
A General Framework of Homomorphic
Encryption for Multiple Parties

with Non-interactive Key-Aggregation

Hyesun Kwak1(B), Dongwon Lee1, Yongsoo Song1, and Sameer Wagh2

1 Seoul National University, Seoul, South Korea
{hskwak,dongwonlee95,y.song}@snu.ac.kr

2 Devron Corporation, Oakland, USA

Abstract. Homomorphic Encryption (HE) is a useful primitive for
secure computation, but it is not generally applicable when multiple
parties are involved, as the authority is solely concentrated in a single
party, the secret key owner. To solve this issue, several variants of HE
have emerged in the context of multiparty setting, resulting in two major
lines of work – Multi-Party HE (MPHE) and Multi-Key HE (MKHE).
In short, MPHEs tend to be more efficient, but all parties should be
specified at the beginning to collaboratively generate a public key, and
the access structure is fixed throughout the entire computation. On the
other hand, MKHEs have relatively poor performance but provide bet-
ter flexibility in that a new party can generate its own key and join the
computation anytime.

In this work, we propose a new HE primitive, called Multi-Group HE
(MGHE). Stated informally, an MGHE scheme provides seamless inte-
gration between MPHE and MKHE, and has the best of both worlds.
In an MGHE scheme, a group of parties jointly generates a public key
for efficient single-key encryption and homomorphic operations similar
to MPHE. However, it also supports computation on encrypted data
under different keys, in the MKHE manner. We formalize the security
and correctness notions for MGHE and discuss the relation with previous
approaches.

We also present a concrete instantiation of MGHE from the BFV
scheme and provide a proof-of-concept implementation to demonstrate
its performance. In particular, our MGHE construction has a useful prop-
erty that the key generation is simply done by aggregating individual
keys without any interaction between the parties, while all the exist-
ing MPHE constructions relied on multi-round key-generation protocols.
Finally, we propose a general methodology to build a multi-party com-
putational protocol from our MGHE scheme.

Keywords: Multi-Key Homomorphic encryption · Multi-Party
Homomorphic Encryption

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14584, pp. 403–430, 2024.
https://doi.org/10.1007/978-3-031-54773-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54773-7_16&domain=pdf
https://doi.org/10.1007/978-3-031-54773-7_16

404 H. Kwak et al.

1 Introduction

Homomorphic Encryption (HE) enables computation over encrypted data with-
out decryption. It prevents the leakage of private information while evaluating
data within an untrusted environment. However, HE requires a large resource
even when it computes a simple arithmetic operation such as multiplication. As
a result, HE is particularly well-suited for implementation in cloud systems that
can supply large computing power for evaluation.

A typical HE only supports computations between data encrypted by the
same key. Consequently, when multiple data owners are involved, it relies on a
trusted third party who possesses a key distributed to each party for encryption.
Still, this merely transfers the trust problem from the cloud service provider to
the new third party and thus does not provide an acceptable solution to this
problem. To overcome this challenge, extensive research has explored the use of
distributed trust in designing HE schemes involving multiple parties.

In the context of multiple parties, two important lines of HE schemes
have emerged: Threshold HE and Multi-Key HE (MKHE). In Threshold
HE [5,8,30,31,33], multiple parties collaborate to generate a joint public key,
and encryption is performed under this joint key. Threshold HE has a t-out-of-n
(t ≤ n) access structure where any t parties can reconstruct the secret key to
decrypt the ciphertext. Studies on Threshold HE are again diverged into two dif-
ferent directions: the case where t < n and the case where t = n. In our work, we
focus on the case when t = n, which is referred as Multi-Party HE (MPHE). Like
any other Threhold HE schemes, MPHE is comparable to that of the single-key
HE schemes since encryption and homomorphic computation are performed in
a similar manner with the joint key. However, the set of participants should be
determined beforehand and fixed in the preparation phase and no other parties
can join the computation in the middle. Moreover, the existing MPHE schemes
are based on a multi-round key generation protocol in which the involved parties
should interact with each other.

On the other hand, MKHE [12,13,18,29,32,34] features a distributed setup
phase where each party independently generates its own key pair, without requir-
ing any information about other participants. The encryption can be done by
an individual key, and it allows to perform arithmetic operations on ciphertexts
that do not necessarily have to be encrypted under the same key. The main
advantage of MKHE lies in its flexibility: it is not necessary to pre-determine
the list of participants or the computational task. From the performance per-
spective, however, the size of ciphertexts increases with the number of involved
parties, and so does the complexity of homomorphic operations.

1.1 Our Contributions

Formalization of Multi-group HE. We propose a novel variant of HE
designed for multiple parties, called Multi-Group HE (MGHE), and define its
security notion. An MGHE scheme can be viewed as a generalization of both
MPHE and MKHE, which enjoys the best of both primitives. In MGHE, a group

A General Framework of Homomorphic Encryption 405

of parties collaboratively generates a public key that is commonly used among
the parties for encryption. Hence, MGHE behaves like an MPHE scheme in a sin-
gle group. Moreover, an MGHE scheme has the capability to perform arbitrary
computations on encrypted data, regardless of whether the input ciphertexts are
encrypted under the same group key or not, a crucial property of MKHE.

Construction of MGHE. We construct an MGHE scheme and provide a rigor-
ous proof of its semantic security. Our MGHE scheme regards an MPHE cipher-
text as a single-key encryption under the joint secret key so that ciphertexts
corresponding to different group keys can be operated in a MKHE manner. Con-
sequently, our MGHE scheme has a hierarchical structure where a ciphertext is
decryptable by the joint secret keys of the associated groups, each of which is
additively shared among the group members. From the perspective of MPHE,
it is also the first construction of the MPHE scheme with non-interactive key
aggregation where the joint encryption and evaluation keys are obtained from
independently generated individual keys by simply summing them.

Building Multi-party Computation Protocol from MGHE. We build a
round-optimal Multi-Party Computation (MPC) protocol on top of our MGHE
scheme, which is naturally derived from the non-interactive key aggregation
(setup). We show that the protocol is secure against semi-malicious adversaries
in the dishonest majority setting, relying on the semantic security of MGHE.

Experimental Results. We implement our MGHE scheme based on both BFV
and CKKS and provide a basic benchmark compared to the previous MPHE and
MKHE works.

1.2 Technical Overview

At the heart of our construction lies a non-interactive key generation algorithm.
This allows the joint key of a group to be constructed non-interactively from
independently generated keys of the group members. The key generation follows
a hybrid construction between MPHE (the encryption key aspects) and MKHE
(the relinearization mechanisms).

We assume that each party is identified as a unique index i and let I be
a group of parties. The homomorphic property of LWE makes the summation
of public and secret key pairs be a valid key pair. To be precise, an MPHE
scheme behaves like a single-key HE scheme where the joint secret key s =∑

i∈I [s]i is additively shared among the members of I. We make the Common
Random String (CRS) assumption to construct a joint public (encryption) key:
given a random polynomial a ∈ Rq, each party i ∈ I generates [b]i = a · [s]i +
[e]i (mod q) for some error [e]i, then the joint public key is obtained as b =∑

i∈I [b]i ≈ a · s (mod q). However, it is more challenging to generate a joint
evaluation key, especially a relinearization key, because the relinearization key is
usually supposed to be an ‘encryption’ of s2 which has quadratic structure with
respect to the individual secrets [s]i. In the previous constructions [5,31], the
key generation procedure involves a multi-round protocol among the parties: (1)

406 H. Kwak et al.

Fig. 1. A schematic presenting the overall structure of MGHE schemes. Each boxed
group of participants acts as an MPHE scheme. The secret keys and ciphertext equa-
tions for each group and the entire set of participants (including between groups) are
described above.

parties publish individual encryption keys to build a joint encryption key, then
(2) use it to generate ‘encryptions’ of [s]i · s and broadcast them to construct a
joint evaluation key.

To reduce the multiple rounds of the protocol, we propose a new key gen-
eration algorithm which is nearly linear with respect to the secret key. This
property enables the non-interactive key generation in that each party indepen-
dently generates and broadcasts its public key [pk]i once, which adds up to the
joint public (encryption and evaluation) key pk =

∑
i∈I [pk]i corresponding to

the joint secret s =
∑

i∈I [s]i.
To construct our MGHE scheme, we apply this key generation protocol to

support homomorphic computation between ciphertexts under different keys.
For example, if we perform homomorphic computation on MPHE ciphertexts
ctj under the joint secret keys sj =

∑
i∈Ij

[s]i of groups Ij for 1 ≤ j ≤ k, then
it outputs a ‘multi-group’ ciphertext under the secret (s1, . . . , sk). In particular,
the joint public keys of the involved groups themselves are used in the relin-
earization process of multi-group ciphertexts so that no further interaction is
required among the parties. The technical details of our MGHE constructions
are described in Sect. 4. Thus, our MGHE scheme behaves as if it is an MKHE
scheme in which each key is jointly generated by a group of parties (akin to
MPHE). This makes MGHE an ideal generalization of both these HE variants
and the hierarchical key structure allows an MGHE scheme to take advantage
of strengths of both MPHE and MKHE.

1.3 Related Work

We first remark that the terminology for HE-like primitive has not been agreed
upon yet in the literature. We use the terms ‘MPHE’ and ‘MKHE’ to classify
the related works.

A General Framework of Homomorphic Encryption 407

Asharov et al. [5] designed the first MPHE scheme from BGV [10]. Mouchet et
al. [31] proposed a simplified construction from BFV [9,20] and presented some
experimental results. Park [33] recently modified the key generation protocol
to reduce the interaction and also suggested a conversion between MPHE and
MKHE. To the best of our knowledge, all known MPHE schemes require a multi-
round protocol among the parties to generate a shared key pair.

On the other hand, there have been several attempts to construct an MKHE
scheme by generalizing single-key HE schemes. López-Alt et al. [29] designed
the first MKHE from NTRU [25], and [18,32,34] studied multi-key variants
of GSW [22]. Then, Brakerski and Perlman [11] presented an LWE-based
MKHE [11], followed by Chen et al. [12] who presented a multi-key variant of
TFHE [16]. Other works [13,14] studied MKHE schemes from batched HEs such
as BGV [10], BFV [9,20] and CKKS [15]. Ananth et al. [4] proposed a general
methodology to design an MKHE scheme in the plain model. The construction
is done by combining an oblivious transfer protocol and MKHE schemes with
limited functionality or trusted setup.

We remark that some MKHE schemes can be converted into MGHE: if the
key generation algorithm of an MKHE scheme has the homomorphic property,
then we can simply operate on the public keys of multiple parties to build a
shared key for the group. For example, multi-key GSW schemes [18,32,34] hold
the condition since GSW does not require an evaluation key for multiplication.

Aloufi et al. [3] combined MPHE and MKHE to perform computation on
ciphertexts under two different keys: a joint key of model owners and the other
of a client. It can be viewed as a special case of MGHE in which there are
two groups consisting of model owners and a client. However, its key generation
procedure also involves an interactive protocol to obtain an evaluation key.

Boneh et al. [8] suggested the notion of threshold FHE that has t-out-of-n
access structure protocol by splitting the secret key into shares. Its key generation
is based on a Shamir secret sharing scheme where each party receives a share of
the secret key.

2 Background

2.1 Notation

Let N be a power of two. We denote by R = Z[X]/(XN +1) the ring of integers
of the (2N)-th cyclotomic field and Rq = Zq[X]/(XN + 1) the residue ring of
R modulo an integer q. An element of R (or Rq) is uniquely represented as a
polynomial of degree less than N with coefficients in Z (or Zq). We identify
a =

∑
0≤i<N ai · Xi ∈ R with the vector of its coefficients (a0, . . . , aN−1) ∈ Z

N .
For σ > 0, we denote by Dσ a distribution over R which samples N coefficients
independently from the discrete Gaussian distribution of variance σ2 and χ as a
key distribution.

408 H. Kwak et al.

2.2 Ring Learning with Errors

Given the parameters (N, q, χ, σ), consider the samples of the form bi = s ·ai +ei

(mod q) for polynomial number of i’s where ai ← U(Rq) and ei ← Dσ for a fixed
s ← χ. The Ring Learning with Errors (RLWE) assumption states that the
RLWE samples (bi, ai)’s are computationally indistinguishable from uniformly
random elements of U(R2

q).

2.3 Gadget Decomposition and External Product

A function h : Rq → Rd is called a gadget decomposition if there exists a gad-
get vector g = (gi) ∈ Z

d
q such that a = 〈h(a),g〉 (mod q) for all a ∈ Rq.

Typical examples are bit decomposition [9,10], digit decomposition [16], and
Residue Number System (RNS) based decompositions [6,24]. Our implementa-
tion is based on an RNS-friendly decomposition for efficiency.

For μ ∈ R, we call U = (u0,u1) ∈ Rd×2
q a gadget encryption of μ under a

secret s if u0 + s · u1 = μ · g + e (mod q) for some e sampled from an error
distribution. Chillotti et al. [16] formalized external product operation between
RLWE and RGSW ciphertexts. We adopt and generalize this concept as follows:
for c ∈ Rq and v ∈ Rd

q , the external product is defined as c � v := 〈h(c),v〉
(mod q). We also write c � U = (c � u0, c � u1) for U = (u0,u1) ∈ Rd×2

q . We
note that if U is a gadget encryption of μ such that u0 + s · u1 = μ · g + e
(mod q) for some e, then the external product (c0, c1) ← c � U satisfies that
c0 + c1 · s = c � (u0 + s · u1) = c · μ + 〈h(c), e〉 (mod q) .

The gadget decomposition technique is widely used in HE schemes to reduce
the noise growth of homomorphic operations. In addition, it is often combined
with the special modulus technique [21]. Although the special modulus technique
is applied to the external product in our implementation, we do not describe it
in the main body of this paper for simplicity.

3 Formalizing Multi-group Homomorphic Encryption

The ordinary HE schemes support computation on ciphertexts, but the same
key should be used for encryption. This major constraint raises the key man-
agement problem and makes it difficult to apply the HE technology to a variety
of applications. For the last few years, substantial research has been undertaken
to solve the issue by distributing the authority of HE system. Currently, there
are two main approaches to extend the functionality of HE to the multi-party
setting: Threshold HE (ThHE) and Multi-Key HE (MKHE).

First, Threshold HE (e.g. [5,8,30,31,33]) is similar to HE, except the fact
that the secret key is shared among several parties. In particular, most studies
are dedicated to the case of t = n, which we call Multi-party HE (MPHE), while
there have been limited results for t < n. In practice, ThHE (or MPHE) schemes
are derived from single-key HEs by replacing their key-generation algorithms
with distributed protocols, while the evaluation procedures remain the same. To

A General Framework of Homomorphic Encryption 409

the best of our knowledge, all existing schemes require interaction between the
parties to build a relinearization key for multiplication. This approach tends to
be more efficient, but it is required to fix the parties at the setup phase which
cannot change during the entire operation.

Meanwhile, Multi-key HE (e.g. [12,13,18,29,32,34]) is another variant of HE
with different pros and cons. In this primitive, each party can generate its own
key and use it to encrypt data without any interaction with other users. More-
over, it is possible to evaluate a circuit over ciphertexts under different keys,
which results in a multi-key ciphertext decryptable by the associated parties.
The MKHE schemes enjoy better flexibility and dynamism since it allows a new
party to join the computation anytime. On the other hand, they suffer from rel-
atively poor performance where the space and time complexity grow depending
on the number of parties involved in the computation.

In this section, we propose a new variant of HE for multiple parties, called
Multi-Group HE (MGHE), which allows the seamless integration of MPHE and
MKHE and has the best of both worlds.

3.1 Definition

An MGHE scheme consists of several algorithms and protocols below:

• Setup(1λ, 1d): Given the security parameter λ and the maximal level d, the
setup algorithm generates a public parameter set pp.

• KeyGen({Pi : i ∈ I}): A set of parties {Pi : i ∈ I} execute the key-generation
protocol to jointly generate a public key pk. Each party Pi also obtains a
secret share [sk]i.

• Enc(pk;m): Given a public key pk and a message m, the encryption algorithm
returns a ciphertext ct.

• Eval({pk1, . . . , pkk;C, ct1, . . . , ctk): Given a circuit C, ciphertexts ct1, . . . , ctk
and their associated public keys pk1, . . . , pkk, the evaluation algorithm out-
puts a ciphertext ct.

• DistDec({Pi : i ∈ I}; ct). Given a ciphertext ct, the associated parties execute
the distributed decryption protocol and recover a message m.

First of all, the key-generation protocol can be conducted by a set of parties
(which we call a group) to build a public key and corresponding secret key shares.
A group of parties {Pi : i ∈ I} will be represented as an index set I. Unlike
MPHE, it is not necessary to specify a group at the setup phase, but any group
of parties can execute the protocol at any time. In addition, each party may join
several groups and run the key-generation protocol with different parties. A data
owner needs to pick a public key in the encrypt algorithm so that the output
ciphertext is collaboratively decryptable by the corresponding group of parties.
We require that an MGHE scheme is semantically secure in the semi-honest
model. In other words, the adversary learns no information about the message
if at least one party in the group is honest.

The evaluation algorithm of MGHE allows us to compute a circuit on
encrypted messages, which are not necessarily encrypted under the same key.

410 H. Kwak et al.

To be precise, if we evaluate a circuit over ciphertexts associated with groups
I1, . . . , Ik, then the output ciphertext is no longer decryptable by a single group
but its decryption requires all parties in I := I1 ∪ · · · ∪ Ik to be involved in the
distributed decryption protocol.

In the security game, we assume that the key-generation protocol is executed
honestly by the parties. The correctness guarantees that the output of evaluation
and decryption protocols in MGHE is same as the result of the evaluation circuit
with plain messages. The security of MGHE indicates that when there is at least
one honest party among sets of parties, an encryption for that party does not
reveal any information about the message.

Definition 1 (Security). Let I1, I2, . . . , Ik be sets of parties and let I =
∪1≤j≤kIj. Let A ⊆ I denote the set of adversarial parties and H = I\A. An
MGHE scheme is said to be secure if the advantage of A in the following game
is negligible for any PPT adversary A:

– The challenger generates a public parameter pp ← Setup(1λ, 1d).
– The challenger executes the key generation protocol KeyGen(pp, Ij) for all

1 ≤ j ≤ k. The challenger sends the public keys pk1, . . . , pkk and secret
shares {[skj]i : i ∈ A, 1 ≤ j ≤ k} of A to the adversary.

– The adversary chooses messages m0,m1 ∈ M and picks an index j such that
Ij � A, and sends them to the challenger. The challenger samples a random
bit b ∈ {0, 1} and sends Enc(pkj ;mb) back to the adversary.

– The adversary A outputs a bit b′. The advantage is defined as
∣
∣Pr[b = b′] − 1

2

∣
∣.

Definition 2 (Correctness). Let pp ← Setup(1λ, 1d). For 1 ≤ i ≤ k, let
pki ← KeyGen(Ii) be a public key generated by a set of parties {Pj : j ∈ Ii} and
cti ← Enc(pki;mi) be an encryption of a message mi. An MGHE scheme is said
to be correct if for any circuit C : Mk → M whose depth is bounded by d, the
following holds with an overwhelming probability in λ:

DistDec

⎛
⎝{

Pi : i ∈
⋃

1≤i≤k

Ii

}
; Eval(pk1, . . . , pkk; C, ct1, . . . , ctk)

⎞
⎠ = C(m1, . . . , mk).

3.2 Relations with MPHE and MKHE

Let us explain how MGHE is related with other approaches, MPHE and MKHE.
As mentioned before, these primitives differ in various respects such as key struc-
ture and functionality. Recall that all parties use the same public key for encryp-
tion and evaluation in the MPHE setting, while an MKHE scheme allows each
party to generate a key pair independently so that different keys can be involved
in the computation.

Our suggestion, the MGHE primitive, can be viewed as a generalization of
both primitives. In other words, MPHE and MKHE are special instantiations
of MGHE with different group structures. First, suppose that all parties join a
single group in the MGHE setting. Then, they share the same key for encryption

A General Framework of Homomorphic Encryption 411

and the whole evaluation is done within the group, similar to the case of MPHE.
Conversely, if each user forms a group alone, then the group key is solely gener-
ated and owned by a single party and the evaluation across different parties are
performed in the MKHE manner.

Moreover, in these examples, our security definition of MGHE corresponds
to the security definitions of MPHE and MKHE. In the single-group case, there
is only group to be chosen by the adversary, so the security game is exactly the
same as that of MPHE [28]. On the other hand, if every group consists of a single
party, then our security game for MGHE defines the ordinary semantic security
for (MK)HE.

4 MGHE Construction

In this section, we present a concrete instantiation of MGHE from the BFV
scheme. Recall that, in the MGHE setting, we can perform computation over
ciphertexts which are not necessarily encrypted under the same key. In addition,
our idea is easily applicable to design multi-group variants of other HE schemes
such as BGV [10] and CKKS [15]. In particular, we implement MGHE schemes
from both BFV and CKKS and present experimental results in Sect. 6. We also
provide a formal description of multi-group CKKS in Appendix A.1.

In Sects. 4.1 and 4.2, we outline the basic scheme consisting of setup, key gen-
eration, encryption, and decryption of the MGHE scheme. In Sects. 4.3 and 4.4,
we provide the algorithms of arithmetic operations and automorphism of MGHE,
respectively, with its correctness proof and we provide the security analysis of
MGHE in Sect. 4.5.

4.1 Key Generation

In this section, we describe a key generation procedure of our MGHE scheme.
Our scheme is based on the CRS model, i.e., all parties have access to the same
random string. A parameter set also includes the RLWE dimensions, ciphertext
modulus, the key distribution, as well as the error parameter. We firstly explain
the setup phase which is a stage to determine some parameters for further pro-
cedures with a certain security level before introducing the key generation.

• Setup(1λ): Set the RLWE dimension N , the plaintext modulus t, the cipher-
text modulus q, the key distribution χ over R, and the error parameter σ. Choose
a gadget decomposition h : Rq → Rd with a gadget vector g ∈ Rd

q . Sample ran-
dom vectors a,u and k1, . . . ,kL from U(Rd

q) where L is the number of different
automorphisms to be used in the evaluation process. Return the public param-
eter pp = (N, t, q, χ, σ,g, h) and common random string crs = (a,u,k1, . . . ,kL).
We write Δ = �q/t�.

Our scheme generates several CRSs in the setup phase, but this can be imple-
mented efficiently using a keyed pseudo-random function (PRF). This allows us

412 H. Kwak et al.

to rely on the CRS assumption for a fixed-size seed, regardless of the number of
common random polynomials used for public and automorphism keys.

Recall the definition of MGHE in Sect. 3.1: a group of parties executes the key
generation protocol to build a joint public key while each party obtains its own
secret. In our construction, the key generation proceeds in two steps of generating
individual secret keys and aggregating them into a public key. To be precise, each
party Pi first generates its own key pair ([sk]i, [pk]i) and broadcasts the public
component [pk]i. We stress that the generation of an individual key pair can be
done locally by each party without any interaction with other parties. In the
following step, a public key for a group of parties {Pi : i ∈ I} can be obtained
from the individual public keys [pk]i of the group members. This aggregation
can be done by a public cloud without further interaction between the parties.
We note that a public key includes an encryption key, a relinearization key for
multiplication and automorphism keys for homomorphic rotation.

Note that the individual key generation can be regarded as a preprocessing
phase of the key generation protocol since other parties do not affect and thus
each party is able to run this protocol at any time. In addition, even if a party
belongs to several groups, the party generates only one key pair of its own and
uses it several times to create multiple public keys corresponding to the groups
that the party belongs to. It makes our construction more efficient because the
party does not need to generate a new key pair for each key aggregation step. We
guarantee that the MGHE scheme is secure and the security proof is described
in Sect. 4.5.

• IndKeyGen(Pi; {ψ�}1≤�≤L): Each party Pi generates individual secret and pub-
lic keys as follows:

– Sample [s]i ← χ and set the secret key as [sk]i = si.
– Sample [r]i ← χ and [e0]i, [e1]i, [e2]i ← Dd

σ, and compute

[b]i = −[s]i · a + [e0]i (mod q),
[d]i = −[r]i · a + [s]i · g + [e1]i (mod q),
[v]i = −[s]i · u − [r]i · g + [e2]i (mod q).

– For given automorphisms ψ1, . . . , ψL, sample [e′
�]i ← Dd

σ and compute

[h�]i = −[s]i · k + ψ�([s]i) · g + [e′
�]i (mod q)

for 1 ≤ � ≤ L. Set the public key as [pk]i = ([b]i, [d]i, [v]i, [h1]i, . . . , [hL]i).

• JointKeyGen({[pk]i : i ∈ I}): Let I be the index set for a group of parties.
Given the collection of public keys [pk]i with i ∈ I, compute the public key as
pk =

∑
i∈I [pk]i, i.e., pk = (b,d,v,h1, . . . ,hL) ∈ Rd×4

q where

b =
∑

i∈I

[b]i, d =
∑

i∈I

[d]i, v =
∑

i∈I

[v]i, and h� =
∑

i∈I

[h�]i (mod q)

A General Framework of Homomorphic Encryption 413

for 1 ≤ � ≤ L. Specifically, we denote the encryption key as ek = (b[0],a[0]), the
relinearization key as rlk = (b,d,v), and the automorphism keys as ak� = h�.

Each component of the public key [pk]i forms a gadget encryption with a
CRS under the secrets [s]i or [r]i. We call s =

∑
i∈I [s]i the (implicitly defined)

secret key for the group I. The individual secrets [s]i can be viewed as additive
shares of s. Furthermore, the public key [pk]i is nearly linear with respect to [s]i
and [r]i so that the joint public key pk = (b,d,v,h�)1≤�≤L satisfies the same
properties as the individual keys:

b ≈ −s · a (mod q), d ≈ −r · a + s · g (mod q)
v ≈ −s · u − r · g (mod q), h� ≈ −s · k� + ψ�(s) · g (mod q)

Non-interactive Key Aggregation. In the construction of existing MPHE,
the main challenge is to generate the relinearization key for a group of parties.
To be precise, the relinearization key of BFV is a key-switching key from s2

to s, or equivalently, a gadget encryption of s2 under s. However, the secret
key is additively shared among the parties in the multi-party setting, so it is
not easy to generate the relinearization key in a distributed manner due to
its quadratic structure. Therefore, the existing MPHE schemes [5,31,33] had a
common limitation in that they rely on a multi-round key generation protocol
requiring interaction between the parties.

For instance, the public key generation of [33] consists of two steps: all par-
ties broadcast individual encryption keys [b]i ≈ a · [s]i (mod q) to build a joint
encryption key b =

∑
i∈I [b]i first, then use it to generate a gadget encryption of

[s]i · s and aggregate them to build a gadget encryption of s2.
In this work, we solve the issue by introducing a novel key-generation algo-

rithm such that the public key is nearly linear with the corresponding secret key.
In other words, our relinearization key has a completely different structure where
the summation of [pk]i for i ∈ I becomes a valid public key corresponding to the
secret

∑
i∈I [sk]i. Our key-generation algorithm is inspired from the idea of Chen

et al. [13] introducing the second secret [r]i to reconstruct the relinearization key
structure. Although the prior method is not nearly linear so cannot be directly
used in the MPHE construction, we achieve the desired property by making an
additional CRS assumption.

Consequently, our MGHE scheme allows each party to independently gen-
erate an individual public key once even without any information about other
parties, and the public key for a group can be built on the server by simply
adding individual public keys. This ‘non-interactive’ nature of key aggregation
offers several advantages, including performance and flexibility. For instance, if
a party Pi belongs to several groups, it suffices to generate a single individual
public key [pk]i and reuse it across all groups, instead of joining the key-general
protocol repeatedly once for each group. More discussions on this feature will be
given in Sect. 5.1.

414 H. Kwak et al.

4.2 Encryption and Decryption

As explained above, the encryption key ek = (b[0],a[0]) satisfies b[0]+a[0]·s ≈ 0
(mod q), so it can be viewed as an RLWE instance with secret s. Therefore,
we use the same BFV encryption and decryption algorithms in our scheme as
follows.

• Enc(ek;m): Given a message m ∈ Rp and the joint encryption key ek, sample
w ← χ and e0, e1 ← Dσ. Return the ciphertext ct = w · ek + (Δ · m + e0, e1)
(mod q).

Suppose that a message m is encrypted using a public key generated by
a group of parties {Pi : i ∈ I}. Then, the output ciphertext ct = (c0, c1) ←
Enc(ek,m) satisfies that c0 + c1s ≈ Δm (mod q) where s =

∑
i∈I [s]i is the

secret key for the group I. Therefore, it is required to store the information
In our MGHE scheme, it is As we discussed in Sect. 3.1, an MGHE ciphertext

holds the references to the associated public keys. In our scheme, each ciphertext
stores an ordered set of the involved groups. For example, a fresh ciphertext
encrypted by a joint public key pk =

∑
i∈I [pk]i is linked to the set containing a

single element I. More generally, a multi-group encryption of m corresponding an
ordered set of k groups {I1, . . . , Ik} is an (k+1) tuple ct = (c0, c1, . . . , ck) ∈ Rk+1

q

satisfying c0 + c1 · s1 + · · · + ck · sk = Δ · m + e (mod q) for some error e where
sj =

∑
i∈Ij

[s]i is the joint secret key of Ij for 1 ≤ j ≤ k.
Finally, we present a basic (ideal) decryption algorithm and a distributed

decryption protocol. For given a ciphertext ct = (c0, . . . , ck) which is linked to k
groups I1, . . . , Ik, the basic algorithm takes as input the joint secret keys si of
the associated groups Ii and recovers the plaintext message while the distributed
decryption protocol let the parties in

⋃
1≤j≤k Ij perform the same computation

securely in a distributed manner. As we mentioned before, we describe how to
set concrete σ′ for the distributed decryption in Sect. 5.2.

• Dec(sk1, . . . , skk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint secret

keys skj = sj for 1 ≤ j ≤ k, return m =
⌊
(t/q) · (c0 +

∑
1≤j≤k cj · sj)

⌉
(mod t).

• DistDec({[sk]i : i ∈ ∪1≤j≤kIj}, σ′; ct): Let ct = (c0, . . . , ck) be a multi-group
ciphertext corresponding to an ordered set of groups (I1, . . . , Ik). The distributed
decryption protocol consists of the following procedures:

– Partial decryption: Let I = ∪1≤j≤kIj . Each party i ∈ I samples [e′]i ← Dσ′ ,

then broadcasts [μ]i =
(∑

1≤j≤k, i∈Ij
cj

)
· [s]i + [e′]i (mod q).

– Merge: Compute m =
⌊
(t/q) · (c0 +

∑
i∈I [μ]i

)⌉
(mod t).

4.3 Arithmetic Operations

Homomorphic operations include a pre-processing step that aligns the com-
ponents of input ciphertexts as follows. For given two multi-group cipher-
texts, we consider the corresponding ordered sets and compute their union,

A General Framework of Homomorphic Encryption 415

Algorithm 1. Relinearization procedure of MGHE
Input: ctmul = (ci,j)0≤i,j≤k, rlkj = (bj ,dj ,vj) for 1 ≤ j ≤ k.
Output: ctrelin = (c∗

j)0≤j≤k ∈ Rk+1
q .

1: c∗
0 ← c0,0

2: for 1 ≤ j ≤ k do
3: c∗

j ← c0,j + cj,0 (mod q)
4: end for
5: for 1 ≤ j ≤ k do
6: c∗

j ← c∗
j +

∑
1≤i≤k ci,j � di (mod q)

7: end for
8: for 1 ≤ i ≤ k do
9: c′′

i ← ∑
1≤j≤k ci,j � bj

10: (c∗
0, c

∗
i) ← (c∗

0, c
∗
i) + c′′

i � (vi,u) (mod q)
11: end for

say {I1, . . . , Ik}. Then, we extend the input ciphertexts by padding some zeros
and rearranging their components so that both ciphertexts are decryptable with
respect to the same secret sk = (s1, . . . , sk) where sj is the joint secret of group
Ij , 1 ≤ j ≤ k. We assume that this pre-processing is always performed on the
input ciphertext and the output ciphertext is linked to the union {I1, . . . , Ik} of
ordered sets even if it is not explicitly mentioned in the algorithm description.

• Add(ct, ct′): Given two ciphertexts ct and ct′, return the ciphertext ctadd =
ct + ct′ (mod q).

• Mult(rlk1, . . . , rlkk; ct, ct′): Given two multi-group ciphertexts ct = (c0, . . . , ck),
ct′ = (c′

0, . . . , c
′
k) and k joint relinearization keys rlk1, . . . , rlkk, compute ctmul =

(ci,j)0≤i,j≤k where ci,j =
⌊
(t/q) · cic

′
j

⌉
(mod q) for 0 ≤ i, j ≤ k. Return the

ciphertext ctrelin ← Relin(rlk1, . . . , rlkk; ctmul) where Relin(·) is the relineariza-
tion procedure described in Algorithm 1.

We remark that the relinearization algorithm can be shared between our
MGHE scheme and the previous MKHE scheme [13] as they have the same
ciphertext structure. Our relinearization algorithm is an improvement of the
previous method which reduces the number of external products by almost a
factor of 2. More formally, the prior algorithm computes lines 8–11 of Algorithm 1
by repeating the following computation iteratively over 1 ≤ i, j ≤ k:

(c∗
0, c

∗
i) ← (c∗

0, c
∗
i) + (ci,j � bj) � (vi,u) (mod q).

We observe that
∑

1≤j≤k ci,j � bj is pre-computable and reusable for the relin-
earization of multiple ciphertext components. This idea consequently reduces the
number of external products down to 2k2 + 2k in total, compared to the former
method which requires 4k2 external products. We refer the reader to Appendix B
for details about the noise analysis.

Correctness of Homomorphic Multiplication. Suppose that ct and ct′ are
encryptions of m and m′ under secret sk = (s1, . . . , sk), respectively, and let

416 H. Kwak et al.

ctmul = (ci,j)0≤i,j≤k = �(t/q) · ct ⊗ ct′� (mod q). Then, it satisfies following
relation:

〈
ctmul, (1, sk) ⊗ (1, sk)

〉 ≈ Δ · mm′ (mod q). We claim that if ctrelin ←
Relin({rlkj}1≤j≤k; ctmul), then the output ciphertext ctrelin = (c∗

0, . . . , c
∗
k) satis-

fies c∗
0 +

∑
1≤j≤k c∗

j · sj ≈ ∑
0≤i,j≤k ci,j · sisj and thereby is a valid encryption

of mm′.
First, we have

c∗
0+

∑
1≤j≤k

c∗
j ·sj = c0,0+

∑
1≤j≤k

(c0,j +cj,0)·sj +
∑

1≤i,j≤k

(ci,j �di)·sj +
∑

1≤i≤k

c′′
i �(vi+si ·u)

where c′′
i =

∑
1≤j≤k ci,j � bj from the definition of Algorithm 1.

We also consider the properties sj ·di ≈ −risi · a+ sisj · g ≈ ri ·bj + sisj · g
(mod q) and vi + si · u ≈ −ri · g (mod q) of the joint public keys and deduce
the following equations:

∑

1≤i,j≤k

(ci,j � di) · sj ≈
∑

1≤i,j≤k

ri · (ci,j � bj) +
∑

1≤i,j≤k

ci,j · sisj (mod q),

∑

1≤i≤k

c′′
i � (vi + si · u) ≈ −

∑

1≤i≤k

ri · c′′
i = −

∑

1≤i,j≤k

ri · (ci,j � bj) (mod q).

Putting them all together, we obtain

c∗
0+

∑
1≤j≤k

c∗
j ·sj ≈ c0,0+

∑
1≤j≤k

(c0,i+ci,0)·sj+
∑

1≤i,j≤k

ci,j ·sisj =
∑

0≤i,j≤k

ci,j ·sisj (mod q)

which completes the correctness proof of the relinearization algorithm.

Asymptotically Faster Multiplication. Recent research [26] has enhanced
the multiplication of BFV and CKKS in MKHE to achieve a linear time com-
plexity. They leverage a newly proposed concept called homomorphic gadget
decomposition, which satisfies 〈h(a) � h(b),g〉 = ab (mod q) for a, b ∈ Rq, to
replace the term h(ci,j) with h(ci) � h(c′

j). As our MGHE is a natural exten-
sion of MKHE, we can directly adopt their algorithm to both BFV and CKKS.
Notably, their multiplication in BFV entails additional (homomorphic) gadget
decomposition h̃ : Rq̃ → Rd̃ on q̃ := q2 with a gadget vector h ∈ Rd̃

q̃ and the

corresponding external product c�̃v =
〈
h̃(c),v

〉
(mod q̃). We refer the reader

to [26] for further details.

4.4 Automorphism

The packing technique of the BFV scheme enables us to encode multiple val-
ues in a finite field into a single plaintext polynomial for better efficiency [10].
The (un)packing algorithm has a similar algebraic structure with the canonical
embedding map over the cyclotomic field K = Q[X]/(XN + 1), and the auto-
morphisms in the Galois group Gal(K/Q) provide special functionality on the
plaintext slots such as rotation.

We present a multi-group variant of homomorphic automorphism such that
the joint automorphism key is generated non-interactively. Given a multi-group

A General Framework of Homomorphic Encryption 417

ciphertext ct = (c0, . . . , ck) linked to k groups I1, . . . , Ik, the joint automorphism
key of Ij is used to perform the key-switching procedure of the j-th entry ψ(cj)
during the homomorphic evaluation of ψ� ∈ Gal(K/Q). For simplicity, we will
describe the case with one automorphism for simplicity in the following sections.

• Auto(ak1, . . . , akk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and the joint
automorphism keys akj = hj for 1 ≤ j ≤ k, compute and return the ciphertext
ctaut = (c′

0, c
′
1, . . . , c

′
k) where c′

0 = ψ(c0) +
∑

1≤j≤k(ψ(cj) � hj) (mod q) and
c′
j = ψ(cj) � k (mod q) for 1 ≤ j ≤ k.

Correctness of Homomorphic Automorphism. We show below the cor-
rectness of multi-group homomorphic automorphism algorithm:

c′
0 +

∑
1≤j≤k

c′
j · sj = ψ�(c0) +

∑
1≤j≤k

ψ�(cj) � (hj + sj · k)

≈ ψ�(c0) +
∑

1≤j≤k

ψ�(cj) · ψ�(sj) = ψ�(c0 +
∑

1≤j≤k

cj · sj) (mod q)

where ct = (c0, . . . , ck) and ctaut = (c′
0, . . . , c

′
k) ← Auto(h1, . . . ,hk; ct).

4.5 Security

In this section, we show that our MGHE scheme achieves a semantic security
that we defined in Sect. 3.1 under the RLWE assumption.

Lemma 1 (Security of MGHE). The MGHE scheme described above is
semantically secure under the RLWE assumption with parameter (n, q, χ, σ).

Proof. Let Ii be sets such that I = ∪0≤i≤kIi and H = I\A for any set A � I.
We define some hybrid games as follows:

– Game 0: This is a real world execution of the security game defined in
Definition 1.

– Game 1: It is similar to Game 0, but the challenger samples [pk]i uniformly
at random from Rd×4

q for i ∈ H.
– Game 2: It is similar to Game 1, but the challenger encrypts 0 instead of

mb.

Let [pk]i = ([b]i, [d]i, [v]i, [h]i) be the public key of party i ∈ H. Since ([b]i,a)
and ([v]i,u) follow the RLWE distribution of secret [s]i, a pair ([b]i, [v]i) is indis-
tinguishable from a uniform distribution over Rd×2

q . In addition, ([d]i,a) follows
the RLWE distribution of secret [r]i, [d]i is also indistinguishable from a uniform
distribution over Rd

q . Meanwhile, ([d]i,a) and ([v]i,u) can be viewed as a ‘chain’
of two gadget encryptions of [s]i and −[r]i under secrets [r]i and [s]i, respectively.
Here we make an additional circular security assumption which guarantees that
our scheme remains secure even if [d]i, [v]i, and [h]i are public. On the other
hand, [h]i is an gadget encryption of ψ([s]i) under [s]i with a random vector k.
Therefore, Game 0 and Game 1 are computationally indistinguishable.

418 H. Kwak et al.

In both Game 1 and Game 2, the adversary sends a group index j to the
challenger in the security game. The encryption key b[0] used in these games
is given by b[0] =

∑
i∈Ij∩A[b]i[0] +

∑
i∈Ij∩H [b]i[0]. Since Ij ∩ H is non-empty

and each [b]i is uniformly sampled from Rd
q for all i ∈ H, b[0] is computation-

ally indistinguishable from a uniform random variable over Rq. Thus, under the
RLWE assumption, the encryptions of 0 and mb in both games are also com-
putationally indistinguishable. Therefore, the difference in advantage between
these two games is negligible.

According to the aforementioned reasons, we can conclude that the advantage
of the adversary in Game 0 is negligible. Since Game 0 is a real world-execution
game with the MGHE scheme, our MGHE scheme achieves semantic security
against semi-malicious corruptions. ��

5 Constructing MPC from MGHE

The MGHE sheme, being a generalization of both the MKHE and MPHE prim-
itives, can serve as a drop-in replacement for these primitives in any application
built with them. As a result, MGHE can be effectively utilized in general 2-
round MPC computation [32], outsourced computation applications [31], and
distributed machine learning setups [19]. Additionally, it can be employed as a
building block in MPC protocols that require varying number of parties [17].

5.1 Overview

MPHE and MKHE are both viable options for building an MPC protocol [29,31,
32], but each has limitations that restrict their usefulness in certain applications.
For example, MPHE-based MPC protocols require parties to communicate with
each other to generate a shared key. On the other hand, MKHE schemes are
more time and space intensive than MPHE because ciphertexts expand as they
interact with other ciphertexts under different keys. Thus, an MGHE scheme
that integrates the strengths of both these schemes can be used to construct
round-efficient MPC protocols. In Fig. 2, we describe a high-level structure of an
MPC computation in three phases. Here, we assume three entities consisting of
key owners, data owners, and a cloud server.

– [Phase I] Setup: In the first step of the protocol, key owners generate their
key pairs and broadcast the public keys. We can treat this step as an offline
phase since these procedures have to be run only once and each party is able
to produce a key pair independently. When Phase I is ended, a joint public
key is built publicly by summing up the individual public keys without any
interaction between the parties.

– [Phase II] Encryption: After encrypting inputs with the joint encryption
key, the ciphertexts are provided to the server which may be an external
entity such as a cloud service provider. In general, semi-honest cloud service
providers or parties themselves in MPC may play the role of computing party.

A General Framework of Homomorphic Encryption 419

Fig. 2. MPC protocol using MGHE and previous work [31]. In [31], cpk and rlk rep-
resent the common public key for encryption and evaluation key, respectively. In our
MGHE scheme, these keys can be obtained from the joint public key jpk directly.

When Phase II is ended, the circuit is evaluated using the homomorphic
properties of the encryption scheme and thus does not require any interaction.

– [Phase III] Decryption: When the evaluation is over, we use an interac-
tive protocol known as distributed decryption to securely decrypt the result
without revealing the secret key of each party. In the protocol, each party
partially decrypts the ciphertext using its own secret key with noise smudg-
ing technique [5], and the output message is obtained by adding all of the
partially decrypted results.

Implication of Non-interactive Key Aggregation. Recall that all prior
MPHE yields multi-round key generation in Phase I due to the quadratic struc-
ture of the evaluation key with respect to the individual secret keys. In the MPC
protocol derived from the previous MPHE, each party broadcasts twice for the
key generation: (1) individual encryption key to generate the joint encryption key
and (2) individual evaluation key, which is constructed using the joint encryption
key, to generate the joint evaluation key. In other words, it requires an interaction
between parties for key aggregation during the setup. In our scheme, the novel
refactoring of the evaluation key enables the parties to broadcast their keys only
once. Each party broadcasts the individual public key, which implicitly contains
the shares of the evaluation key. Then, the joint public key is generated publicly
to be used for encryption and evaluation. By sharing the individual key pair in
the first round itself, each party does not require interaction with other parties
in the rest of the process (and can be offline until the decryption process). Thus

420 H. Kwak et al.

our setup phase is non-interactive in the sense of Non-Interactive MPC [7,23]
that each party independently and asynchronously broadcasts a single message.

The advantages of this non-interactivity are even more pronounced when
a key owner belongs to multiple groups. For example, in the MPC protocol
with interactive setup, a key owner must join several key generation protocols
to generate joint public keys corresponding to the groups containing the party.
Moreover, all parties in the group have to participate simultaneously since the
key generation requires communications between the parties. However, with the
non-interactive key aggregation, the server or the parties can generate joint pub-
lic keys after each party broadcasts its own public key without any interaction
with other parties. Therefore, we can achieve better efficiency since there is no
need to participate in the key generation protocol multiple times and each party
can broadcast its own key at any time before generating the joint public key.

5.2 MPC Protocol Secure Against Semi-malicious Corruptions

We provide a concrete MPC protocol in Fig. 3 for a polynomial-time determinis-
tic circuit C. The correctness of the protocol follows from the correctness of the
MGHE construction. In this section, we prove the protocol’s security against a
semi-malicious adversary which the definition is referred from [5]. Note that a
semi-malicious adversary follows the honest protocol specification with arbitrary
values for their random coins [5,29,32].

To prove the security of the MPC protocol from MGHE, we begin by demon-
strating the simulation security [27] of the distributed decryption process in
MGHE. For a circuit C, let us denote by BC an error bound of a ciphertext
obtained by evaluating the circuit C over fresh ciphertexts. Given BC , we can
guarantee the correctness and simulation security of the distributed decryption
if σ′ is exponentially larger than the bound BC .

Lemma 2 (Correctness of Distributed Decryption). Let n be the number
of parties in I = ∪1≤j≤kIj and Bσ′ be bound of the samples from Dσ′ with
non-negligible probability. If q ≥ 2nt(BC + Bσ′), then the distributed decryption
procedure DistDec satisfy correctness.

Proof. Given the partial decryptions [μ]i of parties i ∈ I, we have

c0 +
∑

i∈I

μi = c0 +
∑

i∈I

⎛

⎝
∑

1≤j≤k,i∈Ij

cj

⎞

⎠ · [s]i +
∑

i∈I

[e′]i

= Δ · m + e + e′

where e is bounded by nBC and e′ =
∑

i∈I [e
′]i is bounded by nBσ′ . Since

q ≥ 2nt(BC + Bσ′), we have |e + e′| ≤ q/2t, which ensures the correctness. ��
Lemma 3 (Security of Distributed Decryption). If σ′ > 0 is a real num-
ber such that the samples from Dσ′ are larger than 2λBC without negligible

A General Framework of Homomorphic Encryption 421

Fig. 3. πC : MPC protocol for a circuit C using MGHE

probability, then the distributed decryption procedure DistDec achieves statis-
tical simulation security against any static semi-malicious adversary corrupting
exactly n − 1 parties.

Proof. Let a party h be the only honest party. We construct a simulator S
against the adversary A which has an access to the inputs and secret keys of all
parties except h and receives the output message m from the ideal functionality.
For given evaluated ciphertext ct = (c0, . . . , cL), the simulator computes and

422 H. Kwak et al.

publishes the simulated partial decryption [μ]′h of the honest party h using a
smudging error [e′]sm

h ← Dσ′ :

[μ]′h = Δ · m + [e′]sm
h −

∑

i�=h

γi − c0 (1)

where γi =
(∑

1≤j≤k,i∈Ij
cj

)
· [s]i (mod q) for i �= h.

Then, the partial decryption of h is generated from the partial decryptions
of corrupted parties and the output message as Δ · m + [e′]sm

h − ∑
i�=h γi − c0.

On the other hand, the real partial decryption also can be written as Δ · m +
e + [e′]sm

h − ∑
i�=h γi − c0 where e is the noise in the ciphertext ct. By the

smudging lemma [5], the distributions of [e′]sm
h and e + [e′]sm

h are statistically
indistinguishable. It concludes that the simulated partial decryption and the real
partial decryption are statistically indistinguishable. ��
Theorem 1 (Security of MPC Protocol). Given a poly-time computable
deterministic circuit C with L inputs, the protocol πC described in Fig. 3 UC-
realizes the circuit C against any static semi-malicious adversary corrupting
exactly n − 1 parties.

Proof. Let a party h be the only honest party. We construct a simulator S
against the adversary A as follows.

The Simulator. In Phase I, the simulator samples the public key of h from
uniform distribution over Rd×4

q instead of IndKeyGen(h). The simulator also
plays Phase II honestly on behalf of the honest party, but encrypts 0 instead of
the real input from h, if any. As the simulator has access to the inputs and secret
keys of all parties except h from the witness tape, the simulator can evaluate
the circuit C on ciphertexts ct1, . . . , ctL and obtain the resulting ciphertext ct.
In addition, it also receives the output message m from the ideal functionality.
In Phase III, the simulator computes the partial decryption for the party h as
same as the simulator introduced in the security proof of Lemma 3.

Now, we define some hybrid games and prove the computational indistin-
guishability between the real and ideal worlds.

– The game REAL(π,A,Z): An execution of the protocol π in the real world
with environment Z and semi-malicious adversary A.

– The game HYB1
(π,A,Z): This is the same as REAL(π,A,Z) except the output

of partial decrpytion of h. In Phase III, it publishes the simulated partial
decryption which is computed via (1).

– The game HYB2
(π,A,Z): This is similar to HYB1

(π,A,Z), but in Phase II the
party h encrypts 0 instead of the real input if any.

– The game IDEAL(F,S,Z): It executes the MPC protocol with the simulator
S. The difference from HYB2

(π,A,Z) is that the public key of h is sampled from
a uniform distribution over Rd×4

q instead of the individual key generation
algorithm IndKeyGen(h) in Phase I.

A General Framework of Homomorphic Encryption 423

From the above games, we consider the following claims.

Claim 1. REAL(π,A,Z) and HYB1
(π,A,Z) are statistically indistinguishable.

Proof. According to the description of the simulator, the partial decryption of h
in the game HYB1

(π,A,Z) is generated from the partial decryptions of corrupted
parties and the output message as Δ · m + [e′]sm

h − ∑
i�=h γi − c0, while the real

partial decryption also can be written as Δ · m + e + [e′]h − ∑
i�=h γi − c0 where

e is the noise in the ciphertext ct. By Lemma 3, the distributions of [e′]sm
h and

e+[e′]h are statistically indistinguishable. This indicates that REAL(π,A,Z) and
HYB1

(π,A,Z) are also statistically indistinguishable.

Claim 2. HYB1
(π,A,Z), HYB2

(π,A,Z), and IDEAL(F,S,Z) are computationally
indistinguishable.

Proof. The differences in three games correspond to the differences in Game 0,
Game 1, and Game 2 of Lemma 1. In detail, the difference between HYB1

(π,A,Z)

and HYB2
(π,A,Z) is that the party h encrypts the real input in HYB1

(π,A,Z) while
it encrypts 0 in the game HYB2

(π,A,Z), if any. Furthermore, the difference between
HYB2

(π,A,Z) and IDEAL(F,S,Z) is in the public key pkh. In HYB2
(π,A,Z), pkh is

a valid public key generated by h while it is sampled from a uniform distribu-
tion over Rd×4

q in the game IDEAL(F,S,Z). Thus, by Lemma 1, the three games
HYB1

(π,A,Z), HYB
2
(π,A,Z), and IDEAL(F,S,Z) are computationally indistinguish-

able.

According to the claims, we conclude that the MPC protocol πC is secure in
the semi-malicious model against n − 1 corrupted parties. ��

To handle the arbitrary number of corruptions, we can establish security
proof by constructing the extended protocol as outlined in [32]. In addition,
we can transform our MPC protocol, which is secure against semi-malicious
attackers, into a protocol that offers security against malicious corruptions with-
out introducing any additional rounds. This transformation can be achieved by
leveraging non-interactive zero-knowledge proofs, as described in [5].

6 Experimental Results

We implement our MGHE scheme based on BFV and CKKS. The source code is
written in GO programming language and is built on Lattigo [1] version 2.3.0. We
conducted experiments on a system equipped with Intel(R) Core(TM) i9-10900
CPU @ 2.80 GHz and 64 GB RAM. In our implementation, the key distribution
χ samples the coefficients from the ternary set −1, 0, 1 with equal probabilities
of 0.25 for −1 and 1, and a probability of 0.5 for 0. The error parameter is set
to σ = 3.2.

Table 1 shows the execution time of multiplication of our MGHE scheme. The
experiment was conducted using two different parameter sets: (N, �log pq�) =

424 H. Kwak et al.

Table 1. Performance of our MGHE schemes, the MKHE scheme by Chen et al. [13],
and the MPHE scheme by Mouchet et al. [31]: execution times to operate homomorphic
multiplication (Mult + Relin), taken in milliseconds (ms). N denotes the dimension
of base ring, n and k denote the number of the associated parties and groups (keys),
respectively, to the ciphertext. Ours+ refers to our MGHE scheme combined with the
technique of [26].

N n k Mult + Relin

BFV CKKS

Ours Ours+ [13] [31] Ours Ours+ [13] [31]

214 1 1 78.7 118.4 84.1 32.6 51.6 72.9 51.2 17.7

2 1 77.9 120.4 – 33.4 50.8 75.3 – 17.1

2 173.4 224.4 196.2 – 122.8 133.4 139.7 –

4 1 80.1 121.6 – 32.9 51.6 76.9 – 17.4

2 175.3 224.1 – – 124.5 133.6 – –

4 476.4 420.8 589.7 – 335.8 250.5 450.7 –

8 1 78.4 118.9 – 33.3 50.8 77.2 – 17.2

2 178.1 223.5 – – 123.6 135.1 – –

4 461.4 422.7 – – 337.1 249.4 – –

8 1473.0 811.7 2014.2 – 1081.9 495.9 1600.7 –

215 1 1 595.9 1036.8 605.5 202.0 414.2 642.5 404.1 165.7

2 1 593.1 1019.4 – 201.5 412.9 640.7 – 170.8

2 1308.3 1929.8 1477.9 – 1014.9 1094.3 1089.7 –

4 1 599.2 1024.4 – 204.2 413.7 643.1 – 164.6

2 1324.9 1945.7 – – 1008.4 1100.6 – –

4 3556.5 4006.8 4582.9 – 2844.5 2177.3 3553.1 –

8 1 593.2 1033.9 – 202.7 413.3 645.5 – 168.7

2 1319.8 1987.1 – – 1011.4 1103.5 – –

4 3515.2 3954.5 – – 2825.1 2147.2 – –

8 10681.1 6871.5 15257.5 – 9008.9 4449.3 13052.8 –

(214, 438) and (215, 880) where p is a special modulus. Both parameter sets
ensure a security level of at least 128 bits [2]. Ours shows the performance of
Algorithm 1 where a minor optimization is introduced and Ours+ shows that of
multiplication algorithm which applies the technique of [26]. As our MGHE sup-
ports computation on groups of parties, we measured the performance varying
the number of groups.

We also present the performance of the MKHE scheme [13] and MPHE
scheme [31] for comparison. Since MKHE and MPHE are instances of MGHE
where each group consists of a single party and single group, respectively, the
MKHE scheme and MPHE scheme have its results in Table 1 only when n = k
and k = 1, respectively. Upon comparing the performance of MKHE and our

A General Framework of Homomorphic Encryption 425

method, the table shows that our multiplication algorithm exhibits slightly faster
operation times than previous MKHE. This is due to our approach, as explained
in Sect. 4.3, where we reduce the number of external products during the relin-
earization. Moreover, in the case of a large number of groups, it is even faster
than our method when we apply the recent technique introduced in [26]. We also
remark that although MPHE shows better performance than other methods, it
requires interactions among the parties before the evaluation to generate the
joint public key.

A Construction of MGHE with CKKS

The CKKS supports approximate arithmetic operations for complex numbers.
The BFV and CKKS have similar structure, we can easily extend MGHE scheme
of the CKKS. The difference is that it adds an error into the plaintext itself and
additionally supports the rescaling algorithm to control the size of ciphertext.
The ciphertext has a level and it decreases whenever rescaling is performed. To
proceed arithmetics between two ciphertexts, they should have same level and
it requires bootstrapping when level is low in order to continue evaluation. We
are going to provide MGHE scheme without interactive key generation. In this
description, we skip setup, key generation, and joint key generation phase since
they are same as BFV. Galois automorphism is also not included since it has
same procedure with the BFV. We assume the ciphertext modulus q =

∏L
i=1 pi

for some integers pi and denote ql =
∏l

i=1 pi.

A.1 MGHE with CKKS

• MG-CKKS.Enc(ek;m): For a joint encryption key ek and a message m, return
ct ← MP-CKKS.Enc(ek;m).

• MG-CKKS.Add(ct, ct′): If two given ciphertexts ct and ct′ has same level, return
the ciphertext ctadd = ct+ ct′ (mod q). If not, modify ciphertexts to have same
level before the computation.

• MG-CKKS.Mult({rlkj}1≤j≤k; ct, ct′): Set ct and ct′ have same level. Let ct =
(ci)0≤i≤k and ct′ = (c′

i)0≤i≤k be two multi-group ciphertexts and {rlkj}1≤j≤k

the collection of the joint relinearization keys of groups Ij for 1 ≤ j ≤ k. Com-
pute ctmul = (ci,j)0≤i,j≤k where ci,j = cic

′
j (mod q) for 0 ≤ i, j ≤ k. Return

the ciphertext MG-CKKS.Relin({rlkj}1≤j≤k; ctmul) where MG-CKKS.Relin(·) is the
relinearization procedure described in Algorithm 1.

• MG-CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1, . . . , ck) ∈ Rk+1
ql

at level
l, compute c′

i =
⌊
p−1

l · ci

⌉
for 1 ≤ i ≤ k, and return ct′ = (c′

0, c
′
1, . . . , c

′
k) ∈ Rk+1

ql−1

which is at level l − 1.

• MG-CKKS.Dec({skj}1≤j≤k; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint
secret keys skj = sj for 1 ≤ j ≤ k, return m = 〈ct, sk〉 = (c0 +

∑
1≤j≤k ci · sj)

(mod t).

426 H. Kwak et al.

• MG-CKKS.DistDec({[skj]i}1≤j≤k,i∈Ij , σ
′; ct): Let ct = (c0, . . . , ck) be a multi-

group ciphertext corresponding to the set of groups {I1, . . . , Ik} and [sk]i = [s]i
be the secret of party i ∈ Ij .

– Partial decryption: For 1 ≤ j ≤ k, each party i ∈ Ij samples [e′
j]i ← Dσ′ ,

then computes and publishes [μj]i = cj · [s]i + [e′
j]i (mod q).

– Merge: Compute m = (c0 +
∑

1≤j≤k

∑
i∈Ij

[μj]i) (mod t).

B Noise Analysis

Before estimating a noise growth, we specify some distributions for sampling
randomness or errors. Let the key distribution χ be the distribution where each
coefficient is sampled from the set {0,±1} with probability 0.25 for each of −1
and 1 and with probability 0.5 for 0. Set the error distribution ψ� be the discrete
Gaussian distribution of variance σ2. We also assume that the coefficients of
the polynomials are independent zero-mean random variables with the same
variances. We denote by Var(a) = Var(ai) the variance of coefficients for random
variable a =

∑
i ai ·Xi over the ring R. Then the variance of the product c = a ·b

of two polynomials with degree n can be represented as Var(c) = n·Var(a)·Var(b)
if a and b are independent. Similarly, we define variance for a vector a ∈ Rd

of random variables as Var(a) = 1
d

∑d
i=1 Var(a[i]). We also assume that each

ciphertext behaves as if it is a uniform random variable over Rk+1
q . We analyze

the noise growth of k-group case, each comprising Ni parties for 1 ≤ i ≤ k.

B.1 Encryption

Recall that the encryption ct = (c0, c1) ∈ R2
q of m ∈ Rp is ct = t · ek + (Δ ·

m + e0, e1) (mod q) where t ← χ and e0, e1 ← Dσ. For ek = (b[0],a[0]) ∈ R2
q ,

we remark that b[0] + a[0] · s =
∑

i∈I [e0]i[0] and each [e0]i[0] is sampled from
Dσ. Then, it satisfies that c0 + c1 · s = Δ · m + t(b[0] + a[0] · s) + (e0 + e1 ·
s) = Δ · m + (t

∑
i∈I [e0]i[0] + e0 + e1 · s) (mod q). The encryption noise eenc =

t
∑

i∈I [e0]i[0]+e0+e1 ·s has the variance of Venc = σ2 ·(n|I|
2 +1+ n

2) ≈ nσ2(|I|+1)
2 .

The CKKS scheme has the same encryption error as the BFV scheme. The
only difference is that there is no scaling factor Δ in the result of decryption.

B.2 Relinearization

In Algorithm 1 of Sect. 4.3, it satisfies that
∑

1≤i≤k

c′′
i � (vi + si · u) = −

∑

1≤i≤k

ri · c′′
i +

∑

1≤i≤k

c′′
i � ei,2

= −
∑

1≤i,j≤k

ri · (ci,j � bj) +
∑

1≤i≤k

c′′
i � ei,2 (mod q)

A General Framework of Homomorphic Encryption 427

and
∑

1≤i,j≤k

(ci,j � di) · sj

=
∑

1≤i,j≤k

ri · (ci,j � (bj − ej,0)) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

sj · (ci,j � ei,1)

=
∑

1≤i,j≤k

ri · (ci,j � bj) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

e′
i,j (mod q)

where e′
i,j = ci,j � (sj · ei,1 − ri · ej,0).

We denote by Vg = Var(h(a)) where a is a uniform random variable over
Rq. Then, the variance of relinearization error erelin =

∑
1≤i≤k c′′

i � ei,2 +∑
1≤i,j≤k e′

i,j is obtained as follows:

Vrelin = ndVgσ
2

∑

1≤i≤k

N2
i + 2n2dVgσ

2k2
∑

1≤i≤k

N2
i ≈ 2n2dVgσ

2k
∑

1≤i≤k

N2
i

In our implementation, we use RNS-friendly decomposition Rq =
∏

i Rpi

such that pi’s have the same bit-size. Here, we have Vg = 1
12d

∑d
i=1 p2i for

d = �log q/ log pi�.

B.3 Multiplication

We again consider k-group case, each comprising Ni parties for 1 ≤ i ≤ k. Let
ct1 and ct2 be the input ciphertexts of messages m1 and m2 respectively. Each
ciphertext cti satisfies that

〈
cti, sk

〉
= q ·Ii +Δ ·mi +ei for Ii = � 1

q

〈
cti, sk

〉� and
some ei. Here, we have the variance Var(Ii) ≈ 1

12 (1 + 1
2kn) ≈ 1

24kn since 1
q · cti

behaves as an uniform random variable over 1
q · Rk+1

q .
The result of tensor product satisfies that

〈
ct1 ⊗ ct2, sk ⊗ sk

〉
=

〈
ct1, sk

〉 ·
〈
ct2, sk

〉
= Δ2 ·m1m2+q ·(I1e2+I2e1)+Δ·(m1e2+m2e1)+e1e2 (mod q ·Δ) and

for ctmul =
⌊

p
q · ct1 ⊗ ct2

⌉
, we have

〈
ctmul, sk ⊗ sk

〉
= Δ·m1m2+p·(I1e2+I2e1)+

(m1e2 + m2e1) + Δ−1 · e1e2 + erd where erd =
〈

p
q · ct1 ⊗ ct2 − ctmul, sk ⊗ sk

〉
.

That is, the multiplication error is obtained by emul = p · (I1e2 + I2e1)+(m1e2 +
m2e1)+Δ−1 ·e1e2 +erd. From the above equation, the first term p · (I1e2 +I2e1)
dominates the whole multiplication error. Therefore, we have the variance of
multiplication error by

Vmul ≈ np2 · (Var(I1)Var(e2) + Var(I2)Var(e1)) ≈ 1
24

kn2p2(Var(e1) + Var(e2)).

While the relinearization error has a fixed size depending on the parameters, the
multiplication error increases by a certain ratio as the computation proceeds.
Therefore, the total noise is eventually dominated by the multiplication error
unless (Var(e1) + Var(e2)) is very small (e.g. fresh ciphertext).

428 H. Kwak et al.

References

1. Lattigo v4. ePFL-LDS, Tune Insight SA (2022). https://github.com/tuneinsight/
lattigo

2. Albrecht, M., et al.: Homomorphic encryption security standard. Tech. rep., Homo-
morphicEncryption.org, Toronto, Canada (2018)

3. Aloufi, A., Hu, P., Wong, H.W., Chow, S.S.: Blindfolded evaluation of random
forests with multi-key homomorphic encryption. IEEE Trans. Depend. Secure
Comput. (2019)

4. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryp-
tion in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, LNCS,
vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64375-1 2

5. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

6. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

7. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1 22

8. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 1–36 (2014)

11. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 7417, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 8

12. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11992, pp.
446–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 16

13. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 395–412 (2019)

14. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from ring-LWE
with compact ciphertext extension. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryp-
tography. LNCS, vol. 10678, pp. 597–627. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70503-3 20

https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-030-34621-8_16
https://doi.org/10.1007/978-3-319-70503-3_20
https://doi.org/10.1007/978-3-319-70503-3_20

A General Framework of Homomorphic Encryption 429

15. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

17. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure
multiparty computation with dynamic participants. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 94–123. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1 4

18. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 31

19. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

20. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

21. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

23. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-
interactive multiparty computation without correlated randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 181–211. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 7

24. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 5

25. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. ANTS 1998. LNCS,
vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054868

26. Kim, T., Kwak, H., Lee, D., Seo, J., Song, Y.: Asymptotically faster multi-key
homomorphic encryption from homomorphic gadget decomposition. In: Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pp. 726–740 (2023)

27. Lindell, Y.: How to simulate it—a tutorial on the simulation proof technique.
In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. Information
Security and Cryptography. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-57048-8 6

28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: Cloud-assisted multiparty compu-
tation from fully homomorphic encryption. Cryptology ePrint Archive (2011)

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6

430 H. Kwak et al.

29. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234.
ACM (2012)

30. Mouchet, C., Bertrand, E., Hubaux, J.P.: An efficient threshold access-structure
for rlwe-based multiparty homomorphic encryption. J. Cryptol. 36(2), 10 (2023)

31. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty
homomorphic encryption from ring-learning-with-errors. Proc. Privacy Enhanc.
Technol. 2021(4), 291–311 (2021)

32. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

33. Park, J.: Homomorphic encryption for multiple users with less communications.
IEEE Access 9, 135915–135926 (2021)

34. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) Theory of Cryptography. LNCS, vol. 9986, pp. 217–238. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53644-5 9

https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9

	A General Framework of Homomorphic Encryption for Multiple Parties with Non-interactive Key-Aggregation
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Background
	2.1 Notation
	2.2 Ring Learning with Errors
	2.3 Gadget Decomposition and External Product

	3 Formalizing Multi-group Homomorphic Encryption
	3.1 Definition
	3.2 Relations with MPHE and MKHE

	4 MGHE Construction
	4.1 Key Generation
	4.2 Encryption and Decryption
	4.3 Arithmetic Operations
	4.4 Automorphism
	4.5 Security

	5 Constructing MPC from MGHE
	5.1 Overview
	5.2 MPC Protocol Secure Against Semi-malicious Corruptions

	6 Experimental Results
	A Construction of MGHE with CKKS
	A.1 MGHE with CKKS

	B Noise Analysis
	B.1 Encryption
	B.2 Relinearization
	B.3 Multiplication

	References

