
Christina Pöpper
Lejla Batina (Eds.)

LN
CS

 1
45

85

22nd International Conference, ACNS 2024
Abu Dhabi, United Arab Emirates, March 5–8, 2024
Proceedings, Part III

Applied Cryptography
and Network Security

Lecture Notes in Computer Science 14585
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Christina Pöpper · Lejla Batina
Editors

Applied Cryptography
and Network Security
22nd International Conference, ACNS 2024
Abu Dhabi, United Arab Emirates, March 5–8, 2024
Proceedings, Part III

Editors
Christina Pöpper
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates

Lejla Batina
Radboud University Nijmegen
Nijmegen, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-54775-1 ISBN 978-3-031-54776-8 (eBook)
https://doi.org/10.1007/978-3-031-54776-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-2814-962X
https://orcid.org/0000-0003-0727-3573
https://doi.org/10.1007/978-3-031-54776-8

Preface

ACNS 2024, the 22nd International Conference on Applied Cryptography and Network
Security, was held in Abu Dhabi, United Arab Emirates, on March 5–8, 2024. The
conference covered all technical aspects of applied cryptography, network and computer
security and privacy, representing both academic research work as well as developments
in industrial and technical frontiers.

The conference had two submission deadlines, in July andOctober 2023.We received
a total of 238 submissions over the two cycles (230 unique submissions incl. eight
major revisions from the first submission cycle that were resubmitted as revisions in the
second submission cycle). From all submissions, the Program Committee (PC) selected
54 papers for publication in the proceedings of the conference, some after minor ormajor
revisions. This led to an acceptance rate of 23.5%.

The two program chairs were supported by a PC consisting of 76 leading experts in
all aspects of applied cryptography and security whose expertise and work were crucial
for the paper selection process. Each submission received around 4 reviews from the
committee. Strong conflict of interest rules ensured that papers were not handled by PC
memberswith a close personal or professional relationshipwith the authors. The program
chairs were not allowed to submit papers and did not handle any submissions they were
in conflict with. There were an additional 55 external reviewers, whose expertise the PC
relied upon in the selection of papers. The review process was conducted as a double-
blind peer review. The authors of 10 submissions rejected from the July deadline, but
considered promising, were encouraged to resubmit to the October deadline after major
revisions of their paper. From these 10 papers invited for a major revision, 8 papers got
resubmitted to the second cycle, 5 of which were finally accepted.

Alongside the presentations of the accepted papers, the program of ACNS 2024
featured three invited talks given by Elisa Bertino, Nadia Heninger, and Gene Tsudik.
The three volumes of the conference proceedings contain the revised versions of the 54
papers that were selected, together with the abstracts of the invited talks.

Following a long tradition, ACNS gives a best student paper award to encourage
promising students to publish their best results at the conference. The award recipients
share a monetary prize of 2,000 EUR generously sponsored by Springer.

Many people contributed to the success of ACNS 2024. We would like to thank the
authors for submitting their research results to the conference.We are very grateful to the
PC members and external reviewers for contributing their knowledge and expertise and
for the tremendous amount of work and time involved in reviewing papers, contributing
to the discussions, and shepherding the revisions. We are greatly indebted to Mihalis
Maniatakos and Ozgur Sinanoglu, the ACNS’24 General Chairs, for their efforts and
overall guidance as well as all the members of the organization committee. We thank
the steering committee, Moti Yung and Jianying Zhou, for their direction and valuable
advice throughout the preparation of the conference. We also thank the team at Springer

vi Preface

for handling the publication of these conference proceedings, as well as Shujaat Mirza
for working on the preparation of the proceedings volumes.

March 2024 Lejla Batina
Christina Pöpper

Organization

General Co-chairs

Michail Maniatakos New York University Abu Dhabi, UAE
Ozgur Sinanoglu New York University Abu Dhabi, UAE

Program Committee Co-chairs

Christina Pöpper New York University Abu Dhabi, UAE
Lejla Batina Radboud University, The Netherlands

Steering Committee

Jianying Zhou SUTD, Singapore
Moti Yung Google, USA

Local Arrangements Chair

Borja García de Soto New York University Abu Dhabi, UAE

Publicity Chair

Elias Athanasopoulos University of Cyprus, Cyprus

Web Chair

Christoforos Vasilatos New York University Abu Dhabi, UAE

Poster Chair

Charalambos Konstantinou KAUST, KSA

viii Organization

Registration Chair

Rafael Song New York University Abu Dhabi, UAE

Workshop Chair

Martin Andreoni Technology Innovation Institute, UAE

Publication Chair

Shujaat Mirza New York University, USA

Student Travel Grants Chair

Lilas Alrahis New York University Abu Dhabi, UAE

Program Committee

Adwait Nadkarni William & Mary, USA
Alexander Koch CNRS and IRIF, Université Paris Cité, France
Alexandra Dmitrienko University of Wuerzburg, Germany
Amr Youssef Concordia University, Canada
An Braeken Vrije Universiteit Brussel, Belgium
Anna Lisa Ferrara University of Molise, Italy
Archita Agarwal MongoDB, USA
Atefeh Mohseni Ejiyeh UCSB, USA
Benjamin Dowling University of Sheffield, UK
Chao Sun Osaka University, Japan
Chiara Marcolla Technology Innovation Institute, UAE
Chitchanok Chuengsatiansup The University of Melbourne, Australia
Christine Utz CISPA Helmholtz Center for Information

Security, Germany
Christoph Egger Université Paris Cité and CNRS and IRIF, France
Claudio Soriente NEC Laboratories Europe, Spain
Colin Boyd NTNU-Norwegian University of Science and

Technology, Norway
Daniel Dinu Intel
Daniel Gardham University of Surrey, UK

Organization ix

Daniel Slamanig Universität der Bundeswehr München, Germany
Dave Singelee KU Leuven, Belgium
Devashish Gosain MPI-INF, Germany
Diego F. Aranha Aarhus University, Denmark
Dimitrios Vasilopoulos IMDEA Software Institute, Spain
Dominique Schröder Friedrich-Alexander Universität

Erlangen-Nürnberg, Germany
Eleftheria Makri Leiden University, The Netherlands
Elena Dubrova Royal Institute of Technology, Sweden
Elena Kirshanova Technology Innovation Institute, UAE
Elif Bilge Kavun University of Passau, Germany
Fatemeh Ganji Worcester Polytechnic Institute, USA
Florian Hahn University of Twente, The Netherlands
Francisco Rodríguez-Henríquez Technology Innovation Institute, UAE
Ghassan Karame Ruhr University Bochum, Germany
Gustavo Banegas Qualcomm, France
Hyungsub Kim Purdue University, USA
Jean Paul Degabriele Technology Innovation Institute, UAE
Jianying Zhou Singapore University of Technology and Design,

Singapore
João S. Resende University of Porto, Portugal
Karim Eldefrawy SRI International, USA
Katerina Mitrokotsa University of St. Gallen, Switzerland
Katharina Krombholz CISPA Helmholtz Center for Information

Security, Germany
Kazuo Sakiyama UEC, Tokyo, Japan
Kehuan Zhang The Chinese University of Hong Kong, China
Khurram Bhatti Information Technology University (ITU),

Pakistan
Lukasz Chmielewski Masaryk University, Czech Republic
Mainack Mondal Indian Institute of Technology, Kharagpur, India
Marc Manzano SandboxAQ, USA
Matthias J. Kannwischer QSMC, Taiwan
Melissa Azouaoui NXP Semiconductors, Germany
Monika Trimoska Eindhoven University of Technology,

The Netherlands
Monowar Hasan Washington State University, USA
Mridula Singh CISPA Helmholtz Center for Information

Security, Germany
Murtuza Jadliwala University of Texas at San Antonio, USA
Nabil Alkeilani Alkadri CISPA Helmholtz Center for Information

Security, Germany

x Organization

Nils Ole Tippenhauer CISPA Helmholtz Center for Information
Security, Germany

Olga Gadyatskaya Leiden University, The Netherlands
Paulo Barreto University of Washington – Tacoma, USA
Pino Caballero-Gil University of La Laguna, Spain
Pooya Farshim IOG & Durham University, UK
Sathvik Prasad North Carolina State University, USA
Sebastian Köhler University of Oxford, UK
Shahram Rasoolzadeh Radboud University, The Netherlands
Sherman S. M. Chow The Chinese University of Hong Kong, China
Silvia Mella Radboud University, The Netherlands
Sinem Sav Bilkent University, Turkey
Sofía Celi Brave Software, Portugal
Sudipta Chattopadhyay Singapore University of Technology and Design,

Singapore
Sushmita Ruj University of New South Wales, Australia
Tako Boris Fouotsa EPFL, Switzerland
Tibor Jager University of Wuppertal, Germany
Tien Tuan Anh Dinh Deakin University, Australia
Tran Quang Duc Hanoi University of Science and Technology,

Vietnam
Valeria Nikolaenko A16Z Crypto Research, USA
Vera Rimmer KU Leuven, Belgium
Willy Susilo University of Wollongong, Australia
Xiapu Luo The Hong Kong Polytechnic University, China
Zheng Yang Southwest University, China

Additional Reviewers

Afonso Vilalonga
Alexander Karenin
Anshu Yadav
Astrid Ottenhues
Beatrice Biasioli
Behzad Abdolmaleki
Benjamin Terner
Callum London
Enrique Argones Rúa
Erkan Tairi
Fabio Campos
Gareth T. Davies
Gora Adj

Gregor Seiler
Jean-Philippe Bossuat
Jelle Vos
Jenit Tomy
Jérôme Govinden
Jiafan Wang
Jodie Knapp
Joel Frisk Gärtner
Jorge Chávez-Saab
Karl Southern
Laltu Sardar
Laurane Marco
Li Duan

Organization xi

Lorenz Panny
Marcus Brinkmann
Nada El Kassem
Nan Cheng
Nusa Zidaric
Octavio Pérez Kempner
Okan Seker
Patrick Harasser
Paul Huynh
Paul Gerhart
Pradeep Mishra
Quan Yuan
Raghav Bhaskar
Ritam Bhaumik
Robert Merget

Sacha Servan-Schreiber
Sebastian Faller
Sebastian Ramacher
Semyon Novoselov
Shahram Rasoolzadeh
Sylvain Chatel
Tianyu Li
Valerio Cini
Victor Miller
Viktoria Ronge
Vir Pathak
Vojtech Suchanek
Vukašin Karadžić
Yangguang Tian

Abstracts of Keynote Talks

Applying Machine Learning to Securing Cellular
Networks

Elisa Bertino

Purdue University, Indiana, USA

Abstract. Cellular network security is more critical than ever, given the
increased complexity of these networks and the numbers of applications
that depend on them, including telehealth, remote education, ubiqui-
tous robotics and autonomous vehicles, smart cities, and Industry 4.0.
In order to devise more effective defenses, a recent trend is to lever-
age machine learning (ML) techniques, which have become applicable
because of today’s advanced capabilities for collecting data as well as
high-performance computing systems for training ML models. Recent
large language models (LLMs) are also opening new interesting direc-
tions for security applications. In this talk, I will first present a compre-
hensive threat analysis in the context of 5G cellular networks to give a
concrete example of the magnitude of the problem of cellular network
security. Then, I will present two specific applications of ML techniques
for the security of cellular networks. The first application focuses on the
use of natural language processing techniques to the problem of detecting
inconsistencies in the “natural specifications” of cellular network proto-
cols. The second application addresses the design of an anomaly detection
system able to detect the presence of malicious base stations and deter-
mine the type of attack. Then I’ll conclude with a discussion on research
directions.

Real-World Cryptanalysis

Nadia Heninger

University of California, San Diego, USA

Abstract. Cryptography has traditionally been considered to be one of the
strong points of computer security. However, a number of the public-key
cryptographic algorithms that we use are fragile in the face of implemen-
tation mistakes or misunderstandings. In this talk, I will survey “weapons
of math destruction” that have been surprisingly effective in finding bro-
ken cryptographic implementations in the wild, and some adventures in
active and passive network measurement of cryptographic protocols.

CAPTCHAs: What Are They Good For?

Gene Tsudik

University of California, Irvine, USA

Abstract. Since about 2003, CAPTCHAs have been widely used as
a barrier against bots, while simultaneously annoying great multitudes
of users worldwide. As their use grew, techniques to defeat or bypass
CAPTCHAs kept improving, while CAPTCHAs themselves evolved in
terms of sophistication and diversity, becoming increasingly difficult
to solve for both bots and humans. Given this long-standing and still-
ongoing arms race, it is important to investigate usability, solving per-
formance, and user perceptions of modern CAPTCHAs. This talk will
discuss two such efforts:

In the first part, we explore CAPTCHAs in the wild by evaluating
users’ solving performance and perceptions of unmodified currently-
deployed CAPTCHAs. We obtain this data through manual inspection
of popular websites and user studies in which 1,400 participants collec-
tively solved 14,000 CAPTCHAs. Results show significant differences
between the most popular types of CAPTCHAs: surprisingly, solving
time and user perception are not always correlated. We performed a com-
parative study to investigate the effect of experimental context – specifi-
cally the difference between solving CAPTCHAs directly versus solving
them as part of a more natural task, such as account creation.Whilst there
were several potential confounding factors, our results show that experi-
mental context could have an impact on this task, and must be taken into
account in future CAPTCHAstudies. Finally, we investigate CAPTCHA-
induced user task abandonment by analyzing participants who start and
do not complete the task.

In the second part of this work, we conduct a large-scale (over 3,600
distinct users) 13-month real-world user study and post-study survey.
The study, performed at a large public university, was based on a live
account creation and password recovery service with currently prevalent
captcha type: reCAPTCHAv2. Results show that, with more attempts,
users improve in solving checkbox challenges. For website developers
and user study designers, results indicate that the website context directly
influences (with statistically significant differences) solving timebetween
password recovery and account creation. We consider the impact of par-
ticipants’ major and education level, showing that certain majors exhibit
better performance, while, in general, education level has a direct impact
on solving time. Unsurprisingly, we discover that participants find image
challenges to be annoying, while checkbox challenges are perceived as

xx CAPTCHAs: What Are They Good For?

easy. We also show that, rated via System Usability Scale (SUS), image
tasks are viewed as “OK”, while checkbox tasks are viewed as “good”.
We explore the cost and security of reCAPTCHAv2 and conclude that
it has an immense cost and no security. Overall, we believe that this
study’s results prompt a natural conclusion: reCAPTCHAv2 and similar
reCAPTCHA technology should be deprecated.

Contents – Part III

Blockchain

Mirrored Commitment: Fixing “Randomized Partial Checking”
and Applications . 3

Paweł Lorek, Moti Yung, and Filip Zagórski

Bitcoin Clique: Channel-Free Off-Chain Payments Using Two-Shot
Adaptor Signatures . 28

Siavash Riahi and Orfeas Stefanos Thyfronitis Litos

Programmable Payment Channels . 51
Ranjit Kumaresan, Duc V. Le, Mohsen Minaei,
Srinivasan Raghuraman, Yibin Yang, and Mahdi Zamani

Fair Private Set Intersection Using Smart Contracts . 74
Sepideh Avizheh and Reihaneh Safavi-Naini

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 105
Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

Smart Infrastructures, Systems and Software

Self-sovereign Identity for Electric Vehicle Charging . 137
Adrian Kailus, Dustin Kern, and Christoph Krauß

“Hello? Is There Anybody in There?” Leakage Assessment of Differential
Privacy Mechanisms in Smart Metering Infrastructure . 163

Soumyadyuti Ghosh, Manaar Alam, Soumyajit Dey,
and Debdeep Mukhopadhyay

Security Analysis of BigBlueButton and eduMEET . 190
Nico Heitmann, Hendrik Siewert, Sven Moog, and Juraj Somorovsky

An In-Depth Analysis of the Code-Reuse Gadgets Introduced by Software
Obfuscation . 217

Naiqian Zhang, Zheyun Feng, and Dongpeng Xu

xxii Contents – Part III

ProvIoT : Detecting Stealthy Attacks in IoT through Federated Edge-Cloud
Security . 241

Kunal Mukherjee, Joshua Wiedemeier, Qi Wang, Junpei Kamimura,
John Junghwan Rhee, James Wei, Zhichun Li, Xiao Yu, Lu-An Tang,
Jiaping Gui, and Kangkook Jee

Attacks

A Practical Key-Recovery Attack on LWE-Based Key-Encapsulation
Mechanism Schemes Using Rowhammer . 271

Puja Mondal, Suparna Kundu, Sarani Bhattacharya,
Angshuman Karmakar, and Ingrid Verbauwhede

A Side-Channel Attack on a Higher-Order Masked CRYSTALS-Kyber
Implementation . 301

Ruize Wang, Martin Brisfors, and Elena Dubrova

Time Is Money, Friend! Timing Side-Channel Attack Against Garbled
Circuit Constructions . 325

Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 355
Yunxue Lin and Ling Sun

Users and Usability

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues . . . 381
Daniel Köhler, Wenzel Pünter, and Christoph Meinel

Usable Authentication in Virtual Reality: Exploring the Usability of PINs
and Gestures . 412

H. T. M. A. Riyadh, Divyanshu Bhardwaj, Adrian Dabrowski,
and Katharina Krombholz

Living a Lie: Security Analysis of Facial Liveness Detection Systems
in Mobile Apps . 432

Xianbo Wang, Kaixuan Luo, and Wing Cheong Lau

Author Index . 461

Blockchain

Mirrored Commitment: Fixing “Randomized
Partial Checking” and Applications

Paweł Lorek1,5, Moti Yung2,3, and Filip Zagórski1,4(B)

1 Wroclaw University, Wrocław, Poland
filip.zagorski@gmail.com

2 Columbia University, New York, USA
3 Google, New York, USA

4 Votifica, Wrocław, Poland
5 Tooploox, Wrocław, Poland

Abstract. Randomized Partial Checking (RPC) [16] was proposed by Jakobs-
son, Juels, and Rivest and attracted attention as an efficient method of verify-
ing the correctness of the mixing process in numerous applied scenarios. In fact,
RPC is a building block for many electronic voting schemes, including Prêt à
Voter [6], Civitas [9], Scantegrity II [5] as well as voting-systems used in real-
world elections (e.g., in Australia [4]). Mixing is also used in anonymous transfers
of cryptocurrencies. It turned out, however, that a series of works [17,18] showed
subtle issues with analyses behind RPC. First, that the actual security level of the
RPC protocol is way off the claimed [16] bounds. The probability of success-
ful manipulation of k votes is (3

4)k instead of the claimed 1
2k

(this difference, in
turn, negatively affects actual implementations of the notion within existing elec-
tion systems. This is so since concrete implemented procedures of a given length
were directly based on this parameter). Further, privacy guarantees [11] that a
constant number of mix-servers is enough turned out [17] to also not be correct.
We can conclude from the above that these analyses of the processes of mixing
are not trivial.

In this paper, we review the relevant attacks, and we present Mirrored-RPC
(mRPC) – a fix to RPC based on “mirrored commitment” which makes it
optimally secure; namely, having a probability of successful manipulation of k
votes 1

2k
.

Then, we present an analysis of the privacy level of both RPC and mRPC.
We show that for n messages, the number of mix-servers (rounds) needed to be
ε-close to the uniform distribution in total variation distance is lower bounded by:

r(n, ε) ≥ log2

(
n
2

)
/ε.

This proof of privacy, in turn, gives insights into the anonymity of various cryp-
tocurrencies (e.g., Zerocash [23]) using anonymizing pools. If a random fraction
q of n existing coins is mixed (in each block), then to achieve full anonymity, the
number of blocks one needs to run the protocol for, is:

rb(n, q, ε) ≥ − log n + log(n − 1) − log(2ε)
log(1 − q2)

.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 3–27, 2024.
https://doi.org/10.1007/978-3-031-54776-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_1

4 P. Lorek et al.

1 Introduction

Mix nets, introduced by Chaum [7], constitute an important technique used in many
privacy-preserving technologies. For instance, mix nets are a crucial part of many
voting systems providing assurance that encrypted ballots posted by voters are cor-
rectly decrypted (and tallied). A list of schemes that use mix nets includes systems
deployed in publicly binding elections: Estonia, Norway, Switzerland, Australia, USA
[4,5,10,13,27]. But applications of mix nets are much wider: anonymous messag-
ing [22], anonymous routing [8], and oblivious RAM [24]. To find a more elaborate
list of applications and techniques for verifiable mix nets the reader is encouraged to
read [15].

This paper focuses on a central prominent technique by Juels, Jakobsson, and Rivest
called Randomized Partial Checking (RPC) [16]. The original Chaumian mix net was
designed in the “honest but curious” model, to guarantee senders’ privacy provided
that at least one mix server is honest. But, a single malicious mix server could replace
any number of ciphertexts. In order to decrease the possibility of this happening, RPC
was proposed. In RPC, the more ciphertexts are replaced by a server the higher the
probability of detecting malfeasance is. The main difference between RPC and other
proof-of-shuffle techniques (like [12,26]) is that RPC is much more efficient than other
techniques, but provides just a strong evidence of correct operations instead of a proof
of correct operations (but luckily, this confidence is sufficient for many applications).
Due to its efficiency, the RPC approach is used in end-to-end voter verifiable systems
like Prêt à Voter [6], Scantegrity II [5], and coercion-resistant Civitas [9]. The above
have been implemented and applied in real elections. Then, as interest in implement-
ing the technique grew, a series of works [17,18] scrutinized it, and showed that the
actual security level of the RPC protocol is way off the initial claim: the probability
of successful manipulation of k votes is (3

4)k instead of 1
2k as claimed in [16]. These

attacks [17] affected the implementations of Scantegrity and Civitas systems. The level
of privacy was affected as well [17]. More on attacks on RPC see Sect. 2.3.

Related Work: Recently [14], a new RPC-type protocol was proposed, where optimal
verifiability tolerance (1

2)k is achieved. The protocol assumes that there is a special audi-
tor that becomes the last mix server. After the auditor/mix server publishes decrypted
messages it reveals its private keys. While such an approach works in theory, the new
protocol role can raise trust-related issues, e.g., now one needs to assume that the special
auditor and the second to last mix server do not cooperate (and this configuration solves
one weakness by introducing another!). Aside from the proposed attacks, the authors
of [18] proposed changes to the protocol that can fix certain attacks, but then they noted
that other attacks (which they, in fact, proposed) are “equally harmful.” Then, given
their finding, they conclude: “This seems to be an inherent problem for RPC mix nets,
without an obvious fix.”

Our Contributions: We present Mirrored Randomized Partial Checking (mRPC), a
protocol that has exactly the same participants, roles, and trust assumptions as the orig-
inal RPC. The only difference is that a (mirrored) commitment (a commitment to a
different value) is published during the protocol execution and one additional value is
opened and checked during the audit phase (per message, per server). These changes,

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 5

in turn, allow us to achieve optimal verifiability tolerance (1
2)k - compared to (3

4)k in
the original RPC. The difference between 1/2k and (3/4)k is highly significant when
considering practical parameters (see Fig. 1). We also show how many mix servers
r(n, ε) are required to mix n messages so that the distribution on permutations (mapping
senders to decrypted messages) is ε-close to the uniform distribution on all n-element
permutations (in total variation distance). Our proof works for both versions of RPC:
Scheme One (Independent Random Selections) and Scheme Two (Pairwise Dependent
Selections)1. Analysis (Lemma 6) of Scheme One is applicable to (un)linkability in
blockchains, while analysis (Lemma 7) of Scheme Two (RPC) is related to anonymity
guarantees of election protocols.

Fig. 1. mRPC guarantees better security level than original RPC. The probability of undetected
manipulation of k messages is (1/2)k for mRPC and (3/4)k for RPC. x-axis corresponds to k-the
number of modified entries; y-axis is the probability of undetectable manipulation.

1.1 Notation

We denote by [n] = {1, . . . , n}. Security analysis uses standard assumptions about
primitives used by Chaumian RPC mix nets: (1) public key encryption scheme
(E = 〈KeyGen,Enc,Dec〉) used for Chaumian RPC to be IND-CCA2-secure [3], (2)
commitment scheme is perfectly hiding and computationally binding (e.g., Pedersen
scheme [21]), (3) the encryption scheme allows for proof of correct decryption.

2 Chaumian Randomized Partial Checking (RPC) Mix Net

We try to closely follow [18] when describing the protocol. A decryption mix net [7]
consists of a public, append-only bulletin board, mix servers M1, . . . ,Mr, message
senders S 1, . . . , S n (sometimes we will call them voters) and auditors.

1 As most authors we refer to Pairwise Dependent Selection scheme as to original RPC.

6 P. Lorek et al.

2.1 Protocol Description

The goal of the protocol: mix servers jointly decrypt messages sent by senders (voters),
while auditors verify if the decryption process was performed correctly. The following
steps are performed.

Setup Phase. Every mix server Mj generates two public/private key pairs
(pk2 j−1, sk2 j−1), (pk2 j, sk2 j) and publishes its public keys pk2 j−1, pk2 j on the bulletin
board.

Submit Phase. Every sender S i chooses her input plaintext mi (sometimes we refer to
mi as to a ballot/vote) and submits to the bulletin board B a ciphertext generated in the
following process. She first encrypts mi using pk2r obtaining ci2r = Enc(pk2r,mi). Then,
she repeats the following process for j = 2r − 1, 2r − 2, . . . , 0:

cij = Enc(pk j, c
i
j+1),

and submits ci0 to the bulletin board B.

Mixing Phase. The sequence C0 =
〈
c1

0, . . . , c
n
0

〉
of ciphertexts submitted by senders to

B is the input to the mixing phase. We denote by C0[i] = ci0 and similarly for other
sequences.

C0 is fetched by the first server M1 which outputs C2 (each Mj performs two mixing
steps C2 j−2 � C2 j−1 and then C2 j−1 � C2 j) that is an input to M2, and so on.

The output produced by Mr (the last mix server): C2r should contain a permuted list
of unencrypted input messages m1, . . . ,mn.

The steps performed by each Mj, j < r are following:

1. Duplicate Elimination. Mj removes duplicate entries from its input C2 j−2, leaving
only a single copy of each entry. Moreover, all messages that correspond to decryp-
tion failures ⊥ are removed. Denote by C′2 j−2 the resulting sequence, and by l ≤ n
the number of messages of C′2 j−2.

2. First Mixing. Mj chooses uniformly at random a permutation π2 j−1 of [l] and posts
on B the sequence C2 j−1, where C2 j−1[i] = Dec(sk2 j−1,C′2 j−2[π2 j−1]).

3. Second Mixing. Mj performs the same steps as during the first mixing: selects uni-
formly at random a permutation π2 j of [l]. Then it posts on B the sequence C2 j where
C2 j[i] = Dec(sk2 j,C′2 j−1[π2 j]).

4. Posting Commitments. Mj posts two sequences of commitments on B:
(a) commitments to the values π−1

2 j−1(1), . . . , π−1
2 j−1(l),

(b) commitments to the values π2 j(1), . . . , π2 j(l).

For the clarity of presentation we assume no duplicate elimination took place, i.e., l = n.

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 7

Fig. 2. Original RPC: commitments to π−1
2 j−1(i) and to π2 j(i) are in shaded squares. Dashed

edges/arrows remain secret.

2.2 RPC Audit

During the audit phase, each mix server Mj opens half of the commitments. A set I j ⊂
{1, . . . , n} is computed by e.g., xor-ing random bit strings provided by the auditors.

AL If i ∈ I j then the mix server Mj is supposed to:
1 open the left link for i, i.e., Mj is supposed to open its i-th commitment from

its first sequence of commitments, which should be a commitment on the value
π−1

2 j−1(i).
2 post a (non-interavtive zero-knowledge) proof demonstrating that indeed
C2 j−1[i] is obtained from decrypting C′2 j−2[π−1

2 j−1(i)] using sk2 j−1.
AR If i � I j then the mix server Mj is supposed to:

1 open the right link: the commitment to the value π2 j(i).
2 post a (non-interactive zero-knowledge) proof that C2 j[π2 j(i)] is obtained from

decrypting C2 j−1[i] using sk2 j.

Set I j defines a corresponding challenge string (also called audit string) Bj =

b j,1b j,2 . . . b j,n for b j,i ∈ {0, 1}, where b j,i = 0 if and only if i ∈ I j.
Example 1 (RPC audit). Let us assume that the jth server committed to the values
presented in the Fig. 2 and during the audit, an audit string Bj = 010 was selected
(I j = {1, 3}). Commitments to π−1

2 j−1(1), π−1
2 j−1(3) and to π2 j(2) are opened. Correspond-

ing proofs of correct decryptions are shown (along solid arrows) e.g., that c2
2 j−1 cor-

rectly decrypts to c1
2 j under the public key pk2 j. It is visualized on Fig. 3.

Fig. 3. RPC audit example for server Mj and audit string Bj = 010. Dashed edges and corre-
sponding commitments remain hidden.

8 P. Lorek et al.

2.3 Attacks on RPC

In this section we describe and analyse attacks on RPC. The first attack was presented
in [18] and later described in [17].

Attacks by the Last Mix Sever. To ilustrate the attack by the last mix-server, let us
consider the following example with n = l = 3 votes. Let m1 = m2 = A (2 votes for
candidate A) while m3 = B (1 vote for B). Say, the honest permutation is π2r = (2, 1, 3)
(Fig. 2), however, Mr is cheating and it publishes commitments to π′2r = (1, 1, 3) (which
is not a permutation) (Fig. 4).

Fig. 4. Example: attack by the last mix server. A vote for B is copied while a vote for A is removed.

The audit string is of the form Br = br,1br,2br,3. The value of br,3 is irrelevant for this
attack, we are thus left with four choices for br,1br,2. All four situations are depicted in
Fig. 5. If br,1 = br,2 = 1 then Mr is asked to open π′2r(1) and π′2r(2) and the cheating
is detected. In all other cases, the cheating is not detected (since there are two entries
pointing to the same element). In other words, one can detect a single message manipu-
lation with probability 1/4.

(a) Challenge: 00 (Ir {1 2}).
Audit passed.

(b) Challenge: 01 (Ir {1}).
Audit passed.

(c) Challenge: 10 (Ir {2}).
Audit passed.

(d) Challenge 11 (Ir).
Audit fails.

Fig. 5. RPC detects a single message manipulation just with probability 1
4 .

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 9

Attacks by Any Mix Server. Here, we present an attack that was proposed in [17].
This attack can be performed by any server. Let l = n = 3 and consider the server Mj

with honest inverse permutation π−1
2 j−1 = (2, 3, 1) (Fig. 2), however the server publishes

commitments to π
′−1
2 j−1 = (1, 3, 1) (Fig. 6).

Fig. 6. Example: attack on any layer by server Mj. The result of the attack can be: a vote for B is
copied while a vote for A is removed.

If the audit string b j,1b j,2b j,3 is such that b j,1 = b j,3 = 0, then the server is asked to
open π

′−1
2 j−1(1) and π

′−1
2 j−1(3) and the manipulation is detected. Note that in any other case

for values of b j,1, b j,3, it is not detected. All four situations for values of b j,1, b j,3 are
depicted in Fig. 7.

Summarizing, such a manipulation is detected with probability 1/4 (and thus it
is undetected with probability 3/4) in case of one manipulation. In general, when k
messages are manipulated, the probability of not detecting it is (3/4)k (for details see
Theorem 1 in [18]).

(a) Challenge: 0 0 (Ir {1 3}).
Audit fails.

(b) Challenge: 0 1.
Audit passed.

(c) Challenge: 1 0.
Audit passed.

(d) Challenge 1 1.
Audit passed.

Fig. 7. RPC detects a single message manipulation just with probability 1
4 .

10 P. Lorek et al.

3 Mirrored Randomized Partial Checking (mRPC)

In this section, we present a fix to RPC which we call Mirrored-RPC (mRPC) protocol
and prove that it guarantees optimal level of manipulation detection i.e., manipulation
of k messages is detected with probability 1 − (1/2)k.

In RPC protocol, each mix server publishes two lists of commitments to the “mid-
dle column” (ciphertexts that are the result of the first mixing phase, see Fig. 2), more
precisely server Mj for each entry i publishes:

– commitments to π−1
2 j−1(i) (where data comes from), and

– commitments to π2 j(i) (where data goes to).

In mRPC commitments are published on the “outer columns” – see Fig. 8. This
change allows for detecting manipulations with higher probability than the original
RPC.

Fig. 8. mRPC: For each entry of a left column, a commitment to “where to” is published and
a commitment to “where from” for entries of a right column is published (In the original RPC
these commitments are only published for the entries that are the result of first mixing.).

3.1 Protocol Description

Setup phase The setup is exactly the same as in the original RPC (Sect. 2.1).

Submit phase This phase is exactly the same as in the original RPC (Sect. 2.1).

Mixing phase The mixing phase stays almost the same as the Mixing phase of the
original RPC (see Sect. 2.1) the only difference is in the part: Posting commitments.

1. Duplicate elimination the same as in original RPC.
2. First mixing – the same as in original RPC.
3. Second mixing – the same as in original RPC.
4. Posting commitments Mj posts two sequences of commitments on B:

(a) commitments to the values π2 j−1(1), . . . , π2 j−1(l),
(b) commitments to the values π−1

2 j (1), . . . , π−1
2 j (l).

Note that RPC in Posting commitments phase in step 4a posts: π−1
2 j−1(1), . . . ,

π−1
2 j−1(l) and in step 4b posts: π2 j(1), . . . , π2 j(l). Similarly as in RPC, for clarity of pre-

sentation, we assume no duplicate elimination took place in mRPC, i.e., l = n.

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 11

3.2 mRPC Audit

During the audit phase, each mix server Mj opens half of the commitments. A set I j ⊂
{1, . . . , n} is computed by e.g., xor-ing random bit strings provided by the auditors. Set
I j defines a corresponding challenge string (also called audit string) Bj = b j,1b j,2 . . . b j,n

for b j,i ∈ {0, 1}, where b j,x = 0 if and only if x ∈ I j.
AL If x ∈ I j i.e., b j,x = 0, then the mix server Mj is supposed to:

1 (bidirectional checking):
(a) publish value y;
(b) then open z = π2 j−1(y) and check if z = x;

2 post a non-interactive zero-knowledge proof demonstrating that indeed C2 j−1[x]
is obtained from decrypting C′2 j−2[y] using sk2 j−1.

AR If x � I j i.e., b j,x = 1, then the mix server Mj is supposed to:
1 (bidirectional checking):

(a) publish value y;
(b) open the commitment to z = π−1

2 j (y) and check if z = x.
2 post a non-interactive zero-knowledge proof that C2 j[y] is obtained from

decrypting C2 j−1[x] using sk2 j.

Example 2 (mRPC Audit). Let us assume that the jth server committed to the values
presented in Fig. 8. The audit is presented in Fig. 9. During the audit phase, an audit
string b = 010 = b1b2b3 (defining the corresponding I j = {1, 3}). The jth server needs
to publish:

AL for x ∈ {1, 3}:
1. for x = 1, y1 = 2, z = π2 j−1(y1) = 1 = x, a non-interactive ZKP that C2 j−1[1] is

obtained from decrypting C2 j−2[2];
2. for x = 3, y3 = 1, z = π2 j−1(y3) = 3 = x, a non-interactive ZKP that C2 j−1[3] is

obtained from decrypting C2 j−2[1];
AR for x ∈ I jc = {2}:

1. for x = 2, y2 = 1, z = π−1
2 j (y2) = 2 = x, a non-interactive ZKP that C2 j[1] is

obtained from decrypting C2 j−1[2].

Fig. 9. mRPC audit example for server Mj with Bj = 010. Dashed edges and corresponding
commitments remain hidden.

12 P. Lorek et al.

3.3 Attack Examples on mRPC

Attack by the Last Mix Server. Let us reconsider the attack described in Sect. 2.3.
The dishonest ”permutation“ together with all commitments is depicted in Fig. 10.

Fig. 10. Attack by the last mix server in mRPC.

For br,1 = br,2 = 1, the cheating is detected (Fig. 11 (d)). However, this is not the
only situation when the manipulation is detected.

– Assume that the server commits to π
′−1
2r = (1, ∗, 3). Consider br,1 = 0, br,2 = 1. In

RPC server Mr is asked to open π′2r(2) = y = 1, in mRPC the server is additionally
asked to open π

′−1
2 j (y) = π

′−1
2 j (1), which is 1 and the cheating is detected – Fig. 11(b).

– Assume that the server commits to π
′−1
2r = (2, ∗, 3). Consider br,1 = 1, br,2 = 0.

Then Mr is asked to open π′2r(1) = y = 1 and additionally π
′−1
2r (1) = 2. This case is

presented in Fig. 15(c).

In any case (for manipulated permutations), the manipulation will caught for 2 audit
strings br,1br,2 out of 4, thus with probability 1/2. All options are depicted in Fig. 11.

(a) Challenge string: 00 .
Audit passed.

(b) Challenge string: 01 . For x 2 value y 1
is published but opened commitment 1 x.
Audit failed.

(c) Challenge: 10 .
Audit passed.

(d) Challenge 11 . For x 2, y 1 is published
but opened commitment is for 1 x. Audit
failed.

Fig. 11. A view of a bulletin board after the audit step of mRPC.

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 13

Attacks by Any Mix Server. Let us continue the setup Sect. 2.3. The attack, in the
presence of additional commitments is presented in Fig. 12.

Fig. 12. Attack on any layer in mRPC.

Again, once b j,1 = b j,3 = 0, the manipulation is detected. Consider cases:

– Assume that server commits to π′2 j−1 = (3, ∗, 2). Consider b j,1 = 0, b j,3 = 1. In RPC

server Mj is asked to open π
′−1
2 j−1(1) = y = 1, in mRPC server is additionally asked

to open π′2 j−1(1) which is 3 and the manipulation is detected.
– Assume now that the commitment is π′2 j−1 = (1, ∗, 2). Then in case b j,1 = 1, b j,3 = 0

the server must open π
′−1
2 j−1(3) which commits to 1.

In any case (for manipulated permutations), the manipulation will be detected in
two out of four possibilities for b j,1 and b j,3, i.e., with probability 1/2. All the situations
(for π′2 j−1 = (3, 1, 2)) are presented in Fig. 13, other cases are ”symmetric“ (see Fig. 15).

(a) Challenge: 0 0.
Adit failed.

(b) Challenge: 0 1.
Audit failed.

(c) Challenge: 1 0.
Audit passed.

(d) Challenge 1 1.
Audit passed.

Fig. 13. mRPC ggdetects a single message manipulation with probability 1
2 . For the same settings,

RPC succeeds in detecting only with probability 1
4 .

14 P. Lorek et al.

The same attack as in Sect. 2.3 (Attacks by the last mix server) is presented, except
in the first row of the last column, commitment is to row 2 from the middle column.
The attack is then detected for different challenge strings but still with 50% probability
(Fig. 14).

Fig. 14. Attack by the last mix server in mRPC.

(a) Challenge: 00 .
Audit passed.

(b) Challenge: 01 .
Audit passed.

(c) Challenge: 10 .
Audit fails.

(d) Challenge 11 .
Audit fails.

Fig. 15. The same attack as in Sect. 3.4 is presented but with attacker committing to different
values.

3.4 Security of mRPC

Lemma 1. For mRPC, the probability of undetectable modification of k entries by any
mix server Mj, during one mixing step is upper bounded by 1

2k .

Proof. We will show the proof for an odd (2 j − 1) mixing step, the reasoning for an
even (2 j) mixing step is similar. The input to the mix server Mj is a list of ciphertexts
C2 j−1 =

〈
c1

2 j−1, . . . , c
n
2 j−1

〉
published by the server Mj−1 (or the users/voters for j = 1).

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 15

During the Mixing phase, Mj posts:

– the result of the First mixing, ciphertexts: C2 j =
〈
c1

2 j, . . . , c
n
2 j

〉
,

– commitments t1, . . . , tn.

If Mj is honest then for some π2 j−1 ∈ S n and y = π2 j−1(x) for all x ∈ [n] the
following equations hold:

tx = Comm(y), (1)

cy2 j = Decsk2 j−1 (cx2 j−1). (2)

During the audit step if bj,y = 0 (y ∈ I j) the following steps are performed:

AL.1 (bidirectional checking):
1. Mj publishes z,
2. Mj opens commitment tz = Comm(y′) to y′,
3. auditor checks if y = y′.

AL.2 (proof of correct decryption):
1. Mj publishes the proof that Eq. 2 holds for y and z,
2. auditor verifies the proof.

If Mj is dishonest and decides to manipulate k entries from positions in a set A ⊂
{1, . . . , n} (|A| = k) it means that Mj will not be able to pass AL.2 part of the audit for
x ∈ A.

Mj may try to post commitments to different positions but since the commitment
check AL.1 is bidirectional, a single entry from C2 j−1 can be mapped only to a single
entry in C2 j. And since C2 j lacks entries corresponding to ciphertexts from positions
in A it will be detected in the AL.2 part of the check whenever for such an entry a
challenge bit 0 will be chosen.

Since there are k positions with that property, the probability of not detecting that k
entries were dropped (replaced) is equal to 1/2k.

The main theorem is a direct conclusion from Lemma 1.

Theorem 1 (mRPC security). For mRPC, the probability of undetectable modifica-
tion of k entries by any mix server is upper bounded by 1

2k .

4 Privacy Guarantees of RPC and mRPC

4.1 Constant Number of Mix-Servers

In [11] it was shown that for a scenario when votes are cast only on one of the two
candidates, the constant number of mix servers is enough.

Here we show that for arbitrary messages (e.g., for Australian-type ballots), a con-
stant number of mix-servers is not enough.

Example 3 (Bulletin board leaks information). RPC auditing process may reveal a lot
of information about voters’ preferences. Figure 16 presents an extreme example. There
are two candidates A, B and 8 voters v1, . . . , v8. With only r = 2 mixing servers, a lot
of information may be available to an adversary, even when he just observes publicly
accessible information.

16 P. Lorek et al.

Fig. 16. RPC for small number of mix servers may reveal a lot of information. Just by observing
bulletin board, an adversary may say that voters {v1, v4, v7, v8} cast votes {A, B, B, B} while voters
{v2, v3, v5, v6} cast votes: {A, A, A, B}.

The situation becomes much worse if an adversary knows exactly how some voters
voted. For the example at Fig. 16, knowlede that v4 voted for A reveals that v1, v7, v8

voted for B.

Example 4 (Anonymity for arbitrary messages.). For a general case, when there are
more types of messages (e.g., ballots in Australia), senders’ privacy is still at risk. In
the most general case, every message is unique. The insight behind privacy definition is
achieved in the following way: for an adversary, every permutation should be possible
with almost the same probability – i.e., distribution on permutations generated by the
RPC process should be close to the uniform distribution.

By π we denote a permutation obtained by applying permutations π1, . . . , π4, and
revealing parts of them during the audit phase (see Fig. 17). It is easy to see that
P [π = (∗, ∗, 5, ∗, ∗, 7, ∗, ∗)] = 0 = P [π = (∗, ∗, 7, ∗, ∗, 5, ∗, ∗)] (it is impossible that mes-
sage 5 was sent by v3 at the same time when message 7 was sent by v6, and vice versa).
There are a lot of other permutations that are impossible to achieve.

Fig. 17. RPC for a small number of mix servers may reveal a lot of information. The probability
that senders v2, v3 sent messages 5, 7 respectively is equal 0. One can exclude a lot of other
combinations. A similar analysis can be applied to linkability of many crypto-currencies, e.g.,
Zerocash [23].

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 17

Definition 1. For mix-server entries xi, x j, we denote by Mat(xi, x j) = t if Mt was the
first mix-server for which entries were both audited during the same step. By audited by
server Mk we mean that both xi and x j were assigned the same audit bits.

Note that if entires xi, x j were audited in Mt then the entries were mixed – someone
observing only revealed links does not know their relative ordering.

Lemma 2. For any entries xi, x j the probability that they will be mixed for the first time

in the k-th mix-server is equal to 1
2k , i.e., P

(
Mat(xi, x j) = k

)
= 1

2k .

Lemma 3. Let r be the number of mix-servers, and n be the number of processed
entries. If

(
n
2

)
≥ 2r then with high probability there exists a pair of entries i, j ∈ {1, . . . , n}

such that Mat(xi, x j) > r.

The proof of Lemma 3 follows from a birthday paradox argument.
By RPCr,n we mean a random permutation obtained by processing n messages

through an RPC cascade of r mix-servers having the knowledge on so far opened links.
By L(RPCk,n) we denote the distribution of the scheme at step k ≤ r and by U(Sn)
we denote the uniform distribution, both on Sn – a set of permutations of n elements.
We will use a total variation distance between two distributions μ, ν on a common finite
state space E as

TVD[μ, ν] =
1
2

∑
e∈E
|μ(e) − ν(e)|.

The conclusion of Lemma 4 is that a constant number of mix-servers is not enough
to privately process arbitrary messages.

Lemma 4. Let r be the number of mix-servers, and n be the number of processed
entries. If

(
n
2

)
≥ 2r and in the last server m left links are open, then

TVD
[
U(Sn),L(RPCr,

√
2r)
]
> 1 − 2m(n − m)

n(n − 1)

(∗)≥ 1
2
− 1

2(n − 1)
,

where equality in (∗) is achieved for m = n/2 (say n is even).

The proof of Lemma 4 is in Appendix A.1, the bound is depicted in Fig. 18.

4.2 Mixing Time

Fig. 18. Lower bound on TVD [U(Sn),
L(RPCr,n)

] ≥ 1
2 − 1

2(n−1) .

In this section, we show the required
number of mix-servers to achieve high
level of privacy. The main result concern-
ing the privacy of RPC and mRPC is the
following.

Lemma 5. Let n be the number of pro-
cessed entries by a r-server RPC mix or
mRPC. If

r = r(n, ε) ≥ log2

[(
n
2

)
/ε

]

18 P. Lorek et al.

then
TVD

[U(Sn),L(RPCr,n)
] ≤ ε.

We start – Lemma 6 – with the RPC/mRPC Scheme One, i.e., the case when each
server is asked to open left/right connections independently. Moreover, we assume that
each entry is opened with some predefined probability p ∈ (0, 1). Note that it is equiv-
alent to actually considering 2r servers, each performing a single permutation – we
consider however r servers, each performing two permutations, to be consistent with
lemmas related to Scheme Two.

Afterwards, in Lemma 7 we show the result for Scheme Two. Lemma 5 is a direct
consequence of the latter (substitute p = 1/2).

Lemma 6. Let n be the number of processed entries by a r-server RPC or mRPC mix
Scheme One. Each server is asked to open any connection independently with proba-
bility p ∈ (0, 1). If

r = r(n, ε) ≥ 1
2

log 1
1−(1−p)2

[(
n
2

)
/ε

]

then
TVD

[U(Sn),L(RPCr,n)
] ≤ ε.

The proof of Lemma 6 is in Appendix A.2, it is based on strong stationary times (SST,
introduced in [1,2]), a tool from a Markov chain theory.

Remark. It is worth mentioning that SST T from Lemma 6 (see its proof) resembles
SST constructed in [19] for riffle shuffle scheme. Note that the RPC and the riffle shuffle
are quite different – in RPC full permutation is applied in each step and each connec-
tion is revealed with probability p, whereas in riffle shuffle only the specific type of
permutation in each step is performed and p corresponds to revealing some bits used to
perform it. Note also that it takes 1

2 log 1
1−(1−p)2

[(
n
2

)
/ε
]

for RPC to mix, whereas it takes

log 2
1−(1−p)2

[(
n
2

)
/ε
]

for riffle shuffle to mix.

Let us consider the following example.

Example 5. Consider n = 6 an assume that B1 = 001010, B2 = 010011, i.e., in first
steps outgoing connections from nodes 1, 2, 4 and 6 are revealed and in the second step
the outgoing connections from nodes 1, 3, and 4. With this knowledge, the adversary
knows that with equal probability one of the permutations is possible:

(4, 1, 6, 3, 2, 5), (4, 1, 2, 3, 6, 5), (4, 6, 1, 3, 2, 5), (4, 2, 1, 3, 6, 5),
(4, 6, 2, 3, 1, 5), (4, 2, 6, 3, 1, 5), (4, 1, 6, 5, 2, 3), (4, 1, 2, 5, 6, 3),
(4, 6, 1, 5, 2, 3), (4, 2, 1, 5, 6, 3), (4, 6, 2, 5, 1, 3), (4, 2, 6, 5, 1, 3).

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 19

st
ep
:1

st
ep
: 2

st
ep
:3

1

2

3

4

5

6

?

1

4

?

6

2
1
2

1
2

1

2

3

4

5

6

3

1

4

5

6

2

4

?

?

3

?

5

1

2

3

4

5

6

5

1

4

3

6

2

4

?

?

5

?

3

1
6

1
6

1
6

1
6

1

2

3

4

5

6

3

1

4

5

6

2

4

1

6

3

2

5

1

2

3

4

5

6

3

1

4

5

6

2

4

1

2

3

6

5

1

2

3

4

5

6

5

1

4

3

6

2

4

1

6

5

2

3

1

2

3

4

5

6

5

1

4

3

6

2

4

1

2

5

6

3

1

2

3

4

5

6

3

1

4

5

6

2

4

6

1

3

2

5

1

2

3

4

5

6

3

1

4

5

6

2

4

2

1

3

6

5

1

2

3

4

5

6

5

1

4

3

6

2

4

6

1

5

2

3

1

2

3

4

5

6

5

1

4

3

6

2

4

2

1

5

6

3

1

2

3

4

5

6

3

1

4

5

6

2

4

6

2

3

1

5

1

2

3

4

5

6

3

1

4

5

6

2

4

2

6

3

1

5

1

2

3

4

5

6

5

1

4

3

6

2

4

6

2

5

1

3

1

2

3

4

5

6

5

1

4

3

6

2

4

2

6

5

1

3

Fig. 19. 3 steps of execution of RPC for n = 6. All options for unrevealed nodes shown. Revealed
connections depicted as solid lines (corresponding nodes are red), unrevealed ones as dashed
lines (corresponding nodes are gray). After these three steps Y3 has the uniform distribution on
12 permutations emphasized by gray regions. (Color figure online)

All possible situations are depicted in Fig. 19. In Fig. 20, one realization of this example
is depicted – then all the pairs are mixed, thus the resulting permutation is random.
(Note that for n = 6 such a situation happens on average after processing by 1

2 log 4
3

(
6
2

)
=

4.7 servers).

20 P. Lorek et al.

Mixed
pairs

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

{3,5} {1,2},{1,6}
{2,6}

{3,5},{3,6}
{5,6}

{2,4},{2,5}
{2,6},{4,5}
{4,6},{5,6}

{1,3},{1,5}
{3,5}

{1,2},{1,3}
{1,4},{2,3}
{2,4},{3,4}

1 4 6 10 12 15
STOP

Total nr of
mixed pairs

1

2

3

4

5

6

3

1

4

5

6

2

4

1

6

3

2

5

3

4

6

1

5

2

3

4

2

5

6

1

4

2

3

6

5

1

3

5

2

4

1

6

Fig. 20. Sample execution of mixing of n = 6 elements. Newly mixed pairs are in bold. In this
example after 6 steps an adversay has no knowledge on the final permutation (all

(
6
2

)
= 15 pairs

are mixed). After three steps his knowledge is depicted in Fig. 19

In the following Lemma 7 we show the result for Scheme Two.

Lemma 7. Let n be the number of processed entries by a r-server RPC or mRPC mix
Scheme Two. Each server is asked to open any left link independently with probability
p ∈ (0, 1), then the right links corresponding to non-opened left ones, are open.

r = r(n, ε) ≥ log 1
2p(1−p)

[(
n
2

)
/ε

]

then
TVD

[U(Sn),L(RPCr,n)
] ≤ ε.

The proof of Lemma 7 is in Appendix A.3. Note that for p close to 0 or 1 there will be
many pairs mixed in step 2k − 1 or 2k. The worst situation i.e., the smallest number of
mixed pairs (on average) will be for p = 1/2. For cases n ∈ {100, 10 000, 1 000 000}
the average number of steps, as a function of p is depicted in Fig. 21.

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 21

Fig. 21. Average number of RPC servers needed to mix n ∈ {100, 10 000, 1 000 000} entries (for
ε = 1

100). In the worst case p = 1/2 we need 19 servers on average.

5 Application: CryptoCurrency Unlinkability

In most popular cryptocurrencies, payments are performed between pseudonyms. Since
transactions are published on a public ledger, payment transactions remain traceable.
There were a couple of approaches that introduce untraceability to blockchain cryp-
tocurrencies: Zerocoin [20], Zerocash [23] (used in ZCash), CryptoNote [25] (used in
Monero).

In this section, we want to show a link between Lemma 6 and the anonymity guaran-
tees of various cryptocurrencies. We assume that the anonymization protocol is similar
to the one that is used in Zerocash. If one wants to measure the anonymity level of a
given system in total variation distance then it corresponds to the mixing time of RPC
Scheme One which is expressed in Lemma 6. Instead of applying the following equa-
tion:

r(n, p, ε) ≥ 1
2

log 1
1−(1−p)2

[(
n
2

)
/ε

]
= − log n + log (n − 1) − log(2ε)

2 log(1 − (1 − p)2)

it seems simpler is simpler think about the function of q = 1 − p – here q corresponds
to the fraction of entries being in a mix. Then let rb(n, q, ε) = r(n, p, ε):

rb(n, q, ε) ≥ 1
2

log 1
1−q2

[(
n
2

)
/ε

]
= − log n + log (n − 1) − log(2ε)

2 log(1 − q2)

One needs to approximate n, e.g., by applying the simplifications (1) and (2) below;
then nq = n(1 − p) would be the average number of transactions (or from/to addresses)
in a single block. The number rb(n, q, ε) denotes the required number of mix-servers so
the resulting permutation is ε close in total variation distance to the uniform distribution
on n elements. Since each server performs two independent permutations, the required
number of steps is equal to 2rb(n, q, ε) (Fig. 22).

22 P. Lorek et al.

Fig. 22. Number of rounds (for cryptocurrencies the number of blocks) 2rb(n, q, ε) needed to be
processed for a system with n entries to be close to the uniform distribution, as a function of q, ε.
The x-axis of the plot is q – the probability of selecting an element to the mix ε = 1/100.

To give insights, we make a series of further simplifications:

(1) each transaction is of a nominal value (e.g., 1 BTC/1 ETH/...),
(2) each pseudonym (public key) is linked with a single nominal value,
(3) each coin is selected to be used in a payment transaction independently, uniformly

at random with probability 1 − p (in the Lemma 6 p corresponds to the opened
links).

Then, assuming that all transactions are “shielded”, with the data of 5/1/2022
(source: https://bitinfocharts.com) the results are following:

– for Ethereum 1.63 · 1013 blocks (For n = 120 606 657, p = 186
n , ε = 1

10) would be
needed (2.56 · 109 days),

– for Bitcoin 6.03 · 109 blocks (3.54 · 107 days).

6 Conclusions

We presented Mirrored Randomized Partial Checking (mRPC), the protocol that elim-
inates attacks on Randomized Partial Checking. Proposed mRPC makes minimal
changes to the original protocol but allows for upper bounding probability of successful
attack by an adversary to (1

2)k - compared to (3
4)k in the original RPC. The presented

approach can be applied to fix Civitas and Scantegrity II voting systems.
We also provided an analysis of privacy guarantees offered by RPC. Our analysis

gives also insights into the level of anonymity of cryptocurrencies. We conclude that
due to the need for many steps (high value of rb(n, q, ε) for small values of q) and the
need for speedy transactions (that enforce low values of q), de-anonymization will be
open to some attacks due to insufficient mixing.

https://bitinfocharts.com

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 23

A Proofs

A.1 Proof of Lemma 4

Proof. Recall that I j is a subset of [n] for which left link is revelead (challenge bit is set
to 0). Let us denote S j,0 = I j and S j,1 = [n] \ I j, i.e., those messages for which right link
is revealed (challenge bit 1). In terms of an audit string Bj = b j,1b j,2 . . . b j,n, we may
rewrite S j,b = {i : b j,i = b}.

If two elements x, y are not mixed in the Mj mix, it means that x ∈ S j,b and y ∈ S j,1−b
for b ∈ {0, 1}.

Let us compare distance between the uniform distributionU(Sn) on n-element per-
mutations to the distribution L(RPCr,n) when n ≥ √2r.

From Lemma 3 there exists two mix entries x, y that are not yet mixed after
r steps, with high probability. It means that x ∈ S 1,b1 , S 2,b2 , . . . , S r,br and y ∈
S 1,1−b1 , S 2,1−b2 , . . . , S r,1−br for b1, . . . , bc ∈ {0, 1}.

Let S0
n be the set of all permutations for which x ∈ S r,b and y ∈ S r,1−b for b = 0, 1.

From the assumptions we have that |S r,0| = m. From Lemma 3, with high probability,
only permutations from S0

n have nonzero probabilities in distribution L(RPCr,
√

2r). In
other words, we can write that the probability of σ under L(RPCr,

√
2r) is f (σ) such that

f (σ)

⎧⎪⎪⎨⎪⎪⎩
> 0 if σ ∈ S0

n,

= 0 otherwise,

for some distribution f on S0 (Fig. 23).

Fig. 23. Representation of sets S 1,0, S 1,1 for M1 and sets S 2,0, S 2,1 for M2. Audit/challenge bits
A1, A2 for M1,M2 are presented next to columns C1,C3. Sets S j,0 are denoted by � and sets S j,1

are denoted by •.

Now, let us compute the distance between uniform distribution and the distribution
L(RPCr,n) for a set of permutations S0

n such that m left links were opened, i.e., |Ir | =
|S r,0| = m.

24 P. Lorek et al.

TVD
[
U(Sn),L(RPCr,n)

∣∣∣ |S r,0| = m
]
=

=
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
σ∈S0

n
|S r,0 |=m

∣∣∣∣∣ f (σ) − 1
n!

∣∣∣∣∣ +
∑
σ�S0

n
|S r,0 |=m

1
n!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
σ∈S0

n
|S r,0 |=m

(
f (σ) − 1

n!

)
+
∑
σ�S0

n
|S r,0 |=m

1
n!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
2
+

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
σ�S0

n
|S r,0 |=m

1
n!
−
∑
σ∈S0

n
|S r,0 |=m

1
n!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
1
2
+

1
2n!

(
n! − 2|{σ ∈ S0

n : |S r,0| = m}|
)

= 1 − |{σ ∈ S
0
n : |S r,0| = m}
n!

Noting that
|{σ ∈ S0

n : |S r,0| = m}| = 2m(n − m)(n − 2)!

we have

TVD
[
U(Sn),L(RPCr,n)

∣∣∣ |S r,0| = m
]
≥ 1 − 2m(n − m)

n(n − 1)
.

The worst-case is exactly half left links are open (say n is even), i.e., m = n/2, then

TVD
[
U(Sn),L(RPCr,n)

∣∣∣ |S r,0| = m
]
≥ TVD

[
U(Sn),L(RPCr,n)

∣∣∣ |S r,0| = n/2
]

≥ 1 − 2 n
2
n
2

n(n − 1)
=

1
2
− 1

2(n − 1)
.

A.2 Proof of Lemma 6

Proof. We will use some tools from Markov chain theory. We will consider two chains
{Xt}t≥0, {Yt}t≥0 on Sn. We set X0 = Y0 to be the identity permutation (note that RPC0,n is
the identity permutation).

Recall that server j performs permutations π2 j−1 and π2 j, in total 2r permutations
are performed.

Concerning Xt+1: it is Xt to which we apply a uniformly random permutation πt =
(πt(1), . . . , πt(n)) (note that then Xt ∼ U(Sn) for any t ≥ 1).

Note that in Scheme One each server performs independently identical (in dis-
tribuion) steps. That is why we will look at the distribution after each application of πt.

Concerning Yt, this is Xt with the following extra knowledge. Let Bt = bt,1, . . . , bt,n
be the n random bits chosen independently from the distribution P(bt,i = 0) = p =
1 − P(bt,i = 1).

Now assume that the entries S j,0 = { j : bt, j = 0} from the permutation πt are
opened. Yt has distribution of Xt provided we have a knowledge of B1, . . . , Bt. This
corresponds to RPCt,n. Since {Yt}t≥0 is ergodic and aperiodic, the uniform distribution
is the stationary distribution. By L(Yt) we denote the distribution of Yt.

We will use the strong stationary times (SST) approach (introduced in [1,2]). We
say that T is an SST for {Yk} if for any permutation σ we have P(Yt = σ|T = t) = 1/n!.
For such SST we have TVD [L(Yk),U(Sn)] ≤ P(T > t) (see, e.g., Theorem 6 in [1]).

Let us define
Ti j = min{t : bt,i = bt, j = 1},

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 25

i.e., this is the first time that both elements i and j were not opened. At this time the
relative ordering of i and j is random (since πk is uniformly random). Note that the
probability that this will not happen in one step is 1 − (1 − p)2 (at least one entry was
opened), thus P(Ti j > t) = (1 − (1 − p)2)t.

Now, let T be the first time when all the pairs of elements were not opened in at
least one step. It means that all

(
n
2

)
pairs are in random relative order – and that means

that the permutation itself is random (since πt’s are uniformly random). In other words,
T is an SST for {Yt}. We may compute

TVD [L(Yk),U(Sn)] ≤ P(T > t) = P
(⋃

1≤i< j≤n{Ti j > t}
)

≤
∑

1≤i< j≤n
P(Ti j > t) =

∑
1≤i< j≤n

(
1 − (1 − p)2

)t
=

(
n
2

) (
1 − (1 − p)2

)t
.

Taking t = log 1
1−(1−p)2

[(
n
2

)
/ε
]
, we have TVD [L(Yk),U(Sn)] ≤ ε. In total there are t = 2r

permutations, thus the proof is completed.

A.3 Proof of Lemma 7

Proof. The proof is similar to the proof of Lemma 6. The t-th server applies two permu-
tations π2t−1 and π2t, then each left link is opened independently with probability p, i.e.,
B2t−1 = b2t−1,1, . . . , b2t−1,n with i.i.d. P(b2t−1, j = 0) = p = P(b2t−1, j = 1), j = 1, . . . , n.
However the audit string B2t is uniquely determined:

B2t = (b2t,1, . . . , b2t,n) = (1 − b2t−1,1, . . . , 1 − b2t−1,n).

The situation is depicted in Fig. 24. Again, let

Ti j = min{t : bt,i = bt, j = 1},
i.e., this is the first moment that elements i and j were not opened in the same permuta-
tion. Consider steps 2t − 1 and 2t: the elements i and j will be both opened in the same
step if i) they are both revealed in step 2t − 1; ii) they are both not opened in step 2t − 1
(since then they surely will be in next step). Thus, the pair will not be mixed in steps
2t − 1 and 2t with probability 2p(1 − p). We have

P(Ti j > 2t) = (2p(1 − p))t .

Again, since all permutations πt’s are random, the first moment T when all the pairs are
mixed is an SST, and we have (consider t even)

TVD [L(Yt),U(Sn)]
≤ P(T > t) = P

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

1≤i< j≤n
{Ti j > t}

⎞⎟⎟⎟⎟⎟⎟⎠
≤
∑

1≤i< j≤n
P(Ti j > 2t/2) =

∑
1≤i< j≤n

(2p(1 − p))
t
2

=

(
n
2

)
(2p(1 − p))

t
2 .

26 P. Lorek et al.

Taking the last step, i.e., t = 2r we have that r = log 1
2p(1−p)

[(
n
2

)
/ε
]

what completes the
proof.

Fig. 24. Situation similar to Fig. 20: π1 and π2 and B1 = 001010 are the same as there, but now
B2 is determined by B1, namely b2

i = 1 − b1
i – opened connections depicted in red.

References

1. Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Am. Math. Mon. 93(5), 333–
348 (1986)

2. Aldous, D., Diaconis, P.: Strong uniform times and finite random walks. Adv. Appl. Math.
8(1), 69–97 (1987)

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for
public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp.
26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055718

4. Burton, C., Culnane, C., Heather, J.: Thea Peacock, Peter YA Ryan, Steve A Schneider,
Vanessa Teague, Roland Wen, Zhe Xia, and Sriramkrishnan Srinivasan. Using prêt à voter in
victoria state elections. EVT/WOTE, 2 (2012)

5. Carback, R.T., et al.: The scantegrity voting system and its use in the takoma park elections.
In: Real-World Electronic Voting, pp. 253–292. Auerbach Publications (2016)

6. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election scheme. In: di
Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp.
118–139. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_8

7. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
mun. ACM 24(2), 84–90 (1981)

8. Chen, C., Asoni, D.E., Barrera, D., Danezis, G., Perrig, A.: Hornet: high-speed onion routing
at the network layer. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1441–1454 (2015)

9. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: toward a secure voting system. In: 2008
IEEE Symposium on Security and Privacy (S&P 2008), pp. 354–368. IEEE (2008)

10. Gjøsteen, K.: The Norwegian internet voting protocol. In: Kiayias, A., Lipmaa, H. (eds.)
Vote-ID 2011. LNCS, vol. 7187, pp. 1–18. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32747-6_1

11. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Rapid mixing and security of Chaum’s
visual electronic voting. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol.
2808, pp. 132–145. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39650-
5_8

https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/978-3-642-32747-6_1
https://doi.org/10.1007/978-3-642-32747-6_1
https://doi.org/10.1007/978-3-540-39650-5_8
https://doi.org/10.1007/978-3-540-39650-5_8

Mirrored Commitment: Fixing “Randomized Partial Checking” and Applications 27

12. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle. In:
Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3_22

13. Haenni, R., Koenig, R.E., Locher, P., Dubuis, E.: Chvote system specification (2017)
14. Haines, T., Müller, J.: Optimal randomized partial checking for decryption mix nets. In:

Baek, J., Ruj, S. (eds.) ACISP 2021. LNCS, vol. 13083, pp. 277–292. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90567-5_14

15. Haines, T., Müller, J.: Sok: techniques for verifiable mix nets. In: 2020 IEEE 33rd Computer
Security Foundations Symposium (CSF), pp. 49–64 (2020)

16. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting by ran-
domized partial checking. In: USENIX Security Symposium, San Francisco, USA, pp. 339–
353 (2002)

17. Khazaei, S., Wikström, D.: Randomized partial checking revisited. In: Dawson, E. (ed.) CT-
RSA 2013. LNCS, vol. 7779, pp. 115–128. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36095-4_8

18. Küsters, R., Truderung, T., Vogt, A.: Formal analysis of Chaumian mix nets with randomized
partial checking. In: 2014 IEEE Symposium on Security and Privacy, pp. 343–358. IEEE
(2014)

19. Lorek, P., Kulis, M., Zagórski, F.: Leakage-resilient riffle shuffle. In: Blömer, J., Kotsireas,
I.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 395–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72453-9_32

20. Miers, I., Garman, C., Green, M., Rubinm, A.D.: Zerocoin: anonymous distributed e-cash
from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411. IEEE (2013)

21. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_9

22. Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix anonymity system.
In: 26th {USENIX} Security Symposium ({USENIX} Security 17), pp. 1199–1216 (2017)

23. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014
IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

24. Toledo, R.R., Danezis, G., Echizen, I.: Mix-ORAM: using delegated shuffles. In: Proceedings
of the 2017 on Workshop on Privacy in the Electronic Society, pp. 51–61 (2017)

25. van Saberhagen, N.: Cryptonote v 1.0 (2012). https://cryptonote.org/whitepaperv1.pdf
(2021)

26. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González Nieto, J.
(eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02620-1_28

27. Douglas Wikström. Verificatum (2018). https://www.verificatum.org/

https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-030-90567-5_14
https://doi.org/10.1007/978-3-642-36095-4_8
https://doi.org/10.1007/978-3-642-36095-4_8
https://doi.org/10.1007/978-3-319-72453-9_32
https://doi.org/10.1007/3-540-46766-1_9
https://cryptonote.org/whitepaperv1.pdf
https://doi.org/10.1007/978-3-642-02620-1_28
https://doi.org/10.1007/978-3-642-02620-1_28
https://www.verificatum.org/

Bitcoin Clique: Channel-Free Off-Chain
Payments Using Two-Shot Adaptor

Signatures

Siavash Riahi1 and Orfeas Stefanos Thyfronitis Litos2(B)

1 TU Darmstadt, Darmstadt, Germany
2 Imperial College London, London, UK
o.thyfronitis-litos@imperial.ac.uk

Abstract. Blockchains suffer from scalability limitations, both in terms
of latency and throughput. Various approaches to alleviate this have been
proposed, most prominent of which are payment and state channels,
sidechains, commit-chains, rollups, and sharding. This work puts forth
a novel commit-chain protocol, Bitcoin Clique. It is the first trustless
commit-chain that is compatible with all major blockchains, including
(an upcoming version of) Bitcoin.

Clique enables a pool of users to pay each other off-chain, i.e., without
interacting with the blockchain, thus sidestepping its bottlenecks. A user
can directly send its coins to any other user in the Clique: In contrast
to payment channels, its funds are not tied to a specific counterparty,
avoiding the need for multi-hop payments. An untrusted operator facili-
tates payments by verifiably recording them.

Furthermore, a novel technique of independent interest is used at the
core of Bitcoin Clique. It builds on Adaptor Signatures and allows the
extraction of the witness only after two signatures are published on the
blockchain.

1 Introduction

Blockchain technologies have gained increasing popularity in the past decade
as they provide a robust, secure, and decentralized infrastructure that allows
parties to make monetary transactions, as well as execute applications. The
main ingredient used in virtually all blockchains are consensus protocols, which
guarantee that all honest parties have received and agree on the latest state of the
system. Unfortunately, because of their distributed nature, public blockchains do
not scale well in terms of throughput and latency [1]. For example, Bitcoin needs
at least 1h to finalize a new transaction [2] and can process around 7 transactions
per second, in contrast to centralized, trusted payment processors that achieve
instant finality and can process tens of thousands of transactions per second.

To tackle this issue, off-chain protocols were introduced. An off-chain pro-
tocol allows parties to make transactions without involving the blockchain and
only come on-chain in case of disputes, vastly increasing throughput. The first
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 28–50, 2024.
https://doi.org/10.1007/978-3-031-54776-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_2

Bitcoin Clique 29

type of widely deployed off-chain protocols is payment channels [3–7]. Two par-
ties open a channel with a single on-chain transaction, locking their funds into
a “joint account”. They can then pay each other many times entirely off-chain,
via a fast two-party protocol. An honest party can always unilaterally retrieve
its rightful funds on-chain, thus it does not need to trust its counterparty.

Nevertheless, locking coins for exclusive use with a single counterparty is
a severe limitation. Payment Channel Networks (PCNs) [6,7] mitigate this by
enabling atomic multi-hop payments. A routing algorithm specifies a path of
channels between the payer and the payee, then each intermediary receives funds
in one channel and atomically sends the same amount (minus a fee) to the other.

In order for a channel to serve as an intermediate hop, it needs to have enough
balance on one of the two sides of the channel. Unfortunately, intermediary
channels are often used excessively in one direction, leading to channel imbalance.
Payment Channel Hubs (PCHs) [8–10] were introduced to mitigate this. A PCH
is a PCN node that offers liquidity and reliability in exchange for higher fees.

To deliver on these guarantees, the PCH must have the capacity to handle a
scenario in which all parties simultaneously pay all their coins to the same party.
This needs a large amount of locked funds: Consider a PCH with n clients, each
of which owns c coins in its channel with the hub. The latter must have (n− 1)c
coins in its channel with each client P in order to support everyone else each
giving c coins to P , for a grand total of n(n−1)c coins locked by the hub. Due to
these scalability issues, practical hubs restrict the allowed payments and charge
the users high fees to compensate for the opportunity cost of their locked funds.

To tackle this limitation of PCHs, an alternative off-chain approach that
foregoes channels completely was introduced: plasma or commit-chain proto-
cols [11]. Here a separate log of transactions between participating users is
maintained by an untrusted operator that periodically commits the latest system
state on-chain efficiently. Due to this need for on-chain commitments, contrary
to PCNs, commit-chains do not achieve instant finality. Still, they greatly reduce
the required operator collateral while maintaining high throughput and low fees.
In most such protocols the operator either needs no collateral at all or has to
lock nc coins, a linear improvement compared to PCHs. A popular subcategory
of commit-chains are rollups [12,13]. They store all transaction data on-chain,
but carry out the associated computation off-chain.

To date, all commit-chain protocols need the Turing-complete capabilities of,
e.g., Ethereum [14] to validate exit requests and disputes. In this work we present
Bitcoin Clique, the first commit-chain protocol suitable for blockchains with a
limited scripting language such as Bitcoin [2]. Clique enables its users to pay
each other off-chain without having to lock coins with a specific counterparty,
therefore completely avoiding the issues that PCNs face. A payment only needs
the active participation of the payer, the payee and an untrusted operator. To
achieve this we leverage OP_CHECKTEMPLATEVERIFY (OP_CTV) [15], an opcode that
is a prime candidate for inclusion in the next Bitcoin soft fork, as well as a novel
technique of independent interest which builds on Adaptor Signatures [16]. At
a high level, the latter enables the atomic exchange of a signature for a secret
that satisfies a specific relation. This is useful for a range of applications [17–20].

30 S. Riahi and O. S. T. Litos

Extending this primitive, we create a method to disclose the secret upon the
publication of two adapted signatures instead of just one.

As we formally prove, Bitcoin Clique achieves security and scalability, needing
only three off-chain messages per payment and a single on-chain transaction of
minimal size at fixed intervals. Building on top of Bitcoin brings commit-chains
to blockchains with constrained scripting capabilities, providing Bitcoin users
more versatility of off-chain solutions and expanding the use cases of the cryp-
tocurrency. Furthermore, it informs designers of future blockchains that pursue
minimal on-chain scripting capabilities without compromising on the achievable
off-chain functionality.

Similarly to other commit-chains and optimistic rollups [13], our solution
only finalizes payments upon an on-chain commitment. We find this to be an
acceptable tradeoff in exchange for drastically higher throughput than on-chain
payments, as well as more flexibility and less collateral than payment channels.

1.1 Our Contributions

We provide Bitcoin Clique, the first commit-chain that is compatible with Bit-
coin and other UTXO-based blockchains, enabling trustless off-chain payments
between commit-chain users with superior throughput and lower fees than on-
chain transactions, while avoiding the shortcomings of payment channels. We use
of two special tools to design our protocol: Firstly, we employ the to-be-added
OP_CTV opcode, which enables securely updating the state of Clique with the
active participation of just a single party, the operator. Secondly, we leverage our
novel technique at the heart of our construction, which extends Adaptor Signa-
tures and underpins a punishing mechanism against users that try to maliciously
obtain twice their rightful coins upon exiting. Relevant security properties are
defined and formally proven.

1.2 Related Work

Off-Chain Channels. There has been extensive work on off-chain channels.
The first line of works focused on off-chain payments over blockchains with a
limited scripting language such as Bitcoin [4–6,21–24]. In [25] the Lightning
Network (LN) [6] is formally proven secure in the UC framework [26]. State
channels generalize payment channels by allowing parties to execute off-chain any
application that is supported by the underlying blockchain, not just payments.
2-party state channels over Bitcoin are constructed in [16]. Most state channels
constructions (e.g., [27–30]) function over Ethereum.

Commit-Chains. The original concept of a commit-chain was introduced by
Plasma [11]. Many different plasma protocol variants such as MVP [31], Cash [32]
Debit [33] and Snapp [34] were introduced thereafter. These have been mostly
discussed at https://ethresear.ch without formal treatment.

Formal treatment of commit-chain/Plasma solutions was first presesnted
by NOCUST and NOCUST-ZKP [35]. Their solution requires the underlying

https://ethresear.ch

Bitcoin Clique 31

blockchain to support Turing-complete smart contracts. Another technique [36]
achieves better efficiency in comparsion to preexisting solutions but relies on
Trusted Execution Environments (which our work does not require). Liquid [37]
is a centralized commit-chain that functions on top of Bitcoin: users need to trust
a supermajority of a fixed federation of servers. Compared to channels, commit-
chains avoid imbalance issues, payment routing, complex channel management
and unsustainable collateral in exchange for instant finality.

Fast Finality Techniques. Snappy [38] and LDSP [39] speed up transactions
and are optimized for a small set of merchants that receive payments from a
large set of customers. A subset of the merchants (a.k.a statekeepers) guaran-
tee fast payment finality using the customer’s collateral, before the transaction
becomes finalized on-chain. They only allow for unidirectional payments and put
all transactions on-chain. We compare LN-based PCHs, NOCUST, Snappy, and
the current work in Table 1. There, for Snappy it is epoch = latency period [38].

Rollups. Finally, a solution similar to commit-chains is called rollups. This app-
roach aims at performing expensive computation (i.e., executing smart contracts)
off-chain, while committing all (unprocessed) data to the blockchain, effectively
using the latter as a data availability layer while the rollup is active, and as
a finality platform once a party leaves the rollup. Rollups (e.g., [12,13,40–42])
are essentially a special case of commit-chains. They are of lesser interest for
blockchains with restricted scripting capabilities such as Bitcoin, where the stor-
age of L1, not its computation, corresponds to the lion’s share of the cost.

Table 1. Comparison of PCHs based on LN [6], NOCUST [35], Bitcoin Clique, and
Snappy [38] for n users. Ephemeral data is deleted after each epoch.

PCH (LN) NOCUST Bitcoin Clique Snappy (m
statekeepers)

off-chain
payment
costs

Network (messages) 8 3 3 3 + 2m

per-payment storage
(user/operator)

O(log(max pays)) /
O(log(max pays))

312b/841b
(ephemeral)

1 sig + 5 pks/ 5 pks
(ephemeral)

0 / 0

fixed storage
(user/operator)

2 ints + 2 pks/
2n ints + 2n pks

529b/
5n ints + n pks

n pks + n ints /
n pks + n ints

0 / 0

on-chain
overhead
(txs)

startup n n 2 n+m

pessimistic teardown 2n 2n 2n n+m

per epoch — 1 1 0

per payment 0 0 0 1

Works w/o Turing-complete SC ✓ ✗ ✓ ✗

Allows any-to-any payments ✓ ✓ ✓ ✗

user collateral (total payments
of up to c coins/epoch)

— 0 0 c

operator collateral (c coins/user) n(n − 1)c nc nc —
statekeeper collateral
(insuring up to nc coins/epoch)

— — — nc

32 S. Riahi and O. S. T. Litos

Extensions to Adaptor Signatures. The technique of [43] extends adaptor
signatures to two pre-signers, who collaborate to pre-sign. Given then a single
adapted pre-signature, they can extract the witness. In contrast, in our technique
a single pre-signer needs two adapted pre-signatures to extract the witness.

2 Preliminaries

A digital signature scheme, first formalized in [44], is an established crypto-
graphic primitive that enables efficient message authentication. It provides (i)
Gen, a probabilistic polynomial time (PPT) algorithm that generates a secret-
public key pair, (ii) Sign, a PPT algorithm that, on input a secret key and
an arbitrary message, produces a signature and (iii) deterministic polynomial
time (DPT) Vrfy which, on input a public key, a message and signature, it
returns whether the signature is valid. The security property ensures that, with-
out knowledge of the secret key, one cannot forge a valid signature.

Consider next a security parameter k ∈ N and a relation R, i.e., a set of
statement-witness pairs (Y, y), where Y, y ∈ {0, 1}∗. Let LR, the language of the
relation, be the set of statements for which a valid witness exists: LR = {Y |
∃y s.t. (Y, y) ∈ R}. We further say that R is a hard relation if: (i) there exists a
PPT algorithm RGen(1k) that produces new (Y, y) pairs in R, (ii) one can check
efficiently (i.e., in polynomial in k time) whether a given (Y, y) pair is in R (i.e.,
R is decidable) and (iii) there is no PPT algorithm that, given Y , produces a
witness y such that (Y, y) ∈ R with more than negligible probability in k.

Adaptor Signatures (AS). This scheme, formalized in [45], is built on a digital
signatures scheme and a hard relation R. It enables the atomic exchange of (i)
a valid signature on a message of interest m ∈ {0, 1}∗ with (ii) a valid witness
of a pre-agreed statement. In addition to the 3 algorithms of the underlying
signatures, adaptor signatures provide 4 new ones: pSign, pVrfy,Adapt and Ext. In
this work we leverage a novel technique built on AS for a punishment mechanism
at the heart of Bitcoin Clique.

The typical AS scenario involves two parties: Alice, who generates the pair
(Y, y) ∈ R, keeps the witness y secret, and publishes Y , and Bob, who controls
the signing keypair (sk , pk). Initially, Bob calls pSign(sk ,m, Y) in order to pre-
sign m, then sends the resulting pre-signature σ̃ to Alice. She verifies that σ̃
is valid by checking that pVrfy(pk ,m, σ̃, Y) returns 1. σ̃ is however not a valid
signature (i.e., Vrfy(pk,m, σ) = 0, where Vrfy is the verification algorithm of
the underlying signature scheme). Nevertheless, Alice can call Adapt(pk , σ̃, y)
(note the use of her witness y) to obtain the desired valid signature σ: now it
is Vrfy(pk ,m, σ) = 1. Alice then broadcasts σ (usually on a blockchain). The
adapted signature σ is special: Bob can extract Alice’s witness y from it by
running Ext(σ, σ̃, Y). The atomic exchange of σ for y is now complete.

The adapted signature σ thus serves a double role: It both proves that Bob
indeed signed m and discloses Alice’s witness to him.

Bitcoin Clique 33

A motivating application for this scheme is the atomic sale over a blockchain
of a secret that satisfies a specific constraint, e.g., is the secret key of a specific
public key: The seller Bob sends the statement (his public key) to the buyer
Alice. She prepares a transaction that pays Bob, pre-signs it and sends him
its pre-signature. Bob adapts it and publishes the transaction with the resulting
signature. Lastly Alice extracts the witness (Bob’s secret key) from the signature.

AS offer the following functional and security properties: (i) Bob cannot
obtain a signature without adapting, (ii) if he adapts he will always obtain a
valid signature and (iii) Alice can always extract the witness from an adapted
signature. Thus, if Bob gets paid, then Alice learns the witness, ensuring
atomicity.

CTV. We now provide some intuition on CTV, the proposed Bitcoin opcode [15]
that we make heavy use of in this work. At a high level, it allows us to constrain
the future use of coins. This new restriction ability enables complex ownership
structures of coins, bringing to Bitcoin a large and useful subset of the smart
contracts possible in blockchains with Turing-complete scripting languages [14]
with a minimal, well-scrutinized modification to the Bitcoin Script.

Its mechanics are relatively simple: the CTV opcode is included in a transac-
tion output and fully specifies every piece of data of the spending transaction,
exept for the content of its inputs. At an intuitive level, it is enough to think
that a CTV dictates the outputs of the next transaction.

For example, consider a transaction output θ′ of c coins that is spendable by
Alice, as well as another transaction output θ with 2c coins, encumbered only
with a CTV that commits to a transaction with a single θ′ output. This means
that anyone can spend θ, as long as the spending transaction has a single output,
θ′. The interpretation of this setup is that Alice has to pay a fee of c coins to
the miners to gain c coins.

Let us examine a more useful example: Alice keeps her coins in an output
encumbered with a CTV that specifies a single output. The latter is either spend-
able by her “hot wallet” key after a delay, or by her “cold wallet” key immediately.
To pay, she first spends the CTV-encumbered output, then waits for the delay
and finally uses the payment transaction. If however her hot wallet is compro-
mised (which can presumably happen more easily than to her cold wallet), she
still can salvage her coins with the cold wallet key within the delay window.
Observe that in the common case of no compromise, her cold wallet secret key
is never used. This way to secure funds is currently impossible in Bitcoin.

More complex applications of CTV, such as Bitcoin Clique, implicate multiple
mutually distrustful parties. Without CTV, all involved outputs would have to be
signed by all parties, otherwise any missing party could be cheated out of its coins
by the rest. This however does not scale, as it requires the active participation of
all parties for any state update. Even worse, a single inactive party can lead to
the protocol stalling, effectively locking honest party coins forever. CTV removes
these pitfalls by fixing where the coins of involved outputs will go without new
signatures by all parties on every update.

34 S. Riahi and O. S. T. Litos

With regards to notation, consider a transaction tx. We denote a CTV that
commits to a transaction with the outputs of tx with CTV(tx): An output with
spending condition CTV(tx) can only be spent by a transaction with the outputs
of tx and no other transactions. For efficiency and privacy, a short commitment
to the relevant tx data, generated with a hash function, is stored with CTV(tx).

3 Model

3.1 Blockchain and Transaction Model

In this work we focus on blockchains based on the Unspent Transaction Output
(UTXO) model, such as Bitcoin. Under this model, coins are held in outputs.
Formally, an output θ is a tuple (cash, ϕ), where cash denotes the amount of coins
associated to the output and ϕ defines the conditions (also known as script) that
need to be satisfied to spend the output. Our modeling is inspired by [16,46].

A transaction transfers coins across outputs, meaning that it consumes one
or more existing outputs and creates a list of new outputs. A transaction has one
input for each output it spends, which carries the witness that satisfies the script
of the output being spent (typically one or more signatures). In other words, each
transaction input is tied with exactly one previously unspent output of an older
transaction. Thus, the transactions of a UTXO-based blockchain are organized
in a directed, acyclic transaction graph. Formally, a transaction tx is a tuple of
the form (txid, In,Out,Witness), where txid ∈ {0, 1}∗ is the unique identifier of tx
and is calculated as txid := H(In,Out), where H is a hash function, commonly
modeled as a random oracle. In is a vector of pointers to the outputs being spent
and Out = (θ1, . . . , θn) is a vector of the new outputs. The sum of coins of the new
outputs must not exceed the sum of coins of the spent outputs. Witness ∈ {0, 1}∗

contains the witnesses that satisfy the scripts of the old outputs.
A valid transaction can be added to a single block of the blockchain (or ledger,

GLedger). A block consists of a number of transactions. There is a unique block for
each height ∈ N and new blocks are continuously created. As explained below,
the height of the block in which it is included can be leveraged by the script(s)
of a transaction via a timelock. The liveness property guarantees that an honest
transaction has to wait for at most u ∈ N blocks from submission to inclusion.
One can of course store a transaction locally (a.k.a. off-chain) along with (some
of) its witnesses in order to publish it later on-chain if needed.

Let us now enumerate the five types of spending conditions of an output
used in this work. The most common spending condition is a public key. To
satisfy it, the spending transaction must be signed with the corresponding secret
key. Two more spending conditions are absolute and relative timelocks. These
conditions make the output unspendable before a certain point in time. An
absolute timelock is a block height after which the output can be spent. A
relative timelock is the number of blocks that the output must stay on-chain
before it can be spent. All timelocks in this work last for strictly longer than the
liveness parameter u. The fourth spending condition is the threshold signature,
which allows a subset of specific size of a designated set of keys to spend the

Bitcoin Clique 35

output (this functionality is implemented with the OP_CHECKSIGADD opcode1).
The last spending condition type is CTV, which has been introduced in Sect. 2.

We introduce our notation through examples: The spending condition pkB
∧CTV(tx2) + t1 of an output of tx1 can be spent by tx2 signed by skB , only
after tx1 has been on-chain for t1 blocks (“+t” denotes relative timelock). (pkC ∧
pkD) ∧ t2 can be spent by a transaction signed by both skC and skD, only after
block t2 (“∧t” denotes absolute timelock).

3.2 Commit-Chain Model

A commit-chain protocol is executed among a set of users P, an operator Op
and GLedger. We break the execution down into three phases: the transaction,
the exit, and the healing phase. In the transaction phase users can transfer coins
off-chain to one another and in the exit phase users can withdraw their rightful
coins on-chain. Users that want to continue the Clique enter the healing phase.

Transaction Phase. During this phase each user Pi ∈ P can send a message of the
form (Pi, Pj , v, aux) to the operator Op indicating that Pi wants to send v coins
to user Pj ∈ P. At the end of this phase each user P ∈ P attempts to compute
a tuple of the form (v, e, π), where v is P ’s balance in epoch e and π is a balance
proof. The protocol should ensure that a user can send coins to and receive coins
from multiple users during this phase. Balances are not updated immediately
but only at the end of the transaction phase. This property is referred to as
late or eventual finality. Due to late finality, it could indeed be the case that an
honest user cannot calculate the latest π at every moment. In this case the user
will use its previous balance proof to exit the system if she so wishes without
loss of funds.

Op is tasked with processing payments and updating user balances. Some
commit-chain protocols require Op to send one or more on-chain transactions to
GLedger to commit to the latest state of the system at the end of each epoch.

Exit Phase. This phase can be triggered by any user P ∈ P. It is carried out
by submitting one or more suitable transactions to GLedger. If Op misbehaves, P
will detect it and exit in time, securely recovering all its coins on-chain.

Healing Phase. Some commit-chain protocols require a restoration process by the
users and Op to revert to the transaction phase after an exit phase is completed.

3.3 Communication and Adversarial Assumptions

Let us now discuss the communication and adversarial assumptions in our mod-
eling. A commit-chain protocol is executed in the presence of a PPT adversary
who can corrupt up to all but one parties. The corrupted parties are then con-
trolled by the adversary, i.e., they can deviate from the protocol description and
act in an arbitrary and possibly coordinated fashion.
1 github.com/bitcoin/bips/blob/master/bip-0342.mediawiki#cite_note-5.

36 S. Riahi and O. S. T. Litos

We also assume that parties are connected via authenticated channels, i.e.,
the adversary can read, delay, replay or drop messages sent between parties but
cannot modify their content. All parties have read and write access to GLedger.
The adversary cannot drop messages sent by an honest party to GLedger, but it
can delay them for up to a fixed period of time.

3.4 Security and Performance Guarantees

We here provide intuition for the intended guarantees of Bitcoin Clique.

Transaction Phase Correctness. We say that a transaction is valid if the sender
owns in the commit-chain more coins than the amount to be paid. During the
transaction phase, if Op, the sender Pi ∈ P and the receiver Pj ∈ P of a valid
transaction (Pi, Pj , v, aux) are honest, then either Pi’s balance is reduced by v
and Pj ’s balance is increased by v, or both balances remain unchanged (if the
adversary drops or delays a message too much).

Exit Phase Correctness. If an honest user exits the commit-chain system, she is
removed from the user set P. For simplicity we assume that a user always exits
with all her coins.

Balance Security. In the presence of any number of malicious parties, including
Op, an honest user does not lose any coins at any stage of the protocol, i.e., an
honest user is able to always exit with her entire balance. We note that due to
late finality, this property essentially states that users will either be able to exit
with their balance from the current or the previous epoch.

Operator Balance Security. An honest operator does not lose the collateral she
deposited in the commit-chain, even in presence of any number of malicious
users. Furthermore, she is able to exit the Clique at any time.

Formal security properties are given in Sect. 5 (Theorems 1 and 2).

Efficiency. Let t denote the duration of an epoch and c the per-epoch communi-
cation of Op with GLedger. A commit-chain protocol is efficient if t, c ∈ O(1), i.e.,
the duration of an epoch and the per-epoch communication of Op with GLedger

independent of the number of both users and payments.
Efficiency is the reason why a commit-chain protocol is useful, as it guarantees

that its payment fees are drastically lower than on-chain transaction fees.

4 Protocol Overview

In this section we go over the Bitcoin Clique protocol in an informal but detailed
manner, providing the necessary intuition.

Consider users P with |P| = n and an operator Op running a Bitcoin Clique
protocol. Under the current design, users can only own and exchange coins in

Bitcoin Clique 37

a single, fixed denomination. Adding more denominations is relatively straight-
forward, but left as future work – discussion to that direction can be found in
Sect. 6. In the current section we limit the total number of coins to be a power
of 2 and we assume that each user owns 1 coin for ease of exposition; these
limitations are not present in the formal protocol.

This subsection is organized as follows: We start with the protocol flow dur-
ing normal operation, which includes payments and epoch changes. We then
explain the off-chain tree of transactions that is the core of the construction.
Subsequently the exit phase is discussed. Afterwards we elaborate on the mech-
anism which guarantees that epoch changes respect balance security; this is
where the extension of adaptor signatures and the need for operator collateral
come into play. Then the Clique setup procedure is presented, tying everything
together. Lastly we discuss the healing mechanism, which is formally presented
in Appendix A.

Transaction Phase. During normal operation, Alice ∈ P can send her coin to
Bob ∈ P by sending him a single signed message, who in turn generates some
keys and sends them, together with Alice’s message, to Op. The latter then
signs and publishes these messages to all Clique users. In practice, this last step
is efficient, as Op can simply post them on, e.g., its website. Honest users should
check that their payments appear there and initiate the exit phase if they do not
appear within a reasonable length of time.

Periodically, i.e., at the end of each epoch, Op publishes to GLedger a specially
crafted step transaction with 1 input and 1 output that carries the sum of all
Clique coins and commits to the latest coin distribution. This transaction spends
a previous step transaction. This is efficient: a transaction of minimal, constant
size safeguards all epoch payments, irrespective of their number or the amount
of users. Looking ahead, in order to move its coins back on-chain, any user can
unilaterally start the exit phase by spending on-chain the step transaction.

Transactions Structure. The central structure of a Clique is a binary tree of
transactions with one leaf per coin, which exists entirely off chain during normal
operation (i.e., until the exit phase). The root transaction of the tree has a single
input that spends the step transaction and has two outputs, each with half the
total coins. Each non-leaf transaction spends one of the two outputs of its parent
and in turn provides two outputs, each with half the coins. Looking forward, a
user can exit unilaterally by publishing to GLedger the branch of transactions
that connect the root to its leaf, which contains O(log(n)) transactions.

A parent transaction specifies its children using CTV. Crucially, CTV guar-
antees that Op can generate this tree locally, without interacting with the users,
just by using their public keys. This avoids costly interactions and prevents a sin-
gle user from stalling the protocol by inaction, ensuring the protocol is practical.
Since CTV uses hashes, the resulting structure is a Merkle tree of transactions.
This structure ensures logarithmic on-chain complexity for each user. An exam-
ple Merkle tree can be seen in Fig. 1.

38 S. Riahi and O. S. T. Litos

Exit Phase. If an honest user P ∈ P decides to move its coins back on-chain
or detects misbehavior by Op, – slow response times, invalid responses, or an
incorrect step transaction on-chain – it triggers the exit phase. As alluded to
previously, P accomplishes this by publishing the root transaction that corre-
sponds to the last valid step transaction, along with the log(n) + 1 transactions
that constitute its own branch of the Merkle Tree. In particular, each non-root
transaction that P publishes spends one of the two outputs of its parent. This
is the only way to spend this output without a timelock – the child transaction
is specified via CTV.

Fig. 1. Merkle tree for 4 users. The usage of CTV is exemplified.

The leaf transaction has 2 outputs as well, one of which concerns P . This
output has a different spending condition: it requires an adaptor signature, pre-
signed by Op and adapted by P — we will promptly explain why. P spends the
leaf output using an out transaction, which finally gives P access to its coins
after a timelock.

For example, if n = 128 and P is the only exiting user, it has to publish the
root transaction, another 6 Merkle tree transactions and the out transaction to
exit, i.e., 8 constant-size transactions in total.

Once the step transaction is spent by P , it prompts all other Clique users to
either follow the same on-chain procedure to retrieve their coins on-chain within a
fixed timeframe — this is the timelock of the Merkle tree transactions we alluded
to before — or join the healing phase (discussed below), otherwise their coins
can be confiscated by Op. The latter is required to guarantee operator balance
security. Note that a user R exiting after P needs to publish less than log(n)+1
transactions on-chain, since part of the tree has already been published. More
specifically, if R exits after P and shares 1 ≤ m ≤ log(n) levels of the Merkle
tree with P , then R only needs to publish log(n) − m + 1 transactions to exit.

Bitcoin Clique 39

Some details that are omitted here for simplicity can be found in Sect. 5.

Updating Step Transactions. One crucial question has been left unanswered:
How does Op securely supersede the step transaction at each epoch change? On
the one hand, if Op can freely spend the step transaction, it can simply steal
all Clique coins without recourse. On the other hand, future payments are not
known when the step transaction is generated, thus CTV cannot be used. Of
course, requiring signatures by all users for each epoch update is impractical.

To resolve this quandary, the following solution is employed: Two step trans-
actions are active and unspent at each instant. Each carries the entirety of the
Clique coins. The first set of coins is initially provided by the users, whereas
the second is provided by Op as collateral. At the end of each epoch, a timelock
on the older one expires and Op can freely spend it. If Op is honest, it will use
the next step transaction, as discussed earlier. If however it steals the coins or
stays inactive, users exit via the other active step transaction – the CTV spend-
ing method, which requires the root transaction, is not timelocked. Op cannot
steal the newer step transaction, as it is still timelocked. This technique ensures
balance security for the users.

This solution however creates yet another problem: What prevents the users
from simply exiting via both step transactions? This would effectively double
each user’s coins by stealing Op’s collateral. This is where our novel technique
based on adaptor signatures is used. As alluded to above, P ∈ P has to publish
an out transaction after the leaf transaction and wait for a timelock to access its
coins. The out transaction needs a signature that P can only obtain by adapting
a specially crafted pre-signature by Op using a specific AS witness. If Op learns
two adapted signatures by P on out transactions of consecutive epochs, it can
extract two AS witnesses, sum them to obtain a new AS witness and use the
latter to confiscate the coins of one or both out transactions before P ’s timelock
expires. Therefore P can claim its coins from either step transaction securely,
but not from both. This technique provides operator balance security. We refer
the reader to Fig. 2 for a complete illustration.

Special care needs to be taken when coins change hands between epochs. In
order to maintain operator balance security, the payee needs an AS signature
by the payer to spend its coin. This is so that Op can punish the payer if both
payer and payee try to exit with the same coin.

Clique Setup. At last, all building blocks are in place. They are put together
during the setup procedure as follows: Parties exchange keys and pre-signatures,
then calculate the initial Merkle tree of transactions. Fixed conventions are used
(e.g., lexicographic ordering of public keys) so that all parties agree on exactly the
same tree. Each user then moves its c on-chain coins to the first step transaction,
which exceptionally has n inputs. Its output commits to the Merkle root via CTV.
Simultaneously Op moves its collateral (equal to the total Clique coins) to a step
transaction that commits to the same Merkle root. As discussed before, Op can

40 S. Riahi and O. S. T. Litos

also spend them, but only after a timelock. The timelock of the second one is
longer by t blocks. We say that t is the length of an epoch.

Observe that no user nor Op can lose coins during setup. Users only move
their coins into the step transaction after ensuring that its output is the expected
one and that they can spend their entire branch up to and including the out
transaction (which needs the correct pre-signature). Likewise Op verifies that it
can extract the required key and punish any user that attempts to take its coins
from both step transactions.

Healing Phase. After one or more users exit, one or both step transactions
are spent and part of the Merkle tree is on-chain. The remaining users need a
mechanism to restore suitable unspent step transactions to carry on. We design
a method by which the active users collaborate among them and with Op to
consolidate the outputs of each Merkle tree into a new step transaction. This is
achieved by including one more spending method to each output of each tree
transaction. This method does not use a CTV, since the exiting users are not
known when the tree is built and foreseeing all possible exit combinations leads
to an exponential blowup. It instead needs a signature by Op and all users that
have their coins in said output. At a high level, active users try to gather the
needed signatures for the consolidating transaction. If some users that have not
exited are inactive, the active users that share a tree output with them publish
the minimum tree transactions needed to exclude the inactive users from the tree
outputs and then try to consolidate again. Once the consolidating transaction is
fully signed, it is published to GLedger. The Clique is healed. A full description
can be found in Appendix A.

Extension to Adaptor Signatures. As we saw in Sect. 2, an adaptor signa-
ture scheme (AS) [16] ties together the signature of a message (in our case a
transaction) and the revelation of a secret value (a.k.a. witness). In a bit more
detail, a pre-signer first generates a pre-signature, the publisher adapts this pre-
signature using its witness, and upon publishing the resulting full signature the
pre-signer can extract the publisher’s witness using the pre- and full signatures.
In order to ensure compatibility with Bitcoin, we instantiate AS with Schnorr
adaptor signatures (we refer the reader to [16] for its details).

We extend this scheme to require two signatures for extraction. In particular,
in our technique, the witness consists of two AS witnesses. A single signature
only reveals one of the two AS witnesses, leaving the other (and the combined
witness) secret. Our technique guarantees that extraction is impossible under a
single valid signature and prevention of extraction is impossible under two valid
signatures.

Sect. 5 describes our contribution in depth.

Bitcoin Clique 41

Fig. 2. Illustration of a Bitcoin Clique with 4 users, showing the transactions that can
be published on-chain for the step transaction of epoch e, txstep,e. AS(Op, Pj) represents
a spending condition that requires a signature generated via an adaptor signature,
where Op is the pre-signer and Pj the adapter. The diamond notation represents an
OR spending condition, e.g., txout,e,1 can be spent either by P1 after block tp or by Op
if she knows y1 such that (Y1, y1) ∈ R. Op can learn y1 only if P1 maliciously publishes
the txout of two consecutive epochs. The txout of two epochs are unspent at any point
during a transaction phase, here only one is shown. The outputs of txroot,e, tx1,2 and
tx3,4 can be spent by Op after a timelock, thus preventing a coalition of malicious users
from indefinitely blocking Op’s collateral. These timelocked spending methods however
are omitted here for conciseness.

5 Bitcoin Clique Protocol

We now present our protocol in more detail. An illustration of the CTV-based
Merkle tree can be seen in Fig. 2. Thanks to CTV, the root transaction is the
only transaction that can spend the on-chain txstep.

To update the balances of the users at the end of each epoch, this Merkle
tree and the associated txstep need to be updated by Op. As we saw earlier, after
the end of the epoch Op has to be able to freely spend the current txstep and
replace it with the desired next txstep. As discussed, to prevent Op from abusing
this power and stealing all Clique coins, two step txs exist on-chain at any time.
To protect Op from losing its collateral by a user that spends both step txs, the
aforementioned AS extension is employed. In Fig. 2, P1’s secret y1 is revealed if
P1 exits from both trees (i.e., by spending the txstep of two consecutive epochs)
and Op can use it on the pkOp ∧ Y1 spending condition of txout,e,1 to punish P1.
Op is not in a race with P1, since the latter cannot spend the coins immediately
but needs to wait until block tp (spending condition pkout,1 ∧ tp of txout,e,1).

In order for P to pay R, the latter generates two new statement-witness pairs
for AS along with new keys for the tree and out txs. All users are informed by Op
about the new keys, so that they can take them into account when computing
the tree of the next epoch. Simply switching from P ’s to R’s keys at the new
epoch however would expose Op to an attack: P takes its output in the old epoch
and R takes its output in the new epoch, thus Op loses an equal collateral. As
alluded to earlier, the protection is as follows: When the current epoch ends, P
receives a pre-signature from Op, adapts it, and gives the complete signature

42 S. Riahi and O. S. T. Litos

to R. R needs this extra signature to obtain its coins during the next epoch.
Therefore, if both P and R try to obtain the same coin, Op will learn P ’s secret
and retrieve its collateral from P ’s out tx in the current epoch.

To sum up, at any time there are two unspent txstep on-chain, representing
the last two epochs. Each can be spent by the corresponding tree of transactions,
or by Op after a timelock. The two timelocks are staggered, so that Op cannot
spend both txstep simultaneously. At the end of the e-th epoch, Op spends one
txstep,e with a new txstep,e+2, alternating between the two series of step txs on
every epoch. If some users exit, the rest can actively collaborate to heal the
Clique by signing and publishing a single tx which moves all available coins to
a new step output and carry on with the protocol.

We next provide the protocol pseudocode. We refer the reader to Appendix B
of the full version [47] for the full protocol code, to Appendix C of the full
version [47] for its security proof, and to Appendix A for the healing subprotocol.

Constants: N users with c coins each, operator Op, each epoch lasts t blocks.

Setup Phase.
1. Public keys distribution:

– Op and users exchange normal and AS keys.
2. Initial transactions preparation:

– txstep,1 is funded by the N users and has a t-block timelock.
– txstep,2 is funded by Op with Nc collateral coins and has a 2t-block timelock.

3. out transactions preparation:
– Op pre-signs the two out txs of each user using as statement the AS keys of

the user and sends the two pre-signatures to the user for verification.
4. Setup Finalization:

– Users sign txstep,1 and Op signs txstep,2, the two txs are published to GLedger.
Payment Phase (P transfers an output to R).

1. P sends to R a signed message with the output, R’s id and the next epoch.
2. R sends to Op new normal and AS keys, along with P ’s message.
3. Op generates a new AS key for this output and sends it to all N users, along

with P ’s message and R’s keys.
4. When the current epoch ends, P adapts the pre-signature by Op, gets a valid

signature and sends it to R for verification, who needs this signature to spend
the corresponding coins (see l. 1 of Epoch Finalization & l. 3 of User Exit).

Epoch Finalization Phase. When the timelock of txstep,e expires:

1. Op generates the (e+ 2)-th tx tree and txstep,e+2 and publishes the latter,
which spends txstep,e. For each output that has been transferred during epoch
e, Op uses the AS keys of both the sender and the receiver to build the new tx
tree. This means that signatures from both parties are needed to spend the leaf
tx of this output at epoch e+ 1.

Bitcoin Clique

Bitcoin Clique 43

2. Op pre-signs the new out tx of each user using as statement the AS key of the
user and sends the pre-signature to the user.

3. Each user verifies that the epoch change has taken place in a timely manner,
with the expected tx tree, and that the pre-signature is valid.

User Exit Phase. P must exit when it detects any dishonest behavior. The
procedure below is repeated for each of P ’s outputs.

1. P signs and publishes all txs that constitute the path from the root to its leaf
of the latest Merkle tree, spending the latest unspent txstep.

2. P adapts the relevant pre-signature and adds the resulting signature to txout,e.
3. If P received its output at the latest epoch, P also adds the previous owner’s

signature to txout,e and publishes it.
4. P stops any action related to this output except for further use of its now

on-chain coins. This prevents accidentally adapting another pre-signature and
disclosing P ’s secret keys to Op.

Operator Exit Phase. Op needs to receive Nc coins to recover its collateral.

1. Op tries to get the coins of a txstep of which the timelock has expired.
2. If this fails (because both step txs are spent by the root tx of the corresponding

tx tree), Op tries to take c coins per user:
– If the timelock of any tx in the tx tree expires, Op gets its funds from it

(thus receiving value equal to the sum of coins that are owned by the users
that have tx in their path).

– For every user P that has published both its out txs (and thus no timelock
on either of its paths is left to expire), Op extracts both P ’s AS secrets from
the signatures using 2-Ext.

– Op spends at least one of P ’s two out txs using its own secret key and the
sum of P ’s two secrets, thus taking c coins from P as desired.

The two central balance security theorems follow, where an environment E
may order any party to exit at any time:

Theorem 1 (User balance security). ∀ honest P ∈ P that owns a set of
outputs O in the protocol, if it is instructed by E to exit (Fig. 16 of the full
version [47]), then it will eventually exclusively own all outputs in O on-chain.

This theorem also covers any case of emergency exit or response to someone
else’s exit, since in such a case P must have already safeguarded or be in the
process of safeguarding its outputs when it receives E ’s exit instruction. It holds
because an honest user can retrieve its coins on-chain after a failed setup, it can
unilaterally put exactly one out tx on-chain any time after a successful setup,
and the timelock of the out tx will always expire, giving the user access to its
funds on-chain.

Theorem 2 (Operator balance security). If honest Op is instructed by E
to exit (Fig. 18 of the full version [47]), then eventually Op will exclusively own
at least the sum of all players’ outputs (which is equal to Op’s collateral).

44 S. Riahi and O. S. T. Litos

This theorem also implicitly covers any case in which a response to someone
else’s exit is needed. As discussed, it holds because Op can always claim the
coins back, either from an expired timelock of a step or tree tx, or by punishing
a user that published two out txs (and thus leaked its secret to Op).

Formal proofs for both theorems can be found in Appendix C of the full
version [47]. Transaction and exit phase correctness as well as efficiency can be
verified by simple inspection of the protocol.

6 Future Work

Several future work directions remain open. To begin with, only unilateral closure
was considered. This however has a high aggregate on-chain cost and, in case of
closure of a big Clique, could create on-chain congestion. Our protocol can be
extended in a straightforward manner to efficiently handle cooperative exiting of
a subset of the users. This is doable by moving the exiting users’ outputs from
the leaves of the Merkle tree to the next step transaction. This solution only
needs the cooperation of Op, not of all Clique users, maintaining practicality.

Furthermore, the current construction is not privacy-preserving, as all parties
learn all payments. Per-epoch mixing techniques can be used to bolster privacy.

Additionally, removing the fixed-denomination payment value limitation and
the need for operator collateral would greatly improve usability and practicality.
A simple extension of our protocol can provide multiple denominations by includ-
ing one Merkle tree per denomination. Fiat cash exemplifies how this approach
could be sufficient for practical use.

Operators introduce centralization concerns. Nevertheless, since many
Cliques with different operators can coexist and compete, operators are dis-
suaded from providing poor service, and balance security ensures users only rely
on the operator for quality of service, not for funds safety. Operator power can
be further limited by (i) adding a voting mechanism among users to replace
the operator and (ii) enabling inter-Clique payments. These are left as future
directions.

Last but not least, the tree structure need not necessarily be binary. It is
possible that other structures are in practice more efficient, e.g., tertiary trees.
Complementarily, leaf transactions with more than 2 users can be leveraged,
trimming a few levels from the tree. Such optimizations are left as a concern for
a possible future production-level implementation.

Acknowledgements. This work was partly supported by the German Federal Min-
istry of Education and Research and the Hessen State Ministry for Higher Education,
Research and the Arts within their joint support of the National Research Center for
Applied Cybersecurity ATHENE.

A Bitcoin Clique Healing

In its previously described form, Bitcoin Clique is vulnerable to a DoS attack:
When the exit phase is initiated by any user, the entire Clique is torn down

Bitcoin Clique 45

for everyone. We here propose an extension to the protocol, named healing,
which allows active users to reinstate the Clique securely with minimal on-chain
overhead.

At a high level, healing works by enabling a new way to spend tree txs which
needs the active participation of all relevant users and Op. After some users
exit, some tree tx outputs remain unspent. The users that want to stay in the
Clique collaborate with each other and with Op to create a single transaction
that spends all remaining tree tx outputs using the new spending method and
produces a suitable step tx output. The protocol is resilient to inactive users.

A.1 Healing Extension Details

In more detail, the solution is as follows: Consider an output of an arbitrary
tree tx, which is spendable by the subset of users T ⊂ P. We add an alternative
spending method, named healing, to the tree tx. Its script is

∧

P∈T
P ∧ Op. This

modification is done to every tree tx of every epoch.
s + 1 blocks after an exit phase is initiated, a user P that wishes to keep

its coins in the Clique first initializes C ⊂ P as the set of users that have not
exited (i.e., the users of whom the out tx is not on-chain) and then repeats the
following steps until either healing is complete (step 2) or the need for P to exit
arises (discussed after the healing steps).

1. Generate and sign a new step tx that spends all currently unspent tree outputs
using the healing spending method and has a single output with the coins and
script of a step tx for users C (with the same b as the step tx that was exited
from). See also Fig. 14 of the full version [47]. If the current block is within
the epoch update period (Fig. 12 of the full version [47]) of the exited-from
step tx, then produce the successor to the exited-from step tx instead (i.e.,
produce the step tx that would spend the exited-from step tx, two epochs
later). Gossip signatures with other users and Op.

2. Wait for treconcile blocks (a system-wide parameter, discussed in A.2). If all
users in C and Op sign the new step tx as well within this period, then
publish it to the ledger. Healing is complete.

3. Else:
(a) Remove from C the users that have not provided the aforementioned sig-

nature.
(b) Publish to the ledger the minimum set of tree txs on the path from the

root to P ’s leaf so that all users that can spend the resulting tree output
are in C. (This action ostracizes inactive users on P ’s path.)

(c) Wait for s + 1 blocks (giving time to our and other branches to finalize
on-chain).

(d) Remove from C all users that can spend an unspent tx tree output that
can also be spent by a user in P \ C. (This action ostracizes users that
did not ostracize inactive users on other paths by following step 3b. This
is needed because the healing spending method needs the signature of all
relevant users.)

46 S. Riahi and O. S. T. Litos

The procedure needs to be repeated potentially many times because previ-
ously active users may become uncooperative in the process.

The need for P to exit arises if the new step tx has not been published by
block tleave − s. In that case, P exits by publishing its branch of the tx tree and
out tx as usual. This scenario can happen if Op becomes malicious and does not
sign the new step tx, or if the other users maliciously classify P as inactive and
do not include its tree output in the step tx. This, together with the fact that all
relevant users (including P) need to sign for the healing spending method to be
used and the fact that P only uses it to return to a normal step tx, guarantees
that the healing extension safeguards balance security.

Op follows the same procedure as the users, apart from step 3b. Since its
signature is needed for all healing spending methods and it only uses it to return
to a normal step tx, operator balance security is guaranteed.

It is possible for the protocol to be executed on both active step txs simulta-
neously — balance security and healing are maintained.

A.2 Discussion and Future Work

Note that treconcile does not appear in any timelock, as it only dictates off-chain
communication timeouts. It could therefore be alternatively expressed in terms
of time. We here however express treconcile in terms of blocks for homogeneity of
notation. We recommend using the shortest treconcile value that ensures each user
has enough time to do a communication round-trip with every other user.

During healing, users might end up being too quick to assume another user is
inactive and publish a tree tx that is not strictly needed. This incurs unneeded
on-chain fees. A practical system would need to experiment with concrete param-
eters to minimize such events while promoting quick healing. Users are encour-
aged to be online and share as many signatures as possible as early and widely as
possible to minimize such events, as well as being Bitcoin peers with each other
in order to minimize discrepancies in their ledger views. To further mitigate this
effect, it is possible to design a more elaborate synchronization protocol that
allows users that were erroneously assumed inactive in step 3d to be re-included
in the set of active users during the subsequent signature gossip step 1. We leave
this as future work.

The above shows that this is a best-effort mechanism and does not benefit
from uniquely attributable faults, which would in turn enable exclusion of mali-
cious users from the healed Clique. There are specific cases in which it is possible
to uniquely attribute faults, such as when a user publishes the root tx and no
subsequent tree tx. We leave detecting and punishing uniquely attribute faults
as future work.

Nevertheless, the healing mechanism can save a lot of on-chain transactions
in many realistic scenarios of DoS attempts and always leads to reinstating and
continuing the Clique with all honest, active users irrespective of the number of
malicious users if Op is honest and network delays are bounded.

Let us give us two example scenarios: In case a single user unilaterally exits
and everyone else cooperates, then the on-chain footprint is log2(N) transactions

Bitcoin Clique 47

of the tree, 1 out tx, and 1 healing step tx. On the other hand, if at least one
user of each leaf tx is malicious and publishes its entire branch of the tx tree,
but not its out tx, then healing results in putting the entire tree tx on-chain and
then recreating the exact same step tx output that was initially spent, for a total
of 2N on-chain txs. The latter is the worst case scenario. We observe that even
in this case, honest users can still successfully heal.

In a practical deployment, Op can facilitate the protocol by being the pri-
mary point of contact for users and leveraging its (presumably) better network
connection to enhance coordination, collect and distribute signatures, and sig-
nal which users are inactive. Still, users must not rely solely on Op for message
passing, lest they want to give it the ability to suppress an honest, active user.

References

1. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4_8

2. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
3. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: layer-

two blockchain protocols. In: Financial Cryptography and Data Security - 24th
International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020
Revised Selected Papers, pp. 201–226 (2020). https://doi.org/10.1007/978-3-030-
51280-4_12

4. Bitcoin Wiki: Payment Channels (2022). https://tinyurl.com/y6msnk7u
5. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin

duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3_1

6. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016). https://tinyurl.com/q54gnb4

7. Update from the Raiden team on development progress, announcement of raidEX
(2017). https://tinyurl.com/z2snp9e

8. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment
hubs over cryptocurrencies. In: 2019 IEEE Symposium on Security and Privacy,
pp. 106–123. IEEE Computer Society Press (2019). https://doi.org/10.1109/SP.
2019.00020

9. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A2L: anonymous atomic locks for scal-
ability in payment channel hubs. In: 2021 IEEE Symposium on Security and Pri-
vacy, pp. 1834–1851. IEEE Computer Society Press (2021). https://doi.org/10.
1109/SP40001.2021.00111

10. Qin, X., et al.: BlindHub: bitcoin-compatible privacy-preserving payment channel
hubs supporting variable amounts. In 2023 IEEE Symposium on Security and Pri-
vacy (SP), pp. 2462–2480. IEEE Computer Society, Los Alamitos, CA, USA (2023)
https://doi.org/10.1109/SP46215.2023.10179427, https://doi.ieeecomputersociety.
org/10.1109/SP46215.2023.10179427

11. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts (2017)

https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://tinyurl.com/y6msnk7u
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://tinyurl.com/q54gnb4
https://tinyurl.com/z2snp9e
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP46215.2023.10179427
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179427
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179427

48 S. Riahi and O. S. T. Litos

12. Buterin V.: On-chain scaling to potentially 500 tx/sec through mass tx vali-
dation (2018). https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-
through-mass-tx-validation/3477

13. Optimism: Optimistic rollup overview. https://github.com/ethereum-optimism/
optimistic-specs/blob/0e9673af0f2cafd89ac7d6c0e5d8bed7c67b74ca/overview.md

14. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2019)
15. Rubin J.: Bitcoin Improvement Proposal 119. https://github.com/bitcoin/bips/

blob/master/bip-0119.mediawiki
16. Aumayr, L., et al.: Generalized channels from limited blockchain scripts and adap-

tor signatures. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol.
13091, pp. 635–664. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92075-3_22

17. Eckey, L., Faust, S., Hostáková, K., Roos S.: Splitting payments locally while rout-
ing interdimensionally. IACR Cryptol. ePrint Arch., p. 555. https://eprint.iacr.
org/2020/555 (2020)

18. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei,
M.: Anonymous Multi-Hop Locks for Blockchain Scalability and Interoper-
ability. In: 26th Annual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA, February 24–27, 2019:
The Internet Society. https://www.ndss-symposium.org/ndss-paper/anonymous-
multi-hop-locks-for-blockchain-scalability-and-interoperability/ (2019)

19. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A2L: anonymous atomic locks for scala-
bility in payment channel hubs. In: 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24–27 May 2021, pp. 1834–185. IEEE. https://
doi.org/10.1109/SP40001.2021.00111 (2021)

20. Thyagarajan, S.A.K., Malavolta, G., Schmidt, F., Schröder, D.: PayMo: payment
channels For Monero. IACR Cryptol. ePrint Arch, p. 1441. https://eprint.iacr.org/
2020/1441 (2020)

21. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 455–471. ACM Press. https://doi.
org/10.1145/3133956.3134096 (2017)

22. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous Multi-Hop Locks for Blockchain Scalability and Interoperability. In: NDSS
2019: The Internet Society (2019)

23. Avarikioti, Z., Thyfronitis Litos, O.S., Wattenhofer, R.: Cerberus channels: incen-
tivizing watchtowers for bitcoin. In: Bonneau, J., Heninger, N. (eds.) FC 2020.
LNCS, vol. 12059, pp. 346–366. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4_19

24. Avarikioti, Z., Litos, O.S.T.: Suborn channels: incentives against timelock bribes.
In: Eyal, I., Garay, J.A. (eds.), Financial Cryptography and Data Security - 26th
International Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected
Papers: vol. 13411 of Lecture Notes in Computer Science, pp. 488–511. Springer,
Cham. https://doi.org/10.1007/978-3-031-18283-9_24 (2022)

25. Kiayias, A., Litos, O.S.T.: A composable security treatment of the lightning net-
work. In: IEEE CSF 2020, pp. 334–349 (2020)

26. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press. https://
doi.org/10.1109/SFCS.2001.959888 (2001)

https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://github.com/ethereum-optimism/optimistic-specs/blob/0e9673af0f2cafd89ac7d6c0e5d8bed7c67b74ca/overview.md
https://github.com/ethereum-optimism/optimistic-specs/blob/0e9673af0f2cafd89ac7d6c0e5d8bed7c67b74ca/overview.md
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://doi.org/10.1007/978-3-030-92075-3_22
https://doi.org/10.1007/978-3-030-92075-3_22
https://eprint.iacr.org/2020/555
https://eprint.iacr.org/2020/555
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP40001.2021.00111
https://eprint.iacr.org/2020/1441
https://eprint.iacr.org/2020/1441
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-031-18283-9_24
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888

Bitcoin Clique 49

27. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 949–966. ACM
Press. https://doi.org/10.1145/3243734.3243856 (2018)

28. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party virtual
state channels. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11476, pp. 625–656. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2_21

29. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) FC 2019. LNCS, vol. 11598, pp. 508–526. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32101-7_30

30. Chakravarty, M.M.T., Coretti, S., Fitzi, M., Gazi, P., Kant, P., Kiayias, A., Rus-
sell, A.: Hydra: fast isomorphic state channels. Cryptology ePrint Archive, Report
2020/299. https://eprint.iacr.org/2020/299 (2020)

31. Buterin, V.: Minimal Viable Plasma. https://tinyurl.com/y2s9grpd (2018)
32. Floersch, K.: Plasma Cash Simple Spec. https://tinyurl.com/yxdp2rqr (2018)
33. Plasma Debit. https://tinyurl.com/yx936xzk (2018)
34. Plasma snapp. https://tinyurl.com/yxbza3pl (2018)
35. Khalil, R., Zamyatin, A., Felley, G., Moreno-Sanchez, P., Gervais, A.: Commit-

Chains: Secure, Scalable Off-Chain Payments. Cryptology ePrint Archive, Report
2018/642. https://eprint.iacr.org/2018/642 (2018)

36. Erwig, A., Faust, S., Riahi, S., Stöckert, T.: CommiTEE: an efficient and secure
commit-chain protocol using TEEs. In: 2023 IEEE 8th European Symposium on
Security and Privacy (EuroS&P), pp. 429–448. IEEE Computer Society, Los Alami-
tos, CA, USA. https://doi.org/10.1109/EuroSP57164.2023.00033 (2023)

37. Nick, J., Poelstra, A., Sanders, G.: Liquid: A Bitcoin Sidechain (2020)
38. Mavroudis, V., Wüst, K., Dhar, A., Kostiainen, K., Capkun, S.: Snappy: fast on-

chain payments with practical collaterals. In: 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA, February
23–26, 2020: The Internet Society. https://www.ndss-symposium.org/ndss-paper/
snappy-fast-on-chain-payments-with-practical-collaterals/ (2020)

39. Ng, L.K.L., Chow, S.S.M., Wong, D.P.H., Woo, A.P.Y.: LDSP: shopping with
cryptocurrency privately and quickly under leadership. In: 2021 IEEE 41st Inter-
national Conference on Distributed Computing Systems (ICDCS), pp. 261–271.
https://doi.org/10.1109/ICDCS51616.2021.00033 (2021)

40. Whitehat B.: Roll up. https://github.com/barryWhiteHat/roll_up
41. Donno, L.: Optimistic and validity rollups: analysis and comparison between opti-

mism and StarkNet. CoRR: vol. abs/2210.16610. https://doi.org/10.48550/arXiv.
2210.16610 (2022)

42. Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
scalable, private smart contracts. In: Enck, W., Felt, A.P. (eds.) 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15–17,
2018, pp. 1353–1370. USENIX Association. https://www.usenix.org/conference/
usenixsecurity18/presentation/kalodner (2018)

43. Erwig, A., Faust, S., Hostáková, K., Maitra, M., Riahi, S.: Two-party adaptor
signatures from identification schemes. In: Garay, J.A. (ed.) PKC 2021. LNCS,
vol. 12710, pp. 451–480. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-75245-3_17

44. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press:
ISBN 9781466570269 (2014)

https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1007/978-3-030-32101-7_30
https://eprint.iacr.org/2020/299
https://tinyurl.com/y2s9grpd
https://tinyurl.com/yxdp2rqr
https://tinyurl.com/yx936xzk
https://tinyurl.com/yxbza3pl
https://eprint.iacr.org/2018/642
https://doi.org/10.1109/EuroSP57164.2023.00033
https://www.ndss-symposium.org/ndss-paper/snappy-fast-on-chain-payments-with-practical-collaterals/
https://www.ndss-symposium.org/ndss-paper/snappy-fast-on-chain-payments-with-practical-collaterals/
https://doi.org/10.1109/ICDCS51616.2021.00033
https://github.com/barryWhiteHat/roll_up
https://doi.org/10.48550/arXiv.2210.16610
https://doi.org/10.48550/arXiv.2210.16610
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity18/presentation/kalodner
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1007/978-3-030-75245-3_17

50 S. Riahi and O. S. T. Litos

45. Dai, W., Okamoto, T., Yamamoto, G.: Stronger security and generic constructions
for adaptor signatures. In: Progress in Cryptology - INDOCRYPT 2022: 23rd Inter-
national Conference on Cryptology in India, Kolkata, India, December 11–14, 2022,
Proceedings, pp. 52–77. Springer, Heidelberg. ISBN 978-3-031-22911-4. https://
doi.org/10.1007/978-3-031-22912-1_3 (2023)

46. Erwig, A., Faust, S., Riahi, S., Stöckert, T.: CommiTEE: an efficient and secure
commit-chain protocol using TEEs. Cryptology ePrint Archive, Report 2020/1486.
https://eprint.iacr.org/2020/1486 (2020)

47. Riahi, S., Litos, O.S.T.: Bitcoin clique: channel-free off-chain payments using two-
shot adaptor signatures. Cryptology ePrint Archive, Paper 2024/025. https://
eprint.iacr.org/2024/025 (2024)

https://doi.org/10.1007/978-3-031-22912-1_3
https://doi.org/10.1007/978-3-031-22912-1_3
https://eprint.iacr.org/2020/1486
https://eprint.iacr.org/2024/025
https://eprint.iacr.org/2024/025

Programmable Payment Channels

Ranjit Kumaresan1, Duc V. Le1, Mohsen Minaei1, Srinivasan Raghuraman2,
Yibin Yang3(B), and Mahdi Zamani1

1 Visa Research, Palo Alto, USA
{rakumare,duc.le,mominaei,mzamani}@visa.com

2 Visa Research and MIT, Cambridge, USA
3 Georgia Institute of Technology, Atlanta, USA

yyang811@gatech.edu

Abstract. One approach for scaling blockchains is to create bilateral,
offchain channels, known as payment/state channels, that can protect
parties against cheating via onchain collateralization. While such chan-
nels have been studied extensively, not much attention has been given
to programmability, where the parties can agree to dynamically enforce
arbitrary conditions over their payments without going onchain.

We introduce the notion of a programmable payment channel (PPC)
that allows two parties to do exactly this. In particular, our notion of pro-
grammability enables the sender of a (unidirectional) payment to dynam-
ically set the terms and conditions for each individual payment using a
smart contract. Of course, the verification of the payment conditions
(and the payment itself) happens offchain as long as the parties behave
honestly. If either party violates any of the terms, then the other party
can deploy the smart contract onchain to receive a remedy as agreed
upon in the contract. In this paper, we make the following contributions:

– We formalize PPC as an ideal functionality FPPC in the universal
composable framework, and build lightweight implementations of
applications such as hash-time-locked contracts (HTLCs), “reverse
HTLCs”, and rock-paper-scissors in the FPPC-hybrid model;

– We show how FPPC can be easily modified to capture the state chan-
nels functionality FSC (described in prior works) where two par-
ties can execute dynamically chosen arbitrary two-party contracts
(including those that take deposits from both parties) offchain, i.e.,
we show how to efficiently realize FSC in the FPPC-hybrid model;

– We implement FPPC on blockchains supporting smart contracts (such
as Ethereum), and provide several optimizations to enable concur-
rent programmable transactions—the gas overhead of an HTLC PPC
contract is < 100K, amortized over many offchain payments.

We note that our implementations of FPPC and FSC depend on the CRE-
ATE2 opcode which allows one to compute the deployment address of a
contract (without having to deploy it).

Keywords: Blockchain · Layer-2 channels · Programmable payments

Y. Yang— Work done in part while at Visa Research.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-54776-8 3.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 51–73, 2024.
https://doi.org/10.1007/978-3-031-54776-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_3
https://doi.org/10.1007/978-3-031-54776-8_3

52 R. Kumaresan et al.

1 Introduction

With the rise of decentralized services, financial products can be offered on
blockchains with higher security and lower operational costs. With its ability
to run arbitrary programs, called smart contracts, and direct access to assets,
a blockchain can execute complex financial contracts and settle disputes auto-
matically. Unfortunately, these benefits all come with a major scalability chal-
lenge due to the overhead of onchain transactions, preventing the adoption of
blockchain services as mainstream financial products.

Payment Channels. A well-known class of mechanisms for scaling blockchain
payments are payment channels [2,14]. Payment channels “off-load” transac-
tions to an offchain communication channel between two parties. The channel is
“opened” via an onchain transaction to fund the channel, followed by any num-
ber of offchain transactions. Eventually, by a request from either or both parties,
the channel is “closed” via another onchain transaction. This design avoids the
costs and the latency associated with onchain operations, effectively amortiz-
ing the overhead of onchain transactions over many offchain ones. While several
proposals improve the scalability of payment channels [3,16,20–22,27–29], they
do not allow imposing arbitrary conditions on offchain payments, which prohibit
fruitful applications requiring programmability.

State Channels. From a feasibility standpoint, the conditions on offchain pay-
ments can be achieved by a stronger notion called state channels. State chan-
nels [4,11,13,15,17,25] allow two parties to perform general-purpose computa-
tion offchain by mutually tracking the current state of the program. The existing
state channel proposals have two major drawbacks in practice.

First, with the exception of [13], state channel constructions require the par-
ties to fix the program, which they wish to run offchain, at the time of channel
setup. This means that no changes to the program are allowed after the parties go
offchain. This is especially problematic in offchain scalability approaches based
on the hub-and-spoke model [10,16,31], where each party establishes a general-
purpose channel with a highly available (but untrusted) hub during setup to
be able to later transact with many other parties without the need to establish
an individual channel with each party (see Fig. 1 Left and Middle). In practice,
parties usually have no a priori knowledge about the specific set of conditions
required to transact with other (unknown) parties.

Second, the complexity of the existing state channel proposals could be
overkill for simple, programmable payments. The authorization of an offchain
transaction via a payment channel is significantly simpler as the flow of the pay-
ments is unidirectional while state channels need to track all state changes from
both parties irrespective of the payment direction. Namely, the state channel is
not a practical solution for achieving programmable payments.

Our Focus. In this paper, we introduce the notion of programmable payment
channels (PPC) that allows the parties to agree offchain on the set of conditions
(i.e., a smart contract) they wish to impose for each of their offchain payments

Programmable Payment Channels 53

Fig. 1. Left: Hub-and-spoke model: Each party creates a single channel with the hub;
Middle: Every pair of parties reuse their channels with the hub to execute different
contracts; Right: PPC between two parties supporting any offchain application.

(see Fig. 1 Right). That is, we achieve lightweight offchain programmable pay-
ments denoted as promises where the logic can be determined on-the-fly after
the channel has been opened.

A classic programmable payment covered by PPC is a hash-time-locked con-
tract (HTLC) [1], which is foundational to the design of (multihop) payment
channels [3,27]. Indeed, most current payment channels already embed HTLCs
for routing. However, many useful applications remain difficult to build on top
of payment channels using HTLCs. Consider the following example. Alice wants
to reserve a room through an established payment channel with the hotel. Alice
would like to send a payment under the following conditions: (1) Alice is allowed
to cancel the reservation within 48 hours of booking to get back all of her funds,
and (2) Alice can get back half of her funds if she cancels the reservation within
24 hours of the stay date. Achieving this simple real-life example of payment
with PPC is simple and straightforward.

Full Version. The full version of this paper is [32].

1.1 Our Contributions

– We propose the notion of a programmable payment channel (PPC) that is
a payment channel allowing two parties to transact offchain according to a
collateral that they deposit onchain and a smart contract that they agree on
offchain. PPC provides the following features:

• Scalability: Only opening and closing the channel require Layer-1 access.
• Offchain Programmability : The PPC protocol stays identical for new pay-

ment logic after the channel is opened.
– We formalize PPC and prove its correctness and security in the universal

composable (UC) framework using a global ledger. In particular, we provide
an ideal functionality FPPC. We then show how to build lightweight imple-
mentations of simple applications such as HTLCs, “reverse HTLCs,” on-chain
betting (and also rock-paper-scissors) in the FPPC-hybrid world.

– We show how PPC can be modified to capture the state channels functionality
where two parties can execute dynamically chosen arbitrary two-party con-
tracts (including those that take deposits from both parties) offchain, namely,

54 R. Kumaresan et al.

to realize FSC in the FPPC-hybrid world. In particular, to launch an offchain
contract, parties only need to make three calls to FPPC to instantiate two
programmable payments.

– We evaluate PPC by instantiating it on Ethereum. We show how the PPC
contract deploys new contracts that embed the conditions of payments. Our
results show that deploying the PPC contract needs about 3M gas, and that
settling onchain in the optimistic case (honest parties) needs only 75K gas. In
the pessimistic case (malicious parties), 700K more gas is needed for a simple
logic such as HTLC.

We note that our implementations of FPPC and FSC depend on the CRE-
ATE2 opcode which allow one to compute the deployment address of a contract
(without having to deploy it). This opcode is available on any EVM (Ethereum
Virtual Machine) based chain (including Ethereum, Polygon, etc.).

Compared to prior formalizations of payment and state channels, our work
shows a practical way to implement a state channel that enables arbitrary
offchain smart contract applications. Additionally, our abstractions of FPPC and
FSC make it more natural to design protocols for applications whose states
depend on the states of other contracts on the blockchain.

We also note that our implementations of FPPC and FSC allow for flexible
reuse of established channels. Exploiting this fact, one can use the abstractions of
FPPC and FSC to efficiently build complex multiparty applications. For instance,
every pair of parties need not establish a PPC channel with each other, and can
instead reuse their existing PPC channels with, say, an untrusted hub.

Similar to payment and state channels, relay nodes (in particular, hub nodes)
in PPC also face scalability concerns, as the money has to be locked for several
rounds. There are known incentivization techniques to mitigate similar issues
that arise in DeFi lending protocols. The same techniques can be applied in our
case as well.

1.2 Related Work

Payment Channels. The key idea behind a payment channel is an onchain
contract: both parties instantiate this contract and transfer digital money to
it. Whenever one party wants to pay another, they simply sign on the other
party’s monotonically-increasing credit. When the two parties want to close the
channel, they submit their final signed credits to rebalance the money in the
channel. No execution happens on the blockchain before closing the channel;
the payment between two parties relies only on exchanging digital signatures.
Payment channels have been heavily studied [2,14,17,23,25,26,29].

State Channels. A proposal for executing arbitrary contracts offchain is state
channels [4,11,13,15,17,25]. The key idea is as follows: (1) the contract can be
executed offchain by exchanging signatures, and (2) the contract can be executed
onchain from the last agreed state to resolve any disagreements. For example,
consider a two-party contract between Alice and Bob, whenever Alice wants to

Programmable Payment Channels 55

update the current state, she simply signs the newer state. Then, she forwards
her signature and requests for Bob’s signature. While Bob may not reply with
his signature, Alice can submit the pre-agreed state to the blockchain with the
contract and execute it onchain. This idea can be naturally extended to multi-
party contracts (e.g., [12,15,25]).

The works of [13,17] are closest to ours. Unlike us, [13] do not provide any
formal proofs or guarantees. As mentioned in [17], their work lacks features
useful for practical implementation. Also, our protocols take advantage of the
CREATE2 opcode which was introduced subsequent to the work of [13]. We fol-
low [5,15–17] to formalize our channel using universal composable (UC) frame-
work with a global ledger. However, these works focus on channel virtualization1

, and are not directly related to this work.

Other Related Work. An excellent systematization of knowledge that explores
offchain solutions can be found in [19]. See Appendix A for the comparison with
rollups, another popular Layer-2 scaling solution [24,30,33]. See Appendix B for
other works that use the CREATE2 opcode.

2 Preliminaries

Network and Time. We assume a synchronous complete peer-to-peer authen-
ticated communication network. Thus, the execution of protocol can be viewed
as happening in rounds. The round is also used as global timestamp. We use

msg
t≤T←↩ P to denote the message will be sent by party P before round T . Sim-

ilarly, we use msg
t≤T
↪→ P to denote that the message will be delivered to party

P before round T .

GUC Model. We model and formalize PPC under global universal composable
(GUC) framework [8,9]. UC is a general purpose framework for modeling and
constructing secure protocols. The correctness and security of protocols rely on
simulation-based proofs. We defer the formal description to Appendix C.1. We
acknowledge that we restrict the distinguisher to a subclass of environments to
simplify the formalizations. This restriction is standard (e.g., [16,17]) and can
be easily removed using straightforward checks.

Cryptocurrency/Contract Functionalities. We follow [15,17] and model
cryptocurrency as a global ledger functionality L̂(Δ) in the GUC framework (cf.
Fig. 9 in Appendix C.2). Parties can move funds from/to the ledger functionality
by invoking other ideal functionalities that can invoke the methods Add/Remove.
Any operation on the global ledger will happen within a delay of Δ rounds,
capturing that this is an onchain transaction.

Adversary. We consider an adversary who can corrupt one party in the two-
party channel. The corrupted party is byzantine and can deviate from the proto-
col arbitrarily. As is standard in the GUC model, the objective of an adversary
1 Virtual channels focus on designing protocols between parties who do not have a

direct channel, but both have a channel with a (common) intermediary.

56 R. Kumaresan et al.

is to distinguish the real world from the ideal world. In applications such as ours,
such behaviors could involve stealing funds from a party or a channel, violating
channel restrictions, overriding application logic, state rollback, etc.

3 Programmable Payment Channels

3.1 Defining FPPC

To incorporate programmability into a payment channel, one might hard-code
the logic of an application inside the protocol as a template. However, this app-
roach is not desirable as every new application requires a protocol update that
would also include changes to the existing onchain contract. Motivated by this,
our definition of FPPC allows for on-the-fly programmability as we explain below.

Recall that we call a programmable payment a promise. Concretely, our ideal
functionality FPPC allows the following operations: (1) opening a payment chan-
nel, (2) creating a promise, (3) executing a promise, and (4) closing a payment
channel. Our central observation is that a promise can be viewed as a smart
contract. Specifically, the storage of the promise is captured by the storage of
the contract, and the execution logic of the promise is captured by functions in
the smart contract. The logic in different promises can be different or related,
thereby capturing on-the-fly programmability. Also, importantly, the promise
smart contract itself can be deployed from an appropriately designed payment
channel contract.

Any number of promises can be created by an open channel and may be
concurrently executed. Either party can create a promise to the other party.
Since the payment is unidirectional, we refer to the creating party as the sender
of a promise, and the other party as the receiver of a promise.

Promises can be related to each other in the sense that the state and the
execution logic of a promise can depend on the state and execution logic of other
promises. We capture this by allowing the functions of the promise have access
to its own storage, read access to the storage and functions of other promises
in this channel, and more generally, read access to the storage and functions
of other onchain contracts.2 Note that the execution environment of promises
is quite rich, and we will show various examples of how to use this and certain
caveats associated with what is implementable.

This type of dependence is common in onchain smart contracts especially in
the Decentralized Finance applications. However, capturing this dependence (in
the implementation of FPPC) needs to be done carefully since promises executions
are normally executed offchain, and may sometimes need to be executed onchain
(and the dependence must be preserved even while the execution environment
is changing). Care must be taken to ensure that this change of the execution
environment (i.e., from offchain to onchain) does not affect function output.

2 In Solidity (a high level language for EVM) parlance, promises can also call pure or
view functions in onchain contracts or other promises.

Programmable Payment Channels 57

Promises are executed onchain only if requested by the parties (following
which, further executions related to that promise are carried out onchain).3

Following prior work (e.g., [17]), we differentiate between onchain and offchain
executions in FPPC by the amount of time it takes FPPC to respond to execution
requests. That is, onchain executions are slower and take O(Δ) rounds where
Δ is a blockchain parameter representing the amount of time it takes for the
miners/validators to deliver a new block to the chain.

Each promise resolves to an unsigned integer value denoting the amount that
needs to be transferred from the sender to the receiver. This resolved value is
calculated at the time of payment channel closing, and then the resolved values
of all promises are aggregated to determine the final settlements.

3.2 PPC Preliminaries

Contracts. We define contracts as in [17]. A contract instance consists of two
attributes: contract storage (accessed by key storage) and contract code (accessed
by key code). Contract storage σ is an attribute tuple containing at least the
following attributes: (1) σ.userL and σ.userR denoting the two involved users;
(2) σ.locked ∈ R≥0 denoting the total number of coins locked in the contract;
(3) σ.cash : {σ.userL, σ.userR} → R denoting the coins available to each user. A
contract code is a tuple C := (Λ,Construct, f1, . . . , fs) where (1) Λ denotes the
admissible contract storage; (2) Construct denotes a constructor function that
takes (P, t, y) as inputs and provides as output an admissible contract storage or
⊥ representing failure to construct, where P is the caller, t is the current time
stamp and y denotes the auxiliary inputs; and (3) each f denotes an execution
function that takes (σ, P, t, z) as inputs and provides as output an admissible
contract storage (could be unchanged) and an output message m, where m = ⊥
represents failure.

PPC Parameters. A programmable payment channel is parameterized by an
attribute tuple γ := (γ.id, γ.Alice, γ.Bob, γ.cash, γ.pspace, γ.duration) where (1)
γ.id ∈ {0, 1}∗ is the identifier for the PPC instance (think of this as the address
of the PPC contract); (2) γ.Alice and γ.Bob denote the two involved parties;
(3) γ.cash : {γ.Alice, γ.Bob} → R≥0 denotes the amount of money deposited
by each participant; (4) γ.pspace stores all the promise instances opened in the
channel–it takes a promise identifier pid and maps it to a promise instance; and
(5) γ.duration ≥ 0 denotes the time delay to closing a channel.

Note that the attribute γ.duration was not part of prior channel formaliza-
tions (e.g., [15,17]); we will further clarify it in Sect. 3.3. We further define two
auxiliary functions: (1) γ.endusers := {γ.Alice, γ.Bob}; and (2) γ.otherparty(x) :=
γ.endusers \ {x} where x ∈ γ.endusers.

Promises. We name a programmable payment a promise. Informally, a promise
instance can be viewed as a special contract instance where only one party offers
3 In our implementation, we make the simplifying assumption that once a promise is

executed onchain, all the remaining promise executions happen onchain as well.

58 R. Kumaresan et al.

money. Formally, a promise instance consists of two attributes: promise storage
(accessed by key storage) and promise code (accessed by key code). Promise stor-
age σ is an attribute tuple containing at least the following attributes: (1) σ.payer
denotes the party who sends money; (2) σ.payee denotes the party who receives
money; and (3) σ.resolve ∈ R≥0 denotes the amount of money transferred from
payer to payee. A promise code is a tuple C := (Λ,Construct, f1, . . . , fs) similar
to contract code with further restrictions: (1) the unique constructor function
Construct will always set the caller to be the payer in the storage created; and
(2) the constructor function’s output is independent of input argument t, which
is a time parameter capturing the current time of the blockchain. We add these
restrictions to ensure that, even when the promise is registered onchain by CRE-
ATE2, the initial state remains identical.

Diverging from [15,17], we assume that each fi has access to the code and
storage of other promises in the same channel, as well as the code and storage
of all Layer-1 onchain contracts. Formally, we capture this by providing oracle
access to the ideal functionalities. This is why we use the notation fG,γ in the
definition of FPPC (see Fig. 2), i.e., f has oracle access to the storage and the
functions of onchain smart contracts and to the promises in the channel.

3.3 Ideal Functionality FPPC

We propose our PPC protocol under the UC framework following [15–17]. We

first define the ideal functionality F L̂(Δ)
PPC (with dummy parties) which summa-

rizes all the features that our PPC protocol will provide. We use FPPC as an
abbreviation in the absence of ambiguity. See Fig. 2 for the definition of FPPC.
The functionality will maintain a key-value data structure Γ to track all pro-
grammable payment channels between parties. FPPC contains the following 4
procedures.

(1) PPC Creation. Assume party P wants to construct a channel with party Q.
Within Δ rounds, FPPC will take corresponding coins specified by the channel
instance from P ’s account from L̂. If Q agrees to the creation, within another
Δ rounds, FPPC will take Q’s coins. Thus, the successful creation of a initial
programmable payment channel takes at most 2Δ rounds. Note that if Q
does not want to create the channel, P can take her money back after 2Δ
rounds.

(2) Promise Creation. This procedure is used to create a programmable payment
aka promise (offchain) from payer P to the payee Q. The promise instance is
specified by payer’s choice of channel γ, contract code C and arguments for
the constructor function y, and a salt z that is used to identify this promise
instance. Among other things, the ideal functionality ensures that pid :=
(id, C, y, z) does not exist in γ.pspace. Since payee always gains coins in any
promise, we do not need an acknowledgment from the payee to instantiate
a promise. Thus, the creation takes exactly 1 round.4

4 Note that this does not hold for state channels as formalized in [17] where an instance
requires coins from both parties.

Programmable Payment Channels 59

Fig. 2. The ideal functionality F L̂(Δ)
PPC achieved by the PPC protocol.

60 R. Kumaresan et al.

(3) Promise Execution. This procedure is used to update the promise instance’s
storage. Specifically, party P can execute the promise pid in channel id as
long as P is one of the participants of the channel. Note that the existence
of pid implies that this instance is properly constructed by the payer via
the promise instance creation procedure. If both parties are honest, the
execution completes in O(1) rounds, inferring no onchain operation (i.e.,
optimistic case). Otherwise, if one of them is corrupt, it relies on onchain
operations which takes O(Δ) rounds (i.e., pessimistic case). Note that, the
adversary can postpone the function execution time, but it cannot block the
honest party from executing it.

In particular, FPPC uses an attribute flag for each promise to trace the
onchain/offchain status. Note that when the promise goes onchain for the first
time, it takes at most 3Δ rounds to put the promise onchain. Once the promise
is onchain, the execution will be taken on Layer-1 in Δ rounds. We follow [17] to
break ties when both parties want to simultaneously execute the same promise,
which includes at most 5 rounds delay.

(4) PPC Closure. When a party of the channel γ wants to close the channel,
FPPC will wait for γ.duration rounds to execute the remaining promises that
have not been finalized. The corresponding procedure in the state channel
functionality of [17] requires that all contract instances in the channel are
finalized in order to close the channel. We cannot imitate this approach
because in our case, the creation of a promise instance need only be authen-
ticated by the payer, and so requiring finality will allow a malicious party
to block closing by simply creating some non-finalizable promise instance.
(Note that in this case it will be the malicious sender who is locking up
its money.) Waiting for γ.duration can be avoided if both parties agree to
cooperatively close the channel.

3.4 Concrete Implementation of FPPC

We show a pseudocode implementation of programmable payment channels con-
tract in Fig. 3. In this subsection, we will detail the methods in the programmable
payment channels contract, and along the way we will discuss the offchain pro-
tocol that is executed to implement FPPC.

The programmable payment channel contract is initialized with a channel id
id, the parties’ public keys vkA and vkB, and an expiry time claimDuration by
which the channel settles the amounts deposited. We track the deposit amount
and the credit amount (which will be monotonically increasing) for the two
parties. We also track a receipt id (i.e., rid) and an accumulator value acc. We will
describe what these are for below, but for now think of receipts as keeping track
of received promises that have been resolved, and the accumulator as keeping
track of received promises that have not yet resolved.

Remark. Since promise executions may take some time (e.g., HTLC, chess), it is
important to support concurrency. Promises issued by a sender are immediately
added to an accumulator associated with the sender (which is maintained by both
parties), and then are removed from the accumulator when they get resolved.

Programmable Payment Channels 61

Fig. 3. PPC Contract

62 R. Kumaresan et al.

Just as a regular payment channel, we also provide methods for the parties
to deposit an amount (the pseudocode supports multiple deposits), and also for
initiating the closing of a channel via the Close method. A call to the Close
method will ensure that the channel status is set to “Closing” or “Closed”, and
further, sets the channel expiry time.

During the time that a channel is “Active” parties exchange any number
of payment promises offchain. Each promise P is essentially the smart contract
code describing the logic of the payment. Note that the promise contract logic
may involve multiple steps and parties may concurrently send and receive any
number of promises.

At a high level, the lifecycle of a promise is as follows: the sender sends the
promise offchain, then the sender and the receiver execute the promise contract
offchain. When both parties agree to the value of the final output of the resolve
method on the promise, the sender of the promise signs a receipt signaling the
fulfillment of the promise that reflects the updated credit balance of the receiver.

In more detail, a receipt from a sender consists of

– a monotonically increasing index, which keeps track of the number of fulfilled
promises from the sender,

– a monotonically increasing credit, which keeps track of the sum of all resolved
amounts in the fulfilled promises originating from the sender,

– an accumulator, which keeps track of all the pending promises issued by the
sender, and

– a signature from the sender on all the above values with the channel id.

If the receiver obtains a faulty receipt (or did not receive the receipt, or is
just malicious), then the receiver can deploy the promise onchain via the PPC
contract. Note that in some cases (e.g., promises which involve multiple steps),
it is possible that the sender (as opposed to the receiver) may need to deploy
the promise onchain via the PPC contract.

This brings us to another important detail concerning the offchain execu-
tion of the promises that involve multiple steps (e.g., chess). In honest cases,
parties will need to additionally exchange signatures with each other to commit
to the storage of the promise contract after the offchain execution of individual
steps. If some malicious behavior happens (e.g., some party aborts), to continue
the promise execution onchain (we assume that the party also wishes to sub-
sequently close the channel), the party calls RegisterReceipt with the latest
receipt (along with the signature from the counterparty) that it possesses, and
then calls RegisterPromise with the promise P .
Consistency Between Offchain and Onchain Executions. It is crucial to
ensure that the switching between offchain and onchain is consistent. This is
achieved by allowing parties to submit the latest state to the deployed promise
(as a smart contract). Namely, the smart contract created by the PPC contract
in Fig. 3 using CREATE2 needs to have a function interface to “bypass” its state
to the latest one. This can be trivially realized by including a monotonically
increasing version number to the state, which is signed by both parties during
the offchain execution. (We remark that Item 8 in Fig. 3 will only deploy a smart
contract (as a promise) on its initial state (e.g., an empty chess board).)

Programmable Payment Channels 63

We now detail the components of a promise P :

– P.sender (resp. P.receiver) denotes the sender (resp. receiver) of a promise,
– P.byteCode denotes the smart contract corresponding to the payment logic,
– P.salt denotes a one-time salt chosen by the sender,
– P.addr denotes the address at which the promise will be deployed by the PPC

contract; note that P.addr is derived deterministically from P.byteCode and
P.salt using a collision resistant hash function (e.g., CREATE2 opcode),

– P.rid denotes the latest receipt index at the time of generating this promise,
– P.proof denotes the proof that the promise is contained in the accumulator

(i.e., is unresolved at the time the latest receipt was generated), and
– P.σ denotes the signature of sender on (id, P.rid, P.sender, P.receiver, P.addr).

When RegisterPromise is called (when malicious behaviors happen) with a
valid promise, the PPC contract deploys P.byteCode (i.e., the smart contract asso-
ciated with the payment logic of promise P) at a predetermined address. The fact
that the contract is deployed at a predetermined address is what makes it possi-
ble to have promises depend on each other (cf. Section 4). Here, we assume that
the PPC contract uses CREATE2 opcode to deploy the contract. In Ethereum,
using the CREATE2 opcode (EIP-1014), contracts can deploy contracts whose
address is set by H(0xFF, sender, salt, bytecode) (where H is a collision resistant
hash function). This capability implies that one can foresee the address of some
yet-to-be-deployed contract.

Following deployment, parties can interact with the deployed promise inde-
pendent of the PPC contract. (Again, they “bypass” to the last agreed state.)
However, note that when a party calls the function RegisterPromise, the chan-
nel automatically goes into a closing state, and then after claimDuration time has
passed, either party can withdraw funds. Thus, it is critical that the promises
exchanged by the parties also meaningfully resolve within claimDuration time.

When a party calls the Withdraw method, the resolve method is called for
each unresolved promise that is registered with the PPC contract. That is, these
promises should be some onchain smart contracts. The value returned by the
resolve method is then added to the credit of the corresponding receiver. Finally,
each party gets transferred an amount that corresponds to its initial deposit and
the difference of the credit that it is owed and the credit that it owes.

We formally state our theorem below. The formal protocols are described in
the full version of our work.

Theorem 1 (Main). Suppose the underlying signature scheme is existentially
unforgeable against chosen message attacks. There exists a protocol working in
GL̂(Δ)-hybrid model that emulates F L̂(Δ)

PPC for every Δ ∈ N such that (1) the
creation of the initial promise instance takes 1 round, and (2) if both parties are
honest, every call to instance execution procedure takes O(1) rounds.

3.5 Lightweight Applications of Programmable Payments

We use programmable payments on PPC to implement many lightweight appli-
cations and report the evaluations in Sect. 3.6. Here, we focus on discussing how
PPC helps us implement these applications as smart contracts.

64 R. Kumaresan et al.

Fig. 4. HTLC Contract

HTLC. See Fig. 4 for an implementation of HTLC promises. The constructor
specifies the amount this HTLC is for, and the hash image for which the preim-
age is requested, and the expiry time by which the preimage must be provided.
Observe that these values are specified by the sender of the promise. On send-
ing the preimage to the sender, the receiver will expect a receipt reflecting the
updated credit (i.e., an increase by amount). If such a receipt was not provided,
then the receiver will deploy the HTLC promise contract onchain5 and then exe-
cute the RevealSecret function to lock the final resolved amount to the HTLC
amount. On the other hand, if the secret was not revealed, then when the PPC
channel closes (which we assume happens after the HTLC expiry), the resolve
function will return zero.

Reverse HTLC. See Fig. 5 for an implementation of the reverse HTLC promise.
In reverse HTLC, the sender commits to revealing a hash preimage within a given
expiry time or else stands to lose the promise amount to the receiver. (Note that
the roles are somewhat reversed in a regular HTLC promise.) This is a useful
promise in, e.g., committing a reservation.

To implement reverse HTLC promise, the sender initializes the promise with
the amount, the hash image, the expiry time, and the address of the receiver.
Then the sender would reveal the hash preimage to the receiver offchain, and
provide a receipt amount (reflecting a zero increase in credit). However, unlike
a HTLC promise, here the sender additionally expects an acknowledgment from
the receiver that they received the preimage (in the form of a signature on the
preimage). If the acknowledgment is received, then the sender is assured that the
promise will resolve to zero (since it can always call SubmitAck if the promise gets
deployed onchain after the expiry time), and concludes the promise execution.
Otherwise, the sender continues the promise execution onchain by deploying the
reverse HTLC promise via the PPC contract, and then calling the RevealSecret
method. This ensures that the promise will resolve to zero. Thus, reverse HTLC
is an example (different from HTLC) where the sender might have to deploy the
promise onchain.

5 Note that the deployment byteCode already contains the constructor arguments
hardcoded in it.

Programmable Payment Channels 65

Fig. 5. Reverse HTLC Contract

Fig. 6. Onchain event betting

On-chain Event Betting. See Fig. 6 for an example promise where the sender
is betting that the price of Ethereum will not go above a certain threshold
(say, $2,000) within a certain time period. In such a scenario, the party can
send a promise that reads the price of Ethereum on-chain from an oracle (e.g.,
eth-usd.data.eth). This is an example of a promise that depends on the
state of external onchain contracts. In such cases, it is important to design the
promise carefully as the external contract may change state and cause offchain
and onchain execution of promises to be different. Thus we use the function
getRoundData (say, instead of latestPrice). This way, suppose the receiver
does not send an acknowledgment that the price was indeed above the threshold
(i.e., a receipt reflecting the updated credit), then the sender can deploy the
promise onchain (without worrying about the exact block in which its promise
will appear). In the example, we assume that the roundID values are calculated
offchain and correspond to a time duration that both parties agree on.

66 R. Kumaresan et al.

Table 1. Gas prices for invoking PPC contract’s functions.

Function Gas Units HTLC Specific Gas Units

Deploy 3,243,988 Promise 611,296 (w/o. proof)

Deposit 43,010 Promise 626,092 (Merkle-100K txs)

Receipt 75,336 Reveal 66,340

Close 44,324 Withdraw 71,572

Table 2. The gas usage of the different functions of various applications. *:For Resolve
functions we report the execution costs as these functions are view functions. +: The
Reveal functions in the RockPaperScissor contracts need to be called twice to reveal
the commitments for both parties.

HTLC ReverseHTLC OnchainBetting

Deploy 222,795 Deploy 423,265 Deploy 442,479

Reveal 28,391 Reveal 28,413 checkPrice 48,093

Resolve* 4,582 SubmitAck 30,247 Resolve* 4,632

Resolve* 2,499

RockPaperScissor RockPaperScissor-P1 RockPaperScissor-P2

Deploy 534,167 Deploy 598,088 Deploy 381,537

Reveal+ 34,887 Reveal+ 34,773 Resolve* 16,937

Resolve* 9,571 Resolve* 6,573

3.6 Implementation and Evaluation

PPC Gas Usage Costs. We implemented the PPC contract presented in Fig. 3
in Solidity. We evaluate our implementation in terms of Ethereum gas usage. The
PPC contract requires 3, 243, 988 gas to be deployed on the Ethereum blockchain.
While we did not aim to optimize gas costs. the PPC contract is already com-
parable to other simple payment channel deployments 2M+ and 3M+ gas for
Perun [16] and Raiden [3]6 respectively. The gas usage for the remaining func-
tions of the contract are reported in Table 1.

HTLC Application. In the optimistic case after a promise is sent from the
sender, the receiver releases the secret for the HTLC and consequently, the sender
sends a corresponding receipt to the receiver. In such a scenario, the receiving
party will submit the receipt to the contract and close accordingly. However,
in the pessimistic case, where the receiving party releases the secret but does
not receive a receipt, it goes onchain and first submit its latest receipt. Next, it
submits the promise for the HTLC which will be deployed by PPC where the
party can reveal the secret of HTLC. Comparing the two scenarios (cf. Table 1),
we see that the pessimistic case costs about 700K more gas to resolve the promise.

6 https://tinyurl.com/etherscanRaiden.

https://tinyurl.com/etherscanRaiden

Programmable Payment Channels 67

We were able to achieve 110 TPS for the HTLC application end-to-end on a
laptop running 2.6 GHz 6-Core Intel Core i7. The end-to-end process included
random secret creation, hashing of secret, promise creation/verification, secret
reveal/verification, and receipt creation/verification.

Other Applications. For the sake of completeness, we include gas usage costs
for other applications presented in Sect. 3.5, i.e., reverse HTLC, onchain event
betting, and rock-paper-scissors (cf. Appendix D) in Table 2. For the rock-paper-
scissors, we provide two implementations: one using the compiler (cf. Sect. 4),
and one without (i.e., the ad-hoc implementation in Appendix D). This is to
emphasize that our SC from PPC compiler that we present next is highly effi-
cient. Note that all this (i.e., gas cost) is relevant only when one of the parties
is malicious. When both parties are honest, the executions are always offchain,
and the application-specific onchain deployment costs are zero.

Comparing with Prior State Channels. Prior works on state channels
(e.g., [4,17,25]) do not provide concrete implementations, performance num-
bers, or benchmarks. However, we note that, at the very least, state channel
implementations typically require explicit signature verification on the applica-
tion contract—something we avoid in most of our applications above. Further-
more, in multiparty applications where each party has a PPC channel with an
untrusted hub, the onchain complexity in the worst case is only proportional to
the number of malicious parties as opposed to the total number of parties as in
the case with state channels.

4 State Channels from FPPC

On the one hand, our programmable payment channel protocol subsumes reg-
ular payment channel protocols. A simple payment can be captured by payer
P creating an initial promise instance directly constructed as finalized with the
proper amount. On the other hand, it seems that our programmable payment
channel protocol may not subsume protocols for state channels, i.e., execute a
contract where two parties can both deposit coins in. In this section, we first
formalize a variant of state channels that we call FSC that is very similar to
PPC. Then we provide a construction that compiles a contract instance input
to FSC into two promises that can be input to FPPC. That is, we show how to
efficiently realize FSC in the FPPC-hybrid model.

4.1 Modifying FPPC to Capture State Channels

Our formalization of programmable payment channels is heavily inspired by the
formalization of state channels in [17]. In fact, FPPC can be easily modified to
yield a variant of state channel functionality FSC, which can be used to execute
any two-party contract offchain. We call these contracts covenants. Note that
the ideal functionality for state channels FSC allows the following operations:
(1) opening a (state) channel, (2) creating a covenant instance, (3) executing

68 R. Kumaresan et al.

a covenant instance, and (4) closing the channel. Covenant instances, unlike
promise instances, do not have a designated sender or receiver. Like FPPC, any
number of covenant instances can be created and executed using FSC. Unlike
FPPC though, the ideal functionality FSC accepts a covenant creation operation
from a party only if the other party consents to it. The covenant instances
allowed by FSC resolve to two integer values (that corresponds to the payout
of each party). Again, this resolved value is calculated at the time of channel
closing, and then the resolved values of all contract instances are aggregated to
determine the final settlements.

4.2 Defining FSC

Just as how FPPC creates and executes promise instances, we will have FSC create
and execute covenant instances.

Covenant Instance. A covenant instance can be viewed as a special contract
instance consisting of two attributes: covenant storage (accessed by key storage)
and covenant code (accessed by key code). Covenant storage σ is an attribute
tuple containing at least the following attributes: (1) σ.resolveA ∈ R≥0 denotes
the amount of money transferred from party B to party A; and (2) σ.resolveB ∈
R≥0 denotes the amount of money transferred from party A to party B. Covenant
code is a tuple C := (Λ,Construct, f1, . . . , fs) similar to contract code. W.l.o.g.,
we assume Construct does not take caller as inputs but it can be incorporated
into y. We note that we do not restrict the independence of the constructor.

See Fig. 7 for the definition of the ideal functionality that captures state
channels. Like FPPC, the functionality FSC contains the following 4 procedures.

(1) State channel creation. Similar to FPPC, a party can instantiate a channel
with another party by sending the channel creation information to FSC. The
operation of this procedure is identical to that of FPPC.

(2) Covenant Creation. The covenant instance is specified by choice of channel
γ, contract code C and arguments for the constructor function y, and a salt
z that is used to identify this promise instance. Among other things, the
ideal functionality ensures that cid := (id, C, y, z) does not exist in γ.cspace.
Note that unlike FPPC, we need an acknowledgment from the counterparty
before creating a covenant instance. Thus, the creation takes more rounds
but optimistically remains O(1).

(3) Covenant Execution. This procedure is used to update the covenant
instance’s storage. The operation of this procedure is identical to that of
FPPC.

(4) State Channel Closure. When a party of the channel instance γ wants to close
the channel, FSC will wait for γ.duration rounds to execute the remaining
covenants that have not been finalized. The crucial difference from FPPC is in
the way in which the credits are calculated (simply because of the difference
in the final values of covenant instances vs. promise instances). We note
that the closure requires extra O(Δ) rounds. Looking ahead, this is because

Programmable Payment Channels 69

Fig. 7. The ideal functionality F L̂(Δ)
SC .

70 R. Kumaresan et al.

we “compile” a covenant into two promises on FPPC, and require an extra
function call to settle down the resolved values of them.

Remarks. Our state channel ideal functionality differs from prior formalizations
in many ways. Crucially, it makes explicit the dependence of covenant instances
on other onchain contracts. Also, a covenant instance can depend on other
covenant instances (this is something not considered in prior works).

4.3 Implementing FSC in theFPPC-Hybrid World

Perhaps surprisingly, FPPC can be used to implement FSC. In particular, a
covenant can be compiled into two promises on FPPC that can be used to execute
the covenant offchain.

To implement a covenant creation of a contract c in FSC, we use two promises
p0, p1, one from each endpoint of FPPC. The promise p0 contains all the logic of
the covenant instance c. Note that c will resolve to either (k, 0) or (0, k) (or any
other intermediate value), where k is non-negative. In particular, (k, 0) denotes
that the first party needs to pay k to the second party and (0, k) denotes that
the second party needs to pay k to the first party. Note that the resolved state
of c will be saved in p0 as well. Accordingly, p0 will resolve to 0 in the case of
(0, k), otherwise as k. The resolve method of promise p1 will instead read the
state of p0, and resolves in the opposite direction. That is, p1 resolves to 0 in the
case of (k, 0), otherwise as k. That both parties consent to the contract instance
is captured by requiring each party to provide its promise.

We illustrate this with an example of two-party contract for chess. We assume
that each party puts in $50, and the winner gets $100. Assume that there exists
a smart contract c that contains the entire logic of chess (i.e., checking validity
of a move, checking whether the game has ended, who has won the game, and
the payout to each party, etc.).

To play a game of chess offchain, parties each first create a promise. The
promise from Bob contains all the logic in c and additionally has a resolve method
which will depend on the payout logic in c in the following way: if the winner
is Alice, then the resolve method returns $50, else it returns zero. The promise
from Alice is such that the resolve method invokes the resolve method of Bob’s
promise to get value v and returns $50 − v as the resolved amount.

There exists a protocol that can implement FSC in the FPPC-hybrid model.
The essential step is to compile a covenant into two associated promises
(cf. Figure 8) and then execute them on FPPC. We present this formally as
follows.

Theorem 2. There exists protocol ΠSC working in FPPC-hybrid model that emu-
lates the ideal functionality F L̂(Δ)

SC for every Δ ∈ N. Note furthermore that the
the protocol ΠSC requires only three invocations of FPPC to create a covenant.

Similar to Theorem 1, Theorem 2 can be formally proved by construct-
ing straightforward simulators to translate between covenant and associated

Programmable Payment Channels 71

Fig. 8. The compiled promises from a covenant code C at time t′ and constructor
inputs y, where σ′ := C.Construct(t′, y). CB→A will hard-code σ′.

promises. Note that the crucial point is to argue the rounds taken by the two
worlds are identical. Due to space limitations, we provide the formal description
of the protocol and its analysis in the full version of our work.

5 Conclusions

In this paper we present programmable payment channels (PPC), a new abstrac-
tion that enables payment channels to support lightweight applications encoded
in the form of smart contracts. We show the usefulness of PPC by constructing
several example applications. Our gas cost estimates show us that the applica-
tion implementations are indeed practical on Ethereum (or other EVM chains).
Finally, we also present a modified version of state channels and show how PPC
can also implement state channel applications efficiently.

Acknowledgments. We thank Pedro Moreno-Sanchez for many useful discussions
and insightful comments.

References

1. Hash time locked contracts - bitcoin wiki. https://en.bitcoin.it/wiki/Hash Time
Locked Contracts. Accessed Oct 20 2023

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

72 R. Kumaresan et al.

2. Payment channels - bitcoin wiki. https://en.bitcoin.it/wiki/Payment channels.
Accessed Oct 20 2023

3. Raiden. https://raiden.network/. Accessed Oct 20 2023
4. State channels - ethereum.org. https://ethereum.org/en/developers/docs/scaling/

state-channels/. Accessed Oct 20 2023
5. Aumayr, L., et al.: Bitcoin-compatible virtual channels. In: 2021 IEEE Symposium

on Security and Privacy (SP), pp. 901–918. IEEE (2021)
6. Breidenbach, L.: libsubmarine. https://github.com/lorenzb/libsubmarine (2018)
7. Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the hydra: towards prin-

cipled bug bounties and exploit-resistant smart contracts. In: 27th USENIX Secu-
rity Symposium (USENIX Security 18), pp. 1335–1352. USENIX Association,
Baltimore, MD (Aug 2018). https://www.usenix.org/conference/usenixsecurity18/
presentation/breindenbach

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pp. 136–145. IEEE (2001)

9. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

10. Christodorescu, M., et al.: Universal payment channels: An interoperability plat-
form for digital currencies (2021). https://doi.org/10.48550/ARXIV.2109.12194,
https://arxiv.org/abs/2109.12194

11. Close, T.: Nitro protocol. Cryptology ePrint Archive (2019)
12. Close, T., Stewart, A.: Forcemove: an n-party state channel protocol. Magmo,

White Paper (2018)
13. Coleman, J., Horne, L., Xuanji, L.: Counterfactual: generalized state channels.

Accessed. https://l4.ventures/papers/statechannels.pdf 4 2019 (2018)
14. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin

duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) Stabiliza-
tion, Safety, and Security of Distributed Systems, pp. 3–18. Springer International
Publishing, Cham (2015)

15. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party vir-
tual state channels. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2019: 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part I, pp. 625–656. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 21

16. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment hubs
over cryptocurrencies. In: 2019 IEEE Symposium on Security and Privacy (SP),
pp. 106–123. IEEE (2019)

17. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 949–966 (2018)

18. Goldreich, O.: Foundations of cryptography: volume 2, basic applications. Cam-
bridge University Press (2009)

19. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: Layer-
two blockchain protocols. In: Bonneau, J., Heninger, N. (eds.) Financial Cryptogra-
phy and Data Security: 24th International Conference, FC 2020 , Kota Kinabalu,
Malaysia, February 10–14, 2020 Revised Selected Papers, pp. 201–226. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-51280-
4 12

https://en.bitcoin.it/wiki/Payment_channels
https://raiden.network/
https://ethereum.org/en/developers/docs/scaling/state-channels/
https://ethereum.org/en/developers/docs/scaling/state-channels/
https://github.com/lorenzb/libsubmarine
https://www.usenix.org/conference/usenixsecurity18/presentation/breindenbach
https://www.usenix.org/conference/usenixsecurity18/presentation/breindenbach
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.48550/ARXIV.2109.12194
https://arxiv.org/abs/2109.12194
https://l4.ventures/papers/statechannels.pdf
https://doi.org/10.1007/978-3-030-17653-2_21
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12

Programmable Payment Channels 73

20. Khalil, R., Gervais, A.: Nocust-a non-custodial 2nd-layer financial intermediary
(2018)

21. Lind, J., Naor, O., Eyal, I., Kelbert, F., Sirer, E.G., Pietzuch, P.R.: Teechain:
a secure payment network with asynchronous blockchain access. In: Brecht, T.,
Williamson, C. (eds.) Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27–30, 2019,
pp. 63–79. ACM (2019)

22. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and
privacy with payment-channel networks. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 455–471 (2017)

23. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anony-
mous multi-hop locks for blockchain scalability and interoperability. In: NDSS
(2019)

24. McCorry, P., Buckland, C., Yee, B., Song, D.: Sok: Validating bridges as a scaling
solution for blockchains. Cryptology ePrint Archive (2021)

25. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: payment networks that go faster than lightning. In: Goldberg, I., Moore,
T. (eds.) Financial Cryptography and Data Security: 23rd International Confer-
ence, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers, pp. 508–526. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-32101-7 30

26. Minaei Bidgoli, M., Kumaresan, R., Zamani, M., Gaddam, S.: System and method
for managing data in a database (Feb 2023). https://patents.google.com/patent/
US11556909B2/

27. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments. https://lightning.network/lightning-network-paper.pdf (2016) Accessed
Oct 20 2023

28. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments
fast and private: efficient decentralized routing for path-based transac-
tions. In: 25th Annual Network and Distributed System Security Sympo-
sium, NDSS 2018, San Diego, California, USA, February 18–21, 2018. The
Internet Society (2018). https://wp.internetsociety.org/ndss/wp-content/uploads/
sites/25/2018/02/ndss2018 09-3 Roos paper.pdf

29. Tairi, E., Moreno-Sanchez, P., Maffei, M.: a2l: anonymous atomic locks for scala-
bility in payment channel hubs. In: 2021 IEEE Symposium on Security and Privacy
(SP), pp. 1834–1851 (2021). https://doi.org/10.1109/SP40001.2021.00111

30. Thibault, L.T., Sarry, T., Hafid, A.S.: Blockchain scaling using rollups: a com-
prehensive survey. IEEE Access 10, 93039–93054 (2022). https://doi.org/10.1109/
ACCESS.2022.3200051

31. Todd, P.: [bitcoin-development] near-zero fee transactions with hub-and-
spoke micropayments. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/
2014-December/006988.html (2014). Accessed Oct 20 2023

32. Yang, Y., Minaei, M., Raghuraman, S., Kumaresan, R., Le, D.V., Zamani, M.: Pro-
grammable payment channels. Cryptology ePrint Archive, Paper 2023/347 (2023).
https://eprint.iacr.org/2023/347

33. Yee, B., Song, D., McCorry, P., Buckland, C.: Shades of finality and layer 2 scaling.
arXiv preprint arXiv:2201.07920 (2022)

https://doi.org/10.1007/978-3-030-32101-7_30
https://patents.google.com/patent/US11556909B2/
https://patents.google.com/patent/US11556909B2/
https://lightning.network/lightning-network-paper.pdf
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/ACCESS.2022.3200051
https://doi.org/10.1109/ACCESS.2022.3200051
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html
https://eprint.iacr.org/2023/347
http://arxiv.org/abs/2201.07920

Fair Private Set Intersection Using Smart
Contracts

Sepideh Avizheh(B) and Reihaneh Safavi-Naini

University of Calgary, Alberta, Canada

sepideh.avizheh1@ucalgary.ca

Abstract. A mutual private set intersection protocol (PSI) allows two
parties to find the intersection of their private sets without leaking any
other information. A mutual PSI protocol achieves complete fairness if
a malicious party cannot disadvantage the honest party by using an
early abort of the protocol. It has been proved that it is impossible to
achieve complete fairness in plain two-party computation, and ensur-
ing fairness needs the inclusion of a trusted third party (TTP). Smart
contracts have been used to implement trusted computation in crypto-
graphic protocols. In this paper, we consider fair mutual PSI protocols
that use a smart contract as the TTP. We first show that it is impossible
to achieve complete fairness by using a smart contract as a TTP in two-
party mutual PSI, and consider the (weaker) goal of “fairness with coin
compensation”. We design two protocols, Π and Π∗, that achieve this
notion of fairness using a smart contract as the TTP. The protocol Π is
a redesign of a fair optimistic PSI protocol (Dong et al., DBSec 2013)
that replaces TTP with a smart contract. The protocol Π∗ is a more
efficient protocol that replaces some of the zero-knowledge proofs of Π
with proof of misbehaviour that enables the smart contract to correctly
identify the dishonest party and compensate the honest party with coin.
We prove the security and privacy of the protocols in an extension of the
ideal/real paradigm for non-monolithic adversaries and provide a proof-
of-concept implementation of the smart contract in both protocols in a
local Ethereum network. We evaluate the performance of the protocols
in terms of gas cost for optimistic and pessimistic executions, compare
their performance, and discuss our results and directions for future work.

Keywords: Mutual PSI · Optimistic fairness · Smart contracts ·
Oblivious polynomial evaluation · Proof of misbehavior

1 Introduction

In a two-party mutual private set intersection (PSI) protocol Alice and Bob,
each with a private set, engage in a protocol, at the end of which each party
learns the intersection of the two sets and nothing else. In unilateral (one-way)
PSI however, only one party learns the intersection, and the other party learns
nothing. Mutual PSI protocols have diverse applications including in healthcare
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 74–104, 2024.
https://doi.org/10.1007/978-3-031-54776-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_4

Fair Private Set Intersection Using Smart Contracts 75

systems, government and law enforcement applications, social networks, and e-
commerce [7,11,17,41,42]. As a concrete example, consider a setting where two
stores attempt to increase the number of their customers and agree to offer
a discount to customers who have made purchases from both. Checking this
information at the time of purchase will reveal the identity of customers of each
store to the other. Using mutual PSI will allow the discount to be issued correctly,
and no other information be leaked.

A mutual PSI protocol is fair if a malicious party cannot put the honest party
in a disadvantaged position, for example, prevent the honest party from learning
the intersection after learning it themselves. Complete fairness guarantees that
if the malicious party learns the intersection, the honest party will also learn it.
Most existing mutual PSI protocols [7,17,41,42] guarantee security with abort,
and not complete fairness, allowing the corrupted party to abort without letting
the honest party learning the result. For efficiency reasons, in this paper, we
only consider protocols that achieve fairness in a constant number of rounds and
exclude protocols such as [10,28,39,43] in which the number of rounds depends
on the input size.

Cleve’s [13] result on the impossibility of fair computation in two-party coin-
tossing schemes, when applied to PSI, implies that full fairness is not achievable
in the basic two-party setting. An alternative is to relax the notion of fairness to
partial fairness where fairness fails with probability 1/p for an arbitrary polyno-
mial p in security parameter [13,14,29,50], or optimistic fairness where a trusted
third party (TTP) that is sometimes referred to as the the arbiter, ensures that
the honest party always obtains the correct protocol result irrespective of the
malicious party deviations from the protocol including early abort.

Using smart Contracts as TTP. A smart contract is a trusted program that runs
on the consensus-based computer of a blockchain, and can be programmed to
perform a trusted computation. Smart contracts have been widely used in crypto-
graphic protocols [22,23,45,46,49] to implement a TTP. Smart contracts provide
an attractive method of implementing TTP in optimistic protocols and can also
serve to automate other processes when the protocol is deployed. For example,
smart contracts can initiate negotiations between parties, store cryptographic
values, as well as providing support for cryptocurrencies and transactions.

In this paper, we propose the first PSI protocol that uses a smart contract
to implement the TTP. This however requires careful design because smart con-
tracts are transparent programs that cannot hold secrets, and so all their stored
data are public. A smart contract also cannot establish a private channel to any
entity in the system. A smart contract also incurs costs, and so its execution and
storage costs must be minimized. These constraints severely restrict the applica-
tion of the smart contract as the TTP for providing fairness. Fair PSI protocols
that use a TTP [7,18–21] and achieve complete fairness, crucially use the ability
of TTP to hold private values which will be provided to the honest party if the
protocol aborts. This will not be possible for a smart contract. The protocols
in [36,37] use the TTP private computation for dispute resolution, and also use
the TTP as a processor to help with the computation.

76 S. Avizheh and R. Safavi-Naini

Our Work. We first provide an argument that shows that it is not possible
to achieve complete fairness in two-party PSI by using a smart contract as the
TTP, and propose to use coin-compensated fairness in which fairness is achieved
by requiring an initial coin deposit from one (or more parties), and later com-
pensating the honest party with coins when the dishonest party who learns the
result and aborts is identified (e.g. by transferring to the honest party, the coins
of the dishonest party together with the honest party’s deposited coins, if any).
We design a 4-round protocol Π, that achieves fairness by (always) correctly
identifying the dishonest party using a dispute resolution phase. The protocol
re-designs the PSI protocol of Dong et al. [21] (referred to as DCCR proto-
col) that achieves complete fairness using a TTP that can hold secrets. Noting
that the dispute resolution phase is effectively an identification mechanism for
the dishonest party, we improve the computational efficiency of the protocol
by replacing ZKP in round 2 with the notion of Proof of Misbehavior (PoM)
[22], and reducing a vector of m ZKPs in round 3 to only one ZKP with PoM.
A PoM does not verify the correctness of each message but provides sufficient
information to the honest party that can be used as evidence in the dispute-
resolution phase, to prove the misbehavior of the dishonest party to the smart
contract. Our PoM construction localizes the incorrect step of the computation
that can be efficiently verified by the smart contract. The two protocols are the
first protocols that ensure coin-compensated fairness using only smart contracts
where the smart contract’s computation complexity is O(1) (i.e. constant num-
ber of modular exponentiations). The main challenge in designing Π and Π∗

is to ensure privacy with respect to both parties and the publicly visible smart
contract operations, in particular when PoM-based protocol is used to identify
the dishonest party. We prove the security and privacy of both protocols using
simulation-based security in the non-monolithic adversary framework of [3,36]
that captures security and privacy against the malicious party, as well as pri-
vacy against the smart contract. We implemented the computation of the smart
contract in Π and Π∗ to estimate and compare the gas cost when the protocol
runs on the Ethereum blockchain. More details are below.

Using a Smart Contract to Implement TTP. In Sect. 4.1, we outline an
argument that shows that a smart contract that implements the TTP in a PSI
protocol cannot provide any additional information to the parties after the pro-
tocol is completed, and so if complete fairness can be achieved by employing a
smart contract, Cleve’s result will be contradicted. This motivates us to use the
notion of coin-compensated fairness that was introduced by Bentov-Kumaresan
[6] for lottery protocols. Coin-compensated fairness has been widely used as a
replacement for complete fairness [4,40,45–48]. Coin-compensated fairness uses
blockchain’s native coin to compensate the party that will be in a disadvan-
taged position and provides an attractive solution to overcome the impossibility
of complete fairness. The approach assumes the compensation amount correctly
reflects the potential losses of the honest party using factors such as the value
of the lost data, and the costs of running the protocol.

Fair Private Set Intersection Using Smart Contracts 77

Constructions. In Sect. 5, we propose protocol Π that starts with DCCR and
modifies its messages assuming TTP is implemented as a smart contract, and
achieves coin-compensated fairness while ensuring privacy for the input sets
with respect to the SC (public). In Π, the party that starts the protocol is
Alice, and the party that learns the result first is Bob. At the start of the
protocol, Bob deposits the agreed amount of coins, p, to the smart contract. The
coins will be used to compensate Alice if Bob aborts the protocol after learning
the intersection. Honest execution of the protocol has four rounds and dispute
resolution adds two more rounds to the protocol. The protocol uses Oblivious
Polynomial Evaluation (OPE) for computing the intersection, and by using zero-
knowledge proofs (ZKP) in the first three rounds, allows the parties to verify
the correctness of the exchanged messages. In all rounds, the two parties store
information in the smart contract, but the contract remains passive, it does not
perform any computation. In the dispute resolution phase, Alice claims that Bob
has aborted to reveal the required information. The smart contract verifies the
claim using its stored information. It is also possible that Bob cannot reveal the
required information because they did not receive Alice’s message in its previous
round. In both cases, the smart contract can correctly decide and identify the
party that has misbehaved. The smart contract’s computation will be a constant
number of modular exponentiations.

In Π, the parties’ computations are high as they have to generate and verify
the zero-knowledge proofs in the first three rounds of the protocols. In Π∗,
generating the ZKP in the second and third rounds is replaced by Proof of
Misbehavior (PoM), hence improving the efficiency of parties P1 and P2. Using
PoM also allows us to instantiate the commitment in the second round with hash-
based commitments which further improve the computations of the parties. The
protocol Π∗ is described in Sect. 6.

PoM is a protocol between two parties P1, P2 where at least one of the two
is honest, and an honest verifier. In a PoM, party P1 provides a proof π1 for
the correctness of a statement to party P2, and stores a proof digest with the
verifier. The proof digest is hiding and leaks a negligible amount of information
about the proof to the verifier. P2 can verify the correctness of the proof, and
if the verification fails, can generate a second proof π2 that, together with the
proof digest and the published values, will prove to the verifier that P1 has
not followed the protocol (“misbehaved”). PoM must satisfy completeness and
soundness. Completeness ensures that an honest party can always generate π2

if there is a misbehavior, and soundness requires that a cheating party can not
generate a valid proof π2 to frame an honest party.

We use two PoMs in Π∗, in both of which the two parties will be the provers
and the SC will be the verifier. The first PoM will replace the ZKP in round 2
of Π. The proof π1 will be constructed as the computation trace of the oblivious
polynomial evaluation (OPE), and the proof digest is the root of a Merkle tree
that will be constructed on the computation trace. The proof and the digest will
be provided to P1 and the SC, respectively. In the last round of the protocol, P1

can verify the proof π1 by replicating the computation, and if notices discrepan-

78 S. Avizheh and R. Safavi-Naini

cies, will generate a proof π2 that allows the SC to verify the claim of P1. The
SC’s computation will depend on the location of the error in the computation
trace, and will consist of a single modular multiplication if the computation has
been performed incorrectly, or will require verifying a ZKP if the input correct-
ness is challenged. The second PoM is in round 3 and is used by P1. We use
one aggregate ZKP in round 3 of the protocol (instead of the original vector of
m re-encryption ZKPs) to efficiently show the correctness of the re-encrypted
ciphertexts. The aggregation will come together with a PoM that proves the
correctness of the aggregate computation and is constructed using the trace of
aggregate computation as described above. P2 can verify the correctness of the
aggregation, and prove to SC if P1 has deviated from the protocol. Using PoMs
does not add any additional rounds to the protocol. The complexity analysis of
Π and Π∗ are in Sect. 7.

Using PoM to delay the correctness proof to a later stage (i.e. dispute reso-
lution), could potentially leak information, and this prevents us from replacing
ZKP in the first message of Π (that proves the correct evaluation of coefficients
of a polynomial) with PoM. This is because a dishonest P1 can learn the items
in the P2’s set by setting all coefficients of the polynomial to zero.

Simulation-Based Security. We prove the security and privacy of Π and Π∗

using simulation-based security with non-monolithic adversaries [3] considering
a Ledger ideal functionality to capture the transfer of coins. The non-monolithic
adversary framework was introduced in [36] to capture the security of crypto-
graphic protocols when there are two or more non-colluding adversaries with
distinct goals. We consider two adversaries that capture, (i) the behavior of
the dishonest party, and (ii) leakage to the public of the information that is
seen by the smart contract. In DCCR, the TTP is assumed to be semi-honest
and the protocol is designed to ensure that negligible information is leaked to
the TTP. By using PoM, we modify the dispute resolution protocol and need to
show our protocols still achieve the required privacy guarantee against the smart
contract. We must show that by replacing the ZKP with PoM in the security
proofs, the simulator (that has oracle access to the code of the cheating party)
can still extract the input in all cases without using the extractability of ZKP.
We achieve this by using the computation trace and the simulator’s access to
the random oracle ideal functionality. This approach was first used by [22] and
later in [3]. Our security model uses a PSI ideal functionality that follows [21,36],
an abstraction of blockchain that follows the approach of [22], and models coin-
compensated fairness. Security proof is in the random oracle model and is done
by designing a simulator for malicious parties, and an independent simulator for
the smart contract to ensure both the security of the PSI, and privacy against
the smart contract (and hence the public). The proof outline is in Sects. 5 and
6 and the complete proof is given in the full version of paper.

Implementation. We provide a proof-of-concept implementation of the smart
contract in Protocols Π and Π∗. We have implemented a CryptoLib library in
Solidity for the required cryptographic primitives of SC that implements the
Elliptic Curve (EC) variant of Elgamal encryption, Pedersen commitment, the

Fair Private Set Intersection Using Smart Contracts 79

necessary zero-knowledge proofs of knowledge over curve Secp256k1, and the
Merkle proof verification. The SC algorithms are given in the full version of the
paper. We give the gas cost of SC in protocols Π and Π∗, for different set sizes
n and m of party P1 and P2, respectively, for (i)optimistic execution where both
parties are honest, and (ii) pessimistic execution where one party misbehaves.
Our experiments show that as m increases, the gas cost of SC in Π∗ is [17%-32%]
higher than running SC in Π, and as n increases it is 29% higher than running
SC in Π. The gas cost of running SC in Π is independent of n, but it grows
linearly to log(n) in protocol Π∗. The gas cost of the pessimistic execution in
both protocols is dominated by the gas cost of the SC in the first four rounds of
the protocol when m increases. Therefore, the storage cost of the SC limits the
value of m to be much less than n.

Organization of the Paper. Section 2 gives the related work and Sect. 3
describes the preliminaries. Section 4 is model and security definitions. Sections 5
and 6 present protocol Π and Π∗, respectively. Section 7 is on the complexity
analysis and comparison, Sect. 8 is on implementation, and Sect. 9 concludes the
paper.

1.1 Other Coin-Compensated PSI

A recent online preprint [1] considers coin-compensated fairness for PSI and uses
an SC for different functions, including verifying the correctness of messages. An
external auditor is used to find the misbehaving parties in case the verification
is not passed. We give an overview of the paper and compare it with our work.
More details are in the full version of the paper.

The paper proposes two PSI schemes for two or more parties: (i) Justitia,
and (ii) Anesidora. Justitia achieves coin-compensated fairness where the honest
party either receives the set intersection result, or coins if there is an abort. The
protocol is proven secure against malicious adversaries. Anesidora uses Justitia
as a subroutine and is proven secure in a mixed model of malicious and rational
adversaries, using an appropriate incentivization mechanism. We compare our
work with Justitia which achieves coin-compensated fairness, when the number
of parties is two.

Justitia uses a smart contract and an external third-party auditor (semi-
honest) to correctly identify the cheating party and requires both parties to make
deposits. The third-party auditor needs to learn the private (PRF) keys of parties
to find the misbehaving party, and hence it cannot be directly implemented by
the smart contract. Also, the smart contract performs computation during the
correct execution of the protocol. Justitia follows the security model of [26] and
achieves coin-compensated fairness and privacy in the presence of one active
adversary, or a passive dealer (i.e. one of the two-party with the assigned role
as a dealer), passive auditor, or passive public (which is the smart contract).

We use only a smart contract to achieve correctness and coin-compensated
fairness, and smart contract computation is only during dispute resolution and
is constant independent of the set sizes. We use the approach of [3] to define

80 S. Avizheh and R. Safavi-Naini

security and privacy of computation against parties, and privacy against smart
contract in a unified framework, and obtain the security guarantee against an
active adversary in both stages of the protocol: result computation, and dispute
resolution.

2 Related Work

PSI Protocols. There is a vast amount of research in this area (e.g. [5,9,25,33,44,
52,53,56]). The main approaches are (i) protocols that are based on oblivious
polynomial evaluation, OPE, [12,24,42] and (ii) protocols based on oblivious
psuedorandom function evaluation, OPRF [15,16,30,34,35,44].

Mutual PSI Protocols. [7,11,17,32,41,42,51] ensure both parties receive the
intersection result, but all the mentioned schemes assume that the adversary
does not prematurely abort.

Fair PSI Protocols. The impossibility of fair PSI [13,27] implies that one has to
use a relaxed notion of fairness such as partial fairness where fairness fails with
a bounded probability [13,14,29,50], or optimistic fairness where the existence
of a trusted third party (TTP) or arbiter is assumed (leading to what is known
as optimistic protocols) [7]. In an optimistic PSI protocol [7,19–21], the TTP (or
arbiter) ensures that the honest party obtains the correct protocol result when
the malicious party deviates from the protocol, including the early abort.

Fair PSI Protocols that Use a TTP and proceed in a constant number of rounds
have been considered in [1,7,18–21,36,37]. The TTP in these protocols can either
participate only in the dispute resolution phase [7,18–21] and ensures optimistic
fairness, or to participate in both the computation of PSI (a smart contract) and
dispute resolution (a smart contract and an external third party auditor) [1] and
achieves coin-compensated fairness, or the TTP participates in the computation
of the intersection [36,37] and ensures complete fairness.

Coin-Compensated Fairness. The notion of coin-compensated fairness (aka. fair-
ness with penalties) was introduced by [6] which allows an adversarial party to
abort but in that case, it is forced to pay a predefined monetary penalty to every
other party that did not receive the output. Coin-compensated fairness has been
used in further research such as [4,40,46,48]. All the above protocols are sym-
metric, in that, all parties have to make a deposit and all parties achieve fairness
with penalties. In a parallel work, [1] proposed coin-compensated multi-party
PSI where all parties are required to make a deposit and it uses the smart con-
tract and an external third-party auditor to ensure the correct transfer of funds.
In contrast, our work is a two-party PSI and requires that only one party makes a
deposit and ensures fairness with compensation assuming only an efficient smart
contract as a TTP.

Fair Private Set Intersection Using Smart Contracts 81

3 Preliminaries and Notations

We use P1 and A interchangeably, where P1 holds the set X = {x1, ..., xn},
and we use P2 and B interchangeably, where P2 holds set Y = {y1, ..., ym}. |.|
represents the size of a set.

Commitment scheme has two algorithms {commit, open}. commit is a prob-
abilistic function that is used by the committer to commit to an input x and
outputs (c, d) ← commit(x) where c is the commitment to k, and d is the
decommitment value. open is a deterministic boolean function which is used by
the receiver to verify that x is a correct opening for commitment c. We require
the scheme to be hiding and binding.

Merkle trees are binary trees that are constructed over a sequence of data
elements x = (x1, ..., xn) using algorithm Mtree. The leaf nodes of a Merkle tree
are the hash of the elements x. To commit to a sequence of elements we consider
a randomized Merkle tree where each leaf node xi is concatenated with unique
uniformly sampled randomness di ∈ {0, 1}κ, i.e. x′

i = xi||di. The commitment
to x is comprised of rx = root(Mtree(x′)) and d = (d1, ..., dn). The randomized
Merkle root commitment is computationally hiding in the random oracle model
and is computationally binding assuming either the committer or receiver is
honest.

Additive homomorphic encryption is a public key encryption scheme
with the following properties: (1) given two ciphertexts Epk(m1), Epk(m2),
Epk(m1 + m2) = Epk(m1) · Epk(m2); where pk is the public key used to encrypt
the messages m1 and m2. (2) given a ciphertext Epk(m1) and a constant c,
Epk(c · m1) = Epk(m1)c.

Symmetric encryption scheme consists of three algorithms: k = Gen(κ)
receives the security parameter κ and generates a key. The encryption algorithm
takes the key k and the message m and returns the ciphertext C = Ek(m).
The decryption algorithm takes the key k and the ciphertext C and returns the
message m, m = Dk(C). We consider an IND-CPA secure encryption scheme.

Zero knowledge proof (ZK proof) allows a prover to prove the validity of
a statement x to a verifier without leaking any other information. Prover shows
that it knows a witness ω without revealing it such that (x, ω) ∈ R, where R is
a relation. A ZK proof should satisfy correctness, soundness, and zero-knowledge
properties.

The Freedman-Nissim-Pinkas protocol (FNP) [24] is a single output PSI
protocol that is based on Oblivious Polynomial Evaluation (OPE). It uses an
additively homomorphic encryption scheme (Paillier cryptosystem). The proto-
col proceeds as follows: (i) Party P1 chooses a private public key pair (sk, pk) for
an additive homomorphic scheme. (ii) P1, constructs a polynomial Q(y) whose
roots are the elements in the set X, using the formula Q(y) = Πn

i=1(y − xi) =
Σn

i=0diy
i, encrypts coefficients di for all i ∈ {0, n}, and sends all Epk(di) to P2.

82 S. Avizheh and R. Safavi-Naini

(iii) P2 evaluates the polynomial Q() on the elements of its set Y and com-
putes Epk(rjQ(yj) + yj) for each yj ∈ Y using the homomorphic properties of
the underlying encryption scheme, where rj is a random value. Note that if yj

is in the intersection X ∩ Y then it is the root of polynomial Q(y) and hence
Q(yj) = 0. Otherwise, Q(yj) is a random value. (iv) P1 decrypts each ciphertext
Epk(rjQ(yj)+ yj) and obtains either yj ∈ X if yj is in X ∩Y or a random value
otherwise. This protocol is secure against semi-honest adversaries.

The DCCR PSI protocol [21] is a mutual PSI protocol that ensures complete
fairness assuming the existence of a semi-honest arbiter which can be involved
if there is a dispute between parties. The protocol has two phases: intersection
and dispute resolution. The intersection phase is run between parties P1 and P2

over a point-to-point channel. The dispute resolution is initiated by P1 and used
only if P2 aborts in the fourth round of the protocol. Please see the details of
the scheme in Fig. 2 (b). The protocol is based on the OPE scheme (based on
Elgamal encryption) proposed by FNP with some subtle changes. They consider
that (i) |X| > |Y | to protect against leakage of the polynomial to party P2 and
require that P1 ensures |X| > |Y |. (ii) The parties P1 and P2 are malicious
(one of two). Therefore, ZK proof is used at each stage of the protocol to show
that they are following the protocol correctly. (iii) The Epk(rjQ(yj) + yj) is
computed in the exponent of base g (a generator of a certain group), that is,
Epk(grjQ(yj)+yj) to allow using efficient ZK proof and also obtaining additive
homomorphic encryption using Elgamal encryption scheme. (iv) They consider
a blinding factor rj for each polynomial evaluation Epk(r′

jQ(yj) + rj + yj) to
hide the result temporarily from the party who has the public key Pk since it
can decrypt the ciphertext and learn the result in an incorrect point of time.

Blockchain and Smart Contracts. Blockchain is a distributed ledger tech-
nology that stores transactions in a growing chain of blocks that are linked to
each other through a cryptographic hash. Each block encapsulates a number of
transactions (unit of operations performed in the system) [54]. If the number
of honest parties who run the blockchain is more than 50 percent of the whole
network, the ledger ensures immutability. Smart contract is a piece of computer
program that is run on top of a blockchain. The nodes who are responsible for
storing and updating the blockchain, execute the programs and reach agreement
on their execution results.

4 Fair PSI Using Smart Contracts

In this section, we first show that complete fairness is impossible to be achieved
in the smart contract-based setting where the smart contract is transparent and
cannot hold any private key. Then we give the security model by capturing the
notion of coin-compensated fairness.

4.1 Smart Contract as the TTP in Optimistic Mutual PSI

An important property of mutual PSI protocols is fairness. Cleve’s results [13]
show that complete fairness without honest majority is not possible and so it

Fair Private Set Intersection Using Smart Contracts 83

is impossible to achieve complete fairness in plain two-party mutual PSI. Opti-
mistic PSIs however, provide correct output to the honest party by storing pri-
vate values (e.g. the protocol output) that will be provided to the honest party
if they are put in a disadvantaged position (because of the early abort of the
dishonest party). Smart contracts however are transparent programs and can-
not hold secrets. A smart contract can be seen as a third transparent processor
that is connected transparently to the other two parties. Consider a mutual PSI
protocol where P1 and P2 have their sets as their private inputs and the smart
contract is used as the TTP. At the completion (or termination because of the
early abort) of the protocol, P1 and P2 receive their corresponding private results
and have direct access to computation and stored values of the SC. Thus, in the
case of early abort, SC cannot provide any extra value to the honest party that
was not known to them before. This informal argument can be formalized to
prove that it is impossible to achieve complete fairness for mutual PSI when
using SC as the TTP (see Full version of the paper).

The smart contract however can be used to verify statements and correct
opening of commitments, and so detect malicious behaviour. This detection abil-
ity can be used to achieve coin-compensated fairness where the honest party who
has not received the result will be compensated with coins. Coin-compensated
fairness, although weaker than complete fairness, is an attractive approach in
particular when one can estimate the value of the result to the parties. We use
this notion of fairness in our protocols.

4.2 Security Model

We use the ideal world/real world paradigm [8] where the security proof simulates
the behavior of real-world adversaries in the ideal world in which a trusted entity
(ideal functionality) performs the task at hand. In the real world, each party is
modeled by an interactive probabilistic polynomial time Turing machine (ITM)
that interacts with other parties. The adversary A in the real world corrupts
a set of parties and affects their execution. We consider a static adversary in
which the parties are corrupted at the beginning of the protocol run. To capture
the effects of the other protocols that coexist we assume the adversary receives
an auxiliary input at the beginning of the protocol. In the ideal world the ideal
functionality F interacts with dummy protocol parties and performs the task
at hand. The ideal functionality captures the required security properties of the
protocol π. The ideal adversary is called simulator Sim, which simulates the
behavior of the real-world adversary in the ideal world and interacts with the
ideal functionality through its interfaces. We consider an Environment Z which
gives inputs to parties and receives their outputs.

Hybrid World. We use a hybrid real world where some of the cryptographic
primitives/protocols are replaced by their corresponding ideal functionalities,
F1, ...,Fn, and using [8] still maintain security. We consider a stand-alone exe-
cution. We assume non-concurrent invocation of the subroutines.

84 S. Avizheh and R. Safavi-Naini

Non-monolithic Adversary. In a standard simulation-based security framework
the adversary is monolithic, a single entity can corrupt a set of parties and
coordinate their attacks (i.e. parties can collude with each other). The need for
modeling non-monolithic adversaries has been motivated by Kamara et al. [36]
in the server-aided computation setting. In this paper, to define both security
and privacy we need to use a non-monolithic adversarial model. We consider two
adversaries, (i) an adversary A who corrupts one of the parties maliciously and
gets access to its inputs and outputs and (ii) a semi-honest adversary, which is
called smart contract adversary Asc, and models the observers of the SC. Asc

only sees the information that are made public to SC. We follow [3] that extends
Kamara et al. model [36] to two non-monolithic adversaries and defines smart
contract privacy.

Ledger Functionality L [22]. To transfer coins between parties and support con-
tracts that lock coins, we consider the simplified ledger of [22] that provides
the basic properties of a cryptocurrency. L has three interfaces: update that is
called by the environment to update the balance of parties Pi; freeze is used to
transfer p coins from one party to a contract where they are locked; unfreeze
is used to transfer the coins from a contract to the balance of a party. In [22]
this functionality is accessible to ideal functionalities only (i.e. the Judge ideal
functionality), but in our protocol L is accessible to SC and ideal functionalities
(Please see the full version of the paper for the details).

Random Oracle Functionality H [31]. H responds to all queries with uniformly
random sampled values r ← {0, 1}k, and outputs the same value for the same
query. All query-response pairs are stored in the set Q.

Communication Model. We consider a synchronous communication model
the same as the one mentioned in [22] where the protocol proceeds in rounds and
all parties are always aware of the current round [40] (synchrony can be emulated
by allocating long enough round time considering bounded delay channels [38]).

Security and Privacy. The protocol execution has two cases. First, when both
parties are honest, and the second, when one party is dishonest and the execu-
tion includes the dispute resolution protocol. Our security and privacy definition
must capture security of computation against the party that can deviate from
the protocol, and privacy of the input sets of parties, except the intersection,
as well as privacy of both sets and the intersection against the smart contract
in both types of execution. The parties’ inputs/outputs and views are different
from the smart contract’s input/output and view and thus we follow [3] that
the use Kamara et al. [36] framework of non-monolithic adversaries and model
smart contract, and the participants as non-colluding, non-cooperative indepen-
dent adversaries. The smart contract is modeled as a semi-honest entity, and the
parties can deviate arbitrarily from the protocol (one of the two parties).

Definition 1. Let Π be a protocol that realizes a smart contract based n-party
functionality F . Let H ⊆ [n] be the set of honest parties, Ic and Inc be the
set of corrupted parties, where Inc ⊆ [n] denote the set of non-colluding par-
ties, Ic ⊂ [n] denote the set of colluding parties, and assume all subsets (H, Ic,

Fair Private Set Intersection Using Smart Contracts 85

and Inc) are pairwise disjoint, and let SC denote the semi-honest smart con-
tract. Let ADV be an adversary structure that specifies the set of adversaries
and their behaviors (e.g., semi-honest, non-cooperative, etc.). We say that Π
(Inc, Ic, ADV)-securely realizes F , if for any PPT adversary Ai ∈ {Inc, Ic}
and smart contract adversary Asc, there exists PPT transformations Simi and
Simsc respectively such that the following hold for negligible functions ε1 and ε2
in the security parameter.

Security: |Pr[Real
(i)
Π,A,Z(κ, x) = 1] − Pr[Ideal

(i)
F,Sim,Z(κ, x) = 1]| ≤ ε1

Where Real
(i)
Π,A,Z(κ, x) denotes the view of the adversary Ai and the output of

the honest parties when running protocol Π; Ideal
(i)
F,Sim,Z is the view of malicious

parties and output of honest parties when running the ideal process computing
F ; and A = {A1, ...,Am} and Sim = {Sim1, ..., Simm}.
Smart Contract Privacy:

|Pr[Real
(j)
Π,A,Asc,z(κ, x) = 1] − Pr[Ideal

(j)
F,Sim,Simsc,z(κ, x) = 1]| ≤ ε2

Where Real
(j)
Π,A,Asc,z denotes the view of the adversary Asc and output of

all other parties when running protocol Π in the presence of adversary Aj; and
Ideal

(j)
F,Sim,Simsc,z is the view of the semi-honest parties and output of all other

parties when running the ideal process computing F in the presence of adversary
Simj. Here κ is the security parameter, x is the set of outputs provided to all
parties, and z is the set of auxiliary inputs provided to all parties.

4.3 Ideal Functionality for Coin-Compensated PSI

We consider an ideal functionality FL
PSI which ensures coin-compensated fairness

for P1 and complete fairness for P2. FL
PSI captures the following properties:

Correctness. If parties P1 and P2 use their inputs X and Y respectively in the
protocol, if they find the intersection X ∩ Y , it is indeed correct.

Privacy. P1 and P2 do not learn anything beyond the intersection result1.

Smart Contract Privacy. The smart contract does not learn anything about
the elements in X and Y .

Fairness with Coin Compensation. Party P1 either learns the intersection
result or gets a monetary compensation, whereas P2 receives the intersection
result, or none of them learns anything.

Figure 1 shows the description of the ideal functionality FL
PSI which interacts

with the ledger functionality L. FL
PSI first freezes the p coins provided by P2 in

L and receives the inputs X ′ and Y ′ from both parties P1 and P2. The inputs
X ′ and Y ′ can be equal to ⊥ which means that one party aborts early in the
protocol. In this case FL

PSI sends ⊥ to everyone and terminates the protocol.
If X ′ and Y ′ are not ⊥ then FL

PSI informs everyone that it has received the

1 We follow DCCR and consider the parties know the size of both sets and they can
confirm |x| > |y|.

86 S. Avizheh and R. Safavi-Naini

inputs from party P1 and P2. FL
PSI then computes the intersection denoted by

O. We let the functionality send the result to the simulator Sim first and then
send it to parties based on the decision made by Sim. This is to capture the
fact that the malicious party who learns the intersection result can affect the
protocol run. Sim returns b1 and b2, where bi ∈ {	, ⊥} and ⊥ denotes abort and
	 denotes non-abort. FL

PSI distributes the coins based on b1 and b2 according to
the conditions stated in Fig. 1. If both b1 and b2 are ⊥, then none of the parties
have learned anything, and the p coins are returned to P2. If b1 is ⊥ which shows
that P1 should not receive the intersection result, FL

PSI unfreezes the coins in
favor of P1. Otherwise, P1 receives the result and FL

PSI returns the p coins to P2.
In sum, P2 always receives the intersection result no matter what the malicious
party does after learning the output, but P1 only learns the result if P2 acts
honestly. In all the above cases, we let SC learn the decision of the simulator
Sim for party P1 (which captures the fact that this information is public and
can be learned by SC when the protocol is run).

Fig. 1. Ideal functionality for SC-aided PSI FL
PSI

Fair Private Set Intersection Using Smart Contracts 87

5 A Coin-Compensated Fair SC-Aided PSI

In the following, we outline the phases and messages of the protocol Π.

Protocol Π. The protocol Π follows the approach of DCCR and uses OPE as
its core primitive. Π has the following steps: (i) P2 sending p coins to SC which
SC will freeze on the ledger L. If P1 sees enough coins deposited, P1 continues
the protocol with a message that is identical to the message in the first round of
DCCR (See Fig. 2 for the details of the message). (ii) When P2 receives round
1 message, it informs SC that it has received it. If SC does not receive the
confirmation of P2 within an allocated time, it will terminate the protocol and
return the coins to P2 (no-one obtains the intersection). In round 2, P2 sends the
message in round 2 of DCCR protocol to P1 but omits the verifiable encryption
of blinding factors. It sends the commitment to the blinding factors and the
Merkle root re constructed on ciphertexts to SC. P2 also sends to P1 a zero-
knowledge proof Pkprop−new that proves P2 has correctly constructed its second
round message (ciphertexts) with respect to committed blinding factors to SC.
(iii) In round 3, P2 sends the round 3 message of DCCR to SC. This is to prevent
an unfair situation that can arise by P1 aborting after they receive the message
but blaming P2 for aborting. (iv) In round 4, P2 opens the commitments to
the blinding factors. If P2 does not abort in round 4, SC returns the coins to
P2. The correctness of the protocol messages of each round can be verified by
the recipient using the associated ZK proof of that round. If any of the parties
abort before round 4, SC returns the coins to P2 and terminates the protocol
as none of the participants have any information about the intersection result.
In round 4, if any of the commitments is opened incorrectly by P2, P1 makes a
proof which consists of the index of the incorrect commitment and its opening
value published to SC for the first incorrectly opened commitment. SC verifies
the proof in round 6 and sends the coins to the honest party if it is valid. If
party P2 finds that the round 3 messages, the zero-knowledge proofs of the re-
encrypted polynomial evaluation, are not valid, then P2 can abort opening the
commitment in round 4 and rather sends a proof to the SC which shows the
index of the invalid zero-knowledge proof for the re-encryption in round 3, the
ciphertext under the public key Pk1 that it computed itself in round 2 together
with its Merkle proof with respect to root re

2. The SC verifies the Merkle proof
and the zero-knowledge proof and if the zero-knowledge proof is invalid it returns
the coins to P2. Note that in this case if party P1 complains that P2 has aborted
opening the commitment, its complaint will be rejected (see the full version of
the paper for details).

5.1 Security Analysis

We show the security of our protocol using the model in Sect. 4.2. We consider
two simulators, Sim and SimSC and consider 4 different corrupted cases.
2 Party P1 may attempt to send incorrect re-encryptions to party P2 to force it to

abort opening the commitments. In such case, P2 aborts opening the commitment
but it has to send a proof to prove to SC that P1 is the cheating party.

88 S. Avizheh and R. Safavi-Naini

Algorithm 1. Protocol Π

Input of P1: X = {x1, ..., xn}, Input of P2: Y = {y1, ..., ym} and p coins Input
of SC: n, m
Output of P1: X∩Y or p coins, Output of P2: X∩Y , Output of SC: the identity
of cheating party I
procedure Intersection

Round 0. P2 → SC : p coins

Round 1. P1 → P2 : EP k1 (gd0),, EP k1 (gdn), Pk
[1, n]
poly

Round 1. P2 → SC : Received

Round 2. P2 → P1 : EP k1 (gr1Q(y1)+r′
1+y1),, EP k1 (grmQ(ym)+r′

m+ym), Pk
[1, m]
prop−new

Round 2. P2 → SC : commit(gr′
1), ..., commit(gr′

m), re

Round 3. P1 → SC : EP k2 (gr1Q(y1)+r′
1+y1),, EP k2 (grmQ(ym)+r′

m+ym), Pk
[1, m]
re−enc

Round 4. P2 → SC : open(commit(gr′
1)), ..., open(commit(gr′

m))

procedure Dispute Resolution
if P2 reveals an incorrect opening for commit(gr′

j) then
P1 → SC : index j of commitment
SC verifies opening of commit(gr′

j)
if opening invalid then

SC → P1 : p coins
else

SC → P2 : p coins

if P2 aborts opening the commitments then
SC → P1 : p coins

if P1 reveals an incorrect re-encryption where the ZKP is incorrect for index
Pkj

re−enc then

P2 → SC : index j of re-encryption, the encryption EPk1(g
rjQ(yj)+r′

j+yj) and
its Merkle proof with respect to re

SC verifies the Merkle proof and Pkj
re−enc

if Merkle proof valid but Pkj
re−enc invalid then

SC → P2 : p coins
else

SC → P1 : p coins

if No PoM received then
SC → P2 : p coins

Theorem 1. The coin-compensated PSI protocol Π securely realizes the FL
PSI

functionality assuming the homomorphic encryption scheme E is semantically
secure, the ZK proofs and the commitment scheme are secure (please see the full
version of the paper for the proof).

Proof Sketch. The environment Z sends input to parties and receives their
outputs at the end of the protocol, it also sees the messages that are sent to
the smart contract and has to distinguish ideal world from hybrid world. We
consider the following cases:

Case 1. Party P1 is Corrupted. We construct a simulator Sim1 which has oracle
access to the malicious code of P ∗

1 and interacts with the ideal functionality

Fair Private Set Intersection Using Smart Contracts 89

Fig. 2. Coin-compensated fair PSI protocol vs. DCCR optimistically fair PSI protocol.
In our protocol, each round is defined with respect to sending a message to the SC.

FL
PSI . Sim1 simulates the protocol transcript for messages that are sent to SC

(because channels to SC are public and they can be seen by the environment
Z) and simulates the protocol messages to the ideal functionality FL

PSI . The
honest party P2 is dummy and sends the input it receives from Z to FL

PSI .
The important part of the proof is to show (1) how Sim1 chooses the input
of the corrupted P ∗

1 to send to FL
PSI , (2) how Sim1 chooses the input of the

honest party to simulate the protocol transcript to SC, and (3) how Sim1 iden-
tifies whether to simulate an abort and dispute resolution or not. For (1), Sim1

extracts the input of P ∗
1 from Pkpoly in round 1 by rewinding P ∗

1 . For (2) Sim1

chooses random values (in the input domain of the parties’ set) as the elements
in the set Y ∗ of the honest party P2, and waits to receive the intersection result,
O, from FL

PSI . It replaces |O| random values in Y ∗ with the elements in O and
simulates the messages of P2 in round 2. For (3), Sim1 simulates generating the
private/public key of the honest party at the beginning of the protocol, and later
uses the private key of P2 to decrypt the ciphertexts received from P ∗

1 in round
3, and checks whether the intersection result matches the intersection result O.
If they match, it simulates round 4 (opening the commitments of blinding fac-
tors to SC) correctly and sends (Output, id, 	,) to FL

PSI . Otherwise, if the
intersection result computed based on the message of P ∗

1 does not match with O,
Sim1 sends (Output, id, ⊥, ⊥) to FL

PSI , and simulates the dispute resolution,
complaining about an incorrect re-encryption for one element to SC.

Case 2. Party P2 is Corrupted. We construct a simulator Sim2 which has oracle
access to the malicious code of P ∗

2 . (1) To simulate the input of the corrupted
party P ∗

1 , Sim2 extracts the elements of the set Y of party P ∗
2 from Pkprop-new by

rewinding it and sends Y to FL
PSI . (2) Sim2 chooses n = |X| dummy elements

for P1, waits to receive the intersection O from FL
PSI , and then replaces |O|

elements in X∗ with the elements in O to get X ′, and uses X ′ to simulate the
messages of P1 including round 3 message. (3) If P ∗

2 does not abort, Sim2 sends
(Output, id, 	,) to FL

PSI . Otherwise, if P ∗
2 initiates the dispute resolution

(which is invalid), Sim1 sends (Output, id, ⊥,) to FL
PSI .

90 S. Avizheh and R. Safavi-Naini

Case 3. SC is Semi-honest and Party P1 is Corrupted. We construct the simula-
tor Sim1

sc which does not have access to X, Y , and X ∩ Y . Sim1
sc simulates the

protocol transcript from parties to SC by choosing random inputs taken from the
input domain that are indistinguishable from the real inputs and generating the
protocol messages using the random inputs. Since the cryptographic protocols
are hiding and zero-knowledge, the environment cannot distinguish them from
the real messages. The important part of the proof is that, if P1 is corrupted
it can reveal an incorrect message where P2 has to complain about it. We only
describe this part of the proof. Upon receiving 	 from FL

PSI , Sim1
sc simulates

round 3 message correctly using randomly chosen input values. Otherwise, if
Sim1

sc receives ⊥ from FL
PSI , it simulates an incorrect round 3 message. In the

next round, it simulates a dispute resolution from P2 based on the corrupted
message it has revealed.

Case 4. SC is Semi-honest and Party P2 is Corrupted. We construct the simula-
tor Sim2

sc which does not have access to X, Y , and X ∩ Y . Sim2
sc simulates the

protocol transcript from parties to SC by choosing random inputs taken from
the input domain that are indistinguishable from the real inputs and generating
the protocol messages using the random inputs. The important part of the proof
is that, if P2 is corrupted it may abort before learning the intersection which will
not affect the fairness guarantee. However, if it aborts opening the commitment
to blinding factors correctly, party P1 has to complain and get compensated by
coins; we only describe this part of the proof. To simulate this, Sim2

sc waits to
receive either: 	 from FL

PSI : In this case, it simulates opening the commitments
to blinding factors on behalf of P2 in round 4 correctly, and terminates. Else, if
Sim1

sc receives ⊥ from FL
PSI , it incorrectly opens the commitments to blinding

factors to SC and simulates the dispute resolution stage with a valid complaint
on behalf of P1.

Another Coin-Compensated PSI Protocol. Our approach to redesigning
DCCR can be used for the PSI protocol [19], which is the most efficient existing
mutual PSI with optimistic fairness. The protocol achieves linear computation
and communication complexity. We give the outline of the redesigned protocol
in the full version of the paper.

6 Improving the Efficiency of Π

We reduce the computation of parties by replacing ZKPs in round 2 and 3 by
a more efficient protocol. Below, we give an outline of PoM and an overview of
the protocol Π∗.

6.1 Our Technique for Optimizing the Protocol

We first define the PoM and then describe how ZKP can be replaced by PoM.

Proof of Misbehavior (PoM). We consider two provers Pi, ∀i = {1, 2},
where at most one can be dishonest, and a single honest verifier V . A function

Fair Private Set Intersection Using Smart Contracts 91

f() needs to be computed on input x. All parties know f(), provers know the
input x and the verifier knows a commitment to x. Provers run the computation
of f(x) and the verifier has to decide which of the two is correct if they disagree.

Prover P1 generates (y = f(x), π1, ζ(π1)) where ζ(π1) is a proof digest (i.e.
a commitment to π1), and sends (y, π1) to P2 and ζ(π1) to the verifier V over
public channel. Here y = f(x) denotes the computation of f() on input x. π1

can be verified by P2 using the input x. P2 runs verify(x, f(), y, π1) where the
output is either 0 or 1. If verify(x, f(), y, π1) = 0 then P2 generates a PoM π2

and sends it to the verifier. Verifier is able to run Detect(ζ(π1), π2) = Pi which
verifies π2 with respect to ζ(π1) and outputs the identity of the cheating party
Pi, i ∈ {1, 2}. We require the following properties:

– Correctness: If both provers are honest, then verify(x, f(), y, π1) = 1 and
π2 =⊥ as well as Detect(ζ(π1), π2) =⊥.

– Soundness: If prover P1 is cheating then P2 can always generate π2 �=⊥ such
that Detect(ζ(π1), π2) = P1. If P2 is cheating then Detect(ζ(π1), π2) = P2

for all possible π2.

Replacing a ZKP with PoM. Consider a zero-knowledge proof of knowledge
for the relation R = {x : y ∈ Fq, y = f(x)} which states that the prover knows
x such that x satisfies the statement f(x). To remove ZKP we consider the
computation of f() by the circuit φ and design (π1, ζ(π1), π2) as described
above using this representation as follows:

– π1 in its basic form consists of the wire values of circuit φ when run on the
input x. We refer to this set as the computation trace. Computation trace has
linear communication complexity in the size of the circuit. Reducing this size
by using alternative encoding is an interesting direction for future work.

– ζ(π1), in its simplest form is the root of the Merkle tree on the description
of circuit φ, together with the root of the Merkle tree that is constructed on
the computation trace. In our work, P2 does not know the input x to f()
as it is blinded by random values. It however learns the input to f() after
completing the PSI computation with P1. We include commitments to the
blinding factors as part of ζ(π1) that is later used for the verification of PoM.

– If P1 is cheating, π2 is the information of one gate in the computation trace
(π1) that has incorrect values (together with its corresponding Merkle proofs
with respect to the Merkle root on the computation trace). If the gate is in
the input layer, then π2 is a zero-knowledge proof that shows the committed
inputs are not correctly fed to the circuit. This is to ensure that the input is
not revealed to the verifier (PSI privacy requirement).

We also replace the vector of m correct re-encryption ZKPs, Pkre−enc, in
round 3, with one aggregate ZKP of Pkre−enc, together with the PoM (as men-
tioned above) for the aggregate computation.

In replacing ZKP with PoM, we must ensure that verifying the computation
at the end of the interaction instead of verifying each message individually using
ZKP, does not result in an unwanted leakage. For this reason, we do not replace

92 S. Avizheh and R. Safavi-Naini

Pkpoly by PoM because, in the first round, we require that at least one coefficient
be non-zero, otherwise, P1 can learn the whole input set of P2, which breaks the
security of the PSI.

6.2 Overview of Π∗

Replacing ZK Proof Pkprop-new with a PoM. We express the computation of
Epk(grjQ(yj)+yj) (in round 2) that its correctness needs to be proved, as a circuit
φ consisting of high-level gates with two operations of opi ∈ {×, exp} where ×
represents modular multiplication and exp is the modular exponentiation. We
consider one output for each gate and a fan-in of 2. Each gate is described by
gj = (j, opi, I) where j is the index of the gate, opi is the operation that
it performs on its inputs and I is the indexes of the inputs to gate j. The
indexes are set from the bottom layer and go up toward the output layer. In each
layer, the wires are numbered from left to right. Figure 3 shows the graphical
representation of this circuit when n = 4. The computation trace in this circuit is
considered as the values carried by the wires marked with numbers 1 to 12 (note
that these numbers are just markers not the indexes of the gates). We denote
the computation trace with CompTrace(yj). Additionally, a circuit description
φ is a set consisting of the description of all its gates. We define the Merkle
root of circuit description as the Merkle root of the tree constructed on φ, i.e.
rφ = root(Mtree(φ)).

We change the protocol Π as below (c.f. Fig. 4):

– In round 2, P2 performs the polynomial evaluation Epk(grjQ(yj)+r′
j+yj),

encrypts each computation trace using key kj and sends Ekj
(CompTrace(yj))

to P1. P2 also sends the Merkle root constructed on the encrypted compu-
tation trace ryj

= root(Mtree(Ekj
(CompTrace(yj)))), the Merkle root on

ciphertexts re = root(Mtree(Epk1(g
rjQ(yj)+r′

j+yj))), ∀j ∈ |Y |, Merkle root
on received coefficients rd = root(Mtree(Epk1(g

d0), ..., Epk1(g
dn)), commit-

ment to keys kj , and commitment to blinding factors gr′
j to SC. P1 verifies

the Mekle roots match with the ones revealed to SC and it continues with the
next message. Otherwise, it aborts. (Note that P2 encrypts each computa-
tion trace to ensure P1 does not learn the information about the values that
are in the set Y . For instance, in Fig. 3, the wires marked with 1 to 4 can
immediately leak information about yj , so they cannot be revealed in plain).

– In round 5, after P2 learns the intersection X ∩ Y result, it opens the com-
mitments of the keys kj for those indexes that their corresponding yj is in
the intersection. P2 also reveals the blinding factors that he was committed
in round 2 to SC. P1 can remove the blinding factors from the result, obtains
X ∩ Y , decrypts the computation trace for the indexes that are in the inter-
section and verifies the computation trace for them. If there is any invalid
value P1 can generate a PoM.

Format of PoM. The format of PoM depends on the detected misbehavior. We
need to consider all the possible cases in which one party can cheat and determine

Fair Private Set Intersection Using Smart Contracts 93

Fig. 3. The circuit representation of
computing Epk(grjQ(yj)+yj) Fig. 4. Replacing Pkprop and Pkre-enc

with PoM

how the honest party can prove to SC that the other party has cheated while
keeping the SC computation minimal (the algorithm of each PoM is given in the
full version of the paper).

We consider the following PoMs:

– rjQ(yj) �= 0, which means that yj is not in the intersection but the output of
the circuit computation shows rjQ(yj) = 0 for the last gate: in this case, PoM
is to show that the last multiplication gate in the circuit φ is not correct.

– P2 uses random values for all the circuit values in the computation trace:
PoM is to show that the computation is not correct for one (any) single gate
in the circuit.

– P2 uses different coefficients from what P1 has sent to P2: PoM is based on
showing the computation of the gates that receive the coefficient and the
input (which is in the form of rjy

i
j) is not correct. Note that rjy

i
j does not

reveal anything about yj .
– P2 does not reveal kj for the execution trace of at least one element in the

intersection: PoM is a ZK proof that shows P1 knows an element yj such that
rjQ(yj) = 0 (which means it knows yj such that Cj = Epk1(g

rjQ(yj)+yj) =
Epk1(g

yj) but its corresponding key kj has not been revealed.
– P2 does not reveal (or reveal incorrectly) at least one gr′

j : PoM is asking SC
to verify the commitment opening for one gr′

j .

Modifying ZK Proof Pkre-enc to Construct PoM Efficiently. In round
3 of the protocol, Pkre-enc is used to prove the correctness of re-encrypted
ciphertexts. To enhance the efficiency of the scheme, we use the homomorphic
property of the encryption scheme to aggregate the ciphertexts and compute
ZK proof for one re-encryption which is the aggregate ciphertext (c.f. Fig. 4).
Due to homomorphic property of the Elgamal encryption, P1 can prove that
the multiplication of all re-encrypted ciphertexts under key pk2, Epk2(Πe) =
Epk2(e1) × ... × Epk2(e|Y |) is a correct re-encryption for multiplication of the

94 S. Avizheh and R. Safavi-Naini

original ciphertexts under key pk1 Epk1(Πe) = Epk1(e1)× ...×Epk1(e|Y |). There-
fore, for such a proof one ZK proof, (com, c, R), is constructed which can be
published to SC. To ensure that if P1 cheats in computing the aggregate cipher-
texts, P2 can detect it, we use PoM. We consider the circuit representation
of |Y | − 1 ciphertext multiplications using multiplication gates of fan-in 2 and
let φ be such a circuit. We define the computation trace of φ for computing
Epk1(Πe) and Epk2(Πe) as CompTrace(Epk1(Πe)) and CompTrace(Epk2(Πe))
respectively. P1 sends these two computation traces together with the ZK proof
to SC. P2 will check the correctness of multiplications using the computation
traces CompTrace(Epk1(Πe)) and CompTrace(Epk2(Πe)) and the ZK proof,
Pkre-enc,new, (a non-interactive Sigma protocol (com, c, R) which consists of
one ZK proof for the aggregated ciphertexts) and make a PoM as below:

– One of the multiplications has not been computed properly: PoM is to reveal
the description of the corresponding gate to SC, so that SC re-computes the
multiplication and detects the cheating party.

– ZK proof is incorrect: PoM consists of the part of the ZK proof which is
not verified (note that if R is more than one statement R = (R1, R2) that
needs to be verified, it is enough to let SC to verify only one of the incorrect
statements).

– One of the inputs in the computation trace of CompTrace(Epk1(Πe)) is dif-
ferent from what P2 has sent before: PoM is to show that the ciphertext in
the computation trace is different from the ciphertext it has revealed at the
previous round to P1 which resides in the Merkle tree with root re (re is sent
by P2 to SC in round 2).

6.3 Security Analysis

We prove security of Π∗ using the model in Sect. 4.2 with a slight change that
we describe below:

In protocol Π∗, SC can learn the indexes and size of the intersection if the
protocol terminates honestly. Therefore, we modify the ideal functionality of
Sect. 4.2 and denote the new one with F ′L

PSI . In F ′L
PSI , if b1 = b2 = 	 or b1 = 	

and b2 =⊥, then both parties receive O and Simsc gets (i, |O|) where i is the
index of the element in the set of P2 which is in the intersection, |O| is the size
of the intersection result. The other parts of F ′L

PSI is the same as FL
PSI .

Theorem 2. The coin-compensated SC-aided PSI protocol Π∗ securely realizes
the F ′L

PSI functionality in the random oracle model assuming the homomor-
phic encryption scheme E is semantically secure, the symmetric key encryption
scheme Ek is IND-CPA secure, the associated ZK proofs and the commitment
scheme are secure. Please see the full version of the paper for the proof.

We highlight that by replacing the ZKP with PoM, We have to show that
when P2 is malicious (Case 2), the simulator can extract its input in all cases

Fair Private Set Intersection Using Smart Contracts 95

Algorithm 2. Protocol Π∗

Input of P1: X = {x1, ..., xn}, Input of P2: Y = {y1, ..., ym} and p coins Input of
SC: n, m
Output of P1: X ∩ Y or p coins, Output of P2: X ∩ Y , Output of SC: the identity of
cheating party I and |X ∩ Y |
procedure Intersection

Round 0. P2 → SC : p coins

Round 1. P1 → P2 : EPk1 (g
d0),, EPk1 (g

dn), Pk
[1, n]
poly

Round 1. P2 → SC : rφ, rd

Round 2. P2 → P1 : EPk1 (g
r1Q(y1)+r′

1+y1),, EPk1 (g
rmQ(ym)+r′

m+ym),
Ek1 (CompTrace(y1)), ..., Ekm (CompTrace(ym))

Round 2. P2 → SC : commit(gr′
1), ..., commit(gr′

m), ryj , re, commit(k1), ...,
commit(km)

Round 3. P1 → SC : EPk2(g
r1Q(y1)+r′

1+y1),, (com, c, R),
CompTrace(Epk1(Πe)), CompTrace(Epk2(Πe))

Round 4. P2 → SC : open(commit(gr′
1)), ..., open(commit(gr′

m)), if yj ∈ X ∩ Y →
open(commit(kj))

procedure Dispute Resolution

If(P1 has not computed the multiplication in CompTrace(EP ki
(Πe)) correctly)

– P2 → SC : the information of the multiplication gate in CompTrace(EP ki
(Πe))

If(P1 has not revealed a ZK proof of Pkre−enc, (com, c, R))

– P2 → SC : send the information of the statement R that is not verified

If(P1 has not used the correct encryption ej (received from P2) for computing Epk1 (Πe))

– P2 → SC : reveal the correct ej and the Merkle proof for that with respect to re

SC verifies the PoM

if valid PoM then

SC → P2 : p coins

else

SC → P1 : p coins

If(P2 aborts opening the commitments of the blinding factors or at least one commitment

commit(g
r′

j))

– P1 → SC: the index j of the commit(g
r′

j)

If(P2 reveals a computation trace that shows the output for rjQ(yj) = 0 which is not true)

– P1 → SC : information of the output gate with the Merkle proofs with respect to rootyj

and rφ

If(P2 has used random values for all the circuit values)

– P1 → SC : information of the one incorrect gate with the Merkle proofs with respect to

rootyj
and rφ

If(P2 has used different coefficients dj from what P1 has sent)

– P1 → SC : information of the incorrect input gate with the index of dj and the Merkle

proofs with respect to rootyj
and rφ

If(P2 has not revealed kj for at least one element in the intersection)

– P1 → SC : SK proof to show that P1 knows yj such that rjQ(yj) = 0 but kj has not been

revealed

SC verifies the PoM

if Valid PoM then

SC → P1 : p coins

else

SC → P2 : p coins

if No PoM received then

SC → P2 : p coins

96 S. Avizheh and R. Safavi-Naini

without using the extractability of ZKP. We achieve this by using the computa-
tion trace of P2 and the simulator’s access to the random oracle ideal function-
ality (a similar approach is used by [3,22]).

Proof Sketch. We consider that environment Z only sends input to parties and
receives the outputs from parties, it also sees the messages that are sent to the
smart contract and it has to distinguish the ideal world from the hybrid world.
Below we consider 4 different cases:

Case 1. Party P1 is Corrupted. We construct a simulator Sim1 which has oracle
access to the malicious code of P ∗

1 . Sim1 simulates the protocol messages from P1

to the ideal functionality and also simulates the view of SC because channels to
SC are public and they can be seen by the environment Z. The key techniques
used for the simulation in this case are similar to the simulation of Case 1
described in Theorem 1.

Case 2. Party P2 is Corrupted. We construct a simulator Sim2 which has ora-
cle access to the malicious code of P ∗

2 . Sim2 simulates the protocol messages
that are sent from P ∗

2 to the ideal functionality and also simulates the view
of SC because channels to SC are public and they can be seen by the envi-
ronment Z. To simulate the honest party P1, the simulation is similar to Case
2 described in Theorem 1. In protocol Π∗, for a corrupted P ∗

2 , it is impor-
tant to show how Sim2 can extract the input set of the party P ∗

2 . Upon
receiving the ciphertexts Epk1(g

rjQ(yj)+r′
j+yj), the encrypted computation trace

Ekj
(CompTrace(grjQ(yj)+r′

j+yj), the commitments to blinding factors, and the
commitments to the keys kj (which are hash-based) from P ∗

2 , it extracts kj ’s
from the random oracle H and decrypts the ciphertexts Ekj

(CompTrace(
grjQ(yj)+r′

j+yj) using kj . Then, it extracts yj from the computation trace by

computing rjyi
j

rjyj
, then it decrypts Epk1(g

rjQ(yj)+r′
j+yj) using the key sk1. If the

ciphertexts are not correctly formed or if it cannot extract the keys from the
random oracle it sends ⊥ to FL

PSI . Else, it sends Y to FL
PSI . The remaining part

of the proof is the same as Case 2 of Theorem 1.

Case 3. SC is Semi-honest and Party P1 is Corrupted. Sim1
sc does not have

access to X, Y , and X ∩ Y , but it learns (i, |O|) from the ideal functionality
F ′L

PSI . Sim1
sc simulates the protocol transcript from parties to SC by choosing

random inputs taken from the input domain that are indistinguishable from the
real inputs and generating the protocol messages using the random inputs. When
P1 is corrupted, it is important to show the simulation for round 3 and we only
describe this case. Upon receiving 	 from FL

PSI , Sim1
sc correctly simulates the

round 3 messages by using random inputs. Then, Sim1
sc opens the commitments

to gr′
i and ki to SC based on (i, |O|) (and any other leaked information that

it receives through the ideal functionality). Otherwise, if Sim1
sc receives ⊥ from

FL
PSI , it incorrectly simulates the round 3 message. In the next round, it simu-

lates a PoM (according to Π∗) from P2 to SC based on the leaked information
to that.

Fair Private Set Intersection Using Smart Contracts 97

Case 4. SC is Semi-honest and Party P2 is Corrupted. Sim2
sc does not have

access to X, Y , and X ∩ Y . As stated before, Sim2
sc simulates the protocol

transcript from parties to SC by choosing random inputs taken from the input
domain that are indistinguishable from the real inputs and generating the proto-
col messages using the random inputs. For a corrupted P2, we have to show that
Sim2

sc can correctly simulate the round 4 messages and a PoM from P1, and we
only describe this part of the proof. If Sim2

sc receives 	 from FL
PSI , then it cor-

rectly opens the randomly generated commitments to gr′
j and kj (based on the

received (i, |O|) from FL
PSI) (and any other leaked information that it receives

through the ideal functionality). Else, if it receives ⊥ from FL
PSI , it incorrectly

opens the commitments in round 4 and simulates a valid PoM on behalf of P1

based on the leaked information to that.

7 Complexity Analysis

In the following, we estimate the complexity of protocols Π and Π∗.

Computation Complexity. We give our concrete construction in the full ver-
sion of the paper. Accordingly, we estimate the computation complexity of the
full protocol Π and Π∗ in terms of the number of exponentiations for each party
in our scheme (see Table 1). Note that the computation and communication com-
plexity of zero-knowledge proofs is linear in the number of statements that are
needed to be proved: O(PKpoly) is O(n), O(PKprop-new) is O(nm), O(PKre-enc)
is O(m), and O(PKre-enc,new) is O(1). In the following, we estimate the com-
plexity of messages other than zero-knowledge proofs.

In round 1 of both protocols, encrypting the coefficients requires 3n exponen-
tiations. In round 2, evaluating the polynomial and computing the ciphertexts
requires 2[nm + 2m] exponentiations. In round 3, decryption and re-encryption
take 3m exponentiations. Therefore, the complexity of P1 in both protocols are
O(n+m) and P2 is O(nm). Note that in Π∗, P1 performs only 1 zero knowledge
proof Pkre-enc,new which reduces the complexity of Pkre-enc to O(1) compared to
DCCR which has complexity of O(m). However, note that compared to DCCR,
in protocol Π, P2 does not need to compute (i) the verifiable encryption which
has the complexity of 3m exponentiations, (ii) the zero-knowledge proof Pkdec

which is used to show that the blinding factors are correct decryptions of the
verifiable encryption. Pkdec has complexity of O(m).

In protocol Π∗, compared to DCCR, P2 does not need to compute (i) the
verifiable encryption which has the complexity of 3m exponentiations, (ii) the
Pkprop which has the complexity of O(nm), (iii) the zero-knowledge proof Pkdec

which is used to show that the blinding factors are correct decryptions of the
verifiable encryption (see Table 2). Furthermore, in both of the protocols Π and
Π∗, SC has to do O(1) exponentiations if there is any dispute which is far
less than the computation complexity of arbiter in DCCR which has to do 6m
exponentiations to verify and decrypt the verifiable encryptions.

Communication Complexity. We estimate the communication complexity
of Π and Π∗ in terms of the number of group elements that should be sent

98 S. Avizheh and R. Safavi-Naini

between different parties (see Table 1). The total communication complexity of
our protocols is close to DCCR, while it is less than DCCR in the dispute
resolution stage for the interaction of parties to TTP.

Table 3 shows the comparison of our work with the existing fair PSI protocols.
Our scheme is the only coin-compensated PSI that uses an SC as TTP efficiently.

Table 1. Computation and communication complexity of the proposed schemes com-
pared to DCCR protocol.

Protocols

Party Protocol Π Protocol Π∗ DCCR

Computation Complexity
(exponentiations)

P1 O(n + m) O(n + m) O(n + m)

P2 O(nm) O(nm) O(nm)

TTP O(1) O(1) O(m)

Communication Complexity (group
elements, not counting ZKP)

P1 to P2 (and vice versa) 2n + 2m 2n + 2m 2n + 9m

Both parties to TTP Intersection phase: 5m
Dispute resolution: at most 2

Intersection phase: 5m
Dispute resolution: at most 2

Intersection phase: 0
Dispute resolution: 5m + 2n

Table 2. Comparing computation complexity (number of modular exponentiations) in
Π and Π∗ for using PoM in lieu of ZKP.

Protocols

Party Protocol Π Protocol Π∗

TTP (disputeresolution) O(1) Incorrect input: O(1)
Incorrect computation: −

P1 nPkpoly + mV erifyPkprop−new +
mPkre−enc + mV erifyCompedersen

nPkpoly + Pkre−enc

P2 nV erifyPkpoly + mPkprop−new +
mV erifyPkre−enc + mCompedersen

nV erifyPkpoly + V erifyPkre−enc

8 Implementation

We provide a proof-of-concept implementation of the SC in Protocol Π and Π∗

and evaluate the gas cost for running the smart contracts by each party P1 and P2

by increasing the set size of parties, i.e., m and n, in two scenarios: (i) optimistic
execution: when both parties are honest, and (ii) pessimistic execution: when one
party misbehaves and proof of misbehavior is needed (requires dispute resolution
stage) (the definitions are based on [23]).

SCPSIEC implements the SC in Π and SCPSI2EC implements the SC in Π∗

(see full version of the paper for the abstract of the contracts and pseudocodes).
We have used solidity language to implement the SC and the required crypto-
graphic primitives. We have implemented the CryptoLib library in solidity for
cryptographic primitives, including Elliptic curve variant of Pedersen commit-
ment, the Elgamal encryption, Zero-knowledge proof of knowledge for correct
re-encryption, Zero-knowledge proof of knowledge for known plaintext, Merkle
proof verification, and the necessary primitives for generating the message val-
ues that are sent to SC by parties P1 and P2. For zero-knowledge proofs, we

Fair Private Set Intersection Using Smart Contracts 99

followed the non-interactive Sigma protocols with Fiat-Shamir heuristic. All the
cryptographic primitives are run over Elliptic curve Secp256k1 and we use the
available libraries EllipticCurve, SafeMath, and EllipticCurveInterface and ini-
tial version of CryptoLib given in [55] for Elliptic curve operations. We used a
contract called sharedStruct to define the data structures that are common in
SCPSIEC, SCPSI2EC, and CryptoLib contracts. The smart contract codes are
available in [2].

8.1 Evaluation

We used a Windows laptop computer with an Intel dual-core i7-7500 3.5 GHz sys-
tem with 12 GB memory to run and execute the codes. We used Remix Ethereum
IDE3 to write and debug the smart contracts and deployed and evaluated them
on the local Ethereum Blockchain network called Ganache using the Truffle
suite4. Table 4 shows the gas cost of deploying each smart contract on Ganache.

Table 3. Comparing the existing fair PSI schemes that use a TTP (n is the set size
of P1, and m is the set size of P2)

Scheme Total Computation
complexity

Total
Communication
complexity

Smart
contract

External
TTP

Computation
complexity of TTP

Fairness

DCCR [21] O(mn) O(m + n) – × O(m) Optimistic

[19] O(m + n) O(m + n) – × O(m + n) Optimistic

[18] O(m + n) O(m + n) – × O(n) Optimistic

[20] O(m + n) O(m + n) – × O(m + n) Optimistic

[7] O(mn) O(m + n) – × O(m + n) Optimistic

[36,37] O(m + n) O(m + n) – × O(m + n) Server-aided

[1] O(2hd2) O(2hd2ζ̄) × × O(|S∩|(d +
log2|S|) + 2 h · d)

Coin-compensated

Our work (based on DCCR) O(mn) O(m + n) × – O(1) Coin-compensated

Our work (based on [19]) O(m + n) O(m + n) × – O(1) Coin-compensated

Table 4. Deployment cost of smart contracts

Contract Gas cost Eth cost1 USD cost2

SCPSIEC 2,494,793 0.049 $116.47

SCPSI2EC 4,894,379 0.097 $228.49

CryptoLib 3,662,609 0.073 $170.98

sharedStruct 96,322 0.0019 $4.50

Elliptic curve operation contracts 1,158,021 0.023 $54.1
1 We set 1 Gas = 20Gwei
21eth = $2334.19 on January 1, 2024

Gas Cost vs Set Size of Party P2. We compare the effect of increasing the set
size m for m = {22, 23, 24, 27} when n = 210 and show in Fig. 5 (left) the total
3 https://remix.ethereum.org/.
4 https://trufflesuite.com/.

https://remix.ethereum.org/
https://trufflesuite.com/

100 S. Avizheh and R. Safavi-Naini

gas cost of running both contracts, SCPSIEC and SCPSI2EC in the optimistic
and pessimistic execution. The total gas cost is computed by adding the gas
cost of the functions that are called by P1 and P2. The gas cost of pessimistic
execution is the sum of the gas cost of the optimistic execution and the dispute
resolution (PoM). For pessimistic executions, we have considered the mean of
Judge function that is called in the dispute resolution stage for different types
of complaints sent by P1 and P2, and also show the minimum and maximum of
the gas cost of calling the Judge function.

For the SCPSIEC contract, the overhead of the gas cost for the pessimistic
execution compared to the optimistic execution decreases from 16% to 2% when
m increases, and the total gas cost is dominated by the gas cost of optimistic
execution when m = 128 because the dispute resolution only varies with log(m)
(hash evaluations) but the optimistic execution increases linearly with m (storing
O(m) group elements). For SCPSI2EC contract, the overhead of the gas cost for
the pessimistic execution compared to the optimistic execution decreases from
15% to 2% when m increases, and the total gas cost is dominated by the gas
cost of optimistic execution when m = 128 because the dispute resolution only
varies with log(m) but the optimistic execution increases linearly with m. In
total, the gas cost of running SCPSI2EC is approximately between 1.17 to 1.32
times higher than the gas cost of running SCPSIEC contract.

Fig. 5. Left: Total gas cost of running the smart contracts vs set size of party P2

where n = 210. The overhead of gas cost for the pessimistic execution in SCPSIEC
decreases from 16% to 2% and for SCPSI2EC decreases from 15% to 2%. The total gas
cost is dominated by the optimistic execution when m = 128. Right: Total gas cost of
running the smart contracts vs logarithm of the set size of party P1 where m = 8. The
overhead of gas cost for the pessimistic execution in SCPSIEC is 13% for all n and for
SCPSI2EC increases from 12% to 21%.

Gas Cost vs Set Size of Party P1. We compare the effect of increasing the
set size of party P1, n, for n = {210, 215, 220, 230, 2100} when m = 8 and
show in Fig. 5 (right) the total gas cost of running both contracts, SCPSIEC
and SCPSI2EC in the optimistic and pessimistic execution versus log(n). The
gas cost of SCPSIEC contract is independent of the n and its gas cost remains
the same for both optimistic and pessimistic execution. The overhead of gas cost

Fair Private Set Intersection Using Smart Contracts 101

in the pessimistic execution versus the optimistic execution is 13%. The gas cost
of the SCPSI2EC contract for the optimistic case is almost flat and the small
changes are due to different input values that have been used in experiments. In
the pessimistic case, however, the gas cost increases linearly with log(n) (because
of Merkle proof verification in the dispute resolution stage). The overhead of the
gas cost in the pessimistic execution increases from 12% to 21% when n increases.
In total, the gas cost of running SCPSI2EC is approximately 1.29 times higher
than the gas cost of running SCPSIEC contract.

9 Concluding Remarks

We provided an argument that shows impossibility of achieving complete fair-
ness in two-party mutual PSI when TTP is implemented by a smart contract,
and redesigned DCCR to use a smart contract as the TTP, providing coin-
compensated fairness. This is the first mutual PSI protocol that achieves fair-
ness by replacing TTP with a smart contract for dispute resolution. We showed
that using a smart contract allows us to significantly reduce the need for zero-
knowledge proofs and use more efficient primitives. Our complexity analysis
shows that compared to DCCR the computation complexity is reduced. We pro-
vided a proof-of-concept implementation for the SC and showed its gas cost
as the set sizes were changed. Reducing communication complexity further and
removing all zero-knowledge proofs in the protocol are interesting directions for
future work.

References

1. Abadi, A., Murdoch, S.J.: Earn while you reveal: private set intersection that
rewards participants. arXiv preprint arXiv:2301.03889 (2023)

2. Avizheh, S.: Implementation of fair private set intersection using smart contracts
(2024). https://github.com/SepidehAvizheh/FairSC-PSI/tree/main

3. Avizheh, S., Haffey, P., Safavi-Naini, R.: Privacy-preserving fairswap: fairness and
privacy interplay. Proc. Privacy Enhanc. Technolog. 2022(1), 417–439 (2022)

4. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 22

5. Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: Psimple: prac-
tical multiparty maliciously-secure private set intersection. In: Proceedings of ACM
Asia Conference on Computer and Communications Security, pp. 1098–1112 (2022)

6. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

7. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Din-
gledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4 7

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

http://arxiv.org/abs/2301.03889
https://github.com/SepidehAvizheh/FairSC-PSI/tree/main
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-642-03549-4_7

102 S. Avizheh and R. Safavi-Naini

9. Chandran, N., Dasgupta, N., Gupta, D., Obbattu, S.L.B., Sekar, S., Shah, A.:
Efficient linear multiparty psi and extensions to circuit/quorum psi. In: Proceedings
of 2021 ACM Conference on Computer and Communications Security, pp. 1182–
1204 (2021)

10. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 2

11. Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection
with quasi-linear complexity. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 95(8), 1366–1378 (2012)

12. Cho, C., Dachman-Soled, D., Jarecki, S.: Efficient concurrent covert computation
of string equality and set intersection. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 164–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29485-8 10

13. Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In:
Proceedings of 18 Annual ACM Symposium on Theory of Computing, pp. 364–369
(1986)

14. Couteau, G., Roscoe, A.W., Ryan, P.Y.A.: Partially-fair computation from timed-
release encryption and oblivious transfer. In: Baek, J., Ruj, S. (eds.) ACISP 2021.
LNCS, vol. 13083, pp. 330–349. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90567-5 17

15. De Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-preserving policy-based
information transfer. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS,
vol. 5672, pp. 164–184. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03168-7 10

16. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 13

17. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

18. Debnath, S.K., Dutta, R.: A fair and efficient mutual private set intersection pro-
tocol from a two-way oblivious pseudorandom function. In: Lee, J., Kim, J. (eds.)
ICISC 2014. LNCS, vol. 8949, pp. 343–359. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15943-0 21

19. Debnath, S.K., Dutta, R.: New realizations of efficient and secure private set inter-
section protocols preserving fairness. In: Hong, S., Park, J.H. (eds.) ICISC 2016.
LNCS, vol. 10157, pp. 254–284. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-53177-9 14

20. Debnath, S.K., Dutta, R.: Towards fair mutual private set intersection with linear
complexity. Secur. Commun. Netw. 9(11), 1589–1612 (2016)

21. Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with
a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol.
7964, pp. 128–144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39256-6 9

22. Dziembowski, S., Eckey, L., Faust, S.: Fairswap: how to fairly exchange digital
goods. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 967–984 (2018)

https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-030-90567-5_17
https://doi.org/10.1007/978-3-030-90567-5_17
https://doi.org/10.1007/978-3-642-03168-7_10
https://doi.org/10.1007/978-3-642-03168-7_10
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-319-15943-0_21
https://doi.org/10.1007/978-3-319-15943-0_21
https://doi.org/10.1007/978-3-319-53177-9_14
https://doi.org/10.1007/978-3-319-53177-9_14
https://doi.org/10.1007/978-3-642-39256-6_9
https://doi.org/10.1007/978-3-642-39256-6_9

Fair Private Set Intersection Using Smart Contracts 103

23. Eckey, L., Faust, S., Schlosser, B.: Optiswap: fast optimistic fair exchange. IACR
Cryptology ePrint Archive 2019, 1330 (2019)

24. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

25. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 6

26. Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge Press, Cambridge
(2004)

27. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM (JACM) 58(6), 1–37 (2011)

28. Gordon, S.D., Hazay, C., Le, P.H.: Fully secure psi via MPC-in-the-head. Proc.
Privacy Enhanc. Technol. (2022)

29. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. J. Cryp-
tol. 25(1), 14–40 (2012)

30. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8 10

31. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using ran-
dom oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 4

32. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: Proceedings of 1st ACM Conference on Electronic Commerce, pp.
78–86 (1999)

33. Inbar, R., Omri, E., Pinkas, B.: Efficient scalable multiparty private set-intersection
via garbled bloom filters. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS,
vol. 11035, pp. 235–252. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98113-0 13

34. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 34

35. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

36. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
IACR Cryptology ePrint Archive 2011, 272 (2011)

37. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5 13

38. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

39. Kavousi, A., Mohajeri, J., Salmasizadeh, M.: Efficient scalable multi-party private
set intersection using oblivious PRF. In: Roman, R., Zhou, J. (eds.) STM 2021.
LNCS, vol. 13075, pp. 81–99. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-91859-0 5

https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-24638-1_4
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-030-91859-0_5
https://doi.org/10.1007/978-3-030-91859-0_5

104 S. Avizheh and R. Safavi-Naini

40. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 25

41. Kim, M., Lee, H.T., Cheon, J.H.: Mutual private set intersection with linear com-
plexity. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 219–231.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27890-7 18

42. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

43. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Proceedings of 2016 ACM
Conference on Computer and Communications Security, pp. 818–829 (2016)

44. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Proceedings of
2017 ACM Conference on Computer and Communications Security, pp. 1257–1272
(2017)

45. Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computations.
In: Proceedings of 2014 ACM CCS, pp. 30–41 (2014)

46. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: Pro-
ceedings of 2016 ACM CCS, pp. 418–429 (2016)

47. Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized
poker. In: Proceedings of 22nd ACM CCS, pp. 195–206 (2015)

48. Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure
computation with penalties. In: Proceedings of 2016 ACM Conference on Computer
and Communications Security, pp. 406–417 (2016)

49. Liu, J., Li, W., Karame, G.O., Asokan, N.: Toward fairness of cryptocurrency
payments. IEEE Secur. Privacy 16(3), 81–89 (2018)

50. Maffei, I., Roscoe, A.: Optimally-fair exchange of secrets via delay encryption
and commutative blinding. In: Baldimtsi, F., Cachin, C. (eds.) FC 2023. LNCS,
vol. 13950, pp. 94–111. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
47754-6 6

51. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: 1986 IEEE Symposium on
Security and Privacy, pp. 134–134. IEEE (1986)

52. Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set inter-
section. In: ACM Computer and Communications Security, pp. 1151–1165 (2021)

53. Raghuraman, S., Rindal, P.: Blazing fast psi from improved OKVS and subfield
VOLE. In: ACM Conference on Computer and Communications Security, pp. 2505–
2517 (2022)

54. Raikwar, M., Gligoroski, D., Kralevska, K.: SoK of used cryptography in
blockchain. IEEE Access 7, 148550–148575 (2019)

55. SolGrined: Implementation of pedersen commitment in solidity (2023). https://
github.com/18dew/solGrined/blob/master/contracts/

56. Zhang, E., Liu, F.H., Lai, Q., Jin, G., Li, Y.: Efficient multi-party private set inter-
section against malicious adversaries. In: Proceedings of the 2019 ACM SIGSAC
Conference on Cloud Computing Security Workshop, pp. 93–104 (2019)

https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1007/978-3-642-27890-7_18
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-031-47754-6_6
https://doi.org/10.1007/978-3-031-47754-6_6
https://github.com/18dew/solGrined/blob/master/contracts/
https://github.com/18dew/solGrined/blob/master/contracts/

Powers-of-Tau to the People:
Decentralizing Setup Ceremonies

Valeria Nikolaenko1(B), Sam Ragsdale1, Joseph Bonneau1,3, and Dan Boneh2

1 A16Z Crypto Research Lab, St. Johns, USA
valeria.nikolaenko@gmail.com

2 Stanford University, Stanford, USA
3 New York University, New York, USA

Abstract. We propose several decentralized ceremonies for constructing
a powers-of-tau structured reference string (SRS). Our protocols make
use of a blockchain platform to run in a permissionless manner, where
anyone can contribute randomness in exchange for paying the requisite
transaction fees. The resulting SRS is secure as long as any single party
participates honestly. We introduce several protocols optimized for dif-
ferent sized powers-of-tau setups and using an on-chain or off-chain data
availability model to store the resulting string. We implement our most
efficient protocol on top of Ethereum, demonstrating practical concrete
performance.

1 Introduction

Many cryptographic protocols assume a trusted setup ceremony, a one-time pro-
cedure to generate public parameters which also generates an unwanted trap-
door as a byproduct. Perhaps the earliest example is the accumulator scheme of
Benaloh and de Mare [11] which requires a public modulus N such that nobody
knows its factorization N = p · q, a trapdoor which allows forging a proof that
any element is included in the accumulator.

In general, a setup ceremony consists of a randomized algorithm Setup() $→
(pp, τ). The public parameters (pp), also called a structured reference string
(SRS), must be known to all users of the system, whereas the trapdoor (τ) must
be discarded for the scheme to be secure. Such trapdoors have been called “toxic
waste” due to the importance of destroying them after the setup is complete.

In the simplest case of a fully trusted setup, a single entity computes Setup()
and is trusted to discard τ . Setup ceremonies have been conducted by several
prominent cryptocurrency applications, which have pioneered the use of secure
multiparty computation (MPC) ceremonies to avoid having any single party ever
know the final trapdoor. These ceremonies have differed in the number of partic-
ipants involved, the number of rounds, and the exact trust model, but so far all
have been facilitated by a centralized coordinator. In particular, the coordinator
has the ability to choose which parties are able to participate, making these
protocols permissioned. We review setup ceremonies run in practice in Sect. 2.2.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 105–134, 2024.
https://doi.org/10.1007/978-3-031-54776-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_5

106 V. Nikolaenko et al.

In this work, we endeavor to remove the coordinator and build the first truly
decentralized and permissionless setup ceremony. This approach is appropri-
ate given a multiparty computation which requires only one honest participant
(sometimes called an “anytrust” or “dishonest majority” model). In this model,
there is no downside (beyond computational overhead) of allowing additional
participants to contribute to the protocol. We call this the more-the-merrier
property. A more-the-merrier protocol can safely be opened to the general pub-
lic, enabling an interesting new security property: any individual can participate
and therefore they can trust the final result (at least to the extent that they
trust themselves to have participated correctly), even if they make no assump-
tions about any of the other participants.

Powers-of-Tau. We focus on a common type of ceremony which constructs a
powers-of-tau SRS. Working in elliptic curve groups G1,G2 of prime order p
with generators B1 and B2 respectively and an efficiently computable pairing,
the goal of the setup is to produce a public parameter string:

pp :=
(
τB1, τ

2B1, . . . , τ
nB1 ; τB2, τ

2B2, . . . , τ
kB2

) ∈ G
n
1 × G

k
2 .

The value τ ∈ Zp is the trapdoor: it should be randomly generated
and unknown to anybody. The structure of this string enables efficient re-
randomization. Without knowing τ , it is possible to take an existing string pp
and produce a new randomized string pp′ by choosing a new random value τ ′

and multiplying each component of pp by an appropriate power of τ ′. The new
trapdoor will be τ · τ ′, which is secure as long as either τ or τ ′ are unknown and
neither of them is zero.

This re-randomizability leads to a simple serial MPC protocol in which each
participant in turn re-randomizes the string. Note that this can be done on an
ongoing (or “perpetual”) basis, as new participants can continue to join and re-
randomize the string for future use. As long as each participant re-randomizes
correctly and at least one participant destroys their local randomness, the cumu-
latively constructed string will be secure.

Applications. Powers-of-tau setup is required for many protocols:

– The KZG polynomial commitment scheme [44] requires a setup of n powers
of tau in any one of the groups (e.g., G1), plus one power of tau in the other
group (e.g., G2).

– SNARKs built from the KZG univariate polynomial commitment scheme,
such as Sonic [54], Plonk [35], and Marlin [26], require a powers-of-tau string
proportional in length to the size of the statement being proved.

– KZG commitments are also used in Verkle trees [47,50], a bandwidth-efficient
alternative to Merkle trees. Unlike a binary Merkle tree, a Verkle tree is a b-
ary tree, where each node is a vector commitment to up to b children. While
Merkle trees have O(log2 n) inclusion proof size, where n is the number of
nodes, Verkle trees have O(logb n) inclusion proof size. The most efficient
Verkle trees, e.g. BalanceProofs [62], are based on KZG polynomial commit-
ments requiring a powers-of-tau setup.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 107

– Fast proofs of multi-scalar multiplication (MSM) over arbitrary groups of size
O(log d) are possible using a powers-of-tau setup of length O(

√
d), where d is

the number of scalars and group elements [16].
– The recent Danksharding proposal [20] for sharding Ethereum relies on a

powers-of-tau string with 4096 elements in G1 and 64 in G2.

Challenges to Decentralization. Historically, ceremonies have been administered
by a centralized coordinator which ensures several important properties, all of
which we seek to achieve in a decentralized fashion:

– Consensus: All participants should agree on the final value of pp.
– Validity: Each participant should only be able to re-randomize the current

string (and not simply replace it with one for which the trapdoor is known).
– Data Availability: The final string must be available for all to download,

as well as the history of prior versions and participants for auditability.
– Censorship Resistance: Any willing participant should be able to con-

tribute.

In this work we demonstrate how to replace the centralized coordinator with
a smart contract, observing that blockchain platforms are designed to provide
most or all of our desired properties. In particular, blockchains inherently provide
consensus, previously done by fiat of the central coordinator, as well as censor-
ship resistance, which has not been an explicit goal of centrally coordinated
ceremonies. Validity and data availability are more interesting and provide sev-
eral design options. For validity, we can rely on on-chain (Layer-1) verification
of zero-knowledge proofs that each update is valid, or (to reduce costs) use a
Layer-2 approach. We also show that it is possible (and even cheaper) to defer
this task to users, who will verify the string before using it, which may be prefer-
able in some settings. Similarly, for data availability we might post the full string
pp on chain or, for efficiency, post only a commitment and rely on an external
data-availability layer.

Contributions. We design ceremonies with two data-availability models: one with
the entire string pp posted on-chain, and one with only a commitment to pp,
namely c = H(pp), posted on-chain and the full string stored in an external
data-availability system. See Fig. 1 highlighting the properties of the two models
that we develop. The latter can offer significant cost savings for large strings as
on-chain data storage is expensive.

With data available on-chain, we present an efficient pairing-based proof con-
struction for verifying each participant’s contribution (Sect. 4). We implemented
this protocol for the Ethereum blockchain, coding in Solidity and using the
BN254 curve. We describe our implemention in Sect. 6; we have also released our
open-source implementation (link). Participating in the ceremony costs 190,000
to 11,500,000 gas (about $5 to $315 at current Ethereum prices), depending on
the size of the desired resulting parameters (in this case between 8 and 1024
powers-of-tau). The size of the setup is limited but can still be used to power

https://github.com/a16z/evm-powers-of-tau

108 V. Nikolaenko et al.

Verkle trees, data-availability sampling, and zero-knowledge SNARKs for small
statements.

For larger strings, we develop methods that have on-chain verification, yet
only store a short commitment to the full setup on-chain (see Sect. 5). We dis-
cuss how to make the data-availability solutions that can facilitate such setups
light-weight. The data-availability service only needs to be able to produce a
commitment over the data of an appropriate form and store at most two latest
contributions.

Paper Organization. We discuss related work and some historical notes on
setup ceremonies in Sect. 2. In Sect. 4, we present our fully on-chain protocol
for powers-of-tau setup. In Sect. 5, we discuss several protocols for powers-of-
tau setup with off-chain data availability, supporting larger structured reference
strings. In Sect. 6, we describe our practical implementation and performance
evaluation of the fully on-chain protocol on top of Ethereum. Finally we con-
clude in Sect. 7 by discussing various practical concerns and possible extensions,
including censorship resistance, incentives and methods to lower on-chain cost
through roll-ups, optimistic verification, batching, IVC and other techniques.

Fig. 1. Comparing on-chain powers-of-tau of length n to off-chain powers-of-tau with
an on-chain commitment. On-chain storage requires linear on-chain work to verify an
update. With off-chain storage we require only logarithmic on-chain work to verify an
update. The AFGHO-based proof in the third row performs better in practice than the
generic proof in the second row.

2 Related Work

2.1 Multiparty Setup Ceremonies

Generically, any trusted setup algorithm can be implemented via secure multi-
party computation (MPC) to prevent any single entitity from learning the trap-
door. Ben-Sasson et al. [10] proposed the first multi-party protocol to sample
public parameters for a zero-knowledge proof scheme which was instantiated for
Zcash Sprout. Although this ceremony was not instantiating the powers-of-tau,
it paved the way for crowd-sourcing subsequent ceremonies.

Bowe et al. [14] designed a protocol for Groth16 [40], where constructing a
powers-of-tau public string was part of one of two phases. The protocol however

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 109

required a random beacon, an auxiliary process that produces publicly veri-
fiable unpredictable and unbiasable randomness. Kohlweiss, Maller, Siim, and
Volkhov [46] removed the need for a random beacon in the setup by proving
that the setup remains secure for use with zero-knowledge proofs even if the
public parameters have some degree of bias. Cohen et al. [28] demonstrated that
the KZG commitments also remain secure in case the public parameters have
bounded bias, thus similarly eliminating the need to use the random beacons for
setups to be used for KZG commitments. Ganesh et al. [36] gave a UC secure
protocol for Groth16 setup. The work of Groth, Kohlweiss, Maller, Meiklejohn,
and Miers [41] introduced an updatable SRS model, they construct a SNARK
where the SRS can be updated by anybody. The security is guaranteed as long
as at least one of the contributors is honest. The generated setup string is differ-
ent from the powers-of-tau, and the paper is not focusing on on-chain/off-chain
deployments or optimizing the verification.

All of these protocols fall in a category of the more-the-merrier protocols, as
they each require only a single one honest participant to be secure. However, all
were built with the assumption of a central coordinator. Buterin [17] suggested
a simple way to verify the update to the setup that, as we observe in this work,
opens the possibility for a gas-efficient on-chain deployment which we base our
on-chain protocol on.

Multiparty setup ceremonies have also been demonstrated for RSA-style
parameter setup [13,34,37,42,53]. Chen et al. [25] demonstrated a multiparty
protocol for sampling a 2,048 bit RSA modulus which can scale to thousands of
participants and only requires a single honest participant for security.

2.2 Setup Ceremonies in Practice

Some of the most prominent ceremonies have been run by Zcash, a privacy-
oriented blockchain project. Six participants carried out the first Zcash ceremony,
Sprout, in 2016, and 90 participants built parameters for a Sapling upgrade in
2018.

The perpetual “powers-of-tau” ceremony was first run in a continuous mode,
where contributions are still being accepted, by the team of the Semaphore
project, a privacy preserving technology for anonymous signaling on Ethereum.
The setup uses a BN254 elliptic curve and has had 71 participants so far. Other
prominent projects later used this setup to run their own ceremonies on top,
including Tornado.Cash [23], Hermez network [43], and Loopring [31]. Similar
ceremonies on other curves were run by Aztec [6] for zkSync, a “layer two”
Ethereum scaling solution that uses zero knowledge rollups; by Filecoin [32], a
decentralized data storage protocol; by Celo [24], a layer-1 blockchain, for their
light-client Plumo; Aleo [3], a blockchain for private applications.

Ethereum is currently running [33] a smaller trusted setup ceremony for its
upcoming ProtoDankSharding and DankSharding upgrades: the targeted sizes
are 212, 213, 214, 215 powers in G1 and 64 powers in G2, over the BLS12 -381
curve. Those two upgrades will increase the amount of data that the Ethereum

110 V. Nikolaenko et al.

chain provides to clients for storage. This data will have a suggested expiry 30–
60 days, it will not be accessible for the smart contracts in full, except for short
KZG-commitments to the data. With around 95,000 contributions since its start
in Jan 13th, 2023, it is the largest trusted setup ceremony to date in terms of
participation.

2.3 Proof Systems with Transparent Setup

It is important to note that there has been considerable research effort aimed
at building cryptographic systems with fully transparent setup; that is, setup in
which there is no trapdoor at all and therefore no trust assumption is required
for the setup ceremony. A notable effort in that direction comes from a partner-
ship of Electric Coin Company, Protocol Labs, the Filecoin Foundation, and the
Ethereum Foundation, who collaboratively work on the Halo2 proof-system [29]
that does not require a trusted setup. Halo2 powers the ZCash cryptocurrency
since Zcash Network Upgrade 5 (NU5) activated on mainnet on May 31, 2022.

Similarly, transparent setup is possible to replace RSA-style trusted setup,
using class groups of imaginary quadratic order instead of the group Z

∗
N for a

large composite modulus N [52]. The Chia blockchain [27] utilizes class groups
and randomly re-samples the group parameters periodically, avoiding the need
for trusted setup.

However, known trustless systems don’t match the efficiency of the ones
based on a trusted setup: the zk-snarks have poly-logarithmic-time verification
(e.g. Halo2 and STARKs) compared to constant-time (e.g. Groth16, Plonk, Mar-
lin), and polynomial commitments have poly-logarithmic-size evaluation-opening
proofs (e.g. FRI, Dory) compared to constant-size proofs (e.g. KZG). It remains
to be an open problem and an impactful research direction to come up with a
system for the aforementioned applications that does not require a trusted setup
while providing constant-time verification, or alternatively prove an impossibility
result in this regard. In the meanwhile, a unified framework for running setup
ceremonies in a transparent, verifiable and censorship-resistant manner would
help bootstrap more efficient cryptosystems.

3 A Powers-of-Tau System: Definitions

Our goal is to construct a “powers of τ ” SRS of the following form:

pp = (τB1, τ
2B1, τ

3B1, . . . , τ
nB1; τB2, τ

2B2, . . . , τ
kB2) ∈ G

n
1 × G

k
2 , (3.1)

where τ is unknown. We will show below that a computationally-limited verifier
(e.g. a smart contract) can use the pairing to efficiently verify that pp is well
formed, namely there exists a τ ∈ Z

∗
p such that pp satisfies (3.1).

Note that some applications require powers-of-τ strings in slightly different
forms. Our techniques can generally be adapted and we focus on this simplest
form. A notable case is “punctured” powers-of-τ strings which are missing a
specific element. We discuss this case in Appendix D.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 111

Our goal is to construct pp using a sequential multi-party computation
between m contributors in m rounds, such that contributor number j contributes
only in round number j, and does nothing in all other rounds. Each contributor
can efficiently prove that their participation was correct. The main challenge is
to ensure that the value of τ is unknown even if all but one of the contributors
are malicious. In this way it is possible to conduct a permissionless setup in
which any contributor is free to contribute, mediated by a smart contract which
verifies each participant’s contribution. Using a smart contract as the mediator
ensures that anyone who wants to contribute can.

Notation. We use λ ∈ Z
+ to denote the security parameter. We use x ← y

to denote the assignment of the value of y to x, and write x ←$ S to denote
sampling an element from the set S independently and uniformly at random.
For a positive integer p we use Zp to denote the ring Z/pZ. We write Z

∗
p for the

set of non-zero elements in Zp. For a positive integer m we use [m] to denote
the set {1, . . . , m}. We use poly(λ) and negl(λ) to denote a polynomial function
and a negiligible function in the security parameter λ, respectively.

Definition 1. A Powers-of-Tau system is a triple of poly-time algorithms:

– GlobalSetup(1λ, n, k) → par. The algorithm generates global parameters par
that describe the three bilinear groups G1,G2,GT , each of prime order p, with
generators B1, B2, BT respectively, equipped with an efficiently computable
non-degenerate bilinear pairing e : G1 × G2 → GT . These parameters are an
implicit input to the remaining algorithms.

– Update(pp, r) → (pp′, π). The algorithm uses the provided randomness r ∈ Z
∗
p

to update the powers-of-tau pp to pp′ along with a proof π that the update was
done correctly.

– Verify(pp, pp′, π) → {0, 1}. The algorithm checks the proof π and outputs 1 to
accept the update.

We require that for all supported (n, k), all par output by GlobalSetup(1λ, n, k),
all pp ∈ G

n
1 × G

k
2 of the form (3.1), and all r ∈ Z

∗
p, we have

if (pp′, π) ← Update(pp, r) then Verify(pp, pp′, π) = 1.

The GlobalSetup algorithm need only be run once and can be reused for mul-
tiple powers-of-tau setups. It is not a trusted setup in that no secret randomness
is required. GlobalSetup utilizes an algorithm GroupGen(1λ) to generate the three
additive pairing groups G1,G2,GT and their generators.

The Verify algorithm runs on chain and must therefore be as efficient as
possible to reduce transaction costs. We next define the initial state of the system
and the security requirements.

Initialization. The Powers-of-Tau system begins with an initial state defined as:

pp0 := (B1,B1,B1,. . . ,B1; B2,B2,. . . ,B2) ∈ G
n
1 × G

k
2 . (3.2)

This is equivalent to an SRS with τ = 1.

112 V. Nikolaenko et al.

Security. We define security of a Powers-of-Tau system (Setup,Update,Verify)
using a game that captures a setting where the adversary controls all the con-
tributors except for one honest contributor. The game is stated with respect to
some predicate

Π : Zp × W → {0, 1} .

At the end of the game the adversary outputs some w ∈ W and wins the game
if Π(τ, w) = 1, where τ is the secret exponent used to define the final powers-of-
tau. This w represents some information that A was able to learn about τ . We
give examples of some important predicates Π after the definition.

Since the prime p is determined by the security parameter, we define security
with respect to a family of predicates Π =

{
Πp : Zp × W → {0, 1}}

p∈P where
P is the set of all integer primes. We say that Π is poly-time if there is an
algorithm that for all p, τ, w evaluates Πp(τ, w) in polynomial time in the security
parameter λ.

Formally, Π-security is defined using a game between an adversary A and a
challenger. The game is parameterized by (n, k) and proceeds as follows:

– The challenger runs GlobalSetup(1λ, n, k) and sends the resulting global
parameters par to A. This defines pp0.

– A outputs a sequence of pairs (pp1, π1), . . . , (pp�, π�).
– The challenger samples r ←$

Z
∗
p, runs Update(pp�, r) to get (pp�+1, π�+1), and

sends (pp�+1, π�+1) to A. This emulates an honest contributor.
– Adversary A outputs a further sequence of pairs (pp�+2, π�+2), . . . , (ppm, πm)

along with a guess w ∈ W.

The adversary wins if Verify(ppi−1, ppi, πi) = 1 for all i ∈ [m], and either (i)
Πp(τm, w) = 1, where τm is the secret exponent that defines ppm, or (ii) ppm is
a malformed powers-of-tau.

We will show in Theorem 2 below how to use the pairing to efficiently test
that ppm is a well formed powers-of-tau. Hence, as long as Verify includes this
test, the only way for A to win the game is to output some w ∈ W such that
Πp(τm, w) = 1.

Definition 2. Let Π =
{
Πp : Zp × W → {0, 1}}

p∈P be a family of poly-time
predicates. A Powers-of-Tau system is Π-secure if for all n, k that are poly(λ),
and for all PPT adversaries A, the probability that A wins the Π-security game
is a negligible function of the security parameter λ.

Remark 1. Definition 2 requires that the adversary cannot compute some infor-
mation about the final τm. It does not require τm to be close to uniform in Z

∗
p

because that is not possible to achieve in our settings. If the last contributor is
malicious, it could cause τm to become non-uniform in Z

∗
p by repeatedly running

the update procedure until the resulting pp satisfies some property (for example,
the first ten bits of the first element in pp are zero).

Despite Remark 1, our definitional framework is sufficient for many appli-
cations. For example, suppose that the powers-of-tau is to be used in a KZG

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 113

polynomial commitment scheme [44], and we need to ensure evaluation binding,
meaning that a committed polynomial cannot be convincingly opened to two
different values at one input. To do so, let us define the family of predicates Πsdh

p

where

Πsdh
p

(
τ ∈ Zp, (c, T) ∈ Zp × G1

)
= 1 ⇐⇒ T =

(
1

τ+c

)
B1 . (3.3)

Suppose that no PPT algorithm that takes a powers-of-tau string as input, can
find a pair (c, T) that satisfies this predicate. Then it is not difficult to show that
this implies evaluation binding for KZG. Hence, a powers-of-tau string that is
generated by a Πsdh-secure powers-of-tau system can be safely used to provide
evaluation binding in KZG.

Note that the predicate Πsdh
p can be checked in polynomial time using the

element Q1 := τB2 from the powers-of-tau string because

Πsdh
p

(
τ, (c, T)

)
= 1 ⇐⇒ e(T, Q1 + cB2) = e(B1, B2) .

We will come back to this predicate when we analyze security of our powers-of-
tau system. Other applications that require a powers-of-tau string can choose to
use other predicates to argue security.

4 Powers-of-Tau Setup with Full Data On-Chain

We now describe the Update and Verify algorithms for our powers-of-tau system,
when the entire string pp is stored on chain. This is the simplest construction,
though may carry high costs for large powers-of-τ strings as it requires the verifier
to do linear work (in n and k) for each update.

Let pp be the current SRS string which is assumed to be:

pp = (P1, P2, . . . , Pn; Q1, . . . , Qk)

= (τB1, τ2B1, . . . , τnB1; τB2, . . . , τkB2) (4.1)

for some (unknown) τ in Z
∗
p.

Let r be a random element in Z
∗
p. The Update(pp, r) algorithm begins by

computing the updated SRS string pp′ as

pp′ := (P ′
1, P ′

2, . . . , P ′
n; Q′

1, . . . , Q′
k)

= (rP1, r2P2, . . . , rnPn; rQ1, . . . , rkQk) (4.2)

Observe that

pp′ = (rτB1, r2τ2B1, . . . , r
nτnB1; rτB2, . . . , rkτkB2)

= (τ ′B1, (τ ′)2B1, . . . , (τ ′)nB1; τ ′B2, . . . , (τ ′)kB2)

114 V. Nikolaenko et al.

where τ ′ := r · τ is the secret exponent1 for pp′. If an attacker knows τ but not
r, and r was chosen uniformly at random from Z

∗
p (meaning in particular that

r �= 0), then the attacker will have no information about τ . Consequently, if
at least one of the contributors samples their update r randomly, and properly
destroys it, then the final secret τm = r1 ·r2 · . . . ·rm ∈ Z

∗
p is randomly distributed

and unknown to anyone. This is assuming that none of the contributors set
ri = 0, which is easy to check for.

Update Proofs. Next, the Update(pp, r) algorithm needs to output a proof that
the update was done correctly. In particular, the verify algorithm will need to
convince itself of the following three claims:

Check #1 - the contributor knows r: this is needed to ensure that the latest
update builds on the work of the preceding participants.

Check #2 - the new parameters pp′ are well-formed: there is some τ ′ ∈ Zp

such that pp′ satisfies (3.1).
Check #3 - pp′ is not degenerate, namely r �= 0: defends against an update

trying to erase the setup thus undermining the contributions of previous par-
ticipants.

We will show that the verifier can efficiently check claims #2 and #3 on its own.
We first explain how to efficiently prove claim #1. To provide a zero-

knowledge proof of knowledge of r, the Update(pp, r) algorithm has two options:
it can use a Fiat-Shamir version of Schnorr’s Σ-protocol [56,57] or it can use a
BLS-style proof of possession [55] for r. The latter is more expensive to verify
on-chain as it requires the verifier to compute pairings. We therefore focus on
the former approach which works as follows:

Update(pp, r) samples a random z ←$
Z

∗
p, computes

h ← HASH(P ′
1 || P1 || z · P1) and π ← (z · P1, z + h · r) ∈ G1 × Zp,

and outputs the proof π ∈ G1 × Zp. Here HASH is a hash function that
outputs elements in Zp. In the security proof we will model HASH as a
random oracle.

The Verify(pp, pp′, π) algorithm (an on-chain smart contract) verifies the proof
π = (π1, π2) ∈ G1 × Zp by checking that:

Check # 1: π2 · P1 = π1 + HASH(P ′
1 || P1 || π1) · P1

We next show how to verify claims #2 and #3.

Definition 3. We say that the string pp = (P1, P2, P3, . . . , Pn;Q1, Q2, . . . , Qk)
is well-formed if there exists τ ∈ Zp such that Pi = τ iB1 and Q� = τ �B2 for all
i = 1 . . . n and � = 1 . . . k.
1 Note that it is also possible to compute an additive update to the tau (τ ′ ← r + τ),

however it would require the contributor to compute many multi-scalar multiplica-
tions making it less efficient.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 115

To verify that pp is well-formed, the verifier samples two random scalars
ρ1, ρ2 ←$

Z
∗
p and checks that:

Check # 2: (4.3)
e
(∑n

i=1 ρi-1
1 Pi, B2 +

∑k−1
�=1 ρ�

2Q�

)
= e

(
B1 +

∑n−1
i=1 ρi

1Pi,
∑k

�=1 ρ�-1
2 Q�

)

For a well-formed string pp the check will always pass successfully, since:

e

(

τB1 +
n−1∑

i=1

(
ρi
1 · τ i+1B1

)
, B2 +

k−1∑

�=1

(
ρ�
2τ

�B2)
)
)

=

e

(

B1 +
n−1∑

i=1

(
ρi
1 · τ iB1

)
, τ ·

(

B2 +
k−1∑

�=1

(
ρ�
2τ

�B2)
)
))

We prove that this check is sound in Theorem 2 below.
One complication is that an on-chain verifier does not have access to secure

randomness. Instead, it will generate the scalars ρ1, ρ2 ∈ Zp by hashing the string
submitted by the contributor as ρ1 ← HASH(pp′||1) and ρ2 ← HASH(pp′||2).

Finally to ensure that the updated setup is non-degenerative, the verifier
simply checks that the first element in pp′ non-zero:

Check #3: P ′
1 �= 0 (4.4)

Correctness: it is easy to check that the Update and Verify algorithms satisfy
our correctness requirement.

4.1 Security

We now argue that the powers-of-tau system in the previous section satisfies the
security definition (Definition 2). Recall that security is defined with respect to
a poly-time predicate family Π =

{
Πp : Zp ×W → {0, 1}}

p∈P . Let us first define
the (n, k)-Π-DH assumption. The assumption says that no PPT adversary that
takes a powers-of-tau string with secret exponent τ ∈ Zp as input, can find a
w ∈ W such that Πp(τ, w) = 1.

Definition 4. Let Π =
{
Πp : Zp × W → {0, 1}}

p∈P be a poly-time predicate
family. We say that the (n, k)-Π-DH assumption holds for the bilinear group
generator GroupGen if for all PPT algorithms A,

Pr
[
Πp

(
τ, A(

par, τB1, τ
2B1, . . . , τ

nB1, τB2, τ
2B2, . . . , τ

kB2

)
= 1

)] ≤ negl(λ),

where par ←$ GroupGen(1λ) and τ ←$
Z

∗
p.

The (n, k)-Π-DH assumption encompasses a large class of standard crypto-
graphic assumptions. For example, taking Π to be the predicate family Πsdh from
(3.3) gives the so called (n, k)-Strong Diffie-Hellman (SDH) assumption [12].

116 V. Nikolaenko et al.

Definition 5. We say that the predicate family Π =
{
Πp : Zp×W → {0, 1}}

p∈P
is self reducible if there is a PPT algorithm Reduce such that for all p ∈ P,
all τ, r ∈ Z

∗
p, and all w ∈ W we have

Πp(τ, w) = 1 =⇒ Πp

(
τ · r, Reduce(r, w)

)
= 1 .

In other words, given a valid w for τ , algorithm Reduce outputs a valid w′

for τ · r. For example, the predicate family Πsdh from (3.3) is self reducible. To
see why, observe that for all p ∈ P and r ∈ Z

∗
p we have

Πsdh
p

(
τ, (c, T)

)
= 1 =⇒ Πsdh

p

(
τr, (cr, (1/r) · T)

)
= 1

because
T = 1

τ+c · B1 =⇒ 1
r · T = 1

τr+cr · B1 .

With these definitions in place, we can now state the security theorem.

Theorem 1. Let Π =
{
Πp : Zp × W → {0, 1}}

p∈P be a poly-time self reducible
predicate family. Then the powers-of-tau system in Sect. 4 is Π-secure, as in
Definition 2, assuming the (n, k)-Π-DH assumption holds for GroupGen and the
hash function HASH is modeled as a random oracle.

We give the proof intuition and defer the proof to the full version of the paper.

Proof idea. For now, let us assume that the proof system used in the powers-of-
tau system is zero knowledge and simulation extractable [38] even for a prover
that proves multiple statements one after the other. We will justify these two
assumptions later on.

We are given an adversary A that wins the attack game in Definition 2 with
non-negligible probability. By Theorem 2 below, the only way for A to win the
game is to output some wm ∈ W such that Πp(τm, wm) = 1. We use A to
construct an adversary B that breaks the (n, k)-Π-DH assumption. Algorithm B
is given as input an (n, k)-Π-DH challenge

ppchal := (P1, . . . , Pn;Q1, . . . , Qk) ∈ G
n
1 × G

k
2 .

It needs to find some w ∈ W such that Πp(τ, w) = 1, where τ ∈ Z
∗
p is the secret

exponent used define this challenge. Algorithm B begins by running adversary A
and the following happens:

– B receives from A a sequence of � pairs (pp1, π1), . . . , (pp�, π�).
– B sends to A the pair (ppchal, π) where π is a simulated proof that ppchal is

a valid update. Here we are using the zero knowledge property of the proof
system.

– B receives from A an additional sequence of pairs (pp�+2, π�+2), . . . , (ppm, πm)
along with a guess wm ∈ W.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 117

Now B will use the extractor to extract from A all the randomizers r�+2, . . . , rm

in Z
∗
p that the adversary used to update the SRS in the second set of pairs that

it output. To do so we are using the simulation extractability property of the
proof system. Now, if all the extracted randomizers are correct, then

τm = τ · (r�+2 · · · rm) ,

where τm is the exponent used to define ppm. Moreover, if wm output by A
indeed satisfies Πp(τm, wm) = 1, then by the self reducibility of Π, our B can
efficiently find a w such that Πp(τ, w) = 1, as required.
�

It remains to argue that the proof system used in our powers-of-tau system
is zero knowledge and simulation extractable. We first show that the verifier’s
Check #2 is sound, namely, a malformed string pp will fail the check with over-
whelming probability.

Theorem 2. Check #2 ensures the well-formedness of pp. In particular, let p
be the size of the groups output by GroupGen(1λ), and let n and k be polynomial
in the security parameter λ. Then a malformed pp will pass Check #2 with
probability at most (n−1)(k−1)

p , which is negligible in λ.

The proof of this theorem can be found in Appendix A.
We next briefly argue that the proof system used in our powers-of-tau sys-

tem is zero knowledge and simulation extractable. The proof output by algo-
rithm Update(pp, r) is a standard Schnorr proof of knowledge of discrete log
that is made non-interactive using the Fiat-Shamir transform. This proof sys-
tem is known to be zero-knowledge in the random oracle model, and simulation
extractable in the random oracle model even for a prover that proves multiple
such statements one after the other [36]. Moreover, Theorem 2 shows that a
witness extracted from a convincing prover will correspond to a valid witness
with overwhelming probability.

5 Powers-of-Tau Setup Protocol with Data Off-Chain

The required number of powers of tau for some applications can be as high as
224–228, resulting in public parameters of size in the range 0.5GB–9GB. This
rules out the possibility of storing the full parameters on chain, given limitations
of today’s Layer-1 smart contract platforms. However, it is still possible to take
advantage of the anti-censorship properties of an L1 chain by posting a commit-
ment to the parameters on chain, while storing the parameters off chain. Each
contributor who updates the on-chain commitment proves that the update to
the current off-chain parameters is well-formed by submitting a ZK proof to the
smart contract. The contract accepts the contribution if the proof is valid.

In more detail, let Alice be the i-th contributor to the powers-of-tau. Let ppi

be the powers-of-tau before Alice’s contribution and let ppi+1 be the powers-of-
tau after. Prior to Alice’s contribution, the smart contract holds a short binding

118 V. Nikolaenko et al.

commitment to ppi, namely ci := H(ppi), for some collision resistant hash func-
tion H. Alice will send to the contract ci+1 := H(ppi+1) along with a succinct
ZK proof π that the transition from ci to ci+1 is well formed, as discussed in
more detail in the next subsection. If the proof is valid, the contract updates
the stored hash to ci+1 and erases ci. Note that the contract places ci+1 in its
storage array; however the proof π need only be sent to the contract as call data
and does not need to be written to the contract’s storage.

We describe three ways to produce the proof π: in Sect. 5.1 using a
generic transparent SNARK; in Sect. 5.2 using the Dory polynomial commitment
scheme; and in Appendix C using an inferior method of inner-pairing product
argument.

Data Availability. If the L1 chain only holds a hash of the powers-of-tau,
then the actual data must be kept elsewhere. One can use a centralized data-
availability (DA) service, such as a cloud storage provider, or a decentralized one,
such as EigenDA, Celestia, Polygon Avail, or Arweave. These data availability
services vary in many respects, including the precise guarantees and pricing
model, but they all commit to storing a large blob of data and making it publicly
available, in exchange for fees. In the DA service the data is typically addressable
by its hash-digest or a deterministic commitment. Updates can write a new copy
of the data to the DA service and old versions will still exist. Regardless, of how
the DA service is run, we only require it to attest to the availability of the data
behind the on-chain commitment, we assume that the DA service is censorship-
resistant and append-only. The DA service does not need to run any verification
on the underlying data.

Note that the DA service can safely discard an old parameter set after the
chain verifies a new parameter set, meaning that the DA service only needs to
store at most two parameter sets at any given time, meaning it scales well to
protocols with many participants.

5.1 Off-Chain Setup Using a Transparent Succinct Proof

Let pp be the current state of the powers-of-tau stored at some data availability
service, and let c := H(pp) be the commitment to pp stored in the smart contract
on chain. Recall that

pp =
(
P1, P2, P3, . . . , Pn; Q1, Q2, . . . , Qk) =

=
(
τB1, τ

2B1, τ
3B1, . . . , τ

nB1; τB2, τ
2B2, . . . , τ

kB2

)
∈ G

n
1 × G

k
2

for some secret τ ∈ Zp and public B1 ∈ G1, B2 ∈ G2.
Alice wants to re-randomize pp to obtain pp′. She chooses a random r ∈ Zp,

computes

pp′ ←
(
rP1, r

2P2, r
3P3, . . . , r

nPn; rQ1, r
2Q2, . . . , r

kQk

)
=

=
(
P ′
1, P

′
2, P

′
3, . . . , P

′
n; Q′

1, Q
′
2, . . . , Q

′
k

)
∈ G

n
1 × G

k
2

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 119

and sends pp′ to the data availability service. Next, she computes the commit-
ment c′ = H(pp′) and needs to convince the on-chain smart contract that the
transition from c to c′ is a valid transition. As explained in Sect. 4, Alice must
produce a succinct zero-knowledge argument of knowledge (zk-SNARK) that the
following relation holds, for random ρ1, ρ2 in Zp chosen by the verifier:

public statement: c, c′ and ρ1, ρ2 ∈ Zp , witness: pp, pp′, and r ∈ Zp ,

and the relation is satisfied if and only if

c = H(pp), c′ = H(pp′), P ′
1 = rP1, P ′

1 �= 0, and

e
(n∑

i=1

ρi
1P

′
i , ρ2B2 +

k−1∑

j=1

ρj+1
2 Q′

j

)
= e

(
ρ1B1 +

n−1∑

i=1

ρi+1
1 P ′

i ,
k∑

j=1

ρj
2Q

′
j

)
.

Note that the zero-knowledge property is needed to keep r secret.
The simplest, though not the most efficient, way to produce a succinct

proof for this relation is to use a generic zk-SNARK system (we describe bet-
ter approaches in the next subsection). To use a generic zk-SNARK, we need
a proof system with the following properties: (i) transparent, namely the zk-
SNARK requires no trusted setup, since we cannot assume the existence of a
trusted setup in our settings; (ii) short, to reduce the cost of posting the proof
on-chain; and (iii) fast to verify, to reduce the on-chain gas costs for verification.
The STARK system [9] meets these requirements. In practice, the resulting proof
is about 100KB which may be too expensive to post on chain for every update.
In Sect. 7 we discuss batching proofs, namely supporting multiple updates using
a single proof. This may make STARKs a viable option.

Once Alice constructs the proof π, she sends (c, c′, π) to the on-chain contract.
The contract verifies the proof, and if valid, it replaces c by c′.

5.2 Off-Chain Setup Using AFGHO Commitments On-Chain

In this section we describe a more efficient approach than the one in the previous
section. We use the unstructured AFGHO commitments of Abe et al. [1] in
combination with the Dory [49] inner-pairing product arguments. This leads to
short and efficiently verifiable proofs on chain.

We again assume groups G1,G2,GT of a prime order p and a bilinear oper-
ation e : G1 ×G2 → GT . We adopt the product notation for pairing operations:
for vectors A ∈ G

n
1 and B ∈ G

n
2 we write 〈A,B〉 =

∑n
i=1 e(Ai, Bi). Let Γ2 ∈ G

n
2

be generators of G2 and Γ1 ∈ G
k
1 be generators of G1, all randomly chosen in a

transparent way.
Instead of the full parameters pp = (P;Q) = ((P1, P2, . . . , Pn);

(Q1, Q2, . . . , Qk)), the chain only stores P1 and AFGHO commitments (C1, C2) ∈
GT × GT on chain, where C1 = 〈P,Γ2〉 ∈ GT and C2 = 〈Γ1,Q〉 ∈ GT .

The contributor submits a proof-of-knowledge of the discrete log of the
update to P1 as explained in Check #1 of Sect. 4 and a logarithmic-size proof
for the following inner-pairing product (IPP) relations:

120 V. Nikolaenko et al.

C1 = 〈P,Γ2〉 ∧ C2 = 〈Γ1,Q〉 ∧
ρn
1PnQ1 − B1Q1 = 〈P, (1, ρ1, ρ

2
1, . . . , ρ

n−1
1) · (ρ1Q1 − B2)〉 ∧

ρk
2P1Qk − P1B2 = 〈(1, ρ2, ρ

2
2, . . . , ρ

k−1
2) · (ρ2P1 − B1),Q〉 ∧ (5.1)

Pn = 〈P, (0, 0, . . . , 0, 1)〉 ∧ P1 = 〈P, (1, 0, . . . , 0, 0)〉
Qk = 〈Q, (0, 0, . . . , 0, 1)〉 ∧ Q1 = 〈Q, (1, 0, . . . , 0, 0)〉

We give further details on this construction in Appendix B.

6 Implementation and Evaluation on Ethereum

In this section, we analyse the practicality of our fully on-chain setup ceremony,
presented in Sect. 4. We implemented our protocol on top of Ethereum [19], the
most popular smart contract platform. Currently (as of May 2023), Ethereum
natively supports only one group with bilinear pairing, BN254 (the initial EIP-
197 [60] describes the curve equations). This group is foundational to multiple
projects (e.g. Aztec, zkSync) although unfortunately its security has been low-
ered with recent attacks [7], and now estimated [45] to be at 100-bits level.
Ethereum consensus layer uses BLS12-381, which is another pairing-friendly
group, and also a popular choice for other projects (e.g. Aztec and Filecoin),
has stronger security guarantees, however the precompiles for this curve are not
available on Ethereum yet, though have been suggested (EIP-2537 [4]) alongside
precompiles for other pairing-friendly curves BLS12-377 (EIP-2539 [61]) and
BW6-761 (EIP-3026 [64]). The supported operations are scalar-multiplication
and addition in G1 and a pairing precompile, which are priced as follows accord-
ing to EIP-1108 [22]:

Name Operation Gas cost

ECADD A + B for
A, B ∈ G1

150

ECMULT αA for
α ∈ Zp, A ∈ G1

6,000

ECPAIR
∑k

i=1 e(Ai, Bi) = 0
for
Ai ∈ G1, Bi ∈ G2

34, 000 · k + 45, 000

Each contribution is sent as calldata, which is a read-only byte array, cur-
rently priced at 16 gas per byte according to EIP-2028 [2].

Fully On-Chain Setup for k = 1. We first consider a setup with a single element
in G2. The following pre-computation will reduce the cost of the Check #2 to
n + 3 scalar multiplications and one ECPAIR, though the check will remain to
dominate the verification cost:

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 121

Table 1. Estimates according to the Eq. 6.2 and actual costs. The pricing in USD is
calculated based on rough numbers on 05/01/2023: 15 gwei per gas unit and 1 ETH =
$1,850 (1 gwei = 10−9 ETH).

n 8 16 32 64 128 256 512 1024

compute in gas
units

179,000 227,000 323,000 515,000 899,000 1,667,000 3,203,000 6,275,000

compute cost $5 $6 $9 $14 $25 $46 $89 $174
storage in gas
units

8,192 16,384 32,768 65,536 131,072 262,144 524,288 1,048,576

storage cost $0 $0 $1 $2 $4 $7 $15 $29
Total
(estimates)

187,192 243,384 355,768 580,536 1,030,072 1,929,144 3,727,288 7,323,576

$5 $7 $10 $16 $29 $54 $103 $203
Total
(actual)

192,162 272,217 432,702 755,340 1,406,185 2,731,526 5,474,920 11,341,136

$5 $8 $12 $21 $39 $76 $152 $315

Check # 2 (more efficient): for R :=
n−1∑

i=1

ρi-1
1 · Pi,

verify that e(B1 + ρ1R, Q1) = e(R + ρn−1
1 Pn, B2) (6.1)

The contributor submits 64 · n + 224 bytes of calldata: n elements of G1 (64
bytes, uncompressed2), 1 element in G2 (128 bytes, uncompressed), and a proof
which consists of one element in Zp and one element in G1. The cost of the
contribution is therefore comprised of compute and calldata storage:

compute cost: (n + 3) · 6, 000 + 113, 000 gas
storage cost: n · 1, 024 + 3, 584 gas (6.2)

It is instructive to notice that the cost of compute is roughly 6x the cost of
storage. The compute is dominated by the multi-scalar multiplication. Most
likely it is inevitable for each element of the setup to have to be multiplied by a
scalar or be directly inserted into a pairing, it is therefore unlikely to be able to
reduce the compute cost for the fully on-chain setup. However, using techniques
of Bellare et al. [8] the scalar-multiplications might be substituted by λ-random
subset sums for λ-security, however for Ethereum this trick does not bring any
savings. Table 1 shows estimated and concrete pricing per contribution with a
check from Eq. 6.1 based on our open-sourced implementation3.

2 Our evaluations showed that recovering element from a compressed form would cost
significantly more than sending them in an uncompressed form directly.

3 github.com/a16z/evm-powers-of-tau.

https://github.com/a16z/evm-powers-of-tau

122 V. Nikolaenko et al.

Fully On-Chain Setup for k > 1. Since Ethereum does not support addition
and scalar multiplication in G2 the following alternative method for Check #2
targeting Ethereum can be used, it does one additional pairing per each power
in G2:
Check #2 (alternative):

For R =
n−2∑

i=0

ρi · Pi+1,j : e(B1 + ρR, Q1,j) = e(R + ρn−1Pn,j , B2) (6.3)

For t = 2..k-1 : e(Pk-t,j , Qt) = e(Pk,j , B2) ∧ e(B1, Qk) = e(Pk,j , B2) (6.4)

Note that the right-hand part of the Eqs. 6.4 can be computed once. Note also
that Eqs. 6.3 and 6.4 are each checking the equalities of pairings, these checks
can be batched using pseudorandom scalars α0, α1, . . . , αD ∈ (

Z
∗
p

)n sampled
as αi = HASH(ppj , i) to transform into a check of the sum of pairings which
is cheaper to do on Ethereum (Ethereum has an opcode that allows to verify
e(A1, B1) + ... + e(Am, Bm) = 0):

e(A1, B1) = e(C1,D1)
e(A2, B2) = e(C2,D2)

· · ·
e(Am, Bm) = e(Cm,Dm)

⇔

⎧
⎪⎪⎨

⎪⎪⎩

e(α1A1, B1) − e(α1C1,D1)+
e(α2A2, B2) − e(α2C2,D2)+
· · ·
e(αmAm, Bm) − e(αmCm,Dm) = 0

(6.5)

Note on the Use of Hash Functions for Generation of Scalars. For a 256-bits
order groups, the hash function HASH needs to output 512-bits, should be given
as inputs strings generated with invertible serialization method, and be domain-
separated (i.e. the input should be prefixed with a fixed-length string indicating
the step of the protocol and the purpose of hashing).

7 Concluding Discussion and Open Problems

In conclusion, we note that our work shows the practicality of decentralized setup
ceremonies for the first time. These protocols can scale to support an unlimited
number of participants as blockchain performance continues to improve. Our
protocols inherit (and rely on) the ability of the underlying blockchain to support
open participation while managing potential spam and denial-of-service.

Given the more-the-merrier property of our protocols, these represent a qual-
itative security advance over the state of the art. While practical trusted setup
ceremonies have attempted to recruit a diverse and trustworthy group of par-
ticipants to convince the public that the results of the ceremony can be trusted,
decentralized setup ceremonies offer a stronger promise: if a participant doesn’t
trust the ceremony, they are free to contribute themselves. We hope that this
model will inspire future setup ceremonies; it may also extend to other applica-
tions such as distributed randomness beacons which can be made decentralized
and open to participation for all using blockchains.

We conclude with several open problems and directions for future work.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 123

7.1 Incentives for Participation

Several options are available to subsidize gas costs to encourage additional par-
ticipation. The simplest solution is to load funds into the setup contract and
reward each user who successfully updates the structured reference string pp,
although users will still need to first pay the requisite gas fees. Alternately,
transaction relay services, such as the nascent Gas Station Network (GSN), can
pay transaction fees for users sending data to the setup contract. The upcoming
account abstraction, EIP 4337 [18], should also help build an ecosystem of pay-
masters that would sponsor transactions for other users. This makes it possible
for an end user to participate in setup even if that user owns no crypto to pay
for gas. Finally, we note that a setup ceremony might give users a non-monetary
reward such as an NFT as a badge of participation. A challenge in all cases is
that users might pseudonymously participate many times via Sybil accounts;
while this doesn’t undermine security of the setup (assuming there was at least
one honest contributor) it may enable them to claim rewards multiple times or
drain the available budget for covering transaction fees, preventing other users
from participating cheaply.

7.2 Verifying Participation

Users may wish to see an authentic list of everyone who has contributed to
the SRS. A lazy participant might see that enough participants that it trusts
contributed, and choose to use the SRS without participating themselves. Fortu-
nately, since every Ethereum transaction is signed by the party that initiates that
transaction, any user can inspect the chain and construct a list of authenticated
addresses that contributed to the ceremony since its inception.

7.3 Sequential Participation and Denial-of-Service

Our ceremonies are designed to run without any centralized coordination, but
they do require contributions in a serial manner. The jth contributor must prove
correctness of their update relative to the previous value ppj−1. If two contrib-
utors independently submit transactions building on the same parameter set
ppj−1, only the one sequenced first will be executed successfully. The second
will fail for referencing a stale parameter set. This means that, without off-chain
coordination, at most one contribution per block is possible as contributors must
first observe ppj−1. For Ethereum this limits the ceremony to one contribution
every 12 s or 219,000 contributions per month.

Worse, this also provides an avenue for denial-of-service and censorship:
whenever an honest contribution arrives, an attacker can create an alternative
contribution paying higher transaction fees, preempting the honest one. Such an
attack could be detected off-chain via timing analysis. A stronger defense strat-
egy against censorship could be to select one contribution among the conflicting
ones in a random but publicly-verifiable way. To lower the transaction fees, a

124 V. Nikolaenko et al.

contributor could first register an intent to make a contribution, and only sub-
mit the actual data if it is selected. Alternatively, the setup contract can order
the registered future contributors using a public randomness beacon, giving each
user a random pre-assigned slot to contribute.

7.4 Verification with General-Purpose Roll-Ups

Verification costs can be decreased using a general Layer-2 compute platform
such as a rollup server. ZK-Rollups (also called verifiable rollups) provide suc-
cinct proofs of execution (in our case, verifying a contribution) and hence pro-
vide equivalent security to execution on Layer-1. The two common construc-
tions today are zero-knowledge rollups and optimistic rollups, each of which
brings unique design challenges. Many (though not all) ZK-rollups themselves
rely on a (centralized) trusted setup. However, our protocol can be seen as a
way to perform new decentralized trusted setups given a single centralized one.
Or we might use a ZK-rollup which relies on a transparent setup. Alternately,
optimistic rollups require watchful observers to submit fraud proofs to detect
incorrect execution. Given the serial nature of our ceremony, general optimistic
rollups require caution as they naively require waiting for a challenge period
before accepting correct execution.

Rollups might offer significant cost savings, given that execution costs are
roughly 100× cheaper on Layer-2, and execution costs (as opposed to storage)
are over 75% of total transaction costs [48] in our evaluation. Combined with
off-chain data availability, total costs can be greatly reduced. The result of a
Layer-2 construction would be a 75% reduction in per transaction cost. The
remainder of the transaction cost is due to the storage of elliptic curve points
on Ethereum Layer-1. There are several proposals in process to decrease the
cost of Layer-2 storage on Ethereum, potentially further decreasing setup cost
(see EIP-4844 or EIP-4444). As of this writing, all production rollup servers rely
on a single centralized sequencing server, undermining the censorship resistance
benefits of an on-chain trusted setup. When these optimistic rollup Layer-2 s
have decentralized their sequencing, we expect the costs outlined for a trusted
setup can be decreased 75–95%. In the interim, one could also implement a
hybrid design which allows updates via the rollup server (to save gas) but also
directly on-chain in the event of a censoring rollup sequencer.

7.5 Protocol-Specific ZK Rollups via Proof Batching

Rather than relying on a general-purpose rollup server, we can design a spe-
cific one optimized for our application. In our ceremony, every contribution is
accompanied by a proof of correctness, requiring a linear number of proofs in the
number of updates. We can improve things using a coordinator which compiles
a sequence of update proofs from multiple participants and aggregates them all
into a single proof that all the received updates are valid. This can be done using
proof recursion [59] or accumulation [8,15,21]. This coordinator will then post
the aggregate proof on chain along with the aggregate update to the parameters.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 125

This coordinator can censor particular participants by refusing to accumulate
their proofs into the batch. However, since anyone can act as a coordinator,
an affected participant can find another coordinator. In the worst case, if all
coordinators are censoring, the participant can post their own update and proof
directly on chain, bypassing the censoring coordinators.

7.6 Protocol-Specific Optimistic Verification and Checkpointing

Another mode of operation which may offer improved performance would have
users post proofs (or even commitments to proofs with off-chain data availabil-
ity), but not rely on on-chain verification in the optimistic case. Instead, users
can post a fidelity bond which is forfeited (within a set challenge period) if
another user determines off-chain that their proof is incorrect and challenges it
on-chain. A caveat is that any invalidated update will also invalidate all subse-
quent updates due to the chained nature of the protocol. With this approach,
users should verify recent contributions themselves before participating to avoid
building on top of a contribution that is later invalidated.

To avoid requiring users to verify too many recent contributions before par-
ticipating, it is possible to checkpoint certain updates by including a proof that
all updates since the last checkpoint were valid. This checkpoint can be created
via proof batching as discussed above. We note that, in our protocol in Sect. 4,
only Check #1 needs to be repeated for each update since the last checkpoint;
the more expensive Check #2 only needs to be done once on the latest version
of the structured reference string.

7.7 Fully Off-Chain Verification via IVC/PCD

Another potential optimization is to conduct a ceremony with no on-chain proof
verification, but where each update includes a succinct proof that every update
since the start of the ceremony was well-formed. These proofs can be constructed
using any incrementally verifiable computation scheme (IVC). In this case the
parameters plus proof are an instantiation of proof-carrying data (PCD). With
such a protocol, it is possible to execute the ceremony using a blockchain which
only provides data availability and consensus (and no verification). Each user
can verify the succinct proof of the latest parameters before using or updating
them. The ceremony is only using the chain for its persistent storage and anti-
censorship properties.

7.8 Forking/Re-starting

Throughout the paper we assumed that updates to the powers-of-tau are applied
sequentially and each update is applied to the latest state. It is also possible that
a project may build on an existing powers-of-tau string, but fork it for its own
use. A forking community can continue to re-randomize their own powers-of-tau
branch, while the rest of the world continues to re-randomize the main branch.

126 V. Nikolaenko et al.

As such, the on-chain contract could be set up to handle forks in the update
process, where multiple powers-of-tau are continuously updated independently
of one another. Some powers-of-tau may even start afresh from scratch, perhaps
to support different tower lengths and possibly different groups.

Acknowledgments. We would like to thank Lúcás Meier, Yashvanth Kondi, Mary
Maller, and Justin Thaler for useful feedback on the early ideas underlying this work.
The last author is supported by the Simons Foundation and NTT Research.

A Proof of Theorem 2

In this section we prove Theorem 2 of Sect. 4 which guarantees that Check #2
guards the setup from malformed contributions.

Proof. Suppose the contributor generated a parameter set pp that passed
Check #2. We write

pp = (P1, P2, P3, . . . , Pn ; Q1, . . . , Qk) =
= (a1B1, a2B1, . . . , anB1 ; b1B2, b2B2, . . . , bkB2).

If check # 2 passed, then for two random scalars x = ρ1 and y = ρ2 in Zp chosen
by the verifier the following equation holds:

(1 + a1x + a2x
2 + . . . + an−1x

n−1) · (b1 + b2y + . . . + bkyk−1)−
(a1 + a2x + . . . + anxn−1) · (1 + b1y + b2y

2 + . . . + bk−1y
k−1) = 0 (A.1)

Let us define a 2-variate polynomial f(x, y) to match the left-hand side of
Eq.A.1. By the DeMillo-Lipton-Schwartz-Zippel (DLSZ) lemma [30,58,65], if f
is a non-zero polynomial, then the number of zeros of f is bounded by d ·p where
d = (n − 1)(k − 1) is the degree of f(x, y). Equivalently, the probability that
f(x, y) = 0 for x and y selected uniformly at random from Zp is bounded above
by d/p. Therefore, the probability that the polynomial f defined in Eq. A.1 is a
zero polynomial is overwhelming: it is at least 1 − (k − 1)(n − 1)/p. For a zero
polynomial f ≡ 0, its coefficients are all zero. In particular the constant term
b1 − a1 is 0 implying that a1 = b1, and we denote that by τ = a1. The rest of
the coefficients being zero implies that

coefficient of x : a1b1 − a2 = 0 ⇒ a2 = τ2

coefficient of x2 : a2b1 − a3 = 0 ⇒ a3 = τ3

. . .
coefficient of xn−1 : an−1b1 − an = 0 ⇒ &an = τn

Applying the same argument to the coefficients of yi in Eq.A.1 we obtain:

coefficient of y : b2 − a1b1 = 0 ⇒ b2 = τ2

coefficient of y2 : &b3 − a1b2 = 0 ⇒ b3 = τ3

. . .
coefficient of yk : &bk − a1bk−1 = 0 ⇒ bk = τk

Therefore we obtain that a setup that successfully passes check #2 is well-formed
with probability at least 1 − (k − 1)(n − 1)/p, as required.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 127

Note on Soundness for a Punctured Setup. At the end of Sect. 7 we explained
how to modify Check # 2 to be able to handle powers-of-tau setups with one
point missing. The soundness proof for this modified check is analogous: for
random scalars x = ρ1, y = ρ2 in Zp we define the polynomial f(x, y) to match
the left-hand side of Eq. D.3:

⎛

⎜
⎜
⎜
⎜
⎝

2N∑

i=1
i�=N+1
i�=N+2

aix
i−1

⎞

⎟
⎟
⎟
⎟
⎠

·
(

1 +
N−1∑

i=1

biy
i

)

−

⎛

⎜
⎜
⎜
⎜
⎝

1 +
2N−1∑

i=1
i�=N

i�=N+1

aix
i

⎞

⎟
⎟
⎟
⎟
⎠

·
(

N∑

i=1

biy
i−1

)

= 0

(A.2)

The probability that the polynomial f is zero is at least 1 − 2N2/p. For a zero
polynomial all of its coefficients are zero, hence the constant term b1 − a1 = 0
(denote τ = a1) and analogously we get bi = τ i for i = 1 . . . N and ai = τ i for
i = 1 . . . 2N where i �= N +1. The only difference in the argument, is that we use
the second pairing check (D.2) to get aN+2 = aNb2 which implies aN+2 = τN+2.

B Inner-Pairing Product Arguments for Sect. 5.2

We restate Eq. 5.1 of Sect. 5.2 again for convenience:

C1 = 〈P,Γ2〉 (B.1)
C2 = 〈Γ1,Q〉 (B.2)

ρn
1PnQ1 − B1Q1 = 〈P, (1, ρ1, ρ

2
1, . . . , ρ

n−1
1) · (ρ1Q1 − B2)〉 (B.3)

ρk
2P1Qk − P1B2 = 〈(1, ρ2, ρ

2
2, . . . , ρ

k−1
2) · (ρ2P1 − B1),Q〉 (B.4)

Pn = 〈P, (0, 0, . . . , 0, 1)〉 (B.5)
P1 = 〈P, (1, 0, . . . , 0, 0)〉 (B.6)
Qk = 〈Q, (0, 0, . . . , 0, 1)〉 (B.7)
Q1 = 〈Q, (1, 0, . . . , 0, 0)〉 (B.8)

We first prove the soundness, namely we show that with an overwhelming
probability a setup pp = (P;Q) that satisfies the set of equations above for
random scalars ρ1 and ρ2 chosen by the verifier has to be well-formed according
to Definition 3. We denote by x = ρ1, and we write P = (a1B1, a2B1, . . . , anB1)
and Q = (b1B2, b2B2, . . . , bkB2) for some a1, . . . , an, b1, . . . , bk ∈ Zp and we
rewrite Eq.B.3 equivalently into the following equation:

xnanb1 − b1 − (a1 + xa2 + x2a3 + . . . + xn−1an) · (xb1 − 1) = 0 ⇐⇒
(a1 − b1) + (a2 − a1b1)x + (a3 − a2b1)x2 + . . . + (an − an−1b1)xn−1 = 0

(B.9)

We denote the left-hand side of Eq. B.9 by f(x), where f is a polynomial of
degree n − 1 over Zp. We apply the DeMillo-Lipton-Schwartz-Zippel (DLSZ)

128 V. Nikolaenko et al.

lemma [30,58,65], if f is a non-zero polynomial, then the number of zeros of f
is bounded by d · p where d = n − 1 is the degree of f(x). Equivalently, the
probability that f(x) = 0 for x selected uniformly at random from Zp is bounded
above by d/p. Therefore, the probability that the polynomial f defined in Eq. B.9
is a zero polynomial is overwhelming: it is at least 1 − (n − 1)/p. For a zero
polynomial f ≡ 0, its coefficients are all zero:

free term : a1 − b1 = 0 ⇒ a1 = b1we denote that by a1 = τ

coefficient of x : a2 − a1b1 = 0 ⇒ a2 = τ2

coefficient of x2 : a3 − a2b1 = 0 ⇒ a3 = τ3

. . .

coefficient of xn−1 : an − an−1b1 = 0 ⇒ an = τn

With analogous analysis of Eq.B.4 we get that bi = τ i for all i = 1..k with
probability at least 1 − (k − 1)/p. This proves Theorem 3:

Theorem 3. A probabilistic polynomial-time contributor will satisfy Eq. B.3
and Eq. B.4 with a malformed setup string with probability at most (n−1)+(k−1)

p ,
which is negligible in the security parameter λ (where we assume p ≈ 22λ and
n, k being polynomial-size in λ).

The IPP Protocol. We now explain the interactive version of the protocol that
can be made non-interactive with a Fiat-Shamir heuristic to be run with a verifier
as an on-chain smart-contract.

1. The prover submits C1, C2, P1, Pn, Q1, Qk ∈ G
2
T × G

2
1 × G

2
2 to the verifier.

2. The prover shows that it knows the discrete log to the update of P1 (knowledge
of discrete log of P1 base the previous value of P1 that is currently stored on-
chain) as explained in Sect. 4, Eq. 4.

3. The verifier checks that the update is non-degenerative: P1 �= 0 and if so
replies with two random scalars ρ1, ρ2

$←− Zp.
4. The prover sends E1 ∈ G1 and E2 ∈ G2 to the verifier, where E1 =

〈P, (1, ρ1, ρ
2
1, . . . , ρ

n−1
1)〉 and E2 = 〈Q, (1, ρ2, ρ

2
2, . . . , ρ

k−1
2)〉.

5. The prover runs six Dory-IPP arguments in batch to produce a proof π that
it sends to the verifier. As we explain below.

6. The verifier checks that E1(ρ1Q1 − B2) = PnρnQ1 − B1Q1, and E1(ρ2P1 −
B1)E2 = ρk

2P1Qk − P1B2.
7. The verifier checks π and, if correct, updates the setup that it stores to

(C1, C2, P1) ∈ G
2
T × G1.

We now show how to construct a succinct (logarithmic-size) proof π for
Eq.B.1–B.8 using Dory inner product argument of Jonathan Lee [49]. Those
arguments allow to prove the following general relation (where the vectors of
scalars �s1 and �s2 are public and have multiplicative structure):

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 129

(D,C1, C2, E1, E2) ∈ Ln,Γ1,Γ2(�s1, �s2) ∈ G
3
T × G1 × G2 ⇐⇒

Exists witnesses �v1 ∈ G1 and �v2 ∈ G2 : C1 = 〈�v1, Γ2〉 C2 = 〈Γ1, �v2〉
E1 = 〈�v1, �s1〉 E2 = 〈�v2, �s2〉 D = 〈�v1, �v2〉

We invoke the argument six times (the arguments are batchable and allow to
squash six proofs into a single one) to prove the following less general statements,
we show two of those for Eq. B.3 and Eq. B.5 as the rest are analogous:

– For Eq.B.3: (0, C1, 0, E1, 0) ∈ Ln,Γ1,Γ2(�s1, �s2) for scalars �s1 = (1, ρ1, ρ
2
1,

. . . , ρn−1
1) and �s2 = �0 and witnesses v1 = P, v2 = �0.

– For Eq.B.5: (0, C1, 0, Pn, 0) ∈ Ln,Γ1,Γ2(�s1, �s2) for scalars s1 = (0, 0, 0, . . . ,

0, 1), s2 = �0 and witnesses v1 = P, v2 = �0.

The verifier in [49] is set up with 4 log(n) + 1 pre-computed elements of GT .
Those values are inner-products between subvectors of the vectors of generators
Γ1 and Γ2 and can be pre-computed in linear-time.

Note that in this type of setup, the secret is only used to update the setup
and prove knowledge of the discrete log of P1. The bulk of the computation,
namely proof generation, is independent of the secret chosen by the contributor.
Thus, the contributor may outsource this computation to an untrusted helper.

C Off-Chain Setup from IPP Arguments with a Smaller
Setup

For completeness, we briefly explain the inner-product pairing (IPP) method of
Bünz et al. [16]. It relies on a powers-of-tau SRS of a smaller size stored by the
verifier in full:

Γ1 = (αB1, α
2B1, . . . , α

2nB1), Γ2 = (βB2, β
2B2, . . . , β

2nB2)

The contributor can then commit to a larger setup of length N = η × n in G1

and G2 with structured AFGHO commitments of Abe et al. [1] as follows:

For P = (P1, . . . ,Pη) ∈ (Gn
1 , . . . ,Gn

1) and
for Q = (Q1, . . . ,Qη) ∈ (Gn

2 , . . . ,Gn
2) :

C1 = (〈P1,Γ1,even〉, . . . , 〈Pη,Γ1,even〉) ∈ G
η
T

C2 = (〈Γ2,even,Q1〉, . . . , 〈Γ1,even,Qη〉) ∈ G
η
T

The contributor submits commitments C1,C2 to the verifier and creates TIPP-
proofs of a set of inner-pairing-product relations similar to the ones described in
Sect. 5.2. The resulting proofs add up to be of cumulative size O(η log(n)) and
can be verified in O(η log(n)) time.

This method leads to worse practical efficiency compared to the method
described in Sect. 5.2, although it might yield better concrete costs if an on-
chain setup is extended by a small multiple making the resulting length N be
far from the power of two.

130 V. Nikolaenko et al.

D Powers-of-Tau with a Punctured Point

Some systems require a powers-of-tau string where one power in the sequence is
absent, namely

pp =
[
(Pi)2N

i=1,i �=N+1, (Qi)N
i=1

]
=

[
(τ iB1)2N

i=1,i �=N+1, (τ iB2)N
i=1

]
,

where the point PN+1 = τN+1B1 is absent from pp. Example systems that use
a punctured sequence include Groth’10 [39], Attema and Cramer [5], Lipmaa,
Siim, and Zajac’s Vampire scheme [51], and Waters and Wu [63]. The absence
of the point PN+1 from pp is necessary for security. Check #2 in (4) can be
modified to handle this case: the verifier will sample two random scalars ρ1, ρ2
in Z

∗
p and carry out the following check that now consists of two equations:

Check # 2 for punctured setup:

e
(2N∑

i=1
i�=N+1
i�=N+2

ρi-1
1 Pi, B2 +

N−1∑

�=1

ρ�
2Q�

)
=

= e
(
B1 +

2N−1∑

i=1
i�=N

i�=N+1

ρi
1Pi,

N∑

�=1

ρ�-1
2 Q�

)
(D.1)

e
(
PN+2, B2

)
= e

(
PN , Q2

)
(D.2)

It is not difficult to see that a well-formed setup will pass the check suc-
cessfully. The soundness proof for this modified check is analogous: for random
scalars x = ρ1, y = ρ2 in Zp we define the polynomial f(x, y) to match the
left-hand side of Eq. D.3:

⎛

⎜
⎜
⎜
⎜
⎝

2N∑

i=1
i�=N+1
i�=N+2

aix
i−1

⎞

⎟
⎟
⎟
⎟
⎠

·
(

1 +
N−1∑

i=1

biy
i

)

−

⎛

⎜
⎜
⎜
⎜
⎝

1 +
2N−1∑

i=1
i�=N

i�=N+1

aix
i

⎞

⎟
⎟
⎟
⎟
⎠

·
(

N∑

i=1

biy
i−1

)

= 0

(D.3)

The probability that the polynomial f is zero is at least 1 − 2N2/p. For a zero
polynomial all of its coefficients are zero, hence the constant term b1 − a1 = 0
(denote τ = a1) and analogously we get bi = τ i for i = 1 . . . N and ai = τ i for
i = 1 . . . 2N where i �= N +1. The only difference in the argument, is that we use
the second pairing check (D.2) to get aN+2 = aNb2 which implies aN+2 = τN+2.

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 131

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7_12

2. Akhunov, A., Sasson, E.B., Brand, T., Guthmann, L., Levy, A.: EIP-2028: Trans-
action data gas cost reduction (2019). https://eips.ethereum.org/EIPS/eip-2028

3. Aleo: Announcing aleo setup (2021). https://www.aleo.org/post/announcing-aleo-
setup

4. Alex Vlasov, K.O.: EIP-2537: Precompile for bls12-381 curve operations (2020).
https://eips.ethereum.org/EIPS/eip-2537

5. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1_18

6. Aztec: Universal crs setup. https://docs.zksync.io/userdocs/security/#universal-
crs-setup (2020)

7. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298–1336 (2019)

8. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054130

9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. p. 46
(2018)

10. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling
of public parameters for succinct zero knowledge proofs. In: IEEE Symposium on
Security and Privacy (2015)

11. Benaloh, J., de Mare, M.: One-Way Accumulators: A Decentralized Alternative to
Digital Signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

12. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

13. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski, B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052253

14. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-snark
parameters in the random beacon model. Cryptology ePrint Archive (2017)

15. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition
from accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12551, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64378-2_1

16. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing
products and applications. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021.
LNCS, vol. 13092, pp. 65–97. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-92078-4_3

https://doi.org/10.1007/978-3-642-14623-7_12
https://eips.ethereum.org/EIPS/eip-2028
https://www.aleo.org/post/announcing-aleo-setup
https://www.aleo.org/post/announcing-aleo-setup
https://eips.ethereum.org/EIPS/eip-2537
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-56877-1_18
https://docs.zksync.io/userdocs/security/
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1007/978-3-030-92078-4_3

132 V. Nikolaenko et al.

17. Buterin, V.: How do trusted setups work? (2022). https://vitalik.ca/general/2022/
03/14/trustedsetup.html

18. Buterin, V., et al.: ERC-4337: Account abstraction using alt mempool. link (2021)
19. Buterin, V., et al.: Ethereum: a next-generation smart contract

and decentralized application platform (2014). https://ethereum.org/
669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.
pdf

20. Buterin, V.: What is Danksharding (2020)
21. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short signa-

tures. J. Cryptol. 25(4), 723–747 (2012)
22. Cardozo, A.S., Williamson, Z.: EIP-1108: Reduce alt_bn128 precompile gas costs

(2018). https://eips.ethereum.org/EIPS/eip-1108
23. Cash, T.: Tornado.cash trusted setup ceremony (2020). https://tornado-cash.

medium.com/tornado-cash-trusted-setup-ceremony-b846e1e00be1
24. Celo: Plumo ceremony (2020). https://celo.org/plumo
25. Chen, M., et al.: Diogenes: lightweight scalable RSA modulus generation with a

dishonest majority. In: IEEE Security and Privacy (2021)
26. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-

cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1_26

27. Cohen, B., Pietrzak, K.: The Chia Network Blockchain (2019). https://www.chia.
net/wp-content/uploads/2022/07/ChiaGreenPaper.pdf

28. Cohen, R., Doerner, J., Kondi, Y., et al.: Guaranteed output in o(sqrt(n)) rounds
for round-robin sampling protocols. Cryptology ePrint Archive (2022)

29. Company, T.E.C.: Halo2. https://github.com/zcash/halo2
30. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.

Technical report, Georgia Tech (1977)
31. Devos, B.: Loopring starts zkSNARK trusted setup multi-party computation cer-

emony. link (2019)
32. FileCoin: Trusted setup complete! (2020). https://filecoin.io/blog/posts/trusted-

setup-complete/
33. Foundation, E.: Ethereum: Powers of tau specification (2022). https://github.com/

ethereum/kzg-ceremony-specs
34. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key

generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331–361. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0_12

35. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Paper 2019/953 (2019)

36. Ganesh, C., Khoshakhlagh, H., Kohlweiss, M., Nitulescu, A., Zajac, M.: What
makes fiat-shamir zksnarks (updatable srs) simulation extractable? Cryptology
ePrint Archive, Paper 2021/511 (2021). https://eprint.iacr.org/2021/511, https://
eprint.iacr.org/2021/511

37. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1_8

38. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

https://vitalik.ca/general/2022/03/14/trustedsetup.html
https://vitalik.ca/general/2022/03/14/trustedsetup.html
https://eips.ethereum.org/EIPS/eip-4337
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://eips.ethereum.org/EIPS/eip-1108
https://tornado-cash.medium.com/tornado-cash-trusted-setup-ceremony-b846e1e00be1
https://tornado-cash.medium.com/tornado-cash-trusted-setup-ceremony-b846e1e00be1
https://celo.org/plumo
https://doi.org/10.1007/978-3-030-45721-1_26
https://www.chia.net/wp-content/uploads/2022/07/ChiaGreenPaper.pdf
https://www.chia.net/wp-content/uploads/2022/07/ChiaGreenPaper.pdf
https://github.com/zcash/halo2
https://medium.loopring.io/loopring-starts-zksnark-trusted-setup-multi-party-computation-ceremony-6582874f7a5b
https://filecoin.io/blog/posts/trusted-setup-complete/
https://filecoin.io/blog/posts/trusted-setup-complete/
https://github.com/ethereum/kzg-ceremony-specs
https://github.com/ethereum/kzg-ceremony-specs
https://doi.org/10.1007/978-3-319-96881-0_12
https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2021/511
https://eprint.iacr.org/2021/511
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/11935230_29

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 133

39. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

40. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

41. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_24

42. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient RSA key
generation and threshold paillier in the two-party setting. J. Cryptol. 32(2), 265–
323 (2019)

43. Hermez, P.: Hermez zero-knowledge proofs (2020). https://blog.hermez.io/hermez-
zero-knowledge-proofs/

44. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8_11

45. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4_20

46. Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 98–127. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_4

47. Kuszmaul, J.: V(ery short m)erkle trees. verkle trees (2018). https://math.mit.
edu/research/highschool/primes/materials/2018/Kuszmaul.pdf

48. “l2 fees” (2022). https://l2fees.info/
49. Lee, J.: Dory: efficient, transparent arguments for generalised inner products and

polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS,
vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90453-1_1

50. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2_30

51. Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: from univariate sumcheck to
updatable zk-snark. Cryptology ePrint Archive (2022)

52. Long, L.: Binary Quadratic Forms (2019). https://github.com/Chia-Network/vdf-
competition/blob/main/classgroups.pdf

53. Malkin, M., Wu, T.D., Boneh, D.: Experimenting with shared generation of RSA
keys. In: Proceedings of the Network and Distributed System Security Symposium,
NDSS 1999, San Diego, California, USA. The Internet Society (1999)

54. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2111–2128 (2019)

55. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://blog.hermez.io/hermez-zero-knowledge-proofs/
https://blog.hermez.io/hermez-zero-knowledge-proofs/
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-030-92078-4_4
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://l2fees.info/
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://github.com/Chia-Network/vdf-competition/blob/main/classgroups.pdf
https://github.com/Chia-Network/vdf-competition/blob/main/classgroups.pdf

134 V. Nikolaenko et al.

LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4_13

56. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0_22

57. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

58. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM (JACM) 27(4), 701–717 (1980)

59. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1

60. Vitalik Buterin, C.R.: EIP-197: Precompiled contracts for optimal ate pairing check
on the elliptic curve alt_bn128 (2017). https://eips.ethereum.org/EIPS/eip-197

61. Vlasov, A.: EIP-2539: Bls12-377 curve operations (2020). https://eips.ethereum.
org/EIPS/eip-2539

62. Wang, W., Ulichney, A., Papamanthou, C.: BalanceProofs: Maintainable Vector
Commitments with Fast Aggregation. Cryptology ePrint Archive, Paper 2022/864
(2022)

63. Waters, B., Wu, D.: Batch arguments for NP and more from standard bilinear
group assumptions. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS,
vol. 13508, pp. 433–463. Springer, Cham (2022)

64. Youssef El Housni, Michael Connor, A.G.: EIP-3026: Bw6-761 curve operations
(2020). https://eips.ethereum.org/EIPS/eip-3026

65. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5_73

https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-540-78524-8_1
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-2539
https://eips.ethereum.org/EIPS/eip-2539
https://eips.ethereum.org/EIPS/eip-3026
https://doi.org/10.1007/3-540-09519-5_73

Smart Infrastructures, Systems
and Software

Self-sovereign Identity for Electric Vehicle
Charging

Adrian Kailus1, Dustin Kern2(B), and Christoph Krauß2

1 DB Systel GmbH, Frankfurt, Germany
a@kailus.dev

2 Darmstadt University of Applied Sciences, Darmstadt, Germany
{dustin.kern,christoph.krauss}@h-da.de

Abstract. Electric Vehicles (EVs) are more and more charged at public
Charge Points (CPs) using Plug-and-Charge (PnC) protocols such as the
ISO 15118 standard which eliminates user interaction for authentication
and authorization. Currently, this requires a rather complex Public Key
Infrastructure (PKI) and enables driver tracking via the included unique
identifiers. In this paper, we propose an approach for using Self-Sovereign
Identities (SSIs) as trusted credentials for EV charging authentication
and authorization which overcomes the privacy problems and the issues
of a complex centralized PKI. Our implementation shows the feasibility
of our approach with ISO 15118, meaning that existing roles/features
can be supported and that existing timing/size constraints of the ISO
standard can be met. The security and privacy of the proposed approach
is shown in a formal analysis using the Tamarin prover.

Keywords: Electric Vehicle · Privacy · Plug and Charge ·
Self-Sovereign Identity · ISO 15118

1 Introduction

Plug-and-Charge (PnC), e.g., using the standard ISO 15118, enables Electric
Vehicles (EVs) to charge without user interaction at public Charge Points (CPs)
operated by a Charge Point Operator (CPO). The EV stores relevant data such
as contract credentials and automatically performs all necessary steps to start a
charging session, e.g., authentication, authorization, and negotiation of charging
parameters. No RFID cards or smartphone apps are required anymore. To enable
this, ISO 15118 defines a complex Public Key Infrastructure (PKI) and uses a
unique identifier to identify the user or actually the user’s personal charging
contract. The charging contract is the basis for billing of PnC sessions and is
concluded between an EV user and an e-Mobility Service Provider (eMSP).

The complex PKI architecture of ISO 15118 requires all entities to oper-
ate central (sub-) Certificate Authorities (CAs). These entities include CPOs
and eMSPs but also Original Equipment Manufacturers (OEMs) and a Con-
tract Clearing House (CCH). OEMs produce EVs and the CCH enables roaming
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 137–162, 2024.
https://doi.org/10.1007/978-3-031-54776-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_6&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_6

138 A. Kailus et al.

services for charging at CPs from different operators. Furthermore, the Root
CAs are possible single points of failure. The unique identifier of the charging
contract, called e-Mobility Account Identifier (eMAID), enables user tracking
which raises privacy issues. By analyzing movement profiles, user habits or even
the health status may be deduced, e.g., if the vehicle is regularly charged at a
hospital.

To overcome the issues of centralized systems such as PKIs or identity pro-
viders, Self-Sovereign Identities (SSIs) gained a lot of attention in the last years.
SSI provides a digital identity and enables users to control the information they
disclose to prove their identity and to protect their privacy.

In this paper, we propose an approach for using SSIs as trusted creden-
tials for EV charging authentication and authorization. Our approach solves the
issues of complex centralized PKI and protects against linking multiple authen-
tication processes. The contributions of this paper are as follows: (i) Concept
for the secure integration of SSI into ISO 15118 with privacy-preserving charg-
ing authentication/authorization. (ii) Proof-of-concept implementation showing
minor additional overhead and easy integration into existing systems. (iii) For-
mal security and privacy analysis in the symbolic model using the Tamarin
prover [35]. (iv) Publishing the used Tamarin models (cf. Sect. 7.2) for repro-
ducibility of the automated proofs and reusability of used modeling concepts in
related work.

The remainder of the paper is structured as follows: Sect. 2 describes nec-
essary background to understand our approach. Related work is discussed in
Sect. 3. In Sect. 4, we present identified requirements for our concept which is
introduced in Sect. 5. Our prototypical implementation is described in Sect. 6,
followed by the security, privacy, and practical evaluations in Sect. 7. Finally, we
conclude the paper and discuss future work in Sect. 8.

2 Background

In this section, we describe background on e-mobility and SSI. The focus is on
the certificate-based authentication which we replace with SSI credentials.

2.1 E-mobility

Figure 1 shows a simplified e-mobility architecture for AC and DC charging
according to the ISO 15118 standard. There exist two editions of the standard,
the first edition ISO 15118-2 [21] and the second edition ISO 15118-20 [22] which
brings some security improvements. Our solution can be applied to both versions.
Other methods for charge control/authentication are out-of-scope, e.g., basic
Pulse-Width Modulation (PWM) signaling based on IEC 61851-1 [20] for AC
charging, high-level communication via DIN 70121 [4] (which can be seen as a
simpler/early version of ISO 15118-2 that only supports DC charging and does
not include PnC authorization), or charge authorization via Autocharge [39]
(i.e., insecure authorization via the vehicle’s MAC address).

Self-sovereign Identity for Electric Vehicle Charging 139

ISO-15118
EV CP eMSPCPO

CCH

Contract
Driver

Fig. 1. Architecture Overview (cf. [6])

An OEM manufactures the EV (not shown), provides some initial credentials
to the EV, and sells it to the new owner. The owner concludes a contract with
an eMSP for charging at public CPs which are operated by a CPO. The initial
credential from the OEM are used by the EV to request contract credentials
from the eMSP. A Certificate Provisioning Service (CPS) establishes trust in
the contract credentials provided by the eMSP. The EV stores and uses the
contract credentials for PnC authorization and billing during a charging session
with a CP. The communication between EV and CP is secured with TLS. The
first edition of ISO 15118 uses unilateral TLS authentication of the CP and
challenge-response-based authentication of the EV inside the TLS channel. The
second edition uses mutual authentication with a vehicle certificate installed by
the OEM in addition to the challenge-response-based EV authentication.

ISO 15118 requires multiple certificates and defines a rather complex PKI.
The PKI consists of four1 parts for CPO, OEM, eMSP, and CPS. All PKIs
consist of up to two sub-CAs below a root CA. The root CA for CPO- and
CPS-PKI is the V2G root CA which usually also certifies the sub-CAs of eMSP
and OEM via cross-signing. The eMSP-PKI and OEM-PKI are always certified
by their own root CAs.

The CPO-PKI is used for issuing certificates for CPs which are used for CP
authentication in the TLS handshake.

The OEM-PKI is used to issue the OEM provisioning certificate which
includes the unique identifier Provisioning Certificate Identifier (PCID). The
OEM provisioning certificate is used as initial trust anchor for installing the
contract credentials. In case the second edition ISO 15118-20 is used, addition-
ally, a vehicle certificate is issued for EV authentication in the TLS handshake.

The eMSP-PKI is used to generate the contract certificate after concluding a
contract with an EV owner. The eMSP generates contract certificate data which
consists of a private key and the contract certificate (including the corresponding
public key, a unique identifier called eMAID, and additional information). This
data is installed when the EV is first connected to a public CP. The private key
is encrypted with the public key of the OEM provisioning certificate to ensure
that only the specific EV can access this key.

Finally, the CPS-PKI is used for generating certificates which are used by a
CPS to sign contract certificate data generated by the eMSP. An EV can verify

1 We omit the part for private environments since it is not relevant for our work.

140 A. Kailus et al.

the signature and the certificate chain up to the known V2G root CA. Thus, the
verifier does not need to know the eMSP root CA.

The custom ISO 15118 PKI (with its required trust relations and certificate
handling etc.) incurs a high level of complexity, which resulted in critique by
relevant stake holders [2] and an importance for complexity-reducing measures
[7]. Additionally, as backend communication is out-of-scope for ISO 15118, the
PKI definition leaves many open issues such as certificate revocation handling,
contract validation, or the handling of contract certificate requests/responses.
Addressing these open issues requires proprietary solutions or additional stan-
dardization (e.g., the German VDE guideline for ISO 15118 certificate handling
[46]), which further increases complexity.

In addition to the complexity of the PKI, there is another issue in ISO 15118
namely the lack of privacy protection. Currently, a lot of information, arguably
not required for operation, is disclosed to entities such as CPOs, CCHs, and
eMSPs [27]. For example, it would not be necessary to send the exact time and
CP location of a charging session to the eMSP or the eMAID to the CPO.

2.2 Self-Sovereign Identity (SSI)

A Self-Sovereign Identity (SSI) allows a user to create and fully control a digital
identity without requiring centralized infrastructures or identity providers. The
user can also control how personal data is shared and used by another party via a
decentralized path. After an information is verified by an issuer (e.g., a university
verifying a degree), a verifier (e.g., a company) can always trust that informa-
tion to be true. Subsequently, the information holder (e.g., a student) does not
need to provide the full information to the verifier to prove its identity. This
is achieved using verifiable credentials (standardized by the W3C [44]), the dis-
tributed identity protocol, and a distributed ledger technology (which is mostly
a blockchain). The information holder registers an information identifier at a
ledger, which is verified by an issuer, and the verifier can trust this information.
In the following, we introduce the most relevant terms for our work.

Verifiable Claims. In SSI, the essence is that a counterpart can rely on a claim
without having control over the content of the claim. Here, a distinction must
be made between a Claim and a Verifiable Claim. First, a claim is simply a
statement about a fact that anyone could make and without being verifiable.
For example, it could be stated that Alice is a graduate of a certain university.
However, for this statement to become a Verifiable Claim, the signature of an
issuer may be added to it. Alternatively, zero-knowledge cryptography may be
used in a privacy-preserving manner to indirectly prove that a claim is covered
by a valid verifiable credential [44].

Verifiable Credentials. A collection of claims together with an identifier and
metadata such as the issuer, expiration date, terms of use, and keys form a
credential. Credentials are comparable to conventional ID documents, which

Self-sovereign Identity for Electric Vehicle Charging 141

likewise bundle a number of statements. Multiple credentials can be combined
into one profile.2

Decentralized Identifiers. Identifiers that can be resolved to a Distributed Iden-
tifier (DID) Document3 and do not require a central registration authority to
be created. The DID Document, which can only be modified by the DID Con-
troller, can contain information about public keys, verification methods, the con-
troller, and authentication methods, among other things. The DID Controller
also defines the subject of the DID, e.g., a person or organization. Specific sec-
tions in a DID document can be referenced by the respective DID URL. Both
the DID and the DID Document are stored in a Verifiable Data Registry (e.g.,
a distributed ledger) and their combination is called a DID Record. The public
keys of a DID enable encrypted communication with the owner of the DID. To
do this, a communication partner can either use a DID Record they got from
the other party or look up the public keys in the Verifiable Data Registry [41].

DID Auth. There are 10 different architectures to authenticate an identity holder
using different transports for the challenge-response cycle [43]. The main focus
is to let an identity holder prove to have control over a DID. Authentication can
be unilateral or bilateral, with both parties demonstrating control over their own
DID. This may also involve the exchange of Verifiable Credentials if required by
the use case. There are three ways to combine DID Auth with Verifiable Cre-
dentials: DID Auth and the Verifiable Credentials are exchanged separately (in
that order); The Verifiable Credentials are part of DID Auth and represent an
optional field in the authentication protocol or finally, DID Auth can be con-
sidered a special case of a Verifiable Credential, with a claim “I am me”. The
authentication process is based on a challenge-response cycle where the rely-
ing party authenticates the identity holder using, for example, a cryptographic
signature.

3 Related Work

The increasing integration of information and communication technology into
vehicles enables automated tracking of vehicles which threatens the privacy of
drivers and passengers [1]. [30] discusses privacy issues for electric mobility and
[17] privacy challenges for EV charging.

Several approaches for security and/or privacy in EV charging have been
proposed. In [31,32], an EV authentication protocol for contactless charging (i.e.,
using charging pads integrated into the road) using pseudonyms is proposed. An
architecture for privacy-preserving contract-based charging and billing of EVs
using ISO 15118 is presented in [19]. A formal analysis and improvements of
this architecture are presented in [9]. A privacy-preserving solution for roaming
EV charging and billing based on smart cards is proposed in [37]. The solutions
2 Combining credentials, 2018, https://github.com/w3c/vc-data-model/issues/112.
3 DID resolution, W3C, 2021, https://w3c-ccg.github.io/did-resolution/.

https://github.com/w3c/vc-data-model/issues/112
https://w3c-ccg.github.io/did-resolution/

142 A. Kailus et al.

presented in [27,49,50] all require a Trusted Platform Module (TPM) to realize
a Direct Anonymous Attestation (DAA) scheme for EV authentication. In [26],
an approach for quantum-secure EV charging is presented. Using a TPM for
protecting credentials but without privacy protection is proposed in [13–16]. All
approaches still require a complex PKI.

Some work exists that seeks to address the issues around privacy and user
profiling when charging EVs via the implementation of a new, anonymous pay-
ment channel. This often involves a blockchain solution that promises anony-
mous payment processing and a decentralized infrastructure. The authors of [10],
for example, present a solution where payment for charging electricity is han-
dled through multiple blockchains. A main blockchain negotiates transactions
between the operator and the CPs, and on sub-blockchains, multiple customers
join together to form credit sharing groups in which individual payments cannot
be linked to the buyer of the credits. Here, the degree of anonymity is measured
using K-anonymity, which quantifies the group size from which a user is indistin-
guishable. The main blockchain is connected to the sub-blockchains via a bridge
role that communicates with credit buyers. The authors of [48] also present a
blockchain-based solution for charging EVs, which is also based on K-Anonymity.
Their approach uses a distributed PKI that separates user registration and veri-
fication across two blockchains. Payment here is handled via smart contracts. In
[29], a blockchain-based approach for privacy-preserving selection of a CP based
on tariff options and travel distance is presented. The authors of [47] propose
the implementation of a blockchain-based PKI for Internet of Things (IoT) and
demonstrate the feasibility and efficiency of such an IoT PKI through a proto-
type implementation and experiments. The PKI network is based on Emercoin
15 and uses a proof-of-stake consensus algorithm.

Some work already considers the use of SSI for EV charging. The authors of
[42] provide a high-level analysis of the potential benefits that an SSI solution
can bring to EV charging. However, no detailed concept is proposed and details
on, e.g., the integration into existing EV charging processes or the resulting
overhead are not analyzed. Similar to our work is the approach of [18], which
also uses SSI for decentralized eRoaming. However, this concept differs from
our ISO 15118 extension and makes use of the user’s smartphone instead of
allowing for PnC-based EV authentication without user interaction. Also, no
implementation is developed and a detailed analysis of performance overhead
and security is provided.

In contrast to related work, our work presents a novel solution for the inte-
gration of SSI into the EV charging ecosystem. We consider the integration into
existing protocols and process to enhance the potential usability of the solution
as much as possible. Additionally, we provide a performance analysis based on a
proof-of-concept implementation as well as a formal security and privacy analysis
using the Tamarin prover [35].

Self-sovereign Identity for Electric Vehicle Charging 143

4 System Model and Requirement Analysis

The following section outlines the scope of this work, defines an attacker model,
and discusses the concept requirements, which are grouped into three cate-
gories: Functional Requirements (FR), Security Requirements (SR), and Privacy
Requirements (PR). We derive our requirements under consideration of the state
of the art (cf. Sect. 2) in combination with the attacker model (cf. Sect. 4.2) and
considering relevant threat/requirement analyses from related work (cf. Sect. 3).

4.1 Scope

Among other things, the PnC process maps a bidirectional authentication
between CP and EV to trust the existence of a contractual relationship and
to rule out malicious actors. These authentications in ISO 15118 are based on
a common PKI, which is used, among other tasks, to authorize a vehicle for a
charging process, to authenticate the charging infrastructure, or to establish the
TLS connection. In an all-encompassing extension of traditional authentication
via PKI and its certificates, both authentications would therefore be replaced,
including their use for the TLS connection and the metering messages during
the charging loop. The scope of this work, however, is limited to the propri-
etary application-layer-based authentication process of the contract information
provided by the EV to the CP. Since the CP’s authentication towards the EV
uses generic TLS-based methods and has (based on our analysis) no special
privacy requirements, we argue that the CP’s authentication could be replaced
with generic SSI-based methods (cf. DID Auth in Sect. 2.2) in a straight-forward
manner. This would also address the CP-related PKI requirements. Thus, we do
not consider further details of the CP’s authentication in this work and instead
focus on the EV’s side.

4.2 Attacker Model

A successful attack in the EV charging context could lead to financial damages,
cause safety issues or privacy violations, and may (if large-scale enough) even
cause power grid stability issues [8,24,25]. Thus, in order to make the concept
viable against possible attacks and vulnerabilities, an attacker model is set up
in the following.

Classic attacker models, such as the Dolev-Yao Model [5], outline malicious
network participants capable of intercepting network communications, sending
and modifying messages. However, we assume that basic cryptographic primi-
tives and implementations hold [36].

Additionally, we consider threats to the system’s privacy. The centralized
approach to certificate validation makes users traceable and their personal data
vulnerable to attack by any of the actors. This threat is increased in case one of
the actors is compromised by an attacker or stops following the agreed protocol
to obtain additional information. While such malicious operators pose a major
threat, the danger posed by such malicious operators is limited [40]. This is

144 A. Kailus et al.

mainly due to the fact that operators have to comply with legal regulations and
maintain their image to the public. Taking this into account, the Honest-but-
Curious Operator is described below (cf. [27]).

Above all, the Honest-but-Curious Operator does not want to create a mali-
cious impression to the outside world by deviating from the agreed protocols.
Since involved in the process, such operators use all information available to them
to ultimately derive additional benefit from it. In the PnC context, potentially
Honest-but-Curious Operators can include the CPOs, eMSPs and the CCH. At
this point it is assumed that several operators do not accumulate their available
information to draw a more comprehensive data picture, since this is opposed
to the competition relationship among operators and should additionally be
prevented by regulations. Ultimately, the regulation of operators is beyond the
control of this concept.

4.3 Functional Requirements

In order to ensure user-friendliness and to allow for an easy integration of
the solution into existing protocols and processes, we define several functional
requirements. The requirements ensure that features of the original ISO 15118
can be supported by the new concept. For example, in order for the vehicle to
authenticate itself at the charging stations with its contract information, a pro-
cess must be defined for contract installations which provide the vehicle with
the necessary information. In order to uniquely associate a driver’s contract
with the vehicle, the vehicle must be uniquely identifiable during the installa-
tion process. In order to ensure that the solution is user-friendly, any additional
overhead should remain acceptable. Functional Requirements (FR) are listed in
the following:

FR1 Vehicle charging as well as contract installation should still be possible
without further user interaction, since this is the concept of PnC.

FR2 Contract authentication via SSI should be negotiable as an option to the
existing authentication methods.

FR3 All SSI roles should be able to be taken by an actor from the ISO 15118
ecosystem. In SSI, the credential verification process principally covers
three roles: the Issuer, the Holder and the Verifier, which must be uniquely
applied to an entity in the PnC context for each authentication.

FR4 The vehicle should continue to manage the necessary authentication infor-
mation itself (in a wallet).

FR5 All contract issues from all issuers should fit an agreed schema baseline.
FR6 As in ISO-15118, it should be possible to delay the installation of the

contract information until the first charging process.
FR7 The charging station should relay communication from the vehicle to the

other actors in case the vehicle cannot use cellular.
FR8 The additional computational- and communication overhead of a SSI-based

solution should be minor.

Self-sovereign Identity for Electric Vehicle Charging 145

4.4 Security and Privacy Requirements

The non-functional requirements for the concept are listed and explained below.
This includes Security Requirements (SR) and Privacy Requirements (PR). The
security requirements focus on providing secure authentication for the actors
involved in relevant processes (setup, credential installation, charging, billing):

SR1 The setup proceeds of the solution should be secure (e.g., the setup of EVs
with provisioning credentials or the setup of eMSPs as issuers of verifiable
credentials). That is, all relevant parties should be securely authenticated
to enable trust between the parties.

SR2 During the contract credential installation the eMSP should be able to
trust in the originality of the vehicle, similarly to the OEM provisioning
certificate in ISO 15118, which is installed during vehicle production. That
is, the EV should securely authenticate itself towards the eMSP during the
credential installation process.

SR3 The CP/CPO should be able to trust the EV’s provided contract infor-
mation. That is, the EV should securely authenticate itself towards a CP
before the start of a charging process.

SR4 The contract information should allow the eMSP to associate an invoice
from a CPO with a contract. That is, the EV’s charge authentication
data should securely authenticate the EV’s contract towards the eMSP for
billing.

The privacy requirements focus non-traceability and non-linkability of EV users:

PR1 During the authentication process no information should be exchanged
that makes the user traceable to either a CPO, CCH or an eMSP, prevent-
ing the creation of a user’s movement profile (non-traceability).

PR2 A specific CPO, CCH or eMSP should not be able to associate multiple
charging operations with individual users (non-linkability).

Notably, traceability and linkability of EV users by their eMSP is feasible due
to payment processing via traditional payment methods. This problem may be
solved by using smart contracts (cf. [48]), which is out-of-scope for this paper.

5 SSI Concept

In the following, our concept for integrating an SSI-based solution into the
ISO 15118-2 authentication process is developed, including an architectural over-
view and the message sequences of the communication between the actors. The
main challenge is in the specific combination of the different SSI concepts (cf.
Sect. 2.2) such that actors, processes, and features of the existing EV charging
architecture can still be supported while also designing the concept in a way that
enables the (Tamarin-based) symbolic verification of the strong security and pri-
vacy requirements (cf. Sect. 4.4). Additionally, we discuss the applicability of the
proposed solution to ISO 15118-20.

146 A. Kailus et al.

5.1 Concept Overview

In this specific scenario, the already existing parties of ISO 15118 are sufficient
to map all three roles Holder, Verifier, and Issuer of the SSI process.

The Holder and the Verifier of the contract authentication process are easy
to identify in the PnC context: The Holder is the actor in possession of the
contract information. This data could be stored either in a wallet on the driver’s
smartphone, along with other credentials, or in the EV in the form of an on-board
wallet. The first option would require driver consent each time information is
accessed from the wallet, similar to [34]. Since the main goal of PnC is to enable
vehicle charging without further user interaction, it is preferable to install the
wallet in the EV. This also eliminates the need to communicate with the driver’s
smartphone. Since the verifier needs to authenticate the contracts, this role is
taken by the CP, which is already performing this task in ISO 15118.

The issuer first needs access to the original contracts to authenticate them
as credentials. This condition applies only to the eMSP, with each eMSP having
access solely to the contracts of its clients. Furthermore, the verifiers, i.e., the
CPs, should be able to trust the issuer. Since the CPs already had to trust the
eMSPs in the conventional ISO 15118, this condition is also met.

To grant multiple issuers write permissions on the Ledger to create documents
like Credential Definitions or Credentials, an additional instance is needed that
can give these permissions to the different issuers - the Steward.

PnC Context

4. Charging &
Authentication

EV CP

1. DID & Verinym

3. Credential
Installation

eMSP

2. Provisioning DID

Steward

LedgerAP
I

Fig. 2. Architecture Overview

Figure 2 shows how these four actors interact for charging authentication
in the overall system. Initially, only the steward is authorized to write to the
ledger which reduces the number of first-level write permissions. The steward
grants second-level write permissions to new eMSPs later on. The steward writes
these permissions to the ledger in the form of a verinym (step 1), which enables
the eMSP to authenticate its contracts. A verinym is associated with the legal
identity of the identity holder [11]. Thus, the legal entity of the eMSP that enters

Self-sovereign Identity for Electric Vehicle Charging 147

into the contracts with the customers is associated with the identity on the ledger
that has write permissions for the credentials of those same contracts.

In step 2, a Provisioning DID is created for the vehicle. This is done before
the vehicle is sold. This Provisioning DID is necessary to be able to link a specific
vehicle to a contract later on. Furthermore, with the help of the public key of a
DID, it is always possible for other actors to communicate with its owner in an
encrypted way, which will also be helpful later on. Of course, this also applies to
all other DIDs used in the PnC context.

Then, in order for the necessary contract information to be authenticated
during a charging process, the information must be transferred to the vehicle.
This third step can happen once a contract is established and the vehicle has
connected to the internet (directly or via a CP). Since the vehicle may have wire-
less, but this is optional, this step can take place sometime after the Provisioning
DID has been created between the conclusion of the contract and the charging
process. For this, the vehicle requests the credentials from the respective eMSP,
which authenticates them on the ledger.

The vehicle can then authenticate itself to the CP during the charging pro-
cess in the final step 4. Authentication uses Anoncreds,4 i.e., zero-knowledge
proofs with Camenisch-Lysyanskaya (CL)-based credentials and paring-based
revocation [28]. In short, the EV proofs to the CPs that it possesses valid con-
tract credentials and that these credentials have not been revoked by the issuer
(without revealing the actual credentials).

The following sections describe the changes made to the message sequence of
ISO 15118 in order to create a working infrastructure for the transition to SSI
authentication.

5.2 Provisioning DID Creation

Prior to any charging process, the issuer, in this case the eMSP, must be autho-
rized to issue credentials. That is, the eMSP needs write permission to the ledger,
which requires publishing its DID (containing a public key) to the ledger. Such
a DID is often called a Verinym. The eMSP makes a request to the steward,
which is authorized to write to the ledger. This process is secured based on pre-
negotiated secret or public keys. Since both communication partners are legal
entities, it can be assumed that there is an agreement between the two in which
a secret or public key can be exchanged.

Anther setup process is the creation of a Provisioning DIDs (cf. Fig. 3), which
is a prerequisite for linking the contract and the vehicle. This process is described
in the following paragraphs:

Step 1. The EV provisioning process, starts with the production of the vehicle.
During this process, the EV creates a Provisioning DID, which enables encrypted
communication with the EV using the corresponding public key (shared via the
ledger; without requiring a traditional PKI). A part of the DID is the DID

4 https://github.com/hyperledger/indy-sdk/tree/main/docs/design/002-anoncreds.

https://github.com/hyperledger/indy-sdk/tree/main/docs/design/002-anoncreds

148 A. Kailus et al.

Fig. 3. Provisioning DID Creation

record, which contains the public information for a given DID and must be
written to the ledger. In order to write an EV’s Provisioning DID record on
the ledger, communication towards the steward is handled by the EV’s OEM on
behalf of the EV. After connecting to the steward, the OEM starts with sending
an InitNymReq with a nonce, answered by the steward with an InitNymRes,
containing a DID for a key of the steward, the OEM’s nonce, a fresh nonce from
the steward and the OEM’s ID. The InitNymRes is signed by the steward (with
the key corresponding to the DID) and encrypted with a public key of the OEM.
The steward’s DID allows the OEM to encrypt future messages to the steward,
and the nonces are used to ensure replay-protection and subsequently a proof of
possession for the EV’s Provisioning DID. The OEM creates a Provisioning DID
(on behalf of the EV and for a provisioning key pair that is provided to the EV),
decrypts the steward message, verifies the signature, and signs the steward’s
nonce with the private key of the Provisioning DID.5 The Provisioning DID
(including the corresponding public key) and the signature are sent back to the
steward, encrypted with the public key from the steward’s DID.

Steps 2 and 3. When the vehicle is purchased, the Provisioning DID, is passed
to the user so that the user can pass the Provisioning DID to the eMSP and
negotiate a contract. The handover at the time of concluding a contract with the
eMSP could be via a QR code sent to the user, who then activates the contract by
passing on the DID, but other ways are not excluded. Since a potential co-reader
does not have the private keys of the DID, he cannot prove their possession and
cannot succeed in a challenge. This completes the process until the first charging
session.
5 While it would be possible to generate the Provisioning DID key pair in the EV (sim-

ilar to [13,16]) and have the OEM only collect a signature over the steward’s nonce
from the EV (which would prevent the EV’s private key material from ever leaving
the EV), we believe that this method may result in scalability issues. Additionally,
one may assume a secure OEM to EV relation during production (in a controlled
environment), which limits the security benefit of exclusive key possession by the
EV.

Self-sovereign Identity for Electric Vehicle Charging 149

5.3 Contract Credential Installation

The following is an explanation of the general process steps for installing the Con-
tract Credential (cf. Fig. 4), which requires a Provisioning DID and an existing
contract with an eMSP. This process is modeled on the Issue Credential Protocol
from [12].

4. Create DID

Car Wallet

EMSP

(4,5,8)
C

CP
6. Create

7. Revocation
Data

8. SEND
Contract Cred

DID

5. SEND DID

Car
Blockchain

CPO
Provisioning

ID / Cert / DID

Fig. 4. Contract Credential Installation

Step 4 and 5. Contract credentials are required in the vehicle during a charging
process. To do this, they must first be created and installed in an EV. Similarly
to the current installation process in ISO 15118, we tunnel the necessary com-
munication between the EV and the backend via the CP. This method enhances
usability as the vehicle may not be able to connect to the Internet, and thus
to the ledger and other services, until it is plugged into a CP for the first time.
Once the connection is established, the EV starts by sending its Provisioning
DID to the eMSP. The eMSP responds with its DID and a Credential Offer,
which includes a nonce and a Credential Definition ID. The latter identifies a
credential schema, which specifies the structure of all issued credentials (of a
certain contract type) by this eMSP with all necessary and optional fields, with
public keys, and a Revocation Registry. The eMSP’s response is encrypted for the
EV based on the Provisioning DID (i.e., based on the respective Provisioning
DID public key).

Steps 6, 7, and 8. If the EV agrees to this Credential Offer, it generates a
master secret for the credential. The EV then creates a blinded master secret
for the Credential Offer and a correctness proof (as per Anoncreds definition).
Afterwards, the EV builds a Credential Request with the blinded master secret
and correctness proof and encrypts this request based on the eMSP’s DID.

The eMSP decrypts this Credential Request and uses it to create the Contract
Credentials that an EV needs in order to authenticate itself at CPs. Additionally,
the eMSP updates the revocation information, i.e., the public tails files and

150 A. Kailus et al.

the accumulator6 on the ledger to include the new credential. This step can
optionally include the revocation of old credentials in case a contract has been
terminated or the terms of the contract have changed.

The Contract Credentials need to be authenticated by an authorized issuer,
which can be the eMSP, and contain all billing-relevant information as attributes.
This billing-relevant information, is at least, the eMSP’s ID, which is needed by
CPs/CPOs to identify the EV user’s eMSP for billing purposes. Additionally,
the credential attributes can include any tariff information that may be useful to
CPs/CPOs (e.g., pricing thresholds or if Vehicle to Grid (V2G) power transfer
is supported). The EV user can always decide which attributes from a Contract
Credential they want to reveal during a zero-knowledge proof.

The EV receives the signed Contract Credentials along with the credential
revocation information from the eMSP encrypted with the public key of the
Provisioning DID via the existing connection in a CreateContractCredentialRes.
The eMSP’s response additionally includes a symmetric contract key, which is
later used to securely authenticate the EV’s contract towards the eMSP for
billing purposes. The EV decrypts and verifies the received data and stores it
for later authentication during charge sessions.

5.4 Charging Process and Credential Validation

The following section will outline the changes to the charging process (cf. Fig. 5).
Specifically, the message sequence Identification, Authentication, and Authoriza-
tion from ISO 15118 is considered.

Car
Car Wallet Blockchain(4,5,8)

12. Billing
Information

CPOCP

11. Validate
10. Send Proof
9. Send Proof Req

EMSP

Fig. 5. Credential Validation during the Charging Process

Step 9. Figure 5 shows the authentication of the vehicle by the CP. In ISO 15118,
service parameters such as the payment method are negotiated in the Service-
DiscoveryReq/-Res. The authentication method now becomes another service
parameter, making Contract Proof Identification Mode a third option besides the

6 https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-
revocation/README.html.

https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-revocation/README.html
https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-cred-revocation/README.html

Self-sovereign Identity for Electric Vehicle Charging 151

existing modes (e.g., PnC). In this Contract Proof message sequence, Identifica-
tion, Authentication, and Authorization messages from ISO 15118 are changed
after the PaymentServiceSelectionRes.

By sending a RequestProofReq/-Res the EV receives a proof request from
the CP. The CP’s proof request includes a nonce and specifies which individual
credential attributes the CP expects in its role as verifier, not necessarily all the
credentials/attributes issued to the EV by the eMSP.

Step 10. From the proof request, the EV then creates a zero-knowledge proof
for the requested attributes and a proof of non-revocation using its credential
master secret and the CP’s nonce. The proofs guarantee to a verifier that the
EV possesses valid non-revoked credentials for the identified attributes. The EV
additionally uses its symmetric contract key to authenticate its contract towards
the eMSP by generating an HMAC over a hash of the CP’s proof request, a
contract identifier, and a timestamp. The hashed proof request is used to bind the
contract authentication data to the current CP/session, the contract identifier
is used by the eMSP to identify the correct contract and symmetric contract
key, and the timestamp is used to prevent replays. The contract authentication
data is encrypted for the eMSP and sent together with the proofs to the CP in
a ValidateContractProofReq message.

Step 11. The CP can validate the zero-knowledge proof for the credential
attributes by using the eMSP’s public key and can validate the revocation status
of the corresponding credential by using the eMSP’s public tails file and the cor-
responding accumulator value from the ledger. If all verifications are successful,
the CP responds with a ValidateContractProofRes to the EV. Thereupon, the
charging process can continue as described in ISO 15118.

Step 12. Finally, the encrypted contract authentication data (along with other
billing relevant data, e.g., meter values) is sent from the CP to its CPO, who
can forward this data to the corresponding eMSP. The eMSP can decrypt the
contract authentication data and identify the correct contract. Hence, the usual
billing relations are still possible, i.e., the CPO can bill the eMSP and the eMSP
can bill the EV user. However, the CP/CPO can no longer identify the specific
EV user and the eMSP can no longer identify the specific charging location.

5.5 Integration into ISO 15118-20

While ISO 15118-2 is still the prominent edition of the protocol today, we
already consider the integration of our solution into ISO 15118-20, which can
be expected to gain increased adoption in the future. We identify several rel-
evant changes to the credential installation and charge authorization processes
with ISO 15118-20 as follows: (i) updated cipher suites (e.g., from 128 bit AES
to 256 bit AES), (ii) mutual authentication during the TLS handshake (instead
of unilateral CP authentication), and (iii) the option to install multiple different
contract credentials into one EV (e.g., for different eMSP charging contracts).

152 A. Kailus et al.

We argue that the proposed solution is also applicable for ISO 15118-20 as
follows: (i) our solution is independent of specific cryptographic algorithms, (ii)
the generic TLS based authentication (without application-specific requirements
unlike the EV’s application-layer authentication) can be replaced with generic
DID-based approaches (to prevent the need for a conventional PKI) whereby the
EV’s authentication should again use Anoncreds (to not undermine the gained
application-layer privacy), and (iii) the installation of multiple contract creden-
tials is possible by repeating the process of Sect. 5.3.

6 Implementation

To demonstrate the feasibility of the concept, the contract authentication
described therein was implemented during the charging process together with
all preceding initiation steps such as the creation of the DIDs or the installation
of contract credentials. Our implementation is based on the ISO 15118 reference
implementation RISE-V2G [45]. In order to compare the concept with the actual
state of the standard, we compare our implemented methods with the default
RISE-V2G implementation.

The reference implementation covers all necessary features to establish com-
parability to the status quo and at the same time serve as a basis for the imple-
mentation of the concept. The project Hyperledger Indy7 provides an imple-
mentation for all necessary SSI-operations, thus the Indy SDK8 was chosen to
be integrated into our prototype. The reference implementation was extended
by the steward and the eMSP in addition to the existing services EV and CP.
They are responsible for the detailed handling of the schemas, credential def-
initions, and credentials and interact with the other actors. Our prototypical
implementation focuses on the message sequence Identification, Authentication,
and Authorization and the associated communication between EV and the other
services as described in the concept. The actual accounting and communication
between the secondary actors is not part of the implementation, as this is not
in the scope of ISO 15118. Additionally, the eMSP onboarding, its creation of
the three data structures Credential Schema, Credential Definition, and Revo-
cation Registry for the credentials of its customers’ contracts and installation of
Provisioning DID are also realized in the implementation.

The concept provides for the eMSP to use the secure channel established by
the exchanged DID to create a WriteVerinymReq. In the prototype implemen-
tation, however, communication is still secured via the old certificate infrastruc-
ture, as this has only been extended to include the EV authentication. The CP
continues to authenticate itself via certificates.

7 Evaluation

In this section, we evaluate the proposed/implemented solution. Specifically,
in Sect. 7.1 we discuss the performance results based on our implementation
7 Hyperledger, 2021, https://www.hyperledger.org.
8 Indy SDK, 2021, https://github.com/hyperledger/indy-sdk#libindy-wrappers.

https://www.hyperledger.org
https://github.com/hyperledger/indy-sdk#libindy-wrappers

Self-sovereign Identity for Electric Vehicle Charging 153

from Sect. 6, in Sect. 7.2 we describe our Tamarin-based symbolic security and
privacy proofs, and in Sect. 7.3 we discuss how the concept addresses the defined
requirements from Sect. 4.

7.1 Performance Measurements

Regarding performance, we evaluate the computational- and communication
overhead of the proposed solution in comparison to the default ISO 15118 pro-
cesses as implemented by RISE-V2G. Additionally, we verify that the incurred
overhead remains within the existing timing and size constraints of the ISO 15118
standard (relevant constraints are the same for ISO 15118-2 and ISO 15118-20).
For both types of overhead, the main changes are within the credential installa-
tion and charge authorization processes. Details are shown in Table 1.

Table 1. Duration and Size of Charging Session Messages for both Implementations

Message Name RISE-V2G SSI Impl.
time [ms] size [byes] time [ms] size [byes]

Credential Installation
CertificateInstallationReq 296.0 811 - -
CertificateInstallationRes 32.8 3638 - -
GetCredOfferReq - - 4.0 106
GetCredOfferRes - - 44.613 6710
CreateContractCredentialReq - - 134.429 2185
CreateContractCredentialRes - - 2603.864 5961
Charge Authorization
PaymentDetailsReq 649.8 1452 - -
PaymentDetailsRes 73.6 37 - -
AuthorizationReq 129.6 13 - -
AuthorizationRes 7.5 15 - -
RequestProofReq - - 65.3 58
RequestProofRes - - 3.6 266
ValidateContractProofReq - - 282.302 7281
ValidateContractProofRes - - 136.3 55

The communication overhead of the proposed solution for credential instal-
lation messages is 14,962 bytes in total. The default RISE-V2G method requires
4,449 bytes for credential installation. Regarding charge authorization, the mes-
sages of the proposed solution are 7,660 bytes in total and the messages of the
default RISE-V2G method are 1,517 bytes. For comparison, based on our mea-
surements, the total communication overhead of a full 1-h default RISE-V2G

154 A. Kailus et al.

charge session with a credential installation and a charge status message inter-
val of 10 s is roughly 20,000 bytes. Notably, the only limit on message sizes of
the ISO 15118 standard is a result of its 4 byte payload length field and is
4,294,967,295 bytes ([21], Sect. 7.8.3). Hence, we argue, that the increased over-
head of the proposed solution is still acceptable.

For computational overhead, all measurements were performed 1000 times9
and we report the respective average times (always including processing and
message transfer). Regarding credential installation, the mean time of the pro-
posed solution was 2786.9 ms compared to 328.8 ms with the default RISE-V2G
method. Regarding charge authorization, the mean time of the proposed solu-
tion was 487.502 ms compared to 860.5 ms with the default RISE-V2G method
(mostly due to certificate path validations). The results show good performance
for the proposed method, especially considering that credential installation is
rarely performed (only if a new contract is concluded or old credentials renewed).
Notably, ISO 15118 defines relevant timeouts as: 40 s for generating a certificate
installation request, 5 s for receiving a certificate installation response, 40 s for
requesting a charge authorization, and 2 s for verifying the authorization ([21],
Sect. 8.7.2). Hence, the proposed solution can still meet all relevant limits.

7.2 Security and Privacy Analysis with Tamarin

We analyze the security of the proposed solution in the symbolic model using the
Tamarin prover [35] and the corresponding files are provided online.10 Tamarin is
a state-of-the-art tool for automated security protocol analysis. By default, anal-
ysis is performed in the symbolic model, i.e., assuming a Dolev-Yao adversary
[5] with full control over the network who cannot break cryptographic primitives
without knowing the respective private key (cf. adversary model in Sect. 4.2).

With Tamarin, protocols are specified using a set of rules, which define all
relevant communication and processing steps of the protocol. Additionally, secu-
rity requirements are defined as trace properties (lemmas), which need to hold
for all possible execution traces of the protocol, i.e., all traces that can be built
with the defined rules. Tamarin performs an exhaustive search for a trace that
violates the defined requirements. If a trace is found, this trace serves as a coun-
terexample (a specific attack path that violates the requirement). If no trace is
found, the security requirement is proven to be satisfied by the defined protocol.

Furthermore, Tamarin enables the verification of observational equivalence
properties, which can be used to show that an adversary cannot distinguish
between two protocol runs. Observational equivalence is especially useful in order
to verify privacy properties, e.g., by proving anonymity in EV charging by show-
ing that an adversary cannot distinguish between two charge authorizations of
different EVs.

9 The measurements were performed on a Lenovo Thinkpad T480 with Intel® Core™
i5-8250U CPU @ 1.60 GHz × 8, 15.5 GiB Ram, running Ubuntu 20.04.3 LTS 64-bit.

10 https://code.fbi.h-da.de/seacop/SSI-PnC-Tamarin.

https://code.fbi.h-da.de/seacop/SSI-PnC-Tamarin

Self-sovereign Identity for Electric Vehicle Charging 155

Security Proofs.
The security requirements from Sect. 4.4 require authentication between differ-
ent actors over different data. The most commonly used notion to prove strong
authentication properties is defined in [33], namely injective agreement (prevent-
ing spoofing, replay, etc.). This property is defined as follows:

Definition 1 (Injective Agreement [33]). A protocol guarantees to an ini-
tiator A injective agreement with a responder B on a set of data items ds if,
whenever A (acting as initiator) completes a run of the protocol, apparently with
responder B, then B has previously been running the protocol, apparently with
A, and B was acting as responder in his run, and the two agents agreed on the
data values corresponding to all the variables in ds, and each such run of A
corresponds to a unique run of B.

Using our defined Tamarin model, (See footnote 10) we successfully verify
the following security properties based on the notion of injective agreement (cf.
Definition 1). For this, we assume one steward and the ledger is modeled as a
secure storage, where only authorized entities can write but everyone can read.
Communication with the ledger is assumed to be a secure channel as specifics of
this communication are not part of our concept, but instead standardized by the
respective ledger specification. Additionally, we assume that the long-term key of
all actors in a specific protocol run are secure since otherwise, attacks are trivially
possible (e.g., if an EV’s private provisioning key is leaked to an adversary, this
adversary can spoof the affected EV towards an eMSP for contract credential
installation). However, in order to keep the needed assumptions as weak as possi-
ble, other entities of the same types that are not directly involved in the protocol
run can be compromised. For normal signatures/encryptions we use the built-in
Tamarin functions. The EV zero-knowledge credential proofs are modeled with
custom functions, whereby the EV can create a zero-knowledge proof based on
the installed credential and its master secret, which the CP can verify with the
eMSP’s public key and revocation can be verified via a simple request over an
accumulator in the ledger. However, zero-knowledge proofs are modeled without
specific cryptographic details, since, in the symbolic model, cryptographic func-
tions are anyway assumed to be secure. Besides the injective agreement-based
lemmas to proof the desired security properties, our Tamarin files (See footnote
10) also includes lemmas to verify the correctness of the defined model. That
is, correctness lemmas are included to verify that the intended processes can be
implemented with the defined rules and without adversary intervention in order
to prevent the security properties from being trivially met by an incorrect model
(e.g., all possible authentications are trivially secure if no authentication is pos-
sible at all). In the following, we describe the verified security properties. Note
that the following paragraphs only provide intuitive descriptions of the verified
properties as the full proofs are automatically generated with the Tamarin tool
based on the defined models. The full formal definitions are part of our Tamarin
models (provided online (See footnote 10) for reproducibility).

156 A. Kailus et al.

1 lemma auth_emsp_steward_verinym :
2 " Al l Steward S_DID EMSP Verinym_DID #i .
3 CommitStewardVerinym (Steward , S_DID, EMSP, Verinym_DID) @

i
4 ==> (Ex #j .
5 RunningEMSPVerinym(EMSP, S_DID, Verinym_DID) @j
6 & (#j<#i)
7 & not (Ex Steward2 EMSP2 S_DID2 #i2 .
8 CommitStewardVerinym (Steward2 , S_DID2 , EMSP2,

Verinym_DID) @ i2
9 & not(#i2=#i)))

10 | (Ex RevealEvent Entity #kr .
11 KeyReveal (RevealEvent , Entity) @ kr
12 & Honest (Entity) @ i) "

Listing 1.1. Injective Agreement Lemma in Tamarin

Secure Setup (eMSP to Steward). Regarding the secure setup (SR1), we verify
that an eMSP and a steward (identified by their DID) injectivly agree on the
eMSP’s verinym DID (and corresponding public key) during the onboarding
process. That is, whenever a steward S accepts an DID for writing on the ledger,
apparently from an eMSP E, E has previously sent this DID to S and both
actors agree on the content of the DID. Additionally, each accepted DID by S
corresponds to a unique request from E. The only allowed exception is, if the
long-term key of one of the parties involved in a specific protocol run was leaked.

The Tamarin lemma, which models the Secure Setup (eMSP to steward)
security property is shown as an example in Listing 1.1. Hereby, lines 2–6 indicate
that for every accepted eMSP verinym DID by as steward (identified by S_DID)
at time i, there exists an event where the same eMSP has sent this verinym
DID to the same steward at time j and j was before i. Lines 7–9 models the
uniqueness property of the acceptance by the steward, i.e., it says that there
cannot exist another protocol run between the same or different actors (steward2
and EMSP2) where the same verinym DID is accepted. Lines 10–12 model the
exception, that the security property can be broken if the long-term keys of one
of the actors involved in the protocol (i.e., the actor was assumed honest at time
i; line 12) run was revealed.

Secure Setup (Cont.) Regarding the secure setup (SR1), we additionally verify
that a steward and an eMSP injectivly agree on the steward’s DID public key
during the onboarding process. Furthermore, we verify mutual injective agree-
ment between OEM and steward during the onboarding process of an OEM (see
the full Tamarin models (See footnote 10) for details).

Secure Contract Credential Installation. Regarding the secure credential instal-
lation (SR2), we verify that an EV and an eMSP (identified by their DID)

Self-sovereign Identity for Electric Vehicle Charging 157

injectivly agree on a contract credential request and response respectively dur-
ing the installation process (see the full Tamarin models (See footnote 10) for
details). The only allowed exceptions are: (i) if the long-term key of one of the
parties involved in a specific installation protocol run was leaked or (ii) if the
long-term keys of a previous OEM to steward setup were leaked.

Secure Charge Authentication and Authorization. Regarding the secure charge
authentication (SR3), we verify that an EV and a CP injectivly agree on an EV’s
charge request during the authentication process. Additionally, for secure charge
authorization/billing (SR4), we verify that an EV and an eMSP injectivly agree
on an EV’s charge authorization data for the billing process (see the full Tamarin
models(See footnote 10) for details). The only allowed exceptions are: (i) if the
long-term key of one of the parties involved in a specific installation protocol
run was leaked or (ii) if the long-term keys of a previous OEM to steward setup
were leaked or (iii) if the long-term keys of a previous credential installation
were leaked.

Privacy Proofs.
For our privacy analysis, we mainly focus on the verification of symbolic unlinka-
bility properties. Formally, unlinkability is commonly defined as the adversary’s
inability to distinguish between a scenario in which the same user is involved
in multiple protocol runs with a scenario that involves different users per pro-
tocol run [3]. This kind of unlinkability definition has been shown as usable for
an automated analysis with Tamarin (based on Tamarin’s observational equiva-
lence feature) in the EV charging context by [27]. Specifically, we use Tamarin to
prove observational equivalence for a scenario with two protocol runs that may
be initiated by the same EV or by different EVs. Our models assume Honest-
but-Curious Operators (cf. adversary model in Sect. 4.2) and we use separate
Tamarin models per property for simplicity. The following descriptions provide
an intuitive description of the verified properties and full formal definitions can
be found as part of the provided Tamarin models. (See footnote 10)

Non-traceability. Regarding preventing the creation of a movement profiles
(PR1), we verify unlinkability of EVs/users based on their billing relevant data
(as received by the backend). Specifically, we show that for two honest EVs
EV1 and EV2, the (Honest-but-Curious) adversary cannot distinguish between
the scenario where charge billing data is received for an (authorized) session of
EV1 and EV2 each and the scenario where charge billing data is received for
two (authorized) session of EV1. Charge session may be at the same or differ-
ent locations to show that linkability across locations (i.e., traceability) is not
possible.

Non-linkability. Regarding the non-linkability of EV users (PR2), we verify
unlinkability of EVs/users based on their authentication/authorization data
(as generated by the EV). Analogously to non-traceability, we show that the

158 A. Kailus et al.

(Honest-but-Curious) adversary cannot distinguish between a scenario with two
authorizations of different EVs and a scenario with two authorizations of the
same EV.

7.3 Discussion of Requirements

The functional requirements are addressed by the concept design as follows:
Credential installation and charge authorization are still possible without user
interaction FR1, which ensures user-friendliness. Contract authentication via SSI
can be negotiated via the ServiceDiscoveryReq/-Res messages FR2. All SSI roles
are covered by actors from the ISO 15118 ecosystem as discussed in Sect. 5.1 FR3.
Vehicles manage their contract credential in their own wallet FR4. All contract
credentials contain the same core elements as discussed in Sect. 5, which allows a
CP to authenticate the contract of different eMSPs FR5. Credential installation
can be delayed until the first charging session FR6 using the messages described
in Sect. 5.3. Communication of the EV (e.g., for credential installation or reading
data of the ledger) can still be tunneled via the CP FR7 using the same concepts
as for the default ISO 15118 method (e.g., credential installation messages are
simply forwarded to the backend in Base64 encoding via OCPP 2.0 [38]). We
judge the additional overhead to be acceptable FR8 as discussed in Sect. 7.1.

The security requirements SR1–SR4 are addressed as discussed in Sect. 7.2.
In short, the security requirements are shown to be met via symbolic proofs
using the Tamarin tool. The corresponding models for automated proof genera-
tion are provided online. (See footnote 10) All properties are verified in roughly
30min on a standard laptop.11 The published repository includes the defined
model/lemmas, the used oracles (for performance such that the model analysis
terminates within a reasonable time frame), and instructions on running the
models (for reproducibility of the formal analysis).

Analogously, the privacy requirements PR1 and PR2 are addressed as dis-
cussed in Sect. 7.2 and the models for automated proof generation are provided
online. (See footnote 10) The concept primarily prevents linkability/traceability
through the authentication process at the CPO/CP. However, since traditional
payment channels are still supported and thus charging sessions must be associ-
ated by the eMSP with the respective customers, the eMSP can still link them.
This could be fixed via anonymous payment methods, which is out-of-scope for
this paper. Additionally, since we focus on the application layer authorization
mechanism, linkability based on communication meta data is not addressed by
the presented solution. For example, a CPO/CP could potentially track specific
EVs based on their MAC addresses, which could be prevented by generic solu-
tions such as MAC address randomization (which is already used by some EV
OEMs such as Volkswagen Group [23]). Furthermore, since colluding operators
are excluded in the adversary model (cf. Sect. 4.2), the privacy guarantees can
be violated if the respective actors collude (e.g., collusion between an eMSP and
a CPO to link charge sessions to a location). Colluding operators are outside

11 Using a Lenovo ThinkPad T14 Gen 1 with 16GB RAM.

Self-sovereign Identity for Electric Vehicle Charging 159

the scope of this paper (which focuses on a privacy-by-design solution for charge
authorization to minimize privacy risks) but may for example be enforced by
regulations.

8 Conclusion

In this paper, we propose an approach for using SSIs as trusted credentials for
EV charging authentication and authorization in ISO 15118. By using verifiable
credentials with zero-knowledge proofs, our solution addresses the privacy prob-
lems of ISO 15118 providing unlinkability of charging sessions. Furthermore, our
solution uses a decentralized distributed ledger and does not require a complex
centralized PKI anymore. Our prototypical implementation and performance
evaluation show that the computational and communication overhead of our
solution is relatively low and should be acceptable for a real-world implemen-
tation. Our formal analysis using Tamarin shows that all required security and
privacy properties hold, i.e., still guarantee authentication properties between
different actors while preserving the EV user’s privacy to the highest possible
extent (only eMSP can link a user’s charging events for billing purposes). Future
work could expand our concept to the authentication of all PnC actors, especially
CPs.

Acknowledgements. This research work has been partly funded by the German Fed-
eral Ministry of Education and Research and the Hessian Ministry of Higher Education,
Research, Science and the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE and the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - project number 503329135.

References

1. Bradbury, M., Taylor, P., Atmaca, U.I., Maple, C., Griffiths, N.: Privacy challenges
with protecting live vehicular location context. IEEE Access 8, 207465–207484
(2020)

2. ChargePoint, DigiCert, Eonti: Practical considerations for implementation and
scaling iso 15118 into a secure ev charging ecosystem, May 2019. https://www.
chargepoint.com/files/15118whitepaper.pdf

3. Delaune, S., Hirschi, L.: A survey of symbolic methods for establishing equivalence-
based properties in cryptographic protocols. J. Log. Algebraic Methods Programm.
87, 127–144 (2017)

4. DIN Standards Committee Road Vehicle Engineering: Electromobility - Digital
communication between a d.c. EV charging station and an electric vehicle for
control of d.c. charging in the Combined Charging System. DIN SPEC 70121:2014–
12, Deutsches Institut für Normung (DIN) (12 2014)

5. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

6. ElaadNL: EV related protocol study, January 2017. https://www.elaad.nl/
research/ev-related-protocol-study/

https://www.chargepoint.com/files/15118whitepaper.pdf
https://www.chargepoint.com/files/15118whitepaper.pdf
https://www.elaad.nl/research/ev-related-protocol-study/
https://www.elaad.nl/research/ev-related-protocol-study/

160 A. Kailus et al.

7. ElaadNL: Exploring the public key infrastructure for iso 15118 in the ev charging
ecosystem, November 2018. https://www.elaad.nl/news/publication-exploring-
the-public-key-infrastructure-for-iso-15118-in-the-ev-charging-ecosystem/

8. Falk, R., Fries, S.: Electric vehicle charging infrastructure security considerations
and approaches. In: Proceedings of INTERNET, pp. 58–64 (2012)

9. Fazouane, M., Kopp, H., van der Heijden, R.W., Le Métayer, D., Kargl, F.: For-
mal verification of privacy properties in electric vehicle charging. In: Piessens, F.,
Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 17–33. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-15618-7_2

10. Firoozjaei, M.D., Ghorbani, A., Kim, H., Song, J.: EVChain: a blockchain-based
credit sharing in electric vehicles charging. In: 2019 17th International Conference
on Privacy, Security and Trust (PST). IEEE, August 2019. https://doi.org/10.
1109/PST47121.2019.8949026

11. Foundation, H.: Getting started with libvcx. https://github.com/hyperledger/
indy-sdk/blob/master/vcx/docs/getting-started/getting-started.md (2021).
Accessed 28 Feb 2023

12. Foundation, H.: Hyperledger aries rfc 0036 (2021). https://github.com/
hyperledger/aries-rfcs/blob/main/features/0036-issue-credential/README.
md. Accessed 28 Feb 2023

13. Fuchs, A., Kern, D., Krauß, C., Zhdanova, M.: HIP: HSM-based identities for plug-
and-charge. In: Proceedings of the 15th International Conference on Availability,
Reliability and Security, ARES 2020, Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3407023.3407066. https://doi.org/10.1145/
3407023.3407066

14. Fuchs, A., Kern, D., Krauß, C., Zhdanova, M.: Securing electric vehicle charging
systems through component binding. In: Casimiro, A., Ortmeier, F., Bitsch, F.,
Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12234, pp. 387–401. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-54549-9_26

15. Fuchs, A., Kern, D., Krauß, C., Zhdanova, M.: TrustEV: trustworthy electric vehi-
cle charging and billing. In: Proceedings of the 35th ACM/SIGAPP Symposium
on Applied Computing SAC 2020. ACM (2020). https://doi.org/10.1145/3341105.
3373879

16. Fuchs, A., Kern, D., Krauß, C., Zhdanova, M., Heddergott, R.: HIP-20: Integration
of vehicle-HSM-generated credentials into plug-and-charge infrastructure. In: Com-
puter Science in Cars Symposium. CSCS ’20, Association for Computing Machin-
ery, New York (2020). https://doi.org/10.1145/3385958.3430483, https://doi.org/
10.1145/3385958.3430483

17. Han, W., Xiao, Y.: Privacy preservation for V2G networks in smart grid: a survey.
Comput. Commun. 91, 17–28 (2016)

18. Hoess, A., Roth, T., Sedlmeir, J., Fridgen, G., Rieger, A.: With or without
blockchain? towards a decentralized, ssi-based eroaming architecture. In: Hawaii
International Conference on System Sciences (2022)

19. Höfer, C., Petit, J., Schmidt, R., Kargl, F.: Popcorn: privacy-preserving charging
for emobility. In: Proceedings of the 2013 ACM Workshop on Security, Privacy &
Dependability for Cyber Vehicles, pp. 37–48 (2013)

20. IEC: Electric vehicle conductive charging system - Part 1: General requirements.
IEC Standard 61851–1:2017, International Electrotechnical Commission (2017)

21. ISO/IEC: Road vehicles - Vehicle-to-Grid Communication Interface - Part 2: Net-
work and application protocol requirements. ISO Standard 15118–2:2014, ISO,
Geneva, Switzerland, April 2014

https://www.elaad.nl/news/publication-exploring-the-public-key-infrastructure-for-iso-15118-in-the-ev-charging-ecosystem/
https://www.elaad.nl/news/publication-exploring-the-public-key-infrastructure-for-iso-15118-in-the-ev-charging-ecosystem/
https://doi.org/10.1007/978-3-319-15618-7_2
https://doi.org/10.1109/PST47121.2019.8949026
https://doi.org/10.1109/PST47121.2019.8949026
https://github.com/hyperledger/indy-sdk/blob/master/vcx/docs/getting-started/getting-started.md
https://github.com/hyperledger/indy-sdk/blob/master/vcx/docs/getting-started/getting-started.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0036-issue-credential/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0036-issue-credential/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0036-issue-credential/README.md
https://doi.org/10.1145/3407023.3407066
https://doi.org/10.1145/3407023.3407066
https://doi.org/10.1145/3407023.3407066
https://doi.org/10.1007/978-3-030-54549-9_26
https://doi.org/10.1145/3341105.3373879
https://doi.org/10.1145/3341105.3373879
https://doi.org/10.1145/3385958.3430483
https://doi.org/10.1145/3385958.3430483
https://doi.org/10.1145/3385958.3430483

Self-sovereign Identity for Electric Vehicle Charging 161

22. ISO/IEC: Road vehicles - vehicle-to-grid communication interface - part 2: Net-
work and application protocol requirements. ISO/DIS 15118–2:2018, International
Organization for Standardization, Geneva, Switzerland, December 2018

23. Kaiser, C.: Plug in and charge aka autocharge aka plug & charge
(2022). https://www.linkedin.com/pulse/plug-charge-aka-autocharge-chris-kaiser.
Accessed 26 Sept 20213

24. Kern, D., Krauß, C.: Analysis of e-mobility-based threats to power grid resilience.
In: Proceedings of the 5th ACM Computer Science in Cars Symposium, pp. 1–12
(2021)

25. Kern, D., Krauß, C.: Detection of e-mobility-based attacks on the power grid. In:
2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 352–365. IEEE (2023)

26. Kern, D., Krauß, C., Lauser, T., Alnahawi, N., Wiesmaier, A., Niederhagen,
R.: Quantumcharge: Post-quantum cryptography for electric vehicle charging. In:
International Conference on Applied Cryptography and Network Security, pp. 85–
111. Springer (2023).https://doi.org/10.1007/978-3-031-33491-7_4

27. Kern, D., Lauser, T., Krauß, C.: Integrating privacy into the electric vehicle charg-
ing architecture. Proc. Privacy Enhancing Technol. 3, 140–158 (2022)

28. Khovratovich, D., Lodder, M.: Anonymous credentials with type-3 revoca-
tion (2018). https://github.com/hyperledger/indy-crypto/blob/master/libindy-
crypto/docs/AnonCred.pdf

29. Knirsch, F., Unterweger, A., Engel, D.: Privacy-preserving blockchain-based elec-
tric vehicle charging with dynamic tariff decisions. Comput. Sci.-Res. Dev. 33(1–2),
71–79 (2018)

30. Langer, L., Skopik, F., Kienesberger, G., Li, Q.: Privacy issues of smart e-mobility.
In: IECON 2013–39th Annual Conference of the IEEE Industrial Electronics Soci-
ety, pp. 6682–6687. IEEE (2013)

31. Li, H., Dan, G., Nahrstedt, K.: Portunes: privacy-preserving fast authentication
for dynamic electric vehicle charging. In: 2014 IEEE International Conference on
Smart Grid Communications (SmartGridComm), pp. 920–925. IEEE (2014)

32. Li, H., Dán, G., Nahrstedt, K.: Portunes+: privacy-preserving fast authentication
for dynamic electric vehicle charging. IEEE Trans. Smart Grid 8(5), 2305–2313
(2016)

33. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings 10th Com-
puter Security Foundations Workshop, pp. 31–43. IEEE (1997)

34. Lux, Z.A., Thatmann, D., Zickau, S., Beierle, F.: Distributed-Ledger-based
Authentication with Decentralized Identifiers and Verifiable Credentials. In: 2020
2nd Conference on Blockchain Research & Applications for Innovative Networks
and Services (BRAINS). IEEE, Sept 2020. https://doi.org/10.1109/BRAINS49436.
2020.9223292

35. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

36. Monteuuis, J.P., Petit, J., Zhang, J., Labiod, H., Mafrica, S., Servel, A.: Attacker
model for connected and automated vehicles. In: ACM COMPUTER SCIENCE
IN CARS SYMPOSIUM (2018)

37. Mustafa, M.A., Zhang, N., Kalogridis, G., Fan, Z.: Roaming electric vehicle charg-
ing and billing: an anonymous multi-user protocol. In: 2014 IEEE International
Conference on Smart Grid Communications (SmartGridComm), pp. 939–945.
IEEE (2014)

https://www.linkedin.com/pulse/plug-charge-aka-autocharge-chris-kaiser
https://doi.org/10.1007/978-3-031-33491-7_4
https://github.com/hyperledger/indy-crypto/blob/master/libindy-crypto/docs/AnonCred.pdf
https://github.com/hyperledger/indy-crypto/blob/master/libindy-crypto/docs/AnonCred.pdf
https://doi.org/10.1109/BRAINS49436.2020.9223292
https://doi.org/10.1109/BRAINS49436.2020.9223292
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

162 A. Kailus et al.

38. OCA: Open Charge Point Protocol 2.0.1 - Part 2 - Specification. Open stan-
dard, Open Charge Alliance, Arnhem, Netherlands, March 2020. https://www.
openchargealliance.org/protocols/ocpp-201/

39. Open Fastcharging Alliancey: Autocharge (2017). https://github.com/
openfastchargingalliance/openfastchargingalliance/blob/master/autocharge-
final.pdf. Accessed 27 Sept 2023

40. Paverd, A., Martin, A., Brown, I.: Modelling and automatically analysing privacy
properties for honest-but-curious adversaries. Technical report (2014)

41. Reed, D., Sporny, M., Longley, D., Allen, C., Grant, R., Sabadello, M.: Decentral-
ized Identifiers (DIDs) v1.0 W3C Candidate Recommendation Draft, May 2021

42. Richter, D., Anke, J.: Exploring potential impacts of self-sovereign identity on
smart service systems: an analysis of electric vehicle charging services. In: Business
Information Systems, pp. 105–116 (2021)

43. Sabadello, M., et al.: Introduction to DID Auth. Rebooting the Web of Trust VI,
July 2018

44. Sporny, M., Longley, D., Chadwick, D.: Verifiable Credentials Data Model v1.1.
(2021). https://w3.org/TR/vc-data-model/. Accessed 23 Nov 2021

45. V2G Clarity: RISE-V2G (2017). https://github.com/SwitchEV/RISE-V2G.
Accessed 29 Nov 2021

46. VDE: Handling of certificates for electric vehicles, charging infrastructure and back-
end systems within the framework of iso 15118. VDE-AR-E 2802–100-1:2019–12,
December 2019

47. Won, J., Singla, A., Bertino, E., Bollella, G.: Decentralized public key infrastruc-
ture for internet-of-things. In: MILCOM 2018–2018 IEEE Military Communica-
tions Conference (MILCOM), pp. 907–913. IEEE (2018)

48. Xu, S., Chen, X., He, Y.: EVchain: an anonymous blockchain-based system for
charging-connected electric vehicles. Tsinghua Sci. Technol. 26(6), December 2021.
https://doi.org/10.26599/TST.2020.9010043

49. Zelle, D., Springer, M., Zhdanova, M., Krauß, C.: Anonymous charging and billing
of electric vehicles. In: Proceedings of the 13th International Conference on Avail-
ability, Reliability and Security, pp. 1–10 (2018)

50. Zhao, T., Zhang, C., Wei, L., Zhang, Y.: A secure and privacy-preserving payment
system for electric vehicles. In: 2015 IEEE International Conference on Communi-
cations (ICC), pp. 7280–7285. IEEE (2015)

https://www.openchargealliance.org/protocols/ocpp-201/
https://www.openchargealliance.org/protocols/ocpp-201/
https://github.com/openfastchargingalliance/openfastchargingalliance/blob/master/autocharge-final.pdf
https://github.com/openfastchargingalliance/openfastchargingalliance/blob/master/autocharge-final.pdf
https://github.com/openfastchargingalliance/openfastchargingalliance/blob/master/autocharge-final.pdf
https://w3.org/TR/vc-data-model/
https://github.com/SwitchEV/RISE-V2G
https://doi.org/10.26599/TST.2020.9010043

“Hello? Is There Anybody in There?”
Leakage Assessment of Differential

Privacy Mechanisms in Smart Metering
Infrastructure

Soumyadyuti Ghosh1(B), Manaar Alam2, Soumyajit Dey1,
and Debdeep Mukhopadhyay1,2

1 Indian Institute of Technology Kharagpur, Kharagpur, India
soumyadyuti.ghosh@iitkgp.ac.in, {debdeep,soumya}@cse.iitkgp.ac.in

2 New York University, Abu Dhabi, United Arab Emirates
alam.manaar@nyu.edu

Abstract. Smart meters provide fine-grained power usage profiles of
consumers to utility providers to facilitate various grid functionali-
ties such as load monitoring, real-time pricing, etc. However, informa-
tion leakage from these usage profiles can potentially reveal sensitive
aspects of consumers’ daily routines and their home absence, as state-
of-the-art metering strategies lack adequate security and privacy mea-
sures. Among various privacy-preserving mechanisms, Differential Pri-
vacy (DP) is widely adopted in the literature due to its solid mathe-
matical foundation. Nevertheless, the privacy-utility trade-off problem
in smart metering systems limits the amount of privacy protection vari-
ous instances of DP mechanisms can provide. We demonstrate that the
constraints imposed by the privacy-utility trade-off make it possible to
launch empirical statistical attacks on the differential private metering
data. In this paper, we propose a novel statistical methodology, con-
structed using the principles of t-test based hypothesis testing, to dis-
cover the absence of a consumer in their household upon observing real-
time differentially private output traces of sensitive meter readings over
successive sampling windows. Additionally, we formally establish that
this trade-off is an inherent characteristic of the smart metering prob-
lem, implying that any mechanism adhering to this trade-off is suscep-
tible to our attack. We conduct an extensive experimental evaluation
using a real-world metering dataset to validate our proposed methodol-
ogy. We evaluate our scheme against six state-of-the-art DP mechanisms
employed in metering infrastructure. Our results demonstrate that the
proposed approach attains a success rate exceeding 90% within a mere
six-hour observation interval, highlighting its effectiveness in revealing
vulnerabilities within established DP implementations.

Keywords: Differential Privacy · Laplacian Mechanism · Gaussian
Mechanism · Privacy-Utility Trade-off · t-test based Hypothesis Testing

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 163–189, 2024.
https://doi.org/10.1007/978-3-031-54776-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_7

164 S. Ghosh et al.

1 Introduction

The smart grid, as a prominent Cyber-Physical System (CPS), encompasses
power generation and distribution networks, facilitated by a bi-directional com-
munication infrastructure. The real-time consumption profiles provided by the
network are communicated to various entities in the grid to perform diverse opera-
tions such as automated demand-response, real-time billing, failure detection, etc.
Such primitives require advanced metering infrastructures that sample and trans-
mit the power consumption data of consumers using smart meters [23]. Though
these fine-grained consumption data are crucial for metering-enabled grid dis-
patch and control systems, it has been revealed that analyzing meter reading
streams can provide significant insights into appliances’ usage patterns, running
time, “ON/OFF” status [2,29]. This analysis can potentially result in signifi-
cant privacy breaches, exposing sensitive information about customers’ daily life
behaviors and home absences [2]. In such scenarios, Differential Privacy (DP) has
received much attention as it provides a solid mathematical foundation for estab-
lishing and protecting the privacy of individual user [12–15,17]. One of the fun-
damental reasons for the appeal of DP is its ability to provide privacy guaran-
tees regardless of the background knowledge or auxiliary information available
to the attackers, thereby offering strong and robust privacy protection in differ-
ent applications of the smart metering infrastructure. Recent studies have high-
lighted the versatile applications of DP, addressing concerns such as load monitor-
ing, renewable energy resource privacy, and user data protection in decentralized
settings [4,19,26,27,43,46,49]. However, differential privacy is not a one-size-fits-
all solution. Its efficacy hinges on meticulous implementation and parameter opti-
mization to strike a balance between privacy and utility [20,30], a concept often
referred to as the privacy-utility trade-off. This trade-off is very common in smart
grids where small input or control signal modifications can hamper the system per-
formance [42]. Within the realm of DP-protected metering systems, this trade-off
introduces a constraint on the degree of privacy protection that different instances
of DP mechanisms can afford. Among various works, the authors of [43] propose
a hybrid scheme integrating differential privacy and cryptography to address pri-
vacy issues in smart meters, achieving an efficient balance between privacy and
utility. On the other hand, the authors of [46] employ the compressive sensing
framework to establish theoretical bounds on the impact of differential privacy
parameters on Non-Intrusive Load Monitoring (NILM) performance. Addition-
ally, some existing works explore various differential privacy variants (Laplace,
Gaussian, Uniform, Geometric) in blockchain-based smart metering, highlighting
their performance under different parameters and their effectiveness in preserv-
ing privacy [26]. In contrast to the aforementioned studies, Our work, presented in
this paper, demonstrates how the privacy-utility trade-off constraint exposes poten-
tial vulnerabilities to empirical statistical attacks on differential private metering
data, and we substantiate this assertion through formal proof, affirming the piv-
otal role played by this inherent trade-off. We introduce a novel attack methodol-
ogy, leveraging the principles of t-test based hypothesis testing to infer the con-
sumer’s home absence based on observed DP-induced metering data that adhere

“Hello? Is There Anybody in There?” 165

to this trade-off. To the best of our knowledge, our work is the first proposal in the
domain of DP-protected metering systems where we aim to identify consumers’
home absence from the DP-protected output traces. However, there has been a sig-
nificant amount of research that has examined potential vulnerabilities and infor-
mation leakage associated with DP mechanisms.

Related Work

We categorize these existing works into five distinct classes, each shedding light
on different aspects of information leakage and attacks on DP implementations.
Our objective is to emphasize the distinctions between these prior approaches
and the novel contribution presented in our paper.

Correlated Data Records. In DP, the conventional assumption of independent
records in datasets can pose significant privacy risks, especially when dealing
with real-world datasets [36,45]. In the context of smart metering infrastructure,
though the meter readings are not explicitly correlated, they may exhibit auto-
correlation due to temporal dependencies. Current DP solutions for smart meters
frequently neglect this auto-correlation, thereby exposing vulnerabilities that may
result in significant privacy breaches. To address this, we incorporate Group Dif-
ferential Privacy [8,15] into the metering data streams across all the targetted DP
mechanisms before assessing our proposed attack scheme. This addition is piv-
otal in mitigating information leakages arising from auto-correlated readings and
is instrumental in detecting privacy breaches (by determining consumers’ home
absence) within DP implementations that adhere to the privacy-utility trade-off.

Lower Local Sensitivity Value. Sensitivity quantifies the maximum potential
change in the output of a DP scheme, resulting from the addition or removal of a
single data record. However, the noise calibrated by the Local Sensitivity is small,
leading to information leakages [37]. Our methodology, however, diverges from
this by not relying on the small sensitivity values of the DP schemes; rather
DP mechanisms having high sensitivity values that satisfy the privacy-utility
trade-off are susceptible to our attack.

Sequential Query Composition. Sequential query composition involves con-
secutively querying a dataset to maintain DP guarantees and assessing their
collective impact on privacy. This line of work discusses privacy degradation due
to sequential query composition of DP techniques [33]. However, our proposal
diverges from this line of work as we do not employ sequential querying to high-
light potential data leakages. Rather, we consider a distinct query with respect
to each DP mechanism during the construction of our methodology and apply
the DP scheme on the secret meter readings only once at each time instance.

Timing and Floating-Point Attacks. This line of work discusses timing and
floating-point attacks on DP techniques. The authors of [32] highlight that the
Gaussian mechanism of DP suffers from a side channel attack due to floating-
point arithmetic error. Simultaneously, discrete methods developed to protect

166 S. Ghosh et al.

against such floating-point attacks for both the Laplacian and Gaussian mecha-
nisms also suffer from timing side channels. However, we perform an empirical
attack on the DP streams that doesn’t require any knowledge regarding the
floating point computation errors due to the DP computation.

Data Poisoning Attacks. Data poisoning attacks manipulate Local differ-
ential privacy protocols by inserting fake users in the original datasets, with
the goal of manipulating the data analytic results according to the attacker’s
intentions [7,9]. Our proposed attack scheme doesn’t require the insertion of
fake consumers into the differentially private metering systems to obtain the
necessary information regarding consumer’s home absence.

Unique Feature of our Approach: Our proposed approach represents an
innovative contribution within the field of DP-protected metering systems. It
effectively harnesses the privacy-utility trade-off, offering a novel perspective on
information leakages from DP implementations, by identifying consumer’s home
absence with a very high accuracy upon observing DP metering data. Impor-
tantly, our approach achieves this without the need for sequential query compo-
sition, consideration of data correlation, low sensitivity values, or the insertion of
fake data. Next, we provide a concise overview of our proposed t-test based attack
scheme that delineates how the DP metering streams are utilized to determine
the consumer’s household status.

Brief Overview of Proposed Approach

In scenarios where a consumer’s household remains unoccupied during successive
sampling periods, the absence of peak power consumption levels from household
appliances is apparent, as illustrated in a prior study [2]. However, certain appli-
ances, like refrigerators, exhibit intermittent power consumption patterns, lead-
ing to consumption values that slightly exceed the minimum aggregate power
consumption of all appliances. This results in the meter readings falling within
a confined range of power consumption values. We signify this range as the min-
imal power consumption range, denoted as [Rmin, Rmax]. In this context, the

Fig. 1. Overview of Our Proposed Attack Scheme.

“Hello? Is There Anybody in There?” 167

lower bound of this range (Rmin) represents a scenario where all appliances are
switched off, resulting in zero total aggregate power consumption during the
sampling window. However, due to intermittent consumption patterns, Rmax

is slightly higher than Rmin, though not significantly since peak power con-
sumption values from appliances are absent during these continuous sampling
periods [2]. We leverage this observation to determine the absence of the tar-
getted consumer from their household. In Fig. 1, we present an illustration of
our proposed approach involving two consumers, each implementing group DP
to safeguard against information leakage arising from auto-correlation within
meter readings. Here, consumer C2 is identified as absent from their household,
while C1 is present at home. However, their DP-protected meter readings, shown
in Fig. 1, were successfully able to hide such classification. The adversary collects
these DP output traces from the consumers and tries to identify the consumer
C2 ’s home absence using our proposed scheme. Our attack methodology, hav-
ing access to the black box DP implementation, generates a candidate DP trace
utilizing the value Rmax. This process involves passing Rmax through the group
DP mechanism, with the number of iterations matching the size of the output
stream, to generate a candidate DP trace. The attacking scheme then conducts a
statistical t-test between the DP-protected profile of the targetted consumer and
the computed trace associated with Rmax. It is evident that the sign of the t-test
results depend on the mean values of the two input distributions. Here, a nega-
tive t-test result suggests that the mean of the original data stream is bounded
by Rmax, signifying that the original meter readings fall within the minimal
power consumption range of the household. This indicates the household’s unoc-
cupied status at those specific timing periods, which is the case for consumer C2.
Conversely, if the t-test result is positive, we infer that the consumer is currently
at home, as exemplified by consumer C1.

Contributions. The summary of our major contributions is as follows:

– Novel t-test Based Attack Methodology. We propose an innovative
attack methodology based on t-test based hypothesis testing to determine
consumers’ home absence. This method analyzes DP-induced metering data
that conforms to the privacy-utility trade-off while satisfying group DP to
conceal information leakages arising from auto-correlated meter readings. The
scheme collects differentially private output traces from consecutive sampling
windows, aiming to determine consumers’ household absence.

– Formal Proof. We present formal proof establishing that the privacy-utility
trade-off criteria is fundamental in facilitating the success of our proposed
attack and any DP mechanism constrained by the utility requirements will
invariably remain susceptible to our scheme.

– Empirical Evaluation. We conducted an empirical evaluation of our attack
methodology against six distinct state-of-the-art DP implementations in
smart metering systems [3,6,18,22,24,28]. We experimentally validated that
the final estimation of our attack methodology matches the original state of
the consumer’s household with high accuracy thus highlighting its feasibility
and capability.

168 S. Ghosh et al.

2 Preliminaries

2.1 Differential Privacy

Differential Privacy [12] is a state-of-the-art privacy concept known for its effi-
cient implementation and robust privacy assurances based on a solid mathemat-
ical foundation. Regardless of the adversary’s prior knowledge, it provides strong
privacy by ensuring the indistinguishability of whether or not a record is in the
database upon observing the revealed information. Below, we introduce some
definitions for DP, which are used for the rest of the paper.

Definition 1. Adjacency of two datasets [31]. A pair of datasets denoted as
D1,D2 ⊂ D, where D is the domain of databases and Di = {di

1, d
i
2, d

i
3, · · · }, is

called Adjacent datasets if they differ at most by a single entry. In other words,
there exists an m such that d1m �= d2m and d1j = d2j ,∀j �= m.

Definition 2. Sensitivity [16]. A multidimensional query function q is a map-
ping D → Rn, where n is dimension of the output given a database D ∈ D. The
query output for a database D can be represented as q(D) = (q1(D), · · · , qn(D)),
for qi(D) ∈ R,∀i. The sensitivity of q, denoted as Δq,s, where s indicates the
type of norm, can be computed as Δq,s = maxAdj(Di,Dj)‖q(Di) − q(Dj)‖. In
simpler words, given a query function, the largest possible difference between the
query outputs of two adjacent datasets is referred to as sensitivity.

Definition 3. Differential Privacy [16]. A randomized mechanism Π : D ×
Γ → P guarantees (ε, δ)-differential privacy if for all the adjacent datasets
Di,Dj and for all the subsets of possible answers P ⊂ P, Pr[Π(Di) ∈ P] ≤
eεPr[Π(Dj) ∈ P] + δ. The probability is taken over the randomness of the pri-
vacy mechanism Π and the randomized noisy signals are drawn from the set Γ .
Here, ε and δ are the privacy parameters. The parameter ε can be considered as
an upper bound on the amount of leakage in the output and the approximation
parameter δ is used to relax the DP definition. In case δ is not considered for
approximation, then the mechanism Π preserves ε-differential privacy.

Laplacian Mechanism. For a dataset D and a query function q, a Laplacian
mechanism preserves ε-differential privacy if the DP-noises are sampled from
a Laplace distribution with zero mean and scale parameter β = Δq,1

ε . With a
decreasing value of ε, the value of the scale parameter increases, resulting in a
higher magnitude of noisy signals, which guarantees greater privacy protection.

Gaussian Mechanism. For a dataset D and a query function q, a Gaussian
mechanism preserves (ε, δ)-differential privacy if the DP-noises are sampled from

a zero mean Gaussian distribution with standard deviation σ ≥
√

2ln(1.25
δ)Δq,2

ε .

Definition 4. Group Differential Privacy [8,15]. In correlated settings,
allocating stronger privacy protection to groups of correlated records, each of
size k, is essential to address the increased privacy risks resulting from data

“Hello? Is There Anybody in There?” 169

correlations. This implies that a privacy-preserving mechanism that achieves ε
k -

differential privacy in the non-correlated setting is sufficient to give ε-differential
privacy over a database with a correlation parameter k. In the case of the
Laplacian group DP, the noises are sampled from a Laplacian distribution
with zero mean and scale parameter β = Δq,1×k

ε . Similarly, for the Gaus-
sian mechanism, the standard deviation of the zero mean Gaussian noises is

σ ≥
√

2ln(1.25
δ)Δq,2×k

ε .

2.2 Statistical t-test Analysis

The Welch’s test is the most often used method for determining if two distri-
butions of data differ substantially. Because the samples in both distributions
were taken from the same population, a t-test is likely to assess whether the
two distributions are distinguishable. Significantly higher |t|-values in the t-test
signify that the distributions are indistinguishable [21,39,40]. Let us consider
two samples S1 and S2 having sample mean and sample variance as μ1 (resp.
μ2) and σ2

1 (resp. σ2
2) respectively. Then, t-test statistic t-value is calculated as:

t =
μ1 − μ2√(

σ2
1

n1
+ σ2

2
n2

)

The sign of this t-value indicates whether the sample mean of S1 is greater
(positive) or smaller (negative) than the sample mean of S2, offering insights
into their relative means and central tendencies.

3 System and Threat Model

We consider a smart grid infrastructure with privacy-enabled smart meters that
generate DP-protected output streams by adding controlled noises with the orig-
inal meter readings while satisfying the desired privacy-utility trade-off criteria.
This utility metric is bounded by a predefined threshold, and the privacy level
is selected accordingly so that the utility bound is satisfied. Depending on the
nature of the query function, the differential privacy mechanism implemented at
the respective smart meters aims to conceal either the power consumption details
of individual appliances, the maximum power consumption by a consumer, or the
aggregate power consumption over a defined sampling window [3,6,18,22,24,28].
The resulting DP-induced meter readings are then sent to the Data Concentra-
tor Units (DCU), which aggregate the consumers’ power profiles and send the
aggregated profile to the data servers located at the Utility Provider (UP). The
DCUs, however, refrain from introducing additional DP noises to the aggregated
power consumption profiles obtained from multiple consumers. These DCUs and
UP are usually considered honest but curious (semi-honest) adversaries that can
collect and potentially analyze consumers’ power consumption information. In
the literature, these security models for DCUs and UPs are highly utilized in

170 S. Ghosh et al.

the domain of smart metering systems [5,10,11,25,44]. Keeping this in mind, in
this section, we elaborate on our threat model by describing the threat surfaces
along with the goals and capabilities of the adversaries.

3.1 Threat Surfaces

The threat surfaces can be categorized into two classes, as elaborated below.

– Honest but curious DCU and UP. The DCUs and UP are semi-honest
adversaries that want to learn critical information, such as a consumer’s home
presence, with the intention of potentially disclosing or selling this data to
marketing firms for personal gain.

– Collusion of malicious consumers with UP. The DCUs aggregate the
DP-induced readings before sending them to UP for operational purposes.
In such scenarios, involving m consumers, UP can collude with the (m − 1)
number of consumers to obtain the DP outputs of the targeted household.
This can be achieved by subtracting the total power consumption of the
compromised (m − 1) consumers from the aggregated power profile received
from the DCU. Conversely, the UP can directly collude with the DCUs to
obtain individual consumers’ power consumption profiles. It is important to
note that the DP makes no assumptions about the prior knowledge available
to attackers. Hence, our assumption does not violate the security settings of
DP and a strong and correct DP implementation should ensure privacy in
such settings.

3.2 Capabilities of the Adversary

We assume that the adversaries have access to the black box DP implementation
and the DP output traces of the targetted consumer before performing the attack-
ing scheme. Being semi-honest entities, UPs and DCUs are capable of storing
the preceding year’s non-DP power consumption data, during a period when DP
was not implemented in the consumer’s metering setup. Upon the introduction
of DP in the metering setup, DCUs can only collect the obfuscated DP-protected
metering streams from individual consumers. Hence, DCUs are restricted from
accessing the non-DP/original meter readings once DP is implemented. However,
the DCUs and UP can analyze the accumulated historical non-DP measurements
to obtain the minimal power consumption range of the targetted consumer, when
the user’s home is usually unoccupied.

3.3 Goal of the Adversary

Upon obtaining these differentially private output traces and having access to
the black box DP mechanism, the adversaries aim to obtain the range of original
meter readings, thus exposing the consumer’s sensitive consumption pattern at
the associated sampling periods. If the original power consumption stream lies in
the minimal power consumption range, then the correct range estimation from
the differentially private output traces can indicate the adversary about the
consumer’s home absence.

“Hello? Is There Anybody in There?” 171

4 Formal Analysis of Leakage Due to Privacy-Utility
Trade-Off in Smart Metering Systems

Incorporating differential privacy into smart metering systems introduces a sub-
tle yet critical privacy-utility trade-off. On one hand, it enhances the protection
of consumers’ sensitive data by injecting controlled noise and obfuscating individ-
ual consumption patterns, thereby ensuring robust privacy preservation. How-
ever, this heightened privacy comes at the cost of compromised data accuracy
and information quality, posing a significant challenge to the effective utilization
of smart meter data in technical applications. As smart metering systems must
satisfy the privacy-utility trade-off criteria, privacy levels need to be bounded
against utility requirements. Our research aims to demonstrate that any mech-
anism offering acceptable utility is susceptible to our attacking scheme. Let us
consider a smart meter reading stream 	R = 〈Rin(1), · · · , Rin(i), · · · , Rin(L)〉
of length L. This metering stream, when processed through a DP mecha-
nism Π with a privacy parameter ε1, yields a DP-protected output stream,
T 1

R = 〈R1
out(1), · · · , R1

out(i), · · · , R1
out(L)〉. In the realm of smart metering sys-

tems, utility metrics are often framed around the disparity between the original
meter readings and their differentially private counterparts. To assess the utility
of this DP-protected data, we employ a utility metric, U(R, T 1

R), which quantifies
the overall quality between the original metering stream 	R and the correspond-
ing DP trace T 1

R . Without loss of generality, we define this utility metric as
U(R, T 1

R) =
∑L

i=1 ||Rin(i) − R1
out(i)||N , where N represents the norm of the

operation [38,41]. We denote the resulting value as U(R, T 1
R) = τ1. We further

employ the same DP mechanism Π, but with a distinct privacy parameter ε2,
applied to the same input stream 	R. This results in a different DP-protected out-
put stream, T 2

R = 〈R2
out(1), · · · , R2

out(i), · · · , R2
out(L)〉, such that U(R, T 2

R) = τ2.
Our objective is to establish the relationship between these privacy parameters
ε1 and ε2, and their utility counterparts τ1 and τ2. Here, if τ1 > τ2 holds true,
our forthcoming analysis will show that ε1 < ε2. This observation highlights that
a lower utility value is indicative of relatively weaker privacy protection of the
DP mechanism. We further demonstrate how this clear distinction between the
privacy levels employed in the DP mechanisms, can be leveraged to execute our
proposed t-test based attack methodology to identify consumers’ home absence.
In summary, our approach shows the underlying vulnerability of DP mechanisms
striving to reconcile the privacy-utility trade-off in smart metering systems.

Lemma 1. In the context of DP-enabled metering systems, when τ1 > τ2, it
signifies that a DP mechanism with privacy level ε1 offers a heightened utility
value while preserving more stringent privacy protection than ε2. In essence, this
infers that ε1 < ε2, implying a diminished level of privacy for the data stream
T 2

R characterized by stricter utility requirements.

Proof. By assumption, two data streams T 1
R and T 2

R , generated to conform to
the utility constraints τ1 and τ2 respectively, ensure that U(R, T 1

R) = τ1 and
U(R, T 2

R) = τ2. In light of the utility function, these constraints are expressed

172 S. Ghosh et al.

as
∑L

i=1 ||Rin(i) − R1
out(i)||N = τ1 and

∑L
i=1 ||Rin(i) − R2

out(i)||N = τ2. In the
context of DP, the terms 〈Rin(i) − R1

out(i)〉 and 〈Rin(i) − R2
out(i)〉 represent the

respective magnitudes of noise introduced during the ith sampling period. We
denote these noise streams associated with T 1

R and T 2
R as 〈δ11 , . . . , δ1i , . . . , δ1L〉 and

〈δ21 , . . . , δ2i , . . . , δ2L〉 respectively. These noise streams represent the perturbations
applied to the original meter readings 	R by the DP mechanisms. Considering
the cumulative noise introduced by the differential privacy mechanisms for the
two streams, it follows that

∑L
i=1 ||δ1i ||N = τ1 and

∑L
i=1 ||δ2i ||N = τ2. Given

the initial assumption τ1 > τ2, it is apparent that
∑L

i=1 ||δ1i ||N >
∑L

i=1 ||δ2i ||N .
Since all the values of δ1i exhibit the same statistical properties and all the
values of δ2i are sampled from a same distribution, then given

∑L
i=1 ||δ1i ||N >∑L

i=1 ||δ2i ||N , we can conclude that |δ1i | ≥ |δ2i |, ∀i ∈ [1, L]. In fact, there exists
a set of possible values m ∈ [1, L] for which |δ1m| > |δ2m|, ∃m ∈ [1, L]. Moreover,
it is well-established that the magnitude of DP noise is inversely proportional
to the privacy parameter (Sect. 2.1). Therefore, if T 1

R attains a higher level of
privacy compared to T 2

R due to |δ1m| > |δ2m|, ∃m ∈ [1, L], it follows that ε1 < ε2.

According to the principles of DP, if ε1 < ε2 holds true, the magnitude of noise
introduced at each instance of T 1

R will be equal or higher than of T 2
R . Con-

sequently, the resulting means of T 1
R and T 2

R , denoted as μ1 and μ2, can be
compared, such that μ1 > μ2.

Corollary 1. This observation implies the existence of a candidate reading
xest, for which the resulting differentially private output trace Txest has a mean
denoted as μest, satisfying the condition μ1 > μest > μ2. This signifies that the
DP-protected streams T 2

R and Txest will have a negative t-value. If the candidate
reading xest is same as the upper bound of minimal power consumption range,
Rmax, i.e. xest = Rmax, then this negative t-value implies the consumer’s home
absence. On the other hand, the streams T 1

R and Txest will have a positive t-value
indicating consumers home presence.

This underscores that a privacy level of ε1 can effectively safeguard the privacy
of a consumer’s home absence, which a privacy level of ε2 can not achieve.
Consequently, it is evident that higher privacy levels, i.e., lower utility thresholds,
are more susceptible to our proposed attack approach. This strengthens our
argument that the inherent privacy-utility trade-off is a fundamental problem in
the metering system and any mechanism that seeks to balance this constraint is
vulnerable to our proposed attack methodology.

5 Proposed Attack Methodology

In this section, we describe our robust t-test based attack methodology to infer
the potential range of secret meter readings from the DP output traces, allowing
the adversary to determine the consumer’s household absence. These DP traces
are obtained from the same consumer but in successive sampling windows. Let
	R = 〈Rin(1), · · · , Rin(i), · · · Rin(L)〉 denote a L length original meter reading

“Hello? Is There Anybody in There?” 173

stream obtained over a time interval of length Lh (k ∈ N), where h is the sam-
pling period of the metering system. Under a group DP mechanism Π with corre-
lation parameter k (≤ L) and privacy level ε, the corresponding differentially pri-
vate output trace is denoted by TR = 〈Rout(1), · · · , Rout(i), · · · , Rout(L)〉. This
output trace maintains a privacy guarantee of ε×L

k -DP, as each DP-protected
reading individually complies with ε

k -DP (Sect. 2.1). It is possible that meter
readings of 	R may belong to the minimal power consumption range of the asso-
ciated consumer, thus suggesting their home absence. The DP mechanism Π is
supposed to generate TR in such a manner that conceals this critical information
regarding the original stream. Our proposed t-test based assessment methodol-
ogy aims to validate the security claims of these DP mechanisms in a practical
implementation where the privacy-utility trade-off is satisfied. This necessitates
ensuring that the utility metric U(R, TR) does not exceed predefined thresh-
olds. However, it is essential to obtain the minimal power consumption range
specific to the targeted consumer in order to identify their home absence. With
this objective in mind, we incorporate a precomputation phase into our attack
methodology. During this phase, the adversary determines the minimal power
consumption range by analyzing non-DP consumption profiles from the preced-
ing years, particularly focusing on periods when the consumer’s household is
typically unoccupied. Next, we provide a thorough description of the precompu-
tation phase and our proposed algorithm.

5.1 Precomputation Phase

In the precomputation phase, the adversary first computes the overall power
consumption range of the targetted consumer by utilizing the historical non-
DP power profile of the associated consumer. Here, the lower (xmin) and
upper (xmax) bounds on the power consumption range are usually consumer-
dependent and obtained by computing the minimum and maximum possible
non-DP power consumption values of the targetted consumer. Moreover, if the
knowledge of the available appliances present in a household is known to the
adversary, the value of xmax can be calculated by accumulating the individual
power consumption usage of all the appliances.

Partitioning. Upon obtaining xmin and xmax, we divide the overall power con-
sumption range of the consumer’s original power profile, denoted as [xmin, xmax]
into multiple partitions (referred to Z) such that meter readings within a specific
interval will belong to a single partition. The interval length for these partitions
is obtained based on the minimal power consumption of the consumers after
carefully analyzing the historical non-DP profiles. We define these intervals as:

Ψ1 = [xmin, x1], Ψ2 = (x1, x2], · · · , ΨZ = (xmax−1, xmax]

such that x1 = β, |xmax − xmax−1| ≤ β and |xj+1 − xj | = β, ∀j ∈ [1,max − 2].
Here, we consider [xmin, x1] as the minimal power consumption range and β is
the upper bound of the minimal consumption. The minimal power consumption
range indicates that in that specific time period, the consumer’s household is
unoccupied as no peak power consumption from the appliances’ is present.

174 S. Ghosh et al.

Analyse historical non-DP
power consumption
profile of targetted

consumer

Rin(1), ..., Rin(i), ..., Rin(L)

Ψ1
, Ψ2

, ... , ΨZ

[xmin, xmax]

Rout(1), ..., Rout(i), ..., Rout(L)

Proposed t-test based
attacking

methodology

Original power profile from
successive sampling windows

Group DP
Mechanism

Ψi = [Rest_min, Rest_max]

Original
household

status
Absent

Precomputation Phase

Collect DP-induced output
trace from successive

sampling windows

Predicted
household

status

Household Occupied
Household

Empty

YESΨi = Ψ1

Present

NO

Fig. 2. Overview of the proposed attack methodology.

5.2 t-test Based Attack Methodology

Our proposed t-test based attack algorithm takes the protected group DP mech-
anism Π with correlation parameter k and privacy level ε, the output traces TR

and the set of partitions Ψ1, · · · , ΨZ as inputs (as shown in Fig. 2) in order to
provide a range estimation of 	R, denoted as [Rest min, Rest max]. If the estimated
range [Rest min, Rest max] is same as Ψ1, then the output trace TR signifies the
consumer’s home absence. The attacking scheme also takes the minimum (xmin)
and maximum (xmax) possible values of any smart meter reading associated with
the household as inputs.

Algorithm Search Space. Our methodology illustrated through Algorithm1
traverses from this minimum possible value of the corresponding meter readings
to the maximum possible value in order to determine the partition Ψi in which
the estimation for the mean (denoted as xest) of 	R belongs. Algorithm 1 first
calculates the minimum (xout

min) and maximum (xout
max) values of the output trace

TR and compares them against the input parameters xmin and xmax in order
to compute an initial range for 	R. It is possible that for a smart meter reading
stream, xout

min < 0; however, we do not need to consider readings less than zero
during the estimation as meter readings can not be negative. In such scenarios,
the algorithm should consider xmin as the probable lower bound for the input
range. On the other hand, it is possible that xout

max for a meter reading stream is
higher than xmax due to the higher magnitude of the DP noises. In such cases, our
proposed methodology considers xmax as the upper bound for the corresponding
meter profile. The algorithm considers the maximum among xout

min and xmin as
the lower bound of 	R and the minimum between xout

max and xmax as the upper
bound of 	R. Here, the information regarding xout

min and xout
max is obtained from

the output traces and is independent of the system’s design. However, xmin and
xmax are consumer-dependent inputs to the algorithm.

“Hello? Is There Anybody in There?” 175

Algorithm 1. t-test based Assessment Algorithm
1: Inputs:

Protected DP mechanism: Π, Number of traces: L, Increment: δ.
Differentially private smart metering output trace: TR =
〈Rout(1), · · · , Rout(i), · · · , Rout(L)〉.
Minimum and maximum possible values of reading: xmin and xmax.
Partitions: Ψ1 = [xmin, x1], Ψ2 = (x1, x2], · · · , ΨZ = (xmax−1, xmax]

2: Output: Estimated input range: Ψi = [Rest min, Rest max].
3: xout

min ← min(TR)
4: xmin ← max(xout

min, xmin) � Maximum between xout
min, xmin

5: xout
max ← max(TR)

6: xmax ← min(xout
max, xmax) � Minimum between xout

max, xmax

7: for xest = xmin; xest ≤ xmax; xest = xest + δ do
8: Txest ← L independent computations of group DP mechanism Π with correla-

tion parameter k and privacy level ε on estimation xest

9: tx
est ← t-test(TR, Txest) � t-test between TR, Txest

10: if tx
est

< 0 then
11: Obtain Ψi = [Rest min, Rest max], such that xest ∈ Ψi

12: break
13: Return Ψi = [Rest min, Rest max]

Algorithm Traversal. In each step, our algorithm considers a possible can-
didate reading xest and generates a L length differentially private output
trace (denoted as Txest) using the black box DP implementation Π. Here, the
group DP mechanism Π with correlation parameter k provides ε

k -DP to the
estimation xest, independently L times in order to generate Txest . Being a ran-
domized algorithm, Π generates different noises for each independent run to ran-
domize the output trace Txest . Here, both TR and Txest satisfies ε×L

k -differential
privacy. Upon obtaining Txest , Algorithm 1 performs a t-test with the distri-
bution TR. As discussed in Sect. 2.2, the value of the t-test depends on the
means of the two distributions. If the mean of the first distribution (in our
case TR) is higher, then the t-value will be positive. On the other hand, a nega-
tive t-value signifies that the mean of TR is comparatively lower. Based on this
observation, we utilize the sign of the t-value in order to converge to an esti-
mation xest for which the resulting t-value < 0. The algorithm then identifies
the partition Ψi = [Rest min, Rest max], such that the final estimation xest ∈ Ψi

and subsequently outputs the range [Rest min, Rest max]. If this estimated input
range of [Rest min, Rest max] matches the minimal power consumption range of
Ψ1 = [xmin, x1], then the adversary can deduce that the timing period associ-
ated with the original power profile 	R indicates consumer’s home absence. This
procedure has been illustrated in Fig. 2.

176 S. Ghosh et al.

6 Evaluation of the Proposed Attack Methodology

6.1 Experimental Setup

Dataset. We analyze our attack model using the UK-DALE [35] (U.K. Domestic
Appliance Level Electricity) dataset provided by Kelly et. al.. This open-access
dataset describes the amounts of power demanded by home appliances over five
houses in the U.K. during the period from 2012 to 2016. The sampling periods for
mains and appliances were 1 second and 6 seconds, respectively. It is available
for academic purposes and has been used for smart meter research in many
existing works [34,48]. For our experimental purposes, we examine the metering
data of consumer C1 and consider the datasets of 2012 and 2013 as the non-
DP metering streams. Simultaneously, we utilize the 2014 dataset to generate
DP-induced power profiles and subsequently validate our attack methodology.
We derive the ground truth regarding the consumer’s home absence by observing
individual appliances’ power consumption profiles. We choose C1 as it contains all
the appliances’ (total of 52) power consumption information, such as the kettle,
fridge and dishwasher. The adversary utilizes these fine-grained power profiles
of consumer C1 to obtain the upper bound on the minimal power consumption
range and identify C1’s usual daily life behavior such as work routine or home
absence. The data streams from the year 2014 are passed through six well-studied
DP mechanisms [3,6,18,22,24,28] in order to generate DP output streams. We
have incorporated group differential privacy while implementing these six DP
mechanisms, considering the auto-correlation property of the metering streams.
We utilize Google’s differential privacy library [1] to generate the Laplacian and
Gaussian noises having varying sensitivity and privacy levels.

Choice of Privacy Levels and Sensitivity. In the literature, mostly the pri-
vacy levels of ε = 0.1 and ε = 1 are considered [3,18,22,24] with comparatively
smaller sensitivity values. However, in the presence of large sensitivity values,
the differential privacy mechanism with privacy levels of ε = 0.1 or 1 produces
a significantly higher magnitude of DP noises which are not suitable for smart
grid applications. For our experiments, we consider different privacy levels (ε)
from the range ε = 0.1 to ε = 100 having group sizes k = 10, 20, 30, 40, 50, 60
such that k successive meter readings provide the desired ε-DP guarantee. How-
ever, to determine the group size and privacy level pairs that satisfy the utility
requirements of the metering system, we consider the average distance distortion
function between the original and the perturbed streams as the utility metric.
This distortion metric mainly computes the Root Mean Square Error (RMSE)
between these two associated streams. We consider an upper bound of 3KW for
the utility metric, which is significantly higher than the permitted system limit,
and identify the group size and privacy level pairs that satisfy this bound. Based
on these settings, we present the experimental evidence of leakage through six
DP implementations using a real-life smart metering dataset by determining the
consumer’s home absence. Out of these, 3 methods use Laplacian noise [6,24,28],
2 utilizes gamma distribution to produce DP noises [3,18], and the remaining one

“Hello? Is There Anybody in There?” 177

generates Gaussian noises to obfuscate the meter readings [22]. Different values
of sensitivity are considered during the noise generation of these methodologies
following the six DP mechanisms, as highlighted below:

– Maximum power consumption of an appliance. In this case, the sen-
sitivity of the query function, i.e. Δq,1 is the maximum possible difference
in values between a pair of profiles that differ on only one appliance. The
query function considered here is the addition of individual appliances’ power
consumption value, and the DP mechanism proposed in [6] wants to hide the
presence of individual appliances from the DP-induced output stream. Hence,
as per the definition of sensitivity, Δq,1 can be considered as the maximum
variation caused by the appliance with the highest wattage. In the literature,
Barbosa et. al. [6] uses this sensitivity value during noise generation. We
assume that the appliance “laundry dryer” consumes the highest wattage i.e.
5 KW, among all the appliances in our use case so that Δq,1 = 5 KW. The
UK-DALE dataset of 2012 − 13 used during our experiments has the highest
power consumption value of around 8 KW. Considering this, the sensitivity
value of 5 KW is significantly large to hide the appliance’s usage patterns.

– Maximum allowed error in readings. Here, the scale parameter of the
Laplacian distribution is calculated using the maximum allowed error at each
instance. We consider a 10% maximum error in each reading during the DP
obfuscation phase. Based on this, the standard deviation and variance (σ2)
of the induced noises are computed so that the probability of obtaining the
desired privacy level is significantly high, e.g. 98%. The magnitude of the
scale parameter (denoted as b) of the Laplacian noise is calculated using the
variance and the total number of measurements (denoted as N=1 for one

sample): b =
√

σ2

2 . The authors of [28] use this methodology for noise gener-
ation. This mechanism provides a low sensitivity value; however, a lower value
of ε can be used in the DP mechanism to provide higher privacy guarantees.

– Maximum power reading of the consumer. Out of the remaining 4
DP mechanisms examined in our paper, we consider the same sensitivity
value for three of the DP mechanisms [3,22,24] that try to hide the sensitive
power consumption value of individual households before their aggregation
by the DCU. However, these three DP mechanisms follow different noise-
generation techniques i.e. the methodology of [24] uses Laplacian noises, the
scheme of [3] uses noises generated from the gamma distribution and the
DP mechanism of [22] uses Gaussian noises to hide individual consumer’s (in
our case C1) power consumption usage. The query function tries to aggregate
meter readings from multiple consumers. In order to hide the power usage
of consumer C1, the maximum possible power consumption value of C1 is
considered as the sensitivity value. Simultaneously, for the DP mechanism
of [18], the query function computes the total power consumption for all the
consumers over k sampling windows. For the consumer C1, let the vector
	R = 〈ri

1, · · · , ri
j , · · · , ri

k〉 denotes a k length original meter reading stream
obtained over a time interval of length kh (k ∈ N), where h is the sampling
period of the metering system. The DP mechanism tries to hide the overall

178 S. Ghosh et al.

power consumption over these k sampling windows. Here, the sensitivity is
the sum of the maximum smart meter values at these k windows. It is clear
that the sensitivity value considered during the mechanism of [18] is the
highest among all the six mechanisms considered in our work. As a result, the
magnitude of noise generated from the mechanism of [18] is also significantly
higher.

6.2 Experimental Evaluation

In this section, we describe our experimental platform and elaborate on the
significance of our proposed t-test based attack methodology in the context of
determining consumers’ absence in the household. We utilize the same UK-DALE
dataset mentioned in Sect. 6.1 and consider the six DP mechanisms with the
previously discussed sensitivity values to show the efficiency of our methodology.

Precomputation Phase

As discussed in Sect. 5, our proposed attacking scheme consists of a precomputa-
tion phase, where the adversary aims to acquire the minimal power consumption
range specific to the targeted consumer, that indicates its home absence. Simul-
taneously, we try to obtain the group size and privacy level pairs that satisfy the
privacy-utility trade-off criteria for all the aforementioned DP mechanisms.

Obtaining the Minimal Consumption Range Ψ1. The adversary leverages
the original smart metering dataset from the years 2012 and 2013 to derive the
minimal power consumption range, denoted as Ψ1, for consumer C1. Figure 3 illus-
trates the power consumption patterns of consumer C1 on November 28, 2012,
and December 29, 2012. Notably, Fig. 3(a) clearly demonstrates the presence of
the consumer at home on the specified day, despite very low power consump-
tion (less than 400 W) during specific time intervals, such as from 4:30 AM to
12:00 PM. This pattern suggests minimal household activity during that period,
possibly indicating the consumer’s absence or sleeping duration. Similar con-
sumption patterns are observed on different days, implying that this pattern
reflects the consumer’s typical routine. With the availability of appliance-level
power consumption data, we can unveil the truth behind these power profiles.
Figure 4 depicts the power profile of the kitchen lights appliance on November
28, 2012, highlighting the consumer’s activity during the same time interval as
in Fig. 3(a). Simultaneously, the dataset reveals that other appliances, such as
the TV and dryer, are also active at different timing intervals, indicating C1’s
home presence. However, the power profile on December 29, 2012 (Fig. 3(b)),
indicates very little household activity throughout the day, suggesting the possi-
bility of consumer’s home absence. The power profile related to the kitchen lights
appliance shows zero power consumption throughout the day, indicating that the
consumer did not enter the kitchen to perform their daily activities. The con-
sumption patterns observed in Fig. 3(b) are primarily attributed to the appliance
fridge, which remained on throughout the day but did not exhibit peak power

“Hello? Is There Anybody in There?” 179

Fig. 3. Usual power consumption patterns of consumer C1 during their home absence
throughout the day (December 29, 2012) and their usual daily life routine (November
28, 2012). The blue and black line indicates the power consumption values of 400 W
and 800 W respectively. (Color figure online)

consumption. In contrast, on November 28, 2012, peak power consumption from
the appliance fridge can be observed. The variation in a fridge’s power consump-
tion between these days can be attributed to factors such as the fridge’s cooling
cycle. The appliance fridge performs cycles on and off regularly to maintain the
desired temperature. On some days, the fridge may need to run longer and more
frequently, especially if it’s filled with warm items or if the ambient tempera-
ture is high. This increased cooling demand results in peak power consumption
patterns (e.g. November 28, 2012). In contrast, on days when the fridge is less
loaded or the ambient temperature is lower, it follows a more regular and energy-
efficient pattern, which was the case on December 29, 2012. Consequently, the
ground truth regarding the consumer’s home absence can be reliably deduced
by monitoring the power consumption patterns of individual appliances. This is
particularly feasible, given that a majority of appliances remain inactive through-
out the day, with exceptions such as appliances with periodic power consumption
cycles (e.g., the cooling cycle of the fridge). Considering this, the overall power
consumption for consumer C1 is mostly confined within a minimal consump-
tion range, specifically [0, 400] W. Power profiles falling within this range can
be readily identified as indicative of the consumer’s home absence. The periodic

180 S. Ghosh et al.

Fig. 4. Power consumption of appliance kitchen lights on November 28, 2012 which
indicates consumer presence in the household during specific timing windows.

Fig. 5. Power consumption patterns of consumer C1 during their home absence
throughout the day on December 23, 2013, December 24, 2013, and December 28,
2014. Almost all of the power consumption readings from these three distinct days are
bounded by the minimal consumption range of Ψ1 = [0, 400] W.

and predictable nature of household appliance activities, along with the defined
minimal consumption range, facilitates the accurate estimation of consumer’s
home absence. Meter readings can also fall within the minimal consumption
range of [0, 400] during the consumer’s sleeping duration. However, during con-
sumer home absence, meter readings mostly belong to partitions Ψ1 and Ψ2,
with a maximum of 2% of readings falling outside partition Ψ1. If consumers are
simply idle, such as during sleep, peak power consumption from some household
appliances may be observed, with high power consumption values in the range
of 1.5 kW to 2 kW. Figure 3 illustrates these scenarios by displaying the power
consumption patterns on two different days for consumer C1. The power profile
from December 29 clearly indicates the consumer’s absence throughout the day,
with less than 0.02% of meter readings belonging to partition Ψ2 and the rest
falling into partition Ψ1. In contrast, the power profile from November 28 depicts
consumer C1’s typical daily routine, where idle periods mostly occur from 4:30
AM to 12:00 PM. The remaining time intervals include high power consumption

“Hello? Is There Anybody in There?” 181

Fig. 6. Percentage of original meter readings outside partition Ψ1 for consumer C1

under different days when C1’s household is unoccupied.

values of up to 6 kW, including the time period from 12:00 AM to 2:00 AM
(around 2 kW).

One important thing to note is that the minimal consumption range Ψ1

remains consistently within the specified region of [0, 400] W for consumer C1

throughout the years 2012-2014. Figure 5 illustrates this scenario by showing
the power consumption patterns of consumer C1 during their absence from home
throughout the day on specific dates, namely December 23, 2013, December 24,
2013, and December 28, 2014. During these periods, only a negligible percentage
of power consumption readings deviate from the defined partition Ψ1 = [0, 400],
with only 0.01%, 0.80%, and 1.03% of readings falling outside this range, respec-
tively. Similarly, the percentage of power consumption readings exceeding the
boundaries of partition Ψ1 for C1 during the home absence is provided in Fig. 6,
emphasizing the marginal nature of such occurrences. This clearly indicates
throughout the years 2012–2014, on various unoccupied days, the percentage of
readings surpassing the confines of Ψ1 remains minimal. This consistent behav-
ior implies that the minimal consumption range for C1 does not deviate from
the specified range of Ψ1 = [0, 400] W during these years. Consequently, it is
established that the power readings during the absence of C1 from home are
predominantly confined within the range of Ψ1 = [0, 400] W. Building upon
these empirical observations, we define the minimal consumption range Ψ1 as
[0, 400] W for our experimental purposes. Thus, for our proposed Algorithm1,
we consider β = 0.4KW and create the set of partitions Ψ1, · · · , ΨZ and set a
fixed increment δ = 0.1 KW. With these considerations in mind, we conduct a
real-time daywise assessment of the consumer’s differentially private readings to
determine their absence or presence at home throughout a 24-hour period.

Obtaining Privacy Parameters. It is evident that for a fixed privacy level ε,
the magnitude of noises introduced to the meter readings increase monotonically
with increasing group sizes (denoted as k) as each meter reading over the group
size k satisfies ε

k -differential privacy. Figure 7 illustrates the Root Mean Square
Error (RMSE) between the original readings from December 28, 2014, and the
DP-induced meter readings generated using the DP mechanism of [6] for a few
selected k and ε pairs. The utility threshold is chosen as 3 KW, and indicated

182 S. Ghosh et al.

Fig. 7. Root Mean Square Error (RMSE) between the original and DP-induced meter
readings generated using DP mechanism of [6] with respect to different group size and
privacy level pairs. The blue line indicates the utility threshold of 3 KW. (Color figure
online)

with a blue line in Fig. 7. All the k and ε pairs having RMSE values less than the
threshold of 3 KW can be considered for further experiments. This is because
the rest of the pairs will never be used in a smart metering setting as they may
completely destabilize the system and assign abruptly high pricing signals to
the consumers. We execute our proposed t-test based attack algorithm against
these preferred k and ε pairs and subsequently highlight the lack of privacy
protection these DP-induced readings provide in the context of determining a
consumer’s home absence. In a similar way, we obtain the k and ε pairs for the
remaining five DP mechanisms considered in our paper. The k and ε pairs that
produce the most distortion against the original streams of December 28, 2014,
and satisfy the utility criteria under the DP mechanisms [3,6,18,22,24,28] are
(40, 100), (10, 20), (40, 0.3), (40, 10), (20, 4) and (60, 10) respectively. Note that if
the t-test based assessment methodology requires L continuous metering traces
to successfully execute the attacking scheme, the overall trace satisfies ε×L

k -
differential privacy, which decreases the desired privacy protection. However, it
is not feasible to reduce the privacy level ε even further as the RMSE values will
increase drastically, resulting in a violation of privacy-utility trade-off criteria.

Evaluation of t-test Based Attack Methodology

We leverage Algorithm 1 to estimate the original range of meter readings from
the DP-protected output streams as discussed in Sect. 5 and identify consumers’
home absence under the group size and privacy level pairs obtained from the
precomputation phase. To assess the efficacy of our proposed attack scheme, we
select five distinct dates, namely July 29, August 23, August 24, December 28,
and December 29, 2014, as the evaluation dates, during which consumer C1’s
residence remains unoccupied throughout the day. Our determination of C1’s
home absence is derived by employing the same steps outlined in the Precom-
putation Phase discussed in Sect. 6.2. In this context, we emphasize that dur-
ing the consumer’s home absence, the power consumption readings are almost

“Hello? Is There Anybody in There?” 183

Fig. 8. Stepwise iteration for obtaining correct input range from DP traces under dif-
ferent DP mechanisms with an increasing observation window. The black line indicates
the estimation of 400 and t-value of 0 through x-axis and y-axis respectively.

entirely bounded by Ψ1, and no peak power consumptions from the appliances’
are observed. As detailed in Sect. 6.1, we possess access to the power consump-
tion patterns of all 52 appliances belonging to C1. Upon analyzing the non-DP
power measurements from the 2014 dataset, we observed the absence of peak
consumption by the appliances on these targetted dates. This is more evident
from the fact that merely 1% of the readings fall outside the partition Ψ1. Out
of these dates, the power consumption profile of December 28, has the high-
est percentage of readings outside the range of partition Ψ1 = [0, 400] with a
value of 1.03%. The slight fluctuations in power consumption outside of Ψ1 can
be attributed to the cooling cycle of the fridge, as previously discussed. Based
on these observations, we establish the ground truth regarding the household

184 S. Ghosh et al.

Table 1. Success rate of our proposed attack methodology (Algorithm 1) against the
DP-induced streams of December 28 under six differential private mechanisms with
increasing observation window.

Differential Private
Mechanism

Success Rate of Proposed Attack Methodology

Observation Window

2 h 4 h 6 h 8 h 10 h 12 h 14 h 16 h 18 h 20 h 22 h 24 h

Barbosa et al. [6] 70% 76% 92% 96% 98% 98% 98% 100% 100% 100% 100% 100%

Eibl et al. [18] 74% 82% 84% 94% 96% 98% 98% 100% 100% 100% 100% 100%

Hassan et al. [28] 68% 86% 90% 90% 92% 94% 96% 96% 98% 100% 100% 100%

Gergely et al. [3] 68% 92% 92% 98% 98% 100% 100% 100% 100% 100% 100% 100%

Gough et al. [24] 72% 82% 94% 94% 94% 98% 98% 100% 100% 100% 100% 100%

Giraldo et al. [22] 74% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Fig. 9. Success Rate of our proposed t-test based attack methodology against six dif-
ferential private mechanisms with increasing observation window under four different
days when C1’s household is unoccupied.

status of C1, affirming that C1’s home was indeed unoccupied on these dates.
Subsequently, we gather the DP output traces from these specific dates under
previously obtained group size and privacy level pairs and execute our attack
scheme by incrementally increasing the number of output traces. Figure 8 repre-
sents the step-wise iteration of our proposed t-test based algorithm to estimate
the original range of the meter reading stream under all six DP implementations
from the DP-induced output traces of December 28. As discussed in Sect. 5,
we try to identify the first reading for which the resulting t-value between the

“Hello? Is There Anybody in There?” 185

original DP-induced output trace and estimated trace is negative and subse-
quently obtain Ψi such that the estimation lies in partition Ψi. Figure 8 clearly
illustrates that the resulting t-values are producing negative signs on/before the
estimation reaches the value of 400 ∈ Ψ1 starting from a two-hour observation
period to ten-hour duration. Here, for all the scenarios and DP implementations,
the proposed Algorithm 1 is able to successfully deduce the range of consumers’
power profiles and subsequently indicate their home absence. In this paper, we
conducted a comprehensive assessment of the aforementioned six differential pri-
vacy mechanisms. Our evaluation consisted of 50 independent runs, during which
we applied our attacking scheme to distinct DP-induced output traces, all gener-
ated using the same precomputed group size and privacy level pairs. As depicted
in Table 1, our analysis centers on the success rate of our attack methodology
against the DP profiles of December 28 as the observation window size increases.
It is a matter of significant concern that, with just an 8-hour observation win-
dow, the adversary can ascertain a consumer’s home absence with an accuracy
of more than 90%. Furthermore, this accuracy steadily rises with longer obser-
vation periods. Comparable results are observed on July 29, August 23, August
24, and December 29, as depicted in Fig. 9, which illustrates the success rates
of our t-test based attack methodology against six differential private mech-
anisms. The success rates escalate proportionally with increasing observation
window sizes across the four distinct days when C1’s household is unoccupied. In
an alternative perspective, one can infer that the more extended the nighttime
observation, the more confidently the adversary can conclude that the house-
hold is unoccupied. This vulnerability creates an ideal opportunity for potential
burglaries or break-in attempts. Our observations across various dates when the
consumer’s household remained unoccupied consistently revealed similar pat-
terns and highly accurate range estimations. This underscores the effectiveness
of our methodology and highlights the limitations of prevailing state-of-the-art
DP implementations in the context of smart metering infrastructure. Nonethe-
less, our proposed attacking scheme successfully identifies a consumer’s home
absence with exceptional accuracy, thereby ensuring the robustness and practi-
cal applicability of our approach.

7 Discussion

In addition to our proposed t-test based attack algorithm, we also conducted
another statistical analysis utilizing Maximum Likelihood Estimation (MLE) on
the differential private output traces with the objective of discerning the absence
or presence of a consumer. MLE aims to determine the mean of input stream
	R based on the observable output distribution TR = 〈Rout(1), · · · , Rout(i),
· · · , Rout(L)〉. The value that maximizes the log-likelihood function (log of prob-
ability density function) is considered the final estimated mean (xest). We com-
pared our proposed attack method against the MLE scheme across all six DP
mechanisms mentioned earlier while varying the number of output traces. Under
the DP mechanisms [3,18,24,28], the performance of the MLE scheme closely

186 S. Ghosh et al.

parallels that of our proposed methodology. In contrast, when we delve into the
Gaussian mechanism of [22], it becomes apparent that an accuracy level exceed-
ing 90% is achieved following a 12-hour observation window. Conversely, when
applying the MLE approach to the Laplacian mechanism of [6], the highest
attained success rate is limited to a mere 84%. It is also important to high-
light the presence of a potential countermeasure against the MLE based scheme,
which can significantly reduce its accuracy to as low as 0%. As previously demon-
strated in the literature [30,47], DP mechanisms that incorporate non-zero mean
can still satisfy the desired DP guarantees. When these DP mechanisms take into
consideration a non-zero mean, which is intentionally concealed from potential
adversaries, the resulting DP-induced output profile serves as a robust safeguard
for sensitive information concerning the mean of the input data stream. This con-
cealment effectively keeps the adversary in the dark regarding the precise mean
of the DP mechanism in use. For instance, if the introduced mean corresponds
to a specific value, such as β = 400 W, then even though the true mean of the
input data stream lies within a minimal consumption range Ψ1, the output of the
MLE scheme provides an inaccurate estimation of the mean as being outside the
Ψ1 range. This discrepancy arises due to the MLE scheme’s lack of knowledge
regarding the mean of the DP mechanisms. On the other hand, our proposed
approach operates under the assumption that the DP mechanism functions as a
black box, a presumption well-founded in light of the security guarantees afforded
by the principles of DP. As a result, the accuracy of determining the consumer’s
home presence remains the same for our proposed attack methodology. These
fundamental distinctions highlight the superior effectiveness and robustness of
our attack scheme in comparison to the MLE based method, concerning its abil-
ity to accurately determine the household status of the consumer.

8 Conclusion and Future Work

In this work, we proposed a simple albeit effective t-test based statistical attack
methodology to detect consumers’ home absence from the DP metering traces.
All the six very well-studied DP mechanisms considered in our work try to
protect the appliance’s usage patterns, and original meter readings from adver-
saries; but fail to achieve their goal in a practical setting by leaking consumers’
home absence through DP-induced output streams. Correct estimation of the
consumer’s home absence helps the adversaries bound the original power usage
of the appliances and subsequently predict appliances’ usage patterns as the
high-wattage appliances will be switched off. As a result, leakage regarding
consumers’ home absence guarantees a serious breach of consumers’ daily life
privacy. The group DP mechanism to hide the auto-correlation between meter
readings also could not prevent such privacy breaches due to the privacy-utility
trade-off problem of the metering systems. As a possible future work direction,
we plan to make a new privacy-preserving streaming algorithm that obscures
the appliance’s usage patterns to mitigate such attacks without incurring any
aggregation and billing error which the current instance of DP fails to achieve.

“Hello? Is There Anybody in There?” 187

Acknowledgement. The authors would like to thank the anonymous reviewers for
their insightful comments and suggestions for improving the paper. They would also
like to thank the Department of Science and Technology (DST), Govt of India, IHUB
NTIHAC Foundation, C3i Building, Indian Institute of Technology Kanpur, and Centre
on Hardware-Security Entrepreneurship Research and Development, Meity, India, for
partially funding this work.

References

1. Google’s differential privacy libraries (2022). https://github.com/google/
differential-privacy

2. Naperville Smart Meters Keep Track of Household Activities (2022). https://
smartgridawareness.org/2013/10/03/smart-meter-data-reveals/

3. Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Meter-
ing). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol.
6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24178-9 9

4. Avula, R.R., Oechtering, T.J.: Privacy-enhancing appliance filtering for smart
meters. In: ICASSP 2022–2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 9042–9046. IEEE (2022)

5. Bao, H., Lu, R.: A new differentially private data aggregation with fault tolerance
for smart grid communications. IEEE Internet Things J. 2(3), 248–258 (2015).
https://doi.org/10.1109/JIOT.2015.2412552

6. Barbosa, P., Brito, A., Almeida, H.: A technique to provide differential privacy for
appliance usage in smart metering. Inf. Sci. 370 (2016)

7. Cao, X., Jia, J., Gong, N.Z.: Data poisoning attacks to local differential privacy
protocols. In: 30th USENIX Security Symposium (USENIX Security 21), pp. 947–
964 (2021)

8. Chen, R., Fung, B.C., Yu, P.S., Desai, B.C.: Correlated network data publication
via differential privacy. VLDB J. 23, 653–676 (2014)

9. Cheu, A., Smith, A., Ullman, J.: Manipulation attacks in local differential privacy.
In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 883–900. IEEE (2021)

10. Clark, M.R., Hopkinson, K.M.: Towards an understanding of the tradeoffs in adver-
sary models of smart grid privacy protocols. In: 2013 IEEE Power and Energy
Society General Meeting, pp. 1–5 (2013). https://doi.org/10.1109/PESMG.2013.
6672334

11. Dimitriou, T.: Secure and scalable aggregation in the smart grid. In: 2014 6th
International Conference on New Technologies, Mobility and Security (NTMS),
pp. 1–5 (2014). https://doi.org/10.1109/NTMS.2014.6814048

12. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 1

13. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

14. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1),
86–95 (2011)

15. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

https://github.com/google/differential-privacy
https://github.com/google/differential-privacy
https://smartgridawareness.org/2013/10/03/smart-meter-data-reveals/
https://smartgridawareness.org/2013/10/03/smart-meter-data-reveals/
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1109/JIOT.2015.2412552
https://doi.org/10.1109/PESMG.2013.6672334
https://doi.org/10.1109/PESMG.2013.6672334
https://doi.org/10.1109/NTMS.2014.6814048
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/11681878_14

188 S. Ghosh et al.

16. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends® Theor. Comput. Sci. (2014)

17. Dwork, C., Smith, A.: Differential privacy for statistics: What we know and what
we want to learn. J. Priv. Confidentiality (2009)

18. Eibl, G., Engel, D.: Differential privacy for real smart metering data. Comput.
Sci.-Res. Dev. 32(1), 173–182 (2017)

19. Farokhi, F.: Review of results on smart-meter privacy by data manipulation,
demand shaping, and load scheduling. IET Smart Grid 3(5), 605–613 (2020)

20. Geng, Q., Ding, W., Guo, R., Kumar, S.: Tight analysis of privacy and utility trade-
off in approximate differential privacy. In: International Conference on Artificial
Intelligence and Statistics, pp. 89–99. PMLR (2020)

21. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for side-
channel resistance validation. In: NIST Non-invasive Attack Testing Workshop, vol.
7, pp. 115–136 (2011)

22. Giraldo, J., Cardenas, A., Kantarcioglu, M., Katz, J.: Adversarial classification
under differential privacy. In: Network and Distributed Systems Security (NDSS)
Symposium 2020 (2020)

23. Goel, S., Hong, Y.: Security challenges in smart grid implementation. In: Smart
Grid Security. SC, pp. 1–39. Springer, London (2015). https://doi.org/10.1007/
978-1-4471-6663-4 1

24. Gough, M.B., Santos, S.F., AlSkaif, T., Javadi, M.S., Castro, R., Catalão, J.P.:
Preserving privacy of smart meter data in a smart grid environment. IEEE Trans.
Ind. Inform. (2021)

25. Gough, M.B., Santos, S.F., AlSkaif, T., Javadi, M.S., Castro, R., Catalão, J.P.S.:
Preserving privacy of smart meter data in a smart grid environment. IEEE Trans.
Ind. Inf. 18(1), 707–718 (2022). https://doi.org/10.1109/TII.2021.3074915

26. Hassan, M.U., Rehmani, M.H., Chen, J.: Performance evaluation of differen-
tial privacy mechanisms in blockchain based smart metering. arXiv preprint
arXiv:2007.09802 (2020)

27. Hassan, M.U., Rehmani, M.H., Kotagiri, R., Zhang, J., Chen, J.: Differential pri-
vacy for renewable energy resources based smart metering. J. Parallel Distrib.
Comput. 131, 69–80 (2019)

28. Hassan, M.U., Rehmani, M.H., Kotagiri, R., Zhang, J., Chen, J.: Differential pri-
vacy for renewable energy resources based smart metering. J. Parallel Distrib.
Comput. 131, 69–80 (2019

29. Hong, Y., Liu, W.M., Wang, L.: Privacy preserving smart meter streaming against
information leakage of appliance status. IEEE Trans. Inf. Forensics Secur. 12(9)
(2017). https://doi.org/10.1109/TIFS.2017.2704904

30. Huang, W., Zhou, S., Liao, Y., Zhuo, M.: Optimizing query times for multiple users
scenario of differential privacy. IEEE Access 7, 183292–183299 (2019)

31. Huang, Z., Mitra, S., Dullerud, G.: Differentially private iterative synchronous
consensus. In: Proceedings of the 2012 ACM Workshop on Privacy in the Electronic
Society, pp. 81–90 (2012)

32. Jin, J., McMurtry, E., Rubinstein, B.I., Ohrimenko, O.: Are we there yet? timing
and floating-point attacks on differential privacy systems. In: 2022 IEEE Sympo-
sium on Security and Privacy (SP), pp. 473–488. IEEE (2022)

33. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential pri-
vacy. In: International Conference on Machine Learning, pp. 1376–1385. PMLR
(2015)

https://doi.org/10.1007/978-1-4471-6663-4_1
https://doi.org/10.1007/978-1-4471-6663-4_1
https://doi.org/10.1109/TII.2021.3074915
http://arxiv.org/abs/2007.09802
https://doi.org/10.1109/TIFS.2017.2704904

“Hello? Is There Anybody in There?” 189

34. Kelly, J., Knottenbelt, W.: Neural NILM: deep neural networks applied to energy
disaggregation. In: Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments, pp. 55–64 (2015)

35. Kelly, J., Knottenbelt, W.: The UK-dale dataset, domestic appliance-level electric-
ity demand and whole-house demand from five UK homes. Sci. Data 2(1), 1–14
(2015)

36. Liu, C., Chakraborty, S., Mittal, P.: Dependence makes you vulnberable: differen-
tial privacy under dependent tuples. In: NDSS, vol. 16, pp. 21–24 (2016)

37. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in pri-
vate data analysis. In: Proceedings of the Thirty-Ninth Annual ACM Symposium
on Theory of Computing, pp. 75–84 (2007)

38. Rajagopalan, S.R., Sankar, L., Mohajer, S., Poor, H.V.: Smart meter privacy: a
utility-privacy framework. In: 2011 IEEE International Conference on Smart Grid
Communications (SmartGridComm), pp. 190–195. IEEE (2011)

39. Randolph, M., Diehl, W.: Power side-channel attack analysis: a review of 20 years
of study for the layman. Cryptography 4(2), 15 (2020)

40. Saha, S., Kumar, S.N., Patranabis, S., Mukhopadhyay, D., Dasgupta, P.: Alafa:
automatic leakage assessment for fault attack countermeasures. In: Proceedings of
the 56th Annual Design Automation Conference 2019, pp. 1–6 (2019)

41. Sankar, L., Rajagopalan, S.R., Mohajer, S., Poor, H.V.: Smart meter privacy: a
theoretical framework. IEEE Trans. Smart Grid 4(2) (2012)

42. Tan, R., Badrinath Krishna, V., Yau, D.K., Kalbarczyk, Z.: Impact of integrity
attacks on real-time pricing in smart grids. In: Proceedings of the 2013 ACM
SIGSAC conference on Computer and communications security (2013)

43. Tran, H.Y., Hu, J., Pota, H.R.: Smart meter data obfuscation with a hybrid
privacy-preserving data publishing scheme without a trusted third party. IEEE
Internet Things J. 9(17), 16080–16095 (2022)

44. Wagh, G.S., Gupta, S., Mishra, S.: A distributed privacy preserving framework
for the smart grid. In: 2020 IEEE Power and Energy Society Innovative Smart
Grid Technologies Conference (ISGT), pp. 1–5 (2020). https://doi.org/10.1109/
ISGT45199.2020.9087730

45. Wang, H., Xu, Z., Jia, S., Xia, Y., Zhang, X.: Why current differential privacy
schemes are inapplicable for correlated data publishing? World Wide Web 24(1),
1–23 (2021)

46. Wang, H., Zhang, J., Lu, C., Wu, C.: Privacy preserving in non-intrusive load moni-
toring: a differential privacy perspective. IEEE Trans. Smart Grid 12(3), 2529–2543
(2020)

47. Xu, D., Yuan, S., Wu, X.: Achieving differential privacy and fairness in logistic
regression. In: Companion Proceedings of the 2019 World Wide Web Conference,
pp. 594–599 (2019)

48. Zhang, C., Zhong, M., Wang, Z., Goddard, N., Sutton, C.: Sequence-to-point learn-
ing with neural networks for non-intrusive load monitoring. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32 (2018)

49. Zheng, Z., Wang, T., Bashir, A.K., Alazab, M., Mumtaz, S., Wang, X.: A decentral-
ized mechanism based on differential privacy for privacy-preserving computation
in smart grid. IEEE Trans. Comput. 71(11), 2915–2926 (2021)

https://doi.org/10.1109/ISGT45199.2020.9087730
https://doi.org/10.1109/ISGT45199.2020.9087730

Security Analysis of BigBlueButton
and eduMEET

Nico Heitmann(B), Hendrik Siewert, Sven Moog, and Juraj Somorovsky

Paderborn University, Paderborn, Germany

heitnico@mail.upb.de

Abstract. Video conferencing systems have become an indispensable
part of our world. Using video conferencing systems implies the expecta-
tion that online meetings run as smoothly as in-person meetings. Thus,
online meetings need to be just as secure and private as in-person meet-
ings, which are secured against disruptive factors and unauthorized per-
sons by physical access control mechanisms.

To show the security dangers of conferencing systems and raise gen-
eral awareness when using these technologies, we analyze the security of
two widely used research and education open-source video conferencing
systems: BigBlueButton and eduMEET. Because both systems are very
different, we analyzed their architectures, considering the respective com-
ponents with their main tasks, features, and user roles. In the following
systematic security analyses, we found 50 vulnerabilities. These include
broken access control, NoSQL injection, and denial of service (DoS). The
vulnerabilities have root causes of different natures. While BigBlueBut-
ton has a lot of complexity due to many components, eduMEET, which
is relatively young, focuses more on features than security. The sheer
amount of results and the lack of prior work indicate a research gap that
needs to be closed since video conferencing systems continue to play a
significant role in research, education, and everyday life.

1 Introduction

The COVID-19 pandemic forced millions of people worldwide to stay at
home [19]. As a result, meetings, classrooms, and private events were held online,
and the demand and interest for online video conferencing systems increased [42].
In April 2020, Zoom Video Communications reported that their number of users
had significantly increased due to the pandemic. While Zoom had 10 million
daily users in December 2019, it had 200 million daily users in March 2020.
Besides Zoom, there are numerous other video conferencing services, such as
Microsoft Teams, Webex by Cisco, Google Meet, Skype, Zoho Meeting, Blue-
Jeans, LifeSize, Whereby, and many others [30].

Security of Video Conferencing Systems. With the rise of video conferencing
systems, security and privacy concerns grew. In April 2020, Google, SpaceX, and
others banned Zoom over privacy concerns regarding its end-to-end encryption
(E2EE) [22,38,45]. To eliminate vulnerabilities and increase security, several
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 190–216, 2024.
https://doi.org/10.1007/978-3-031-54776-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_8

Security Analysis of BigBlueButton and eduMEET 191

video conferencing providers, such as Zoom Video Communications, Inc. (Zoom)
and 8x8, Inc. (Jitsi Meet), started bug bounty programs [1,48]. This measure
bears fruit; Zoom received 401 reports and awarded $1.8 million in 2021 [12].

The demand for security and privacy in conferencing technologies also led
to open-source video conferencing systems gaining popularity. Open-source soft-
ware allows one to analyze the source code and self-host conferencing servers,
which requires know-how but has the advantage that data remains on known
servers. This is especially important in deployments that need to comply with
European regulations for the protection of personal data. For example, in 2022,
Germany’s federal state Rhineland-Palatinate forbade the usage of Microsoft
Teams in schools because it is not compliant with the General Data Protection
Regulation (GDPR) [16].

Towards Systematic Security Analysis of Video Conferencing Systems. Despite
the importance of security and privacy in video conferencing systems, there is,
to our knowledge, no systematic research on the security of video conferencing
systems yet. To gain insights into the attack surface associated with video con-
ferencing systems, we selected two open-source systems widely used in research
and education: BigBlueButton and eduMEET.

BigBlueButton has been developed since 2007 with the goal of giving teachers
and researchers the ability for a new style of hybrid teaching where BigBlueBut-
ton should serve as an online classroom [27]. Similarly to other video conferencing
systems, BigBlueButton gained popularity during the COVID-19 pandemic. It
has, for example, become the primary mode of communication and learning in
schools in France [7]. The recommendation was issued by the French Ministry of
Education, which is responsible for 65,000 schools serving 12 million students.
Even after the pandemic, BigBlueButton remained the recommended education
tool in France [5] and several German federal states [16,46].

eduMEET was released in April 2020 by GÉANT, a European research net-
work [15]. According to GÉANT, the release was rapidly accelerated due to
lockdown measures and the need for an alternative and trustworthy video con-
ferencing solution [26]. GÉANT’s main arguments for having their video confer-
encing system were that it is from their community, self-hosted, and therefore
the traffic stays within their network. Thus, they consider the tool trustworthy
and cost-efficient compared to commercial alternatives [15].

To analyze the security of the chosen video conferencing systems, we must
first understand how both systems are composed and which features they pro-
vide. This leads us to our research questions:

RQ1 Which architecture concepts do BigBlueButton and eduMEET follow?
RQ2 What are the common features and user roles, and how are permissions

assigned to individual features?
RQ3 What types of attacks result from the given architecture, features, and user

roles?

Our Approach. To perform a systematic analysis of a video conferencing system,
we need to know how it is structured. That includes its components, as well as
their responsibilities and tasks. Therefore, we break down the complex structures

192 N. Heitmann et al.

of each system to form shared components with their main tasks. Furthermore,
we examine the connection between features, permissions, and user roles that
are common to video conferencing systems. Using this information, we define
our attacker model and use it to perform a source code analysis, for which
we follow the data flow within and between components. Thus, we can check
whether the components adhere to their responsibilities and correctly enforce
user permissions as assigned by the user roles.

Results. Besides both being web video conferencing systems with similar user
roles, the architectures of BigBlueButton and eduMEET differ drastically. Big-
BlueButton has many features with a very complex structure, while eduMEET is
more minimal in comparison. Our architecture analyses laid the groundwork for
the systematic security analyses of both conferencing systems; we found 7 vul-
nerabilities and 7 bugs. Among them are classic security flaws like broken access
control, NoSQL injection, and DoS, but also vulnerabilities that are feature-
specific and could be detected due to our in-depth architecture analyses.

Contributions. In summary, we make the following contributions:

– We provide a structured security analysis of two modern open-source video
conferencing systems: BigBlueButton and eduMEET.

– We present a common structure of both systems and introduce their main
components, features, and user roles.

– With our security analyses, we were able to identify 57 vulnerabilities and
bugs. These range from attacks targeting confidential meeting chats, partici-
pant lists, and streams to impersonation and DoS attacks.

Responsible Disclosure. We responsibly disclosed all vulnerabilities and bugs to
the developers of BigBlueButton and eduMEET.

2 Background

In this section, we cover WebRTC, which both analyzed video conferencing sys-
tems use as their method for real-time audio and video transfer.

2.1 WebRTC

WebRTC [8] is a suite of protocols for real-time communication (RTC) over
the Internet. For web applications, it defines a JavaScript API to access media
devices and to manage WebRTC connections. WebRTC supports media streams
and message-based transfer of arbitrary data. It supports peer-to-peer (P2P)
connections, where two users exchange data directly, without the data flowing
over a server.

Before two peers can establish a direct WebRTC connection, they need to
exchange information using a signaling server. They negotiate the initial media
streams, with configuration such as codecs and bitrate, in the form of a Session

Security Analysis of BigBlueButton and eduMEET 193

Description Protocol (SDP) offer and answer [6]. These also contain the informa-
tion needed for opening the direct connection, including NAT traversal (Inter-
active Connectivity Establishment (ICE) candidates). Once a direct connection
has been established, the peers can transfer the negotiated streams. WebRTC
currently supports only one media transport protocol, DTLS-SRTP [25].

2.2 WebRTC Architectures in Conferencing Systems

In a typical conferencing setting, a group of users exchanges media data, for
example, audio and camera streams. Using a P2P architecture for broadcasting
media streams minimizes latency and avoids server bandwidth overhead. How-
ever, this approach does not scale well due to the limited bandwidth of end users.
Therefore, using a P2P architecture is often infeasible for conferences.

Instead of using a P2P architecture, conferencing systems implement servers
that can receive and redistribute the media streams for each user. There are two
types of architectures a WebRTC server can follow. In the Selective Forwarding
Unit (SFU) architecture, the server distributes incoming streams unmodified. If
the server processes and combines incoming media streams, the architecture is
called Multipoint Control Unit (MCU). This lowers the bandwidth requirements
for the clients in exchange for processing on the server.

3 Analysis Method

Due to the lack of systematic analyses of video conferencing systems, there is no
methodology for us to use and adapt. Thus, we started developing an approach
that was further refined during our analysis. The structure of our paper reflects
the steps of our analysis.

In the first part of this section, we outline the procedure for analyzing the
architecture and user roles of the chosen systems. The second part of this section
deals with the structured source code analysis. We assume attackers can reach
a conferencing server over the network, with the server operator being a trust-
worthy party. The source code analysis requires a detailed attacker model based
on the architecture, so we defer the detailed attacker model to Sect. 6.

3.1 High-Level Analysis

In the primary analysis, we use the respective documentation and the publicly
available source code to get a broad overview of the respective system. Getting an
overview helps to assess the complexity of the system, as well as understanding
the functionality and use case for the video conferencing system (e.g., education).
We divide the primary analysis into the following steps.

Architecture and Components (RQ1). The first step contains the architecture of
the respective system (see Sect. 4). Next to the main components of the architec-
tures, such as web client and server, we are especially interested in the WebRTC
components and the messaging between components since these aspects facilitate
the understanding of the systems the most.

194 N. Heitmann et al.

Conferencing Features (RQ2). Then, we look at the features that each system
offers (see Sect. 5.1). The features are needed for our analysis because each fea-
ture interacts with a meeting in a certain way (e.g., removing users from a
meeting). These interactions are mostly limited to certain groups of users, such
as moderators, and therefore require access control.

User Roles (RQ2). Finally, we check the user roles and permissions (see
Sect. 5.2). We map these to the features that we gathered in the previous step.
This allows us to get an overview and understanding of the system, which facil-
itates a more detailed source code analysis.

3.2 Source Code Supported Security Analysis

In our source code analysis, we chose a manual approach since automation does
not work in our case (see Sect. 8.3). As the first step, we perform a detailed
analysis of the implementation. This shares commonalities with the primary
architecture analysis, but we now focus on the internal implementation of each
component. We manually validate that the implementation matches the docu-
mentation and our understanding of the features. This step also results in the
identification of internal assumptions, for example, which parts of internal mes-
sages the components treat as trustworthy. All components have the responsi-
bility to satisfy these often implicit internal assumptions.

Because almost all server logic gets triggered by user actions, we perform a
data flow analysis on each possible user action. We confirm the overall behavior
in practice, for example, via the browser’s developer tools. During this data
flow analysis, we consider the responsibilities of each component (e. g., access
control on the conferencing server). Whenever it is not certain that an aspect
of the conferencing system correctly adheres to the responsibilities, we need to
investigate further.

When investigating a potential vulnerability, we may move directly to build-
ing a proof of concept. Otherwise, we may also re-evaluate whether it is handled
elsewhere than expected. In either case, we conclude when we have either demon-
strated an exploit or have complete reasoning for the behavior to be correct.

4 Architectures of the Analyzed Open-Source
Conferencing Systems (RQ1)

We answer RQ1 by analyzing the architectures of BigBlueButton and
eduMEET. From both systems, we first derive a shared architecture that gives a
high-level overview of common components and outlines their main tasks, which
not only helps understanding the analyzed video conferencing systems, but also
might facilitate future work. Then, we describe the implementation specifics of
BigBlueButton and eduMEET. Finally, we compare the feature sets they offer
to users.

Security Analysis of BigBlueButton and eduMEET 195

Fig. 1. Shared architecture of the analyzed video conferencing systems, showing the
three components “web client”, “conferencing server”, and the “WebRTC component”
with their main tasks. Arrows represent communication, and media streams are marked
in green. The dotted arrows mark the creation of the WebRTC connection. The cylin-
ders represent data storage.

4.1 Shared Architecture

We first focus on commonalities of the analyzed video conferencing systems by
deliberately abstracting from specific features of BigBlueButton and eduMEET.
This results in the architecture of a video conferencing system with minimal fea-
tures. Figure 1 shows a summary of the components of such a video conferencing
system. In the following, we describe the main components of the shared architec-
ture. Then, we describe how each analyzed system implements each component
with its uniqueness.

Web Client. The web client is responsible for three main tasks. The first main
task, closest to the user, is rendering the user interface (UI). The UI allows
users to interact with the meeting. The web client updates the UI in response
to interactions triggered both by the local user and actions by other users in
the meeting. Such actions include a user enabling their camera or sending a
chat message. The web client is also responsible for displaying the conferencing
system’s features, such as video chat. The features depend on the conferencing
system (see Sect. 5.1).

The second main task of the web client is handling media streams. This
includes establishing a WebRTC connection (see Sect. 2.1), where one peer is
the web client and the other peer is the WebRTC component. Once a streaming
session has been established, the peers can start sending and receiving media

196 N. Heitmann et al.

data. On the client side, incoming media streams are connected to the UI, where
the videos are displayed. The client also displays its outgoing video streams.

The third main task is processing and sending meeting state updates. When
a user performs actions in the UI, the client sends user actions, i. e., intended
changes to the meeting state, to the server. If the user’s intended change is valid,
the server notifies the web clients of the changes to the meeting state, which we
refer to as an event. When a web client receives an event, it processes it and
updates the local state in near real-time. Possible events include receiving new
chat messages, changes to permissions, muting audio, or starting and stopping
a video. The possible events depend on the features of the conferencing system.

Server-Side Components. The analyzed conferencing systems consist of two
server-side components: the conferencing server and a WebRTC component.

Conferencing Server. The first task of the conferencing server is processing
incoming user actions. This involves three main steps. First, the server per-
forms access control by checking whether the user may perform the requested
user action. Second, if the action is valid, the conferencing server executes it.
This may involve additional processing by the server and results in changes to
the meeting state. Finally, the server publishes events to the clients.

The second task of the conferencing server is managing streaming sessions.
For this purpose, it controls the WebRTC component, which may be an external
media server or embedded in the conferencing system as a library. The confer-
encing server participates in establishing streaming sessions by creating them
in the WebRTC component and providing communication between the client
and WebRTC component for the initial negotiation. The conferencing server is
responsible for access control by mediating the initial communication. After the
negotiation, the WebRTC component and client establish a direct communica-
tion channel, and the conferencing server can no longer mediate. If the permis-
sions of a user get revoked, the conferencing server is responsible for closing
streaming sessions via the WebRTC component’s management interface.

WebRTC Component. Finally, there is a WebRTC component with loose cou-
pling to the conferencing server. The WebRTC component relies on commands by
the conferencing server for management and has the task to establish streaming
sessions. The second task of the WebRTC component is to route media streams.
The conferencing systems covered here use the SFU architecture for all video
streams, so the server redistributes media streams unmodified (see Sect. 2.2).

4.2 Implementation of BigBlueButton

In this section we show how BigBlueButton’s components implement their tasks.

Security Analysis of BigBlueButton and eduMEET 197

Web Client. BigBlueButton uses the frontend framework React1 for its UI.
React does not provide any communication between the server and client.
The server and client of BigBlueButton use the web framework Meteor.js to
facilitate communication, which provides remote procedure call (RPC) and
publish/subscribe capabilities. Internally, if possible, Meteor.js uses a WebSocket
for communication. Using the publish/subscribe capabilities of Meteor.js, the
client mirrors the meeting state of the server and receives state changes trig-
gered by user actions. Therefore, the web client of BigBlueButton only needs to
perform limited state management.

Server-Side Components. The server side of BigBlueButton is split into a
conferencing server and two standalone servers for WebRTC.

Conferencing Server. The conferencing server of BigBlueButton is internally
split into several individual components. It receives user actions on the Web-
Socket connection provided by Meteor.js and routes them within the confer-
encing server. At the destination, a handler performs access control checks and
updates the meeting state. These updates to the meeting state are propagated
internally. The conferencing server keeps a copy of the meeting state in a Mon-
goDB database and uses the publish/subscribe mechanism of Meteor.js to pass
change events to the clients, with access control in the publishing step.

For managing media streams, BigBlueButton interacts with its two media
servers. The web client has the initiative to open media streams for its outgo-
ing and incoming streams. For the audio conference, BigBlueButton does not
mediate signaling between the client and the WebRTC component but instead
relies on the client’s knowledge of a five-digit voice conference number for access
control. For video streams, the server performs a permission check when clients
want to open a stream. When clients get removed from the meeting, the server
component reacts to the event by closing their video streams.

WebRTC Component. BigBlueButton 2.3.3, the version analyzed here, uses two
media servers: FreeSWITCH, and Kurento Media Server (Kurento).2 The voice
conference of meetings is handled by FreeSWITCH, with clients directly con-
necting to FreeSWITCH to perform media negotiation. The video streams are
handled by Kurento, with the conferencing server mediating media negotiation.
BigBlueButton also uses Kurento to relay the voice conference to participants
who only listen. The conferencing server communicates with both media servers
for access control and necessary configuration, for example, media routing.

Extensions to the Shared Architecture. BigBlueButton does not provide
user management but instead relies on external software to integrate BigBlue-

1 https://reactjs.org/.
2 BigBlueButton 2.4 introduces the media server mediasoup, which replaces Kurento

as the default as of 2.5, with a modified media topology.

https://reactjs.org/

198 N. Heitmann et al.

Button’s meeting functionality, for example, Greenlight3 or Moodle.4 The 3rd-
party application performs authentication and access control for joining meet-
ings. For this purpose, BigBlueButton provides a custom HTTP management
API. A shared secret between BigBlueButton and 3rd-party server applications
controls access to the API.

For processing uploaded presentation slides, BigBlueButton uses several
external programs, depending on the file type. The resulting files are made
available to other clients from disk. BigBlueButton allows users to record the
meetings. If a meeting is recorded, it stores audio and video recordings and
the internal messages of the entire meeting as files. BigBlueButton embeds an
instance of the collaborative text editor Etherpad5 to implement its shared notes.

The media negotiation between the client and FreeSWITCH extends our
general model as it is not mediated by the conferencing server. This allows server
operators to connect FreeSWITCH to an external telephony provider via Session
Initiation Protocol (SIP), allowing users to join the conference by telephone.

4.3 Implementation of eduMEET

Web Client. For its web client, eduMEET uses the frontend framework React.
For maintaining the meeting state on the client, eduMEET uses Redux,6 a
JavaScript library for state management in web applications. It uses a store that
holds the application state. The application state gets updated when user actions
or events are dispatched. User-triggered actions can either modify the meeting
room (e. g., locking the room) or change the user settings. The client may pass
these user actions to the server using a WebSocket. To establish and manage a
WebRTC streaming session, the client uses the mediasoup client library.

Server-Side Components. The server side of eduMEET is split into a confer-
encing server, which consists of an Express7 web server with WebSocket support,
and the Node.js library mediasoup for WebRTC.

Conferencing Server. The conferencing server handles all incoming connections
and user authorization. Because of the WebSocket support in the Express web
server, WebSocket handlers and HTTP request handlers share access to a session
object for all requests from the same client. The WebSocket are attached to a
peer object representing a user. The peer object contains relevant information
such as user roles, a unique peer ID, a room ID, and a socket. Any modification
to a peer object is done via the peer ID, which references the peer object in a
dictionary.

3 https://github.com/bigbluebutton/greenlight.
4 https://moodle.org/.
5 https://etherpad.org/.
6 https://redux.js.org/.
7 https://expressjs.com/.

https://github.com/bigbluebutton/greenlight
https://moodle.org/
https://etherpad.org/
https://redux.js.org/
https://expressjs.com/

Security Analysis of BigBlueButton and eduMEET 199

WebRTC Component. For media handling on the server, eduMEET uses the
Node.js library mediasoup, a layer of JavaScript that communicates with a set
of C/C++ subprocesses. The internal architecture of mediasoup has its own
terminology, which contains workers, routers, transports, producers, and con-
sumers [11]. When a new user joins, the client and the conferencing server create
a producer instance. The conferencing server then notifies the other peers and
creates a consumer instance for each. The notified peers create local consumer
instances for themselves.

Extensions to the Shared Architecture. The first additional component in
eduMEET is a torrent tracker for its file sharing feature (see Sect. 5.1). It keeps
track of users participating in upload and download, helping users to connect
to each other. In the web client, eduMEET uses the WebTorrent8 library, which
uses WebRTC for peer-to-peer communication. Furthermore, eduMEET uses
the Passport9 module for external authentication strategies. Depending on the
authentication strategy, new components might arise, for example, an Identity
Provider for OpenID Connect (OIDC) [29].

5 Features and User Roles (RQ2)

In this section, we first compare features the analyzed conferencing systems
offer. We then present user roles shared by both analyzed conferencing systems.
Finally, we go into detail on how each of the analyzed video conferencing systems
handles user roles, permissions, and the mapping to features.

5.1 Comparison of Features

Table 1 shows an overview of the features of both systems. While there is some
overlap, there are also several features specific to BigBlueButton or eduMEET.
Features specific to BigBlueButton are, for example, polls or shared notes. On
the other hand, eduMEET offers file sharing, which is not implemented in Big-
BlueButton.

Some features require additional libraries or application logic. Other fea-
tures require extending the conferencing system with new components, which
are either controlled by the server operator or an external entity. Components
can be additional servers or important libraries that play a vital role in the video
conferencing system (e. g., mediasoup in eduMEET). A component controlled by
the server operator is, for example, a WebRTC media server. A torrent tracking
server for file sharing would be an example of a component that is controlled by
an external entity (see Sect. 4.3). Importantly, additional features and compo-
nents introduce a new level of complexity and a broader attack surface.

8 https://webtorrent.io/.
9 https://www.passportjs.org/.

https://webtorrent.io/
https://www.passportjs.org/

200 N. Heitmann et al.

Table 1. Conferencing features supported by BigBlueButton and eduMEET, with their
required roles. Several features are present both in BigBlueButton and eduMEET, while
others are only supported by one. The table lists which role a user needs to actively
use a feature, where the role “everyone” includes users without access to the meeting.
Note that some features are accessible by multiple user groups.

5.2 User Roles

Common User Roles. BigBlueButton and eduMEET use user roles combined
with permissions for their access control; users who participate in meetings have
different roles, which give them permission to access or use certain features.
Such permissions allow users to share their audio or video, or give users access
to moderation features.

The analyzed conferencing systems have two main user roles in common:
“viewer” and “moderator”. The viewer role, also referred to as “normal” in
eduMEET, gives users basic permissions and allows them, for example, to send
and receive media streams. The moderator role allows for managing the meeting
room, the users, and access to other features. Furthermore, depending on the
features of the respective conferencing system, we can differentiate between users
in a waiting room (or lobby) and users in a meeting. Oftentimes, restrictions like
this are not implemented by creating new user roles, but rather using properties
or flags that are part of the user objects. Thus, two viewers might have different
permissions or access to different features. For example, one user with the viewer
role might be in a waiting room and cannot receive audio and video streams from
other users, while other users with the same role do not have these restrictions
because they are already in the meeting.

Because user roles and the associated permissions are heavily influenced by
features and the current meeting state, access control is a complex topic. The fol-
lowing sections explain the details of each analyzed conferencing system. Table 1

Security Analysis of BigBlueButton and eduMEET 201

gives an overview of the requirements to access individual features. Some fea-
tures have additional requirements besides the user role; for example, regular
users in BigBlueButton may only draw on the whiteboard if the presenter has
given them permission.

BigBlueButton-Specific User Roles. In addition to the viewer and moder-
ator role, every meeting has at most one presenter, who gets permissions related
to a presentation area in the meeting. These additional permissions are limited to
the presenter; other users, including moderators, cannot affect the presentation
area.

Permissions may depend on context. Within breakout rooms, there is no dis-
tinction between moderators and viewers, and all users can interact with the
meeting as viewers. BigBlueButton has a guest waiting room, allowing moder-
ators to limit access to the meeting until they approve new users. Users calling
in via telephone do not have access to the web interface of BigBlueButton and
thus only have access to a very limited set of user actions.

BigBlueButton also allows moderators to “lock” viewers and presenters, to
take away specific permissions. One may use this to aid in the moderation of
large meetings or for specific use cases, like online exams, where participants
should not see each other.

eduMEET-Specific User Roles. In eduMEET, one can use a configuration
file to define new roles and to assign specific permissions. This also permits
changing existing assignments of roles and permissions. The default configuration
contains the roles “normal” (here referred to as “viewer”), “moderator”, and
“admin”. A user can have multiple roles.

A moderator can kick users, disable audio, video, and screen sharing for users
(which the user can activate again), take down raised hands, clear the chat, and
end the meeting. Furthermore, a moderator can use the role manager to give
and remove roles during a meeting. Each role has a “promotable” flag, which
determines whether moderators can give and take the role. In addition, each role
has a configurable level. The level of a moderator must be at least equal to the
role of the target user to modify the target user role. The admin role, which
has the highest level, allows users to enter a full room or a locked room, which
normally sends users to the room’s lobby to wait for approval. As long as no
moderator is in the meeting, viewers can also lock and unlock the room. The
permission is revoked as soon as a user with the moderator role joins.

6 Attacker Model

After performing the primary analysis, as mentioned in Sect. 3, we developed an
attacker model that fits the setting of a video conferencing system.

We assume an attacker may send arbitrary network requests. They do not
have access to any private information regarding the server or the users. The

202 N. Heitmann et al.

attacker cannot read or interfere with the network traffic of other users. The
server operator is assumed to be entirely trustworthy. We do not impose con-
ditions on the surrounding situation because conferencing systems are used to
host various types of events. The attacker may be a viewer, presenter, or even
moderator in a meeting. The attacker may also be a non-participant with no
roles at all or be in the waiting room. The attacker may create their own meet-
ings. During a meeting, users’ roles may change, so we also consider cases where
a moderator revokes an attacker’s permissions.

We consider an attack successful if the attacker breaks any of the aspects
of the CIA triad. The attacker breaks confidentiality guarantees if, for example,
they join a locked meeting and retrieve sensitive streams or public chat content.
The integrity of the meeting state is broken when an attacker oversteps the
permissions of their role, by performing any action that modifies the meeting
state in a way that they are not allowed to. This includes an attacker joining
a meeting without permission. For availability, we consider an attack successful
if the attacker performs DoS against any feature in any meeting, affecting any
user other than the attacker themselves. We exclude DoS by resource exhaustion
and only consider cases of DoS in the application logic, for example, an attacker
blocking seats in a meeting.

We limit the scope of our analysis to the first-party code of BigBlueButton
and eduMEET, respectively. External components and libraries are out of scope
and thus deemed to be safe for the purpose of our evaluation. They are expected
to conform to their documentation with configuration files as distributed with the
conferencing systems. With our analysis, we target the server-side code because
it implements the main application logic. For eduMEET, however, all clients take
an active role in maintaining the meeting state, so we consider both the server
and client side of eduMEET. BigBlueButton relies on the external framework
Meteor.js to maintain the client state, which is out of the scope of this anal-
ysis. Since the server operator is fully trustworthy, we assume that additional
configurations made by the server operator are secure.10

7 Evaluation (RQ3)

We performed the evaluation on BigBlueButton 2.3.3 and eduMEET 3.5.0-
beta.1, the most recent versions at the time of analysis.11 Because our attacker
model is relatively broad, we identified not only high-impact vulnerabilities but
also several smaller vulnerabilities without significant impact on the meeting.
To not overestimate their impact, we explicitly classify such vulnerabilities as
“bugs”. Hereafter, we refer to vulnerabilities and bugs as “findings”.

Our evaluation resulted in 45 findings in BigBlueButton (38 vulnerabilities
and 7 bugs) and 12 findings in eduMEET (12 vulnerabilities). Table 2 gives a
10 This mainly applies to eduMEET, as it allows flexible configuration of the user roles

and permissions.
11 We analyzed commit bb46e2d of https://github.com/edumeet/edumeet (branch

“develop”), which was later merged into eduMEET 3.5.0-beta.1.

https://github.com/edumeet/edumeet

Security Analysis of BigBlueButton and eduMEET 203

Table 2. Summary of all findings in BigBlueButton (BXX) and in eduMEET (EXX).
The final two columns denote which role a legitimate user needs to access the feature,
and the role an attacker needs to perform the attack. The role “everyone” includes
users without access to the meeting.

204 N. Heitmann et al.

short description of each finding, provides the type of violation of the CIA triad
(see Sect. 6), and assigns to each finding the features it affects (see Table 1). A
finding may affect multiple features because some features share parts of their
implementation, for example, the voice and video conference. If a finding is not
related to any specific feature but the core implementation for meeting state and
communication of the respective conferencing system, we use The last two
columns of Table 2 show the user roles needed to perform the actions associated
with the findings. Some of these actions are available as features to specific user
roles, shown in the column legitimate roles, while others are not intended to be
accessible.

As can be seen in Table 2, most of the findings in BigBlueButton are in
the core implementation and in the video conferencing feature. The rest of the
findings are distributed across the other features. In eduMEET, most of the
findings are also in the core implementation and in the text chat feature.

7.1 BigBlueButton

In this section, we present five representative findings out of the 45 findings in
BigBlueButton.

B1: Read Other Meetings’ Public Chat. This finding allows an attacker
to access sensitive data from other meetings hosted on the same server.

To transfer chat messages from the conferencing server to the web client, Big-
BlueButton uses the publish/subscribe mechanism of Meteor.js (see Sect. 4.2).
In particular, the client subscribes to a publisher called group-chat-msg, which
always publishes public chat messages in their meeting and messages in private
chats. The client establishes the subscription with a WebSocket message to the
server. Listing 1.1 shows how the server restricts its responses in the publisher. In
this query, the server inserts the meetingId of the meeting. The first branch only
matches messages where the chatId value is set to "MAIN-PUBLIC-GROUP-CHAT",
which means that the client is subscribed to the public messages in their par-
ticular meeting. The second branch matches all messages with a chat ID in the
chatsIds array, which is a parameter sent by the client. However, missing vali-
dation of chatsIds resulted in the fact that the server can leak public chats of
every meeting hosted on the server.

For the attack description, we assume an attacker who participates in any
meeting hosted on a BigBlueButton server. The attacker has access to the public
chat in their particular meeting. Using a modified client or browser developer
tools, the attacker can modify the parameters their client sends to the server
for the subscription. If the attacker adds "MAIN-PUBLIC-GROUP-CHAT" into the
chatsIds list, intended for private chats (see Listing 1.2), their clients’ sub-
scription applies to the public chat of every meeting hosted by the server; the
publisher on the server provides the messages from the public chats of all meet-
ings. The attacker thus gains access to all messages from the public chat of every
meeting hosted on the particular server.

Security Analysis of BigBlueButton and eduMEET 205

[
{ "meetingId": meetingId,

"chatId": "MAIN-PUBLIC-GROUP-CHAT"
},
{ "chatId":

{ "$in": chatsIds }
}

]

Listing 1.1. The publisher’s server-side
MongoDB query (simplified). When a
chat message matches either one of the
two branches, the server publishes it to
the client.

[
{ "meetingId": meetingId,

"chatId": "MAIN-PUBLIC-GROUP-CHAT"
},
{ "chatId":

{ "$in": ["MAIN-PUBLIC-GROUP-CHAT"] }
}

]

Listing 1.2. By adding the string
"MAIN-PUBLIC-GROUP-CHAT" to the list
intended for private chats, an attacker
subscribes to public chat messages of all
meetings on the server.

B2: Read Arbitrary Private Chats. This finding interacts with B1, increas-
ing the impact of this finding. The publisher group-chat-msg is also vulnerable
to NoSQL injection. The parameter chatsIds can contain arbitrary values sup-
ported by EJSON, an extension of JSON used by Meteor.js. The server does not
check the value’s type. An attacker can modify the parameters their client sends
to the server like in the previous attack. In particular, the attacker can set the
publisher’s parameter chatsIds to [/.*/], causing it to provide all messages
from all public and private chats in all meetings on the server.12

B4: Retain Full Access to Shared Notes After Leaving. This finding
affects shared notes. BigBlueButton relies on the external server component
Etherpad for shared notes. Thus, the conferencing server needs to ensure access
control, including revoking access when a user loses access to the meeting. For
this, the conferencing server includes checks when users make HTTP requests
to Etherpad which reject all users without a BigBlueButton session and check
whether the Etherpad pad belongs to the meeting that the user is in.

However, there is an issue with this process as Etherpad uses a long-running
WebSocket connection for communication between the server and client. When
a user leaves or gets kicked from a meeting, the conferencing server cannot close
the WebSocket to Etherpad; an attacker can continue reading and editing the
shared notes. In addition, the session used for the server-side check stays valid
after leaving the meeting, so the server also allows new WebSocket connections
to Etherpad.

B26: View Unshown Presentation Slides in Current Meeting. BigBlue-
Button relies on a client’s knowledge of a presentation ID for the client to down-
load presentation slides for each uploaded presentation. However, the server leaks
the presentation IDs.

12 This is an array, containing a native JavaScript regular expression object for .*. In
EJSON, it is serialized as [{ "$regexp": ".*", "$flags": "" }].

206 N. Heitmann et al.

The server sends the presentation IDs to clients so they can can display
the slides, but inadvertently reveals them for all presentations in the meeting
due to incomplete filtering. This allows an attacker in the meeting to view all
slides that have been uploaded, including future slides in the currently chosen
presentation and the slides of presentations that were uploaded but never shown
to the viewers.

B34: Receive Audio and Screen Share After Leaving. The final finding
described here affects the voice and video conference and the screen share feature
of BigBlueButton. It allows the attacker to listen to audio and watch screen
shares secretly, even after they leave the meeting.

We assume the attacker is a viewer in a meeting and leaves or gets kicked.
While still in the meeting, the attacker can open multiple viewing sessions for
each media stream with a modified client that sends additional requests. For
the screen share and listen-only audio, the conferencing server only closes one of
the sessions when the attacker leaves the meeting. The remaining sessions stay
valid in the WebRTC component and only get closed when the screen share or
meeting ends, respectively.

7.2 eduMEET

We explain three representative findings in eduMEET. In Sect.A.1, we cover an
additional interesting yet more complex finding in depth (E3).

E1: Forge Malicious Chat Objects. This finding points to one of the root
causes of several findings in eduMEET and allows a multitude of attacks. A
client can send a chat message to the server as a chat message object in its
WebSocket connection to the server. The server forwards this object to all other
participants in the same room as long as the sender has the SEND CHAT permis-
sion. An attacker can manipulate fields in messages they send to perform several
attacks. In the following, we describe three possible attacks. First, the attacker
can manipulate the name field, which is used to display the name of the sender.
The attacker can abuse it to impersonate other users by changing the content.
Second, the attacker can also manipulate the time field, allowing them to manip-
ulate the chat conversation and send messages in the past or future. Third, the
attacker can also set the name field to null or other invalid objects. This leads
to a DoS attack against the receiving clients because the client does not expect
other data types, and the errors are not handled, which leads to a crash in the
application. Interestingly, when users affected by such a DoS attack try to rejoin
the meeting, they are usually redirected to the index page instead of joining the
meeting. This happens because joining users receive the chat and file history,
which automatically repeats the attack. The attacker can stay in the room to
prevent the room from resetting, effectively blocking the room indefinitely.

Security Analysis of BigBlueButton and eduMEET 207

E2: Rejoin After Kick, Bypassing Locked Room. This finding allows
an attacker to bypass the room lock, which can be used as a security mech-
anism to prevent other users from joining the room without approval. In this
attack scenario, a moderator kicks the attacker from the room. Afterward, the
moderator locks the room, which prevents users from joining the room without
approval. The attacker is now not able to rejoin the meeting without further
actions because the client generates a new peer ID and the server prevents new
users from joining a locked room. However, the attacker can set their client’s peer
ID to any value, for example, by overwriting the client-generated value with the
browser developer tools. If the attacker sets their peer ID to their old peer ID
when they were in the meeting, the server treats the attacker as a returning user,
which allows bypassing a locked or even a full room. Therefore, the attacker can
rejoin the locked room after getting kicked by changing the peer ID to the old
peer ID.

E10: Prevent Getting Muted. This finding allows an attacker in a meeting to
disrupt it without others being able to mute them. Moderators can mute partic-
ipants for everyone (global mute). The affected user can still unmute themselves,
so this is not a security mechanism. Participants can also decide to mute another
participant for themselves (local mute). However, an attacker can circumvent
getting muted by sending a request to create a second microphone producer and
muting their first microphone producer. Other participants cannot globally or
locally mute the attacker’s second microphone producer.

7.3 Responsible Disclosure

We reproduced all findings on unmodified instances of BigBlueButton 2.3.3 and
eduMEET 3.5.0-beta.1. We worked in local environments to not affect real video
conferencing deployments with their users. We reported the findings to the devel-
opers of BigBlueButton and eduMEET between July 2021 and May 2022. The
developers of eduMEET thanked us for the findings but have not released fixed
versions as of December 2023. The developers of BigBlueButton acknowledged
the findings and started publishing fixes with BigBlueButton 2.3.9. As of Decem-
ber 2023, the developers have fully addressed 37 of the 45 findings and assigned
CVEs to 14 of them (see Table 3). The remaining issues are still to be fixed.

8 Discussion

We discuss our findings from Sect. 7 by considering the potential root causes in
the respective conferencing system. For this, we identify commonalities between
the findings. Finally, we discuss the limitations of our evaluation.

8.1 BigBlueButton

BigBlueButton offers a lot of features, making it the more complex of the two
conferencing systems. Because of this breadth of features, the attack surface is

208 N. Heitmann et al.

naturally larger when compared to eduMEET. In addition, the interplay between
features makes correct implementation more difficult. We observed that our find-
ings in BigBlueButton have two major types of root causes, both of which relate
to the complexity of the software.

Several vulnerabilities came up as a result of subtle logic bugs in the internal
server logic. We can see this in the situation arising when an attacker opens
multiple media streams B35, but also in several other findings: B1, B3, B10, and
B18, among others. These can, to some extent, be traced back to the internal
logical complexity of BigBlueButton, which results from a large set of features
and evolution over time.

For several other vulnerabilities, one can see a commonality of incomplete or
missing security considerations in the design. For example, in B33, the ability
of an attacker to join voice conferences without legitimate access can be traced
back to reliance on a 5-digit voice conference ID for access control. When users
leave, the server cannot revoke this ID to revoke access, as it is identical for all
participants. In this case, there is a mitigation in place, but it is not sufficient
to prevent attacks. There are also some more subtle cases, for example, in B27,
where guessable secrets allow an attacker to gain read access to uploaded slides.

8.2 eduMEET

The root causes in most of our findings for eduMEET. are of a different nature.
Oftentimes, the server trusts the client and forwards its messages without prop-
erly checking the input, for example, in E1, E4, and E6.

While the technical details of the other findings differ, they may stem from a
similar root cause. For example, E2, which results from an implementation error,
can also be seen as a missing feature because the moderator cannot effectively
ban the attacker from the meeting. The same applies to E10 where the moderator
cannot force an attacker to stop sharing audio. Here, it would be helpful to
have a more fine-grained permission system, like the “lock settings” feature in
BigBlueButton. This feature could allow the moderator to withdraw permissions
of viewers, for example, to share audio.

In summary, most findings in eduMEET are either because there is too much
trust in the client or because of missing moderation features. Both factors result
in a lack of security and measures to eliminate disruptive factors within a meet-
ing. Consequently, these findings show that filtering client messages and moder-
ation features are critical measures to ensure secure meetings.

8.3 Limitations

Scope. To understand the architecture and behavior of conferencing systems,
we analyzed the functionality and interaction of both conferencing systems. We
examined server-side and client-side components in eduMEET. In BigBlueBut-
ton, we concentrated on the server-side components since these implement most

Security Analysis of BigBlueButton and eduMEET 209

of the logic and functionality. BigBlueButton’s client delegates state manage-
ment to the third-party framework Meteor.js, which is out of scope for our anal-
ysis. For this reason, we did not examine the BigBlueButton client, which could
bring new findings regarding web security.

Automation. For comparison with our manual approach, we used SonarCloud13

to scan for bugs automatically. While it found code snippets that could be
improved, it did not find any vulnerabilities. This result is expected because
most of the bugs can be classified as logical flaws and require user interactions
and a certain meeting state. Such conditions cannot be automatically applied
by a static code analysis tool. BigBlueButton has publicly used SonarCloud as
part of their quality control since June 2021.14

Architecture of Conferencing Systems. Comparing two architectures as differ-
ent as those of eduMEET and BigBlueButton was not a trivial task. Thus, we
agreed on a shared architecture by breaking down the architecture of the respec-
tive conference systems. Certainly, the shared architecture can be used for future
work. However, depending on the conferencing system and architecture, it may
be necessary to extend the model. Our model uses the SFU WebRTC architec-
ture, while other systems may use P2P or other WebRTC architectures, which
allow for direct communication between the clients. Furthermore, other confer-
encing systems may communicate differently, for example, by using Extensible
Messaging and Presence Protocol (XMPP).

Analysis of Further Conferencing Systems. We limited the scope of our analysis
to allow us to cover the chosen conferencing systems and their architectures in
detail. Further analyses of open-source conferencing systems may be performed
using a similar process, applied to their respective architectures. Our analysis
process is not directly applicable to closed-source software. Nevertheless, the
detected logical flaws can provide inspiration for new vulnerabilities in other
closed-source conferencing systems supporting the affected features.

9 Related Work

Although various vulnerabilities have been found in web conferencing systems
in the past, there is little exhaustive scientific research in the general area of
video conferencing systems. Thus, we consider previous research, vulnerability
reports, and talks regarding conferencing systems to get a grasp of the attack
surface.

Most of the vulnerabilities found in web conferencing systems are related
to classic web security vulnerabilities such as cross-site scripting (XSS) [43,
44], server-side request forgery (SSRF) [9], SQL injection via custom URI
13 https://www.sonarsource.com/products/sonarcloud.
14 https://github.com/bigbluebutton/bigbluebutton/pull/10737#issuecomment-

860211455.

https://www.sonarsource.com/products/sonarcloud
https://github.com/bigbluebutton/bigbluebutton/pull/10737#issuecomment-860211455
https://github.com/bigbluebutton/bigbluebutton/pull/10737#issuecomment-860211455

210 N. Heitmann et al.

scheme [18], and different types of misconfigurations [40,41]. Also common
are vulnerabilities resulting from missing checks [40,41], flawed role manage-
ment [4,40,47], missing security considerations [2,47], and image or document
conversions leading to vulnerabilities [2,10]. While all these vulnerabilities are
interesting, we wanted to focus more on factors that extend our attack surface.

Among the previously mentioned reports, some stand out in particular
because the described vulnerabilities are located in the client, but the client
differs from our architecture. In our architecture, the client is a web browser.
In some reports [3,20,28,43], the client is an Electron15 app. These applications
are made with web technologies and use Chromium and Node.js. Vulnerabili-
ties in these applications are critical since they can lead to client-side remote
code execution (RCE) [3,20,28,43]. Other kinds of conferencing clients are clas-
sic executables on Windows, Mac, or Linux, which extend the attack surface as
well, for example, due to memory-related issues [31,37]. Thus, different types
of clients introduce different types of attacks, and the more types of clients the
conferencing system offers, the larger the attack surface. The same applies to
other components, such as Zoom’s Multimedia Router (MMR), which is respon-
sible for transmitting audio and video between Zoom clients; this component
was affected by a buffer overflow found by Google Project Zero [37].

Another interesting component used in conferencing systems is the login
mechanism. Sudhodanan and Paverd found an attack related to Single Sign-
On (SSO), where an attacker creates a Zoom account with the victim’s email
(before the victim creates an account) [39]. When the victim now uses an iden-
tity provider with the same email to create a Zoom account, Zoom merges the
accounts, which allows the attacker to log in to the victim’s account with the
attacker’s password.

Natalie Silvanovich from Google Project Zero released articles in 2018, where
she analyzed and fuzzed the WebRTC implementation in Chrome and closed-
source video conferencing applications such as FaceTime and WhatsApp [32–36].
Four years later, she found one memory-related vulnerability in Zoom’s client
and another one in Zoom’s MMR [37]. In the end, she pointed out that the closed-
source software comes with a lot of challenges for researchers, which prevents
further progress in verifying security properties [37]. She recommended making
closed-source software available to security researchers [37]. In the same year,
Ivan Fratric from Google Project Zero presented at Black Hat USA a 0-click
RCE vulnerability in Zoom [14]. Fratric found out that different components use
different XML parsers, which allowed him to smuggle XMPP messages (stanza
smuggling) [14].

In the last years, cryptographic vulnerabilities in Matrix clients and libraries
became public [13,24]. In 2021, Kasak et al. drew attention to two vulnerabilities
where vulnerable clients may be tricked into disclosing encryption keys [13]. In
2022, Albrecht et al. presented six attacks that affected the Matrix standard and
its flagship client Element [24]. These attacks break authentication and confi-
dentiality but require the cooperation of the homeserver, which is responsible

15 https://www.electronjs.org/.

https://www.electronjs.org/

Security Analysis of BigBlueButton and eduMEET 211

for storing communication history and account information and relaying mes-
sages [23,24].

While we mentioned vulnerabilities in conferencing systems from a technical
point of view, Ling et al. focused on the attacker as a person who is responsible
for disruptions in a meeting, i. e., Zoombombing [21]. Their results indicate that
such attackers often have help from an insider within the meeting. Therefore,
password protections and meeting IDs are a rather ineffective mechanism to
prevent Zoombombing; they argue that unique join links would be an effective
security mechanism.

In summary, there are lots of reports and findings in different fields regarding
video conferencing systems and their components. However, there is a gap in sci-
entific approaches, especially regarding open-source video conferencing systems.
Our work is a first step to approach this problem.

10 Conclusions and Future Work

In our work, we systematically analyzed two open-source conferencing systems
and detected 57 vulnerabilities and bugs. While the root cause for vulnerabilities
in BigBlueButton mostly lies in the complexity of the system and the interplay
between the features, in eduMEET, they mainly resulted from missing strict
authorization checks and excessive trust in client messages. We want to highlight
that our findings do not imply that BigBlueButton and eduMEET are less secure
than commercial closed-source alternatives. The high number of findings was
largely enabled by the open-source implementations, which facilitated our in-
depth evaluations. On the negative side, it needs to be mentioned that both
systems lack a swift vulnerability patching process. In the case of eduMEET,
none of the reported vulnerabilities have been fixed. This is not acceptable for
systems processing security-critical data.

The high number of findings shows that there is indeed a research gap in the
security of video conferencing systems. With our systematic security analyses, we
want to draw attention to this topic and want to stress that video conferencing
systems offer a large attack surface due to their large number of components and
used technologies. This is also confirmed by many related vulnerabilities, mostly
found in non-systematic analyses by bug bounty hunters in recent years.

Our work can be extended in different directions. XML parsers within XMPP
implementations are underexplored and are an interesting attack vector since
XMPP is often used in video conferencing systems [14]. Other than that, the
systematic approach that we applied to BigBlueButton and eduMEET could
be applied to other open-source conferencing systems. Closed-source software
is often more difficult to analyze if it is not freely and openly available [37].
Commercial providers should consider facilitating further security research and
we hope there will be more future work that helps to improve the security of
video conferencing systems.

212 N. Heitmann et al.

Acknowledgements. We thank our anonymous reviewers for their insightful com-
ments and detailed suggestions. We are also grateful to Sven Hebrok for helpful dis-
cussions and contributions in the early stage of this research.

This research was funded by the PRISMA Elite Program of the Department of
Computer Science of Paderborn University, and by the research project “North Rhine-
Westphalian Experts in Research on Digitalization (NERD II)”, sponsored by the state
of North Rhine-Westphalia – NERD II 005-2201-0014.

A Appendix

A.1 eduMEET

E3: Overwrite Peer Reference. This finding leads to multiple high-impact
issues in eduMEET. When a user connects to a room, the server creates a JSON
Web Token (JWT) [17], bound to a peer ID generated by the client. The JWT
is stored on the server and referenced by a cookie-based session. When a user
connects to a room, eduMEET performs two checks. First, the server checks if
there is a JWT for the session and if the peer ID is already used by a connected
user. The server rejects the connecting peer if the peer ID is already used, but
no JWT exists. Otherwise, the server verifies the JWT, i. e., the server checks
if the peer ID matches the JWT. In case of a valid JWT, the server treats the
user as returning and closes the old connection.

The vulnerability stems from the fact that the server creates a new peer
object regardless of whether the JWT matches the peer ID. The peer object (see
Sect. 4.3) represents a meeting participant and contains, among other things, a
unique peer ID, a room ID, a list of user roles, and a socket for communication.
Despite the importance of the JWT validity, in the first step, the server only
checks if a peer ID and a JWT exist. Therefore, the peer ID does not have to
match the JWT. When an attacker connects to a room with an existing peer
ID and a valid session referencing a JWT that does not match the peer ID, the
server still creates a new peer object. The server keeps a list of peer objects
referenced by their peer IDs. Since the peer ID exists, the server overwrites the
existing peer reference. However, the old connection stays open, and the old peer
can still participate in the meeting.

To perform an attack, the attacker first joins any meeting. The attacker has
a valid peer ID generated by the client and a valid session from the server. The
attacker now joins the targeted meeting. Instead of having their client generate
a new random peer ID for this connection, the attacker chooses an existing peer
ID (see below). To achieve this, they may use the browser developer tools to
overwrite the JavaScript variable holding the peer ID their client generated and
then join the meeting. The new peer ID does not match the attacker’s JWT
anymore. The WebSocket connection of the old peer with the same peer ID
is not closed but not referenced anymore. That means the old peer cannot be
targeted by moderator actions (E3.2). If the new peer with the same peer ID
now leaves the meeting, the UI of all participants changes, and peers with the
target peer ID are not visible anymore, but the connection of the old peer is still

Security Analysis of BigBlueButton and eduMEET 213

open. The old peer is invisible in the meeting but can still participate (E3.1),
for example, listen to existing streams and read the chat. To exploit the first
two scenarios (E3.1 and E3.2), the attacker needs to be the old and new peer
at the same time, which they can achieve using two browser instances. In the
last scenario (E3.3), the attacker uses the victim’s peer ID to prevent the victim
from receiving new media streams. The peer IDs of all participants are known
because the server broadcasts them when joining.

A.2 Status of Fixes in BigBlueButton

Table 3. All findings in BigBlueButton (BXX) with their status as of December 2023.
The latest version at this time was BigBlueButton 2.7.3. In total, 37 of the 45 findings
were fully fixed and the impact of one additional finding was significantly reduced.

214 N. Heitmann et al.

References

1. 8x8, Inc., Vulnerability Disclosure Program Policy (2023). https://hackerone.com/
8x8

2. Ahmed, M.: Hacking Zoom: Uncovering Tales of Security Vulnerabilities in Zoom
(2020). https://mazinahmed.net/blog/hacking-zoom/

3. Altpeter, B.: RCE in Jitsi Meet Electron prior to 2.3.0 due to insecure use
of shell.openExternal() (CVE-2020-25019) (2020). https://benjamin-altpeter.de/
jitsi-meet-electron-rce-shell-openexternal/

4. Anthony, T.: Zoom Security Exploit - Cracking private meeting pass-
words (2020). https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-
private-meeting-passwords/

5. Thévenet, A.: France digital strategy for education supports the use of digital
commons (2023). https://joinup.ec.europa.eu/collection/open-source-observatory-
osor/news/france-digital-strategy-education-2

6. Begen, A.C., Kyzivat, P., Perkins, C., Handley, M.J.: SDP: Session Description
Protocol. RFC 8866 (Proposed Standard) (2021). https://www.rfc-editor.org/rfc/
rfc8866.txt

7. BigBlueButton. French Ministry of Education chooses BigBlueButton (2023).
https://bigbluebutton.org/2023/01/11/french-ministry-of-education-chooses-
bigbluebutton/

8. Boström, H., Jennings, C., Castelli, F., Bruaroey, J-I.: WebRTC: Real-time com-
munication in browsers. W3C recommendation, W3C (2023). https://www.w3.
org/TR/2023/REC-webrtc-20230306/

9. Bräunlein, F.: MS Teams: 1 feature, 4 vulnerabilities (2021). https://positive.
security/blog/ms-teams-1-feature-4-vulns

10. Böck, H.: File Exfiltration via Libreoffice in BigBlueButton and JODConverter
(2020). https://blog.hboeck.de/archives/902-File-Exfiltration-via-Libreoffice-in-
BigBlueButton-and-JODConverter.html

11. Castillo, I.B.: mediasoup v3 Design (2020). https://mediasoup.org/
documentation/v3/mediasoup/design/

12. Davis, R.: Zoom’s Bug Bounty Program: 2021 in Review (2022). https://blog.
zoom.us/zoom-bug-bounty-program-2021/

13. Kasak, D., Callahan, D., Hodgson, M.: Practically-exploitable Cryptographic Vul-
nerabilities in Matrix (2022). https://matrix.org/blog/2021/09/13/vulnerability-
disclosure-key-sharing

14. Fratric, I.: XMPP Stanza Smuggling or How I Hacked Zoom (2022). https://i.
blackhat.com/USA-22/Thursday/US-22-Fratric-XMPP-Stanza-Smuggling.pdf

15. GÉANT. Build Your Own eduMEET Service (2020). https://web.archive.org/
web/20200416162612/https://edumeet.org/build/

16. heise online. Rheinland-Pfalz: Schulen dürfen Microsoft-Software Teams nicht mehr
nutzen [Rhineland-Palatinate: Schools no longer allowed to use Microsoft Teams]
(2022). https://www.heise.de/news/Rheinland-Pfalz-Schulen-duerfen-Microsoft-
Software-Teams-nicht-mehr-nutzen-7154309.html

17. Jones, M.B., Bradley, J., Sakimura, N.: JSON Web Token (JWT). RFC 7519 (Pro-
posed Standard) (2015). https://www.rfc-editor.org/rfc/rfc7519.txt. Updated by
RFCs 7797, 8725

18. Keegan, R.: Patched Zoom Exploit: Altering Camera Settings via Remote
SQL Injection (2020). https://medium.com/@keegan.ryan/patched-zoom-exploit-
altering-camera-settings-via-remote-sql-injection-4fdf3de8a0d

https://hackerone.com/8x8
https://hackerone.com/8x8
https://mazinahmed.net/blog/hacking-zoom/
https://benjamin-altpeter.de/jitsi-meet-electron-rce-shell-openexternal/
https://benjamin-altpeter.de/jitsi-meet-electron-rce-shell-openexternal/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/france-digital-strategy-education-2
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/france-digital-strategy-education-2
https://www.rfc-editor.org/rfc/rfc8866.txt
https://www.rfc-editor.org/rfc/rfc8866.txt
https://bigbluebutton.org/2023/01/11/french-ministry-of-education-chooses-bigbluebutton/
https://bigbluebutton.org/2023/01/11/french-ministry-of-education-chooses-bigbluebutton/
https://www.w3.org/TR/2023/REC-webrtc-20230306/
https://www.w3.org/TR/2023/REC-webrtc-20230306/
https://positive.security/blog/ms-teams-1-feature-4-vulns
https://positive.security/blog/ms-teams-1-feature-4-vulns
https://blog.hboeck.de/archives/902-File-Exfiltration-via-Libreoffice-in-BigBlueButton-and-JODConverter.html
https://blog.hboeck.de/archives/902-File-Exfiltration-via-Libreoffice-in-BigBlueButton-and-JODConverter.html
https://mediasoup.org/documentation/v3/mediasoup/design/
https://mediasoup.org/documentation/v3/mediasoup/design/
https://blog.zoom.us/zoom-bug-bounty-program-2021/
https://blog.zoom.us/zoom-bug-bounty-program-2021/
https://matrix.org/blog/2021/09/13/vulnerability-disclosure-key-sharing
https://matrix.org/blog/2021/09/13/vulnerability-disclosure-key-sharing
https://i.blackhat.com/USA-22/Thursday/US-22-Fratric-XMPP-Stanza-Smuggling.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-Fratric-XMPP-Stanza-Smuggling.pdf
https://web.archive.org/web/20200416162612/https://edumeet.org/build/
https://web.archive.org/web/20200416162612/https://edumeet.org/build/
https://www.heise.de/news/Rheinland-Pfalz-Schulen-duerfen-Microsoft-Software-Teams-nicht-mehr-nutzen-7154309.html
https://www.heise.de/news/Rheinland-Pfalz-Schulen-duerfen-Microsoft-Software-Teams-nicht-mehr-nutzen-7154309.html
https://www.rfc-editor.org/rfc/rfc7519.txt
https://medium.com/@keegan.ryan/patched-zoom-exploit-altering-camera-settings-via-remote-sql-injection-4fdf3de8a0d
https://medium.com/@keegan.ryan/patched-zoom-exploit-altering-camera-settings-via-remote-sql-injection-4fdf3de8a0d

Security Analysis of BigBlueButton and eduMEET 215

19. Kelly, S.M.: Zoom’s massive ’overnight success’ actually took nine years.
CNN (2020). https://edition.cnn.com/2020/03/27/tech/zoom-app-coronavirus/
index.html

20. Kinugawa, M.: Discord Desktop app RCE (2020). https://mksben.l0.cm/2020/10/
discord-desktop-rce.html

21. Ling, C., Balci, U., Blackburn, J., Stringhini, G.: A first look at Zoombombing.
In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1452–1467 (2021).
https://ieeexplore.ieee.org/document/9638984

22. Marczak, B., Scott-Railton, J.: Move fast and roll your own crypto - a quick look at
the confidentiality of zoom meetings (2020). https://citizenlab.ca/2020/04/move-
fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/

23. Martin, T., Radzio, M., Sharma, K.: Matrix concepts (2023). https://matrix.org/
docs/matrix-concepts

24. Albrecht, M.R., Celi, S., Dowling, B., Jones, D.: Practically-exploitable Crypto-
graphic Vulnerabilities in Matrix (2022). https://nebuchadnezzar-megolm.github.
io/static/paper.pdf

25. McGrew, D., Rescorla, E.: Datagram Transport Layer Security (DTLS) Extension
to Establish Keys for the Secure Real-time Transport Protocol (SRTP). RFC 5764
(Proposed Standard) (2010). https://www.rfc-editor.org/rfc/rfc5764.txt. Updated
by RFCs 7983, 9443

26. Meyer, K.: GÉANT eduMEET service launched early to support communication
needs during the COVID-19 lockdown (2020). https://connect.geant.org/2020/
06/16/geant-edumeet-service-launched-early-to-support-communication-needs-
during-the-covid-19-lockdown

27. Nettleton, R.: BigBlueButton (2010). https://web.archive.org/web/
20100814003302/https://edc.carleton.ca/blog/index.php/2010/06/04/
bigbluebutton/

28. s1r1us and TheGrandPew. Remote Code Execution on Element Desktop Appli-
cation using Node Integration in Sub Frames Bypass - CVE-2022-23597 (2022).
https://blog.electrovolt.io/posts/element-rce/

29. Sakimura, N., Bradley, J., Jones, M.B., de Medeiros, B., Mortimore, C.: OpenID
Connect Core 1.0. OpenID Foundation (2014). https://openid.net/specs/openid-
connect-core-1 0-final.html

30. Schreiber, P., Hoffman-Andrews, J., Grauer, Y.: Videoconferencing Guide (2020).
https://videoconferencing.guide/

31. Sector7. Zoom RCE from Pwn2Own 2021 (2021). https://sector7.computest.nl/
post/2021-08-zoom/

32. Silvanovich, N.: Adventures in Video Conferencing Part 1: The Wild World of
WebRTC (2018). https://googleprojectzero.blogspot.com/2018/12/adventures-in-
video-conferencing-part-1.html

33. Silvanovich, N.: Adventures in Video Conferencing Part 2: Fun with
FaceTime (2018). https://googleprojectzero.blogspot.com/2018/12/adventures-
in-video-conferencing-part-2.html

34. Silvanovich, N.: Adventures in Video Conferencing Part 3: The Even Wilder
World of WhatsApp (2018). https://googleprojectzero.blogspot.com/2018/12/
adventures-in-video-conferencing-part-3.html

35. Silvanovich, N.: Adventures in Video Conferencing Part 4: What Didn’t Work
Out with WhatsApp (2018). https://googleprojectzero.blogspot.com/2018/12/
adventures-in-video-conferencing-part-4.html

https://edition.cnn.com/2020/03/27/tech/zoom-app-coronavirus/index.html
https://edition.cnn.com/2020/03/27/tech/zoom-app-coronavirus/index.html
https://mksben.l0.cm/2020/10/discord-desktop-rce.html
https://mksben.l0.cm/2020/10/discord-desktop-rce.html
https://ieeexplore.ieee.org/document/9638984
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://matrix.org/docs/matrix-concepts
https://matrix.org/docs/matrix-concepts
https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://www.rfc-editor.org/rfc/rfc5764.txt
https://connect.geant.org/2020/06/16/geant-edumeet-service-launched-early-to-support-communication-needs-during-the-covid-19-lockdown
https://connect.geant.org/2020/06/16/geant-edumeet-service-launched-early-to-support-communication-needs-during-the-covid-19-lockdown
https://connect.geant.org/2020/06/16/geant-edumeet-service-launched-early-to-support-communication-needs-during-the-covid-19-lockdown
https://web.archive.org/web/20100814003302/https://edc.carleton.ca/blog/index.php/2010/06/04/bigbluebutton/
https://web.archive.org/web/20100814003302/https://edc.carleton.ca/blog/index.php/2010/06/04/bigbluebutton/
https://web.archive.org/web/20100814003302/https://edc.carleton.ca/blog/index.php/2010/06/04/bigbluebutton/
https://blog.electrovolt.io/posts/element-rce/
https://openid.net/specs/openid-connect-core-1_0-final.html
https://openid.net/specs/openid-connect-core-1_0-final.html
https://videoconferencing.guide/
https://sector7.computest.nl/post/2021-08-zoom/
https://sector7.computest.nl/post/2021-08-zoom/
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-1.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-1.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-2.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-2.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-3.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-3.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-4.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-4.html

216 N. Heitmann et al.

36. Silvanovich, N.: Adventures in Video Conferencing Part 5: Where Do We Go
from Here? (2018). https://googleprojectzero.blogspot.com/2018/12/adventures-
in-video-conferencing-part-5.html

37. Silvanovich, N.: Zooming in on Zero-click Exploits (2022). https://
googleprojectzero.blogspot.com//2022/01/zooming-in-on-zero-click-exploits.
html

38. Reuters Staff. Google bans Zoom software from employee laptops. REUTERS
(2020). https://www.reuters.com/article/us-google-zoom-idUSKCN21Q32V

39. Sudhodanan, A., Paverd, A.: Pre-hijacked accounts: an empirical study of secu-
rity failures in user account creation on the web. In: Proceedings of the
31st USENIX Security Symposium (USENIX Security 2022), pp. 1795–1812,
Boston, MA (2022). USENIX Association. https://www.usenix.org/conference/
usenixsecurity22/presentation/sudhodanan

40. Thodupunoori, R.: Part-1 Dive into Zoom Applications (2021). https://rakesh-
thodupunoori.medium.com/part-1-dive-into-zoom-applications-d70f3de53ec5

41. Thodupunoori, R.: Part 2: Dive into Zoom Applications (2021). https://rakesh-
thodupunoori.medium.com/part-2-dive-into-zoom-applications-1b01091345c1

42. Tudor, C.: The Impact of the COVID-19 pandemic on the global web and video
conferencing SaaS market. Electronics 11, 2633 (2022)

43. Vegeris, O.: “Important, Spoofing” - zero-click, wormable, cross-platform remote
code execution in Microsoft Teams (2020). https://github.com/oskarsve/ms-
teams-rce

44. Vela, E.: Zoom: XSS in Zoom.us Signup Flow (2020). https://github.com/google/
security-research/security/advisories/GHSA-fpgp-vrmv-v8f2/

45. Vengattil, M., Roulette, J.: Elon Musk’s SpaceX bans Zoom over privacy
concerns -memo. REUTERS (2020). https://www.reuters.com/article/us-spacex-
zoom-video-commn-idUSKBN21J71H

46. Website of the conference of ministers of education (Kultusministerkonferenz). Dig-
itale Lernangebote [Digital Learning Tools] (2023). https://www.kmk.org/themen/
bildung-in-der-digitalen-welt/distanzlernen.html

47. Wittmann, L.: Visavid - Datensicherheit im Warteraum [Visavid - Data Security in
the Waiting Room]. Medium (2021). https://lilithwittmann.medium.com/visavid-
datensicherheit-im-warteraum-77c184c1d58a

48. Zoom Video Communications, Inc., Vulnerability Disclosure Policy (2021). https://
www.zoomgov.com/docs/en-us/vulnerability-disclosure-policy.html

https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-5.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-5.html
https://googleprojectzero.blogspot.com//2022/01/zooming-in-on-zero-click-exploits.html
https://googleprojectzero.blogspot.com//2022/01/zooming-in-on-zero-click-exploits.html
https://googleprojectzero.blogspot.com//2022/01/zooming-in-on-zero-click-exploits.html
https://www.reuters.com/article/us-google-zoom-idUSKCN21Q32V
https://www.usenix.org/conference/usenixsecurity22/presentation/sudhodanan
https://www.usenix.org/conference/usenixsecurity22/presentation/sudhodanan
https://rakesh-thodupunoori.medium.com/part-1-dive-into-zoom-applications-d70f3de53ec5
https://rakesh-thodupunoori.medium.com/part-1-dive-into-zoom-applications-d70f3de53ec5
https://rakesh-thodupunoori.medium.com/part-2-dive-into-zoom-applications-1b01091345c1
https://rakesh-thodupunoori.medium.com/part-2-dive-into-zoom-applications-1b01091345c1
https://github.com/oskarsve/ms-teams-rce
https://github.com/oskarsve/ms-teams-rce
https://github.com/google/security-research/security/advisories/GHSA-fpgp-vrmv-v8f2/
https://github.com/google/security-research/security/advisories/GHSA-fpgp-vrmv-v8f2/
https://www.reuters.com/article/us-spacex-zoom-video-commn-idUSKBN21J71H
https://www.reuters.com/article/us-spacex-zoom-video-commn-idUSKBN21J71H
https://www.kmk.org/themen/bildung-in-der-digitalen-welt/distanzlernen.html
https://www.kmk.org/themen/bildung-in-der-digitalen-welt/distanzlernen.html
https://lilithwittmann.medium.com/visavid-datensicherheit-im-warteraum-77c184c1d58a
https://lilithwittmann.medium.com/visavid-datensicherheit-im-warteraum-77c184c1d58a
https://www.zoomgov.com/docs/en-us/vulnerability-disclosure-policy.html
https://www.zoomgov.com/docs/en-us/vulnerability-disclosure-policy.html

An In-Depth Analysis of the Code-Reuse
Gadgets Introduced by Software

Obfuscation

Naiqian Zhang, Zheyun Feng, and Dongpeng Xu(B)

University of New Hampshire, Durham, NH 03824, USA
{Naiqian.Zhang,Zheyun.Feng,Dongpeng.Xu}@unh.edu

Abstract. Software obfuscation techniques are commonly employed to
resist malicious reverse engineering. However, recent studies indicate that
obfuscation introduces potential vulnerabilities susceptible to code-reuse
attacks because the number of code-reuse gadgets in obfuscated pro-
grams significantly increases. Understanding how different obfuscation
techniques contribute to the emergence of these code-reuse gadgets is
crucial for developing secure obfuscation schemes that minimize the risk
of code-reuse attacks, but no existing study has investigated this prob-
lem.

To address this knowledge gap, we present a comprehensive study
on the impact of software obfuscation on code-reuse gadgets in pro-
grams. Firstly, we collect and analyze metrics data of gadgets obtained
from a benchmark of programs obfuscated using various techniques. By
examining the statistical results, we establish quantitative and qualita-
tive relationships between each obfuscation technique and the resulting
gadgets. Our key findings reveal how obfuscation techniques introduce
significant code-reuse attack risks to a gadget set from different measure-
ment schemes. Secondly, we delve into the underlying mechanisms of each
obfuscation technique and elucidate why they contribute to generating
specific types of gadgets. Lastly, we propose a mitigation strategy that
combines low-risk obfuscation methods. Evaluation results demonstrate
that our mitigation strategy effectively reduces the risks associated with
code-reuse attacks without compromising obfuscation strength.

Keywords: Software Obfuscation · Code-reuse Attack · Gadget

1 Introduction

Software obfuscation has become increasingly important in defending against
malicious reverse engineering, with various obfuscation methods being designed
and implemented in both academic prototypes and industrial tools [12,20,24,
25,33]. Despite their widespread usage, the security aspects of these obfuscation
techniques have received limited attention. One significant risk arises from the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 217–240, 2024.
https://doi.org/10.1007/978-3-031-54776-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_9

218 N. Zhang et al.

insertion of opaque code by obfuscators, which is often treated as a black box
due to its lack of comprehensibility from the users’ perspective. Previous research
has shown that obfuscation can increase the number of gadgets in obfuscated
binaries [18,19]. However, the underlying mechanisms of obfuscation and the
reasons behind the surge of these gadgets have not been extensively explored.

In this paper, we conduct an in-depth examination of selected popular obfus-
cation methods and their impacts on introducing code-reuse gadgets. We first
apply various obfuscation techniques to a program benchmark and measure dif-
ferent characteristics of the code-reuse gadgets within the obfuscated programs.
To compare, we focus on three aspects: the code-reuse gadget set’s quantity, type,
and risk. We assign scores to each obfuscation method based on these metrics
and generate a prioritized list. Consequently, we propose a mitigation strategy
that combines one low-risk obfuscation method with another for the protected
programs. Through evaluation, we demonstrate that this strategy significantly
reduces the number of exploitable code-reuse gadgets while maintaining the same
level of obfuscation complexity.

In our study, we obfuscate 900 programs from an obfuscation benchmark [3]
with four well-known obfuscators in academia and industry, namely Tigress [12],
Obfuscator LLVM [20], VMProtect [33] and Code Virtualizer [24]. These obfus-
cators collectively implement a wide range of prevalent obfuscation methods.
Each program is built with a unique obfuscation configuration to facilitate our
incremental analysis. By comparing gadget metrics between the unobfuscated
programs and obfuscated programs employing a specific obfuscation technique,
we gain insights into the inner mechanisms of each obfuscation method and
their impacts on code-reuse gadgets. Our findings reveal that different obfus-
cation techniques pose varying levels of code-reuse attack risks to the original
program. To summarize, our contributions are as follows:

– First, we conduct a systematic study that sheds light on how obfuscation
techniques introduce code-reuse gadgets. Our study employs a combined mea-
surement scheme encompassing quantitative, qualitative, exploitable metrics
and code-reuse attack risk assessment.

– Second, we conduct an in-depth analysis of each obfuscation method, unveil-
ing the key factors that influence the presence of code-reuse gadgets and
gadget sets. We develop a comprehensive assessment mechanism that ranks
the obfuscation methods based on their code-reuse risks.

– Third, we propose a mitigation strategy to minimize the risk of code-reuse
attacks without compromising the complexity and strength of obfuscation.
Evaluation results demonstrate that employing low-risk obfuscation tech-
niques, or multiple instances of them on the original program, reduces the
code-reuse attack risk compared to high-risk obfuscation methods, all while
preserving the complexity of obfuscation.

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 219

2 Background

To provide a better understanding of our work, we begin by introducing the
background of code obfuscation techniques and the fundamentals of code-reuse
attacks.

2.1 Code Obfuscation

Code obfuscation involves transforming a normal program into a semantically
equivalent but more complex form. This transformation makes it challenging
to comprehend the obfuscated code, and as a result, obfuscation techniques
are widely employed to protect proprietary code from reverse analysis by hack-
ers. Popular obfuscation tools, such as Tigress, Obfuscator-LLVM, VMProtect,
and Code Virtualizer, incorporate a range of obfuscation schemes, as shown in
Table 1.

Table 1. Obfuscation schemes in popular obfuscation tools.

Type Description

Control Flow Flattening Transform a program’s control flow into a flat
dispatch structure inside a loop, where a variable
decides the program’s next step [22]. The code inside
the loop is in a linear style without any branches.

Instruction Substitution Replace one instruction with a more complex but
equivalent form, which may bring additional
instructions to perform intermediate steps. For
example, x | y ⇒ (x ∧ y) | (x ⊕ y)

Bogus Control Flow Insert dummy path conditions without changing the
original program semantics. Usually, the dummy
branch is randomly filled up with garbage codes.

Virtualization Create a custom virtual machine (VM) and then
translate the original program into the VM’s
bytecode, so the program’s behaviors hide in the
complicated VM execution. Virtualization has been
recognized as one of the most complex obfuscation
methods [23,26].

Just-In-Time Dynamic Translate the program into a sequence of customized
intermediate representative instructions. This new
code part will be dynamically compiled into machine
code at run-time.

Self-Modification Insert special code patterns into the program, which
can change other parts with the same functionality of
the program during run-time.

Encode Components Replace integers, integer variables, integer arithmetic,
and string literal to more complicated and complex
expressions and opaque representations. It looks
similar to Instruction Substitution but has a wider
range of action objects

220 N. Zhang et al.

2.2 Code-Reuse Attack

In recent years, code-reuse attacks have emerged as a highly dangerous attack-
ing technique [9]. In such attacks, attackers search for short code snippets,
known as gadgets, within a normal program, which are combined to achieve
malicious objectives. This technique originated from traditional return-to-libc
attacks. Shacham demonstrated that a gadget set used in code-reuse attacks
is Turing-complete, which is theoretically capable of performing any malicious
behavior [31]. Subsequent research has further extended code-reuse attacks from
various perspectives. For instance, gadgets can involve complex control flow
structures [4], and dispatch gadgets [16,17], multiple architectures [8,13], call-
preceded [9], and jump-preceded [11] gadgets have been introduced.

Practical code-reuse attacks typically aim to gain control of the victim’s
machine (root) or tamper the permissions of specific files. Table 2 lists com-
monly triggered system calls during malicious activities. Furthermore, exploit-
ing code-reuse attacks necessitates the presence of at least one known memory
write vulnerability in the victim program, allowing the attacker to write the
payload to the stack. Attackers leverage these vulnerabilities as starting points
for code-reuse attacks, which can exist in the original, obfuscated, or library
code. Several existing tools [2,5,6,10,15,27,34] aid in the identification of these
memory vulnerabilities. However, the focus of this work does not include the
process of locating these memory vulnerabilities.

Table 2. The system calls commonly used in code-reuse attacks.

Syscall Description

execve Trigger a shell-like /bin/bash on the victim
machine.

mmap mremap Map a file controlled by attackers as executable
and then redirect the execution to that tampered
file.

mprotect Mark a page that includes content controlled by
an attacker as executable and then redirects the
program counter toward that tampered page.

fchown fchmod Change permissions of a file

3 Code-Reuse Gadgets Introduced by Obfuscation

Characterizing the impact of obfuscation on code-reuse attack gadget sets
presents a considerable challenge. While modern obfuscation methods introduce
a large number of gadgets into the code-reuse attack gadget sets, there is a lack of

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 221

prior research that offers precise analysis and conclusions in this field. Therefore,
a detailed investigation of the gadgets introduced by obfuscation is necessary.

In this section, we thoroughly examine the listed obfuscation methods and
analyze the principles and implementation details behind each. Subsequently, we
apply these methods to the programs within an obfuscation benchmark, gener-
ating code-reuse gadget sets for each program. We then observe and compare
the number and types of gadgets in each set before and after applying the obfus-
cation method. Furthermore, we conducted in-depth research on existing works
and discovered that they primarily focused on analyzing the number of gad-
gets in the gadget set resulting from obfuscation. However, to better reflect the
true potential risk, combining this analysis with qualitative assessments of the
gadget sets and the searching strategies employed by existing code-reuse genera-
tion tools is essential. To provide a comprehensive measurement of the impact of
obfuscation, we implemented a standardized measurement system that examines
the code-reuse gadget sets before and after obfuscation. This system analyzes
the gadget sets from multiple perspectives, including quantitative assessment,
qualitative assessment, and identification of exploitable gadgets. This compre-
hensive analysis enables us to assess whether a gadget set carries a higher risk
of code-reuse attacks.

3.1 Benchmark and Obfuscation Selection

We carefully selected 100C programs from an obfuscation benchmark [3], ensur-
ing diversity in program size, complexity, and functionality. When choosing the
benchmark and programs, we considered the aspects of Ground Truth and Appli-
cability. This benchmark encompasses a wide range of C programs and includes
scripts that allow us to obfuscate the programs using our selected obfuscators.
Notably, the “basic algorithm” and “small programs” sets within the benchmark
consist of simple and basic programs that align well with the ground truth.
Hence, we utilize them as the benchmark for our analysis.

We employed four popular obfuscation tools mentioned in the previous
section to conduct our study. We follow three criteria to pick the obfuscation
variants to make the study comprehensive:

1. The variant is offered by at least one of the selected tools.
2. The variant can be successfully performed on all the benchmark programs

without errors or run-time crashes.
3. The variant can transform any snippets inside the program rather than only

specific ones.

We select seven obfuscation techniques introduced at Table 1 based on these
criteria. For virtualization, we performed both the source and binary code
obfuscation. We generated 900 distinct obfuscation variants for the benchmark
programs by integrating each chosen technique from the selected obfuscators.
Our analysis did not consider the programs as statically or dynamically linked

222 N. Zhang et al.

libraries. Generally, attackers can utilize gadgets included in library code when
mapping the program’s memory address at runtime.

To examine the impact of each obfuscation method on code-reuse attack
gadget sets, we compared the different obfuscation variants against the original
binary without any obfuscation applied. We applied only one obfuscation method
to the original program strictly adhering to the default configurations at a time
and did not consider overlapping multiple obfuscation methods. For each original
program and obfuscation variant, we scanned the gadget set of each binary
and conducted a detailed analysis. We categorized all gadgets from each gadget
set into two groups: useful and useless gadgets. The classification was based
on whether existing code-reuse exploitation construction tools could utilize a
gadget. Useful gadgets refer to those utilized by existing exploitation tools to
form valid gadget chains for code-reuse attacks, while useless gadgets have never
been incorporated into gadget chains by any existing exploitation tools.

3.2 Gadget Measurement

Increment Rate. This quantitative metric assesses how the number of gadgets
increases as a result of different obfuscation methods. We identify and calculate
the new gadgets introduced by obfuscation that are not in the original binary.
A code-reuse gadget refers to a binary code sequence ending with a control-flow
transfer instruction such as ret, jmp, call, syscall, etc. The jmp instruc-
tion can further be categorized into conditional and unconditional jumps. After
obfuscation, we count the number of gadgets and calculate the rate of increase
for each gadget set. It is important to note that gadgets which remain seman-
tically unchanged but are relocated to a new memory address after obfuscation
are not considered as increased.

Exploitability. To better assess the code-reuse attack risk of a gadget set,
we introduce the exploitable metric, which measures whether a gadget can be
considered useful or if it poses a code-reuse attack risk to the gadget set. This
metric determines the number of gadgets within a gadget set that automated
search tools can utilize. Generally, more exploitable gadgets in a gadget set
indicate a greater risk of code-reuse attacks.

To investigate existing code-reuse exploitation tools as well as their imple-
mentation details and search efficacy, we categorize them based on different
searching methods into three aspects, as shown in Table 3. To guarantee the
comprehensiveness of our exploitable metric, we select the code-reuse attacks
searching tools following three criteria:

1. The tool is publicly available and easily used in the original and obfuscated
programs.

2. The tool can generate valid chains that can perform at least one type of attack
shown in Table 2.

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 223

Table 3. Methods of searching code-reuse attacks and representative tools.

Method Description

Pattern matching and hard-coded searching ROPGadget [28] and Ropper [29] both apply this
strategy. They search for a bunch of known
gadget patterns and require hard-coded rules
based on built-in exploitation templates to chain
gadgets together.

Symbolic execution and exploration Angrop [1] and ROPium [32] identifies gadgets
via symbolic execution. They maintain an
intermediate representation of gadgets, which
matches the symbolic execution result with the
pre- defined semantic rules of the gadgets and
chains of those gadgets together based on the
attacker’s specifications.

Program Synthesis As the state-of-the-art exploitation technique,
SGC [30] synthesizes logical formulas to
represent the gadget chains between the starting
and ending program states. Then it uses an SMT
solver to verify the gadget chain is feasible

3. The tool can clearly show all gadgets in a human-readable format in the
attack chains.

We considered these criteria on each type of searching method in Table 3 and
selected the representative tools from each category: ROPGadget, Angrop, and
SGC. Then, we conducted analysis on the programs within the obfuscation
benchmark using these selected tools, examining the chaining results. By count-
ing the number of gadgets comprising the gadget chains found by each existing
tool within each unobfuscated program, we identified the types of gadgets con-
tributing more effectively to the code-reuse exploitation process. Figure 1 illus-
trates representative gadget chains discovered by each type of existing automated
search tool. We observed that many of these gadget chains included gadgets per-
forming assignments, such as those with pop and mov instructions. Therefore,
gadgets with these instructions are considered exploitable gadgets.

Expressivity and Quality. In measuring the quality and expressivity of a
gadget set, we selected a method proposed by Brown et al. [7]. For gadget set
expressivity, this method evaluates the power of gadget set expressivity based on
three aspects: practical ROP exploits, ASLR-proof practical ROP exploits, and
Turing completeness. At a specific level of expressivity, a gadget set must contain
at least one gadget that fulfills the required computational criteria for each of
these aspects. For example, achieving practical ROP exploits necessitates the
presence of gadgets that assign targeted values to specific registers, store values
to memory, and trigger system calls, among others.

Regarding gadget set quality, the metric from Brown et al. focuses on the
functionality of each gadget. This qualitative measurement assesses whether a

224 N. Zhang et al.

Fig. 1. Gadget chains built by existing code-reuse chain searching tools.

gadget exhibits side effects, such as conditional branches, additional memory
or register operations, or stack pointer-related manipulations, which can affect
exploit construction. For example, consider the gadget {add eax, 1; ret;};
it contains no intermediate instructions and thus has no side effect. On the con-
trary, the gadgets {add esi, ecx; xor eax, eax; mov dword ptr[edx],
r si; ret;} have side effects. The instruction xor eax, eax; overwrites the
value in eax, impacting the result set up by the attacker. Thus, gadgets without
side effects and with single functionality are easier to exploit.

For our work, we employed the Gadget Set Analyzer (GSA) [7], a state-of-
the-art tool for measuring gadget set properties. GSA calculates the gadget set
expressivity by inspecting the first instruction of each gadget to determine if it
satisfies the computational criteria for any of the three aspects mentioned earlier.
The expressivity is then expressed as the total number of satisfied classes for each
aspect. If the expressivity of a gadget set increases in one or more aspects, it
is considered a potentially risky outcome. Regarding gadget set quality, GSA
assigns a score to each gadget based on the presence of intermediate instructions
that introduce side effects. The average quality score of the entire gadget set is

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 225

then computed. If the score of the transformed gadget set surpasses that of the
original gadget set, it indicates a potentially risky outcome.

Overall Risk. Lastly, in our gadget set measurement, we combine the aforemen-
tioned three measurement standards to derive a summarized metric for assessing
the code-reuse attack risk of a gadget set resulting from different obfuscation
transformations. We propose a formula

RiskCRA =
N(Chain_Related)

N(Gadgets)
+ VExpressivity + VQuality

that considers several statistical values related to the measurement variables of
a gadget set. The risk value of the code-reuse attack gadget set is defined as the
sum of three components: the expressivity value (sum of all three aspects), the
quality value, and the ratio of the number of exploitable gadgets to the total
number of gadgets in the set. This formula enables us to measure the code-reuse
attack risk introduced by an obfuscation method to the gadget set.

4 Study Results

4.1 Gadget Quantity

We observed a substantial increase in the number of gadgets after obfuscation,
as depicted in Fig. 2. A comparison of gadget sets between the original program
and obfuscated programs of various transformation types revealed an average
increase of approximately 43 times in the number of gadgets. ROPGadget was
used to calculate the gadget count due to its superior gadget-searching capabil-
ities among existing tools. This highlights the significant impact of obfuscation
methods on gadget sets’ quantity and composition, introducing numerous differ-
ent kinds of exploitable gadgets into the original programs.

4.2 Gadget Exploitability

We employed existing exploitation tools, as mentioned in Sect. 3, to search for
code-reuse gadget chains in both the original and obfuscated programs. Subse-
quently, we analyzed which gadgets were frequently used in the gadget chains.
Notably, for specific obfuscation methods, there was an apparent increase in the
number of commonly used gadgets in the chains. Successful code-reuse attacks
often involve triggering system-level calls such as execve, mprotect, fchown, and
mmap. Exploitation tools must find appropriate gadgets to assign parameter
values for these system calls. For instance, assuming the attacker intends to call
execve to spawn a shell, the x86-64 calling convention requires assigning the sys-
tem call number 0× 3b to the rax register, followed by assigning values to rsi,
rdi and rdx as the arguments of execve.

226 N. Zhang et al.

By running existing tools for gadget chain searching on our test set, we
collected over 300 chains, most of which exhibited similar patterns frequently
used in gadget compositions mentioned in Sect. 3. The common exploit objective
was to trigger the execve system call and spawn a shell.

10

10

10

2

4

6

N
um

be
r o

f G
ad

ge
ts

Orig
inal

Instr
ucti

ons S
ubsti

tutio
n

Contro
l F

low Flat
ter

ning

Bogus C
ontro

l F
low

Virtu
ali

za
tio

n-so
urce

Virtu
ali

za
tio

n-binary

Self
-M

odific
ati

on

Jit
-D

yn
am

ic

Enco
de C

omponen
ts

106 136

332

677

151

161,831

10,325 10,533 10,140

Fig. 2. Comparison of the number of gadgets from the original program and different
types of obfuscated programs.

To gain a better understanding of the gadgets involved in the gadget chains,
we tallied the number of exploitable gadgets in each gadget set and calculated
their proportion within the set. This metric served as a crucial aspect for evaluat-
ing changes in gadget sets before and after obfuscation, as shown in Table 4. Most
obfuscation methods led to an increase in the number of exploitable gadgets,
indicating a worrisome sign for program protection against code-reuse attacks.

4.3 Gadget Quality

Our experiments revealed that specific obfuscation methods, particularly those
involving opaque predicates or complex expression modifications like Encode
Components, tended to increase the expressivity and quality value of a gadget set.
The complete results are presented in the second and third columns of Table 5.
Higher values in expressivity and quality indicate a greater range of gadget utility
but an elevated risk of code-reuse attacks.

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 227

4.4 Code-Reuse Attack Risk

Based on the metric formula we defined for measuring the risk of code-reuse
gadget sets and the results from our experiments, we ranked the risk value of
each obfuscation method from low to high. A higher value indicates a greater
risk posed by the respective obfuscation technique. The detailed risk values for
each method are displayed in the fourth column of Table 5.

Table 4. The exploitable gadgets’ number and the rates included in each gadget set
of the original program and different obfuscated transformations. If the number of
exploitable gadgets increases, this is considered a risk-increasing result.

Obfuscation #Exploitable Gadgets Rates

Original 36.25 30.5%
Instructions Substitution 41.47 31.4%
Control Flow Flattening 87.37 28.2%
Bogus Control Flow 101.25 16.1%
Virtualization-Source 58.45 38.9%
Virtualization-Binary 44625.36 27.6%
Self-Modification 2769.68 26.7%
Jit-Dynamic 2768.30 26.2%
Encode Components 2731.88 26.9%

Table 5. The second and third columns represent each gadget set’s average expressivity
and quality values for the original program and different obfuscated transformations.
An obfuscation method that increases the expressivity value and decreases the quality
value signifies an increase in risk. The fourth column presents the code-reuse attack
risk value for each obfuscation method.

Obfuscation Expressivity Quality Risk Value

Original (4.125 / 6.125 / 2.175) 1.399 14.129
Instructions Substitution (4.125 / 6.500 / 2.275) 1.322 14.536
Control Flow Flattening (4.125 / 6.275 / 2.125) 1.263 14.070
Bogus Control Flow (4.725 / 7.250 / 4.475) 1.068 17.679
Virtualization-Source (4.950 / 8.450 / 3.025) 1.274 18.088
Virtualization-Binary (44.950 / 78.450 / 53.025) 9.883 186.584
Self-Modification (7.750 / 26.525 / 12.150) 1.786 48.460
Jit-Dynamic (7.950 / 27.8 / 12.775) 1.798 50.585
Encode Components (7.975 / 27.025 / 12.50) 1.809 49.578

228 N. Zhang et al.

5 The Anatomy of the Obfuscations and Gadgets

In light of the experimental results, this section offers an in-depth exploration
and analysis of the varying gadget sets that correspond to each type of obfus-
cation method. We conducted a meticulous differential analysis of the binary
code and the associated gadget sets, comparing singularly obfuscated variants
against their original program counterparts. In addition, our investigation delves
deeper into the implementation mechanisms of selected obfuscation techniques
to comprehend the ways in which these techniques reshape the composition of
gadget sets and the resulting impact on program security.

5.1 Instructions Substitution

Implementation Details. Instructions Substitution replaces binary operators
with more complex sequences of instructions that have equivalent functionalities,
such as arithmetic or Boolean operators. In Obfuscator-LLVM, this obfuscation
technique supports integer operations including addition and subtraction, along
with Boolean operators such as AND, OR, and XOR. For any given operator,
there exist multiple equivalent expressions. The detailed implementation rules
are shown in Table 6. The random selection of one of these equivalent expres-
sions introduces a desirable diversity in the resulting binary instruction sub-
stitution. Moreover, instructions substitution significantly complicates the task
of automatically searching for specific machine instruction patterns which are
commonly used in symmetric ciphers such as XOR more difficult [20].

Table 6. The implementation rules of Instructions Substitution in Obfuscator-LLVM.
X, Y, Z, and K are all integers.

Operator Modified Equivalent Instructions

x = y + z x = y - (-z)
x = -(-y + (-z))
x = y + k; x += z; x -= k;
x = y - k; x += z; x += k;

x = y - z x = y + (-z)
x = y + k; x -= z; a -= k;
x = y - k; x -= z; x += k;

x = y & z x = (y ^!z) & y

x = y | z x = (y & z) | (y ^z)

x = y ^z x = (!y & z) | (y & !z)

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 229

Root Causes and Discussion. Instructions Substitution resulted in an
increase of nearly 30% in new gadget generation compared to the original pro-
gram. Those freshly introduced gadgets barely affected the number of exploitable
gadgets but slightly increased the value of gadget quality and expressivity. We
observed that a majority of the newly introduced gadgets are tied to arith-
metic or logic operators. It introduces novel operators at the assembly level as
it replaces one binary operator with a sequence of instructions. For instance,
an obfuscated program that substitutes the expression {x = y + z} with {x =
-(-y + (-z))}. This operation not only utilizes addition but also subtraction
to accomplish the operation. As a result, a new gadget {add al, 0× 3d; sbb
al, 0× 30; ret} is added to the gadget set. Gadgets of this nature can signif-
icantly increase the expressivity of the gadget set, but they do not contribute to
the generation of gadget chains.

5.2 Control Flow Flattening

Implementation Details. Control Flow Flattening manipulated the principal
structure of the source code into a format that conceals the targets of branches.
Initially, each function was broken up into basic blocks. These blocks, regardless
of their original nesting levels, are then arrayed in parallel within a switch-case
statement. Each basic block resides in a distinct case structure, and the entire
switch structure is encapsulated within a loop statement. The order of control
flow is guaranteed by a control variable, which is assigned at the termination
of each basic block as the predicates of the finishing the loop and selection of
switch statement. Figure 3b illustrates the obfuscated program that has applied
the control flow flattening method to the original program shown in Fig. 3a. As
can be observed, all basic blocks from the original program are at the same level
in the obfuscated program, thus effectively concealing the loop structure of the
original program.

Root Causes and Discussion. As demonstrated in Sect. 4, Control Flow
Flattening contributed to a 213% increase in the introduction of new gad-
gets compared to the original program. Those newly introduced gadgets subtly
impact the gadget set’s exploitable gadgets, quality, and expressivity. The count
of exploitable gadgets doubles, whereas the values of expressivity and quality
remain unchanged or even decrease. We observed a substantial number of gad-
gets ending with a direct jump being introduced into the gadget set, these gad-
gets account for almost all of the newly introduced gadgets, even serving as the
ending instructions for the exploitable gadget. The situation is directly related
to the implementation mechanism of this transformation. Control Flow Flatten-
ing generally employs a Switch-Case structure to flatten an entire function’s
control flow graph. At the assembly level, a Switch-Case statement usually
relies on a jump table and fills in the case names. It requires direct jumps with
conditions to decide the control flow’s direction. Consequently, the gadget set

230 N. Zhang et al.

Fig. 3. The sample programs before and after using Control Flow Flattening.

with this transformation introduces many gadgets ending with a direct jump.
However, drawing upon our experience and corroborated by the state-of-the-
art exploitation tools, we find that these newly introduced gadgets cannot be
harnessed for constructing gadget chains for code-reuse attacks.

5.3 Bogus Control Flow

Implementation Details. Bogus Control Flow involves the insertion of spu-
rious control flows within a function to reconstruct its corresponding control
flow graph. The outcome is a chaotic control flow graph encompassing three
irrelevant types of branches, all of which are shielded by opaque predicates. (1).
The dead branch that is never engaged; (2). The superfluous branches that are
invariably engaged; (3). The branches that are sporadically engaged. The first
type involves the inclusion of a counterfeit block (which could be arbitrary code)

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 231

within a basic block, giving the impression that it might be executed later, but
in reality, it is never executed. The second type involves the insertion of a true
predicate midway through a basic block, creating the illusion that the original
block is only intermittently executed. The third type involves the insertion of a
variable predicate which occasionally directs the execution left or right, with the
resulting paths being identical regardless of the direction chosen by the predicate.

Root Causes and Discussion. Bogus Control Flow resulted in a 538%
increase in new gadgets compared to the original program. Those newly intro-
duced gadgets augment the count of exploitable gadgets as well as the value of
expressivity. However, most of those gadgets end with direct jumps, which can-
not be used to generate a gadget chain and thus have no impact on the quality
value. Furthermore, this transformation also brings tons of Control Flow Graph
(CFG) nodes to the original CFG. These spurious CFG nodes necessitate a sig-
nificant number of direct jumps with conditions to facilitate their integration
into the original CFG. Consequently, the gadgets introduced via Bogus Control
Flow scarcely contribute to increasing the code-reuse attack risk.

5.4 Virtualization

Implementation Details. Virtualization involves the conversion of selected
portions of code into bytecode, defined by a specialized virtual instruction set
architecture. The bytecode is then emulated by an embedded interpreter on the
actual machine during runtime. More specifically, the original code of a program
is initially transformed into bytecode as per a custom virtual instruction set.
Subsequently, the bytecode interpreter carries out execution following a Fetch-
Decode-Dispatch procedure. The fetch step involves the retrieval of the next
bytecode instruction, the decode step is responsible for decoding the instruction
and its operands (if any), and the dispatch sets up the execution environment
and calls the correct handlers.

Root Causes and Discussion. The Virtualization offered by Tigress led to
the introduction of nearly 50% more new gadgets than the original program,
meanwhile, the quality and the expressivity of the gadget sets remained unal-
tered. Given that Tigress implements the transformation at the source code level,
we carefully examined the obfuscated source code and found that the bytecode
and handlers are appended to the source code prior to compilation. Figure 4
provides an example of the bytecode in the obfuscated source file. Subsequently,
a switch-case based dispatch structure is utilized to interpret the bytecode
and map the bytecode to corresponding handlers. Aside from introducing a few
gadgets with direct jumps following the dispatch process, this transformation in
Tigress neither alters the control flow of the original program nor complicates
the operation of individual instruction. As a result, no gadgets with practical
functions are introduced.

232 N. Zhang et al.

For comparison, we also performed binary-level virtualization on the same
benchmark using Code Virtualizer [24], a commercial software obfuscation prod-
uct developed by Oreans Technologies. The binary-level virtualization brings
tons of new gadgets, resulting in an increase of 1500 times more new gadgets than
the original program. This tremendous increase is attributable to the binary-
level virtualization embedding the entire virtual machine, its handler set, and
the translated bytecode from the original code into the obfuscated program.
Those components are equivalent to adding a complete virtual machine program
to the original program, which greatly boosts the number of gadgets as well as
the expressivity and quality values of the gadget sets. Therefore, binary-level vir-
tualization poses greater code-reuse attack risks compared to source-code-level
virtualization.

Fig. 4. The bytecode in Tigress-obfuscated source file.

5.5 Just-In-Time Dynamic

Implementation Details. Tigress incorporated the Just-In-Time (JIT)
dynamic techniques for obfuscation, which is implemented atop the MyJit
library [21]. This transformation converts a function F into a new function F ′

by integrating a sequence of intermediate code instructions. Upon execution of
F ′, it dynamically compiles function F into machine code. Essentially, this tech-
nique generates machine code during run-time and then executes it. Figure 5
illustrates an example of an obfuscated program, which we utilize to describe
the JIT dynamic procedure. Initially, the program constructs a new instance
of the JIT compiler by invoking jit_init() on line 6. It then adds the inter-
mediate code by calling jit_add_op(). Next, the JIT compiler translates the
intermediate code into actual machine code by calling jit_generation_code().
Ultimately, the control flow is redirected to the code generated just now and the
execution begins.

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 233

Root Causes and Discussion. JIT Dynamic results in a hundredfold increase
in new gadgets compared to the original program, marking a substantial rise.
The value of expressivity and quality also experience a significant rise. The imple-
mentation of JIT Dynamic id is dependent on a third-party library, with several
functions in the library being called during the compilation and execution phases.
This is equivalent to adding another new program into the original one, analogous
to binary-level virtualization, thereby increasing the code-reuse attack surface of
the original program. As a consequence, the gadget set contains a larger quan-
tity of gadgets that can be used to construct gadget chains after transformation.
Additionally, the gadget set exhibits higher expressivity and includes a greater
number of gadgets with side effects.

Fig. 5. JIT Dynamic implementation example in Tigress.

5.6 Self-modification

Implementation Details. Self-Modification aims to render functions self mod-
ifying during runtime. Typically, Self-Modification can be achieved by encrypt-
ing, encoding, or embedding certain parts of the code pattern into the original
program, or by altering the program’s execution path when it’s running. Tigress
amalgamates self-modification templates with two different types of transforma-
tions. One is the binary arithmetic expressions and comparisons, which inserts
a binary code template at the top of the function and uses the template for
modification. The other combines code virtualization and flattening, proving
particularly effective after the introduction of indirect branches. Those indirect

234 N. Zhang et al.

branches are transformed into other byte sequences that correspond to the direct
jumps during runtime. This modification effectively thwarts deobfuscation meth-
ods that solely search for indirect branches, which have been removed from the
original code.

Root Causes and Discussion. Self-Modification also results in an increase of
new gadgets by a factor of 100 compared to the original program, with the value
of quality and expressivity of the gadget set also increasing. This transformation
inserts abundance of pre-defined code patterns into the obfuscated source code.
Although these patterns are randomly employed during compilation, they remain
attached, thereby enhancing the diversity of the original code and bringing more
gadgets and higher risks.

5.7 Encode Components

Implementation Details. Encode Components comprises three components:
encode literals, encode arithmetic, and encode data. The encode literals obfus-
cates integer literals (such as 100) and string literals (such as “100”), replacing
them with opaque expressions or a function that is generated during runtime.
The encode arithmetic substitutes integer arithmetic with more intricate and
convoluted expressions based on certain fixed patterns. This means that for each
operator, there are numerous possible encoding styles within this transforma-
tion, which are selected randomly. For example, Fig. 6 shows how an expression
of integer addition can be replaced with a random Mixed Boolean-Arithmetic
(MBA) expression of higher complexities, yielding the same arithmetic results.
The encode data targets integer variables, altering them to a non-standard data
representation with the aim of concealing a variable’s real value until it needs to
be displayed. Moreover, if a variable is encoded, all variables associated with it
will also be encoded. For instance, a random integer variable v can be replaced

Fig. 6. Encode Arithmetic Transformation.

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 235

with v′ = a * v + b. Figure 7 demonstrates the difference before and after this
transformation. It can be observed that the real values of variable x and z are
both obscured.

Fig. 7. Encode Data Transformation.

Root Causes and Discussion. Encode Components results in the introduc-
tion of new gadgets at a rate 100 times greater than the original program, also
escalating the quality and expressivity values of the gadget set. This transforma-
tion is analogous to Instructions Substitution in general, but its implementation
is more advanced. Our observation of the obfuscated source code revealed the
inclusion of some Just-In-Time (JIT) techniques, indicating that the entire JIT
library is attached to the obfuscated binary post-compilation. This explains why
Encode Components generates more chain-related gadgets and exhibits higher
expressivity and quality values, even though it operates on the same transfor-
mation principle as Instructions Substitution.

6 Mitigation

In light of the code-reuse attack risk associated with each obfuscation scheme, we
propose mitigation strategies in this section to counter-measure and minimize the
risk without significantly compromising the obfuscation strengths. Our proposed
solution is to limit the use of obfuscation schemes associated with high-risk
values as much as possible while increasing the use of those with low-risk values.
Additionally, to ensure the effectiveness of obfuscation while maintaining the
complexity of obfuscated programs, we recommend repeated application of one
low-risk obfuscation scheme or a combined use of multiple low-risk schemes.

236 N. Zhang et al.

6.1 Strategy

To this end, we designed a set of experiments to verify the correctness of our
proposed solution. We first categorized the obfuscation schemes into two groups
based on the risk values ranking obtained from Table 5. One group consists of
low-risk value schemes: Instructions Substitution, Control Flow Flattening, Bogus
Control Flow, Virtualization(source); The other group includes high-risk value
schemes: Jit-Dynamic, Self-Modification, Encode Components.

For the low-risk value group, we applied each obfuscation method to the same
source program once, twice, and three times respectively, and then combined the
three methods from Obfuscator-LLVM on the source program as another variant.
We determined the number of times an obfuscation method was applied to the
source code by adjusting the command-line parameters. For the high-risk value
group, obfuscation methods were applied individually.

6.2 Evaluation

To gauge how effective our mitigation strategy restrains the growth of the code-
reuse attack risk, we applied our metrics to the obfuscated programs shown in
Table 7 column one. By calculating the risk values for each obfuscation variant,
we evaluated the outcomes of our mitigation strategy.

The evaluation results revealed that our mitigation strategy is highly effective
at diminishing the code-reuse attack risk. Applying low-risk obfuscation methods
multiple times to the same original program can effectively curb the growth of
the risk values of the gadget set compared to those high-risk methods, which
typically have risk values nearing 50.

While focusing on the code-reuse attack risk value, we also assessed the effect
of applying one obfuscation method multiple times. We used IDA Pro [14] to
analyze the CFG of each variant binary based on the number of CFG nodes and
verified whether the obfuscated variant could maintain the same obfuscation
complexity. A program with more CFG nodes can be considered as one with
higher obfuscation complexity. The results indicated that applying the low-risk
obfuscation method (Control Flow Flattening used as an example here) multiple
times does not diminish the complexity of the obfuscation results. The number
of CFG nodes is 35, 37, and 36, respectively, corresponding to applying the
obfuscation method once, twice, and three times. The original program only has
7 CFG nodes. Therefore, after multiple obfuscation iterations, the obfuscated
program possesses more CFG nodes and a complex control flow, thereby better
protecting it against reverse engineering. Meanwhile, the code-reuse attack risk
values are 14.070, 17.567, and 14.534, respectively, corresponding to applying
the obfuscation once, twice, and three times to the original program. These risk
values are not as high as those of other high-risk obfuscation methods, indicating
the efficacy of our mitigation strategy.

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 237

Table 7. The gadget-set-related data for each type of obfuscation method with low-
risk and high-risk values. The number after the method name indicates how often this
method has been applied to the original program.

Obfuscation #Gadgets #Exploitable Expressivity Quality Risk Value

Original Program 106 36.25 (4.125/6.125/2.175) 1.399 14.129

Instructions Substitution (1) 136 41.47 (4.125/6.500/2.275) 1.322 14.536
Instructions Substitution (2) 290 44.00 (4.125/6.500/2.275) 1.093 14.144
Instructions Substitution (3) 650 114.00 (4.750/14.500/7.500) 1.028 27.953

Control Flow Flattening (1) 332 87.37 (4.125/6.275/2.125) 1.263 14.070
Control Flow Flattening (2) 455 91.50 (4.500/8.525/3.000) 1.341 17.567
Control Flow Flattening (3) 460 87.50 (4.500/6.500/2.075) 1.269 14.534

Bogus Control Flow (1) 677 101.25 (4.725/7.250/4.475) 1.068 17.679
Bogus Control Flow (2) 2,469 229.21 (5.025/8.500/6.075) 0.946 20.638
Bogus Control Flow (3) 8,573 427.27 (5.125/15.500/7.275) 0.943 28.892

Virtualization-source 151 58.45 (4.950/8.450/3.025) 1.274 18.088
Virtualization-Binary 161,831 44,625.36 (44.950/78.450/53.025) 9.883 186.584
Jit-Dynamic 10,533 2768.30 (7.950/27.8/12.775) 1.798 50.585
Self-Modification 10,325 2769.68 (7.750/26.525/12.150) 1.786 48.460
Encode Components 10,140 2731.88 (7.975/27.025/12.50) 1.809 49.578

We also conducted a comparison between applying a high-risk obfuscation
method once and applying a low-risk obfuscation method multiple times. We
selected the Jit-Dynamic, which has the highest risk value among all methods
as the representative of the high-risk value group, and Bogus Control Flow as
the representative of the low-risk value group. The comparison results showed
that, despite each CFG node of the Jit-Dynamic obfuscated program having
numerous instructions, it only has three nodes on its CFG. On the contrary, a
program obfuscated three times with the Bogus Control Flow method has over
1,000 CFG nodes. The low-risk obfuscation method evidently contributes more
obfuscation complexity than the high-risk method. Moreover, using the low-risk
obfuscation method multiple times results in a code-reuse attack risk value of
14.534, which is significantly less than the risk value of 50.585 associated with
applying a high-risk obfuscation method once.

From the results of our evaluation, we noticed that our mitigation strat-
egy not only curbs the growth trend of code-reuse attack risk on obfuscated
programs but also significantly increases the complexity and intensity of them.
Therefore, we conclude that when applying obfuscation techniques, it is prefer-
able to choose a method with low-risk value and apply it multiple times to the
original programs, while avoiding high-risk value methods.

7 Related Work

Concerning code-reuse attacks in obfuscated programs, our research demon-
strated each obfuscation method’s key factors that influence the presence of
code-reuse gadgets and gadget sets. One recent work Gadget-Planner [35], also
sheds light on code-reuse attacks on obfuscated code, but our work differs from it.

238 N. Zhang et al.

Gadget-Planner simply compares the gadget chains before and after obfuscation
and then focuses on building more complex attack chains from the obfuscated
programs. However, the key point of our work is to investigate the underlying
causes behind the variations in gadget chains introduced by different obfusca-
tion methods. Our work fully exposes the attack risk by measuring the quantity,
quality, and expressivity of gadget sets.

Comparatively, other similar works [18,19] focus solely on the number of gad-
gets within the gadget set, using the increase in gadget count to imply potential
attack risks. Our analytical approach is more comprehensive and employs a rea-
sonable risk metric, extending beyond a simple quantitative analysis. Our work
ranks the risk levels associated with different obfuscation methods and reveals
the root cause of each method. Additionally, we offer solutions to mitigate these
risks, making it a complete and comprehensive research endeavor.

8 Conclusion

Software obfuscation techniques have become increasingly popular for protect-
ing the logic of programs by introducing complex data and control flow struc-
tures that make the code difficult to comprehend. However, existing research
predominantly focuses on cracking and reversing obfuscated programs, neglect-
ing the potential security risks associated with these obfuscations. To address
this gap, our study provides a comprehensive analysis of popular obfuscation
techniques, specifically examining their impacts on code-reuse attack vulnera-
bilities. We have developed a measurement framework to assess the code-reuse
attack risks introduced by different obfuscation methods. Our analysis reveals
that each obfuscation method introduces varying levels of code-reuse attack risks,
underscoring the need for a meticulous selection of obfuscation techniques. To
mitigate these risks, we propose a mitigation strategy that combines low-risk
obfuscation methods, effectively reducing the code-reuse attack vulnerabilities
while maintaining strong obfuscation. In conclusion, our research highlights the
importance of considering the code-reuse attack risks associated with obfusca-
tion techniques and provides valuable insights for developing secure obfuscation
schemes. By adopting our proposed mitigation strategy, users can enhance the
security of their software while maintaining robust obfuscation protection.

Acknowledgments. We would like to thank the anonymous reviewers and shepherd
for their valuable feedback. This work was supported by NSF grants CNS-2022279 and
CNS-2211905.

An In-Depth Analysis of the Code-Reuse Gadgets Introduced 239

References

1. Angr-team: Angrop - a ROP gadget finder and chain builder. https://github.com/
angr/angrop (2021)

2. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.: Auto-
matic exploit generation. Commun. ACM 57(2), 74–84 (2014)

3. Banescu, S., Collberg, C., Pretschner, A.: Predicting the resilience of obfuscated
code against symbolic execution attacks via machine learning. In: Proceedings of
the 26th USENIX Conference on Security Symposium (USENIX Security 2017)
(2017)

4. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security (AsiaCCS) (2011)

5. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed Greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (2017)

6. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based Greybox fuzzing as
markov chain. IEEE Trans. Softw. Eng. 45(5), 489–506 (2017)

7. Brown, M.D., Pande, S.: Is less really more? towards better metrics for measur-
ing security improvements realized through software debloating. In: 12th USENIX
Workshop on Cyber Security Experimentation and Test (CSET 19) (2019)

8. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: generalizing return-oriented programming to RISC. In: Proceedings of the
15th ACM Conference on Computer and Communications Security (CCS 2008)
(2008)

9. Carlini, N., Wagner, D.: ROP is still dangerous: breaking modern defenses. In:
Proceedings of the 23rd USENIX Conference on Security Symposium (2014)

10. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing mayhem on binary
code. In: IEEE Symposium on Security and Privacy. IEEE (2012)

11. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security (2010)

12. Collberg, C.: The Tigress C Obfuscator. https://tigress.wtf
13. Francillion, A., Castelluccia, C.: Code injection attacks on harvard-architecture

devices. In: CCS 2008: Proceedings of the 15th ACM Conference on Computer
and Communications Security. ACM (2008)

14. Hex-Rays: IDA Pro. https://www.hex-rays.com/products/ida/
15. Hu, H., Chua, Z.L., Adrian, S., Saxena, P., Liang, Z.: Automatic generation of

data-oriented exploits. In: 24th USENIX Security Symposium (USENIX Security
15) (2015)

16. Hu, H., Shinde, S., Adrian, S., Chua, Z.L., Saxena, P., Liang, Z.: Data-oriented pro-
gramming: on the expressiveness of non-control data attacks. In: IEEE Symposium
on Security and Privacy (SP) (2016)

17. Ispoglou, K.K., AlBassam, B., Jaeger, T., Payer, M.: Block oriented programming:
automating data-only attacks. In: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (2018)

18. Joshi, H.P., Dhanasekaran, A., Dutta, R.: Impact of software obfuscation on suscep-
tibility to return-oriented programming attacks. In: 36th IEEE Sarnoff Symposium
(2015)

https://github.com/angr/angrop
https://github.com/angr/angrop
https://tigress.wtf
https://www.hex-rays.com/products/ida/

240 N. Zhang et al.

19. Joshi, H.P., Dhanasekaran, A., Dutta, R.: Trading off a vulnerability: does software
obfuscation increase the risk of ROP attacks. J. Cyber Secur. Mobility 4(4), 305–
324 (2015)

20. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM - software
protection for the masses. In: Proceedings of the IEEE/ACM 1st International
Workshop on Software Protection, SPRO (2015)

21. Krajca, P.: MyJit Library. http://myjit.sourceforge.net/
22. László, T., Kiss, Á.: Obfuscating C++ Programs via Control Flow Flattening.

Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös Nominatae,
Sectio Computatorica (2009)

23. Manikyam, R., McDonald, J.T., Mahoney, W.R., Andel, T.R., Russ, S.H.: Com-
paring the effectiveness of commercial obfuscators against MATE attacks. In: Pro-
ceedings of the 6th Workshop on Software Security, Protection, and Reverse Engi-
neering (SSPREW) (2016)

24. Oreans Technologies: Code Virtualizer: Total Obfuscation against Reverse Engi-
neering. http://oreans.com/codevirtualizer.php

25. Oreans Technologies: Themida: Advanced Windows Software Protection System.
https://www.oreans.com/themida.php

26. Polychronakis, M.: Reverse Engineering of Malware Emulators. (2011)
27. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: VUzzer:

application-aware evolutionary fuzzing. In: Network and Distributed Systems Secu-
rity Symposium (2017)

28. Salwan, J.: ROPgadget (2011). http://shell-storm.org/project/ROPgadget/
29. Schirra, S.: Ropper (2019). https://scoding.de/ropper/
30. Schloegel, M., Blazytko, T., Basler, J., Hemmer, F., Holz, T.: Towards automating

code-reuse attacks using synthesized gadget chains. In: European Symposium on
Research in Computer Security (2021)

31. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security (2007)

32. Souchet, A.: Ropium (2018). https://github.com/Boyan-MILANOV/ropium
33. VMProtect Software: VMProtect software protection. http://vmpsoft.com
34. Wang, Y., et al.: Revery: from proof-of-concept to exploitable. In: Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security
(2018)

35. Zhang, N., Alden, D., Xu, D., Wang, S., Jaeger, T., Ruml, W.: No free lunch: on
the increased code reuse attack surface of obfuscated programs. In: 53rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)
(2023)

http://myjit.sourceforge.net/
http://oreans.com/codevirtualizer.php
https://www.oreans.com/themida.php
http://shell-storm.org/project/ROPgadget/
https://scoding.de/ropper/
https://github.com/Boyan-MILANOV/ropium
http://vmpsoft.com

ProvIoT: Detecting Stealthy Attacks
in IoT through Federated Edge-Cloud

Security

Kunal Mukherjee1 , Joshua Wiedemeier1 , Qi Wang2, Junpei Kamimura3,
John Junghwan Rhee4, James Wei1, Zhichun Li3, Xiao Yu3, Lu-An Tang5,

Jiaping Gui6, and Kangkook Jee1(B)

1
The University of Texas at Dallas, Richardson, TX, USA

{kunal.mukherjee,josh.wiedemeier,james.wei,kangkook.jee}@utdallas.edu
2

University of Illinois at Urbana-Champaign, Champaign, IL, USA
qiwang11@illinois.edu

3
Stellar Cyber, San Jose, CA, USA

jkamimura@stellarcyber.ai, zhichun@gmail.com, yuxiaoinf@gmail.com
4

University of Central Oklahoma, Edmond, OK, USA
jrhee2@uco.edu

5
NEC Labs America Inc., Princeton, NJ, USA

ltang@nec-labs.com
6

Shanghai Jiao Tong University, Shanghai, China
jgui@sjtu.edu.cn

Abstract. Internet of Things (IoT) devices have increased drastically
in complexity and prevalence within the last decade. Alongside the pro-
liferation of IoT devices and applications, attacks targeting them have
gained popularity. Recent large-scale attacks such as Mirai and VPNFil-
ter highlight the lack of comprehensive defenses for IoT devices. Existing
security solutions are inadequate against skilled adversaries with sophis-
ticated and stealthy attacks against IoT devices. Powerful provenance-
based intrusion detection systems have been successfully deployed in
resource-rich servers and desktops to identify advanced stealthy attacks.
However, IoT devices lack the memory, storage, and computing resources
to directly apply these provenance analysis techniques on the device.

This paper presents ProvIoT, a novel federated edge-cloud secu-
rity framework that enables on-device syscall-level behavioral anomaly
detection in IoT devices. ProvIoT applies federated learning techniques
to overcome data and privacy limitations while minimizing network over-
head. Infrequent on-device training of the local model requires less than
10% CPU overhead; syncing with the global models requires sending
and receiving ∼2MB over the network. During normal offline operation,
ProvIoT periodically incurs less than 10% CPU overhead and less than
65MB memory usage for data summarization and anomaly detection.
Our evaluation shows that ProvIoT detects fileless malware and stealthy
APT attacks with an average F1 score of 0.97 in heterogeneous real-world
IoT applications. ProvIoT is a step towards extending provenance anal-
ysis to resource-constrained IoT devices, beginning with well-resourced
IoT devices such as the RaspberryPi, Jetson Nano, and Google TPU.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 241–268, 2024.
https://doi.org/10.1007/978-3-031-54776-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_10&domain=pdf
http://orcid.org/0009-0004-9693-6520
http://orcid.org/0009-0006-2513-2896
http://orcid.org/0000-0003-3797-4637
https://doi.org/10.1007/978-3-031-54776-8_10

242 K. Mukherjee et al.

Keywords: Provenance graph analysis ⋅ anomaly detection ⋅ dynamic
malware analysis ⋅ federated learning ⋅ deep learning ⋅ privacy

1 Introduction

The Internet of Things (IoT) revolution established a radical new computing
paradigm that traditional security protocols have failed to comprehensively
cover. With the recent development of small and powerful devices [8,39,65],
increased network connectivity [70] has allowed IoT devices, including wearables,
drones, and autonomous vehicles, to be deployed at an unprecedented scale [31].
These IoT devices are not only independently security critical [1,78], but they are
also entry points into a network to perform data theft, surveillance, and denial-
of-service [21,22,83] attacks. As IoT technology’s attack surface increases, so will
the prevalence of attacks targeting IoT devices.

Traditional stealthy attack techniques are quickly being adapted to threaten
IoT devices and cyber-physical systems [15,42]. Various security solutions for IoT
devices have been proposed to defend against these attacks, but they are limited
in their capability to defend against skilled adversaries [60,71]. Beyond the legacy
approach to defense, several provenance-based security approaches [14,41,43,82]
have been proposed to protect conventional IT infrastructure (e.g., server and
desktop computers) against sophisticated malicious actors. Instead of a näıve
dependence on static signatures, provenance-based solutions analyze the runtime
behavior of known programs to detect anomalies.

Provenance-based defenses provide a promising approach for IoT devices as
well. These defenses first capture the benign behavior of the program by aggre-
gating auditing data to show causal relations between system events. These
causal events are represented as a provenance graph, which is then vectorized
so that machine-learning (ML) techniques can model the typical (i.e., benign)
behavior of the program. Provenance graphs are rising in popularity along-
side advances in graph-based learning approaches [29]. However, the overhead
incurred by graph techniques that digest an entire provenance graph is unac-
ceptably high for most IoT devices.

Since most IoT devices run on limited resources, system components such as
the CPU, memory, and storage are engineered to serve a single dedicated task,
leaving scarce resources for security. Network bandwidth is likewise constrained
in mobile IoT situations. These limitations severely hinder the data processing
efforts required to support graph-based ML security solutions for IoT systems.
Since the quality of the data deteriorates, the detection accuracy of ML models
using the data also deteriorates. Additionally, the often scattered nature of IoT
deployment makes the task of consistent and stable data collection challenging.

To address these issues, we propose ProvIoT, a novel federated edge-cloud
collaborative security architecture for IoT that extends the detection capability
of IoT security against sophisticated and stealthy attacks. ProvIoT aims to pro-
vide a system-wide behavioral graph analysis framework for the IoT domain. To
overcome the IoT specific data collection and privacy constraints, ProvIoT uses

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 243

a federated edge-cloud collaborative framework with two major components: (1)
A Local Brain for system event collection, summarization, model training and
anomaly detection in an edge device, and (2) a Cloud Brain for performing
federated averaging [55] on these local models to produce a global model and
orchestrating the distribution of the global model.

Our work extends a path-based graph summarization approach for system
provenance analysis [41,43,82] that reduces computational overhead by extract-
ing subgraphs (i.e., causal paths) from the whole provenance graph. We design
a novel federated anomaly detection framework using Local Brains and a Cloud
Brain in the context of IoT. Our prototype runs Local Brains on multiple IoT
platforms — ARM-based IoT, edge GPU devices [39,65], and x86-based Linux
hosts. For a long term evaluation, we deployed Local Brains to 33 devices and
collected low-level system events over twelve months.

The Cloud Brain established global behavioral models for the twenty com-
monly installed programs listed in Table 3 and the five major IoT use cases listed
in Table 2. We evaluated ProvIoT against real-world IoT malware designed to
impersonate long-running and trusted software which included both natively
fileless malware and malware [20] that uses a fileless wrapper [36]. We also used
realistic testbeds to reproduce prominent attacker tactics, techniques, and pro-
cedures (TTPs) that comprise the essential components of advanced persistent
threat (APT) campaigns following the MITRE ATT&CK framework. Our evalu-
ation results in Sect. 7 show that ProvIoT efficiently constructs behavioral mod-
els that can accurately detect stealthy attacks, including fileless IoT malware
and APT-style attack campaigns.

In summary, our work brings in the following contributions:

– To the best of our knowledge, ProvIoT is the first proposed provenance based
security detection approach in the context of IoT that counters stealthy
attacks using federated learning and on-device detection.

– ProvIoT provides a new design choice for federated edge-cloud collabora-
tive security learning by streamlining computationally expensive graph-based
behavioral security in the IoT context.

– We extensively evaluated the efficiency and effectiveness of ProvIoT with
realistic deployments. Adversarial cases are carefully designed using realistic
attack cases and fileless malware samples.

– We will publish the complete IoT provenance dataset and tools required for
our data analysis pipeline [61] as open artifacts.

2 Background

In this section, we first introduce fileless attacks, their operations, and their
application to the IoT domain. We then provide insights for using in-host system
provenance graphs to build behavioral models in IoT devices.

244 K. Mukherjee et al.

2.1 Fileless Attacks on IoT Devices

In this paper, fileless attack refers to a group of attack techniques with no
footprint in the file system. Alternative terms used in the field include “zero-
footprint”, or “living off the land” [26].

Fileless attacks are characterized by the impersonation of trusted off-the-shelf
applications and pre-installed system utilities. Since many of these trusted appli-
cations are commonly used by users and system administrators, it is harder for
defenses to block access to them to prevent such attacks completely. Such imper-
sonation techniques have seen rising popularity in recent cyberattacks [26,51].
Instead of storing the malware payload directly onto the disk before executing it,
this malware uses the strategy of “living off the land” by injecting it into benign
running processes (e.g., trusted applications) and avoiding detection by execut-
ing only in process memory. During runtime, the malware may also rename itself
to a seemingly benign process name using a prctl(PR SET NAME) call. These
impersonation approaches have diverged and evolved in multiple ways in IoT
systems [33,34]. Some possible impersonation approaches are highlighted below.

Process Injection. ptrace() is a system API used to support code injection
to another process for development purposes. However, attackers have abused
ptrace() to inject malicious code into the memory of legitimate processes [13].

In-Memory Execution. The memfd create() system API family creates an
anonymous file in memory-mounted file systems. Using memfd create(), an
attacker can directly load malware from the memory space without writing a
payload to the filesystem. This attack enhances the traditional attack strategy
of storing malware in transient storage (e.g., /tmp, /var/run, /dev/shm). With
memfd create(), the malware further reduces its footprint, preventing users
from locating it with standard filesystem access even during runtime. Multiple
loader frameworks [36] exist that are able to encode regular file-based malware
into different fileless variants.

Case Study: FritzFrog. In January 2020, a security group discovered and
reported FritzFrog [42], a sophisticated peer-to-peer (P2P) malware botnet.
FritzFrog is a crypto mining worm that breaks into and spreads through SSH
servers. Written in Golang to natively target different architectures, FritzFrog
uses fileless techniques to leave no traces on the filesystems of the infected
devices. We specifically consider FritzFrog in the context of IoT devices.

FritzFrog performs file operations in memory to impersonate a regular benign
system process’s identity. After the initial break-in, FritzFrog masquerades as the
nginx web server or the ifconfig process. The infected IoT device connects to a
command and control (C&C) server via encrypted sessions to seemingly benign
beacons. Then, the malware infects other IoT devices to mine cryptocurrencies
by exploiting a weakness in SSH services. Figure 1 compares the behavior of the
original nginx process and that of FritzFrog impersonating nginx. Although
FritzFrog leaves no filesystem footprint, provenance-based intrusion detection

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 245

Fig. 1. FritzFrog malware impersonating nginx web-server.

systems can detect and defend against it as the behavior of benign nginx and
FritzFrog are distinct.

2.2 System Provenance and Graph Learning

ProvIoT extends system provenance analysis [53], originally proposed by King et
al. [45], to implement on-device edge IoT behavior monitoring system. System
provenance operates through the installation of a data collection agent on each
host to collect syscall level system events. These events are then sent to an
in-memory database to build a causality graph by associating data and control
dependencies between processes, files, and network resources. The events that
system provenance collects are as follows: (1) process events, such as process
create and destroy; (2) file events, including file read, write, and execute; and
(3) network events, including socket create, destroy, read, and write.

With the increased deployment of provenance-based security solutions in
the last decade [35], the output of system provenance, the provenance graph,
forms the foundation for graph-based learning and detection approaches. In this
regard, provenance graphs best represent the runtime characteristics of system
entities and have quickly become an essential source of input to model a pro-
gram’s runtime behavior. Along with recent developments in graph-based learn-
ing approaches [46,67], research on behavioral modeling and its application for
anomaly detection has gained considerable momentum [43,82].

While Graph Neural Network (GNN)-based learning analysis techniques have
exploded in popularity, they often struggle to digest provenance graphs, which
are large and extremely dense. Typically, system provenance graphs contain
many nodes and edges that store the different labels and detailed attributes
system events. For instance, our graph dataset produced nodes and edges with

246 K. Mukherjee et al.

an average of 10 ∼ 15 attributes for node and edge types. In our attempt to
evaluate a GNN-based framework on our data, we encountered many limitations
with the open-sourced framework [76,84] especially in regard to the processing
power needed to process provenance graphs.

Works such as [43,82] have addressed the challenge of data processing over-
head in general Neural Network (NN) approaches by implementing efficient path
selection to build behavior models for detecting anomalous deviations. To adapt
this design for use in IoT devices, we collect system-level events on the IoT
devices and summarize them using the path selection approach. Recent advances
in IoT machine learning frameworks have also made significant strides in execut-
ing sophisticated neural architectures in low-resource IoT environments [10,52].
The Local Brain locally trains a model on local data and shares only the model
weights with the Cloud Brain. The Cloud Brain aggregates the model weights in
a federated way [27] to build behavioral profiles that integrate global perspectives
across multiple devices while preserving each device’s privacy.

3 Threat Model

Our threat model assumes that the data collection and summarization pipeline
on the IoT device is trusted i.e., the integrity of the provenance records are
guaranteed by existing secure provenance systems [41,43,62,82]. This assump-
tion is consistent with existing provenance research that requires end-host data
collection and reporting [43,53,82]. Securing and verifying the trustworthiness
of the end-host data reporting is an important research topic that is orthogonal
to our research [19]. Procedural dataset poisoning is outside the scope of our
work. We consider the use of distributed consensus protocols [49] or attestation
approaches that extend the root of trust with hardware level support [79].

Attacks targeting the IoT platform, communication infrastructure [18], or
the analysis process running in the cloud are outside the scope of this paper.
We further assume that the reporting agents are honest and restrict our target
IoT devices to those with at least 375MB of RAM [60,71] to support prove-
nance summarization. Many modern commodity IoT devices (e.g., smart ther-
mostats [3], smart watches [2], smart fridges [16], smart doorbells [11], and smart
home devices [5]) are equipped with 512MB or more of RAM.

ProvIoT attempts to detect malicious behavior in IoT systems by learning
the distribution of expected benign behaviors and reporting significant devi-
ations from that expectation. We primarily consider APT scenarios [62] and
fileless malware [42,58,80] that impersonates one or more of a set of whitelisted
programs to evade traditional IDS [41] mechanisms.

4 System Overview

Figure 2 presents the architecture of ProvIoT, that is composed of two collab-
orating subsystems: Local Brains and a Cloud Brain. Each Local Brain gathers
host-level monitoring data from the IoT device into an in-memory database. It

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 247

LOCAL BRAIN N

Feature
Vector

Provenance
Paragraph

Doc2Vec

AutoEncoder

Provenance Graph
Generation

Causal Path
Extraction

Local Brain
Training

Federated
Aggregation

Provenance
Graph

Data
Collection

Provenance
Database

IoT CLOUD BRAIN

LOCAL BRAIN 3
LOCAL BRAIN 2

LOCAL BRAIN 1

IoT
IoT

Feature Vector
Inference

Frequency
Database

Fig. 2. The federated training pipeline of ProvIoT.

then summarizes the data and converts it to neural embeddings for ML model
training. Data summarization only incurs 10% CPU usage and 65MB of RAM
overhead. We can set the relevant local events and model training to run infre-
quently during low-load periods. After the local training, the Local Brain sends
the updated neural weights to the Cloud Brain.

The Cloud Brain uses federated averaging [55] to combine the weights
received from the Local Brains into a global model, which is sent back to each
Local Brain for use in detection. The Local Brain can then perform detection
directly on the IoT device using the federated global model. Periodically, the
Local Brain will synchronize with the Cloud Brain, pushing up its local weights
and fetching the updated global model. The only communication that the Local
Brains have with the Cloud Brain is the communication of model weights during
training. The Local Brains are fully capable of defending the IoT devices even
when disconnected from the network.

4.1 Local Brain

We deploy a Local Brain to each IoT device to collect host-level monitoring
data including process creations, file operations and network socket interactions.
The Local Brain’s training has the following major steps: (1) data collection,
(2) provenance graph generation, (3) causal path extraction, (4) feature vector
inference and (5) model training.

The first step in doing provenance analysis in IoT is data collection 1 , where
we collect system monitoring data and create system event records. Similar
to [41,43,53,62,82], we collect monitoring data for the following types of system
entities: processes, files, and Unix domain sockets. Each entity type is associated
with a set of attributes. For example, the attributes of a process are its creation
time, command used to invoke, executable path and other relevant information.
We use these entities and the interactions between them (e.g., creation, reading,
writing) to represent the system behaviors of the IoT device.

The collected data consists of raw syscall sequences which are translated
into meaningful system information (e.g., file descriptors are translated into file
paths and PIDs are translated into process names) and stored in the provenance
database. After translation, the data collection module processes the information
into system events, which embodies the interaction between two system entities.
Formally, we define a system event as eR(ns, nd, t) where ns is the source entity,

248 K. Mukherjee et al.

nd is the destination entity, t is the time when e occurs, and R is the relation-
ship (e.g., read, write, create). For example, Process A opens (with write
permission) File B at time T is ew(A,B, T).

System events are queried from an in-memory database to generate 2 the
provenance graphs, G(p), for a particular program. The generated provenance
graphs are decomposed into subgraphs (i.e., provenance paths). Formally, we
define a causal path λ in a provenance graph G(p) as an ordered sequence of
system events (or edges) {e1, e2, . . . , en} in G(p), where ∀ei, ei+1 ∈ λ, ei.dst ==
ei+1.src and ei.time < ei+1.time. The time constraint enforces that an event can
only be dependent on events in the past, which prevents infinite loops.

After causal paths are extracted from provenance graphs, the relevant causal
paths are extracted 3 using a frequency database. Relevant causal paths during
training are the common causal paths since we want to train the behavioral
model with common provenance paths, but during anomaly detection relevant
causal paths are the rare, since we want to detect these rare behaviors.

The frequency database stores historical behavior information for a particular
program and is used during the ranking process, including how many times the
system has seen a particular system event in the past. For example, if an entry
in the frequency database is </bin/bash|CREATE|/bin/cat, [1000]>, it means
in the past /bin/bash created /bin/cat one thousand times. False positives
due to benign program evolution is an important issue for ML-based detectors.
Therefore, ProvIoT updates the frequency database at run-time using benign
behavior to capture the evolution of program behavior.

The relevant causal paths are converted 4 to feature vectors using
doc2vec [50]. The local model is then trained 5 on the feature vectors, and
the model weights are sent 6 to the Cloud Brain to update the global model
and propagate the localized information to the other connected Local Brain
instances. After the Local Brain receives the aggregated global model weights, it
starts the anomaly identification process. The Local Brain model uses the new
model weights to detect anomalous behavior and raises an alert if any anomalous
events are found. The pipeline is visualized in Fig. 3 and explained in Sect. 5.

Since the only connection with the Cloud Brain host is for sending and receiv-
ing model weights, the network overhead is constant and independent of the
amount of data processed on each IoT device. Additionally, since the global
models are stored on the device itself, the Local Brain can still operate even if
the network connectivity is lost. This gives ProvIoT an advantage over other IoT
behavioral anomaly detectors [32,69] as it does not require the transmission of
the data to a centralized server for detection to occur. This also preserves the
privacy of the device. We describe the detection models in more detail in Sect. 5.

4.2 Cloud Brain

Since the Cloud Brain resides in the cloud, it has sufficient computing power to
aggregate 6 the model updates from multiple Local Brain instances to build
the global detection models and to synchronize the aggregated global weights
with the Local Brain instances. This architecture scales more efficiently than

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 249

Provenance Graph
generation

Path
Extraction

Feature Vector
Inference Detection

benign
benign
benign

anomaly
anomaly

Document
Building

system
process

Fig. 3. The detection pipeline of the Local Brain.

centralized off-device detection schemes because federated averaging is infrequent
and is less intensive than performing anomaly detection for an entire fleet of IoT
devices, so expanding the fleet does not dramatically increase the computational
requirements of the Cloud Brain.

Federated Aggregation. Device specific anomaly detection models are aggre-
gates them using the FederatedAveraging algorithm described in [55]. Because
each device gathers data only from the information it encounters, the data from
a single device represents a slice of all the potential benign behaviors. The aggre-
gation that takes place in the Cloud Brain improves the detection accuracy by
combining the different pieces of information from all the connected clients.

5 Federated Detection

A core component of ProvIoT is its ability to perform detection autonomously
on the IoT device without a centralized server. The local detection module raises
alerts when suspicious events occur.

While a centralized server is used to keep the detection module up to date,
it is not necessary for detection. The detection pipeline in the Local Brain use
the same data collection and preprocessing steps as the training pipeline, but
selects rare paths for detection instead of common paths for training.

The detection pipeline, shown in Fig. 3, works in the following manner: first,
the Local Brain will generate provenance graphs for each target program and
extract rare causal paths for consideration. These causal paths are converted
into causal sentences [82], which are combined to form a causal document. Next,
we use an NLP model, doc2vec [50], to embed the causal document as set of k-
dimensional feature vectors. Finally, we use the trained autoencoder [40] model
to detect the malicious causal paths as done by recent studies [41,62]. The intu-
ition is that when feature vectors are inferred using the doc2vec model, benign
causal paths will generate feature vectors that would be clustered separately
from anomalous feature vectors.

It is possible that there is no anomaly in a process, but a combination of
processes can lead to the anomaly, even still ProvIoT would be able to iden-
tify these anomalies. Since, during the graph building phase we capture both
the forward dependencies (e.g., creating new interactions with different system
artifacts or modifying system artifacts) and backward dependencies (e.g., cap-
turing the malware payload deployment event that started the attack as well

250 K. Mukherjee et al.

attackerIPcurlbash

.config

bash kodi

bash kodi

bash kodi

bashbash kodi curl

Example Graph G1 generated for process, P1

Causal Paths extracted from Graph G1

start

start

start

write

write

start

kodi

start

read

write

file

socket

process

attacker

Document

bash start kodi write .config read kodi start xander

bash start kodi write videoIP read kodi

bash start kodi start bash start curl write attaclerIP

Document D1 generated from Graph G1

videoIP

kodi xrender

.config kodi
read

xrender
start

kodi

videoIP

attackerIP

Legend

Fig. 4. Example causal paths extracted from a provenance graph, G1, generated for
process, P1. Using the extracted causal paths the sentences are formed for a document,
D1.

as different program and data dependencies), we obtain a holistic system snap-
shot. Because malicious activities contain previously unseen behavior, their cor-
responding causal paragraphs will contain rare sentences, which will be inspected
during the detection process.

5.1 Graph Building and Path Selection

For each target program, the Local Brain will generate provenance graphs from
system events gathered in the data collection module. Causal paths are extracted
from the provenance graphs through a series of random walks. We consider the
rarest 15 % of the causal paths using [43]; 15 % was empirically determined in
our training phase. Following [43,62,82], the rarity of a causal path is calculated
using the frequency database introduced in Sect. 4.1. The regularity of an event
is R(e = (u, v, r)) = ∣Freq(u,v,r)∣

∣Freq(u,∗,r)∣
, and the regularity of a causal path is R(P =

(e1, e2, . . . , en)) = Πe∈PR(e) ⋅ α, where α is a correction factor to prevent the
regularity of long paths from trending towards zero. The rarity of a path is
simply the complement of its regularity, 1 − R(P).

The information embedded in the provenance graph needs to be extracted
to be used as features. One näıve approach may be to use the whole provenance
graph for detection. However, using the entire graph will result in a lot of benign
noise (events) being mixed into the overall data and the overhead needed to
digest the entire graph for ML purposes are unreasonable in an IoT context.
Many stealthy malware writers use this property to attempt to blend in with
the surrounding benign noise in the graph. Thus, we use a frequency database,
as defined in [43] to extract rare causal paths from the whole provenance graph.
An example of causal paths extracted from a provenance graph in Fig. 4.

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 251

Document

bash start kodi write .config read kodi start xander

bash start kodi write videoIP read kodi

bash start kodi start bash start curl write attaclerIP

X1,1 X2,1 X3,1 X50,1X49,1

X1,2 X2,2 X3,2 X50,2X49,2

X1,3 X2,3 X3,3 X50,3X49,3

Feature Vector, x [3 x 50]

X'1,1 X'2,1 X'3,1 X'50,1X'49,1

X'1,2 X'2,2 X'3,2 X'50,2X'49,2

X'1,3 X'2,3 X'3,3 X'50,3X'49,3

Reconstructed Feature
Vector, x' [3 x 50]

autoencoder modeldoc2vec model

e1 < t benign

e2 < t benign

e3 > t anomaly

MSE, e
threshold, t

Fig. 5. Example detection workload for graph G1 in Fig. 4. After the document D1 is
formed, the causal sentences in the document are converted into feature vectors (fv)
using doc2vec model. Then the fv are fed into the autoencoder to get the reconstructed
fv. Sentences are flagged as anomalous if the mean squared error between the original
fv and the reconstructed fv is above a threshold determined during training.

For each selected path, ProvIoT removes the host/entity-specific features,
such as host name and identifier, from each node and edge. This process ensures
that the extracted representation is general for the subsequent learning tasks.

5.2 Document Embedding Model

The extracted causal paths need to be vectorized before they can be processed
by the local detection model. As illustrated in Fig. 4, we first translate the causal
paths into causal sentences, a process detailed in [82]. These causal sentences
collectively form a document. Following recent methodologies [62,82], we employ
the doc2vec Natural Language Processing (NLP) model [50] to transform these
causal sentences into their corresponding feature vectors, as depicted in Fig. 5.
Our doc2vec model, trained using data from benign deployments, ensures that
causal sentences common in benign contexts yield neural embeddings that are
more similar to each other compared to embeddings from rare causal sentences.

5.3 Federated Autoencoder

In ProvIoT, each Local Brain trains autoencoder models on the feature vectors
from 5.2 and shares the model weights with the Cloud Brain for aggregation using
federated averaging [55]. After fetching the global autoencoder models from the
Cloud Brain, the Local Brain is ready to independently detect anomalies.

The Cloud Brain is distinct from the central server in the current state-of-
the-art (SOTA) provenance system for IoT [32,69], which collects all the device
data over the network and performs anomaly detection serverside. ProvIoT’s
on-device detection approach affords several advantages: (1) sending only the
model weights over the network both reduces network overhead and preserves
the privacy of activities on the IoT device; (2) on-device detection allows the
IoT device to remain protected even when disconnected from the network; and
(3) distributing the detection workload to the edge devices allows ProvIoT to
scale horizontally with the size of the IoT device fleet, rather than requiring a
vertically scaling central server.

The Local Brain’s autoencoder models follow a typical structure for anomaly
detection. The autoencoder has an encoder, which maps the benign feature vec-
tors to a latent space representation that captures behavioral patterns, and a

252 K. Mukherjee et al.

decoder, which reconstructs the original input. To detect anomalies, we measure
the Mean Squared Error (MSE) of the reconstructed input and the original input;
the input is flagged as anomalous if the MSE is higher than an experimentally
determined threshold, which for our implementation was the 99th percentile.
The intuition behind this detection scheme is that the autoencoder can effec-
tively reconstruct benign samples similar to the ones it was trained on, but should
struggle to reconstruct samples that are substantially different (i.e., anomalies).

6 Implementation

Our ProvIoT prototype was written in C++, Java, and Python. The system level
data collection agent was written in C++ with the provenance graph generator
and path selection module implemented in Java. The document embedding and
ML model were implemented in Python. The Local Brain’s data pipeline modules
communicate using the Unix domain socket.

System Level Data Collection. In a Local Brain, our prototype’s data col-
lection module uses the Linux audit framework to collect a subset of system calls
relevant to our interested system entities (i.e., files, processes, and network sock-
ets), which include system calls for (1) file operations (e.g., read(), write(),
unlink()), (2) network socket operations (e.g., connect(), accept()), (3) pro-
cess operations (e.g., fork(), exec(), exit()). We used SQLite as an in-memory
database where system level data are stored. The in-memory database is com-
putationally lightweight and executes queries quickly. Therefore, our provenance
graph generation can be done without putting too much strain on the IoT
device’s resources. The primary workload of the IoT device is taken into con-
sideration as well as the limited onboard resources, such that the Local Brain
will pause data collection and subsequent processes (e.g., graph generation, path
extraction, training and detection) if the resource usage exceeds a present thresh-
old, set at 30% CPU time or 1024MB memory by default.

Data Processing and Summarization. We use the NLP doc2vec model in
the Gensim Library [9] for document embedding. The Keras library with Tensor-
flow [77] backend was used to implement the autoencoder model. The autocoder
model has four fully connected layers with 50, 10, 10, and 50 neurons respectively.
The first two layers are used for encoding, and the last two are used for decoding.
The Adam optimizer with L1 regularization is used to prevent overfitting.

7 Evaluation

In this section, we evaluate ProvIoT’s efficacy in detecting stealthy attacks in IoT
devices. To this end, we seek answers for the following three research questions
(RQs):

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 253

RQ1: Detection Accuracy. How effective is ProvIoT at detecting stealthy
attacks (e.g., fileless IoT malware impersonating trusted system pro-
grams) and APT campaigns? (Sects. 7.3, 7.4)

RQ2: Benefit of Federated Architecture. What benefits does the collabo-
rative architecture have over a centralized approach? (Sect. 7.5)

RQ3: Resource Efficiency. What CPU and memory overhead does ProvIoT
incur? (Sect. 7.6)

7.1 Dataset

In this section, we introduce the provenance datasets that consist of provenance
graphs generated by capturing the benign and malicious IoT system’s behavior.

Dataset Components. Our datasets consist of three major components: for-
ward graphs, backward graphs and causal paths. The forward graphs consist of
all the system events that are caused by the process associated with a Point
of Interest (POI) event, e.g., process creation, file and socket reads/writes. The
backward graphs consist of the system events that created the POI event. We
merge the forward and the backward graphs to get a unified graph that captures
all the system events associated with the POI event. We then extract causal
paths from this unified graph; the size statistics for the graphs and causal paths
are shown in Table 3 in the appendix. To generate a graph dataset for a given
program, we use all process creations for the given program name as POI events
to build forward and backward graphs.

Benign Dataset. We consulted our university’s Institutional Review Board
(IRB) to develop an ethical experimental protocol for selecting volunteers for
benign data collection. Once the volunteers were chosen, they received informa-
tion about how their data would be used and securely stored to ensure confiden-
tiality. The benign data collection took place over a period of twelve months, from
January 2021 to December 2021, and resulted in the collection of over 30 TB of
data. The benign profile for the programs was constructed by gathering system
events from a diverse set of 33 devices, including ARM-based IoT devices such
as Raspberry Pi, Google TPU, and NVIDIA Jetson Nano boards [8,39,65]. The
device platforms consist of 1 Google TPU, 1 NVIDIA Jetson Nano, 3 Raspberry
Pi 4, 5 Raspberry Pi 3B+, 5 desktops, 5 laptops, and 13 servers. Importantly, the
provenance graphs that capture the behavior of a given system program exhibit
a relative consistency across different IoT devices and platforms.

The IoT devices in our benign testbeds performed various IoT tasks and com-
mon system operations categorized as IoT Applications and System Programs
respectively in Table 3. Using this system event data, we generated provenance
graphs for popular IoT applications [25] and common system programs [33,34]
that are frequently targeted for impersonation. We chose 1000 benign process
instances for each of the 20 programs and 150 instances for each of the 5 IoT
applications to create the benign dataset. The provenance graphs generated from

254 K. Mukherjee et al.

the benign IoT applications consisted of 237,923.84 causal paths, 1,046.97 ver-
tices, and 1,534.66 edges (IoT Application in Table 3) on average. Similarly, the
provenance graph generated from the Linux system processes had an average
of 168,652.11 causal paths, 332.49 vertices, and 398.48 edges (System Program
in Table 3). For readers interested in further details about the statistics of the
benign dataset and how it was generated, please refer to Sect.A.

Malicious Dataset. We created two isolated testbeds to run the malicious
workloads. Firstly, we launched publicly known IoT malware using a fileless
wrapper [36] to impersonate the identities of the popular IoT applications
in Table 2. Second, we conducted a typical APT scenario by carefully coordi-
nated the APT attack vector with the MITRE ATT&CK [59] framework to
comprise the end-to-end attack [59] campaign. We launched a stealthy attack
campaign that contains five kill-chain [12] stages (Table 5) — (S1) gain access
by injecting a malicious payload into an active benign process; (S2) establish a
foothold by communicating back to a C&C server over HTTPS (port 443); (S3)
deepen access using a privilege escalation exploit [57], (S4) move laterally by
scanning the local network for vulnerable hosts with open ports; and (S5) look,
learn, and remain by exfiltrating sensitive user data to the C&C server. Each
attack stage was conducted by different attack TTPs using Metasploit [57].

Fig. 6. Attacker injects and creates fileless malware as a child process of motion process.
The provenance graph captures the attacker’s behavior which can be used for detection.

We injected each attack TTP into five common IoT applications listed in
Table 2 using a fileless wrapper [36]. Therefore, the IoT application’s behavior
captured in the provenance graph would contain additional nodes and edges
(i.e., malicious subgraphs) corresponding to the malicious behavior due to the
injected attack TTPs. Because the malicious payload behaves differently than
the benign application behavior, those malicious subgraphs are likely to contains
rare and anomalous paths that will be detected by the Local Brain. In Fig. 6,
we render the simplified provenance graph where we injected one of the attack
TTPs to motion. It adds a subgraph whose size is proportional to the number
of malicious activities performed.

We performed the program impersonation experiment five times for each of
the four fileless IoT malware samples, with a total of twenty impersonation tar-
gets (Table 1), resulting in a total of 400 experiments. We conducted the APT

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 255

Table 1. ProvIoT is highly effective in distinguishing IoT malware impersonating as
benign system process as evident from high F1 scores. Grey cells contain low F1 score to
indicate indistinguishable malware behavior for system process, discussed in Sect. 7.3.

Impersonation
target

Malware

BASHLITE FritzFrog ransomware lizkabab

bash 0.98 0.96 0.96 0.98

cat 0.93 0.99 1.00 0.97

cp 0.92 0.97 0.92 0.95

cron 0.97 0.98 0.98 0.97

dash 0.95 0.96 1.00 0.98

dbus-daemon 0.94 0.95 0.92 0.98

dd 0.96 0.97 0.98 0.99

firefox 0.97 0.96 0.99 1.00

grep 0.96 0.97 0.94 0.95

java 0.96 0.96 0.96 0.98

ls 0.99 0.96 0.94 0.98

nginx 0.97 0.98 0.98 0.96

perl 0.96 0.96 0.95 0.97

ps 0.98 0.97 0.95 0.97

python 0.93 0.97 0.93 0.99

rm 0.92 0.96 0.93 0.98

service 0.93 0.95 0.90 0.99

sh 0.96 0.97 0.91 0.98

smbd 0.96 0.96 0.99 0.99

sshd 0.97 0.96 0.97 0.98

Average 0.96 0.97 0.96 0.98

scenario seven times on each of the five APT attack stages for five IoT applica-
tions (Table 5), totaling 175 experiments to build the APT dataset. Combining
all our experiments, we conducted a total of 575 experiments (175 APT + 400
malware) to create the anomalous dataset. The provenance graphs collected from
the malware evaluation have an average of 11,726.98 causal paths, 207.25 ver-
tices, and 211.35 edges. The provenance graphs for the APT Kill chain scenario
have an average of 19,716.37 causal paths, 435.49 vertices, and 481.40 edges.
Interested readers can refer to Appendix Sect. A for further details.

7.2 Experimental Protocol

To generate the training and validation sets, we extract all the causal paths from
the provenance graphs generated during benign deployment, reserving 90% of
the data for training and 10% for validation. To generate the test set, we extract
the rarest 15% of causal paths from the malicious testbeds, which simulates a
real environment that has been attacked [43,82] and includes a mix of benign and
anomalous paths. The Local Brain instances train on the benign training data
and propagate their model weights to the Cloud Brain. The Cloud Brain then
performs federated aggregation on those models to generate a global model, then
propagates the global model back to the Local Brain instances. Each Local Brain
tunes its detection threshold using its own validation set. In intrusion detection,
we emphasize the importance of unsupervised learning because the defender
should not make strong a priori assumptions about the attacker’s behaviors.

256 K. Mukherjee et al.

Fig. 7. High detection accuracy of ProvIoT against APT attacks using federated learn-
ing, some rare exceptions which are discussed in Sect. 7.4.

7.3 IoT Malware Detection

To represent a wide variety of malware, we selected two popular IoT malwares
from [37], a natively fileless IoT malware [42], and a typical ransomware that
would target an IoT system. We injected these well-known IoT malwares into
trusted system processes using a fileless wrapper [36] to impersonate them. The
detection results, summarized in Table 1, demonstrate that ProvIoT achieves
high F1 scores for the majority of combinations, ranging from 0.96 to 0.98.
This indicates that even when IoT malware is fileless and impersonates benign
programs, its behavior remains distinct from the original system behavior.

However, some (impersonation target, malware) pairs, highlighted in Table 1,
proved challenging for ProvIoT to reliably detect: BASHLITE was able to effec-
tively masquerade as cp and rm because it primarily performs file copy and
delete operations on the local device while preparing to participate in the bot-
net; ransomware effectively impersonated cp with large amounts of file copy
operations, dbus-daemon with significant inter-process communication for cryp-
tographic exchanges, service with manipulation of antivirus services, and sh
with command execution.

7.4 APT Detection

The consistently high detection accuracy [41,82] of ProvIoT, as measured by
precision, recall, and F1 score, is showcased in Fig. 7. Outside some rare excep-
tions, which will be discussed in more depth, the precision ranges from 0.93 to
0.99, the recall ranges from 0.97 to 1, and F1 scores range from 0.95 to 0.99.
The results show that ProvIoT can reliably detect APT attacks while limiting
the number of false alarms.

ProvIoT generates more false positives than false negatives, evidenced by its
higher average recall (99%) than average precision (95%). This trend is also seen
in other anomaly detection systems [41,82]. The high F1 score shows that the
threshold is chosen in such a way that the actual anomalous behaviors (true
positives) are detected rather than reducing FPs. Therefore, ProvIoT does not
compromise on its detection ability to address false positive rates.

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 257

False Negative Cases. Even with path-based behavioral modeling, certain
attack cases (e.g., move laterally (S4) attack for google) are hard to detect
because the attacker’s behavior is extremely similar to the application’s benign
behavior. The precision is 0.99 and the recall is 0.89, which is much lower than
the second-lowest recall rate of 0.97. The move laterally (S4) stage scans for
vulnerable ports to exploit, which is behaviorally similar to google scanning
ports for available IP cameras.

False Positive Cases. ProvIoT has delivered steady and robust detection per-
formance across our various APT workloads (Table 2). Against some APT stages,
ProvIoT had a relatively high false positive rate such as Deepen Access (S3) for
google has precision of 0.86 and recall of 0.99, Establishing a Foothold (S2) for
kodi has precision of 0.90 and recall of 1, Gain Access (S1) for motion has pre-
cision of 0.88 and recall of 1; Move Laterally(S4) for samba has precision of 0.86
and recall of 0.99 and zeek has precision of 0.86 and recall of 0.97.

These instances of high false positive rates are due to system interactions with
high behavioral variance. We investigated these cases and outlined the explana-
tions based on the ground truth:kodi often reads hidden configuration files,
downloads files containing streaming links from the internet and writes them to
temporary locations; google creates and stops many short-lived threads; motion
changes directory and file permission configuration for camera video storage;
samba and zeek both scan and listen to different IPs and ports, which generates
noisy provenance graphs (high variance). We see a high rate of false positives
surrounding the creation and modification of temporary files and directories;
since these behaviors are rare and not well-represented in the benign dataset,
so they are marked as anomalous even when the actions are not malicious. The
majority of the malicious paths were marked correctly as anomalous even though
the precision score was below 0.90, the recall score was above 0.96. These results
show that ProvIoT is very effective in detecting stealthy malware.

7.5 Federated Learning Benefits

Fig. 8. (a) Federated performance is similar to centralized performance on the same
data. (b) Increasing the number of clients increases performance by increasing the
amount of data in the system.

258 K. Mukherjee et al.

We evaluate ProvIoT’s federated approach against a traditional centralized
architecture using kodi as a representative application. Figure 8(a) shows that
ProvIoT trades just 1% precision for the scalability, privacy, and reliability ben-
efits of the federated architecture. The centralized model was trained on the
full dataset and achieved 0.97 precision and 0.99 recall. For ProvIoT, we used
the 16 clients from our benign deployment that had kodi installed for train-
ing, then evaluated those models in our malicious testbeds. In this experiment,
ProvIoT achieved 0.96 precision and 0.99 recall, performing almost identically
to the centralized approach.

To demonstrate how ProvIoT is able to overcome the data view limitation
of provenance-based anomaly detection on IoT devices, we visualize the average
performance of the Local Brains as more clients are incorporated into the system
in Fig. 8(b). By adding new Local Brains that see different data, the Cloud Brain
is able to aggregate the incoming models to export a global model that better
understands the full benign distribution. These model improvements manifest in
improved recall and precision as new clients are introduced.

ProvIoT’s federated approach provides critical benefits for IoT in data local-
ization and privacy. The primary security benefit is localized detection, which
reduces network overhead, allows detection in the absence of a network connec-
tion, and distributes the global detection workload across the federated devices.
Further, because we only share model weights, specific system events are not
shared with the network, which preserves the privacy of the data.

7.6 ProvIoT Overhead

Fig. 9. On RaspberryPi 4B, Local Brain’s processing and prediction uses <10% CPU
and 65MB memory. Model training takes about 375MB memory and <10% CPU.

We experimentally demonstrate the overhead imposed by ProvIoT using an
event database containing 7,085 process creation events, 56,587 file interactions,
and 3,608 network interactions. This is typical for 24 h of execution. We experi-
mented using different ARM IoT devices such as RaspberryPi 4B board [8] with

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 259

four CPU cores and 8 GB memory for CPU only device; Jetson Nano [65] with
four CPU cores, 4 GB memory and NVIDIA gpu; and Google Edge TPU [39]
with single core, 512 MB memory, and edge TPU ML accelerator. To train a
reliable model for kodi, ProvIoT requires two weeks worth of data, which results
in 5.46 GB of data and four weight synchronizations.

To accurately characterize the overhead imposed on the edge IoT devices,
we need to consider two different modes of execution: training and detection.
Training occurs infrequently (approximately once per week) and requires less
than 10% of the CPU processing power and less than 375MB of memory for less
than four minutes as shown in Fig. 9. Detection occurs frequently (approximately
once per day) and requires less than 10% of the CPU processing power and less
than 65MB of memory for less than two minutes as shown in Fig. 9. Even during
peak resource utilization (i.e., during training), ProvIoT does not monopolize the
IoT resources. Many home IoT devices, such as smart fridges, thermostats, and
doorbells [2,3,5,11,16] contain sufficient memory to support on-device training.

8 Limitations

Hardware Constraints. The most prominent limitation of ProvIoT is the
memory utilization of 375 MB during local training phase as measured in
Sect. 7.6. Therefore, ProvIoT cannot be used for IoT which do not have at least
512 MB of RAM, such as ESP32 boards. ProvIoT is suitable for mid to large
scale IoT devices. Real world vendors need to ensure that their products posses
the required resources before deploying our system.

To reduce memory overhead, it is possible to train the local models on smaller
batches of data, but train more frequently. This approach “flattens the curve” of
resource usage, requiring more total computation, but reducing the peak memory
usage. Increasing the training frequency may also increase the models’ vulnera-
bility to incremental dataset shifting attacks. The Local Brain training frequency
can be modulated independently of the Cloud Brain synchronization frequency.

Privacy of Federated Learning. Recent advancements have shown that
attackers can use model weights to infer statistics about the training dataset.
These statistics can then be used to craft targeted payloads and APT stages that
blend in with the typical behavior of the system to evade detection. To protect
the confidentiality and ensure the integrity of the model weights, communication
between the Local Brains and the Cloud Brain should be encrypted and signed
using public/private key pairs, which can be distributed by the vendor during
manufacturing. To further improve the privacy preservation, the communication
of model weights and computation of federated averaging can leverage recent
advancements in fully homomorphic encryption for IoT devices [17,54], which
shifts the heavy computational workload to the resource-rich Cloud Brain; this
method would preserve the privacy of the IoT devices even against an attacker
with full read access to the Cloud Brain and the capacity to recover private data
from model weights alone.

260 K. Mukherjee et al.

Poisoning on Federated Learning. In ProvIoT, the design tradeoff between
false positives due to benign software evolution and vulnerability to malicious
incremental model shifting attacks is parameterized by the frequency of training
and synchronization between the Local Brains and the Cloud Brain. In the real
world, this tradeoff is of critical importance and will require careful consideration
by experts on the security requirements of the specific application of ProvIoT.

9 Related Work

IoT Security. With the growth of IoT, a significant number of vulnerabili-
ties have been identified in IoT devices [58,74,80], protocols [86], applications,
and platforms [38]. In response to IoT attacks, diverse detection and prevention
approaches have been proposed, such as network-based solutions [75], platform-
based solutions [32,69,72,73] and application-based solutions [44,82]. Our work
defends against stealthy attacks including fileless malware and APTs.

Cosson et al. [32] and Rieger et al. [69] has proposed a centralized node-
level monitoring system for IoT using network traffic. However, it requires the
local devices to send their local data to a centralized server where the detection
occurs. ProvIoT has a major advantage over [32] because the users’ data does
not leave the local device and detection occurs on the local device without a net-
work connection. [60,63,71] have showed how to do federated anomaly detection
on IoT, but solely focused on network data. While the network data is impor-
tant, stealthy attacks can easily circumvent those defenses with specially crafted
network packets. To the best of our knowledge, we are the first to propose a
federated, privacy preserving, collaborative learning framework using host-level
provenance data for IoT.

IoT Defenses. General intrusion detection [37,81] approaches have been exten-
sively studied. For example, [28] and [68] designed defenses to detect routing
attacks. However, their work focuses on the 6LoWPAN protocol. Our work
focuses on creating a generalized federated framework for IoT.

Recently, several anomaly-based solutions have been proposed to detect dif-
ferent IoT attacks. SDN-based approaches [66], signature-based approaches [48]
and machine learning based approaches [24,30,56,63,64] have been proposed
to detect IoT botnet attacks such as Mirai. However, these approaches only
focus on analyzing network traffic, limiting their capability in detecting attacks
with minimal network footprints. The most directly related previous work is
[32,69], which forwards telemetry data for the entire IoT fleet to a central server
for anomaly detection; ProvIoT improves upon the privacy and scalability of
[32,69] by enabling on-device detection with federated learning and provenance
analysis.

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 261

10 Discussion and Future Work

Real-Time Prevention. Although we focus on a detection system in this
paper, ProvIoT can be easily extended to provide real-time prevention [23]
(e.g., blocking or killing anomalous processes). ProvIoT can also be augmented
with other kinds of defenses (e.g., dynamic quarantine or deep inspection) when
it raises alerts. ProvIoT supports online forensic analysis including backtracking
analysis and data query by leveraging its extensive system event collection.

Applicability to IoT Devices with Other OSes. While our current imple-
mentation and evaluation mainly focuses on Linux-based IoT devices, our app-
roach is general and applicable to the devices with other operating systems, such
as Windows, TinyOS, or Riot. For example, the Windows OS also has a system
to log system events [4] that ProvIoT can use to generate provenance graphs for
training and anomaly detection.

Trends in IoT Capacity and ML Overhead. As a step towards bring-
ing powerful provenance-based threat detection to IoT devices, ProvIoT syn-
ergizes both with advancements in increasing hardware power in IoT devices
and low-resource ML [10]. Indeed, recent work [52] has demonstrated training a
43-layer CNN in less than 256KB of RAM. We envision new works that com-
bine ProvIoT’s federated architecture with innovations in memory-constrained
provenance analysis to extend on-device protection to the general IoT space.

11 Conclusion

In this paper, we present ProvIoT, a novel end-to-end edge-cloud collaborative
security framework for IoT security. ProvIoT adapts modern provenance graph-
based anomaly detection to IoT devices. ProvIoT is the first anomaly detection
framework to perform on-device provenance analysis with federated learning in
IoT devices. ProvIoT preserves the privacy of local system events and achieves
high detection accuracy while incurring low overhead and enabling localized
detection. We extensively evaluated ProvIoT with a realistic provenance dataset
against real-world IoT malware and APT attack campaigns. ProvIoT detects
fileless malware and APT attacks with an average F1-score of 0.97 and 0.99,
respectively. During periodic detection cycles, ProvIoT incurs less than 10% CPU
overhead, 65MB memory overhead, and does not require network connectivity.
The detection with infrequent training cycles incurs similar CPU overhead, less
than 375MB memory overhead, and up to 2MB network bandwidth consumption
for model updates.

Acknowledgments. We thank the anonymous reviewers for their helpful feedback.

262 K. Mukherjee et al.

A Appendix

A.1 IoT Workload.

The Table 2 shows the typical usage for the IoT applications. Typical usage for
media center (e.g., kodi [47]) is to browse different streams to find playable
and downloadable content. kodi was used to download different medias from
the wed along with browsing different steams. A voice assistant such as Google
Assistant [6] was used for answering common questions such as “what is the
weather like?”. An IP camera (e.g., motion [7]) was used to stream our lab
setting from our home. We used a network attached storage unit to access files
from remote locations as well as to modify the files. Finally, we used a network
security monitoring tool (e.g., zeek [85]) to sniff and inspect at the network
traffic that was generated in our lab environment.

Table 2. The IoT applications chosen for evaluation as well as their usage examples.

Usages Application Scenario

Voice Assistant google Inquired general knowledge and everyday
household questions to Google Assistant.

Media Center kodi Updated media streams and played media
during different parts of the day.

IP Camera motion Started streaming multiple live camera
streaming server and watched them.

Network Attached Storage samba Performed network storage action such as list
all the files, delete a file, or add a file.

Network Security Monitor zeek Investigated the network traffic coming from
IoT using Zeek

A.2 Dataset Statistics.

This section contains the data set details shown in Tables 3 and 4. In Table 3
the benign dataset is represented where we experimented with five commonly
used IoT programs [33] and twenty prevalent Linux system programs [53]. Table 4
shows the malicious data set which consists of two parts: four IoT malware which
impersonated the twenty Linux system programs and APT kill chain scenarios
conducted using the five IoT programs.

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 263

Table 3. Number of vertices and edges used to create a benign profile for IoT appli-
cations and system programs

Avg. # of
causal paths

Avg. # of
total vertices
/ edges

Avg. # of
forward vertices
/ edges

Avg. # of
backward
vertices
/ edges

IoT Application

google 571,052.33 159.0 / 314.0 95.67 / 216.0 63.33 / 98.0

kodi 29,946.89 210.33 / 273.78 149.33 / 176.89 61.0 / 96.89

motion 9,113.0 179.0 / 504.0 5.0 / 4.0 174.0 / 500.0

samba 85,347.0 2,537.0 / 2,857.0 76.4 / 120.8 2,460.6 / 736.2

zeek 494,160.0 2,149.5 / 3,724.5 1,032.5 / 1,124.5 1,117.0 / 2,600.0

average 237,923.84 1,046.97 /
1,534.66

271.78 / 328.44 775.19 /
1,206.22

System Program

bash 166,355.43 454.25 / 510.76 10.57 / 9.31 443.68 / 501.45

cat 184,346.43 310.51 / 210.9 9.0 / 6.99 301.51 / 203.91

cp 175,636.86 193.42 / 212.7 179.09 / 184.69 14.33 / 28.01

cron 214,827.71 327.16 / 241.85 10.27 / 9.96 316.89 / 231.89

dash 153,808.57 371.87 / 381.97 211.61 / 206.44 160.26 / 175.53

dbus-daemon 156,713.0 20.16 / 20.04 9.02 / 6.42 11.14 / 13.62

dd 213,601.29 995.5 / 1,003.6 551.68 / 501.81 443.82 / 501.79

firefox 176,843.86 194.22 / 504.56 15.84 / 18.78 178.38 / 485.78

grep 212,413.86 191.51 / 502.32 13.51 / 16.43 178.0 / 485.89

java 169,180.71 133.94 / 222.4 17.44 / 19.63 116.5 / 202.77

ls 179,185.86 213.62 / 356.47 10.25 / 9.3 203.37 / 347.17

nginx 258,367.17 514.27 / 514.13 500.76 / 501.26 13.51 / 12.87

perl 809.0 25.01 / 23.22 11.95 / 12.05 13.06 / 11.17

ps 181,846.43 834.01 / 998.14 369.21 / 501.77 464.8 / 496.37

python 161,755.57 365.71 / 348.31 11.51 / 8.14 354.2 / 340.17

rm 174,590.43 452.89 / 440.38 15.06 / 18.5 437.83 / 421.88

service 231.43 18.32 / 21.24 15.32 / 18.55 3.0 / 2.69

sh 208,367.43 445.01 / 851.27 4.16 / 357.78 440.85 / 493.49

smbd 201,559.57 355.37 / 371.15 9.69 / 3.39 345.68 / 367.76

sshd 182,601.57 233.04 / 234.15 9.35 / 6.6 223.69 / 227.55

average 168,652.11 332.49 / 398.48 99.26 / 120.89 233.23 / 277.59

Table 4. Number of vertices and edges used to create IoT Malware and APT attack
profile

Avg. # of
causal paths

Avg. # of
total vertices
/ edges

Avg. # of
forward vertices
/ edges

Avg. # of
backward
vertices
/ edges

IoT Malware

BASHLITE 110.5 21.0 / 21.0 4.0 / 3.0 17.0 / 18.0

FritzFrog 46,253.8 751.0 / 747.4 248.6 / 246.8 502.4 / 500.6

lizkebab 293.2 29.0 / 33.0 6.0 / 4.0 23.0 / 29.0

randomware 250.4 28.0 / 44.0 8.0 / 12.0 20.0 / 32.0

average 11,726.98 207.25 / 211.35 66.65 / 66.45 140.6 / 144.9

APT Kill Chain Scenario

Gain Access (S1) 2,789.6 510.6 / 554.8 495.2 / 537.6 15.4 / 17.2

Establish a Foothold (S2) 46,763.75 470.25 / 550.12 398.38 / 429.5 71.88 / 120.62

Deepen Access (S3) 1,192.4 171.0 / 202.6 164.0 / 195.0 7.0 / 7.6

Move Laterally (S4) 27,314.33 97.5 / 116.0 70.17 / 84.83 27.33 / 31.17

Look, Learn and Remain (S5) 20,521.75 928.12 / 983.5 897.38 / 929.62 30.75 / 53.88

average 19,716.37 435.49 / 481.40 405.03 / 435.31 30.47 / 46.09

264 K. Mukherjee et al.

Table 5. APT TTPs for cyber-killchain stages

Cyber-killchain Stages Techniques (ATTCK
TTP)

Scenarios

Gain Access (S1) Exploitation for Client
Execution
(T1203)

Attackers modify a benign looking executable,
but once the user opens the application it can
be used by the attacker for arbitrary code execution

File and Directory Per-
missions
Modification (T1222)

Attacker modifies objects in the system so that
it can be copied by lower privilege users that
the attacker has hijacked

Establish a Foothold (S2) Data from Local System
(T1005)

Attacker moves around the file system,
finding files that contain valuable information

Exfiltration Over C2
Channel
(T1041)

Attacker downloads valuable files into
a local directory

Deepen Access (S3) Create and Modify sys-
tem process
(T1543)

Attacker creates a system process that can run in the
background and do reconnaissance or mine information

Service Stop
(T1489)

Attacker stops firewall or external IDS
services so that they cannot detect the APT

Move Laterally (S4) Process injection
(T1055)

Attacker injects a vulnerable process such as
a trojan into a benign application so that IDS
cannot differentiate

Look, Learn, and Remain (S5) System Information Dis-
covery
(T1082)

Attacker discovers system hardware information so that
they can craft better exploits or exploit hardware
vulnerabilities

Network Service Scan-
ning
(T1046)

Attackers scan network services to find services they can
use as backup or use as a secondary mode of connections

Network Sniffing
(T1040)

Attackers sniff the network to find insecure
SSL connections or any other connections
to extract valuable information

A.3 APT Scenarios

The advanced Persistent Threat (APT) scenario was established in our malicious
testbed by loading APT kill-chain components using fileless wrapper (Table 5).
The APT attack vectors were coordinated to comprise the end-to-end attack
campaign referring to MITRE ATT&CK framework.

References

1. Insteon hub 2242–222 - lack of web and API authentication (2013). https://www.
exploit-db.com/exploits/27284. Accessed 26 May 2023

2. Apple watch ram size comparison chart: how much ram does apple
watch have? (2015). https://www.knowyourmobile.com/wearable-technology/
apple-watch-ram-size/. Accessed 26 May 2023

3. Google nest - support (2015). https://support.google.com/googlenest/answer/
9230098. Accessed 26 May 2023

4. Auditing security events (2017). https://goo.gl/FkaDCa
5. Google home mini teardown, comparison to echo dot, and giving technology a voice

(2017). https://tinyurl.com/ykbay2fu. Accessed 26 May 2023
6. Google Assistant, your own personal Google (2018). https://assistant.google.com/
7. Motion (2018). https://motion-project.github.io/

https://www.exploit-db.com/exploits/27284
https://www.exploit-db.com/exploits/27284
https://www.knowyourmobile.com/wearable-technology/apple-watch-ram-size/
https://www.knowyourmobile.com/wearable-technology/apple-watch-ram-size/
https://support.google.com/googlenest/answer/9230098
https://support.google.com/googlenest/answer/9230098
https://goo.gl/FkaDCa
https://tinyurl.com/ykbay2fu
https://assistant.google.com/
https://motion-project.github.io/

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 265

8. Raspberry Pi - Teach, Learn, and Make with Raspberry Pi (2018). https://www.
raspberrypi.org

9. Gensim: Topic modelling for humans (2019). https://radimrehurek.com/gensim/
index.html

10. Tinyml foundation (2019). https://www.tinyml.org/. Accessed 25 May 2023
11. Inside amazon’s ring alarm system (2020). https://tinyurl.com/yck5jm4m.

Accessed 26 May 2023
12. Cyber kill chain® — lockheed martin (2021). https://www.lockheedmartin.com/

en-us/capabilities/cyber/cyber-kill-chain.html. Accessed 24 Jul 2021
13. Process injection: Ptrace system calls, sub-technique t1055.008 - enterprise — mitre

att&ck® (2021). https://attack.mitre.org/techniques/T1055/008/. Accessed 23
Jul 2021

14. Cloud-based data platform for cybersecurity, it operations and devops — splunk
(2022). https://www.splunk.com/. Accessed 23 Jul 2021

15. Iot is a gold mine for hackers using fileless malware for cyberattacks - techrepublic
(2022). https://tek.io/30dBnIU. Accessed 23 Jul 2021

16. Smart refrigerator with family hub (2022). https://tinyurl.com/4kz6z6z5. Accessed
26 May 2023

17. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: Theory and implementation. ACM Comput. Surv. 51(4), 1–35 (2018).
https://doi.org/10.1145/3214303

18. Acar, A., et al.: Peek-a-boo: I see your smart home activities, even encrypted! In:
Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, pp. 207–218. WiSec 2020, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3395351.3399421

19. Ahmad, A., Lee, S., Peinado, M.: HARDLOG: practical tamper-proof system
auditing using a novel audit device. In: 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1791–1807 (2022)

20. Alrawi, O., et al.: The circle of life: a large-scale study of the IoT malware lifecycle.
In: USENIX Security Symposium, pp. 3505–3522 (2021)

21. Antonakakis, M., et al.: Understanding the Mirai botnet. In: 26th USENIX Security
Symposium (USENIX Security 17), pp. 1093–1110. USENIX Association, Vancou-
ver, BC (2017). https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/antonakakis

22. Armis Security: Blueborne: Bluetooth exposes android, linux, windows and iOS
devices to airborne attacks (2017). https://www.armis.com/research/blueborne/

23. Babun, L., Celik, Z.B., McDaniel, P., Uluagac, S.: Real-time analysis of privacy-
(un)aware IoT applications. Proc. Priv. Enhancing Technol. 2021, 145–166 (2021).
https://doi.org/10.2478/popets-2021-0009

24. Bahşi, H., Nõmm, S., La Torre, F.B.: Dimensionality reduction for machine learning
based IoT botnet detection. In: 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pp. 1857–1862. IEEE (2018)

25. Bansal, A., Kandikuppa, A., Chen, C.Y., Hasan, M., Bates, A., Mohan, S.: Towards
efficient auditing for real-time systems. In: Atluri, V., Di Pietro, R., Jensen, C.D.,
Meng, W. (eds.) Computer Security – ESORICS 2022. ESORICS 2022. Lecture
Notes in Computer Science, vol. 13556, pp. 614–634. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-17143-7 30

26. Barr-Smith, F., Ugarte-Pedrero, X., Graziano, M., Spolaor, R., Martinovic, I.:
Survivalism: systematic analysis of windows malware living-off-the-land. In: IEEE
symposium on security and privacy (SP). In: IEEE Symposium on Security and
Privacy (SP), pp. 1557–1574 (2021). https://doi.org/10.1109/sp40001.2021.00047

https://www.raspberrypi.org
https://www.raspberrypi.org
https://radimrehurek.com/gensim/index.html
https://radimrehurek.com/gensim/index.html
https://www.tinyml.org/
https://tinyurl.com/yck5jm4m
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://attack.mitre.org/techniques/T1055/008/
https://www.splunk.com/
https://tek.io/30dBnIU
https://tinyurl.com/4kz6z6z5
https://doi.org/10.1145/3214303
https://doi.org/10.1145/3395351.3399421
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.armis.com/research/blueborne/
https://doi.org/10.2478/popets-2021-0009
https://doi.org/10.1007/978-3-031-17143-7_30
https://doi.org/10.1109/sp40001.2021.00047

266 K. Mukherjee et al.

27. Bonawitz, K., et al.: Towards federated learning at scale: system design. arXiv.org
(2019)

28. Bostani, H., Sheikhan, M.: Hybrid of anomaly-based and specification-based IDS
for internet of things using unsupervised OPF based on MapReduce approach.
Comput. Commun. 98, 52–71 (2017)

29. Chaudhary, A., Mittal, H., Arora, A.: Anomaly detection using graph neural net-
works. In: 2019 International Conference on Machine Learning, Big Data, Cloud
and Parallel Computing (COMITCon), pp. 346–350 (2019). https://doi.org/10.
1109/COMITCon.2019.8862186

30. Chawathe, S.S.: Monitoring IoT networks for botnet activity. In: 2018 IEEE 17th
International Symposium on Network Computing and Applications (NCA), pp.
1–8. IEEE (2018)

31. Chen, J., et al.: Iotfuzzer: Discovering memory corruptions in IoT through app-
based fuzzing. In: NDSS (2018)

32. Cosson, A., Sikder, A.K., Babun, L., Celik, Z.B., McDaniel, P., Uluagac, A.S.:
Sentinel: a robust intrusion detection system for IoT networks using kernel-level
system information. In: Proceedings of the International Conference on Internet-
of-Things Design and Implementation, pp. 53–66 (2021)

33. Costin, A., Zaddach, J.: IoT Malware: comprehensive survey, analysis framework
and case studies. BlackHat Briefings (2019). https://bit.ly/3DFrCBA

34. Cozzi, E., Graziano, M., Fratantonio, Y., Balzarotti, D.: Understanding Linux mal-
ware. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 161–175. IEEE
(2018)

35. CrowdStrkie: Endpoint Detection and Response (EDR), Tech. rep., CrowdStrkie
(2020)

36. Cybersecurity, A.: Malware using new Ezuri memory loader — at&t alien
labs (2021). https://cybersecurity.att.com/blogs/labs-research/malware-using-
new-ezuri-memory-loader. Accessed 23 Jul 2021

37. Ding, F., et al.: DeepPower: non-intrusive and deep learning-based detection of
IoT Malware using power side channels. In: Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, pp. 33–46 (2020)

38. Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home
applications. In: IEEE S&P (2016)

39. Google: Edge TPU - run inference at the edge — google cloud (2021). https://
cloud.google.com/edge-tpu. Accessed 23 Jul 2021

40. Google: Intro to autoencoders (2021). https://www.tensorflow.org/tutorials/
generative/autoencoder

41. Han, X., et al.: {SIGL}: Securing software installations through deep graph learn-
ing. In: 30th USENIX Security Symposium (USENIX Security 21), pp. 2345–2362
(2021)

42. Harpaz, O.: FritzFrog: a new generation of peer-to-peer botnets - guardicore (2020).
https://bit.ly/3mJzyeq. Accessed 23 Jul 2021

43. Hassan, W.U., et al.: NoDoze: combatting threat alert fatigue with automated
provenance triage. In: NDSS (2019)

44. Jia, Y.J., et al.: ContexIoT: towards providing contextual integrity to appified IoT
platforms. In: NDSS (2017)

45. King, S.T., Chen, P.M.: Backtracking intrusions. ACM SIGOPS Oper. Syst. Rev.
37, 223–236 (2003). https://doi.org/10.1145/945445.945467

46. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308 (2016)

http://arxiv.org/abs/org
https://doi.org/10.1109/COMITCon.2019.8862186
https://doi.org/10.1109/COMITCon.2019.8862186
https://bit.ly/3DFrCBA
https://cybersecurity.att.com/blogs/labs-research/malware-using-new-ezuri-memory-loader
https://cybersecurity.att.com/blogs/labs-research/malware-using-new-ezuri-memory-loader
https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu
https://www.tensorflow.org/tutorials/generative/autoencoder
https://www.tensorflow.org/tutorials/generative/autoencoder
https://bit.ly/3mJzyeq
https://doi.org/10.1145/945445.945467
http://arxiv.org/abs/1611.07308

ProvIoT: Detecting Stealthy Attacks in IoT Through Federated 267

47. Kodi — Open source home theater software (2018). https://kodi.tv/
48. Kumar, A., Lim, T.J.: Early detection of mirai-like IoT bots in large-scale net-

works through sub-sampled packet traffic analysis. arXiv preprint arXiv:1901.04805
(2019)

49. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176

50. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

51. Li, Z., Chen, Q.A., Yang, R., Chen, Y., Ruan, W.: Threat detection and investiga-
tion with system-level provenance graphs: a survey. Comput. Secur. 106, 102282
(2021)

52. Lin, J., Zhu, L., Chen, W.M., Wang, W.C., Gan, C., Han, S.: On-device training
under 256KB memory. In: Advances in Neural Information Processing Systems,
vol. 35, pp. 2941–2295 (2022)

53. Liu, Y., et al.: Towards a timely causality analysis for enterprise security. In: NDSS
(2018)

54. Matsumoto, M., Oguchi, M.: Speeding up encryption on IoT devices using
homomorphic encryption. In: 2021 IEEE International Conference on Smart
Computing (SMARTCOMP), pp. 270–275 (2021). https://doi.org/10.1109/
SMARTCOMP52413.2021.00059

55. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

56. Meidan, Y., et al.: N-Baiot: network-based detection of IoT botnet attacks using
deep autoencoders. arXiv preprint arXiv:1805.03409 (2018)

57. metasploit: metasploit (2021). https://www.metasploit.com/. Accessed 29 Nov
2021

58. Mirai Attacks (2016). https://goo.gl/QVv89r
59. MITRE: Mitre att&ck® (2023). https://attack.mitre.org/. Accessed 23 Jul 2021
60. Mothukuri, V., Khare, P., Parizi, R.M., Pouriyeh, S., Dehghantanha, A., Srivas-

tava, G.: Federated-learning-based anomaly detection for IoT security attacks.
IEEE Internet Things J. 9(4), 2545–2554 (2021)

61. Mukherjee, K.: ProvIoT: detecting stealthy attacks in IoT through federated edge-
cloud security (2023). https://github.com/syssec-utd/proviot

62. Mukherjee, K., et al.: Evading provenance-based ML detectors with adversarial
system actions. In: USENIX Security Symposium (SEC) (2023)

63. Nguyen, T.D., Marchal, S., Miettinen, M., Dang, M.H., Asokan, N., Sadeghi, A.R.:
Diot: a crowdsourced self-learning approach for detecting compromised IoT devices.
arXiv preprint arXiv:1804.07474 (2018)

64. Nõmm, S., Bahşi, H.: Unsupervised anomaly based botnet detection in IoT net-
works. In: 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 1048–1053. IEEE (2018)

65. NVIDIA: Nvidia jetson nano developer kit — nvidia developer (2022). https://
developer.nvidia.com/embedded/jetson-nano-developer-kit. Accessed 23 Jul 2021

66. Ozcelik, M., Chalabianloo, N., Gur, G.: Software-defined edge defense against IoT-
based DDOs. In: 2017 IEEE International Conference on Computer and Informa-
tion Technology (CIT), pp. 308–313. IEEE (2017)

67. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized
graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407 (2019)

https://kodi.tv/
http://arxiv.org/abs/1901.04805
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/SMARTCOMP52413.2021.00059
https://doi.org/10.1109/SMARTCOMP52413.2021.00059
http://arxiv.org/abs/1805.03409
https://www.metasploit.com/
https://goo.gl/QVv89r
https://attack.mitre.org/
https://github.com/syssec-utd/proviot
http://arxiv.org/abs/1804.07474
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
http://arxiv.org/abs/1802.04407

268 K. Mukherjee et al.

68. Raza, S., Wallgren, L., Voigt, T.: Svelte: real-time intrusion detection in the inter-
net of things. Ad Hoc Netw. 11(8), 2661–2674 (2013)

69. Rieger, P., Chilese, M., Mohamed, R., Miettinen, M., Fereidooni, H., Sadeghi, A.R.:
Argus: context-based detection of stealthy IoT infiltration attacks. arXiv preprint
arXiv:2302.07589 (2023)

70. Shafi, M., et al.: 5G: a tutorial overview of standards, trials, challenges, deployment,
and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017). https://doi.
org/10.1109/JSAC.2017.2692307

71. Shahid, O., Mothukuri, V., Pouriyeh, S., Parizi, R.M., Shahriar, H.: Detecting net-
work attacks using federated learning for IoT devices. In: 2021 IEEE 29th Inter-
national Conference on Network Protocols (ICNP), pp. 1–6. IEEE (2021)

72. Sikder, A.K., Aksu, H., Uluagac, A.S.: 6thSense: a context-aware sensor-
based attack detector for smart devices. In: 26th USENIX Security Sym-
posium (USENIX Security 17), pp. 397–414. USENIX Association, Vancou-
ver, BC (2017). https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/sikder

73. Sikder, A.K., Aksu, H., Uluagac, A.S.: A context-aware framework for detecting
sensor-based threats on smart devices. IEEE Trans. Mob. Comput. 19(2), 245–261
(2020). https://doi.org/10.1109/TMC.2019.2893253

74. Sikder, A.K., Petracca, G., Aksu, H., Jaeger, T., Uluagac, A.S.: A survey on sensor-
based threats and attacks to smart devices and applications. IEEE Commun. Surv.
Tutorials 23, 1125–1159 (2021). https://doi.org/10.1109/COMST.2021.3064507

75. Sivaraman, V., Gharakheili, H.H., Vishwanath, A., Boreli, R., Mehani, O.:
Network-level security and privacy control for smart-home IoT devices. In: WiMob,
pp. 163–167 (2015)

76. Team, D.: Deep graph library: easy deep learning on graphs (2022). https://www.
dgl.ai/. Accessed 21 Sep 2021

77. Team, K.: Keras: the Python deep learning API (2021). https://keras.io/
78. Trend Micro: Brickerbot malware permanently bricks IoT devices (2017). https://

tinyurl.com/2wc4vw5b
79. Introducing Arm TrustZone (2018). https://developer.arm.com/technologies/

trustzone
80. VPNFilter (2018). https://blog.talosintelligence.com/2018/05/VPNFilter.html
81. Wang, J., et al.: IoT-praetor: undesired behaviors detection for IoT devices. IEEE

Internet Things J. 8(2), 927–940 (2020)
82. Wang, Q., et al.: You are what you do: Hunting stealthy malware via data prove-

nance analysis. In: NDSS (2020)
83. Williams, M.: A new philips hue security patch keeps hackers from taking control

of your network (2019). https://tinyurl.com/yejh839k
84. Ying, R., Lou, Z., You, J., Wen, C., Canedo, A., Leskovec, J.: Neural subgraph

matching. CoRR abs/2007.03092 (2020), https://arxiv.org/abs/2007.03092
85. Zeek (2021). https://zeek.org/
86. Critical flaw identified in Zigbee smart home devices (2015). https://goo.gl/

BFBa1X

http://arxiv.org/abs/2302.07589
https://doi.org/10.1109/JSAC.2017.2692307
https://doi.org/10.1109/JSAC.2017.2692307
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sikder
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sikder
https://doi.org/10.1109/TMC.2019.2893253
https://doi.org/10.1109/COMST.2021.3064507
https://www.dgl.ai/
https://www.dgl.ai/
https://keras.io/
https://tinyurl.com/2wc4vw5b
https://tinyurl.com/2wc4vw5b
https://developer.arm.com/technologies/trustzone
https://developer.arm.com/technologies/trustzone
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://tinyurl.com/yejh839k
https://arxiv.org/abs/2007.03092
https://zeek.org/
https://goo.gl/BFBa1X
https://goo.gl/BFBa1X

Attacks

A Practical Key-Recovery Attack
on LWE-Based Key-Encapsulation

Mechanism Schemes Using Rowhammer

Puja Mondal1(B) , Suparna Kundu2 , Sarani Bhattacharya3 ,
Angshuman Karmakar1,2 , and Ingrid Verbauwhede2

1 Department of Computer Science and Engineering, IIT Kanpur, Kanpur, India
{pujamondal,angshuman}@cse.iitk.ac.in

2 COSIC, KU Leuven, Kasteelpark Arenberg 10, BUS, 2452, B-3001
Leuven-Heverlee, Belgium

{suparna.kundu,ingrid.verbauwhede}@esat.kuleuven.be
3 Department of Computer Science and Engineering, IIT Kanpur, Kharagpur, India

sarani@cse.iitkgp.ac.in

Abstract. Physical attacks are serious threats to cryptosystems
deployed in the real world. In this work, we propose a microarchitectural
end-to-end attack methodology on generic lattice-based post-quantum
key encapsulation mechanisms to recover the long-term secret key. Our
attack targets a critical component of a Fujisaki-Okamoto transform that
is used in the construction of almost all lattice-based key encapsulation
mechanisms. We demonstrate our attack model on practical schemes such
as Kyber and Saber by using Rowhammer. We show that our attack is
highly practical and imposes little preconditions on the attacker to suc-
ceed. As an additional contribution, we propose an improved version of
the plaintext checking oracle, which is used by almost all physical attack
strategies on lattice-based key-encapsulation mechanisms. Our improve-
ment reduces the number of queries to the plaintext checking oracle by as
much as 39% for Saber and approximately 23% for Kyber768. This can
be of independent interest and can also be used to reduce the complexity
of other attacks.

Keywords: Post-quantum cryptography · Key-encapsulation
mechanism · micro-architecture attacks · Rowhammer · Saber · Kyber

1 Introduction

Post-quantum cryptography (PQC) refers to cryptographic protocols and algo-
rithms designed to be secure against attacks by both classical and quantum
computers. A large quantum computer can easily subvert the security assurance

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-54776-8_11.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 271–300, 2024.
https://doi.org/10.1007/978-3-031-54776-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_11&domain=pdf
http://orcid.org/0009-0006-7300-8435
http://orcid.org/0000-0003-4354-852X
http://orcid.org/0000-0002-4190-2671
http://orcid.org/0000-0003-2594-588X
http://orcid.org/0000-0002-0879-076X
https://doi.org/10.1007/978-3-031-54776-8_11
https://doi.org/10.1007/978-3-031-54776-8_11

272 P. Mondal et al.

of our current widely used public-key cryptographic (PKC) schemes based on
integer factorization [52] and elliptic curve cryptography [40] using Shor’s [55]
and Proos-Zalka’s [46] algorithm respectively. Therefore, it is imperative that
we replace our existing PKC cryptographic with PQC schemes. However, the
transition to post-quantum cryptography is a complex process that involves
careful evaluation, standardization, and implementation of new cryptographic
algorithms. A watershed moment in this process is the recently concluded stan-
dardization procedure by the National Institute of Standards and Technology
(NIST) [1]. NIST proposed the key-encapsulation mechanism (KEM) Kyber [14]
and digital signature schemes Dilithium [22], Falcon [25] and SPHINCS+ [6] as
PQC standards.

Nevertheless, a pivotal step before a cryptosystem can be deployed for
widespread public use is the assessment of its physical security. It is not a rare
instance when the security of a mathematically secure cryptosystem is com-
pletely compromised by physical attacks [4,7,12]. During the standardization
process, NIST also highlighted resilience against physical attacks as one of the
important criteria in the selection of standards. For physical security assess-
ments, usually, two primary types of attacks are considered. First, passive side-
channel attacks (SCA), that work by exploiting flaws in the implementation and
using leakage of secret information through physical channels such as power con-
sumption, electromagnetic radiation, acoustic channels, etc. Second, active fault
attacks (FA), that work by disrupting the normal execution of a cryptographic
scheme through laser radiation, power glitches, etc., and then manipulate the
result of the faulty execution to extract the secret key. There exists another type
of physical attack known as microarchitectural (MA) attacks. This type of attack
exploits the vulnerabilities or imperfections in the architecture of the platform
where the cryptographic scheme executes. A strong motivation for studying MA
attacks is that while traditional side-channel and fault attacks primarily tar-
get small, low-power devices such as microcontrollers e.g. Cortex-M devices and
Internet of Things (IoT) devices, MA attacks can affect a much broader range
of platforms such as enterprise servers, cloud platforms where multiple honest
processes share the same hardware with a potentially hostile process. The two
former physical attacks require the attacker to have physical access to the tar-
get device, but MA attacks can be performed remotely. Also, there are some
relatively simpler methods like constant-time coding techniques that can help
defend against some side-channel attack vectors like simple-power analysis, but
for MA attacks e.g. Rowhammer-induced bit-flips [43] cannot be easily mitigated
through coding practices alone. In the past, successful MA attacks on classical
cryptographic schemes such as elliptic-curve discrete signature algorithms and
symmetric schemes such as AES [20] have been demonstrated before [5,24,44,54].

Currently, there exist studies on physical attacks on PQC using SCA and
FA [30,41,45,49] and some generic countermeasures such as masking and shuf-
fling [15,35,58]. At this moment there exists only a handful of MA attacks on
PQ schemes such as digital signature schemes Dilithium and LUOV [31,42] and
key-encapsulation mechanism (KEM) Frodo [23]. Among these only Dilithium

Rowhammer on Lattice-Base KEMs 273

is a PQC standard. Therefore, we can safely admit that currently there is a
huge gap in the literature regarding the assessment and countermeasures of MA
attacks. As PQC seems to be prevalent in the near future it is crucial to study
MA attacks in the context of PQC schemes. Hence, in this work, we focus on
mounting efficient MA attacks on PQC schemes. We briefly summarize our con-
tributions below.

– We study MA attacks or specifically Rowhammer attacks on KEMs based
on hard lattice problem learning with errors (LWE). Most LWE-based KEMs
share a generic framework Lyubashevsky et al. [38] to first create public-
key encryption and then convert it to key-encapsulation mechanism using a
version of Fujisaki-Okamoto transform [27]. We sketch an outline of how such
generic constructions can be attacked using a Rowhammer-based MA attack.
In Rowhammer attacks an attacker repeatedly accesses the memory rows
adjacent to the victim process’s memory row. Such repeated access can result
in bit-flips in the victim process’s memory row. Rowhammer can be single-
sided when the attacker accesses memory rows only on one side of the target
memory row or more aggressively double-sided, where the attacker accesses
memory rows above and below the target memory row. This happens due to
imperfections in the dynamic random-access memory (DRAM). For interested
readers, we have provided more details of Rowhammer in Appendix A.

– Physical attacks on chosen-ciphertext attack (CCA) secure KEMs [30,41,45,
49] work by running the decapsulation procedure or the plaintext checking
oracle multiple times with different ciphertexts. At each run side-channel
traces are captured or faults are induced which reveal some part of the key.
Therefore, reducing the number of invoking the plaintext checking oracle can
make the attack more practical. The work in [47] proposed a method to reduce
the number of times the plaintext checking oracle is invoked. Here, we further
reduced the number of times the oracle is invoked by as much as 39% for Saber
and approximately 23% for Kyber768 compared to the previous work using
some offline computations. The advantage of our method is not limited to
this work only and can be of independent interest in the context of physical
attacks on lattice-based KEMs.

– We choose two PQ KEMs Kyber [14] and Saber [21] to demonstrate the
practicality of our attack. Kyber is a PQ KEM standard proposed by NIST
and Saber was a finalist of the NIST PQC standardization procedure. We
tailor our attack according to the design choices and parameters of Saber and
Kyber.

– We show an end-to-end key-recovery method on Saber and Kyber based on
remote software-induced faults only without using electromagnetic radiation,
voltage glitch, laser radiation, etc. Our attack is very realistic as our condi-
tions of attack are very relaxed compared to the previous works.

– Finally, we discuss the effect of existing physical attack countermeasures on
our attack.

274 P. Mondal et al.

1.1 Paper Organization

The structure of this paper is organized as follows. The paper is organized
as follows: Sect. 2 provides an overview of the necessary background informa-
tion and introduces the notation and definitions used throughout the paper.
Section 3 reviews the previous research conducted in the field. Section 4 presents
the generic fault model of LPR schemes and explains its application to Kyber
and Saber. Section 5 focuses on the practical realization of the fault model.

2 Preliminaries

Notations: We denote Zq to represent the ring of integers modulo q. We use
lowercase letters, lowercase letters with a bar, and uppercase letters to denote
an element in Zq, vectors containing elements in Zq, and matrices with elements
in Zq respectively. Let x ∈ Zq, then xi represents the i-th bit of x. Bold lower-
case letters are used to denote elements in Rq where Rq is the polynomial ring
Zq[x]/(xn + 1). For i ∈ {0, 1, . . . , n − 1}, x[i] represents the i-th coefficient
of the polynomial x ∈ Rq. Rl

q represents the ring with vectors of l polynomials
of Rq and the ring with matrices of l × k polynomials of Rq is presented by
Rl×k

q . We use bold lowercase with a bar and bold uppercase letters to denote
elements in Rl

q and Rl×k
q , respectively. For x̄ ∈ Rl

q and X ∈ Rl×k
q , x̄i denotes

the i-th polynomial of the vector x̄ and Xi,j denotes the (i, j)-th polynomial
of the matrix X. The product of two polynomials x and y is denoted by xy.
The inner product of x̄ and ȳ in Rl

q is equal to
∑l−1

i=0 x̄iȳi is denoted by 〈x̄, ȳ〉.
If x is sampled from the set S according to the distribution X , then we denote
it as x ← X (S). We use U to represent uniform distribution and βν to indi-
cate centered binomial distribution (CBD) with the standard deviation

√
ν/2.

�x� outputs the largest integer, which is less than or equal to x. �x	 represents
the rounding of x to the nearest integer, which is equal to �x + 1

2�. r
 x and
r � x denotes r shifted by x bit positions towards right and left respectively.
All these operations can be extended to the polynomials, vectors, and matrices
by applying them coefficient-wise. The cardinality of a set S is denoted by |S|.

2.1 Learning with Errors (LWE) Problem and Its Variants

LWE Problem: Let us assume A ← U(Zl×k
q), error ē ← χ(Zl

q), secret s̄ ←
χ(Zk

q), b̄ = As̄ + ē ∈ Zl
q, and b̄′ ← U(Zl

q), where l, k, n are positive integers
and χ is a distribution. Then, the decision version of the LWE problem states
that distinguishing between (A, b̄) and (A, b̄′) is hard. This hardness depends
on the parameter (n, l, k, q, χ) [51].

Ring-LWE (RLWE) Problem: If we use the polynomial ring Rq =
Zq[X]

/
(xn + 1) instead of Zq and l = k = 1, then we call the problem as

Ring learning with error problem (RLWE) [38]. So, in the RLWE problem, given
a ← U(Rq), e, s ← χ(Rq), b = as+ e ∈ Rq, and b′ ← U(Rq), it is hard to dis-
tinguish between (a, b) and (a, b′). This hardness depends on the parameter
(n, q, χ).

Rowhammer on Lattice-Base KEMs 275

Module-LWE (MLWE) Problem: In the MLWE problem [37], A ← U(Rl×l
q)

and ē, s̄ ← χ(Rl
q), b̄ = As̄+ ē ∈ Rl

q, and b̄′ ← U(Rl
q). The MLWE problem

states that it is hard to distinguish between (A, b̄) and (A, b̄′). Here, the
hardness depends on the parameter (n, l, q, χ).

Learning with Rounding (LWR) Problem: In this problem, the error sam-
pling is replaced by the rounding operation. Let us assume A ← U(Zl×k

q),
s ← χ(Zk

q), b = �p
q (As)	 ∈ Zl

p, and b′ ← U(Zl
p), where q > p > 0. Then the

LWR problem states that distinguishing between (A, b) and (A, b′) is hard.
This hardness depends on the parameter (n, l, k, q, χ) [10].

The ring-LWR (RLWR) problem and the module-LWR (MLWR) problem
can be defined from the LWR problem in a similar way as the RLWE problem
and the MLWE problem are defined from the LWE problem.

2.2 LPR Public-Key Encryption

Lyubashevsky, Peikert, and Regev proposed the LPR public-key encryption
(PKE) scheme based on the RLWE problem [38] as shown in Fig. 2. Throughout
this paper, we call this scheme as LPR.PKE. Here all the polynomials are elements
of Rq, where q is a prime number and n is a power of two. In LPR.PKE.KeyGen, the
secret s ← χ(Rq) and the error e ← χ(Rq). Here, χ is the Gaussian distribution,
which is replaced by CBD in Kyber and Saber. a ← U(Zq) and b = as+ e ∈ Rq.
This algorithm declares pk = (a, b) as public key and saves sk = (a, s) as pri-
vate key. In the LPR.PKE.Enc algorithm, a part of the ciphertext u is computed
similarly to the public key b. The other part of the ciphertext v contains mes-
sage m and is computed as v = br+ e2+Encode(m). Here the Encode function
is defined as Encode(m) = m · � q

2� i.e. multiplication of each message coefficient
m[i] with q

2 . Then this algorithm outputs c = (u, v) as the ciphertext of the
message m. The LPR.PKE.Dec algorithm takes the ciphertext c, and the secret
key s as input, and then computes m′ = v − us. Now,

m′ = v − us = (br+ e2 + Encode(m) − (ar+ e1)s
= (as+ e)r+ e2 + m · �q/2� − (ar+ e1)s = m · �q/2� + er+ e2 − e1s

Here, d = er+ e2 − e1s is known as decryption noise. The LPR.PKE.Dec algo-
rithm uses the Decode function to remove the decryption noise from the message
polynomial m′ and recovers the message m ∈ {0, 1}n.

Fujisaki-Okamoto (FO) Transformation: The LPR.PKE scheme provides
security against chosen-plaintext attacks (CPA) but does not offer protection
against chosen-ciphertext attacks (CCA). FO transform is a generic transform
to transform a CPA-secure PKE to CCA-secure KEM. Due to the presence of
noise in the LPR-based scheme, a variant of FO transformation proposed by
Jiang et al. [32] is generally used. The algorithms of this KEM are shown in
Fig. 1. A more detailed discussion regarding this FO transformation is provided
in Appendix B.

276 P. Mondal et al.

2.3 Kyber

Kyber [14] is an LPR-based KEM with MLWE as its underlying hard problem.
In the key generation algorithm of Kyber, the secret s̄ ← βη1(R

l
q) and error ē ←

βη1(R
l
q). One part of the public key A ← U(Rl×l

q) and the another part of the
public key is b̄ = As̄+ ē. The secret key is sk = (A, s̄). In the encryption algo-
rithm, the errors r̄ ← βη1(R

l
q) and the errors ē1 ← βη2(R

l
q) and e2 ← βη2(Rq).

A part of the ciphertext ū is computed similarly to the public key b̄ generation.
Another part of the ciphertext v = 〈b̄, r̄〉+e2+Encode(m), where Encode(m) =
�m · q

2�. Then this algorithm uses compressq to compress each coefficient of ū to
du bits and v to dv bits. c = (c̄1, c2) = (compressq(ū), compressq(v, dv)) serves
as the ciphertext associated with the message m. The decryption algorithm first

Fig. 1. CCA secure KEM based on LPR.PKE using FO transformation [32]

Table 1. Parameter set of Kyber and Saber corresponding to different security levels

Scheme
Name

Parameters Post-quantum
Security

Failure
Probability

NIST
Security
Level

l n q p T CBD
parameters

p = 2du T = 2dv η1 η2

Kyber Kyber512 2 256 3329 210 24 3 2 2107 2−139 1
Kyber768 3 210 24 2 2 2166 2−164 3
Kyber1024 4 211 25 2 2 2232 2−174 5

q = 2εq p = 2εp T = 2εT μ

Saber LightSaber 2 256 213 210 23 5 2107 2−120 1
Saber 3 24 4 2172 2−136 3
FireSaber 4 26 3 2236 2−165 5

Rowhammer on Lattice-Base KEMs 277

decompresses both components c̄1 and c2 of the ciphertext c with Decompressq
function. Suppose ū′ = Decompressq(c̄1, du) and v′ = Decompressq(c2, dv).
Then it computes Decode(v′ −〈s̄, ū′〉) = Compressq((v

′ −〈s̄, ū′〉), 1) to recover
the message m. There are three security versions of Kyber based on the parame-
ter set, and we include them in Table 1. In this paper, unless otherwise specified
we refer to the parameter set of Kyber768 with Kyber. For more details, we refer
the interested reader kindly to the original paper [14] for further details.

Fig. 2. CPA secure LPR.PKE [38]

2.4 Saber

Saber [21] is a KEM based that also follows the LPR model. Saber is based
on the hard problem MLWR. Here q in Rq is power-of-two. In the key gen-
eration algorithm of Saber, the secret s̄ ← βμ(Rl

q). The public key here is
(A, b̄) where A ∈ R is an element of Rl×l

q and is sampled uniformly and
b̄ = (As̄ + h̄)
 (εq − εp) ∈ Rl

p. The vector h̄ is needed for rounding, and
it consists of constant polynomials with each coefficient equal to 2εq−εp−1. In
the case of the encryption algorithm, s̄′ is also sampled from the CBD distri-
bution βμ. The key contained part of the ciphertext ū is computed similarly
to the public key b̄. The message contained part of the ciphertext v is com-
puted as (〈b̄, s̄′〉 + h1 − Encode(m) mod p)
 εp − εT ∈ RT . h1 is a constant
polynomial with each coefficient equal to 2εq−εp−1. It is required for rounding.
Let c = (ū, v) is the ciphertext corresponding to the message m. Then, the
decryption algorithm takes the ciphertext c = (ū, v) and secret s̄ as inputs.
It computes (〈ū, s̄〉 mod p − 2εp−εT v + h2) mod p
 (εp − 1) ∈ R2 to find the
decrypted message. h2 is also a constant polynomial with each coefficient equal
to 2εp−2 − 2εp−εT −1. Like Kyber, Saber also has three security versions depend-
ing on the parameter set, and we present them in Table 1. Similar to Kyber, in

278 P. Mondal et al.

this paper, we refer to the parameter set of Saber with l = 3 with Saber, and we
refer to the original paper [21] for further details.

2.5 Related Works

Lattice-based post-quantum KEMs are vulnerable to side-channel attacks. A
timing attack on the KEM.Decaps has been shown in [29], it targets the
non-constant time implementation of the ciphertext equality checking (Line
4 in KEM.Decap algorithm of Fig. 1). [49], proposed a generic and practical
Electromagnetic (EM) power analysis assisted CCA on LWE-based KEMs.
They also target the KEM.Decaps in their attack. They have constructed a
plaintext-checking oracle O with the help of an EM power attack, which
can distinguish two particular messages m1 = 00 . . . 0 (all zeros) and m2 =
00 . . . 01 (all zeros except the LSB). This oracle provides single-bit information
related to one coefficient of the secret key. Continuing the same methods, the
attacker can find the whole secret key. This paper has shown that 2000 to 4000
queries are required to retrieve the complete secret key for Kyber. [56] reduced
the query requirements by creating a multiple-valued plaintext-checking oracle.
Here, the attacker acquires information regarding multiple secret key coefficients
from a single query. In [47], the authors further reduced the number of queries
required to recover the whole secret keys by improving the model of plaintext-
checking oracle. One significant area of research in this domain revolves around
improving the efficiency of attacks by minimizing the number of required quires.
This reduction enables a more precise evaluation of the cost of an optimal attack.
Our attack contributes in this direction by improving the process of using the
parallel plaintext checking oracle model of the paper [47].

Rowhammer has been used to successfully attack many cryptographic prim-
itives. In the paper [50], researchers demonstrated a Rowhammer attack on
RSA signatures. Additionally, in [36], the authors illustrate the direct reading of

Fig. 3. Decapsulation algorithm of KEM based on LPR.PKE (Fig. 1). Here z is a random
number generated in the KEM.KeyGen() algorithm (Fig. 1). The fault location is marked
in red.

Rowhammer on Lattice-Base KEMs 279

RSA key bits from the memory address. However, there is limited research on
Rowhammer attacks targeting post-quantum schemes. The current state-of-the-
art in this domain focuses on a single work involving Rowhammer attacks on
the PQC KEM Frodo [13]. This research primarily targets the key-generation
procedure, which is known to be relatively easy to protect. In this work, we will
demonstrate an end-to-end Rowhammer attack on the decapsulation algorithm
of the targeted schemes.

3 Our Attack Using Binary Decision Tree
on the LPR-Based Schemes

Attack Surface: The KEM based on LPR.PKE shown in Fig. 1 is resistant to
CCA. In such schemes, the secret key is generated using the KEM.KeyGen is
non-ephemeral i.e. stored and used for the long term. The key generation and
encapsulation processes are executed only once. Therefore, the attacker needs to
recover the secret key or the shared key from a single execution. However, the
secret key remains fixed in the decapsulation algorithm for a long time and is
used to derive the shared secret key K from multiple users. This is done to remove
the huge overhead of running the key generation process and distributing the
public key each time two communicating parties want to establish the shared
secret K. However, this convenience also helps an attacker. An attacker can
now execute the decapsulation operation multiple times and collect multiple
traces or induce faults at different locations. This helps the attacker to refine
its attack strategy and increase the probability of success manifold. This is why
attacking the decapsulation operation is mostly chosen by attackers to mount
physical attacks [30,41,45,49]. So, we also choose the decapsulation method as
our target. The structure of the KEM.Decaps given in Fig. 1 is shown in Fig. 3.
Here we also assume the attacker can invoke the victim’s decapsulation procedure
by submitting any ciphertexts of its preference.

We assume the general Rowhammer threat model, where the attacker and
victim use two different processes in the same operating system or two virtual
machines on the same server [59]. This threat model is also used in most of the
micro-architectural attacks work [60]. Here the attacker shares the same hard-
ware responsible for performing the victim’s decapsulation procedure of LPR-
based KEM. The attacker can also invoke the victim’s decapsulation procedure
by submitting any ciphertexts of its preference.

3.1 Implementing a Parallel Plaintext Checking (PC) Oracle

In the KEM.Decaps procedure in Fig. 1, the decrypted message m undergoes a
hashing operation G with the public key. The resulting hash, denoted as (K ′, r),
where r is combined with the message m and is used as input for the subsequent
re-encryption procedure using LPR.PKE.Enc algorithm. The generated key K ′

is employed to create a valid shared key K. It is crucial to note that the hash
function G is deterministic and solely relies on the decrypted message m and

280 P. Mondal et al.

public key pk. Considering 2t messages where a fixed chunk of t bits are changed
while keeping all other n − t bits fixed, such as

m(0) = 000 . . . 0︸ ︷︷ ︸
t bits

000 . . . 0︸ ︷︷ ︸
(n−t) bits

m(1) = 100 . . . 0︸ ︷︷ ︸
t bits

000 . . . 0︸ ︷︷ ︸
(n−t) bits

m(2) = 010 . . . 0︸ ︷︷ ︸
t bits

000 . . . 0︸ ︷︷ ︸
(n−t) bits

. . .

m(2t−1) = 111 . . . 1︸ ︷︷ ︸
t bits

000 . . . 0︸ ︷︷ ︸
(n−t) bits

A variation of t bits in these messages leads to substantial variations in the com-
putations performed during the hash G operation. Consequently, the ciphertexts
generated by the LPR.PKE.Enc algorithm will differ for each of the 2t messages.

In our attack scenario, we require the output to be dependent on the
decrypted message. However, if we use artificially constructed ciphertext ct
(which is not generated from LPR.PKE.Enc), then with high probability, the
re-encrypted ciphertext c and ct will be unequal. The current implementation
always returns F(z, H(ct)) as the shared key, which is independent of the
decrypted message. In order to distinguish the potential 2t decrypted messages
of the ciphertext ct, we need the output to be message-dependent. By omitting
this equality checking condition, we ensure that the hash value F(K ′, H(ct))
is consistently returned, which is decrypted message dependent. That allows us
to differentiate between the possible decrypted messages of ct. Our goal is to
reliably acquire the shared key F(K ′, H(ct)) by employing a physical attack.

In the KEM.Decaps, both Saber and Kyber use a variable named “fail”.
Compare the ciphertexts ct and c by calling the function verify(c, ct,
BYTES_CCA_DEC) and storing the return value of this function in the “fail” vari-
able. If the value of fail is 0, then it returns the shared key F(K ′, H(ct)), which
depends on the decrypted message. Otherwise, it returns the random shared key.
Our aim is to flip the value of the variable “fail” by introducing fault even when
the ciphertexts are not equal.

3.2 Generic Attack Model Using PC Oracle

The first stage of our attack is to carefully craft ciphertexts c to reduce the
number of invocations of the KEM.Decaps procedure. Here, we target to recover
t secret coefficients of the secret key s at a time. We introduce a notation s

(t)
i to

represent a block of consecutive t coefficients of s, where i ∈ {0, 1, . . . , �n
t �−1}

and the last block s
(t′)
�n

t � consists t′ = n − (�n
t � × t) secret coefficients. This

ciphertext c is then transmitted to the oracle Oμ. Here the oracle Oμ defined as

Rowhammer on Lattice-Base KEMs 281

follows:

Oμ(c; x(0), x(1), . . . , x(μ−1)) = r, if PKE.Dec(c) = x(r), 0 ≤ r ≤ μ − 1.

This oracle Oμ takes a ciphertext c and μ number of messages x(i) and returns
the value r such that the decrypted message of c is x(r). Upon receiving
the ciphertext, the oracle Oμ processes c along with a set of potential mes-
sages x(0), x(1), . . . , x(μ−1). Then, the oracle provides a response r such that
LPR.PKE.Dec(sk, c) = x(r). By analyzing the decrypted message x(r), we gain
knowledge about the secret block s

(t)
i . As each secret coefficient is intricately

tied to the decrypted message, this process gradually reduces the dimension of
the secret coefficients within the targeted block. This reduction process involves
considering the relationship between the decrypted message and the secret coef-
ficients. After successfully reducing (not fully recovering) the dimension of the
secret block, we construct another new ciphertext cα that exploits the potential
secret block s

(t)
i . Then, repeating the aforementioned process, we further reduce

the cardinality of the secret set corresponding to each coefficient of the secret
block to get our desired secret. The challenge lies in determining how many
iterations of this process are necessary to effectively reduce the dimension of
the secret block s

(t)
i . One possible approach is to repeat until the entire secret

block s
(t)
i is obtained. In the paper [47], the authors used this approach. In this

method, we need to query the oracle Oμ
log |S0|	 times to find each of the secret
blocks s

(t)
i and s

(t′)
�n

t �, where i ∈ {0, 1, . . . , �n
t � − 1} and t′ = n − (�n

t � × t).
Here, S0 represents the set of all possible values of a coefficient of the secret key.
However, each iteration incurs a cost regarding the number of injected faults.
Since each fault is resource-intensive, the objective is to find the secret with the
minimum number of faults.

In our approach, we reduce the number of queries to the oracle Oμ to find the
all secret blocks s

(t)
i and s

(t′)
�n

t �, where i ∈ {0, 1, . . . , �n
t �−1} and t′ = n−(�n

t �×t).
Here, the previous approach is repeated �log |S0|� times to progressively reduce
the cardinality of the secret set corresponding to each coefficient of each secret
block. Since we query �log |S0|� times to the oracle Oμ for each block, there
will be some secrets that have not been determined yet. So, after reducing the
dimension of each secret block, an index set, denoted as Index[], is created
to track the indices of the secret coefficients that have not been determined
yet. A new ciphertext cα is then constructed based on the Index[] set, and
the values of the secret coefficients corresponding to the indices in Index[] are
updated accordingly. For simplicity, we describe this attack template step by
step for a parallelization factor t, which is a divisor of n, to unveil the secret
block gradually. The process will be similar for other parallelization factor t.

Constructing the Ciphertext c. Here, we present a method to construct
a dummy ciphertext ct = (u, v) ∈ Rq × Rq. This method helps to decrease
the number of queries required to retrieve all the secrets of the block s

(t)
0 , which

contains {s[0], s[1], . . . , s[t−1]} first t coefficients of the secret polynomial s. To

282 P. Mondal et al.

construct the ciphertext ct, first we set u[0] = ku and v[j] = kvj
, ∀0 ≤ j ≤ t − 1

are non zero and others coefficients of u and v are zero. Then

(v − us) =
t−1∑

j=0

kvj
.xj −

n−1∑

j=0

kus[j].xj

So (v − us)[j] =

{
(kvj

− kus[j]) if 0 ≤ j ≤ t − 1
(−kus[j]) Otherwise .

Hence the coefficients of the decrypted message m will be

mj =

{
Decode(kvj

− kus[j]) if 0 ≤ j ≤ t − 1
Decode(−kus[j]) Otherwise .

We choose the value (ku, kv0 , kv1 , . . . , kvt−1) such that

mj =

{
Depends on s[j] if 0 ≤ j ≤ t − 1
0 Otherwise

We construct a binary decision tree shown in Fig. 4 to distinguish the secrets.
We select each value kvj

from the tree accordingly. Initially, all the values kvj

will be the root value d0. Then, depending on the decrypted message, we update
the value kvj

from the tree. Also, the value of ku will be fixed in an iteration
because we are constructing the dummy ciphertext to get t bits of information
at a time.

To recover j′-th secret block, s(t)j′ that contains the secret coefficients
s[j′], s[j′ +1], . . . , s[j′ + t − 1]), where j′ > 0 we have to construct the dummy
ciphertext ct = (u, v) ∈ Rq × Rq, where u[n − j′] = ku and v[j] = kvj

,
∀0 ≤ j ≤ t − 1 are non zero and others coefficients of u and v are zero. Then

(v − us) =
t−1∑

j=0

kvj
.xj +

n−1∑

j=j′
kus[j].xj−j′ −

j′−1∑

j=0

kus[j].xn−j′+j

Here, the decrypted message m will be

mj =

{
Decode(kvj

+ kus[j′ + j]) if 0 ≤ j ≤ t − 1
Decode(−kus[j]) Otherwise

(1)

Similarly, the value of kvj
will be taken from the binary decision tree pictured

in Fig. 4. We also present the algorithm to create ciphertext in Algorithm 1.

Rowhammer on Lattice-Base KEMs 283

Fig. 4. Binary tree to select the value of kvj = di for each v[j]

Parallel PC Oracle for s
(t)
i by Pruned Binary Decision Tree: We con-

struct a binary decision tree with two types of nodes; one is the (Sy, dy) where
secret set Sy with |Sy| > 1 and the constant values dy which helps us to split
the secret set Sy into two disjoint sets S2y+1 and S2y+2. The other one is Sy

with |Sy| = 1 as shown in Fig. 4. We construct the tree such that the tree will be
almost complete and the distance of node (Sy, dy) from the root node (S0, d0)
will be longer if the set Sy contains the secret coefficients with comparatively
lower probability. Let h be the maximum height of the node of format (Sy, dy)
from the root node (S0, d0). Without loss of generality, assume that this max-
imum height node is (Sw, dw) i.e., the distance of the node (Sw, dw) from the
root node is h and the height of the tree is h+ 1 which is the distance from the
node (S0, d0) to the node S2w+1. We have distinguished the secrets from the
tree as follows:

Algorithm 1. Ciphertext creation I
Input: The index i of secret block s

(t)
i and the current secret set Srk corresponding

to the block.
Output: Ciphertext ct such that the decrypted message of c will be zero except

the first t positions.
1: for k = 0; k < n; k ++ do
2: u[k] = 0; v[k] = 0
3: end for
4: u[(n − i)%n] = ku

5: for k = 0; k < t; k ++ do
6: if s[i + k] ∈ Srk then
7: v[k] = drk

8: end if
9: end for

284 P. Mondal et al.

First, we will query to the oracle Oμ with the constructed ciphertext ct and
2t messages m(0), m(1), . . . , m(2t−1) described before. Let m(r) be the decrypted
message of the ciphertext ct, which is received from the oracle Oμ. If the j-th
secret coefficient of the block s(t)i , s[i + j] ∈ Sy and |Sy| > 1, then we will
distinguish s[i + j] ∈ S2y+1 or s[i + j] ∈ S2y+2 according to the value of the
corresponding j-th message bit of m(r) which is Decode(dy − kus[i + j]) = 0/1
i.e., observing the current secret set Sy in which the secret coefficient belongs
and the decrypted bit Decode(dy − kus[i + j]), we reduce the possible values of
the secrets from Sy to S2y+1 or S2y+2. In each iteration of the block s(t)i , each
value of kvj

will traverse this tree from the root node (S0, d0) (with height 0).
In our attack, we traverse each value kvj

from the tree up to the height h − 1,
i.e., We pruned the highest heighted node (Sw, dw) from this tree. In this way,
we reduce the cardinality of the secret set corresponding to each secret. Since
we ignore the highest height node (Sw, dw), only secret coefficients that belong
to the secret set Sw will still be undetected.

Construction of Index[] Set. As we discussed before, only secret coefficients
belonging to the secret set Sw will still be undetected. Now, we will search the
indexes of the secret coefficients that are still not decided and store them in a
set named “Index[]”. Then, we apply the parallel checking oracle Oμ on this
Index[] set. We describe the detailed process in the following section.

Construction of Ciphertext cα from Index[]: Before arriving at this stage,
we found most secrets except the Index[] set secrets. Without loss of generality,
assume that s[i] ∈ Sw ∀i ∈ Index[], where Sw contains the values with a low
probability occurrence and dw is the corresponding value of ciphertext selection
in the Fig. 4.

Let Index[] = {α0, α1, . . . , αr}. Construct the dummy ciphertext ct =
(u,v) ∈ Rq × Rq to reduce the cardinality of the secret set corresponding to
each coefficient of the secret coefficients s[α0], . . . , s[αt−1] (we called it secret
block s(t)α0,..., αt−1 of size t). We choose u[0] = ku and v[αj] = dw, ∀0 ≤ j ≤ t− 1,
as each s[αj] ∈ Sw. All the remaining coefficients of u and v will be zero. Then

Algorithm 2. Cardinality reduction of the secret set of the block s
(t)
i

Input: The decrypted message m of the ciphertext c such that m is non-zero at
most in the first t positions.

Input: The value rk such that s[i + k] ∈ Srk , 0 ≤ k ≤ t − 1.
Output: Update [i + k] where 0 ≤ k ≤ t − 1.

1: for l = 0; l < t; l ++ do
2: if ml = 0 then
3: s[i + l] ∈ S2rl+1

4: else
5: s[i + l] ∈ S2rl+2

6: end if
7: end for

Rowhammer on Lattice-Base KEMs 285

Algorithm 3. Ciphertext creation II
Input: The index α0, . . . , αt−1 of those we want to find actual secret.
Output: Ciphertext ct such that the decrypted message of c will be zero except

the possitions α0, . . . , αt−1.
1: for k = 0; k < n; k ++ do
2: u[k] = 0; v[k] = 0
3: end for
4: u[0] = ku

5: for k = 0; k < t; k ++ do
6: v[αk] = dw

7: end for

the decrypted message will be

mj =

{
Decode(dw − kus[j]) if j = α0, . . . , αt−1

Decode(−kus[j]) Otherwise
(2)

So, the message will depend on all the αj-th secret coefficient s[αj], where 0 ≤
j ≤ t−1, which is followed by the construction of our binary decision tree shown
in the Fig. 4.

We query the oracle Oμ with the forged ciphertext cα and the 2t messages
m(0)′

, m(1)′
, . . . , m(2t−1)′

to get t bits of information with location α0, . . . , αt−1

simultaneously. Here, we take each message m(i)′
such that αj-th bit of the

message m(i)′
is the j-th bit of i and the others bits are zero. Here, we use

Algorithm 3 to create forged ciphertexts.

Updating the Secret Coefficients Whose Index Lies in Index[]: We
divide the sampling set into two distinct parts: S2w+1 = {s : Decode(dw −kus) =
0} and S2w+2 = {s : Decode(dw − kus) = 1}, where dw is a predefined constant.
Since Sw contains the values such that the highest distance from the root node
with |Sw| > 1, therefore |S2w+1| and |S2w+2| must be 1. Otherwise, it violates our
assumption of the set Sw. So, querying the oracle Oμ with one ciphertext cα and
the above messages m(0)′

, m(1)′
, . . . , m(2t−1)′

, we will get a decrypted message
as a response. This decrypted message decides the t number of secret coefficients
s[α0], s[α1] . . . , s[αt−1] at a time. So, running the process
 |Index[]|

t 	 times, we
will find the whole secret with mixed signs and in a different order. We described
the process of finding the secret in actual order. Also, from Eq. 1, we can see
that for the secret block s

(t)
j′ , each j-th message mj will depend on the secret

coefficient −s[j′+j], 0 ≤ j ≤ t−1. So basically, we are decreasing the dimension
secret coefficients s[0], . . . , s[t−1], −s[n−t], −s[n−t+1] . . . , −s[n−1], −s[n−
2t], . . . , −s[n − t − 1], · · · − s[t], −s[t + 1], . . . , −s[2t − 1]. We transformed it
into the actual secret block using the Algorithm 4.

Number of Queries: Here (Sw, dw) is the most distanced node from the root
node with |Sw| > 1 and containing secrets occurring with comparatively lower
probability.

286 P. Mondal et al.

Algorithm 4. Rotating secret coefficients
Input: The secret s is in the sequence s[0], . . . , s[t − 1], −s[n − t], −s[n − t +

1], . . . , −s[n − 1], −s[n − 2t], . . . , −s[n − t − 1], · · · = s1
Output: The secret s with actual order i.e.,(s[0], s[1], . . . , s[n − 1])

1: for j = 0; j < t; j ++ do
2: s[j] = s1[j];
3: end for
4: for j = 1; j < �n

t
�; j ++ do

5: for k = 0; k < t; k ++ do
6: s[t ∗ j + k] = −s1[(n − t ∗ j + k)%n];
7: end for
8: end for
9: Return s

1. Best case: If all the secret values lie in S0 − Sw, then the number of queries
will be minimum because, in this case, we need �log |S0|� queries to find each
block of secrets si[j], si[j + 1], . . . , si[j + t − 1] of blocksize t. The total
number of queries will be:
n

t 	 × �log |S0|�.
2. Average case: Let E1 be the expected number the secret coefficients those

belongs to Sw. Then the total number of queries will be: (
n
t 	 × �log |S0|�) +

(
E1
t).

With our method, the number of queries for the average case decreases compared
to the state-of-the-art works [47,56].

3.3 Model for Kyber and Saber

Kyber and Saber are based on the module-LWE and module-LWR problems,
respectively i.e., here, the modules Rl

q are used for the secret and the ciphertext
b̄′ instead of the ring Rq. But if we construct c = (b̄′, v) as follows:

b̄′
i[j] =

{
ku, if i = 0, j = 0
0, otherwise

and v[j] =

{
kvj

, if 0 ≤ j ≤ t − 1
v, otherwise ,

where ku, kvj
are constants. Then the problem reduces to the generic LPR prob-

lem, i.e., to the ring problem. Therefore, here the total number of queries will
be l × the number of queries for LPR. We use the corresponding di from
Table 2 and 3 for Kyber768 and the Saber, respectively. We will construct the
corresponding binary decision tree from Table 2 and 3 and construct our cipher-
text accordingly. For Kyber768, we have seen that for ku = 38, v = 14 and
kvj

= di. From Table 2, we can recover the secret by a similar process mentioned
in the previous section.

Number of Queries for Kyber768 and Saber: According to Table 2, for
Kyber768 S4 will be the highest distanced node from the root node containing

Rowhammer on Lattice-Base KEMs 287

Table 2. For Kyber768

u = 38, v = 14

S d0 = 12 d1 = 4 d2 = 13 d4 = 3

−2 0 1 0 1
−1 0 1 0 0
0 0 0 0 0
1 1 0 0 0
2 1 0 1 0

Table 3. For Saber

S u = 0x3c8 u = 7

d0

=4
d2

=2
d5

=3
d6 d1

=6
d3

=7
d4

=5
d7

=12
−4 0 0 0 0 0 0 0 0
−3 0 0 0 0 0 1 0 0
−2 0 0 0 0 1 1 0 0
−1 0 0 0 0 1 1 1 0
0 1 0 0 0 1 1 1 0
1 1 0 1 0 1 1 1 0
2 1 1 1 0 1 1 1 0
3 1 1 1 1 1 1 1 0
4 1 1 1 1 1 1 1 1

secrets with comparatively low probability and |S4| > 1. Also, Table 3 shows
that for Saber, S7 will be that specified node above. For Kyber768 and Saber,
l = 3, we consider our best case and average cases of both the algorithms for
l = 3.

1. Best case: In case of Kyber768, if all the secret values lie in S0 −S4, then the
number of queries will be minimum because, in this case, we need 2 queries
to find each block of secrets s̄i[j], s̄i[j + 1], . . . , s̄i[j + t − 1] of blocksize t.
The total number of queries will be:
n

t 	 × 3 × 2. For Saber this number will
be
n

t 	 × 3 × 3.
2. Average case: In the case of Kyber768, if E1 is the expected number of the

secret coefficients of each polynomial that lie in the set S4, the total number
of queries will be: 3 × ((
n

t 	 × 2) +
E1
t)). Similarly, for Saber, if E1 is the

expected number of the secret coefficient of each polynomial that lies in S7,
then the total number of queries will be: 3 × ((
n

t 	 × 3) +
E1
t).

3.4 Comparing Our Attack with the State-of-the-Art

In this section, we compare the total number of ciphertexts required to retrieve
the whole secret key for the average case in Kyber768 and Saber with our attack
and the work by Rajendran et al. [47], which also proposed methods to reduce
the number of ciphertexts using parallel plaintext checking oracle model. Even
though we need to use the same number of ciphertext as [47] to recover the whole
secret key when the parallelization factor t = 1, our attack model requires less
number of ciphertexts than [47] to recover the whole secret key in the average
case when the parallelization factor t > 1. If t = 10 or 12 or 16, for Kyber768 we
use approximately 22% less number of ciphertext than [47]. Also, in Saber, if we
take t = 10, we require ≈ 39% less number of ciphertext than the paper [47] to

288 P. Mondal et al.

recover the key. However, we require 57 number of ciphertext to recover the whole
secret key of Kyber768 in the average case when the parallelization factor t = 32.
We observe that increasing the parallelization factor t will reduce the number of
required ciphertexts. However, in this case, the process of finding the decrypted
message from the shared key (offline calculation) will be more costly (takes 2t

comparison). For this reason, we take the value of the parallelization factor t up
to 32. But, with a more powerful computer that can do 240 comparison, then
we can take the parallelization factor t = 40. In this case, the number of queries
will be 48.

Frequency of Fault Induction in the Attack for Kyber768: We have
discussed earlier that to recover the whole secret of the algorithm Kyber768, we
require 57 faulted shared keys i.e., 57 many times, we often have to introduce
the bit-flip faults at the location of the variable “fail” (Table 4).

Table 4. Number of queries required to recover the key for Kyber768 and Saber in
total

Scheme Parallelization factor t
1 10 12 16 32 40

Kyber768 This work
3 × ((� 256

t
� × 2) + � 80

t
)�)

1776 180 153 111 57 48

Rajendran et al. [47] 1776 232 197 144 72 63

Saber This work
3 × ((� 256

t
� × 3) + � 9

t
)�)

2331 237 201 147 75 66

Rajendran et al. [47] − 390 − − − −

4 Realization of the Fault Model

In this section, we are going to illustrate an end-to-end strategy to demonstrate
the fault model in practice.

4.1 Nature of the Fault in the Attack

In the previous sections, we discuss that our objective is to obtain the output
F(K ′, H(ct)) by exploiting a fault, where K ′ is derived from the decrypted
message m of the ciphertext ct. This fault uses the plaintext checking oracle
Oμ. To achieve this, it is crucial to neutralize the effectiveness of comparing two
ciphertexts, denoted as c and ct, in terms of equality checking. For all security
levels of Saber and Kyber, the design employs a verify function that takes two
ciphertexts, c and ct, along with their lengths and returns 0 if they are equal

Rowhammer on Lattice-Base KEMs 289

or 1 otherwise. The result is stored in a variable called “fail”. In our attack, we
construct ciphertexts in a particular pattern, ensuring that the ciphertexts c
and ct are highly likely to be unequal. As a result, the variable “fail” will always
be set to 1. This allows us to perform a bit-flip or get stuck at zero at the
location of the “fail” variable, thus obtaining our desired output F(K ′, H(ct)).
If we observe that for our constructed ciphertext ct, the value of the shared key
is different from F(z, H(ct)). At this time, we are ensured that the value of
the “fail” variable has changed to 0, and this value is our essential shared key
F(K ′, H(ct)).

A stuck-at-zero fault is where a signal or a specific bit within a circuit is
constantly held at logic zero. This fault can occur due to manufacturing defects,
electrical shorts, environmental factors, or other physical issues. In contrast,
a bit-flips fault involves the unintentional change of a single bit within a cir-
cuit or memory location from its intended value to the opposite value. Both
stuck-at-zero and bit-flip faults can have various causes and implications. It
is important to note that the specific type and cause of these faults can vary
depending on the context, such as the hardware or software implementation, the
cryptographic scheme used, and the fault injection techniques employed. Stuck-
at-zero and bit-flip faults can lead to unexpected behaviour, data corruption,
security vulnerabilities, or system crashes. To ensure system reliability and data
integrity, detecting and mitigating these faults often involves employing error
detection and correction techniques, such as error-correcting codes, redundant
storage methods, or fault-tolerant designs.

Table 5. Model details of our target devices

Model name RAM size

1 Intel (R) Core (TM) i7-4770 CPU 4 GB
2 Intel (R) Core (TM) i7-3770 CPU 8 GB
3 Intel (R) Core (TM) i5-3330 CPU 4 GB

In this paper, we choose Dynamic Random Access Memory (DRAM) relia-
bility issue Rowhammer to introduce a software-driven hardware fault attack to
induce a bit-flip (1 → 0) at the address of the “fail” variables. We also present
a series of steps that could be followed to incorporate this fault at a precise
location in realistic timeframes.

4.2 Our Target Devices

To demonstrate our attack, we employ a deliberate technique of inducing bit-
flips during the decapsulation process of Kyber. In our model, the attacker is
assumed to be colocated in the same server as the victim, which performs the
decapsulation process of Kyber and Saber. This scenario can also be extended

290 P. Mondal et al.

to multiple virtual machines operating on a shared server. In this model, the
primary assumption is that the victim and the attacker are co-located on the
same physical piece of memory hardware, typically a DRAM and the vulnerable
locations are neighbors to each other. This model exists in the current research
field of row hammer [16,23] and is also consistent with most microarchitectural
attacks [17]. Furthermore, since Kyber and Saber are designed as a CCA-secure
scheme, our attack assumes that the attacker can often query the decapsulation
process with the constructed ciphertext. We demonstrate our attack against the
machines listed in Table 5.

4.3 Probabilities of Incorporating Precise Fault Using Random
Rowhammer

The task of incorporating bit-flips in random locations in memory is common
and is very well studied in literature after Rowhammer has been reported
in practice, but the hard part is to precisely induce the faults in the loca-
tion of one’s choice. In this paper, considering the target example, if we
run the target code of Kyber/Saber multiple times in one process and an
unsupervised row hammer code in another process, the address of the vari-
able “fail” coinciding with one of the vulnerable locations, the probability of
such event occurrence is considerably low. Suppose there are a total N num-
ber of vulnerable locations after hammering randomly among N1 locations
present on a device. Then, the possibility of the variable “fail” being vulnerable
= Pr(the location of “fail”=X) × Pr(“fail” coincide in a vulnerable location |the
location of “fail” = X) = 1

N1
× N

N1
= N

N2
1
, which is very low as N1
 N . In our

system, we randomly access N1 = 230 bytes of memory; we discovered N < 10
vulnerable locations by accessing the memory randomly. Notably, the number of
vulnerable locations (N) is considerably smaller than the total memory access.
In order to make this process deterministic, we follow the steps described below.

Time interval (50s)

Fr
eq

ue
nc

y

0

10

20

30

40

0.0
0

50
.00

10
0.0

0

15
0.0

0

20
0.0

0

25
0.0

0

30
0.0

0

35
0.0

0

40
0.0

0

45
0.0

0

50
0.0

0

55
0.0

0

60
0.0

0

65
0.0

0

Fig. 5. Frequency of bit-flips in every 50 s

Rowhammer on Lattice-Base KEMs 291

Using the Deterministic Process of Rowhammer: We have used the ham-
mertime code1 available at [57] to execute row hammering operations. Through
our exploration, we have observed that hammertime is a valuable simulator,
offering a convenient approach to deterministically evaluate vulnerable loca-
tions. This versatile tool is purpose-built for testing, profiling, and simulating
the Rowhammer DRAM attack, providing a comprehensive suite of capabilities
for assessing the outcomes of exploits.

The offset list

Th
e

fre
qu

en
cy

0

5

10

15

0x
00

0
0x

08
0

0x
10

0
0x

18
0

0x
20

0
0x

38
0

0x
30

0
0x

38
0

0x
40

0
0x

48
0

0x
50

0
0x

58
0

0x
60

0
0x

68
0

0x
70

0
0x

78
0

0x
80

0
0x

88
0

0x
90

0
0x

98
0

0x
a0

0
0x

a8
0

0x
b0

0
0x

b8
0

0x
c0

0
0x

c8
0

0x
d0

0
0x

d8
0

0x
e0

0
0x

e8
0

Fig. 6. Frequency of the bit-flips in the corresponding offset.

The provided code presents two types of row hammering techniques: single-
sided row hammering and double-sided row hammering. We have employed the
single-sided row hammering process outlined in their code for our implementa-
tion. In each iteration of this approach, our target is to find the vulnerable rows
from an aggressive row’s upper or lower rows. Also, in our victim machine, the
bit-flip occurs considerably frequently. Figure 5 shows the bit-flip frequency in
every 50 s. In the hammertime code, we observe that this code deterministically
selects an aggressive row, then fills up the memory with values all 1’s (“0xff”)
in the aggressive row and its neighbouring rows, and repeatedly flushes the cor-
responding portions of cache memory allocation. Iteratively, it only accesses the
addresses with offsets A = {ai}i, where a0 = 0 and ai+1 − ai = 0x020, for all
i to check the bit-flip result. So, we can get the vulnerable address with the
offset lie in A by running the hammering code. Figure 6 shows the offsets of
the bitflip addresses and their frequency observed in our experiments. We per-
form a first-level templating of main memory using the hammertime code as
shown in Fig. 6, identifying locations that are vulnerable to Rowhammer. This
templating step also aids us in identifying trigger rows so that we can replicate
Rowhammer deterministically by re-accessing those aggressor rows again over
time. By using the hammering code, we get the vulnerable addresses having dif-
ferent offsets and construct the set A. In this particular attack algorithm, we

1 “https://github.com/vusec/hammertime.git”.

https://github.com/vusec/hammertime.git

292 P. Mondal et al.

want the adversary to induce a bit-flip to a known vulnerable location. In order
to achieve that, the variable in the decapsulation process (target “fail” variable)
must coincide with atleast one offset in the set A of vulnerable addresses in
order to precisely induce the fault. In order to increase the reproducibility of the
attack over multiple runs, we have assigned the datatype of the variable “fail”
in our implementation to “static int” rather than simply using “int”. Doing so
guarantees that the offset of the “fail” variable remains unchanged throughout
the execution. Without loss of generality, if our attack methodology is imple-
mented on any other target secret, then a similar technique could be applied
to any global variable or a local variable with a static flag for the sake of the
reproducibility of our attack. We consider the offset 0x040 of the “fail” variable,
which was observed on our executable. This offset can be any value without loss
of generality in Kyber/Saber’s implementation, and the appropriate matching
offset of the Rowhammer fault can also be selected from the templating phase.
In our attack scenario, we select the vulnerable locations offset of 0x040 to show
the vulnerability. We construct the following template shown in Fig. 7.

Fig. 7. Template of generating oracle Oμ using Rowhammer

The templating method in Rowhammer provides a method that induces a
bit-flip from 1 to 0 at the “fail” variable. First, we run the hammertime code and
observe a bit-flip (1 → 0) at an address with the offset 0x040. In this phase,
we proceed to unmap the corresponding page of that address and emit a signal,
enabling us to execute the victim code in process 2. With a high likelihood,
the victim code gets mapped to the unmapped page just being freed by the
hammertime executable. This will allow the “fail” variable to be sitting in the
Rowhammer vulnerable location of the unmapped page. The scenario of page
reallocation of the recently unmapped page is commonly encountered using the
Page Frame Cache during page allocations involving the buddy allocator [16].

After successfully aligning the “fail” variable with the vulnerable location of
Rowhammer, our objective is to actually induce the fault in the target location
to change its value to “0”. To accomplish this, we need to continue performing
row hammering on the same aggressive row that inflicted the Rowhammer in the
templating phase. This ensures that the bit-flip occurs at the same vulnerable
address, which is now unmapped from the hammering code, but possessed by

Rowhammer on Lattice-Base KEMs 293

the target executable of the victim. To achieve this, we made some modifications
to the hammertime tool, and iterated through the following processes.

An extra loop is added inside the profile_singlesided function. Once the target
page is unmapped, only then this loop will run. The loop contains minor modifi-
cations to the following functions fill_rows and c->hamfunc. This modification
involves a checking condition that inside the function fill_rows, we ignore the
addresses lying on the unmapped page. This function activates aggressive rows
and neighbor rows and as a result, the vulnerable address is affected, leading to
a change in its bit from “1” to “0”.

After unmapping the page, we run the victim code (decapsulation process
with our constructed ciphertext) parallel to the hammertime code until we
observe the faulty shared key. If we observe a different shared key, then the
Rowhammer attempt has been successful and we stop this process. We summa-
rize the whole process as follows:

1. By running the hammering code, vulnerable addresses with offsets from set
A are identified, and the “fail” variable is positioned to coincide with one of
these vulnerable addresses. A suitable vulnerable location is selected and the
corresponding page is unmapped from the code.

2. After unmapping the page, we run the victim code until we do not get the
faulty shared key. If we get a different shared key, then we are done.

3. To achieve a bit-flip from “1” to “0” at the “fail” variable, row hammering is
continued on the same aggressive row, modifying the fill_row function to fill
memory with “0xff” and performing a memory flush on all addresses except
the unmapped page corresponding to the vulnerable address.

Figure 8 illustrates the distribution of timings observed for the Rowhammer
bit-flip to occur at the vulnerable location through the hammertime code after
unmapping the vulnerable page.

Time of getting re-bitflip (10 ms)

Fr
eq

ue
nc

y

0

20

40

60

80

15
0.0

0

16
0.0

0

17
0.0

0

18
0.0

0

19
0.0

0

20
0.0

0

21
0.0

0

22
0.0

0

23
0.0

0

24
0.0

0

25
0.0

0

26
0.0

0

27
0.0

0

28
0.0

0

29
0.0

0

30
0.0

0

31
0.0

0

32
0.0

0

33
0.0

0

34
0.0

0

35
0.0

0

Fig. 8. The value of an interval [a, b] is the number of bit-flips which takes the time
t ∈ [a, b], to make re-bitflip at the same address

294 P. Mondal et al.

In order to estimate the total time to recover the whole secret key we need
57 independent queries to the oracle. This translates to 57 independent fault
occurrences on the “fail” variable in the implementation of the decapsulation
algorithm. One such occurrence can be estimated to happen in < 350ms with
a significantly high probability. So this attack can be realised using an addi-
tive progression of timing on respective queries and can be observed in a linear
timescale.

5 Discussion and Future Direction

In this paper, we show an end-to-end software-driven hardware fault on PQ
LWE-based KEMs. We choose Saber and Kyber key encapsulation schemes and
perform the fault analysis with as much as 39% reduced number of queries for
Saber and approximately 23% for Kyber768 on the existing literature. This was
achieved by pruning selected leaves of the decisional binary search tree used
in the attack. The fault induction using the Rowhammer has been known in
the literature to appear in random locations of memory due to the reliability
issues of commercial DDR RAMs. We follow some precise steps by first templat-
ing the memory space, listing out vulnerable addresses of a system, and then
precisely locating the target KEM implementation in that vulnerable location.
In this context, we use publicly available Hammertime code to template the
memory space, then make minor modifications to re-induce Rowhammer using
the selected aggressor rows on that same location deterministically. This semi-
deterministic process is highly useful in conjunction with the paging policies of
the Buddy allocator, and then inflicting these bit-flips on the publicly available
target implementation.

Though there has been recent work on Frodo KEM [23], where the authors
incorporate fault in the key generation phase using Rowhammer. As discussed in
Sect. 3, the key generation of a CCA-secure KEM is a one-time operation and is
invoked rarely. Hence, if necessary the key generation can even be done offline in
an isolated environment. On the other hand, the decapsulation of a CCA-secure
KEM is invoked multiple times to generate the shared secret key from multiple
sources. Therefore, in a practical scenario for the sake of performance, the decap-
sulation cannot run in an isolated environment. Therefore the attack described
in [23] is far less realistic than our attack methodology. Further, the authors
assume that they can slow down the execution by slowing down components
of the target executable. This is already a strong assumption. Additionally, the
authors have disabled ASLR (Address Space Layout Randomization) for their
experiments which makes the assumptions even stronger and the attack more
unrealistic.

5.1 Shuffling and Masking:

Previous attacks [47,56] based on parallel plaintext checking oracle have used
side-channel analysis such as EM power analysis. So, these attacks can be pre-
vented using masking countermeasures [48]. Our attack can be conducted on the

Rowhammer on Lattice-Base KEMs 295

masked or shuffled implementation of the LWE-based KEMs. Because here, we
do not use any side-channel assistance to perform the attack. We induce a bitflip
fault to the “fail” variable, which stores the result of the comparison between the
public ciphertext and the re-encrypted ciphertext. As a result of this fault, the
value of the “fail” variable always remains 0, and that causes decapsulation suc-
cess. When applying side-channel countermeasures such as masking and shuffling
on the decapsulation algorithm of LWE-based KEMs [15,35,58], this fail vari-
able remains unaffected and unmasked, since it is not dependent on the secret.
Therefore, the success of our attack does not get affected by generic side-channel
countermeasures such as masking or shuffling.

5.2 Extension of Our Attack on Other PQC Schemes

The parallel plaintext checking oracle used in our attack model can be applica-
ble to any LWE-based KEMs. It is not specific to Saber and Kyber. It can be
applicable to other LWE-based schemes such as NewHope [3], Lizard citeCheon-
KLS18, Round5 [9], Frodo [13], Smaug [18](proposed in the ongoing Korean
PQC [34] competition), etc. The Rowhammer methodology we propose in this
work to introduce fault can also be applicable to other fault attack models where
a single or multi-bit fault is required. Popular side-channel countermeasures such
as masking and shuffling are ineffective to protect against this attack.

5.3 Combining of Lattice Reduction Techniques with Our Attack

There can be some cases when the attacker only has a limited number of accesses
to the decapsulation procedure. Then, the attacker can use our attack to recover
some of the coefficients of the secret key and then use lattice reduction techniques
to recover the rest of the secret key [28]. The LWE-estimator toolbox [2,19] can
provide an estimate on the computation effort required to recover the secrets
using the lattice reduction techniques. It is up to the attacker to determine the
optimum point till when our attack should be stopped and the lattice reduction
methods should be used. However, more investigation is needed to combine our
attack results with these LWE-estimators to efficiently recover the secret key.
We would like to investigate it in the future.

5.4 Possible Countermeasures

Although masking or shuffling countermeasures are unable to prevent our attack,
there are a few countermeasures that can be useful to thwart our attack. Below,
we list these countermeasures in two categories.

– Fault attack countermeasure on the LWE-based schemes: Recently, Berthet
et al. [11] propose a countermeasure named quasi-linear masking on Kyber
to prevent fault injection attacks together with side-channel attacks. This
countermeasure might be used to prevent our attack.

296 P. Mondal et al.

– Rowhammer Countermeasures: There have been various countermeasures of
RowHammer attacks proposed in the literature. The authors in the paper [33]
proposed Probabilistic Adjacent Row Activation (PARA), where the memory
controller is designed to refresh its adjacent rows with probability p (typi-
cally 1/2). The memory controller being probabilistic, the approach does not
require a complex data structure for counting the number of row activations.
Earlier in [53], it was shown that doubling the refresh rate and removing access
to clflush instruction are potential prevention techniques to RowHammer. An
interesting countermeasure to rowhammer has been proposed in Anvil [8]. If
the cache misses over a time interval is observed to be significantly high, then
the software module triggers sampling of the DRAM accesses. ANVIL selec-
tively performs a row refresh if the software module detects repeated accesses
to particular rows in the same bank. Another process, Target Row Refresh
(TRR), believed to be a definitive solution, can prevent RowHammer bit
flips [39] [1]. However, in the paper [26], the authors also find that consumer
CPUs rely on in-DRAM TRR and are vulnerable to many-sided RowHammer
attacks. They introduce TRRespass, which can autonomously discover intri-
cate hammering patterns to launch real-world attacks on numerous DDR4
DRAM modules available in the market. Till now, there is no concrete solu-
tion that can prevent the RowHammer bit flip problem. [1] J.-B. Lee, “Green
Memory Solution,” in Samsung Electronics, Investor’s Forum, 2014.

Acknowledgements. This work was supported in part by Horizon 2020 ERC
Advanced Grant (101020005 Belfort), CyberSecurity Research Flanders with refer-
ence number VR20192203, BE QCI: Belgian-QCI (3E230370) (see beqci.eu), and Intel
Corporation.

Angshuman Karmakar is funded by FWO (Research Foundation - Flanders) as a
junior post-doctoral fellow (contract number 203056/1241722N LV). Puja Mondal and
Angshuman Karmakar are also supported by C3iHub, IIT Kanpur.

References

1. Alagic, G., et al.: Status Report on the third round of the nist post-quantum
cryptography standardization process (2022). https://nvlpubs.nist.gov/nistpubs/
ir/2022/NIST.IR.8413-upd1.pdf. Accessed 26 Jun 2023

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learning with
Errors. Cryptology ePrint Archive, Report 2015/046 (2015). https://eprint.iacr.
org/2015/046

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange - a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Secu-
rity Symposium, USENIX Security 16, Austin, TX, USA, August 10–12, 2016,
pp. 327–343. USENIX Association (2016). https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/alkim

4. Aranha, D.F., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Tibouchi, M., Zapalow-
icz, J.-C.: GLV/gls decomposition, power analysis, and attacks on ECDSA sig-
natures with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 262–281. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45611-8_14

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1007/978-3-662-45611-8_14
https://doi.org/10.1007/978-3-662-45611-8_14

Rowhammer on Lattice-Base KEMs 297

5. Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., Yarom, Y.: LadderLeak:
breaking ECDSA with less than one bit of nonce leakage. In: Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security. CCS
2020, New York, NY, USA, pp. 225–242, Association for Computing Machinery
(2020). https://doi.org/10.1145/3372297.3417268

6. Aumasson, J.P., et al.: SPHINCS+: stateless hash-based signatures. https://
sphincs.org/. Accessed 28 Jun 2023

7. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on
RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S.,
Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_20

8. Aweke, Z.B., et al.: ANVIL: software-based protection against next-generation
rowhammer attacks. ACM SIGPLAN Notices 51(4), 743–755 (2016)

9. Baan, H., Bhattacharya, S., Fluhrer, S., Garcia-Morchon, O., Laarhoven, T., Riet-
man, R., Saarinen, M.-J.O., Tolhuizen, L., Zhang, Z.: Round5: compact and fast
post-quantum public-key encryption. In: Ding, J., Steinwandt, R. (eds.) PQCrypto
2019. LNCS, vol. 11505, pp. 83–102. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-25510-7_5

10. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_42

11. Berthet, P., Tavernier, C., Danger, J., Sauvage, L.: Quasi-linear Masking to Protect
Kyber against both SCA and FIA. IACR Cryptol. ePrint Arch. p. 1220 (2023).
https://eprint.iacr.org/2023/1220

12. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_8

13. Bos, J.W., et al.: Frodo: take off the ring! practical, quantum-secure key exchange
from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24–28, 2016, pp. 1006–1018.
ACM (2016). https://doi.org/10.1145/2976749.2978425

14. Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM
(2017). http://eprint.iacr.org/2017/634

15. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
kyber: first- and higher-order implementations. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(4), 173–214 (2021). https://doi.org/10.46586/tches.v2021.i4.
173-214

16. Chakraborty, A., Bhattacharya, S., Saha, S., Mukhopadhyay, D.: ExplFrame:
exploiting page frame cache for fault analysis of block ciphers. In: 2020 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2020, Grenoble,
France, March 9–13, 2020, pp. 1303–1306. IEEE (2020). https://doi.org/10.23919/
DATE48585.2020.9116219

17. Chakraborty, A., Bhattacharya, S., Saha, S., Mukhopdhyay, D.: Rowhammer
Induced Intermittent Fault Attack on ECC-hardened memory (2020). https://
eprint.iacr.org/2020/380

18. Cheon, J.H., Choe, H., Hong, D., Yi, M.: SMAUG: Pushing Lattice-based Key
Encapsulation Mechanisms to the Limits. Cryptology ePrint Archive, Paper
2023/739 (2023). https://eprint.iacr.org/2023/739

https://doi.org/10.1145/3372297.3417268
https://sphincs.org/
https://sphincs.org/
https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://eprint.iacr.org/2023/1220
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1145/2976749.2978425
http://eprint.iacr.org/2017/634
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.23919/DATE48585.2020.9116219
https://doi.org/10.23919/DATE48585.2020.9116219
https://eprint.iacr.org/2020/380
https://eprint.iacr.org/2020/380
https://eprint.iacr.org/2023/739

298 P. Mondal et al.

19. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with Side Information:
Attacks and Concrete Security Estimation. Cryptology ePrint Archive, Report
2020/292 (2020). https://eprint.iacr.org/2020/292

20. Daemen, J., Rijmen, V.: Rijndael for AES. In: The Third Advanced Encryption
Standard Candidate Conference, April 13–14, 2000, New York, New York, USA,
pp. 343–348. National Institute of Standards and Technology (2000)

21. D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: module-LWR based
key exchange, CPA-secure encryption and CCA-secure KEM (2018). http://eprint.
iacr.org/2018/230

22. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:
CRYSTALS - Dilithium: Digital Signatures from Module Lattices (2017). http://
eprint.iacr.org/2017/633

23. Fahr, M., et al.: When frodo flips: end-to-end key recovery on frodokem via
rowhammer. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. CCS 2022, New York, NY, USA, pp. 979–993.
Association for Computing Machinery (2022). https://doi.org/10.1145/3548606.
3560673

24. Fan, H., Wang, W., Wang, Y.: Cache attack on MISTY1. IACR Cryptol. ePrint
Arch. p. 723 (2021). https://eprint.iacr.org/2021/723

25. Fouque, P.A., et al.: Falcon: fast-fourier lattice-based compact signatures over
NTRU (2018). https://falcon-sign.info/falcon.pdf. Accessed 28 June 2023

26. Frigo, P., et al.: TRRespass: exploiting the many sides of target row refresh. In:
2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18–21, 2020, pp. 747–762. IEEE (2020). https://doi.org/10.1109/SP40000.
2020.00090

27. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013). https://doi.org/10.1007/s00145-
011-9114-1

28. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3_3

29. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its application
on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 359–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1_13

30. Hermelink, J., Pessl, P., Pöppelmann, T.: Fault-enabled chosen-ciphertext attacks
on Kyber. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021.
LNCS, vol. 13143, pp. 311–334. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92518-5_15

31. Islam, S., Mus, K., Singh, R., Schaumont, P., Sunar, B.: Signature correction
attack on Dilithium signature scheme. In: 7th IEEE European Symposium on
Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6–10, 2022, pp. 647–663.
IEEE (2022). https://doi.org/10.1109/EuroSP53844.2022.00046, https://doi.org/
10.1109/EuroSP53844.2022.00046

32. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum IND-CCA-secure
KEM without Additional Hash. Cryptology ePrint Archive, Report 2017/1096
(2017). https://eprint.iacr.org/2017/1096

33. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. ACM SIGARCH Comput. Archit. News 42(3),
361–372 (2014)

https://eprint.iacr.org/2020/292
http://eprint.iacr.org/2018/230
http://eprint.iacr.org/2018/230
http://eprint.iacr.org/2017/633
http://eprint.iacr.org/2017/633
https://doi.org/10.1145/3548606.3560673
https://doi.org/10.1145/3548606.3560673
https://eprint.iacr.org/2021/723
https://falcon-sign.info/falcon.pdf
https://doi.org/10.1109/SP40000.2020.00090
https://doi.org/10.1109/SP40000.2020.00090
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.1109/EuroSP53844.2022.00046
https://doi.org/10.1109/EuroSP53844.2022.00046
https://eprint.iacr.org/2017/1096

Rowhammer on Lattice-Base KEMs 299

34. KpqC: Korean post-quantum cryptography competition (2022). https://www.
kpqc.or.kr/competition.html. Accessed 28 Jun 2023

35. Kundu, S., D’Anvers, J., Beirendonck, M.V., Karmakar, A., Verbauwhede, I.:
Higher-order masked saber. In: Galdi, C., Jarecki, S. (eds.) SCN 2022. Lecture
Notes in Computer Science, vol. 13409, pp. 93–116. Springer, Cham (2022)

36. Kwong, A., Genkin, D., Gruss, D., Yarom, Y.: Rambleed: reading bits in memory
without accessing them (2020). https://doi.org/10.1109/SP40000.2020.00020

37. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-014-
9938-4

38. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

39. Micron: DDR4 SDRAM Datasheet (2016)
40. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X_31

41. Mujdei, C., Beckers, A., Bermundo, J., Karmakar, A., Wouters, L., Verbauwhede,
I.: Side-Channel Analysis of Lattice-Based Post-Quantum Cryptography: Exploit-
ing Polynomial Multiplication. IACR Cryptol. ePrint Arch. p. 474 (2022). https://
eprint.iacr.org/2022/474

42. Mus, K., Islam, S., Sunar, B.: QuantumHammer: a practical hybrid attack on
the luov signature scheme. In: Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security. CCS 2020, New York, NY, USA, pp.
1071–1084. Association for Computing Machinery (2020). https://doi.org/10.1145/
3372297.3417272

43. Mutlu, O., Kim, J.S.: RowHammer: A Retrospective. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 39(8), 1555–1571 (2020). https://doi.org/10.
1109/TCAD.2019.2915318

44. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_1

45. Pessl, P., Prokop, L.: Fault attacks on CCA-secure lattice KEMs. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021(2), 37–60 (2021). https://doi.org/10.46586/
tches.v2021.i2.37-60

46. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4), 317–344 (2003). https://doi.org/10.26421/QIC3.4-3

47. Rajendran, G., Ravi, P., D’Anvers, J., Bhasin, S., Chattopadhyay, A.: Pushing the
limits of generic side-channel attacks on LWE-based KEMs - parallel PC oracle
attacks on Kyber KEM and beyond. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2023(2), 418–446 (2023). https://doi.org/10.46586/tches.v2023.i2.418-446

48. Ravi, P., Chattopadhyay, A., Baksi, A.: Side-channel and Fault-injection attacks
over Lattice-based Post-quantum Schemes (Kyber, Dilithium): Survey and New
Results. IACR Cryptol. ePrint Arch. p. 737 (2022). https://eprint.iacr.org/2022/
737

49. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic Side-channel attacks on
CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020(3), 307–335 (2020), https://doi.org/10.13154/tches.v2020.i3.307-335

50. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip feng shui:
hammering a needle in the software stack. In: Proceedings of the 25th USENIX

https://www.kpqc.or.kr/competition.html
https://www.kpqc.or.kr/competition.html
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://eprint.iacr.org/2022/474
https://eprint.iacr.org/2022/474
https://doi.org/10.1145/3372297.3417272
https://doi.org/10.1145/3372297.3417272
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1007/11605805_1
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.26421/QIC3.4-3
https://doi.org/10.46586/tches.v2023.i2.418-446
https://eprint.iacr.org/2022/737
https://eprint.iacr.org/2022/737
https://doi.org/10.13154/tches.v2020.i3.307-335

300 P. Mondal et al.

Conference on Security Symposium. SEC 2016, pp. 1–18. USENIX Association,
USA (2016)

51. Regev, O.: Lecture notes: Lattices in computer science. https://cims.nyu.edu/
regev/teaching/lattices_fall_2009

52. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.
org/10.1145/359340.359342

53. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. Black Hat 15, 71 (2015)

54. Settana, M., Naila, A., Yaseen, H., Huwaida, T.: Cache-timing attack against AES
crypto-systems countermeasure using weighted average masking time algorithm. J.
Inf. Warfare 15(1), 104–114 (2016). https://www.jstor.org/stable/26487484

55. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society
(1994). https://doi.org/10.1109/SFCS.1994.365700

56. Tanaka, Y., Ueno, R., Xagawa, K., Ito, A., Takahashi, J., Homma, N.: Multiple-
valued plaintext-checking side-channel attacks on post-quantum KEMs (2022).
https://eprint.iacr.org/2022/940

57. Tatar, A., Giuffrida, C., Bos, H., Razavi, K.: Defeating software mitigations against
rowhammer: a surgical precision hammer. In: Bailey, M., Holz, T., Stamatogian-
nakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 47–66. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00470-5_3

58. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_44

59. Xiao, Y., Zhang, X., Zhang, Y., Teodorescu, R.: One bit flips, one cloud flops:
cross-VM row hammer attacks and privilege escalation. In: Holz, T., Savage, S.
(eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10–12, 2016, pp. 19–35. USENIX Association (2016). https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/xiao

60. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3
cache side-channel attack. In: Fu, K., Jung, J. (eds.) Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20–22, 2014,
pp. 719–732. USENIX Association (2014). https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom

https://cims.nyu.edu/ regev/teaching/lattices_fall_2009
https://cims.nyu.edu/ regev/teaching/lattices_fall_2009
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://www.jstor.org/stable/26487484
https://doi.org/10.1109/SFCS.1994.365700
https://eprint.iacr.org/2022/940
https://doi.org/10.1007/978-3-030-00470-5_3
https://doi.org/10.1007/978-3-642-34961-4_44
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

A Side-Channel Attack on a Higher-Order
Masked CRYSTALS-Kyber

Implementation

Ruize Wang(B), Martin Brisfors, and Elena Dubrova

KTH Royal Institute of Technology, Stockholm, Sweden
{ruize,brisfors,dubrova}@kth.se

Abstract. In response to side-channel attacks on masked implementa-
tions of post-quantum cryptographic algorithms, a new bitsliced higher-
order masked implementation of CRYSTALS-Kyber has been presented
at CHES’2022. The bitsliced implementations are typically more dif-
ficult to break by side-channel analysis because they execute a single
instruction across multiple bits in parallel. However, in this paper, we
reveal new vulnerabilities in the masked Boolean to arithmetic conver-
sion procedure of this implementation that make the shared and secret
key recovery possible. We also present a new chosen ciphertext construc-
tion method which maximizes secret key recovery probability for a given
message bit recovery probability. We demonstrate practical shared and
secret key recovery attacks on the first-, second- and third-order masked
implementations of Kyber-768 in ARM Cortex-M4 using profiled deep
learning-based power analysis.

Keywords: Public-key cryptography · Post-quantum cryptography ·
Kyber · LWE/LWR-based KEM · Side-channel attack

1 Introduction

CRYSTALS-Kyber is a key encapsulation mechanism (KEM) which is indistin-
guishable under an adaptive chosen-ciphertext attack (IND-CCA2-secure) in the
classical and quantum random oracle models [3]. The security of Kyber relies
on the hardness of the module learning with errors (M-LWE) problem that
comes from inserting unknown noise into otherwise linear equations. Kyber has
recently been selected for standardization by the National Institute of Standards
and Technology (NIST) [23] and included in the National Security Agency (NSA)
suite of cryptographic algorithms recommended for national security systems [1].

However, the theoretical IND-CCA2 security of Kyber KEM can potentially
be bypassed by a side-channel attack of its implementation executed on a phys-
ical device. Side-channel attacks on software [5,6,28,32,33,35,37,38,41,42] and
hardware [20,30] implementations of Kyber have been demonstrated. The dis-
covered vulnerabilities promoted stronger mitigation techniques against side-
channel attacks, e.g. [4,19,34], and helped strengthen Kyber implementations
that were released later [7,9,10]. In the improved implementations, all known vul-
nerabilities are typically patched. Indeed, the experiments presented in this paper
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 301–324, 2024.
https://doi.org/10.1007/978-3-031-54776-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_12

302 R. Wang et al.

show that side-channel information extracted from the higher-order masked
implementation of Kyber by Bronchain et al. [9] is more difficult to exploit
using previous methods.
Contributions: We discovered new vulnerabilities in a higher-order masked
implementation of Kyber by Bronchain et al. [9] that result in an effective mes-
sage/shared key recovery attack. These vulnerabilities are located in the masked
Boolean to arithmetic conversion procedure which is carried out during the re-
encryption step of decapsulation.

We also present a new chosen ciphertext construction method which maxi-
mizes secret key recovery probability for a given message bit recovery probability.
This method uses 3 × k chosen ciphertexts to extract the secret key of Kyber
from a masked implementation, where k is the module rank. While this number
is the same as in the chosen ciphertext construction method of Ravi et al. [28],
the new way of mapping message bits into the secret key coefficients can raise
the likelihood of recovering the full secret key by up to 39% compared to the
worst case.

We demonstrate practical shared and secret key recovery attacks on ω-order
masked implementations of Kyber-768 in ARM Cortex-M4 using profiled deep
learning-based power analysis, for ω ∈ {1, 2, 3}. The training of neural networks
is performed on traces captured from five profiling devices, which are different
from the device under attack (DUA). The message recovery is carried out using
the single-step method of Ngo et al. [24] which extracts the message directly,
without extracting each share explicitly. For ω = 3, we apply the recursive learn-
ing method of [13]; otherwise neural networks do not learn. Our experimental
results show that, for the first-order masked implementation run on the DUA,
we can recover the shared key from three traces with a close to 1 probability,
and the secret key from 18 traces with 0.94 probability.

The rest of this paper is organized as follows. Section 2 reviews previous work
on side-channel analysis of Kyber implementations. Section 3 gives a background
on Kyber algorithm. Section 4 defines the adversary model. Section 5 describes
the profiling and attack stages. Section 6 presents the equipment used in the
experiments. Section 7 analyses side-channel leakage of three different imple-
mentations of Kyber and describes new vulnerabilities in the implementation
of [9]. Section 8 presents neural network training strategy. Section 9 introduces
the new chosen ciphertext construction method. Section 10 summarizes exper-
imental results. Section 11 discusses possible countermeasures. Section 12 con-
cludes the paper.

2 Previous Work

Since the beginning of the NIST post-quantum cryptography standardization
process in 2016, many different side-channel attacks on software [6,33,35,37] and
hardware [20,30] implementations of Kyber have been presented. In response,
protected implementations have been developed such as [7,9–11,18,31].

In [28], near field EM based secret key recovery attacks on unprotected and
protected implementations of Kyber are described. In these attacks, Hamming

A Side-Channel Attack on a Higher-Order Masked Kyber 303

weight (HW)-based templates are constructed for the message decoding opera-
tion to recover the message bits. For secret key recovery, 3×k chosen ciphertexts
are required to identify each key coefficient uniquely, where k is the rank of the
module. It is also shown how a first-order masked implementation can be broken
in two steps, by extracting each share individually.

In [17], a chosen ciphertext side-channel attack on a first-order masked soft-
ware implementation Kyber combined with belief propagation is presented. The
attack can recover the secret key from k traces captured during the inverse NTT
step of decryption for a noise tolerance level σ ≤ 1.2 based on the HW leakage
on simulated data.

In [32] a chosen ciphertext side-channel attack is presented which uses codes
for detecting faulty positions in the initially recovered secret key. These positions
are further corrected with additional traces. An EM-based template attack on
an unprotected software implementation of Kyber-512 is demonstrated which
can recover the secret key using 1619 traces on average with 0.4 out of 512
faulty coefficients on average. Another chosen ciphertext construction method
for Kyber, using low density parity check codes, is described in [15]. It targets
masked message encoding using the implementation by Heinz et al [18].

Yet another interesting chosen ciphertext construction method is presented
in [27]. The total number of queries required for the secret key recovery is reduced
by using binary decision trees. However, the downside is that this method relies
on an unbalanced distribution of the coefficients of the secret key. In contract,
the chosen ciphertext construction method introduced in this paper is equally
applicable to algorithms with a uniform distribution of secret key coefficients.
Furthermore, it is applicable to masked implementations, whereas the method
of [27] is not.

In [5], a chosen ciphertext side-channel attack on a first-order masked and
shuffled software implementation of Kyber-768 on an ARM Cortex-M4 is demon-
strated, which can extract the secret key from 38,016 power traces. The main
idea is to recover shuffling indices 0 and 255, extract the corresponding two mes-
sage bits, and then cyclically rotate the message by modifying the ciphertext. In
this way, all message bits are extracted using 128 rotations.

In [37], a side-channel attack on the first-order masked implementation of
CRYSTALS-Kyber targeting the message encoding vulnerability found in [33] is
presented. In [6], side-channel attacks on two implementations of masked poly-
nomial comparison are demonstrated on the example of CRYSTALS-Kyber.

In [13], a message recovery attack on the higher-order masked implementation
of CRYSTALS-Kyber by Heinz et al. in [18] is presented. A new neural network
training method called recursive learning is introduced which constructs the
initial state for a neural network model based on the states of models trained
for the attacks on lower-order masked implementations.

3 Background

This section describes notation and Kyber algorithm specification from [3].

304 R. Wang et al.

Fig. 1. Kyber algorithms from [3] (simplified).

3.1 Notation

Let Zq be the ring of integers modulo a prime q and Rq be the quotient ring
Zq[X]/(Xn + 1). We use regular font letters for elements in Rq, bold lower-
case letters for vectors with coefficients in Rq, and bold upper-case letters for
matrices. The transpose of a vector v (or matrix A) is denoted by vT (or AT).
The ith entry of a vector v is denoted by v[i]. The polynomial multiplication is
denoted by “ ·”. The Boolean XOR is denoted by “⊕”. The term �x� stands for
rounding of x to the closest integer with ties being rounded up.

The term x ← D(S; r) stands for sampling x from a probability distribution
D over a set S using seed r. The uniform distribution is denoted by U . The
centered binomial distribution with parameter μ is denoted by Bμ.

3.2 Kyber Algorithm

Kyber [3] consists of a chosen-plaintext attack (CPA)-secure PKE scheme,
KYBER.CPAPKE, and a CCA-secure KEM scheme, KYBER.CCAKEM, which is
built on the top of KYBER.CPAPKE using a version of the Fujisaki-Okamoto
(FO) transform [14]. These schemes are described in Fig. 1.

Inputs and outputs to all API functions of Kyber are byte arrays. Kyber
works with vectors of ring elements in Rk

q , where k is the rank of the module
defining the security level. There are three versions of Kyber: Kyber-512, Kyber-
768 and Kyber-1024, for k = 2, 3 and 4, respectively, see the specification [3] for
details. In this paper, we focus on Kyber-768.

Kyber uses the number-theoretic transform (NTT) to perform multiplica-
tions in Rq efficiently. The NTT details are omitted from Fig. 1 to simplify the
pseudocode.

A Side-Channel Attack on a Higher-Order Masked Kyber 305

The Decodel function decodes an array of 32l bytes into a polynomial with
n coefficients in the range {0, 1, · · · , 2l − 1}. The Encodel function is the inverse
of Decodel. It first encodes each polynomial coefficient individually and then
concatenates the output byte arrays.

The Compressq(x, d) and Decompressq(x, d) functions, for x ∈ Zq and d <
�log2(q)�, are defined by:

Compressq(x, d) = �(2d/q) · x�mod+2d,

Decompressq(x, d) = �(q/2d) · x�.
The functions G and H represent the SHA3-512 and SHA3-256 hash functions,

respectively. The KDF is a key derivation function. It is realized by SHAKE-256.

4 Adversary Model

An adversary model is typically defined using three components: assumptions,
goals and capabilities [12].
Assumptions: We assume that an adversary has a physical access to the DUA
which runs the Kyber KEM decapsulation algorithm. We also assume that the
adversary possesses fully controllable profiling devices that are similar to the
DUA. In addition, we assume that the keys (pk, sk) are static.
Capabilities: The adversary is a clever outsider who has equipment and tools
for power analysis, as well as expertise in side-channel attacks, Kyber KEM, and
deep learning. The adversary is capable of eavesdropping on the channel between
the DUA and the server and query the DUA with chosen ciphertexts.
Goals: The goal of the adversary is to extract the shared key K and/or the
long-term secret key sk of Kyber from its implementation running on the DUA.
Note that the long-term secret key recovery implies the shared key recovery, but
not vice versa.

5 Attack Description

Figure 2 illustrates the main steps of the presented attack.

5.1 Profiling Stage

At the profiling stage, the adversary first uses KYBER.CCAKEM.KeyGen() to
generate a key pair (pkp, skp). Then he/she selects uniformly at random a mes-
sage mp ∈ {0, 1}256 and uses KYBER.CCAPKE.Enc() to compute a ciphertext cp

encrypting mp. Knowing the message contained in cp is necessary for creating a
labeled dataset for neural network training.

These steps are repeated multiple times until a profiling dataset of the desired
size is gathered. Note that a labeled dataset can be created either using a static
key pair, or a set of key pairs which is re-generated for each message mp. This
does not affect the success probability of the presented attack.

306 R. Wang et al.

Fig. 2. Attack scenario.

Then, the adversary runs KYBER.CCAKEM.Decaps() on a profiling device to
decapsulate each cp in the dataset and measure the total power consumption of
the device during the execution of the algorithm. The resulting power trace Tp

is recorded.
Finally, the adversary uses the resulting labeled data set to train a neural

network M which learns the leakage profile of KYBER.CCAKEM.Decaps() in
order to predict message bit values from power traces.

5.2 Attack Stage

To recover the shared key K, the adversary eavesdrops on the communication
channel between the two parties to obtain the public key pk and the ciphertext
c containing the encapsulated K. The adversary also measures the power con-
sumption of the DUA during the execution of the decapsulation algorithm with
c as input. The segments of the resulting power trace T corresponding to the
processing of the message m encrypted in c are extracted. These segments are
given as input to the model M trained at the profiling stage to predict the bits
of m. Once m is recovered, the pre-key K̂ is derived as (K̂, r) = G(m,H(pk))
and then the shared key K is computed as K = KDF(K̂,H(c)).

To recover the secret key sk, the DUA is queried with chosen ciphertexts
c1, c2, . . . and the power consumption of the DUA during the execution of the
decapsulation algorithm is measured. We describe the method for constructing
chosen ciphertexts in Sect. 9. The messages m1,m2, . . . are extracted from the
recorded power traces T1, T2, . . . similarly to the case of shared key recovery

A Side-Channel Attack on a Higher-Order Masked Kyber 307

Fig. 3. The equipment used in the experiments. The devices D1–D5 are used for the
profiling and D6 is used for the attack.

attack. A difference between the two attacks is that chosen ciphertexts are mal-
formed and thus do not pass the FO transform. This is however not important
for the presented attack since it targets an earlier step of the decapsulation algo-
rithm (re-encryption). Finally, the extracted messages m1,m2, . . . are mapped
into the coefficients of the secret key according to the mapping table of the
chosen ciphertexts construction method.

6 Experimental Setup

The equipment used in our experiments is shown in Fig. 3. It consists of the
ChipWhisperer-Pro, the CW308 UFO main board and six CW308T-STM32F4
target boards. Each target board contains a STM32F415-RGT6 chip based on
ARM Cortex-M4 32-bit RISC core operating at a frequency of 24MHz. The
traces are acquired with the sampling rate of 96MS/s.

Three C implementations of Kyber are used in the experiments:

1. The unprotected implementation by Kannwischer et al. [21].
2. The first-order masked implementation by Heinz et al. [18].
3. The higher-order masked implementation by Bronchain et al. [9].

All implementations are compiled using arm-none-eabi-gcc with the highest
optimization level -O3 (recommended default).

7 Leakage Analysis

The presented attack targets the message encoding operation at the re-
encryption step of the FO transform. In this section, we first analyse the unpro-
tected implementation of the message encoding operation from the pqm4 library
for the ARM Cortex-M4 developed by Kannwischer et al. [21]. Then, we compare

308 R. Wang et al.

Fig. 4. The C code of poly_frommsg() procedure from [21].

Fig. 5. Distributions of power consumption during the processing of a single message
bit by poly_frommsg() procedure of the unmasked implementation of [21].

the realizations of message encoding in the implementations of Heinz et al. [18]
and Bronchain et al. [9]. We show that in the implementation of [9], the leakage
is significantly weaker than the one in [18]. Thus, the former implementation is
more difficult to break than the latter. The presented attack would not be as
effective if we would use only previously known leakage points. However, we dis-
covered two new leakage points in the masked Boolean to arithmetic conversion
procedure of the implementation of [9] that result in an effective attack.

7.1 Unprotected Message Encoding

The message encoding operation converts an array of 32 bytes representing
a message m into a polynomial f in which each of the 256 coefficients, f [j], is
equal to f [j] = �q/2�·m[j], where m[j] is the jth bit of m for j ∈ {0, 1, · · · , 255},
see Decompressq(Decode1(m), 1) at line 5 of KYBER.CPAPKE.Enc() in Fig. 1.

In the unprotected implementation of Kyber by Kannwischer et al. in [21],
the message encoding is realized by the procedure called poly_frommsg() shown
in Fig. 4. It contains two nested for-loops in which each polynomial coefficient is
computed individually. The intermediate variable mask is used to replace the if-
then-else-statement in order to guarantee a constant processing time regardless
of the message bit value. Otherwise, a timing attack can be mounted to extract
the message bit.

However, in a software implementation, the power consumption may differ
if the Hamming weights of the two processed values differ. The intermediate
variable mask is computed based on the message bit, see line 3 in Fig. 4. Its value

A Side-Channel Attack on a Higher-Order Masked Kyber 309

Fig. 6. The C code of masked_poly_frommsg() procedure from [18].

is either 0 (0x0000) or -1 (0xFFFF). The corresponding polynomial coefficient
computed from the mask in the next line takes values either 0 or (q+1)/2. Since in
both cases the difference in the Hamming weights of two values is large, one can
recover the message bits by analysing power consumption [2,28,33]. Such type
of leakage is referred to as determiner leakage [33], because the mask/polynomial
coefficient values are determined by the corresponding message bit.

Figure 5 shows the distributions of power consumption during the processing
of a single message bit by poly_frommsg() procedure. The distributions are
plotted based on 10K traces at the trace point with the maximum absolute t-test
score. The overlap in the plots of message bits with values 0 and 1 determines
the difficulty of distinguishing between these values. We can see that there is
almost no overlap. This means that two values can be distinguished easily.

7.2 Masked Message Encoding

A common way to decorrelate a sensitive variable from the power consump-
tion is to split the variable into multiple shares [7,11,25]. For the ω-order
masked message encoding, the message m is split into ω + 1 Boolean shares
{m0,m1, · · · ,mω}, such that m = m0 ⊕ m1 · · · ⊕ mω. For each Boolean share
mi, i ∈ {0, 1, · · · , ω}, the corresponding arithmetic share fi is computed so that
the jth coefficient of the polynomial f satisfies:

f [j] =
ω∑

i=0

fi[j] mod q = �q/2� · m[j], (1)

for all j ∈ {0, 1, · · · , 255}, where “
∑

” is the arithmetic addition.

Implementation of Masked Message Encoding in [18]. The first-order
masked implementation of Heinz et al. [18] adopts the masking strategy of [25].
The message m is split into two Boolean shares {m0,m1} and the corresponding
arithmetic shares {f0, f1} are computed separately. If both Boolean shares have

310 R. Wang et al.

Fig. 7. The C code of masked_poly_frommsg() procedure from [9].

value 1, then both resulting polynomial coefficients have value �q/2�, which does
not satisfy Eq. (1) due to the rounding. To fix this, an extra term is added1.

The C code of the procedure masked_poly_frommsg() realizing the message
encoding in the implementation of [18] is shown in Fig. 6. We can see that two
nested for-loops of the procedure poly_frommsg() in Fig. 4 are repeated twice
to compute the arithmetic shares {f0, f1}. Therefore, the leakage of each share
is similar to the one of the unprotected version. Several attacks exploiting this
leakage have been demonstrated recently [13,15].

Implementation of Masked Message Encoding in [9]. The higher-order
masked implementation of Bronchain et al. [9] employs the masking strategy
of [31]. It uses a masked Boolean to arithmetic conversion algorithm to transform
the Boolean shares {m0,m1, · · · ,mω} into the arithmetic shares {f0, f1, · · · , fω}
such that

∑ω
i=0 fi[j] mod q = m[j], for all j ∈ {0, 1, · · · , 255}.

1 We refer to [18,25] for details since our leakage analysis does not rely on that.

A Side-Channel Attack on a Higher-Order Masked Kyber 311

Fig. 8. Distributions of power consumption during the processing of a single bit of
Boolean shares by masked_poly_frommsg() in the first-order masked implementations
of [18] (top) and [9] (bottom).

Figure 7 shows the C code of the procedure masked_poly_frommsg()
realizing the message encoding in the implementation of [9]. First, each
Boolean share bit is extracted from the corresponding byte, see line 4 of
masked_poly_frommsg() in Fig. 7. This is similar to the lines 3 and 9 of
masked_poly_frommsg() procedure from [18] in Fig. 6. However, an essential
difference is that, instead of computing the variable mask, the implementation
of [9] only extracts each Boolean share bit and performs a masked Boolean to
arithmetic conversion latter on. Hence, the difference in the Hamming weight
of values computed in line 4 of Fig. 7 is only one, while the difference in the
Hamming weight of mask values computed in lines 3 and 9 of Fig. 6 is 16. Con-
sequently, it is more difficult to extract the Boolean share bits from the imple-
mentation of [9] by power analysis using the leakage related to the line 4 of
Fig. 7.

The plots at the bottom of Fig. 8 show the distributions of power
consumption during the processing of a single bit of Boolean shares by
masked_poly_frommsg() procedure of the implementation of [9]. The distribu-
tions are plotted based on 10K traces captured from a profiling device running
a first-order masked implementation with known masks at the trace point with
the maximum absolute t-test score. Note that these traces are used for leakage
analysis only. We do not use them for profiling, or in the attack.

The plots at the top of Fig. 8 show similar distributions for the implementa-
tion in [18]. One can see the significant difference in the overlapping areas of the
plots of Boolean share bits with values 0 and 1. In the implementation of [18]
there is almost no overlap, while in the implementation of [9] the overlap is large.

312 R. Wang et al.

Fig. 9. T-test results for a single bit of each Boolean share of masked_poly_frommsg()
procedure of the first- (top), second- (middle), third-order (bottom) masked implemen-
tations of [9]. Traces are acquired from a profiling device running implementations with
known masks (used for leakage analysis only).

7.3 Finding New Leakage Points

The C code of masked Boolean to arithmetic conversion procedure
secb2a_1bit() in Fig. 7 contains two operations that are directly related to
the individual bits of each share. One is located in b2a_qbit() procedure, see
lines marked in red. In line 1, the bit value of the first Boolean share x[0] is
copied to the first arithmetic share a[0]. In line 3, all bit values of shares x[i],
i ∈ {1, . . . , nshares − 1}, are given as input to secb2a_qbit_n(), one by one,
where nshares is the number of shares.

Another operation related to individual bits of each share is located in
secb2a_qbit_n() procedure. The bit value of the Boolean share x[i] is pro-
cessed i+1 times in the for-loop, see lines 2–6 of secb2a_qbit_n() in Fig. 7. In
line 4, the value of 2*b[j]*x is computed and subtracted from the intermediate
value c[j]. Therefore, the Hamming weight of c[j] does not change if x = 0.
Otherwise, for x = 1, it is likely to change2.

To see if the two above-mentioned operations leak side-channel information,
we performed t-test of masked_poly_frommsg() procedure for the first-, second-
and third-order masked implementations with known masks captured from a
profiling device. Figure 9 shows t-test results for a single bit of each Boolean
2 The Hamming weight of an arithmetic share may remain the same if a non-zero

value is subtracted.

A Side-Channel Attack on a Higher-Order Masked Kyber 313

share on 10K traces. The leakage points can be grouped into three types. Peaks
on the left-hand side of the black vertical line are related to the extraction of
a single Boolean share bit from a byte (line 4 of masked_poly_frommsg() in
Fig. 7). Such a leakage is also present in the unprotected implementation of [21]
(line 3 in Fig. 4) and the masked implementation of [18] (line 3 and 9 in Fig. 6).

Peaks on the right-hand side of the black vertical line, marked by “①”
and “②”, are related to the processing of individual Boolean share bits by the
two above-mentioned operations (lines 1 and 3 of b2a_qbit() and line 4 of
secb2a_qbit_n()). We call them the direct-copy leakage and the additive leak-
age, respectively. They are specific for the implementation of arbitrary-order
masked Boolean to arithmetic conversion introduced in [9]. To the best of our
knowledge, until now nobody has reported that these leakages are exploitable.

For direct-copy leakage, since the first Boolean share x[0] is assigned to the
arithmetic share a[0] directly (line 1 of b2a_qbit()), the distance between the
peaks corresponding to x[0] and x[1] is smaller than the distance between the
peaks corresponding to x[i] and x[i+1], for any i > 0.

For additive leakage, the number of peaks is equal to the number of times the
share is processed in the for-loop (line 4 of secb2a_qbit_n()). For example, at
the bottom plot of Fig. 9 representing the third-order masked implementation,
there are two orange peaks (second share), three green peaks (third share), four
red peaks (forth share) marked by ‘②”. There is no peak for the first share
since secb2a_qbit_n() is not called to process it. The fact that a change of
the Hamming weight of a Boolean share does not always lead to the change of
the Hamming weight of the arithmetic share may explain why in Fig. 9 additive
leakage is weaker than direct-copy leakage.

Next we compare distributions of power consumption of the direct-copy and
additive leakages on the example of the first-order masked implementation, see
Fig. 10. The distributions are plotted based on 10K traces at the trace point with
the maximum absolute t-test score. These traces are acquired from a profiling
device running the implementation with known masks during the execution of
masked Boolean to arithmetic conversion. We can see that, for direct-copy leak-
age, the overlap in the plots is smaller than the one for additive leakage. This
is consistent with t-test results in Fig. 9. Since the overlap is not complete, both
types can be exploited for message recovery.

In the message recovery attack presented in Sect. 10.1, we use both direct-
copy and additive leakages as well as the leakage in the bit extraction part.

8 Neural Network Training

This section describes our neural network training strategy. It is a combination
of techniques employed in previous profiling deep learning-based side-channel
attacks on PQC and symmetric cryptographic algorithms, with some differences
which we highlight.

314 R. Wang et al.

Fig. 10. Distributions of power consumption during the processing of a single bit of
Boolean shares by secb2a_1bit() in the first-order masked implementation of [9] for
the direct-copy (top) and additive (bottom) leakage.

Following [13], we train a single universal neural network model for message
bit prediction on cut-and-joined and standardized traces. A multilayer percep-
tron (MLP) with an architecture similar to the one in [13] is used. A difference
from [13] is that we use traces from five profiling devices in the training set.
Such an approach is used in the side-channel attack on AES presented in [39].
Another difference from [13] is that we use three leakage points, so cut-and-join
is a bit more tedious to perform.

8.1 Trace Acquisition and Pre-processing

Since masked_poly_frommsg() procedure processes the Boolean share bits one-
by-one, it is possible to train a universal model for predicting all bits except the
first and the last. The trace shape for the first/last bits typically differ from the
rest because their previous/next instructions differ [24].

The complete execution of masked_poly_frommsg() procedure in the imple-
mentation of [9] does not fit into the buffer of ChipWhisperer-Pro which we use
for trace acquisition. Therefore, for the first- and second-order masked imple-
mentation we capture traces containing the execution of the first 33 bits only
and use a union of intervals corresponding to the bits 1–32 for training. For the
third-order masked implementation, we capture traces containing the execution
of the first 17 bits only and use a union of intervals corresponding to the bits
1–16 for training. In all cases, the interval is a concatenation of three segments
covering the three leakage points described in Sect. 7.3.

Since the implementation of [9] uses a true random number generator
(TRNG) with a range check for generating masks, the raw traces are misaligned.
We synchronize the traces by cross-correlating with templates, one for each leak-
age point. We also apply standardization to traces.

To minimize the total number of traces required from the DUA, we perform
profiling on different devices. We use five profiling devices, D1–D5, in order to

A Side-Channel Attack on a Higher-Order Masked Kyber 315

Table 1. MLP architecture used for message recovery. The input size is size = 590, 1000
and 1610 for the first-, second- and third-order masked implementations, respectively.

Layer type Output shape

Batch Normalization 1 size

Dense 1 512
Batch Normalization 2 512
ReLU 512
Dense 2 256
Batch Normalization 3 256
ReLU 256
Dense 3 128
Batch Normalization 4 128
ReLU 128
Dense 4 2
Softmax 2

reduce the negative effect of inter-device variation on neural network’s classifica-
tion accuracy. The benefits of such a multi-source profiling are well-known [36].

8.2 Network Architecture and Training Parameters

The neural networks with the architecture listed in Table 1 are trained with
a batch size of 1024 for a maximum of 100 epochs using early stopping with
patience 10. We use Nadam optimizer with a learning rate of 0.01 and a numerical
stability constant epsilon = 1e−08. Categorical cross-entropy is used as a loss
function to evaluate the network classification error. 70% of the training set is
used for training and 30% is left for validation. Only the model with the highest
validation accuracy is saved.

9 New Chosen Ciphertext Construction Method

It is known that the secret key of an LWE/LWR KEM algorithm can be derived
from messages recovered from chosen ciphertexts. Many different methods for
constructing the chosen ciphertexts have been presented in the past, including [5,
24,28,29,41]. These methods uniquely map each secret key coefficient into a
b-bit binary vector composed from the message bits recovered from b chosen
ciphertexts. Some methods, e.g. [5,24], impose an additional requirement that
b-bit binary vectors are codewords of some linear code with the code distance
Cd. In the latter case, for each secret key coefficient, c errors in the recovered
message bits can be corrected and d additional errors can be detected, where
2c + d + 1 ≤ Cd. The method [5] also minimizes the Hamming weight of the
chosen ciphertexts.

316 R. Wang et al.

However, none of the previous chosen ciphertext construction methods map
the secret key coefficients into codewords so that the full secret key recovery
probability is maximized for a given message bit recovery probability. We intro-
duce such a method in this section.

First we explain the method of composing chosen ciphertexts and then derive
a formula relating the probability of the secret key recovery to the probability of
a message bit recovery. Using this formula, we select a best codeword for each key
coefficient which maximizes the secret key recovery probability. Finally, we show
that there is a considerable difference between secret key recovery probabilities
of the best and the worst mappings.

9.1 Constructing Chosen Ciphertexts

In Kyber-768, the secret key s consists of three polynomials s = (s0, s1, s2),
and the ciphertext (u, v) consists of three polynomials u = (u0, u1, u2) and one
polynomial v. To recover 256 coefficients of si, one of the polynomials of u is set
to a non-zero constant k1 and the other two polynomials of u are set to zero:

u =

⎧
⎪⎨

⎪⎩

(k1, 0, 0) ∈ R3×1
q for i = 0,

(0, k1, 0) ∈ R3×1
q for i = 1,

(0, 0, k1) ∈ R3×1
q for i = 2.

All 256 coefficients of v are set to the same constant k0:

v = k0

255∑

j=0

xj ∈ R1×1
q .

The constants (k1, k0) inducing a given mapping between the secret key coef-
ficients and message bits can be found by a brute-force search through all legal
pairs (k1, k0) (if the solution exists). Next we derive a formula which helps select
the best mapping that maximizes the secret key recovery probability.

9.2 Selecting Optimal Mapping

Let p be the probability of recovering a single message bit, and d(x, x′) be the
Hamming distance between the codewords representing the secret key coefficients
x and x′, for x, x′ ∈ {−2,−1, 0, 1, 2}.

Given a codeword composed from b recovered message bits, there are three
possible outcomes:

1. The codeword is recovered correctly (no errors). We denote this probability
by pc.

2. The recovered codeword contains errors and matches the codeword represent-
ing another secret key coefficient (undetected error). We denote this proba-
bility by pu.

3. The recovered codeword contains errors but does not match any codewords
of another secret key coefficients (detected error). We denote this probability
by pd.

A Side-Channel Attack on a Higher-Order Masked Kyber 317

Table 2. Mappings which give the maximum (left) and the minimum psk (right).

Cbest: (k1, k0) −2 −1 0 1 2

(1977,208) 1 1 0 1 0
(627,208) 1 1 0 0 1
(731,1040) 0 1 1 0 0

Cworst: (k1, k0) −2 −1 0 1 2

(104,1040) 1 1 1 1 0
(419,416) 1 1 0 0 0
(940,1040) 0 1 1 0 1

The secret key coefficients are generated using the centered binomial dis-
tribution, see line 2 of KYBER.CPAPKE.KeyGen() in Fig. 1. For Kyber-768, the
probability of occurrence of x ∈ {−2,−1, 0, 1, 2}, px, is given by:

px =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1/16, for x = −2
4/16, for x = −1
6/16, for x = 0
4/16, for x = 1
1/16, for x = 2

(2)

Thus, the expected probabilities of three outcomes listed above are given by:

pc =
∑

x

px · pb = pb (3)

pu =
∑

x

px ·
∑

x′,x′ �=x

(1 − p)d(x,x′)pb−d(x,x′) (4)

pd = 1 − pc − pu (5)

Let e be the maximum tolerable number of detected errors. Then, for Kyber-
768, the probability of full secret key recovery is:

psk =
e∑

i=0

(
768
i

)
pi

d · p768−i
c (6)

By a brute-force search through all possible codewords of the length b = 3
for each secret key coefficient, one can find a mapping Cbest which results in
the highest psk and a mapping Cworst which gives the lowest psk. Examples of
such mapping are listed in Table 2. They are not unique. One can see that, for
the optimal mapping Cbest, d(0, x) ≥ 2 for all for x ∈ {−2,−1, 1, 2}, while for
Cworst, d(0, x′) = 1, for x′ ∈ {−1, 1, 2}. Thus, single-bit errors are more likely to
be undetected in Cworst case.

Figure 11 plots psk as a function of p for the mappings Cbest and Cworst

(plots of other mappings would be in between the two) and a fixed e = 16.
For 0 < p < 1, Cbest always results in a higher psk. The difference between
the two mappings first grows as p increases, reaching the maximium of 39% at
p = 0.9991. Then, it starts decreasing and the plots converge at p = 1.

318 R. Wang et al.

Fig. 11. Secret key recovery probability, psk, as a function message bit recovery prob-
ability, p, for the best and worst mappings.

10 Experimental Results

This section presents the results of message and secret key recovery attacks on
the higher-order masked implementation of Kyber-768 [9] in ARM Cortex-M4.

10.1 Message Recovery Attack

Using the strategy described in Sect. 8, we trained neural network models for
message bit recovery. For each ω-order masked implementation in the experi-
ments, a single universal model was trained for recovering all bits. The mod-
els were trained using power traces captured from five profiling devices, Di,
i ∈ {1, 2, . . . , 5}. For each implementation, one fifth of training traces were cap-
tured from each profiling device. As we mentioned in Sect. 8.1, the complete
execution of masked_poly_frommsg() procedure in the implementation of [9]
does not fit into the buffer of ChipWhisperer-Pro. For ω = 1 and 2, we captured
2K traces from each Di and trained the models based on the message bits 1–32.
For ω = 3, 4K traces were captured from each Di and the models were trained
based on the message bits 1–16. In all three cases, after the cut-and-join, the
total number of training traces is 320K.

The models were tested on power traces captured from the DUA D6 for 1000
ciphertexts encrypting messages selected at random. For each ciphertext, we
repeated the decapsulation twenty times and recorded the corresponding power
traces. We use N to denote the number of repetitions of the same decapsulation.

Table 3 summarizes the results of message recovery attacks on the first-
order masked implementation. It lists the empirical average message bit recov-
ery probability, pbit, and the full message recovery probability, pm, estimated as
pm = (pbit)256, for different number of repetitions N .

A Side-Channel Attack on a Higher-Order Masked Kyber 319

Table 3. Empirical results of message recovery attack on the first-order masked imple-
mentation.

Repetitions N = 1 N = 2 N = 3

Avg. message bit recovery prob., pbit 0.99928 0.99997 1
Est. full message recovery prob., pm 0.83 0.99 1

Table 4. Empirical results of message recovery attack on the second-order masked
implementation.

Repetitions N = 1 N = 2 N = 4 N = 8 N = 16

Avg. message bit recovery prob., pbit 0.97203 0.99519 0.99953 0.99959 0.99994
Est. full message recovery prob., pm 0 0.29 0.89 0.90 0.98

Table 5. Empirical results of message recovery attack on the third-order masked imple-
mentation.

Repetitions N = 1 N = 2 N = 4 N = 8 N = 16

Avg. message bit recovery prob., pbit 0.95356 0.98219 0.99356 0.99819 0.99994
Est. full message recovery prob., pm 0 0.01 0.19 0.63 0.98

We can see that the estimated full message recovery probability is 0.83 for
a single-trace attack. When the number of repetitions increases to three, pm

reaches 1. As observed in [13], side-channel attacks of masked implementations
benefit from the independence of errors in repeated measurements due to random
mask update at each execution.

Table 4 and 5 show the results of message recovery attacks on the second-
and third-order masked implementations. We increase the number of repetitions
exponentially since higher-order masking is more difficult than first-order to
break. One can see that, for both ω = 2 and ω = 3, the empirical full message
recovery probability pm reaches 0.98 for sixteen repetitions.

Note that the ChipWhisperer target board used in our experiments has a low
noise. For the attacks in noisier conditions, convolutional neural networks [22,26],
or transformers [8,16] may be more suitable neural network architectures. Noise
reduction, e.g. by using autoencoders [22,40], may also be helpful.

10.2 Secret Key Recovery Attack

In order to evaluate the effectiveness of the new method of mapping mes-
sage bits into secret key coefficients, we generated 100 different secret and
public key pairs for ω = 1, 2 and 50 different key pairs for ω = 3 using
KYBER.CCAKEM.KeyGen(), respectively. According to Tables 3, 4 and 5, three
and 16 repetitions should give a close to 1 message bit recovery probability for
ω = 1 and ω = 2, 3. Then, we captured from the DUA D6 the corresponding

320 R. Wang et al.

Table 6. Empirical results of secret key recovery attack on the first-order masked
implementation.

Repetition Cbest mapping Cworst mapping
pbit psk Enum pbit psk Enum

N = 1 0.99761 0.26 516 0.99746 0 >516

N = 2 0.99987 0.94 54 0.99989 0.84 51

N = 3 0.99995 0.98 54 0.99997 0.97 51

Table 7. Empirical results of secret key recovery attack on the second-order masked
implementation.

Repetition Cbest mapping Cworst mapping
pbit psk Enum pbit psk Enum

N = 1 0.97466 0 >516 0.97365 0 >516

N = 2 0.99600 0.10 511 0.99570 0 53

N = 4 0.99970 0.79 52 0.99960 0.60 51

N = 8 0.99975 0.81 55 0.99971 0.72 51

N = 16 0.99997 0.97 51 0.99996 0.92 51

Table 8. Empirical results of secret key recovery attack on the third-order masked
implementation.

Repetition Cbest mapping Cworst mapping
pbit psk Enum pbit psk Enum

N = 1 0.94794 0 >516 0.95095 0 >516

N = 2 0.98108 0 >516 0.98215 0 >516

N = 4 0.99290 0 >516 0.99297 0 >516

N = 8 0.99793 0.36 57 0.99781 0.02 51

N = 16 0.99977 0.82 52 0.99979 0.74 51

number of traces for each key pair during the decapsulation of chosen ciphertexts
constructed for the mappings Cbest and Cworst defined in Table 2.

Table 6 shows the results for the mappings Cbest and Cworst for the first-order
masked implementation. We can see that the difference in the average message
bit recovery probabilities, pbit, of Cbest and Cworst for a fixed N is insignificant.
However, due to the different mappings Cbest and Cworst, the difference in full
secret key recovery probabilities, psk, is significant for N = 1. For Cbest, we get
psk = 0.26 with the maximum enumeration of 516. In contract, for Cworst, none
of the 100 secret keys can be recovered. As N increases, the difference between
Cbest and Cworst decreases.

A Side-Channel Attack on a Higher-Order Masked Kyber 321

Table 7 shows the results of secret recovery attack on the second-order masked
implementation. We can see that, for Cbest, 16 repetitions instead of three, are
required to reach the full secret key recovery probability psk = 0.97. We can also
see that, for N = 4, the difference in psk between Cbest and Cworst is maximum,
19%.

Similarly, Table 8 shows the results of secret recovery attack on the third-
order masked implementation. The probability of the full secret key recovery is
psk = 0.82 using Cbest when N = 16. The gap in psk between Cbest and Cworst

is maximum, 34%, for N = 8.

11 Countermeasures

The presented secret key recovery attack would not be possible if the decapsulat-
ing device could refuse decrypting the chosen ciphertexts. This can be realized
by authenticating the ciphertexts e.g. using the Encrypt-then-Sign method pro-
posed by Azouaoui et al. [4], or subjecting the ciphertexts to the minimal range
check [41].

Another possibility is to update the keys (pk, sk) for each new shared key
establishment session rather than keeping them static. In this scenario, the
shared key becomes the primary attack target. Note, however, that the dynamic
keys (pk, sk) make the likelihood of recovering the shared key less likely, but not
impossible. For instance, for the first-order masking, the attacker is expected
to recover the shared key from a single trace with the probability of 26% (see
Table 6). Since the success probability grows quickly if the decapsulation can be
repeated multiple times, designing a mechanism which prevents repeated decap-
sulations of the same ciphertext could be considered as an option.

The presented message recovery attack would be more difficult if the proce-
dure masked_poly_frommsg() were bitsliced. Using a TRNG with a range check
for generating masks is an excellent design choice because the resulting traces’
misalignment creates an extra hurdle for the attacker.

12 Conclusion

We demonstrated practical shared and secret key recovery attacks on the higher-
order masked implementation of Kyber by Bronchain et al. [9] by profiled deep
learning-based power analysis.

We discovered new vulnerabilities in the implementation of arbitrary-order
masked Boolean to arithmetic conversion introduced in [9]. Note that such an
implementation is applicable not only to Kyber, but also to any algorithm using
masked Boolean to arithmetic conversion. Our work shows that, to resist power
analysis, the implementation needs to be further strengthened.

Another contribution is the chosen ciphertext construction method that max-
imizes the likelihood of recovering the secret key for a given message bit recovery
probability. The new way of mapping message bits into the secret key coefficients
can raise the probability of recovering the secret key by up to 39% compared to
the worst case.

322 R. Wang et al.

Acknowledgments. This work was supported in part by the Swedish Civil Contin-
gencies Agency (Grant No. 2020-11632) and the Swedish Research Council (Grant No.
2018-04482).

References

1. Announcing the commercial national security algorithm suite 2.0. National Security
Agency, U.S Department of Defense, September 2022. https://media.defense.gov/
2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

2. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with a
single trace. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp.
189–205. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_11

3. Avanzi, R., et al.: CRYSTALS-Kyber algorithm specifications and supporting
documentation (2021). https://pq-crystals.org/kyber/data/kyber-specification-
round3-20210131.pdf

4. Azouaoui, M., Kuzovkova, Y., Schneider, T., van Vredendaal, C.: Post-quantum
authenticated encryption against chosen-ciphertext side-channel attacks. IACR
Trans. Crypt. Hardw. Embed. Syst. 2022, 372–396 (2022)

5. Backlund, L., Ngo, K., Gartner, J., Dubrova, E.: Secret key recovery attacks on
masked and shuffled implementations of CRYSTALS-Kyber and Saber. Cryptology
ePrint Archive, Paper 2022/1692 (2022). https://eprint.iacr.org/2022/1692

6. Bhasin, S., D’Anvers, J.P., Heinz, D., Pöppelmann, T., Beirendonck, M.V.: Attack-
ing and defending masked polynomial comparison for lattice-based cryptography.
Cryptology ePrint Archive, Paper 2021/104 (2021). https://eprint.iacr.org/2021/
104

7. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., Van Vredendaal, C.: Mask-
ing Kyber: first-and higher-order implementations. IACR Trans. Crypt. Hardw.
Embed. Syst. 2021, 173–214 (2021)

8. Brisfors, M.: Advanced Side-Channel Analysis of USIMs, Bluetooth SoCs and
MCUs. Master’s thesis, School of EECS, KTH (2021)

9. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/Boolean masking conversions
for fun and profit: with application to lattice-based KEMs. IACR Trans. Crypt.
Hardw. Embed. Syst. 2022, 553–588 (2022)

10. D’Anvers, J.P., Beirendonck, M.V., Verbauwhede, I.: Revisiting higher-order
masked comparison for lattice-based cryptography: algorithms and bit-sliced imple-
mentations. Cryptology ePrint Archive, Paper 2022/110 (2022). https://eprint.
iacr.org/2022/110

11. D’Anvers, J.P., Heinz, D., Pessl, P., Van Beirendonck, M., Verbauwhede, I.: Higher-
order masked ciphertext comparison for lattice-based cryptography. IACR Trans.
Crypt. Hardw. Embed. Syst. 2022, 115–139 (2022)

12. Do, Q., Martini, B., Choo, K.K.R.: The role of the adversary model in applied
security research. Comput. Secur. 81, 156–181 (2019)

13. Dubrova, E., Ngo, K., Gärtner, J., Wang, R.: Breaking a fifth-order masked imple-
mentation of crystals-kyber by copy-paste. In: Proceedings of the 10th ACM Asia
Public-Key Cryptography Workshop, pp. 10–20 (2023)

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://doi.org/10.1007/978-3-030-44223-1_11
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://eprint.iacr.org/2022/1692
https://eprint.iacr.org/2021/104
https://eprint.iacr.org/2021/104
https://eprint.iacr.org/2022/110
https://eprint.iacr.org/2022/110
https://doi.org/10.1007/3-540-48405-1_34

A Side-Channel Attack on a Higher-Order Masked Kyber 323

15. Guo, Q., Nabokov, D., Nilsson, A., Johansson, T.: SCA-LDPC: a code-based frame-
work for key-recovery side-channel attacks on post-quantum encryption schemes.
Cryptology ePrint Archive (2023)

16. Hajra, S., Saha, S., Alam, M., Mukhopadhyay, D.: TransNet: shift invariant
transformer network for side channel analysis. Cryptology ePrint Archive, Paper
2021/827 (2021). https://eprint.iacr.org/2021/827

17. Hamburg, M., et al.: Chosen ciphertext k-trace attacks on masked CCA2 secure
Kyber. IACR Trans. Crypt. Hardw. Embed. Syst. 2021, 88–113 (2021)

18. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked Kyber on ARM Cortex-M4. Cryptology ePrint Archive,
Paper 2022/058 (2022). https://eprint.iacr.org/2022/058

19. Hoffmann, C., Libert, B., Momin, C., Peters, T., Standaert, F.X.: Towards leakage-
resistant post-quantum CCA-secure public key encryption. Cryptology ePrint
Archive, Paper 2022/873 (2022). https://eprint.iacr.org/2022/873

20. Ji, Y., Wang, R., Ngo, K., Dubrova, E., Backlund, L.: A side-channel attack on a
hardware implementation of CRYSTALS-Kyber. Cryptology ePrint Archive, Paper
2022/1452 (2022). https://eprint.iacr.org/2022/1452

21. Kannwischer, M.J., Petri, R., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4:
post-quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/
pqm4

22. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-49445-6_1

23. Moody, D.: Status Report on the Third Round of the NIST Post-Quantum Cryp-
tography Standardization Process. NISTIR 8309, pp. 1–27 (2022). https://nvlpubs.
nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf

24. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked
IND-CCA secure Saber KEM implementation. IACR Trans. Crypt. Hardw. Embed.
Syst. 2012, 676–707 (2021)

25. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-secure
and masked ring-LWE implementation. IACR Trans. Crypt. Hardw. Embed. Syst.
2018, 142–174 (2018)

26. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–
176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

27. Rajendran, G., Ravi, P., D’Anvers, J.P., Bhasin, S., Chattopadhyay, A.: Pushing
the limits of generic side-channel attacks on LWE-based KEMs-parallel PC oracle
attacks on Kyber KEM and beyond. IACR Trans. Crypt. Hardw. Embed. Syst.
2023, 418–446 (2023)

28. Ravi, P., Bhasin, S., Roy, S.S., Chattopadhyay, A.: On exploiting message leakage
in (few) NIST PQC candidates for practical message recovery attacks. IEEE Trans.
Inf. Forensics Secur. 17, 684–699 (2021)

29. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on
CCA-secure lattice-based PKE and KEMs. IACR Trans. Crypt. Hardw. Embed.
Syst. 2020, 307–335 (2020)

30. Rodriguez, R.C., Bruguier, F., Valea, E., Benoit, P.: Correlation electromagnetic
analysis on an FPGA implementation of CRYSTALS-Kyber. Cryptology ePrint
Archive, Paper 2022/1361 (2022). https://eprint.iacr.org/2022/1361

https://eprint.iacr.org/2021/827
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/873
https://eprint.iacr.org/2022/1452
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://doi.org/10.1007/978-3-030-05072-6_10
https://eprint.iacr.org/2022/1361

324 R. Wang et al.

31. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking binomial
sampling at arbitrary orders for lattice-based crypto. In: Lin, D., Sako, K. (eds.)
PKC 2019. LNCS, vol. 11443, pp. 534–564. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17259-6_18

32. Shen, M., Cheng, C., Zhang, X., Guo, Q., Jiang, T.: Find the bad apples: an
efficient method for perfect key recovery under imperfect SCA oracles - a case
study of Kyber. IACR Trans. Crypt. Hardw. Embed. Syst. 2023, 89–112 (2023)

33. Sim, B.Y., et al.: Single-trace attacks on message encoding in lattice-based KEMs.
IEEE Access 8, 183175–183191 (2020)

34. Tsai, T.T., Huang, S.S., Tseng, Y.M., Chuang, Y.H., Hung, Y.H.: Leakage-resilient
certificate-based authenticated key exchange protocol. IEEE Open J. Comput. Soc.
3, 137–148 (2022)

35. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.: Curse of
re-encryption: a generic power/EM analysis on post-quantum KEMs. IACR Trans.
Crypt. Hardw. Embed. Syst. 2022, 296–322 (2022)

36. Wang, H., Forsmark, S., Brisfors, M., Dubrova, E.: Multi-source training deep
learning side-channel attacks. In: IEEE 50th International Symposium on Multiple-
Valued Logic, ISMVL 2020 (2020)

37. Wang, J., Cao, W., Chen, H., Li, H.: Practical side-channel attack on message
encoding in masked Kyber. In: 2022 IEEE International Conference on Trust, Secu-
rity and Privacy in Computing and Communications (TrustCom), pp. 882–889.
IEEE (2022)

38. Wang, R., Ngo, K., Dubrova, E.: A message recovery attack on LWE/LWR-based
PKE/KEMs using amplitude-modulated EM emanations. In: Seo, SH., Seo, H.
(eds.) Information Security and Cryptology, ICISC 2022. LNCS, vol. 13849, pp.
450–471. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29371-9_22

39. Wang, R., Wang, H., Dubrova, E.: Far field EM side-channel attack on AES using
deep learning. In: Proceedings of the 4th ACM Workshop on Attacks and Solutions
in Hardware Security, pp. 35–44 (2020)

40. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel mea-
surements with autoencoders. IACR Trans. Crypt. Hardw. Embed. Syst. 2020,
389–415 (2020)

41. Xu, Z., Pemberton, O.M., Roy, S.S., Oswald, D., Yao, W., Zheng, Z.: Magnifying
side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: the
case study of Kyber. IEEE Trans. Comput. 71, 2163–2176 (2021)

42. Yajing, C., Yan, Y., Zhu, C., Guo, P.: Template attack of LWE/LWR-based
schemes with cyclic message rotation. Entropy 24(10), 1489 (2022)

https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1007/978-3-030-17259-6_18
https://doi.org/10.1007/978-3-031-29371-9_22

Time Is Money, Friend! Timing
Side-Channel Attack Against Garbled

Circuit Constructions

Mohammad Hashemi1(B), Domenic Forte2, and Fatemeh Ganji1(B)

1 Worcester Polytechnic Institute, Worcester, MA 01609, USA
{mhashemi,fgangi}@wpi.edu

2 University of Florida, Gainesville, FL 32611, USA
dforte@ece.ufl.edu

Abstract. With the advent of secure function evaluation (SFE), dis-
trustful parties can jointly compute on their private inputs without dis-
closing anything besides the results. Yao’s garbled circuit protocol has
become an integral part of secure computation thanks to considerable
efforts made to make it feasible, practical, and more efficient. For decades,
the security of protocols offered in general-purpose compilers has been
assured with regard to sound proofs and the promise that during the
computation, no information on parties’ input would be leaking. In a
parallel effort, timing side-channel attacks have proven themselves effec-
tive in retrieving secrets from implementations, even through remote
access to them. Nevertheless, the vulnerability of garbled circuit frame-
works to timing attacks has, surprisingly, never been discussed in the
literature. This paper introduces Goblin, the first timing attack against
commonly employed garbled circuit frameworks. Goblin is a machine
learning-assisted, non-profiling, single-trace timing side-channel attack
(SCA), which successfully recovers the garbler’s input during the compu-
tation under different scenarios, including various garbling frameworks,
benchmark functions, and the number of garbler’s input bits. In doing
so, Goblin hopefully paves the way for further research in this matter.

Keywords: Grabled Circuits · Timing Side-channel Analysis ·
Clustering · Non-profiling Attack · Single-trace Attack

1 Introduction

Secure function evaluation (SFE) has had an immense impact on the field
of cryptography. Practical implementations of general SFE have been pro-
posed and flourished after the introduction of garbled circuits (GCs) by
Yao [93]. It has found several applications including secure multi-party computa-
tion [6,22,23,57], functional encryption [27,28,80], key-dependent message secu-
rity [2,3], homomorphic encryption [26,76], and recently, quantum circuits [9].
The key premise of GCs is that it allows two parties to evaluate any (known)

Code is available at https://github.com/vernamlab/Goblin.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 325–354, 2024.
https://doi.org/10.1007/978-3-031-54776-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_13&domain=pdf
https://github.com/vernamlab/Goblin
https://doi.org/10.1007/978-3-031-54776-8_13

326 M. Hashemi et al.

function on their respective inputs x and y without violating their privacy.
Besides real-world applications foreseen for GCs traditionally (e.g., credit evalu-
ation function, background- and medical history checking, privacy-preserving
database querying, etc. [53,82]), nowadays GCs have found applications in
privacy-preserving genome analysis [43], email spam filtering [36], image pro-
cessing [12] and machine learning and statistical analysis [14,24,71,75], just to
name a few. To face obstacles preventing further adoption of GCs in real-world
systems, optimization techniques have been developed, aiming to reduce commu-
nication and computation costs. Here we focus on two of the most acknowledged
methods, namely free-XOR [53] and half-gates [97]. Similar to other optimiza-
tion mechanisms, the main argument put forward by these techniques is that
security is not compromised for the sake of being efficient. However, the ques-
tion is whether this holds true when implementing these protocols. This becomes
even more critical since today’s applications of GCs (or potential ones) encom-
pass services run on distributed computing systems, cloud services, connected
devices, etc.

Timing Side-Channel Analysis. Irrespective of what cryptographic functions
are embedded in programmable instruction set processors, such systems can
exhibit observable features and data-dependent behavior that leak information
about users’ data/keys from the implementation. As a prime example, timing
side channels can be observed when the time taken to execute a piece of code
depends on the secret variables [52,63,72,90]. In this regard, two broad categories
of timing side channels can be identified: instruction-related and cache-related
cf. [92]. The former refers to the number or type of instructions executed along
a path that can differ depending on the values of secret variables. On the other
hand, cache-related timing side channels correspond to the case, where the mem-
ory subsystem may behave differently based on the values of secret variables. In
both categories, CPU instruction execution, specifically the branch prediction,
memory access, and data caches, have been exploited to launch successful SCA
on the cryptographic systems cf. [1,7,20,29,78]. Recently, the security of open-
source cryptographic libraries and implementations of protocols (excluding GC)
has just been evaluated in an extensive study [45], where the vulnerability of
some of those libraries to timing SCA has been demonstrated. More interesting
and inspiring from the perspective of this work is the gap between academic
research and cryptographic engineering when it comes to timing SCA.

SCA Against GC Constructions. Despite the achievements made to prove
the security of GC schemes, there is a gap between what theoretical findings have
suggested and what observations can be made by parties involved in executing
a GC protocol. The only example of studies addressing this gap is a recent
attack proposed by Levi et al., which leverages the side-channel leakage as a
result of using a secret, global value for free-XOR, correlated with the power
consumption of the garbler’s device [55]. Although multiple assumptions have
been made to launch the attack, their attack has successfully disclosed the global
value used to perform free-XOR optimization. Now the question is whether one
can go even beyond this attack and perform timing SCA and whether some of
the assumptions made in [55] can be relaxed in that case.

Time Is Money, Friend! 327

Generally speaking, timing attacks feature outstanding properties that make
them more interesting [45]: first, timing attacks can be launched remotely, includ-
ing cases of running code in parallel to the victim code without the need for local
access to the target computer; second, timing attacks can be carried out covertly.
In light of this state of affairs, this work attempts to answer the following ques-
tion: Is it possible to reveal parties’ input by observing the timing information
leaking when executing a GC protocol? More specifically, we answer this question
positively for free-XOR- and half-gates-optimized constructions. The contribu-
tion of our work is as follows.

Our Contributions are summarized as follows.

1. We introduce Goblin, the first non-profiling, single-trace timing SCA that suc-
cessfully extract the user’s input, which by definition, should have been kept
secret. To better demonstrate the power of our attack, we compare it with the
recent attack in [55]. The power SCA in [55] has successfully extracted the
global secret used in free-XOR optimization, whereas Goblin focuses entirely
on the recovery of the garbler’s input. Needless to say that even with the help
of the disclosed secret, the garbler’s input could not be fully recovered. More-
over, in contrast to [55], Goblin’s effectiveness is limited to neither circuits
with a minimum number of input gates nor gate types (XOR or AND).

2. Goblin is machine-learning assisted in disclosing the garbler’s input, regard-
less of its size. For this purpose, k-means clustering is applied, where no
manual tuning or heuristic leakage models are needed. It is, of course, advan-
tageous to the attacker and allows for scalable and efficient attacks.

3. Last but not least, our paper highlights the vulnerabilities of multiple avail-
able garbling tools to timing SCA. We believe that this constitutes a basis
for studying the SCA with respect to GC.

2 Background and Adversary Model

Notations. We follow a standard notation typically used in SFE-related lit-
erature. ∈R denotes uniform sampling, ‖ is used to show concatenation of bit
strings. 〈a, b〉 represents a vector with two components a and b, whereas a ‖ b is
its bit string representation. A gate is denoted by Wc = g(Wa,Wb) with input
wires Wa and Wb, output wire Wc and g : {0, 1}2 → {0, 1}.

2.1 Yao’s Garbled Circuit (GC)

One of the most widely studied SFE approaches, designed to meet the needs
of Boolean circuits, is garbling [56,58]. The first protocol within the context
of GC is Oblivious transfer (OT). We consider 1-out-of-2 OT, which is a two-
party protocol with the following definition. The sender P1 possesses two secret
messages m0, and m1, and the receiver P2 has a selection bit i ∈ {0, 1}. By
executing the protocol, P2 learns mi, but not m1−i, while the sender P1 does
not learn anything about i.

328 M. Hashemi et al.

Garbling. The protocol execution begins with garbling the circuit C, where
the garbler (P1) randomly chooses secrets wj

i with the garbled value of j ∈
{0, 1} on each wire Wi. Needless to say that it is expected that wj

i does not
reveal any information about j. Practical implementations of Yao’s GC, e.g., [86]
considered in this paper, represent each of the logical “0” and “1” values with
n-bit values, where n is often referred to as the security parameter. In this sense,
wj

i (so-called token) is the encryption of the concatenation of j and (n − 1)-
bit values drawn uniformly. After generating the tokens, the garbler creates a
garbled table Ti for each gate Gi, where each row of the gate truth table is
encrypted output with regard to the tokens, and the output of the gate is called
a “ciphertext,” illustrated in Fig. 1.(a) as the output of the operand E(·), i.e., the
encryption operation (symmetric key operations, e.g., fixed-key block cipher).
Since the table rows can reveal information about the internal wire values, they
are permuted. The main property of Ti is that its output can be recovered
given a set of garbled inputs, while this process does not leak any information
about the garbler’s and evaluator’s (P2) inputs. For this, along with Ti’s, the
token corresponding to the garbler’s input value is obliviously transferred to P2

through OT. P2 is then able to obtain the garbled output by evaluating the
garbled circuit gate by gate using the tables Ti and receiving j for the output
wire from P1 cf. [87]. Garbling of the output wires of the circuit can be skipped
so that two parties learn (only) the output of the circuit [53].

Optimizations of Yao’s GC. Reducing the computation and communica-
tion costs of SFE protocols has been an objective of numerous studies. Among
optimization techniques introduced in the literature, free-XOR has attracted
considerable attention since it reduces the cost on the garbler side effectively,
namely by 25%. To reduce garbler’s cost, the wire values are garbled as presented
in Fig. 1.(b). For any gate Gi, w1

i = w0
i ⊕R for some secret, global R ∈R {0, 1}n1.

Here, for the sake of simplicity, let (A,A ⊕ R) and (B,B ⊕ R) denote the wire
labels. half-gates protocol complements the free-XOR protocol in the sense that
not only are XOR gates evaluated for free, but also AND gates are garbled using
only two ciphertexts (see Fig. 1.(c)). Since Goblin is interested in recovering the
garbler’s input, in Fig. 1.(c), we show how the half-gates are generated on the
garbler’s side, where garbler knows which inputs she wants to garble (for more
information about the whole process, see [97]).

2.2 k-means Algorithm

The main goal of clustering algorithms, like k-means, is to group samples of a
set with some common features into subsets, i.e., clusters. With regard to the
pairwise distances, clusters are made around the mean vectors, which are called
centroids [37,91]. k-means aims to partition N members of a set into k clusters
in a way that each member of a cluster has a close value to the centroid of
the cluster [91]. To be more specific, k-means finds partitions (clusters) p =
{p1, p2, · · · , pk} for the dataset c = {ci}n

i=1 to minimize

1 For specifics of the encryption function in the free-XOR protocol, see [13,34].

Time Is Money, Friend! 329

Fig. 1. Garbled gates look-up table with (a) no optimization, (b) free-XOR optimiza-
tion, and (c) half-gate optimization.

min
p,{μj}k

1

k∑

j=1

∑

ci∈pj

||ci − μj ||2,

where μj is the mean of all examples assigned to jth centroid [39]:. Here the
squared Euclidean distance is one of the commonly applied distance measures
applied to minimize the total cluster variance [85].

2.3 Cache Architecture

Modern x86 processors comprise three cache layers: L1, L2, and L3, with data
inclusively across all levels [25,74]. Figure 2 presents the Intel core-i7 cache archi-
tecture. Each CPU core has a dedicated L1 and L2 cache, with the former divided
into data and instruction caches of 32KB each [74]. L2 cache is shared across
CPU threads and has a larger capacity (256KB [74]). The largest cache, L3, is
shared across all CPU cores with an 8MB capacity [74].

Processor instructions fall into three categories: memory read/write, control
flow (data processing), and arithmetic/logic operations [15,25]. The execution
time of the latter is determined by the type of operation and the number of
arithmetic-logic unit (ALU) calls [15]. Memory access time, however, depends
on whether the instruction is accessing RAM or cache [32,64,73,81,94].

For efficient memory access management, the CPU stores operation results
in the cache hierarchy (L1, L2, L3) and an instantiation in RAM [54,98]. On
data request, the CPU checks the data availability in this order: L1 cache, L2
cache, L3 cache, and finally RAM [54].

Cache Eviction Strategies. Four eviction strategies can be considered as
highlighted in [31]. The first and second use static and dynamic eviction sets,
respectively, with static access patterns. The third uses both dynamic eviction
set and access pattern, enabling fully automated attacks. The fourth uses a static
eviction set with a dynamic access pattern, but is less efficient [31].

330 M. Hashemi et al.

Fig. 2. Intel core-i7 cache architecture [74].

2.4 Adversary Model

The security of GCs has been considered in two main paradigms, namely honest-
but-curious and malicious adversary models. The latter reflects the situation,
where a party potentially adopts an arbitrary attack strategy. On the other
hand, honest-but-curious parties follow the protocol honestly, although they
may attempt to learn additional information from the execution, similar to the
one launching SCA. This has also been well-formulated in [5], where it is sug-
gested that Yao’s GC reveals no side-information beyond the function being
computed, i.e., no information about parties’ inputs leaks. One closely relevant
adversary model is devised for server-aided or cloud-assisted, where the standard
SFE protocol is run with the help of a server (or a small set of them), which
does not contribute to running the protocol by giving inputs, but by making
their computational resources available to the parties cf. [8,10,11,16,17,48–50].
In the proposed setting, the server is instantiated by a public cloud service
provider, where parties who need more computational power (e.g., the garbler)
can outsource their computations. In such scenarios, the server can be honest-
but-curious [51]. Our model goes one step further and take into account any
-even unprivileged- access to the CPU during the execution of the protocol.

Our Adversary Model assumes that the parties and the server are indepen-
dent, i.e., none of them collude [21,48,50]. In practice, given the consequences in
terms of losing the reputation and legal actions, it is reasonable to assume that
the server will not collude with the parties. The adversary is capable of perform-
ing local code execution, potentially even on the same core. Additionally, the
adversary must possess the capability to evict data from the cache to the main
memory. Note that although throughout the paper, we refer to the server as the
entity collecting the timing information, this does not rule out the fact that any
entity with the capabilities mentioned above can launch the attack.

3 Timing Side-Channel Leakage in Garbling Tools: An
Observation

Broadly speaking, timing side-channels leak due to the dependency of the time
taken to execute a piece of software code on the values of secret variables. Here,
two types of timing side-channels are of interest, namely instruction-related and
cache-related ones. The former indicates that the number or type of instructions
executed along a path depends on the values of secret variables. In contrast,

Time Is Money, Friend! 331

cache-related timing side channels refer to the difference due to the memory
subsystem behavior depending on the values of secret variables, e.g., a cache
hit takes a few CPU cycles. Still, a miss takes hundreds of cycles cf. [92]. By
analyzing the code line-by-line, the adversary can find and further exploit such
vulnerabilities. Nevertheless, manual analysis of the timing characteristics of a
code is challenging as it requires thorough knowledge of the code and the plat-
form on which it is executed. The broad range of existing tools for automatically
checking timing side-channel leakage can help pinpoint such vulnerabilities. In
doing so, we select a recent tool recommended in the literature [44], namely
SC-Eliminator [92]. Among the most important features of SC-Eliminator is the
fact that, in view of available garbling protocols, it can analyze codes written
in C/C++. To this end, using an LLVM compiler performs static analyses to
identify the sensitive variables and timing leakage associated with them, given
a program and a list of secret inputs.

GC Tools. To explore whether GC frameworks would be vulnerable to timing
SCA, we selected 5 open-source tools written in C/C++, which mostly support
AES-NI (Advanced Encryption Standard New Instruction) instruction set (for
more features of these tools cf. [38]). As a result, they have made computing AES
encryptions on modern processors efficient, and consequently, the computation
cost of GC is reduced drastically. JustGarble [4] is a library for garbling and
evaluating circuits licensed under GNU GPL v3 license; however, JustGarble
does not support communication or circuit generation and is, therefore, not a
general-purpose framework. Nevertheless, it has become a cornerstone of various
frameworks, e.g., [30,33,35,47,70,87]. The reason behind JustGarble’s efficiency
is its ability to make only one AES call per garbled-gate evaluation which makes
it far faster than any prior reported results [4]. JustGarble exploits the crypto-
graphic permutations realizable by fixed-key AES acting like a public random
permutation [4]. Although this might be a strong assumption cf. [33,35], thanks
to its efficiency and the theoretical foundation laid for JustGarble, it has been
used in a wide variety of MPC and GC frameworks cf. [30,70].

Songhori et al. [86,87] extended JustGarble in TinyGarble, a highly com-
pressed and scalable sequential GC, which is a self-contained framework that can
directly be used in MPC applications [38]. Three steps are taken in TinyGarble,
namely converting a function defined in Verilog to a netlist format, converting
that netlist to a custom circuit description (SCD), and finally, securely eval-
uating the resulting Boolean circuit using a garbled circuit protocol. This flow
has been considered a strict improvement over JustGarble as TinyGarble further
includes recent protocol and circuit optimizations. Nevertheless, and irrespective
of the flexibility of TinyGarble for producing hardware circuits, changes made
to JustGarble have introduced timing side-channel leakage, as will be discussed
in Sects. 5 and 6.

In contrast to TinyGarble, which is an extension of Verilog, Obliv-C is an
extension of C that executes a GC protocol in a two-party setting [96]. The C
language is extended by adding an obliv qualifier that is applied to C types and
constructs. By enforcing typing rules, obliv types remain secret unless explicitly

332 M. Hashemi et al.

Table 1. The number of leaky IF conditions (IF) in various frameworks. (for a detailed
report, refer to Appendix 8)

Framework IF

TinyGarble [86] (half-gate) 4
TinyGarble [86] (free-XOR) 7
JustGarble [42] 11
EMP-toolkit [67] 0
Obliv-C [95] 4
ABY [18] 0

revealed. In doing so, it is suggested that oblivious functions and conditionals
could modify public data, if they are executed within a qualified obliv block,
where the code is always executed cf. [95,96]. In addition to the data security
achieved by means of these rules, modular libraries can be easily developed when
using Obliv-C. Thanks to this property, Obliv-C has found application in, e.g.,
linear regression [24], decentralized certificate authorities [46], aggregated private
machine-learning models [89], classification of encrypted emails [36] and stable
matching [19].

Besides the frameworks mentioned above, we also took EMP-toolkit [67] and
ABY [18], libraries developed in C++, into account. EMP-toolkit is composed
of multiple MPC frameworks and allows for executing circuit-based protocols
due to the available circuit generation and cryptographic libraries. ABY library
offers a mechanism for mixing protocols, including optimized versions of Yao’s
garbled circuit protocol.

Our Observations. As mentioned earlier, as a first, we examined the possibility
of mounting timing SCA against GC frameworks enumerated above. In such an
attack scenario, the adversary attempt to take advantage of possible unbalance
if-else statements (branches). The adversary can assume that different opera-
tions performed to generate garbled inputs in free-XOR and half-gate optimized
Yao’s GC protocols (see Fig. 1) can result in leakage if neither a constant-time
implementation nor branch-less assignments are used for sensitive branches. To
examine this, SC-Eliminator [92] is applied against TinyGarble [86], JustGar-
ble [42], EMP-toolkit [67], Obliv-C [95], and ABY [18]. Table 1 contains the
number of leaky IFs for this experiment. When taking a close look at the list
of leaky IFs among the set of leaky IFs, we observed unbalanced IF statements
in the garbled-input generation, i.e., garbled inputs were generated in a secret-
dependent manner. The existence of these unbalanced IFs demonstrates the like-
lihood of timing attacks to be successfully mounted against them. According to
the results in Table 1, EMP-toolkit [67] and ABY [18] do not have any leaky IFs.
Nevertheless, we should stress that although SC-Eliminator does not find any
vulnerability in terms of leaky IFs in these frameworks, this does not rule out the
possibility of other attacks. Next, we introduce our attack, Goblin, to leverage
the timing side-channel leaking from existing unbalanced IF statements.

Time Is Money, Friend! 333

4 Goblin and Its Building Blocks

The main steps in Goblin’s flow are: (1) filling the cache with junk by using
junk generator (JG) to evict the garbler secret from the cache. This step aims
to maximize the CPU core’s access time to the global secret (R) from the cache
and capture the CPU cycles corresponding to each gate connected to input wires
(i.e., gates in the input layer); It is noteworthy that for some GC frameworks,
even without relying on timing variability due to cache effects, it is possible
to successfully launch Goblin (see Appendix 8). (2) measuring the time on the
CPU, including the time taken to generate garbler token, linked to the input
size; (3) recovering the garbler’s secret (i.e., garbler’s input) after pre-processing
the acquired CPU cycles and running a clustering algorithm.

4.1 Our Eviction Method: Junk Generator

We presume that the server and parties are independent (see Sect. 2.4), i.e.,
the adversary lacks knowledge of the cache slice function or the victim’s physi-
cal addresses; hence, static eviction set and static access pattern strategies are
impossible to employ [31]. As implementing a dynamic eviction set and static
access pattern strategy requires informing the adversary about the target’s
replacement policy, it is not feasible [31]. Hence, our JG adopts the dynamic
eviction set and dynamic access pattern strategy [31]. Our JG is, in fact, an
enhancement of the dynamic eviction set and access pattern method in [31].
Our attack shares similarities with Evict+Time attacks presented in the litera-
ture [65]. Specifically, in our attack, JG accesses the memory frequently in the
form of reading and writing from/to it similar to [77]. However, in their attack,
the adversary should first determine which part of the critical information is
accessed during the encryption. In contrast, Goblin does not require this as
the time difference between garbling “1” and “0” reveals the input bit (“0/1”)
directly. To maximize this time difference, the JG algorithm recursively gener-
ates eviction sets and performs memory accesses randomly. Despite requiring
many eviction tests, this approach needs minimal system information, enabling
automated attacks on unknown systems. It is also considered more efficient than
the static eviction set and dynamic access pattern strategy [31]. Cache eviction
can also be achieved by reading the cache line [77]. Yet, we opted to generate
junk on the fly to bypass CPU memory management [31]. Despite the simplicity
of iterative For loops used in our JG (see Appendix 8), we chose the recursive
function for JG to generate junk indefinitely, considering the unknown duration
of a circuit garbling process.

4.2 Measuring Time on CPUs

After the JG boosts the difference between the input bit-dependent execution
times, the time can be measured. According to Martin et al. [68], to measure the
time without breaking the software, there are three main sources to take advan-
tage of cf. [66]: (1) internal, hardware time sources, e.g., timestamp counters; (2)

334 M. Hashemi et al.

external time sources, e.g., external interrupts; and (3) creating a virtual clock, for
instance, the virtual clock implementation on multi-processor systems with shared
memory [79]. Without loss of generality, we focus on how timing information can
be retrieved using the first option, namely rdtsc. The Read Timestamp Counter
rdtsc is an x86 instruction that returns the value of the CPU timestamp counter
(TSC) register. In general, the TSC register is shared with every user with any level
of privileged access [66]; therefore, it can be accessed by: (1) a privileged/non-
privileged user who has complete control over the CPU; (2) a service provider
who shares the processor with the victim, such as cloud servers [68]; (3) a virtual-
machine user with a privileged/non-privileged access level, who runs a process on a
shared processor with the victim (e.g., cross-virtual machine attacks) [66]. Hence,
the adversary can have either privileged/non-privileged access to (1) the CPU on
which the garbling scheme is running, (2) the CPU of the service provider’s sys-
tem, or (3) a cross-virtual machine to share the processor with the victim run-
ning the garbling scheme. What could make a difference is that an unprivileged
attacker cannot precisely control the garbler’s execution and interrupt it, unlike a
privileged attacker. Nevertheless, if the attacker can figure out when the garbling
process begins, or use a trigger signal such as a cache-based side channel [83], then
the collected traces can be aligned based on that timing information [62]. There-
fore, without loss of generality, we consider aligned timing measurements to mount
the attack, similar to [41,69]. For the sake of demonstration, we have inserted the
rdtsc before and after the garble gate function in the frameworks source code,
which are all publicly available, and achieved the time stamps based on their dif-
ference.

Resolution of Timing Measurements. The timestamps provided by rdtsc
often have a resolution between 1 and 3 cycles on modern CPUs cf. [61]. For
example, on AMD CPUs until the Zen microarchitecture, a cycle-accurate resolu-
tion can be obtained; however, more recent generations come with a significantly
lower resolution as the register is only updated every 20 to 35 cycles. Another
example is Intel Core i7−7700 Processors, i.e., what has been used in this study,
where the rdtsc register is updated every cycle [40]. Nevertheless, although it
might be thought that lower resolutions might make performing attacks more
challenging, Goblin is not affected since it requires mainly the difference between
two readings with the same resolution (see Sect. 6 for more details). Therefore, in
contrast to attacks requiring repetition when relying on rdtsc, it is not needed
for Goblin to do so and use the average timing differences over all executions.
We stress that Goblin is a single-trace attack, i.e., thanks to the gate-by-gate
operation in GC frameworks, the time difference directly driven from rdtsc is
a collection of time stamps associated with gates. We should also add that our
attack is an example of a timing attack, meaning that we believe other methods
for acquiring the timing information can definitely be applied.

4.3 Recovering Garbler’s Input

Counting the Gates in the Input Layer. According to our adversary model,
we assume that the adversary is neither the garbler nor the evaluator. Therefore,

Time Is Money, Friend! 335

there is no information about the circuit, input size, and gate types in the input
layer. Here we describe how this information is retrieved by Goblin when the
garbler uses JustGarble, as an example of GC tools. This example is selected due
to its broad applications (see Sect. 3) and its role as the core of other garbling
frameworks, e.g., ones considered in our study [87,96]. Listing 1 illustrates a
high-level description of JustGarble primary functions. In Listing 1, NF, LF, GT,
IF, INL, WL, GC, and OL, denoted in Lines 1–9, refer to the number of fan-outs,
location of fan-outs, gates’ types, the value of filled input fan-out, initial input
values, wire labels, Garbled circuit, and output labels, respectively.

According to the protocol flow of JustGarble (see, Listing 1), in the first
step, the garbler’s tokens for zero and one logical values (IL) are constructed
through createNewWire (Listing 1 line 5). Then, the parser function (the label
corresponding function createInputLabels Listing 1 line 3) starts parsing the
simple circuit description (SCD) file and g_init files, which contain information
about the circuit and the garbler’s input values. The parser function learns
about the circuit (GT) and locates the fan-in and fan-out of the input layer
gates (LF and NF) that are connected to the garbler input based on g_init file
information. For every input, the createInputLabels is called once for garbler
label and once for the evaluator label of the input, twice per input in total.
At this point, Goblin starts counting the number of createInputLabels calls
and calculating the number of input layer gates as half of the total number of
createInputLabels function calls. Afterward, the gates are garbled one by one
by calling the garbleCircuit function (Listing 1 line 9), starting from the input
layer gates, where the garbler’s and evaluator’s inputs are fed, before proceeding
to the following layer gates. This allows Goblin to count the CPU cycle associated
with each gate in the input layer by knowing the number of input gates.
Goblin Against Free-XOR Optimization. When the framework starts gar-
bling the gates, output labels (OL) and garbled tables (GT) are generated in the
order provided in the SCD file. As JustGarble, similar to various modern gar-
bling frameworks, utilizes the free-XOR optimization to generate garbler tokens
for input value 1, the garbler must access the R frequently. When free-XOR
optimization is enabled, GarbleCircuit function (Listing 1 line 9) skips line 11
to line 14 of the Listing 1. Therefore, regardless of whether the input is known or
secret, it checks the type of the input gate (GT) and treats all inputs as a secret.
If the gate type is XOR, including all gates categories that are considered XOR in
GC protocols (INV, XOR and XNOR gates), it generates the OL as the XOR results
of labels 0 and 1 (Listing 1 line 16); otherwise, the OL is constructed through a
series of encryptions, see, Listing 1, line 18 to 22. It is clearly observable that in
the last part of the encryption, Listing 1 line 14 and between lines 25 and 28, if
the garbler input value is “1”, one more encryption, one memory access, and one
XORing take place, which can result in the input dependency observable in the
execution time of garbling process.

In other words, when garbling AND (non-XOR) gates (including (AND/NAND,
OR/NOR, ANDN, ORN, NANDN, and NORN), there is an unbalanced if condition, which
means a longer execution time for input value one. This is the point that Goblin

336 M. Hashemi et al.

1 de f JustGarble (g_init , SCD) :
2 NF, LF, GT = createNewWire (g_init , SCD) #Pasrses the c i r c u i t ,

l o c a t e the fan−outs , and gene ra t e s wire l a b e l s .
3 IF , INL = crea te InputLabe l s (NF, LF) #F i l l s tokens to input fan−

outs (c a l l e d twice per ga rb l e r input) .
4 GC, OL, TT = ga rb l eC i r c u i t (IF , IFS , WL, GT) #Generates garb led

t ab l e s and Garbled output tokens .
5 de f createNewWire (g_init , SCD) :
6 f o r i in SCD [0] : #f i r s t l i n e o f SCD, which conta in s the

in fo rmat ion about input l ay e r gate s
7 IF [i] [0] = randomBlock () ;
8 IF [i] [1] = xorBlocks (R, IF [i] [0]) ;
9 de f g a rb l eC i r c u i t (IFS , WL, GT) :

10 R = AESEcbEncryptBlks (AES_Key)
11 i f (IFS == known) :
12 GC, OL = HalfGarbleGate (GT, IF)
13 re turn GC, OL
14 e l s e : #(IFS == s e c r e t) :
15 i f (GT == XORGATE) :
16 OL = XorBlock (IFS , R) #f r e e−XOR opt imizat i on
17 e l s e : #i f (GT == ANDGATE)
18 mask1 , mask2 , mask3 , mask4=AESEcbEncryptBlks (AES_Key, 4)
19 #AND encrypt ions
20 OL = XorBlock (mask1 , mask2)
21 i f (IFS == 1) :
22 OL = XorBlock (OL , R) ;
23 GC = [XorBlock (OL, mask3) , XorBlock (OL, mask4)]
24 i f (gate_locat ion i s in input_layer) : #Generates a s s o c i a t e

ga rb l e r tokens to be t r a n s f e r r e d to Evaluator .
25 i f (g_init == 0) :
26 TT = IF ;
27 e l s e :
28 TT = xorBlocks (R, IF) ;
29 re turn GC, OL, TT

Listing 1. Protocol flow of primary functions of JustGarble.

takes advantage of differences in execution time of the garbling process for each
gate due to their input value. If R is available in the L1 level of the cache, this
difference is subtle and, in most cases, negligible to the time of the encryption
process. Hence, to maximize the difference between the time taken to generate
tokens for input 0 and 1, the JG (see Sect. 4.1) starts filling the cache with junks
parallel to the execution of the createNewWire function (Listing 1 line 5) to
enforce CPU to fetch R into L1 cache from RAM, which increases the execution
time difference between 0 and 1 token generation. To boost the effect of JG,
Goblin first finds the CPU core and thread on which the garbling process is
happening by calling the LSCPU instruction; then asks the server to assign the
JG task to the same thread, or if not possible, at least to the same core on
which the garbling process is happening. It should be indicated that neither any
privilege is needed nor any restriction on assigning the JG to the same core is
posed as it fills the shared L3 cache level; nevertheless, assigning JG to the same
core as the garbling process core will result in faster cache filling and fewer errors
as JG first fills L1 and L2 level cache.

Goblin Against Half-gate Optimization. Though JustGarble doesn’t sup-
port half-gate optimization, subsequent frameworks like TinyGarble and Obliv-
C do. Despite this, Goblin remains effective against these frameworks. When
half-gate optimization is enabled, HalfGarbleGate (see Listing 2) is called by

Time Is Money, Friend! 337

1 de f HalfGarbleGate (GT, IF) :
2 R = AESEcbEncryptBlks (AES_Key)
3 mask1 , mask2 = AESEcbEncryptBlks (AES_Key, 2)
4 i f (IF [0] == 0) :
5 i f (GT == ANDGATE) :
6 OL = mask1 #XorBlock (mask1 , 0)
7 e l s e : #i f (GT == XORGATE) :
8 OL = XorBlock (mask1 , IF [1])
9 i f (IF [0] == 1) :

10 i f (GT == XORGATE) :
11 OL = mask1 #XorBlock (mask1 , 0)
12 e l s e : #i f (GT == ANDGATE) :
13 OL = XorBlock (mask1 , R)
14 GC = XorBlock (OL, mask2)
15 i f (gate_locat ion i s in input_layer) : #Generates a s s o c i a t e

ga rb l e r tokens to be t r a n s f e r r e d to Evaluator .
16 i f (g_init == 0) :
17 TT = IF ;
18 e l s e :
19 TT = xorBlocks (R, IF) ;
20 re turn GC, OL, TT

Listing 2. HalfGarbleGate function flow.

GarbleGate. When the input value (IF) is zero and the gate type (GT) is ANDGATE,
the function bypasses the garbling process, assigning a constant to OL, thus reduc-
ing the execution time compared to the garbling process for input value one or
other gate types. If the input value is one, encryption occurs (Listing 2 line
11), introducing an unbalanced if path and creating a dependency between the
garbling process execution time and the input value. Just like with free-XOR
optimization, Goblin capitalizes on these differences in execution times due to
the unbalanced if conditions in Listing 2, lines 3 and 8. The rest of the steps
are not interesting for Goblin because they do not hold any information about
the secret (garbler’s input), and the above-mentioned information is adequate to
launch the Goblin; therefore, from now on, Goblin can continue the attack from
an offline phase.

Pre-processing the Acquired CPU Cycles. As explained before, when
employing free-XOR optimization, the attacker expects to see a significant dif-
ference between the CPU cycle of INV, XOR, and XNOR gates and other gate
types, including AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN gates (refer to
Sect. 5 for more information). This significant difference is because in the free-
XOR optimization, as its name implies, an XOR-type gate is garbled by simply
using the XORing operation that takes a few CPU cycles. On the other hand,
garbling other types of gates, such as an AND gate, requires reading/writing
from/to memory and cipher generation, which results in extra memory reads;
hence, accumulating these leads to a drastic increase in CPU cycles. This is
evident thanks to the definition of this optimization technique and the number
of operands included in the computation of those gates, see Fig. 1.(b). When
employing clustering to discover the garbler’s input in a non-profiled manner,
this difference causes the gate types to be dominant centroids of the clustering
algorithm over the input values. To overcome this challenge, Goblin first divides
the CPU cycle into the number of subgroups equal to the number of available
gate types, i.e., AND (AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN) and XOR

338 M. Hashemi et al.

(INV, XOR and XNOR gates, hereafter called XOR gates) with regard to the median
of the CPU cycles. Afterward, it normalizes each subgroup of CPU cycles by
employing z-score normalization, and finally, concatenates the normalized data
to form the CPU cycle array while maintaining the order of captured CPU cycles.
Normalization minimizes the difference between the CPU cycle requirements of
XOR and AND gate types, consequently improving the SR.

The first step is more complicated in a case where the half-gates optimization
is enabled. Specifically, according to our observation, not only garbling the XOR
gates exhibits a significantly larger number of CPU cycles compared to other
gate types, but also there is a dramatic difference in the number of CPU cycles
in the OR/NOR gates garbling process. There is, of course, a reason behind this,
namely how gates with truth tables containing an odd number of ones (e.g., AND,
NAND, OR, NOR, etc.) can be expressed and constructed. Generally speaking, these
gate can be defined as G : (va, vb) → (αa ⊕ va) ∧ (αb ⊕ vb) ⊕ αc, where va and
vb are logical values and αa, αb, and αc are constant values cf. [97]. For AND
gate, α values are set to 0, whereas for OR gate, they are set to 1. Therefore,
it is unsurprising that the CPU cycles collected when garbling OR/NOR gates
compose a cluster different from the others.

In the same vein, one can also observe that it takes more time for the garbler
to generate the garbled OR/NOR gate with input “0”, as opposed to AND/NAND
gates with input “1”. Therefore, contrary to the case of free-XOR optimization,
where AND/NAND and OR/NOR can be considered as belonging to the same
type, it is challenging to make a distinction between AND/NAND gates with
input “0” and OR/NOR gates with input “1”. This overlap results in inaccurate
clustering since the algorithm puts both into one cluster, although they should
be put into two different clusters due to their inputs.

To counter this challenge, Goblin applies the following additional data scaling
technique before the normalization to force the pattern to match other gate types
(i.e., a larger number of CPU cycles for input 1). First, similar to the free-XOR
case, the CPU cycle collected from the input gates {ci}n

i=1 should be partitioned
into subsets corresponding to different gate types: XOR/XNOR, AND/NAND,
and OR/NOR. For this, Goblin calculates 66th percentiles of elements in {ci}n

i=1

and assign the elements larger than that to the subset cOR. The remaining
elements of {ci}n

i=1 are assigned to AND and XOR subsets similarly as done in
the free-XOR case: the larger elements are assigned to cAND by considering the
median of the {ci}n

i=1 \ cAND. The remaining elements are then assigned to the
subset corresponding to the XOR/XNOR gates. Afterward, Goblin applies the
transformation ti = aci + b for ci ∈ cOR, where a and b are calculated as

a =
Max(cAND) − c̄AND

Max(cOR) − c̄AND
, b = c̄AND − a · c̄OR,

where Max(·) and c̄’s denote the maximum and the average of the subsets,
respectively. After this step, normalization is applied, similar to the free-XOR
case.

Time Is Money, Friend! 339

Extracting garbler’s input through clustering. After obtaining the pre-
processed data, Goblin launches the clustering algorithm to determine each gar-
bler’s input bit. As Goblin applies normalization to the CPU cycle data, the
gate types’ dominance in the centroids has vanished; therefore, Goblin clusters
CPU cycles into only two clusters corresponding to input zero and input one,
regardless of the gate types. To disclose the input bits, Goblin keeps track of
the Max({ci}n

i=1) before normalization. When the clustering process is over, all
cluster members that include the maximum element are labeled as “1”, mean-
ing that the garbler input bit is “1”; consequently, other cluster includes ci’s
corresponding to garbler’s input bit “0”.

4.4 Performance Metric

Let ci be a leakage measurement, i.e., the number of CPU cycles, for a garbler
input x = x1 · · · xn with n-bits corresponding to n wires giving the garbler’s
input to the circuit. For instance, for a garbled 128-bit AES design, n = 128. To
evaluate the effectiveness of our attack, we calculate its success rate of recovering
the garbler’s input given a single trace {c}n

i . Note that Goblin is a non-profiling
attack; hence, as opposed to profiled attacks, no leakage profile is made and used
during the attack. k-means clustering algorithm is used as a distinguisher so that
any observation ci is assigned to either cluster p0 or p1 associated with input bit
xi being “0” or “1”. Precisely, the success rate is defined as follows.

SR :=
∑

j∈{0,1}

n∑

i=1

Pr(ci ∈ pj | xi = j).

To put this simply, SR indicates how many bits are correctly disclosed out
of n bits in the garbler’s input. Note that this definition aligns with the general
case considered in SCA-related literature [88]. In this context, we consider the
success rate of order 1, i.e., the probability that the correct key is ranked first.

5 Experimental Results

We ran the JustGarble, TinyGarble and Obliv-C frameworks, publicly available
via GitHub repositories [42,86,95]. Garbler and evaluator codes ran on two sys-
tems with Linux Ubuntu 20, 16 GB of memory, and an Intel Core i7−7700 CPU
3.60GHz CPU. Two systems were connected through a local area network (LAN)
cable. As garbling process might access R anytime during garbling process, to
force CPU to fetch R from RAM to L1 level cache in maximum possible cases, we
started JG as soon as the garbling process begins. This can be easily determined
by calling non-privileged CPU instructions showing which applications run on
each core. Moreover, we assigned the JG to the same core that generates garbled
circuits on the garbler system. To capture each trace, i.e., multiple time stamps,
we used rdtsc as discussed before in Sect. 4.2. We have also used the k-means
clustering algorithm implemented in Matlab 2021.

340 M. Hashemi et al.

Fig. 3. SR of Goblin for 1000 randomly chosen inputs given to GC garbled by Tiny-
Garble [87] with (a) free-XOR, (b) half-gate optimizations, (c) JustGarble [42], and
(d) Obliv-C [95].

5.1 Results for Benchmark Functions

To evaluate the efficacy of Goblin, we have targeted the commonly-used bench-
mark functions, including 128-AES, 288-SHA3, 256-bit Multiplier, 128-bit Sum-
mation, and 128-bit Hamming garbled by JustGarble [42], TinyGarble [87], and
Obliv-C [95] (results for the benchmark functions with various input sizes can
be found in Sect. 5.3). For this purpose, to calculate the success rate (SR), we
have applied various garbler’s inputs and provided the statistics in this section.
Launching Goblin against all combinations of inputs is impractical due to the
massive number of input combinations (i.e., for a 256-bit Multiplier, the attack
had to be launched 2256 times); therefore, we have chosen 1000 random inputs
to run Goblin. For each of these inputs, a single trace is captured that has mul-
tiple time stamps. In the k-means algorithm setting, the centroids are chosen at
100 different starting values, and the algorithm returns the result for the least
within-cluster sums of point-to-centroid distances.

Figure 3 shows the SR when free-XOR or half-gate optimization was enabled.
The red lines in the boxes indicate the average SR of the attack against these
benchmark functions. It is observable in Fig. 3.(a) that the attack achieved a
better SR when launched against the AES benchmark compared to, e.g., the
256-bit Multiplier. The reason is three-fold. First, only 1000 inputs are tested;
therefore, the results might vary. Second, the input layer of the 256-bit Multiplier
contains more XOR gates than the AES, which are more challenging because
of the subtle difference between the number of clock cycles taken for “1” and
“0”. Third, per input, notice that Goblin is a non-profiling, single-trace attack,
meaning that it receives one timing measurement per gate (and per input bit,

Time Is Money, Friend! 341

consequently); hence, the more input bits, the better Goblin determines them.
This is further studied in Sect. 5.2.

Compared to Fig. 3.(a), Fig. 3.(b) corresponding to the half-gates optimiza-
tion shows an overall reduced SR for the same benchmark functions. This is
because of the increase in the number of gate types to be identified for the same
number of input bits and observations, consequently. Needless to say, even for
circuits with various gate types, such as AES, Goblin achieved an average SR of
more than 90%, which means the effect of variation in the gate types does not
affect Goblin’s SR drastically (see Appendix 8). Imperfect process of filling the
L3 level cache with junk accounts for the outliers in Fig. 3. The implication of
this is that the availability of R in the L1 cache level of the garbler core decreases
the execution time difference between garbler 0 and 1 token generation. However,
these outliers happen barely, i.e., in 11 out of 1000 experiments, which means
the JG has a small error. Note that even for the outliers, Goblin still revealed
the garbler’s input with a range of 60% to 100% SR.

5.2 Scalability of Goblin

To test Goblin’s scalability, we have launched Goblin against three benchmark
functions, including MULT, SUM, and Hamming, with a range of input sizes
between 128 and 1024. Figure 4 illustrates the results, where Fig. 4.(a) and
Fig. 4.(b) depict the free-XOR and half-gate optimization results. As shown in
Fig. 4.(a), increasing the input size increases the minimum and average SR for
virtually all cases. This SR increment is because Goblin has a broader range
of data to cluster, which means it has more observations to compare with one
another. Similar to previous experiments, outliers can be observed in Fig. 4. To
reduce the number of outliers, the natural question to ask is whether it is pos-
sible to launch Goblin without JG. We conducted experiments to answer this
questions and found out that for JustGarble [42] and Obliv-C [95], the SR could
decrease dramatically (close to 50%) due to the small difference between the
execution times for garbler’s input “0” and “1.” Nonetheless, for TinyGarble [86],
it is indeed possible to mount the attack with high SR without using JG (see
Appendix 8).

5.3 Impact of the Number of Traces

In previous experiments in this section, to evaluate the effectiveness of our attack,
we selected 1000 random inputs since capturing CPU cycles for all inputs is
impractical and infeasible. This can directly impact the variance in our results.
To investigate this, we collected CPU cycles after feeding powers of tens (from 10-
100, 000) random inputs into the 128-bit SUM, Hamming, and MULT benchmark
functions, i.e., the ones demonstrating a fairly high variance (see, Fig. 3). Figure 5
illustrates the SR of Goblin when being launched against a range of CPU cycle
traces. As can be seen, increasing the number of CPU cycle traces results in
increasing the SR of Goblin. We have observed that for a higher number of
traces, SR exhibits less variance, and the average settles around 97% in all cases,

342 M. Hashemi et al.

Fig. 4. SR of Goblin against benchmark functions for a range of input bits garbled
by TinyGarble [86] with (a) only free-XOR optimization, (b) half-gate protocol, (c)
JustGarble [42], and (d) Obliv-C [95] for 1000 randomly chosen inputs.

except for 128-MULT. The reason behind this is the variation in the gate types
as discussed before. Note that since Goblin is a single trace attack, each trace
is processed by Goblin individually. In other words, the increase in the number
of traces does not impact each attack but reduces the variance of the overall
results. Therefore, to judge the effectiveness of Goblin, it is recommended to use
more traces. We could not do this in the first place due to the time-consuming
process of collecting traces for all benchmark functions. Nonetheless, comparing
the results for 1000 and 100, 000 traces, the change in the average SR is subtle.

6 Discussion

Relative accuracy of rdtsc. For applications using rdtsc, successive calls
must have a difference that accurately reflects the number of cycles between
two calls. This is referred to as “relative accuracy” cf. [68], meaning that any
measurement through rdtsc is accurate with regard to the previous call/mea-
surement. The relative accuracy does not pose any constraint to the application
since they must tolerate some variations as rdtsc instruction’s number of cycles
can vary due to the state of caches, DVFS, scheduling, etc. [68]. Similarly, Goblin
is resilient against variations as long as the variation is smaller than the differ-
ence between the number of cycles spent on garbling the XOR and non-XOR
gates (in order of tens of thousands of cycles).

Time Is Money, Friend! 343

Fig. 5. SR of Goblin against (a) 128-bit SUM, (b) 128-bit Hamming, and (b) 128-bit
MULT for a range of 10-100, 000 randomly chosen inputs (first to last row: JustGar-
ble [42], Obliv-C [95], TinyGarble [86] with free-XOR, and with half-gate optimiza-
tions).

Limited Resolution of rdtsc on Some Platforms. As introduced in
Sect. 4.2, rdtsc can have various resolutions depending on the platform. In the
same vein, as explained about the relative accuracy of the time read using rdtsc,
the resolution cannot impact the effectiveness of Goblin. The point is that as
long as the XOR gates can be distinguished from non-XOR ones, Goblin can
successfully extract the garbler’s input. For this purpose, it is necessary to have
at least a resolution comparable to the number of cycles taken to garble the XOR
gates (couples of tens cycles, e.g., 80 cycles as observed in our experiments).

344 M. Hashemi et al.

6.1 Potential Countermeasures

To come up with a countermeasure against Goblin, one should first determine
factors contributing to Goblin’s success. Here we describe these factors and
emphasize that if they are considered and encountered when proposing a frame-
work, the likelihood of Goblin’s success can decrease.

The Coding Style of the Framework. Frameworks like EMP-toolkit [67],
Obliv-C [95], and ABY [18] securely tackle the vulnerability in unbalanced IF
statements by generating both 0 and 1 garbler’s tokens, although it’s less opti-
mized than one-token-per-input methods in TinyGarble [87] and JustGarble [42].

Memory Management. Assigning R to a fixed memory address reduces mem-
ory access time. Usage of registers can lead to overwrites, forcing the CPU to
fetch R from RAM and causing time variation in token generation. Most frame-
works like EMP-toolkit [67], Obliv-C [95], JustGarble [42], and ABY [18] fixed
R’s address, but TinyGarble [87] used registers in token generations, leading to
possible overwrites when using JG.

Can Restricting Access Stop Goblin? Restricting high-resolution timer
access can deter the Goblin attack, but also negatively impact certain unprivi-
leged applications like adb, cargo, Docker [59]. It’s noted that an attacker could
still use a counting thread to establish a timestamp [60,61,84], which could even
have higher resolution than the rdtsc instruction on Intel CPUs [84].

7 Conclusion

Nowadays, several applications, including multi-party computation, rely on the
efficient implementations of GC. To achieve this efficiency, many optimizations,
such as free-XOR and half-gates, have been presented to reduce the cost of
garbling progress. This paper has introduced Goblin, the first machine learning-
assisted, non-profiling, single-trace timing SCA against GC frameworks. Specifi-
cally, Goblin targets frameworks using free-XOR and half-gate by collecting and
analyzing the time stamps of the garbling process by reading the time stamp
counter, i.e., calling rdtsc. In doing so, the garbler’s inputs that should have
been kept secure can be disclosed without prior knowledge about the circuit
being garbled. In this regard, Goblin can be run in parallel to the garbling frame-
work without requiring any privileged access. Goblin has also been proven to be
scalable when targeting large circuits. We have studied several cases, includ-
ing various GC frameworks, benchmark functions, and the number of garbler’s
input bits. Under different scenarios, Goblin disclosed the garbler’s input with
high probability. Further, we have discussed Goblin’s success factors and coun-
termeasures against that.

Time Is Money, Friend! 345

8 Responsible Disclosure

Corresponding authors and/or owners of GitHub repositories of the affected
frameworks [42,86,95] were contacted about their GC framework vulnerabilities
presented in this paper.

Acknowledgments. This work has been supported partially by Semiconductor
Research Corporation (SRC) under Task IDs 2991.001 and 2992.001 and NSF under
award number 2138420. We also thank Mr. Saleh Khalaj Monfared and Mr. Caner Tol
for their support.

Appendix A

Table 3 contains details of leaky IF conditions in each function of TinyGarble [86],
EMP-toolkit [67], Obliv-C [96], and ABY [18].

Fig. 6. SR of Goblin for 1000 randomly chosen inputs given to GC garbled by Tiny-
Garble [87] when (a) only free-XOR or (b) half-gate optimization is enabled and JG is
disabled.

Fig. 7. SR of Goblin against MULT, SUM, and Hamming benchmark functions for a
range of inputs garbled by TinyGarble [86] when (a) only free-XOR optimization, (b)
half-gate protocol is enabled, and JG is disabled.

346 M. Hashemi et al.

Appendix B

To study the impact of an implementation in which not all timing side-channel
vulnerabilities are considered, we have launched Goblin against TinyGarble when
the JG has been disabled.

Fig. 8. SR of Goblin against 128-bit (a) SUM, (b) Hamming, and (c) MULT. CPU
cycle traces captured from 10-100, 000 randomly chosen inputs when JG is disabled.
(Top: TinyGarble [86] with only free-XOR, Bottom: with half-gate optimization).

Table 2. Type of the gates in the input layer of the AES and 256-bit MULT modules.

AES 256-bit MULT
Percentage (%) Count Percentage (%) Count

AND gates in input layer 75 96 50 256
XOR gates in input layer 25 32 50 256

Fig. 6 illustrates the results of Goblin against TinyGarble when JG is dis-
abled. It is observable in Fig. 6 that even without JG, Goblin can reveal the
garbler’s input with an average SR average of 95% or higher, slightly lower than
the case when JG is enabled. To further investigate this, we launched Goblin
against MULT, SUM, and Hamming benchmarks with input ranges between
128 and 1024 bits when JG was disabled. Figure 7 shows the results of launching
Goblin against MULT, SUM, and Hamming benchmark functions for a range of
inputs garbled by TinyGarble when (a) only free-XOR optimization, (b) half-
gate protocol is enabled, and JG is disabled. Same as results in Sect. 5.2, one can
observe a similar pattern of increasing SR of Goblin according to the increased
size of benchmarks input. As another part of our investigations, we have launched
Goblin against MULT, SUM, and Hamming modules without JG. Figure 8 illus-
trates SR of Goblin against 128-bit (a) SUM, (b) Hamming, and (b) MULT

Time Is Money, Friend! 347

Algorithm 1. Junk Generator pseudo code
Require: Size = size of cache/64
Ensure: Junk ← Array[size] and n ← 1

function JG(n)
while User Interrupt do

if n == 1 then
Seed ← t_time
Junk[0...3] ← rand(Seed)
n ← n + 1 � Initiate recursive algorithm.
return JG(2)

else if n == (Size − 1) then
return JG(1)

else if n �= (Size − 1) and n �= 1 then
i ← n
Loop over i ≤ (Size − n − 1) :

Junk[i + n + 1] ← Junk[i] + Junk[n]
n ← n + 1
return JG(2)

end if
end while

end function

benchmarks for a range of CPU cycle traces captured from 10 − 100, 000 ran-
domly chosen inputs when JG is disabled. These results prove that Goblin can
reveal garbler information from an insecurely implemented framework even with-
out the help of JG.

Appendix C

The JG, as in Algorithm 1, works as follows. The iteration’s parameter n deter-
mines how many cell indexes in the array are summed and updates another
array cell. This procedure repeats until it reaches the index of (Size-1). At this
point, JG produces new random numbers and repeats the process indefinitely,
resulting in cache disruption and potentially evicting critical data, like the global
parameter R used for free-XOR [53]/Half-gates [97] optimizations.

Appendix D

To investigate the effects of the gate types in the input layer on the SR, we
counted the number of XOR and AND gates in the input layer of the AES and
256-bit MULT since the results for these two benchmark functions vary largely as
shown in Fig. 3. Table 2 contains the detail about the type of the gates in the AES
and 256-bit MULT benchmark functions. Moreover, the category of AND gate
contains AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN gates,
and the category of XOR gate includes NV, XOR, and XNOR gates as described
in Sect. 4.3. It is observable that the AND gates are dominant in the AES input
layer (75% input layer gates) while the portions of XOR and AND gates are
equal in the input layer of 256-bit MULT. This can explain why the results for
these two benchmark functions are different. In fact, it is because of the fact
that it is more challenging to determine the inputs given to XOR gates.

348 M. Hashemi et al.

Fig. 9. SR of Goblin computed separately for AND and XOR input gates of 128-AES,
256-bit MULT, 128-bit Hamming, 128-bit SUM, and 288-bit SHA modules with (a)
free-XOR and (b) half-gate optimization.

Table 3. A detailed report of leaky IF conditions (IF) of every function call in JustGar-
ble [4], TinyGarble [86] with half-gate and free-XOR optimization, EMP-toolkit [67],
Obliv-C [96], and ABY [18].

Framework Function IF Framework Function IF

TinyGarble(half-gate) [86] GarbledLowMem 0 JustGarble [42] createNewWire 0
GarbledGate 2 TRUNCATE 0
ParseInitInputStr 0 TRUNC_COPY 0
RemoveGarbledCircuit 0 getNextId 0
HalfGarbleGateKnownValue 0 getFreshId 0
NumOfNonXor 0 getNextWire 0
HalfGarbleGate 2 createEmptyGarbledCircuit 0
InvertSecretValue 0 removeGarbledCircuit 0
XorSecret 0 startBuilding 0
OutputBN2StrLowMem 0 finishBuilding 2
RandomBlock 0 extractLabels 0
Total 4 garbleCircuit 8

TinyGarble(free-XOR) [86] GarbledLowMem 2 blockEqual 0
GarbledGate 5 mapOutputs 0
ParseInitInputStr 0 createInputLabels 0
RemoveGarbledCircuit 0 randomBlock 0
NumOfNonXor 0 xorBlocks 0
XorSecret 0 findGatesWithMatchingInputs 1
OutputBN2StrLowMem 0 Total 11
RandomBlock 0 EMP-toolkit [67] HalfGateGen 0
Total 7 parse_party_and_port 0

Obliv-C [96] yaoGenerateGate 3 NetIO 0
yaoGenrRevealOblivBits 0 Total 0
yaoGenrFeedOblivInputs 1 ABY [18] YaoSharingInit 0
yaoKeyNewPair 0 BooleanCircuit 0
yaoSetBitAnd 0 init_aes_key 0
yaoSetBitOr 0 ceil_divide 0
yaoSetBitXor 0 clean_aes_key 0
yaoFlipBit 0 EncryptWire 0
yaoSetHashMask 0 EncryptWireGRR3 0
yaoSetHalfMask 0 PrintKey 0
yaoSetHalfMask2 0 PrintPerformanceStatistics 0
yaoKeyDouble 0 XOR_DOUBLE_B 0
Total 4 Total 0

Time Is Money, Friend! 349

To further analyze the reason behind this, we have separately calculated
the SR of Goblin against applied against AND and XOR gates. Figure 9 illus-
trates the results for launching Goblin against 128-AES, 256-bit MULT, 128-bit
Hamming, 128-bit SUM, and 288-bit SHA modules, similar to Fig. 3, where the
results for AND and XOR gates are combined. As observable in Fig. 9, Goblin’s
average SR when launching against AND gates are always close to 100% while
its average SR has a range between 100% and 65% when launching against XOR
gates for the benchmark functions. This is aligned with the results presented
in Fig. 3. In that figure, the difference between the mean values of CPU cycles
collected for inputs “0” and “1” is larger for AND gates in comparison to XOR
gates.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (Short Paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006). https://doi.org/10.1007/11935308_9

2. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_29

3. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_22

4. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, pp.
478–492. IEEE (2013)

5. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communication Security,
pp. 784–796 (2012)

6. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8_17

7. Bernstein, D.J.: Cache-timing attacks on AES (2005)
8. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,

Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4_20

9. Brakerski, Z., Yuen, H.: Quantum garbled circuits. In: Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 804–817 (2022)

10. Carter, H., Lever, C., Traynor, P.: Whitewash: outsourcing garbled circuit gener-
ation for mobile devices. In: Proceedings of the 30th Annual Computer Security
Applications Conference, pp. 266–275 (2014)

11. Carter, H., Mood, B., Traynor, P., Butler, K.: Outsourcing secure two-party com-
putation as a black box. Secur. Commun. Netw. 9(14), 2261–2275 (2016)

12. Chen, D., Chen, W., Chen, J., Zheng, P., Huang, J.: Edge detection and image
segmentation on encrypted image with homomorphic encryption and garbled cir-
cuit. In: 2018 IEEE International Conference on Multimedia and Expo (ICME),
pp. 1–6. IEEE (2018)

https://doi.org/10.1007/11935308_9
https://doi.org/10.1007/978-3-642-20465-4_29
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-642-03549-4_20

350 M. Hashemi et al.

13. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the free-XOR
technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_3

14. Cock, M.d., Dowsley, R., Nascimento, A.C., Newman, S.C.: Fast, privacy preserv-
ing linear regression over distributed datasets based on pre-distributed data. In:
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp.
3–14 (2015)

15. Conti, M., et al.: Losing Control: on the effectiveness of control-flow integrity under
stack attacks. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 952–963 (2015)

16. Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_23

17. Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5_14

18. Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

19. Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1602–1613 (2016)

20. Easdon, C., Schwarz, M., Schwarzl, M., Gruss, D.: Rapid prototyping for microar-
chitectural attacks. In: USENIX Security Symposium (2022)

21. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation. In: Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
pp. 554–563 (1994)

22. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 588–599. IEEE (2017)

23. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8_16

24. Gascón, A., et al.: Privacy-preserving distributed linear regression on high-
dimensional data. Proc. Priv. Enhancing Technol. 2017(4), 345–364 (2017)

25. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8, 1–
27 (2018)

26. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7_9

27. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of the Forty-
Fifth Annual ACM Symposium on Theory of Computing, pp. 555–564 (2013)

28. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_11

https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-32009-5_11

Time Is Money, Friend! 351

29. Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation leak-aside buffer: defeating
cache side-channel protections with {TLB} attacks. In: 27th USENIX Security
Symposium (USENIX Security 18), pp. 955–972 (2018)

30. Groce, A., Ledger, A., Malozemoff, A.J., Yerukhimovich, A.: CompGC: effi-
cient offline/online semi-honest two-party computation. Cryptology ePrint Archive
(2016)

31. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodríguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1_15

32. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodríguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1_14

33. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard
assumptions. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 567–578 (2015)

34. Guo, C., Katz, J., Wang, X., Weng, C., Yu, Yu.: Better concrete security for half-
gates garbling (in the multi-instance setting). In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 793–822. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1_28

35. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy
(SP), pp. 825–841. IEEE (2020)

36. Gupta, T., Fingler, H., Alvisi, L., Walfish, M.: Pretzel: email encryption and
provider-supplied functions are compatible. In: Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, pp. 169–182 (2017)

37. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS,
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

38. Hastings, M., Hemenway, B., Noble, D., Zdancewic, S.: SoK: General purpose com-
pilers for secure multi-party computation. In: 2019 IEEE Symposium on Security
and Privacy (SP), pp. 1220–1237. IEEE (2019)

39. Hettwer, B., Gehrer, S., Güneysu, T.: Applications of machine learning techniques
in side-channel attacks: a survey. J. Cryptogr. Eng. 10(2), 135–162 (2020)

40. Intel Corporation: Intel Core i7 Processors. https://www.intel.com/content/www/
us/en/products/details/processors/core/i7.html. Accessed 30 Jan 2023 (2017)

41. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-
VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 299–319. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11379-1_15

42. irdan: JustGarble framework. https://github.com/irdan/justGarble. Accessed 30
Jan 2023 (2014)

43. Jagadeesh, K.A., Wu, D.J., Birgmeier, J.A., Boneh, D., Bejerano, G.: Deriving
genomic diagnoses without revealing patient genomes. Science 357(6352), 692–695
(2017)

44. Jancar, J.: The state of tooling for verifying constant-timeness of cryptographic
implementations. https://neuromancer.sk/article/26. Accessed 7 Feb 2023 (2021)

45. Jancar, J., et al.: They’re not that hard to mitigate: what cryptographic library
developers think about timing attacks. In: 2022 IEEE Symposium on Security and
Privacy (SP), pp. 632–649. IEEE (2022)

https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-030-56880-1_28
https://doi.org/10.1007/978-0-387-84858-7
https://www.intel.com/content/www/us/en/products/details/processors/core/i7.html
https://www.intel.com/content/www/us/en/products/details/processors/core/i7.html
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/978-3-319-11379-1_15
https://github.com/irdan/justGarble
https://neuromancer.sk/article/26

352 M. Hashemi et al.

46. Jayaraman, B., Li, H., Evans, D.: Decentralized certificate authorities. arXiv
preprint arXiv:1706.03370 (2017)

47. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: {GAZELLE}: a low latency
framework for secure neural network inference. In: 27th USENIX Security Sympo-
sium (USENIX Security 18), pp. 1651–1669 (2018)

48. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive (2011)

49. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45472-5_13

50. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure func-
tion evaluation. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, pp. 797–808 (2012)

51. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function
evaluation. Cryptology ePrint Archive (2012)

52. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

53. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and appli-
cations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdót-
tir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40

54. Lai, C.H., Zhao, J., Yang, C.L.: Leave the cache hierarchy operation as it is: a
new persistent memory accelerating approach. In: Proceedings of the 54th Annual
Design Automation Conference 2017, pp. 1–6 (2017)

55. Levi, I., Hazay, C.: Garbled-circuits from an SCA perspective: free XOR can be
quite expensive... Cryptology ePrint Archive (2022)

56. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
ECCC report TR04-063. In: Electronic Colloquium on Computational Complexity
(ECCC) (2004)

57. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4_4

58. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

59. Lipp, M., Gruss, D., Schwarz, M.: AMD prefetch attacks through power and time.
In: USENIX Security Symposium (2022)

60. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: {ARMageddon}:
cache attacks on mobile devices. In: 25th USENIX Security Symposium (USENIX
Security 16), pp. 549–564 (2016)

61. Lipp, M., Hadžić, V., Schwarz, M., Perais, A., Maurice, C., Gruss, D.: Take a way:
exploring the security implications of AMD’s cache way predictors. In: Proceedings
of the 15th ACM Asia Conference on Computer and Communications Security, pp.
813–825 (2020)

62. Lipp, M., et al.: PLATYPUS: software-based power side-channel attacks on x86.
In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 355–371. IEEE (2021)

63. Liu, F., et al.: CATalyst: defeating last-level cache side channel attacks in cloud
computing. In: 2016 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pp. 406–418. IEEE (2016)

http://arxiv.org/abs/1706.03370
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4

Time Is Money, Friend! 353

64. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, pp. 605–
622. IEEE (2015)

65. Lou, X., Zhang, T., Jiang, J., Zhang, Y.: A survey of microarchitectural side-
channel vulnerabilities, attacks, and defenses in cryptography. ACM Comput. Surv.
(CSUR) 54(6), 1–37 (2021)

66. Lyu, Y., Mishra, P.: A survey of side-channel attacks on caches and countermea-
sures. J. Hardware Syst. Secur. 2(1), 33–50 (2018)

67. Malozemoff, A., Wang, X., Katz, J.: EMP-toolkit framework. https://github.com/
emp-toolkit. Accessed 30 Jan 2023 (2022)

68. Martin, R., Demme, J., Sethumadhavan, S.: TimeWarp: rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In: 2012
39th Annual International Symposium on Computer Architecture (ISCA), pp. 118–
129. IEEE (2012)

69. Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: how SGX amplifies the
power of cache attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 69–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66787-4_4

70. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the
garbled circuit approach. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 591–602 (2015)

71. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38. IEEE (2017)

72. Mowery, K., Keelveedhi, S., Shacham, H.: Are AES x86 cache timing attacks still
feasible? In: Proceedings of the 2012 ACM Workshop on Cloud Computing Security
Workshop, pp. 19–24 (2012)

73. Mushtaq, M., Mukhtar, M.A., Lapotre, V., Bhatti, M.K., Gogniat, G.: Winter is
here! a decade of cache-based side-channel attacks, detection & mitigation for RSA.
Inf. Syst. 92, 101524 (2020)

74. Nakamoto, A.: W-shield: protection against cryptocurrency wallet credential steal-
ing. In: Workshop on Security and Privacy in E-Commerce 2018, pp. 71–107 (2018)

75. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Sym-
posium on Security and Privacy, pp. 334–348. IEEE (2013)

76. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2_30

77. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_1

78. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryp-
tology ePrint Archive (2002)

79. Percival, C.: Cache missing for fun and profit (2005)
80. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public

keys. In: Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security, pp. 463–472 (2010)

81. Saxena, A., Panda, B.: DABANGG: a case for noise resilient flush-based cache
attacks. In: 2022 IEEE Security and Privacy Workshops (SPW), pp. 323–334. IEEE
(2022)

https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/11605805_1

354 M. Hashemi et al.

82. Schneider, T.: Practical secure function evaluation. In: Informatiktage, pp. 37–40
(2008)

83. Schwarz, M., et al.: Automated detection, exploitation, and elimination of double-
fetch bugs using modern CPU features. In: Proceedings of the 2018 on Asia Con-
ference on Computer and Communications Security, pp. 587–600 (2018)

84. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3–24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1_1

85. Sherali, H.D., Tuncbilek, C.H.: A squared-Euclidean distance location-allocation
problem. Naval Res. Logist. (NRL) 39(4), 447–469 (1992)

86. Songhori, E., Siam, H., Riazi, S.: Tinygarble framework. https://github.com/
esonghori/TinyGarble. Accessed 30 Jan 2023 (2019)

87. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-
Garble: highly compressed and scalable sequential garbled circuits. In: 2015 IEEE
Symposium on Security and Privacy, pp. 411–428. IEEE (2015)

88. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9_26

89. Tian, L., Jayaraman, B., Gu, Q., Evans, D.: Aggregating private sparse learning
models using multi-party computation. In: NIPS Workshop on Private Multi-Party
Machine Learning (2016)

90. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in XEN. In:
Proceedings of the 3rd ACM workshop on Cloud Computing Security Workshop,
pp. 41–46 (2011)

91. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 3–21. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4_1

92. Wu, M., Guo, S., Schaumont, P., Wang, C.: Eliminating timing side-channel leaks
using program repair. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 15–26 (2018)

93. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

94. Yarom, Y., Falkner, K.: Flush+ reload: a high resolution, low noise, l3 cache side-
channel attack. In: 23rd {USENIX} Security Symposium ({USENIX} Security 14),
pp. 719–732 (2014)

95. Zahur, S., Kerneis, G., Necula, G.: Obliv-C secure computation compiler. https://
github.com/samee/obliv-c. Accessed 2 Feb 2023 (2018)

96. Zahur, S., Evans, D.: Obliv-C: A language for extensible data-oblivious computa-
tion. Cryptology ePrint Archive (2015)

97. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8

98. Zhao, L., Iyer, R., Makineni, S., Newell, D., Cheng, L.: NCID: a non-inclusive
cache, inclusive directory architecture for flexible and efficient cache hierarchies.
In: Proceedings of the 7th ACM International Conference on Computing Frontiers,
pp. 121–130 (2010)

https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://github.com/esonghori/TinyGarble
https://github.com/esonghori/TinyGarble
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-662-48324-4_1
https://github.com/samee/obliv-c
https://github.com/samee/obliv-c
https://doi.org/10.1007/978-3-662-46803-6_8

Related-Tweak and Related-Key
Differential Attacks on HALFLOOP-48

Yunxue Lin1,2 and Ling Sun1,2,3(B)

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, China

lingsun@sdu.edu.cn
2 School of Cyber Science and Technology, Shandong University, Qingdao, China

3 Quan Cheng Shandong Laboratory, Jinan, China

Abstract. HALFLOOP-48 is a 48-bit tweakable block cipher used
in high frequency radio to protect automatic link establishment mes-
sages. We concentrate on its differential properties. Using the automatic
method, we determine the lower bound for the number of active S-boxes
and the upper bound for the differential probability for the conventional,
related-tweak, and related-key differential attack settings. The newly
identified 6-round related-tweak differential is utilised to initiate an 8-
round related-tweak differential attack against the cipher. With 233.27

chosen-plaintexts and 292.71 8-round encryptions, the 128-bit key can be
recovered. In addition, we find an 8-round related-key differential with a
probability of 2−46.88 and employ it to develop a full-round related-key
differential attack. The full-round attack is marginal, and the 128-bit
key can be retrieved using 247.34 chosen-plaintexts and 2123.91 full-round
encryptions. Despite the impractical complexity of the newly proposed
attacks, the security of HALFLOOP-48 in the related-key attack setting
is compromised. Therefore, we assert that caution is necessary to prevent
misuse.

Keywords: Differential cryptanalysis · Related-tweak · Related-key ·
HALFLOOP-48

1 Introduction

HALFLOOP is a tweakable block cipher family. It was designed to encrypt pro-
tocol data units prior to transmission in automatic link establishment (ALE).
The latest revision of MIL-STD-188-141D [1], the interoperability and perfor-
mance standards for medium and high frequency radio systems issued by the
United States Department of Defence, has standardised HALFLOOP.

All three variants of HALFLOOP, called HALFLOOP-24, HALFLOOP-48,
and HALFLOOP-96, have the same 128-bit key size and different state sizes, 24-
bit, 48-bit, and 96-bit, respectively. The three HALFLOOP variants are utilised
in different generations of ALE systems: HALFLOOP-24 in the second gener-
ation (2G) system, HALFLOOP-48 in the third generation (3G) system, and
HALFLOOP-96 in the fourth generation (4G) system.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 355–377, 2024.
https://doi.org/10.1007/978-3-031-54776-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_14

356 Y. Lin and L. Sun

The HALFLOOP announcement is not accompanied by public cryptanalysis.
Dansarie et al. [12] reported the first public cryptanalytic result on HALFLOOP-
24 and proposed a variety of differential attacks [5] for ciphertext-only, known-
plaintext, selected-plaintext, and selected-ciphertext scenarios. Despite its 128-
bit key size, the attack results indicated that HALFLOOP-24 is incapable of
providing 128-bit security.

Note that the security of HALFLOOP-24 has been extensively examined in
[12], whereas the security of the remaining two HALFLOOP versions has been
assessed using the time memory tradeoff attack. However, a non-generic attack
for the remaining two versions is not provided. As stated in [12], designing the
key schedule for block ciphers with small states requires significantly more care.
If the key bits are not properly mixed with the state, the security of this type of
cipher can be substantially lower than anticipated. In light of this observation,
we are curious about the security of HALFLOOP-48, which also has a relatively
small state.

The breaking of HALFLOOP-24 [12] depends on the slow spread of the
tweakey schedule. It is possible to create a 6-round related-tweak differential
characteristic with a probability of one, which enables full-round attacks on the
cipher. However, in the case of HALFLOOP-48, it is not immediately apparent if
a related-tweak differential characteristic with a high chance of occurrence exists.
The potential for extending the attack on HALFLOOP-24 to HALFLOOP-48
remains uncertain.

Our contribution Motivated by understanding the security of HALFLOOP-48,
we investigate its resistance to the differential attack, one of the most fundamen-
tal and powerful block cipher cryptanalyses. Given that HALFLOOP-48 exploits
an 8-bit S-box, we employ the SAT method described in [22] for its rapid con-
struction of SAT models for large S-boxes. We determine the lower bound on
the number of active S-boxes and the upper bound on the differential probabil-
ity using the automatic method for conventional, related-tweak, and related-key
differential attack settings.

❶ The resistance of HALFLOOP-48 to the conventional differential attack is
adequate. The longest differential characteristic with a probability greater
than 2−47 spans three rounds, whereas the longest valid differential spans
four rounds. Given that the complete version of HALFLOOP-48 consists of
ten rounds, the security margin seems sufficient.

❷ In the related-tweak attack setting, the security of HALFLOOP-48 is accept-
able. The longest differential characteristics and differentials with probabili-
ties higher than 2−47 cover six rounds. The optimal differential is a 6-round
differential with a probability of 2−29.48. Its validity is verified using randomly
drawn plaintexts, keys, and tweaks.

❸ The vulnerability of HALFLOOP-48 to the related-key differential attack
is low. The longest differential characteristic with a probability greater than
2−47 spans seven rounds, whereas the longest effective differential spans eight.
An 8-round related-key differential with a probability of 2−46.88 is discovered.

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 357

Even though the probability of the 8-round differential is marginally higher
than the critical value, it remains functional in a full-round attack.

We mount differential attacks against HALFLOOP-48 via the newly-
identified differentials. A 6-round related-tweak differential is employed to initi-
ate an 8-round related-tweak differential attack. The 128-bit key can be retrieved
using 233.27 chosen-plaintexts and 292.71 8-round encryptions. In addition, the
unique 8-round related-key differential is used to launch a full-round related-key
differential attack. 247.34 chosen-plaintexts and 2123.91 full-round encryptions are
required to recover the 128-bit key. Table 1 provides an overview of the complex-
ity of the attacks. Due to their impractical complexity, the attacks described
in this paper do not pose a real security risk to HALFLOOP-48. Nevertheless,
caution must be taken to prevent misuse, as our study reveals no secure margin
in the related-key attack setting.

Table 1. Overview of the attacks on HALFLOOP-48 reported in the paper.

Setting Round Data Time Memory
(Byte)

Success
Probability

Section

Related-tweak 8 233.27 292.71 236.85 90% Sect. 5.1
Related-key 10 247.34 2123.91 233.34 50% Sect. 5.2

The paper is organised as follows. Section 2 introduces differential cryptanal-
ysis and the specification of HALFLOOP-48. Section 3 represents the method for
creating SAT models to search for differential characteristics of HALFLOOP-48.
Section 4 exhibits the differential properties of the cipher in the conventional,
related-tweak, and related-key attack configurations. The 8-round related-tweak
differential attack and the full-round related-key differential attack are given in
Sect. 5. Section 6 concludes the paper.

2 Preliminaries

This section begins with a review of differential cryptanalysis and its variants
in the context of related-key and related-tweak attacks. The focus of the paper,
HALFLOOP-48, is then introduced.

2.1 Differential Cryptanalysis

Biham and Shamir [5] were the first to define differential cryptanalysis. The
basic procedure employs plaintext pairs (P, P ′) connected by a constant differ-
ence Δin. Several methods exist for defining differences, but the XOR operation
is the most prevalent because, in the majority of instances, the XOR operation
involves the keys in the encryption phase. The attacker then computes the dif-
ferences between the corresponding ciphertexts (C,C ′) in an attempt to detect

358 Y. Lin and L. Sun

a difference Δout that occurs with a probability that is not random. The pair
of differences (Δin,Δout) is called a differential. The differential probability of a
differential (Δin,Δout) over an n-bit primitive EK parameterised with a k-bit
key K is computed as

PrEK
(Δin,Δout) =

{x ∈ F
n
2

∣
∣ EK(x) ⊕ EK(x ⊕ Δin) = Δout}

2n
.

The weight of a differential is − log2 [PrEK
(Δin,Δout)]. To guarantee a successful

attack, the probability of a differential used in a differential attack must exceed
21−n.

Typically, evaluating the differential probability of a differential in order to
discover a valid differential for a large-scale cipher involving numerous rounds
is extremely challenging. The differential is usually localised by constructing
differential characteristics, which track the difference after each round. Denote
(Δin = Δ0,Δ1, . . . ,Δr = Δout) an r-round differential characteristic of the dif-
ferential (Δin,Δout). Suppose the r-round encryption EK can be represented as
the composition of r round functions as fkr−1 ◦fkr−2 ◦· · ·◦fk0 . Under the assump-
tion that the round keys k0, k1, . . ., kr−1 are independent and uniformly random,
the differential probability of the differential characteristic can be calculated as

PrEK
(Δ0,Δ1, . . . ,Δr) =

r−1∏

i=0

Prfki
(Δi,Δi+1).

Since a fixed differential may contain a large number of differential characteris-
tics, the probability of the differential can be computed as

PrEK
(Δin,Δout) =

∑

Δ1,Δ2,...,Δr−1∈F
n
2

PrEK
(Δin,Δ1, . . . ,Δr−1,Δout).

In practice, exhaustively searching for all characteristics in a differential and
accurately calculating its probability is impossible due to the limited compu-
tational resources available. A common way of handling this is to find the dif-
ferential characteristics with a higher probability in the differential, and the
summation of probabilities of these characteristics approximates the probability
of the differential.

After obtaining an r-round differential (Δin,Δout) with probability p0 (p0 >
21−n), initiating an (r + 1)-round differential attack against the (r + 1)-round
encryption ẼK = fkr

◦ EK is possible. The following is a summary of the fun-
damental attack procedure.

❶ Select N plaintext pairs (P, P ′) such that the difference between P and P ′ is
Δin. Query the encryption oracle to obtain the pairs of ciphertexts (C,C ′)
that correspond.

❷ Create a counter Cnt[k(i)
r] for each possible value k

(i)
r of the subkey kr, 0 �

i � 2n − 1. For each pair (C,C ′), determine the value of f−1

k
(i)
r

(C) ⊕ f−1

k
(i)
r

(C ′)

for each k
(i)
r . If the equation f−1

k
(i)
r

(C) ⊕ f−1

k
(i)
r

(C ′) = Δout is valid, increment

the counter Cnt[k(i)
r] by one.

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 359

❸ If the threshold is set to τ , the key guess k
(i)
r is sorted into a candidate list

only if the counter value Cnt[k(i)
r] is at least τ .

From the attack procedure, the counter memorising the number of pairs
validating the differential follows a binomial distribution B(N, p0) under the
correct key guess (cf. [7]). On the other hand, the probability of a pair satisfying
the differential given an incorrect key guess is p = 2−n. The counter follows a
binomial distribution B(N, p).

Differential cryptanalysis, categorised as statistical cryptanalysis, always
faces two errors. The probability that the correct key does not exist in the candi-
date list is denoted by α. Denote β the false alarm error probability, which is the
probability that a wrong key guess survives in the candidate list. Consequently,
the success probability PS of the attack, which is the probability that the right
key appears in the candidate list, is equal to 1 − α. According to the analysis in
[7], when N is sufficiently large, α and β can be approximately calculated as

α ≈ p0 · √

1 − (τ − 1)/N
(

p0 − (τ − 1)/N
) · √

2 · π · (τ − 1)
· exp

[

−N · D

(
τ − 1

N

∥
∥
∥
∥
p0

)]

,

β ≈ (1 − p) · √

τ/N

(τ/N − p) · √

2 · π · N · (1 − τ/N)
· exp

[

−N · D

(
τ

N

∥
∥
∥
∥
p

)]

,

(1)

where D(p‖q) � p · ln
(

p
q

)

+(1− p) · ln
(

1−p
1−q

)

is the Kullback-Leibler divergence
between two Bernoulli distributions with parameters respectively being p and q.

2.2 Related-Key and Related-Tweak Differential Cryptanalyses

The difference between conventional differential cryptanalysis and related-key
differential cryptanalysis is that the latter exploits the properties of differential
propagation when plaintexts P and P ′, which can be identical, are encrypted
using different keys. Formally, an r-round related-key differential is represented
by the triple (Δin,Δout,Δkey), where Δkey is the difference between the keys,
and its probability is calculated as

PrEK
(Δin,Δout,Δkey) =

{x ∈ F
n
2

∣
∣ EK(x) ⊕ EK⊕Δkey

(x ⊕ Δin) = Δout}
2n

.

Initialising related-tweak differential cryptanalysis is also possible for tweak-
able block ciphers (such as HALFLOOP-48, concerned in this paper). It employs
differential propagation when P and P ′, which may be identical, are encrypted
with the same key and distinct tweaks. We indicate a related-tweak differen-
tial with the triple (Δin,Δout,Δtweak), where Δtweak represents the difference
between the tweaks. Compared to related-key differential cryptanalysis, related-
tweak differential cryptanalysis poses a more significant threat since the value
of the tweak is publicly known to the adversary.

After obtaining an r-round related-key (resp., related-tweak) differential with
a probability greater than 21−n, a related-key (resp., related-tweak) differential
attack can be performed similarly to a conventional differential attack.

360 Y. Lin and L. Sun

2.3 Specification of HALFLOOP-48

HALFLOOP [1] is a tweakable block cipher family with three distinct variants.
HALFLOOP-48 employs 48-bit blocks and has 128-bit key K and 64-bit tweak
T . Many operations in HALFLOOP-48 are derived from AES [2,11].

Initialisation. After receiving the plaintext m = m[0]‖m[1]‖ · · · ‖m[5], where
m[i] ∈ F

8
2, 0 � i � 5, the internal state IS is set to

IS =

⎡

⎣

m[0] m[3]
m[1] m[4]
m[2] m[5]

⎤

⎦ .

Fig. 1. Round function of HALFLOOP-48.

A single encryption round consists of the four operations depicted in Fig. 1:
AddRoundKey (ARK), SubBytes (SB), RotateRows (RR), and MixColumns (MC).
The number of encryption rounds is ten, and the final round replaces MixColumns
with AddRoundKey. The definitions of the four operations are as follows.

AddRoundKey (ARK) The round key RKi is bitwise XORed to the state in the
i-th round.

SubBytes (SB) An 8-bit S-box S (cf. Table 2) is applied to each state byte, which
is identical to the S-box used by AES.

RotateRows (RR) As shown in Fig. 1, this operation rotates the state rows to the
left by a variable number of bit positions.

MixColumns (MC) Each 24-bit column is viewed as a polynomial over F28 , and
the irreducible binary polynomial is the same as that of AES: m(x) = x8 +
x4 + x3 + x + 1. Each column is multiplied modulo x3 + 1 by a constant
polynomial c(x) expressed as c(x) = x2 + 2 · x + 9. This operation can also
be expressed as a matrix multiplication with the matrix M over F28 , where

M =

⎡

⎣

9 1 2
2 9 1
1 2 9

⎤

⎦ . (2)

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 361

Table 2. 8-bit S-box S of HALFLOOP. x‖y is the 8-bit input, where x,y ∈ F
4
2.

S(x||y) y

0 1 2 3 4 5 6 7 8 9 a b c d e f

x 0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Key Schedule The key schedule resembles that of AES-128 closely. Denote K
and T as K0‖K1‖K2‖K3 and T0‖T1, respectively, where Ki (0 � i � 3) and
Tj (j = 0, 1) are 32-bit words. K and T are utilised to generate a linear array
of 4-byte words W0, W1, . . ., W16, which are then employed to create the
round keys. The first four words are initialised with

W0 = K0 ⊕ T0,W1 = K1 ⊕ T1,W2 = K2,W3 = K3.

The remaining words are generated using the two functions listed below.
RotWord The function accepts the 4-byte input word a[0]‖a[1]‖a[2]‖a[3], per-

forms a cyclic permutation, and returns the output a[1]‖a[2]‖a[3]‖a[0].
SubWord The function takes a 4-byte input word and applies the S-box S to

each of the four bytes to generate a 4-byte output word.
Each subsequent word Wi (4 � i � 16 and i mod 4 �= 0) is the XOR of the
two preceding words Wi−1 and Wi−4. For words in positions i that are a
multiple of four, g = SubWord ◦ RotWord is applied to Wi−1 before the XOR,
and a round constant Rconi/4 is XORed with the result. The four round
constants involved in the HALFLOOP-48 key schedule are

Rcon1 = 0x01000000,Rcon2 = 0x02000000,

Rcon3 = 0x04000000,Rcon4 = 0x08000000.

362 Y. Lin and L. Sun

To obtain the round keys RK0, RK1, . . ., and RK10 for HALFLOOP-48, it is
necessary to repackage the 4-byte words into 6-byte words. The key schedule
is illustrated in Fig. 2.

Fig. 2. Key schedule of HALFLOOP-48.

3 Automatic Search of Differentials

Identifying a differential with a non-negligible probability is the most crucial
and challenging step in a differential attack. Matsui [17] presented the first sys-
tematic method, the branch and bound algorithm, to explore the optimal differ-
ential characteristic at EUROCRYPT 1994. When customised optimisations for
particular ciphers are considered, branch and bound algorithms are unquestion-
ably highly efficient [6,13]. Nevertheless, avoiding memory overload by carefully
selecting search nodes is a test of both cryptanalysis and programming skills.

The introduction of automatic search techniques [18] has substantially facili-
tated the search for differential characteristics. The primary objective is to con-
vert the problem of seeking differential characteristics into some well-studied
mathematical problems. Using some publicly accessible solvers for these mathe-
matical problems, the optimal differential characteristics can be identified. Since
implementing automatic methods is relatively straightforward, it has been exten-
sively utilised to search for distinguishers in various attacks.

Mixed integer linear programming (MILP), Boolean satisfiability problem
(SAT), satisfiability modulus theories (SMT), and constraint satisfaction prob-
lem (CSP) are frequently encountered mathematical problems in the automatic
search. The automatic search methods can be categorised based on the mathe-
matical problems they resolve. MILP methods in [3,8,14], SAT method in [4,22],
and SMT method in [15] can accomplish the search of differential characteristics
for ciphers with 8-bit S-boxes. In this work, we select the SAT method in [22]
for the rapid production of SAT models for S-boxes.

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 363

In this section, we describe the SAT models required to search for (related-
key and related-tweak) differential characteristics of HALFLOOP-48, including
models for linear operations, the S-box, and the objective function.

3.1 Boolean Satisfiability Problem

A Boolean formula consists of Boolean variables, the operators AND (conjunc-
tion, ∧), OR (disjunction, ∨), and NOT (negation, ·̄), as well as parentheses.
The Boolean satisfiability problem is the problem of determining if an assign-
ment exists for all Boolean variables such that the provided Boolean formula is
valid. If so, the formula is referred to as satisfiable. Alternatively, if there is no
such assignment, the formula is unsatisfiable. SAT is the first problem proven
to be NP-complete [10], but very efficient solvers are now available to manage
numerous actual SAT problems.

For distinguisher search, this paper utilises the solver CryptoMiniSat [20].
CryptoMiniSat requires Boolean formulas to be in conjunctive normal form
(CNF), which is a conjunction of one or more clauses, each of which is a dis-
junction of (potentially negated) variables. CryptoMiniSat also supports XOR
clauses composed of XOR of variables, which tremendously facilitates the model
construction for HALFLOOP-48. Converting distinguisher searching problems
into Boolean formulas in CNF is the most crucial phase in creating SAT models.

3.2 SAT Models for Linear Operations of HALFLOOP-48

In this section, for the m-bit vector Δ, the i-th bit (0 � i � m − 1) is denoted
by Δ[i], while Δ[0] represents the most significant bit.

Model 1 (XOR, [16]) For the m-bit XOR operation, the input differences are
represented by Δ0 and Δ1, and the output difference is denoted by Δ2. Differen-
tial propagation is valid if and only if the values of Δ0, Δ1 and Δ2 validate all
of the following XOR clauses.

Δ0[i] ⊕ Δ1[i] ⊕ Δ2[i] = 0, 0 � i � m − 1.

We employ the procedure described in [23] to build the model for the MC
operation. First, the primitive representation [21] M of the matrix M (cf. Eq.
(2)) is created.

364 Y. Lin and L. Sun

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is the matrix representation of M over F2. Mi,j is referred to the element of M
in the i-th row and j-th column. The SAT model can then be constructed using
XOR clauses.

Model 2 (Matrix Multiplication) For matrix multiplication with the 24 ×
24 matrix M, the input and output differences are represented by Δ0 and Δ1,
respectively. Differential propagation is valid if and only if the values of Δ0 and
Δ1 satisfy all the XOR clauses in the subsequent.

⊕

{j | 0�j�23 s.t. Mi,j=1}
Δ0[j] ⊕ Δ1[i] = 0, 0 � i � 23.

3.3 SAT Model for the S-Box of HALFLOOP-48

The probabilities of possible differential propagations Δ0 → Δ1 for the 8-bit
S-box S can take values from the set {2−7, 2−6, 1}. Motivated by the two-step
encoding method described in [22], we introduce two Boolean variables u0 and
u1 for each S-box to encode the differential probability of possible propagations.

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 365

V =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Δ0‖Δ1‖u0‖u1

∣
∣
∣
∣
∣
∣
∣
∣
∣

Δ0,Δ1 ∈ F
8
2, u0, u1 ∈ F2

u0‖u1 =

⎧

⎪⎨

⎪⎩

1‖1, if Pr(Δ0 → Δ1) = 2−7

0‖1, if Pr(Δ0 → Δ1) = 2−6

0‖0, if Pr(Δ0 → Δ1) = 1

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

is an optional set of values that may be assigned to the vector Δ0‖Δ1‖u0‖u1.
Accordingly, the weight of a possible propagation can be calculated as u0 +6 ·u1.
To ensure that Δ0‖Δ1‖u0‖u1 never takes values outside of the set V, for each
18-bit vector v /∈ V, we create the following clause1 that may be a candidate for
the SAT model of the S-box.

7∨

i=0

(Δ0[i] ⊕ v[i]) ∨
7∨

i=0

(Δ1[i] ⊕ v[i + 8]) ∨ (u0 ⊕ v[16]) ∨ (u1 ⊕ v[17]) = 1.

Note that this clause guarantees that Δ0‖Δ1‖u0‖u1 will never equal v. These
clauses comprise an initial version of the SAT model for the S-box. Because the
size of the set F

18
2 \V is 218 − 32386 = 229758, using the initial version of the

SAT model directly will inhibit the searching process of the automatic method.
To reduce the size of the S-box model, we employ the Espresso2 algorithm [9] to
simplify the model. The final S-box SAT model is composed of 8728 clauses.

3.4 SAT Model for the Objective Function

We aim to discover differential characteristics with high probabilities. The objec-

tive function can be represented as
�∑

i=0

ui � w, where ui (0 � i � �) are Boolean

variables encoding the differential probability of possible propagations for S-
boxes, and w is a predetermined upper limit for the weight of differential char-
acteristics. The sequential encoding method [19] transforms this inequality into
clauses.

Model 3 (Objective Function, [19]). The following clauses provide validity

assurance for the objective function
�∑

i=0

ui � 0.

ui = 1, 0 � i � �.

For the objective function
�∑

i=0

ui � w with w > 0, it is necessary to incorporate

auxiliary Boolean variables ai,j (0 � i � � − 1, 0 � j � w − 1). The objective
function is valid if the following clauses hold.

1 Given that Δ0[i] ⊕ v[i] equals Δ0[i] or Δ0[i] contingent on the value of vi, the
expression is a clause.

2 https://github.com/classabbyamp/espresso-logic contains a modern, compilable re-
host of the Espresso heuristic logic minimizer.

https://github.com/classabbyamp/espresso-logic

366 Y. Lin and L. Sun

u0 ∨ a0,0 = 1
a0,j = 1, 1 � j � w − 1

ui ∨ ai,0 = 1
ai−1,0 ∨ ai,0 = 1

ui ∨ ai−1,j−1 ∨ ai,j = 1
ai−1,j ∨ ai,j = 1

}

1 � j � w − 1

ui ∨ ai−1,w−1 = 1

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

1 � i � � − 2

u� ∨ a�−1,w−1 = 1

.

3.5 Finding More Differential Characteristics in the Differential

We can identify differential characteristics with high probabilities using the mod-
els presented in Sects. 3.2 to 3.4. To improve the probability evaluation of the
differential, we should fix the input and output differences in the automatic
model and find as many other differential characteristics as feasible. An addi-
tional clause should be added to the SAT problem to prevent the solver from
returning the same solution after obtaining a single differential characteristic.
Assume that v ∈ F

ω
2 is a solution for the ω Boolean variables x0, x1, . . ., xω−1

returned by the SAT solver. Two index sets

v|0 = {i|0 � i � ω − 1 s.t. v[i] = 0} and v|1 = {i|0 � i � ω − 1 s.t. v[i] = 1}.

are generated based on the value of v. Adding the clause
∨

i∈v|0
xi ∨

∨

i∈v|1
xi = 1

to the SAT problem guarantees that the solver will not find v again.

4 Differential Properties of HALFLOOP-48

This section demonstrates the differential properties of HALFLOOP-48 in the
conventional, related-tweak, and related-key attack settings, which were derived
using the method described in Sect. 3.

4.1 Conventional Differential Properties of HALFLOOP-48

In the standard differential attack, the lower bound on the number of active
S-boxes, which are S-boxes with probabilistic differential propagations, and the
upper bound on the differential probability are evaluated. Table 3 exhibits the
outcomes from 1 to 10 rounds of HALFLOOP-48. The longest differential char-
acteristic with a probability greater than 2−47 covers three rounds, and Fig. 3
depicts a 3-round differential characteristic with a probability of 2−33.

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 367

Table 3. Differential properties of HALFLOOP-48.

Round Standard setting Related-tweak attack setting Related-key attack setting
Active S-box Probability Active S-box Probability Active S-box Probability

1 1 2−6 0 1 0 1

2 4 2−24 0 1 0 1

3 5 2−33 0 1 0 1

4 8 2−50 1 2−6 1 2−6

5 9 2−61 3 2−20 2 2−12

6 12 2−78 5 2−33 5 2−30

7 13 2−89 8 2−53 7 2−45

8 16 2−105 10 2−68 7 2−47

9 17 2−117 13 2−88 10 2−65

10 20 2−133 15 2−101 12 2−80

Fig. 3. A 3-round differential characteristic for HALFLOOP-48 with probability 2−33.

Fig. 4. Optimal characteristics for two 4-round differentials with probability 2−45.69.

We question the existence of a 4-round differential with a probability greater
than 2−47, although the probability of the optimal 4-round differential charac-
teristic is less than 2−47. To locate the solution, we narrow our search to four
rounds and set the weight in the objective function of the SAT problem to 50.
Four 4-round differential characteristics are obtained with a probability of 2−50.
After fixing the input and output differences in the SAT problem to those of
the four newly discovered characteristics, we search for all differential charac-
teristics with probabilities larger than 2−70 in the four differentials. Among the
four differentials, we discover that two have accumulated probabilities of 2−45.69.

368 Y. Lin and L. Sun

Figure 4 illustrates the best differential characteristics for these two differentials.
Based on these results, we conclude that the resistance of HALFLOOP-48 to the
single-tweak differential attack is high.

4.2 Related-Tweak Differential Properties of HALFLOOP-48

In the context of a related-tweak differential attack, the lower bound on the
number of active S-boxes and the upper bound on the differential probability
are determined. The test outcomes are shown in Table 3.

Table 4. Input differences for the 45 6-round related-tweak differential character-
istics.The output difference is Δout = 0x160b53dbe0a1, and the tweak difference is
Δtweak = 0xc9000000c9000000.

Trail Δin Trail Δin Trail Δin

D0 0xc9000000c950 D1 0xc9000000c933 D2 0xc90000005900

D3 0xc9060000c900 D4 0xc9920000c900 D5 0xc9000016c900

D6 0xc90000dac900 D7 0xc90000f4c900 D8 0xc9000010c900

D9 0xc900005bc900 D10 0xc900008ac900 D11 0xc90000b2c900

D12 0xc9000028c900 D13 0xc900008cc900 D14 0xc98f0000c900

D15 0xc90000f6c900 D16 0xc900007bc900 D17 0xc90000c6c900

D18 0xc90000ddc900 D19 0xc90000bcc900 D20 0xc90000a5c900

D21 0xc90000dbc900 D22 0xc90000aac900 D23 0xc90000a7c900

D24 0xc90000e1c900 D25 0xc9000027c900 D26 0xc900006bc900

D27 0xc90000e8c900 D28 0xc9000077c900 D29 0xc9000081c900

D30 0xc90000f0c900 D31 0xc9000040c900 D32 0xc9cc0000c900

D33 0xc9250000c900 D34 0xc99f0000c900 D35 0xc9870000c900

D36 0xc99e0000c900 D37 0xc94e0000c900 D38 0xc900002cc900

D39 0xc9000084c900 D40 0xc900008dc900 D41 0xc90000d4c900

D42 0xc900e400c900 D43 0xc9000000c94b D44 0xc90000a9c900

The longest effective differential characteristic is six rounds long. The SAT
solver reveals that 45 6-round related-tweak differential characteristics have a
probability of 2−33. These differential characteristics, denoted D0, D1, . . ., D44,
have the same output difference Δout = 0x160b53dbe0a1 and tweak difference
Δtweak = 0xc9000000c9000000. Table 4 displays the input differences of the
45 six-round characteristics. The 45 6-round related-tweak differentials gener-
ated by the 45 differential characteristics are then analysed. Fixing the input,
output, and tweak differences in the SAT problem, we then search for all dif-
ferential characteristics with probabilities greater than 2−60 for each of the 45

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 369

differentials. The probability of the optimal differential among them is 2−29.48,
and the best differential characteristic within this differential is D40. Figure 5
shows the 6-round related-tweak differential characteristic D40. The validity of
the differential is checked with 232 randomly generated pairs of plaintexts, and
the test is repeated using 32 random pairs of keys and tweaks. The probability
of tests is 2−29.45 on average.

Fig. 5. 6-round related-tweak differential characteristic D40 with probability 2−33. δ is
a non-zero difference, ensuring that 0xc9 → δ is a valid propagation for the S-box.

Similar to the case in the conventional differential attack scenario, we ques-
tion the existence of 7-round related-tweak differentials with probabilities greater
than 2−47, despite the probability of the optimal 7-round related-tweak differen-
tial characteristic being 2−53. To determine the answer, we first discover eight 7-
round related-tweak differential characteristics with probabilities of 2−53. Then,
we fix the input, output, and tweak differences of the SAT problem and look for
all differential characteristics with probabilities greater than 2−70 for each of the
eight 7-round differentials. All eight differentials have accumulated probabilities
below 2−48. Therefore, the optimal related-tweak differential that can be used
in the differential attack consists of six rounds.

370 Y. Lin and L. Sun

4.3 Related-Key Differential Properties of HALFLOOP-48

Note that if both the key and tweak differences are permitted to be non-zero,
the conditions ΔT0 = ΔK0, ΔT1 = ΔK1, and ΔK2 = ΔK3 = 0x00000000
will lead to trivial differential characteristics with all internal state differences
being zero. Consequently, in the related-key attack setting, we focus on the
differential properties of HALFLOOP-48 with non-zero key differences and zero
tweak differences. The results of analysing the lower bound on the number of
active S-boxes and the upper bound on the differential probability are presented
in Table 3.

The longest related-key differential characteristic, with a probability greater
than 2−47, achieves eight rounds. We check with the SAT solver that there
is only one 8-round related-key differential characteristic with probability being
2−47, which is demonstrated in Fig. 6. The unique 8-round related-key differential
generated by this characteristic is then analysed. We try to find all differential
characteristics with probabilities greater than 2−70 within this differential and
find that its accumulated differential probability is 2−46.88.

Since the probability of the 8-round differential is marginal, we also inves-
tigate the 7-round differential characteristics and differentials. There are five
7-round differential characteristics with probabilities of 2−45, as determined by
the SAT solver. The five differentials resulting from these differential charac-
teristics are then evaluated. After fixing the input, output, and key differences
in the SAT problem, we search exhaustively for all differential characteristics
with probabilities greater than 2−70 for each of the five 7-round differentials.
The experimental results indicate that the accumulative influence of these dif-
ferentials is negligible, and their accumulated probabilities are nearly identical
to 2−45. Table 5 provides information on the five 7-round differentials.

Table 5. Information on the five 7-round related-key differentials.

Trail Δin Δout Δkey

KD0 0x0a002132f800 0x201090bdbf3c 0x0a002132480021324200000000000000

KD1 0x640008481000 0x232046d57c3e 0x64000848740008481000000000000000

KD2 0x640008481000 0xe850c7d691c8 0x64000848740008481000000000000000

KD3 0xc700260de800 0x61bd220c0636 0xc700260d8b00260d4c00000000000000

KD4 0x640008481000 0x54bfc3c49889 0x64000848740008481000000000000000

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 371

Fig. 6. 8-round related-key differential characteristic with probability 2−47. δ′ is a non-
zero difference that ensures 0x0e → δ′ is a possible propagation for the S-box. μ⊕0x0e
should be non-zero, and the propagation 0x7e → μ ⊕ 0x0e for the S-box should be
valid.

5 Differential Attacks on HALFLOOP-48

This section describes the 8-round related-tweak differential attack (see
Sect. 5.1) and the 10-round related-key differential attack (see Sect. 5.2) for
HALFLOOP-48.

5.1 Related-Tweak Differential Attack on HALFLOOP-48

Using the 6-round related-tweak differential with probability 2−29.48 from
Sect. 4.2, we launch an 8-round related-tweak differential attack in this sub-
section. In the attack, two rounds are added after the distinguisher, and the
key-recovery process is depicted in Fig. 7. To reduce complexity, we swap the
order of the MC ◦ RR operation in the 6-th round with the ARK operation in the
7-th round. RK7 represents the equivalent round key RR−1 ◦ MC−1(RK7).

In the attack, S structures are prepared. There are 224 plaintexts within each
structure such that three bytes P [0, 3, 4] of the state P traverse all possible values
while the remaining bytes are fixed to random constants. Then, 223 pairs with a
difference of ΔP can be constructed with a single structure, bringing the total
number of pairs to N = S · 223. Consequently, the attack has a data complexity
of S · 224 chosen-plaintexts.

372 Y. Lin and L. Sun

Fig. 7. 8-round related-tweak differential attack on HALFLOOP-48. As illustrated in
Fig. 5(a), δ must satisfy certain conditions.

For each 56-bit possible value of RK5[5]‖RK7[2]‖RK8[0-2, 4, 5], we initialise
an empty table T. The value (Y6, Y

′
6) is calculated and inserted into the table

T for each pair (O,O′) obtained from the encryption oracle. This step, which
corresponds to line 8 of Algorithm 1, has a time complexity of T�8 = 256 · S ·
223 · 2 = S · 280 one-round encryptions. Then, we guess the value of RK7[0] and
compute ΔX6[0] for every (Y6, Y

′
6) in T. The pairs that result in ΔX6[0] �= 0xdf

are removed from table T. This step, which corresponds to line 11 of Algorithm 1,
has a maximum time complexity of T�11 = 256+8 · S · 223 · 2 · 1/6 = S · 285.42

one-round encryptions. Note that the number of pairs in T is reduced to S · 215

after this phase. Following this, the remaining five bytes of RK7 are guessed one
at a time, with the specific procedure described in Algorithm 1. Time complexity
during the enumeration of RK7 also includes T�15 = S · 285.42, T�18 = S · 277.42,
T�21 = S · 277.42, and T�24 = S · 277.42.

Based on an analysis of Algorithm 1, the number of remaining pairs Cnt in T

follows the binomial distribution B(N, p0 = 2−29.48) for a correct key guess and
B(N, p = 2−48) otherwise. We set the threshold τ for the number of right pairs
at three and the success probability PS at 90%. After plugging these values into
Eq. (1), we find that S = 29.27 and β = 2−49.74. Consequently, the attack has a
data complexity of 233.27 chosen-plaintexts. The time complexity of enumerating
RK7‖RK8 is T1 = (T�8+T�11+T�15+ · · ·+T�24)/8 = 292.71 8-round encryptions.
T2 = 2128 · β · (1 + 2−48 + 2−96) = 278.26 8-round encryptions are required to
seek exhaustively for the remaining 32-bit key. The total time complexity of
the attack is, therefore, T1 + T2 = 292.71 8-round encryptions. The memory
complexity of the attack is approximately 233.27 · 2 · 6 = 236.85 bytes, given that
table T dominates memory consumption.

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 373

Algorithm 1: 8-round related-tweak differential attack
1 Create S · 223 pairs (P, P ′) from S structures
2 Obtain the value of (O, O′) for each (P, P ′) by querying the encryption oracle
3 foreach 16-bit possible values of RK5[5]‖RK7[2] do
4 Compute the value of (RK8[3], RK′

8[3])
5 foreach 40-bit possible values of RK8[0-2, 4, 5] do
6 Initialise an empty table T

7 foreach S · 223 pairs (O, O′) do
8 Calculate (Y6, Y

′
6) and insert the result into T

9 end
10 foreach 8-bit possible values of RK7[0] do
11 Compute ΔX6[0] for each (Y6, Y

′
6) in T

12 Remove from T the pair (Y6, Y
′
6) if ΔX6[0] �= 0xdf

13 foreach 8-bit possible values of RK7[1] do
14 Compute RK7[2] with RK7[0, 1]‖RK7[2]
15 Compute ΔX6[1, 2] for each (Y6, Y

′
6) in T

16 Remove from T the pair (Y6, Y
′
6) if ΔX6[1, 2] �= 0x0b53

17 foreach 8-bit possible values of RK7[3] do
18 Compute ΔX6[3] for each (Y6, Y

′
6) in T

19 Remove from T the pair (Y6, Y
′
6) if ΔX6[3] �= 0xdb

20 foreach 8-bit possible values of RK7[4] do
21 Compute ΔX6[4] for each (Y6, Y

′
6) in T

22 Remove from T the pair (Y6, Y
′
6) if ΔX6[4] �= 0x29

23 foreach 8-bit possible values of RK7[5] do
24 Compute ΔX6[5] for each (Y6, Y

′
6) in T

25 Remove (Y6, Y
′
6) from T if ΔX6[5] �= 0xa1

26 Count the number of pairs Cnt remaining in T

27 if Cnt � τ then
28 Test exhaustively each of the 232 master keys

compatible with RK7‖RK8 using three
plaintext-ciphertext pairs

29 end
30 end
31 end
32 end
33 end
34 end
35 end
36 end

5.2 Full-Round Related-Key Differential Attack on HALFLOOP-48

In the following, we employ the 8-round related-key differential with probability
2−46.88 from Sect. 4.3 to launch a full-round related-key differential attack. After
the distinguisher, two rounds are added, and the key-recovery process is depicted
in Fig. 8. Likewise, we use the equivalent round key RK9 = RR−1 ◦ MC−1(RK9)
to reduce complexity.

374 Y. Lin and L. Sun

Fig. 8. Full-round related-key differential attack on HALFLOOP-48. As illustrated in
Fig. 6(a), δ′ and μ must satisfy certain conditions.

S structures are prepared for the attack. Each structure contains 224 plain-
texts such that three bytes P [1-3] of the state P traverse all possible values
while the remaining bytes are fixed to random constants. There are a total of
N = S · 223 pairs involved in the attack.

For each possible 48-bit value of RK8[0, 1]‖RK10[0-3], we initialise an empty
table T. The value (Y8, Y

′
8) is calculated for each pair (C,C ′) returned by

the encryption oracle. If ΔY8[0, 4] = 0xffc0, the pair (Y8[1-3, 5], Y ′
8 [1-3, 5]) is

inserted into T. This step, which corresponds to line 8 of Algorithm 2, requires
T�8 = 248 · S · 223 · 2 = S · 272 one-round encryptions to complete. T contains
approximately S · 27 pairs. Then we guess the value of RK9[1] and calculate
ΔX8[1] for each pair in T. The pairs in table T that result in ΔX8[1] �= 0x0e are
removed. This step, which corresponds to line 14 of Algorithm 2, has a maximum
time complexity of T�14 = 248+8 ·S ·27 ·2 ·1/6 = S ·261.42 one-round encryptions.
After this step, the number of pairs in T is reduced to S · 2−1. Then, the three
bytes RK9[2, 3, 5] are estimated one at a time using the procedure described in
Algorithm 2. During the enumeration of RK9 , time complexity also incorporates
T�17, T�20, and T�23. Each is capable of up to S · 261.42 one-round encryptions.

The number of remaining pairs Cnt in T follows the binomial distribu-
tion B(N, p0 = 2−46.88) for a correct key guess and B(N, p = 2−48) other-
wise, according to Algorithm 2. The threshold τ for the number of right pairs
is set to one, and the success probability PS is set to 50%. We determine
S = 223.34 and β = 2−1.88 based on the property of the binomial distribu-
tion. Consequently, the data complexity of the attack is 247.34 chosen-plaintexts.
T1 = (T�8 + T�14 + T�17 + T�20 + T�23)/10 = 292.02 full-round encryptions are
required to enumerate RK8[0, 1]‖RK9[1-3, 5]‖RK10[0-3]. Since the first round
of the 8-round distinguisher always propagates the input difference 0x57 to the
output difference 0x38, there are only four possible values for X0[1], namely
0x00, 0x57, 0xaf, and 0xf8. This restriction, which corresponds to line 28 of
Algorithm 2, allows us to filter the 2128 · β key candidates with a probability of
2−6. The key schedule is viewed as a 2-round encryption. This step has a max-
imum time complexity of T2 = 2128 · β · 2/10 = 2123.80 full-round encryptions.
The remaining master keys are then evaluated with three plaintext-ciphertext
pairs, with a time complexity of T3 = 2128 · β · 2−6 · (1 + 2−48 + 2−96) = 2120.12

full-round encryptions. Therefore, the total time complexity of the attack is
T1 + T2 + T3 = 2123.91 full-round encryptions. The memory complexity of the

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 375

Algorithm 2: full-round related-key differential attack
1 Create S · 223 pairs (P, P ′) from S structures
2 Obtain the value of (C, C′) for each (P, P ′) by querying the encryption oracle
3 foreach 16-bit possible values of RK8[0, 1] do
4 foreach 32-bit possible values of RK10[0-3] do
5 Compute RK10[4, 5] with RK8[0, 1]‖RK10[0-3]
6 Initialise an empty table T

7 foreach S · 223 pairs (C, C′) do
8 Calculate (Y8, Y

′
8)

9 if ΔY8[0, 4] = 0xffc0 then
10 Insert (Y8[1-3, 5], Y ′

8 [1-3, 5]) into T

11 end
12 end
13 foreach 8-bit possible values of RK9[1] do
14 Compute ΔX8[1] for each pair in T

15 Remove from T the pair if ΔX8[1] �= 0x0e
16 foreach 8-bit possible values of RK9[2] do
17 Compute ΔX8[2] for each pair in T

18 Remove from T the pair if ΔX8[2] �= 0x7e
19 foreach 8-bit possible values of RK9[3] do
20 Compute ΔX8[3] for each pair in T

21 Remove from T the pair if ΔX8[3] �= 0x1c
22 foreach 8-bit possible values of RK9[5] do
23 Compute ΔX8[5] for each pair in T

24 Remove from T the pair if ΔX8[5] �= 0x0e
25 Count the number of pairs Cnt remaining in T

26 if Cnt � τ then
27 for 248 keys compatible with RK9[1-3, 5]‖RK10 do
28 Compute (X0[1], X ′

0[1]) of the right pair(s)
29 if X0[1], X ′

0[1] ∈ {0x00, 0x57, 0xaf, 0xf8} then
30 Use three plaintext-ciphertext pairs to test

the key
31 end
32 end
33 end
34 end
35 end
36 end
37 end
38 end
39 end

attack is approximately 223.34 · 27 · 4 · 2 = 233.34 bytes, given that the table T

dominates memory consumption.

376 Y. Lin and L. Sun

6 Conclusion

This paper focuses on the differential property of the tweakable block cipher
HALFLOOP-48 and presents its first public non-generic cryptanalysis. The
search for differential characteristics and differentials is modelled as SAT prob-
lems. We use the SAT solver to determine the lower bound for the number
of active S-boxes and the upper bound for the differential probability in the
conventional, related-tweak, and related-key differential attack settings. Using
the newly discovered 6-round related-tweak differential with probability 2−29.48,
an 8-round related-tweak differential attack is launched against HALFLOOP-48.
We also present a full-round related-key differential attack against HALFLOOP-
48 using the newly obtained 8-round related-key differential with probability
2−46.88. Due to their impractical complexity, the attacks described in this paper
do not pose an actual security risk to HALFLOOP-48. Nevertheless, caution
must be taken to prevent misuse, as our analysis indicates no secure margin in
the related-key attack setting.

Acknowledgements. The research leading to these results has received funding from
the National Natural Science Foundation of China (Grant No. 62272273, Grant No.
62002201, Grant No. 62032014), the National Key Research and Development Program
of China (Grant No. 2018YFA0704702), and the Major Basic Research Project of Nat-
ural Science Foundation of Shandong Province, China (Grant No. ZR202010220025).
Ling Sun gratefully acknowledges the support by the Program of TaiShan Scholars
Special Fund for young scholars.

References

1. Interoperability and performance standards for medium and high frequency radio
systems. United States Department of Defense Interface Standard MIL-STD-188-
141D

2. Specification for the advanced encryption standard (AES). Federal Information
Processing Standards Publication 197 (2001)

3. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP modeling
for (large) S-boxes to optimize probability of differential characteristics. IACR
Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)

4. Ankele, R., Kölbl, S.: Mind the gap - a closer look at the security of block ciphers
against differential cryptanalysis. In: Cid, C., Jr., M.J.J. (eds.) Selected Areas in
Cryptography - SAC 2018. LNCS, vol. 11349, pp. 163–190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-10970-7_8

5. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1

6. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
546–570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-
0_28

https://doi.org/10.1007/978-3-030-10970-7_8
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-662-46706-0_28
https://doi.org/10.1007/978-3-662-46706-0_28

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 377

7. Blondeau, C., Gérard, B., Tillich, J.: Accurate estimates of the data complexity
and success probability for various cryptanalyses. Des. Codes Cryptogr. 59(1–3),
3–34 (2011)

8. Boura, C., Coggia, D.: Efficient MILP modelings for Sboxes and linear layers of
SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020)

9. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli, A.L.:
Logic Minimization Algorithms for VLSI Synthesis, The Kluwer International
Series in Engineering and Computer Science, vol. 2. Springer, New York (1984).
https://doi.org/10.1007/978-1-4613-2821-6

10. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A.,
Banerji, R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Symposium
on Theory of Computing, May 3–5, 1971, Shaker Heights, Ohio, USA, pp. 151–158.
ACM (1971)

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

12. Dansarie, M., Derbez, P., Leander, G., Stennes, L.: Breaking HALFLOOP-24.
IACR Trans. Symmetric Cryptol. 2022(3), 217–238 (2022)

13. Kim, S., Hong, D., Sung, J., Hong, S.: Accelerating the best trail search on AES-like
ciphers. IACR Trans. Symmetric Cryptol. 2022(2), 201–252 (2022)

14. Li, T., Sun, Y.: Superball: a new approach for MILP modelings of Boolean func-
tions. IACR Trans. Symmetric Cryptol. 2022(3), 341–367 (2022)

15. Liu, Y., et al.: STP models of optimal differential and linear trail for S-box based
ciphers. Sci. China Inf. Sci. 64(5), 159103 (2021)

16. Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with
applications to SPECK and Chaskey. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 485–499. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5_26

17. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053451

18. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7_5

19. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751_73

20. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

21. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.:
Links among impossible differential, integral and zero correlation linear cryptanal-
ysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 95–
115. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_5

22. Sun, L., Wang, M.: SOK: modeling for large S-boxes oriented to differential proba-
bilities and linear correlations. IACR Trans. Symmetric Cryptol. 2023(1), 111–151
(2023)

23. Sun, L., Wang, W., Wang, M.: More accurate differential properties of LED64 and
Midori64. IACR Trans. Symmetric Cryptol. 2018(3), 93–123 (2018)

https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-319-39555-5_26
https://doi.org/10.1007/978-3-319-39555-5_26
https://doi.org/10.1007/BFb0053451
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-662-47989-6_5

Users and Usability

How Users Investigate Phishing Emails
that Lack Traditional Phishing Cues

Daniel Köhler(B) , Wenzel Pünter , and Christoph Meinel

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{daniel.koehler,wenzel.puenter}@hpi.de

Abstract. Phishing is still one of the prevalent threats targeting pri-
vate persons and organizations. Current teaching best practices often
advocate cue-based investigation methods. Previous research primarily
confronted participants with phishing emails showing such indicators to
assess the success of different education measures. Our large-scale mixed-
methods study challenges the behavior of 4,729 participants with four
phishing emails that lack technical cues. The phishing emails concerned
entirely fictitious entities and were directed at participants in their pri-
vate lives, recruited from the online education platform openHPI. For
our analysis, we apply the human-in-the-loop model for interaction with
phishing content to investigate participant behavior when their learned
best practices for detection fail. The primary indicator of enhanced phish-
ing resiliency observed in our study was awareness of missing context to
the supposed entity. Such context is often successfully enhanced by web
searches, significantly contributing to decreased phishing susceptibility.

Keywords: Phishing Investigation · Cybersecurity Awareness · User
Study

1 Introduction

Phishing, social engineering delivered via emails and other communication chan-
nels [29], has been the primary initial access vector used by cyber threat actors
in 2022 [6]. In phishing campaigns, the adversary often tries to trick users into
entering sensitive information on a malicious website [29] or to lure the user into
performing a self-harming action [7]. This goal is often achieved by imperson-
ating a legitimate third-party entity known to the target and counterfeiting its
website and branding.

Due to the high practical relevance of this threat vector, fellow researchers
have published numerous works on technical and human aspects of phishing in
the past. Examples include aspects of phishing emails that drive their persua-
siveness [21,26], such as logos and images [37]. Other research on phishing has
investigated how socio-demographic features of targets impact their susceptibil-
ity [11,13,28], or how technical measures such as highlighting external emails
enhance protection [39]. Traditional phishing education often covers technical or
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 381–411, 2024.
https://doi.org/10.1007/978-3-031-54776-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_15&domain=pdf
http://orcid.org/0000-0003-3121-3888
http://orcid.org/0000-0002-8218-0732
https://doi.org/10.1007/978-3-031-54776-8_15

382 D. Köhler et al.

psychological cues and triggers used inside phishing emails, such as typosquat-
ting, to sensitize users for these indicators. In professional contexts, such edu-
cation is often performed using embedded phishing training programs [1,25].
For laypersons outside professional contexts, central (e.g., governmental) insti-
tutions attempt to provide cybersecurity awareness programs by similarly high-
lighting common cues to identify phishing [2,3,12]. With a population primed to
expect and suspect learned cues and technical features of phishing emails, such
as manipulated email senders and links, we investigate the following research
question, to the best of our knowledge never explicitly studied before:

Research Question How do people investigate phishing emails that lack tradi-
tional (technical) cues for phishing?

We performed a mixed-methods study combining quantitative results from
a phishing study with qualitative results obtained in a post-study survey. We
designed the phishing study according to Staged Innovation Design, allowing us
to introduce new participants and thereby study an unbiased group of partici-
pants in each of our four interventions. We studied a total of 4,729 participants
in overly private contexts recruited from the online education platform openHPI,
to which we sent more than 14,000 phishing emails, all concerning entirely fic-
titious entities, without technical indicators for phishing, such as manipulated
email headers, links using typosquatting, or impersonation of other companies.
We obtained quantitative insights into the target variables of link click and data
submitted. In a separate publication, we investigated the quantitative results of
participant’s socio-demographic features towards the target variables, identify-
ing that male participants, who are particularly young or old and of lower levels
of education, are more susceptible to falling victim to phishing attacks [15].

To achieve additional qualitative insights into participants’ investigation
processes when challenged with the emails, we collected survey answers from
950 participants. We map participants’ investigation approaches to the human-
in-the-loop (HITL) model, which describes the process people follow for phish-
ing investigation, as systematized in previous studies with smaller participant
groups [20,33,35]. During our analysis in Sect. 6, we touch on human interac-
tion with phishing content, from investigative approaches to time spent on web
pages. We thereby foster three main contributions to the body of research:

Contribution 1 We map survey responses from a large-scale real-world phishing
study to the HITL model contributing to the systematization of human phishing
investigation behavior. We present three resulting taxonomies in Sect. 6.1.

Contribution 2 We observe that identification of (missing) context during the
phases of Expect and Suspect in the HITL model significantly decreases link click
and data submission rates of participants (cf. Section 7.1).

Contribution 3 In Sect. 7.2, we identify and discuss that web searches used to
generate more context on the entity or topic posed in the email significantly
helped participants identify our emails as phishing.

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 383

2 Background

Phishing is a form of social engineering that can be modeled as a cycle of inter-
actions between attacker and victim, influencing a victim’s trust and subsequent
actions [18]. Victims receive and assess phishing emails. Upon following phishing
links and visiting web pages, they face new, convincing information from attack-
ers, which they must contextualize to decide how to act. These interactions can
be described using a human-in-the-loop model [5]. Wash and Nthala identified
a process that both experts [33] and non-experts [20,35] follow when investigat-
ing a piece of (phishing) content, deriving the HITL model for phishing email
investigation. It consists of the following steps:

1. Noticing While viewing a piece of content (e.g., mail, website), humans
extract features like the type of email, context, sender, layout, or URL format.

2. Expecting People subconsciously compare the noticed content features to
their expectations.

3. Suspecting When features deviate from the expectation or trigger a learned
cue, suspiciousness emerges.

4. Investigating When suspiciousness is raised, people begin with investiga-
tive behavior like hovering over or following links, reading the imprint, or
contacting the sender.

5. Deciding Based on the investigation, humans decide how to interact with
the content or collect more info.

6. Acting Depending on the result, people might respond differently to a mes-
sage (e.g., continue, delete, or ignore).

3 Related Work

Fellow researchers have already studied various parts of the phishing landscape.
Previous studies on the effectiveness of cybersecurity awareness education, par-
ticularly phishing, usually focused on highlighting technical cues to identify
maliciousness [4,26]. As such, fellow researchers have explored URLs [8,27,36],
spelling and grammar [10,22], visual cues such as images and logos [10,21,22] as
only few of the core criteria used to assess phishing emails.

Other researchers have evaluated approaches such as story-based education
[34], which still used technical best practices such as “Hover over a link to see
where it really goes to” as taken from Wash and Cooper’s 2018 study [34]. Con-
trasting, Jensen et al. have started to evaluate approaches to enhance mindful-
ness during email analysis [14]. Mindfulness in the respective study was trig-
gered through considerations of the context of the email, such as “Why would
the sender need me to do this?”. The authors identify that while mindfulness
approaches help participants with high email skills, they cannot replace cue-
based approaches like those highlighted previously.

Mindfulness training, as used by Nguyen et al. [19] and Jensen et al. [14],
supports the assumption that more strongly assessing email context should be

384 D. Köhler et al.

the key to achieving more resilience against phishing attacks. Still, many educa-
tional programs we observed in the wild focus on rule-based phishing training.
Such educational programs attempt to provide users with rules (e.g., Check for
the spelling of the domain) to educate users on what they should be looking out
for. However, to the best of our knowledge, analyzing emails without cues for
phishing is missing from previous research.

Wash and Nthala have previously worked on the human-in-the-loop model,
which we use as a foundation for our study. Wash initially interviewed 21 experts
on instances where they successfully identified phishing attacks in an exploratory
study [33]. Based on the HITL model, he derived a process that expert users
follow to identify and assess phishing emails. Building on this process, Wash,
Nthala, and Rader surveyed 297 non-experts from the US on their experiences
with phishing emails [35], identifying that the investigation process of non-expert
users is similar to the process of experts. Nthala and Wash verified the previous
findings in a study with 31 non-expert users, sending them a phishing message
and interviewing them on their experience with the email [20]. They highlight
that non-expert users often depend on their social connections, unlike expert
users who primarily rely on technical investigations.

The previous studies on HITL models relied on interviews. Hence, the number
of participants was limited. In our study, we expand the number of studied users,
further challenging them with a larger variety of emails, thereby contributing to
contextualizing real-world phishing investigation processes. As we track partic-
ipants’ actual behavior, our study allows quantifying the success of individual
investigation measures mentioned by the participants.

4 Method and Study Design

Fig. 1. Overview of our Staged Innovation Design study and timeline in which we ran
it. Debriefing is explained in Sect. 4.2.

Our study’s quantitative-qualitative mixed-methods approach combines a large-
scale field study with a survey for qualitative reflection of participants’ behavior
during the study. The study has been designed according to Staged Innovation
Design [32], whereby we introduce participant groups into the study across four
different phishing interventions. During each intervention, participants receive a
phishing email containing a link to a phishing website asking for personal data
and credentials. For the analysis, we aggregated participant behavior across the

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 385

emails. We use the terminology of intervention taken from educational research
referring to the times in which researchers interact with study participants, such
as sending a phishing email in our case. The interventions were distributed in
approximately four-week intervals (cf. Figure 1) to exceed knowledge retention
periods reported in previous studies [16]. One week after the last intervention,
all participants received a debriefing email and were asked to participate in the
optional post-study survey. The study targeted German-speaking participants.

4.1 Participant Recruitment

Participants were recruited from openHPI, an online education platform with
over 100.000 registered users [17], where university lecturers provide free online
courses on IT-related topics to the general public. Recruitment happened in the
form of an additional consent available on the platform covering “Research at
HPI ”, which learners of the platform could provide in their profile. The consent
covered data processing and analysis outside the education platform and email
communication in the context of research studies. Upon logging in to the plat-
form during the study duration, learners received a one-time notification that
the new consent was available. The default value for the consent was off, requir-
ing users to actively opt-in to the study. Then, they could opt-in and -out of
the study at any time during the study period. Studying real-world interactions
with phishing content poses the challenge that many participants will never open
phishing emails. Therefore, we did not set an upper limit on the number of par-
ticipants for our study but included everyone providing consent during the study
period.

4.2 Ethical Study Design

Studying human subjects requires researchers to closely consider ethical ques-
tions, such as the mental load on participants. Therefore, human subject stud-
ies should generally be assessed by an Institutional Review Board (IRB) and
require consent from the subjects to be studied. Consenting to a study generally
means that individuals who are fully informed about it actively agree to par-
ticipate [24]. In cybersecurity, particularly phishing research, participants could
provide informed consent, e.g., at the beginning of a lab study. However, pro-
viding all information on a study can lead to biases of the subject, altering the
study results [9]. Instead, researchers can use deception by withholding essential
information on the study design from participants [9]. Deception is only deemed
an option if the study is of minimal risk to the participants and requires the
researcher to debrief the participants upon completion, i.e., provide all previ-
ously withheld information.

Our study design uses deception upon participant recruitment. We did not
inform consenting participants that we would perform a phishing study. The IRB
of the University of Potsdam and the data protection officers of the conducting
institute approved this study design. When visiting the online education platform
openHPI starting in September 2022, learners could provide and revoke consent

386 D. Köhler et al.

to receive email communication for research projects. Once they provided their
consent, they would be included in every following iteration of our study. E.g.,
we included a learner who provided the consent on Dec 12th for the third and
fourth iteration (cf. timeline in Fig. 1).

Phishing attacks are no unusual threat for any user of the Web and Internet.
Hence, during the assessment of our study, the IRB agreed that the planned
research, including deception to retrieve consent, poses minimal risks to partici-
pants. For our web pages, we ensured that no personal data, such as usernames,
passwords, or address information, entered by the participants would be trans-
mitted to our servers. All other data, e.g., reaction to an email and behavior on
the web page, was collected in pseudonymized form, i.e., it was only labeled with
a pseudonymized identifier, not a user’s email address or username. All users were
debriefed with the final email in January 2023, a week after intervention four
of the study had been sent to all participants1. To ensure the debriefing email
reached all participants, we sent it using the official email servers of openHPI.
This provided a trust anchor for the users and ensured that the potential lack of
reputation of our phishing domains did not limit email delivery. That debriefing
email contained all information on the study, the researchers involved, consent
and legal information, a link to the survey, and a link to revoke the provided
consent. The user data was removed before further analysis if the consent was
revoked. Twenty-one users revoked their consent throughout the study.

To keep the mental load on participants as low as possible, we included
debriefing information in all our resources to be found whenever an in-depth
investigation would be performed. Such were, e.g., hidden as white text inside
the email, the web page’s source code, and the web page imprint. Further, once
participants, e.g., replied to the emails or contacted the supposed support email
addresses, we also debriefed them. The debriefing contained the scientific and
legal background of the study and information on how to resign from the study by
withdrawing consent. The multi-staged nature of our study design poses the chal-
lenge to monitor when a participant has been debriefed and should be excluded
from further analysis. We discuss the challenges arising from the debriefing of
users in Sect. 7.3.

4.3 Email and Webpage Content Design

Figure 2 presents screenshots from all four emails and web pages sent to partic-
ipants. Content and entities used across all emails were fictitious and created
solely for this study. We prepared an email and webpage for each study inter-
vention, which was designed based on real-world designs of similar companies.
While similar in design to known companies, none of our emails featured tra-
ditionally taught technical cues of phishing emails, such as typosquatting in
links. To maximize data on email and webpage interaction by users collected in

1 Emails were sent and delivered to all participants throughout approximately one
week for each iteration. This measure ensured that no sudden traffic spike from
formerly little-known domains would put the respective domains on a spam list.

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 387

this study, we designed persuasive emails, basing various design decisions on the
more convincing vectors identified in previous research. The emails relied on the
more significant psychological vectors such as time pressure, trust, or financial
loss [23,37]. To incorporate these vectors, we chose fitting topics for the emails:
supposed package deliveries (emails I and IV), a mail from an energy company
concerning rising energy prices (emails II), and a supposed payment confirmation
(email III). Emails III and IV used a personal salutation to enhance the email
delivery rates, while emails I and II relied on a generic salutation. This change
was introduced to counteract emails being blocked as spam and is visible in a
change of delivery rates as depicted in Table 1. Throughout all emails, we omit-
ted any traditional cues of phishing emails, such as spelling mistakes. Further,
we tried to include images or logos in each email to enhance persuasiveness [37].

Upon following a link from our phishing emails, users were presented with
company web pages. These continued the email’s theme and topic, persuading
the users to enter personal information such as an address, username, or pass-
word. Besides, for example, a package tracking website as a landing page for
emails I and IV, each domain hosted further web pages, such as the home page
and an imprint of the fictional company.

Fig. 2. Phishing content sent to the participants in the four iterations, ordered left to
right. Large-scale images are available in the Appendix, Fig. 8, Sect. B.

The debriefing email informed participants of the nature of the study that
had been conducted (cf. Sec. 4.2) and invited them to participate in our survey.
To not impact the participants’ alertness and, thereby, future reactions to our
emails, the debriefing and survey could only be performed after the completion
of the entire study. Due to the post-hoc nature of the survey, sent 3.5 months
after the initial phishing emails, we expect some inaccuracies in participants’
memories to occur. Such could be that participants only remember particularly
important or surprising aspects of the emails [21]. We discuss this limitation in
Sect. 8. In the survey (cf. Appendix, Sect.A), we retrieved (socio-) demographic

388 D. Köhler et al.

information on the participants and their perception of the emails and web
pages. Throughout the survey questions, participants could select pre-provided
answers from multiple-choice lists and additionally provide free-text answers. For
evaluation, Wenzel Pünter, second author of this manuscript, manually coded
the free-text responses and mapped all responses to the HITL model.

To ensure an email contained no technical cues for phishing, we purchased
all four domains, registered them with a new public IP address, and sent emails
directly from these domains. As no impersonation was performed, links in the
emails did not rely on special characters or typosquatting to counterfeit a third-
party entity. In order to enhance our delivery rates, we sent a few hundred
emails from the new domains to our inboxes at various webmail providers before
sending the actual study emails. This preparation reduced the number of our
emails being rejected by webmail providers. Across the interventions, we were
able to improve our delivery rate to 99.70%2 in the final iteration (cf. Table 1).

4.4 Data Collection and Cleaning

We obtained two datasets: the survey responses and the tracking data from the
phishing campaign with four iterations. The tracking data covered all four stages
of the funnel of phishing email interaction as described by the following actions:

1. Delivery Emails have been sent using a commercial gateway. The time of
email delivery has been recorded for each email.

2. Open Dynamic elements tracked when the email was opened.
3. Clicking on a phishing link from the emails opened the website using HTTPS.
4. Submit The phishing website requested to enter personal data (username

and password, or address), revealing a debriefing page upon submission.

The server recorded the timestamp, requested page, IP address, and user
agent for the click and submit stages. The websites contained JavaScript-based
tracking elements that allowed recording the load and unload timestamps, screen
and window dimensions, scroll, mouse, and touch behavior, window visibility
changes, input blurring, and focus events. The data recorded by the server, in
particular, served as ground truth for the following analysis of user behavior
on the web pages. To prepare the analysis, we performed data cleaning of the
tracking data from our study. We reduced the web page requests to our servers
which we included for further analysis from 6,881 to 5,275:

1. To analyze actual user behavior, automated mail sandbox and security system
traffic were cleaned using ASN- and user-agent-based filtering. We excluded
traffic from networks of carriers, hosting- and security service providers, as
well as requests issued by non-browsers, such as bots, previews (iMessage or
Discord), or headless browsers to remove automated reactions to our emails,
ensuring our data contains only, e.g., link clicks by human users.

2 This delivery rate is based on email server acceptance. Email classification, e.g., into
the junk/spam folder as done by secondary filters, can not be tracked in our setup.

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 389

2. Automated traffic from commercial IP spaces was identified using a commer-
cial dataset on IP addresses, allowing the filtering for traffic from data centers,
VPNs, and anonymization services. Similar to (1.), we excluded highly-similar
requests from commercial data centers assuming automated behavior.

3. Debriefed participants were accounted for by excluding any activity after a
participant was exposed to a disclaimer on our web pages.

5 Overview of Study Data and Participant Population

The study included 4,729 participants, to which we sent 14,123 phishing emails.
Of these emails, 6,027 (42.68%) have been opened, whereby 1,549 users (32.76%)
clicked on the contained phishing links and 446 of these (28.79%) submitted per-
sonal data. 950 participants (20.09%) answered the post-study survey, whereby
the number of responses varies across the questions. 26 participants (0.55%)
replied to at least one of the phishing emails during the study, assuming the
content was legitimate. In other email responses, participants, for example, high-
lighted that they liked the additional learning experience and that they were
adequately prepared by any of the courses they previously took.

Table 1. Overview of the participation rates across the intervention funnel stages.

Iteration
I II III IV

N Share N Share N Share N Share

Sent 1,955 3,483 4,260 4,729

Delivered 1,871 95.70% 3,360 96.47% 4,177 98.05% 4,715 99.70%

Opened 851 43.53% 1,218 34.97% 1,844 43.29% 2,114 44.70%

Clicked 311 15.91% 222 6.37% 359 8.43% 657 13.89%

Submitted 92 4.71% 35 1.00% 51 1.20% 268 5.67%

Replied 0 0.00% 0 0.00% 17 0.40% 9 0.19%

Table 2 provides an overview of participant demographic information as
provided during our survey. A Kolmogorov-Smirnov test of the sample data
shows a significant skew compared to the distribution of sexes and age groups
(K = 1.0000, p = 0.0286) in Germany. The most deviation in age is explained
by people aged 60+, who experience a lower Internet penetration rate.

Another demographic factor considered in the study is the level of education
reached by participants. The responses have been categorized according to the
UNESCO ISCED-2011 taxonomy [30]. 934 participants (98.32%) have reported
their highest level of education, whereby 3 (0.32%) have reached Primary edu-
cation, 36 (3.85%) Lower secondary education, 163 (17.45%) Upper secondary
education, and 732 (78.37%) a Bachelor’s degree or any equivalent higher level
of education. Depending on their work situation, participants might have differ-
ent exposure to phishing content and training. Therefore, working participants

390 D. Köhler et al.

Table 2. Overview of participant socio-demographic information as provided in the
post-study survey. In total, 950 participants (20.09%) replied to the survey.

Feature # Responses∗ Statistics

Gender
925

(97.37%)

Gender Male Female Other

Responses 722 195 8

Share 76.00% 20.53% 0.84%

Age
934

(98.32%)

Age Group < 20 20 − 29 30 − 39 40 − 49 50 − 59 60 − 69 > 70

Responses 13 59 103 164 253 209 133

Share 1.37% 6.21% 10.84% 17.26% 26.63% 22.00% 14.00%

Level of
Education

934
(98.32%)

Degree of
Education

Primary
Lower

Secondary
Upper

Secondary
Bachelor’s Master’s Doctoral

Responses 3 36 163 157 483 92

Share 0.32% 3.85% 17.45% 16.81% 51.71% 9.85%

IT Usage
Work: 773
(81.37%)

Home: 869
(91.47%)

Usage Always Daily Regularly Rarely Sporadically Never

Responses 425 262 38 11 7 30

Share 54.98% 33.89% 4.92% 1.42% 0.91% 3.88%

Responses 283 490 81 4 9 2

Share 32.57% 56.39% 9.32% 0.46% 1.04% 0.23%

Work
Industry

† 811
(85.37%)

Industry Code H J K O P Q other

Responses 39 478 45 124 193 53 94

Share 4.81% 58.94% 5.55% 15.29% 23.80% 6.54% 11.59%

† Industry Codes according to UN ISIC Rev. 4 [31], e.g. H: Transportation and Stor-
age, J: Information and Communication, K: Financial, O: Public Administration, P:
Education, Q: Health and Social Work

were asked to state the industry they are currently working in. The responses
were classified according to the UN ISIC Rev. 4 primary industry groups [31].
811 (85.37%) working participants stated their industry in the survey, whereby
654 (68.84%) participants associated themselves with only one industry and
157 (16.53%) mentioned multiple. 58.94% of our participants associated them-
selves with the Information and Communication industry, followed by 23.80% in
Education and 15.29% in Public Administration and Defense.

The earlier outlined distribution of participants shows a bias of the study
sample compared to the general population of Germany concerning sex, age,
level of education, and work industry. The studied population is overly male,
has not reached the age group 60+, has an above-average education level, and
primarily works in information technology, education, and the public sector. We
surveyed that most participants use IT at least daily in both work (88.87%) and
private (88.96%) contexts, thereby judging that we observe a group with a high
affinity towards IT systems. We discuss the following two derived biases in our
population in Sect. 7.3.

Bias 1 We observe the foremost discriminator from the average population and,
thereby, potential bias to our study to be the overly technical population.

Bias 2 All participants were recruited from the online education platform
openHPI, which offers particularly IT education. Therefore, our participants
will likely be more interested in IT methods, tools, and technology.

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 391

6 Study Results

During our evaluation, we mapped participant responses from the survey to the
different phases of the human-in-the-loop model introduced earlier. To ensure
unbiased participant responses, we formulated our survey questions as broadly
as possible (cf. Appendix, Sect. A). We applied the classification by manually
labeling participants’ (free-text) responses and mapping them to the different
stages of the HITL model based on the reported actions. The following sections
present the results of our classification.

6.1 Mapping of Responses to the Human-In-The-Loop-Model

Contribution 1 We contribute to the systematization of phishing investigation
behavior by coding and mapping responses from participants of a large-scale
study in overly private contexts to the HITL model.

As part of the survey, participants were asked to explain their actions for each
phishing email received across the four iterations. Properties mentioned in the
responses were classified according to the human-in-the-loop model introduced in
Sect. 2 and manually clustered hierarchically. This section provides an overview
of the explored answer space.

This section is structured alongside the human-in-the-loop model presented
by Wash et al. [35], with the phases of Notice, Expect, Suspect, Investigate, Decide
and Act. However, our study methodology partly limits the exact assignment of
an answer to a precise stage in the model. For example, we asked participants
which aspects of the mail caused their suspicion (Suspect). These differ from
participants’ expectations (Expect). Due to our study setup (post-study ques-
tionnaire), we could not interview participants on their actual expectations for,
e.g., package delivery emails before sending our study emails and survey. Still,
some answers did provide information on the participant’s expectations, such as
P101: “Layout of the mail did not correspond to, e.g., UPS, DPD, etc.”, which
provides us with the information that the participant would Expect a package
delivery announcement via email to look like the ones they are used to. The
answer, however, was provided because the layout of our email triggered the
participant’s suspicion. Therefore, we evaluate the two stages Expect and Sus-
pect alongside each other.

HITL-Model: Notice. Fig. 3 summarizes the features that were noticed by
participants. We manually mapped all free text answers to the respective ques-
tions (cf. Appendix, Sect.A.2: Q10, Q12) and structured them hierarchically.
The observed features center around metadata, content, and context of the
received emails, seen phishing websites, and conducted online searches to inves-
tigate the legitimacy of content. For example, 17 participants noticed that the
Email Salutation (Email � Body � Salutation) was very Generic. In con-
trast, 17 [others] noted the Personal salutation we employed in emails III
and IV. Similarly, a total of 40 participants noticed the Email Sender’s TLD

392 D. Köhler et al.

(Email � Sender � Address � Domain � TLD), for which some took partic-
ular notice of, e.g., .at, or .eu (N.at = 29, N.eu = 5). However, few observations
do not match reality, only participants’ perceptions, biased by imperfect memory.
E.g., we sent all content in German but never in English, how some participants
reported to have observed it (cf. Appendix, Fig. 9, Email � Locale).

Fig. 3. Highlights of hierarchically structured Noticed properties named in survey
responses. Participants noticed aspects within the Email, Website and during their
Online Searches. [Numbers in brackets] refer to the count of mentions. Figure 9 in
the Appendix, Sect. C shows the entire figure.

HITL-Model: Expect and Suspect. Properties that were suspected and
thereby differ from what was expected by participants split into a context that
is unique to the person itself (Personal) and expectations that emerge from
a person’s assumptions about the world and its relationships (Global). An
overview of suspected and expected aspects mentioned in the survey is provided
in Fig. 4. For example, 111 participants mentioned global expectations towards
emails by Logistics Carriers (Global � Entities � Companies). Regarding
Personal expectations, 12 participants reported to have had expected orders
(Personal � Activities � Orders). In comparison, 184 participants claimed
they were not expecting orders or, e.g., never ordered from foreign countries
(N = 4).

Based on their observations and expectations, participants attempted to iden-
tify the context of the email. Often, they expressed either an event that required
legitimate communication or different kinds of fraud, sometimes resulting from a

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 393

Fig. 4. Highlights of hierarchically structured Expected and Suspected properties named
in survey responses. We differentiate between Global expectations that could be identi-
cal across participants and Personal expectations, e.g., of a concrete shipment. [Num-
bers in brackets] refer to the count of mentions. Figure 10 in the Appendix, Sect. C
shows the entire figure.

data breach. Those participants who suspected fraud assumed their identity data
was leaked from a service provider (N=20), phishing (N=2), spoofing (N=1), or
domain-specific types of fraud associated with the message content like a fraud-
ulent order (N=2), the abuse of a credit card number (N=6), or a compromised
PayPal account (N=1). Typically, those who assumed legitimate communication
suspected recent personal activities as the origin of the unwanted communica-
tion:

1. Energy Price (Email II) While the sent email was themed along govern-
mental support programs in consequence of the Russian invasion of Ukraine
in 2022, participants suspected legitimacy not because of this context but
personal circumstances like a newly established supply contract (N=4) or the
delegation of duties from the supplier (N=2) to an unknown third party.

2. Payment (Email III) Most of the participants who suspected the legitimacy
of the payment email assumed that they missed the payment for an online
order (N=13). Others believed the payment was misrouted (N=1) or the
transaction was a pending refund (N=1).

3. Logistics Services (Emails I and IV) As with the payment message,
most legitimacy assumptions centered around pending orders that partici-
pants were no longer aware of (N=22). Related events like a recent birthday
(N=2), a Christmas parcel (N=1), or a current address change (N=1) can

394 D. Köhler et al.

also explain the unexpected delivery message. Several participants assumed a
parcel to or from another person, like their spouse (N=1), a relative (N=1),
or another third party (N=1).

HITL-Model: Investigate. Several participants mentioned how they inves-
tigated the legitimacy of the phishing content in each iteration. Investigation
techniques performed by participants are - besides their representation in the
HITL model - of significant interest to this study. The traditional analysis of,
e.g., link targets or email headers does not provide insights in our study, as all
phishing emails lacked technical cues for maliciousness. In the post-study sur-
vey, 884 participants (93.05%) reported their investigation methods. Figure 5
presents an overview of the distribution of participants’ answers on their inves-
tigation techniques, contrasting with whether they fell for any of the received
phishing emails.

Fig. 5. Distribution of participants’ qualitative survey answers on investigation tech-
niques enriched with whether they had submitted any data during the study (N = 844).

In the free-text responses, participants mentioned that they aimed to ful-
fill two goals with their investigation: (a) collecting additional information and
(b) verifying observations and assumptions with external information. One par-
ticipant also mentioned an experiment-based approach, entering fake data and
modifying URL parameters to test the web service.

Figure 6 presents the taxonomy of participant replies. Participant investiga-
tion techniques could be grouped around the email itself, the webpage, technical
investigation procedures such as investigating name server records, or verifi-
cation of the supposed content of the email through either context or social
contacts. Sixty-four participants mentioned having investigated the imprint of
our webpage. 56 participants mentioned using search engines to investigate the
supposed companies, email sender, involved domains, or phishing URLs. Vari-
ous other responses covered verification of the email content; examples include
verifying the context by checking bank statements or attempting to match the
phishing emails to originating orders. Other participants highlight getting help
from social connections such as family members or colleagues to verify the email
content, which confirms the earlier introduced findings by Nthala and Wash [20].

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 395

Fig. 6. Hierarchical overview of investigative measures named in free text survey
responses. Numbers in [brackets] refer to the count of mentions.

Those aspects of the participants’ investigation, which targeted our phishing
web pages, were measurable. As participants reported investigating the content,
one could hypothesize that an increased amount of observed content reduces the
chance of clicking on the phishing link or submitting data on subsequent web
pages. However, content visibility and the device type (e.g., mobile or computer)
did not show to be significantly correlated with data submission on the web
pages. We further assessed user scroll distance and time spent with the web
page as proxy factors for the investigation process.

Fig. 7. Histogram of time spent on the phishing page before submitting data or leaving
the page. The figure shows the 90% quantile of the long-tail distribution and how many
users showed the respective behavior (Frequency).

When users visited our web pages, we could calculate the visit duration by
investigating the time between JavaScript (JS) load and unload events on the
webpage. We excluded requests without those events, as the disabled JS severely

396 D. Köhler et al.

limits our tracking capabilities. On the first visit, the median time spent before
leaving the webpage was 31,05 s. Figure 7 shows the histogram of visit durations.
Tracking webpage blur events3 showed that 645 participants (41.64%) left at
least one of the phishing pages to other tabs or windows during their first visit
to our page. We interpret this observation as a proxy factor to web research
(e.g., Google search) on an entity or context provided on the webpage.

HITL-Model: Decide and Act. The Decide step in the cognitive human-
in-the-loop model is hardly measurable in a field study. Based on the observed,
expected, and suspected properties, participants decided that the seen piece of
content is legitimate or illegitimate and acted upon it.

In the survey, 310 participants expressed different Act ions in response to
the content in free text answers: 149 participants (48.06%) reported that they
deleted the respective email, 53 moved it to the junk folder, 35 (11.29%) con-
tacted the authors, 25 ignored the content, 24 reported it to another entity,
16 admitted clicking on the link, four blocked the sender, three replied to the
message assuming it was legitimate, and one person waited for subsequent mes-
sages. Two participants mentioned that they monitored their bank accounts in
the subsequent days for malicious transactions. Those participants who reported
the content to a third party forwarded it to their organizational IT department
(N=10), to the RDAP abuse contact (N=3), to their bank (N=1), or filed a
report to their local police (N=1).

6.2 Impact of Features on Participants’ Reactions

In the previous sections, we outlined which behavior, investigation, or observa-
tion has been reported by participants. Building on our mixed-methods app-
roach, we have aggregated both quantitative and qualitative data. The aggre-
gated quantitative dataset on participant behavior in reaction to the phishing
emails, such as opened the phishing email, clicked on links, or submitted personal
data is presented in-depth in [15]. Earlier, we highlighted the overarching finding
that young and old males of lower educational degrees are particularly suscep-
tible to phishing attacks. Additionally, we presented an overview of the under-
lying data in Table 1 for statistical insights into the different interactions, and
Table 2 for the socio-demographic background of our study population. Insights
into the qualitative data as obtained through analysis of survey answers and
mapping to the HITL model for phishing investigation are presented in this
manuscript. Using both data sets, we can quantify the success of a specific
method of investigation in decreasing a participant’s susceptibility to phish-
ing attacks. We assessed correlations between all observed features throughout
the three phases of the HITL model, Notice, Expect & Suspect, and Investigate
and participants’ reactions to our phishing emails, such as link click or data
3 Once every 800ms, the user’s browser sent all events that occurred in the past time-

frame to our server. This included blur events of the webpage in case users placed
the open tab in the background.

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 397

submission. The correlations were computed using primarily chi-squared tests
(χ2) to identify significance in correlations and Spearman tests to identify the
direction of impact for categorical variables. We use α = 0.05 as a quasi-standard
for significance. Table 3 highlights and groups our analysis’s most essential and
overarching observations.

Table 3. Highlights and overarching observations on elements noticed, or actions
reported by participants throughout the HITL model, that correlate with interaction
with our phishing emails. Full analysis available in Table 4 in the Appendix.

Im
p
a
ct

S
ig

. Statistical Test

Observation Ntrue Type Result p

N
o
ti

ce Noticing elements from email body (e.g., URLs, icons)
correlates with increased interaction

∠ � 103 χ2 15.909 0.000

Noticing the senders’ name or address significantly correlates
with decreased interaction

� � 70 χ2 19.237 0.000

Noticing the topic parcel delivery, significantly correlates with
increased interaction

∠ � 53 χ2 48.342 0.000

E
x
p
ec

t
&

S
u
sp

ec
t Lack of personal context significantly correlates with

decreased interaction
� � 652 χ2 5.264 0.022

Lack of knowledge of the entity significantly correlates with
decreased interaction

� � 35 χ2 9.798 0.002

Lack of knowledge about sender significantly correlates with
decreased interaction

� � 16 χ2 5.941 0.015

Not-expecting current shipments significantly correlates with
decreased interaction

� � 537 χ2 37.150 0.000

Expecting shipments and deliveries significantly correlates
with increased interaction

∠ � 63 χ2 112.082 0.000

In
v
es

ti
g
a
te Investigating email headers significantly correlates with

decreased interaction
� � 362 χ2 4.301 0.038

User Y-axis scroll distance correlates with not submitting
data on the webpage

� � 1,549∗ t −9.3223 0.0000

Webpage blur events (as casual proxy for user web searches)
significantly correlates with not submitting any data

� � 645 χ2 8.5307 0.0035

Impact refers to increased or decreased susceptibility of participants.
Significance (Sig.) refers to whether the statistical evaluation reports significance given
α = 0.05.
∗ for the t-test, N refers to the entire amount of users that visited the webpage

7 Discussion and Contextualization of Results

The previous overview of the study results (Table 3) shows effects that require
closer assessment and contextualization. In the following sections, we explore
a few of the overarching measures applied and observations mentioned by par-
ticipants during this study, which we observed to impact their susceptibility to
phishing attacks.

398 D. Köhler et al.

7.1 Noticing, Expecting and Suspecting Context

Contribution 2 We observe that identification of missing context during the
phases Expect and Suspect significantly decreases participants’ susceptibility to
phishing attacks.

The different steps and phases of the HITL model are closely connected.
Whenever a participant notices a specific feature, they automatically compare it
to their expectation. If that differs, the participant suspects illegitimacy. Due to
the posthoc nature of our survey, we expect that most participants only reported
features that have caused particular suspicion (Limitation 1). Across the stages
Notice, Expect, and Suspect of the HITL model, we generally observe that email
features denoting context, such as the sender, the topic, and particularly the
entity covered in the email impact participant’s susceptibility to react to it.
Participants observing that they had no connection to the entity generally per-
formed better, as most of them interpreted the email as SPAM or unrelated to
them and chose to ignore or delete the email.

Contrasting, participants for which the email fit into a current context, such
as, e.g., they were currently expecting a delivery or recently ordered something on
the Internet, usually performed worse, expecting a shipment significantly corre-
lated with increased susceptibility(N = 63, χ2 = 112.082, p < 0.001). Vice-versa,
participants’ awareness that they are not expecting a shipment significantly cor-
related with decreased susceptibility (N = 537, χ2 = 37.150, p < 0.001).

7.2 Investigative Measures

Contribution 3 Web Searches are one of the most successful investigation tech-
niques in cases in which an email lacks technical indicators and thereby signifi-
cantly decrease users’ susceptibility to falling for phishing attacks.

Generally, upon Suspection during looking at, e.g., an email, participants
should start to investigate the nature of the email. Investigation is typically a
process in which users attempt to gain more information about, e.g., the context
of an email. In many teaching programs, measures such as the investigation of
email headers, URL targets, and email bodies are named. We observed some
participants who knew (and applied) these methods among our participants.
However, we further observed investigation techniques such as looking at the
main webpage or clicking on the link. Such methods can expose the participant
to dangers upon visiting a malicious website.

Participants who investigated, e.g., email headers, were less likely to further
interact with our phishing content. This observation is surprising, as the emails
were not forged, and no manipulation that would have been visible in email
headers was applied. Further, Zheng et al. reported that displaying email head-
ers does not reduce phishing susceptibility as users often fail to interpret them
correctly [38]. Instead, we judge that email header investigation is a casual proxy
for participants to be more aware of potential cybersecurity risks, which was the
reason for decreased interaction.

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 399

Considering further investigation techniques, participants who scrolled a lot
on the webpage were significantly less likely to submit data on the webpage
(NV isited = 1, 549, t = −9.3223, p < 0.001). We interpret this measure as a
proxy for users carefully interacting with and observing the webpage. In our
questionnaire and free text answers specific to the emails, users reported investi-
gation of the emails by web searches. Performing such web searches, users hoped
to identify “Who is actually behind the parcel service provider? Which corpo-
ration?” (P365). Throughout the study, a total of 741 participants reported
having performed web searches to retrieve more context on the supposed enti-
ties. Performing a Web search has proven to be one of the techniques signif-
icantly correlated with decreased submissions of private data on our webpage
(N = 741, χ2 = 3.943, p = 0.047). Overall, 13.73% of participants who did not
perform web research submitted data in any of our phishing emails. In contrast,
from those who performed web research, only 9.09% submitted personal data.

While we cannot track participant behavior after opening the email, we could
track their behavior when visiting our webpage. One of the events we tracked is
webpage blur, which occurs whenever a user selects any other tab in their browser
but keeps our webpage open. We interpret webpage blur as a casual proxy for
opening a new tab and performing a web search. This behavior significantly
correlates with users not submitting data (N = 645, χ2 = 8.5307, p = 0.0035).

7.3 Biases and Limitations

(Non-) Technical Population Groups. One bias observed in our participant
group (cf. Sec 5) is the difference between technical and non-technical people,
e.g., expressed through jobs in IT and technology exposure. To test for the
impact of IT affiliation, we compared different features throughout the HITL
model between the two groups. We observe that the more technical features
noticed by participants, such as the URL, are more often named among the
IT population. In contrast, non-technical features, such as the personal saluta-
tion, were primarily noticed by people not affiliated with IT. Contextual aspects
such as the email sender are noticed across both groups and contribute to not
interacting with the email for both groups.

When assessing Expected and Suspected features inside the email, observa-
tions such as Personal context significantly drives increased or decreased inter-
action hold true independent of technicality. Similarly, throughout both groups,
people who expected shipments, as reported in free text answers (cf. Figure 4),
were more likely to click on the links and submit data on the web pages. One
observed contrast between both groups is that IT-affiliated people expect and
suspect more technical features, such as parcel size. However, that had no impact
on increased or decreased susceptibility to phishing attacks in our study.

Regarding investigative measures, 352 IT-affiliated and 358 non-IT people
have claimed to have performed (web-) searches. IT people were slightly better
with their investigation, as only 8,89% of them submitted data, while 11,33% of
non-IT people submitted data after having performed web searches. We observed
advanced investigation techniques even among those participants who were not

400 D. Köhler et al.

affiliated with IT. However, among this group of people, we observed a higher
error rate in interpreting the results (two of four non-IT participants have still
submitted data after checking with, e.g., VirusTotal). We claim that this mis-
judgment stems from suboptimal training in which the absence of indicators
for maliciousness (e.g., alerts in VirusTotal) is automatically interpreted as a
positive sign without questioning if the measure applied (checking a URL with
VirusTotal) is actually reasonable for the current assessment.

When acting on an email, after having investigated it, we assessed whether a
participant clicked on the link or submitted data to the webpage. Further reac-
tions, as reported during mapping participants’ answers to the HITL model (cf.
Sec. 6.1), included moving an email to SPAM or reporting it inside the company.
We observed that reporting the email to any third party (IT department, police,
other institutions) was more often reported among non-IT participants.

Participant Group Recruitment. Our participants were recruited from the
online education platform openHPI, on which free video-based online courses are
offered. The platform mostly features educational courses on IT topics, such as
programming, databases, AI, or cybersecurity. Earlier, we discussed observed
differences between IT-affiliated participants and those participants who are
employed, e.g., in jobs in public administration. Still, we assume that throughout
all participants in all job roles, a particular interest in IT is apparent. Otherwise,
they would not be enrolled in the platform. Therefore, we assume that the gen-
eralizability of our results towards the general public, particularly the non-IT
population, is limited. Building on this thought, however, makes apparent that
even those particularly interested in information technology (i.e., participants
of our study) failed to correctly interpret indicators of mistrust such as miss-
ing context during our study. Replicating the study with a more representable
population group would show less applied technical investigation techniques and
an even higher failure rate to assess the study content as phishing correctly,
matching results from related works.

Debriefing of Participants. Our study targeted real-world participants who
had not received the entire disclosure of the study context upon providing con-
sent to participate (cf. Section 4.2). Hence, participants are likely unaware of
participating in a phishing study. Therefore, we were required to ensure that our
study emails would not be propagated further beyond our study participants.
While the emails should withhold brief investigation by participants, any more
technical investigation of our emails or web pages by trained staff should eas-
ily refer to the research context of the study. Therefore, we included debriefing
information at various points throughout the study design:

1. The emails contained debriefing as white text on a white background
2. The imprint of the webpages contained debriefing information
3. Upon submitting data to the webpage, participants were debriefed
4. Upon contacting the sender of the emails, we debriefed the participants

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 401

The hidden debriefing information in emails potentially impacts users with
screen readers or those who viewed the emails in plain text. For the former,
investigating the behavior of users with disabilities would be part of a larger
research question covering the impact of assistance tools on (phishing) assess-
ment practices. An appropriate analysis of this research question is out of scope
for our study. For the latter, in the survey, only a few people (< 10) responded
to have viewed the email in plain text. The practice is uncommon in our study
population. As we can not track which participants have observed the debriefing
information inside the email, we acknowledge the limitation. However, we must
omit a detailed analysis of the practice in this manuscript.

With the different measures of debriefing in place, debriefed participants
within each intervention needed to be excluded from the analysis. For example,
for a user who submitted data and later further investigated the web page, that
web page behavior should not be tracked and assessed. For debriefing measures
two through four, we could technically track through requests to our web servers
or emails to the contact addresses when the debriefing happened. In the data
cleaning step three (Sect. 4.4), such participant behavior after debriefing was
excluded from the dataset before further analysis.

8 Future Work

Our study targeted participants’ investigative behavior of phishing content with-
out traditional indicators for phishing. This increases the difficulty of email
assessment, resulting in a relatively high time investment. To further study the
human cost of phishing, a follow-up study using the same setup and observed
data points could be developed studying phishing emails showing traditional
cues for phishing, such as tampered email senders, illegitimate links, or spelling
and grammar mistakes. Such analysis could provide interesting results, allowing
further interpretation of the human cost of phishing attacks.

During our qualitative analysis of participants’ answers, we observed the
phenomenon of participants reporting, e.g., content in English, while all content
was purely designed and distributed in German. This is likely because our survey
was only sent posthoc, up to 3.5 months after the first phishing email (cf. study
setup depicted in Fig. 1). On the other hand, participants could also be subject
to the phenomenon of confirmation bias and thus misremember information.
Further research studying this observation could be performed by interlacing
the Staged Innovation Design with surveys to some participants, after which
those would be removed from the future participant pool to ensure maintaining
an unbiased study population while retrieving intermediate survey answers.

9 Conclusion

This manuscript presents the results of a large-scale mixed-methods study exam-
ining human-phishing interaction when confronted with emails that lack tradi-
tional cues for phishing. We provide three human-in-the-loop model taxonomies

402 D. Köhler et al.

of 950 participants’ phishing email investigation approaches. We observe the
major contributor to phishing susceptibility in our study to be the identification
of (missing) context. As expected, this is the only valid indicator for phishing
in the study emails, as the fictitious entities had actual web pages, and no, e.g.,
links were manipulated. Participants unsure of the nature, entity, or subject of
the emails reported to have performed web searches for further investigation.
Verifying with our data on submissions of private data on the phishing web
page, we could observe that the participants who mentioned having performed
web research submitted sensitive data in 33.79% fewer cases than the cohort.

In our study, most users intuitively reacted well to the challenge of missing
cues for phishing inside the emails. However, we also observed users who failed to
make proper decisions. One reason might be users unaware of the implications
of data disclosure to an attacker. We call on educators to highlight the risks
of providing sensitive data to cybercriminals more prominently. Furthermore,
concepts currently only employed in professional contexts, such as highlighting
if an email is from an external organization, could also be beneficial in private
contexts. E.g., a banner in email applications for emails where it is the first time
the user has contact with the entity could help participants derive context.

Various qualitative answers by participants have shown that they assess their
emails to know whether they are required to react. However, they need guidance
and easily usable tools to support their investigation process. Hence, developing
tools and measures to help laypersons investigate (phishing) emails securely
should be prioritized in research and product development.

A Appendix: Survey Instrument

The survey questions are translated from German for publication in this
manuscript. The following sub-sections layout the survey instrument used to
obtain the responses presented throughout the manuscript.

A.1 Demography

Q1: Please enter your email address.
Q2: How old are you?
Q3: Which gender would you associate yourself with?
Q4: Which is your highest level of education?
Q5: In which industry are you currently working? (Multi-Select among primary

industry groups according to UN ISIC Rev.4 [31])

A.2 Phishing Emails and Reactions

Q6: In the past 4 months, we have sent 4 phishing emails as part of this study. In
the following questions, we would like to know whether and how you reacted
to the corresponding emails. You can view the four emails again here:

Q7: Have we successfully persuaded you to enter data during our campaign?

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 403

Q8: Which of the four phishing emails do you remember? (Multi-Select)
Q9: What was the major reason for a reaction to the email? (Matrix-Select, one

reason per email)
• Curiosity
• Fear
• Pressure
• Financial Interest
• Trust
• Authority
• I did not react to this mail.
• Prefer not to answer.

Q10: Please provide more information on your reaction. (Freetext)
Q11: Which of the emails gave you the feeling that something was wrong?

(Multi-Select)
Q12: Please explain your feelings on the emails. (Freetext answer for each email)
Q13: What did you do when you had off feelings with an email? (Multi-Select)

• Visit the main webpage
• Perform a web search
• View the website imprint
• View the website data privacy declaration
• Investigate the website source code
• Investigate the link target
• Investigate the sender
• Investigate the email header

Q14: Have you carried out any further checks? (Freetext)
Q15: Which precautions have you taken for your investigation? (Multi-Select)

• I did not take special precautions.
• VPN
• TOR
• Deactivate JavaScript
• Deactivate Cookies
• Use a special browser
• Use a sandbox / virtual machine
• Issue WHOIS / RDAP request for the IP / domain

Q16: Did you implement any other precautions or technical measures? (Freetext)

A.3 IT-Context and Sensitization

Q17: How often do you use IT-Devices for your work and in your leisure time?
Q18: Estimate, how many emails you receive per day in your private and work

contexts.
Q19: Did you previously participate in courses or training for cybersecurity

awareness?
Q20: Which types of trainings did you previously participate in? (Multi-Select)

• Classroom training (including digital group training)
• Awareness information emails

404 D. Köhler et al.

• Test phishing emails (outside this study)
• Computer-based training
• Online courses
• Information videos
• Social media content
• Documentations (TV, Youtube)
• Podcasts and radio
• Print media (newspapers, flyer)
• Posters and billboard advertisement
• Other (Freetext)

Q21: How long ago did you participate in your last training?
Q22: Have you previously been affected by a security incident? (Multi-Select)

• Reacted to a phishing email
• Malware infection
• Lost a password
• Lost data
• Lost access to an account
• Stolen devices
• Lost money
• Other (Freetext)

B Appendix: Large Scale Images of Phishing Content

The paper incorporates tiny graphics as an overview of the emails and webpages
employed throughout the four iterations of our phishing study. Here, we provide
the following images for readers who want to look at larger-scale variants.

C Appendix: HITL-Model: Figures

Presented in the paper were shortened versions of the two taxonomies that
highlight aspects which were more frequently named by study participants.
However, in case fellow researchers would be designing similar studies, even
answers from single participants could be helpful to understand what behav-
ior to expect. Therefore, we present Figs. 9 and 10, showing the full range of
participant responses to the survey on the respective stages in the HITL model.

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 405

Fig. 8. Large-scale screenshots of German phishing content sent throughout the four
iterations.

D Appendix: Resulting Correlations

In Table 3, we summarized the most important correlations we observed between
our participant responses and their interaction with our phishing emails and web
pages. The analysis has brought us to identify the highlighted observations as
particularly important, e.g. because we further observed mentions of the aspects

406 D. Köhler et al.

Fig. 9. Hierarchical overview of noticed properties named in survey responses. Partic-
ipants noticed aspects within the Email, Website and during their Online Searches. ∗

Numbers in [brackets] refer to the count of mentions.

in qualitative answers. Additionally, Table 4 provides an overview of all impact-
ful aspects derived during our analysis. In the table, we group the findings by
the iteration they were reported of, with General applying to answers given to
general, overarching question not directly targeted towards single interventions.
Inside each iteration, we differentiate between the different phases of the HITL
interaction model: Notice (N), Expect (E), Suspect (S), Investigate (Inv.), and
Act (A). We compare the performance of the group that reported the respective
feature (Share of Participants) to the performance of the General Population.
Depending on whether participants who reported the respective feature per-
formed better or worse, we indicate whether the respective group of participants
reacted (React.) more or less often than their peers. The reaction translates to the
phishing susceptibility, as indicated in Table 3 in the manuscript. An increased
amount of reaction and, thereby, increased susceptibility hereby indicates worse
behavior. Below, we provide one example of how to read the table:

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 407

Fig. 10. Hierarchical overview of expected and suspected properties named in survey
responses. We differentiate between Global expectations that could be identical across
participants and Personal expectations, such as a concrete shipment. ∗ Numbers in
[brackets] refer to the count of mentions.

Reading Example: People that highlighted General Expections towards how
(third party) entities perform email communication (global/entities/email)
performed better than their peers. Out of the 32 people who highlighted the
respective feature, only 3.1% Clicked on the links provided in the emails, while
generally, 24% of participants clicked on the links provided. This observation is
statistically significant, as confirmed with a χ2 test for significance resulting in
p = 0.001.

408 D. Köhler et al.

Table 4. Overview of all Correlations observed between Participant Responses clus-
tered to the HITL model.

H
IT

L Share of General

R
ea

ct
.

S
ig

. χ2 Test

HITL Feature Participants Interaction Population Ntrue Result p

G
e
n
e
ra

l
&

O
v
e
ra

ll

N
o
ti

ce
(N

)

email/sender/name 12.5% Clicked 24.0% � � 24 6.283 0.012

email/sender 17.1% Clicked 24.0% � � 70 19.237 0.000

email/sender 8.6% Submitted 7.0% ∠ � 70 9.268 0.002

email/body 50.5% Clicked 24.0% ∠ � 103 15.909 0.000

email/body 32.0% Submitted 7.0% ∠ � 103 17.211 0.000

email/body/parcel 77.4% Clicked 24.0% ∠ � 53 48.342 0.000

email/body/parcel 52.8% Submitted 7.0% ∠ � 53 44.334 0.000

email/body/footer 11.5% Clicked 24.0% � � 26 7.583 0.006

email/sender/address 17.3% Clicked 24.0% � � 52 11.744 0.001

email/sender/address 7.7% Submitted 7.0% ∠ � 52 6.567 0.010

E
x
p
ec

t
(E

)

personal/activities 31.6% Clicked 24.0% ∠ � 636 4.925 0.026

personal/activities 13.1% Submitted 7.0% ∠ � 636 6.390 0.011

personal 31.4% Clicked 24.0% ∠ � 652 5.264 0.022

personal 12.7% Submitted 7.0% ∠ � 652 3.891 0.049

personal/activities/shipments/none 24.6% Clicked 24.0% ∠ � 537 37.150 0.000

personal/activities/shipments/none 6.7% Submitted 7.0% � � 537 63.413 0.000

global/entities/email/sender 0.0% Clicked 24.0% � � 16 5.941 0.015

global/processes/energy/metering 100.0% Clicked 24.0% ∠ � 3 3.866 0.049

global/processes/energy 100.0% Clicked 24.0% ∠ � 3 3.866 0.049

global 0.0% Submitted 7.0% � � 44 5.436 0.020

global/entities/email 3.1% Clicked 24.0% � � 32 10.850 0.001

global/entities 5.7% Clicked 24.0% � � 35 9.798 0.002

global/entities 0.0% Submitted 7.0% � � 35 4.043 0.044

personal/activities/shipments/expected 90.5% Clicked 24.0% ∠ � 63 112.082 0.000

personal/activities/shipments/expected 66.7% Submitted 7.0% ∠ � 63 184.949 0.000

S
u
sp

ec
t

(S
)

legit/parcel/other-order 100.0% Clicked 24.0% ∠ � 6 4.762 0.029

legit/parcel/other-order 100.0% Submitted 7.0% ∠ � 6 8.584 0.003

legit/parcel 76.9% Clicked 24.0% ∠ � 26 14.182 0.000

legit/parcel 65.4% Submitted 7.0% ∠ � 26 16.313 0.000

legit 65.6% Clicked 24.0% ∠ � 32 7.594 0.006

legit 53.1% Submitted 7.0% ∠ � 32 8.100 0.004

fraud 23.5% Clicked 24.0% � � 17 5.829 0.016

fraud 11.8% Submitted 7.0% ∠ � 17 5.835 0.016

legit/payment 0.0% Submitted 7.0% � � 8 4.000 0.046

fraud/identity 0.0% Submitted 7.0% � � 8 4.000 0.046

In
v
. info/search 29.3% Clicked 24.0% ∠ � 741 4.191 0.041

info/website/link 64.7% Clicked 24.0% ∠ � 17 7.550 0.006

A
ct react 64.3% Clicked 24.0% ∠ � 14 9.820 0.002

react 42.9% Submitted 7.0% ∠ � 14 20.560 0.000

It
e
ra

ti
o
n

2

N
o
ti

ce email/sender/address/domain/tld 50.0% Submitted 2.9% ∠ � 2 5.508 0.019

email/sender/name 3.4% Clicked 18.2% � � 29 4.050 0.044

email/sender/address/domain/tld/de 50.0% Submitted 2.9% ∠ � 2 5.508 0.019

E
x
p
ec

t personal/preferences/trusted-tld 50.0% Submitted 2.9% ∠ � 2 5.512 0.019

personal/preferences/trusted-tld/at 50.0% Submitted 2.9% ∠ � 2 5.512 0.019

personal/preferences 50.0% Submitted 2.9% ∠ � 2 5.512 0.019

In
v
. verify/energy-law 66.7% Clicked 18.2% ∠ � 3 10.616 0.001

verify/energy-law 33.3% Submitted 2.9% ∠ � 3 5.876 0.015

info/search/company 100.0% Submitted 2.9% ∠ � 1 19.502 0.000

(continued)

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 409

Table 4. (continued)
H

IT
L Share of General

R
ea

ct
.

S
ig

. χ2 Test

HITL Feature Participants Interaction Population Ntrue Result p

It
e
ra

ti
o
n

3

N
o
ti

ce website 33.3% Submitted 2.8% ∠ � 3 4.742 0.029

website/wording 100.0% Submitted 2.8% ∠ � 1 16.000 0.000

website/wording/vague 100.0% Submitted 2.8% ∠ � 1 16.000 0.000

In
v
.

info/search 7.9% Clicked 19.5% � � 547 5.923 0.015

It
e
ra

ti
o
n

4

N
o
ti

ce website 62.5% Clicked 31.1% ∠ � 8 6.593 0.010

website/body 62.5% Clicked 31.1% ∠ � 8 6.593 0.010

website/body/form 66.7% Clicked 31.1% ∠ � 6 5.483 0.019

E
x
p
ec

t

global/entities 6.6% Submitted 12.7% � � 137 4.597 0.032

global 6.2% Submitted 12.7% � � 144 3.920 0.048

global/entities/email/sender 13.6% Submitted 12.7% ∠ � 22 3.982 0.046

personal 1.5% Submitted 12.7% � � 199 6.091 0.014

personal/activities/shipments/expected 45.8% Clicked 31.1% ∠ � 24 12.202 0.000

In
v
. info/search 15.1% Clicked 31.1% � � 535 18.303 0.000

info/website/imprint 45.0% Clicked 31.1% ∠ � 20 9.208 0.002

info/website 48.1% Clicked 31.1% ∠ � 27 16.680 0.000

References

1. Al-Daeef, M.M., Basir, N., Saudi, M.M.: Security awareness training: a review.
Lecture Notes in Engineering and Computer Science (2017) iSBN: 2078-0958

2. Alharbi, A., Alotaibi, A., Alghofaili, L., Alsalamah, M., Alwasil, N., Elkhediri, S.:
Security in social-media: awareness of phishing attacks techniques and counter-
measures. In: 2022 2nd International Conference on Computing and Information
Technology (ICCIT) (2022). https://doi.org/10.1109/ICCIT52419.2022.9711640

3. Alzubaidi, A.: Measuring the level of cyber-security awareness for cybercrime in
Saudi Arabia. Heliyon 7(1) (2021). https://doi.org/10.1016/j.heliyon.2021.e06016

4. Caputo, D.D., Pfleeger, S.L., Freeman, J.D., Johnson, M.E.: Going spear phishing:
exploring embedded training and awareness. IEEE Security Privacy 12(1), 28–38
(2014). https://doi.org/10.1109/MSP.2013.106

5. Cranor, L.F.: A framework for reasoning about the human in the loop (2008)
6. European Union Agency for Cybersecurity: ENISA Threat Landscape 2022 (2022).

https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
7. Federal Bureau of Investigation: Business email compromise (2022). https://www.

fbi.gov/how-we-can-help-you/safety-resources/scams-and-safety/common-scams-
and-crimes/business-email-compromise

8. Fernando, M., Arachchilage, N.: Why Johnny can’t rely on anti-phishing edu-
cational interventions to protect himself against contemporary phishing attacks?
ACIS 2019 Proceedings (Jan 2019). https://aisel.aisnet.org/acis2019/42

9. Finn, P., Jakobsson, M.: Designing ethical phishing experiments. IEEE Technology
and Society Magazine 26(1), 46–58 (2007). https://doi.org/10.1109/MTAS.2007.
335565conference Name: IEEE Technology and Society Magazine

10. Furnell, S.: Phishing: can we spot the signs? Comput. Fraud Secur. 2007(3), 10–15
(2007). https://doi.org/10.1016/S1361-3723(07)70035-0

11. Greitzer, F.L., Li, W., Laskey, K.B., Lee, J., Purl, J.: Experimental investigation of
technical and human factors related to phishing susceptibility. ACM Trans. Social
Computi. 4(2), 1–48 (2021). https://doi.org/10.1145/3461672

https://doi.org/10.1109/ICCIT52419.2022.9711640
https://doi.org/10.1016/j.heliyon.2021.e06016
https://doi.org/10.1109/MSP.2013.106
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
https://www.fbi.gov/how-we-can-help-you/safety-resources/scams-and-safety/common-scams-and-crimes/business-email-compromise
https://www.fbi.gov/how-we-can-help-you/safety-resources/scams-and-safety/common-scams-and-crimes/business-email-compromise
https://www.fbi.gov/how-we-can-help-you/safety-resources/scams-and-safety/common-scams-and-crimes/business-email-compromise
https://aisel.aisnet.org/acis2019/42
https://doi.org/10.1109/MTAS.2007.335565
https://doi.org/10.1109/MTAS.2007.335565
https://doi.org/10.1016/S1361-3723(07)70035-0
https://doi.org/10.1145/3461672

410 D. Köhler et al.

12. Innab, N., Al-Rashoud, H., Al-Mahawes, R., Al-Shehri, W.: Evaluation of the effec-
tive anti-phishing awareness and training in governmental and private organiza-
tions in Riyadh. In: 2018 21st Saudi Computer Society National Computer Con-
ference (NCC), pp. 1–5 (Apr 2018). https://doi.org/10.1109/NCG.2018.8593144

13. Jampen, D., Gür, G., Sutter, T., Tellenbach, B.: Don’t click: towards an effective
anti-phishing training. A comparative literature review. Human-centric Comput.
Inform. Sci. 10(1), 33 (Aug 2020). https://doi.org/10.1186/s13673-020-00237-7

14. Jensen, M.L., Dinger, M., Wright, R.T., Thatcher, J.B.: Training to mitigate phish-
ing attacks using mindfulness techniques. J. Manag. Inf. Syst. 34(2), 597–626
(2017). https://doi.org/10.1080/07421222.2017.1334499, publisher: Routledge

15. Köhler, D., Pünter, W., Meinel, C.: Fishing for non-professional answers: Quanti-
tative study on email phishing susceptibility in private contexts (2023). https://
doi.org/10.13140/RG.2.2.21865.47201/1in Review

16. Kumaraguru, P., et al.: School of phish: a real-world evaluation of anti-phishing
training. In: Proceedings of the 5th Symposium on Usable Privacy and Security,
pp. 1–12 (2009)

17. Meinel, C., Willems, C., Staubitz, T., Sauer, D., Hagedorn, C.: openHPI: 10 Years
of MOOCs at the Hasso Plattner Institute (2022)

18. Mitnick, K.D., Simon, W.L.: The art of deception: Controlling the human element
of security. John Wiley & Sons (2003)

19. Nguyen, C., Jensen, M., Day, E.: Learning not to take the bait: a longitudinal
examination of digital training methods and overlearning on phishing susceptibility.
Eur. J. Inf. Syst. 32(2), 238–262 (2023). https://doi.org/10.1080/0960085X.2021.
1931494

20. Nthala, N., Wash, R.: how non-experts try to detect phishing scam emails. Work-
shop on Consumer Protection (May 2021). https://par.nsf.gov/biblio/10297019-
how-non-experts-try-detect-phishing-scam-emails

21. Parsons, K., Butavicius, M., Pattinson, M., McCormac, A., Calic, D., Jerram, C.:
Do Users Focus on the Correct Cues to Differentiate Between Phishing and Genuine
Emails? In: ACIS 2015 Proceedings (Jan 2015). https://aisel.aisnet.org/acis2015/
6

22. Parsons, K., McCormac, A., Pattinson, M., Butavicius, M., Jerram, C.: Phish-
ing for the truth: a scenario-based experiment of users’ behavioural response to
emails. In: Security and Privacy Protection in Information Processing Systems, pp.
366–378. IFIP Advances in Information and Communication Technology, Springer,
Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39218-4 27

23. Rajivan, P., Gonzalez, C.: Creative persuasion: a study on adversarial behaviors
and strategies in phishing attacks. Front. Psychol. 9 (2018)

24. Resnik, D.B., Finn, P.R.: Ethics and phishing experiments. Sci. Eng. Ethics 24(4),
1241–1252 (2018). https://doi.org/10.1007/s11948-017-9952-9

25. Schroeder, J.: Advanced persistent training: take your security awareness program
to the next level. Apress (Jun 2017). google-Books-ID: UjgoDwAAQBAJ

26. Siadati, H., Palka, S., Siegel, A., McCoy, D.: Measuring the effectiveness of
embedded phishing exercises (2017). https://www.usenix.org/conference/cset17/
workshop-program/presentation/siadatii

27. Stockhardt, S., et al.: Teaching phishing-security: which way is best? In: ICT Sys-
tems Security and Privacy Protection. pp. 135–149. IFIP Advances in Information
and Communication Technology, Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-33630-5 10

https://doi.org/10.1109/NCG.2018.8593144
https://doi.org/10.1186/s13673-020-00237-7
https://doi.org/10.1080/07421222.2017.1334499
https://doi.org/10.13140/RG.2.2.21865.47201/1
https://doi.org/10.13140/RG.2.2.21865.47201/1
https://doi.org/10.1080/0960085X.2021.1931494
https://doi.org/10.1080/0960085X.2021.1931494
https://par.nsf.gov/biblio/10297019-how-non-experts-try-detect-phishing-scam-emails
https://par.nsf.gov/biblio/10297019-how-non-experts-try-detect-phishing-scam-emails
https://aisel.aisnet.org/acis2015/6
https://aisel.aisnet.org/acis2015/6
https://doi.org/10.1007/978-3-642-39218-4_27
https://doi.org/10.1007/s11948-017-9952-9
https://www.usenix.org/conference/cset17/workshop-program/presentation/siadatii
https://www.usenix.org/conference/cset17/workshop-program/presentation/siadatii
https://doi.org/10.1007/978-3-319-33630-5_10

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues 411

28. Sutter, T., Bozkir, A.S., Gehring, B., Berlich, P.: Avoiding the hook: influential
factors of phishing awareness training on click-rates and a data-driven approach
to predict email difficulty perception. IEEE Access 10, 100540–100565 (2022).
https://doi.org/10.1109/ACCESS.2022.3207272

29. The MITRE Corporation: CAPEC-98: Phishing (2021). https://capec.mitre.org/
data/definitions/98.html

30. UNESCO Institute for Statistics: International standard classification of edu-
cation: Isced 2011 (2012). https://uis.unesco.org/sites/default/files/documents/
international-standard-classification-of-education-isced-2011-en.pdf

31. United Nations Department of Economic and Social Affairs: International standard
industrial classification of all economic activities (2008). https://unstats.un.org/
unsd/publication/SeriesM/seriesm 4rev4e.pdf

32. Wagner, N.: Instructional product evaluation using the staged innovation design.
J. Instruct. Develop. 7 (1984)

33. Wash, R.: How experts detect phishing scam emails. Proc.ACM Human-Comput.
Interact. 4 (2020). https://doi.org/10.1145/3415231

34. Wash, R., Cooper, M.M.: Who provides phishing training? facts, stories, and peo-
ple like me. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. ACM, New York (2018). https://doi.org/10.1145/3173574.
3174066

35. Wash, R., Nthala, N., Rader, E.: Knowledge and capabilities that non-expert
users bring to phishing detection, pp. 377–396 (2021). https://www.usenix.org/
conference/soups2021/presentation/wash

36. Wen, Z.A., Lin, Z., Chen, R., Andersen, E.: What. hack: engaging anti-phishing
training through a role-playing phishing simulation game. In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12. CHI
’19, ACM, New York, USA (May 2019). https://doi.org/10.1145/3290605.3300338

37. Williams, E.J., Polage, D.: How persuasive is phishing email? the role of authentic
design, influence and current events in email judgements. Behav. Inform. Technol.
38 (Feb 2019). https://doi.org/10.1080/0144929X.2018.1519599

38. Zheng, S., Becker, I.: Presenting suspicious details in user-facing e-mail headers
does not improve phishing detection. In: SOUPS @ USENIX Security Symposium
(2022). https://api.semanticscholar.org/CorpusID:252996739

39. Zheng, S.Y., Becker, I.: Checking, nudging or scoring? evaluating e-mail user
security tools, pp. 57–76 (2023). https://www.usenix.org/conference/soups2023/
presentation/zheng

https://doi.org/10.1109/ACCESS.2022.3207272
https://capec.mitre.org/data/definitions/98.html
https://capec.mitre.org/data/definitions/98.html
https://uis.unesco.org/sites/default/files/documents/international-standard-classification-of-education-isced-2011-en.pdf
https://uis.unesco.org/sites/default/files/documents/international-standard-classification-of-education-isced-2011-en.pdf
https://unstats.un.org/unsd/publication/SeriesM/seriesm_4rev4e.pdf
https://unstats.un.org/unsd/publication/SeriesM/seriesm_4rev4e.pdf
https://doi.org/10.1145/3415231
https://doi.org/10.1145/3173574.3174066
https://doi.org/10.1145/3173574.3174066
https://www.usenix.org/conference/soups2021/presentation/wash
https://www.usenix.org/conference/soups2021/presentation/wash
https://doi.org/10.1145/3290605.3300338
https://doi.org/10.1080/0144929X.2018.1519599
https://api.semanticscholar.org/CorpusID:252996739
https://www.usenix.org/conference/soups2023/presentation/zheng
https://www.usenix.org/conference/soups2023/presentation/zheng

Usable Authentication in Virtual Reality:
Exploring the Usability of PINs

and Gestures

H. T. M. A. Riyadh1,2(B), Divyanshu Bhardwaj1,2, Adrian Dabrowski1,
and Katharina Krombholz1

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{htma.riyadh,divyanshu.bhardwaj,adrian.dabrowski,krombholz}@cispa.de

2 Saarland University, Saarbrücken, Germany

Abstract. Virtual Reality (VR) is becoming increasingly popular with
its ability to offer new forms of interaction, user interface, and immer-
sion not only for recreation but also for work, therapy, arts, or education.
These new spaces need to be safeguarded by authentication similar to
conventional IT systems. However, porting conventional interfaces to VR
has often been found to be less than optimal as it fails to fully embrace the
technology’s potential and potentially disrupt the immersive experience.
This paper evaluates and compares the usability of two major authen-
tication methods for VR: 2D Personal Identification Number (PIN) and
gesture-based authentication - with 40 participants. While prior research
has shown promising results in authentication security, there is a lack of
studies specifically on usability in VR. Our findings indicate that the
type of authentication and the user’s experience level affect usability,
with gesture-based authentication having a higher usability score than a
PIN and having faster authentication times. Hereby, users with less VR
experience profited the most from a natural interaction mode for VR.
The results suggest that developers should rather choose a native inter-
action mode in VR than try to port a familiar conventional interaction
such as number pads for PINs.

Keywords: Virtual Reality · Usability · Authentication · PINs ·
Gestures

1 Introduction

Virtual Reality (VR) is an immersive technology that allows users to engage
with computer-generated graphics in a virtual environment. In the wake of the
COVID-19 pandemic, VR has become increasingly popular among researchers
and consumers [2,5,37], resulting in a surge in revenue [42]. Although several
authentication solutions have been offered for VR, usability studies related to
VR authentication have not been given adequate consideration.

VR presents innovative methods of interacting with technology but ques-
tions the effectiveness and usability of traditional authentication techniques in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 412–431, 2024.
https://doi.org/10.1007/978-3-031-54776-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_16

Usable Authentication in Virtual Reality 413

this new realm. When using VR, users must authenticate themselves to access
their confidential data. As such, it is crucial to safeguard users’ data, ensur-
ing their security and establishing trustworthiness through a seamless and user-
friendly [35] authentication process in virtual reality. Presently, different authen-
tication methods are being proposed, such as knowledge-based authentications
like PIN [15], Pattern Lock [15], 3D Password [3], 3D Pattern [48], or biometric-
based authentication [26,34,44]. Although these methods offer robust security,
they often sacrifice usability.

To address the need for better authentication in VR, we conducted a between-
subjects design user study with N=40 participants. Our research was guided by
two key questions:

1. Does the authentication type impact the authentication usability in Virtual
Reality?

2. Does the authentication usability vary based on the user’s experience with
Virtual Reality?

To address these inquiries, we explored two authentication methods: a 2D PIN
and a gesture-based authentication. PIN is a well-established traditional authen-
tication process that users frequently use daily. We used the classic 4-digit numer-
ical PIN pad. In contrast, gesture-based authentication is a knowledge-based
authentication process relatively new to most users. We utilized four single-hand
alphabetic mid-air gestures in a 3D space. The gestures simulated drawing on a
2D touch surface.

Our study revealed that participants with prior experience generally per-
formed better in PIN-based authentication, while no significant differences were
observed in gesture-based authentication. These results suggest that experience
may have less impact on performance when the design of the VR system follows
natural interaction patterns. Interestingly, despite the widespread use of PINs
in daily activities and authentication methods, our findings indicate that their
performance decreases when used in VR. This could be attributed to the dif-
ferences in input modalities, as gestures were found to be a more natural and
intuitive means of interaction, leading to a better performance and usability.

Our research provides valuable insights into the naturalness of input modali-
ties in VR, which can aid developers in implementing more effective authentica-
tion methods that are both user-friendly and secure. Additionally, our usability
study enhances our comprehension of user interaction, which we hope can prove
beneficial in the design of VR applications moving forward.

The rest of this paper is structured as follows: In Sect. 2, we provide some
background knowledge to help our readers understand the work-related topics,
terms, and technologies. After that, Sect. 3 dives deep into the previous work on
VR authentication and usability. Section 4 outlines our study design, methodol-
ogy, and a brief discussion about user study. Sections 5 and 6 characterize our
results, followed by the discussion. Section 7 contains the conclusion and future
work.

414 H. T. M. A. Riyadh et al.

2 Background

This section provides the prerequisite context and information for readers to
engage with the paper.

2.1 Virtual Reality

Virtual Reality (VR) is an advanced computer graphic-generated human-
computer interface that simulates a realistic environment. In VR, users have
the ability to immerse themselves in experiences that can either replicate real-
world scenarios or transport them to entirely different environments. VR evolved
from the early stages of computer graphics, which began in the mid-1960 s to the
early 1970s. At that time, it was referred to as Artificial Reality. The term ‘Vir-
tual Reality’ [30] was first coined by Jaron Lanier, the founder of VPL Research.
Nowadays, VR uses a mixture of different senses like light, touch, sound, and
tactile feedback to generate more natural experiences. Head-Mounted Display
(HMD) is used in standard VR systems as a display device. Augmented Real-
ity smart glasses augment the virtual world to the real world and allow users to
interact in real-time [40]. Figure 1 demonstrates two popular forms of VR display
devices.

VR is based on two core ideas: immersiveness and interactivity. VR is fully
immersive because it is built in such a way that it keeps the user away from
other environmental distractions by blocking surroundings selectively. One of
the primary objectives of VR is to immerse users in a virtual environment in
a way that makes them feel as if they are present in the real world. Achieving
this requires taking into account factors such as human psychology, anatomy,
user perspective, and environmental awareness [18]. The applications of VR are
vast, from medical research and training simulations to online gaming, virtual
shopping, and even conferences and meetings. Due to its widespread usage, the
VR market has grown significantly [42], with its current size estimated at 28.42
billion USD in 2022, up from 21.83 billion USD in the previous year. As VR
technology continues to evolve, it is becoming more accessible to people from all
walks of life.

Fig. 1. VR Display Device

Usable Authentication in Virtual Reality 415

2.2 Authentication

Authentication is the process of recognizing a user’s identity. It ensures the pre-
vention of unauthorized access to sensitive data. User identification usually can
be done by sending a secret code/password to the system [10]. This secret pass-
code can consist of four factors: (1) Something you know e.g., password, pattern,
etc. (2) Something you are e.g., biometric features, fingerprint, etc. (3) Some-
thing you own e.g., ID card (4) Something you do e.g., typing pattern, pupil
movement. Accessing the storage, intercepting the communication channel, or
disclosing information can compromise the security of a secret password [23].
Therefore, authentication is crucial for data protection from the end-user per-
spective. Various mechanisms, such as numeric PINs, fingerprints, biometric
features, and pattern locks, can authenticate the true user. The usability of
authentication hinges on finding the right balance between security and user
experience. Complex authentication procedures may discourage users or result
in insecure practices, such as overly simplistic passwords.

2.3 Usability

Usability is one of the fundamental properties of a system or a process that
defines how easily, effectively, efficiently, and safely a task can be performed. It
is a measure of user satisfaction in a specific context. Usability vastly depends
on human behavior and psychology. The quality of a product, software, device,
or service is sometimes measured by its usability study. The 1996 System Usabil-
ity Scale (SUS) [9] by Brooke is frequently used to evaluate the usability of a
system. Later, Peres et al. validated that SUS can be used to compare two more
systems [36].

There exists a reciprocal relationship between usability and security [49].
When security is prioritized, usability may suffer. An illustration of this is the
common requirement for 11-character passwords containing at least one upper-
case, one lowercase, one number, or one special character. These complex pass-
words can be difficult for users to recall, reducing usability and prompting eva-
sive behavior – which in turn lowers security. Therefore, usability is an integral
consideration throughout the design process.

3 Related Work

3.1 Interaction in VR

Different input modalities are used to interact with the virtual environment in
VR, such as controller tapping, gaze input, head pose, or body gestures. People
are habituated to using a physical keyboard, mouse, device, or hard surface as
an input medium. In a virtual environment, for example, typing on a virtual
keyboard or deforming an object (e.g., Rubik’s Cube) lacks haptic feedback.
The missing feedback degrades the usability of the virtual input systems [14].

416 H. T. M. A. Riyadh et al.

UI designers try to work around this limitation. For example, tapping can
mimic real-world interaction, and pointing-based interaction (e.g., a laser beam)
in VR enjoys popularity. A study by Hale et al. [16] discourages using pointers
as an input method because it does not follow the natural interaction of real life.
They also emphasize the precision problem on small screens. However, Ballagas
et al. [6] showed that on large public displays, pointer-based interaction is useful
and, indeed increases usability. In our study, we adopted the previous studies and
combined both pointers and tapping as interaction concepts in the development.
See Table 5 in the Appendix for our adaptation decision.

3.2 Authentication in VR

At the time of writing, available devices such as HTC Vive1, or Oculus Quest2
provide high-end usability and portability [12,39]. These devices are wireless and
self-contained with an in-built display screen. But in some cases, they lack seam-
less interaction. For example, the authentication process sometimes requires a
second device or the removal of the headset. While VR does offer some options for
seamless and continuous authentication [33,38,43], the usability of the authen-
tication process has often been overlooked in favor of prioritizing security and
overall VR experience.

From the users’ perspective, seamless authentication is necessary. Taking off
the VR set to provide a secret code breaks the immersion and the experience.
Researchers have proposed various solutions for VR authentication. These solu-
tions can be categorized into the following groups:

Traditional Authentication Methods: These are predominantly based on the
“something you know” principle. Established authentication methods such as
Personal Identification Numbers (PINs), patterns, or passwords are widely used
and accepted. They are time efficient and well integrated in 2D devices like
mobile phones [46]. Initial research claimed that 2D devices’ authentication
methods are not well suited in virtual reality [3], as they are vulnerable to
observation attacks [19,31,46]. To bolster the security of PINs, Krombholz et
al. [21] proposed incorporating a pressure-sensitive layer into screens that would
provide an additional pressure dimension when entering PINs, mostly invisible
to shoulder surfers. They evaluated these force-PINs in touch screen devices and
showed that it could increase the entropy of PINs without sacrificing usability.
Furthermore, Lu et al. [27] proposed 3D passwords as an alternative, assum-
ing they would be more secure due to the added dimension, thereby preventing
shoulder surfing attacks. However, recent works show that PINs can be used for
authentication in VR [32,48]. A comparative study by George et al. [15] found
that PINs are suitable in the VR space due to their fast input speed. This is
because PINs can be easily input in VR by tapping or pointing; while drawing a
pattern on a 2D or 3D surface can be challenging as it relies on motor skills [15].

1 https://www.vive.com/.
2 https://www.meta.com/quest/.

https://www.vive.com/
https://www.meta.com/quest/

Usable Authentication in Virtual Reality 417

After considering all the options, we decided to use PINs as the baseline of a
traditional method of authentication for our study.

Behavioural Biometric Authentication: Behavioral biometric authentication
leverages the human behavior patterns such as body movements [25], head
movements [43], or gestures [22,38]. Behavioral biometrics has recently become
increasingly popular due to its ability to block guessing and shoulder-surfing
attacks [27]. This authentication method can be categorized into gesture, gaze,
and rhythm-based authentication. However, one major drawback of behavioral
biometrics is its observability, making it unsuitable for most public settings. Fur-
thermore, the HMD obstructs the participant’s vision. In 2009, Hansen et al. [17]
reviewed gaze-based studies from the past 30 years and proposed that gaze fea-
tures have unique characteristics that could be utilized for authentication. Eye
movements, blinking, velocity, and other behaviors are distinctive [11,28,41,49]
and can be used successfully to authenticate users. However, these biometric
features demand a high cognitive load and are less user-friendly. Consequently,
Mustafa et al. [34] suggested using behavioral biometric features in conjunction
with other security measures as an added layer of security in VR applications
that require rigorous protection. They also highlighted the potential challenges
of relying solely on behavioral biometrics in a large-scale setting.

Knowledge-Based Biometric Authentication: Knowledge-based biometric
authentication is a hybrid authentication method that leverages the strengths of
both knowledge-based and biometric authentication methods. It offers a higher
level of security and accuracy by validating the user’s identity through a combi-
nation of something they know (knowledge-based authentication) and something
they are (biometric authentication). The knowledge-based component involves
the user providing information only they should know, while the biometric com-
ponent uses physiological or behavioral characteristics to identify the user. While
knowledge-based authentication methods are robust against traditional attacks,
researchers have found novel attacks that exploit human traces on smartphone
touchscreens, such as smudge [4], thermal [1], and microbiological attacks [20].
In light of this, Mathis et al. [32] suggested including hand movement patterns
during PIN entry as an additional layer of protection.

3.3 Usability Issues in VR Authentication

One of the critical components of immersive technologies is their ability to inte-
grate into our lives seamlessly. To achieve this, continuous authentication can be
a viable solution for VR usage [43]. As VR headsets cover the user’s eyes, they
become less aware of their surroundings, hindering their ‘body and environment
awareness’ and skills [18]. Therefore, an implicit and smooth authentication pro-
cess is essential for VR. Research conducted by Zhu et al. [49] found that if
security measures are too stringent, usability tends to suffer. Overly complex
passwords may increase security (in the short run) but lower usability and user-
friendliness, prompting possible evasive user behavior (e.g., writing them down).

418 H. T. M. A. Riyadh et al.

Table 1. Pros and Cons of authentication in VR by their category.

Traditional Authentication

Pros: Cons:
- Well established -Not hands free
- Easy to transfer -Interruption in interaction

Behavioural Biometric Authentication
Pros: Cons:
-Implicit interaction -Low stability
-Continuous auth -Depends on cognitive mode
-Not observable -Expose user in public space

Knowledge-Based Biometric Authentication
Pros: Cons:
-Added extra layer of security -Memorability
-Implicit interaction
-Protection in public space

There is always a trade-off between security and usability. Keeping a balance
between them is a tedious task in the design process for an authentication mech-
anism. The main goal is to maintain an ecosystem where users are protected
without feeling burdened.

4 Study Design and Implementation

Our study employed a between-subjects design, consisting of two groups that
were further divided based on their VR experience. Using two distinct methods,
we obtained user authentication data and followed up with questions regarding
their usability, based on the System Usability Scale (SUS) [9]. One group was
given a four-digit PIN, while the other used gesture-based authentication. A
total of 40 (mean age=29.02, SD=6.78, 67.5% male) people participated in our
study. The overview of our study design and population is shown in Fig. 2.

Participants were recruited through social media advertising and posters in
public spaces, such as bus stops and cafeterias. The recruited individuals rep-
resented diverse study programs and had backgrounds in both technical and
non-technical fields. Participants received no financial compensation, and the
study was entirely voluntary.

Based on our experiment design, we determined that a between-subject study
would be the most appropriate choice for our sample category. This was done
to eliminate any potential learning and ordering effects for participants. Login
time and SUS score usability metrics were measured throughout the user study.
VR authentication application was developed using C# in Unity 3D, and Ocu-
lus Integration 46.0 SDK (OVR) was used for the interaction framework and

Usable Authentication in Virtual Reality 419

Fig. 2. Participant distribution for data collection.

displayed in Oculus Quest 2 HMD. Figure 3 shows the layout of the interface.
Table 5, in the Appendix, summarizes our decision to select PIN authentication.

4.1 Methodology

The PINs had a four-digit length, and handwriting gestures comprised four sym-
bols. Both were generated at random to ensure uniqueness among participants.
We employed the login time calculation proposed by George et al. [15], which
begins at the start of the virtual interface interaction and ends upon password
entry via pointing and pressing the enter button. Wrist movements and rela-
tive wrist coordinates were used to identify gestures, with any four letters from
the English alphabet (capitalized or lowercase) accepted for recognition. Stroke
order and direction were disregarded to eliminate the need for users to remem-
ber during training/sample collection. This approach was inspired by the Point
Cloud Recognizer [45] and adapted to accommodate 3D gesture recognition, uti-
lizing the controller gyroscope and inbuilt HMD’s camera to track hand and
wrist positions and coordinates during movement.

Fig. 3. UI for 4-digit PIN

420 H. T. M. A. Riyadh et al.

Fig. 4. Different phases of gesture recognition authentication (full view and closeup)

4.2 Recruitment

We conducted the study with 40 university graduate students from various
departments. Our recruitment strategy was informed by VR market analysis,
which suggested that individuals between 16 and 34 are more likely to use
VR [24]. Therefore, we focused on selecting participants falling within this demo-
graphic. Our selection process took into account prior experience with VR. Expe-
rienced users had used VR systems at least five times before, whereas first-time
users had never interacted with VR before. There were no in-betweens. All par-
ticipants possessed normal vision and were right-handed. They did not receive
any financial compensation.

4.3 Data Collection

We divided our participants into two authentication groups. Figure 2 shows the
participants’ distribution for the data collection process.

Prior to commencing the study, we presented our research protocol and
informed participants about our data collection methods. We proceeded to
request their consent, giving them the opportunity to decline if they were not
comfortable with the process. Following this, we provided a brief training ses-
sion and introduced them to the VR setup and the input modality. We provided
a tutorial to build familiarity with the authentication method (either PIN or
gesture). Participants were then asked to enter their respective authentication
type (PIN or gesture). During the trial run, most participants entered their
authentication type once.

Participants were assigned a four-digit PIN or a four-letter gesture for the
main experiment. Gestures incurred the additional step of registering them first
(training the system). Subsequently, participants would authenticate themselves
with those credentials once. The login time was measured from the beginning
of the interaction until the authentication succeeds, i.e., if the user needed to

Usable Authentication in Virtual Reality 421

re-enter because of a failed authentication, the total time across all the attempts
was considered. Visual feedback in text form informs about the success or failure
of the authentication.

In a post-study questionnaire, we collected users’ usability evaluation of our
authentication systems through a System Usability Scale (SUS) questionnaire [9].
SUS is a quantitative method to evaluate the usability of a system and provides
a higher-level overview of the product from the user’s perspective. SUS is also
frequently used as a usability comparison tool between two systems [36].

4.4 Pilot Testing

Two participants who wore glasses encountered difficulties with our HMD. Specif-
ically, one expressed that they could only see a blur while experimenting. As
such, we limited recruiting to participants without corrective glasses. Addition-
ally, our pilot study revealed that four participants favored a lighter-colored
pointer. Thus, we changed the pointer color to a light blue when pointing to a
button and a dim white when pointing somewhere else.

4.5 Data Analysis

Section 5.1 delves into the impact of authentication type on usability. We ana-
lyzed SUS scores for both PIN and gesture for all 40 participants without con-
sidering experience. To compare the difference between independent sample SUS
scores for the two authentication types, we conducted the Wilcoxon Rank Sum
Test [47].

Subsequently, in Sect. 5.2, we analyzed the impact of authentication type
on login time. We conducted a statistical analysis to assess the performance of
both methods. Since our data did not follow a normal distribution, we used
the Independent-Samples Mann-Whitney U test [29], which is a non-parametric
statistical analysis.

We furthered our analysis by factoring in experience to examine the impact
of authentication types on both usability and login times. We repeated the tests
mentioned above within each group for first-time and experienced participants
for both PIN and gesture authentication types.

4.6 Ethical Considerations

No real credentials were used in the study. Our study was designed to minimize
the need for personally identifiable information. We took steps to anonymize all
data before processing it. Every participant was required to fill out a consent
form and was free to ask questions and withdraw from the study at any time,
both during and after participation. We made it clear that their decision to
participate was entirely voluntary and that their privacy was paramount to us.

422 H. T. M. A. Riyadh et al.

SUS Final Score

Lo
gi

n
tim

e
(s

ec
)

0

5

10

15

40 50 60 70 80 90

PIN First-time user PIN Experienced Gesture First-time user Gesture Experienced

Fig. 5. Login times compared to SUS scores and participant groups

5 Results

Our findings show that experienced users rate the usability of PIN and gesture-
based authentication equally and perform similarly on both, although PIN may
take them more time to log in. However, first-time users, especially when using
PINs, tend to perform significantly worse both in terms of usability and login
time. Conversely, gesture-based authentication is generally faster and more read-
ily embraced by those new to virtual reality. Figure 5 gives a broad overview of
our results. The following sub-sections provide a detailed analysis of our findings.

5.1 Authentication Type and Usability

Wilcoxon Rank Sum Test shows that authentication type has a significant
(Z=-2.320, p=0.02, rejection level=0.05) effect on system usability with a
medium (r=0.37) effect size. On a five-point (1=strongly disagree, 5=strongly
agree) System Usability Scale, participants show more preferences for gesture-
based authentication. Table 2 presents the summary of the SUS score of each
authentication method. Overall, our findings show that gestures have a higher
acceptability than PINs. Thus, according to the classification from Bangor et
al. [7], gesture authentication scores as ’Acceptable’ while PIN scores only ’High
Marginal’ in acceptability.

5.2 Authentication Type and Login Time

Independent-Samples Mann-Whitney U Test shows that login time
(mean=4.486, SD=2.706, median=3.195, n=40) statistically differs (p=.001 <

Usable Authentication in Virtual Reality 423

Table 2. SUS Score Summary

Authentication Type Experience Count Mean Min Max Grade Scale Acceptability [7]

PIN Experienced 10 81.25 72.5 87.5 B Acceptable
First-time user 10 48.25 35 67.5 F Not Acceptable
Overall 20 64.75 35 87.5 D Marginal (High)

Gesture Experienced 10 79.75 70 90 C Acceptable
First-time user 10 65.50 42.5 77.5 D Marginal (High)
Overall 20 72.63 42.5 90 C Acceptable

.05) based on the authentication type. Login time depends on the authentica-
tion type. Our statistical test indicates a significant difference (U=30, Z=-4.599,
p=.001) to gesture (mean rank=12.0, median=2.599, n=20) and PIN (mean
rank=29.0, median=5.74, n=20). Gestures as an authentication method require
less time to log in compared to PIN. This notable speed difference shows that
users are able to log in at a faster pace when using gestures rather than a PIN.
Table 3 summarizes the login time for each authentication method.

Table 3. Login time summary

Authentication Type Experience Count Mean SD Min Max

PIN Experienced 10 3.94 s 1.17 2.06 s 5.96 s
First-time user 10 8.54 s 2.0 5.51 s 12.61 s
Overall 20 6.24 s 2.85 2.06 s 12.61 s

Gesture Experienced 10 2.53 s 0.21 2.22 s 2.85 s
First-time user 10 2.94 s 0.93 2.00 s 5.14 s
Overall 20 2.73 s 0.69 2.00 s 5.14 s

5.3 PIN: Experienced vs. First-Time User

We also examined whether VR experience has an impact on usability. We
found that participants with prior VR experience scored significantly (Z=-3.79,
p=.001) higher on the SUS scale than first-time participants with a large effect
size. Our results show that experienced participants are more confident using
the PIN authentication and provide a high average score of 4.8/5 by answer-
ing question 9 ([Q9] “I felt very confident using the system”), whereas first-time
users rate it as 2.5/5. From question 10 ([Q10] “I needed to learn a lot of things
before I could get going with this system”), we can infer that first-time users may
need some time to learn how to use the VR system. This may lead to a lack of
confidence in using the PIN to log in to the system, affecting the time taken to
log in. Based on the Independent-Samples Mann-Whitney U Test, we found that
participants with VR experience take significantly less time (p=.001, Z=-3.704)

424 H. T. M. A. Riyadh et al.

to log in than those with no prior VR experience. Figure 6 compares the aver-
age SUS score for each question when using PIN for authentication while taking
experience into account.

Questions

St
ro

ng
ly

 D
is

ag
re

e
 --

--
St

ro
ng

ly
 A

gr
ee

(A

vg
.)

0.00

1.00

2.00

3.00

4.00

5.00

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Experienced

First-time user

Fig. 6. Average SUS score of the individual questions for PIN

5.4 Gesture: Experienced vs. First-Time User

The Independent-Samples Mann-Whitney U Test demonstrates no significant
difference (U=37, Z=.983, p=.353) in login time between experienced users
(median=2.57, n=10) and first-time users (median=2.28, n=10). However, the
same statistical test for usability shows that experienced users score significantly
higher than first-time users (U=10, Z=-3.042, p=.002). It is worth noting that
while the SUS score indicates experience has an impact on using gesture authen-
tication, login time suggests otherwise. One possible explanation for this discrep-
ancy is that PIN entry requires a specific motor task confined to a fixed surface
area, whereas gesture authentication allows for more natural, free movement.
Participants with no VR experience report feeling more confident using gesture
authentication than PIN (Q9, score 3.7 vs. 2.5). Figure 7 compares the average
SUS score for each question, when using gesture for authentication while taking
experience into account.

Usable Authentication in Virtual Reality 425

Questions

St
ro

ng
ly

 D
is

ag
re

e
 --

--
St

ro
ng

ly
 A

gr
ee

(A

vg
.)

0.00

1.00

2.00

3.00

4.00

5.00

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Experienced

First-time user

Fig. 7. Average SUS score of the individual questions for Gesture

6 Discussion

A developer can follow two major schools of thought when porting a process
from conventional GUI to VR.

For one, focus on familiarity with the conventional 2D user interface and try
to mimic that as closely as possible. The idea is to increase usability by tapping
into what users already learned and know from the 2D world and thus reduce
adaption costs.

The other school of thought is to increase usability by natively integrating
it into the new medium at the expense of familiarity. The benefit here is the
seamless and coherent integration into the advanced interaction capabilities and
the internal working logic of the virtual world.

Our results clearly suggest that familiarity gains from the 2D world weigh
much less than one might expect. Native VR methods that take advantage of
the new UI style should be preferred. In our study, gesture-based handwriting
authentication provided security levels similar to the 2D PIN while delivering
the most benefits to first-time users and significantly improving the performance
of experienced users.

6.1 Impact of Authentication Type on Usability in VR

Our findings indicate that authentication type influences usability. Participants
found gesture authentication to be acceptable, while PIN was only rated as
marginally acceptable [7]. Though PIN is established and one of the faster
(1.5 s) [46] authentication methods in a mobile device, in our study, PIN authenti-
cation took 6.24 s on average, while gesture authentication took only 2.74 s. This

426 H. T. M. A. Riyadh et al.

login time difference affected the usability score, implying that if the established
PIN is transferred to the VR space, there is a significant performance drop,
reducing the usability.

The data demonstrates that conventional authentication methods, such as
the PIN, may be less effective in the immersive VR world, where users pre-
fer more natural interactions. Our study participants showed that they favored
gesture-based authentication, emphasizing the importance of modifying authen-
tication methods to cater to the particular requirements of VR and improve
overall usability.

6.2 Impact of Experience on Usability in VR

Our findings also indicate that experience has an impact on the overall usability
of the authentication system. For both the PIN and the gesture authentication
method, experienced participants provided a higher usability score than first-
time participants.

Familiarity and learning curves play a significant role in technology adoption,
particularly in immersive environments like VR. The greater ease experienced
by first-time participants with gestures suggests that incorporating natural and
intuitive interactions has a shorter learning curve for newcomers, thereby facili-
tating a smoother transition into VR. This implies that VR applications aimed
at a diverse user base, including beginners, may benefit from prioritizing user-
friendly, gesture-based interactions. Additionally, adaptive VR interfaces that
adjust authentication and interaction methods based on the user’s experience
level can enhance overall usability.

6.3 Limitations

By recruiting student participants from mostly technology-related fields, our
sample only partially represents the general population. On the other hand,
our recruitment selected participants that align with the market analysis of VR
users [24], i.e., technology-affine aged between 16 and 35. Furthermore, we con-
duct our research in a lab setting that ensures a controlled environment, though
expanding to diverse settings can enhance the generalizability of our results.
We believe that our research provides a strong foundation for understanding the
usability of PIN and gesture authentication in VR, and our findings hold valuable
implications for improving the usability design of authentication methods.

7 Conclusion and Future Work

This paper assesses the usability of two distinct authentication methods in vir-
tual reality - one utilizing a familiar number pad for PINs and the other a
handwriting gesture. Based on factors such as login time and SUS score, it
then pinpoints the factors that influence the usability of those VR authentica-
tion methods. The data shows that the type of authentication interaction and

Usable Authentication in Virtual Reality 427

the user’s proficiency in virtual reality significantly impact the authentication
process’s usability. In particular, the naturalness of interaction, such as with
gesture-based authentication, is crucial for usability.

The research has shown promising directions regarding the usability of
authentication in virtual reality. Moving forward, we aim to broaden our investi-
gation to include more authentication methods and interaction styles. Further-
more, we intend to conduct our study in both laboratory and natural settings.
Additionally, future work should examine how factors such as design, behavior,
and context influence authentication usability.

A System Usability Scale

Table 4. Adapted System Usability Scale

428 H. T. M. A. Riyadh et al.

Table 5. Decision table for PIN authentication type.

Input Modalities

Pointer
Ray cast on the input surface, Controller tapping for selection,
Both hand interaction [13,15]

Pointer on click Two button presses are required for complete selection. Relatively slow, and not usable.

Tap (touch)

Adopt from the touch screen physical devices, Virtual typing is required.
Left visual clues, vulnerable for observation attack [15].
Conflict with “Area Awareness and Skill", and “Body Awareness and Skill" as the
user’s eyes are covered with VR headset [18].
Not suitable for public place authentication.
Screen/input surface size matters, suitable for (relatively) small surface [8].

Input Surface

Large
Not suitable for our study, Touch is not suitable, Pointer requires a noticeable motor
(wrist, hand, head) movements

Medium For Pointing modalities, medium type surface is the best suitable [15]

Small
Adopt form the personal device such as smartphones.
Suitable for touch interaction, Pointer interaction is harder because
of the motor movements

Password Type

PIN Established and widely used, faster, usable and secure [15]

Pattern Relatively slower, error-prone, sensitive motor task required

Other decisions
Username Not required,

Joystick selection Required longer time, not suitable with Fitt’s law [8]

References

1. Abdelrahman, Y., Khamis, M., Schneegass, S., Alt, F.: Stay cool! Understanding
thermal attacks on mobile-based user authentication. In: Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, pp. 3751–3763 (2017)

2. Alsop, T.: VR device shipments by vendor worldwide 2017–2019 (2022). https://
www.statista.com/statistics/671403/global-virtual-reality-device-shipments-by-
vendor/

3. Alsulaiman, F.A., El Saddik, A.: A novel 3D graphical password schema. In: 2006
IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Mea-
surement Systems, pp. 125–128. IEEE (2006)

https://www.statista.com/statistics/671403/global-virtual-reality-device-shipments-by-vendor/
https://www.statista.com/statistics/671403/global-virtual-reality-device-shipments-by-vendor/
https://www.statista.com/statistics/671403/global-virtual-reality-device-shipments-by-vendor/

Usable Authentication in Virtual Reality 429

4. Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.: Smudge attacks on
smartphone touch screens. In: 4th USENIX Workshop on Offensive Technologies
(WOOT 10) (2010)

5. Ball, C., Huang, K.T., Francis, J.: Virtual reality adoption during the COVID-
19 pandemic: a uses and gratifications perspective. Telematics Inform. 65, 101728
(2021)

6. Ballagas, R., Rohs, M., Sheridan, J.G.: Sweep and point and shoot: phonecam-
based interactions for large public displays. In: CHI 2005 Extended Abstracts on
Human Factors in Computing Systems, pp. 1200–1203 (2005)

7. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean:
adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)

8. Bi, X., Li, Y., Zhai, S.: FFitts law: modeling finger touch with fitts’ law, pp. 1363–
1372 (2013)

9. Brooke, J., et al.: SUS-a quick and dirty usability scale. Usability Eval. Ind.
189(194), 4–7 (1996)

10. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. (TOCS) 8(1), 18–36 (1990)

11. Cantoni, V., Galdi, C., Nappi, M., Porta, M., Riccio, D.: Gant: Gaze analysis
technique for human identification. Pattern Recogn. 48(4), 1027–1038 (2015)

12. Craddock, I.M.: Immersive virtual reality, google expeditions, and English language
learning. Libr. Technol. Rep. 54(4), 7–9 (2018)

13. Doronichev, A.: Daydream labs: exploring and sharing VR’s possibilities. Retrieved
10 April 2020 (2016)

14. Earnshaw, R.A.: Virtual Reality Systems. Academic Press (2014)
15. George, C., et al.: Seamless and secure VR: Adapting and evaluating established

authentication systems for virtual reality (2017)
16. Hale, K.S., Stanney, K.M.: Handbook of Virtual Environments: Design, Implemen-

tation, and Applications. CRC Press (2014)
17. Hansen, D.W., Ji, Q.: In the eye of the beholder: a survey of models for eyes and

gaze. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 478–500 (2009)
18. Jacob, R.J., et al.: Reality-based interaction: a framework for post-wimp interfaces,

pp. 201–210 (2008)
19. Khamis, M., Alt, F., Hassib, M., von Zezschwitz, E., Hasholzner, R., Bulling,

A.: GazeTouchPass: multimodal authentication using gaze and touch on mobile
devices. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, pp. 2156–2164 (2016)

20. Krombholz, K., Dabrowski, A., Weippl, E.: Poster: The petri dish attack-guessing
secrets based on bacterial growth (2018)

21. Krombholz, K., Hupperich, T., Holz, T.: Use the force: evaluating {Force-Sensitive}
authentication for mobile devices. In: Twelfth Symposium on Usable Privacy and
Security (SOUPS 2016), pp. 207–219 (2016)

22. Kupin, A., Moeller, B., Jiang, Y., Banerjee, N.K., Banerjee, S.: Task-driven biomet-
ric authentication of users in virtual reality (VR) environments. In: Kompatsiaris,
I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM
2019. LNCS, vol. 11295, pp. 55–67. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-05710-7_5

23. Lamport, L.: Password authentication with insecure communication. Commun.
ACM 24(11), 770–772 (1981)

24. Laricchia, F.: UK: VR headset owners by age 2023 (2023). https://www.statista.
com/statistics/1362661/share-of-vr-headset-owners-by-age-uk/

https://doi.org/10.1007/978-3-030-05710-7_5
https://doi.org/10.1007/978-3-030-05710-7_5
https://www.statista.com/statistics/1362661/share-of-vr-headset-owners-by-age-uk/
https://www.statista.com/statistics/1362661/share-of-vr-headset-owners-by-age-uk/

430 H. T. M. A. Riyadh et al.

25. Liebers, J., et al.: Understanding user identification in virtual reality through
behavioral biometrics and the effect of body normalization. In: Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. pp. 1–11 (2021)

26. Lin, F., Cho, K.W., Song, C., Xu, W., Jin, Z.: Brain password: a secure and truly
cancelable brain biometrics for smart headwear. In: Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services, pp. 296–
309 (2018)

27. Lu, D., Lee, T., Das, S., Hong, J.I.: Examining visual-spatial paths for mobile
authentication. In: WAY@ SOUPS (2016)

28. Luo, S., Nguyen, A., Song, C., Lin, F., Xu, W., Yan, Z.: OcuLock: exploring human
visual system for authentication in virtual reality head-mounted display. In: 2020
Network and Distributed System Security Symposium (NDSS) (2020)

29. MacFarland, T.W.W., Yates, J.M.M.: Introduction to Nonparametric Statistics for
the Biological Sciences Using R. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30634-6

30. Machover, C., Tice, S.E.: Virtual reality. IEEE Comput. Graphics Appl. 14(1),
15–16 (1994)

31. Maguire, J., Renaud, K.: You only live twice or the years we wasted caring about
shoulder-surfing (2015). arXiv preprint arXiv:1508.05626

32. Mathis, F., Fawaz, H.I., Khamis, M.: Knowledge-driven biometric authentication
in virtual reality. In: Extended Abstracts of the 2020 CHI Conference on Human
Factors in Computing Systems, pp. 1–10 (2020)

33. Miller, R., Ajit, A., Banerjee, N.K., Banerjee, S.: Realtime behavior-based contin-
ual authentication of users in virtual reality environments. In: 2019 IEEE Interna-
tional Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 253–
2531. IEEE (2019)

34. Mustafa, T., Matovu, R., Serwadda, A., Muirhead, N.: Unsure how to authenticate
on your VR headset? Come on, use your head! In: Proceedings of the Fourth ACM
International Workshop on Security and Privacy Analytics, pp. 23–30 (2018)

35. Partala, T.: Psychological needs and virtual worlds: case second life. Int. J. Hum
Comput Stud. 69(12), 787–800 (2011)

36. Peres, S.C., Pham, T., Phillips, R.: Validation of the system usability scale (SUS)
SUS in the wild. In: Proceedings of the Human Factors and Ergonomics Society
Annual Meeting. vol. 57, pp. 192–196. SAGE Publications Sage CA: Los Angeles,
CA (2013)

37. Petrock, V.: Us virtual and augmented reality users 2020 (2020). https://www.
insiderintelligence.com/content/us-virtual-and-augmented-reality-users-2020

38. Pfeuffer, K., Geiger, M.J., Prange, S., Mecke, L., Buschek, D., Alt, F.: Behavioural
biometrics in VR: Identifying people from body motion and relations in virtual
reality. In: Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, pp. 1–12 (2019)

39. Phelan, D.: Google daydream VR review: comfy, capable and affordable but
not enough content yet (2016). https://www.independent.co.uk/tech/google-
daydream-view-vr-review-virtual-reality-pixel-xl-headset-is-it-worth-it-a7444226.
html

40. Rauschnabel, P.A., Brem, A., Ro, Y.: Augmented reality smart glasses: definition,
conceptual insights, and managerial importance. Unpublished Working Paper, The
University of Michigan-Dearborn, College of Business (2015)

41. Rigas, I., Economou, G., Fotopoulos, S.: Biometric identification based on the eye
movements and graph matching techniques. Pattern Recogn. Lett. 33(6), 786–792
(2012)

https://doi.org/10.1007/978-3-319-30634-6
https://doi.org/10.1007/978-3-319-30634-6
http://arxiv.org/abs/1508.05626
https://www.insiderintelligence.com/content/us-virtual-and-augmented-reality-users-2020
https://www.insiderintelligence.com/content/us-virtual-and-augmented-reality-users-2020
https://www.independent.co.uk/tech/google-daydream-view-vr-review-virtual-reality-pixel-xl-headset-is-it-worth-it-a7444226.html
https://www.independent.co.uk/tech/google-daydream-view-vr-review-virtual-reality-pixel-xl-headset-is-it-worth-it-a7444226.html
https://www.independent.co.uk/tech/google-daydream-view-vr-review-virtual-reality-pixel-xl-headset-is-it-worth-it-a7444226.html

Usable Authentication in Virtual Reality 431

42. Sergei Vardomatski: Council post: Augmented and virtual reality after COVID-19
(2021). Accessed 4 Nov 2022

43. Sivasamy, M., Sastry, V., Gopalan, N.: VRCAuth: continuous authentication of
users in virtual reality environment using head-movement. In: 2020 5th Interna-
tional Conference on Communication and Electronics Systems (ICCES), pp. 518–
523. IEEE (2020)

44. Sluganovic, I., Roeschlin, M., Rasmussen, K.B., Martinovic, I.: Using reflexive eye
movements for fast challenge-response authentication. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 1056–
1067 (2016)

45. Vatavu, R.D., Anthony, L., Wobbrock, J.O.: Gestures as point clouds: a $ p recog-
nizer for user interface prototypes. In: Proceedings of the 14th ACM International
Conference on Multimodal Interaction, pp. 273–280 (2012)

46. Von Zezschwitz, E., Dunphy, P., De Luca, A.: Patterns in the wild: a field study
of the usability of pattern and pin-based authentication on mobile devices. In:
Proceedings of the 15th International Conference on Human-Computer Interaction
with Mobile Devices and Services, pp. 261–270 (2013)

47. Wilcoxon, F.: Individual Comparisons by Ranking Methods. In: Kotz, S., Johnson,
N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics. Springer, New
York, NY (1992). https://doi.org/10.1007/978-1-4612-4380-9_16

48. Yu, Z., Liang, H.N., Fleming, C., Man, K.L.: An exploration of usable authentica-
tion mechanisms for virtual reality systems. In: 2016 IEEE Asia Pacific Conference
on Circuits and Systems (APCCAS), pp. 458–460. IEEE (2016)

49. Zhu, H., Jin, W., Xiao, M., Murali, S., Li, M.: BlinKey: a two-factor user authen-
tication method for virtual reality devices. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 4(4), 1–29 (2020)

https://doi.org/10.1007/978-1-4612-4380-9_16

Living a Lie: Security Analysis of Facial
Liveness Detection Systems in Mobile

Apps

Xianbo Wang , Kaixuan Luo , and Wing Cheong Lau(B)

Department of Information Engineering, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong

{xianbo,kaixuan,wclau}@ie.cuhk.edu.hk

Abstract. Mobile apps are embracing facial recognition technology to
streamline the identity verification procedure for security-critical activi-
ties such as opening online bank accounts. To ensure the security of the
system, liveness detection plays a vital role as an anti-spoofing compo-
nent, verifying that a selfie provided is from a live individual. Emerging
facial recognition companies offer convenient integration services through
mobile libraries that are widely utilized by numerous apps in the mar-
ket. By analyzing 18 mobile facial recognition libraries, we reveal the
protocol design and implementation intricacies of various systems. The
investigation leads to the discovery of several system security issues in
over half of the libraries, predominantly linked to the liveness detec-
tion module. These vulnerabilities can be exploited for low-cost identity
forgery attacks without relying on media synthesizing technologies like
deepfake. We scan 18,096 apps from an app market and identify 802
apps incorporating recognized facial recognition libraries, with over 100
million total downloads. More than half of the libraries examined exhibit
weak security, with about 40% downstream mobile apps being affected.
This study emphasizes the importance of system security in mobile facial
recognition services, as the practical impact can be on par with or even
surpass the extensively studied machine learning attacks.

Keywords: Mobile facial recognition · Liveness detection · Library
vulnerability · Identity forgery · Protocol security

1 Introduction

The recent advancements in computer vision technology have led to the growth
of automatic facial recognition services. Today, highly accurate facial recogni-
tion can be performed on consumer mobile devices. In addition to serving as an
authentication method for tasks like unlocking screens, many security-sensitive
mobile apps are utilizing facial recognition for identification purposes. Examples
include using it for anti-money laundering (AML) in banking apps, age verifi-
cation in gaming or gambling apps, and as a proof of identity on social media
or crowdsourcing platforms. Among these applications, Electronic Know Your
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 432–459, 2024.
https://doi.org/10.1007/978-3-031-54776-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_17&domain=pdf
http://orcid.org/0000-0003-1686-4981
http://orcid.org/0000-0002-6387-8043
http://orcid.org/0000-0003-1179-7855
https://doi.org/10.1007/978-3-031-54776-8_17

Security of Mobile Facial Liveness Systems 433

Customer (eKYC) process in the financial services industry is most common.
Traditionally, opening a bank account requires physical presence of an individ-
ual in a bank with the identity document for prevention of fraudulent activities
involving document forgery or identity theft. With recent advances in eKYC via
mobile devices, the cumbersome in-person application process of various bank-
ing or financial services can be eliminated. For instance, many mobile banking
apps now employ optical character recognition (OCR) to extract information
on the identity document and utilize facial recognition technology to match the
individual’s live facial image with the reference photo obtained from the identity
document or a trusted source. A challenge that is unique to the online eKYC
scenario is the validation of the “liveness” status, which is not a problem in the
offline scenario as it is straightforward for human bank tellers to verify such
thing. Hence, liveness detection, which has the ability to distinguish between a
real live person and fake entities like photos, masks, or pre-recorded videos, is
critical for ensuring the security of a facial recognition system.

Given the privacy impact and economic interest, criminals are incentivized to
conduct spoofing attacks against facial recognition systems for identity forgery.
In many cases, instead of targeting a specific victim, professional identity forgers
profit from mass identity fraud such as opening bank accounts under random
victims’ names for money laundering, creating multiple accounts to take advan-
tage of new user rewards, or selling identity-verified accounts to scammers or
users from restricted regions. As a matter of fact, massive number of stolen
identity documents have been circulating in the underground markets. Sellers
even bundle the identity documents with high-resolution photos of the victim
and sell them at a low price [1]. The black market thrives the most in regions
like China, where the facial recognition market has enjoyed rapid growth and
wide adoption [2]. In our investigation, we find that stolen identity materials are
sold at only around $3 per set. Worse still, with less than $100, one can buy
a tutorial on bypassing certain mainstream mobile facial recognition systems
adopted by commercial companies, with software included. News reports [3,4]
have covered real legal cases where criminals forged videos of the victim to open
bank accounts or forge tax invoices under the victim’s identity.

Easy access to stolen identity documents and photos makes liveness detec-
tion a crucial component for facial recognition. By examining subtle traces like
facial expressions, reflections, and video continuity, the liveness detection algo-
rithm, usually in the form of a machine learning classifier, can determine if
the input is from a real person in front of the camera. In recent years, deep
learning-based image and video synthesis techniques, popularly known as deep-
fakes, have exposed vulnerabilities in facial recognition systems used in academia
and industry, particularly in liveness detection [5]. Meanwhile, various mitiga-
tions have been proposed as summarized in a survey paper [6]. Activities within
the aforementioned underground markets, alongside documented criminal cases,
indicates a prevailing preference for conventional, manually-operated animation
software and data injection attacks that exploit design or implementation vul-
nerabilities, rather than resorting to deepfake methodologies. This suggests that
the technical and financial barriers to deploying deepfake attacks may be beyond

434 X. Wang et al.

the reach of typical criminals. Meanwhile, the fact that criminals can conduct
non-deepfake attacks at scale raises an alarm in the security of current facial
recognition systems.

Unfortunately, while synthetic media attacks on facial recognition systems
have been widely discussed, there is a void in the security research focusing on
the protocol design and system implementation aspects. In this work, we sys-
tematically analyze the security of mobile Software Development Kits (SDK)
from mainstream facial recognition service providers.1 By inspecting the inter-
nals of the system, we discover that numerous mobile facial recognition SDKs
are susceptible to low-cost non-synthetic attacks. The underlying vulnerabili-
ties stem from flawed protocol design or careless implementation, irrespective
of the sophistication or reliability of the machine-learning algorithms employed
for liveness detection. We conduct an extensive security analysis of 18 popular
mobile facial recognition SDKs and reveal 10 of them have critical security issues.
Based on these findings, we launch market-scale app scanning and identify over
300 apps that may be at risk of exploitation. To facilitate readers in acquiring
a visual understanding of the attack, we provide a demonstration video [7] that
showcases a proof-of-concept attack against a real mobile app with over 4 million
total downloads. To summarize, this paper has made the following contributions:

– We delineate three typical system architectures of facial recognition systems
in mobile apps, and reveal protocol design and implementation details.

– We uncover overlooked yet common weaknesses in the liveness detection sys-
tems of mobile facial recognition SDKs, which can lead to identity forgery
attacks without the need for media synthesizing techniques like deepfake.

– We develop an SDK fingerprinting framework capable of scanning apps on
the market and quantifying the impact of our findings. This framework is
designed to be resistant to app hardening techniques.

2 Background

In this section, we introduce background information of facial recognition sys-
tems used in mobile eKYC, including their main components, high-level design
patterns, and modes of liveness detection.

2.1 Facial Recognition Pipeline

Usually, the facial recognition pipeline consists of three major components, as
illustrated in Fig. 1.

1. Face detection: The camera stream is first fed into the face detection mod-
ule, which decides whether a given picture frame contains a human face and
optionally returns the coordinates of the bounding box. Face detection is
efficient and serves as an input filter to save subsequent processing work.

1 For simplicity, we refer to cloud facial recognition service provider as face cloud and
their mobile library as face SDK in this paper.

Security of Mobile Facial Liveness Systems 435

Fig. 1. Facial Recognition Pipeline.

2. Liveness detection: A single frame or a sequence of consecutive frames con-
taining the face becomes the input of the liveness detection module. As a
classifier, the liveness detection module can tell whether the input picture
frames are captured from a live person.

3. Face matching : A single frame or several representative frames are chosen as
the input for the face-matching module. This module determines whether the
input face matches the reference face (from identity document or authority
database) and returns the final result of the facial recognition process.

Given the computational capabilities and security measures of mobile devices,
it is possible for the facial recognition service provider to distribute these com-
ponents across various locations. Typically, the process of face detection takes
place on the device itself, as most mobile devices possess sufficient computational
resources for this task, and face matching is performed on the cloud, involv-
ing access to an authoritative database. In situations where a centralized face
database is unavailable, the captured photo is compared to an image extracted
from a scanned identity document. The implementation of liveness detection
varies among vendors, with different modes being observed in practice. These
modes will be discussed in detail in the following section.

2.2 Design Patterns of Mobile Facial Recognition Systems

While users interact with the facial recognition interface in the mobile app,
there are several processes taking place in the backend of the system. Many
apps depend on facial recognition service providers that offer SDKs tailored for
popular mobile platforms like Android and iOS, simplifying the development
process for app developers. These SDKs encapsulate complex implementations,
including machine learning models, and offer developers a user-friendly Applica-
tion Programming Interface (API). Some SDKs also handle network messaging
with the providers’ cloud server for the app. Although most of the functions
remain hidden from app developers, they may still need to implement their own
customized logic and send data to their own server in certain cases. By differen-
tiating the placement of components in the facial recognition pipeline in Fig. 1,
we can categorize the mobile facial recognition system into the following three
patterns:

436 X. Wang et al.

– Pure Local : The liveness detection and face matching both take place on
the user’s mobile device. This assures the best privacy but can only give an
untrusted result.

– Local-Cloud Mixed : As the most security-sensitive step, face matching is com-
monly secured in the backend server. To save network bandwidth and optimize
user experience, many systems perform initial liveness detection, especially
video-processing ones, on the user’s device. In some systems, a secondary
image-based liveness detection is executed inside the cloud for an additional
level of security.

– Pure Cloud : To ensure the reliability of data processing and verification, some
providers incorporate liveness detection and face matching on the backend
server, while the mobile SDK only help capture and upload face videos with-
out much processing. However, this approach may have negative impact on
user experience due to network delays and reduced app responsiveness.

The various settings outlined above necessitate the transfer of data across
different locations, leading to varying protocol flows. We will delve into the
internal system designs in Sect. 4.

2.3 Modes of Liveness Detection

There are many different liveness detection techniques. We can categorize them
based on the mode of operation that can be observed by the users.

– Static image: Some can use a single image as the input. By inspecting static
information like reflections, textures, Moire patterns, and image quality [8], it
can differentiate live-captured image vs. image that was re-shot or transferred
from the Internet.

– Passive video: The information that the model can learn from a static image is
limited. Most liveness detection models require a video snippet or a sequence
of consecutive frames as the input. Natural facial motions like eye blinking
and mouth movement are useful for liveness detection. Another more recent
method is to flash screens with different colors and infer liveness from the
reflected lights [9].

– Interactive video: In addition to a natural video with a shown face, it is
common for liveness detection systems to use an interactive approach where
the user needs to perform specified actions such as blinking eyes, shaking the
head, or reading a sequence of numbers.

The variety of the methods is not only displayed in academic works [10] but
also in real products [11]. Many face recognition service providers even have
multiple product lines, applying different techniques.

3 Threat Model

This paper focuses on the insecure protocol and implementation threats and con-
siders attackers with practical capabilities and aim for low-cost attacks that are

Security of Mobile Facial Liveness Systems 437

easy to scale. We are especially interested in the settings where the attacker per-
forms traditional system attacks without involving computer vision technologies
like deepfake. While recent studies [5,12] have shown that synthetic media tech-
nologies powered by deepfake or adversarial learning can deceive facial recogni-
tion or other machine learning models used in mobile apps, the practical threats
for non-synthetic attacks have not been covered.

This work focuses on the non-synthetic attacks with stolen identity materials
threat model. The goal of the attacker is to spoof the eKYC system and com-
plete the identity-proofing process as a victim. We assume the attacker possesses
clear face image(s) of the victim, like headshots or photo posted on social plat-
forms, along with other essential personal information like name and identity
card number. Be aware that these materials can be easily obtained in the under-
ground market, as discussed in Sect. 1. The attacker has complete control over a
test mobile device, on which he can modify the system, inject code, and perform
various analyses against the vulnerable target app. There are two branches of
techniques that attackers can apply. We call those attacks that exploit insecu-
rity in the design or implementation to bypass the liveness detection as injec-
tion attacks, which are the focus of this study. We call those attacks that use
computer-generated imagery (CGI) or more advanced deep learning approaches
synthetic attacks.

In practice, apart from fundamental security threats such as the trustwor-
thiness of client-side results, the cost of an attack plays a crucial role in assess-
ing the actual threat. For example, when the verification process is conducted
locally, attacking apps without any reverse engineering protection are considered
effortless, whereas attacks that require non-trivial efforts like deobfuscation are
deemed laborious. In cases where the liveness detection result cannot be forged
through data replacement of code injection, non-synthetic attacks are deemed
impractical.

4 Mobile Facial Liveness Detection Protocols

To systematically study face recognition SDKs, especially the liveness detection
system in practice, we analyze the protocols of a number of mainstream SDKs in
the market and propose a general framework to summarize their protocol flows.
We then zoom into each part of the protocol and further analyze its design and
implementation details.

4.1 General Protocol Flow

Mobile facial recognition systems, especially those provided as a cloud service,
involve multiple entities, including a mobile app, a facial recognition SDK embed-
ded in the mobile app, the app’s backend server, the backend cloud of the facial
recognition service provider, and authoritative data sources. Each entity invokes
the others to exchange data. Figure 2 describes a high level protocol flow for
common mobile facial recognition systems for identity verification purposes. Our
study focuses on the liveness detection part of the protocol, which consists of
three major phases:

438 X. Wang et al.

Fig. 2. Architecture of common facial recognition systems in mobile apps

1. Initialization. The mobile app initializes the embedded face SDK with
optional configurations like liveness detection modes. In some system, the
app needs to first contact the facial recognition service cloud to establish a
session and fetch pre-defined configurations (❶, ❷). The session establish-
ment step may be delegated through the app server. At the same time, the
SDK may collect environment information like the operating system version,
root status, and packages installed, so as to determine whether it is secure to
proceed to the next phase, or to be passed to the service provider cloud for
risk checking.

2. Interaction and detection. After initializing the SDK, the app can invoke
the liveness detection process. Usually, the configurations during initializa-
tion stage determines the motion matching strategy. The order and types
of motions in the sequence are usually randomized to prevent replay attack
with pre-recorded video. Afterwards, the SDK or the app displays the live-
ness detection interface and guides the user to capture the face with required
motions. The face video stream can be processed at different locations for
liveness detection, as we discussed in Sect. 2.2. Some systems handle liveness
detection locally (❸), some uploads the raw video clip to the cloud for live-
ness detection (❺), and others use a mixed strategy. Deep learning models are
commonly employed under the hood for the purpose of classifying whether
captured frames contain live face images.

3. Result passing. The liveness detection system produces a static image as its
final output, which is then inputted into the face matching module (❻). Note
that the data transmitted to the cloud (❹) can be intermediate result contain-
ing video, images, or metadata for further verification. To safeguard against
on-path injection attacks, the data returned from the SDK can be encrypted
or signed. Additionally, including a session identifier enables the cloud to
authenticate the initialized settings.

Security of Mobile Facial Liveness Systems 439

4.2 Design and Implementation Details

Facial recognition service providers choose various architectures and designs of
the system. As introduced in Sect. 2, depending on where each module is hosted,
the system can have different architectures, which significantly affects the design
of the protocol. In addition, each provider and app server can have heterogeneous
implementations. These factors result in different protocol paths in Fig. 2. For a
thorough description, we list 6 key differentiating characteristics of face SDKs,
as depicted in Fig. 3, and discuss their implications.

(1) Protection of Business Logic. As some security-sensitive functions run on
mobile devices, face SDK vendors tend to write more power-efficient code and
employ various techniques to protect related code from reverse engineering. It
is common to implement core modules like the liveness detection algorithm as
a Native (compiled from C/C++) library. Native code has higher efficiency,
especially for image processing and deep learning inferences. At the same time,
Native binaries are generally harder to reverse than Java bytecode. Obfuscation
techniques are also applied in some face SDKs with Native library obfuscation
tools like OLLVM [13] or Java code obfuscator like ProGuard [14].

(2) Configurability. To enhance flexibility in usage, certain SDKs (e.g., SDK A, D
in Table 1) offer the option for apps to customize parameters that control the live-
ness detection process. These parameters commonly include the liveness detec-
tion mode, action settings such as the number of eye blinks required, and even
the passing threshold for the liveness test. However, not all of these adjustable
parameters are documented. We refer to them as undocumented parameters when
they can be configured via API calls but are not described in the documentation.
On the other hand, implicit parameters are not exposed through API calls but
can be modified by altering the SDK. For instance, certain SDKs randomly gen-
erate the required action sequence within local code, which can be controlled by
code modification. In systems that retrieve configurations from the cloud, these
configurations may be linked to a session, and the cloud might verify the results
using predefined configurations to prevent unauthorized modifications.

(3) Environment Checking. The purpose of environment checking is to ensure
that the app runs in a secure environment, preventing code modification and
hooking during facial recognition process. This checking can be done locally on
the handset, allowing for the immediate termination of the facial recognition
process if an unsafe environment is detected. Alternatively, it can be performed
in the cloud using environment data collected from the SDK. Common environ-
ment values that are checked include the operating system version, root status,
debugger processes, installed apps, motion sensor data, and hardware finger-
prints such as MAC address and camera.

(4) Liveness Detection Location. The protocol flow for face SDKs that perform
local liveness detection differs significantly from those that rely on the face cloud

440 X. Wang et al.

Fig. 3. Observed SDK design and implementation choices. Three arrow flows outline
three typical patterns with different security levels.

for liveness checking. Typically, a liveness detection system requires a video clip
as input to conduct checks such as frame continuity. However, for cloud liveness
detection, the SDK needs to upload the video stream to a remote server, which
can be bandwidth-intensive, especially for users with expensive cellular data
plans. To address this, a commonly observed solution is to perform liveness
detection on the device itself, implementing various techniques to prevent reverse
engineering or injection attacks. Additionally, certain face SDKs (e.g., SDK C, F ,
G in Table 1) combine both local and cloud liveness detection, utilizing different
strategies for each. For example, they may conduct video-based detection on
the device while performing static image liveness detection on the cloud for an
additional layer of verification.

(5) Detection Result. After local liveness detection, results are returned and
passed to the app. Each SDK defines different return values, which can consist
of a boolean detection result r, a set of k images M = {Mi|1 ≤ i ≤ k}, and
environment information E. The returned data can contain combinations of these
values. One common practice is to return R = {r,M}, consisting of a flag and
a selected frame of the face image. Some return multiple frames corresponding
to every matched actions (e.g., SDK G in Table 1). To mitigate against data
leakage or on-path attacks that replace the result, many SDKs encrypt values in
the result, e.g., Renc = {r,Menc}. Only the corresponding cloud service provider
of the SDK is able to decrypt the data. Other SDKs return plaintext results but
attach a signature Rsigned = {r,M, signature} to prevent result forgery.

(6) Photo Matching Location. Most facial recognition cloud service providers
support face matching APIs. Either the API user needs to provide both the
reference photo and the photo to match, or the cloud service provider has access
to the authoritative face-image databases and can fetch the reference photo
with an identity card number. The cloud API usually accepts images that are

Security of Mobile Facial Liveness Systems 441

encrypted by the SDK, therefore even the app server may not have access to
the captured plaintext image. However, some app vendors are averse to sharing
users’ photos with another party, so some face SDKs (e.g., SDK D, E in Table 1)
return the plaintext image directly and let them handle the photo matching.

A Combination of Above Describes an SDK Design. The choice of different
characteristics and their combinations can lead to varying levels of overall secu-
rity. Figure 3 presents a comprehensive list of these characteristics. The three
arrow flows depict three representative designs, with increasing levels of security
robustness, arranged from top to bottom. The topmost flow represents SDKs
that implement all functionalities within the client-side app code without much
emphasis on hardening and protection. The middle flow illustrates a popular
combination of choices found in many vendors, wherein core liveness detection
is performed on the device, while additional checks are conducted in the cloud.
This design usually includes a certain degree of environmental verification and
data encryption. The bottom flow represents the most secure design among a
few SDKs, where all essential detections are carried out in the cloud. Based on
our observations, most SDKs are close to the second design mentioned. This
suggests that majority design decisions are likely driven by usability consider-
ations rather than security concerns. In Sect. 6, we present the results of our
analysis of mainstream facial recognition SDKs we collected regarding to the
above characteristics.

5 Weakness of Liveness Detection SDKs

We have identified multiple security weaknesses through our analysis of the pro-
tocol design and implementation details of liveness detection SDKs in the market.
We believe some are conscious decision as a compromise for usability. We believe
that some of these weaknesses may have been intentional compromises made in
order to enhance usability. However, there are also evident design flaws that can
be attributed to oversight or laziness, without any discernible advantage. These
flaws have the potential to greatly lower the cost of attacks, thereby compro-
mising the intended security standards. In this section, we introduce common
security flaws we identified in real face SDKs or apps. Additionally, we discuss
the potential security risks associated with these flaws.

5.1 Insufficient Client-Side Code Protection

Defense measures that enhance app resilience against reverse engineering and
code injection attacks are a crucial aspect of mobile app security. These measures,
including code obfuscation, packing, and anti-debugging, offer a cost-effective
solution for increasing the difficulty of attacks. Many face SDKs and apps that
utilize facial recognition services employ these techniques as their first line of
defense against malicious actors. Figure 4 shows such examples. However, the
level of defense varies among different products. For example, SDKs like H and K

442 X. Wang et al.

Fig. 4. Example of advanced client-side protections in face SDK

Fig. 5. Action sequence generation protocols in typical liveness detection systems.

in Table 1 only rename identifiers in Java, making it relatively easy to decompile
Dalvik bytecode into readable Java code. Additionally, while placing core logic
in Android Native libraries increases the difficulty of reverse engineering, skilled
attackers can still manage it. Anti-debugging is another effective measure for
enhancing client-side attack resilience. However, we have found that many SDKs
do not perform environment checks, enabling dynamic code injection attacks. It
is important to note that even with comprehensive obfuscation to prevent static
reverse engineering, attackers can still analyze the app’s runtime behavior and
carry out code injection or data replacement attacks. Achieving high-quality
code obfuscation and anti-debugging simultaneously is a challenging task, and
the failure of either can lead to inadequate code protection, which is observed in
many SDKs.

5.2 Insecure Protocol Design

Many security issues identified in face SDKs stem from insecure protocol designs.
Rectifying these issues typically necessitates protocol modifications, which can
be challenging to fix and push to products in a short term.

Security of Mobile Facial Liveness Systems 443

Predictable or Forgeable Action Sequence. For interactive liveness detection, the
level of security largely depends on the comprehensiveness of the action sequence.
Actions that are too simple may not provide significant security advantages
compared to motionless liveness detection. Conversely, overly complex actions
can be difficult to follow, especially for older individuals. In practical terms,
we have observed that most motion-based liveness detection systems utilize a
sequence of two to four standard actions, such as blinking and shaking the head.
However, it is worth noting that attackers could potentially collect video clips of
the victim engaging in these actions, enabling them to execute a replay attack.
Therefore, it is crucial to randomize the action sequence in order to render such
video preparation impractical. With four available action choices, there are 64
possible three-action sequences, resulting in sufficiently low odds for a prepared
video clip to match. Figure 5 depicts the observed action generation protocol
flows in different liveness detection systems, where A1 to A4 indicate alternative
sources of action sequence.

We have identified certain SDKs (e.g., SDK K in Table 1) that utilize a
predetermined sequence of actions during the liveness detection process. This
allows attackers to exploit the system by preparing a video in advance. They
can accomplish this by purchasing a pre-recorded video from the underground
market, extracting it from publicly available videos of the victim, or synthesizing
it themselves. In addition, many SDKs provide an API for the app to configure
the action sequence, as shown by A2 in the figure, where many apps simply
feed a fixed action sequence. The situation is as bad for those liveness detection
systems that put the sequence generation logic on-device (A3). Under the threat
model where the attacker has full control of the device, the generated sequence
can be tampered (Flaw 2). If the action generation logic and sequence data are
fully contained in Native library with proper hardening, the attack may require
more skills and time. But if any of these processes are exposed in the Java
space, it is fairly trivial to control and modify the action sequence. The security
implication is the same as using a predefined sequence. In extreme cases, the
attacker can even specify a uniform sequence that only contains one type of
action, e.g., A = (aeye, aeye, aeye).

For protocols that fetch an action sequence from the cloud (A1), the security
depends on the design of the protocol. If the action sequence is associated with a
liveness session, and the cloud checks the uploaded image frames or metadata for
such binding, the system is considered secure since actions cannot be tampered.
In an ideal protocol, the SDK should fetch the next action in real-time from the
cloud during liveness as shown by A4. By also enforcing timeout policy, it make
media synthesizing attack impractical.

Forgery of Liveness Detection Result. Many vendors of face SDKs opt to imple-
ment liveness detection on the client side in order to minimize data transmission
overhead. However, the authenticity of the detection result is hard to guaran-
tee due to the inherent limitations of local detection methods. Given that the
attacker has control over the device, they can manipulate the code being exe-
cuted and falsify the returned values. This can be achieved by injecting code into

444 X. Wang et al.

Fig. 6. Example of result passing flow after liveness detection in some protocols.

the SDK’s code space or intercepting network traffic during the data upload to
the app server, thereby enabling the substitution of the result, including the
image, i.e., from R = {r,M} to R′ = {r′,M ′}. To prevent code modification
and injection attacks, SDKs employ environment checking like root detection
and debugger detection. Nevertheless, it is inevitable that some attackers can
bypass these checks, just with higher costs. Another mitigation being observed
in practice is to encrypt or sign the result using either symmetric or asymmetric
cryptographic tools, e.g., R = {renc,Menc}. Since it is harder for adversaries
to analyze the logic in Native libraries, many SDKs perform the data encryp-
tion/signing in the Native code space before returning the result to the Java
space. In this way, to modify the result or replace the raw image, the attacker
must perform the injection attack on the Native code space, which builds some
hurdles. When the SDK returns an encrypted detection result, but the selected
picture frames are in plaintext, i.e., R = {renc,M}, the security level is the same
as the previous case. The attacker can just complete a liveness detection process
by presenting himself to the camera to obtain R′ = {renc,M

′}, then replace
the plaintext image M ′ with the victim’s one M . No reverse engineering of the
encryption algorithm is needed.

We observe that some SDKs (e.g., SDK A, K in Table 1) return both raw and
encrypted images in the result as shown by Flaw 3 in Fig. 6. Further analysis of
the documentation and protocol reveals the possible reason for such a design:
to give flexibility to app vendors who prefer to do image comparisons without
sharing users’ photos to the face cloud. We argue that this design goes too far
in sacrificing security. The normal flow uploads the encrypted result to the face
cloud for decryption, data integrity checks, and secondary cloud liveness verifi-
cation. However, if an app vendor chooses the alternative flow, those additional
protections are skipped, resulting in much lower attack cost. A better design
is assigning an app-specific key pair to the SDK and app server for end-to-end
encryption instead of exposing raw images on-path, which can retain the Native
level obfuscation security.

Another type of flaw is the incorrect usage of cryptographic scheme. The
SDK returns R = {renc,Menc} in both success and failure case. Note that the
result and image data are encrypted separately, so the attacker can use the SDK

Security of Mobile Facial Liveness Systems 445

and an encryption oracle to encrypt the victim’s photo and replace it into a
successful result. The detail of the attack is further explained in Appendix A.

5.3 Flaws in SDK Implementations

Apart from the protocol issues that happen during interactions between multiple
entities, the implementation inside the SDK can also cause security problems.

Unrestricted Configurations. For tuning flexibility, some SDKs provide a set
of APIs to configure parameters for liveness detection. Configurable parameters
mainly fall into two groups: 1) parameters controlling the liveness detection mode
and 2) parameters of the liveness detection model. Without proper restrictions,
these parameters can significantly weaken the security of the liveness detection
system. Even though all model parameters are essentially modifiable when the
liveness detection runs locally, exposing a public Java API gives low-hanging
fruits to the attacker, making the system more susceptible to code injection
attacks. This weakness corresponds to Flaw 1 in Fig. 5.

Two common key security-sensitive parameters exposed in face SDKs are
the action sequence and liveness score threshold. For example, one popular SDK
we analyzed (SDK E in Table 1) provides an API setThreshold(float x), which
allows setting a new action score threshold as θ′ ∈ (0, 1), while the default
threshold is set to θ = 0.95. This gives the attacker a convenient interface to
alter the threshold to an abnormally small value, thus nullifying the action-
matching mechanism. The initialization API of the same SDK consumes a list
of actions expected from the user, e.g., A = {amouth, aeye, ahead}, which means
the user needs first to open his mouth, then blink his eyes, finally node his head
to complete the process. However, the SDK has no restriction on the number
of actions, so the attacker can configure the action list as {aeye}, or even an
empty set ∅. With these abnormal settings, the action matching process drops
its difficulty sharply or is even disabled totally. The simplified code snippet in
Listing 1.1 illustrates the flawed action list processing logic in the SDK. This
particular example exposes those APIs in the Java code, so it is under the Java
code injection threat. Some other SDKs provide parameter-setting APIs in the
Native library but hide them from Java interfaces. They have a higher obfusca-
tion security level but are still vulnerable under the Native code injection threat
model.

1 public void start(int[] motionList) {
2 if (motionList == null || motionList.length < 1) {
3 resultCode = ResultCode.OK;
4 } else {
5 beginLivenessDetection(motionList);
6 }
7 }

Listing 1.1. SDK code with flawed action list configuration logic.

446 X. Wang et al.

Unprotected Model Files. Almost every face SDK supporting local liveness detec-
tion ships with machine-learning models in the app package. Some SDKs embed
the models as standalone files and are not difficult to recognize. A recent tool
ModelXRay [15] can identify the machine learning model files in Android apps,
as well as analyze whether the model files are encrypted. Unencrypted model
files are susceptible to modification and model replacement attacks. Attackers
conducting synthetic attacks can alter parameters in the model to accept poorly
synthesized videos.

Leakage of Captured Images or Video. During the real-time handling of camera
streams, the system may need to cache certain image frames or a snippet of video
for subsequent processing. Some face SDKs choose to save the cached data to the
filesystem. In the Android system, files can either be stored in the internal storage
that is only accessible by the app or in the external shared storage. In the latter
case, captured face images or video can be stolen by a malicious app. We noticed
that one SDK we analyzed (SDK D in Table 1) cache captured video during live-
ness detection and the selected image frames into the external storage, a path
obtained with the getExternalCacheDir() method. Before Android 11, this loca-
tion is accessible to any apps with the READ_EXTERNAL_STORAGE permission. Start-
ing from Android 11, the external files are also isolated by apps [16]. However,
another app with the special user-granted permission MANAGE_EXTERNAL_STORAGE

can still access them.

UI Hijacking. In a normal use case, the user is expected to launch the liveness
detection interface in the target app and proceed by following the instructions.
The whole process assumes the user knows the context of the face authentication
process. However, if a malicious app can invoke the interface of the target app
and then display an overlay to hide the liveness detection context, the user
may unknowingly finish the facial recognition. User interface (UI) readdressing
attack has been witnessed in practice [17] for phishing with Android malware.
Covering the liveness detection interface without interrupting the camera stream
is possible when the SDK lacks proper implementation, as discussed in [18].
Combined with the previous image cache leak attack, a malicious app without
camera permission can steal the user’s photo from an app that embeds the
vulnerable face SDK. Another possibility is to force the victim login into the
attacker controlled account [19] or use the preemptive account hijacking attack
[20], then perform the UI hijacking attack to steer the victim to complete the
facial eKYC process. Thus, the attacker can gain access to the victim’s account
with greater permission, like withdrawing money from a mobile wallet.

5.4 Mistakes by App Developers

It is impractical for face SDKs to provide end-to-end facial recognition solutions
to mobile apps. In practice, they implement the core functions and expect app
developers to handle the rest. However, it is notoriously unrealistic to assume
that app developers can implement everything securely.

Security of Mobile Facial Liveness Systems 447

Table 1. Protocol Design and Implementation Details of Mainstream Face SDKs

Face
SDK

Int
era

ct
Mode

SDK Code

Actio
n Genera

tio
n

Configurab
le

Env.
Check

ing

Live
ness

Loca
tio

n

Live
ness

Resu
lts

Matc
hing Loca

tio
n

UI Inclu
ded

Cost
of Atta

ck

A actions N — θ, A N L {r, M, Menc} C, S ✗ effortless

A ′ actions N L θ, A N L Msign C ✗ effortless

B flashing N C ∅ N ∧ C L Menc C ✓ laborious

B ′ static N — ∅ N ∧ C C — C ✓ impractical

C actions N C θs, As N ∧ C L ∧ C {Menc, Eenc} C ✓ impractical

D actions N L θ, A N L M S ✗ effortless

E actions N L θ N L M S ✗ effortless

F actions N C θs, As N ∧ C L ∧ C ? C ✓ laborious

G actions N C ∅ N ∧ C L ∧ C Msign C ✓ laborious

H actions J C ∅ J L M C ✓ effortless

I actions N — θs, As J L M S ✓ effortless

J static J — ∅ 7 C — C ✓ impractical

K actions J fixed ∅ 7 L {Menc, M} S ✓ effortless

L static N — ∅ 7 L r L, S ✗ effortless

M actions N ? θ 7 L {r, Menc} L, S ✗ laborious

N static N — θ 7 L r L, S ✗ effortless

O actions J L A 7 C — C ✗ impractical

P actions N L A 7 L {r, Msign} S ✗ effortless

Some face SDKs return liveness results consisting of a boolean result,
encrypted data, and a raw image. The app developer may select whatever value
he needs as the liveness detection result without following the face SDK’s des-
ignated usage. For example, some apps may only rely on the boolean result
returned by the SDK and use an image frame extracted by the app for face
comparison. These unexpected usages can render certain security mechanisms
of the facial recognition system non-effective.

It is harder for app developers to handle things correctly, where even SDK
providers make mistakes. Some SDKs (e.g., SDK A, D, E in Table 1) delegate
the implementation of the liveness detection UI to the app. Not surprisingly,
most app developers would not consider the security threats when implementing
the UI component. Worse still, the demo code with sample UI implementations
provided by certain SDK provider (SDK E) also lacks proper hijacking protec-
tion, making app developers more likely to produce flawed implementations. The
insecure image storage problem can also appear in apps when they obtain the
returned images from the liveness detection module. A typical implementation
uses the file system as an intermediate media that stores the resultant image
before uploading the app server.

6 Empirical Study

Facial recognition services have been mushrooming in recent years. Many of them
provide mobile SDKs, which can be found in many financial and government

448 X. Wang et al.

service apps. As an empirical security study of face SDKs, we first collect popular
mobile face SDKs to analyze their security aspects. Then, we collect a set of
high-profile mobile banking and cryptocurrency exchange apps to analyze the
face SDKs they used and discuss their security impact. Finally, we build a static
analyzer to scan apps at the market scale and present the distribution of face
SDKs in practice.

6.1 Retrieval of Face SDKs

We collect a set of Android face SDKs from well-known providers. Most facial
recognition service providers host a developer platform with configuration inter-
faces and documentation. In some cases, the face SDK can be downloaded from
the platform. More often, we encounter providers that only allow verified enter-
prise developers to access their SDKs or platforms. For those cases, we try to
search for public apps or GitHub repositories that contain the corresponding
SDK using package names or other distinct strings. While most apps utilizing
face SDKs are protected by commercial packers, we intentionally search for old
version of apps with weak code hardening so that we can retrieve an analyzable
copy of the target SDKs. In the end, we collected 18 face SDKs from 16 different
providers. A few vendors provide SDK variants for different use cases or from
different product lines. For example, the face SDK for financial apps can differ
from the SDK for general apps in the provider.

6.2 Security Metrics of Face SDKs

Android SDKs are provided as Android library packages (.aar or .jar), which
contain Java executables (.dex), native libraries (.so), and other resources such
as machine learning models. After unpacking, we decompile the Java code to
locate functions related to facial recognition. We usually cross-compare the code
with the official SDK document to understand the purpose of located APIs. Then
we check common security weaknesses we discussed in Sect. 5 for each SDK. We
start from analyzing the relevant Java code, from which we can determine if
any facial recognition functions are implemented in Native libraries. We further
examine whether the app employs any obfuscation or anti-debugging techniques.
We, as practiced Android security researchers, spend a maximum of five person-
hours analyzing the Native library. Information we failed to obtain during such
a time frame is treated as unknown and considered hard for attackers to obtain
as well.

Table 1 presents the analysis results. When multiple modes of interaction are
available in the same SDK, the analysis is based on the actions mode. In several
columns of the table, N, J, C, L, S represent Native, Java, cloud, local, and app
server, respectively. These indicate the location where the corresponding pro-
cess is executed and have security implications. For example, actions generated
on-device (L) cannot be remotely verified and are more susceptible to tamper-
ing. Environment checking implemented in Java is easier to bypass than those
protected in Native libraries. SDKs that expose configuration functions allowing

Security of Mobile Facial Liveness Systems 449

Table 2. Financial Apps with Face
SDKs

App SDK Packer App SDK Packer

Wallet A Q, A — Bank A A —

Wallet B B Tencent Bank B A, E Bangcle

Wallet C Q, K DexGuard Bank C D Bangcle

Wallet D I — Bank D D, E Bangcle

Wallet E E — Bank E D, E Bangcle

Wallet F I, K — Bank F B Bangcle

Wallet G A Bangcle CEX A G, H —

Wallet H C Ali CEX B R, G Tencent

Table 3. SDK distribution in app market

SDK # Apps # App Downloads

B 297 113 million

F 192 7.7 million

A 153 6.6 million

E 123 15.3 million

D 85 3.1 million

G 80 4.7 million

Q 14 5.5 million

P 12 0.1 million

total (weak) 802 (294) 156 (25.2) million

unrestricted control of model thresholds (θ) or action sequence (A) are consid-
ered insecure. Those whose configurations are bound to a remote session (θs, As)
or those that provide no configuration API (∅) do not have related issues. For
Liveness Results column, r,M,E represent the detection result, images, and
environment information, respectively. If a plaintext image or result returned
by the SDK is used for comparison, it is easy for an attacker to perform data
replacement attacks. Cells marked as ? indicate that we cannot reach a con-
clusion within our analysis time-budget, mostly due to the difficulty of reverse
engineering. Any weakness in the SDK has the potential to cause a security
breakdown. We highlight design weaknesses in each characteristic columns and
summarize the cost of attack in the last column. The underlined ticks in “UI
Included” column indicate the official UI implementation has security issues
mentioned in Sect. 5.3. Overall, a majority of the SDKs (10 out of 18) have
design or implementation issues that can lead to low cost attacks (those labelled
effortless in the last column). Only 4 SDKs enforce full cloud liveness detection
and are impractical to attack without synthetic media.

6.3 Face SDKs in High-Profile Financial Apps

The dominant market for face SDKs is composed of financial mobile apps. Finan-
cial apps like mobile banking and online investment platform rely on eKYC for
anti-money laundering (AML). Apart from identity documentation verification,
substantial eKYC services utilize facial recognition, especially liveness detection,
to prevent people from registering with forged or stolen identity documents.
We collect a list of mainstream mobile wallet, mobile banking, and centralized
crypto-currency exchange (CEX) apps that support account verification using
facial eKYC. We manually analyze each of them to the extent that we know
which face SDK is embedded in the app, whether the app is protected from
reverse engineering using some packers as listed in [21]. Table 2 summarize our
analysis results. We can see that most financial apps use the SDKs we have ana-
lyzed, including those with security issues. Some of them include multiple face
SDKs for different functionalities. More than half of them are protected with
commercial packers.

450 X. Wang et al.

6.4 Market Scale Evaluation

When we analyze the protocol and implementation of face SDKs and investigate
SDK usage in financial mobile apps, we have gathered a list of face SDKs. Some
SDKs are made by renowned companies and have been seen in many apps. Some
are created by startups and are only used by a few apps. We create a face SDK
fingerprinting tool to scan Android apps at a market scale, which can help us
understand 1) the mobile app market distribution of face SDKs and 2) whether
popular face SDKs have better security.

Face SDK Fingerprints. We collected a database of face SDK fingerprints by
examining a set of SDKs and those found in high-profile apps. Our fingerprints
utilize unique package names, file names, and string content to identify a face
SDK. The package name serves as a unique identifier for an SDK. However, if
the code undergoes obfuscation with package renaming or the app is packed, the
package name becomes inaccessible. On the other hand, file names, particularly
those of the Native library and model files, typically remain unchanged even
after obfuscation or packing, making them reliable SDK fingerprints. Addition-
ally, certain strings found within files can also serve as effective fingerprints. An
example of this is the license file included in the SDK, which may contain the
name of the provider company or even a version number of the SDK.

Large-scale Scanning Results. Based on the collected fingerprints, we modify the
open-source Android app identifier APKiD [22] to scan the facial recognition
SDKs in Android. Our fingerprint dataset and the tool are available at [7]. We
run the face SDK scanner on a set of 18,096 apps crawled from one popular
Chinese Android app market in April 2022. Results are listed in Table 3. Among
802 apps that include at least one face SDK, about 40% of them contain a
vulnerable SDK we analyzed. The total single-market downloads for these apps
exceeds 20 millions. Considering the wide selection of Android app markets, the
actual number of affected apps and users are much higher. We further count the
category of apps that embed face SDKs and find that over a quarter of them are
finance apps. We describe the detailed result in Appendix B.

6.5 Case Study

In this section, we elaborate on the details for realizing proof-of-concept attacks
on two real-world mobile apps with millions of users. Besides the systematic anal-
ysis process as performed in Sect. 5, end-to-end attack hinges on the attacker’s
ability to circumvent common defense measures such as app packing and anti-
debugging mechanisms, as well as exploiting app-specific mistakes.

The first app provides government service and has more than a million users.
It requires identity document verification and facial liveness detection for regis-
tration to confirm the user is actually present. Bypassing this security feature
could allow an attacker to hijack accounts with stolen IDs, creating a serious
privacy threat. The app’s code is protected by a strong packer, which prevents

Security of Mobile Facial Liveness Systems 451

reverse-engineering with common tools. However, we show that vulnerabilities in
the facial recognition SDK can be exploited without reverse-engineering the app.
When reverse engineering of the target app is challenging and time-consuming,
attackers may resort to directly analyzing the SDK code. Static files within this
app reveals that the SDK being used is E in Table 1, which is vulnerable to the
result tampering attack. The onSuccess(int code, byte[] data) function within
SDK E is a key target for real-time image data manipulation via hooking. This
task becomes complex when dealing with packed apps because function names
are often obfuscated, making it unclear where to insert hooks. However, the con-
sistent signatures of SDK interfaces allow us to align runtime function signatures
with SDK functions and perform “blind” hooking. To initiate hooking in the app,
we first bypass anti-debugging features, e.g., by modifying the TracerPid. Sub-
sequently, we probe the runtime memory to list methods accessed during facial
recognition interactions. Through this process, we pinpointed the method a(int

i, byte[] b), which, given its signature and context within its class, corresponds
to the target onSuccess method. This SDK-to-app attack scheme exhibits scala-
bility, as an attacker can exploit all apps using a vulnerable SDK by employing
the same approach, avoiding labor-intensive reverse-engineering process.

The second app serves as a platform enabling small businesses to sell cer-
tain services and functions as a transaction escrow, with reported monthly
transactions exceeding $100 million. To combat money laundering, it mandates
facial identity verification for users prior to withdrawal. However, our findings
demonstrate that attackers can effortlessly bypass this security measure using
another person’s identity, thereby undermining the anti-money laundering sys-
tem in place. After extracting files from the Android app package, we recognized
a file associated with a widely-used SDK vendor A, as listed in Table 1. Our
prior analysis revealed that A’s SDK provides both encrypted data and plain-
text results following facial liveness detection. The feasibility of a data replace-
ment attack depends on the app’s implementation. However, direct inspection
of the app’s code is impeded by a commercial packer. To circumvent this, we
used the publicly available DexHunter tool [23] to extract the original byte-code
from memory. Analysis of the decompiled application revealed that it utilizes a
third-party library to interface with the facial recognition SDK A, streamlining
SDK integration for developers. However, this library inappropriately uses unen-
crypted outputs from the SDK and applies its own basic encryption, which is
easily compromised due to the simplicity of extracting the encryption key from
the Java code. Consequently, an attacker could manipulate the app on a com-
promised device to carry out facial recognition with their own face, and then
replace the encrypted result with one from a victim’s image by exploiting the
reverse-engineered encryption method.

7 Discussion on Mitigation

While more than half of the SDKs we analyzed exhibit flawed design or imple-
mentation, we also observed a few examples that demonstrate strong security

452 X. Wang et al.

measures. By studying both the positive and negative aspects of these examples,
we can offer a reference design that encompasses robust security features and
user-friendly functionality. Furthermore, we will briefly discuss potential future
mitigations that address more fundamental issues.

Reference Protocol. While cloud-based video liveness. detection is the most
secure and has a simple protocol, it has obvious drawbacks in user experience.
Hybrid system that perform video-based local liveness detection coupled with
few-image liveness in the cloud for double check can maintain reasonable secu-
rity while keeping high usability. However, such system involves complex and
error-prone multi-party protocol. One key security requirement is configuration
integrity, which can be achieved by passing a configuration binding back along
with the liveness result for cloud verification. The unpredictability of interac-
tion sequence serves as an effective countermeasure against media synthesizing
attacks; consequently, the best practice is to return the next action in real-time
after the previous one is completed. Finally, the result integrity is of paramount
importance. To prevent data replacement attack, the SDK should encrypt the
data while hardening the encryption code, putting them in native library with
code obfuscation and anti-debugging. A detailed description of the reference
protocol is available in Appendix C.

Future Direction of Mitigation. Current mobile facial recognition systems,
including the proposed reference protocol, rely on code obfuscation and risk
checking as protection measures for client integrity. Google’s SafetyNet Attesta-
tion API [24] enables third-party apps to conduct anti-abuse checks, including
device integrity verification, but it is only available to Android devices with
Google services. A trusted execution environment (TEE) like ARM’s TrustZone
enables client code execution integrity using hardware-level isolation and is uti-
lized for fingerprint and face authentication on modern mobile devices [25]. How-
ever, none of the studied facial eKYC service providers utilize TEE. This could
be due to several reasons like design complexity when remote image comparison
is involved, insufficient computational power in TEE, and device compatibility.
Although there are workarounds for some of these challenges, e.g., as proposed
in [26,27], no actual deployment has been observed in the market.

8 Related Work

The study of facial recognition security has gained attention with the grow-
ing popularity and importance of these technologies in real-world applications.
Many studies concentrate on algorithm security, particularly the weaknesses in
deep learning models that have been exposed in recent years. Adversaries can
manipulate inputs to deceive the classifier using adversarial learning techniques
[28,29], leading to numerous presentation attacks where the attacker can bypass
the system using a carefully crafted mask or even an on-screen video [8,30].
Synthetic media attacks, especially those powered by deep learning (deepfake

Security of Mobile Facial Liveness Systems 453

[31]) to generate new image or video with specific facial expressions from static
images, can be leveraged to fool liveness detection systems. Authors of [5] con-
duct empirical assessment on six cloud-based liveness detection APIs by sub-
mitting videos synthesized with various deepfake techniques and proved them
vulnerable to deepfake attacks. Liveness detection systems in mobile apps we
studied are more complex than cloud APIs because they do not directly utilize
those APIs and instead involve multi-party communication. While not focusing
on facial recognition, a recent work [12] shows that close to half of the real-
world deep learning models used in Android apps are vulnerable to adversarial
examples.

However, the security of mobile facial recognition systems in terms of system
architecture or protocol design receives very limited attention from researchers.
In reality, the security of these systems requires a comprehensive approach that
considers various angles, such as input authenticity and result integrity. For
instance, launching a synthetic media attack in mobile requires a valid data
injection technique, as demonstrated in a Black Hat talk [32]. Model integrity
is another factor that can pose a threat to the overall system security. Authors
of [15] develop an automatic model extraction framework and show that some
models embedded in mobile apps have weak protections.

In practice, the mobile facial recognition system involves multiple parties,
including the user’s device, the app’s server, and the service provider’s server,
and any weak link can result in security and privacy issues. Despite numer-
ous security vulnerabilities uncovered in other multi-party protocols on mobile
platforms, such as payment and OAuth [33–35], the security analysis of live-
ness detection protocols remains a largely uncharted area. A recent study [36],
independent to ours, explored the security aspects of the Cross-side Face Verifi-
cation System, aligning with the Local-Cloud Mixed scenario presented in Sect.
2.2. Our research, however, covers broader types of mobile facial recognition sys-
tem, namely, the Pure Local and Pure Cloud architectures where all verification
steps are performed on-device or in the cloud respectively. In addition, security
analysis of [36] are targeting apps, while we study each SDK, whose vulnerabil-
ities affect all apps relying on it. While some findings are shared between [36]
and this work, e.g., the data inconsistency problems and lack of environment
checking, our study uncovers additional security concerns with detailed attack
analysis, such as failure in data encryption scheme (see Sect. 5.2), unrestricted
tampering with machine learning thresholds (Sect. 5.3), and vulnerability caused
by insecure usage of SDK results (Sect. 5.4). Moreover, our analysis includes apps
fortified with packing (Sects. 5.1 and refsec:casespsstudy), a common practice
that substantially increases attack costs, which [36] does not take into account.

9 Conclusion

In this study, we examine the protocol design and SDK implementations of
mobile facial recognition systems. Despite significant attention from industry
and academia to the security of algorithms and models in facial recognition,
the system security as a whole has been overlooked. We find that a number

454 X. Wang et al.

of these systems put the liveness detection process on the device, leading to
vulnerabilities that allow for low-cost identity fraud attacks by data tampering
or code injection, which are easy to carry out at scale. Our study of 18 SDKs
highlights the common pitfalls and provides a reference protocol that can serve
as a security guide for mobile facial recognition service providers.

Responsible Disclosure. We have sent vulnerability reports to all affected
face SDKs and some highly impactful apps. However, many vendors are emerg-
ing AI companies founded in recent years, typically lacking a dedicated security
team or established vulnerability reporting channels. We have endeavored to
send our reports to the most appropriate contact available, such as the general
support email or business contact. While many vendors have not responded at
the time of writing, some have reacted to our reports. For instance, a promi-
nent SDK provider met with us to explore potential fixes and discuss future
cooperation. One popular app engaged with us proactively to address the issue,
requesting anonymity due to the challenges associated with completely mitigat-
ing the vulnerability. Additionally, we observed a vendor discreetly removed their
SDK from public access months after receiving our report. We acknowledge the
complexities involved in thoroughly resolving these vulnerabilities; as discussed
in Sect. 7, protocol redesign would necessitate significant engineering efforts, not
to mention the complexities of compelling downstream mobile apps to update
embedded SDKs. Consequently, we have chosen to maintain the anonymity of
the SDK providers and applications in this paper.

Acknowledgement. This research was supported in part by the CUHK Direct Grant
project#4055203 and the MobiTeC R&D Fund project#7105768.

A Flawed Encryption Scheme and Oracle Attack

One type of insecure design is caused by incorrect use of the encryption scheme.
Suppose an SDK returns R = {renc,Menc} regardless success or failure. The
attacker can conduct liveness detection with the victim’s static image. The pro-
cess ends up with a failure that returns R′ = {enc(“failed”),M ′

enc}, which pro-
vides the attacker with an encryption oracle to encrypt arbitrary images. There-
fore, the attacker can construct a valid R by first obtaining renc from a successful
liveness detection of himself enc(“success”), then using the oracle to obtain a
correctly encrypted image of the victim M ′

enc, as illustrated in Fig. 7, successfully
impersonating the victim.

Security of Mobile Facial Liveness Systems 455

Fig. 7. Illustration of the image encryption oracle attack.

B Face SDK Scanning Result of App Categories

Fig. 8. Category distribution of apps with face SDKs.

We run the face SDK scanner on 18,096 Android apps, identifying 802 apps
that include the SDKs we studied. We label the app category to which each
app belongs, and Fig. 8 depicts the resulting distribution. As expected, the
largest category is Finance, contributing a quarter of apps embedding face SDKs.

456 X. Wang et al.

Fig. 9. A reference secure protocol for a facial recognition system with mobile-centric
liveness detection.

The app market categorizes most government service apps in the Life group,
making it the second largest category. Additionally, apps in the Study category
usually utilize the face SDK for attendance taking. Some Game apps use facial
recognition for age proof, in compliance with local regulations.

C Reference Protocol with Security and Usability
Consideration

By summarizing the knowledge of our analysis on many SDKs, we propose a
reference protocol as depicted in Fig. 9 for a mobile-centric facial recognition
system that provides reasonable security protections under a local-cloud mixed
liveness detection setting. Several implementation details are worth highlighting
in this protocol. The session configuration (1b) request sent from the app server
to the face cloud requires an API secret so that the system is configurable,
but only by an authorized entity. During liveness detection, after each liveness
detection state, the next required action is determined by the cloud in real-
time and returned through some persistent channel like WebSocket (2b). The
purpose is to increase the difficulty of video synthesizing attacks. An alternative
approach is to return the whole action sequences as encrypted data in (1c). After
liveness detection, all result data are encrypted, and no raw data are exposed
to the app server (2c). The app server must pass the encrypted data to the face
cloud, where it can be decrypted and processed. The purpose of the secondary
liveness checking (3b) is to validate whether the returned images match the
action sequence of the session. Photo-based liveness detection can be performed
as well to mitigate photo-synthetic attacks.

Security of Mobile Facial Liveness Systems 457

References

1. Baydakova, A.: For $200, You Can Trade Crypto With a Fake ID. https://www.
coindesk.com/policy/2021/10/19/for-200-you-can-trade-crypto-with-a-fake-id/

2. Liu, T., Yang, B., Geng, Y., Du, S.: Research on face recognition and privacy in
china-based on social cognition and cultural psychology. Front. Psychol. 12, 809736
(2021). https://www.frontiersin.org/articles/10.3389/fpsyg.2021.809736

3. Borak, M.: Chinese government-run facial recognition system hacked by tax fraud-
sters: report. https://www.scmp.com/tech/tech-trends/article/3127645/chinese-
government-run-facial-recognition-system-hacked-tax

4. Tang, A.: How a young hacker breaks the facial recognition system of Xiamen
Bank app. https://china-caixin-com.translate.goog/2020-03-12/101527373.html?
x tr sl=auto& x tr tl=en& x tr hl=en-US& x tr pto=wapp

5. Li, C., et al.: “Seeing is living? rethinking the security of facial liveness verification
in the deepfake era,” in 31st USENIX Security Symposium (USENIX Security 22),
pp. 2673–2690. USENIX Association, Boston, MA (2022)

6. Mirsky, Y., Lee, W.: The creation and detection of deepfakes: a survey. ACM
Comput. Surv. (CSUR) 54(1), 1–41 (2021)

7. MobiTeC, C.: Security analysis of facial liveness detection systems in mobile apps
(2023). https://mobitec.ie.cuhk.edu.hk/facesdk

8. Ramachandra, R., Busch, C.: Presentation attack detection methods for face recog-
nition systems: a comprehensive survey. ACM Comput. Surv.(CSUR) 50(1), 1–37
(2017)

9. Tang, D., Zhou, Z., Zhang, Y., Zhang, K.: Face flashing: a secure liveness detec-
tion protocol based on light reflections. In: 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February
18–21 (2018)

10. Chakraborty, S., Das, D.: An overview of face liveness detection. arXiv preprint
arXiv:1405.2227 (2014)

11. Facia: The future of faical recognition (2023). https://facia.ai/wp-content/
uploads/2023/05/The-Future-of-Facial-Recognition.pdf

12. Deng, Z., Chen, K., Meng, G., Zhang, X., Xu, K., Cheng, Y.: Understanding real-
world threats to deep learning models in android apps. In: Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, pp.
785–799 (2022)

13. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-llvm-software pro-
tection for the masses. In: IEEE/ACM 1st International Workshop on Software
Protection. IEEE 2015, pp. 3–9 (2015)

14. ‘Shrink, obfuscate, and optimize your app. https://developer.android.com/studio/
build/shrink-code

15. Sun, Z., Sun, R., Lu, L., Mislove, A.: Mind your weight(s): a large-scale study on
insufficient machine learning model protection in mobile apps. In: 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, Aug. 2021, pp.
1955–1972 (2021)

16. Android Developers. Storage updates in Android 11. https://developer.android.
com/about/versions/11/privacy/storage

17. Yan, Y., et al.: Understanding and detecting overlay-based android malware at
market scales. In: Proceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services, 2019, pp. 168–179 (2019)

https://www.coindesk.com/policy/2021/10/19/for-200-you-can-trade-crypto-with-a-fake-id/
https://www.coindesk.com/policy/2021/10/19/for-200-you-can-trade-crypto-with-a-fake-id/
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.809736
https://www.scmp.com/tech/tech-trends/article/3127645/chinese-government-run-facial-recognition-system-hacked-tax
https://www.scmp.com/tech/tech-trends/article/3127645/chinese-government-run-facial-recognition-system-hacked-tax
https://china-caixin-com.translate.goog/2020-03-12/101527373.html?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-US&_x_tr_pto=wapp
https://china-caixin-com.translate.goog/2020-03-12/101527373.html?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-US&_x_tr_pto=wapp
https://mobitec.ie.cuhk.edu.hk/facesdk
http://arxiv.org/abs/1405.2227
https://facia.ai/wp-content/uploads/2023/05/The-Future-of-Facial-Recognition.pdf
https://facia.ai/wp-content/uploads/2023/05/The-Future-of-Facial-Recognition.pdf
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/about/versions/11/privacy/storage
https://developer.android.com/about/versions/11/privacy/storage

458 X. Wang et al.

18. Wang, X., Shi, S., Chen, Y., Lau, W.C.: Phyjacking: physical input hijacking for
zero-permission authorization attacks on android. In: Proceedings 2022 Network
and Distributed System Security Symposium. NDSS (2022)

19. Fett, D., Küsters, R., Schmitz, G.: A comprehensive formal security analysis of
OAuth 2.0. In: Proceedings of the ACM Conference on Computer and Communi-
cations Security, vol. 24–28-Octo, pp. 1204–1215 (2016)

20. Ghasemisharif, M., Ramesh, A., Checkoway, S., Kanich, C., Polakis, J.: O single
Sign-Off, where art thou? an empirical analysis of single Sign-On account hijack-
ing and session management on the web. In: 27th USENIX Security Symposium
(USENIX Security 18), Aug 2018, pp. 1475–1492 (2018)

21. Duan, Y., et al.: Things you may not know about android (un) packers: a systematic
study based on whole-system emulation. In: NDSS (2018)

22. rednaga. APKiD - Android Application Identifier. https://github.com/rednaga/
APKiD

23. Zhang, Y., Luo, X., Yin, H.: DexHunter: toward extracting hidden code from
packed android applications. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS 2015. LNCS, vol. 9327, pp. 293–311. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24177-7 15

24. Ibrahim, M., Imran, A., Bianchi, A.: Safetynot: on the usage of the safetynet attes-
tation api in android. In: Proceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services, 2021, pp. 150–162 (2021)

25. Bianchi, A., et al.: Broken fingers: on the usage of the fingerprint api in android.
In: oDSS (2018)

26. Zhang, D.: Trustfa: Trustzone-assisted facial authentication on smartphone. Tech,
Rep (2014)

27. Bayerl, S.P., et al.: Offline model guard: Secure and private ml on mobile devices,
In: Design, Automation and Test in Europe Conference & Exhibition (DATE).
IEEE, pp. 460–465 (2020)

28. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236 (2016)

29. Goswami, G., Ratha, N., Agarwal, A., Singh, R., Vatsa, M.: Unravelling robustness
of deep learning based face recognition against adversarial attacks. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, (2018)

30. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: real
and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, 2016, pp.
1528–1540 (2016)

31. Westerlund, M.: The emergence of deepfake technology: a review. Technol. Innov.
Manage. Rev. 9(11) (2019)

32. Chen, Y., Ma, B., Ma, Z.: Biometric authentication under threat: liveness detection
hacking, Black Hat USA (2019)

33. Al Rahat, T., Feng, Y., Tian, Y.: Oauthlint: an empirical study on oauth bugs
in android applications. In: 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 293–304 (2019)

34. Shi, S., Wang, X., Lau, W.C.: Mossot: an automated blackbox tester for single
sign-on vulnerabilities in mobile applications. In: Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security, ser. Asia CCS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p. 269–282.
https://doi.org/10.1145/3321705.3329801

https://github.com/rednaga/APKiD
https://github.com/rednaga/APKiD
https://doi.org/10.1007/978-3-319-24177-7_15
https://doi.org/10.1007/978-3-319-24177-7_15
http://arxiv.org/abs/1611.01236
https://doi.org/10.1145/3321705.3329801

Security of Mobile Facial Liveness Systems 459

35. Yang, W., Li, J., Zhang, Y., Gu, D.: Security analysis of third-party in-app payment
in mobile applications. J. Inform. Secur. Appl. 48, 102358 (2019). https://www.
sciencedirect.com/science/article/pii/S2214212619301632

36. Zhang, X., et al.: Understanding the (in) security of cross-side face verification
systems in mobile apps: a system perspective. In: IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society 2023, pp. 934–950 (2023)

https://www.sciencedirect.com/science/article/pii/S2214212619301632
https://www.sciencedirect.com/science/article/pii/S2214212619301632

Author Index

A
Alam, Manaar III-163
Alkadri, Nabil Alkeilani I-376
Andreeva, Elena II-433
Attrapadung, Nuttapong II-373
Avizheh, Sepideh III-74

B
Banegas, Gustavo II-101
Bao, Han I-213
Basso, Andrea I-432
Bemmann, Pascal I-351
Berger, Robin I-288
Berndt, Sebastian I-351
Bettale, Luk I-457
Bhardwaj, Divyanshu III-412
Bhattacharya, Sarani III-271
Bock, Estuardo Alpirez II-101
Boneh, Dan III-105
Bonneau, Joseph III-105
Boura, Christina II-485
Brisfors, Martin III-301
Brzuska, Chris I-3, II-101

C
Cachet, Chloe I-156
Carpent, Xavier I-26
Chen, Binbin II-283
Chen, Mingjie I-432
Chen, Rongmao I-351
Chmielewski, Łukasz II-101
Cimorelli Belfiore, Roberta II-163
Cogliati, Benoît II-433
Cong, Kelong II-133
Conti, Mauro I-183
Custódio, Ricardo II-3

D
Dabrowski, Adrian III-412
De Cosmo, Andrea II-163
Derbez, Patrick II-485

Dey, Soumyajit III-163
Ding, Xia II-265
Doan, Thi Van Thao I-257
Dobraunig, Christoph II-460
Dörre, Felix I-288
Döttling, Nico I-376
Dowerah, Uddipana II-189
Dubrova, Elena III-301

E
Egger, Christoph I-3
Eldefrawy, Karim II-133
Emura, Keita I-237

F
Fan, Yongming II-340
Feneuil, Thibauld I-403
Feng, Zheyun III-217
Ferrara, Anna Lisa II-163
Forte, Domenic III-325
Fouotsa, Tako Boris I-432
Francati, Danilo I-135
Frederiksen, Tore Kasper I-58
Fuller, Benjamin I-156
Funk, Margot II-485

G
Ganji, Fatemeh III-325
Garman, Christina II-340
GhasemiGol, Mohammad II-313
Ghazvinian, Parsa II-313
Ghosh, Soumyadyuti III-163
Giron, Alexandre Augusto II-3
Gui, Jiaping III-241

H
Hamlin, Ariel I-156
Hanaoaka, Goichiro II-373
Hashemi, Mohammad III-325
Heitmann, Nico III-190

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 461–463, 2024.
https://doi.org/10.1007/978-3-031-54776-8

https://doi.org/10.1007/978-3-031-54776-8

462 Author Index

Henze, Martin II-241
Hiromasa, Ryo II-373
Hwang, Seoyeon I-26
Hwang, Vincent II-24

J
Jee, Kangkook III-241

K
Kahrobaei, Delaram I-457
Kailus, Adrian III-137
Kamimura, Junpei III-241
Karmakar, Angshuman III-271
Kern, Dustin III-137
Koch, Alexander I-288
Köhler, Daniel III-381
Koseki, Yoshihiro II-373
Krauß, Christoph III-137
Krombholz, Katharina III-412
Kumaresan, Ranjit III-51
Kundu, Suparna III-271
Kutas, Péter I-432
Kwak, Hyesun II-403

L
Lallemand, Virginie II-433
Larangeira, Mario I-88
Lau, Wing Cheong III-432
Laval, Abel I-432
Lazzeretti, Riccardo I-183
Le, Duc V. III-51
Lee, Dongwon II-403
Li, Zhichun III-241
Liberati, Edoardo I-183
Lin, Yunxue III-355
Lindstrøm, Jonas I-58
Ling, Xi II-283
Litos, Orfeas Stefanos Thyfronitis III-28
Liu, Chi-Ting II-24
Liu, Zhuotao I-213
Lorek, Paweł III-3
Lu, Tianbo II-265
Luo, Kaixuan III-432

M
Madsen, Mikkel Wienberg I-58
Marco, Laurane I-432
Mateu, Victor II-3
Matsuda, Takahiro II-373

Meinel, Christoph III-381
Mennink, Bart II-460
Minaei, Mohsen III-51
Minier, Marine II-433
Mitrokotsa, Aikaterini II-189
Mondal, Puja III-271
Moog, Sven III-190
Mukherjee, Kunal III-241
Mukhopadhyay, Debdeep II-47, III-163

N
Naito, Yusuke I-318
Nakamura, Toru I-119
Nikolaenko, Valeria III-105
Nishida, Yutaro II-373

P
Patranabis, Sikhar II-47
Pereira, Olivier I-257
Perin, Lucas Pandolfo II-3
Perret, Ludovic I-457
Peters, Thomas I-257
Phalakarn, Kittiphop I-119
Podschwadt, Robert II-313
Pu, Sihang I-376
Puniamurthy, Kirthivaasan I-3, II-101
Pünter, Wenzel III-381
Purnal, Antoon II-433

R
Raghuraman, Srinivasan III-51
Ragsdale, Sam III-105
Rezapour, Maryam I-156
Rhee, John Junghwan III-241
Riahi, Siavash III-28
Riyadh, H. T. M. A. III-412
Robben, Jeroen II-217
Roy, Arnab II-433

S
Saah, Gustave Tchoffo I-432
Safavi-Naini, Reihaneh III-74
Sakai, Yusuke II-373
Sasaki, Yu I-318
Schardong, Frederico II-3
Schuldt, Jacob C. N. II-373
Serror, Martin II-241
Shang, Jiaze II-265
Siewert, Hendrik III-190

Author Index 463

Sinha, Sayani II-47
Smart, Nigel P. II-133
Somorovsky, Juraj III-190
Song, Yongsoo II-403
Šorf, Milan II-101
Spangsberg, Anne Dorte I-58
Su, Xiangyu I-88
Sugawara, Takeshi I-318
Sun, Ling III-355

T
Taguchi, Ren II-79
Takabi, Daniel II-313
Takayasu, Atsushi II-79
Tanaka, Keisuke I-88
Tang, Lu-An III-241
Terner, Ben II-133
Tsudik, Gene I-26

U
Uluagac, Selcuk I-183

V
Valle, Victor II-3
Vanhoef, Mathy II-217
Venturi, Daniele I-135
Verbauwhede, Ingrid III-271
Verbel, Javier I-457
Visintin, Alessandro I-183

W
Wagh, Sameer II-403
Wagner, Eric II-241
Wang, Long I-213

Wang, Pengfei I-88
Wang, Qi III-241
Wang, Ruize III-301
Wang, Xianbo III-432
Wang, Yisong I-213
Wehrle, Klaus II-241
Wei, James III-241
Wiedemeier, Joshua III-241

X
Xu, Dongpeng III-217
Xu, Haitao II-283
Xu, Yuquan II-340

Y
Yang, Bo-Yin II-24
Yang, Yibin III-51
Yasuda, Satoshi II-373
Yu, Jiongchi II-283
Yu, Xiao III-241
Yung, Moti III-3

Z
Zagórski, Filip III-3
Zamani, Mahdi III-51
Zhang, Fan II-283
Zhang, Han II-265
Zhang, Mengyu I-213
Zhang, Naiqian III-217
Zhang, Xiaoping I-213
Zhao, Pengfei II-265
Zhao, Ziming II-283
Zhou, Zhihao II-283

	 Preface
	 Organization
	Abstracts of Keynote Talks
	 Applying Machine Learning to Securing Cellular Networks
	 Real-World Cryptanalysis
	 CAPTCHAs: What Are They Good For?
	 Contents – Part III

	Blockchain
	Mirrored Commitment: Fixing ``Randomized Partial Checking'' and Applications
	1 Introduction
	1.1 Notation

	2 Chaumian Randomized Partial Checking (RPC) Mix Net
	2.1 Protocol Description
	2.2 RPC Audit
	2.3 Attacks on RPC

	3 Mirrored Randomized Partial Checking (mRPC)
	3.1 Protocol Description
	3.2 mRPC Audit
	3.3 Attack Examples on mRPC
	3.4 Security of mRPC

	4 Privacy Guarantees of RPC and mRPC
	4.1 Constant Number of Mix-Servers
	4.2 Mixing Time

	5 Application: CryptoCurrency Unlinkability
	6 Conclusions
	A Proofs
	A.1 Proof of Lemma 4
	A.2 Proof of Lemma 6
	A.3 Proof of Lemma 7

	References

	Bitcoin Clique: Channel-Free Off-Chain Payments Using Two-Shot Adaptor Signatures
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Model
	3.1 Blockchain and Transaction Model
	3.2 Commit-Chain Model
	3.3 Communication and Adversarial Assumptions
	3.4 Security and Performance Guarantees

	4 Protocol Overview
	5 Bitcoin Clique Protocol
	6 Future Work
	A Bitcoin Clique Healing
	A.1 Healing Extension Details
	A.2 Discussion and Future Work

	References

	Programmable Payment Channels
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Programmable Payment Channels
	3.1 Defining FPPC
	3.2 PPC Preliminaries
	3.3 Ideal Functionality FPPC
	3.4 Concrete Implementation of FPPC
	3.5 Lightweight Applications of Programmable Payments
	3.6 Implementation and Evaluation

	4 State Channels from FPPC
	4.1 Modifying FPPC to Capture State Channels
	4.2 Defining FSC
	4.3 Implementing FSC in theFPPC-Hybrid World

	5 Conclusions
	References

	Fair Private Set Intersection Using Smart Contracts
	1 Introduction
	1.1 Other Coin-Compensated PSI

	2 Related Work
	3 Preliminaries and Notations
	4 Fair PSI Using Smart Contracts
	4.1 Smart Contract as the TTP in Optimistic Mutual PSI
	4.2 Security Model
	4.3 Ideal Functionality for Coin-Compensated PSI

	5 A Coin-Compensated Fair SC-Aided PSI
	5.1 Security Analysis

	6 Improving the Efficiency of
	6.1 Our Technique for Optimizing the Protocol
	6.2 Overview of *
	6.3 Security Analysis

	7 Complexity Analysis
	8 Implementation
	8.1 Evaluation

	9 Concluding Remarks
	References

	Powers-of-Tau to the People: Decentralizing Setup Ceremonies
	1 Introduction
	2 Related Work
	2.1 Multiparty Setup Ceremonies
	2.2 Setup Ceremonies in Practice
	2.3 Proof Systems with Transparent Setup

	3 A Powers-of-Tau System: Definitions
	4 Powers-of-Tau Setup with Full Data On-Chain
	4.1 Security

	5 Powers-of-Tau Setup Protocol with Data Off-Chain
	5.1 Off-Chain Setup Using a Transparent Succinct Proof
	5.2 Off-Chain Setup Using AFGHO Commitments On-Chain

	6 Implementation and Evaluation on Ethereum
	7 Concluding Discussion and Open Problems
	7.1 Incentives for Participation
	7.2 Verifying Participation
	7.3 Sequential Participation and Denial-of-Service
	7.4 Verification with General-Purpose Roll-Ups
	7.5 Protocol-Specific ZK Rollups via Proof Batching
	7.6 Protocol-Specific Optimistic Verification and Checkpointing
	7.7 Fully Off-Chain Verification via IVC/PCD
	7.8 Forking/Re-starting

	A Proof of Theorem 2
	B Inner-Pairing Product Arguments for Sect.5.2
	C Off-Chain Setup from IPP Arguments with a Smaller Setup
	D Powers-of-Tau with a Punctured Point
	References

	Smart Infrastructures, Systems and Software
	Self-sovereign Identity for Electric Vehicle Charging
	1 Introduction
	2 Background
	2.1 E-mobility
	2.2 Self-Sovereign Identity (SSI)

	3 Related Work
	4 System Model and Requirement Analysis
	4.1 Scope
	4.2 Attacker Model
	4.3 Functional Requirements
	4.4 Security and Privacy Requirements

	5 SSI Concept
	5.1 Concept Overview
	5.2 Provisioning DID Creation
	5.3 Contract Credential Installation
	5.4 Charging Process and Credential Validation
	5.5 Integration into ISO 15118-20

	6 Implementation
	7 Evaluation
	7.1 Performance Measurements
	7.2 Security and Privacy Analysis with Tamarin
	7.3 Discussion of Requirements

	8 Conclusion
	References

	``Hello? Is There Anybody in There?'' Leakage Assessment of Differential Privacy Mechanisms in Smart Metering Infrastructure
	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Statistical t-test Analysis

	3 System and Threat Model
	3.1 Threat Surfaces
	3.2 Capabilities of the Adversary
	3.3 Goal of the Adversary

	4 Formal Analysis of Leakage Due to Privacy-Utility Trade-Off in Smart Metering Systems
	5 Proposed Attack Methodology
	5.1 Precomputation Phase
	5.2 t-test Based Attack Methodology

	6 Evaluation of the Proposed Attack Methodology
	6.1 Experimental Setup
	6.2 Experimental Evaluation

	7 Discussion
	8 Conclusion and Future Work
	References

	Security Analysis of BigBlueButton and eduMEET
	1 Introduction
	2 Background
	2.1 WebRTC
	2.2 WebRTC Architectures in Conferencing Systems

	3 Analysis Method
	3.1 High-Level Analysis
	3.2 Source Code Supported Security Analysis

	4 Architectures of the Analyzed Open-Source Conferencing Systems (RQ1)
	4.1 Shared Architecture
	4.2 Implementation of BigBlueButton
	4.3 Implementation of eduMEET

	5 Features and User Roles (RQ2)
	5.1 Comparison of Features
	5.2 User Roles

	6 Attacker Model
	7 Evaluation (RQ3)
	7.1 BigBlueButton
	7.2 eduMEET
	7.3 Responsible Disclosure

	8 Discussion
	8.1 BigBlueButton
	8.2 eduMEET
	8.3 Limitations

	9 Related Work
	10 Conclusions and Future Work
	A Appendix
	A.1 eduMEET
	A.2 Status of Fixes in BigBlueButton

	References

	An In-Depth Analysis of the Code-Reuse Gadgets Introduced by Software Obfuscation
	1 Introduction
	2 Background
	2.1 Code Obfuscation
	2.2 Code-Reuse Attack

	3 Code-Reuse Gadgets Introduced by Obfuscation
	3.1 Benchmark and Obfuscation Selection
	3.2 Gadget Measurement

	4 Study Results
	4.1 Gadget Quantity
	4.2 Gadget Exploitability
	4.3 Gadget Quality
	4.4 Code-Reuse Attack Risk

	5 The Anatomy of the Obfuscations and Gadgets
	5.1 Instructions Substitution
	5.2 Control Flow Flattening
	5.3 Bogus Control Flow
	5.4 Virtualization
	5.5 Just-In-Time Dynamic
	5.6 Self-modification
	5.7 Encode Components

	6 Mitigation
	6.1 Strategy
	6.2 Evaluation

	7 Related Work
	8 Conclusion
	References

	ProvIoT: Detecting Stealthy Attacks in IoT through Federated Edge-Cloud Security
	1 Introduction
	2 Background
	2.1 Fileless Attacks on IoT Devices
	2.2 System Provenance and Graph Learning

	3 Threat Model
	4 System Overview
	4.1 Local Brain
	4.2 Cloud Brain

	5 Federated Detection
	5.1 Graph Building and Path Selection
	5.2 Document Embedding Model
	5.3 Federated Autoencoder

	6 Implementation
	7 Evaluation
	7.1 Dataset
	7.2 Experimental Protocol
	7.3 IoT Malware Detection
	7.4 APT Detection
	7.5 Federated Learning Benefits
	7.6 ProvIoT Overhead

	8 Limitations
	9 Related Work
	10 Discussion and Future Work
	11 Conclusion
	A Appendix
	A.1 IoT Workload.
	A.2 Dataset Statistics.
	A.3 APT Scenarios

	References

	Attacks
	A Practical Key-Recovery Attack on LWE-Based Key-Encapsulation Mechanism Schemes Using Rowhammer
	1 Introduction
	1.1 Paper Organization

	2 Preliminaries
	2.1 Learning with Errors (LWE) Problem and Its Variants
	2.2 LPR Public-Key Encryption
	2.3 Kyber
	2.4 Saber
	2.5 Related Works

	3 Our Attack Using Binary Decision Tree on the LPR-Based Schemes
	3.1 Implementing a Parallel Plaintext Checking (PC) Oracle
	3.2 Generic Attack Model Using PC Oracle
	3.3 Model for Kyber and Saber
	3.4 Comparing Our Attack with the State-of-the-Art

	4 Realization of the Fault Model
	4.1 Nature of the Fault in the Attack
	4.2 Our Target Devices
	4.3 Probabilities of Incorporating Precise Fault Using Random Rowhammer

	5 Discussion and Future Direction
	5.1 Shuffling and Masking:
	5.2 Extension of Our Attack on Other PQC Schemes
	5.3 Combining of Lattice Reduction Techniques with Our Attack
	5.4 Possible Countermeasures

	References

	A Side-Channel Attack on a Higher-Order Masked CRYSTALS-Kyber Implementation
	1 Introduction
	2 Previous Work
	3 Background
	3.1 Notation
	3.2 Kyber Algorithm

	4 Adversary Model
	5 Attack Description
	5.1 Profiling Stage
	5.2 Attack Stage

	6 Experimental Setup
	7 Leakage Analysis
	7.1 Unprotected Message Encoding
	7.2 Masked Message Encoding
	7.3 Finding New Leakage Points

	8 Neural Network Training
	8.1 Trace Acquisition and Pre-processing
	8.2 Network Architecture and Training Parameters

	9 New Chosen Ciphertext Construction Method
	9.1 Constructing Chosen Ciphertexts
	9.2 Selecting Optimal Mapping

	10 Experimental Results
	10.1 Message Recovery Attack
	10.2 Secret Key Recovery Attack

	11 Countermeasures
	12 Conclusion
	References

	Time Is Money, Friend! Timing Side-Channel Attack Against Garbled Circuit Constructions
	1 Introduction
	2 Background and Adversary Model
	2.1 Yao's Garbled Circuit (GC)
	2.2 k-means Algorithm
	2.3 Cache Architecture
	2.4 Adversary Model

	3 Timing Side-Channel Leakage in Garbling Tools: An Observation
	4 Goblin and Its Building Blocks
	4.1 Our Eviction Method: Junk Generator
	4.2 Measuring Time on CPUs
	4.3 Recovering Garbler's Input
	4.4 Performance Metric

	5 Experimental Results
	5.1 Results for Benchmark Functions
	5.2 Scalability of Goblin
	5.3 Impact of the Number of Traces

	6 Discussion
	6.1 Potential Countermeasures

	7 Conclusion
	8 Responsible Disclosure
	References

	Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48
	1 Introduction
	2 Preliminaries
	2.1 Differential Cryptanalysis
	2.2 Related-Key and Related-Tweak Differential Cryptanalyses
	2.3 Specification of HALFLOOP-48

	3 Automatic Search of Differentials
	3.1 Boolean Satisfiability Problem
	3.2 SAT Models for Linear Operations of HALFLOOP-48
	3.3 SAT Model for the S-Box of HALFLOOP-48
	3.4 SAT Model for the Objective Function
	3.5 Finding More Differential Characteristics in the Differential

	4 Differential Properties of HALFLOOP-48
	4.1 Conventional Differential Properties of HALFLOOP-48
	4.2 Related-Tweak Differential Properties of HALFLOOP-48
	4.3 Related-Key Differential Properties of HALFLOOP-48

	5 Differential Attacks on HALFLOOP-48
	5.1 Related-Tweak Differential Attack on HALFLOOP-48
	5.2 Full-Round Related-Key Differential Attack on HALFLOOP-48

	6 Conclusion
	References

	Users and Usability
	How Users Investigate Phishing Emails that Lack Traditional Phishing Cues
	1 Introduction
	2 Background
	3 Related Work
	4 Method and Study Design
	4.1 Participant Recruitment
	4.2 Ethical Study Design
	4.3 Email and Webpage Content Design
	4.4 Data Collection and Cleaning

	5 Overview of Study Data and Participant Population
	6 Study Results
	6.1 Mapping of Responses to the Human-In-The-Loop-Model
	6.2 Impact of Features on Participants' Reactions

	7 Discussion and Contextualization of Results
	7.1 Noticing, Expecting and Suspecting Context
	7.2 Investigative Measures
	7.3 Biases and Limitations

	8 Future Work
	9 Conclusion
	A Appendix: Survey Instrument
	A.1 Demography
	A.2 Phishing Emails and Reactions
	A.3 IT-Context and Sensitization

	B Appendix: Large Scale Images of Phishing Content
	C Appendix: HITL-Model: Figures
	D Appendix: Resulting Correlations
	References

	Usable Authentication in Virtual Reality: Exploring the Usability of PINs and Gestures
	1 Introduction
	2 Background
	2.1 Virtual Reality
	2.2 Authentication
	2.3 Usability

	3 Related Work
	3.1 Interaction in VR
	3.2 Authentication in VR
	3.3 Usability Issues in VR Authentication

	4 Study Design and Implementation
	4.1 Methodology
	4.2 Recruitment
	4.3 Data Collection
	4.4 Pilot Testing
	4.5 Data Analysis
	4.6 Ethical Considerations

	5 Results
	5.1 Authentication Type and Usability
	5.2 Authentication Type and Login Time
	5.3 PIN: Experienced vs. First-Time User
	5.4 Gesture: Experienced vs. First-Time User

	6 Discussion
	6.1 Impact of Authentication Type on Usability in VR
	6.2 Impact of Experience on Usability in VR
	6.3 Limitations

	7 Conclusion and Future Work
	A System Usability Scale
	References

	Living a Lie: Security Analysis of Facial Liveness Detection Systems in Mobile Apps
	1 Introduction
	2 Background
	2.1 Facial Recognition Pipeline
	2.2 Design Patterns of Mobile Facial Recognition Systems
	2.3 Modes of Liveness Detection

	3 Threat Model
	4 Mobile Facial Liveness Detection Protocols
	4.1 General Protocol Flow
	4.2 Design and Implementation Details

	5 Weakness of Liveness Detection SDKs
	5.1 Insufficient Client-Side Code Protection
	5.2 Insecure Protocol Design
	5.3 Flaws in SDK Implementations
	5.4 Mistakes by App Developers

	6 Empirical Study
	6.1 Retrieval of Face SDKs
	6.2 Security Metrics of Face SDKs
	6.3 Face SDKs in High-Profile Financial Apps
	6.4 Market Scale Evaluation
	6.5 Case Study

	7 Discussion on Mitigation
	8 Related Work
	9 Conclusion
	A Flawed Encryption Scheme and Oracle Attack
	B Face SDK Scanning Result of App Categories
	C Reference Protocol with Security and Usability Consideration
	References

	Author Index

