrowski,
and Katharina Krombholz

Living a Lie: Security Analysis of Facial Liveness Detection Systems

1N MODIIE APDPS .+ ottt et e 432
Xianbo Wang, Kaixuan Luo, and Wing Cheong Lau

Author Index . ... 461



Blockchain



®

Check for
updates

Mirrored Commitment: Fixing ‘“Randomized
Partial Checking’” and Applications

Pawet Lorek ', Moti Yung?3, and Filip Zagérski'#®9

' Wroclaw University, Wroctaw, Poland
filip.zagorski@gmail.com
2 Columbia University, New York, USA
3 Google, New York, USA
4 Votifica, Wroctaw, Poland
3 Tooploox, Wroctaw, Poland

Abstract. Randomized Partial Checking (RPC) [16] was proposed by Jakobs-
son, Juels, and Rivest and attracted attention as an efficient method of verify-
ing the correctness of the mixing process in numerous applied scenarios. In fact,
RPC is a building block for many electronic voting schemes, including Prét a
Voter [6], Civitas [9], Scantegrity II [5] as well as voting-systems used in real-
world elections (e.g., in Australia [4]). Mixing is also used in anonymous transfers
of cryptocurrencies. It turned out, however, that a series of works [17,18] showed
subtle issues with analyses behind RPC. First, that the actual security level of the
RPC protocol is way off the claimed [16] bounds. The probability of success-
ful manipulation of k votes is (%)" instead of the claimed zlk (this difference, in
turn, negatively affects actual implementations of the notion within existing elec-
tion systems. This is so since concrete implemented procedures of a given length
were directly based on this parameter). Further, privacy guarantees [11] that a
constant number of mix-servers is enough turned out [17] to also not be correct.
We can conclude from the above that these analyses of the processes of mixing
are not trivial.

In this paper, we review the relevant attacks, and we present Mirrored-RPC
(mRPC) — a fix to RPC based on “mirrored commitment” which makes it
optimally secure; namely, having a probability of successful manipulation of &
votes .

Then, we present an analysis of the privacy level of both RPC and mRPC.
We show that for n messages, the number of mix-servers (rounds) needed to be
g-close to the uniform distribution in total variation distance is lower bounded by:

r(n, g) > log, (;)/s.

This proof of privacy, in turn, gives insights into the anonymity of various cryp-
tocurrencies (e.g., Zerocash [23]) using anonymizing pools. If a random fraction
q of n existing coins is mixed (in each block), then to achieve full anonymity, the
number of blocks one needs to run the protocol for, is:

logn +log(n — 1) — log(2¢)

>
4. = log(1 — %)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Popper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 3-27, 2024.
https://doi.org/10.1007/978-3-031-54776-8_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_1

4 P. Lorek et al.

1 Introduction

Mix nets, introduced by Chaum [7], constitute an important technique used in many
privacy-preserving technologies. For instance, mix nets are a crucial part of many
voting systems providing assurance that encrypted ballots posted by voters are cor-
rectly decrypted (and tallied). A list of schemes that use mix nets includes systems
deployed in publicly binding elections: Estonia, Norway, Switzerland, Australia, USA
[4,5,10,13,27]. But applications of mix nets are much wider: anonymous messag-
ing [22], anonymous routing [8], and oblivious RAM [24]. To find a more elaborate
list of applications and techniques for verifiable mix nets the reader is encouraged to
read [15].

This paper focuses on a central prominent technique by Juels, Jakobsson, and Rivest
called Randomized Partial Checking (RPC) [16]. The original Chaumian mix net was
designed in the “honest but curious” model, to guarantee senders’ privacy provided
that at least one mix server is honest. But, a single malicious mix server could replace
any number of ciphertexts. In order to decrease the possibility of this happening, RPC
was proposed. In RPC, the more ciphertexts are replaced by a server the higher the
probability of detecting malfeasance is. The main difference between RPC and other
proof-of-shuffle techniques (like [12,26]) is that RPC is much more efficient than other
techniques, but provides just a strong evidence of correct operations instead of a proof
of correct operations (but luckily, this confidence is sufficient for many applications).
Due to its efficiency, the RPC approach is used in end-to-end voter verifiable systems
like Prét a Voter [6], Scantegrity II [5], and coercion-resistant Civitas [9]. The above
have been implemented and applied in real elections. Then, as interest in implement-
ing the technique grew, a series of works [17,18] scrutinized it, and showed that the
actual security level of the RPC protocol is way off the initial claim: the probability
of successful manipulation of k votes is (%)k instead of 217 as claimed in [16]. These
attacks [17] affected the implementations of Scantegrity and Civitas systems. The level
of privacy was affected as well [17]. More on attacks on RPC see Sect. 2.3.

Related Work: Recently [14], a new RPC-type protocol was proposed, where optimal
verifiability tolerance (%)k is achieved. The protocol assumes that there is a special audi-
tor that becomes the last mix server. After the auditor/mix server publishes decrypted
messages it reveals its private keys. While such an approach works in theory, the new
protocol role can raise trust-related issues, e.g., now one needs to assume that the special
auditor and the second to last mix server do not cooperate (and this configuration solves
one weakness by introducing another!). Aside from the proposed attacks, the authors
of [18] proposed changes to the protocol that can fix certain attacks, but then they noted
that other attacks (which they, in fact, proposed) are “equally harmful.” Then, given
their finding, they conclude: “This seems to be an inherent problem for RPC mix nets,
without an obvious fix.”

Our Contributions: We present Mirrored Randomized Partial Checking (mRPC), a
protocol that has exactly the same participants, roles, and trust assumptions as the orig-
inal RPC. The only difference is that a (mirrored) commitment (a commitment to a
different value) is published during the protocol execution and one additional value is
opened and checked during the audit phase (per message, per server). These changes,



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 5

in turn, allow us to achieve optimal verifiability tolerance (%)k - compared to ( %)k in
the original RPC. The difference between 1/2% and (3/4)* is highly significant when
considering practical parameters (see Fig. 1). We also show how many mix servers
r(n, &) are required to mix n messages so that the distribution on permutations (mapping
senders to decrypted messages) is e-close to the uniform distribution on all n-element
permutations (in total variation distance). Our proof works for both versions of RPC:
Scheme One (Independent Random Selections) and Scheme Two (Pairwise Dependent
Selections)'. Analysis (Lemma 6) of Scheme One is applicable to (un)linkability in
blockchains, while analysis (Lemma 7) of Scheme Two (RPC) is related to anonymity
guarantees of election protocols.

100

*e

10-°

o
ot
—_
S)

15 20 25 30

Fig. 1. mRPC guarantees better security level than original RPC. The probability of undetected
manipulation of k messages is (1/2)* for mRPC and (3/4) for RPC. x-axis corresponds to k-the
number of modified entries; y-axis is the probability of undetectable manipulation.

1.1 Notation

We denote by [n] = {1,...,n}. Security analysis uses standard assumptions about
primitives used by Chaumian RPC mix nets: (1) public key encryption scheme
(& = (KeyGen, Enc, Dec)) used for Chaumian RPC to be IND-CCA2-secure [3], (2)
commitment scheme is perfectly hiding and computationally binding (e.g., Pedersen
scheme [21]), (3) the encryption scheme allows for proof of correct decryption.

2 Chaumian Randomized Partial Checking (RPC) Mix Net

We try to closely follow [18] when describing the protocol. A decryption mix net [7]
consists of a public, append-only bulletin board, mix servers M, ..., M,, message
senders S, ...,S, (sometimes we will call them voters) and auditors.

! As most authors we refer to Pairwise Dependent Selection scheme as to original RPC.



6 P. Lorek et al.

2.1 Protocol Description

The goal of the protocol: mix servers jointly decrypt messages sent by senders (voters),
while auditors verify if the decryption process was performed correctly. The following
steps are performed.

Setup Phase. Every mix server M; generates two public/private key pairs
(pkaj_1, skaj_1), (pkaj, skpj) and publishes its public keys pks;_i, pky; on the bulletin
board.

Submit Phase. Every sender S; chooses her input plaintext m; (sometimes we refer to
m; as to a ballot/vote) and submits to the bulletin board B a ciphertext generated in the
following process. She first encrypts m; using pk,, obtaining ¢; = Enc(pk,,, m;). Then,
she repeats the following process for j = 2r — 1,2r - 2,...,0:

c; = Enc(pkj,c;+l),
and submits cf] to the bulletin board B.

Mixing Phase. The sequence Cy = <c('), e, cg> of ciphertexts submitted by senders to
B is the input to the mixing phase. We denote by Cy[i] = cf) and similarly for other
sequences.

Cy is fetched by the first server M; which outputs C; (each M; performs two mixing
steps Czj—» ~» Cyj-1 and then Cyj_; ~w» Cy;) that is an input to M>, and so on.

The output produced by M, (the last mix server): Cy, should contain a permuted list
of unencrypted input messages my, ..., n,,.

The steps performed by each M;, j < r are following:

1. Duplicate Elimination. M; removes duplicate entries from its input C»;_», leaving
only a single copy of each entry. Moreover, all messages that correspond to decryp-
tion failures L are removed. Denote by Céj_z the resulting sequence, and by [ < n
the number of messages of Cé Y

2. First Mixing. M; chooses umformly at random a permutatlon mj—1 of [I] and posts
on B the sequence C;;_1, where C,;_[i] = Dec(sky;_1,C 2, NECTET))

3. Second Mixing. M; performs the same steps as during the first mixing: selects uni-
formly at random a permutation o of [[]. Then it posts on B the sequence C,; where
Cy;li] = Dec(skzj, G5,y [m2;1).

4. Posting Commitments. M posts two sequences of commitments on B:

(a) commitments to the values ﬂg}_l( 1),.. T 1(l)
(b) commitments to the values ﬂzj(l), ey 7r2](l)

For the clarity of presentation we assume no duplicate elimination took place, i.e., [ = n.



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 7

2j-1 2j

1 1
P EH [ e
\ :/

2 T~ 2
Cj2 P EICT i ‘
3 RN

€2

Fig.2. Original RPC: commitments to n;j{l(i) and to m,;(i) are in shaded squares. Dashed
edges/arrows remain secret.

2.2 RPC Audit

During the audit phase, each mix server M; opens half of the commitments. A set /; C
{1,...,n} is computed by e.g., xor-ing random bit strings provided by the auditors.

AL If i € I; then the mix server M is supposed to:
1 open the left link for i, i.e., M; is supposed to open its i-th commitment from
its ﬁrst sequence of commitments, which should be a commitment on the value
().
2 p?)lstl a (non-interavtive zero-knowledge) proof demonstrating that indeed
C5;1[i] is obtained from decrypting C), j_z[ﬂg}_l ()] using skaj_i.
AR If i ¢ I; then the mix server M; is supposed to:
1 open the right link: the commitment to the value 7, .(:).
2 post a (non-interactive zero-knowledge) proof that Cy; [7r2j(i)] is obtained from
decrypting C,;_[i] using sk;.

Set I; defines a corresponding challenge string (also called audit string) B; =

bj1bjs...bj, forb;; €{0,1}, where b;; = 0 if and only if i € /;.

Example 1 (RPC audit). Let us assume that the jth server committed to the values
presented in the Fig.2 and during the audit an audit string B; = 010 was selected
(I; = {1,3}). Commitments to 7r2 i (D, 772 i ,(3) and to Ty (2) are opened. Correspond—

ing proofs of correct decryptions are shown (along solid arrows) e.g., that Cz,-_ | cor-
rectly decrypts to céj under the public key pk,;. It is visualized on Fig. 3.

m2j-1 o)

1 1

2 x
< 2

e I g EY

Fig.3. RPC audit example for server M; and audit string B; = 010. Dashed edges and corre-
sponding commitments remain hidden.



8 P. Lorek et al.

2.3 Attacks on RPC

In this section we describe and analyse attacks on RPC. The first attack was presented
in [18] and later described in [17].

Attacks by the Last Mix Sever. To ilustrate the attack by the last mix-server, let us
consider the following example with n = [ = 3 votes. Let m; = my = A (2 votes for
candidate A) while m3 = B (1 vote for B). Say, the honest permutation is m,, = (2, 1, 3)
(Fig. 2), however, M, is cheating and it publishes commitments to 7, = (1, 1,3) (which
is not a permutation) (Fig. 4).

-1 T

1 1
N P
/\/
2 -7 N 2
SRS 1 [0 | SEEEEE
-

Fig. 4. Example: attack by the last mix server. A vote for B is copied while a vote for A is removed.

The audit string is of the form B, = b,.1b,»b,3. The value of b, 3 is irrelevant for this
attack, we are thus left with four choices for b,.1b,,. All four situations are depicted in
Fig.5. If b,y = b,» = 1 then M, is asked to open x; (1) and 7} (2) and the cheating
is detected. In all other cases, the cheating is not detected (since there are two entries
pointing to the same element). In other words, one can detect a single message manipu-
lation with probability 1/4.

1 1
' 1 ¢ ¢
Cor2 / Corm1 2r-2 / 2r-1

2 2
(’2r—2 / 2r-2 2r-1

3 3
: ; ¢ <,
C2r—2 C2; 2r-2 2r-1

(a) Challenge: 00« (1, = {1,2}). (b) Challenge: 01 (I, = {1}).
Audit passed. Audit passed.

1 1 1 1
Cor2 Cor-1 > Cor2 Cor1
2 2 2 2
€2 / Cor-1 €2 €1

(9}

ISR

X

I
= ==
(=] [=] [>]

[>]

3

Cor2 C%r—l C%r—Z Cgr—l
(c) Challenge: 10= (/, = {2}). (d) Challenge 11x (Z, = 0).
Audit passed. Audit fails.

Fig. 5. RPC detects a single message manipulation just with probability }‘.



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 9

Attacks by Any Mix Server. Here, we present an attack that was proposed in [17].
This attack can be performed by any server. Let / = n = 3 and consider the server M;
with honest inverse permutation n;}_l = (2,3, 1) (Fig.2), however the server publishes

commitments to ﬂlz;.ll = (1,3, 1) (Fig.6).

/ .
Tj-1 2j

\/
N\

2 2 P
3] O
3 -7 3
Gj2 TS -]

Fig. 6. Example: attack on any layer by server M;. The result of the attack can be: a vote for B is
copied while a vote for A is removed.

If the audit string bjb;,b;3 is such that b;; = b;3 = 0, then the server is asked to
open ”'2;11 (1) and ”'2;11(3) and the manipulation is detected. Note that in any other case
for values of b;;, b;3, it is not detected. All four situations for values of b;, b;3 are
depicted in Fig. 7.

Summarizing, such a manipulation is detected with probability 1/4 (and thus it
is undetected with probability 3/4) in case of one manipulation. In general, when k
messages are manipulated, the probability of not detecting it is (3/4) (for details see
Theorem 1 in [18]).

1 1
Crj2 C2j-1

2 2
j-2 €)1

3 3
Gj |I| -1

1 1
©j2 _’ C2j-1 D
2 2
)2 €2j-1 D
3 3
Gj2 -1 _’D

Hnn

(@] [=] []

(a) Challenge: 0 = 0 (Z, = {1, 3}). (b) Challenge: 0 = 1.
Audit fails. Audit passed.
€22 €)1 D €2 1 D
)2 )1 [ ] )2 )1 ]
)2 )1 [ ] )2 S | 3]
(c) Challenge: 1 = 0. (d) Challenge 1 * 1.
Audit passed. Audit passed.

Fig.7. RPC detects a single message manipulation just with probability %.



10 P. Lorek et al.

3 Mirrored Randomized Partial Checking (mRPC)

In this section, we present a fix to RPC which we call Mirrored-RPC (mRPC) protocol
and prove that it guarantees optimal level of manipulation detection i.e., manipulation
of k messages is detected with probability 1 — (1/2)*.

In RPC protocol, each mix server publishes two lists of commitments to the “mid-
dle column” (ciphertexts that are the result of the first mixing phase, see Fig.2), more
precisely server M; for each entry i publishes:

— commitments to }_l(i) (where data comes from), and
— commitments to (i) (Where data goes to).

In mRPC commitments are published on the “outer columns” — see Fig. 8. This
change allows for detecting manipulations with higher probability than the original
RPC.

-1

772j

1 -1 (1) 1

| B -G e 2] |
~ _ - ~. -~
~ _ - //(\

2 ,” ~ -1 | -~ T~
C5._ 1 N 7| C, r ~ 1
s -7 2j

- \\

3 -7 Sl 72j-103)

i

Fig. 8. mRPC: For each entry of a left column, a commitment to “where to” is published and
a commitment to “where from” for entries of a right column is published (In the original RPC
these commitments are only published for the entries that are the result of first mixing.).

3.1 Protocol Description

Setup phase The setup is exactly the same as in the original RPC (Sect. 2.1).
Submit phase This phase is exactly the same as in the original RPC (Sect. 2.1).

Mixing phase The mixing phase stays almost the same as the Mixing phase of the
original RPC (see Sect. 2.1) the only difference is in the part: Posting commitments.

Duplicate elimination the same as in original RPC.

First mixing — the same as in original RPC.

Second mixing — the same as in original RPC.

Posting commitments M; posts two sequences of commitments on B:
(a) commitments to the values 7mp;_(1),...,m-1(]),

(b) commitments to the values ﬂg}(l), ... ,ng} Q).

Sl

Note that RPC in Posting commitments phase in step 4a posts: ng}fl(l),...,
ng}_l(l) and in step 4b posts: m;(1),...,m;(]). Similarly as in RPC, for clarity of pre-
sentation, we assume no duplicate elimination took place in mRPC, i.e., [ = n.



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 11

3.2 mRPC Audit

During the audit phase, each mix server M; opens half of the commitments. A set I; C
{1,...,n} is computed by e.g., xor-ing random bit strings provided by the auditors. Set
I; defines a corresponding challenge string (also called audit string) B; = b;1bjs...bj,
for bj; € {0, 1}, where b;, = 0 if and only if x € /;.

ALIf x € Iji.e, bj, = 0, then the mix server M; is supposed to:
1 (bidirectional checking):
(a) publish value y;
(b) then open z = ﬂzj_l(y) and check if 7 = x;
2 post a non-interactive zero-knowledge proof demonstrating that indeed C»;_[x]
is obtained from decrypting Céjfz [v] using sky;_;.
ARIfx ¢ Ijie, b;, = 1, then the mix server M; is supposed to:
1 (bidirectional checking):
(a) publish value y;
(b) open the commitment to z = T, >1(y) and check if 7 = x.
2 post a non-interactive zero- knowledge proof that C,j[y] is obtained from
decrypting C,;_;[x] using sky;.

Example 2 (mMRPC Audit). Let us assume that the jth server committed to the values
presented in Fig. 8. The audit is presented in Fig. 9. During the audit phase, an audit
string b = 010 = b b,b5 (defining the corresponding /; = {1, 3}). The jth server needs
to publish:

AL for x € {1, 3}:
1. forx=1,y; =2,z =m;-1(y1) = 1 = x, a non-interactive ZKP that C,;_([1] is
obtained from decrypting C,;_»[2];
2. forx=3,y3 =1,z =m;_1(y3) = 3 = x, a non-interactive ZKP that C,;_[3] is
obtained from decrypting C,;_»[1];
AR for x € I;¢ = {2}
l.forx =2,y, =1,z = 7r21(y2) = 2 = x, a non-interactive ZKP that Cy;[1] is
obtained from decrypting C2 i-112].

1 7j-1(1)

2 mj-1(2) .
1] © “
3 72j-103) 3
Bl

Fig.9. mRPC audit example for server M; with B; = 010. Dashed edges and corresponding
commitments remain hidden.




12 P. Lorek et al.

3.3 Attack Examples on mRPC

Attack by the Last Mix Server. Let us reconsider the attack described in Sect.2.3.
The dishonest ’permutation’ together with all commitments is depicted in Fig. 10.

™

m
\ . m®
I S o S

Fig. 10. Attack by the last mix server in mRPC.

For b,; = b,» = 1, the cheating is detected (Fig. 11 (d)). However, this is not the
only situation when the manipulation is detected.

— Assume that the server commits to Jr;l = (1, *,3). Consider b,; = 0,b,, = 1. In
RPC server M, is asked to open m,.(2) =y = 1,in mRPC the server is additionally
asked to open 7r2 1(y) = 7r2 (1), which is 1 and the cheating is detected — Fig. 11(b).

— Assume that the server commits to 7r2 = (2,%,3). C0n51der b,y = 1,b.n = 0.
Then M, is asked to open 77, (1) = y = 1 and additionally 7r2 (1) = 2. This case is
presented in Fig. 15(c).

In any case (for manipulated permutations), the manipulation will caught for 2 audit
strings b,.1b,» out of 4, thus with probability 1/2. All options are depicted in Fig. 11.

o 2

2
E H 2] | ™ |I|
g
B

(a) Challer}ge string: 00x. (b) Challenge string: 01x. For x = 2 value y = 1
Audit passed. is published but opened commitment z = 1 # x.
Audit failed.

o) m T
I o '
I 3| ' M

1
Cl
Cl

(c) Challenge: 10x. (d) Challenge 11%. For x = 2, y = 1 is published
Audit passed. but opened commitment is for z = 1 # x. Audit
failed.

Fig. 11. A view of a bulletin board after the audit step of mRPC.



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 13

Attacks by Any Mix Server. Let us continue the setup Sect.2.3. The attack, in the
presence of additional commitments is presented in Fig. 12.

2

M
m® L //D

-

//,sznm -7 \\*D

GE N B0

Fig. 12. Attack on any layer in mRPC.

Again, once b;; = b;3 = 0, the manipulation is detected. Consider cases:

— Assume that server commits to ﬂ;j_l = (3,%,2). Consider b;; = 0,b;3 = 1. In RPC

server M is asked to open n/z;il(l) =y = 1, in mRPC server is additionally asked
to open ﬂ’zj_l (1) which is 3 and the manipulation is detected.

— Assume now that the commitment is 7T'2j71 =(1,%,2). Thenincase bj; = 1,b;3 =0
the server must open n'z;l] (3) which commits to 1.

In any case (for manipulated permutations), the manipulation will be detected in
two out of four possibilities for b;; and b3, i.e., with probability 1/2. All the situations
(for JTéFI = (3, 1,2)) are presented in Fig. 13, other cases are ”symmetric* (see Fig. 15).

b T b

2 2
][] a0 4”) kI
o a2 [0
BIL] BB

(a) Chal.leng.;e: 0x0. (b) Challenge: 0 = 1.
Adit failed. Audit failed.

)

m 2

2] ] ' 2][]
] a2 NI
B[] o & B3] ]

(c) Challenge: 1 = 0. (d) Challenge 1 = 1.
Audit passed. Audit passed.

b8l b

Fig. 13. mRPC ggdetects a single message manipulation with probability % For the same settings,
RPC succeeds in detecting only with probability i .



14 P. Lorek et al.

The same attack as in Sect. 2.3 (Attacks by the last mix server) is presented, except
in the first row of the last column, commitment is to row 2 from the middle column.
The attack is then detected for different challenge strings but still with 50% probability
(Fig. 14).

T o

\ /, C;rl(l) 77/7

Enaen|ERin
\

/ \ e ,,,,

Fig. 14. Attack by the last mix server in mRPC.

672!1(3) *

(a) Challenge: 00:.

< | BBl (5]

(b) Challenge: 01:.

e Vo) T Uy
B 2| |24 <1|B) 2] || @ A2] (4]
B ngaiEEIng EngaiEs

Audit passed. Audit passed.

i o i o
4|3, 2[4 4 [1{2][4]
EnPaERng 3

C72f|(3)

3} -3l (5]

3} -[31[5]

(c) Challenge: 10x.
Audit fails.

(d) Challenge 113x.
Audit fails.

Fig. 15. The same attack as in Sect.3.4 is presented but with attacker committing to different
values.

3.4 Security of mRPC

Lemma 1. For mRPC, the probability of undetectable modification of k entries by any
mix server M, during one mixing step is upper bounded by %

Proof. We will show the proof for an odd (2 — 1) mixing step, the reasoning for an
even (2j) mixing step is similar. The input to the mix server M| is a list of ciphertexts

Cyjy = <céj_ Lrees cgj_1> published by the server M;_; (or the users/voters for j = 1).



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 15

During the Mixing phase, M ; posts:

— the result of the First mixing, ciphertexts: Cy; = <cé PR cgj>,
— commitments fq,...,1%,.

If M; is honest then for some m;_; € §, and y = m;_;(x) for all x € [n] the
following equations hold:
1y = Comm(y), 1)

c;j = Decg,, ,(¢3;_))- )
During the audit step if b;,, = 0 (y € I;) the following steps are performed:

AL.1 (bidirectional checking):
1. M, publishes z,
2. M; opens commitment £, = Comm(y’) to y’,
3. auditor checks if y = y’.
AL.2 (proof of correct decryption):
1. M; publishes the proof that Eq. 2 holds for y and z,
2. auditor verifies the proof.

If M; is dishonest and decides to manipulate k entries from positions in a set A C
{1,...,n} (JA] = k) it means that M; will not be able to pass AL.2 part of the audit for
x €A

M may try to post commitments to different positions but since the commitment
check AL.1 is bidirectional, a single entry from C»;_; can be mapped only to a single
entry in C»;. And since C»; lacks entries corresponding to ciphertexts from positions
in A it will be detected in the AL.2 part of the check whenever for such an entry a
challenge bit 0 will be chosen.

Since there are k positions with that property, the probability of not detecting that &
entries were dropped (replaced) is equal to 1/2.

The main theorem is a direct conclusion from Lemma 1.

Theorem 1 (mMRPC security). For mRPC, the probability of undetectable modifica-
tion of k entries by any mix server is upper bounded by zlk

4 Privacy Guarantees of RPC and mRPC

4.1 Constant Number of Mix-Servers

In [11] it was shown that for a scenario when votes are cast only on one of the two
candidates, the constant number of mix servers is enough.

Here we show that for arbitrary messages (e.g., for Australian-type ballots), a con-
stant number of mix-servers is not enough.

Example 3 (Bulletin board leaks information). RPC auditing process may reveal a lot
of information about voters’ preferences. Figure 16 presents an extreme example. There
are two candidates A, B and 8 voters vy, ..., vs. With only » = 2 mixing servers, a lot
of information may be available to an adversary, even when he just observes publicly
accessible information.



16 P. Lorek et al.

m b9
Vi [————{1

v2 [

vi O

Va E

vs [ |

Ve [J

V7 ]

V8 ]

Fig. 16. RPC for small number of mix servers may reveal a lot of information. Just by observing
bulletin board, an adversary may say that voters {vy, v4, v7, vg} cast votes {A, B, B, B} while voters
{va, 3, Vs, 6} cast votes: {A,A, A, B}.

The situation becomes much worse if an adversary knows exactly how some voters
voted. For the example at Fig. 16, knowlede that v4 voted for A reveals that vy, v7,vg
voted for B.

Example 4 (Anonymity for arbitrary messages.). For a general case, when there are
more types of messages (e.g., ballots in Australia), senders’ privacy is still at risk. In
the most general case, every message is unique. The insight behind privacy definition is
achieved in the following way: for an adversary, every permutation should be possible
with almost the same probability — i.e., distribution on permutations generated by the
RPC process should be close to the uniform distribution.

By 7 we denote a permutation obtained by applying permutations ry,...,m4, and
revealing parts of them during the audit phase (see Fig.17). It is easy to see that
Plm= (e, %,5 %% 7,%%)] =0=P[r=(%2%7,%%75,% %)] (it is impossible that mes-
sage 5 was sent by v3 at the same time when message 7 was sent by vg, and vice versa).
There are a lot of other permutations that are impossible to achieve.

s m 3 T4
Vi ————>0 m
v2 O
Vi [J
v
vs [ |
Ve [ @
V7 |
" . s3]

Fig. 17. RPC for a small number of mix servers may reveal a lot of information. The probability
that senders v,, v; sent messages 5,7 respectively is equal 0. One can exclude a lot of other
combinations. A similar analysis can be applied to linkability of many crypto-currencies, e.g.,
Zerocash [23].



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 17

Definition 1. For mix-server entries x;, xj, we denote by My (x;, x;) = t if M; was the
first mix-server for which entries were both audited during the same step. By audited by
server M we mean that both x; and x; were assigned the same audit bits.

Note that if entires x;, x; were audited in M, then the entries were mixed — someone
observing only revealed links does not know their relative ordering.

Lemma 2. For any entries x;, x; the probability that they will be mixed for the first time

in the k-th mix-server is equal to sz ie., P(Mm(x,-, xj) = k) = zlk

Lemma 3. Let r be the number of mix-servers, and n be the number of processed
entries. If(g) > 2" then with high probability there exists a pair of entries i, j € {1,...,n}
such that Mg, (x;, x;) > r.

The proof of Lemma 3 follows from a birthday paradox argument.

By RPC,,, we mean a random permutation obtained by processing n messages
through an RPC cascade of » mix-servers having the knowledge on so far opened links.
By L(RPC; ) we denote the distribution of the scheme at step k < r and by U(S,)
we denote the uniform distribution, both on S,, — a set of permutations of n elements.
We will use a total variation distance between two distributions u, v on a common finite
state space E as

1
TVD[u, v = 5 > lu(e) = v(e)l.
ecE
The conclusion of Lemma 4 is that a constant number of mix-servers is not enough
to privately process arbitrary messages.

Lemma 4. Let r be the number of mix-servers, and n be the number of processed
entries. If ('21) > 2" and in the last server m left links are open, then

2m(n — m) (;) 1 1
nn-1) ~— 2 2n-1)
where equality in (x) is achieved for m = n/2 (say n is even,).

TVD|UCS,), LRPC, y3)| > 1 -

The proof of Lemma 4 is in Appendix A.1, the bound is depicted in Fig. 18.

4.2 Mixing Time 05
In this section, we show the required

. . . 0.45
number of mix-servers to achieve high
level of privacy. The main result concern- 04
ing the privacy of RPC and mRPC is the
following. 0.35
Lemma 5. Let n be the number of pro- 03
cessed entries by a r-server RPC mix or - -
mRPC. If 0.25 — =31 ‘

20 40 60 80 100
n
r=r(n,e) 2 log [(2)/ € Fig.18. Lower bound on TVD[U(S,),

LRPC,,)] > 1 - 5

=27 21"



18 P. Lorek et al.

then
TVD [U(S,), L(RPC,,)] < e.

We start — Lemma 6 — with the RPC/mRPC Scheme One, i.e., the case when each
server is asked to open left/right connections independently. Moreover, we assume that
each entry is opened with some predefined probability p € (0, 1). Note that it is equiv-
alent to actually considering 2r servers, each performing a single permutation — we
consider however r servers, each performing two permutations, to be consistent with
lemmas related to Scheme Two.

Afterwards, in Lemma 7 we show the result for Scheme Two. Lemma 5 is a direct
consequence of the latter (substitute p = 1/2).

Lemma 6. Let n be the number of processed entries by a r-server RPC or mRPC mix
Scheme One. Each server is asked to open any connection independently with proba-

bility p € (0, 1). If
1 n
r=r(n,ge) > E IOgl—(1]ﬂ’>2 [(2)/8}

TVD [U(S,), LIRPC,,)] < «.

then

The proof of Lemma 6 is in Appendix A.2, it is based on strong stationary times (SST,
introduced in [1,2]), a tool from a Markov chain theory.

Remark. It is worth mentioning that SST T from Lemma 6 (see its proof) resembles
SST constructed in [19] for riffle shuffle scheme. Note that the RPC and the riffle shuffle
are quite different — in RPC full permutation is applied in each step and each connec-
tion is revealed with probability p, whereas in riffle shuffle only the specific type of
permutation in each step is performed and p corresponds to revealing some bits used to
perform it. Note also that it takes % log_: [(;)/s] for RPC to mix, whereas it takes

1-(1-p)?

log_» [(’21)/8] for riffle shuffle to mix.

l*(l—p)z

Let us consider the following example.

Example 5. Consider n = 6 an assume that B; = 001010, B, = 010011, i.e., in first
steps outgoing connections from nodes 1, 2,4 and 6 are revealed and in the second step
the outgoing connections from nodes 1, 3, and 4. With this knowledge, the adversary
knows that with equal probability one of the permutations is possible:

(4,1,6,3,2,5),(4,1,2,3,6,5),(4,6,1,3,2,5),(4,2,1,3,6,5),
4,6,2,3,1,5),(4,2,6,3,1,5),(4,1,6,5,2,3),(4,1,2,5,6,3),
(4,6,1,5,2,3),(4,2,1,5,6,3),(4,6,2,5,1,3),(4,2,6,5, 1, 3).



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 19

step: 1

step: 2

step: 3

Fig. 19. 3 steps of execution of RPC for n = 6. All options for unrevealed nodes shown. Revealed
connections depicted as solid lines (corresponding nodes are red), unrevealed ones as dashed
lines (corresponding nodes are gray). After these three steps Y3 has the uniform distribution on
12 permutations emphasized by gray regions. (Color figure online)

All possible situations are depicted in Fig. 19. In Fig. 20, one realization of this example
is depicted — then all the pairs are mixed, thus the resulting permutation is random.
(Note that for n = 6 such a situation happens on average after processing by % log 4 (g) =
4.7 servers).



20 P. Lorek et al.

VS| V) T3 Tty s g

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

. (350 {1,21,{1,6} {3.5),{3,6} {2,4},12,5) {1,3},{1,5} {1,2},{1,3}
Mixed 26) 56)  26L45) (3.5 (1423
pais 14,61,(5,6} 12,41,(3,4}

Total nr of 1 4 6 10 12 15

mixed pairs STOP

Fig. 20. Sample execution of mixing of n = 6 elements. Newly mixed pairs are in bold. In this
example after 6 steps an adversay has no knowledge on the final permutation (all (g) = 15 pairs
are mixed). After three steps his knowledge is depicted in Fig. 19

In the following Lemma 7 we show the result for Scheme Two.

Lemma 7. Let n be the number of processed entries by a r-server RPC or mRPC mix
Scheme Two. Each server is asked to open any left link independently with probability
p € (0, 1), then the right links corresponding to non-opened left ones, are open.

r=rne)zlog i [(Z)/ E]

then
TVD [U(S,), L(RPC,,)] < &.

The proof of Lemma 7 is in Appendix A.3. Note that for p close to 0 or 1 there will be
many pairs mixed in step 2k — 1 or 2k. The worst situation i.e., the smallest number of
mixed pairs (on average) will be for p = 1/2. For cases n € {100, 10 000, 1 000 000}
the average number of steps, as a function of p is depicted in Fig. 21.



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 21

—n = 100
n = 10 000
—n = 1000 000

40

30

20

10

0.2 0.4 0.6 0.8 1

Fig. 21. Average number of RPC servers needed to mix n € {100, 10 000, 1 000 000} entries (for
g= 1(')—0). In the worst case p = 1/2 we need 19 servers on average.

5 Application: CryptoCurrency Unlinkability

In most popular cryptocurrencies, payments are performed between pseudonyms. Since
transactions are published on a public ledger, payment transactions remain traceable.
There were a couple of approaches that introduce untraceability to blockchain cryp-
tocurrencies: Zerocoin [20], Zerocash [23] (used in ZCash), CryptoNote [25] (used in
Monero).

In this section, we want to show a link between Lemma 6 and the anonymity guaran-
tees of various cryptocurrencies. We assume that the anonymization protocol is similar
to the one that is used in Zerocash. If one wants to measure the anonymity level of a
given system in total variation distance then it corresponds to the mixing time of RPC
Scheme One which is expressed in Lemma 6. Instead of applying the following equa-

tion:
n Je| = logn +log(n — 1) — log(2¢)
2/ 2log(1 - (1 - p)?)
it seems simpler is simpler think about the function of ¢ = 1 — p — here g corresponds

to the fraction of entries being in a mix. Then let rb(n, g, €) = r(n, p, &):

n) ] logn + log (n — 1) — log(2¢)
/e|=—

1-(1-p)2

1
r(n,p,s)zzlog | [(

1
b s Y Z Y 1 1
rb(n.q.) = 5 log 1, [(2 210g(1 — @)

One needs to approximate n, e.g., by applying the simplifications (1) and (2) below;
then ng = n(1 — p) would be the average number of transactions (or from/to addresses)
in a single block. The number rb(n, g, €) denotes the required number of mix-servers so
the resulting permutation is £ close in total variation distance to the uniform distribution
on n elements. Since each server performs two independent permutations, the required
number of steps is equal to 2rb(n, g, €) (Fig. 22).



22 P. Lorek et al.

10°
——n =100
n = 10 000
—n = 1000 000
10%
103
102
0 0.1 0.2 0.3 0.4 0.5

Fig. 22. Number of rounds (for cryptocurrencies the number of blocks) 2rb(n, g, €) needed to be
processed for a system with n entries to be close to the uniform distribution, as a function of ¢, €.
The x-axis of the plot is g — the probability of selecting an element to the mix £ = 1/100.

To give insights, we make a series of further simplifications:

(1) each transaction is of a nominal value (e.g., | BTC/1 ETHy/...),

(2) each pseudonym (public key) is linked with a single nominal value,

(3) each coin is selected to be used in a payment transaction independently, uniformly
at random with probability 1 — p (in the Lemma 6 p corresponds to the opened
links).

Then, assuming that all transactions are “shielded”, with the data of 5/1/2022
(source: https://bitinfocharts.com) the results are following:

— for Ethereum 1.63 - 103 blocks (For n = 120 606 657, p = 88 £ = 1) would be
needed (2.56 - 10° days),
— for Bitcoin 6.03 - 10° blocks (3.54 - 107 days).

6 Conclusions

We presented Mirrored Randomized Partial Checking (MRPC), the protocol that elim-
inates attacks on Randomized Partial Checking. Proposed mRPC makes minimal
changes to the original protocol but allows for upper bounding probability of successful
attack by an adversary to (%)k - compared to (%)k in the original RPC. The presented
approach can be applied to fix Civitas and Scantegrity II voting systems.

We also provided an analysis of privacy guarantees offered by RPC. Our analysis
gives also insights into the level of anonymity of cryptocurrencies. We conclude that
due to the need for many steps (high value of rb(n, g, €) for small values of ¢) and the
need for speedy transactions (that enforce low values of ¢), de-anonymization will be
open to some attacks due to insufficient mixing.


https://bitinfocharts.com

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 23

A Proofs

A.1 Proof of Lemma 4

Proof. Recall that /; is a subset of [n] for which left link is revelead (challenge bit is set
to 0). Letus denote S ;o = I;and S ;; = [n]\ [}, i.e., those messages for which right link
is revealed (challenge bit 1). In terms of an audit string B; = bjb;>...b;,, we may
rewrite S ;, = {i : b;; = b}.

If two elements x, y are not mixed in the M; mix, it means that x € S ;, andy € § ;1
for b € {0, 1}.

Let us compare distance between the uniform distribution U(S,) on n-element per-
mutations to the distribution L(RPC,,,) when n > V2r.

From Lemma 3 there exists two mix entries x,y that are not yet mixed after
r steps, with high probability. It means that x € Si4,,525,,....5,5 and y €
S 1,1_},],52,1_1,2, e ,Sr,l—b,. for b], ey bc S {0, 1}

Let 82 be the set of all permutations for which x € S, andy € §,;_ forb =0, 1.
From the assumptions we have that |S,o| = m. From Lemma 3, with high probability,
only permutations from SY have nonzero probabilities in distribution L(RPC, 7). In
other words, we can write that the probability of o under L(RPCr, @) is f(o) such that

>0 ifoeS),
fo)

= 0 otherwise,

for some distribution f on S° (Fig. 23).

Co Cy C Cs Cy
T Al m 3 Ay my

Vi ———>] 0 | 0 o
V2 O °
Vi [J . O
V4 1 d Uy O
vs O U . 1 O
Ve [1 1 S><D 0 .
V7 U U O
Vg U O L——

Fig. 23. Representation of sets S 0,51, for M, and sets S,,S5,,1 for M,. Audit/challenge bits
Ay, A; for My, M, are presented next to columns Cy, C3. Sets S j are denoted by m and sets S ;;
are denoted by e.

Now, let us compute the distance between uniform distribution and the distribution
L(RPC,,,) for a set of permutations 82 such that m left links were opened, i.e., |I,| =
IS 1.0l = m.



24 P. Lorek et al.

TVD | U(S,), LRPC,,) | IS ol = m| =

1 1 1] 1 1 1
ZE ZO f(O')_E+ZDE ZE Zo(f(a-)_;)-’-zor?
€Sy ¢S oeS) ¢5)
1S, 0l=m S r0l=m 1S, 0l=m IS l=m
11 1 1 11
== - _ = —_ = — R | — 0 . —
2 - 2 % n! ZS‘) n! 2 + n! (l’l 2dfo e S, 1S vl m}l)
\S{,‘()\gm |;;,0‘£"*
_ NoeSiiiSl=m

n!
Noting that
o€ 8% : 1S .0l = m}| = 2m(n — m)(n — 2)!

we have
2m(n — m)

nn—-1) °

The worst-case is exactly half left links are open (say n is even), i.e., m = n/2, then

TVD [U(S,). LIBPC,,) | IS sol = m| > 1 -

TVD [U(S,). LRPC,,) | IS 1ol = m| = TVD|UCS,). LIRPC,,) | IS 10l = /2]
3 1

n
235 1

>1- =
nn—1) 2 2n-1)

A.2 Proof of Lemma 6

Proof. We will use some tools from Markov chain theory. We will consider two chains
{Xt}r=0, {(Yi}=0 on S,. We set X = Yy to be the identity permutation (note that RPCy , is
the identity permutation).

Recall that server j performs permutations 75;_; and 73}, in total 27 permutations
are performed.

Concerning X;,: it is X; to which we apply a uniformly random permutation 7, =
(m,(1),...,m(n)) (note that then X, ~ U(S,) for any r > 1).

Note that in Scheme One each server performs independently identical (in dis-
tribuion) steps. That is why we will look at the distribution after each application of ;.

Concerning Y, this is X, with the following extra knowledge. Let B, = b, 1,..., b,
be the n random bits chosen independently from the distribution P(b;; = 0) = p =
1 =P =1).

Now assume that the entries S ;o = {j : b,; = 0} from the permutation r; are
opened. Y, has distribution of X, provided we have a knowledge of By,..., B;. This
corresponds to RPC;,. Since {Y;},»0 is ergodic and aperiodic, the uniform distribution
is the stationary distribution. By £(Y;) we denote the distribution of ;.

We will use the strong stationary times (SST) approach (introduced in [1,2]). We
say that T is an SST for {Y}} if for any permutation o we have P(Y; = o|T =t) = 1/n!.
For such SST we have TVD [L(Y), U(S,)] < P(T > 1) (see, e.g., Theorem 6 in [1]).

Let us define

T;j =minft: b,; = b, j = 1},



Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 25

i.e., this is the first time that both elements i and j were not opened. At this time the
relative ordering of i and j is random (since m; is uniformly random). Note that the
probability that this will not happen in one step is 1 — (1 — p)? (at least one entry was
opened), thus P(T;; > 1) = (1 — (1 — p)?)".

Now, let T be the first time when all the pairs of elements were not opened in at
least one step. It means that all ('2’) pairs are in random relative order — and that means
that the permutation itself is random (since 7,’s are uniformly random). In other words,
T is an SST for {Y¥;}. We may compute

TVD [L(Y)), U(SH)] < P(T > 1) - P(Ulskjsﬂ{Tij S t})
< IS;SnP(TU >1) = IS;SL(I - _p)z)’ _ (’;)(1 —a —p)z)[.

Taking = log_1__|(3)/2]. we have TVD [L(Y)), U(S,)] < &. In total there are = 2r

1-(1-p)2
permutations, thus the proof is completed.
A.3 Proof of Lemma 7

Proof. The proof is similar to the proof of Lemma 6. The ¢-th server applies two permu-
tations 7y, and my,, then each left link is opened independently with probability p, i.e.,
By1 = by 11, by 1, withidd. P(by 1 =0) = p = Plby1;=1),j=1,...,n
However the audit string By, is uniquely determined:

By = (bar1s -y bory) = (1 = b1, 1 = by ).
The situation is depicted in Fig. 24. Again, let
T;j =minft: b,; = b, j = 1},

i.e., this is the first moment that elements i and j were not opened in the same permuta-
tion. Consider steps 2¢ — 1 and 2¢: the elements i and j will be both opened in the same
step if i) they are both revealed in step 2¢ — 1; ii) they are both not opened in step 2¢ — 1
(since then they surely will be in next step). Thus, the pair will not be mixed in steps
2t — 1 and 2¢ with probability 2p(1 — p). We have

P(T;; > 21) = 2p(1 - p))'.

Again, since all permutations m,’s are random, the first moment 7" when all the pairs are
mixed is an SST, and we have (consider ¢ even)

TVD [L(Y), U(S,)]
< P(T > 1) =P[ | (7> t}]

1<i<j<n

IA

D, PTy>20/2= " @p(l-p)

I<i<j<n I<i<j<n

n I3
(2) 2p(1-p))>.



26

P. Lorek et al.

Taking the last step, i.e., t = 2r we have that » = log__1 [(g) /s] what completes the

2p(1=p)

proof.

Fig. 24. Situation similar to Fig. 20: m; and m, and B; = 001010 are the same as there, but now
B, is determined by By, namely b? = 1 — b! — opened connections depicted in red.

References

1.

2.

10.

11.

Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Am. Math. Mon. 93(5), 333—
348 (1986)

Aldous, D., Diaconis, P.: Strong uniform times and finite random walks. Adv. Appl. Math.
8(1), 69-97 (1987)

. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for

public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp.
26-45. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055718

Burton, C., Culnane, C., Heather, J.: Thea Peacock, Peter YA Ryan, Steve A Schneider,
Vanessa Teague, Roland Wen, Zhe Xia, and Sriramkrishnan Srinivasan. Using prét a voter in
victoria state elections. EVT/WOTE, 2 (2012)

. Carback, R.T., et al.: The scantegrity voting system and its use in the takoma park elections.

In: Real-World Electronic Voting, pp. 253-292. Auerbach Publications (2016)

Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election scheme. In: di
Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp.
118-139. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_8

Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
mun. ACM 24(2), 84-90 (1981)

Chen, C., Asoni, D.E., Barrera, D., Danezis, G., Perrig, A.: Hornet: high-speed onion routing
at the network layer. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1441-1454 (2015)

Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system. In: 2008
IEEE Symposium on Security and Privacy (S&P 2008), pp. 354-368. IEEE (2008)
Gjgsteen, K.: The Norwegian internet voting protocol. In: Kiayias, A., Lipmaa, H. (eds.)
Vote-ID 2011. LNCS, vol. 7187, pp. 1-18. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32747-6_1

Gomuikiewicz, M., Klonowski, M., Kutylowski, M.: Rapid mixing and security of Chaum’s
visual electronic voting. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol.
2808, pp. 132—145. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39650-
5.8


https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/978-3-642-32747-6_1
https://doi.org/10.1007/978-3-642-32747-6_1
https://doi.org/10.1007/978-3-540-39650-5_8
https://doi.org/10.1007/978-3-540-39650-5_8

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 27

. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle. In:

Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379-396. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3_22

Haenni, R., Koenig, R.E., Locher, P., Dubuis, E.: Chvote system specification (2017)
Haines, T., Miiller, J.: Optimal randomized partial checking for decryption mix nets. In:
Baek, J., Ruj, S. (eds.) ACISP 2021. LNCS, vol. 13083, pp. 277-292. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90567-5_14

Haines, T., Miiller, J.: Sok: techniques for verifiable mix nets. In: 2020 IEEE 33rd Computer
Security Foundations Symposium (CSF), pp. 49-64 (2020)

Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting by ran-
domized partial checking. In: USENIX Security Symposium, San Francisco, USA, pp. 339—
353 (2002)

Khazaei, S., Wikstrom, D.: Randomized partial checking revisited. In: Dawson, E. (ed.) CT-
RSA 2013. LNCS, vol. 7779, pp. 115-128. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36095-4_8

Kiisters, R., Truderung, T., Vogt, A.: Formal analysis of Chaumian mix nets with randomized
partial checking. In: 2014 IEEE Symposium on Security and Privacy, pp. 343-358. IEEE
(2014)

Lorek, P., Kulis, M., Zagoérski, F.: Leakage-resilient riffle shuffle. In: Blomer, J., Kotsireas,
1.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 395—408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72453-9_32

Miers, 1., Garman, C., Green, M., Rubinm, A.D.: Zerocoin: anonymous distributed e-cash
from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397-411. IEEE (2013)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_9

Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix anonymity system.
In: 26th {USENIX} Security Symposium ({USENIX} Security 17), pp. 1199-1216 (2017)
Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014
IEEE Symposium on Security and Privacy, pp. 459-474. IEEE (2014)

Toledo, R.R., Danezis, G., Echizen, I.: Mix-ORAM: using delegated shuffles. In: Proceedings
of the 2017 on Workshop on Privacy in the Electronic Society, pp. 51-61 (2017)

van Saberhagen, N.: Cryptonote v 1.0 (2012). https://cryptonote.org/whitepapervl.pdf
(2021)

Wikstrom, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., Gonzdlez Nieto, J.
(eds.) ACISP 2009. LNCS, vol. 5594, pp. 407—421. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02620-1_28

Douglas Wikstrom. Verificatum (2018). https://www.verificatum.org/


https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-030-90567-5_14
https://doi.org/10.1007/978-3-642-36095-4_8
https://doi.org/10.1007/978-3-642-36095-4_8
https://doi.org/10.1007/978-3-319-72453-9_32
https://doi.org/10.1007/3-540-46766-1_9
https://cryptonote.org/whitepaperv1.pdf
https://doi.org/10.1007/978-3-642-02620-1_28
https://doi.org/10.1007/978-3-642-02620-1_28
https://www.verificatum.org/

l‘)

Check for
updates

Bitcoin Clique: Channel-Free Off-Chain
Payments Using Two-Shot Adaptor
Signatures

Siavash Riahi' and Orfeas Stefanos Thyfronitis Litos?(®)

1 TU Darmstadt, Darmstadt, Germany
2 Imperial College London, London, UK
o.thyfronitis-litos@imperial.ac.uk

Abstract. Blockchains suffer from scalability limitations, both in terms
of latency and throughput. Various approaches to alleviate this have been
proposed, most prominent of which are payment and state channels,
sidechains, commit-chains, rollups, and sharding. This work puts forth
a novel commit-chain protocol, Bitcoin Clique. It is the first trustless
commit-chain that is compatible with all major blockchains, including
(an upcoming version of) Bitcoin.

Clique enables a pool of users to pay each other off-chain, i.e., without
interacting with the blockchain, thus sidestepping its bottlenecks. A user
can directly send its coins to any other user in the Clique: In contrast
to payment channels, its funds are not tied to a specific counterparty,
avoiding the need for multi-hop payments. An untrusted operator facili-
tates payments by verifiably recording them.

Furthermore, a novel technique of independent interest is used at the
core of Bitcoin Clique. It builds on Adaptor Signatures and allows the
extraction of the witness only after two signatures are published on the
blockchain.

1 Introduction

Blockchain technologies have gained increasing popularity in the past decade
as they provide a robust, secure, and decentralized infrastructure that allows
parties to make monetary transactions, as well as execute applications. The
main ingredient used in virtually all blockchains are consensus protocols, which
guarantee that all honest parties have received and agree on the latest state of the
system. Unfortunately, because of their distributed nature, public blockchains do
not scale well in terms of throughput and latency [1]. For example, Bitcoin needs
at least 1h to finalize a new transaction [2] and can process around 7 transactions
per second, in contrast to centralized, trusted payment processors that achieve
instant finality and can process tens of thousands of transactions per second.
To tackle this issue, off-chain protocols were introduced. An off-chain pro-
tocol allows parties to make transactions without involving the blockchain and
only come on-chain in case of disputes, vastly increasing throughput. The first

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Poépper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 28-50, 2024.
https://doi.org/10.1007,/978-3-031-54776-8_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_2

Bitcoin Clique 29

type of widely deployed off-chain protocols is payment channels [3—7]. Two par-
ties open a channel with a single on-chain transaction, locking their funds into
a “joint account”. They can then pay each other many times entirely off-chain,
via a fast two-party protocol. An honest party can always unilaterally retrieve
its rightful funds on-chain, thus it does not need to trust its counterparty.

Nevertheless, locking coins for exclusive use with a single counterparty is
a severe limitation. Payment Channel Networks (PCNs) [6,7] mitigate this by
enabling atomic multi-hop payments. A routing algorithm specifies a path of
channels between the payer and the payee, then each intermediary receives funds
in one channel and atomically sends the same amount (minus a fee) to the other.

In order for a channel to serve as an intermediate hop, it needs to have enough
balance on one of the two sides of the channel. Unfortunately, intermediary
channels are often used excessively in one direction, leading to channel imbalance.
Payment Channel Hubs (PCHs) [8-10] were introduced to mitigate this. A PCH
is a PCN node that offers liquidity and reliability in exchange for higher fees.

To deliver on these guarantees, the PCH must have the capacity to handle a
scenario in which all parties simultaneously pay all their coins to the same party.
This needs a large amount of locked funds: Consider a PCH with n clients, each
of which owns ¢ coins in its channel with the hub. The latter must have (n — 1)¢
coins in its channel with each client P in order to support everyone else each
giving ¢ coins to P, for a grand total of n(n—1)c coins locked by the hub. Due to
these scalability issues, practical hubs restrict the allowed payments and charge
the users high fees to compensate for the opportunity cost of their locked funds.

To tackle this limitation of PCHs, an alternative off-chain approach that
foregoes channels completely was introduced: plasma or commit-chain proto-
cols [11]. Here a separate log of transactions between participating users is
maintained by an untrusted operator that periodically commits the latest system
state on-chain efficiently. Due to this need for on-chain commitments, contrary
to PCNs, commit-chains do not achieve instant finality. Still, they greatly reduce
the required operator collateral while maintaining high throughput and low fees.
In most such protocols the operator either needs no collateral at all or has to
lock nc coins, a linear improvement compared to PCHs. A popular subcategory
of commit-chains are rollups [12,13]. They store all transaction data on-chain,
but carry out the associated computation off-chain.

To date, all commit-chain protocols need the Turing-complete capabilities of,
e.g., Ethereum [14] to validate exit requests and disputes. In this work we present
Bitcoin Clique, the first commit-chain protocol suitable for blockchains with a
limited scripting language such as Bitcoin [2]. Clique enables its users to pay
each other off-chain without having to lock coins with a specific counterparty,
therefore completely avoiding the issues that PCNs face. A payment only needs
the active participation of the payer, the payee and an untrusted operator. To
achieve this we leverage OP_CHECKTEMPLATEVERIFY (OP_CTV) [15], an opcode that
is a prime candidate for inclusion in the next Bitcoin soft fork, as well as a novel
technique of independent interest which builds on Adaptor Signatures [16]. At
a high level, the latter enables the atomic exchange of a signature for a secret
that satisfies a specific relation. This is useful for a range of applications [17-20].



30 S. Riahi and O. S. T. Litos

Extending this primitive, we create a method to disclose the secret upon the
publication of two adapted signatures instead of just one.

As we formally prove, Bitcoin Clique achieves security and scalability, needing
only three off-chain messages per payment and a single on-chain transaction of
minimal size at fixed intervals. Building on top of Bitcoin brings commit-chains
to blockchains with constrained scripting capabilities, providing Bitcoin users
more versatility of off-chain solutions and expanding the use cases of the cryp-
tocurrency. Furthermore, it informs designers of future blockchains that pursue
minimal on-chain scripting capabilities without compromising on the achievable
off-chain functionality.

Similarly to other commit-chains and optimistic rollups [13], our solution
only finalizes payments upon an on-chain commitment. We find this to be an
acceptable tradeoff in exchange for drastically higher throughput than on-chain
payments, as well as more flexibility and less collateral than payment channels.

1.1 Owur Contributions

We provide Bitcoin Clique, the first commit-chain that is compatible with Bit-
coin and other UTXO-based blockchains, enabling trustless off-chain payments
between commit-chain users with superior throughput and lower fees than on-
chain transactions, while avoiding the shortcomings of payment channels. We use
of two special tools to design our protocol: Firstly, we employ the to-be-added
0P_CTV opcode, which enables securely updating the state of Clique with the
active participation of just a single party, the operator. Secondly, we leverage our
novel technique at the heart of our construction, which extends Adaptor Signa-
tures and underpins a punishing mechanism against users that try to maliciously
obtain twice their rightful coins upon exiting. Relevant security properties are
defined and formally proven.

1.2 Related Work

Off-Chain Channels. There has been extensive work on off-chain channels.
The first line of works focused on off-chain payments over blockchains with a
limited scripting language such as Bitcoin [4-6,21-24]. In [25] the Lightning
Network (LN) [6] is formally proven secure in the UC framework [26]. State
channels generalize payment channels by allowing parties to execute off-chain any
application that is supported by the underlying blockchain, not just payments.
2-party state channels over Bitcoin are constructed in [16]. Most state channels
constructions (e.g., [27-30]) function over Ethereum.

Commit-Chains. The original concept of a commit-chain was introduced by
Plasma [11]. Many different plasma protocol variants such as MVP [31], Cash [32]
Debit [33] and Snapp [34] were introduced thereafter. These have been mostly
discussed at https://ethresear.ch without formal treatment.

Formal treatment of commit-chain/Plasma solutions was first presesnted
by NOCUST and NOCUST-ZKP [35]. Their solution requires the underlying


https://ethresear.ch

Bitcoin Clique 31

blockchain to support Turing-complete smart contracts. Another technique [36]
achieves better efliciency in comparsion to preexisting solutions but relies on
Trusted Execution Environments (which our work does not require). Liquid [37]
is a centralized commit-chain that functions on top of Bitcoin: users need to trust
a supermajority of a fixed federation of servers. Compared to channels, commit-
chains avoid imbalance issues, payment routing, complex channel management
and unsustainable collateral in exchange for instant finality.

Fast Finality Techniques. Snappy [38] and LDSP [39] speed up transactions
and are optimized for a small set of merchants that receive payments from a
large set of customers. A subset of the merchants (a.k.a statekeepers) guaran-
tee fast payment finality using the customer’s collateral, before the transaction
becomes finalized on-chain. They only allow for unidirectional payments and put
all transactions on-chain. We compare LN-based PCHs, NOCUST, Snappy, and
the current work in Table 1. There, for Snappy it is epoch = latency period [38].

Rollups. Finally, a solution similar to commit-chains is called rollups. This app-
roach aims at performing expensive computation (i.e., executing smart contracts)
off-chain, while committing all (unprocessed) data to the blockchain, effectively
using the latter as a data availability layer while the rollup is active, and as
a finality platform once a party leaves the rollup. Rollups (e.g., [12,13,40-42])
are essentially a special case of commit-chains. They are of lesser interest for
blockchains with restricted scripting capabilities such as Bitcoin, where the stor-
age of L1, not its computation, corresponds to the lion’s share of the cost.

Table 1. Comparison of PCHs based on LN [6], NOCUST |[35], Bitcoin Clique, and
Snappy [38] for n users. Ephemeral data is deleted after each epoch.

PCH (LN) NOCUST Bitcoin Clique Snappy (m
statekeepers)
off-chain | Network (messages) 8 3 3 3+42m
payment
costs
per-payment storage O(log(max pays)) / 312b/841b 1sig+5pks/5pks [0/0
(user/operator) O(log(max pays)) (ephemeral) (ephemeral)
fixed storage 2 ints + 2 pks/ 529b/ n pks 4+ n ints / 0/0
(user /operator) 2n ints + 2n pks 5n ints + n pks n pks + n ints
on-chain | startup n n 2 n+m
overhead
(txs)
pessimistic teardown 2n 2n 2n n+m
per epoch — 1 1 0
per payment 0 0 0 1
Works w/o Turing-complete SC v X v X
Allows any-to-any payments v v v X
user collateral (total payments — 0 0 c
of up to ¢ coins/epoch)
operator collateral (¢ coins/user) n(n—1)c ne ne —
statekeeper collateral ne
(insuring up to nc coins/epoch)




32 S. Riahi and O. S. T. Litos

Extensions to Adaptor Signatures. The technique of [43] extends adaptor
signatures to two pre-signers, who collaborate to pre-sign. Given then a single
adapted pre-signature, they can extract the witness. In contrast, in our technique
a single pre-signer needs two adapted pre-signatures to extract the witness.

2 Preliminaries

A digital signature scheme, first formalized in [44], is an established crypto-
graphic primitive that enables efficient message authentication. It provides (i)
Gen, a probabilistic polynomial time (PPT) algorithm that generates a secret-
public key pair, (ii) Sign, a PPT algorithm that, on input a secret key and
an arbitrary message, produces a signature and (iii) deterministic polynomial
time (DPT) Vrfy which, on input a public key, a message and signature, it
returns whether the signature is valid. The security property ensures that, with-
out knowledge of the secret key, one cannot forge a valid signature.

Consider next a security parameter k € N and a relation R, i.e., a set of
statement-witness pairs (Y, y), where Y,y € {0,1}*. Let Lg, the language of the
relation, be the set of statements for which a valid witness exists: Lg = {Y |
Jy s.t. (Y,y) € R}. We further say that R is a hard relation if: (i) there exists a
PPT algorithm RGen(1%) that produces new (Y, y) pairs in R, (ii) one can check
efficiently (i.e., in polynomial in k time) whether a given (Y, y) pair is in R (i.e.,
R is decidable) and (iii) there is no PPT algorithm that, given Y, produces a
witness y such that (Y,y) € R with more than negligible probability in k.

Adaptor Signatures (AS). This scheme, formalized in [45], is built on a digital
signatures scheme and a hard relation R. It enables the atomic exchange of (i)
a valid signature on a message of interest m € {0,1}* with (ii) a valid witness
of a pre-agreed statement. In addition to the 3 algorithms of the underlying
signatures, adaptor signatures provide 4 new ones: pSign, pVrfy, Adapt and Ext. In
this work we leverage a novel technique built on AS for a punishment mechanism
at the heart of Bitcoin Clique.

The typical AS scenario involves two parties: Alice, who generates the pair
(Y,y) € R, keeps the witness y secret, and publishes Y, and Bob, who controls
the signing keypair (sk, pk). Initially, Bob calls pSign(sk,m,Y) in order to pre-
sign m, then sends the resulting pre-signature o to Alice. She verifies that o
is valid by checking that pVrfy(pk, m,7,Y) returns 1. & is however not a valid
signature (i.e., Vrfy(pk,m,o) = 0, where Vrfy is the verification algorithm of
the underlying signature scheme). Nevertheless, Alice can call Adapt(pk,o,y)
(note the use of her witness y) to obtain the desired valid signature o: now it
is Vrfy(pk,m,c) = 1. Alice then broadcasts o (usually on a blockchain). The
adapted signature o is special: Bob can extract Alice’s witness y from it by
running Ext(o,7,Y’). The atomic exchange of o for y is now complete.

The adapted signature o thus serves a double role: It both proves that Bob
indeed signed m and discloses Alice’s witness to him.



Bitcoin Clique 33

A motivating application for this scheme is the atomic sale over a blockchain
of a secret that satisfies a specific constraint, e.g., is the secret key of a specific
public key: The seller Bob sends the statement (his public key) to the buyer
Alice. She prepares a transaction that pays Bob, pre-signs it and sends him
its pre-signature. Bob adapts it and publishes the transaction with the resulting
signature. Lastly Alice extracts the witness (Bob’s secret key) from the signature.

AS offer the following functional and security properties: (i) Bob cannot
obtain a signature without adapting, (ii) if he adapts he will always obtain a
valid signature and (iii) Alice can always extract the witness from an adapted
signature. Thus, if Bob gets paid, then Alice learns the witness, ensuring
atomicity.

CTV. We now provide some intuition on CTV, the proposed Bitcoin opcode [15]
that we make heavy use of in this work. At a high level, it allows us to constrain
the future use of coins. This new restriction ability enables complex ownership
structures of coins, bringing to Bitcoin a large and useful subset of the smart
contracts possible in blockchains with Turing-complete scripting languages [14]
with a minimal, well-scrutinized modification to the Bitcoin Script.

Its mechanics are relatively simple: the CTV opcode is included in a transac-
tion output and fully specifies every piece of data of the spending transaction,
exept for the content of its inputs. At an intuitive level, it is enough to think
that a CTV dictates the outputs of the next transaction.

For example, consider a transaction output 6’ of ¢ coins that is spendable by
Alice, as well as another transaction output 6 with 2¢ coins, encumbered only
with a CTV that commits to a transaction with a single 6’ output. This means
that anyone can spend 6, as long as the spending transaction has a single output,
0'. The interpretation of this setup is that Alice has to pay a fee of ¢ coins to
the miners to gain ¢ coins.

Let us examine a more useful example: Alice keeps her coins in an output
encumbered with a CTV that specifies a single output. The latter is either spend-
able by her “hot wallet” key after a delay, or by her “cold wallet” key immediately.
To pay, she first spends the CTV-encumbered output, then waits for the delay
and finally uses the payment transaction. If however her hot wallet is compro-
mised (which can presumably happen more easily than to her cold wallet), she
still can salvage her coins with the cold wallet key within the delay window.
Observe that in the common case of no compromise, her cold wallet secret key
is never used. This way to secure funds is currently impossible in Bitcoin.

More complex applications of CTV, such as Bitcoin Clique, implicate multiple
mutually distrustful parties. Without CTV, all involved outputs would have to be
signed by all parties, otherwise any missing party could be cheated out of its coins
by the rest. This however does not scale, as it requires the active participation of
all parties for any state update. Even worse, a single inactive party can lead to
the protocol stalling, effectively locking honest party coins forever. CTV removes
these pitfalls by fixing where the coins of involved outputs will go without new
signatures by all parties on every update.



34 S. Riahi and O. S. T. Litos

With regards to notation, consider a transaction tx. We denote a CTV that
commits to a transaction with the outputs of tx with CTV(tx): An output with
spending condition CTV(tx) can only be spent by a transaction with the outputs
of tx and no other transactions. For efficiency and privacy, a short commitment
to the relevant tx data, generated with a hash function, is stored with CTV(tx).

3 Model

3.1 Blockchain and Transaction Model

In this work we focus on blockchains based on the Unspent Transaction Output
(UTXO) model, such as Bitcoin. Under this model, coins are held in outputs.
Formally, an output 6 is a tuple (cash, ), where cash denotes the amount of coins
associated to the output and ¢ defines the conditions (also known as script) that
need to be satisfied to spend the output. Our modeling is inspired by [16,46].

A transaction transfers coins across outputs, meaning that it consumes one
or more existing outputs and creates a list of new outputs. A transaction has one
input for each output it spends, which carries the witness that satisfies the script
of the output being spent (typically one or more signatures). In other words, each
transaction input is tied with exactly one previously unspent output of an older
transaction. Thus, the transactions of a UTXO-based blockchain are organized
in a directed, acyclic transaction graph. Formally, a transaction tx is a tuple of
the form (txid, In, Out, Witness), where txid € {0, 1}* is the unique identifier of tx
and is calculated as txid := H(In, Out), where H is a hash function, commonly
modeled as a random oracle. In is a vector of pointers to the outputs being spent
and Out = (64, ..., 6,) is a vector of the new outputs. The sum of coins of the new
outputs must not exceed the sum of coins of the spent outputs. Witness € {0, 1}*
contains the witnesses that satisfy the scripts of the old outputs.

A valid transaction can be added to a single block of the blockchain (or ledger,
GlLedger)- A block consists of a number of transactions. There is a unique block for
each height € N and new blocks are continuously created. As explained below,
the height of the block in which it is included can be leveraged by the script(s)
of a transaction via a timelock. The liveness property guarantees that an honest
transaction has to wait for at most u € N blocks from submission to inclusion.
One can of course store a transaction locally (a.k.a. off-chain) along with (some
of) its witnesses in order to publish it later on-chain if needed.

Let us now enumerate the five types of spending conditions of an output
used in this work. The most common spending condition is a public key. To
satisfy it, the spending transaction must be signed with the corresponding secret
key. Two more spending conditions are absolute and relative timelocks. These
conditions make the output unspendable before a certain point in time. An
absolute timelock is a block height after which the output can be spent. A
relative timelock is the number of blocks that the output must stay on-chain
before it can be spent. All timelocks in this work last for strictly longer than the
liveness parameter u. The fourth spending condition is the threshold signature,
which allows a subset of specific size of a designated set of keys to spend the



Bitcoin Clique 35

output (this functionality is implemented with the OP_CHECKSIGADD opcodel).
The last spending condition type is CTV, which has been introduced in Sect. 2.

We introduce our notation through examples: The spending condition pkp
ACTV(txs) + t1 of an output of tx; can be spent by txs signed by skg, only
after tx; has been on-chain for ¢; blocks (“+t” denotes relative timelock). (pks A
pkp) A ta can be spent by a transaction signed by both skc and skp, only after
block to (“At” denotes absolute timelock).

3.2 Commit-Chain Model

A commit-chain protocol is executed among a set of users P, an operator Op
and Gredger- We break the execution down into three phases: the transaction,
the exit, and the healing phase. In the transaction phase users can transfer coins
off-chain to one another and in the ezit phase users can withdraw their rightful
coins on-chain. Users that want to continue the Clique enter the healing phase.

Transaction Phase. During this phase each user P; € P can send a message of the
form (P;, Pj,v,aux) to the operator Op indicating that P; wants to send v coins
to user P; € P. At the end of this phase each user P € P attempts to compute
a tuple of the form (v, e, 7), where v is P’s balance in epoch e and 7 is a balance
proof. The protocol should ensure that a user can send coins to and receive coins
from multiple users during this phase. Balances are not updated immediately
but only at the end of the transaction phase. This property is referred to as
late or eventual finality. Due to late finality, it could indeed be the case that an
honest user cannot calculate the latest m at every moment. In this case the user
will use its previous balance proof to exit the system if she so wishes without
loss of funds.

Op is tasked with processing payments and updating user balances. Some
commit-chain protocols require Op to send one or more on-chain transactions to
Oledger to commit to the latest state of the system at the end of each epoch.

Ezit Phase. This phase can be triggered by any user P € P. It is carried out
by submitting one or more suitable transactions to Gredger- If Op misbehaves, P
will detect it and exit in time, securely recovering all its coins on-chain.

Healing Phase. Some commit-chain protocols require a restoration process by the
users and Op to revert to the transaction phase after an exit phase is completed.

3.3 Communication and Adversarial Assumptions

Let us now discuss the communication and adversarial assumptions in our mod-
eling. A commit-chain protocol is executed in the presence of a PPT adversary
who can corrupt up to all but one parties. The corrupted parties are then con-
trolled by the adversary, i.e., they can deviate from the protocol description and
act in an arbitrary and possibly coordinated fashion.

! github.com/bitcoin/bips/blob/master/bip-0342.mediawiki#cite_note-5.



36 S. Riahi and O. S. T. Litos

We also assume that parties are connected via authenticated channels, i.e.,
the adversary can read, delay, replay or drop messages sent between parties but
cannot modify their content. All parties have read and write access to Gredger-
The adversary cannot drop messages sent by an honest party to Gredger, but it
can delay them for up to a fixed period of time.

3.4 Security and Performance Guarantees

We here provide intuition for the intended guarantees of Bitcoin Clique.

Transaction Phase Correctness. We say that a transaction is valid if the sender
owns in the commit-chain more coins than the amount to be paid. During the
transaction phase, if Op, the sender P; € P and the receiver P; € P of a valid
transaction (P;, Pj,v,aux) are honest, then either P;’s balance is reduced by v
and P;’s balance is increased by v, or both balances remain unchanged (if the
adversary drops or delays a message too much).

Exit Phase Correctness. If an honest user exits the commit-chain system, she is
removed from the user set P. For simplicity we assume that a user always exits
with all her coins.

Balance Security. In the presence of any number of malicious parties, including
Op, an honest user does not lose any coins at any stage of the protocol, i.e., an
honest user is able to always exit with her entire balance. We note that due to
late finality, this property essentially states that users will either be able to exit
with their balance from the current or the previous epoch.

Operator Balance Security. An honest operator does not lose the collateral she
deposited in the commit-chain, even in presence of any number of malicious
users. Furthermore, she is able to exit the Clique at any time.

Formal security properties are given in Sect.5 (Theorems 1 and 2).

Efficiency. Let t denote the duration of an epoch and ¢ the per-epoch communi-
cation of Op with Gr.eqger- A commit-chain protocol is efficient if ¢, ¢ € O(1), i.e.,
the duration of an epoch and the per-epoch communication of Op with Grcqger
independent of the number of both users and payments.

Efficiency is the reason why a commit-chain protocol is useful, as it guarantees
that its payment fees are drastically lower than on-chain transaction fees.

4 Protocol Overview

In this section we go over the Bitcoin Clique protocol in an informal but detailed
manner, providing the necessary intuition.

Consider users P with |P| = n and an operator Op running a Bitcoin Clique
protocol. Under the current design, users can only own and exchange coins in



Bitcoin Clique 37

a single, fixed denomination. Adding more denominations is relatively straight-
forward, but left as future work — discussion to that direction can be found in
Sect. 6. In the current section we limit the total number of coins to be a power
of 2 and we assume that each user owns 1 coin for ease of exposition; these
limitations are not present in the formal protocol.

This subsection is organized as follows: We start with the protocol flow dur-
ing normal operation, which includes payments and epoch changes. We then
explain the off-chain tree of transactions that is the core of the construction.
Subsequently the exit phase is discussed. Afterwards we elaborate on the mech-
anism which guarantees that epoch changes respect balance security; this is
where the extension of adaptor signatures and the need for operator collateral
come into play. Then the Clique setup procedure is presented, tying everything
together. Lastly we discuss the healing mechanism, which is formally presented
in Appendix A.

Transaction Phase. During normal operation, Alice € P can send her coin to
Bob € P by sending him a single signed message, who in turn generates some
keys and sends them, together with Alice’s message, to Op. The latter then
signs and publishes these messages to all Clique users. In practice, this last step
is efficient, as Op can simply post them on, e.g., its website. Honest users should
check that their payments appear there and initiate the exit phase if they do not
appear within a reasonable length of time.

Periodically, i.e., at the end of each epoch, Op publishes to Gredger & specially
crafted step transaction with 1 input and 1 output that carries the sum of all
Clique coins and commits to the latest coin distribution. This transaction spends
a previous step transaction. This is efficient: a transaction of minimal, constant
size safeguards all epoch payments, irrespective of their number or the amount
of users. Looking ahead, in order to move its coins back on-chain, any user can
unilaterally start the exit phase by spending on-chain the step transaction.

Transactions Structure. The central structure of a Clique is a binary tree of
transactions with one leaf per coin, which exists entirely off chain during normal
operation (i.e., until the exit phase). The root transaction of the tree has a single
input that spends the step transaction and has two outputs, each with half the
total coins. Each non-leaf transaction spends one of the two outputs of its parent
and in turn provides two outputs, each with half the coins. Looking forward, a
user can exit unilaterally by publishing to Gredger the branch of transactions
that connect the root to its leaf, which contains O(log(n)) transactions.

A parent transaction specifies its children using CTV. Crucially, CTV guar-
antees that Op can generate this tree locally, without interacting with the users,
just by using their public keys. This avoids costly interactions and prevents a sin-
gle user from stalling the protocol by inaction, ensuring the protocol is practical.
Since CTV uses hashes, the resulting structure is a Merkle tree of transactions.
This structure ensures logarithmic on-chain complexity for each user. An exam-
ple Merkle tree can be seen in Fig. 1.



38 S. Riahi and O. S. T. Litos

Exit Phase. If an honest user P € P decides to move its coins back on-chain
or detects misbehavior by Op, — slow response times, invalid responses, or an
incorrect step transaction on-chain — it triggers the exit phase. As alluded to
previously, P accomplishes this by publishing the root transaction that corre-
sponds to the last valid step transaction, along with the log(n) 4+ 1 transactions
that constitute its own branch of the Merkle Tree. In particular, each non-root
transaction that P publishes spends one of the two outputs of its parent. This
is the only way to spend this output without a timelock — the child transaction
is specified via CTV.

CTV(tx1,2)

CTV(thA)

Fig. 1. Merkle tree for 4 users. The usage of CTV is exemplified.

The leaf transaction has 2 outputs as well, one of which concerns P. This
output has a different spending condition: it requires an adaptor signature, pre-
signed by Op and adapted by P — we will promptly explain why. P spends the
leaf output using an out transaction, which finally gives P access to its coins
after a timelock.

For example, if n = 128 and P is the only exiting user, it has to publish the
root transaction, another 6 Merkle tree transactions and the out transaction to
exit, i.e., 8 constant-size transactions in total.

Once the step transaction is spent by P, it prompts all other Clique users to
either follow the same on-chain procedure to retrieve their coins on-chain within a
fixed timeframe — this is the timelock of the Merkle tree transactions we alluded
to before — or join the healing phase (discussed below), otherwise their coins
can be confiscated by Op. The latter is required to guarantee operator balance
security. Note that a user R exiting after P needs to publish less than log(n) +1
transactions on-chain, since part of the tree has already been published. More
specifically, if R exits after P and shares 1 < m < log(n) levels of the Merkle
tree with P, then R only needs to publish log(n) — m + 1 transactions to exit.



Bitcoin Clique 39

Some details that are omitted here for simplicity can be found in Sect. 5.

Updating Step Transactions. One crucial question has been left unanswered:
How does Op securely supersede the step transaction at each epoch change? On
the one hand, if Op can freely spend the step transaction, it can simply steal
all Clique coins without recourse. On the other hand, future payments are not
known when the step transaction is generated, thus CTV cannot be used. Of
course, requiring signatures by all users for each epoch update is impractical.

To resolve this quandary, the following solution is employed: Two step trans-
actions are active and unspent at each instant. Each carries the entirety of the
Clique coins. The first set of coins is initially provided by the users, whereas
the second is provided by Op as collateral. At the end of each epoch, a timelock
on the older one expires and Op can freely spend it. If Op is honest, it will use
the next step transaction, as discussed earlier. If however it steals the coins or
stays inactive, users exit via the other active step transaction — the CTV spend-
ing method, which requires the root transaction, is not timelocked. Op cannot
steal the newer step transaction, as it is still timelocked. This technique ensures
balance security for the users.

This solution however creates yet another problem: What prevents the users
from simply exiting via both step transactions? This would effectively double
each user’s coins by stealing Op’s collateral. This is where our novel technique
based on adaptor signatures is used. As alluded to above, P € P has to publish
an out transaction after the leaf transaction and wait for a timelock to access its
coins. The out transaction needs a signature that P can only obtain by adapting
a specially crafted pre-signature by Op using a specific AS witness. If Op learns
two adapted signatures by P on out transactions of consecutive epochs, it can
extract two AS witnesses, sum them to obtain a new AS witness and use the
latter to confiscate the coins of one or both out transactions before P’s timelock
expires. Therefore P can claim its coins from either step transaction securely,
but not from both. This technique provides operator balance security. We refer
the reader to Fig. 2 for a complete illustration.

Special care needs to be taken when coins change hands between epochs. In
order to maintain operator balance security, the payee needs an AS signature
by the payer to spend its coin. This is so that Op can punish the payer if both
payer and payee try to exit with the same coin.

Clique Setup. At last, all building blocks are in place. They are put together
during the setup procedure as follows: Parties exchange keys and pre-signatures,
then calculate the initial Merkle tree of transactions. Fixed conventions are used
(e.g., lexicographic ordering of public keys) so that all parties agree on exactly the
same tree. Each user then moves its ¢ on-chain coins to the first step transaction,
which exceptionally has n inputs. Its output commits to the Merkle root via CTV.
Simultaneously Op moves its collateral (equal to the total Clique coins) to a step
transaction that commits to the same Merkle root. As discussed before, Op can



40 S. Riahi and O. S. T. Litos

also spend them, but only after a timelock. The timelock of the second one is
longer by ¢ blocks. We say that ¢ is the length of an epoch.

Observe that no user nor Op can lose coins during setup. Users only move
their coins into the step transaction after ensuring that its output is the expected
one and that they can spend their entire branch up to and including the out
transaction (which needs the correct pre-signature). Likewise Op verifies that it
can extract the required key and punish any user that attempts to take its coins
from both step transactions.

Healing Phase. After one or more users exit, one or both step transactions
are spent and part of the Merkle tree is on-chain. The remaining users need a
mechanism to restore suitable unspent step transactions to carry on. We design
a method by which the active users collaborate among them and with Op to
consolidate the outputs of each Merkle tree into a new step transaction. This is
achieved by including one more spending method to each output of each tree
transaction. This method does not use a CTV, since the exiting users are not
known when the tree is built and foreseeing all possible exit combinations leads
to an exponential blowup. It instead needs a signature by Op and all users that
have their coins in said output. At a high level, active users try to gather the
needed signatures for the consolidating transaction. If some users that have not
exited are inactive, the active users that share a tree output with them publish
the minimum tree transactions needed to exclude the inactive users from the tree
outputs and then try to consolidate again. Once the consolidating transaction is
fully signed, it is published to Gredger- The Clique is healed. A full description
can be found in Appendix A.

Extension to Adaptor Signatures. As we saw in Sect. 2, an adaptor signa-
ture scheme (AS) [16] ties together the signature of a message (in our case a
transaction) and the revelation of a secret value (a.k.a. witness). In a bit more
detail, a pre-signer first generates a pre-signature, the publisher adapts this pre-
signature using its witness, and upon publishing the resulting full signature the
pre-signer can extract the publisher’s witness using the pre- and full signatures.
In order to ensure compatibility with Bitcoin, we instantiate AS with Schnorr
adaptor signatures (we refer the reader to [16] for its details).

We extend this scheme to require two signatures for extraction. In particular,
in our technique, the witness consists of two AS witnesses. A single signature
only reveals one of the two AS witnesses, leaving the other (and the combined
witness) secret. Our technique guarantees that extraction is impossible under a
single valid signature and prevention of extraction is impossible under two valid
signatures.

Sect. 5 describes our contribution in depth.



Bitcoin Clique 41

tXout,e,1
tX12 pky AAS(Op, Py -
TXstep,e > Phoue,1 N tp
CTV(tx;.2) _ —  pky ANAS(Op, )

pko, A Y1

)
- CTV(txs,4) —
.7(‘, —
. pks A AS(Op, P3)
TXstep,e+2 txX3,4

4 CH——
|:L CTV (txroot,e+2) — —  pky AAS(Op, Py)

pkop +t

i

Fig. 2. lllustration of a Bitcoin Clique with 4 users, showing the transactions that can
be published on-chain for the step transaction of epoch e, txstep,e. AS(Op, P;) represents
a spending condition that requires a signature generated via an adaptor signature,
where Op is the pre-signer and P; the adapter. The diamond notation represents an
OR spending condition, e.g., tXout,e,1 can be spent either by P; after block ¢, or by Op
if she knows y1 such that (Y1,y1) € R. Op can learn y1 only if P1 maliciously publishes
the txout of two consecutive epochs. The txou of two epochs are unspent at any point
during a transaction phase, here only one is shown. The outputs of txroot,e, tx1,2 and
tx3,4 can be spent by Op after a timelock, thus preventing a coalition of malicious users
from indefinitely blocking Op’s collateral. These timelocked spending methods however
are omitted here for conciseness.

5 Bitcoin Clique Protocol

We now present our protocol in more detail. An illustration of the CTV-based
Merkle tree can be seen in Fig.2. Thanks to CTV, the root transaction is the
only transaction that can spend the on-chain txstep.

To update the balances of the users at the end of each epoch, this Merkle
tree and the associated txsep need to be updated by Op. As we saw earlier, after
the end of the epoch Op has to be able to freely spend the current txg., and
replace it with the desired next txsep. As discussed, to prevent Op from abusing
this power and stealing all Clique coins, two step txs exist on-chain at any time.
To protect Op from losing its collateral by a user that spends both step txs, the
aforementioned AS extension is employed. In Fig. 2, P;’s secret y; is revealed if
P exits from both trees (i.e., by spending the txgep of two consecutive epochs)
and Op can use it on the pky, A'Y1 spending condition of txeyt,c,1 to punish P;.
Op is not in a race with P, since the latter cannot spend the coins immediately
but needs to wait until block t, (spending condition pk, ; At of txout e,1)-

In order for P to pay R, the latter generates two new statement-witness pairs
for AS along with new keys for the tree and out txs. All users are informed by Op
about the new keys, so that they can take them into account when computing
the tree of the next epoch. Simply switching from P’s to R’s keys at the new
epoch however would expose Op to an attack: P takes its output in the old epoch
and R takes its output in the new epoch, thus Op loses an equal collateral. As
alluded to earlier, the protection is as follows: When the current epoch ends, P
receives a pre-signature from Op, adapts it, and gives the complete signature



42 S. Riahi and O. S. T. Litos

to R. R needs this extra signature to obtain its coins during the next epoch.
Therefore, if both P and R try to obtain the same coin, Op will learn P’s secret
and retrieve its collateral from P’s out tx in the current epoch.

To sum up, at any time there are two unspent txgep on-chain, representing
the last two epochs. Each can be spent by the corresponding tree of transactions,
or by Op after a timelock. The two timelocks are staggered, so that Op cannot
spend both txge, simultaneously. At the end of the e-th epoch, Op spends one
tXstep,e With a New tXgiep 2, alternating between the two series of step txs on
every epoch. If some users exit, the rest can actively collaborate to heal the
Clique by signing and publishing a single tx which moves all available coins to
a new step output and carry on with the protocol.

We next provide the protocol pseudocode. We refer the reader to Appendix B
of the full version [47] for the full protocol code, to Appendix C of the full
version [47] for its security proof, and to Appendix A for the healing subprotocol.

—i Bitcoin Clique

Constants: N users with ¢ coins each, operator Op, each epoch lasts ¢ blocks.

Setup Phase.
1. Public keys distribution:

— Op and users exchange normal and AS keys.
2. Initial transactions preparation:

— tXstep,1 is funded by the N users and has a t-block timelock.

— tXstep,2 1s funded by Op with Nc collateral coins and has a 2¢-block timelock.
3. out transactions preparation:

— Op pre-signs the two out txs of each user using as statement the AS keys of

the user and sends the two pre-signatures to the user for verification.

4. Setup Finalization:

— Users sign tXsep,1 and Op signs tXsiep,2, the two txs are published to Gredger-
Payment Phase (P transfers an output to R).

1. P sends to R a signed message with the output, R’s id and the next epoch.

2. R sends to Op new normal and AS keys, along with P’s message.

3. Op generates a new AS key for this output and sends it to all N users, along
with P’s message and R’s keys.

4. When the current epoch ends, P adapts the pre-signature by Op, gets a valid
signature and sends it to R for verification, who needs this signature to spend
the corresponding coins (see 1. 1 of Epoch Finalization & 1. 3 of User Exit).

Epoch Finalization Phase. When the timelock of txstep,. expires:

1. Op generates the (e 4 2)-th tx tree and tXsep,e+2 and publishes the latter,
which spends txstep,e. For each output that has been transferred during epoch
e, Op uses the AS keys of both the sender and the receiver to build the new tx
tree. This means that signatures from both parties are needed to spend the leaf
tx of this output at epoch e + 1.




Bitcoin Clique 43

2. Op pre-signs the new out tx of each user using as statement the AS key of the
user and sends the pre-signature to the user.

3. Each user verifies that the epoch change has taken place in a timely manner,
with the expected tx tree, and that the pre-signature is valid.

User Exit Phase. P must exit when it detects any dishonest behavior. The
procedure below is repeated for each of P’s outputs.

1. P signs and publishes all txs that constitute the path from the root to its leaf
of the latest Merkle tree, spending the latest unspent txstep.

2. P adapts the relevant pre-signature and adds the resulting signature to txout,e.

3. If P received its output at the latest epoch, P also adds the previous owner’s
signature to txout,. and publishes it.

4. P stops any action related to this output except for further use of its now
on-chain coins. This prevents accidentally adapting another pre-signature and
disclosing P’s secret keys to Op.

Operator Exit Phase. Op needs to receive Nc coins to recover its collateral.

1. Op tries to get the coins of a txsep of which the timelock has expired.
2. If this fails (because both step txs are spent by the root tx of the corresponding
tx tree), Op tries to take ¢ coins per user:

— If the timelock of any tx in the tx tree expires, Op gets its funds from it
(thus receiving value equal to the sum of coins that are owned by the users
that have tx in their path).

— For every user P that has published both its out txs (and thus no timelock
on either of its paths is left to expire), Op extracts both P’s AS secrets from
the signatures using 2-Ext.

— Op spends at least one of P’s two out txs using its own secret key and the
sum of P’s two secrets, thus taking ¢ coins from P as desired.

The two central balance security theorems follow, where an environment &
may order any party to exit at any time:

Theorem 1 (User balance security). V honest P € P that owns a set of
outputs O in the protocol, if it is instructed by & to exit (Fig. 16 of the full
version [47]), then it will eventually exclusively own all outputs in O on-chain.

This theorem also covers any case of emergency exit or response to someone
else’s exit, since in such a case P must have already safeguarded or be in the
process of safeguarding its outputs when it receives £’s exit instruction. It holds
because an honest user can retrieve its coins on-chain after a failed setup, it can
unilaterally put exactly one out tx on-chain any time after a successful setup,
and the timelock of the out tx will always expire, giving the user access to its
funds on-chain.

Theorem 2 (Operator balance security). If honest Op is instructed by £
to exit (Fig. 18 of the full version [47]), then eventually Op will exclusively own
at least the sum of all players’ outputs (which is equal to Op’s collateral).



44 S. Riahi and O. S. T. Litos

This theorem also implicitly covers any case in which a response to someone
else’s exit is needed. As discussed, it holds because Op can always claim the
coins back, either from an expired timelock of a step or tree tx, or by punishing
a user that published two out txs (and thus leaked its secret to Op).

Formal proofs for both theorems can be found in Appendix C of the full
version [47]. Transaction and exit phase correctness as well as efficiency can be
verified by simple inspection of the protocol.

6 Future Work

Several future work directions remain open. To begin with, only unilateral closure
was considered. This however has a high aggregate on-chain cost and, in case of
closure of a big Clique, could create on-chain congestion. Our protocol can be
extended in a straightforward manner to efficiently handle cooperative exiting of
a subset of the users. This is doable by moving the exiting users’ outputs from
the leaves of the Merkle tree to the next step transaction. This solution only
needs the cooperation of Op, not of all Clique users, maintaining practicality.

Furthermore, the current construction is not privacy-preserving, as all parties
learn all payments. Per-epoch mixing techniques can be used to bolster privacy.

Additionally, removing the fixed-denomination payment value limitation and
the need for operator collateral would greatly improve usability and practicality.
A simple extension of our protocol can provide multiple denominations by includ-
ing one Merkle tree per denomination. Fiat cash exemplifies how this approach
could be sufficient for practical use.

Operators introduce centralization concerns. Nevertheless, since many
Cliques with different operators can coexist and compete, operators are dis-
suaded from providing poor service, and balance security ensures users only rely
on the operator for quality of service, not for funds safety. Operator power can
be further limited by (i) adding a voting mechanism among users to replace
the operator and (ii) enabling inter-Clique payments. These are left as future
directions.

Last but not least, the tree structure need not necessarily be binary. It is
possible that other structures are in practice more efficient, e.g., tertiary trees.
Complementarily, leaf transactions with more than 2 users can be leveraged,
trimming a few levels from the tree. Such optimizations are left as a concern for
a possible future production-level implementation.

Acknowledgements. This work was partly supported by the German Federal Min-
istry of Education and Research and the Hessen State Ministry for Higher Education,
Research and the Arts within their joint support of the National Research Center for
Applied Cybersecurity ATHENE.

A Bitcoin Clique Healing

In its previously described form, Bitcoin Clique is vulnerable to a DoS attack:
When the exit phase is initiated by any user, the entire Clique is torn down



Bitcoin Clique 45

for everyone. We here propose an extension to the protocol, named healing,
which allows active users to reinstate the Clique securely with minimal on-chain
overhead.

At a high level, healing works by enabling a new way to spend tree txs which
needs the active participation of all relevant users and Op. After some users
exit, some tree tx outputs remain unspent. The users that want to stay in the
Clique collaborate with each other and with Op to create a single transaction
that spends all remaining tree tx outputs using the new spending method and
produces a suitable step tx output. The protocol is resilient to inactive users.

A.1 Healing Extension Details

In more detail, the solution is as follows: Consider an output of an arbitrary
tree tx, which is spendable by the subset of users 7 C P. We add an alternative

spending method, named healing, to the tree tx. Its script is A P A Op. This
PeT
modification is done to every tree tx of every epoch.

s + 1 blocks after an exit phase is initiated, a user P that wishes to keep
its coins in the Clique first initializes C C P as the set of users that have not
exited (i.e., the users of whom the out tx is not on-chain) and then repeats the
following steps until either healing is complete (step 2) or the need for P to exit
arises (discussed after the healing steps).

1. Generate and sign a new step tx that spends all currently unspent tree outputs
using the healing spending method and has a single output with the coins and
script of a step tx for users C (with the same b as the step tx that was exited
from). See also Fig. 14 of the full version [47]. If the current block is within
the epoch update period (Fig.12 of the full version [47]) of the exited-from
step tx, then produce the successor to the exited-from step tx instead (i.e.,
produce the step tx that would spend the exited-from step tx, two epochs
later). Gossip signatures with other users and Op.

2. Wait for teconcile blocks (a system-wide parameter, discussed in A.2). If all
users in C and Op sign the new step tx as well within this period, then
publish it to the ledger. Healing is complete.

3. Else:

(a) Remove from C the users that have not provided the aforementioned sig-
nature.

(b) Publish to the ledger the minimum set of tree txs on the path from the
root to P’s leaf so that all users that can spend the resulting tree output
are in C. (This action ostracizes inactive users on P’s path.)

(c) Wait for s 4+ 1 blocks (giving time to our and other branches to finalize
on-chain).

(d) Remove from C all users that can spend an unspent tx tree output that
can also be spent by a user in P \ C. (This action ostracizes users that
did not ostracize inactive users on other paths by following step 3b. This
is needed because the healing spending method needs the signature of all
relevant users.)



46 S. Riahi and O. S. T. Litos

The procedure needs to be repeated potentially many times because previ-
ously active users may become uncooperative in the process.

The need for P to exit arises if the new step tx has not been published by
block tieave — s. In that case, P exits by publishing its branch of the tx tree and
out tx as usual. This scenario can happen if Op becomes malicious and does not
sign the new step tx, or if the other users maliciously classify P as inactive and
do not include its tree output in the step tx. This, together with the fact that all
relevant users (including P) need to sign for the healing spending method to be
used and the fact that P only uses it to return to a normal step tx, guarantees
that the healing extension safeguards balance security.

Op follows the same procedure as the users, apart from step 3b. Since its
signature is needed for all healing spending methods and it only uses it to return
to a normal step tx, operator balance security is guaranteed.

It is possible for the protocol to be executed on both active step txs simulta-
neously — balance security and healing are maintained.

A.2 Discussion and Future Work

Note that tieconcile does not appear in any timelock, as it only dictates off-chain
communication timeouts. It could therefore be alternatively expressed in terms
of time. We here however express treconcile in terms of blocks for homogeneity of
notation. We recommend using the shortest t,econcile value that ensures each user
has enough time to do a communication round-trip with every other user.

During healing, users might end up being too quick to assume another user is
inactive and publish a tree tx that is not strictly needed. This incurs unneeded
on-chain fees. A practical system would need to experiment with concrete param-
eters to minimize such events while promoting quick healing. Users are encour-
aged to be online and share as many signatures as possible as early and widely as
possible to minimize such events, as well as being Bitcoin peers with each other
in order to minimize discrepancies in their ledger views. To further mitigate this
effect, it is possible to design a more elaborate synchronization protocol that
allows users that were erroneously assumed inactive in step 3d to be re-included
in the set of active users during the subsequent signature gossip step 1. We leave
this as future work.

The above shows that this is a best-effort mechanism and does not benefit
from uniquely attributable faults, which would in turn enable exclusion of mali-
cious users from the healed Clique. There are specific cases in which it is possible
to uniquely attribute faults, such as when a user publishes the root tx and no
subsequent tree tx. We leave detecting and punishing uniquely attribute faults
as future work.

Nevertheless, the healing mechanism can save a lot of on-chain transactions
in many realistic scenarios of DoS attempts and always leads to reinstating and
continuing the Clique with all honest, active users irrespective of the number of
malicious users if Op is honest and network delays are bounded.

Let us give us two example scenarios: In case a single user unilaterally exits
and everyone else cooperates, then the on-chain footprint is log, (V) transactions



Bitcoin Clique 47

of the tree, 1 out tx, and 1 healing step tx. On the other hand, if at least one
user of each leaf tx is malicious and publishes its entire branch of the tx tree,
but not its out tx, then healing results in putting the entire tree tx on-chain and
then recreating the exact same step tx output that was initially spent, for a total
of 2N on-chain txs. The latter is the worst case scenario. We observe that even
in this case, honest users can still successfully heal.

In a practical deployment, Op can facilitate the protocol by being the pri-
mary point of contact for users and leveraging its (presumably) better network
connection to enhance coordination, collect and distribute signatures, and sig-
nal which users are inactive. Still, users must not rely solely on Op for message
passing, lest they want to give it the ability to suppress an honest, active user.

References

1. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106-125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4_8

2. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)

3. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-
two blockchain protocols. In: Financial Cryptography and Data Security - 24th
International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020
Revised Selected Papers, pp. 201-226 (2020). https://doi.org/10.1007/978-3-030-
51280-4 12

4. Bitcoin Wiki: Payment Channels (2022). https://tinyurl.com/y6msnk7u

5. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3-18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

6. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016). https://tinyurl.com/q54gnb4

7. Update from the Raiden team on development progress, announcement of raidEX
(2017). https://tinyurl.com/z2snp9e

8. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment
hubs over cryptocurrencies. In: 2019 IEEE Symposium on Security and Privacy,
pp. 106-123. IEEE Computer Society Press (2019). https://doi.org/10.1109/SP.
2019.00020

9. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A%L: anonymous atomic locks for scal-
ability in payment channel hubs. In: 2021 IEEE Symposium on Security and Pri-
vacy, pp. 1834-1851. IEEE Computer Society Press (2021). https://doi.org/10.
1109/SP40001.2021.00111

10. Qin, X., et al.: BlindHub: bitcoin-compatible privacy-preserving payment channel
hubs supporting variable amounts. In 2023 IEEE Symposium on Security and Pri-
vacy (SP), pp. 2462-2480. IEEE Computer Society, Los Alamitos, CA, USA (2023)
https://doi.org/10.1109/SP46215.2023.10179427, https://doi.ieeecomputersociety.
org/10.1109/SP46215.2023.10179427

11. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017)


https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://tinyurl.com/y6msnk7u
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://tinyurl.com/q54gnb4
https://tinyurl.com/z2snp9e
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP46215.2023.10179427
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179427
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179427

48

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

S. Riahi and O. S. T. Litos

Buterin V.: On-chain scaling to potentially 500 tx/sec through mass tx vali-
dation (2018). https://ethresear.ch/t/on-chain-scaling-to- potentially-500-tx-sec-
through-mass-tx-validation /3477

Optimism: Optimistic rollup overview. https://github.com/ethereum-optimism/
optimistic-specs/blob/0e9673af0f2cafd89ac7d6c0e5d8bed 7c67b74ca/overview. md
Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2019)
Rubin J.: Bitcoin Improvement Proposal 119. https://github.com/bitcoin/bips/
blob/master /bip-0119.mediawiki

Aumayr, L., et al.: Generalized channels from limited blockchain scripts and adap-
tor signatures. In: Tibouchi, M., Wang, H. (eds.) ASTACRYPT 2021. LNCS, vol.
13091, pp. 635-664. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92075-3_ 22

Eckey, L., Faust, S., Hostakova, K., Roos S.: Splitting payments locally while rout-
ing interdimensionally. IACR Cryptol. ePrint Arch., p. 555. https://eprint.iacr.
org/2020/555 (2020)

Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei,
M.: Anonymous Multi-Hop Locks for Blockchain Scalability and Interoper-
ability. In: 26th Annual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA, February 24-27, 2019:
The Internet Society. https://www.ndss-symposium.org/ndss-paper/anonymous-
multi-hop-locks-for-blockchain-scalability-and-interoperability / (2019)

Tairi, E., Moreno-Sanchez, P., Maffei, M.: A?L: anonymous atomic locks for scala-
bility in payment channel hubs. In: 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021, pp. 1834-185. IEEE. https://
doi.org/10.1109/SP40001.2021.00111 (2021)

Thyagarajan, S.A.K., Malavolta, G., Schmidt, F., Schroder, D.: PayMo: payment
channels For Monero. IACR Cryptol. ePrint Arch, p. 1441. https://eprint.iacr.org/
2020/1441 (2020)

Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 455-471. ACM Press. https://doi.
org/10.1145/3133956.3134096 (2017)

Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous Multi-Hop Locks for Blockchain Scalability and Interoperability. In: NDSS
2019: The Internet Society (2019)

Avarikioti, Z., Thyfronitis Litos, O.S., Wattenhofer, R.: CERBERUS channels: incen-
tivizing watchtowers for bitcoin. In: Bonneau, J., Heninger, N. (eds.) FC 2020.
LNCS, vol. 12059, pp. 346-366. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4 19

Avarikioti, Z., Litos, O.S.T.: Suborn channels: incentives against timelock bribes.
In: Eyal, I., Garay, J.A. (eds.), Financial Cryptography and Data Security - 26th
International Conference, FC 2022, Grenada, May 2-6, 2022, Revised Selected
Papers: vol. 13411 of Lecture Notes in Computer Science, pp. 488-511. Springer,
Cham. https://doi.org/10.1007/978-3-031-18283-9 24 (2022)

Kiayias, A., Litos, O.S.T.: A composable security treatment of the lightning net-
work. In: IEEE CSF 2020, pp. 334-349 (2020)

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136-145. IEEE Computer Society Press. https://
doi.org/10.1109/SFCS.2001.959888 (2001)


https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://github.com/ethereum-optimism/optimistic-specs/blob/0e9673af0f2cafd89ac7d6c0e5d8bed7c67b74ca/overview.md
https://github.com/ethereum-optimism/optimistic-specs/blob/0e9673af0f2cafd89ac7d6c0e5d8bed7c67b74ca/overview.md
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://doi.org/10.1007/978-3-030-92075-3_22
https://doi.org/10.1007/978-3-030-92075-3_22
https://eprint.iacr.org/2020/555
https://eprint.iacr.org/2020/555
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP40001.2021.00111
https://eprint.iacr.org/2020/1441
https://eprint.iacr.org/2020/1441
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-031-18283-9_24
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888

27.

28.

29.

30.

31.
32.
33.
34.
35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

Bitcoin Clique 49

Dziembowski, S., Faust, S., Hostakova, K.: General state channel networks. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 949-966. ACM
Press. https://doi.org/10.1145/3243734.3243856 (2018)

Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostédkové, K.: Multi-party virtual
state channels. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11476, pp. 625-656. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2_ 21

Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: Goldberg, 1., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508-526. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32101-7_ 30

Chakravarty, M.M.T., Coretti, S., Fitzi, M., Gazi, P., Kant, P., Kiayias, A., Rus-
sell, A.: Hydra: fast isomorphic state channels. Cryptology ePrint Archive, Report
2020/299. https://eprint.iacr.org/2020/299 (2020)

Buterin, V.: Minimal Viable Plasma. https://tinyurl.com/y2s9grpd (2018)
Floersch, K.: Plasma Cash Simple Spec. https://tinyurl.com/yxdp2rqr (2018)
Plasma Debit. https://tinyurl.com/yx936xzk (2018)

Plasma snapp. https://tinyurl.com/yxbza3pl (2018)

Khalil, R., Zamyatin, A., Felley, G., Moreno-Sanchez, P., Gervais, A.: Commit-
Chains: Secure, Scalable Off-Chain Payments. Cryptology ePrint Archive, Report
2018/642. https://eprint.iacr.org/2018/642 (2018)

Erwig, A., Faust, S., Riahi, S., Stockert, T.: CommiTEE: an efficient and secure
commit-chain protocol using TEEs. In: 2023 IEEE 8th European Symposium on
Security and Privacy (EuroS&P), pp. 429-448. IEEE Computer Society, Los Alami-
tos, CA, USA. https://doi.org/10.1109/EuroSP57164.2023.00033 (2023)

Nick, J., Poelstra, A., Sanders, G.: Liquid: A Bitcoin Sidechain (2020)
Mavroudis, V., Wiist, K., Dhar, A., Kostiainen, K., Capkun, S.: Snappy: fast on-
chain payments with practical collaterals. In: 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA, February
23-26, 2020: The Internet Society. https://www.ndss-symposium.org/ndss-paper/
snappy-fast-on-chain-payments-with-practical-collaterals/ (2020)

Ng, L.K.L., Chow, S.S.M., Wong, D.P.H., Woo, A.P.Y.: LDSP: shopping with
cryptocurrency privately and quickly under leadership. In: 2021 IEEE 41st Inter-
national Conference on Distributed Computing Systems (ICDCS), pp. 261-271.
https://doi.org/10.1109/ICDCS51616.2021.00033 (2021)

Whitehat B.: Roll up. https://github.com/barryWhiteHat/roll _up

Donno, L.: Optimistic and validity rollups: analysis and comparison between opti-
mism and StarkNet. CoRR: vol. abs/2210.16610. https://doi.org/10.48550/arXiv.
2210.16610 (2022)

Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
scalable, private smart contracts. In: Enck, W., Felt, A.P. (eds.) 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018, pp. 1353-1370. USENIX Association. https://www.usenix.org/conference/
usenixsecurity18 /presentation /kalodner (2018)

Erwig, A., Faust, S., Hostakova, K., Maitra, M., Riahi, S.: Two-party adaptor
signatures from identification schemes. In: Garay, J.A. (ed.) PKC 2021. LNCS,
vol. 12710, pp. 451-480. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-75245-3 17

Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press:
ISBN 9781466570269 (2014)


https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
https://eprint.iacr.org/2020/299
https://tinyurl.com/y2s9grpd
https://tinyurl.com/yxdp2rqr
https://tinyurl.com/yx936xzk
https://tinyurl.com/yxbza3pl
https://eprint.iacr.org/2018/642
https://doi.org/10.1109/EuroSP57164.2023.00033
https://www.ndss-symposium.org/ndss-paper/snappy-fast-on-chain-payments-with-practical-collaterals/
https://www.ndss-symposium.org/ndss-paper/snappy-fast-on-chain-payments-with-practical-collaterals/
https://doi.org/10.1109/ICDCS51616.2021.00033
https://github.com/barryWhiteHat/roll_up
https://doi.org/10.48550/arXiv.2210.16610
https://doi.org/10.48550/arXiv.2210.16610
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1007/978-3-030-75245-3_17

50

45.

46.

47.

S. Riahi and O. S. T. Litos

Dai, W., Okamoto, T., Yamamoto, G.: Stronger security and generic constructions
for adaptor signatures. In: Progress in Cryptology - INDOCRYPT 2022: 23rd Inter-
national Conference on Cryptology in India, Kolkata, India, December 11-14, 2022,
Proceedings, pp. 52-77. Springer, Heidelberg. ISBN 978-3-031-22911-4. https://
doi.org/10.1007/978-3-031-22912-1 3 (2023)

Erwig, A., Faust, S., Riahi, S., Stockert, T.: CommiTEE: an efficient and secure
commit-chain protocol using TEEs. Cryptology ePrint Archive, Report 2020/1486.
https://eprint.iacr.org/2020,/1486 (2020)

Riahi, S., Litos, O.S.T.: Bitcoin clique: channel-free off-chain payments using two-
shot adaptor signatures. Cryptology ePrint Archive, Paper 2024/025. https://
eprint.iacr.org/2024/025 (2024)


https://doi.org/10.1007/978-3-031-22912-1_3
https://doi.org/10.1007/978-3-031-22912-1_3
https://eprint.iacr.org/2020/1486
https://eprint.iacr.org/2024/025
https://eprint.iacr.org/2024/025

®

Check for
updates

Programmable Payment Channels

Ranjit Kumaresan', Duc V. Le!, Mohsen Minaei®, Srinivasan Raghuraman?,

Yibin Yang?®™), and Mahdi Zamani'

! Visa Research, Palo Alto, USA
{rakumare,duc.le,mominaei,mzamani}@visa.com
2 Visa Research and MIT, Cambridge, USA
3 Georgia Institute of Technology, Atlanta, USA
yyang8ll@gatech.edu

Abstract. One approach for scaling blockchains is to create bilateral,
offchain channels, known as payment/state channels, that can protect
parties against cheating via onchain collateralization. While such chan-
nels have been studied extensively, not much attention has been given
to programmability, where the parties can agree to dynamically enforce
arbitrary conditions over their payments without going onchain.

We introduce the notion of a programmable payment channel (PPC)
that allows two parties to do exactly this. In particular, our notion of pro-
grammability enables the sender of a (unidirectional) payment to dynam-
ically set the terms and conditions for each individual payment using a
smart contract. Of course, the verification of the payment conditions
(and the payment itself) happens offchain as long as the parties behave
honestly. If either party violates any of the terms, then the other party
can deploy the smart contract onchain to receive a remedy as agreed
upon in the contract. In this paper, we make the following contributions:

— We formalize PPC as an ideal functionality Fppc in the universal
composable framework, and build lightweight implementations of
applications such as hash-time-locked contracts (HTLCs), “reverse
HTLCs”, and rock-paper-scissors in the Fppc-hybrid model;

— We show how Fppc can be easily modified to capture the state chan-
nels functionality Fsc (described in prior works) where two par-
ties can execute dynamically chosen arbitrary two-party contracts
(including those that take deposits from both parties) offchain, i.e.,
we show how to efficiently realize Fsc in the Fppc-hybrid model;

— We implement Fppc on blockchains supporting smart contracts (such
as Ethereum), and provide several optimizations to enable concur-
rent programmable transactions—the gas overhead of an HTLC PPC
contract is < 100K, amortized over many offchain payments.

We note that our implementations of Fppc and Fsc depend on the CRE-
ATE2 opcode which allows one to compute the deployment address of a
contract (without having to deploy it).

Keywords: Blockchain - Layer-2 channels - Programmable payments

Y. Yang— Work done in part while at Visa Research.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-54776-8_3.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Popper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 51-73, 2024.
https://doi.org/10.1007/978-3-031-54776-8_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_3
https://doi.org/10.1007/978-3-031-54776-8_3

52 R. Kumaresan et al.

1 Introduction

With the rise of decentralized services, financial products can be offered on
blockchains with higher security and lower operational costs. With its ability
to run arbitrary programs, called smart contracts, and direct access to assets,
a blockchain can execute complex financial contracts and settle disputes auto-
matically. Unfortunately, these benefits all come with a major scalability chal-
lenge due to the overhead of onchain transactions, preventing the adoption of
blockchain services as mainstream financial products.

Payment Channels. A well-known class of mechanisms for scaling blockchain
payments are payment channels [2,14]. Payment channels “off-load” transac-
tions to an offchain communication channel between two parties. The channel is
“opened” via an onchain transaction to fund the channel, followed by any num-
ber of offchain transactions. Eventually, by a request from either or both parties,
the channel is “closed” via another onchain transaction. This design avoids the
costs and the latency associated with onchain operations, effectively amortiz-
ing the overhead of onchain transactions over many offchain ones. While several
proposals improve the scalability of payment channels [3,16,20-22,27-29], they
do not allow imposing arbitrary conditions on offchain payments, which prohibit
fruitful applications requiring programmability.

State Channels. From a feasibility standpoint, the conditions on offchain pay-
ments can be achieved by a stronger notion called state channels. State chan-
nels [4,11,13,15,17,25] allow two parties to perform general-purpose computa-
tion offchain by mutually tracking the current state of the program. The existing
state channel proposals have two major drawbacks in practice.

First, with the exception of [13], state channel constructions require the par-
ties to fix the program, which they wish to run offchain, at the time of channel
setup. This means that no changes to the program are allowed after the parties go
offchain. This is especially problematic in offchain scalability approaches based
on the hub-and-spoke model [10,16,31], where each party establishes a general-
purpose channel with a highly available (but untrusted) hub during setup to
be able to later transact with many other parties without the need to establish
an individual channel with each party (see Fig. 1 Left and Middle). In practice,
parties usually have no a priori knowledge about the specific set of conditions
required to transact with other (unknown) parties.

Second, the complexity of the existing state channel proposals could be
overkill for simple, programmable payments. The authorization of an offchain
transaction via a payment channel is significantly simpler as the flow of the pay-
ments is unidirectional while state channels need to track all state changes from
both parties irrespective of the payment direction. Namely, the state channel is
not a practical solution for achieving programmable payments.

Our Focus. In this paper, we introduce the notion of programmable payment
channels (PPC) that allows the parties to agree offchain on the set of conditions
(i.e., a smart contract) they wish to impose for each of their offchain payments



Programmable Payment Channels 53

g HTLC HTLC g Programmable
HUB Payment Channel
a g 8w e @ |
HUB
HTLC «ss Auction
A 0 Q @ w0 8 g
HUB

Fig. 1. Left: Hub-and-spoke model: Each party creates a single channel with the hub;
Middle: Every pair of parties reuse their channels with the hub to execute different
contracts; Right: PPC between two parties supporting any offchain application.

(see Fig.1 Right). That is, we achieve lightweight offchain programmable pay-
ments denoted as promises where the logic can be determined on-the-fly after
the channel has been opened.

A classic programmable payment covered by PPC is a hash-time-locked con-
tract (HTLC) [1], which is foundational to the design of (multihop) payment
channels [3,27]. Indeed, most current payment channels already embed HTLCs
for routing. However, many useful applications remain difficult to build on top
of payment channels using HTLCs. Consider the following example. Alice wants
to reserve a room through an established payment channel with the hotel. Alice
would like to send a payment under the following conditions: (1) Alice is allowed
to cancel the reservation within 48 hours of booking to get back all of her funds,
and (2) Alice can get back half of her funds if she cancels the reservation within
24 hours of the stay date. Achieving this simple real-life example of payment
with PPC is simple and straightforward.

Full Version. The full version of this paper is [32].

1.1 Owur Contributions

— We propose the notion of a programmable payment channel (PPC) that is
a payment channel allowing two parties to transact offchain according to a
collateral that they deposit onchain and a smart contract that they agree on
offchain. PPC provides the following features:

e Scalability: Only opening and closing the channel require Layer-1 access.
e Offchain Programmability: The PPC protocol stays identical for new pay-
ment logic after the channel is opened.

— We formalize PPC and prove its correctness and security in the universal
composable (UC) framework using a global ledger. In particular, we provide
an ideal functionality Fppc. We then show how to build lightweight imple-
mentations of simple applications such as HTLCs, “reverse HTLCs,” on-chain
betting (and also rock-paper-scissors) in the Fppc-hybrid world.

— We show how PPC can be modified to capture the state channels functionality
where two parties can execute dynamically chosen arbitrary two-party con-
tracts (including those that take deposits from both parties) offchain, namely,



54 R. Kumaresan et al.

to realize Fsc in the Fppc-hybrid world. In particular, to launch an offchain
contract, parties only need to make three calls to Fppc to instantiate two
programmable payments.

— We evaluate PPC by instantiating it on Ethereum. We show how the PPC
contract deploys new contracts that embed the conditions of payments. Our
results show that deploying the PPC contract needs about 3M gas, and that
settling onchain in the optimistic case (honest parties) needs only 75K gas. In
the pessimistic case (malicious parties), 700K more gas is needed for a simple
logic such as HTLC.

We note that our implementations of Fppc and Fsc depend on the CRE-
ATE2 opcode which allow one to compute the deployment address of a contract
(without having to deploy it). This opcode is available on any EVM (Ethereum
Virtual Machine) based chain (including Ethereum, Polygon, etc.).

Compared to prior formalizations of payment and state channels, our work
shows a practical way to implement a state channel that enables arbitrary
offchain smart contract applications. Additionally, our abstractions of Fppc and
Fsc make it more natural to design protocols for applications whose states
depend on the states of other contracts on the blockchain.

We also note that our implementations of Fppc and Fsc allow for flexible
reuse of established channels. Exploiting this fact, one can use the abstractions of
Fppc and Fsc to efficiently build complex multiparty applications. For instance,
every pair of parties need not establish a PPC channel with each other, and can
instead reuse their existing PPC channels with, say, an untrusted hub.

Similar to payment and state channels, relay nodes (in particular, hub nodes)
in PPC also face scalability concerns, as the money has to be locked for several
rounds. There are known incentivization techniques to mitigate similar issues
that arise in DeF'i lending protocols. The same techniques can be applied in our
case as well.

1.2 Related Work

Payment Channels. The key idea behind a payment channel is an onchain
contract: both parties instantiate this contract and transfer digital money to
it. Whenever one party wants to pay another, they simply sign on the other
party’s monotonically-increasing credit. When the two parties want to close the
channel, they submit their final signed credits to rebalance the money in the
channel. No execution happens on the blockchain before closing the channel;
the payment between two parties relies only on exchanging digital signatures.
Payment channels have been heavily studied [2,14,17,23,25,26,29].

State Channels. A proposal for executing arbitrary contracts offchain is state
channels [4,11,13,15,17,25]. The key idea is as follows: (1) the contract can be
executed offchain by exchanging signatures, and (2) the contract can be executed
onchain from the last agreed state to resolve any disagreements. For example,
consider a two-party contract between Alice and Bob, whenever Alice wants to



Programmable Payment Channels 55

update the current state, she simply signs the newer state. Then, she forwards
her signature and requests for Bob’s signature. While Bob may not reply with
his signature, Alice can submit the pre-agreed state to the blockchain with the
contract and execute it onchain. This idea can be naturally extended to multi-
party contracts (e.g., [12,15,25]).

The works of [13,17] are closest to ours. Unlike us, [13] do not provide any
formal proofs or guarantees. As mentioned in [17], their work lacks features
useful for practical implementation. Also, our protocols take advantage of the
CREATE2 opcode which was introduced subsequent to the work of [13]. We fol-
low [5,15-17] to formalize our channel using universal composable (UC) frame-
work with a global ledger. However, these works focus on channel virtualization'
, and are not directly related to this work.

Other Related Work. An excellent systematization of knowledge that explores
offchain solutions can be found in [19]. See Appendix A for the comparison with
rollups, another popular Layer-2 scaling solution [24,30,33]. See Appendix B for
other works that use the CREATE2 opcode.

2 Preliminaries

Network and Time. We assume a synchronous complete peer-to-peer authen-
ticated communication network. Thus, the execution of protocol can be viewed
as happening in rounds. The round is also used as global timestamp. We use

t<T
msg — P to denote the message will be sent by party P before round 7T'. Sim-

t<T
ilarly, we use msg < P to denote that the message will be delivered to party
P before round T

GUC Model. We model and formalize PPC under global universal composable
(GUC) framework [8,9]. UC is a general purpose framework for modeling and
constructing secure protocols. The correctness and security of protocols rely on
simulation-based proofs. We defer the formal description to Appendix C.1. We
acknowledge that we restrict the distinguisher to a subclass of environments to
simplify the formalizations. This restriction is standard (e.g., [16,17]) and can
be easily removed using straightforward checks.

Cryptocurrency/Contract Functionalities. We follow [15,17] and model
cryptocurrency as a global ledger functionality ﬁ(A) in the GUC framework (cf.
Fig.9 in Appendix C.2). Parties can move funds from/to the ledger functionality
by invoking other ideal functionalities that can invoke the methods Add/Remove.
Any operation on the global ledger will happen within a delay of A rounds,
capturing that this is an onchain transaction.

Adversary. We consider an adversary who can corrupt one party in the two-
party channel. The corrupted party is byzantine and can deviate from the proto-
col arbitrarily. As is standard in the GUC model, the objective of an adversary

! Virtual channels focus on designing protocols between parties who do not have a
direct channel, but both have a channel with a (common) intermediary.



56 R. Kumaresan et al.

is to distinguish the real world from the ideal world. In applications such as ours,
such behaviors could involve stealing funds from a party or a channel, violating
channel restrictions, overriding application logic, state rollback, etc.

3 Programmable Payment Channels

3.1 Defining Fppc

To incorporate programmability into a payment channel, one might hard-code
the logic of an application inside the protocol as a template. However, this app-
roach is not desirable as every new application requires a protocol update that
would also include changes to the existing onchain contract. Motivated by this,
our definition of Fppc allows for on-the-fly programmability as we explain below.

Recall that we call a programmable payment a promise. Concretely, our ideal
functionality Fppc allows the following operations: (1) opening a payment chan-
nel, (2) creating a promise, (3) executing a promise, and (4) closing a payment
channel. Our central observation is that a promise can be viewed as a smart
contract. Specifically, the storage of the promise is captured by the storage of
the contract, and the execution logic of the promise is captured by functions in
the smart contract. The logic in different promises can be different or related,
thereby capturing on-the-fly programmability. Also, importantly, the promise
smart contract itself can be deployed from an appropriately designed payment
channel contract.

Any number of promises can be created by an open channel and may be
concurrently executed. Either party can create a promise to the other party.
Since the payment is unidirectional, we refer to the creating party as the sender
of a promise, and the other party as the receiver of a promise.

Promises can be related to each other in the sense that the state and the
execution logic of a promise can depend on the state and execution logic of other
promises. We capture this by allowing the functions of the promise have access
to its own storage, read access to the storage and functions of other promises
in this channel, and more generally, read access to the storage and functions
of other onchain contracts.? Note that the ezecution environment of promises
is quite rich, and we will show various examples of how to use this and certain
caveats associated with what is implementable.

This type of dependence is common in onchain smart contracts especially in
the Decentralized Finance applications. However, capturing this dependence (in
the implementation of Fppc) needs to be done carefully since promises executions
are normally executed offchain, and may sometimes need to be executed onchain
(and the dependence must be preserved even while the execution environment
is changing). Care must be taken to ensure that this change of the execution
environment (i.e., from offchain to onchain) does not affect function output.

2 In Solidity (a high level language for EVM) parlance, promises can also call pure or
view functions in onchain contracts or other promises.



Programmable Payment Channels 57

Promises are executed onchain only if requested by the parties (following
which, further executions related to that promise are carried out onchain).?
Following prior work (e.g., [17]), we differentiate between onchain and offchain
executions in Fppc by the amount of time it takes Fppc to respond to execution
requests. That is, onchain executions are slower and take O(A) rounds where
A is a blockchain parameter representing the amount of time it takes for the
miners/validators to deliver a new block to the chain.

Each promise resolves to an unsigned integer value denoting the amount that
needs to be transferred from the sender to the receiver. This resolved value is
calculated at the time of payment channel closing, and then the resolved values
of all promises are aggregated to determine the final settlements.

3.2 PPC Preliminaries

Contracts. We define contracts as in [17]. A contract instance consists of two
attributes: contract storage (accessed by key storage) and contract code (accessed
by key code). Contract storage o is an attribute tuple containing at least the
following attributes: (1) o.user;, and o.userp denoting the two involved users;
(2) o.locked € R>o denoting the total number of coins locked in the contract;
(3) o.cash : {o.usery,o.userg} — R denoting the coins available to each user. A
contract code is a tuple C := (A, Construct, f1, ..., fs) where (1) A denotes the
admissible contract storage; (2) Construct denotes a constructor function that
takes (P, t,y) as inputs and provides as output an admissible contract storage or
L representing failure to construct, where P is the caller, ¢ is the current time
stamp and y denotes the auxiliary inputs; and (3) each f denotes an execution
function that takes (o, P,t,2) as inputs and provides as output an admissible
contract storage (could be unchanged) and an output message m, where m = L
represents failure.

PPC Parameters. A programmable payment channel is parameterized by an
attribute tuple v := (v.id, v.Alice, v.Bob, v.cash, v.pspace, v.duration) where (1)
~v.id € {0,1}* is the identifier for the PPC instance (think of this as the address
of the PPC contract); (2) ~.Alice and ~.Bob denote the two involved parties;
(3) ~v.cash : {v.Alice,7y.Bob} — R>( denotes the amount of money deposited
by each participant; (4) 7.pspace stores all the promise instances opened in the
channel-it takes a promise identifier pid and maps it to a promise instance; and
(5) v.duration > 0 denotes the time delay to closing a channel.

Note that the attribute ~.duration was not part of prior channel formaliza-
tions (e.g., [15,17]); we will further clarify it in Sect. 3.3. We further define two
auxiliary functions: (1) v.endusers := {~y.Alice, v.Bob}; and (2) v.otherparty(z) :=
~v.endusers \ {z} where x € ~y.endusers.

Promises. We name a programmable payment a promise. Informally, a promise
instance can be viewed as a special contract instance where only one party offers

3 In our implementation, we make the simplifying assumption that once a promise is
executed onchain, all the remaining promise executions happen onchain as well.



58 R. Kumaresan et al.

money. Formally, a promise instance consists of two attributes: promise storage
(accessed by key storage) and promise code (accessed by key code). Promise stor-
age o is an attribute tuple containing at least the following attributes: (1) o.payer
denotes the party who sends money; (2) o.payee denotes the party who receives
money; and (3) o.resolve € R>( denotes the amount of money transferred from
payer to payee. A promise code is a tuple C := (A, Construct, f1, ..., fs) similar
to contract code with further restrictions: (1) the unique constructor function
Construct will always set the caller to be the payer in the storage created; and
(2) the constructor function’s output is independent of input argument ¢, which
is a time parameter capturing the current time of the blockchain. We add these
restrictions to ensure that, even when the promise is registered onchain by CRE-
ATE2, the initial state remains identical.

Diverging from [15,17], we assume that each f; has access to the code and
storage of other promises in the same channel, as well as the code and storage
of all Layer-1 onchain contracts. Formally, we capture this by providing oracle
access to the ideal functionalities. This is why we use the notation f97 in the
definition of Fppc (see Fig.2), i.e., f has oracle access to the storage and the
functions of onchain smart contracts and to the promises in the channel.

3.3 Ideal Functionality Fppc

We propose our PPC protocol under the UC framework following [15-17]. We

first define the ideal functionality F,fP(CA ) (with dummy parties) which summa-
rizes all the features that our PPC protocol will provide. We use Fppc as an
abbreviation in the absence of ambiguity. See Fig.2 for the definition of Fppc.
The functionality will maintain a key-value data structure I" to track all pro-
grammable payment channels between parties. Fppc contains the following 4
procedures.

(1) PPC Creation. Assume party P wants to construct a channel with party Q.
Within A rounds, Fppc will take corresponding coins specified by the channel
instance from P’s account from £. If Q agrees to the creation, within another
A rounds, Fppc will take Q’s coins. Thus, the successful creation of a initial
programmable payment channel takes at most 2A rounds. Note that if @
does not want to create the channel, P can take her money back after 2A
rounds.

(2) Promise Creation. This procedure is used to create a programmable payment
aka promise (offchain) from payer P to the payee (). The promise instance is
specified by payer’s choice of channel v, contract code C' and arguments for
the constructor function y, and a salt z that is used to identify this promise
instance. Among other things, the ideal functionality ensures that pid :=
(id,C,y, z) does not exist in ~.pspace. Since payee always gains coins in any
promise, we do not need an acknowledgment from the payee to instantiate
a promise. Thus, the creation takes exactly 1 round.*

* Note that this does not hold for state channels as formalized in [17] where an instance
requires coins from both parties.



Programmable Payment Channels 59

Functionality ]-'PL;,(CA)

Programmable payment channel opening ‘

t
Upon (open, v) <% P where ~ is a valid initial programmable payment channel, ie., P €
~.endusers, y.cash(:) > 0, y.pspace = L, denote Q := ~y.otherparty(P):

1. Within A rounds remove ~v.cash(P) from P’s account on L.
t1<tg+A
2. If (open, ) =0 Q, remove within another A rounds v.cash(Q) coins from Q’s account on
L, set I'(y.id) := v, and send (opened, ) — ~.endusers and stop.
Stg+24A N
3. Else, upon (refund, ) Fa P, within A rounds add ~y.cash(P) coins to P’s account on L.

l Promise initial instance creation ‘

t
Upon (create,id, C||y, z) & P, let v := I'(id) and let pid := (id,C, P,y,z). If v = L or
P ¢ ~.endusers or v.pspace(pid) # L then stop. Else proceed as follows:

— Let v := L1 and o := C.Construct(P,tg,y). Stop if ¢ = L. Set v.code := C
and v.storage := o. Set I'(id).pspace(pid) := v and I'(id).pspace(pid).flag := 0. Send

. . to+1
(instance-created, id, pid, v) < ~.endusers.

l Promise instance execution ‘

t
Upon (execute, id, pid, f, z) & P, let v := I'(id). If P ¢ -~.endusers or ~.pspace(pid) = L or
f ¢ ~.pspace(pid).code then stop. Else proceed as follows:

— If ~y.pspace(pid).flag = 0, and both parties are honest, then set T := to + 5 and t := to.
— Else if «.pspace(pid).flag = 0, and one party is malicious, the simulator is allowed to specify
a message msg:

e If msg = continue, set T := tg + 5 and t := to. This captures the situation where the
adversary wants to execute offchain.

e If msg = onchain, set T := tg + 4A + 5 and ~y.pspace(-).flag := 1. ¢ is further specified
by the simulator. This captures the situation where the adversary wants to execute
onchain.

— Else if v.pspace(pid).flag = 1, one party must be malicious, then set T :=to + A+ 5, ¢ is set
by the simulator.

Let v := ~.pspace(pid) and o := wv.storage. Let (&,m) fg"y((r,P,t,z). Set

t <T
I'(id).pspace(pid).storage := & and send (executed, id, pid, P, f,t,z,v) =

the adversary can only postpone the execution but cannot block it.

~.endusers. Note that

Programmable payment channel closure

t
Upon (close, id) & P, let v := I'(id). If P ¢ ~.endusers then stop. Else block all future close
invocations on . Wait at most v.duration + 7A rounds and proceed as follows:

1. Calculate the following values (Note that either Alice or Bob could be P):
(a) Set total := ~.cash(vy.Alice) + ~.cash(vy.Bob).
(b) Set CTedl:tA = Z»y_pspace(pid,).storage.payer:w.Bob("/-PSPace(pifi)-Storagemes"lﬂe)-
(c) Set creditp := Z,Y_pspace(pld).Smrage‘payﬂ:,‘{_mice('y.pspace(;md).storage.resolve)‘
2. Within A rounds, add min{total, maxz{0,~y.cash(vy.Alice) + credita — creditg}} coins to
~.Alice’s and min{total, maxz{0, v.cash(~.Bob) + creditp — credit s }} coins to v.Bob’s account

on L.
t1<tg+8A+4~.duration
3. Send (contract-close,id) — ~.endusers.

Fig. 2. The ideal functionality ffp(? ) achieved by the PPC protocol.



60 R. Kumaresan et al.

(3) Promise Execution. This procedure is used to update the promise instance’s
storage. Specifically, party P can execute the promise pid in channel id as
long as P is one of the participants of the channel. Note that the existence
of pid implies that this instance is properly constructed by the payer via
the promise instance creation procedure. If both parties are honest, the
execution completes in O(1) rounds, inferring no onchain operation (i.e.,
optimistic case). Otherwise, if one of them is corrupt, it relies on onchain
operations which takes O(A) rounds (i.e., pessimistic case). Note that, the
adversary can postpone the function execution time, but it cannot block the
honest party from executing it.

In particular, Fppc uses an attribute flag for each promise to trace the
onchain/offchain status. Note that when the promise goes onchain for the first
time, it takes at most 3A rounds to put the promise onchain. Once the promise
is onchain, the execution will be taken on Layer-1 in A rounds. We follow [17] to
break ties when both parties want to simultaneously execute the same promise,
which includes at most 5 rounds delay.

(4) PPC Closure. When a party of the channel v wants to close the channel,
Fepc will wait for v.duration rounds to execute the remaining promises that
have not been finalized. The corresponding procedure in the state channel
functionality of [17] requires that all contract instances in the channel are
finalized in order to close the channel. We cannot imitate this approach
because in our case, the creation of a promise instance need only be authen-
ticated by the payer, and so requiring finality will allow a malicious party
to block closing by simply creating some non-finalizable promise instance.
(Note that in this case it will be the malicious sender who is locking up
its money.) Waiting for v.duration can be avoided if both parties agree to
cooperatively close the channel.

3.4 Concrete Implementation of Fppc

We show a pseudocode implementation of programmable payment channels con-
tract in Fig. 3. In this subsection, we will detail the methods in the programmable
payment channels contract, and along the way we will discuss the offchain pro-
tocol that is executed to implement Fppc.

The programmable payment channel contract is initialized with a channel id
id, the parties’ public keys vka and vkg, and an expiry time claimDuration by
which the channel settles the amounts deposited. We track the deposit amount
and the credit amount (which will be monotonically increasing) for the two
parties. We also track a receiptid (i.e., rid) and an accumulator value acc. We will
describe what these are for below, but for now think of receipts as keeping track
of received promises that have been resolved, and the accumulator as keeping
track of received promises that have not yet resolved.

Remark. Since promise executions may take some time (e.g., HTLC, chess), it is
important to support concurrency. Promises issued by a sender are immediately
added to an accumulator associated with the sender (which is maintained by both
parties), and then are removed from the accumulator when they get resolved.



Programmable Payment Channels

61

PPC Contract

Init(id’, vky, vkg, claimDuration’):

1. Set (id, claimDuration) < (id’, claimDuration’);

2. Set status < “Active”; chanExpiry < 0; unresolvedPromises «— L;
3. Set A + {addr : vk}, deposit : 0, rid : 0, credit : 0,acc : L, closed : F}
4. Set B + {addr : vkg, deposit : 0, rid : 0, credit : 0,acc : L, closed : F}

Deposit(amount):
1. Require status = “Active” and caller.vk € {A.addr, B.addr};

2. If caller.vk = A.addr, then set A.deposit < A.deposit + amount;
3. If caller.vk = B.addr, then set B.deposit < B.deposit + amount.

RegisterReceipt(R):
1. Require status € {“Active”, “Closing” };

2. If status = “Active” then set chanExpiry <— now + claimDuration and status <— “Closing”.
3. Require caller.vk € {A.addr, B.addr};

4. If caller.vk = A.addr, then:
(a) Require SigVerify(R.o, [id, R.idx, R.credit, R.acc], B.addr);

(b) Set A.rid «— R.idx, A.credit <— R.credit, and A.acc < R.acc;
Otherwise:
(a) Abort if SigVerify(R.o, [id, R.idx, R.credit, R.acc], A.addr);

(b) Set B.rid «— R.idx, B.credit <~ R.credit, and B.acc < R.acc;

RegisterPromise(P):
1. Require status € {“Active”, “Closing” };

If status = “Active”, then set chanExpiry <— now + claimDuration, and status <— “Closing”.
Require caller.vk € {A.addr, B.addr};

Require [P.addr, P.receiver] ¢ unresolvedPromises;

DA S S

If P.sender = A.addr, set sender <— A and receiver +— B;
Otherwise set sender <— B and receiver <+ A;

=

Require SigVerify(P.o, [ id, P.rid, P.sender, P.receiver, P.addr |, sender.addr);

7. If caller.vk = receiver.addr and P.rid < receiver.rid,
Require ACC.VerifyProof (acc, P.addr, P.proof);

8. Invoke Deploy (P.byteCode, P.salt);
9. Set unresolvedPromises.push([P.addr, receiver])

Close():
1. Require caller.vk € {A.addr, B.addr};

2. If caller.vk = A.addr, set A.closed <— T; Otherwise set B.closed < T;

3. If A.closed and B.closed, set status < “Closed”;

4. If status = “Active”, then set chanExpiry <— now + claimDuration, and status <— “Closing”.
Withdraw():

1. Require status € {“Closing”, “Closed” };

2. If status = “Closing”, Require now > chanExpiry;

3. For each (addr, receiver) € unresolvedPromises:
receiver.credit <— receiver.credit + addr.resolve();

4. Invoke  transfer(A.addr, min(total, maz(0,A.deposit + A.credit — B.credit))
transfer(B.addr, min(total, max(0, B.deposit + B.credit — A.credit)), where total
A.deposit + B.deposit.

and

Fig. 3. PPC Contract



62 R. Kumaresan et al.

Just as a regular payment channel, we also provide methods for the parties
to deposit an amount (the pseudocode supports multiple deposits), and also for
initiating the closing of a channel via the Close method. A call to the Close
method will ensure that the channel status is set to “Closing” or “Closed”, and
further, sets the channel expiry time.

During the time that a channel is “Active” parties exchange any number
of payment promises offchain. Each promise P is essentially the smart contract
code describing the logic of the payment. Note that the promise contract logic
may involve multiple steps and parties may concurrently send and receive any
number of promises.

At a high level, the lifecycle of a promise is as follows: the sender sends the
promise offchain, then the sender and the receiver execute the promise contract
offchain. When both parties agree to the value of the final output of the resolve
method on the promise, the sender of the promise signs a receipt signaling the
fulfillment of the promise that reflects the updated credit balance of the receiver.

In more detail, a receipt from a sender consists of

— a monotonically increasing index, which keeps track of the number of fulfilled
promises from the sender,

— a monotonically increasing credit, which keeps track of the sum of all resolved
amounts in the fulfilled promises originating from the sender,

— an accumulator, which keeps track of all the pending promises issued by the
sender, and

— a signature from the sender on all the above values with the channel id.

If the receiver obtains a faulty receipt (or did not receive the receipt, or is
just malicious), then the receiver can deploy the promise onchain via the PPC
contract. Note that in some cases (e.g., promises which involve multiple steps),
it is possible that the sender (as opposed to the receiver) may need to deploy
the promise onchain via the PPC contract.

This brings us to another important detail concerning the offchain execu-
tion of the promises that involve multiple steps (e.g., chess). In honest cases,
parties will need to additionally exchange signatures with each other to commit
to the storage of the promise contract after the offchain execution of individual
steps. If some malicious behavior happens (e.g., some party aborts), to continue
the promise execution onchain (we assume that the party also wishes to sub-
sequently close the channel), the party calls RegisterReceipt with the latest
receipt (along with the signature from the counterparty) that it possesses, and
then calls RegisterPromise with the promise P.

Consistency Between Offchain and Onchain Executions. It is crucial to
ensure that the switching between offchain and onchain is consistent. This is
achieved by allowing parties to submit the latest state to the deployed promise
(as a smart contract). Namely, the smart contract created by the PPC contract
in Fig. 3 using CREATE2 needs to have a function interface to “bypass” its state
to the latest one. This can be trivially realized by including a monotonically
increasing version number to the state, which is signed by both parties during
the offchain execution. (We remark that Item 8 in Fig. 3 will only deploy a smart
contract (as a promise) on its initial state (e.g., an empty chess board).)



Programmable Payment Channels 63

We now detail the components of a promise P:

— P.sender (resp. P.receiver) denotes the sender (resp. receiver) of a promise,
— P.byteCode denotes the smart contract corresponding to the payment logic,
— P.salt denotes a one-time salt chosen by the sender,

— P.addr denotes the address at which the promise will be deployed by the PPC
contract; note that P.addr is derived deterministically from P.byteCode and
P.salt using a collision resistant hash function (e.g., CREATE2 opcode),

— P.rid denotes the latest receipt index at the time of generating this promise,

— P.proof denotes the proof that the promise is contained in the accumulator
(i.e., is unresolved at the time the latest receipt was generated), and

— P.o denotes the signature of sender on (id, P.rid, P.sender, P.receiver, P.addr).

When RegisterPromise is called (when malicious behaviors happen) with a
valid promise, the PPC contract deploys P.byteCode (i.e., the smart contract asso-
ciated with the payment logic of promise P) at a predetermined address. The fact
that the contract is deployed at a predetermined address is what makes it possi-
ble to have promises depend on each other (cf. Section4). Here, we assume that
the PPC contract uses CREATE2 opcode to deploy the contract. In Ethereum,
using the CREATE2 opcode (EIP-1014), contracts can deploy contracts whose
address is set by H(0xFF, sender, salt, bytecode) (where H is a collision resistant
hash function). This capability implies that one can foresee the address of some
yet-to-be-deployed contract.

Following deployment, parties can interact with the deployed promise inde-
pendent of the PPC contract. (Again, they “bypass” to the last agreed state.)
However, note that when a party calls the function RegisterPromise, the chan-
nel automatically goes into a closing state, and then after claimDuration time has
passed, either party can withdraw funds. Thus, it is critical that the promises
exchanged by the parties also meaningfully resolve within claimDuration time.

When a party calls the Withdraw method, the resolve method is called for
each unresolved promise that is registered with the PPC contract. That is, these
promises should be some onchain smart contracts. The value returned by the
resolve method is then added to the credit of the corresponding receiver. Finally,
each party gets transferred an amount that corresponds to its initial deposit and
the difference of the credit that it is owed and the credit that it owes.

We formally state our theorem below. The formal protocols are described in
the full version of our work.

Theorem 1 (Main). Suppose the underlying signature scheme is existentially
unforgeable against chosen message attacks. There exists a protocol working in

gﬁ(A)-hybm'd model that emulates fféCA) for every A € N such that (1) the

creation of the initial promise instance takes 1 round, and (2) if both parties are
honest, every call to instance execution procedure takes O(1) rounds.

3.5 Lightweight Applications of Programmable Payments

We use programmable payments on PPC to implement many lightweight appli-
cations and report the evaluations in Sect. 3.6. Here, we focus on discussing how
PPC helps us implement these applications as smart contracts.



64 R. Kumaresan et al.

HTLC Contract

Init(amount’, hash’, expiry’):

1. Set (amount, hash, expiry) <— (amount’, hash’, expiry’);
2. Set secretRevealed < F.
RevealSecret(secret):
1. Require now < expiry and Hash(secret) = hash;
2. Set secretRevealed < T;
Resolve():
" 1. If secretRevealed, then return amount, else return 0.

Fig. 4. HTLC Contract

HTLC. See Fig.4 for an implementation of HTLC promises. The constructor
specifies the amount this HTLC is for, and the hash image for which the preim-
age is requested, and the expiry time by which the preimage must be provided.
Observe that these values are specified by the sender of the promise. On send-
ing the preimage to the sender, the receiver will expect a receipt reflecting the
updated credit (i.e., an increase by amount). If such a receipt was not provided,
then the receiver will deploy the HTLC promise contract onchain® and then exe-
cute the RevealSecret function to lock the final resolved amount to the HTLC
amount. On the other hand, if the secret was not revealed, then when the PPC
channel closes (which we assume happens after the HTLC expiry), the resolve
function will return zero.

Reverse HTLC. See Fig. 5 for an implementation of the reverse HTLC promise.
In reverse HTLC, the sender commits to revealing a hash preimage within a given
expiry time or else stands to lose the promise amount to the receiver. (Note that
the roles are somewhat reversed in a regular HTLC promise.) This is a useful
promise in, e.g., committing a reservation.

To implement reverse HTLC promise, the sender initializes the promise with
the amount, the hash image, the expiry time, and the address of the receiver.
Then the sender would reveal the hash preimage to the receiver offchain, and
provide a receipt amount (reflecting a zero increase in credit). However, unlike
a HTLC promise, here the sender additionally expects an acknowledgment from
the receiver that they received the preimage (in the form of a signature on the
preimage). If the acknowledgment is received, then the sender is assured that the
promise will resolve to zero (since it can always call SubmitAck if the promise gets
deployed onchain after the expiry time), and concludes the promise execution.
Otherwise, the sender continues the promise execution onchain by deploying the
reverse HTLC promise via the PPC contract, and then calling the RevealSecret
method. This ensures that the promise will resolve to zero. Thus, reverse HTLC
is an example (different from HTLC) where the sender might have to deploy the
promise onchain.

5 Note that the deployment byteCode already contains the constructor arguments
hardcoded in it.



Programmable Payment Channels 65

Reverse HTLC Contract

Init(amount’, hash’, expiry’, receiver’):

1. Set(amount, hash, expiry, receiver) < (amount’, hash’, expiry’, receiver’);
2. Set (secretRevealed, ackSubmitted) < (F,F).
RevealSecret(secret):
1. Require now < expiry and Hash(secret) = hash;
2. Set secretRevealed < T;
SubmitAck(secret, sig):
1. Require Hash(secret) = hash and SigVerify(sig, secret, receiver);
2. Set ackSubmitted < T;
Resolve():
1. If secretRevealed or ackSubmitted, then return 0;

2. Return amount.

Fig. 5. Reverse HTLC Contract

On-chain Event Betting

Init(amt’, threshold’, tMin’, tMax’):
1. Set (amount, threshold, tMin, tMax) < (amt’, threshold, tMin’, tMax');
2. Set roundID < 0
SetRoundID(roundID’):
1. Require tMax > getTimestamp(roundID’) > tMin;
2. Set roundID « roundID’
Resolve():
1. If roundID = 0, return 0
2. (price, timestamp) <— eth-usd.data.eth.getRoundData(roundID)
3. If price > threshold and timestamp > 0

Fig. 6. Onchain event betting

On-chain Event Betting. See Fig. 6 for an example promise where the sender
is betting that the price of Ethereum will not go above a certain threshold
(say, $2,000) within a certain time period. In such a scenario, the party can
send a promise that reads the price of Ethereum on-chain from an oracle (e.g.,
eth-usd.data.eth). This is an example of a promise that depends on the
state of external onchain contracts. In such cases, it is important to design the
promise carefully as the external contract may change state and cause offchain
and onchain execution of promises to be different. Thus we use the function
getRoundData (say, instead of latestPrice). This way, suppose the receiver
does not send an acknowledgment that the price was indeed above the threshold
(i.e., a receipt reflecting the updated credit), then the sender can deploy the
promise onchain (without worrying about the exact block in which its promise
will appear). In the example, we assume that the roundID values are calculated
offchain and correspond to a time duration that both parties agree on.



66 R. Kumaresan et al.

Table 1. Gas prices for invoking PPC contract’s functions.

Function | Gas Units | HTLC Specific | Gas Units

Deploy | 3,243,988 | Promise 611,296 (w/o. proof)
Deposit | 43,010 Promise 626,092 (Merkle-100K txs)
Receipt | 75,336 Reveal 66,340

Close 44,324 Withdraw 71,572

Table 2. The gas usage of the different functions of various applications. *:For Resolve
functions we report the execution costs as these functions are view functions. +: The
Reveal functions in the RockPaperScissor contracts need to be called twice to reveal
the commitments for both parties.

HTLC ReverseHTLC OnchainBetting
Deploy | 222,795 | Deploy 423,265 | Deploy 442479
Reveal 28,391 |Reveal 28,413 | checkPrice | 48,093

Resolve* | 4,582 | SubmitAck | 30,247 | Resolve* | 4,632
Resolve* 2,499
RockPaperScissor | RockPaperScissor-P1 | RockPaperScissor-P2
Deploy | 534,167 | Deploy 598,088 | Deploy 381,537
Reveal™ | 34,887 |Reveal™ 34,773 | Resolve* |16,937

Resolve* | 9,571 | Resolve* | 6,573

3.6 Implementation and Evaluation

PPC Gas Usage Costs. We implemented the PPC contract presented in Fig. 3
in Solidity. We evaluate our implementation in terms of Ethereum gas usage. The
PPC contract requires 3, 243, 988 gas to be deployed on the Ethereum blockchain.
While we did not aim to optimize gas costs. the PPC contract is already com-
parable to other simple payment channel deployments 2M+ and 3M+ gas for
Perun [16] and Raiden [3]° respectively. The gas usage for the remaining func-
tions of the contract are reported in Table 1.

HTLC Application. In the optimistic case after a promise is sent from the
sender, the receiver releases the secret for the HTLC and consequently, the sender
sends a corresponding receipt to the receiver. In such a scenario, the receiving
party will submit the receipt to the contract and close accordingly. However,
in the pessimistic case, where the receiving party releases the secret but does
not receive a receipt, it goes onchain and first submit its latest receipt. Next, it
submits the promise for the HTLC which will be deployed by PPC where the
party can reveal the secret of HTLC. Comparing the two scenarios (cf. Table 1),
we see that the pessimistic case costs about 700K more gas to resolve the promise.

5 https://tinyurl.com/etherscanRaiden.


https://tinyurl.com/etherscanRaiden

Programmable Payment Channels 67

We were able to achieve 110 TPS for the HTLC application end-to-end on a
laptop running 2.6 GHz 6-Core Intel Core i7. The end-to-end process included
random secret creation, hashing of secret, promise creation/verification, secret
reveal /verification, and receipt creation/verification.

Other Applications. For the sake of completeness, we include gas usage costs
for other applications presented in Sect. 3.5, i.e., reverse HTLC, onchain event
betting, and rock-paper-scissors (cf. Appendix D) in Table 2. For the rock-paper-
scissors, we provide two implementations: one using the compiler (cf. Sect.4),
and one without (i.e., the ad-hoc implementation in Appendix D). This is to
emphasize that our SC from PPC compiler that we present next is highly effi-
cient. Note that all this (i.e., gas cost) is relevant only when one of the parties
is malicious. When both parties are honest, the executions are always offchain,
and the application-specific onchain deployment costs are zero.

Comparing with Prior State Channels. Prior works on state channels
(e.g., [4,17,25]) do not provide concrete implementations, performance num-
bers, or benchmarks. However, we note that, at the very least, state channel
implementations typically require explicit signature verification on the applica-
tion contract—something we avoid in most of our applications above. Further-
more, in multiparty applications where each party has a PPC channel with an
untrusted hub, the onchain complexity in the worst case is only proportional to
the number of malicious parties as opposed to the total number of parties as in
the case with state channels.

4 State Channels from Fppc

On the one hand, our programmable payment channel protocol subsumes reg-
ular payment channel protocols. A simple payment can be captured by payer
P creating an initial promise instance directly constructed as finalized with the
proper amount. On the other hand, it seems that our programmable payment
channel protocol may not subsume protocols for state channels, i.e., execute a
contract where two parties can both deposit coins in. In this section, we first
formalize a variant of state channels that we call Fsc that is very similar to
PPC. Then we provide a construction that compiles a contract instance input
to Fsc into two promises that can be input to Fppc. That is, we show how to
efficiently realize Fsc in the Fppc-hybrid model.

4.1 Modifying Fppc to Capture State Channels

Our formalization of programmable payment channels is heavily inspired by the
formalization of state channels in [17]. In fact, Fppc can be easily modified to
yield a variant of state channel functionality Fsc, which can be used to execute
any two-party contract offchain. We call these contracts covenants. Note that
the ideal functionality for state channels Fsc allows the following operations:
(1) opening a (state) channel, (2) creating a covenant instance, (3) executing



68 R. Kumaresan et al.

a covenant instance, and (4) closing the channel. Covenant instances, unlike
promise instances, do not have a designated sender or receiver. Like Fppc, any
number of covenant instances can be created and executed using Fsc. Unlike
Fppc though, the ideal functionality Fsc accepts a covenant creation operation
from a party only if the other party consents to it. The covenant instances
allowed by Fsc resolve to two integer values (that corresponds to the payout
of each party). Again, this resolved value is calculated at the time of channel
closing, and then the resolved values of all contract instances are aggregated to
determine the final settlements.

4.2 Defining Fsc

Just as how Fppc creates and executes promise instances, we will have Fsc create
and execute covenant instances.

Covenant Instance. A covenant instance can be viewed as a special contract
instance consisting of two attributes: covenant storage (accessed by key storage)
and covenant code (accessed by key code). Covenant storage o is an attribute
tuple containing at least the following attributes: (1) o.resolves € R>( denotes
the amount of money transferred from party B to party A; and (2) o.resolveg €
R>( denotes the amount of money transferred from party A to party B. Covenant
code is a tuple C := (4, Construct, f1,..., fs) similar to contract code. W.l.o.g.,
we assume Construct does not take caller as inputs but it can be incorporated
into y. We note that we do not restrict the independence of the constructor.
See Fig.7 for the definition of the ideal functionality that captures state
channels. Like Fppc, the functionality Fsc contains the following 4 procedures.

(1) State channel creation. Similar to Fppc, a party can instantiate a channel
with another party by sending the channel creation information to Fsc. The
operation of this procedure is identical to that of Fppc.

(2) Covenant Creation. The covenant instance is specified by choice of channel
v, contract code C' and arguments for the constructor function y, and a salt
z that is used to identify this promise instance. Among other things, the
ideal functionality ensures that cid := (id, C,y, z) does not exist in ~.cspace.
Note that unlike Fppc, we need an acknowledgment from the counterparty
before creating a covenant instance. Thus, the creation takes more rounds
but optimistically remains O(1).

(3) Covenant Execution. This procedure is used to update the covenant
instance’s storage. The operation of this procedure is identical to that of
Fepc-

(4) State Channel Closure. When a party of the channel instance v wants to close
the channel, Fsc will wait for v.duration rounds to execute the remaining
covenants that have not been finalized. The crucial difference from Fppc is in
the way in which the credits are calculated (simply because of the difference
in the final values of covenant instances vs. promise instances). We note
that the closure requires extra O(A) rounds. Looking ahead, this is because



Programmable Payment Channels

69

Functionality ]-'SC(A)

’ State channel opening

Identical to programmable payment channel opening in _7:P£P(CA ) but with a state
channel of covenants (saved in cspace) as inputs.

’ Covenant creation ‘

Upon (create,id,C||y, z) & P, let v := I'(id) and let cid := (id, C,y,z). lf y = L
or P ¢ ~.endusers or v.cspace(pid) # L then stop. Else let @ := v.otherparty(P).

— If (create,id, C||y, z) & Q@ and P,Q are honest or the the simulator behaves
honestly, then let v := L and o := C.Construct(to,y). Stop if ¢ = L. Within 7
rounds, set v.code := C and v.storage := o. Set I'(id).cspace(cid).flag = 0. Set

<to+7
I'(id).cspace(cid) := v. Send (instance-created, id, cid, v) = ~v.endusers.

— If (create,id,Cl|ly,2) & @ and one party is malicious, then let v := L
and o := C.Construct(to,y). Stop if ¢ = L. Within 4A + 7 rounds, set

v.code := C and v.storage := o. Set I'(id).cspace(cid).flag by the simulator. Set

) ) o t<to+AA+T
I'(id).cspace(cid) := v. Send (instance-created,id, cid,v) ~ <> ~.endusers.

’ Covenant execution ‘

Identical to promise instance execution in f,fFSCA ) but with a state channel identity

and a covenant identity as inputs.

’ State channel closure ‘

Upon (close,id) & P, let v := I'(id). If P ¢ ~y.endusers then stop. Else block
all future close invocations on . Wait at most 2v.duration + 11A + 5 rounds and
proceed as follows: (Note that either Alice or Bob could be P)

1. Calculate

total := ~y.cash(y.Alice) + ~.cash(v.Bob)
credit s := Z(*y.pspace(pid).storage.resolveA)

creditp = Z(fy.pspace(pid) .storage.resolvep)

2. Within A rounds, add min{total, max{0,~.cash(vy.Alice) + credita — creditp}}
coins to v.Alice’s and min{total, max{0,~y.cash(~.Bob)+creditg —credit 4 } } coins

to v.Bob’s account.
) t1<tp+12A+2~v.duration+5
3. Send (contract-close, id) — ~.endusers.

Fig. 7. The ideal functionality fséc(A).



70 R. Kumaresan et al.

we “compile” a covenant into two promises on Fppc, and require an extra
function call to settle down the resolved values of them.

Remarks. Our state channel ideal functionality differs from prior formalizations
in many ways. Crucially, it makes explicit the dependence of covenant instances
on other onchain contracts. Also, a covenant instance can depend on other
covenant instances (this is something not considered in prior works).

4.3 Implementing Fsc in theFppc-Hybrid World

Perhaps surprisingly, Fppc can be used to implement Fsc. In particular, a
covenant can be compiled into two promises on Fppc that can be used to execute
the covenant offchain.

To implement a covenant creation of a contract ¢ in Fsc, we use two promises
Po, P1, one from each endpoint of Fppc. The promise py contains all the logic of
the covenant instance c. Note that ¢ will resolve to either (k,0) or (0,%) (or any
other intermediate value), where k is non-negative. In particular, (k,0) denotes
that the first party needs to pay k to the second party and (0, k) denotes that
the second party needs to pay k to the first party. Note that the resolved state
of ¢ will be saved in py as well. Accordingly, pg will resolve to 0 in the case of
(0, k), otherwise as k. The resolve method of promise p; will instead read the
state of pg, and resolves in the opposite direction. That is, p; resolves to 0 in the
case of (k,0), otherwise as k. That both parties consent to the contract instance
is captured by requiring each party to provide its promise.

We illustrate this with an example of two-party contract for chess. We assume
that each party puts in $50, and the winner gets $100. Assume that there exists
a smart contract ¢ that contains the entire logic of chess (i.e., checking validity
of a move, checking whether the game has ended, who has won the game, and
the payout to each party, etc.).

To play a game of chess offchain, parties each first create a promise. The
promise from Bob contains all the logic in ¢ and additionally has a resolve method
which will depend on the payout logic in ¢ in the following way: if the winner
is Alice, then the resolve method returns $50, else it returns zero. The promise
from Alice is such that the resolve method invokes the resolve method of Bob’s
promise to get value v and returns $50 — v as the resolved amount.

There exists a protocol that can implement Fsc in the Fppc-hybrid model.
The essential step is to compile a covenant into two associated promises
(cf. Figure8) and then execute them on Fppc. We present this formally as
follows.

Theorem 2. There exists prothocol IIsc working in Fppc-hybrid model that emu-

lates the ideal functionality fsﬁc(A) for every A € N. Note furthermore that the
the protocol Ilsc requires only three invocations of Fppc to create a covenant.

Similar to Theorem 1, Theorem 2 can be formally proved by construct-
ing straightforward simulators to translate between covenant and associated



Promise Code Cp_, 4
Construct(P, t, z):

=

if P ¢ {o'.usery,, o’ .userg}, return L.

2. o0+ o
3. o.payer := P,o.expiry = t' + 2A +
5, 0.payee := {o’.usery, o’ .userg} \ P,

o.resolve := 0, o.valid := 0.
4. return o.

Enable(o, P, t, x):

if P # o.payer, return (o, L).

if t > o.expiry, return return (o, L).
if o.valid = 1, return (o, L).

o.walid := 1.

return (o, 1).

AR ol

Finalize(o, P, t, x):

1. if P # o.payer and P # o.payee, return
(o,1).

2. if o.valid = 0, return (o, L).

3. o.resolve := o.resolve 4.

4. return (o, 1).

Programmable Payment Channels

71

Promise Code C4_,p
Construct(P, t, pid, z):

1. o« L.

2. o.payer := A,o.payee := B,oc.end =
0, o.resolve := 0, o.pid := pid.

3. return o.

Finalize(o, P, t, x):

1. if o.pid does not exist, return (o, 1),

else let 0, 4 be the storage of contract

o.pid.

if op_, a.valid = 0, return (o, L).

3. if P # o.payer and P # o.payee, return
(o, 1).

N

o.resolve := og_, p.resolvep.
return (o, 1).

ove

PEVEREINY PR

(a) Promise Cp_ 4 from Bob. (b) Promise Ca_, g from Alice.

Fig. 8. The compiled promises from a covenant code C at time t' and constructor
inputs y, where o’ := C.Construct(t',y). Cp—a will hard-code o’.

promises. Note that the crucial point is to argue the rounds taken by the two
worlds are identical. Due to space limitations, we provide the formal description
of the protocol and its analysis in the full version of our work.

5 Conclusions

In this paper we present programmable payment channels (PPC), a new abstrac-
tion that enables payment channels to support lightweight applications encoded
in the form of smart contracts. We show the usefulness of PPC by constructing
several example applications. Our gas cost estimates show us that the applica-
tion implementations are indeed practical on Ethereum (or other EVM chains).
Finally, we also present a modified version of state channels and show how PPC
can also implement state channel applications efficiently.

Acknowledgments. We thank Pedro Moreno-Sanchez for many useful discussions
and insightful comments.

References

1. Hash time locked contracts - bitcoin wiki. https://en.bitcoin.it/wiki/Hash_Time_
Locked_Contracts. Accessed Oct 20 2023


https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

72

2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Kumaresan et al.

Payment channels - bitcoin wiki. https://en.bitcoin.it/wiki/Payment_channels.
Accessed Oct 20 2023

Raiden. https://raiden.network/. Accessed Oct 20 2023

State channels - ethereum.org. https://ethereum.org/en/developers/docs/scaling/
state-channels/. Accessed Oct 20 2023

Aumayr, L., et al.: Bitcoin-compatible virtual channels. In: 2021 IEEE Symposium
on Security and Privacy (SP), pp. 901-918. IEEE (2021)

Breidenbach, L.: libsubmarine. https://github.com/lorenzb/libsubmarine (2018)
Breidenbach, L., Daian, P., Tramer, F., Juels, A.: Enter the hydra: towards prin-
cipled bug bounties and exploit-resistant smart contracts. In: 27th USENIX Secu-
rity Symposium (USENIX Security 18), pp. 1335-1352. USENIX Association,
Baltimore, MD (Aug 2018). https://www.usenix.org/conference/usenixsecurity18/
presentation/breindenbach

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136-145. IEEE (2001)

Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61—
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4
Christodorescu, M., et al.: Universal payment channels: An interoperability plat-
form for digital currencies (2021). https://doi.org/10.48550/ARXIV.2109.12194,
https://arxiv.org/abs/2109.12194

Close, T.: Nitro protocol. Cryptology ePrint Archive (2019)

Close, T., Stewart, A.: Forcemove: an n-party state channel protocol. Magmo,
White Paper (2018)

Coleman, J., Horne, L., Xuanji, L.: Counterfactual: generalized state channels.
Accessed. https://14.ventures/papers/statechannels.pdf 4 2019 (2018)

Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) Stabiliza-
tion, Safety, and Security of Distributed Systems, pp. 3—18. Springer International
Publishing, Cham (2015)

Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostakova, K.: Multi-party vir-
tual state channels. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology —
EUROCRYPT 2019: 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part I, pp. 625-656. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2_21

Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs
over cryptocurrencies. In: 2019 IEEE Symposium on Security and Privacy (SP),
pp. 106-123. IEEE (2019)

Dziembowski, S., Faust, S., Hostakova, K.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 949-966 (2018)

Goldreich, O.: Foundations of cryptography: volume 2, basic applications. Cam-
bridge University Press (2009)

Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: Layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) Financial Cryptogra-
phy and Data Security: 24th International Conference, FC 2020 , Kota Kinabalu,
Malaysia, February 10-14, 2020 Revised Selected Papers, pp. 201-226. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-51280-
412


https://en.bitcoin.it/wiki/Payment_channels
https://raiden.network/
https://ethereum.org/en/developers/docs/scaling/state-channels/
https://ethereum.org/en/developers/docs/scaling/state-channels/
https://github.com/lorenzb/libsubmarine
https://www.usenix.org/conference/usenixsecurity18/presentation/breindenbach
https://www.usenix.org/conference/usenixsecurity18/presentation/breindenbach
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.48550/ARXIV.2109.12194
https://arxiv.org/abs/2109.12194
https://l4.ventures/papers/statechannels.pdf
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Programmable Payment Channels 73

Khalil, R., Gervais, A.: Nocust-a non-custodial 2nd-layer financial intermediary
(2018)

Lind, J., Naor, O., Eyal, 1., Kelbert, F., Sirer, E.G., Pietzuch, P.R.: Teechain:
a secure payment network with asynchronous blockchain access. In: Brecht, T.,
Williamson, C. (eds.) Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019,
pp. 63-79. ACM (2019)

Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and
privacy with payment-channel networks. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 455-471 (2017)
Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: NDSS
(2019)

McCorry, P., Buckland, C., Yee, B., Song, D.: Sok: Validating bridges as a scaling
solution for blockchains. Cryptology ePrint Archive (2021)

Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: Goldberg, 1., Moore,
T. (eds.) Financial Cryptography and Data Security: 23rd International Confer-
ence, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised
Selected Papers, pp. 508-526. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-32101-7_30

Minaei Bidgoli, M., Kumaresan, R., Zamani, M., Gaddam, S.: System and method
for managing data in a database (Feb 2023). https://patents.google.com/patent/
US11556909B2/

Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments. https://lightning.network/lightning-network-paper.pdf (2016) Accessed
Oct 20 2023

Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments
fast and private: efficient decentralized routing for path-based transac-
tions. In: 25th Annual Network and Distributed System Security Sympo-
sium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society (2018). https://wp.internetsociety.org/ndss/wp-content /uploads/
sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf

Tairi, E., Moreno-Sanchez, P., Maffei, M.: a?l: anonymous atomic locks for scala-
bility in payment channel hubs. In: 2021 IEEE Symposium on Security and Privacy
(SP), pp. 1834-1851 (2021). https://doi.org/10.1109/SP40001.2021.00111
Thibault, L.T., Sarry, T., Hafid, A.S.: Blockchain scaling using rollups: a com-
prehensive survey. IEEE Access 10, 93039-93054 (2022). https://doi.org/10.1109/
ACCESS.2022.3200051

Todd, P.: [bitcoin-development] near-zero fee transactions with hub-and-
spoke micropayments. https://lists.linuxfoundation.org/pipermail /bitcoin-dev/
2014-December /006988.html (2014). Accessed Oct 20 2023

Yang, Y., Minaei, M., Raghuraman, S., Kumaresan, R., Le, D.V., Zamani, M.: Pro-
grammable payment channels. Cryptology ePrint Archive, Paper 2023/347 (2023).
https://eprint.iacr.org/2023/347

Yee, B., Song, D., McCorry, P., Buckland, C.: Shades of finality and layer 2 scaling.
arXiv preprint arXiv:2201.07920 (2022)


https://doi.org/10.1007/978-3-030-32101-7_30
https://patents.google.com/patent/US11556909B2/
https://patents.google.com/patent/US11556909B2/
https://lightning.network/lightning-network-paper.pdf
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/ACCESS.2022.3200051
https://doi.org/10.1109/ACCESS.2022.3200051
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html
https://eprint.iacr.org/2023/347
http://arxiv.org/abs/2201.07920

q

Check for
updates

1

In a two-party mutual private set intersection (PSI) protocol Alice and Bob,
each with a private set, engage in a protocol, at the end of which each party
learns the intersection of the two sets and nothing else. In unilateral (one-way)
PSI however, only one party learns the intersection, and the other party learns
nothing. Mutual PSI protocols have diverse applications including in healthcare

Fair Private Set Intersection Using Smart
Contracts

Sepideh Avizheh®™ and Reihaneh Safavi-Naini

University of Calgary, Alberta, Canada
sepideh.avizhehlQucalgary.ca

Abstract. A mutual private set intersection protocol (PSI) allows two
parties to find the intersection of their private sets without leaking any
other information. A mutual PSI protocol achieves complete fairness if
a malicious party cannot disadvantage the honest party by using an
early abort of the protocol. It has been proved that it is impossible to
achieve complete fairness in plain two-party computation, and ensur-
ing fairness needs the inclusion of a trusted third party (TTP). Smart
contracts have been used to implement trusted computation in crypto-
graphic protocols. In this paper, we consider fair mutual PSI protocols
that use a smart contract as the TTP. We first show that it is impossible
to achieve complete fairness by using a smart contract as a TTP in two-
party mutual PSI, and consider the (weaker) goal of “fairness with coin
compensation”. We design two protocols, IT and IT*, that achieve this
notion of fairness using a smart contract as the TTP. The protocol II is
a redesign of a fair optimistic PSI protocol (Dong et al., DBSec 2013)
that replaces TTP with a smart contract. The protocol IT* is a more
efficient protocol that replaces some of the zero-knowledge proofs of IT
with proof of misbehaviour that enables the smart contract to correctly
identify the dishonest party and compensate the honest party with coin.
We prove the security and privacy of the protocols in an extension of the
ideal/real paradigm for non-monolithic adversaries and provide a proof-
of-concept implementation of the smart contract in both protocols in a
local Ethereum network. We evaluate the performance of the protocols
in terms of gas cost for optimistic and pessimistic executions, compare
their performance, and discuss our results and directions for future work.

Keywords: Mutual PSI - Optimistic fairness - Smart contracts -
Oblivious polynomial evaluation * Proof of misbehavior

Introduction

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Popper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 74-104, 2024.
https://doi.org/10.1007/978-3-031-54776-8_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_4

Fair Private Set Intersection Using Smart Contracts 75

systems, government and law enforcement applications, social networks, and e-
commerce [7,11,17,41,42]. As a concrete example, consider a setting where two
stores attempt to increase the number of their customers and agree to offer
a discount to customers who have made purchases from both. Checking this
information at the time of purchase will reveal the identity of customers of each
store to the other. Using mutual PSI will allow the discount to be issued correctly,
and no other information be leaked.

A mutual PSI protocol is fair if a malicious party cannot put the honest party
in a disadvantaged position, for example, prevent the honest party from learning
the intersection after learning it themselves. Complete fairness guarantees that
if the malicious party learns the intersection, the honest party will also learn it.
Most existing mutual PSI protocols [7,17,41,42] guarantee security with abort,
and not complete fairness, allowing the corrupted party to abort without letting
the honest party learning the result. For efficiency reasons, in this paper, we
only consider protocols that achieve fairness in a constant number of rounds and
exclude protocols such as [10,28,39,43] in which the number of rounds depends
on the input size.

Cleve’s [13] result on the impossibility of fair computation in two-party coin-
tossing schemes, when applied to PSI, implies that full fairness is not achievable
in the basic two-party setting. An alternative is to relax the notion of fairness to
partial fairness where fairness fails with probability 1/p for an arbitrary polyno-
mial p in security parameter [13,14,29,50], or optimistic fairness where a trusted
third party (TTP) that is sometimes referred to as the the arbiter, ensures that
the honest party always obtains the correct protocol result irrespective of the
malicious party deviations from the protocol including early abort.

Using smart Contracts as TTP. A smart contract is a trusted program that runs
on the consensus-based computer of a blockchain, and can be programmed to
perform a trusted computation. Smart contracts have been widely used in crypto-
graphic protocols [22,23,45,46,49] to implement a TTP. Smart contracts provide
an attractive method of implementing TTP in optimistic protocols and can also
serve to automate other processes when the protocol is deployed. For example,
smart contracts can initiate negotiations between parties, store cryptographic
values, as well as providing support for cryptocurrencies and transactions.

In this paper, we propose the first PSI protocol that uses a smart contract
to implement the TTP. This however requires careful design because smart con-
tracts are transparent programs that cannot hold secrets, and so all their stored
data are public. A smart contract also cannot establish a private channel to any
entity in the system. A smart contract also incurs costs, and so its execution and
storage costs must be minimized. These constraints severely restrict the applica-
tion of the smart contract as the TTP for providing fairness. Fair PSI protocols
that use a TTP [7,18-21] and achieve complete fairness, crucially use the ability
of TTP to hold private values which will be provided to the honest party if the
protocol aborts. This will not be possible for a smart contract. The protocols
in [36,37] use the TTP private computation for dispute resolution, and also use
the TTP as a processor to help with the computation.



76 S. Avizheh and R. Safavi-Naini

Our Work. We first provide an argument that shows that it is not possible
to achieve complete fairness in two-party PSI by using a smart contract as the
TTP, and propose to use coin-compensated fairness in which fairness is achieved
by requiring an initial coin deposit from one (or more parties), and later com-
pensating the honest party with coins when the dishonest party who learns the
result and aborts is identified (e.g. by transferring to the honest party, the coins
of the dishonest party together with the honest party’s deposited coins, if any).
We design a 4-round protocol I1, that achieves fairness by (always) correctly
identifying the dishonest party using a dispute resolution phase. The protocol
re-designs the PSI protocol of Dong et al. [21] (referred to as DCCR proto-
col) that achieves complete fairness using a TTP that can hold secrets. Noting
that the dispute resolution phase is effectively an identification mechanism for
the dishonest party, we improve the computational efficiency of the protocol
by replacing ZKP in round 2 with the notion of Proof of Misbehavior (PoM)
[22], and reducing a vector of m ZKPs in round 3 to only one ZKP with PoM.
A PoM does not verify the correctness of each message but provides sufficient
information to the honest party that can be used as evidence in the dispute-
resolution phase, to prove the misbehavior of the dishonest party to the smart
contract. Our PoM construction localizes the incorrect step of the computation
that can be efficiently verified by the smart contract. The two protocols are the
first protocols that ensure coin-compensated fairness using only smart contracts
where the smart contract’s computation complexity is O(1) (i.e. constant num-
ber of modular exponentiations). The main challenge in designing IT and IT*
is to ensure privacy with respect to both parties and the publicly visible smart
contract operations, in particular when PoM-based protocol is used to identify
the dishonest party. We prove the security and privacy of both protocols using
simulation-based security in the non-monolithic adversary framework of [3,36]
that captures security and privacy against the malicious party, as well as pri-
vacy against the smart contract. We implemented the computation of the smart
contract in IT and IT* to estimate and compare the gas cost when the protocol
runs on the Ethereum blockchain. More details are below.

Using a Smart Contract to Implement TTP. In Sect. 4.1, we outline an
argument that shows that a smart contract that implements the TTP in a PSI
protocol cannot provide any additional information to the parties after the pro-
tocol is completed, and so if complete fairness can be achieved by employing a
smart contract, Cleve’s result will be contradicted. This motivates us to use the
notion of coin-compensated fairness that was introduced by Bentov-Kumaresan
[6] for lottery protocols. Coin-compensated fairness has been widely used as a
replacement for complete fairness [4,40,45-48]. Coin-compensated fairness uses
blockchain’s native coin to compensate the party that will be in a disadvan-
taged position and provides an attractive solution to overcome the impossibility
of complete fairness. The approach assumes the compensation amount correctly
reflects the potential losses of the honest party using factors such as the value
of the lost data, and the costs of running the protocol.



Fair Private Set Intersection Using Smart Contracts 77

Constructions. In Sect. 5, we propose protocol I that starts with DCCR and
modifies its messages assuming TTP is implemented as a smart contract, and
achieves coin-compensated fairness while ensuring privacy for the input sets
with respect to the SC (public). In II, the party that starts the protocol is
Alice, and the party that learns the result first is Bob. At the start of the
protocol, Bob deposits the agreed amount of coins, p, to the smart contract. The
coins will be used to compensate Alice if Bob aborts the protocol after learning
the intersection. Honest execution of the protocol has four rounds and dispute
resolution adds two more rounds to the protocol. The protocol uses Oblivious
Polynomial Evaluation (OPE) for computing the intersection, and by using zero-
knowledge proofs (ZKP) in the first three rounds, allows the parties to verify
the correctness of the exchanged messages. In all rounds, the two parties store
information in the smart contract, but the contract remains passive, it does not
perform any computation. In the dispute resolution phase, Alice claims that Bob
has aborted to reveal the required information. The smart contract verifies the
claim using its stored information. It is also possible that Bob cannot reveal the
required information because they did not receive Alice’s message in its previous
round. In both cases, the smart contract can correctly decide and identify the
party that has misbehaved. The smart contract’s computation will be a constant
number of modular exponentiations.

In IT, the parties’ computations are high as they have to generate and verify
the zero-knowledge proofs in the first three rounds of the protocols. In IT*,
generating the ZKP in the second and third rounds is replaced by Proof of
Misbehavior (PoM), hence improving the efficiency of parties P; and Ps. Using
PoM also allows us to instantiate the commitment in the second round with hash-
based commitments which further improve the computations of the parties. The
protocol IT* is described in Sect. 6.

PoM is a protocol between two parties Py, P, where at least one of the two
is honest, and an honest verifier. In a PoM, party P; provides a proof m; for
the correctness of a statement to party P, and stores a proof digest with the
verifier. The proof digest is hiding and leaks a negligible amount of information
about the proof to the verifier. P, can verify the correctness of the proof, and
if the verification fails, can generate a second proof mo that, together with the
proof digest and the published values, will prove to the verifier that P; has
not followed the protocol (“misbehaved”). PoM must satisfy completeness and
soundness. Completeness ensures that an honest party can always generate mo
if there is a misbehavior, and soundness requires that a cheating party can not
generate a valid proof ms to frame an honest party.

We use two PoMs in IT*, in both of which the two parties will be the provers
and the SC will be the verifier. The first PoM will replace the ZKP in round 2
of IT. The proof 7 will be constructed as the computation trace of the oblivious
polynomial evaluation (OPE), and the proof digest is the root of a Merkle tree
that will be constructed on the computation trace. The proof and the digest will
be provided to P; and the SC, respectively. In the last round of the protocol, P,
can verify the proof 7 by replicating the computation, and if notices discrepan-



78 S. Avizheh and R. Safavi-Naini

cies, will generate a proof mo that allows the SC to verify the claim of P;. The
SC’s computation will depend on the location of the error in the computation
trace, and will consist of a single modular multiplication if the computation has
been performed incorrectly, or will require verifying a ZKP if the input correct-
ness is challenged. The second PoM is in round 3 and is used by P;. We use
one aggregate ZKP in round 3 of the protocol (instead of the original vector of
m re-encryption ZKPs) to efficiently show the correctness of the re-encrypted
ciphertexts. The aggregation will come together with a PoM that proves the
correctness of the aggregate computation and is constructed using the trace of
aggregate computation as described above. P, can verify the correctness of the
aggregation, and prove to SC if P; has deviated from the protocol. Using PoMs
does not add any additional rounds to the protocol. The complexity analysis of
II and IT* are in Sect. 7.

Using PoM to delay the correctness proof to a later stage (i.e. dispute reso-
lution), could potentially leak information, and this prevents us from replacing
ZKP in the first message of IT (that proves the correct evaluation of coefficients
of a polynomial) with PoM. This is because a dishonest P; can learn the items
in the P»’s set by setting all coefficients of the polynomial to zero.

Simulation-Based Security. We prove the security and privacy of I and IT*
using simulation-based security with non-monolithic adversaries [3] considering
a Ledger ideal functionality to capture the transfer of coins. The non-monolithic
adversary framework was introduced in [36] to capture the security of crypto-
graphic protocols when there are two or more non-colluding adversaries with
distinct goals. We consider two adversaries that capture, (i) the behavior of
the dishonest party, and (ii) leakage to the public of the information that is
seen by the smart contract. In DCCR, the TTP is assumed to be semi-honest
and the protocol is designed to ensure that negligible information is leaked to
the TTP. By using PoM, we modify the dispute resolution protocol and need to
show our protocols still achieve the required privacy guarantee against the smart
contract. We must show that by replacing the ZKP with PoM in the security
proofs, the simulator (that has oracle access to the code of the cheating party)
can still extract the input in all cases without using the extractability of ZKP.
We achieve this by using the computation trace and the simulator’s access to
the random oracle ideal functionality. This approach was first used by [22] and
later in [3]. Our security model uses a PSI ideal functionality that follows [21,36],
an abstraction of blockchain that follows the approach of [22], and models coin-
compensated fairness. Security proof is in the random oracle model and is done
by designing a simulator for malicious parties, and an independent simulator for
the smart contract to ensure both the security of the PSI, and privacy against
the smart contract (and hence the public). The proof outline is in Sects.5 and
6 and the complete proof is given in the full version of paper.

Implementation. We provide a proof-of-concept implementation of the smart
contract in Protocols IT and IT*. We have implemented a CryptoLib library in
Solidity for the required cryptographic primitives of SC that implements the
Elliptic Curve (EC) variant of Elgamal encryption, Pedersen commitment, the



Fair Private Set Intersection Using Smart Contracts 79

necessary zero-knowledge proofs of knowledge over curve Secp256k1, and the
Merkle proof verification. The SC algorithms are given in the full version of the
paper. We give the gas cost of SC in protocols [T and IT*, for different set sizes
n and m of party P, and P», respectively, for (i)optimistic execution where both
parties are honest, and (ii) pessimistic execution where one party misbehaves.
Our experiments show that as m increases, the gas cost of SC in IT* is [17%-32%]
higher than running SC in I7, and as n increases it is 29% higher than running
SC in II. The gas cost of running SC in II is independent of n, but it grows
linearly to log(n) in protocol IT*. The gas cost of the pessimistic execution in
both protocols is dominated by the gas cost of the SC in the first four rounds of
the protocol when m increases. Therefore, the storage cost of the SC limits the
value of m to be much less than n.

Organization of the Paper. Section2 gives the related work and Sect.3
describes the preliminaries. Section 4 is model and security definitions. Sections 5
and 6 present protocol IT and IT*, respectively. Section 7 is on the complexity
analysis and comparison, Sect. 8 is on implementation, and Sect. 9 concludes the

paper.

1.1 Other Coin-Compensated PSI

A recent online preprint [1] considers coin-compensated fairness for PSI and uses
an SC for different functions, including verifying the correctness of messages. An
external auditor is used to find the misbehaving parties in case the verification
is not passed. We give an overview of the paper and compare it with our work.
More details are in the full version of the paper.

The paper proposes two PSI schemes for two or more parties: (i) Justitia,
and (ii) Anesidora. Justitia achieves coin-compensated fairness where the honest
party either receives the set intersection result, or coins if there is an abort. The
protocol is proven secure against malicious adversaries. Anesidora uses Justitia
as a subroutine and is proven secure in a mixed model of malicious and rational
adversaries, using an appropriate incentivization mechanism. We compare our
work with Justitia which achieves coin-compensated fairness, when the number
of parties is two.

Justitia uses a smart contract and an external third-party auditor (semi-
honest) to correctly identify the cheating party and requires both parties to make
deposits. The third-party auditor needs to learn the private (PRF) keys of parties
to find the misbehaving party, and hence it cannot be directly implemented by
the smart contract. Also, the smart contract performs computation during the
correct execution of the protocol. Justitia follows the security model of [26] and
achieves coin-compensated fairness and privacy in the presence of one active
adversary, or a passive dealer (i.e. one of the two-party with the assigned role
as a dealer), passive auditor, or passive public (which is the smart contract).

We use only a smart contract to achieve correctness and coin-compensated
fairness, and smart contract computation is only during dispute resolution and
is constant independent of the set sizes. We use the approach of [3] to define



80 S. Avizheh and R. Safavi-Naini

security and privacy of computation against parties, and privacy against smart
contract in a unified framework, and obtain the security guarantee against an
active adversary in both stages of the protocol: result computation, and dispute
resolution.

2 Related Work

PSI Protocols. There is a vast amount of research in this area (e.g. [5,9,25,33,44,
52,53,56]). The main approaches are (i) protocols that are based on oblivious
polynomial evaluation, OPE, [12,24,42] and (ii) protocols based on oblivious
psuedorandom function evaluation, OPRF [15,16,30,34,35,44].

Mutual PSI Protocols. [7,11,17,32,41,42,51] ensure both parties receive the
intersection result, but all the mentioned schemes assume that the adversary
does not prematurely abort.

Fair PSI Protocols. The impossibility of fair PSI [13,27] implies that one has to
use a relaxed notion of fairness such as partial fairness where fairness fails with
a bounded probability [13,14,29,50], or optimistic fairness where the existence
of a trusted third party (TTP) or arbiter is assumed (leading to what is known
as optimistic protocols) [7]. In an optimistic PSI protocol [7,19-21], the TTP (or
arbiter) ensures that the honest party obtains the correct protocol result when
the malicious party deviates from the protocol, including the early abort.

Fair PSI Protocols that Use a TTP and proceed in a constant number of rounds
have been considered in [1,7,18-21,36,37]. The TTP in these protocols can either
participate only in the dispute resolution phase [7,18—-21] and ensures optimistic
fairness, or to participate in both the computation of PSI (a smart contract) and
dispute resolution (a smart contract and an external third party auditor) [1] and
achieves coin-compensated fairness, or the TTP participates in the computation
of the intersection [36,37] and ensures complete fairness.

Coin-Compensated Fairness. The notion of coin-compensated fairness (aka. fair-
ness with penalties) was introduced by [6] which allows an adversarial party to
abort but in that case, it is forced to pay a predefined monetary penalty to every
other party that did not receive the output. Coin-compensated fairness has been
used in further research such as [4,40,46,48]. All the above protocols are sym-
metric, in that, all parties have to make a deposit and all parties achieve fairness
with penalties. In a parallel work, [1] proposed coin-compensated multi-party
PSI where all parties are required to make a deposit and it uses the smart con-
tract and an external third-party auditor to ensure the correct transfer of funds.
In contrast, our work is a two-party PSI and requires that only one party makes a
deposit and ensures fairness with compensation assuming only an efficient smart
contract as a TTP.



Fair Private Set Intersection Using Smart Contracts 81

3 Preliminaries and Notations

We use P, and A interchangeably, where P; holds the set X = {x1, ..., x,},
and we use P, and B interchangeably, where P, holds set Y = {91, ..., Ym}- ||
represents the size of a set.

Commitment scheme has two algorithms {commit, open}. commit is a prob-
abilistic function that is used by the committer to commit to an input x and
outputs (¢, d) «— commit(z) where ¢ is the commitment to k, and d is the
decommitment value. open is a deterministic boolean function which is used by
the receiver to verify that x is a correct opening for commitment ¢. We require
the scheme to be hiding and binding.

Merkle trees are binary trees that are constructed over a sequence of data
elements z = (x1, ..., x,) using algorithm Mtree. The leaf nodes of a Merkle tree
are the hash of the elements z. To commit to a sequence of elements we consider
a randomized Merkle tree where each leaf node x; is concatenated with unique
uniformly sampled randomness d; € {0,1}", i.e. &} = x;||d;. The commitment
to x is comprised of r, = root(Mtree(x’)) and d = (dy, ..., d,,). The randomized
Merkle root commitment is computationally hiding in the random oracle model
and is computationally binding assuming either the committer or receiver is
honest.

Additive homomorphic encryption is a public key encryption scheme
with the following properties: (1) given two ciphertexts Epi(mi), Epk(ma),
Epi(m1 +ma) = Epp(ma) - Epi(me); where pk is the public key used to encrypt
the messages m; and mg. (2) given a ciphertext Ep;(m:) and a constant c,
Epi(c-mq) = Epp(ma)©.

Symmetric encryption scheme consists of three algorithms: k = Gen(k)
receives the security parameter x and generates a key. The encryption algorithm
takes the key k and the message m and returns the ciphertext C' = Ej(m).
The decryption algorithm takes the key k and the ciphertext C' and returns the
message m, m = Dy (C). We consider an IND-CPA secure encryption scheme.

Zero knowledge proof (ZK proof) allows a prover to prove the validity of
a statement x to a verifier without leaking any other information. Prover shows
that it knows a witness w without revealing it such that (z, w) € R, where R is
a relation. A ZK proof should satisfy correctness, soundness, and zero-knowledge
properties.

The Freedman-Nissim-Pinkas protocol (FNP) [24] is a single output PSI
protocol that is based on Oblivious Polynomial Evaluation (OPE). It uses an
additively homomorphic encryption scheme (Paillier cryptosystem). The proto-
col proceeds as follows: (i) Party Py chooses a private public key pair (sk, pk) for
an additive homomorphic scheme. (ii) P;, constructs a polynomial Q(y) whose
roots are the elements in the set X, using the formula Q(y) = I, (y — x;) =
¥ odiyt, encrypts coefficients d; for all i € {0,n}, and sends all E,x(d;) to Px.



82 S. Avizheh and R. Safavi-Naini

(iii) Py evaluates the polynomial Q() on the elements of its set ¥ and com-
putes E,i(r;Q(y;) + y;) for each y; € Y using the homomorphic properties of
the underlying encryption scheme, where r; is a random value. Note that if y;
is in the intersection X N'Y then it is the root of polynomial Q(y) and hence
Q(y;) = 0. Otherwise, Q(y;) is a random value. (iv) P, decrypts each ciphertext
Eu(r;Q(y;) +y;) and obtains either y; € X if y; is in X NY or a random value
otherwise. This protocol is secure against semi-honest adversaries.

The DCCR PSI protocol [21] is a mutual PSI protocol that ensures complete
fairness assuming the existence of a semi-honest arbiter which can be involved
if there is a dispute between parties. The protocol has two phases: intersection
and dispute resolution. The intersection phase is run between parties P; and P
over a point-to-point channel. The dispute resolution is initiated by P; and used
only if P, aborts in the fourth round of the protocol. Please see the details of
the scheme in Fig.2 (b). The protocol is based on the OPE scheme (based on
Elgamal encryption) proposed by FNP with some subtle changes. They consider
that (i) |X| > |Y] to protect against leakage of the polynomial to party P, and
require that P ensures |X| > |Y|. (ii) The parties P; and P, are malicious
(one of two). Therefore, ZK proof is used at each stage of the protocol to show
that they are following the protocol correctly. (iii) The Ep(r;Q(y;) + y;) is
computed in the exponent of base g (a generator of a certain group), that is,
Epk(gT'fQ(yj)"’yi) to allow using efficient ZK proof and also obtaining additive
homomorphic encryption using Elgamal encryption scheme. (iv) They consider
a blinding factor r; for each polynomial evaluation Ep(r;Q(y;) + 7; + y;) to
hide the result temporarily from the party who has the public key Pk since it
can decrypt the ciphertext and learn the result in an incorrect point of time.

Blockchain and Smart Contracts. Blockchain is a distributed ledger tech-
nology that stores transactions in a growing chain of blocks that are linked to
each other through a cryptographic hash. Each block encapsulates a number of
transactions (unit of operations performed in the system) [54]. If the number
of honest parties who run the blockchain is more than 50 percent of the whole
network, the ledger ensures immutability. Smart contract is a piece of computer
program that is run on top of a blockchain. The nodes who are responsible for
storing and updating the blockchain, execute the programs and reach agreement
on their execution results.

4 Fair PSI Using Smart Contracts

In this section, we first show that complete fairness is impossible to be achieved
in the smart contract-based setting where the smart contract is transparent and
cannot hold any private key. Then we give the security model by capturing the
notion of coin-compensated fairness.

4.1 Smart Contract as the TTP in Optimistic Mutual PSI

An important property of mutual PSI protocols is fairness. Cleve’s results [13]
show that complete fairness without honest majority is not possible and so it



Fair Private Set Intersection Using Smart Contracts 83

is impossible to achieve complete fairness in plain two-party mutual PSI. Opti-
mistic PSIs however, provide correct output to the honest party by storing pri-
vate values (e.g. the protocol output) that will be provided to the honest party
if they are put in a disadvantaged position (because of the early abort of the
dishonest party). Smart contracts however are transparent programs and can-
not hold secrets. A smart contract can be seen as a third transparent processor
that is connected transparently to the other two parties. Consider a mutual PSI
protocol where P; and P, have their sets as their private inputs and the smart
contract is used as the TTP. At the completion (or termination because of the
early abort) of the protocol, P; and P; receive their corresponding private results
and have direct access to computation and stored values of the SC. Thus, in the
case of early abort, SC cannot provide any extra value to the honest party that
was not known to them before. This informal argument can be formalized to
prove that it is impossible to achieve complete fairness for mutual PSI when
using SC as the TTP (see Full version of the paper).

The smart contract however can be used to verify statements and correct
opening of commitments, and so detect malicious behaviour. This detection abil-
ity can be used to achieve coin-compensated fairness where the honest party who
has not received the result will be compensated with coins. Coin-compensated
fairness, although weaker than complete fairness, is an attractive approach in
particular when one can estimate the value of the result to the parties. We use
this notion of fairness in our protocols.

4.2 Security Model

We use the ideal world /real world paradigm [8] where the security proof simulates
the behavior of real-world adversaries in the ideal world in which a trusted entity
(ideal functionality) performs the task at hand. In the real world, each party is
modeled by an interactive probabilistic polynomial time Turing machine (ITM)
that interacts with other parties. The adversary A in the real world corrupts
a set of parties and affects their execution. We consider a static adversary in
which the parties are corrupted at the beginning of the protocol run. To capture
the effects of the other protocols that coexist we assume the adversary receives
an auxiliary input at the beginning of the protocol. In the ideal world the ideal
functionality F interacts with dummy protocol parties and performs the task
at hand. The ideal functionality captures the required security properties of the
protocol 7. The ideal adversary is called simulator Sim, which simulates the
behavior of the real-world adversary in the ideal world and interacts with the
ideal functionality through its interfaces. We consider an Environment Z which
gives inputs to parties and receives their outputs.

Hybrid World. We use a hybrid real world where some of the cryptographic
primitives/protocols are replaced by their corresponding ideal functionalities,
Fi, ..., Fn, and using [8] still maintain security. We consider a stand-alone exe-
cution. We assume non-concurrent invocation of the subroutines.



84 S. Avizheh and R. Safavi-Naini

Non-monolithic Adversary. In a standard simulation-based security framework
the adversary is monolithic, a single entity can corrupt a set of parties and
coordinate their attacks (i.e. parties can collude with each other). The need for
modeling non-monolithic adversaries has been motivated by Kamara et al. [306]
in the server-aided computation setting. In this paper, to define both security
and privacy we need to use a non-monolithic adversarial model. We consider two
adversaries, (i) an adversary .4 who corrupts one of the parties maliciously and
gets access to its inputs and outputs and (ii) a semi-honest adversary, which is
called smart contract adversary As., and models the observers of the SC. A,
only sees the information that are made public to SC. We follow [3] that extends
Kamara et al. model [36] to two non-monolithic adversaries and defines smart
contract privacy.

Ledger Functionality £ [22]. To transfer coins between parties and support con-
tracts that lock coins, we consider the simplified ledger of [22] that provides
the basic properties of a cryptocurrency. £ has three interfaces: update that is
called by the environment to update the balance of parties P;; freeze is used to
transfer p coins from one party to a contract where they are locked; unfreeze
is used to transfer the coins from a contract to the balance of a party. In [22]
this functionality is accessible to ideal functionalities only (i.e. the Judge ideal
functionality), but in our protocol £ is accessible to SC' and ideal functionalities
(Please see the full version of the paper for the details).

Random Oracle Functionality H [31]. H responds to all queries with uniformly
random sampled values 7 « {0, 1}*, and outputs the same value for the same
query. All query-response pairs are stored in the set Q.

Communication Model. We consider a synchronous communication model
the same as the one mentioned in [22] where the protocol proceeds in rounds and
all parties are always aware of the current round [40] (synchrony can be emulated
by allocating long enough round time considering bounded delay channels [38]).

Security and Privacy. The protocol execution has two cases. First, when both
parties are honest, and the second, when one party is dishonest and the execu-
tion includes the dispute resolution protocol. Our security and privacy definition
must capture security of computation against the party that can deviate from
the protocol, and privacy of the input sets of parties, except the intersection,
as well as privacy of both sets and the intersection against the smart contract
in both types of execution. The parties’ inputs/outputs and views are different
from the smart contract’s input/output and view and thus we follow [3] that
the use Kamara et al. [36] framework of non-monolithic adversaries and model
smart contract, and the participants as non-colluding, non-cooperative indepen-
dent adversaries. The smart contract is modeled as a semi-honest entity, and the
parties can deviate arbitrarily from the protocol (one of the two parties).

Definition 1. Let IT be a protocol that realizes a smart contract based n-party
functionality F. Let H C [n] be the set of honest parties, 1. and I,. be the
set of corrupted parties, where I,. C [n] denote the set of non-colluding par-
ties, I. C [n] denote the set of colluding parties, and assume all subsets (H, I,



Fair Private Set Intersection Using Smart Contracts 85

and I,.) are pairwise disjoint, and let SC denote the semi-honest smart con-
tract. Let ADV be an adversary structure that specifies the set of adversaries
and their behaviors (e.g., semi-honest, non-cooperative, etc.). We say that IT
(Ine, 1., ADV)-securely realizes F, if for any PPT adversary A; € {Ine, I.}
and smart contract adversary As., there exists PPT transformations Sim; and
Simg. respectively such that the following hold for negligible functions €1 and ey
in the security parameter.

Security: |Pr[Real%€A7z(n, xz)=1] - Pr[Ideal(}QSimVZ(n,x) =1]|<e

Where Real%?A)Z(/f, x) denotes the view of the adversary A; and the output of
the honest parties when running protocol I1 ; Idealg_i?sl-m’z 18 the view of malicious
parties and output of honest parties when running the ideal process computing

F;and A={A,..., An} and Sim = {Simy, ..., Sim, }.

Smart Contract Privacy: 4
|PT[R€QZ§'][,)A,ASC,z(“vI) =1] - Pr[[dealg_z?Sim’Simscyz(n, z)=1]] < e

Where Real%?A)Amz denotes the view of the adversary Ase. and output of
all other parties when running protocol II in the presence of adversary A;; and

Idealg,)sm,smsc,z is the view of the semi-honest parties and output of all other
parties when running the ideal process computing F in the presence of adversary
Sim;. Here k is the security parameter, x is the set of outputs provided to all

parties, and z is the set of auziliary inputs provided to all parties.

4.3 Ideal Functionality for Coin-Compensated PSI

We consider an ideal functionality F5g; which ensures coin-compensated fairness
for P; and complete fairness for P,. F IQS ; captures the following properties:

Correctness. If parties P, and P» use their inputs X and Y respectively in the
protocol, if they find the intersection X NY', it is indeed correct.

Privacy. P; and P, do not learn anything beyond the intersection result®.

Smart Contract Privacy. The smart contract does not learn anything about
the elements in X and Y.

Fairness with Coin Compensation. Party P; either learns the intersection
result or gets a monetary compensation, whereas P, receives the intersection
result, or none of them learns anything.

Figure 1 shows the description of the ideal functionality F IQS 1 which interacts
with the ledger functionality £. F5g; first freezes the p coins provided by P in
L and receives the inputs X’ and Y’ from both parties P, and P,. The inputs
X’ and Y’ can be equal to L which means that one party aborts early in the
protocol. In this case F f;s 7 sends L to everyone and terminates the protocol.
If X’ and Y’ are not L then fIQSI informs everyone that it has received the

1 'We follow DCCR and consider the parties know the size of both sets and they can
confirm |z| > |y|.



86 S. Avizheh and R. Safavi-Naini

inputs from party Py and P. F5g; then computes the intersection denoted by
O. We let the functionality send the result to the simulator Sim first and then
send it to parties based on the decision made by Sim. This is to capture the
fact that the malicious party who learns the intersection result can affect the
protocol run. Sim returns by and be, where b; € {¢, L} and L denotes abort and
¢ denotes non-abort. F IQS ; distributes the coins based on b; and by according to
the conditions stated in Fig. 1. If both b; and by are L, then none of the parties
have learned anything, and the p coins are returned to P,. If b1 is 1. which shows
that P; should not receive the intersection result, F5q; unfreezes the coins in
favor of P;. Otherwise, P; receives the result and F JQS 7 returns the p coins to Ps.
In sum, P» always receives the intersection result no matter what the malicious
party does after learning the output, but P; only learns the result if Py acts
honestly. In all the above cases, we let SC learn the decision of the simulator
Sim for party P; (which captures the fact that this information is public and
can be learned by SC when the protocol is run).

Functionality F5g;
Ideal functionality F5g; is available to Pp, P, and SC. P has input X consisting of
n distinct elements X = {1, ..., zn} where ; € U; P> has input Y consisting of m
distinct elements Y = {y1, ..., ym} where y; € U and n > m and it also has p coins.
SC has no input. F5g; interacts with the global ledger functionality L.

—Upon receiving (Coins, p) from P, send (Coins, p) to Simgc, send
(freeze, id, P, p) to L and wait to receive (frozen, id, P2, p) from L. Other-
wise, terminate.

— Upon receiving (Input, id, X'), where X’ € {X, L}, from P; store the message
and if X’ #1 send (InputReceived, id, P1) to everyone. Otherwise, terminate.

— Upon receiving message (Input, id, Y'),where Y’ € {Y, L}, from P, store Y
and if Y #1 send (InputReceived, id, P2) to everyone. Then compute O =
X'NY’' send (Result, id, O) to Sim and (Result, id) to Simsc. Upon receiv-
ing (Output, id, b1, b2) from Sim, where b1, bs € {0, L} act as below:

— If by = by =1 send L to both parties and L to Simsc, unfreeze p coins in favor of
P, by sending (unfreeze, id, P2, p)to L. Upon receiving (unfrozen, id, P2, p)
from L terminate.

— If by =L and b2 = ¢ send L to P1, O to P» and L to Simgc, and un-
freeze p coins to Py by sending (unfreeze, id, Pi, p) to L. Upon receiving
(unfrozen, id, Pi, p) from L terminate.

— If b = ¢o and b2 =1 send O to both parties and ¢ to Simgc, and un-
freeze p coins to P> by sending (unfreeze, id, P>, p) to L. Upon receiving
(unfrozen, id, P, p) from L terminate.

— If by = ba = o send O to both parties and ¢ to Simsc, and unfreeze p coins to P
by sending (unfreeze, id, P2, p) to L. Upon receiving (unfrozen, id, Ps, p)
from L terminate.

Fig. 1. Ideal functionality for SC-aided PSI F5g;



Fair Private Set Intersection Using Smart Contracts 87

5 A Coin-Compensated Fair SC-Aided PSI

In the following, we outline the phases and messages of the protocol I1.

Protocol II. The protocol II follows the approach of DCCR and uses OPE as
its core primitive. IT has the following steps: (i) P, sending p coins to SC which
SC will freeze on the ledger L. If P sees enough coins deposited, P; continues
the protocol with a message that is identical to the message in the first round of
DCCR (See Fig.2 for the details of the message). (ii) When P, receives round
1 message, it informs SC that it has received it. If SC does not receive the
confirmation of P, within an allocated time, it will terminate the protocol and
return the coins to P» (no-one obtains the intersection). In round 2, P sends the
message in round 2 of DCCR, protocol to P; but omits the verifiable encryption
of blinding factors. It sends the commitment to the blinding factors and the
Merkle root r. constructed on ciphertexts to SC. P, also sends to P; a zero-
knowledge proof Pkprop—new that proves P, has correctly constructed its second
round message (ciphertexts) with respect to committed blinding factors to SC.
(iii) In round 3, P; sends the round 3 message of DCCR to SC. This is to prevent
an unfair situation that can arise by P; aborting after they receive the message
but blaming P» for aborting. (iv) In round 4, P, opens the commitments to
the blinding factors. If P, does not abort in round 4, SC returns the coins to
P,. The correctness of the protocol messages of each round can be verified by
the recipient using the associated ZK proof of that round. If any of the parties
abort before round 4, SC returns the coins to P» and terminates the protocol
as none of the participants have any information about the intersection result.
In round 4, if any of the commitments is opened incorrectly by P,, P; makes a
proof which consists of the index of the incorrect commitment and its opening
value published to SC for the first incorrectly opened commitment. SC verifies
the proof in round 6 and sends the coins to the honest party if it is valid. If
party P» finds that the round 3 messages, the zero-knowledge proofs of the re-
encrypted polynomial evaluation, are not valid, then P, can abort opening the
commitment in round 4 and rather sends a proof to the SC which shows the
index of the invalid zero-knowledge proof for the re-encryption in round 3, the
ciphertext under the public key Pk, that it computed itself in round 2 together
with its Merkle proof with respect to root r.2. The SC verifies the Merkle proof
and the zero-knowledge proof and if the zero-knowledge proof is invalid it returns
the coins to P». Note that in this case if party P; complains that P, has aborted
opening the commitment, its complaint will be rejected (see the full version of
the paper for details).

5.1 Security Analysis

We show the security of our protocol using the model in Sect. 4.2. We consider
two simulators, Sim and Simgc and consider 4 different corrupted cases.

2 Party P1 may attempt to send incorrect re-encryptions to party P to force it to
abort opening the commitments. In such case, P> aborts opening the commitment
but it has to send a proof to prove to SC that P; is the cheating party.



88

S. Avizheh and R. Safavi-Naini

Algorithm 1. Protocol 11

Input of Pi: X = {z1, ..., »}, Input of Po: Y = {y1, ..., ym} and p coins Input
of SC: n,m

Output of P;: XNY or p coins, Output of P>: XNY, Output of SC: the identity
of cheating party [

procedure INTERSECTION

Round 0. P, — SC : p coins

Round 1. P1 — P> : Epi, (¢7), ..., Epi, (¢%"), Pk
Round 1. P, — SC : Received

Round 2. P, — P ;Epkl(ngQ(erierl)’ sy Eppy (ngQ(y7n)+7‘-/,”+yrn)’ Pk

[1, n]
poly

[1, m]
prop—new

Round 2. P, — SC : commit(gri), ey comrnit(grﬁn)7 Te
Round 3. P1 — SC : Epy, (gr1Q(yl>+T’1+y1)7 ey Epiy (ger(ym)Jrr;nerm)7 prlt m

re—enc

Round 4. P, — SC': open(commit(gri)), ey open(commit(grin))

procedure DISPUTE RESOLUTION
if P, reveals an incorrect opening for commit(gré) then
P, — SC :index j of commitment
SC verifies opening of commit(gT} )
if opening invalid then

SC — P : p coins

else

SC — P, : p coins

if P, aborts opening the commitments then
SC — P : p coins
if P; reveals an incorrect re-encryption where the ZKP is incorrect for index

then

P> — SC : index j of re-encryption, the encryption Epg, (ger(nyT-;'*yj) and
its Merkle proof with respect to 7. ,
SC verifies the Merkle proof and Pk’

re—enc

if Merkle proof valid but Pk’ invalid then

re—enc

SC — P, : p coins

else

SC — P1 : p coins

if No PoM received then
SC — P : p coins

Theorem 1. The coin-compensated PSI protocol IT securely realizes the F5g;
functionality assuming the homomorphic encryption scheme E is semantically
secure, the ZK proofs and the commitment scheme are secure (please see the full
version of the paper for the proof).

Proof Sketch. The environment Z sends input to parties and receives their
outputs at the end of the protocol, it also sees the messages that are sent to
the smart contract and has to distinguish ideal world from hybrid world. We
consider the following cases:

Case 1. Party Py is Corrupted. We construct a simulator Sim; which has oracle
access to the malicious code of Py and interacts with the ideal functionality



Fair Private Set Intersection Using Smart Contracts 89

[ e ] [ & |

Py P2 sc ‘ E i (€)1 E e, (6%). Pl

. Epu, (672091

E iy (8%, Ept, (§%%). Phige P -

i, (&%), pk, (87). Pk poiy i (2) Efpky (&), X piy (87). P gy
receiy

7100 r s

P
1) Pl E g, (620D, Pl

Ep,
Commin(g",..g"").r,

878~ Pl
— s e

®O®

0L
Epe, (@75, Phiy e

®e 006

Dispute
resolution:  Message transcript of the first two rounds
Ety (¢ E 2Py (8 =), Epp (620777795, Py ine

open(commit() =g"".....g""

Dispute Resolution:

complain &g

p-coins Ep, (67209
2

p—coins.

(a) Our protocol (b) DCCR

Fig. 2. Coin-compensated fair PSI protocol vs. DCCR, optimistically fair PSI protocol.
In our protocol, each round is defined with respect to sending a message to the SC.

FEg;. Simy simulates the protocol transcript for messages that are sent to SC
(because channels to SC are public and they can be seen by the environment
Z) and simulates the protocol messages to the ideal functionality flgs ;- The
honest party P» is dummy and sends the input it receives from Z to }"IQSI.
The important part of the proof is to show (1) how Sim; chooses the input
of the corrupted P; to send to F4g;, (2) how Sim; chooses the input of the
honest party to simulate the protocol transcript to SC, and (3) how Sim, iden-
tifies whether to simulate an abort and dispute resolution or not. For (1), Sim;
extracts the input of Py from Pk in round 1 by rewinding P;. For (2) Sim,
chooses random values (in the input domain of the parties’ set) as the elements
in the set Y* of the honest party P>, and waits to receive the intersection result,
O, from Ffg;. It replaces |O| random values in Y* with the elements in O and
simulates the messages of P, in round 2. For (3), Sim; simulates generating the
private/public key of the honest party at the beginning of the protocol, and later
uses the private key of P» to decrypt the ciphertexts received from P; in round
3, and checks whether the intersection result matches the intersection result O.
If they match, it simulates round 4 (opening the commitments of blinding fac-
tors to SC) correctly and sends (Output, id, o, ¢) to F5g;. Otherwise, if the
intersection result computed based on the message of P;* does not match with O,
Simy sends (Output, id, L, 1) to }-Jgsp and simulates the dispute resolution,
complaining about an incorrect re-encryption for one element to SC.

Case 2. Party Py is Corrupted. We construct a simulator Simsy which has oracle
access to the malicious code of Pj. (1) To simulate the input of the corrupted
party Py, Sims extracts the elements of the set Y of party Py from Pkprop-new by
rewinding it and sends Y to F5g;. (2) Simg chooses n = | X| dummy elements
for Py, waits to receive the intersection O from .7-'551, and then replaces |O]
elements in X* with the elements in O to get X', and uses X’ to simulate the
messages of P; including round 3 message. (3) If Py does not abort, Simg sends
(Output, id, o, o) to Fhg;. Otherwise, if Py initiates the dispute resolution
(which is invalid), Sim; sends (Output, id, 1, o) to Fhg;.



90 S. Avizheh and R. Safavi-Naini

Case 3. SC' is Semi-honest and Party Py is Corrupted. We construct the simula-
tor Sim}. which does not have access to X, Y, and X NY. Sim!_ simulates the
protocol transcript from parties to SC by choosing random inputs taken from the
input domain that are indistinguishable from the real inputs and generating the
protocol messages using the random inputs. Since the cryptographic protocols
are hiding and zero-knowledge, the environment cannot distinguish them from
the real messages. The important part of the proof is that, if P, is corrupted
it can reveal an incorrect message where P, has to complain about it. We only
describe this part of the proof. Upon receiving ¢ from ]—'IQSI, Siml,. simulates
round 3 message correctly using randomly chosen input values. Otherwise, if
Sim?, receives L from F5g;, it simulates an incorrect round 3 message. In the
next round, it simulates a dispute resolution from P, based on the corrupted
message it has revealed.

Case 4. SC is Semi-honest and Party Py is Corrupted. We construct the simula-
tor Sim?2, which does not have access to X, Y, and X NY. Sim?2, simulates the
protocol transcript from parties to SC by choosing random inputs taken from
the input domain that are indistinguishable from the real inputs and generating
the protocol messages using the random inputs. The important part of the proof
is that, if P» is corrupted it may abort before learning the intersection which will
not affect the fairness guarantee. However, if it aborts opening the commitment
to blinding factors correctly, party P; has to complain and get compensated by
coins; we only describe this part of the proof. To simulate this, Sim?2, waits to
receive either: o from F5g;: In this case, it simulates opening the commitments
to blinding factors on behalf of P in round 4 correctly, and terminates. Else, if
Sim?, receives L from F&g;, it incorrectly opens the commitments to blinding
factors to SC and simulates the dispute resolution stage with a valid complaint
on behalf of P;.

Another Coin-Compensated PSI Protocol. Our approach to redesigning
DCCR can be used for the PSI protocol [19], which is the most efficient existing
mutual PSI with optimistic fairness. The protocol achieves linear computation
and communication complexity. We give the outline of the redesigned protocol
in the full version of the paper.

6 Improving the Efficiency of IT

We reduce the computation of parties by replacing ZKPs in round 2 and 3 by
a more efficient protocol. Below, we give an outline of PoM and an overview of
the protocol IT*.

6.1 Owur Technique for Optimizing the Protocol

We first define the PoM and then describe how ZKP can be replaced by PoM.

Proof of Misbehavior (PoM). We consider two provers P;, Vi = {1, 2},
where at most one can be dishonest, and a single honest verifier V. A function



Fair Private Set Intersection Using Smart Contracts 91

f() needs to be computed on input . All parties know f(), provers know the
input = and the verifier knows a commitment to x. Provers run the computation
of f(z) and the verifier has to decide which of the two is correct if they disagree.

Prover P; generates (y = f(z), w1, ((m)) where {(m) is a proof digest (i.e.
a commitment to ), and sends (y, m1) to P2 and ((m) to the verifier V' over
public channel. Here y = f(x) denotes the computation of f() on input z. m;
can be verified by P using the input x. P; runs verify(z, f(), y, m1) where the
output is either 0 or 1. If verify(xz, f(), y, m1) = 0 then P, generates a PoM 7o
and sends it to the verifier. Verifier is able to run Detect({(my), m2) = P; which
verifies my with respect to {(m) and outputs the identity of the cheating party
P;, i € {1, 2}. We require the following properties:

— Correctness: If both provers are honest, then verify(z, f(), y, m) =1 and
mo =1 as well as Detect({(m), m2) =L.

— Soundness: If prover P; is cheating then P, can always generate my # 1 such
that Detect({(m), me) = Py. If Py is cheating then Detect({(m), m2) = Py
for all possible 7.

Replacing a ZKP with PoM. Consider a zero-knowledge proof of knowledge
for the relation R = {z : y € F,,y = f(x)} which states that the prover knows
2 such that = satisfies the statement f(z). To remove ZKP we consider the
computation of f() by the circuit ¢ and design (w1, ((71), m2) as described
above using this representation as follows:

— m in its basic form consists of the wire values of circuit ¢ when run on the
input z. We refer to this set as the computation trace. Computation trace has
linear communication complexity in the size of the circuit. Reducing this size
by using alternative encoding is an interesting direction for future work.

— ((m1), in its simplest form is the root of the Merkle tree on the description
of circuit ¢, together with the root of the Merkle tree that is constructed on
the computation trace. In our work, P does not know the input x to f()
as it is blinded by random values. It however learns the input to f() after
completing the PSI computation with P;. We include commitments to the
blinding factors as part of (1) that is later used for the verification of PoM.

— If P, is cheating, 7o is the information of one gate in the computation trace
(m1) that has incorrect values (together with its corresponding Merkle proofs
with respect to the Merkle root on the computation trace). If the gate is in
the input layer, then ms is a zero-knowledge proof that shows the committed
inputs are not correctly fed to the circuit. This is to ensure that the input is
not revealed to the verifier (PSI privacy requirement).

We also replace the vector of m correct re-encryption ZKPs, Pk,c_cne, in
round 3, with one aggregate ZKP of Pk,.c_cn., together with the PoM (as men-
tioned above) for the aggregate computation.

In replacing ZKP with PoM, we must ensure that verifying the computation
at the end of the interaction instead of verifying each message individually using
ZKP, does not result in an unwanted leakage. For this reason, we do not replace



92 S. Avizheh and R. Safavi-Naini

Pkpoiy by PoM because, in the first round, we require that at least one coefficient
be non-zero, otherwise, P, can learn the whole input set of P, which breaks the
security of the PSI.

6.2 Overview of IT*

Replacing ZK Proof Pk, opnew With a PoM. We express the computation of
E,r (g7 @Wi)*vi) (in round 2) that its correctness needs to be proved, as a circuit
¢ consisting of high-level gates with two operations of op; € {x, exp} where x
represents modular multiplication and exp is the modular exponentiation. We
consider one output for each gate and a fan-in of 2. Each gate is described by
g;i = (4, opi, I) where j is the index of the gate, op; is the operation that
it performs on its inputs and I is the indexes of the inputs to gate j. The
indexes are set from the bottom layer and go up toward the output layer. In each
layer, the wires are numbered from left to right. Figure3 shows the graphical
representation of this circuit when n = 4. The computation trace in this circuit is
considered as the values carried by the wires marked with numbers 1 to 12 (note
that these numbers are just markers not the indexes of the gates). We denote
the computation trace with CompTrace(y;). Additionally, a circuit description
¢ is a set consisting of the description of all its gates. We define the Merkle
root of circuit description as the Merkle root of the tree constructed on ¢, i.e.
ro = root(Mtree(e)).
We change the protocol IT as below (c.f. Fig.4):

— In round 2, P, performs the polynomial evaluation Epk(gT'JQ(yj)"”';"“yﬂ'),
encrypts each computation trace using key k; and sends Ey; (CompT'race(y;))
to P;. P also sends the Merkle root constructed on the encrypted compu-
tation trace r,, = root(Mtree(Ey,(CompTrace(y;)))), the Merkle root on
ciphertexts r, = root(Mtree(Epy, (¢719W)475+v1))) Vj € |Y|, Merkle root
on received coefficients ry = root(Mtree(Ep, (%), .., Epk, (g%")), commit-
ment to keys k;, and commitment to blinding factors gT; to SC. Py verifies
the Mekle roots match with the ones revealed to SC and it continues with the
next message. Otherwise, it aborts. (Note that P, encrypts each computa-
tion trace to ensure P; does not learn the information about the values that
are in the set Y. For instance, in Fig. 3, the wires marked with 1 to 4 can
immediately leak information about y;, so they cannot be revealed in plain).

— In round 5, after P, learns the intersection X N'Y result, it opens the com-
mitments of the keys k; for those indexes that their corresponding y; is in
the intersection. P also reveals the blinding factors that he was committed
in round 2 to SC. P; can remove the blinding factors from the result, obtains
X NY, decrypts the computation trace for the indexes that are in the inter-
section and verifies the computation trace for them. If there is any invalid
value P; can generate a PoM.

Format of PoM. The format of PoM depends on the detected misbehavior. We
need to consider all the possible cases in which one party can cheat and determine



Fair Private Set Intersection Using Smart Contracts 93

Epy 672 n " i
o)=Y dn' Epi, (@03 =TT E i, ()77
© = = p—coins
3 Q Epi (8%)..Epi, (8%°). Ph poty
En ™ ©) (=
5) = T1E o 6% Epy, (6700777, Eyj(CompTrace(E y, (87271
©) Commi(g"" .87 )1y, 7 commit(y)....commit(hy)
Ep, (3045
” @ E i (87000, (com,c,R), CompTrace(E i, ([])), CompTrace(E e, ([Te))

open(commit() = g"".....g" .y ; & x| y = open(commit(k ;))
koo Ll i e bbb ot e

Em @V S 6 7 55)“{_;:«
@ ®

1 2 3 4
5 0 o) )t

complain(PoM)

p—coins

1£P, honest p—coins
-

Fig.3. The circuit representation of
computing Ep (gTJQ(y?Hyj) Fig. 4. Replacing Pkprop and Pkre-enc
with PoM

how the honest party can prove to SC that the other party has cheated while
keeping the SC computation minimal (the algorithm of each PoM is given in the
full version of the paper).

We consider the following PoMs:

— 1;Q(y;) # 0, which means that y; is not in the intersection but the output of
the circuit computation shows 7,;Q(y;) = 0 for the last gate: in this case, PoM
is to show that the last multiplication gate in the circuit ¢ is not correct.

— P uses random values for all the circuit values in the computation trace:
PoM is to show that the computation is not correct for one (any) single gate
in the circuit.

— P, uses different coefficients from what P; has sent to P: PoM is based on
showing the computation of the gates that receive the coefficient and the
input (which is in the form of rjyj) is not correct. Note that m—y} does not
reveal anything about ;.

— P, does not reveal k; for the execution trace of at least one element in the
intersection: PoM is a ZK proof that shows P; knows an element y; such that
7;Q(y;) = 0 (which means it knows y; such that C; = Ep, (¢ %W +¥) =
Epk, (g¥7) but its corresponding key k; has not been revealed.

— P does not reveal (or reveal incorrectly) at least one g’”-;’: PoM is asking SC
to verify the commitment opening for one g’";.

Modifying ZK Proof Pk,..cn. to Construct PoM Efficiently. In round
3 of the protocol, Pk, c.enc is used to prove the correctness of re-encrypted
ciphertexts. To enhance the efficiency of the scheme, we use the homomorphic
property of the encryption scheme to aggregate the ciphertexts and compute
ZK proof for one re-encryption which is the aggregate ciphertext (c.f. Fig.4).
Due to homomorphic property of the Elgamal encryption, P, can prove that
the multiplication of all re-encrypted ciphertexts under key pka, Ep,(ITe) =
Epr,(e1) x ... X Epp,(ejy|) is a correct re-encryption for multiplication of the



94 S. Avizheh and R. Safavi-Naini

original ciphertexts under key pky Epi, (ITe) = Epg, (e1) X ... X Ep, (€)y|). There-
fore, for such a proof one ZK proof, (com, ¢, R), is constructed which can be
published to SC. To ensure that if P; cheats in computing the aggregate cipher-
texts, P> can detect it, we use PoM. We consider the circuit representation
of |Y]| — 1 ciphertext multiplications using multiplication gates of fan-in 2 and
let ¢ be such a circuit. We define the computation trace of ¢ for computing
Epk, (ITe) and Epy, (IIe) as CompTrace(Epk, (IIe)) and CompTrace(Ep, (I1e))
respectively. P; sends these two computation traces together with the ZK proof
to SC. P, will check the correctness of multiplications using the computation
traces CompTrace(Epk, (IIe)) and CompTrace(Epy,(IIe)) and the ZK proof,
Pkye-encnew, (& non-interactive Sigma protocol (com, ¢, R) which consists of
one ZK proof for the aggregated ciphertexts) and make a PoM as below:

— One of the multiplications has not been computed properly: PoM is to reveal
the description of the corresponding gate to SC, so that SC re-computes the
multiplication and detects the cheating party.

— ZK proof is incorrect: PoM consists of the part of the ZK proof which is
not verified (note that if R is more than one statement R = (R, Rg) that
needs to be verified, it is enough to let SC to verify only one of the incorrect
statements).

— One of the inputs in the computation trace of CompTrace(Epy, (IIe)) is dif-
ferent from what P5 has sent before: PoM is to show that the ciphertext in
the computation trace is different from the ciphertext it has revealed at the
previous round to P; which resides in the Merkle tree with root r. (r. is sent
by P, to SC in round 2).

6.3 Security Analysis

We prove security of II* using the model in Sect. 4.2 with a slight change that
we describe below:

In protocol IT*, SC can learn the indexes and size of the intersection if the
protocol terminates honestly. Therefore, we modify the ideal functionality of
Sect. 4.2 and denote the new one with Fi&;. In Fiig;, if by = by = o or by = o
and by =1, then both parties receive O and Simg. gets (i, |O|) where i is the
index of the element in the set of P, which is in the intersection, |O] is the size
of the intersection result. The other parts of Fi&; is the same as F5g;.
Theorem 2. The coin-compensated SC-aided PSI protocol IT* securely realizes
the .7-"1’3551 functionality in the random oracle model assuming the homomor-
phic encryption scheme E is semantically secure, the symmetric key encryption
scheme Ej, is IND-CPA secure, the associated ZK proofs and the commitment
scheme are secure. Please see the full version of the paper for the proof.

We highlight that by replacing the ZKP with PoM, We have to show that
when P; is malicious (Case 2), the simulator can extract its input in all cases



Fair Private Set Intersection Using Smart Contracts 95

Algorithm 2. Protocol IT*

Input of Pi: X = {z1, ..., zn}, Input of P>: Y = {y1, ..., ym} and p coins Input of
SC:n,m
Output of Pi: X NY or p coins, Output of Po: X NY, Output of SC: the identity of
cheating party I and | X NY|
procedure INTERSECTION

Round 0. P, — SC : p coins

Round 1. P; — Py : Epy, (9%0), ..., Epg, (g97), Pkyc;l;j]

Round 1. P, — SC : 7y, rq

Round 2. P, — Pi : Epy, (¢ Qu+ritur),
Ey, (CompTrace(y1)), ..., Ex,, (CompTrace(ym))

ceay

EPkl (ger(ywn>+7’q{n+y7n)?

Round 2. P, — SC : com’rm‘t(g’"/l)7 e cormm't(g’";n)7 Ty;s Te, commit(ki), ...,
commiit(km)

Round 3. P; _ sC ; EPkg (ngQ(ylH—Ti‘V‘yl)’ s (com, c, R)?
CompTrace(Epy, (ITe)), CompTrace(Epy, (I1e))

Round 4. P, — SC : open(commit(g’"i)), e open(commit(grin)), ify; e XNY —

open(commit(k;))

procedure DISPUTE RESOLUTION
If (P1 has not computed the multiplication in CompTrace(Epk, (IIe)) correctly)
— P2 — SC': the information of the multiplication gate in CompTrace(Epy, (IIe))
If (P; has not revealed a ZK proof of Pkye_cne, (com, ¢, R))
— P> — SC : send the information of the statement R that is not verified
If(P1 has not used the correct encryption e; (received from P3) for computing Epk, (ITe))
— P> — SC' : reveal the correct e; and the Merkle proof for that with respect to r¢
SC verifies the PoM
if valid PoM then
SC — P> : p coins
else

SC — P : p coins

If (P2 aborts opening the commitments of the blinding factors or at least one commitment
commit(gT; )

— Py — SC: the index j of the commit(grg')

If (P, reveals a computation trace that shows the output for r;Q(y;) = 0 which is not true)

— P; — SC : information of the output gate with the Merkle proofs with respect to rootyj
and 74

If (P> has used random values for all the circuit values)

— P — SC : information of the one incorrect gate with the Merkle proofs with respect to
rooty; and 1

If (P> has used different coefficients d; from what P; has sent)

— Py — SC : information of the incorrect input gate with the index of d; and the Merkle
proofs with respect to rootyj and rg

If (P> has not revealed k; for at least one element in the intersection)

— P; — SC : SK proof to show that P; knows y; such that r;Q(y;) = 0 but k; has not been
revealed

SC verifies the PoM

if Valid PoM then

SC — P; : p coins
else
SC — Py : p coins

if No PoM received then
SC — P5 : p coins




96 S. Avizheh and R. Safavi-Naini

without using the extractability of ZKP. We achieve this by using the computa-
tion trace of P, and the simulator’s access to the random oracle ideal function-
ality (a similar approach is used by [3,22]).

Proof Sketch. We consider that environment Z only sends input to parties and
receives the outputs from parties, it also sees the messages that are sent to the
smart contract and it has to distinguish the ideal world from the hybrid world.
Below we consider 4 different cases:

Case 1. Party Py is Corrupted. We construct a simulator Sim; which has oracle
access to the malicious code of P;". Sim; simulates the protocol messages from P,
to the ideal functionality and also simulates the view of SC because channels to
SC are public and they can be seen by the environment Z. The key techniques
used for the simulation in this case are similar to the simulation of Case I
described in Theorem 1.

Case 2. Party Py is Corrupted. We construct a simulator Sims which has ora-
cle access to the malicious code of Pj. Simy simulates the protocol messages
that are sent from P; to the ideal functionality and also simulates the view
of SC because channels to SC are public and they can be seen by the envi-
ronment Z. To simulate the honest party P;, the simulation is similar to Case
2 described in Theorem 1. In protocol II*, for a corrupted Pj, it is impor-
tant to show how Simg can extract the input set of the party Py. Upon
receiving the ciphertexts Epy, (g™ Qi) +rj+y; ), the encrypted computation trace
Ey,; (CompTrace(gii®Wi+7i+¥)  the commitments to blinding factors, and the
commitments to the keys k; (which are hash-based) from Py, it extracts k;’s
from the random oracle H and decrypts the ciphertexts Ej, (CompTrace(

gTJ'Q(yJ')”;Jij) using k;. Then, it extracts y; from the computation trace by

computing :7137’ then it decrypts Epk, (ger(yj)+r;+yf) using the key skj. If the
7197

ciphertexts are not correctly formed or if it cannot extract the keys from the

random oracle it sends L to F5g;. Else, it sends Y to F5g;. The remaining part

of the proof is the same as Case 2 of Theorem 1.

Case 3. SC' is Semi-honest and Party Py is Corrupted. Siml. does not have
access to X, Y, and X NY, but it learns (i, |O|) from the ideal functionality
}'I’JLS ;- Siml, simulates the protocol transcript from parties to SC by choosing
random inputs taken from the input domain that are indistinguishable from the
real inputs and generating the protocol messages using the random inputs. When
P, is corrupted, it is important to show the simulation for round 3 and we only
describe this case. Upon receiving o from Fhg;, Siml, correctly simulates the
round 3 messages by using random inputs. Then, Sim!, opens the commitments
to g and k; to SC based on (i, |O|) (and any other leaked information that
it receives through the ideal functionality). Otherwise, if Sim}, receives L from
FEg;, it incorrectly simulates the round 3 message. In the next round, it simu-
lates a PoM (according to IT*) from P, to SC based on the leaked information
to that.



Fair Private Set Intersection Using Smart Contracts 97

Case 4. SC' is Semi-honest and Party Py is Corrupted. Sim?2. does not have
access to X, Y, and X NY. As stated before, Sim?, simulates the protocol
transcript from parties to SC by choosing random inputs taken from the input
domain that are indistinguishable from the real inputs and generating the proto-
col messages using the random inputs. For a corrupted P, we have to show that
Sim?, can correctly simulate the round 4 messages and a PoM from P;, and we
only describe this part of the proof. If Sim?, receives ¢ from F5g;, then it cor-
rectly opens the randomly generated commitments to g’";' and k; (based on the
received (i, |O]) from F5g;) (and any other leaked information that it receives
through the ideal functionality). Else, if it receives L from F&g;, it incorrectly
opens the commitments in round 4 and simulates a valid PoM on behalf of P;
based on the leaked information to that.

7 Complexity Analysis

In the following, we estimate the complexity of protocols IT and IT*.

Computation Complexity. We give our concrete construction in the full ver-
sion of the paper. Accordingly, we estimate the computation complexity of the
full protocol IT and IT* in terms of the number of exponentiations for each party
in our scheme (see Table 1). Note that the computation and communication com-
plexity of zero-knowledge proofs is linear in the number of statements that are
needed to be proved: O(PK o) is O(n), O(PKprop-new) i8 O(nm), O(PKe-enc)
is O(m), and O(PK e-encnew) 18 O(1). In the following, we estimate the com-
plexity of messages other than zero-knowledge proofs.

In round 1 of both protocols, encrypting the coeflicients requires 3n exponen-
tiations. In round 2, evaluating the polynomial and computing the ciphertexts
requires 2[nm + 2m] exponentiations. In round 3, decryption and re-encryption
take 3m exponentiations. Therefore, the complexity of P, in both protocols are
O(n+m) and Py is O(nm). Note that in IT*, P, performs only 1 zero knowledge
proof Pkye_encnew Which reduces the complexity of Pkye en. to O(1) compared to
DCCR which has complexity of O(m). However, note that compared to DCCR,
in protocol IT, P, does not need to compute (i) the verifiable encryption which
has the complexity of 3m exponentiations, (ii) the zero-knowledge proof Pkge.
which is used to show that the blinding factors are correct decryptions of the
verifiable encryption. Pkg.. has complexity of O(m).

In protocol IT*, compared to DCCR, P, does not need to compute (i) the
verifiable encryption which has the complexity of 3m exponentiations, (ii) the
Pky,op which has the complexity of O(nm), (iii) the zero-knowledge proof Pkge.
which is used to show that the blinding factors are correct decryptions of the
verifiable encryption (see Table 2). Furthermore, in both of the protocols IT and
IT*, SC has to do O(1) exponentiations if there is any dispute which is far
less than the computation complexity of arbiter in DCCR, which has to do 6m
exponentiations to verify and decrypt the verifiable encryptions.

Communication Complexity. We estimate the communication complexity
of IT and IT* in terms of the number of group elements that should be sent



98 S. Avizheh and R. Safavi-Naini

between different parties (see Table 1). The total communication complexity of
our protocols is close to DCCR, while it is less than DCCR in the dispute
resolution stage for the interaction of parties to T'TP.

Table 3 shows the comparison of our work with the existing fair PSI protocols.
Our scheme is the only coin-compensated PSI that uses an SC as TTP efficiently.

Table 1. Computation and communication complexity of the proposed schemes com-
pared to DCCR protocol.

Protocols
Party Protocol IT Protocol IT* DCCR
Computation Complexity P O(n+m) O(n+m) O(n+m)
(exponentiations)
P, O(nm) O(nm) O(nm)
TTP o(1) o(1) O(m)
Communication Complexity (group Py to P; (and vice versa) 2n +2m 2n +2m 2n +9m
elements, not counting ZKP)
Both parties to TTP Intersection phase: 5m Intersection phase: 5m Intersection phase: 0
Dispute resolution: at most 2 | Dispute resolution: at most 2 | Dispute resolution: 5m + 2n

Table 2. Comparing computation complexity (number of modular exponentiations) in
IT and IT* for using PoM in lieu of ZKP.

Protocols
Party Protocol 1T Protocol IT*
TTP(disputeresolution) o(1) Incorrect input: O(1)
Incorrect computation: —
P, nPkpoty + mVeri fyPkprop—new + nPkpoty + Pkre—enc
MPkre—enc + mVerifyCompedersen
P, nVerifyPkpory + MPkprop—new + nVerifyPkpory + VerifyPkre—cnc
mVerifyPkre—enc + mCompedersen

8 Implementation

We provide a proof-of-concept implementation of the SC in Protocol IT and IT*
and evaluate the gas cost for running the smart contracts by each party P; and P
by increasing the set size of parties, i.e., m and n, in two scenarios: (i) optimistic
execution: when both parties are honest, and (ii) pessimistic execution: when one
party misbehaves and proof of misbehavior is needed (requires dispute resolution
stage) (the definitions are based on [23]).

SCPSIEC implements the SC in IT and SCPSI2EC implements the SC in IT*
(see full version of the paper for the abstract of the contracts and pseudocodes).
We have used solidity language to implement the SC and the required crypto-
graphic primitives. We have implemented the CryptoLib library in solidity for
cryptographic primitives, including Elliptic curve variant of Pedersen commit-
ment, the Elgamal encryption, Zero-knowledge proof of knowledge for correct
re-encryption, Zero-knowledge proof of knowledge for known plaintext, Merkle
proof verification, and the necessary primitives for generating the message val-
ues that are sent to SC by parties P; and P,. For zero-knowledge proofs, we



Fair Private Set Intersection Using Smart Contracts 99

followed the non-interactive Sigma protocols with Fiat-Shamir heuristic. All the
cryptographic primitives are run over Elliptic curve Secp256k1 and we use the
available libraries EllipticCurve, SafeMath, and EllipticCurvelnterface and ini-
tial version of CryptoLib given in [55] for Elliptic curve operations. We used a
contract called sharedStruct to define the data structures that are common in
SCPSIEC, SCPSI2EC, and CryptoLib contracts. The smart contract codes are
available in [2].

8.1 Evaluation

We used a Windows laptop computer with an Intel dual-core i7-7500 3.5 GHz sys-
tem with 12 GB memory to run and execute the codes. We used Remix Ethereum
IDE? to write and debug the smart contracts and deployed and evaluated them
on the local Ethereum Blockchain network called Ganache using the Truffle
suite*. Table 4 shows the gas cost of deploying each smart contract on Ganache.

Table 3. Comparing the existing fair PSI schemes that use a TTP (n is the set size
of P, and m is the set size of P»)

Scheme Total Computation | Total Smart External Computation Fairness
complexity Communication contract TTP complexity of TTP
complexity
DCCR [21] O(mn) O(m +n) - X O(m) Optimistic
[19] O(m +n) O(m +n) - X O(m +n) Optimistic
[18] O(m +n) O(m +n) - X O(n) Optimistic
[20] O(m +n) O(m +n) X O(m +n) Optimistic
[7] O(mn) O(m +n) - X O(m+n) Optimistic
[36,37] O(m +n) O(m +n) - X O(m +n) Server-aided
1 O(2hd?) O(2hd*¢) x x O(|Sn|(d + Coin-compensated
loga|S|) +2h - d)
Our work (based on DCCR) | O(mn) O(m +n) X o(1) Coin-compensated
Our work (based on [19]) O(m +n) O(m+n) X - O(1) Coin-compensated

Table 4. Deployment cost of smart contracts

Contract Gas cost | Eth cost! | USD cost?
SCPSIEC 2,494,793 | 0.049 $116.47
SCPSI2EC 4,894,379 | 0.097 $228.49
CryptoLib 3,662,609 | 0.073 $170.98
sharedStruct 96,322 0.0019 $4.50
Elliptic curve operation contracts | 1,158,021 | 0.023 $54.1

! We set 1 Gas = 20Gwei
2leth = $2334.19 on January 1, 2024

Gas Cost vs Set Size of Party P,. We compare the effect of increasing the set
size m for m = {22, 23, 24, 27} when n = 219 and show in Fig. 5 (left) the total

3 https://remix.ethereum.org/.
4 https:/ /trufflesuite.com/.


https://remix.ethereum.org/
https://trufflesuite.com/

100 S. Avizheh and R. Safavi-Naini

gas cost of running both contracts, SCPSIEC and SCPSI2EC in the optimistic
and pessimistic execution. The total gas cost is computed by adding the gas
cost of the functions that are called by P; and P,. The gas cost of pessimistic
execution is the sum of the gas cost of the optimistic execution and the dispute
resolution (PoM). For pessimistic executions, we have considered the mean of
Judge function that is called in the dispute resolution stage for different types
of complaints sent by P; and P, and also show the minimum and maximum of
the gas cost of calling the Judge function.

For the SCPSIEC contract, the overhead of the gas cost for the pessimistic
execution compared to the optimistic execution decreases from 16% to 2% when
m increases, and the total gas cost is dominated by the gas cost of optimistic
execution when m = 128 because the dispute resolution only varies with log(m)
(hash evaluations) but the optimistic execution increases linearly with m (storing
O(m) group elements). For SCPSI2EC contract, the overhead of the gas cost for
the pessimistic execution compared to the optimistic execution decreases from
15% to 2% when m increases, and the total gas cost is dominated by the gas
cost of optimistic execution when m = 128 because the dispute resolution only
varies with log(m) but the optimistic execution increases linearly with m. In
total, the gas cost of running SCPSI2EC is approximately between 1.17 to 1.32
times higher than the gas cost of running SCPSIEC contract.

Gas Cost vs. Set Size of party 2 Gas Cost vs. Set Size of party 1

—e— Optimistic execution(SCPSIEC)
—=— Optimistic execution(SCPSI2EC)
—$— Pessimistic execution(SCPSIEC)
10° #— Pessimistic execution(SCPSI2EC)

Gas Cost
Gas Cost

4+

~e~ Optimistic execution(SCPSIEC)

~#—_ Optimistic execution(SCPSI2EC)

-9~ Pessimistic execution(SCPSIEC)
§— Pessimistic execution(SCPSI2EC)

0 2 o ) @ 100 120 2 o ) ) 100

m log(n)
Fig. 5. Left: Total gas cost of running the smart contracts vs set size of party P
where n = 2'°. The overhead of gas cost for the pessimistic execution in SCPSIEC
decreases from 16% to 2% and for SCPSI2EC decreases from 15% to 2%. The total gas
cost is dominated by the optimistic execution when m = 128. Right: Total gas cost of
running the smart contracts vs logarithm of the set size of party P1 where m = 8. The
overhead of gas cost for the pessimistic execution in SCPSIEC is 13% for all n and for
SCPSI2EC increases from 12% to 21%.

Gas Cost vs Set Size of Party P;. We compare the effect of increasing the
set size of party Pi, n, for n = {210 215 220 230 2100} when m = 8 and
show in Fig.5 (right) the total gas cost of running both contracts, SCPSIEC
and SCPSI2EC in the optimistic and pessimistic execution versus log(n). The
gas cost of SCPSIEC contract is independent of the n and its gas cost remains
the same for both optimistic and pessimistic execution. The overhead of gas cost



Fair Private Set Intersection Using Smart Contracts 101

in the pessimistic execution versus the optimistic execution is 13%. The gas cost
of the SCPSI2EC contract for the optimistic case is almost flat and the small
changes are due to different input values that have been used in experiments. In
the pessimistic case, however, the gas cost increases linearly with log(n) (because
of Merkle proof verification in the dispute resolution stage). The overhead of the
gas cost in the pessimistic execution increases from 12% to 21% when n increases.
In total, the gas cost of running SCPSI2EC is approximately 1.29 times higher
than the gas cost of running SCPSIEC contract.

9 Concluding Remarks

We provided an argument that shows impossibility of achieving complete fair-
ness in two-party mutual PSI when TTP is implemented by a smart contract,
and redesigned DCCR. to use a smart contract as the TTP, providing coin-
compensated fairness. This is the first mutual PSI protocol that achieves fair-
ness by replacing TTP with a smart contract for dispute resolution. We showed
that using a smart contract allows us to significantly reduce the need for zero-
knowledge proofs and use more efficient primitives. Our complexity analysis
shows that compared to DCCR the computation complexity is reduced. We pro-
vided a proof-of-concept implementation for the SC and showed its gas cost
as the set sizes were changed. Reducing communication complexity further and
removing all zero-knowledge proofs in the protocol are interesting directions for
future work.

References

1. Abadi, A., Murdoch, S.J.: Earn while you reveal: private set intersection that
rewards participants. arXiv preprint arXiv:2301.03889 (2023)

2. Avizheh, S.: Implementation of fair private set intersection using smart contracts
(2024). https://github.com/Sepideh Avizheh/FairSC-PSI/tree/main

3. Avizheh, S., Haffey, P., Safavi-Naini, R.: Privacy-preserving fairswap: fairness and
privacy interplay. Proc. Privacy Enhanc. Technolog. 2022(1), 417-439 (2022)

4. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404-420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4_22

5. Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: Psimple: prac-
tical multiparty maliciously-secure private set intersection. In: Proceedings of ACM
Asia Conference on Computer and Communications Security, pp. 1098-1112 (2022)

6. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421-439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_24

7. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Din-
gledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108-127. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_7

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143-202 (2000)


http://arxiv.org/abs/2301.03889
https://github.com/SepidehAvizheh/FairSC-PSI/tree/main
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-642-03549-4_7

102

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Avizheh and R. Safavi-Naini

Chandran, N., Dasgupta, N., Gupta, D., Obbattu, S.L.B., Sekar, S., Shah, A.:
Efficient linear multiparty psi and extensions to circuit/quorum psi. In: Proceedings
of 2021 ACM Conference on Computer and Communications Security, pp. 1182—
1204 (2021)

Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12172, pp. 34-63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1-2

Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection
with quasi-linear complexity. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 95(8), 13661378 (2012)

Cho, C., Dachman-Soled, D., Jarecki, S.: Efficient concurrent covert computation
of string equality and set intersection. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 164-179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29485-8_10

Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In:
Proceedings of 18 Annual ACM Symposium on Theory of Computing, pp. 364—369
(1986)

Couteau, G., Roscoe, A.W., Ryan, P.Y.A.: Partially-fair computation from timed-
release encryption and oblivious transfer. In: Baek, J., Ruj, S. (eds.) ACISP 2021.
LNCS, vol. 13083, pp. 330-349. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90567-5_17

De Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-preserving policy-based
information transfer. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS,
vol. 5672, pp. 164-184. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03168-7_10

De Cristofaro, E.; Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS,
vol. 6477, pp. 213-231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8_13

De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143-159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_13

Debnath, S.K., Dutta, R.: A fair and efficient mutual private set intersection pro-
tocol from a two-way oblivious pseudorandom function. In: Lee, J., Kim, J. (eds.)
ICISC 2014. LNCS, vol. 8949, pp. 343-359. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15943-0_21

Debnath, S.K., Dutta, R.: New realizations of efficient and secure private set inter-
section protocols preserving fairness. In: Hong, S., Park, J.H. (eds.) ICISC 2016.
LNCS, vol. 10157, pp. 254-284. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-53177-9_14

Debnath, S.K., Dutta, R.: Towards fair mutual private set intersection with linear
complexity. Secur. Commun. Netw. 9(11), 1589-1612 (2016)

Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with
a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol.
7964, pp. 128-144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39256-6_9

Dziembowski, S., Eckey, L., Faust, S.: Fairswap: how to fairly exchange digital
goods. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 967-984 (2018)


https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-030-90567-5_17
https://doi.org/10.1007/978-3-030-90567-5_17
https://doi.org/10.1007/978-3-642-03168-7_10
https://doi.org/10.1007/978-3-642-03168-7_10
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-319-15943-0_21
https://doi.org/10.1007/978-3-319-15943-0_21
https://doi.org/10.1007/978-3-319-53177-9_14
https://doi.org/10.1007/978-3-319-53177-9_14
https://doi.org/10.1007/978-3-642-39256-6_9
https://doi.org/10.1007/978-3-642-39256-6_9

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Fair Private Set Intersection Using Smart Contracts 103

Eckey, L., Faust, S., Schlosser, B.: Optiswap: fast optimistic fair exchange. TACR
Cryptology ePrint Archive 2019, 1330 (2019)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1-19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3-1

Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 154-185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_6
Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge Press, Cambridge
2004

(Gordc))n, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM (JACM) 58(6), 1-37 (2011)

Gordon, S.D., Hazay, C., Le, P.H.: Fully secure psi via MPC-in-the-head. Proc.
Privacy Enhanc. Technol. (2022)

Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. J. Cryp-
tol. 25(1), 14-40 (2012)

Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155-175. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8_10

Hofheinz, D., Miiller-Quade, J.: Universally composable commitments using ran-
dom oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58-76. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_4

Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: Proceedings of 1st ACM Conference on Electronic Commerce, pp.
78-86 (1999)

Inbar, R., Omri, E., Pinkas, B.: Efficient scalable multiparty private set-intersection
via garbled bloom filters. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS,
vol. 11035, pp. 235-252. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98113-0_13

Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577-594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5_34

Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418-435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4_26

Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
TACR Cryptology ePrint Archive 2011, 272 (2011)

Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195-215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5_13

Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477-498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27
Kavousi, A., Mohajeri, J., Salmasizadeh, M.: Efficient scalable multi-party private
set intersection using oblivious PRF. In: Roman, R., Zhou, J. (eds.) STM 2021.
LNCS, vol. 13075, pp. 81-99. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-91859-0_5


https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-24638-1_4
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-030-91859-0_5
https://doi.org/10.1007/978-3-030-91859-0_5

104

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

S. Avizheh and R. Safavi-Naini

Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705-734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5_25

Kim, M., Lee, H.T., Cheon, J.H.: Mutual private set intersection with linear com-
plexity. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 219-231.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27890-7_18
Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241-257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218_15

Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Proceedings of 2016 ACM
Conference on Computer and Communications Security, pp. 818-829 (2016)
Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Proceedings of
2017 ACM Conference on Computer and Communications Security, pp. 1257-1272
(2017)

Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computations.
In: Proceedings of 2014 ACM CCS, pp. 30-41 (2014)

Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: Pro-
ceedings of 2016 ACM CCS, pp. 418-429 (2016)

Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized
poker. In: Proceedings of 22nd ACM CCS, pp. 195-206 (2015)

Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure
computation with penalties. In: Proceedings of 2016 ACM Conference on Computer
and Communications Security, pp. 406-417 (2016)

Liu, J., Li, W., Karame, G.O., Asokan, N.: Toward fairness of cryptocurrency
payments. IEEE Secur. Privacy 16(3), 81-89 (2018)

Malffei, I., Roscoe, A.: Optimally-fair exchange of secrets via delay encryption
and commutative blinding. In: Baldimtsi, F., Cachin, C. (eds.) FC 2023. LNCS,
vol. 13950, pp. 94-111. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
47754-6-6

Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: 1986 IEEE Symposium on
Security and Privacy, pp. 134-134. IEEE (1986)

Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set inter-
section. In: ACM Computer and Communications Security, pp. 1151-1165 (2021)
Raghuraman, S., Rindal, P.: Blazing fast psi from improved OKVS and subfield
VOLE. In: ACM Conference on Computer and Communications Security, pp. 2505—
2517 (2022)

Raikwar, M., Gligoroski, D., Kralevska, K.: SoK of used cryptography in
blockchain. IEEE Access 7, 148550-148575 (2019)

SolGrined: Implementation of pedersen commitment in solidity (2023). https://
github.com/18dew/solGrined/blob/master/contracts/

Zhang, E., Liu, F.H., Lai, Q., Jin, G., Li, Y.: Efficient multi-party private set inter-
section against malicious adversaries. In: Proceedings of the 2019 ACM SIGSAC
Conference on Cloud Computing Security Workshop, pp. 93-104 (2019)


https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-642-27890-7_18
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-031-47754-6_6
https://doi.org/10.1007/978-3-031-47754-6_6
https://github.com/18dew/solGrined/blob/master/contracts/
https://github.com/18dew/solGrined/blob/master/contracts/

®

Check for
updates

Powers-of-Tau to the People:
Decentralizing Setup Ceremonies

Valeria Nikolaenko!®™), Sam Ragsdale!, Joseph Bonneau'?, and Dan Boneh?

1 A16Z Crypto Research Lab, St. Johns, USA
valeria.nikolaenko@gmail.com
2 Stanford University, Stanford, USA
3 New York University, New York, USA

Abstract. We propose several decentralized ceremonies for constructing
a powers-of-tau structured reference string (SRS). Our protocols make
use of a blockchain platform to run in a permissionless manner, where
anyone can contribute randomness in exchange for paying the requisite
transaction fees. The resulting SRS is secure as long as any single party
participates honestly. We introduce several protocols optimized for dif-
ferent sized powers-of-tau setups and using an on-chain or off-chain data
availability model to store the resulting string. We implement our most
efficient protocol on top of Ethereum, demonstrating practical concrete
performance.

1 Introduction

Many cryptographic protocols assume a trusted setup ceremony, a one-time pro-
cedure to generate public parameters which also generates an unwanted trap-
door as a byproduct. Perhaps the earliest example is the accumulator scheme of
Benaloh and de Mare [11] which requires a public modulus N such that nobody
knows its factorization N = p - ¢, a trapdoor which allows forging a proof that
any element is included in the accumulator.

In general, a setup ceremony consists of a randomized algorithm Setup() LA
(pp, 7). The public parameters (pp), also called a structured reference string
(SRS), must be known to all users of the system, whereas the trapdoor (T) must
be discarded for the scheme to be secure. Such trapdoors have been called “toxic
waste” due to the importance of destroying them after the setup is complete.

In the simplest case of a fully trusted setup, a single entity computes Setup()
and is trusted to discard 7. Setup ceremonies have been conducted by several
prominent cryptocurrency applications, which have pioneered the use of secure
multiparty computation (MPC) ceremonies to avoid having any single party ever
know the final trapdoor. These ceremonies have differed in the number of partic-
ipants involved, the number of rounds, and the exact trust model, but so far all
have been facilitated by a centralized coordinator. In particular, the coordinator
has the ability to choose which parties are able to participate, making these
protocols permissioned. We review setup ceremonies run in practice in Sect. 2.2.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Poépper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 105-134, 2024.
https://doi.org/10.1007/978-3-031-54776-8_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_5

106 V. Nikolaenko et al.

In this work, we endeavor to remove the coordinator and build the first truly
decentralized and permissionless setup ceremony. This approach is appropri-
ate given a multiparty computation which requires only one honest participant
(sometimes called an “anytrust” or “dishonest majority” model). In this model,
there is no downside (beyond computational overhead) of allowing additional
participants to contribute to the protocol. We call this the more-the-merrier
property. A more-the-merrier protocol can safely be opened to the general pub-
lic, enabling an interesting new security property: any individual can participate
and therefore they can trust the final result (at least to the extent that they
trust themselves to have participated correctly), even if they make no assump-
tions about any of the other participants.

Powers-of-Tau. We focus on a common type of ceremony which constructs a
powers-of-tau SRS. Working in elliptic curve groups Gi,Gs of prime order p
with generators By and Bs respectively and an efficiently computable pairing,
the goal of the setup is to produce a public parameter string:

pp := (TBl, 72B1,...,7™By; 7By, 7B, ... ,’TkBQ) e GT x (Gr’;.

The value 7 € Z, is the trapdoor: it should be randomly generated
and unknown to anybody. The structure of this string enables efficient re-
randomization. Without knowing 7, it is possible to take an existing string pp
and produce a new randomized string pp’ by choosing a new random value 7’
and multiplying each component of pp by an appropriate power of 7/. The new
trapdoor will be 77/, which is secure as long as either T or 7/ are unknown and
neither of them is zero.

This re-randomizability leads to a simple serial MPC protocol in which each
participant in turn re-randomizes the string. Note that this can be done on an
ongoing (or “perpetual”) basis, as new participants can continue to join and re-
randomize the string for future use. As long as each participant re-randomizes
correctly and at least one participant destroys their local randomness, the cumu-
latively constructed string will be secure.

Applications. Powers-of-tau setup is required for many protocols:

— The KZG polynomial commitment scheme [44] requires a setup of n powers
of tau in any one of the groups (e.g., G1), plus one power of tau in the other
group (e.g., Ga).

— SNARKSs built from the KZG univariate polynomial commitment scheme,
such as Sonic [54], Plonk [35], and Marlin [26], require a powers-of-tau string
proportional in length to the size of the statement being proved.

— KZG commitments are also used in Verkle trees [47,50], a bandwidth-efficient
alternative to Merkle trees. Unlike a binary Merkle tree, a Verkle tree is a b-
ary tree, where each node is a vector commitment to up to b children. While
Merkle trees have O(log, n) inclusion proof size, where n is the number of
nodes, Verkle trees have O(log,n) inclusion proof size. The most efficient
Verkle trees, e.g. BalanceProofs [62], are based on KZG polynomial commit-
ments requiring a powers-of-tau setup.



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 107

— Fast proofs of multi-scalar multiplication (MSM) over arbitrary groups of size
O(log d) are possible using a powers-of-tau setup of length O(v/d), where d is
the number of scalars and group elements [16].

— The recent Danksharding proposal [20] for sharding Ethereum relies on a
powers-of-tau string with 4096 elements in G; and 64 in Gs.

Challenges to Decentralization. Historically, ceremonies have been administered
by a centralized coordinator which ensures several important properties, all of
which we seek to achieve in a decentralized fashion:

— Consensus: All participants should agree on the final value of pp.

— Validity: Each participant should only be able to re-randomize the current
string (and not simply replace it with one for which the trapdoor is known).

— Data Availability: The final string must be available for all to download,
as well as the history of prior versions and participants for auditability.

— Censorship Resistance: Any willing participant should be able to con-
tribute.

In this work we demonstrate how to replace the centralized coordinator with
a smart contract, observing that blockchain platforms are designed to provide
most or all of our desired properties. In particular, blockchains inherently provide
consensus, previously done by fiat of the central coordinator, as well as censor-
ship resistance, which has not been an explicit goal of centrally coordinated
ceremonies. Validity and data availability are more interesting and provide sev-
eral design options. For validity, we can rely on on-chain (Layer-1) verification
of zero-knowledge proofs that each update is valid, or (to reduce costs) use a
Layer-2 approach. We also show that it is possible (and even cheaper) to defer
this task to users, who will verify the string before using it, which may be prefer-
able in some settings. Similarly, for data availability we might post the full string
pp on chain or, for efficiency, post only a commitment and rely on an external
data-availability layer.

Contributions. We design ceremonies with two data-availability models: one with
the entire string pp posted on-chain, and one with only a commitment to pp,
namely ¢ = H(pp), posted on-chain and the full string stored in an external
data-availability system. See Fig. 1 highlighting the properties of the two models
that we develop. The latter can offer significant cost savings for large strings as
on-chain data storage is expensive.

With data available on-chain, we present an efficient pairing-based proof con-
struction for verifying each participant’s contribution (Sect. 4). We implemented
this protocol for the Ethereum blockchain, coding in Solidity and using the
BN254 curve. We describe our implemention in Sect. 6; we have also released our
open-source implementation (link). Participating in the ceremony costs 190,000
to 11,500,000 gas (about $5 to $315 at current Ethereum prices), depending on
the size of the desired resulting parameters (in this case between 8 and 1024
powers-of-tau). The size of the setup is limited but can still be used to power


https://github.com/a16z/evm-powers-of-tau

108 V. Nikolaenko et al.

Verkle trees, data-availability sampling, and zero-knowledge SNARKSs for small
statements.

For larger strings, we develop methods that have on-chain verification, yet
only store a short commitment to the full setup on-chain (see Sect.5). We dis-
cuss how to make the data-availability solutions that can facilitate such setups
light-weight. The data-availability service only needs to be able to produce a
commitment over the data of an appropriate form and store at most two latest
contributions.

Paper Organization. We discuss related work and some historical notes on
setup ceremonies in Sect.2. In Sect.4, we present our fully on-chain protocol
for powers-of-tau setup. In Sect.5, we discuss several protocols for powers-of-
tau setup with off-chain data availability, supporting larger structured reference
strings. In Sect. 6, we describe our practical implementation and performance
evaluation of the fully on-chain protocol on top of Ethereum. Finally we con-
clude in Sect. 7 by discussing various practical concerns and possible extensions,
including censorship resistance, incentives and methods to lower on-chain cost
through roll-ups, optimistic verification, batching, IVC and other techniques.

Data availability Commitment scheme |Section|Proof size|Verifier time
On-chain none 4 0x(1) Ox(n)
Any commitment 5.1 |Ox(logn)| Ox(logn)
Off-chain AFGHO unstructured
commitment 5.2 |Ox(logn)| Ox(logn)

Fig. 1. Comparing on-chain powers-of-tau of length n to off-chain powers-of-tau with
an on-chain commitment. On-chain storage requires linear on-chain work to verify an
update. With off-chain storage we require only logarithmic on-chain work to verify an
update. The AFGHO-based proof in the third row performs better in practice than the
generic proof in the second row.

2 Related Work

2.1 Multiparty Setup Ceremonies

Generically, any trusted setup algorithm can be implemented via secure multi-
party computation (MPC) to prevent any single entitity from learning the trap-
door. Ben-Sasson et al. [10] proposed the first multi-party protocol to sample
public parameters for a zero-knowledge proof scheme which was instantiated for
Zcash Sprout. Although this ceremony was not instantiating the powers-of-tau,
it paved the way for crowd-sourcing subsequent ceremonies.

Bowe et al. [14] designed a protocol for Groth16 [40], where constructing a
powers-of-tau public string was part of one of two phases. The protocol however



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 109

required a random beacon, an auxiliary process that produces publicly veri-
fiable unpredictable and unbiasable randomness. Kohlweiss, Maller, Siim, and
Volkhov [46] removed the need for a random beacon in the setup by proving
that the setup remains secure for use with zero-knowledge proofs even if the
public parameters have some degree of bias. Cohen et al. [28] demonstrated that
the KZG commitments also remain secure in case the public parameters have
bounded bias, thus similarly eliminating the need to use the random beacons for
setups to be used for KZG commitments. Ganesh et al. [36] gave a UC secure
protocol for Groth16 setup. The work of Groth, Kohlweiss, Maller, Meiklejohn,
and Miers [41] introduced an updatable SRS model, they construct a SNARK
where the SRS can be updated by anybody. The security is guaranteed as long
as at least one of the contributors is honest. The generated setup string is differ-
ent from the powers-of-tau, and the paper is not focusing on on-chain/off-chain
deployments or optimizing the verification.

All of these protocols fall in a category of the more-the-merrier protocols, as
they each require only a single one honest participant to be secure. However, all
were built with the assumption of a central coordinator. Buterin [17] suggested
a simple way to verify the update to the setup that, as we observe in this work,
opens the possibility for a gas-efficient on-chain deployment which we base our
on-chain protocol on.

Multiparty setup ceremonies have also been demonstrated for RSA-style
parameter setup [13,34,37,42,53]. Chen et al. [25] demonstrated a multiparty
protocol for sampling a 2,048 bit RSA modulus which can scale to thousands of
participants and only requires a single honest participant for security.

2.2 Setup Ceremonies in Practice

Some of the most prominent ceremonies have been run by Zcash, a privacy-
oriented blockchain project. Six participants carried out the first Zcash ceremony,
Sprout, in 2016, and 90 participants built parameters for a Sapling upgrade in
2018.

The perpetual “powers-of-tau” ceremony was first run in a continuous mode,
where contributions are still being accepted, by the team of the Semaphore
project, a privacy preserving technology for anonymous signaling on Ethereum.
The setup uses a BN254 elliptic curve and has had 71 participants so far. Other
prominent projects later used this setup to run their own ceremonies on top,
including Tornado.Cash [23|, Hermez network [43|, and Loopring [31]. Similar
ceremonies on other curves were run by Aztec [6] for zkSync, a “layer two”
Ethereum scaling solution that uses zero knowledge rollups; by Filecoin [32], a
decentralized data storage protocol; by Celo [24], a layer-1 blockchain, for their
light-client Plumo; Aleo [3], a blockchain for private applications.

Ethereum is currently running [33] a smaller trusted setup ceremony for its
upcoming ProtoDankSharding and DankSharding upgrades: the targeted sizes
are 212,213 214 215 phowers in G; and 64 powers in Go, over the BLS12 -381
curve. Those two upgrades will increase the amount of data that the Ethereum



110 V. Nikolaenko et al.

chain provides to clients for storage. This data will have a suggested expiry 30—
60 days, it will not be accessible for the smart contracts in full, except for short
KZG-commitments to the data. With around 95,000 contributions since its start
in Jan 13th, 2023, it is the largest trusted setup ceremony to date in terms of
participation.

2.3 Proof Systems with Transparent Setup

It is important to note that there has been considerable research effort aimed
at building cryptographic systems with fully transparent setup; that is, setup in
which there is no trapdoor at all and therefore no trust assumption is required
for the setup ceremony. A notable effort in that direction comes from a partner-
ship of Electric Coin Company, Protocol Labs, the Filecoin Foundation, and the
Ethereum Foundation, who collaboratively work on the Halo2 proof-system [29]
that does not require a trusted setup. Halo2 powers the ZCash cryptocurrency
since Zcash Network Upgrade 5 (NU5) activated on mainnet on May 31, 2022.

Similarly, transparent setup is possible to replace RSA-style trusted setup,
using class groups of imaginary quadratic order instead of the group Z} for a
large composite modulus N [52]. The Chia blockchain [27] utilizes class groups
and randomly re-samples the group parameters periodically, avoiding the need
for trusted setup.

However, known trustless systems don’t match the efficiency of the ones
based on a trusted setup: the zk-snarks have poly-logarithmic-time verification
(e.g. Halo2 and STARKS) compared to constant-time (e.g. Groth16, Plonk, Mar-
lin), and polynomial commitments have poly-logarithmic-size evaluation-opening
proofs (e.g. FRI, Dory) compared to constant-size proofs (e.g. KZG). It remains
to be an open problem and an impactful research direction to come up with a
system for the aforementioned applications that does not require a trusted setup
while providing constant-time verification, or alternatively prove an impossibility
result in this regard. In the meanwhile, a unified framework for running setup
ceremonies in a transparent, verifiable and censorship-resistant manner would
help bootstrap more efficient cryptosystems.

3 A Powers-of-Tau System: Definitions

Our goal is to construct a “powers of 77 SRS of the following form:
pp = (TB1,7°By,mBy,...,7"By; TBa,7’Bo,. .. ,TkBQ) e G} x GS , (3.1)

where 7 is unknown. We will show below that a computationally-limited verifier
(e.g. a smart contract) can use the pairing to efficiently verify that pp is well
formed, namely there exists a 7 € Zy such that pp satisfies (3.1).

Note that some applications require powers-of-7 strings in slightly different
forms. Our techniques can generally be adapted and we focus on this simplest
form. A notable case is “punctured” powers-of-7 strings which are missing a
specific element. We discuss this case in Appendix D.



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 111

Our goal is to construct pp using a sequential multi-party computation
between m contributors in m rounds, such that contributor number j contributes
only in round number j, and does nothing in all other rounds. Each contributor
can efficiently prove that their participation was correct. The main challenge is
to ensure that the value of 7 is unknown even if all but one of the contributors
are malicious. In this way it is possible to conduct a permissionless setup in
which any contributor is free to contribute, mediated by a smart contract which
verifies each participant’s contribution. Using a smart contract as the mediator
ensures that anyone who wants to contribute can.

Notation. We use A € Z* to denote the security parameter. We use x «— y
to denote the assignment of the value of y to x, and write < S to denote
sampling an element from the set S independently and uniformly at random.
For a positive integer p we use Z, to denote the ring Z/pZ. We write Z,, for the
set of non-zero elements in Z,. For a positive integer m we use [m] to denote
the set {1,...,m}. We use poly()) and negl(\) to denote a polynomial function
and a negiligible function in the security parameter \, respectively.

Definition 1. A Powers-of-Tau system is a triple of poly-time algorithms:

~ GlobalSetup(1*,n,k) — par. The algorithm generates global parameters par
that describe the three bilinear groups Gy, Go, G, each of prime order p, with
generators By, Bo, By respectively, equipped with an efficiently computable
non-degenerate bilinear pairing e : G1 X Go — Gp. These parameters are an
implicit input to the remaining algorithms.

~ Update(pp,r) — (pp’, 7). The algorithm uses the provided randomness r € Z;,
to update the powers-of-tau pp to pp’ along with a proof 7 that the update was
done correctly.

— Verify(pp, pp’, w) — {0,1}. The algorithm checks the proof m and outputs 1 to
accept the update.

We require that for all supported (n,k), all par output by GlobalSetup(1*,n, k),
all pp € G x GY of the form (3.1), and all r € Zy, we have

if (pp’, m) — Update(pp,r) then Verify(pp, pp’,7) = 1.

The GlobalSetup algorithm need only be run once and can be reused for mul-
tiple powers-of-tau setups. It is not a trusted setup in that no secret randomness
is required. GlobalSetup utilizes an algorithm GroupGen(1*) to generate the three
additive pairing groups Gi, G2, Gy and their generators.

The Verify algorithm runs on chain and must therefore be as efficient as
possible to reduce transaction costs. We next define the initial state of the system
and the security requirements.

Initialization. The Powers-of-Tau system begins with an initial state defined as:
PPy = (Bl7BlaBla"'7Bl; BQvB2a"'7BQ) € G? X Gg . (32)

This is equivalent to an SRS with 7 = 1.



112 V. Nikolaenko et al.

Security. We define security of a Powers-of-Tau system (Setup, Update, Verify)
using a game that captures a setting where the adversary controls all the con-
tributors except for one honest contributor. The game is stated with respect to
some predicate

n:z,xw —{0,1} .

At the end of the game the adversary outputs some w € W and wins the game
if M(7,w) = 1, where 7 is the secret exponent used to define the final powers-of-
tau. This w represents some information that A was able to learn about 7. We
give examples of some important predicates [1 after the definition.

Since the prime p is determined by the security parameter, we define security
with respect to a family of predicates MM = {, : Z, x W — {0, 1}}1)673 where
P is the set of all integer primes. We say that [ is poly-time if there is an
algorithm that for all p, 7, w evaluates I, (7, w) in polynomial time in the security
parameter .

Formally, M-security is defined using a game between an adversary A and a
challenger. The game is parameterized by (n, k) and proceeds as follows:

— The challenger runs GlobalSetup(1*,n,k) and sends the resulting global
parameters par to A. This defines pp.

— A outputs a sequence of pairs (ppy, 1), ..., (PPg, Te)-

— The challenger samples 7 < Zy, runs Update(pp,,7) to get (ppyy1, Tet1), and
sends (ppyyq,mr41) to A. This emulates an honest contributor.

— Adversary A outputs a further sequence of pairs (pp, o, Te42),- -5 (PP Tm)
along with a guess w € W.

The adversary wins if Verify(pp,_1,pp;,7i) = 1 for all i € [m], and either (i)
M, (T, w) = 1, where 7, is the secret exponent that defines pp,,, or (ii) pp,, is
a malformed powers-of-tau.

We will show in Theorem 2 below how to use the pairing to efficiently test
that pp,, is a well formed powers-of-tau. Hence, as long as Verify includes this
test, the only way for A to win the game is to output some w € W such that
My (T, w) = 1.

Definition 2. Let N = {I'Ip F Ly x W — {0,1}}1)67) be a family of poly-time
predicates. A Powers-of-Tau system is M-secure if for all n,k that are poly(\),
and for all PPT adversaries A, the probability that A wins the MN-security game
s a negligible function of the security parameter .

Remark 1. Definition 2 requires that the adversary cannot compute some infor-
mation about the final 7,,. It does not require 7, to be close to uniform in Z7
because that is not possible to achieve in our settings. If the last contributor is
malicious, it could cause 7, to become non-uniform in Z;, by repeatedly running
the update procedure until the resulting pp satisfies some property (for example,
the first ten bits of the first element in pp are zero).

Despite Remark 1, our definitional framework is sufficient for many appli-
cations. For example, suppose that the powers-of-tau is to be used in a KZG



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 113

polynomial commitment scheme [44], and we need to ensure evaluation binding,
meaning that a committed polynomial cannot be convincingly opened to two
different values at one input. To do so, let us define the family of predicates I1°"
where

M (r € Zy, (,T) €Zyx Gy) =1 = T= (%%)Bl . (3.3)

Suppose that no PPT algorithm that takes a powers-of-tau string as input, can
find a pair (¢, T') that satisfies this predicate. Then it is not difficult to show that
this implies evaluation binding for KZG. Hence, a powers-of-tau string that is
generated by a [M°""-secure powers-of-tau system can be safely used to provide
evaluation binding in KZG.

Note that the predicate M;°" can be checked in polynomial time using the
element @1 := 7B> from the powers-of-tau string because

(7, (7)) =1 = e(T, Qi +cBz) =e(B1,Bs) .

We will come back to this predicate when we analyze security of our powers-of-
tau system. Other applications that require a powers-of-tau string can choose to
use other predicates to argue security.

4 Powers-of-Tau Setup with Full Data On-Chain

We now describe the Update and Verify algorithms for our powers-of-tau system,
when the entire string pp is stored on chain. This is the simplest construction,
though may carry high costs for large powers-of-7 strings as it requires the verifier
to do linear work (in n and k) for each update.

Let pp be the current SRS string which is assumed to be:

pp:(P17 P2a"'7 Pn7 Qla"'? Qk)
= (rBy, 7By, ..., m™"B1; 7B, ..., T"By) (4.1)
for some (unknown) 7 in Z.

Let r be a random element in Z;. The Update(pp, r) algorithm begins by
computing the updated SRS string pp’ as

pp' == (P, Py, ..., P Qi,...., Q)
- (rPh T2P2’ e TnP”H TQl? EERE erk> (42)
Observe that
pp’ = (r7B1, r*7*By, ..., 1" " By; r7Bs, ..., 7" By)

= (7'By,(7")?*By, ..., (7")"By; 7By, ..., () By)



114 V. Nikolaenko et al.

where 7/ := r - T is the secret exponent® for pp’. If an attacker knows 7 but not
r, and r was chosen uniformly at random from Z; (meaning in particular that
r # 0), then the attacker will have no information about 7. Consequently, if
at least one of the contributors samples their update r randomly, and properly
destroys it, then the final secret 7,, = r1-7ro-... Ty € Z;; is randomly distributed
and unknown to anyone. This is assuming that none of the contributors set
r; = 0, which is easy to check for.

Update Proofs. Next, the Update(pp, rr) algorithm needs to output a proof that
the update was done correctly. In particular, the verify algorithm will need to
convince itself of the following three claims:

Check #1 - the contributor knows r: this is needed to ensure that the latest
update builds on the work of the preceding participants.

Check #2 - the new parameters pp’ are well-formed: there is some 7’ € Z,
such that pp’ satisfies (3.1).

Check #3 - pp’ is not degenerate, namely r # 0: defends against an update
trying to erase the setup thus undermining the contributions of previous par-
ticipants.

We will show that the verifier can efficiently check claims #2 and #3 on its own.

We first explain how to efficiently prove claim #1. To provide a zero-
knowledge proof of knowledge of r, the Update(pp, ) algorithm has two options:
it can use a Fiat-Shamir version of Schnorr’s ¥-protocol [56,57] or it can use a
BLS-style proof of possession [55] for r. The latter is more expensive to verify
on-chain as it requires the verifier to compute pairings. We therefore focus on
the former approach which works as follows:

Update(pp, r) samples a random z <~ Zy, computes
h—HASH(P{ || P ||z-P1) and m« (2-P1, z+h-r)€Gy X Zp,

and outputs the proof m € Gy x Z,. Here HASH is a hash function that
outputs elements in Z,. In the security proof we will model HASH as a
random oracle.

The Verify(pp, pp’, 7) algorithm (an on-chain smart contract) verifies the proof
m = (m,m2) € G1 X Z, by checking that:

’Check#l: mo - Py =m + HASH(P] || P, || m) - P ‘

We next show how to verify claims #2 and #3.

Definition 3. We say that the string pp = (Py, Py, P3, ..., Py;Q1,Q2,...,Qk)
is well-formed if there exists T € Z,, such that P; = 7°By and Qg = 7° By for all
i=1...nandl=1...k.

! Note that it is also possible to compute an additive update to the tau (7" « r + 1),
however it would require the contributor to compute many multi-scalar multiplica-
tions making it less efficient.



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 115

To verify that pp is well-formed, the verifier samples two random scalars
p1, p2 <= Zy and checks that:

Check # 2: (4.3)
6(2?:1 PP, Ba+ Y4, PzQé) = e(B1 + Y PP, Yy P 1Q€)

For a well-formed string pp the check will always pass successfully, since:

We prove that this check is sound in Theorem 2 below.

One complication is that an on-chain verifier does not have access to secure
randomness. Instead, it will generate the scalars pq, p2 € Z, by hashing the string
submitted by the contributor as p; «— HASH(pp'||1) and pa < HASH(pp'||2).

Finally to ensure that the updated setup is non-degenerative, the verifier
simply checks that the first element in pp’ non-zero:

Check #3: Pl #0 (4.4) |

Correctness: it is easy to check that the Update and Verify algorithms satisfy
our correctness requirement.

4.1 Security

We now argue that the powers-of-tau system in the previous section satisfies the
security definition (Definition 2). Recall that security is defined with respect to
a poly-time predicate family M = {M,, : Z, x W — {0, 1}}17673' Let us first define
the (n, k)-MN-DH assumption. The assumption says that no PPT adversary that
takes a powers-of-tau string with secret exponent 7 € 7Z, as input, can find a
w € W such that M,(r,w) = 1.

Definition 4. Let N = {M, : Z, x W — {0, 1}}][)€7> be a poly-time predicate
family. We say that the (n, k)-N-DH assumption holds for the bilinear group
generator GroupGen if for all PPT algorithms A,

Pr[np(T, A(par, 7By, 72By, ..., 7"By, 7By, 72Ba,..., 7" By) = 1)} < negl(\),

where par < GroupGen(1*) and T & 7.

The (n, k)-MN-DH assumption encompasses a large class of standard crypto-
graphic assumptions. For example, taking I1 to be the predicate family M°°" from
(3.3) gives the so called (n, k)-Strong Diffie-Hellman (SDH) assumption [12].



116 V. Nikolaenko et al.

Definition 5. We say that the predicate family N = {I'Ip 1 Zpx W — A0, 1}}p673
is self reducible if there is a PPT algorithm Reduce such that for all p € P,
all 7,r € Zy, and all w € W we have

My(r,w)=1 = MN,(7-r, Reduce(r,w)) =1.

In other words, given a valid w for 7, algorithm Reduce outputs a valid w’
for 7 - r. For example, the predicate family M*" from (3.3) is self reducible. To
see why, observe that for all p € P and r € Z;, we have

M (r, (7)) =1 = W"(rr (er, (1/r)-T)) =1

because

T = 1 'Bl — %TZ 1 -Bl.

T+c Tr+cr

With these definitions in place, we can now state the security theorem.

Theorem 1. Let [1= {I'Ip 1 Zy, x W — {0, 1}}1)679 be a poly-time self reducible
predicate family. Then the powers-of-tau system in Sect. 4 is l-secure, as in
Definition 2, assuming the (n, k)-N-DH assumption holds for GroupGen and the
hash function HASH is modeled as a random oracle.

We give the proof intuition and defer the proof to the full version of the paper.

Proof idea. For now, let us assume that the proof system used in the powers-of-
tau system is zero knowledge and simulation extractable [38] even for a prover
that proves multiple statements one after the other. We will justify these two
assumptions later on.

We are given an adversary A that wins the attack game in Definition 2 with
non-negligible probability. By Theorem 2 below, the only way for A to win the
game is to output some w,, € W such that M,(7y,,w,) = 1. We use A to
construct an adversary B that breaks the (n, k)-M-DH assumption. Algorithm B
is given as input an (n, k)-MN-DH challenge

ppchal = (Pla"'7P7‘L;Q1)"'?Qk‘)GG?XGS .

It needs to find some w € W such that M,(7,w) = 1, where 7 € Z is the secret
exponent used define this challenge. Algorithm B begins by running adversary .4
and the following happens:

— B receives from A a sequence of ¢ pairs (ppy,71),- ., (PPs, 7).

— B sends to A the pair (ppgp,;, ™) where 7 is a simulated proof that ppg,,; is
a valid update. Here we are using the zero knowledge property of the proof
system.

— B receives from A an additional sequence of pairs (pp, o, Te42), - (PP Tm)
along with a guess w,, € W.



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 117

Now B will use the extractor to extract from .4 all the randomizers rsyo,...,7m
in Z; that the adversary used to update the SRS in the second set of pairs that
it output. To do so we are using the simulation extractability property of the
proof system. Now, if all the extracted randomizers are correct, then

Tm:T'(TeJ,-Q"‘Tm),

where 7, is the exponent used to define pp,,,. Moreover, if w,, output by A
indeed satisfies My (7y,, W) = 1, then by the self reducibility of M, our B can
efficiently find a w such that M,(7,w) = 1, as required. O

It remains to argue that the proof system used in our powers-of-tau system
is zero knowledge and simulation extractable. We first show that the verifier’s
Check #2 is sound, namely, a malformed string pp will fail the check with over-
whelming probability.

Theorem 2. Check #2 ensures the well-formedness of pp. In particular, let p
be the size of the groups output by GroupGen(1*), and let n and k be polynomial
in the security parameter X. Then a malformed pp will pass Check #2 with
probability at most W, which is negligible in \.

The proof of this theorem can be found in Appendix A.

We next briefly argue that the proof system used in our powers-of-tau sys-
tem is zero knowledge and simulation extractable. The proof output by algo-
rithm Update(pp, ) is a standard Schnorr proof of knowledge of discrete log
that is made non-interactive using the Fiat-Shamir transform. This proof sys-
tem is known to be zero-knowledge in the random oracle model, and simulation
extractable in the random oracle model even for a prover that proves multiple
such statements one after the other [36]. Moreover, Theorem 2 shows that a
witness extracted from a convincing prover will correspond to a valid witness
with overwhelming probability.

5 Powers-of-Tau Setup Protocol with Data Off-Chain

The required number of powers of tau for some applications can be as high as
224928 resulting in public parameters of size in the range 0.5 GB-9 GB. This
rules out the possibility of storing the full parameters on chain, given limitations
of today’s Layer-1 smart contract platforms. However, it is still possible to take
advantage of the anti-censorship properties of an L1 chain by posting a commit-
ment to the parameters on chain, while storing the parameters off chain. Each
contributor who updates the on-chain commitment proves that the update to
the current off-chain parameters is well-formed by submitting a ZK proof to the
smart contract. The contract accepts the contribution if the proof is valid.

In more detail, let Alice be the i-th contributor to the powers-of-tau. Let pp;
be the powers-of-tau before Alice’s contribution and let pp,,; be the powers-of-
tau after. Prior to Alice’s contribution, the smart contract holds a short binding



118 V. Nikolaenko et al.

commitment to pp;, namely ¢; := H(pp,), for some collision resistant hash func-
tion H. Alice will send to the contract ¢;y1 := H(pp;,,) along with a succinct
ZK proof m that the transition from ¢; to ¢; 41 is well formed, as discussed in
more detail in the next subsection. If the proof is valid, the contract updates
the stored hash to c;; and erases ¢;. Note that the contract places ¢;4+; in its
storage array; however the proof m need only be sent to the contract as call data
and does not need to be written to the contract’s storage.

We describe three ways to produce the proof m: in Sect.5.1 using a
generic transparent SNARK; in Sect. 5.2 using the Dory polynomial commitment
scheme; and in Appendix C using an inferior method of inner-pairing product
argument.

Data Availability. If the L1 chain only holds a hash of the powers-of-tau,
then the actual data must be kept elsewhere. One can use a centralized data-
availability (DA) service, such as a cloud storage provider, or a decentralized one,
such as EigenDA, Celestia, Polygon Avail, or Arweave. These data availability
services vary in many respects, including the precise guarantees and pricing
model, but they all commit to storing a large blob of data and making it publicly
available, in exchange for fees. In the DA service the data is typically addressable
by its hash-digest or a deterministic commitment. Updates can write a new copy
of the data to the DA service and old versions will still exist. Regardless, of how
the DA service is run, we only require it to attest to the availability of the data
behind the on-chain commitment, we assume that the DA service is censorship-
resistant and append-only. The DA service does not need to run any verification
on the underlying data.

Note that the DA service can safely discard an old parameter set after the
chain verifies a new parameter set, meaning that the DA service only needs to
store at most two parameter sets at any given time, meaning it scales well to
protocols with many participants.

5.1 Off-Chain Setup Using a Transparent Succinct Proof

Let pp be the current state of the powers-of-tau stored at some data availability
service, and let ¢ := H(pp) be the commitment to pp stored in the smart contract
on chain. Recall that

pp:<P1aP27P37"'7Pn; Ql)QQw"an)Z
= (TBl,T2Bl,T3Bl,...7TnBl; 732,7'232,...,TkB2) € GY x Gg

for some secret 7 € Z, and public B; € G1, By € Ga.
Alice wants to re-randomize pp to obtain pp’. She chooses a random r € Z,,
computes

o’ (PP 12 Pyt Py 7 P 1Qu 1% Qe TR Q) =

= (PLPLP Py @5Qhs QL) €GF x G



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 119

and sends pp’ to the data availability service. Next, she computes the commit-
ment ¢ = H(pp’) and needs to convince the on-chain smart contract that the
transition from ¢ to ¢’ is a valid transition. As explained in Sect.4, Alice must
produce a succinct zero-knowledge argument of knowledge (zk-SNARK) that the
following relation holds, for random p;, p2 in Z, chosen by the verifier:

public statement: ¢, ¢’ and p1,p2 € Z, , witness: pp, pp’, and r € Z, ,

and the relation is satisfied if and only if

c=H(pp), ¢ =H(pp'), P{=rP, P|#0, and
n k—1 ] n—1 . k )
(Y APl paBat Yo Q)) =e(pBi+ Y P, S Q).
i=1 j=1 i=1 J=1

Note that the zero-knowledge property is needed to keep r secret.

The simplest, though not the most efficient, way to produce a succinct
proof for this relation is to use a generic zk-SNARK system (we describe bet-
ter approaches in the next subsection). To use a generic zk-SNARK, we need
a proof system with the following properties: (i) transparent, namely the zk-
SNARK requires no trusted setup, since we cannot assume the existence of a
trusted setup in our settings; (ii) short, to reduce the cost of posting the proof
on-chain; and (iii) fast to verify, to reduce the on-chain gas costs for verification.
The STARK system [9] meets these requirements. In practice, the resulting proof
is about 100KB which may be too expensive to post on chain for every update.
In Sect. 7 we discuss batching proofs, namely supporting multiple updates using
a single proof. This may make STARKS a viable option.

Once Alice constructs the proof 7, she sends (¢, ¢/, 7) to the on-chain contract.
The contract verifies the proof, and if valid, it replaces ¢ by ¢'.

5.2 Off-Chain Setup Using AFGHO Commitments On-Chain

In this section we describe a more efficient approach than the one in the previous
section. We use the unstructured AFGHO commitments of Abe et al. [1] in
combination with the Dory [49] inner-pairing product arguments. This leads to
short and efficiently verifiable proofs on chain.

We again assume groups G, G, G of a prime order p and a bilinear oper-
ation e : G; X Go — Gp. We adopt the product notation for pairing operations:
for vectors A € G} and B € G4 we write (A,B) =" | e(A;, B;). Let 'y € G}
be generators of Gy and T'y € G¥ be generators of Gy, all randomly chosen in a
transparent way.

Instead of the full parameters pp = (P;Q) (P, Py,...,P,);
(Q1,Q2,...,Qk)), the chain only stores P; and AFGHO commitments (C1,C3) €
Gt x Gr on chain, where Cy = (P, T'5) € Gy and Cy = (I'1, Q) € Gr.

The contributor submits a proof-of-knowledge of the discrete log of the
update to P, as explained in Check #1 of Sect.4 and a logarithmic-size proof
for the following inner-pairing product (IPP) relations:



120 V. Nikolaenko et al.

C) = <P,F2> A Cy = <F1,Q> A
p?Pan - BlQl - <Pa (15 Pla/)%, DRI 7[)?_1) : (PlQl - BQ)> A

pgple - PlBQ = <(17p27p§7 s 7p]2€71) : (p2P1 - Bl)a Q> A (51)
P, = (P,(0,0,...,0,1)) A P, = (P,(1,0,...,0,0))

Qk: <Q7(Oa0aa0a1)> A Ql = <Q7(1a0aa070)>

We give further details on this construction in Appendix B.

6 Implementation and Evaluation on Ethereum

In this section, we analyse the practicality of our fully on-chain setup ceremony,
presented in Sect. 4. We implemented our protocol on top of Ethereum [19], the
most popular smart contract platform. Currently (as of May 2023), Ethereum
natively supports only one group with bilinear pairing, BN254 (the initial EIP-
197 [60] describes the curve equations). This group is foundational to multiple
projects (e.g. Aztec, zkSync) although unfortunately its security has been low-
ered with recent attacks [7], and now estimated [45] to be at 100-bits level.
Ethereum consensus layer uses BLS12-381, which is another pairing-friendly
group, and also a popular choice for other projects (e.g. Aztec and Filecoin),
has stronger security guarantees, however the precompiles for this curve are not
available on Ethereum yet, though have been suggested (EIP-2537 [4]) alongside
precompiles for other pairing-friendly curves BLS12-377 (EIP-2539 [61]) and
BW6-761 (EIP-3026 [64]). The supported operations are scalar-multiplication
and addition in G; and a pairing precompile, which are priced as follows accord-
ing to EIP-1108 [22]:

Name Operation Gas cost
ECADD | A+ B for 150
A, B € Gy
ECMULT | oA for 6,000
a€Zy, A Gy
ECPAIR Zle e(Ai, B;) =0 | 34,000 - k + 45,000
for
A; € G1,B; € Gy

Each contribution is sent as calldata, which is a read-only byte array, cur-
rently priced at 16 gas per byte according to EIP-2028 [2].

Fully On-Chain Setup for k = 1. We first consider a setup with a single element
in Go. The following pre-computation will reduce the cost of the Check #2 to
n + 3 scalar multiplications and one ECPAIR, though the check will remain to
dominate the verification cost:



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 121

Table 1. Estimates according to the Eq.6.2 and actual costs. The pricing in USD is
calculated based on rough numbers on 05/01/2023: 15 gwei per gas unit and 1 ETH =
$1,850 (1 gwei = 107° ETH).

n 8 16 32 64 128 256 512 1024
compute in gas | 179,000 | 227,000 | 323,000 | 515,000 | 899,000 | 1,667,000 | 3,203,000 | 6,275,000

units
compute cost $5 $6 $9 $14 $25 $46 $89 $174
storage in gas 8,192 16,384 |32,768 | 65,5036 |131,072 |262,144 |524,288 | 1,048,576

units

storage cost $0 $0 $1 $2 $4 $7 $15 $29
Total 187,192 | 243,384 | 355,768 | 580,536 | 1,030,072 | 1,929,144 | 3,727,288 | 7,323,576
(estimates)
$5 $7 $10 $16 $29 $54 $103 $203
Total 192,162 | 272,217 | 432,702 | 755,340 | 1,406,185 | 2,731,526 | 5,474,920 | 11,341,136
(actual)
$5 $8 $12 $21 $39 $76 $152 $315
n—1
Check # 2 (more efficient): for R := Z ot P
1=1
verify that e(B; + p1R, Q1) = e(R+ pi 'P,, By) (6.1)

The contributor submits 64 - n + 224 bytes of calldata: n elements of G, (64
bytes, uncompressed?), 1 element in Gy (128 bytes, uncompressed), and a proof
which consists of one element in Z, and one element in G;. The cost of the
contribution is therefore comprised of compute and calldata storage:

compute cost: (n+ 3) - 6,000 + 113,000 gas
storage cost: n - 1,024 4 3,584 gas (6.2)

It is instructive to notice that the cost of compute is roughly 6x the cost of
storage. The compute is dominated by the multi-scalar multiplication. Most
likely it is inevitable for each element of the setup to have to be multiplied by a
scalar or be directly inserted into a pairing, it is therefore unlikely to be able to
reduce the compute cost for the fully on-chain setup. However, using techniques
of Bellare et al. [8] the scalar-multiplications might be substituted by A-random
subset sums for A-security, however for Ethereum this trick does not bring any
savings. Table 1 shows estimated and concrete pricing per contribution with a
check from Eq. 6.1 based on our open-sourced implementation?.

2 Our evaluations showed that recovering element from a compressed form would cost
significantly more than sending them in an uncompressed form directly.
3 github.com/al6z/evm-powers-of-tau.


https://github.com/a16z/evm-powers-of-tau

122 V. Nikolaenko et al.

Fully On-Chain Setup for k > 1. Since Ethereum does not support addition
and scalar multiplication in Go the following alternative method for Check #2
targeting Ethereum can be used, it does one additional pairing per each power
in GQI

Check #2 (alternative):

n—2
For R= p" Piy1;:e(Bi+pR, Q1) =e(R+p" ' Py, By) (6.3)
1=0

Fort =2..k-1: e(Pk_tyj, Qt) = C(Pkyj, BQ) AN G(Bl, Qk) = G(Pk’j, BQ) (64)

Note that the right-hand part of the Egs. 6.4 can be computed once. Note also
that Eqs. 6.3 and 6.4 are each checking the equalities of pairings, these checks
can be batched using pseudorandom scalars ag,ay,...,ap € (Z;)n sampled
as a; = HASH(pp;,7) to transform into a check of the sum of pairings which
is cheaper to do on Ethereum (Ethereum has an opcode that allows to verify
e(A1,By) + ...+ e(Ap, Bp) = 0):

e(Ay, B;) = e(Cy, Dy) e(a1 A1, B1) — e(a1Cy, Dy)+
(A2, B2) = e(C2, D2) ) elazds, Ba) —e(azCy, D)+ (6.5)

e(Am, Bm) = e(Ch, D) e(amAm, Bm) — €(@mChy D) =0

Note on the Use of Hash Functions for Generation of Scalars. For a 256-bits
order groups, the hash function HASH needs to output 512-bits, should be given
as inputs strings generated with invertible serialization method, and be domain-
separated (i.e. the input should be prefixed with a fixed-length string indicating
the step of the protocol and the purpose of hashing).

7 Concluding Discussion and Open Problems

In conclusion, we note that our work shows the practicality of decentralized setup
ceremonies for the first time. These protocols can scale to support an unlimited
number of participants as blockchain performance continues to improve. Our
protocols inherit (and rely on) the ability of the underlying blockchain to support
open participation while managing potential spam and denial-of-service.

Given the more-the-merrier property of our protocols, these represent a qual-
itative security advance over the state of the art. While practical trusted setup
ceremonies have attempted to recruit a diverse and trustworthy group of par-
ticipants to convince the public that the results of the ceremony can be trusted,
decentralized setup ceremonies offer a stronger promise: if a participant doesn’t
trust the ceremony, they are free to contribute themselves. We hope that this
model will inspire future setup ceremonies; it may also extend to other applica-
tions such as distributed randomness beacons which can be made decentralized
and open to participation for all using blockchains.

We conclude with several open problems and directions for future work.



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 123

7.1 Incentives for Participation

Several options are available to subsidize gas costs to encourage additional par-
ticipation. The simplest solution is to load funds into the setup contract and
reward each user who successfully updates the structured reference string pp,
although users will still need to first pay the requisite gas fees. Alternately,
transaction relay services, such as the nascent Gas Station Network (GSN), can
pay transaction fees for users sending data to the setup contract. The upcoming
account abstraction, EIP 4337 [18], should also help build an ecosystem of pay-
masters that would sponsor transactions for other users. This makes it possible
for an end user to participate in setup even if that user owns no crypto to pay
for gas. Finally, we note that a setup ceremony might give users a non-monetary
reward such as an NFT as a badge of participation. A challenge in all cases is
that users might pseudonymously participate many times via Sybil accounts;
while this doesn’t undermine security of the setup (assuming there was at least
one honest contributor) it may enable them to claim rewards multiple times or
drain the available budget for covering transaction fees, preventing other users
from participating cheaply.

7.2 Verifying Participation

Users may wish to see an authentic list of everyone who has contributed to
the SRS. A lazy participant might see that enough participants that it trusts
contributed, and choose to use the SRS without participating themselves. Fortu-
nately, since every Ethereum transaction is signed by the party that initiates that
transaction, any user can inspect the chain and construct a list of authenticated
addresses that contributed to the ceremony since its inception.

7.3 Sequential Participation and Denial-of-Service

Our ceremonies are designed to run without any centralized coordination, but
they do require contributions in a serial manner. The j*" contributor must prove
correctness of their update relative to the previous value pp;_;. If two contrib-
utors independently submit transactions building on the same parameter set
pp;_1, only the one sequenced first will be executed successfully. The second
will fail for referencing a stale parameter set. This means that, without off-chain
coordination, at most one contribution per block is possible as contributors must
first observe pp,_;. For Ethereum this limits the ceremony to one contribution
every 12s or 219,000 contributions per month.

Worse, this also provides an avenue for denial-of-service and censorship:
whenever an honest contribution arrives, an attacker can create an alternative
contribution paying higher transaction fees, preempting the honest one. Such an
attack could be detected off-chain via timing analysis. A stronger defense strat-
egy against censorship could be to select one contribution among the conflicting
ones in a random but publicly-verifiable way. To lower the transaction fees, a



124 V. Nikolaenko et al.

contributor could first register an intent to make a contribution, and only sub-
mit the actual data if it is selected. Alternatively, the setup contract can order
the registered future contributors using a public randomness beacon, giving each
user a random pre-assigned slot to contribute.

7.4 Verification with General-Purpose Roll-Ups

Verification costs can be decreased using a general Layer-2 compute platform
such as a rollup server. ZK-Rollups (also called verifiable rollups) provide suc-
cinct proofs of execution (in our case, verifying a contribution) and hence pro-
vide equivalent security to execution on Layer-1. The two common construc-
tions today are zero-knowledge rollups and optimistic rollups, each of which
brings unique design challenges. Many (though not all) ZK-rollups themselves
rely on a (centralized) trusted setup. However, our protocol can be seen as a
way to perform new decentralized trusted setups given a single centralized one.
Or we might use a ZK-rollup which relies on a transparent setup. Alternately,
optimistic rollups require watchful observers to submit fraud proofs to detect
incorrect execution. Given the serial nature of our ceremony, general optimistic
rollups require caution as they naively require waiting for a challenge period
before accepting correct execution.

Rollups might offer significant cost savings, given that execution costs are
roughly 100x cheaper on Layer-2, and execution costs (as opposed to storage)
are over 75% of total transaction costs [48] in our evaluation. Combined with
off-chain data availability, total costs can be greatly reduced. The result of a
Layer-2 construction would be a 75% reduction in per transaction cost. The
remainder of the transaction cost is due to the storage of elliptic curve points
on Ethereum Layer-1. There are several proposals in process to decrease the
cost of Layer-2 storage on Ethereum, potentially further decreasing setup cost
(see EIP-4844 or EIP-4444). As of this writing, all production rollup servers rely
on a single centralized sequencing server, undermining the censorship resistance
benefits of an on-chain trusted setup. When these optimistic rollup Layer-2s
have decentralized their sequencing, we expect the costs outlined for a trusted
setup can be decreased 75-95%. In the interim, one could also implement a
hybrid design which allows updates via the rollup server (to save gas) but also
directly on-chain in the event of a censoring rollup sequencer.

7.5 Protocol-Specific ZK Rollups via Proof Batching

Rather than relying on a general-purpose rollup server, we can design a spe-
cific one optimized for our application. In our ceremony, every contribution is
accompanied by a proof of correctness, requiring a linear number of proofs in the
number of updates. We can improve things using a coordinator which compiles
a sequence of update proofs from multiple participants and aggregates them all
into a single proof that all the received updates are valid. This can be done using
proof recursion [59] or accumulation [8,15,21]. This coordinator will then post
the aggregate proof on chain along with the aggregate update to the parameters.



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 125

This coordinator can censor particular participants by refusing to accumulate
their proofs into the batch. However, since anyone can act as a coordinator,
an affected participant can find another coordinator. In the worst case, if all
coordinators are censoring, the participant can post their own update and proof
directly on chain, bypassing the censoring coordinators.

7.6 Protocol-Specific Optimistic Verification and Checkpointing

Another mode of operation which may offer improved performance would have
users post proofs (or even commitments to proofs with off-chain data availabil-
ity), but not rely on on-chain verification in the optimistic case. Instead, users
can post a fidelity bond which is forfeited (within a set challenge period) if
another user determines off-chain that their proof is incorrect and challenges it
on-chain. A caveat is that any invalidated update will also invalidate all subse-
quent updates due to the chained nature of the protocol. With this approach,
users should verify recent contributions themselves before participating to avoid
building on top of a contribution that is later invalidated.

To avoid requiring users to verify too many recent contributions before par-
ticipating, it is possible to checkpoint certain updates by including a proof that
all updates since the last checkpoint were valid. This checkpoint can be created
via proof batching as discussed above. We note that, in our protocol in Sect. 4,
only Check #1 needs to be repeated for each update since the last checkpoint;
the more expensive Check #2 only needs to be done once on the latest version
of the structured reference string.

7.7 Fully Off-Chain Verification via IVC/PCD

Another potential optimization is to conduct a ceremony with no on-chain proof
verification, but where each update includes a succinct proof that every update
since the start of the ceremony was well-formed. These proofs can be constructed
using any incrementally verifiable computation scheme (IVC). In this case the
parameters plus proof are an instantiation of proof-carrying data (PCD). With
such a protocol, it is possible to execute the ceremony using a blockchain which
only provides data availability and consensus (and no verification). Each user
can verify the succinct proof of the latest parameters before using or updating
them. The ceremony is only using the chain for its persistent storage and anti-
censorship properties.

7.8 Forking/Re-starting

Throughout the paper we assumed that updates to the powers-of-tau are applied
sequentially and each update is applied to the latest state. It is also possible that
a project may build on an existing powers-of-tau string, but fork it for its own
use. A forking community can continue to re-randomize their own powers-of-tau
branch, while the rest of the world continues to re-randomize the main branch.



126 V. Nikolaenko et al.

As such, the on-chain contract could be set up to handle forks in the update
process, where multiple powers-of-tau are continuously updated independently
of one another. Some powers-of-tau may even start afresh from scratch, perhaps
to support different tower lengths and possibly different groups.

Acknowledgments. We would like to thank Lucés Meier, Yashvanth Kondi, Mary
Maller, and Justin Thaler for useful feedback on the early ideas underlying this work.
The last author is supported by the Simons Foundation and NTT Research.

A Proof of Theorem 2

In this section we prove Theorem 2 of Sect.4 which guarantees that Check #2
guards the setup from malformed contributions.

Proof. Suppose the contributor generated a parameter set pp that passed
Check #2. We write

pp:(P1’P27P37"'7Pn ; le"')Qk)):
= (a1B1,02By,...,a,B1 ; b1Ba,baBy, ... by By).

If check # 2 passed, then for two random scalars x = p; and y = ps in Z,, chosen
by the verifier the following equation holds:

(14 a1z +asx® + ...+ ap_12" ) - (b +boy + ...+ bkykfl)—
(a1 +agz+...+ an:z:"fl) 1+ bhy+ boy? + ...+ bk_lykfl) =0 (A.])

Let us define a 2-variate polynomial f(z,y) to match the left-hand side of
Eq. A.1. By the DeMillo-Lipton-Schwartz-Zippel (DLSZ) lemma [30,58,65], if f
is a non-zero polynomial, then the number of zeros of f is bounded by d-p where
d = (n—1)(k — 1) is the degree of f(x,y). Equivalently, the probability that
f(z,y) =0 for x and y selected uniformly at random from Z, is bounded above
by d/p. Therefore, the probability that the polynomial f defined in Eq. A.1 is a
zero polynomial is overwhelming: it is at least 1 — (kK — 1)(n — 1)/p. For a zero
polynomial f = 0, its coefficients are all zero. In particular the constant term
b1 — aq is 0 implying that a; = b1, and we denote that by 7 = a;. The rest of
the coefficients being zero implies that

coefficient of x : aiby —ax =0 = as = 12
coefficient of z2 : asby —a3 =0 = as =73
coefficient of 2" ' : an,_1b1 —a, =0 = &a,=71"

Applying the same argument to the coefficients of 3’ in Eq. A.1 we obtain:

coeflicient of y : by —aiby =0 = by=72
coefficient of y2 : &bs — a1by =0 = by =713
coefficient of y* : &by —a1bp_1 =0 = by = 7F

Therefore we obtain that a setup that successfully passes check #2 is well-formed
with probability at least 1 — (k — 1)(n — 1)/p, as required.



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 127

Note on Soundness for a Punctured Setup. At the end of Sect.7 we explained
how to modify Check # 2 to be able to handle powers-of-tau setups with one
point missing. The soundness proof for this modified check is analogous: for
random scalars & = p1,y = p2 in Z, we define the polynomial f(z,y) to match
the left-hand side of Eq.D.3:

2N N-1 2N-—1 N
Z aixifl . (1 + Z bzyz> — 1 + Z aixi . (Z biyi1> =0
i=1 i=1 i=1

i;éiff}&-l iAN
i£N+2 i£N+1
(A.2)

The probability that the polynomial f is zero is at least 1 — 2N?/p. For a zero
polynomial all of its coefficients are zero, hence the constant term b; —a; = 0
(denote 7 = a;) and analogously we get b; = 7° for i = 1... N and a; = 7° for
i=1...2N where i # N +1. The only difference in the argument, is that we use
the second pairing check (D.2) to get ani2 = anbe which implies ay o = TN+2,

B Inner-Pairing Product Arguments for Sect. 5.2

We restate Eq. 5.1 of Sect. 5.2 again for convenience:

Cy = (P, T) (B.1)
Cy =(I'1,Q) (B.2)
PLPaQ1 = BiQ1 = (P, (L, p1,p%, -, o1 71) - (mQ1 = Ba)) (B.3)
p5PiQx — PiBy = ((1,p2, 3, ..., 05 ") - (p2P1 — B1), Q) (B.4)
P, = (P,(0,0,...,0,1)) (B.5)
Py = (P,(1,0,...,0,0)) (B.6)
Qr = (Q, (0,0, ...,0,1)) (B.7)
Q1 = (Q,(1,0,...,0,0)) (B.8)

We first prove the soundness, namely we show that with an overwhelming
probability a setup pp = (P;Q) that satisfies the set of equations above for
random scalars p; and ps chosen by the verifier has to be well-formed according
to Definition 3. We denote by « = p;, and we write P = (a1 B1,a2B3,...,a,B1)
and Q = (b1Bg2,b2Bs,...,b;Bs) for some aq,...,an,b1,...,b5 € Z, and we
rewrite Eq. B.3 equivalently into the following equation:

z"a,by — by — (a1 + zas + 22as+ ...+ x"_lan) (b — 1) =0«
(CLl — bl) + (a2 — albl)x + (a3 - agbl)$2 + ...+ (an - an_lbl)Inil =0
(B.9)

We denote the left-hand side of Eq.B.9 by f(z), where f is a polynomial of
degree n — 1 over Z,. We apply the DeMillo-Lipton-Schwartz-Zippel (DLSZ)



128 V. Nikolaenko et al.

lemma [30,58,65], if f is a non-zero polynomial, then the number of zeros of f
is bounded by d - p where d = n — 1 is the degree of f(x). Equivalently, the
probability that f(z) = 0 for z selected uniformly at random from Z, is bounded
above by d/p. Therefore, the probability that the polynomial f defined in Eq. B.9
is a zero polynomial is overwhelming: it is at least 1 — (n — 1)/p. For a zero
polynomial f = 0, its coeflicients are all zero:

free term : a1 — by = 0 = a1 = bywe denote that by a1 =7

coefficient of = : as — a1b; =0 = ag = 72

coefficient of 22 : a3 — asby = 0= a3 = 1°

coefficient of z" ' : a,, — ap_1b1 =0 = a, = ™"

With analogous analysis of Eq.B.4 we get that b; = 7¢ for all i = 1..k with
probability at least 1 — (k — 1)/p. This proves Theorem 3:

Theorem 3. A probabilistic polynomial-time contributor will satisfy Eq. B.3
and Eq. B.4 with a malformed setup string with probability at most (n=D)+(k=-1)

which is negligible in the security parameter X (where we assume p ~ 22* and
n, k being polynomial-size in \).

The IPP Protocol. We now explain the interactive version of the protocol that
can be made non-interactive with a Fiat-Shamir heuristic to be run with a verifier
as an on-chain smart-contract.

1. The prover submits C1,Cs, P1, P,, Q1,Qr € G% x G? x G3 to the verifier.

2. The prover shows that it knows the discrete log to the update of P; (knowledge
of discrete log of P; base the previous value of P; that is currently stored on-
chain) as explained in Sect. 4, Eq. 4.

3. The verifier checks that the update is non-degenerative: P; # 0 and if so

replies with two random scalars p1, p2 & L.

4. The prover sends Ey € Gy and Ey € Gy to the verifier, where E; =
<P, (LPlaP% s 7p71171)> and Ey = <Q7 (1,P27P%7 s 7p]2€71>>'

5. The prover runs six Dory-IPP arguments in batch to produce a proof 7 that
it sends to the verifier. As we explain below.

6. The verifier checks that El(plQl - BQ) = Pnanl — BlQh and El(p2P1 —
B1)Es = p5PiQy — P1Bs.

7. The verifier checks 7 and, if correct, updates the setup that it stores to
(Cl,CQ,Pl) S G% X Gl-

We now show how to construct a succinct (logarithmic-size) proof m for
Eq.B.1-B.8 using Dory inner product argument of Jonathan Lee [49]. Those
arguments allow to prove the following general relation (where the vectors of
scalars §7 and $3 are public and have multiplicative structure):



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 129

(D 01702,E17E2)€£npl FQ(S_i, )E
Exists witnesses v7 € Gy and v3 € Gy : <v"
El = <v_ia S_i> <

7 x G X Gy =
1, 2> Ca = (I, v3)
03, 83) D = (v1,03)

We invoke the argument six times (the arguments are batchable and allow to
squash six proofs into a single one) to prove the following less general statements,
we show two of those for Eq. B.3 and Eq. B.5 as the rest are analogous:

— For Eq.B.3: (0,C1,0,E1,0) € Ly .1,(51,8) for scalars 57 = (1,p1,p7,

ce P 1) and s3 = 0 and witnesses v; = P, v = 0.

— For Eq. BE: (0,C4,0,P,,0) € ﬁn,pl_,&(i_i,s_é) for scalars s; = (0,0,0,...,

0,1), so = 0 and witnesses v1 = P, vy = 0.

The verifier in [49] is set up with 4log(n) + 1 pre-computed elements of G .
Those values are inner-products between subvectors of the vectors of generators
T'; and I'; and can be pre-computed in linear-time.

Note that in this type of setup, the secret is only used to update the setup
and prove knowledge of the discrete log of P;. The bulk of the computation,
namely proof generation, is independent of the secret chosen by the contributor.
Thus, the contributor may outsource this computation to an untrusted helper.

C Off-Chain Setup from IPP Arguments with a Smaller
Setup

For completeness, we briefly explain the inner-product pairing (IPP) method of
Biinz et al. [16]. It relies on a powers-of-tau SRS of a smaller size stored by the
verifier in full:

Ty = (aBy,0?By,...,a*"By), Iy = (8Ba, 3*Ba, ..., 3*" By)

The contributor can then commit to a larger setup of length N = n x n in Gy
and Gy with structured AFGHO commitments of Abe et al. [1] as follows:

For P = (Py,...,P,) € (GT,...,G}) and

for Q =(Qu,...,Qy) € (Gy,...,Gy):
C - (<P1,I‘1 even> ~'~7<Pnarl,even>) S Gg“
Cy = (<F2,evena Q1>, cey <F1,even7 Q’f]>) € Gg“

The contributor submits commitments Cq, Cy to the verifier and creates TIPP-
proofs of a set of inner-pairing-product relations similar to the ones described in
Sect. 5.2. The resulting proofs add up to be of cumulative size O(nlog(n)) and
can be verified in O(nlog(n)) time.

This method leads to worse practical efficiency compared to the method
described in Sect. 5.2, although it might yield better concrete costs if an on-
chain setup is extended by a small multiple making the resulting length N be
far from the power of two.



130 V. Nikolaenko et al.

D Powers-of-Tau with a Punctured Point

Some systems require a powers-of-tau string where one power in the sequence is
absent, namely

pp = [(Pi)?ivl,#mrh (Qz‘)i\iJ = {(TiBl)?ng#N-'rlv (TiBQ)iI\LI:|7

where the point Py,; = 7V 11 By is absent from pp. Example systems that use
a punctured sequence include Groth’10 [39], Attema and Cramer [5], Lipmaa,
Siim, and Zajac’s Vampire scheme [51], and Waters and Wu [63]. The absence
of the point Py from pp is necessary for security. Check #2 in (4) can be
modified to handle this case: the verifier will sample two random scalars p1, p2
in Z;, and carry out the following check that now consists of two equations:

Check # 2 for punctured setup:
2

N . N—-1
e( pr'P, Bat Y pﬁQe) =
=1

z’;ﬁlff}o—l
iAN+2
ON-1 N
= 6(31 + > PP, Zpé'lQe) (D.1)
i=1 =1
iEN
i£N+1
6<PN+27B2> = 6<PN1Q2) (DQ)

It is not difficult to see that a well-formed setup will pass the check suc-
cessfully. The soundness proof for this modified check is analogous: for random
scalars * = p1,y = p2 in Z, we define the polynomial f(x,y) to match the
left-hand side of Eq.D.3:

=1 =
iAN+1 i£N
i£N+2 i#N+1

2N N-1 2N-1 N
Z a;zt |- (1 + Z biyi> — |11+ Z a;z' | - <Z biyi_1> =0
i i=1 i=1 i=1

(D.3)

The probability that the polynomial f is zero is at least 1 — 2N?2/p. For a zero
polynomial all of its coefficients are zero, hence the constant term b; —a; = 0
(denote 7 = a1) and analogously we get b; = 7¢ for i = 1...N and a; = 7° for
i=1...2N where i # N + 1. The only difference in the argument, is that we use
the second pairing check (D.2) to get ay.2 = anby which implies ay o = 7V+2.



Powers-of-Tau to the People: Decentralizing Setup Ceremonies 131

References

10.

11.

12.

13.

14.

15.

16.

Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209-236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

Akhunov, A., Sasson, E.B., Brand, T., Guthmann, L., Levy, A.: EIP-2028: Trans-
action data gas cost reduction (2019). https://eips.ethereum.org/EIPS/eip-2028
Aleo: Announcing aleo setup (2021). https://www.aleo.org/post/announcing-aleo-
setup

Alex Vlasov, K.O.: EIP-2537: Precompile for bls12-381 curve operations (2020).
https://eips.ethereum.org/EIPS /eip-2537

Attema, T., Cramer, R.: Compressed X-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 513-543. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 18

Aztec: Universal crs setup. https://docs.zksync.io/userdocs/security /#universal-
crs-setup (2020)

Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298-1336 (2019)

Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236-250. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054130

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. p. 46
(2018)

Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling
of public parameters for succinct zero knowledge proofs. In: IEEE Symposium on
Security and Privacy (2015)

Benaloh, J., de Mare, M.: One-Way Accumulators: A Decentralized Alternative to
Digital Signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274-285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24
Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56-73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski, B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425-439. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052253

Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-snark
parameters in the random beacon model. Cryptology ePrint Archive (2017)
Biinz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition
from accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12551, pp. 1-18. Springer, Cham (2020). https://doi.org,/10.1007/978-3-030-
64378-2 1

Biinz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing
products and applications. In: Tibouchi, M., Wang, H. (eds.) ASTACRYPT 2021.
LNCS, vol. 13092, pp. 65-97. Springer, Cham (2021). https://doi.org/10.1007 /978~
3-030-92078-4_ 3


https://doi.org/10.1007/978-3-642-14623-7_12
https://eips.ethereum.org/EIPS/eip-2028
https://www.aleo.org/post/announcing-aleo-setup
https://www.aleo.org/post/announcing-aleo-setup
https://eips.ethereum.org/EIPS/eip-2537
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-56877-1_18
https://docs.zksync.io/userdocs/security/
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1007/978-3-030-92078-4_3

132

17.

18.
19.

20.
21.

22.

23.

24.
25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

V. Nikolaenko et al.

Buterin, V.: How do trusted setups work? (2022). https://vitalik.ca/general /2022/
03/14/trustedsetup.html

Buterin, V., et al.: ERC-4337: Account abstraction using alt mempool. link (2021)
Buterin, V., et al.. FEthereum: a next-generation smart contract
and  decentralized application platform  (2014). https://ethereum.org/
669c9¢2¢2027310b6b3cdcebelc52962/Ethereum  Whitepaper - Buterin  2014.
pdf

Buterin, V.: What is Danksharding (2020)

Camenisch, J., Hohenberger, S., Pedersen, M.@.: Batch verification of short signa-
tures. J. Cryptol. 25(4), 723-747 (2012)

Cardozo, A.S., Williamson, Z.: EIP-1108: Reduce alt bnl28 precompile gas costs
(2018). https://eips.ethereum.org/EIPS /eip-1108

Cash, T.: Tornado.cash trusted setup ceremony (2020). https://tornado-cash.
medium.com/tornado-cash-trusted-setup-ceremony-b846ele00bel

Celo: Plumo ceremony (2020). https://celo.org/plumo

Chen, M., et al.: Diogenes: lightweight scalable RSA modulus generation with a
dishonest majority. In: IEEE Security and Privacy (2021)

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKSs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738-768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

Cohen, B., Pietrzak, K.: The Chia Network Blockchain (2019). https://www.chia.
net/wp-content /uploads/2022/07/ChiaGreenPaper.pdf

Cohen, R., Doerner, J., Kondi, Y., et al.: Guaranteed output in o(sqrt(n)) rounds
for round-robin sampling protocols. Cryptology ePrint Archive (2022)

Company, T.E.C.: Halo2. https://github.com/zcash/halo2

DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.
Technical report, Georgia Tech (1977)

Devos, B.: Loopring starts zkSNARK trusted setup multi-party computation cer-
emony. link (2019)

FileCoin: Trusted setup complete! (2020). https://filecoin.io/blog/posts/trusted-
setup-complete/

Foundation, E.: Ethereum: Powers of tau specification (2022). https://github.com/
ethereum/kzg-ceremony-specs

Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key
generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331-361. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 12

Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Paper 2019/953 (2019)

Ganesh, C., Khoshakhlagh, H., Kohlweiss, M., Nitulescu, A., Zajac, M.: What
makes fiat-shamir zksnarks (updatable srs) simulation extractable? Cryptology
ePrint Archive, Paper 2021 /511 (2021). https://eprint.iacr.org/2021/511, https://
eprint.iacr.org/2021/511

Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116-129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1 8

Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. LNCS, vol. 4284,
pp- 444-459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29


https://vitalik.ca/general/2022/03/14/trustedsetup.html
https://vitalik.ca/general/2022/03/14/trustedsetup.html
https://eips.ethereum.org/EIPS/eip-4337
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://eips.ethereum.org/EIPS/eip-1108
https://tornado-cash.medium.com/tornado-cash-trusted-setup-ceremony-b846e1e00be1
https://tornado-cash.medium.com/tornado-cash-trusted-setup-ceremony-b846e1e00be1
https://celo.org/plumo
https://doi.org/10.1007/978-3-030-45721-1_26
https://www.chia.net/wp-content/uploads/2022/07/ChiaGreenPaper.pdf
https://www.chia.net/wp-content/uploads/2022/07/ChiaGreenPaper.pdf
https://github.com/zcash/halo2
https://medium.loopring.io/loopring-starts-zksnark-trusted-setup-multi-party-computation-ceremony-6582874f7a5b
https://filecoin.io/blog/posts/trusted-setup-complete/
https://filecoin.io/blog/posts/trusted-setup-complete/
https://github.com/ethereum/kzg-ceremony-specs
https://github.com/ethereum/kzg-ceremony-specs
https://doi.org/10.1007/978-3-319-96881-0_12
https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2021/511
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/11935230_29

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 133

Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477, pp. 321-340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305-326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKSs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698-728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient RSA key
generation and threshold paillier in the two-party setting. J. Cryptol. 32(2), 265—
323 (2019)

Hermez, P.: Hermez zero-knowledge proofs (2020). https://blog.hermez.io /hermez-
zero-knowledge-proofs/

Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS, vol.
6477, pp. 177-194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543-571. Springer, Heidelberg (2016). https://doi.org/10.1007 /978~
3-662-53018-4 20

Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 98-127. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92078-4 4

Kuszmaul, J.: V(ery short m)erkle trees. verkle trees (2018). https://math.mit.
edu/research/highschool/primes/materials /2018 /Kuszmaul.pdf

“12 fees” (2022). https://12fees.info/

Lee, J.: Dory: efficient, transparent arguments for generalised inner products and
polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS,
vol. 13043, pp. 1-34. Springer, Cham (2021). https://doi.org,/10.1007/978-3-030-
90453-1 1

Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499-517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 30

Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: from univariate sumcheck to
updatable zk-snark. Cryptology ePrint Archive (2022)

Long, L.: Binary Quadratic Forms (2019). https://github.com/Chia-Network /vdf-
competition/blob/main/classgroups.pdf

Malkin, M., Wu, T.D., Boneh, D.: Experimenting with shared generation of RSA
keys. In: Proceedings of the Network and Distributed System Security Symposium,
NDSS 1999, San Diego, California, USA. The Internet Society (1999)

Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2111-2128 (2019)

Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.


https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://blog.hermez.io/hermez-zero-knowledge-proofs/
https://blog.hermez.io/hermez-zero-knowledge-proofs/
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-030-92078-4_4
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://l2fees.info/
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://github.com/Chia-Network/vdf-competition/blob/main/classgroups.pdf
https://github.com/Chia-Network/vdf-competition/blob/main/classgroups.pdf

134

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

V. Nikolaenko et al.

LNCS, vol. 4515, pp. 228-245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 13

Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239-252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161—
174 (1991)

Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM (JACM) 27(4), 701-717 (1980)

Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1-18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1
Vitalik Buterin, C.R.: EIP-197: Precompiled contracts for optimal ate pairing check
on the elliptic curve alt _bn128 (2017). https://eips.ethereum.org/EIPS /eip-197
Vlasov, A.: EIP-2539: Bls12-377 curve operations (2020). https://eips.ethereum.
org/EIPS /eip-2539

Wang, W., Ulichney, A., Papamanthou, C.: BalanceProofs: Maintainable Vector
Commitments with Fast Aggregation. Cryptology ePrint Archive, Paper 2022/864
(2022)

Waters, B., Wu, D.: Batch arguments for NP and more from standard bilinear
group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS,
vol. 13508, pp. 433-463. Springer, Cham (2022)

Youssef El Housni, Michael Connor, A.G.: EIP-3026: Bw6-761 curve operations
(2020). https://eips.ethereum.org/EIPS /eip-3026

Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E-W. (ed.)
Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216-226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5 73


https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-540-78524-8_1
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-2539
https://eips.ethereum.org/EIPS/eip-2539
https://eips.ethereum.org/EIPS/eip-3026
https://doi.org/10.1007/3-540-09519-5_73

Smart Infrastructures, Systems
and Software



®

Check for
updates

Self-sovereign Identity for Electric Vehicle
Charging

Adrian Kailus', Dustin Kern®>(®® and Christoph Kraufk?

! DB Systel GmbH, Frankfurt, Germany
a@kailus.dev
2 Darmstadt University of Applied Sciences, Darmstadt, Germany
{dustin.kern,christoph.krauss}@h-da.de

Abstract. Electric Vehicles (EVs) are more and more charged at public
Charge Points (CPs) using Plug-and-Charge (PnC) protocols such as the
ISO 15118 standard which eliminates user interaction for authentication
and authorization. Currently, this requires a rather complex Public Key
Infrastructure (PKI) and enables driver tracking via the included unique
identifiers. In this paper, we propose an approach for using Self-Sovereign
Identities (SSIs) as trusted credentials for EV charging authentication
and authorization which overcomes the privacy problems and the issues
of a complex centralized PKI. Our implementation shows the feasibility
of our approach with ISO 15118, meaning that existing roles/features
can be supported and that existing timing/size constraints of the ISO
standard can be met. The security and privacy of the proposed approach
is shown in a formal analysis using the Tamarin prover.

Keywords: Electric Vehicle - Privacy - Plug and Charge -
Self-Sovereign Identity - ISO 15118

1 Introduction

Plug-and-Charge (PnC), e.g., using the standard ISO 15118, enables Electric
Vehicles (EVs) to charge without user interaction at public Charge Points (CPs)
operated by a Charge Point Operator (CPO). The EV stores relevant data such
as contract credentials and automatically performs all necessary steps to start a
charging session, e.g., authentication, authorization, and negotiation of charging
parameters. No RFID cards or smartphone apps are required anymore. To enable
this, ISO 15118 defines a complex Public Key Infrastructure (PKI) and uses a
unique identifier to identify the user or actually the user’s personal charging
contract. The charging contract is the basis for billing of PnC sessions and is
concluded between an EV user and an e-Mobility Service Provider (eMSP).
The complex PKI architecture of ISO 15118 requires all entities to oper-
ate central (sub-) Certificate Authorities (CAs). These entities include CPOs
and eMSPs but also Original Equipment Manufacturers (OEMs) and a Con-
tract Clearing House (CCH). OEMs produce EVs and the CCH enables roaming

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Poépper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 137-162, 2024.
https://doi.org/10.1007/978-3-031-54776-8_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_6&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_6

138 A. Kailus et al.

services for charging at CPs from different operators. Furthermore, the Root
CAs are possible single points of failure. The unique identifier of the charging
contract, called e-Mobility Account Identifier (eMAID), enables user tracking
which raises privacy issues. By analyzing movement profiles, user habits or even
the health status may be deduced, e.g., if the vehicle is regularly charged at a
hospital.

To overcome the issues of centralized systems such as PKIs or identity pro-
viders, Self-Sovereign Identities (SSIs) gained a lot of attention in the last years.
SSI provides a digital identity and enables users to control the information they
disclose to prove their identity and to protect their privacy.

In this paper, we propose an approach for using SSIs as trusted creden-
tials for EV charging authentication and authorization. Our approach solves the
issues of complex centralized PKI and protects against linking multiple authen-
tication processes. The contributions of this paper are as follows: (i) Concept
for the secure integration of SSI into ISO 15118 with privacy-preserving charg-
ing authentication/authorization. (ii) Proof-of-concept implementation showing
minor additional overhead and easy integration into existing systems. (iii) For-
mal security and privacy analysis in the symbolic model using the Tamarin
prover [35]. (iv) Publishing the used Tamarin models (cf. Sect.7.2) for repro-
ducibility of the automated proofs and reusability of used modeling concepts in
related work.

The remainder of the paper is structured as follows: Sect.2 describes nec-
essary background to understand our approach. Related work is discussed in
Sect. 3. In Sect. 4, we present identified requirements for our concept which is
introduced in Sect.5. Our prototypical implementation is described in Sect. 6,
followed by the security, privacy, and practical evaluations in Sect. 7. Finally, we
conclude the paper and discuss future work in Sect. 8.

2 Background

In this section, we describe background on e-mobility and SSI. The focus is on
the certificate-based authentication which we replace with SSI credentials.

2.1 E-mobility

Figure1l shows a simplified e-mobility architecture for AC and DC charging
according to the ISO 15118 standard. There exist two editions of the standard,
the first edition ISO 15118-2 [21] and the second edition ISO 15118-20 [22] which
brings some security improvements. Our solution can be applied to both versions.
Other methods for charge control/authentication are out-of-scope, e.g., basic
Pulse-Width Modulation (PWM) signaling based on IEC 61851-1 [20] for AC
charging, high-level communication via DIN 70121 [4] (which can be seen as a
simpler/early version of ISO 15118-2 that only supports DC charging and does
not include PnC authorization), or charge authorization via Autocharge [39)
(i.e., insecure authorization via the vehicle’s MAC address).



Self-sovereign Identity for Electric Vehicle Charging 139

CCH

| Iil | [
EV —— CP | | | CPO | _. eMSP

Fig. 1. Architecture Overview (cf. [6])

An OEM manufactures the EV (not shown), provides some initial credentials
to the EV, and sells it to the new owner. The owner concludes a contract with
an eMSP for charging at public CPs which are operated by a CPO. The initial
credential from the OEM are used by the EV to request contract credentials
from the eMSP. A Certificate Provisioning Service (CPS) establishes trust in
the contract credentials provided by the eMSP. The EV stores and uses the
contract credentials for PnC authorization and billing during a charging session
with a CP. The communication between EV and CP is secured with TLS. The
first edition of ISO 15118 uses unilateral TLS authentication of the CP and
challenge-response-based authentication of the EV inside the TLS channel. The
second edition uses mutual authentication with a vehicle certificate installed by
the OEM in addition to the challenge-response-based EV authentication.

ISO 15118 requires multiple certificates and defines a rather complex PKI.
The PKI consists of four! parts for CPO, OEM, eMSP, and CPS. All PKIs
consist of up to two sub-CAs below a root CA. The root CA for CPO- and
CPS-PKI is the V2G root CA which usually also certifies the sub-CAs of eMSP
and OEM via cross-signing. The eMSP-PKI and OEM-PKI are always certified
by their own root CAs.

The CPO-PKI is used for issuing certificates for CPs which are used for CP
authentication in the TLS handshake.

The OEM-PKI is used to issue the OEM provisioning certificate which
includes the unique identifier Provisioning Certificate Identifier (PCID). The
OEM provisioning certificate is used as initial trust anchor for installing the
contract credentials. In case the second edition ISO 15118-20 is used, addition-
ally, a vehicle certificate is issued for EV authentication in the TLS handshake.

The eMSP-PKI is used to generate the contract certificate after concluding a
contract with an EV owner. The eMSP generates contract certificate data which
consists of a private key and the contract certificate (including the corresponding
public key, a unique identifier called eMAID, and additional information). This
data is installed when the EV is first connected to a public CP. The private key
is encrypted with the public key of the OEM provisioning certificate to ensure
that only the specific EV can access this key.

Finally, the CPS-PKI is used for generating certificates which are used by a
CPS to sign contract certificate data generated by the eMSP. An EV can verify

1 We omit the part for private environments since it is not relevant for our work.



140 A. Kailus et al.

the signature and the certificate chain up to the known V2G root CA. Thus, the
verifier does not need to know the eMSP root CA.

The custom ISO 15118 PKI (with its required trust relations and certificate
handling etc.) incurs a high level of complexity, which resulted in critique by
relevant stake holders [2] and an importance for complexity-reducing measures
[7]. Additionally, as backend communication is out-of-scope for ISO 15118, the
PKI definition leaves many open issues such as certificate revocation handling,
contract validation, or the handling of contract certificate requests/responses.
Addressing these open issues requires proprietary solutions or additional stan-
dardization (e.g., the German VDE guideline for ISO 15118 certificate handling
[46]), which further increases complexity.

In addition to the complexity of the PKI, there is another issue in ISO 15118
namely the lack of privacy protection. Currently, a lot of information, arguably
not required for operation, is disclosed to entities such as CPOs, CCHs, and
eMSPs [27]. For example, it would not be necessary to send the exact time and
CP location of a charging session to the eMSP or the eMAID to the CPO.

2.2 Self-Sovereign Identity (SSI)

A Self-Sovereign Identity (SSI) allows a user to create and fully control a digital
identity without requiring centralized infrastructures or identity providers. The
user can also control how personal data is shared and used by another party via a
decentralized path. After an information is verified by an issuer (e.g., a university
verifying a degree), a verifier (e.g., a company) can always trust that informa-
tion to be true. Subsequently, the information holder (e.g., a student) does not
need to provide the full information to the verifier to prove its identity. This
is achieved using verifiable credentials (standardized by the W3C [44]), the dis-
tributed identity protocol, and a distributed ledger technology (which is mostly
a blockchain). The information holder registers an information identifier at a
ledger, which is verified by an issuer, and the verifier can trust this information.
In the following, we introduce the most relevant terms for our work.

Verifiable Claims. In SSI, the essence is that a counterpart can rely on a claim
without having control over the content of the claim. Here, a distinction must
be made between a Claim and a Verifiable Claim. First, a claim is simply a
statement about a fact that anyone could make and without being verifiable.
For example, it could be stated that Alice is a graduate of a certain university.
However, for this statement to become a Verifiable Claim, the signature of an
issuer may be added to it. Alternatively, zero-knowledge cryptography may be
used in a privacy-preserving manner to indirectly prove that a claim is covered
by a valid verifiable credential [44].

Verifiable Credentials. A collection of claims together with an identifier and
metadata such as the issuer, expiration date, terms of use, and keys form a
credential. Credentials are comparable to conventional ID documents, which



Self-sovereign Identity for Electric Vehicle Charging 141

likewise bundle a number of statements. Multiple credentials can be combined
into one profile.?

Decentralized Identifiers. Identifiers that can be resolved to a Distributed Iden-
tifier (DID) Document® and do not require a central registration authority to
be created. The DID Document, which can only be modified by the DID Con-
troller, can contain information about public keys, verification methods, the con-
troller, and authentication methods, among other things. The DID Controller
also defines the subject of the DID, e.g., a person or organization. Specific sec-
tions in a DID document can be referenced by the respective DID URL. Both
the DID and the DID Document are stored in a Verifiable Data Registry (e.g.,
a distributed ledger) and their combination is called a DID Record. The public
keys of a DID enable encrypted communication with the owner of the DID. To
do this, a communication partner can either use a DID Record they got from
the other party or look up the public keys in the Verifiable Data Registry [41].

DID Auth. There are 10 different architectures to authenticate an identity holder
using different transports for the challenge-response cycle [43]. The main focus
is to let an identity holder prove to have control over a DID. Authentication can
be unilateral or bilateral, with both parties demonstrating control over their own
DID. This may also involve the exchange of Verifiable Credentials if required by
the use case. There are three ways to combine DID Auth with Verifiable Cre-
dentials: DID Auth and the Verifiable Credentials are exchanged separately (in
that order); The Verifiable Credentials are part of DID Auth and represent an
optional field in the authentication protocol or finally, DID Auth can be con-
sidered a special case of a Verifiable Credential, with a claim “I am me”. The
authentication process is based on a challenge-response cycle where the rely-
ing party authenticates the identity holder using, for example, a cryptographic
signature.

3 Related Work

The increasing integration of information and communication technology into
vehicles enables automated tracking of vehicles which threatens the privacy of
drivers and passengers [1]. [30] discusses privacy issues for electric mobility and
[17] privacy challenges for EV charging.

Several approaches for security and/or privacy in EV charging have been
proposed. In [31,32], an EV authentication protocol for contactless charging (i.e.,
using charging pads integrated into the road) using pseudonyms is proposed. An
architecture for privacy-preserving contract-based charging and billing of EVs
using ISO 15118 is presented in [19]. A formal analysis and improvements of
this architecture are presented in [9]. A privacy-preserving solution for roaming
EV charging and billing based on smart cards is proposed in [37]. The solutions

2 Combining credentials, 2018, https://github.com/w3c/vc-data-model /issues/112.
3 DID resolution, W3C, 2021, https://w3c-ccg.github.io/did-resolution /.


https://github.com/w3c/vc-data-model/issues/112
https://w3c-ccg.github.io/did-resolution/

142 A. Kailus et al.

presented in [27,49,50] all require a Trusted Platform Module (TPM) to realize
a Direct Anonymous Attestation (DAA) scheme for EV authentication. In [26],
an approach for quantum-secure EV charging is presented. Using a TPM for
protecting credentials but without privacy protection is proposed in [13-16]. All
approaches still require a complex PKI.

Some work exists that seeks to address the issues around privacy and user
profiling when charging EVs via the implementation of a new, anonymous pay-
ment channel. This often involves a blockchain solution that promises anony-
mous payment processing and a decentralized infrastructure. The authors of [10],
for example, present a solution where payment for charging electricity is han-
dled through multiple blockchains. A main blockchain negotiates transactions
between the operator and the CPs, and on sub-blockchains, multiple customers
join together to form credit sharing groups in which individual payments cannot
be linked to the buyer of the credits. Here, the degree of anonymity is measured
using K-anonymity, which quantifies the group size from which a user is indistin-
guishable. The main blockchain is connected to the sub-blockchains via a bridge
role that communicates with credit buyers. The authors of [48] also present a
blockchain-based solution for charging EVs, which is also based on K-Anonymity.
Their approach uses a distributed PKI that separates user registration and veri-
fication across two blockchains. Payment here is handled via smart contracts. In
[29], a blockchain-based approach for privacy-preserving selection of a CP based
on tariff options and travel distance is presented. The authors of [47] propose
the implementation of a blockchain-based PKI for Internet of Things (IoT) and
demonstrate the feasibility and efficiency of such an IoT PKI through a proto-
type implementation and experiments. The PKI network is based on Emercoin
15 and uses a proof-of-stake consensus algorithm.

Some work already considers the use of SSI for EV charging. The authors of
[42] provide a high-level analysis of the potential benefits that an SSI solution
can bring to EV charging. However, no detailed concept is proposed and details
on, e.g., the integration into existing EV charging processes or the resulting
overhead are not analyzed. Similar to our work is the approach of [18], which
also uses SSI for decentralized eRoaming. However, this concept differs from
our ISO 15118 extension and makes use of the user’s smartphone instead of
allowing for PnC-based EV authentication without user interaction. Also, no
implementation is developed and a detailed analysis of performance overhead
and security is provided.

In contrast to related work, our work presents a novel solution for the inte-
gration of SSI into the EV charging ecosystem. We consider the integration into
existing protocols and process to enhance the potential usability of the solution
as much as possible. Additionally, we provide a performance analysis based on a
proof-of-concept implementation as well as a formal security and privacy analysis
using the Tamarin prover [35].



Self-sovereign Identity for Electric Vehicle Charging 143

4 System Model and Requirement Analysis

The following section outlines the scope of this work, defines an attacker model,
and discusses the concept requirements, which are grouped into three cate-
gories: Functional Requirements (FR), Security Requirements (SR), and Privacy
Requirements (PR). We derive our requirements under consideration of the state
of the art (cf. Sect.2) in combination with the attacker model (cf. Sect. 4.2) and
considering relevant threat/requirement analyses from related work (cf. Sect. 3).

4.1 Scope

Among other things, the PnC process maps a bidirectional authentication
between CP and EV to trust the existence of a contractual relationship and
to rule out malicious actors. These authentications in ISO 15118 are based on
a common PKI, which is used, among other tasks, to authorize a vehicle for a
charging process, to authenticate the charging infrastructure, or to establish the
TLS connection. In an all-encompassing extension of traditional authentication
via PKI and its certificates, both authentications would therefore be replaced,
including their use for the TLS connection and the metering messages during
the charging loop. The scope of this work, however, is limited to the propri-
etary application-layer-based authentication process of the contract information
provided by the EV to the CP. Since the CP’s authentication towards the EV
uses generic TLS-based methods and has (based on our analysis) no special
privacy requirements, we argue that the CP’s authentication could be replaced
with generic SSI-based methods (cf. DID Auth in Sect. 2.2) in a straight-forward
manner. This would also address the CP-related PKI requirements. Thus, we do
not consider further details of the CP’s authentication in this work and instead
focus on the EV’s side.

4.2 Attacker Model

A successful attack in the EV charging context could lead to financial damages,
cause safety issues or privacy violations, and may (if large-scale enough) even
cause power grid stability issues [8,24,25]. Thus, in order to make the concept
viable against possible attacks and vulnerabilities, an attacker model is set up
in the following.

Classic attacker models, such as the Dolev-Yao Model [5], outline malicious
network participants capable of intercepting network communications, sending
and modifying messages. However, we assume that basic cryptographic primi-
tives and implementations hold [36].

Additionally, we consider threats to the system’s privacy. The centralized
approach to certificate validation makes users traceable and their personal data
vulnerable to attack by any of the actors. This threat is increased in case one of
the actors is compromised by an attacker or stops following the agreed protocol
to obtain additional information. While such malicious operators pose a major
threat, the danger posed by such malicious operators is limited [40]. This is



144 A. Kailus et al.

mainly due to the fact that operators have to comply with legal regulations and
maintain their image to the public. Taking this into account, the Honest-but-
Curious Operator is described below (cf. [27]).

Above all, the Honest-but-Curious Operator does not want to create a mali-
cious impression to the outside world by deviating from the agreed protocols.
Since involved in the process, such operators use all information available to them
to ultimately derive additional benefit from it. In the PnC context, potentially
Honest-but-Curious Operators can include the CPOs, eMSPs and the CCH. At
this point it is assumed that several operators do not accumulate their available
information to draw a more comprehensive data picture, since this is opposed
to the competition relationship among operators and should additionally be
prevented by regulations. Ultimately, the regulation of operators is beyond the
control of this concept.

4.3 Functional Requirements

In order to ensure user-friendliness and to allow for an easy integration of
the solution into existing protocols and processes, we define several functional
requirements. The requirements ensure that features of the original ISO 15118
can be supported by the new concept. For example, in order for the vehicle to
authenticate itself at the charging stations with its contract information, a pro-
cess must be defined for contract installations which provide the vehicle with
the necessary information. In order to uniquely associate a driver’s contract
with the vehicle, the vehicle must be uniquely identifiable during the installa-
tion process. In order to ensure that the solution is user-friendly, any additional
overhead should remain acceptable. Functional Requirements (FR) are listed in
the following;:

FR1 Vehicle charging as well as contract installation should still be possible
without further user interaction, since this is the concept of PnC.

FR2 Contract authentication via SSI should be negotiable as an option to the
existing authentication methods.

FR3 All SSI roles should be able to be taken by an actor from the ISO 15118
ecosystem. In SSI, the credential verification process principally covers
three roles: the Issuer, the Holder and the Verifier, which must be uniquely
applied to an entity in the PnC context for each authentication.

FR4 The vehicle should continue to manage the necessary authentication infor-
mation itself (in a wallet).

FR5 All contract issues from all issuers should fit an agreed schema baseline.

FR6 As in ISO-15118, it should be possible to delay the installation of the
contract information until the first charging process.

FR7 The charging station should relay communication from the vehicle to the
other actors in case the vehicle cannot use cellular.

FR8 The additional computational- and communication overhead of a SSI-based
solution should be minor.



Self-sovereign Identity for Electric Vehicle Charging 145

4.4 Security and Privacy Requirements

The non-functional requirements for the concept are listed and explained below.
This includes Security Requirements (SR) and Privacy Requirements (PR). The
security requirements focus on providing secure authentication for the actors
involved in relevant processes (setup, credential installation, charging, billing):

SR1 The setup proceeds of the solution should be secure (e.g., the setup of EVs
with provisioning credentials or the setup of eMSPs as issuers of verifiable
credentials). That is, all relevant parties should be securely authenticated
to enable trust between the parties.

SR2 During the contract credential installation the eMSP should be able to
trust in the originality of the vehicle, similarly to the OEM provisioning
certificate in ISO 15118, which is installed during vehicle production. That
is, the EV should securely authenticate itself towards the eMSP during the
credential installation process.

SR3 The CP/CPO should be able to trust the EV’s provided contract infor-
mation. That is, the EV should securely authenticate itself towards a CP
before the start of a charging process.

SR4 The contract information should allow the eMSP to associate an invoice
from a CPO with a contract. That is, the EV’s charge authentication
data should securely authenticate the EV’s contract towards the eMSP for
billing.

The privacy requirements focus non-traceability and non-linkability of EV users:

PR1 During the authentication process no information should be exchanged
that makes the user traceable to either a CPO, CCH or an eMSP, prevent-
ing the creation of a user’s movement profile (non-traceability).

PR2 A specific CPO, CCH or eMSP should not be able to associate multiple
charging operations with individual users (non-linkability).

Notably, traceability and linkability of EV users by their eMSP is feasible due
to payment processing via traditional payment methods. This problem may be
solved by using smart contracts (cf. [48]), which is out-of-scope for this paper.

5 SSI Concept

In the following, our concept for integrating an SSI-based solution into the
ISO 15118-2 authentication process is developed, including an architectural over-
view and the message sequences of the communication between the actors. The
main challenge is in the specific combination of the different SSI concepts (cf.
Sect. 2.2) such that actors, processes, and features of the existing EV charging
architecture can still be supported while also designing the concept in a way that
enables the (Tamarin-based) symbolic verification of the strong security and pri-
vacy requirements (cf. Sect. 4.4). Additionally, we discuss the applicability of the
proposed solution to ISO 15118-20.



146 A. Kailus et al.

5.1 Concept Overview

In this specific scenario, the already existing parties of ISO 15118 are sufficient
to map all three roles Holder, Verifier, and Issuer of the SSI process.

The Holder and the Verifier of the contract authentication process are easy
to identify in the PnC context: The Holder is the actor in possession of the
contract information. This data could be stored either in a wallet on the driver’s
smartphone, along with other credentials, or in the EV in the form of an on-board
wallet. The first option would require driver consent each time information is
accessed from the wallet, similar to [34]. Since the main goal of PnC is to enable
vehicle charging without further user interaction, it is preferable to install the
wallet in the EV. This also eliminates the need to communicate with the driver’s
smartphone. Since the verifier needs to authenticate the contracts, this role is
taken by the CP, which is already performing this task in ISO 15118.

The issuer first needs access to the original contracts to authenticate them
as credentials. This condition applies only to the eMSP, with each eMSP having
access solely to the contracts of its clients. Furthermore, the verifiers, i.e., the
CPs, should be able to trust the issuer. Since the CPs already had to trust the
eMSPs in the conventional ISO 15118, this condition is also met.

To grant multiple issuers write permissions on the Ledger to create documents
like Credential Definitions or Credentials, an additional instance is needed that
can give these permissions to the different issuers - the Steward.

PnC Context

eMSP 1.DID & Verinym-

3. Credential

\

2. Provisioning DID

©Installation /
EV 4. Charging &
Authentication

Fig. 2. Architecture Overview

Figure2 shows how these four actors interact for charging authentication
in the overall system. Initially, only the steward is authorized to write to the
ledger which reduces the number of first-level write permissions. The steward
grants second-level write permissions to new eMSPs later on. The steward writes
these permissions to the ledger in the form of a verinym (step 1), which enables
the eMSP to authenticate its contracts. A verinym is associated with the legal
identity of the identity holder [11]. Thus, the legal entity of the eMSP that enters



Self-sovereign Identity for Electric Vehicle Charging 147

into the contracts with the customers is associated with the identity on the ledger
that has write permissions for the credentials of those same contracts.

In step 2, a Provisioning DID is created for the vehicle. This is done before
the vehicle is sold. This Provisioning DID is necessary to be able to link a specific
vehicle to a contract later on. Furthermore, with the help of the public key of a
DID, it is always possible for other actors to communicate with its owner in an
encrypted way, which will also be helpful later on. Of course, this also applies to
all other DIDs used in the PnC context.

Then, in order for the necessary contract information to be authenticated
during a charging process, the information must be transferred to the vehicle.
This third step can happen once a contract is established and the vehicle has
connected to the internet (directly or via a CP). Since the vehicle may have wire-
less, but this is optional, this step can take place sometime after the Provisioning
DID has been created between the conclusion of the contract and the charging
process. For this, the vehicle requests the credentials from the respective eMSP,
which authenticates them on the ledger.

The vehicle can then authenticate itself to the CP during the charging pro-
cess in the final step 4. Authentication uses Anoncreds, i.e., zero-knowledge
proofs with Camenisch-Lysyanskaya (CL)-based credentials and paring-based
revocation [28]. In short, the EV proofs to the CPs that it possesses valid con-
tract credentials and that these credentials have not been revoked by the issuer
(without revealing the actual credentials).

The following sections describe the changes made to the message sequence of
ISO 15118 in order to create a working infrastructure for the transition to SSI
authentication.

5.2 Provisioning DID Creation

Prior to any charging process, the issuer, in this case the eMSP, must be autho-
rized to issue credentials. That is, the eMSP needs write permission to the ledger,
which requires publishing its DID (containing a public key) to the ledger. Such
a DID is often called a Verinym. The eMSP makes a request to the steward,
which is authorized to write to the ledger. This process is secured based on pre-
negotiated secret or public keys. Since both communication partners are legal
entities, it can be assumed that there is an agreement between the two in which
a secret or public key can be exchanged.

Anther setup process is the creation of a Provisioning DIDs (cf. Fig. 3), which
is a prerequisite for linking the contract and the vehicle. This process is described
in the following paragraphs:

Step 1. The EV provisioning process, starts with the production of the vehicle.
During this process, the EV creates a Provisioning DID, which enables encrypted
communication with the EV using the corresponding public key (shared via the
ledger; without requiring a traditional PKI). A part of the DID is the DID

4 https://github.com/hyperledger /indy-sdk/tree/main/docs/design /002-anoncreds.


https://github.com/hyperledger/indy-sdk/tree/main/docs/design/002-anoncreds

148 A. Kailus et al.

=

(1)

Provisioning _/ OEM
ID / Cert/DID 1. Create Provisioning DID- ﬁ
T
foag) Car )
53 Car Wallet 728" Provisioning Steward Blockchain

— @7<JD / Cert / DID|—3. conclude contract->

1
2.Send —»
<«— 3.1 contract:

Driver EMSP

Fig. 3. Provisioning DID Creation

record, which contains the public information for a given DID and must be
written to the ledger. In order to write an EV’s Provisioning DID record on
the ledger, communication towards the steward is handled by the EV’s OEM on
behalf of the EV. After connecting to the steward, the OEM starts with sending
an InitNymReq with a nonce, answered by the steward with an InitNymRes,
containing a DID for a key of the steward, the OEM’s nonce, a fresh nonce from
the steward and the OEM’s ID. The InitNymRes is signed by the steward (with
the key corresponding to the DID) and encrypted with a public key of the OEM.
The steward’s DID allows the OEM to encrypt future messages to the steward,
and the nonces are used to ensure replay-protection and subsequently a proof of
possession for the EV’s Provisioning DID. The OEM creates a Provisioning DID
(on behalf of the EV and for a provisioning key pair that is provided to the EV),
decrypts the steward message, verifies the signature, and signs the steward’s
nonce with the private key of the Provisioning DID.> The Provisioning DID
(including the corresponding public key) and the signature are sent back to the
steward, encrypted with the public key from the steward’s DID.

Steps 2 and 3. When the vehicle is purchased, the Provisioning DID, is passed
to the user so that the user can pass the Provisioning DID to the eMSP and
negotiate a contract. The handover at the time of concluding a contract with the
eMSP could be via a QR code sent to the user, who then activates the contract by
passing on the DID, but other ways are not excluded. Since a potential co-reader
does not have the private keys of the DID, he cannot prove their possession and
cannot succeed in a challenge. This completes the process until the first charging
session.

5 While it would be possible to generate the Provisioning DID key pair in the EV (sim-
ilar to [13,16]) and have the OEM only collect a signature over the steward’s nonce
from the EV (which would prevent the EV’s private key material from ever leaving
the EV), we believe that this method may result in scalability issues. Additionally,
one may assume a secure OEM to EV relation during production (in a controlled
environment), which limits the security benefit of exclusive key possession by the
EV.



Self-sovereign Identity for Electric Vehicle Charging 149

5.3 Contract Credential Installation

The following is an explanation of the general process steps for installing the Con-
tract Credential (cf. Fig. 4), which requires a Provisioning DID and an existing
contract with an eMSP. This process is modeled on the Issue Credential Protocol

from [12].
---------------- 4. Create DID---—---—---- ﬁ —
HE 7. Revocation
c iCar (4,5,8) A Data
ar Wallet : _ Blockchain

o cho

{15, SEND---oomone- Provisioning {DID%--»
ID/ Cert/DID

6. Create

EMSP Contract Cred

Fig. 4. Contract Credential Installation

Step 4 and 5. Contract credentials are required in the vehicle during a charging
process. To do this, they must first be created and installed in an EV. Similarly
to the current installation process in ISO 15118, we tunnel the necessary com-
munication between the EV and the backend via the CP. This method enhances
usability as the vehicle may not be able to connect to the Internet, and thus
to the ledger and other services, until it is plugged into a CP for the first time.
Once the connection is established, the EV starts by sending its Provisioning
DID to the eMSP. The eMSP responds with its DID and a Credential Offer,
which includes a nonce and a Credential Definition ID. The latter identifies a
credential schema, which specifies the structure of all issued credentials (of a
certain contract type) by this eMSP with all necessary and optional fields, with
public keys, and a Revocation Registry. The eMSP’s response is encrypted for the
EV based on the Provisioning DID (i.e., based on the respective Provisioning
DID public key).

Steps 6, 7, and 8. If the EV agrees to this Credential Offer, it generates a
master secret for the credential. The EV then creates a blinded master secret
for the Credential Offer and a correctness proof (as per Anoncreds definition).
Afterwards, the EV builds a Credential Request with the blinded master secret
and correctness proof and encrypts this request based on the eMSP’s DID.

The eMSP decrypts this Credential Request and uses it to create the Contract
Credentials that an EV needs in order to authenticate itself at CPs. Additionally,
the eMSP updates the revocation information, i.e., the public tails files and



150 A. Kailus et al.

the accumulator® on the ledger to include the new credential. This step can
optionally include the revocation of old credentials in case a contract has been
terminated or the terms of the contract have changed.

The Contract Credentials need to be authenticated by an authorized issuer,
which can be the eMSP, and contain all billing-relevant information as attributes.
This billing-relevant information, is at least, the eMSP’s ID, which is needed by
CPs/CPOs to identify the EV user’s eMSP for billing purposes. Additionally,
the credential attributes can include any tariff information that may be useful to
CPs/CPOs (e.g., pricing thresholds or if Vehicle to Grid (V2G) power transfer
is supported). The EV user can always decide which attributes from a Contract
Credential they want to reveal during a zero-knowledge proof.

The EV receives the signed Contract Credentials along with the credential
revocation information from the eMSP encrypted with the public key of the
Provisioning DID via the existing connection in a CreateContractCredentialRes.
The eMSP’s response additionally includes a symmetric contract key, which is
later used to securely authenticate the EV’s contract towards the eMSP for
billing purposes. The EV decrypts and verifies the received data and stores it
for later authentication during charge sessions.

5.4 Charging Process and Credential Validation

The following section will outline the changes to the charging process (cf. Fig. 5).
Specifically, the message sequence Identification, Authentication, and Authoriza-

tion from ISO 15118 is considered.

Car Wallet Car : Blockchain

— 12. Billing >
Information

cp CPO EMSP

9. Send Proof Req

Fig. 5. Credential Validation during the Charging Process

Step 9. Figure 5 shows the authentication of the vehicle by the CP. In ISO 15118,
service parameters such as the payment method are negotiated in the Service-
DiscoveryReq/-Res. The authentication method now becomes another service
parameter, making Contract Proof Identification Mode a third option besides the

5 https://hyperledger-indy.readthedocs.io/projects /hipe/en/latest /text /0011-cred-
revocation/README.html.


https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-revocation/README.html
https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-revocation/README.html

Self-sovereign Identity for Electric Vehicle Charging 151

existing modes (e.g., PnC). In this Contract Proof message sequence, Identifica-
tion, Authentication, and Authorization messages from ISO 15118 are changed
after the PaymentServiceSelectionRes.

By sending a RequestProofReq/-Res the EV receives a proof request from
the CP. The CP’s proof request includes a nonce and specifies which individual
credential attributes the CP expects in its role as verifier, not necessarily all the
credentials/attributes issued to the EV by the eMSP.

Step 10. From the proof request, the EV then creates a zero-knowledge proof
for the requested attributes and a proof of non-revocation using its credential
master secret and the CP’s nonce. The proofs guarantee to a verifier that the
EV possesses valid non-revoked credentials for the identified attributes. The EV
additionally uses its symmetric contract key to authenticate its contract towards
the eMSP by generating an HMAC over a hash of the CP’s proof request, a
contract identifier, and a timestamp. The hashed proof request is used to bind the
contract authentication data to the current CP/session, the contract identifier
is used by the eMSP to identify the correct contract and symmetric contract
key, and the timestamp is used to prevent replays. The contract authentication
data is encrypted for the eMSP and sent together with the proofs to the CP in
a ValidateContractProofReq message.

Step 11. The CP can validate the zero-knowledge proof for the credential
attributes by using the eMSP’s public key and can validate the revocation status
of the corresponding credential by using the eMSP’s public tails file and the cor-
responding accumulator value from the ledger. If all verifications are successful,
the CP responds with a ValidateContractProofRes to the EV. Thereupon, the
charging process can continue as described in ISO 15118.

Step 12. Finally, the encrypted contract authentication data (along with other
billing relevant data, e.g., meter values) is sent from the CP to its CPO, who
can forward this data to the corresponding eMSP. The eMSP can decrypt the
contract authentication data and identify the correct contract. Hence, the usual
billing relations are still possible, i.e., the CPO can bill the eMSP and the eMSP
can bill the EV user. However, the CP/CPO can no longer identify the specific
EV user and the eMSP can no longer identify the specific charging location.

5.5 Integration into ISO 15118-20

While ISO 15118-2 is still the prominent edition of the protocol today, we
already consider the integration of our solution into ISO 15118-20, which can
be expected to gain increased adoption in the future. We identify several rel-
evant changes to the credential installation and charge authorization processes
with ISO 15118-20 as follows: (i) updated cipher suites (e.g., from 128 bit AES
to 256 bit AES), (i4) mutual authentication during the TLS handshake (instead
of unilateral CP authentication), and (%) the option to install multiple different
contract credentials into one EV (e.g., for different eMSP charging contracts).



152 A. Kailus et al.

We argue that the proposed solution is also applicable for ISO 15118-20 as
follows: (i) our solution is independent of specific cryptographic algorithms, (7i)
the generic TLS based authentication (without application-specific requirements
unlike the EV’s application-layer authentication) can be replaced with generic
DID-based approaches (to prevent the need for a conventional PKI) whereby the
EV’s authentication should again use Anoncreds (to not undermine the gained
application-layer privacy), and (i) the installation of multiple contract creden-
tials is possible by repeating the process of Sect.5.3.

6 Implementation

To demonstrate the feasibility of the concept, the contract authentication
described therein was implemented during the charging process together with
all preceding initiation steps such as the creation of the DIDs or the installation
of contract credentials. Our implementation is based on the ISO 15118 reference
implementation RISE-V2G [45]. In order to compare the concept with the actual
state of the standard, we compare our implemented methods with the default
RISE-V2G implementation.

The reference implementation covers all necessary features to establish com-
parability to the status quo and at the same time serve as a basis for the imple-
mentation of the concept. The project Hyperledger Indy” provides an imple-
mentation for all necessary SSI-operations, thus the Indy SDK® was chosen to
be integrated into our prototype. The reference implementation was extended
by the steward and the eMSP in addition to the existing services EV and CP.
They are responsible for the detailed handling of the schemas, credential def-
initions, and credentials and interact with the other actors. Our prototypical
implementation focuses on the message sequence Identification, Authentication,
and Authorization and the associated communication between EV and the other
services as described in the concept. The actual accounting and communication
between the secondary actors is not part of the implementation, as this is not
in the scope of ISO 15118. Additionally, the eMSP onboarding, its creation of
the three data structures Credential Schema, Credential Definition, and Revo-
cation Registry for the credentials of its customers’ contracts and installation of
Provisioning DID are also realized in the implementation.

The concept provides for the eMSP to use the secure channel established by
the exchanged DID to create a WriteVerinymReq. In the prototype implemen-
tation, however, communication is still secured via the old certificate infrastruc-
ture, as this has only been extended to include the EV authentication. The CP
continues to authenticate itself via certificates.

7 Evaluation

In this section, we evaluate the proposed/implemented solution. Specifically,
in Sect.7.1 we discuss the performance results based on our implementation

" Hyperledger, 2021, https://www.hyperledger.org.
8 Indy SDK, 2021, https://github.com/hyperledger/indy-sdk+#libindy-wrappers.


https://www.hyperledger.org
https://github.com/hyperledger/indy-sdk#libindy-wrappers

Self-sovereign Identity for Electric Vehicle Charging 153

from Sect. 6, in Sect. 7.2 we describe our Tamarin-based symbolic security and
privacy proofs, and in Sect. 7.3 we discuss how the concept addresses the defined
requirements from Sect. 4.

7.1 Performance Measurements

Regarding performance, we evaluate the computational- and communication
overhead of the proposed solution in comparison to the default ISO 15118 pro-
cesses as implemented by RISE-V2G. Additionally, we verify that the incurred
overhead remains within the existing timing and size constraints of the ISO 15118
standard (relevant constraints are the same for ISO 15118-2 and ISO 15118-20).
For both types of overhead, the main changes are within the credential installa-
tion and charge authorization processes. Details are shown in Table 1.

Table 1. Duration and Size of Charging Session Messages for both Implementations

Message Name RISE-V2G SST Impl.

time [ms| size [byes| time [ms] size [byes]

Credential Installation
CertificatelnstallationReq 296.0 811 - -

CertificatelnstallationRes 32.8 3638 - -
GetCredOfferReq - - 4.0 106
GetCredOfferRes - - 44.613 6710
CreateContractCredentialReq - - 134.429 2185
CreateContractCredentialRes - - 2603.864 5961
Charge Authorization

PaymentDetailsReq 649.8 1452 - -
PaymentDetailsRes 73.6 37 - -
AuthorizationReq 129.6 13 - -
AuthorizationRes 7.5 15 - -
RequestProofReq - - 65.3 58
RequestProofRes - - 3.6 266
ValidateContractProofReq - - 282.302 7281
ValidateContractProofRes - - 136.3 55

The communication overhead of the proposed solution for credential instal-
lation messages is 14,962 bytes in total. The default RISE-V2G method requires
4,449 bytes for credential installation. Regarding charge authorization, the mes-
sages of the proposed solution are 7,660 bytes in total and the messages of the
default RISE-V2G method are 1,517 bytes. For comparison, based on our mea-
surements, the total communication overhead of a full 1-h default RISE-V2G



154 A. Kailus et al.

charge session with a credential installation and a charge status message inter-
val of 10s is roughly 20,000 bytes. Notably, the only limit on message sizes of
the ISO 15118 standard is a result of its 4 byte payload length field and is
4,294,967,295 bytes (|21], Sect. 7.8.3). Hence, we argue, that the increased over-
head of the proposed solution is still acceptable.

For computational overhead, all measurements were performed 1000 times
and we report the respective average times (always including processing and
message transfer). Regarding credential installation, the mean time of the pro-
posed solution was 2786.9 ms compared to 328.8 ms with the default RISE-V2G
method. Regarding charge authorization, the mean time of the proposed solu-
tion was 487.502 ms compared to 860.5 ms with the default RISE-V2G method
(mostly due to certificate path validations). The results show good performance
for the proposed method, especially considering that credential installation is
rarely performed (only if a new contract is concluded or old credentials renewed).
Notably, ISO 15118 defines relevant timeouts as: 40 s for generating a certificate
installation request, 5s for receiving a certificate installation response, 40s for
requesting a charge authorization, and 2s for verifying the authorization ([21],
Sect. 8.7.2). Hence, the proposed solution can still meet all relevant limits.

9

7.2 Security and Privacy Analysis with Tamarin

We analyze the security of the proposed solution in the symbolic model using the
Tamarin prover [35] and the corresponding files are provided online.!? Tamarin is
a state-of-the-art tool for automated security protocol analysis. By default, anal-
ysis is performed in the symbolic model, i.e., assuming a Dolev-Yao adversary
[5] with full control over the network who cannot break cryptographic primitives
without knowing the respective private key (cf. adversary model in Sect. 4.2).

With Tamarin, protocols are specified using a set of rules, which define all
relevant communication and processing steps of the protocol. Additionally, secu-
rity requirements are defined as trace properties (lemmas), which need to hold
for all possible execution traces of the protocol, i.e., all traces that can be built
with the defined rules. Tamarin performs an exhaustive search for a trace that
violates the defined requirements. If a trace is found, this trace serves as a coun-
terexample (a specific attack path that violates the requirement). If no trace is
found, the security requirement is proven to be satisfied by the defined protocol.

Furthermore, Tamarin enables the verification of observational equivalence
properties, which can be used to show that an adversary cannot distinguish
between two protocol runs. Observational equivalence is especially useful in order
to verify privacy properties, e.g., by proving anonymity in EV charging by show-
ing that an adversary cannot distinguish between two charge authorizations of
different EVs.

9 The measurements were performed on a Lenovo Thinkpad T480 with Intel® Core™
i5-8250U CPU @ 1.60 GHz x 8, 15.5 GiB Ram, running Ubuntu 20.04.3 LTS 64-bit.
10" https://code.fbi.h-da.de/seacop/SSI-PnC-Tamarin.


https://code.fbi.h-da.de/seacop/SSI-PnC-Tamarin

Self-sovereign Identity for Electric Vehicle Charging 155

Security Proofs.

The security requirements from Sect. 4.4 require authentication between differ-
ent actors over different data. The most commonly used notion to prove strong
authentication properties is defined in [33], namely injective agreement (prevent-
ing spoofing, replay, etc.). This property is defined as follows:

Definition 1 (Injective Agreement [33]). A protocol guarantees to an ini-
tiator A injective agreement with a responder B on a set of data items ds if,
whenever A (acting as initiator) completes a run of the protocol, apparently with
responder B, then B has previously been running the protocol, apparently with
A, and B was acting as responder in his run, and the two agents agreed on the
data values corresponding to all the variables in ds, and each such run of A
corresponds to a unique run of B.

Using our defined Tamarin model, (See footnote 10) we successfully verify
the following security properties based on the notion of injective agreement (cf.
Definition 1). For this, we assume one steward and the ledger is modeled as a
secure storage, where only authorized entities can write but everyone can read.
Communication with the ledger is assumed to be a secure channel as specifics of
this communication are not part of our concept, but instead standardized by the
respective ledger specification. Additionally, we assume that the long-term key of
all actors in a specific protocol run are secure since otherwise, attacks are trivially
possible (e.g., if an EV’s private provisioning key is leaked to an adversary, this
adversary can spoof the affected EV towards an eMSP for contract credential
installation). However, in order to keep the needed assumptions as weak as possi-
ble, other entities of the same types that are not directly involved in the protocol
run can be compromised. For normal signatures/encryptions we use the built-in
Tamarin functions. The EV zero-knowledge credential proofs are modeled with
custom functions, whereby the EV can create a zero-knowledge proof based on
the installed credential and its master secret, which the CP can verify with the
eMSP’s public key and revocation can be verified via a simple request over an
accumulator in the ledger. However, zero-knowledge proofs are modeled without
specific cryptographic details, since, in the symbolic model, cryptographic func-
tions are anyway assumed to be secure. Besides the injective agreement-based
lemmas to proof the desired security properties, our Tamarin files (See footnote
10) also includes lemmas to verify the correctness of the defined model. That
is, correctness lemmas are included to verify that the intended processes can be
implemented with the defined rules and without adversary intervention in order
to prevent the security properties from being trivially met by an incorrect model
(e.g., all possible authentications are trivially secure if no authentication is pos-
sible at all). In the following, we describe the verified security properties. Note
that the following paragraphs only provide intuitive descriptions of the verified
properties as the full proofs are automatically generated with the Tamarin tool
based on the defined models. The full formal definitions are part of our Tamarin
models (provided online (See footnote 10) for reproducibility).



156 A. Kailus et al.

1 lemma auth emsp steward verinym:

2 "AIll Steward S_DID EMSP Verinym DID #i

3 CommitStewardVerinym (Steward , S DID, EMSP, Verinym DID)
i

4 ~ ( BEx #j .

5 RunningEMSPVerinym (EMSP, S DID, Verinym DID) @j

6 & (#i#i)

7 & not( Ex Steward2 EMSP2 S DID2 #i2

8 CommitStewardVerinym (Steward2, S _DID2, EMSP2,

Verinym DID) i2

9 & not(#i2-#1i) ) )

10 | ( Ex RevealEvent Entity #kr

11 KeyReveal (RevealEvent , Entity) kr

12 & Honest (Entity) i)

Listing 1.1. Injective Agreement Lemma in Tamarin

Secure Setup (eMSP to Steward). Regarding the secure setup (SR1), we verify
that an eMSP and a steward (identified by their DID) injectivly agree on the
eMSP’s verinym DID (and corresponding public key) during the onboarding
process. That is, whenever a steward S accepts an DID for writing on the ledger,
apparently from an eMSP FE, E has previously sent this DID to S and both
actors agree on the content of the DID. Additionally, each accepted DID by S
corresponds to a unique request from E. The only allowed exception is, if the
long-term key of one of the parties involved in a specific protocol run was leaked.

The Tamarin lemma, which models the Secure Setup (eMSP to steward)
security property is shown as an example in Listing 1.1. Hereby, lines 2—6 indicate
that for every accepted eMSP verinym DID by as steward (identified by S_DID)
at time i, there exists an event where the same eMSP has sent this verinym
DID to the same steward at time j and j was before i. Lines 7-9 models the
uniqueness property of the acceptance by the steward, i.e., it says that there
cannot exist another protocol run between the same or different actors (steward2
and EMSP2) where the same verinym DID is accepted. Lines 10-12 model the
exception, that the security property can be broken if the long-term keys of one
of the actors involved in the protocol (i.e., the actor was assumed honest at time
i; line 12) run was revealed.

Secure Setup (Cont.) Regarding the secure setup (SR1), we additionally verify
that a steward and an eMSP injectivly agree on the steward’s DID public key
during the onboarding process. Furthermore, we verify mutual injective agree-
ment between OEM and steward during the onboarding process of an OEM (see
the full Tamarin models (See footnote 10) for details).

Secure Contract Credential Installation. Regarding the secure credential instal-
lation (SR2), we verify that an EV and an eMSP (identified by their DID)



Self-sovereign Identity for Electric Vehicle Charging 157

injectivly agree on a contract credential request and response respectively dur-
ing the installation process (see the full Tamarin models (See footnote 10) for
details). The only allowed exceptions are: (i) if the long-term key of one of the
parties involved in a specific installation protocol run was leaked or (%i) if the
long-term keys of a previous OEM to steward setup were leaked.

Secure Charge Authentication and Authorization. Regarding the secure charge
authentication (SR3), we verify that an EV and a CP injectivly agree on an EV’s
charge request during the authentication process. Additionally, for secure charge
authorization/billing (SR4), we verify that an EV and an eMSP injectivly agree
on an EV’s charge authorization data for the billing process (see the full Tamarin
models(See footnote 10) for details). The only allowed exceptions are: (i) if the
long-term key of one of the parties involved in a specific installation protocol
run was leaked or (7i) if the long-term keys of a previous OEM to steward setup
were leaked or (%ii) if the long-term keys of a previous credential installation
were leaked.

Privacy Proofs.

For our privacy analysis, we mainly focus on the verification of symbolic unlinka-
bility properties. Formally, unlinkability is commonly defined as the adversary’s
inability to distinguish between a scenario in which the same user is involved
in multiple protocol runs with a scenario that involves different users per pro-
tocol run [3]. This kind of unlinkability definition has been shown as usable for
an automated analysis with Tamarin (based on Tamarin’s observational equiva-
lence feature) in the EV charging context by [27]. Specifically, we use Tamarin to
prove observational equivalence for a scenario with two protocol runs that may
be initiated by the same EV or by different EVs. Our models assume Honest-
but-Curious Operators (cf. adversary model in Sect.4.2) and we use separate
Tamarin models per property for simplicity. The following descriptions provide
an intuitive description of the verified properties and full formal definitions can
be found as part of the provided Tamarin models. (See footnote 10)

Non-traceability. Regarding preventing the creation of a movement profiles
(PR1), we verify unlinkability of EVs/users based on their billing relevant data
(as received by the backend). Specifically, we show that for two honest EVs
EV;i and EVj, the (Honest-but-Curious) adversary cannot distinguish between
the scenario where charge billing data is received for an (authorized) session of
EV; and EV5 each and the scenario where charge billing data is received for
two (authorized) session of E'V;. Charge session may be at the same or differ-
ent locations to show that linkability across locations (i.e., traceability) is not
possible.

Non-linkability. Regarding the non-linkability of EV users (PR2), we verify
unlinkability of EVs/users based on their authentication/authorization data
(as generated by the EV). Analogously to non-traceability, we show that the



158 A. Kailus et al.

(Honest-but-Curious) adversary cannot distinguish between a scenario with two
authorizations of different EVs and a scenario with two authorizations of the
same EV.

7.3 Discussion of Requirements

The functional requirements are addressed by the concept design as follows:
Credential installation and charge authorization are still possible without user
interaction FR1, which ensures user-friendliness. Contract authentication via SSI
can be negotiated via the ServiceDiscoveryReq/-Res messages FR2. All SSI roles
are covered by actors from the ISO 15118 ecosystem as discussed in Sect. 5.1 FR3.
Vehicles manage their contract credential in their own wallet FR4. All contract
credentials contain the same core elements as discussed in Sect. 5, which allows a
CP to authenticate the contract of different eMSPs FR5. Credential installation
can be delayed until the first charging session FR6 using the messages described
in Sect. 5.3. Communication of the EV (e.g., for credential installation or reading
data of the ledger) can still be tunneled via the CP FR7 using the same concepts
as for the default ISO 15118 method (e.g., credential installation messages are
simply forwarded to the backend in Base64 encoding via OCPP 2.0 [38]). We
judge the additional overhead to be acceptable FR8 as discussed in Sect. 7.1.

The security requirements SR1-SR4 are addressed as discussed in Sect. 7.2.
In short, the security requirements are shown to be met via symbolic proofs
using the Tamarin tool. The corresponding models for automated proof genera-
tion are provided online. (See footnote 10) All properties are verified in roughly
30 min on a standard laptop.'' The published repository includes the defined
model/lemmas, the used oracles (for performance such that the model analysis
terminates within a reasonable time frame), and instructions on running the
models (for reproducibility of the formal analysis).

Analogously, the privacy requirements PR1 and PR2 are addressed as dis-
cussed in Sect. 7.2 and the models for automated proof generation are provided
online. (See footnote 10) The concept primarily prevents linkability /traceability
through the authentication process at the CPO/CP. However, since traditional
payment channels are still supported and thus charging sessions must be associ-
ated by the eMSP with the respective customers, the eMSP can still link them.
This could be fixed via anonymous payment methods, which is out-of-scope for
this paper. Additionally, since we focus on the application layer authorization
mechanism, linkability based on communication meta data is not addressed by
the presented solution. For example, a CPO/CP could potentially track specific
EVs based on their MAC addresses, which could be prevented by generic solu-
tions such as MAC address randomization (which is already used by some EV
OEMs such as Volkswagen Group [23]). Furthermore, since colluding operators
are excluded in the adversary model (cf. Sect.4.2), the privacy guarantees can
be violated if the respective actors collude (e.g., collusion between an eMSP and
a CPO to link charge sessions to a location). Colluding operators are outside

11 Using a Lenovo ThinkPad T14 Gen 1 with 16GB RAM.



Self-sovereign Identity for Electric Vehicle Charging 159

the scope of this paper (which focuses on a privacy-by-design solution for charge
authorization to minimize privacy risks) but may for example be enforced by
regulations.

8 Conclusion

In this paper, we propose an approach for using SSIs as trusted credentials for
EV charging authentication and authorization in ISO 15118. By using verifiable
credentials with zero-knowledge proofs, our solution addresses the privacy prob-
lems of ISO 15118 providing unlinkability of charging sessions. Furthermore, our
solution uses a decentralized distributed ledger and does not require a complex
centralized PKI anymore. Our prototypical implementation and performance
evaluation show that the computational and communication overhead of our
solution is relatively low and should be acceptable for a real-world implemen-
tation. Our formal analysis using Tamarin shows that all required security and
privacy properties hold, i.e., still guarantee authentication properties between
different actors while preserving the EV user’s privacy to the highest possible
extent (only eMSP can link a user’s charging events for billing purposes). Future
work could expand our concept to the authentication of all PnC actors, especially
CPs.

Acknowledgements. This research work has been partly funded by the German Fed-
eral Ministry of Education and Research and the Hessian Ministry of Higher Education,
Research, Science and the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE and the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - project number 503329135.

References

1. Bradbury, M., Taylor, P., Atmaca, U.l., Maple, C., Griffiths, N.: Privacy challenges
with protecting live vehicular location context. IEEE Access 8, 207465-207484
(2020)

2. ChargePoint, DigiCert, Eonti: Practical considerations for implementation and
scaling iso 15118 into a secure ev charging ecosystem, May 2019. https://www.
chargepoint.com/files/15118whitepaper.pdf

3. Delaune, S., Hirschi, L.: A survey of symbolic methods for establishing equivalence-
based properties in cryptographic protocols. J. Log. Algebraic Methods Programm.
87, 127-144 (2017)

4. DIN Standards Committee Road Vehicle Engineering: Electromobility - Digital
communication between a d.c. EV charging station and an electric vehicle for
control of d.c. charging in the Combined Charging System. DIN SPEC 70121:2014—
12, Deutsches Institut fiir Normung (DIN) (12 2014)

5. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198-208 (1983)

6. ElaadNL: EV related protocol study, January 2017. https://www.elaad.nl/
research /ev-related-protocol-study/


https://www.chargepoint.com/files/15118whitepaper.pdf
https://www.chargepoint.com/files/15118whitepaper.pdf
https://www.elaad.nl/research/ev-related-protocol-study/
https://www.elaad.nl/research/ev-related-protocol-study/

160

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Kailus et al.

ElaadNL: Exploring the public key infrastructure for iso 15118 in the ev charging
ecosystem, November 2018. https://www.elaad.nl/news/publication-exploring-
the-public-key-infrastructure-for-iso-15118-in-the-ev-charging-ecosystem/

Falk, R., Fries, S.: Electric vehicle charging infrastructure security considerations
and approaches. In: Proceedings of INTERNET, pp. 5864 (2012)

Fazouane, M., Kopp, H., van der Heijden, R.W., Le Métayer, D., Kargl, F.: For-
mal verification of privacy properties in electric vehicle charging. In: Piessens, F.,
Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 17-33. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-15618-7 2

Firoozjaei, M.D., Ghorbani, A., Kim, H., Song, J.: EVChain: a blockchain-based
credit sharing in electric vehicles charging. In: 2019 17th International Conference
on Privacy, Security and Trust (PST). IEEE, August 2019. https://doi.org/10.
1109/PST47121.2019.8949026

Foundation, H.: Getting started with libvex. https://github.com/hyperledger/
indy-sdk/blob/master/vex/docs/getting-started /getting-started.md (2021).
Accessed 28 Feb 2023

Foundation, H.: Hyperledger aries rfc 0036 (2021). https://github.com/
hyperledger/aries-rfcs/blob/main/features/0036-issue-credential/ README.

md. Accessed 28 Feb 2023

Fuchs, A., Kern, D., Krauf, C., Zhdanova, M.: HIP: HSM-based identities for plug-
and-charge. In: Proceedings of the 15th International Conference on Availability,
Reliability and Security, ARES 2020, Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3407023.3407066. https://doi.org/10.1145/
3407023.3407066

Fuchs, A., Kern, D., Krauf, C., Zhdanova, M.: Securing electric vehicle charging
systems through component binding. In: Casimiro, A., Ortmeier, F., Bitsch, F.,
Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12234, pp. 387—401. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-54549-9 26

Fuchs, A., Kern, D., Krauf, C., Zhdanova, M.: TrustEV: trustworthy electric vehi-
cle charging and billing. In: Proceedings of the 35th ACM/SIGAPP Symposium
on Applied Computing SAC 2020. ACM (2020). https://doi.org/10.1145/3341105.
3373879

Fuchs, A., Kern, D., Krauf, C., Zhdanova, M., Heddergott, R.: HIP-20: Integration
of vehicle-HSM-generated credentials into plug-and-charge infrastructure. In: Com-
puter Science in Cars Symposium. CSCS ’20, Association for Computing Machin-
ery, New York (2020). https://doi.org/10.1145/3385958.3430483, https://doi.org/
10.1145/3385958.3430483

Han, W., Xiao, Y.: Privacy preservation for V2G networks in smart grid: a survey.
Comput. Commun. 91, 17-28 (2016)

Hoess, A., Roth, T., Sedlmeir, J., Fridgen, G., Rieger, A.: With or without
blockchain? towards a decentralized, ssi-based eroaming architecture. In: Hawaii
International Conference on System Sciences (2022)

Hofer, C., Petit, J., Schmidt, R., Kargl, F.: Popcorn: privacy-preserving charging
for emobility. In: Proceedings of the 2013 ACM Workshop on Security, Privacy &
Dependability for Cyber Vehicles, pp. 37-48 (2013)

IEC: Electric vehicle conductive charging system - Part 1: General requirements.
IEC Standard 61851-1:2017, International Electrotechnical Commission (2017)
ISO/IEC: Road vehicles - Vehicle-to-Grid Communication Interface - Part 2: Net-
work and application protocol requirements. ISO Standard 15118-2:2014, ISO,
Geneva, Switzerland, April 2014


https://www.elaad.nl/news/publication-exploring-the-public-key-infrastructure-for-iso-15118-in-the-ev-charging-ecosystem/
https://www.elaad.nl/news/publication-exploring-the-public-key-infrastructure-for-iso-15118-in-the-ev-charging-ecosystem/
https://doi.org/10.1007/978-3-319-15618-7_2
https://doi.org/10.1109/PST47121.2019.8949026
https://doi.org/10.1109/PST47121.2019.8949026
https://github.com/hyperledger/indy-sdk/blob/master/vcx/docs/getting-started/getting-started.md
https://github.com/hyperledger/indy-sdk/blob/master/vcx/docs/getting-started/getting-started.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0036-issue-credential/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0036-issue-credential/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0036-issue-credential/README.md
https://doi.org/10.1145/3407023.3407066
https://doi.org/10.1145/3407023.3407066
https://doi.org/10.1145/3407023.3407066
https://doi.org/10.1007/978-3-030-54549-9_26
https://doi.org/10.1145/3341105.3373879
https://doi.org/10.1145/3341105.3373879
https://doi.org/10.1145/3385958.3430483
https://doi.org/10.1145/3385958.3430483
https://doi.org/10.1145/3385958.3430483

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Self-sovereign Identity for Electric Vehicle Charging 161

ISO/IEC: Road vehicles - vehicle-to-grid communication interface - part 2: Net-
work and application protocol requirements. ISO/DIS 15118-2:2018, International
Organization for Standardization, Geneva, Switzerland, December 2018
Kaiser, C.: Plug in and charge aka autocharge aka plug & charge
(2022). https://www.linkedin.com/pulse/plug-charge-aka-autocharge-chris-kaiser.
Accessed 26 Sept 20213
Kern, D., Krauf, C.: Analysis of e-mobility-based threats to power grid resilience.
In: Proceedings of the 5th ACM Computer Science in Cars Symposium, pp. 1-12
2021
%(ern,)D., Kraufs, C.: Detection of e-mobility-based attacks on the power grid. In:
2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 352-365. IEEE (2023)
Kern, D., Krau, C., Lauser, T., Alnahawi, N., Wiesmaier, A., Niederhagen,
R.: Quantumcharge: Post-quantum cryptography for electric vehicle charging. In:
International Conference on Applied Cryptography and Network Security, pp. 85—
111. Springer (2023).https://doi.org/10.1007/978-3-031-33491-7 4
Kern, D., Lauser, T., Krauf, C.: Integrating privacy into the electric vehicle charg-
ing architecture. Proc. Privacy Enhancing Technol. 3, 140-158 (2022)
Khovratovich, D., Lodder, M.: Anonymous credentials with type-3 revoca-
tion (2018). https://github.com/hyperledger/indy-crypto/blob/master /libindy-
crypto/docs/AnonCred.pdf
Knirsch, F., Unterweger, A., Engel, D.: Privacy-preserving blockchain-based elec-
tric vehicle charging with dynamic tariff decisions. Comput. Sci.-Res. Dev. 33(1-2),
71-79 (2018)
Langer, L., Skopik, F., Kienesberger, G., Li, Q.: Privacy issues of smart e-mobility.
In: IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Soci-
ety, pp. 6682-6687. IEEE (2013)
Li, H., Dan, G., Nahrstedt, K.: Portunes: privacy-preserving fast authentication
for dynamic electric vehicle charging. In: 2014 IEEE International Conference on
Smart Grid Communications (SmartGridComm), pp. 920-925. IEEE (2014)
Li, H., Déan, G., Nahrstedt, K.: Portunes+: privacy-preserving fast authentication
for dynamic electric vehicle charging. IEEE Trans. Smart Grid 8(5), 2305-2313
2016
éowe,)G.: A hierarchy of authentication specifications. In: Proceedings 10th Com-
puter Security Foundations Workshop, pp. 31-43. IEEE (1997)
Lux, Z.A., Thatmann, D., Zickau, S., Beierle, F.: Distributed-Ledger-based
Authentication with Decentralized Identifiers and Verifiable Credentials. In: 2020
2nd Conference on Blockchain Research & Applications for Innovative Networks
and Services (BRAINS). IEEE, Sept 2020. https://doi.org/10.1109/BRAINS49436.
2020.9223292
Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696-701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48
Monteuuis, J.P., Petit, J., Zhang, J., Labiod, H., Mafrica, S., Servel, A.: Attacker
model for connected and automated vehicles. In: ACM COMPUTER SCIENCE
IN CARS SYMPOSIUM (2018)
Mustafa, M.A., Zhang, N., Kalogridis, G., Fan, Z.: Roaming electric vehicle charg-
ing and billing: an anonymous multi-user protocol. In: 2014 IEEE International
Conference on Smart Grid Communications (SmartGridComm), pp. 939-945.
IEEE (2014)


https://www.linkedin.com/pulse/plug-charge-aka-autocharge-chris-kaiser
https://doi.org/10.1007/978-3-031-33491-7_4
https://github.com/hyperledger/indy-crypto/blob/master/libindy-crypto/docs/AnonCred.pdf
https://github.com/hyperledger/indy-crypto/blob/master/libindy-crypto/docs/AnonCred.pdf
https://doi.org/10.1109/BRAINS49436.2020.9223292
https://doi.org/10.1109/BRAINS49436.2020.9223292
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

162

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

A. Kailus et al.

OCA: Open Charge Point Protocol 2.0.1 - Part 2 - Specification. Open stan-
dard, Open Charge Alliance, Arnhem, Netherlands, March 2020. https://www.
openchargealliance.org/protocols/ocpp-201/

Open Fastcharging Alliancey: Autocharge (2017). https://github.com/
openfastchargingalliance/openfastchargingalliance /blob /master /autocharge-
final.pdf. Accessed 27 Sept 2023

Paverd, A., Martin, A., Brown, I.: Modelling and automatically analysing privacy
properties for honest-but-curious adversaries. Technical report (2014)

Reed, D., Sporny, M., Longley, D., Allen, C., Grant, R., Sabadello, M.: Decentral-
ized Identifiers (DIDs) v1.0 W3C Candidate Recommendation Draft, May 2021
Richter, D., Anke, J.: Exploring potential impacts of self-sovereign identity on
smart service systems: an analysis of electric vehicle charging services. In: Business
Information Systems, pp. 105-116 (2021)

Sabadello, M., et al.: Introduction to DID Auth. Rebooting the Web of Trust VI,
July 2018

Sporny, M., Longley, D., Chadwick, D.: Verifiable Credentials Data Model v1.1.
(2021). https://w3.org/TR/vc-data-model /. Accessed 23 Nov 2021

V2G Clarity: RISE-V2G (2017). https://github.com/SwitchEV /RISE-V2G.
Accessed 29 Nov 2021

VDE: Handling of certificates for electric vehicles, charging infrastructure and back-
end systems within the framework of iso 15118. VDE-AR-E 2802-100-1:2019-12,
December 2019

Won, J., Singla, A., Bertino, E., Bollella, G.: Decentralized public key infrastruc-
ture for internet-of-things. In: MILCOM 2018-2018 IEEE Military Communica-
tions Conference (MILCOM), pp. 907-913. IEEE (2018)

Xu, S., Chen, X., He, Y.: EVchain: an anonymous blockchain-based system for
charging-connected electric vehicles. Tsinghua Sci. Technol. 26(6), December 2021.
https://doi.org/10.26599/TST.2020.9010043

Zelle, D., Springer, M., Zhdanova, M., Kraufs, C.: Anonymous charging and billing
of electric vehicles. In: Proceedings of the 13th International Conference on Avail-
ability, Reliability and Security, pp. 1-10 (2018)

Zhao, T., Zhang, C., Wei, L., Zhang, Y.: A secure and privacy-preserving payment
system for electric vehicles. In: 2015 IEEE International Conference on Communi-
cations (ICC), pp. 7280-7285. IEEE (2015)


https://www.openchargealliance.org/protocols/ocpp-201/
https://www.openchargealliance.org/protocols/ocpp-201/
https://github.com/openfastchargingalliance/openfastchargingalliance/blob/master/autocharge-final.pdf
https://github.com/openfastchargingalliance/openfastchargingalliance/blob/master/autocharge-final.pdf
https://github.com/openfastchargingalliance/openfastchargingalliance/blob/master/autocharge-final.pdf
https://w3.org/TR/vc-data-model/
https://github.com/SwitchEV/RISE-V2G
https://doi.org/10.26599/TST.2020.9010043

“Hello? Is There Anybody in There?”
Leakage Assessment of Differential
Privacy Mechanisms in Smart Metering
Infrastructure

Soumyadyuti Ghosh!®%), Manaar Alam?, Soumyajit Dey",
and Debdeep Mukhopadhyay!+2

! Indian Institute of Technology Kharagpur, Kharagpur, India

soumyadyuti.ghosh@iitkgp.ac.in, {debdeep,soumya}@cse.iitkgp.ac.in

2 New York University, Abu Dhabi, United Arab Emirates
alam.manaar@nyu.edu

Abstract. Smart meters provide fine-grained power usage profiles of
consumers to utility providers to facilitate various grid functionali-
ties such as load monitoring, real-time pricing, etc. However, informa-
tion leakage from these usage profiles can potentially reveal sensitive
aspects of consumers’ daily routines and their home absence, as state-
of-the-art metering strategies lack adequate security and privacy mea-
sures. Among various privacy-preserving mechanisms, Differential Pri-
vacy (DP) is widely adopted in the literature due to its solid mathe-
matical foundation. Nevertheless, the privacy-utility trade-off problem
in smart metering systems limits the amount of privacy protection vari-
ous instances of DP mechanisms can provide. We demonstrate that the
constraints imposed by the privacy-utility trade-off make it possible to
launch empirical statistical attacks on the differential private metering
data. In this paper, we propose a novel statistical methodology, con-
structed using the principles of t-test based hypothesis testing, to dis-
cover the absence of a consumer in their household upon observing real-
time differentially private output traces of sensitive meter readings over
successive sampling windows. Additionally, we formally establish that
this trade-off is an inherent characteristic of the smart metering prob-
lem, implying that any mechanism adhering to this trade-off is suscep-
tible to our attack. We conduct an extensive experimental evaluation
using a real-world metering dataset to validate our proposed methodol-
ogy. We evaluate our scheme against six state-of-the-art DP mechanisms
employed in metering infrastructure. Our results demonstrate that the
proposed approach attains a success rate exceeding 90% within a mere
six-hour observation interval, highlighting its effectiveness in revealing
vulnerabilities within established DP implementations.

Keywords: Differential Privacy + Laplacian Mechanism - Gaussian
Mechanism - Privacy-Utility Trade-off - t-test based Hypothesis Testing

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Popper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 163-189, 2024.
https://doi.org/10.1007/978-3-031-54776-8_7

®

Check for
updates


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_7

164 S. Ghosh et al.

1 Introduction

The smart grid, as a prominent Cyber-Physical System (CPS), encompasses
power generation and distribution networks, facilitated by a bi-directional com-
munication infrastructure. The real-time consumption profiles provided by the
network are communicated to various entities in the grid to perform diverse opera-
tions such as automated demand-response, real-time billing, failure detection, etc.
Such primitives require advanced metering infrastructures that sample and trans-
mit the power consumption data of consumers using smart meters [23]. Though
these fine-grained consumption data are crucial for metering-enabled grid dis-
patch and control systems, it has been revealed that analyzing meter reading
streams can provide significant insights into appliances’ usage patterns, running
time, “ON/OFF” status [2,29]. This analysis can potentially result in signifi-
cant privacy breaches, exposing sensitive information about customers’ daily life
behaviors and home absences [2]. In such scenarios, Differential Privacy (DP) has
received much attention as it provides a solid mathematical foundation for estab-
lishing and protecting the privacy of individual user [12-15,17]. One of the fun-
damental reasons for the appeal of DP is its ability to provide privacy guaran-
tees regardless of the background knowledge or auxiliary information available
to the attackers, thereby offering strong and robust privacy protection in differ-
ent applications of the smart metering infrastructure. Recent studies have high-
lighted the versatile applications of DP, addressing concerns such as load monitor-
ing, renewable energy resource privacy, and user data protection in decentralized
settings [4,19,26,27,43,46,49]. However, differential privacy is not a one-size-fits-
all solution. Its efficacy hinges on meticulous implementation and parameter opti-
mization to strike a balance between privacy and utility [20,30], a concept often
referred to as the privacy-utility trade-off. This trade-off is very common in smart
grids where small input or control signal modifications can hamper the system per-
formance [42]. Within the realm of DP-protected metering systems, this trade-off
introduces a constraint on the degree of privacy protection that different instances
of DP mechanisms can afford. Among various works, the authors of [43] propose
a hybrid scheme integrating differential privacy and cryptography to address pri-
vacy issues in smart meters, achieving an efficient balance between privacy and
utility. On the other hand, the authors of [46] employ the compressive sensing
framework to establish theoretical bounds on the impact of differential privacy
parameters on Non-Intrusive Load Monitoring (NILM) performance. Addition-
ally, some existing works explore various differential privacy variants (Laplace,
Gaussian, Uniform, Geometric) in blockchain-based smart metering, highlighting
their performance under different parameters and their effectiveness in preserv-
ing privacy [26]. In contrast to the aforementioned studies, Our work, presented in
this paper, demonstrates how the privacy-utility trade-off constraint exposes poten-
tial vulnerabilities to empirical statistical attacks on differential private metering
data, and we substantiate this assertion through formal proof, affirming the piv-
otal role played by this inherent trade-off. We introduce a novel attack methodol-
ogy, leveraging the principles of t-test based hypothesis testing to infer the con-
sumer’s home absence based on observed DP-induced metering data that adhere



“Hello? Is There Anybody in There?” 165

to this trade-off. To the best of our knowledge, our work is the first proposal in the
domain of DP-protected metering systems where we aim to identify consumers’
home absence from the DP-protected output traces. However, there has been a sig-
nificant amount of research that has examined potential vulnerabilities and infor-
mation leakage associated with DP mechanisms.

Related Work

We categorize these existing works into five distinct classes, each shedding light
on different aspects of information leakage and attacks on DP implementations.
Our objective is to emphasize the distinctions between these prior approaches
and the novel contribution presented in our paper.

Correlated Data Records. In DP, the conventional assumption of independent
records in datasets can pose significant privacy risks, especially when dealing
with real-world datasets [36,45]. In the context of smart metering infrastructure,
though the meter readings are not explicitly correlated, they may exhibit auto-
correlation due to temporal dependencies. Current DP solutions for smart meters
frequently neglect this auto-correlation, thereby exposing vulnerabilities that may
result in significant privacy breaches. To address this, we incorporate Group Dif-
ferential Privacy [8,15] into the metering data streams across all the targetted DP
mechanisms before assessing our proposed attack scheme. This addition is piv-
otal in mitigating information leakages arising from auto-correlated readings and
is instrumental in detecting privacy breaches (by determining consumers’ home
absence) within DP implementations that adhere to the privacy-utility trade-off.

Lower Local Sensitivity Value. Sensitivity quantifies the maximum potential
change in the output of a DP scheme, resulting from the addition or removal of a
single data record. However, the noise calibrated by the Local Sensitivity is small,
leading to information leakages [37]. Our methodology, however, diverges from
this by not relying on the small sensitivity values of the DP schemes; rather
DP mechanisms having high sensitivity values that satisfy the privacy-utility
trade-off are susceptible to our attack.

Sequential Query Composition. Sequential query composition involves con-
secutively querying a dataset to maintain DP guarantees and assessing their
collective impact on privacy. This line of work discusses privacy degradation due
to sequential query composition of DP techniques [33]. However, our proposal
diverges from this line of work as we do not employ sequential querying to high-
light potential data leakages. Rather, we consider a distinct query with respect
to each DP mechanism during the construction of our methodology and apply
the DP scheme on the secret meter readings only once at each time instance.

Timing and Floating-Point Attacks. This line of work discusses timing and
floating-point attacks on DP techniques. The authors of [32] highlight that the
Gaussian mechanism of DP suffers from a side channel attack due to floating-
point arithmetic error. Simultaneously, discrete methods developed to protect



166 S. Ghosh et al.

against such floating-point attacks for both the Laplacian and Gaussian mecha-
nisms also suffer from timing side channels. However, we perform an empirical
attack on the DP streams that doesn’t require any knowledge regarding the
floating point computation errors due to the DP computation.

Data Poisoning Attacks. Data poisoning attacks manipulate Local differ-
ential privacy protocols by inserting fake users in the original datasets, with
the goal of manipulating the data analytic results according to the attacker’s
intentions [7,9]. Our proposed attack scheme doesn’t require the insertion of
fake consumers into the differentially private metering systems to obtain the
necessary information regarding consumer’s home absence.

Unique Feature of our Approach: Our proposed approach represents an
innovative contribution within the field of DP-protected metering systems. It
effectively harnesses the privacy-utility trade-off, offering a novel perspective on
information leakages from DP implementations, by identifying consumer’s home
absence with a very high accuracy upon observing DP metering data. Impor-
tantly, our approac