
The Key Lattice Framework
for Concurrent Group Messaging

Kelong Cong3 , Karim Eldefrawy2 , Nigel P. Smart1,3(B) ,
and Ben Terner2

1 COSIC, KU Leuven, Leuven, Belgium
nigel.smart@kuleuven.be

2 SRI International, Menlo Park, USA
{karim.eldefrawy,ben.terner}@confidencial.io

3 Zama Inc., Paris, France
kelong.cong@zama.ai

Abstract. Today, two-party secure messaging is well-understood and
widely adopted, e.g., Signal and WhatsApp. Multiparty protocols for
secure group messaging are less mature and many protocols with dif-
ferent tradeoffs exist. Generally, such protocols require parties to first
agree on a shared secret group key and then periodically update it while
preserving forward secrecy (FS) and post compromise security (PCS).

We present a new framework, called a key lattice, for managing keys in
concurrent group messaging. Our framework can be seen as a “key man-
agement” layer that enables concurrent group messaging when secure
pairwise channels are available. Security of group messaging protocols
defined using the key lattice incorporates both FS and PCS simply and
naturally. Our framework combines both FS and PCS into directional
variants of the same abstraction, and additionally avoids dependence on
time-based epochs.

1 Introduction

End-to-end encrypted secure messaging systems such as Signal and WhatsApp
are widely deployed and used. The case of two-party protocols is well-understood,
and has been extensively analyzed in the literature [3,8,18,20,26], but multi-
party protocols (for group messaging) are still an active research area. At the
moment, the Message Layer Security (MLS) IETF working group1 is developing
a standard to define an efficient and secure group messaging protocol. The key
building block of MLS is continuous group key agreement (CGKA), which lets
a group of users securely agree on a shared secret key [4], evolve it continuously
while ensuring forward secrecy (FS) and post compromise security (PCS).

Many existing CGKA protocols, and their extension to group messaging
protocols, require an additional infrastructure server that guarantees availabil-
ity and orders messages. Recent work reduces dependence on the additional
infrastructure, but still depends on a propose-and-commit paradigm [1,2,6] that

1 https://messaginglayersecurity.rocks/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14584, pp. 133–162, 2024.
https://doi.org/10.1007/978-3-031-54773-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54773-7_6&domain=pdf
http://orcid.org/0000-0002-2636-4406
http://orcid.org/0000-0002-4008-0047
http://orcid.org/0000-0003-3567-3304
http://orcid.org/0000-0002-7740-2812
https://messaginglayersecurity.rocks/
https://doi.org/10.1007/978-3-031-54773-7_6

134 K. Cong et al.

allows concurrent update proposals but requires serial commitments to accept
the changes. This work develops abstractions and protocols to advance group
messaging towards truly asynchronous channels and a decentralized environment
where there is no central server to order messages. In such an environment, there
may be a different “latest” group key in the view of every honest user—all of
whom simultaneously encrypt messages, all of which must be decrypted.

Our main contribution is conceptual. We model the group keys used within
the protocol via a key lattice, which can be seen as an n-dimensional grid if
there are n participants. The key lattice tracks all the group keys that will ever
be used by the parties. Each key evolution travels along a path in the lattice.
Every party uses the key lattice to track not only its own view of the current
group key(s), but also the information it has about the other parties’ views. To
both permit concurrency (via the ability to swap the order of key updates) and
to prevent the state space from exploding, we require that the key evolution
functions are commutative.

By framing our (new) security definitions with respect to the key lattice, we
intuitively find that the dual (and simultaneous) notions of FS and PCS become
directional variants of the same simple notion, which states that the adversary
cannot traverse the key lattice to learn keys which it has not yet compromised.2

We also eliminate any dependence on epoch-based time from the analysis and
solely focus on the keys’ relationships to each other. To ensure PCS, parties
evolve the group key with random updates and define new points on the key
lattice. To ensure FS, each party tracks other parties’ views of the group key,
and deletes keys which it knows will never be used again. We also show how to
trade FS for correctness when desired, since in a fully asynchronous network, the
adversary may arbitrarily delay delivery of an encrypted application message in
order to force one party to hold old keys.

Our secondary contribution is an instantiation of a novel group messaging
protocol that uses the key lattice, and we prove its security.

Group Key Agreement vs. Group Messaging: It is not always straightfor-
ward to transform from group key agreement to group messaging. Key exchange
protocols usually contain a key-confirmation step, but when the key exchange
protocol is used as a building block in a larger protocol (e.g., secure messaging),
this step breaks the key indistinguishability property of key exchange. This is a
well known problem even for two-party key agreement followed by composition
with a secure channel, see for example [15,16]. We avoid this definitional prob-
lem by treating key-agreement and messaging together and directly analyzing
the scheme for group messaging.

Asynchrony vs. Concurrency: An asynchronous group messaging protocol
means that the adversary can arbitrarily reorder messages that are sent, as long

2 This approach bears some resemblance to the analysis of Fuchsbauer et al. [24] for
public key re-encryption.

The Key Lattice Framework for Concurrent Group Messaging 135

as all are eventually delivered. This models a highly adversarial network, and
subsumes the scenario that some parties can temporarily “go offline” (if the
adverary does not deliver messages to them) and then receive messages later
when they come back online. A concurrent protocol allows messages, includ-
ing update messages, to be sent and processed concurrently. But messages are
delivered within some round of execution. The work by Bienstock, Dodis and
Rösler [7] studied the trade-off between PCS, concurrency, and communication
complexity. They show an upper-bound in terms of communication overhead
that increases from O(log n) when there is no concurrency, to O(n) when the
update messages are fully concurrent.

Concurrent group messaging is suitable for the decentralized setting where
there does not exist a central party to order messages. Nevertheless, it is possible
to use a central server as a broadcast station to improve the communication cost,
this way parties no longer need to broadcast messages to the group by themselves.

1.1 Related Work

Group key agreement and group messaging protocols have a long history. Early
work focused on generalizing the Diffie-Hellman key exchange protocol [25,32].
Later work extended the security guarantees (e.g., by providing authentication,
forward secrecy, and post-compromise security) [10,12–14], and improved per-
formance and added new features (e.g., support for dynamic groups) [11]. This
section outlines a few of the related work that are similar to our work. For the
full details on the related work, please see the full version [21].

The closest work to ours is the recent paper by Weidner et al. [33], who
introduced “decentralized” continuous group key agreement (DCGKA). DCGKA
makes progress on the concurrency problems in ART and RTreeKEM so that all
group members converge to the same view if they receive the same set of messages
(possibly in different orders). The key primitive that enables concurrent updates
is authenticated causal broadcast, defined in a similar way as Lamport’s vector
clocks [27]. Additionally, the authors made progress on how to manage group
membership in an asynchronous network without a central server. However, their
construction still requires a serial commitment.

In comparison to Weidner et al. [33], our construction does not require
authenticated causal broadcast; we permit asynchronous messaging by buffering
messages that are received out of order, and we authenticate via authenticated
encryption. Our construction also does not require acknowledgements. This sub-
stantially reduces the cost of an update because DCGKA requires n−1 broadcast
acknowledgements for an update.

Sender Keys, currently deployed by WhatsApp [35], also builds group mes-
saging from pairwise Signal. During initialization, each party sends a symmetric
“sender” key to all the group members using the pairwise Signal protocol. This
key is used for encrypting payload messages by that party. Every party keeps
n “sender” keys in their state where n − 1 keys are used for decryption and 1
is used for encryption. Sender Keys does not provide PCS since an adversary

136 K. Cong et al.

Table 1. Comparing our work and existing work. PCS denotes post compromise secu-
rity, and FS denotes forward secrecy. ROM stands for the random oracle model, StM
denotes the standard model. (�) an update for DCGKA requires n − 1 broadcast
acknowledgements, so the total complexity is O(n2), although the sender’s compu-
tational complexity is O(n). (�) These works use the propose-and-commit paradigm,
where assumes the existence of epochs and allows concurrent proposals but a serial com-
mitment is required. (†) t is the number of corrupt parties. (‡) The server in CoCoA
and SAIK processes an update to send an individual packet to each participant. They
also order messages. (�) The SAIK server arbitrarily chooses one of concurrent updates
to be processed. Our work is the only one which supports concurrent updates, does
not require an active server, is PCS and FS and has a proof of security against adap-
tive adversaries. In this table desired features are highlighted in blue and those which
negative impact security are in red.

Protocol Update Cost PCS FS Active Server Concurrent Updates Proof Adaptive

Sender Receiver Healing
Rounds

Original TreeKEM [30] O(log n) O(1) n yes yes Ordering no None n/a
Causal TreeKEM [34] O(log n) O(1) n yes yes none causal StM yes
RTreeKEM [4] O(log n) O(1) 2 yes yes Ordering no ROM yes
Concurrent TreeKEM [7] O(n) O(1) 2 yes no none yes StM yes
Signal group [22,31] O(n) O(1) 2 yes yes Prekeys yes None n/a

Sender Keys [31,35] O(n2) O(n) 2 yes yes Prekeys yes None n/a
DCGKA [33] O(n) (�) O(1) 2 yes yes none yes (�) ROM no
CoCoA [2] O(log n) O(1) log(n) yes yes Process-Updates (‡) yes (�) ROM yes
SAIK [6] O(log n) O(1) 2 yes yes Process-Updates (‡) yes (�) ROM yes
DeCAF [1] O(log t) (†) O(1) log(t) yes yes blockchain yes (�) ROM yes
Our work O(n) O(1) 2 yes yes none yes StM yes

who corrupts a party will learn all the symmetric keys and decrypt future mes-
sages sent to all parties. Fully healing the state therefore requires every party to
update its symmetric key, which has a cost of O(n2).

Our work can be viewed as a generalization of Sender Keys with improved
security and functionality, where parties update the key lattice instead of hold-
ing symmetric keys for each party. The group session heals once a corrupted
party’s pairwise channels heal because the next update it sends or receives is
indecipherable to the adversary. This requires O(n) public key operations (also
O(n) communication complexity) after one corruption.

Summary: Table 1 summarizes a representative sample of recent literature on
group key agreement and group messaging. “Update Cost” gives the communi-
cation complexity to update a shared or pairwise key, for the sender and the
receiver, and “Healing rounds” describes the round complexity of healing the
session after a corruption. “Active Server” is a server that provides additional
functionalities other than a PKI, such as ordering messages or post-processing
updates. For example, the Signal servers need to store single-use pre-keys and
the TreeKEM servers need to order messages. “Adaptive” means whether the
adversary can adaptively pick which oracles to query during the security game.

Our work, on the last row, carves out a new trade-off in the group messaging
design space. Specifically, we use pairwise channels which results in O(n) update
cost and, in contrast to prior work, maintain a set of evolving shared group key
without compromising security, i.e., allowing adaptive queries.

The Key Lattice Framework for Concurrent Group Messaging 137

1.2 Technical Overview

Our group messaging (GM) protocol consists of three building blocks: (1) an
initial group key agreement (GKA) protocol, (2) a group randomness messag-
ing (GRM) protocol used to transport key updates, and (3) a key lattice. We
overview all blocks but focus on the key lattice as it is our primary contribution.

Group Key Agreement (GKA): Our GKA assumes existence of a public key
infrastructure (PKI). In other words, each party knows the other party’s long-
term public key. The protocol takes as input the identities and public keys of the
group members and outputs a symmetric key shared by those members. This
symmetric key is used by the other two building blocks detailed below. We use
the GKA as a black box and thus are not concerned with the exact construction
in this work. Nevertheless, we require that it is forward secure, i.e., if the long-
term secret key is compromised after agreeing on a shared key, the adversary
still learns nothing about the shared key. Note that many GKA protocols exist
in the literature [9,13,14,29]. In this work we use the definition from [14], which
allows for asynchrony (as needed by our construction).

Group Randomness Messaging (GRM): GRM abstracts the transport
mechanism used to communicate key updates and make our proof more modu-
lar. Because GRM requires pairwise channels with FS & PCS, it could be imple-
mented using pairwise 2-party secure messaging e.g., pairwise Signal or another
double-ratchet-based protocol. We provide a custom instantiation of GRM in
Sect. 5 that better fits our assumptions (specifically, we assume only a public
key infrastructure and do not require a server to distribute pre-key bundles), is
conceptually simpler than a double-ratchet, and is easier to prove secure. Never-
theless, we give an outline of how to build a concurrent group messaging protocol
from black-box primitives in Sect. 3.4.

Our GRM protocol is intuitively simple. Whenever a party U sends a random
message x to party V , U samples a fresh key pair (pk′, sk′), and encrypts (x, pk′)
under the public key pkV that U holds for V . When V receives (x, pk′), it assigns
pk′ as its latest public key for U and outputs x as U ’s message. Future messages
sent by V to U must be encrypted under the latest ephemeral public key that
V holds for U . The scheme achieves both FS and PCS because all secret keys
are independently sampled with every message sent, and therefore leaking one
secret key never reveals information about another. The scheme uses a public
key AEAD scheme for all encrypted messages, where the associated data are
bookkeeping material on the order of updates.

Key Lattice: We now explain our key lattice framework, including our security
game and its representation of FS and PCS.

Framework: Every group key in a group messaging protocol is associated with
a coordinate in a discrete n-dimensional space, where n is the number of players

138 K. Cong et al.

k0,0

k1,0

k2,2

k0,2

(a) The red vertices and edges are ex-
plicitly revealed to the adversary.

k0,0

k1,0

k2,2

k0,2

(b) The full set of information that an
adversary can compute from 1a.

Fig. 1. In Fig. a, the red vertices and edges are explicitly revealed to the adversary. If
PCS holds, then the adversary cannot compute the key k2,2 because there is no path
of red edges from a red vertex to k2,2. In Fig. b, the adversary can compute the keys
k0,1, and k0,1, and k1,1 by starting at k0,0 and following a path of red edges. FS can
analogously be visualized by (preventing) traversing the directed graph “backwards”
from a compromised vertex. (Color figure online)

in the group. When parties update the group key (at some index), the new key
produced is mapped to a larger index. For example, for n = 2, a key k1,0 at
coordinate (1, 0) may be updated to a new key with an associated coordinate
k1,1. We also provide a graphical explanation of a key lattice in which the indices
in the discrete n-dimensional space are vertices, and each vertex is labeled with
a key. In the graph, edges between vertices represent key updates.

FS & PCS: Our key lattice allows us to discuss FS & PCS in a unified and simple
manner, as directional variants of the same abstraction. In Fig. 1, every key is
mapped to a point on the graph, and updates are mapped to edges in the graph.
Black vertices and edges are not revealed to the adversary, and red vertices and
edges are revealed. A party that “knows” both the key corresponding to a vertex
and an edge leaving that vertex will also “know” the vertex’s neighbor. FS &
PCS mean that the only way the adversary can learn a key k∗ at some target
vertex v∗ is by starting with a red vertex on the graph and following a path of
red edges to v∗. In the traditional definition of FS, this would mean that given
a vertex v, without following (in reverse) a path of red edges, the adversary
cannot learn a predecessor of v. In the traditional definition of PCS, this would
mean that given a vertex v, without following a path of red edges, the adversary
cannot learn a successor of v. The key lattice is described in full in Sect. 3.

Security Game and Freshness: Our security game is an oracle game in which the
adversary activates oracles corresponding to parties running a polynomial num-
ber of protocol executions. The adversary plays a semantic security game against
a “fresh” key on one of the lattices. A key is “fresh” precisely if the adversary
cannot derive that key from its view of the execution thus far; graphically, this
means that the key is black in the corresponding graph akin to Fig. 1b. The

The Key Lattice Framework for Concurrent Group Messaging 139

y

x

k0,0

(a)

y

x

k0,1

(b)

y

x

k1,1

k1,0

(c)

Fig. 2. An example of a local key lattice in an execution with two players (blue and
red) from the perspective of the red party. (Color figure online)

adversary wins the semantic security game if it can distinguish two ciphertexts
encrypted under a fresh key.

Tracking Keys of Other Parties: Each party maintains a local key lattice to track
the group keys, but does not (necessarily) need to maintain a full view of the key
lattice. Each party tracks only the keys it needs in order to decrypt a message
that it has not yet received. This permits the construction to achieve the best
possible FS while also achieving correctness; as soon as some party knows it no
longer needs some key, it deletes the key from its view (in order to prevent an
adversary from learning the key after it has become deprecated).

We illustrate our approach in Fig. 2. For simplicity, we only consider two
parties labelled with the colors red and blue. The shaded regions, assigned by
color, indicate the set of points towards which the corresponding party may
define a new group key in the future. Any point in a totally unshaded region
represents an index of a key that can be deleted. In our construction, when any
party updates the key, it moves the latest group key towards a point in the n-
dimensional space along an axis that has been assigned uniquely to it. Blue and
red update the key towards higher indices on the x axis and y axis, respectively.

1. In Fig. 2a, the red and blue parties initialize their local lattices with k0,0.
2. In Fig. 2b, red evolves the group key, which moves red’s latest key to k0,1.
3. In Fig. 2c, suppose red received an update message from blue. Red applies

the update and evolves its own index from k0,1 to k1,1. Because red knows
that blue evolved its key, red updates its view of blue’s index k0,0 to k1,0.
Specifically, red’s perspective of the latest key for blue becomes k1,0. Since
k0,0 and k0,1 are outside the shaded region, these keys are removed.

Windowing to Limit State Expansion: In addition to the state reduction
described above, we also apply a state “window” that prevents the state from
blowing up in case encrypted messages are delayed over the network, at the
expense of the ability to decrypt long-delayed messages. Consider that if one

140 K. Cong et al.

party makes m updates to the shared group key, resulting in m possible differ-
ent group keys, then parties must keep O(m) states in case another party sends
a message using one of those m keys. In our windowing scheme, each party main-
tains at most the latest w key evolutions from every other party, which provides
the ability to compute at most wn total keys on the key lattice at any time.

When using this scheme, there are situations in which parties may send
messages such that some application messages are not decryptable. Suppose
sender S sends an application message m encrypted under key k, and then
suppose S updates the group key w times starting with k. If S’s message m is
delayed until after receiver R receives S’s key updates, then R will delete the key
material describing how to decrypt m. In synchronous networks, the window can
be set such that parties update their keys once per epoch, and the window can be
set large enough (by setting w is equal to the number of epochs that measure the
network delay) for sent messages to always be received in time to be decrypted.
In the general asynchronous case, the window can be set to ∞ in order to always
guarantee decryption, but this approach loses FS.3 Thus, windowing allows us
to trade between security and correctness.

Group Messaging (GM): In our construction, parties who wish to participate
in a GM instance begin by running a GKA protocol to obtain a shared symmetric
key k. They use k to initialize their key lattice, and then use GRM to securely
communicate update messages that can be applied to the key lattice to evolve
the shared group key. When a party encrypts an application (payload) message,
it always uses the latest key in its key lattice.

Dynamic Membership: We provide an informal extension of our framework
that permits dynamic group membership “for free,” and additionally handles
simultaneous adds and removals with no additional effort, thus completely avoid-
ing “splitting” [5] issues in synchronous protocols where multiple parties make
competing simultaneous updates. The intuitive understanding is to view our rep-
resentation of a key lattice as a lossless compression of an n-dimensional space
in which only a finite number of points are defined, where n is the number of
all possible identities. Each dimension in the key lattice represents a party that
belongs to the group, and all other dimensions in the lattice are defined to con-
tain points set to ⊥. When a party joins the group, points become defined in
its corresponding dimension. When it leaves the group, its future group updates
become invalid.

Treating dynamic membership in this way averts all of the problems of con-
currency incurred by other works, including with respect to insider attacks, since
groups including the new members are only defined in the lattice as successor
points of the addition operation, and we incur no conflicts by maintaining mul-
tiple copies of the lattice that correspond to groups both with and without the
3 This tradeoff was similarly explored by [28]; our asynchronous security model specif-

ically accounts for the attacks they describe by withholding some ciphertexts and
corrupting a party days later to recover the messages.

The Key Lattice Framework for Concurrent Group Messaging 141

new member. Dynamic membership is not the main focus of our work and a
formal definition and analysis is needed before it can be considered for practical
use, which we leave for future work. Nevertheless, we provide more details of our
dynamic group extension in the full version [21].

2 General Definitions and Notation

We denote by N the natural numbers. For a list �, �[i] denotes the ith element of
�. We write [m] = {1, . . . , m}, and [a, b] = {a, a + 1, . . . , b − 1, b} where b > a. P
is the set of all possible parties, and n = |P|. We define a function φ : P → [n]
that assigns a canonical ordering of P, i.e., to each U ∈ P, φ(U) assigns a unique
index between 1 and n.

Let i ∈ N
n denote an index vector. All keys will be indexed by index vectors,

i.e., we will always write the secret keys as ki. The j-th element of index vector
i will be denoted by i(j). We introduce a function increment(i, j) with inputs an
index vector i and an integer j ∈ [n] and returns an index vector i′ such that
for i �= j, i′(i) = i(i), and i′(j) = i(j) + 1. Similarly, decrement(i, j) returns an
index vector i′ such that for i �= j, i′(i) = i(i), and i′(j) = i(j) − 1. We define a
partial ordering over index vectors by saying i ≥ c if i(j) ≥ c(j) for all j. H≥c

for a constant index vector c ∈ N
n denotes the n-dimensional hyperplane of all

index vectors i such that i(j) ≥ c(j) for all j ∈ [n].

Network Model: Parties are connected via pairwise channels such that both
parties know the identity of the party on the other end. A PKI provides a
mapping between an identity U ∈ P and its long-term public key. Every U ∈ P
also has its own long-term private key.

Adversarial Model: In our security game, the adversary is responsible for
delivering all messages to its oracles. It may reorder messages arbitrarily, as
per the definition of an asynchronous network [17]. Proper ordering of mes-
sages within a subprotool is enforced by sequence numbers on our updates and
encrypted messages, and therefore in the exposition we assume that each subpro-
tocol’s messages are ordered, but messages sent by different subprotocols (such
as GKA, GRM, and GM application messages) are not ordered with respect to
each other.

The adversary may call its oracles on messages that have not been sent by
honest parties. This is an injection attack. However, because all messages in
our constructions are authenticated, successfully changing the state of an oracle
without knowledge of a party’s underlying key would break the security of an
authenticated cryptographic primitive (e.g., AEAD).

The adversary can corrupt parties to learn protocol keys, and in some cases
may inject messages based on those keys. For example, learning a group key

142 K. Cong et al.

allows the adversary to inject application messages, but these injections do not
affect the security of other keys.4

We defer a discussion of insider security in our model to the full version [21].

Encryption: In the full version [21] we give the standard definitions for encryp-
tion, key encapsulation mechanisms (KEMs) and authenticated encryption with
associated data (AEAD) that we use in this paper. Notably, we use a variant of
public key encryption—public key encryption with additional data (PKEAD).
It is similar to an IND-CCA secure public key encryption scheme that allows
additional plaintext data to be appended, where the additional data binds to
the ciphertext.

3 Key Lattice

The key lattice is our central idea for managing concurrent key updates. Because
the key lattice tracks the set of group keys generated during a group messaging
execution, we additionally define security of group messaging with respect to the
key lattice. We now formally define a key lattice.

Definition 3.1 (Key Lattice). We define K to be the space of keys, and we
define L to be the lattice of N

n where the ordering is defined by ia ≤ ib if all
elements in ia are less or equal to ib, and i ∈ N

n denotes a point on the lattice.
A key lattice L = {(i, ki)}i∈L where ki ∈ K ∪ {⊥} is a discrete lattice for which
every point i ∈ L is associated with either a single key or ⊥.

We denote the association by letting ki be the key associated with i. We also say
that the key for an index i is defined if ki �=⊥. Intuitively, parties will compute
and agree on many pairs (i, ki).

Given a key lattice, a key ki is j-maximal if there is no j ∈ N
n for which

j(j) > i(j) and kj �=⊥. If a key is j maximal for all j ∈ [n], we say the key is
maximal in the lattice. Looking ahead, in each party’s local lattice there is always
a maximal key, computed by all applying all updates that the party knows.

3.1 Key Evolution

When a party evolves the group key, it adds a new key (or, as in our con-
struction in Sect. 3.3, a group of keys), to the key lattice. Key evolution is
described by a function KeyRoll : K × X → K, where K is the key space and X
is the update space, which encodes the data applied to the key during evolution.
In our construction, we will require a few properties of the KeyRoll function.
First, we require that KeyRoll is commutative, i.e. KeyRoll(KeyRoll(k, x), x′) =
KeyRoll(KeyRoll(k, x′), x) for all k ∈ K and x, x′ ∈ X .
4 Some authentication schemes require parties to sign messages with their long-term

keys [23] but adapting this to concurrent group messaging is non-trivial, and not the
focus of this work.

The Key Lattice Framework for Concurrent Group Messaging 143

In addition to commutativity, we require that KeyRoll : K × X → K is
unpredictable in its second input. Intuitively, knowing only the first input (a key
from K), no adversary can “predict” the output (another key from K), if the
second input (an update from X) is sampled at random. Similarly, we say that
KeyRoll’s inverse is unpredictable if given only k′ ← KeyRoll(k, x), no adversary
can “guess” the input k. More formally, we have the following.

Definition 3.2 (Unpredictability). A family of functions F = {Fλ}λ where
Fλ : Kλ×Xλ → Kλ is unpredictable in its second input if there exists a negligible
function negl such that for every probabilistic polynomial time adversary A and
every λ:

Pr[y = Fλ(k, x) : k ← Kλ, x ← Xλ, y ← A(1λ, k)] ≤ negl(λ)

F ’s inverse is unpredictable if there exists a negligible function negl such that for
any polynomial time adversary A and every λ:

Pr[k′ = k : k ← Kλ, x ← Xλ, k′ ← A(1λ, Fλ(k, x))] ≤ negl(λ)

where in each experiment, k and x are sampled uniformly at random from their
respective domains.

We remark that there are many families of unpredictable functions. For
instance, KeyRoll(k, x) = k⊕x satisfies the unpredictability definition, as well as
KeyRoll(k, x) = PRFx(k)5. In both cases, it is not possible to predict the output
without knowing the key. The difference between the first construction and the
second is that in the first case, knowing the first input and the output completely
leaks the update material x. This property is not critical to our construction; we
can prove security for our main protocol assuming only that KeyRoll is unpre-
dictable. However, for completeness (and for situations where unpredictability
is not enough), one can define a variant of one-wayness.

One-Wayness. We introduce a non-standard form of one-wayness to analyze
the properties of our scheme. Intuitively, a function is one-way on a challenge
(first or second) input if, given F (k, x) and the other input, it is hard for any
adversary to compute the challenge input. Below we provide definitions of one-
wayness on the second input. Although we do not use it in our construction, it
is also possible to define one-way-ness in the first input analogously to one-way-
ness in the second input. Intuitively, given x and F (k, x), it should be hard to
compute k. If KeyRoll is one-way in the first input, then the construction inherits
additional useful properties, which we describe in the full version [21]. We now
present our definitions for one-wayness on the second input.6

5 In practice we cannot use the PRF construction because it is not commutative.
6 We remark that the standard definition of one-wayness requires the adversary to

find an equivalent pre-image of the function, and not the exact same pre-image.

144 K. Cong et al.

Definition 3.3 (One-Wayness (on the Second Input)). A family of func-
tions F = {Fλ}λ where Fλ : Kλ×Xλ → Kλ is one-way on its second input if there
exists a negligible function negl such that for every probabilistic polynomial-time
adversary A and every λ

Pr[x′ = x : k ← Kλ, x ← Xλ, x′ ← A(1λ, k, Fλ(k, x))] ≤ negl(λ).

where k and x are sampled randomly from their respective domains.

�-Point One-Wayness. The definition above can be generalized to the setting
where A obtains polynomially many (in the security parameter) samples of
(k, Fλ(k, x)) pairs for different randomly sampled k but the same x. This addi-
tional property allows us to further constrain the power of the adversary. We
defer the definition and discussion to the full version [21].

3.2 The Key Graph

In our construction, parties track the group key(s) by assigning each key to a
point on the lattice. When a party evolves the group key, it defines the transition
from one point on the lattice to another. In fact, our construction defines the
transitions from a family of points to another family of points. Therefore, it is
useful to describe the key lattice as a directed acyclic graph, where the vertices
are labeled with keys, and the edges encode key evolutions.7 Specifically, we
define a key graph G, where each lattice point i ∈ N

n is a vertex, and each
vertex is labeled with a single key or with ⊥. In our discussion, we refer to
vertices by the lattice points they represent. There exists a directed edge from
vertex i to j if j = increment(i, k) for some k ∈ [n], and we say that i precedes
j, or j succeeds i, if there is an edge from i to j. Edges in a key graph are
labeled with the key evolutions that they represent. We say there exists a path
ρ of length � between two vertices i and i′ if there exists a sequence of edges
(v1, v2), (v2, v3), . . . , (v�−1, v�) such that (a) v1 = i, (b) v� = i′, and (c) vj−1

precedes vj for all j ∈ [2, �]. The local state held by each party in our protocol is
a pair (L,E), where L denotes the key lattice held by the party and E represents
the edges representing the transformation between keys.

3.3 Instantiation

We now describe how parties manipulate a key lattice.

Generating a Set of Key Evolutions. In our construction, each party updates the
group key in its own “direction” in L; the dth party (U ∈ P for which φ(U) = d)
always updates the group key towards larger indices in the dth dimension on
the lattice. A key update σ ∈ Σ sent by one party to another is therefore a
tuple (d, j, x), where d is a dimension in the key lattice (generated by the party

7 In this work, every graph is a directed acyclic graph.

The Key Lattice Framework for Concurrent Group Messaging 145

U such that φ(U) = d), j ∈ N is an index that annotates how many times the
updating party has updated the group key, and x ∈ X is data that describes
how to update the key (for KeyRoll). In other words, Σ = [n] × N × X . The jth
key evolution generated by any party therefore defines the transition from every
index i to index i′ such that i(d) = j and i′ = increment(i, d), and it defines the
evolution to use update data x. In our construction, the space X is the same as
described in Definitions 3.2 and 3.3.

Observe that each key update in our construction defines a group of key
evolutions, which can be described in our graphical representation as a group of
edges. We require commutativity of KeyRoll to guarantee that when transitioning
from key k to key k′ (over one or more edges), where k is represented by vertex
u, k′ is represented by vertex v, and there are multiple paths between u and v
in some party’s key lattice, it does not matter which path is taken.

Our KeyRoll Function. Our construction depends on the discrete logarithm
assumption to instantiate KeyRoll(k, x) as kx. That is to say, let key space K

be a prime-order group G in which the discrete log problem is hard, and let
update space X be Z|G|−1. This construction easily satisfies our commutativity
requirement since (kx)x′

= (kx′
)x. For appropriately chosen parameters, the

construction is trivially unpredictable. If the discrete logarithm problem is hard
in G, then KeyRoll is also one-way on its second input.

Computable Lattice: The description of a key lattice L may not be “com-
plete” in the sense that given a set L = {(i, k)} representing a key lattice, it
may be possible to infer the keys assigned to other indices on the lattice (i.e.,
points not in L). Below we illustrate the possible inferences depend on the choice
of the KeyRoll function. Consider the case where KeyRoll is defined using XOR,
then knowing the key at i and a succeeding key at i′ = increment(i, d) allows us
to derive the update σ, which may allow us to derive the keys at other lattice
points j such that j(d) = i(d).

The function Computable(L,E) → L′ outputs all the computable lattice
points L′ given the original lattice L and a set of updates E = {(d, j, x)}, where
d ∈ [n] is the dimension, j is an index and x is the argument to KeyRoll.

Two examples below illustrate the dependence of Computable on the proper-
ties of KeyRoll. Figure 3 illustrates how Computable works if a KeyRoll function
is not one-way. Figure 4 illustrates the difference when KeyRoll is one-way.

The function Computable(L,E) can be realized as follows:

1. Interpret the lattice L as a directed graph G. Initially this graph has no edges,
only vertices from L.

2. Add every edge from E to the graph. Recall that every edge in E corresponds
to multiple edges in G. Specifically, e = (d, j, x) describes all edges that begin
with a vertex (. . . , j, . . .) and end with a vertex (. . . , j + 1, . . .) where j and
j + 1 are on the dth position, and each edge is labeled with the update x.

146 K. Cong et al.

Fig. 3. Suppose the red keys in the figure on the left are revealed in a key lattice. If the
KeyRoll function is unpredictable but not one-way, then knowledge of a pair of adjacent
keys would reveal all edges (updates) in the corresponding row or column, as shown in
the middle figure. These inferred edges lead to additional computable keys (colored in
red) in the right figure. (Color figure online)

Fig. 4. Begin with the same lattice as in Fig. 3 but assume that KeyRoll is one-way.
The lattice points in the left figure do not allow us to compute a new lattice with more
keys. Given additional information on the edges in the middle figure, one additional
lattice point is computable (top left in the right figure).

3. Traverse G from the origin. For every pair of predecessor-successor vertices
(u, v) where u �=⊥ and v =⊥, if there exists an edge labeled with x connecting
u to v, then compute kv ← KeyRoll(ku, x).

4. Similar as above, but traverse G backwards and if there exist two predecessor-
successor vertices (u, v) where ku =⊥ and kv �=⊥ then compute ku ←
KeyRoll−1(kv, x), where x is the label on the edge between u and v. Note
that, if KeyRoll is one-way on its first input, then this step is omitted, as it is
hard to compute u given x and v.

Adding Keys: Parties may update the key lattice using Update(L, e) → L′

which takes a key lattice L and an update e = (d, j, x) and a returns a new key
lattice L′ as follows:

– Let D = {im} be all d-maximal index vectors in L.
– Output a new lattice L′ with additional points defined by (increment(i),

KeyRoll(ki, x)) for all i ∈ D.

The Key Lattice Framework for Concurrent Group Messaging 147

Note that since the lattice points included in D are d-maximal, all keys in
increment(i, d+1) are ⊥ in the original lattice L. One can think of this operation
as (possibly) adding keys to the lattice based on e.

In the key graph interpretation of the lattice, Update looks at the largest
index i for which a key is defined in dimension d, and labels every edge from i
to i + 1 in dimension d (holding every other dimension constant) with update e.

Forgetting Keys: A key lattice is an infinite object. To manage memory
requirements, (and looking ahead, to provide FS) we remove keys from a party’s
local version of the key lattice. The function Forget(L, i) → L′ takes a key lattice
L and an index vector i, and returns a new lattice L′ such that all keys in index
vectors i′ such that i′ < i, are set to ⊥. Implicitly, Forget also deletes from a
party’s state all of the edges leading to vertices that have been forgotten.

We use windowing to limit state expansion and provide FS (Sect. 1.2). When
we write Forget(L,w) → L′, then Forget works as follows, where w is the window
parameter. We call iw below the threshold index vector.

– For every dimension d ∈ [n], let id the maximum j such that there is a key
defined in L at index j in dimension d.

– Let iw be an index vector such that for every d ∈ [n], i(d)w = max(0, id − w).
– Execute Forget(L, iw) and return the new lattice L′.

3.4 Key Lattice as a Key Management Technique

The key lattice is enough to build a concurrent group messaging protocol from
existing primitives such as pairwise channels. The following generic approach
uses a key lattice to build concurrent group messaging using three building
blocks: (1) an initial group key, (2) secure pairwise channels between all par-
ties in a group and (3) an AEAD scheme for sending payload messages.

– Given the initial group key k0, the parties initialize their key lattice with
(0, k0), and assign ⊥ to the key at every other lattice point.

– If a party at index d ∈ [n] updates the key for the jth time, it samples x
$←− X

and sends (d, j, x) using the secure pairwise channels.
– Upon receiving (d, j, x) the receiver adds key k′ ← KeyRoll(k, x) to the lattice

at point i′, where k is the maximal key in the lattice and is located at point
i, and i′ ← increment(i, d).

– When a party at index d ∈ [n] sends an application message, it encrypts
the message using the maximal key k in its local key lattice and sends the
ciphertext to the group members (without using secure pairwise channels).
The ciphertext is encrypted using AEAD where the associated data is the
lattice index corresponding to the key used to encrypt the message.

– Upon receiving the ciphertext encrypting a payload message, the receiver
checks whether it has the key in the key lattice required to decrypt. If so,
then the receiver decrypts it immediately. Otherwise, the receiver buffers the
message until it receives sufficient information to decrypt.

148 K. Cong et al.

– Storing all the keys that are in the key lattice is expensive and trades off for-
ward security. Every party runs Forget(L,w) for its lattice L and the window
parameter w every time the party processes an update message.

4 Group Key Agreement

To agree on the very first shared key we use an existing group key agreement
(GKA) protocol. There are many definitions of security of GKA protocols; for
our purposes we adapt the one from [14] as it captures strong-forward secrecy
and a strong corruption model. For our GM protocol to be asynchronous, the
GKA subprotocol must also be asynchronous; this is true for the model of [14].

In this section, we reproduce the definition and introduce a few syntactic
tweaks. For the full security definition we refer the reader to the full version [21].
The GKA will be used to construct our GM protocol in Sect. 6.

Definition 4.1 (Group Key Agreement). We use G ⊆ P to denote some
group of players that participate in the protocol. Each party U ∈ P is assumed to
already have a long term public/private key pair (pkU , skU). We assume a PKI
exists and the public keys are available to all parties.

The protocol consist of two stateful algorithms.

– {mV }V ∈G ← GKA.Init(G): Initialize an instance of the GKA protocol for a
group G and return a set of responses, one for every party in G.

– {mV }V ∈G ← GKA.Recv(M): Process message M and return a set of res-
ponses.

The GKA outputs done with a key k to notify that the protocol completed.

5 Group Randomness Messaging

We present the group randomness messaging (GRM) abstraction through which
the parties communicate update messages. The main functionality is to send
authenticated data and a ciphertext encrypting a random key update to all
members in the group using pairwise channels. We require the pairwise channels
to have FS & PCS properties.

Definition 5.1 (Group Randomness Messaging (GRM)). Consider the
player executing the protocol is U , a GRM scheme consists of three stateful algo-
rithms.

– {cU,V }V ∈G ← GRMU .Init(k, w,G): initialize the GRM instance using the ini-
tial key k, the window size w, and the group members G.
This step initializes the internal state stateU,i. The output is a set of cipher-
texts, one for every player in G.

– {cU,V }V ∈G ← GRMU .Evolve(): output a ciphertext cU,V for every V ∈ G.

The Key Lattice Framework for Concurrent Group Messaging 149

– σV,U ← GRMU .Recv(cV,U): process the ciphertext cV,U , update the internal
state and return the plaintext σV,U if the decryption is successful. If decryption
is unsuccessful, return ⊥.

In the above definition, σV,U is a triple (U, j, x) where U is the identity of the
sender, j is a positive integer and x ∈ X . The full version [21] discusses the
correctness and security definitions for GRM.

5.1 Instantiation

We instantiate GRM using PKEAD. In essence, every party keeps a queue of
w public and secret key-pairs. This queue is updated every time the party calls
Evolve by dropping the oldest keypair and adding a new one. Each party U also
maintains a public key for every other party V which is updated whenever U
receives the output of V ’s Evolve. U uses this public key in order to encrypt
messages to V . U also maintains an integer jV that tracks the index of the latest
public key U has received from V .

This initial message sent by each party is a pair (pk0U ,m), where pk0U is the
party’s initial ephemeral public key, m is a MAC on the public key using the
key k provided as input to Init. Where k is the key output by a GKA execution,
this effectively “ties” a GRM to the GM application that uses it, as the MAC
links the output k of a GKA session with the GRM session that will be used to
evolve the key.

On a high level, the protocol achieves PCS because public keys are cycled
over time and FS because old keys are dropped. Our construction is detailed
below. Let the set X to be domain from which updates are randomly sampled.

– GRMU .Init(k, w,G): Generate an ephemeral key pair (pk0U , sk0U). Initialize
stateU .sks = {sk0U} and stateU .pks = ∅, and save w as the window parame-
ter. Compute m ← MAC(pk0U ; k), where k is the input key, pk0U is the message
and MAC is a cryptographic MAC scheme. Send the same message (pk0U ,m)
to every member in G.

– GRMU .Evolve():
1. A new private key skj+1

U is generated, along with its public key pkj+1
U .

2. Sample x
$←− X and let σ ← (U, j +1, x), where j is the index of the latest

secret key in stateU .sks.
3. Repeat the steps below for every V ∈ G (including U).

• If the public key of the receiver V is not known, abort.
• Call (c, t) ← PKEAD.Enc(pkj+1

U ‖σ, jV ; pkjV
V) and then set cU,V ←

(c, t, jV). Note that pkjV
V can be found in stateU .pks and jV is the

index of the public key associated with V .
4. stateU is updated as follows.

• Add skj+1
U to stateU,i.sks

• If |stateU .sks| > w, remove the oldest one (i.e., skj−w
U).

150 K. Cong et al.

– GRMU .Recv(cV,U): There are two possible message formats. The message out-
put by Init is an ephemeral public key pk0V with a Mac; if the message is this
type, then verify the Mac using the key k provided to Init8 and then set V ’s
public key in stateU .pks to be (0, pk0V). All other messages are handled as
follows.
1. Parse the message cV,U as (c, t, j), where j is an index into the current

user U ’s secret key.
2. Find secret key skj

U . Abort the protocol if it does not exist.
3. pkjV

V ‖σV,U ← PKEAD.Dec(c, t, j; skj
U), abort if this step returns ⊥.

4. Add or update V ’s public key in stateU .pks to be (j, pkjV
V).

5. Let jmin be the smallest j in {(j, pkiVV) : V ∈ G}.
6. Delete all secret keys skj

U where j < jmin.
7. Return σV,U

Theorem 5.1. Let A be an adversary against the GRM game, let B be an adver-
sary against the PKEAD game, and let C be an adversary against the MAC
EUF-CMA game. Then

AdvgrmA ≤ nS · Advmac
C + 2 · |Q|max · nQ · AdvpkeadB .

where |Q|max is the upperbound for the number of oracles in a group, nQ is the
upperbound of the number of queries to the encryption oracle that B makes on
behalf of A for the instance under test, and nS = poly(λ) is the maximum number
of concurrent GRM sessions that A is allowed to invoke in its security game.

For a proof of this theorem see the full version [21].

6 Group Messaging

We define group messaging as a protocol which establishes and evolves a lattice
of keys. Parties may additionally send messages encrypted under the group keys,
which must be decrypted successfully by the other group members.

Our definition of group messaging assumes the existence of a Group Key
Agreement (GKA) primitive (Sect. 4).

Definition 6.1 (Group Messaging). A group messaging protocol consists of
five stateful algorithms defined as follows:

– GM.Init(G,w): Initialize the protocol with group G ⊆ P and the windows size
w. Output a set of messages, one for each party in G.

– GM.Evolve(): Outputs a set of update messages, one for each party in G.
– GM.Recv(M): Processes the message M (e.g., from the network), and outputs

a response.
– GM.Enc(m): Encrypts a plaintext m and outputs a ciphertext.
– GM.Dec(c): Decrypts ciphertext c and outputs a plaintext.
8 If verification fails due to trying the wrong key from multiple concurrent sessions,

return ⊥ and process the incoming message via Recv of a different session.

The Key Lattice Framework for Concurrent Group Messaging 151

6.1 Security Definition

The security of GM is modeled via a game between a challenger and an adversary,
where the key lattice tracks the evolution of the group key(s) over time. Our
freshness definition specifies the conditions under which a particular state (in our
case the state is a key in the key lattice) is not compromised by the adversary.
Contrary to the definitions of freshness in other key agreement works (e.g., [4,
19]), we state freshness below with respect to a specific lattice point.

The adversary invokes oracles Πgm
U,i where U is a group member and i ∈

[1, . . . , nS], where the subscript i denotes a specific instance of the oracle that
belongs to party U . Different instances that belong to the same party may share
long-term keys, e.g., identity keys. The adversary invokes the oracles arbitrarily
as long as it follows the constraints described in Sect. 2.

We assume there is an instance of the GKA oracle running under every GM
oracle. This method allows us to inherit the partnering definition and many
oracle queries. Nevertheless, our description is self-contained since we reproduce
the common oracle queries in the GM definition. Additional details of the GKA
can be found in Sect. 4.

Each oracle Πgm
U,i maintains internal variables to track each party’s view of

the key lattice and the group messages that have been received by that party.
They also collectively maintain global state that tracks which elements of the key
lattice and which key updates have been explicitly revealed to the adversary. We
denote by Lrev

sid the key lattice describing all keys (points on the lattice) which are
revealed to the adversary, and we denote by Erev

sid the set of key updates, modeled
as edges in the graphical interpretation of the key lattice, which are revealed to
the adversary. Srev

sid = (Lrev
sid , Erev

sid) denotes all of the key material that is revealed
to the adversary in some session sid. The session ID sid is a unique identifier
for the group members who have successfully completed the initial group key
agreement and established a session (described in detail in Sect. 4 since it is a
property inherited from GKA). Indeed, sid is not defined when a GKA session
begins, but this is not an issue since the session’s lattice is instantiated only
after the session is established. The full information on the key lattice available
to the adversary is given by Computable(Lrev

sid , Erev
sid). We remark that the session

ID (sid) is not the same as the instance ID. The instance of an oracle, e.g.,
(U, i), is established when the oracles are initialized, but the session ID is only
established some time later, after the oracles are ready to evolve keys.

Specifically, the oracles maintain the following state:

– δU,i ∈ {pending, accept, abort} indicates whether the oracle is ready to start
evolving keys.

– LU,i represents the key lattice maintained by oracle Πgm
U,i. We use the language

from Sect. 3 to describe the key lattice.
– stateU,i is the remaining state that the implementation may keep. (For our

protocol, this includes EU,i, a set of edges between lattice points, as well as
the state held by underlying subprotocols.)

– Srev
sid = (Lrev

sid , Erev
sid) represents the key lattice Lrev

sid containing all the revealed
keys by the adversary as well as the revealed updates Erev

sid in session sid.

152 K. Cong et al.

The full details of the GM oracles are specified below.

– Πgm
U,i.Init(G,w): Initialize an instance of the GM protocol for the group mem-

bers in G where U ∈ G and w is the window size. Set δU,i = pending and
return a hash function H. The response is returned to the adversary.

– Πgm
U,i.Corrupt(): Return the long-term secret to the adversary.

– Πgm
U,i.Reveal(): If δU,i �= accept then return ⊥. Otherwise, return the set of

keys that are computable from LU,i, and add these keys to Lrev
sid

– Πgm
U,i.StateReveal(): If δU,i �= accept then return ⊥. Else, return the internal

state stateU,i, excluding the computable keys LU,i. 9

– Πgm
U,i.Evolve(): If δU,i = abort then return ⊥. Else, return a set of message

{MV }V ∈G.
– Πgm

U,i.Recv(M):
• If δU,i = abort then this call does nothing.
• Otherwise process the message, optionally update the state stateU,i and

the key lattice LU,i. Return a set of messages {MV }V ∈G. The input M
should be from either the output of Recv or Evolve.

– Πgm
U,i.Dec(c): Use the available internal state to decrypt the ciphertext c and

output the plaintext. If the oracle does not have enough information to
decrypt the message, then it is buffered.

– Πgm
U,i.Enc(m): Encrypts the plaintext m using the maximal key in LU,i and

returns a ciphertext.
– Πgm

U,i.Test(m0,m1): This is defined in the security game below.

By execution of Corrupt, Reveal and StateReveal queries the adversary can
learn the entire secret internal state of the oracle Πgm

U,i. Specifically, Reveal gives
the party’s current group keys, and StateReveal gives the party’s internal state
except for what is provided by the former two queries. Corrupt gives the party’s
long-term public key and secret key (from the PKI); because this is only used
for the GKA protocol, which we require to be forward secure, this reveals the
initial group keys in future GKA executions. Also note that the above gives the
adversary a decryption oracle via Dec.

Modeling Pairwise Channels in the Oracle Game: In our general oracle
game, the adversary is permitted to invoke the oracles in any order, which models
an asynchronous network. However, to describe the guarantees that the protocol
achieves when windowing, we define a syntactic model to describe the messages
sent “between parties” in the oracle game. Specifically, between every ordered
pair of parties (U, V) the adversary maintains a special buffer CU,V called a
channel representing the pairwise connection between U and V . When an oracle
query returns a message c to be sent from U to V , the adversary places (c, n)
into CU,V , where n is an integer recording that c is the nth message placed into
the channel.

9 For our construction, this adds all of the edges in EU,i to Erev
sid .

The Key Lattice Framework for Concurrent Group Messaging 153

In the above game description, each oracle provides three queries to gener-
ate messages to other parties. Πgm

U,i.Enc(m) encrypts a message using the oracle’s
latest key and returns a ciphertext which is forwarded to all other parties. When-
ever a Πgm

U,i.Enc(m) query is made, the returned message c is simultaneously put
into the channels CU,V for all V ∈ G. Πgm

U,i.Evolve() generates a key evolution,
but returns a different message for each other party in the execution. Simi-
larly, Πgm

U,i.Recv(M) may output a different message for every other party in the
execution, but it may also output no messages. Whenever a Πgm

U,i.Evolve() or
Πgm

U,i.Recv(M) query is made, the oracle returns a list of ciphertexts cV , one for
each V ∈ G. Each of these messages is immediately placed into the corresponding
channel CU,V along with its index.

A message c generated by an Enc query is removed from its corresponding
buffer only when it is input to a corresponding oracle Πgm

V,j .Dec(c). A message c
generated by an Recv or Evolve query is removed from its corresponding buffer
only when it is input to a corresponding oracle Πgm

V,j .Recv(c). Note that if an
oracle receives a message that it cannot yet process due to reordering of messages
over a pairwise channel, then the oracle is expected to buffer the message until it
can process the message, and return the result once it can process the message.

The adversary may additionally invoke Recv or Dec oracles on messages that
have not been placed in channels but instead were adversarially generated. These
actions do not affect the channels.

Partnering: For group messaging, partnering is analogous to the case for GKA.
Intuitively, a group in a GKA protocol is partnered if the parties participate in
the same session and agreed on the same group key. For group messaging, parties
are partnered if they are running a protocol with each other to agree on a lattice
of group keys.

Definition 6.2 (Partnering). Given a group G ⊆ P and a set of pairs Q =
(U, iU)U∈G defining associated oracles Πgm

U,iU
, we say the oracles are partnered

if the underlying GKA oracles Πgka
U,iU

are partnered.

For some security parameter λ we define a security game for the adversary A,
this consists of the set of participants P where n (the number of participants) is a
polynomial function of λ, as is the maximum number of sessions per participant
nS . Thus the number of oracles Πgm

U,i is also a polynomial function of λ. The
adversary A is given at the start of the game all the public keys pkU for pk ∈ P
and it interacts with the oracles Πgm

U,i via the sequence of oracle queries as above.

Freshness: We now define freshness for our game. Intuitively, we say that a key
is fresh if it has not been revealed to the adversary, either explicitly via Reveal
queries, or implicitly, via a combination of Reveal and StateReveal queries. The
global state Srev

sid tracks the keys computable by the adversary, and a key is fresh
if and only if it is not computable from Srev

sid .

154 K. Cong et al.

Definition 6.3 (Freshness). In a session sid, a key ki∗ with at index i∗ is fresh
if and only if it is not computable from Srev

sid using the Computable function, as
defined in the group messaging definition (Definition 6.1).

Depending on when the adversary invokes Corrupt on a party and learns its
long-term secret key, the adversary might learn all messages delivered to that
party, and any such key or update material is included in Srev

sid . Therefore, keys
that the adversary can learn from messages delivered to this party are not fresh.

Security Game: The security game tries to break the semantic security of a
message sent between the parties. It runs in two phases, the division between the
two phases is given by the point in which the adversary executes a Test query.

– Phase 1: All queries can be executed without restriction.
– Test Query: Πgm

U,i.Test(m0,m1): Given two equal length messages m0 and
m1, if kU is fresh, where kU is the maximal key of instance(U, i), then the
challenger selects a bit b ∈ {0, 1} and applies Πgm

U,i.Enc(mb), returning the
output ct∗ to the adversary. We denote the test oracle by Πgm

U∗,i∗ . We call i∗

the test index.
– Phase 2: All queries can be executed except for:

1. Any query that would add ki∗ to the set of keys computable from Srev
sid .

2. If ct∗ is at any point processed by Dec(ct∗), by the oracles, then the
result is not returned to the adversary but the game still continues.

At the end of the game, the adversary A needs to output its guess b′, and wins
the game if b = b′. We define AdvA(λ) = 2 · |Pr[b = b′] − 1/2|.
Definition 6.4 (Security of Group Messaging). A GM scheme is secure
if for any probabilistic polynomial time adversary A the advantage AdvA(λ) is
negligible in the security parameter λ.

Thanks to the underlying key lattice, our security game captures FS and PCS
at the same time in a natural way. Specifically, queries to Reveal, StateReveal or
Corrupt during Phase 1 are used for capturing PCS and queries to these oracles
during Phase 2 captures FS. Unlike prior definitions [4,33] we do not need to
use epoches or separate definitions for PCS and FS.

Correctness. Intuitively, a GM protocol is correct if every message that is
encrypted with the group key is correctly decrypted by every recipient. We write
the formal definition with respect to the oracles defined for our security game.
Our definition of correctness requires all encrypted messages must eventually be
correctly decrypted under a property called “well-ordered execution” which we
define as well.

Definition 6.5 (Correctness of Group Messaging). A GM protocol is cor-
rect if in every infinite execution by every PPT adversary A who is allowed
to query the GM oracles except Corrupt,StateReveal,Reveal and Test and must

The Key Lattice Framework for Concurrent Group Messaging 155

deliver all messages, for all U, i, for all c ← Πgm
U,i.Enc(m), and for all V ∈ G\{U}

there exists a j and an oracle call m′ ← Πgm
V,j .Dec(c) such that (U, i) is partnered

with (V, j) and m′ = m.

Recall that when we apply windowing, some party may be forced by the
protocol to discard the group key used to decrypt a message that has still not
been delivered to it. To facilitate our analysis of correctness when windowing,
we define an ordering property of an execution that describes how many times
a party may evolve the group key between the moment it sends a message and
that message is delivered.

ω-Well-Ordered Execution. Recall that our oracle game tracks the order in which
messages are returned from oracles to be sent to other parties via our abstraction
of pairwise channels, and that the adversary may delay and reorder messages
sent via the pairwise channels. A channel is ω-well-ordered if the nth message
sent over C is removed from the channel before the (n + ω)th message (via
delivery to the correct oracle), for all n ∈ N. An execution is ω-well-ordered if
all pairwise channels are ω well-ordered.

We claim that when windowing with our protocol, for any ω-well-ordered
execution, if the window parameter w is greater than or equal to ω, then the
protocol is correct. The proof is trivial by construction of the protocol. When
w < ω, windowing may force some decryption keys to be purged before the
corresponding message is delivered.

Remark 6.1 (Well Ordering and Network Synchrony). Well-ordering is a strict
relaxation of network synchrony that depends on ordering messages rather than
on time. In a synchronous network, a delay parameter of Δ implies Δ-well-
ordered channels; therefore, setting w = Δ implies correctness. If the network is
asynchronous, then w must be set to ∞ to guarantee correctness. However, this
sacrifices forward secrecy, as parties may store old group keys indefinitely.

6.2 GM from GRM and GKA

We first present our construction of GM from GKA, GRM, and a CCA-secure
AEAD scheme; we then prove security of GM based on the underlying primitives.

Protocol Overview. In our construction of a group messaging protocol, parties
maintain local versions of a global key lattice in order to track the group key.
They then encrypt and decrypt messages using keys from the lattice, and they
update the group key by adding new keys on the key lattice. Our protocol uses
the above primitives to initialize their key lattices, encrypt and decrypt messages
using the keys in the lattice, send updates to the group key, and remove keys
from their lattices. Specifically, each party maintains a local key lattice L, a local
set of key updates E , and a buffer B of unprocessed messages, which contains
both GRM messages that it cannot yet process and application messages that
it is not yet able to decrypt. Every update e ∈ E has the form (d, i, x) where

156 K. Cong et al.

d ∈ [n] corresponds to the dimension of the party that generates the update, i is
an index and x is key transformation data. Parties also maintain a list of index
vectors I ∈ (Nn)n that tracks each party’s view of the current key of every other
party, which is used to optimistically exclude keys from its state.

Message Headers and the Recv Subprotocol. We make the distinction between
protocol messages and application messages. Protocol messages in GM are either
GKA messages (to agree on an initial group key) or GRM messages (to evolve
the group key). Application messages are encryptions under some group key.

Our construction uses a single Recv function to process every incoming pro-
tocol message, provided in Fig. 7, which directs the incoming message to the
appropriate subprotocol (either GKA or GRM). To help distinguish between
GKA protocol messages and GRM protocol messages in the descriptions of the
protocols and the proofs, we say that a message is a “GKA message” if it con-
tains a prefix gka, and a message is a “GRM message” if it contains a prefix grm.
In an implementation, these headers can be encoded as flags. Where the context
is clear, we elide these prefixes from the exposition.

Initialization: When a group of parties begin a GM protocol, they initialize
the execution via GM.Init(), which is described in Fig. 5. Each party saves the set
of other parties in the protocol and the window parameter. They also agree on a
hash function H described below, which is a public parameter. The parties then
run GKA in order to agree on an initial group key. Note that the key lattice and
GRM is not initialized yet; they can only be initialized after the GKA outputs
the initial key as shown in Fig. 6.

Sending and Receiving Key Updates: Our GM construction uses GRM as
a transport for generating and communicating random key updates. In Fig. 6
and Fig. 7 we specify how parties generate new key updates and process updates
form other parties, respectively.

Specifically, parties invoke GRM.Evolve() to receive a random key update σ
along with an encryptions of the update to send to each other party via pairwise
channel. The calling party adds σ to its set of edges E and computes any possible
new points in L. When a party receives a key update, it calls GRM.Recv() on
the update, and if a key update is returned then it adds the update as an edge
in E and computes any possible new keys in L. If it cannot yet decrypt the key
update, it buffers the message.

Encrypting and Decrypting a Message: Whenever a party wishes to en-
crypt a message m using the group key, it calls GM.Enc using the maximal
key in its key store. Specifically, we require a hash function H : K → K, that
maps from the keyspace of the key lattice to the keyspace for a CCA-secure

The Key Lattice Framework for Concurrent Group Messaging 157

AEAD encryption scheme.10 When a party encrypts a message, it provides the
hashed key corresponding to the maximal index i in its key lattice L as input to
AEAD.Enc, and it includes the index i as associated data. The encrypting party
then forwards the encrypted message to every other party.

When a party seeks to decrypt a message, it looks up the corresponding key
(the index of which is found in associated data), and supplies the hashed key to
AEAD.Dec. When a party receives an encrypted message, it checks whether the
index of the key used to encrypt is in Computable(L, E). If so, it uses the key at
that index to decrypt the message. If not, it adds the message to the buffer B.
The implementations of encryption and decryption in given in Fig. 8 and Fig. 9.

Pruning the Key Lattice: Parties continuously attempt to prune elements
from their local state, both in order to manage the size of the state they keep,
and also because deleting old keys facilitates forward secrecy. When a party
knows that it will no longer receive any messages encrypted with keys below
a particular key index i, it optimistically prunes all such keys from its lattice
via Forget(L, i). Additionally, if ever a key index exceeds the key window (keys
whose index vector that are less than the threshold index vector iw) it purges
the key (and relevant updates) from L (and E).

Whenever a party receives an encryption from a party V , it updates its index
vector I[φ(V)] tracking the keys used by V . Recall that because our construction
requires key updates to move toward higher lattice indices, the set of future
indices is the union of the n-dimensional hyperplanes H∗ =

⋃
iV ∈I H≥iV . Any

index outside this union represents an obsolete key, and the related keys are
deleted via Forget in Fig. 9.

In summary, keys and edges that fall outside the window parameter are
deleted as specified in Fig. 7. Keys and edges that will not be used in the future
are deleted as specified in Fig. 9. This is possible because parties also send their
maximal lattice point along with their message (in Fig. 8) so that the receiving
party can compute the minimum view (lattice point) of all parties and delete
keys and edges that are smaller than the minimum view.

On execution of GM.Init(), run GKA.Init(G) and output the result. Note that
U holds the long-term key pair (pkltU , skltU).

Fig. 5. Algorithm for GM.Init(G,w)

10 This hash function’s purpose is semantic to convert between types. We only require
(informally) that if the adversary does not know k then it does not know H(k). We
elide discussion of H in the proof.

158 K. Cong et al.

U calls {cU,X}X∈G ← GRM.Evolve(), and outputs cU,X to X for X ∈ G.

Fig. 6. Algorithm for GM.Evolve()

If M is a GKA message:

– Compute {mU,V }V ∈G ← GKA.Recv(M), and output mU,V to party V for
V ∈ G.

– If GKA outputs done with a key k:
• Initialize L with the point (0, k).
• Initialize a GRM execution via {cU,V }V ∈G ← GRM.Init(k, w, G) and

send cU,V to V for V ∈ G.
• Initialize an empty message buffer B ← ∅.

If M is a GRM message received from party V :

1. Compute σ ← GRM.Recv(M). If σ =⊥, then add M to B and return. Oth-
erwise, let (d, j, x) ← σ, add (d, j, x) to the set of edges E and then compute
L ← Computable(L, E).a

2. Delete deprecated keys using L ← Forget(L, w).
3. Delete deprecated edges from E that precede the corresponding index in the

threshold index vector (see Section 3.3). Specifically, suppose the threshold
index vector is iw = (i1, . . . , inS) and E = {(dk, jk, xk)}k, then remove all
edges (dk, jk, xk) where jk < idk .

4. While B is not empty or B has not changed from the previous iteration:
– For every message M ∈ B, execute GM.Recv(M)

a A sanity check would be that d = φ(V) and j should equal the dth element
of the maximal index vector of L.

Fig. 7. Algorithm for GM.Recv(M)

Player U finds the φ(U)-maximal lattice point i in its local lattice L, computes
(ct, t) ← AEAD.Enc(m, U‖i;H(ki)), and then returns (ct, U‖i, t).

Fig. 8. Algorithm for GM.Enc(M)

6.3 Concrete Costs

We give an estimate of our concrete communication cost for 128-bit security.
Since the payload ciphertext form is (ct, U‖i, t), the concrete communication
cost for 32 bytes payload is 32 + 3 · 16 = 80 bytes, assuming the identity U ,
the lattice point i, and the AEAD tag t are 128 bits. Additionally, the update
ciphertext has the form (c, t, j) where c is a ciphertext encrypting pk‖U‖i‖x,
under a public key encryption scheme, where pk is assumed to be 32 bytes and

The Key Lattice Framework for Concurrent Group Messaging 159

Parse M as (ct, V ‖i, t). If M is not of this form, return ⊥. Then:

– If i < iw, where iw is the threshold index vector, or if i < I[φ(V)], return ⊥.
– Update I[φ(V)] ← i, compute imin as the index vector of the element-wise

minimum of all i ∈ I, and then execute L ← Forget(L, imin).
– Find the key at i in L using Computable(L, E), if ki =⊥, then add M to B

and return ⊥.
– If ki �=⊥, compute m ← AEAD.Dec(ct, V ‖i, t;H(ki)). If m =⊥, abort the

protocol. Otherwise, return m.

Fig. 9. Algorithm for GM.Dec(M)

x is from the update space assumed to be 16 bytes. One update message is
needed for every party in the group, for a group size of 128, the update cost is
128 · (32+5 · 16) = 14.3 KB. Our scheme uses less communication than Weidner
et al. [33] which has a payload ciphertext cost of 139 bytes and an update cost
of 39.6 KB in the same setting.

The storage overhead comes from the window parameter w and the group
size N . Specifically, we need to maintain at most w update messages per party
and only one key in the lattice at the minimum view. For a window size of 1, 000
and 128 parties, the storage requirement would be just over 14 MB in the worst
case which is insignificant in today’s devices.

6.4 Main Theorem

We now state our main theorem. The proof is in the full version [21].

Theorem 6.1 (Security of Group Messaging). If A is an adversary against
the GM game, then there exist adversaries B, C, and D such that

Advgm(A) ≤ 2nSAdv
gka(B) + 2nSnAdvgrm(C) + nSnqAdv

cca(D),

where nS = poly(λ) is the maximum the number of GM sessions A may invoke,
and nq = poly(λ) is the maximum number of keys that A may query in a session.

Acknowledgments. This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA) and Space and Naval Warfare Systems Cen-
ter, Pacific (SSC Pacific) under contract No. FA8750-19-C-0502 (Approved for Public
Release, Distribution Unlimited). The first and third author would also like to thank
the FWO under an Odysseus project GOH9718N, and by CyberSecurity Research
Flanders with reference number VR20192203.

The work of the first author was conducted whilst he was at KU Leuven, the third
author whilst he was at SRI International, and the fourth author whilst he was a
student at UC Irvine.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of any of the
funders. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation therein.

160 K. Cong et al.

References

1. Alwen, J., Auerbach, B., Noval, M.C., Klein, K., Pascual-Perez, G., Pietrzak, K.:
DeCAF: decentralizable continuous group key agreement with fast healing. Cryp-
tology ePrint Archive, Report 2022/559 (2022). https://eprint.iacr.org/2022/559

2. Alwen, J., et al.: CoCoA: concurrent continuous group key agreement. In: Dunkel-
man, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, May–June
2022, vol. 13276, pp. 815–844. Springer, Heidelberg (2022). https://doi.org/10.
1007/978-3-031-07085-3 28

3. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 5

4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 9

5. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 261–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64378-2 10

6. Alwen, J., Hartmann, D., Kiltz, E., Mularczyk, M.: Server-aided continuous group
key agreement. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022,
November 2022, pp. 69–82. ACM Press (2022). https://doi.org/10.1145/3548606.
3560632

7. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting
protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551,
pp. 198–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2
8

8. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not to
use PGP. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic
Society, pp. 77–84 (2004)

9. Boyd, C., Mathuria, A., Stebila, D.: Protocols for Authentication and Key Estab-
lishment. Information Security and Cryptography. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-662-58146-9

10. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-
Hellman key exchange—the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45682-1 18

11. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group Diffie-Hellman key
exchange under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 21

12. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authen-
ticated group Diffie-Hellman key exchange. In: Reiter, M.K., Samarati, P. (eds.)
ACM CCS 2001, November 2001, pp. 255–264. ACM Press (2001). https://doi.
org/10.1145/501983.502018

13. Bresson, E., Manulis, M.: Securing group key exchange against strong corruptions.
In: Abe, M., Gligor, V. (eds.) ASIACCS 2008, March 2008. pp. 249–260. ACM
Press (2008)

https://eprint.iacr.org/2022/559
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1145/3548606.3560632
https://doi.org/10.1145/3548606.3560632
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-662-58146-9
https://doi.org/10.1007/3-540-45682-1_18
https://doi.org/10.1007/3-540-45682-1_18
https://doi.org/10.1007/3-540-46035-7_21
https://doi.org/10.1007/3-540-46035-7_21
https://doi.org/10.1145/501983.502018
https://doi.org/10.1145/501983.502018

The Key Lattice Framework for Concurrent Group Messaging 161

14. Bresson, E., Manulis, M., Schwenk, J.: On security models and compilers for group
key exchange protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC
2007. LNCS, vol. 4752, pp. 292–307. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-75651-4 20

15. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less is more:
relaxed yet composable security notions for key exchange. Int. J. Inf. Sec. 12(4),
267–297 (2013). https://doi.org/10.1007/s10207-013-0192-y

16. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
ACM CCS 2011, October 2011, pp. 51–62. ACM Press (2011). https://doi.org/10.
1145/2046707.2046716

17. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure
Distributed Programming, 2nd edn. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-15260-3

18. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. J. Cryptol. 33(4), 1914–1983
(2020). https://doi.org/10.1007/s00145-020-09360-1

19. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, October
2018, pp. 1802–1819. ACM Press (2018). https://doi.org/10.1145/3243734.3243747

20. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
Hicks, M., Köpf, B. (eds.) Computer Security Foundations Symposium, CSF 2016,
pp. 164–178. IEEE Computer Society Press (2016). https://doi.org/10.1109/CSF.
2016.19

21. Cong, K., Eldefrawy, K., Smart, N.P., Terner, B.: The key lattice framework for
concurrent group messaging. Cryptology ePrint Archive, Report 2022/1531 (2022).
https://eprint.iacr.org/2022/1531

22. Cremers, C., Hale, B., Kohbrok, K.: The complexities of healing in secure group
messaging: why cross-group effects matter. In: Bailey, M., Greenstadt, R. (eds.)
USENIX Security 2021, August 2021, pp. 1847–1864. USENIX Association (2021)

23. Dowling, B., Günther, F., Poirrier, A.: Continuous authentication in secure messag-
ing. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 2022,
Part II. LNCS, September 2022, vol. 13555, pp. 361–381. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-17146-8 18

24. Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy re-
encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 317–346.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 11

25. Ingemarsson, I., Tang, D.T., Wong, C.K.: A conference key distribution system.
IEEE Trans. Inf. Theor. 28(5), 714–719 (1982). https://doi.org/10.1109/TIT.1982.
1056542

26. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure mes-
saging protocols and their implementations: a symbolic and computational app-
roach. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P),
pp. 435–450. IEEE (2017)

27. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

28. Pijnenburg, J., Poettering, B.: On secure ratcheting with immediate decryption.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, December 2022,
vol. 13793, pp. 89–118. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-22969-5 4

https://doi.org/10.1007/978-3-540-75651-4_20
https://doi.org/10.1007/978-3-540-75651-4_20
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://eprint.iacr.org/2022/1531
https://doi.org/10.1007/978-3-031-17146-8_18
https://doi.org/10.1007/978-3-030-17259-6_11
https://doi.org/10.1109/TIT.1982.1056542
https://doi.org/10.1109/TIT.1982.1056542
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/978-3-031-22969-5_4
https://doi.org/10.1007/978-3-031-22969-5_4

162 K. Cong et al.

29. Poettering, B., Rösler, P., Schwenk, J., Stebila, D.: SoK: game-based security mod-
els for group key exchange. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, May
2021, vol. 12704, pp. 148–176. Springer, Heidelberg (2021). https://doi.org/10.
1007/978-3-030-75539-3 7

30. Rescorla, E.: Subject: [MLS] TreeKEM: an alternative to ART.
MLS Mailing List (2019). https://mailarchive.ietf.org/arch/msg/mls/
e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/. Accessed 19 Jan 2022

31. Rösler, P., Mainka, C., Schwenk, J.: More is less: on the end-to-end security of group
chats in Signal, Whatsapp, and Threema. In: 2018 IEEE European Symposium on
Security and Privacy, EuroS&P 2018, 24–26 April 2018, London, United Kingdom,
pp. 415–429. IEEE (2018). https://doi.org/10.1109/EuroSP.2018.00036

32. Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman key distribution extended to
group communication. In: Gong, L., Stern, J. (eds.) ACM CCS 1996, March 1996,
pp. 31–37. ACM Press (1996). https://doi.org/10.1145/238168.238182

33. Weidner, M., Kleppmann, M., Hugenroth, D., Beresford, A.R.: Key agreement for
decentralized secure group messaging with strong security guarantees. In: Vigna,
G., Shi, E. (eds.) ACM CCS 2021, November 2021, pp. 2024–2045. ACM Press
(2021). https://doi.org/10.1145/3460120.3484542

34. Weidner, M.A.: Group messaging for secure asynchronous collaboration. M.
Phil thesis, University of Cambridge, June 2019. https://mattweidner.com/acs-
dissertation.pdf

35. WhatsApp Inc.: Whatsapp encryption overview. Online, September 2021. https://
www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf. Accessed 19
Jan 2022

https://doi.org/10.1007/978-3-030-75539-3_7
https://doi.org/10.1007/978-3-030-75539-3_7
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
https://doi.org/10.1109/EuroSP.2018.00036
https://doi.org/10.1145/238168.238182
https://doi.org/10.1145/3460120.3484542
https://mattweidner.com/acs-dissertation.pdf
https://mattweidner.com/acs-dissertation.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	The Key Lattice Framework for Concurrent Group Messaging
	1 Introduction
	1.1 Related Work
	1.2 Technical Overview

	2 General Definitions and Notation
	3 Key Lattice
	3.1 Key Evolution
	3.2 The Key Graph
	3.3 Instantiation
	3.4 Key Lattice as a Key Management Technique

	4 Group Key Agreement
	5 Group Randomness Messaging
	5.1 Instantiation

	6 Group Messaging
	6.1 Security Definition
	6.2 GM from GRM and GKA
	6.3 Concrete Costs
	6.4 Main Theorem

	References

