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Abstract. Convolutional neural networks (CNNs) have emerged as one
of the most successful deep learning approaches to image recognition and
classification. A recent line of research, which includes zkCNN (ACM
CCS ’21), vCNN (Cryptology ePrint Archive), and ZEN (Cryptology
ePrint Archive), aims at protecting the privacy of CNN models by devel-
oping publicly verifiable proofs of correct classification which do not leak
any information about the underlying CNN models themselves. A shared
feature of these schemes is that they require the entity constructing the
proof to have access to both the model and the input in the clear. In
other words, a client holding a potentially sensitive input is required to
reveal this input to the entity holding the CNN model, thereby sacrificing
his privacy, to be able to obtain a verifiable proof of correct classifica-
tion. This is in contrast to the security guarantees provided by secure
classification considered in privacy-preserving machine learning, which
does not require the client to reveal his input to obtain a (non-verifiable)
classification.

In this paper, we propose a privacy-preserving verifiable CNN scheme
that overcomes this limitation of the previous schemes by allowing the
client to obtain a classification proof without having to reveal his input.
The obtained proof allows the client to selectively reveal properties of
the obtained classification and his input, which will be verifiable to any
third-party verifier. Our scheme is based on the recent notion of collabo-
rative zk-SNARKs by Ozdemir and Boneh (USENIX ’22). Specifically, we
construct a new collaborative zk-SNARK based on Bulletproofs achiev-
ing an efficient maliciously secure proof generation protocol. Based on
this, we then present an optimized approach to CNN evaluation. Finally,
we demonstrate the feasibility of our approach by measuring the perfor-
mance of our scheme on a CNN for classifying the MNIST dataset.
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1 Introduction

Deep learning has shown itself to be a tremendously useful tool in many applica-
tion areas, and convolution neural networks (CNNs) in particular have emerged
as one of the most successful deep learning techniques for tasks such as image
recognition and classification. However, to provide accurate results, CNNs often
require a large amount of training data. While this is unproblematic in appli-
cation areas where training data is readily available, obtaining and correctly
labeling sufficient training data in other areas is a challenging task made more
difficult by issues related to data ownership. To further complicate matters, the
training data, as well as the input data to be classified, might, in some applica-
tions, be sensitive, and data holders might be unable to share their data with
any other party due to privacy concerns.

Privacy-preserving machine learning aims at addressing these issues by mak-
ing deep learning techniques applicable to sensitive data which cannot be publicly
shared. More specifically, a particular active line of research within this research
area focuses on secure classification (e.g. see [5,7,9,10,19,24,26,29,36–38] to
name just a few works). This allows a server, holding a CNN model M and a
client, holding an input x, to evaluate the CNN defined by M on x, without
the server having to disclose M or the client having to reveal x to the server.
A different, but closely related line of research focuses on secure learning (e.g.
see [11,31,32,41]), which enables a set of servers, each holding different datasets,
to train a CNN based on the combined dataset, without each server having to
reveal his individual dataset. Note that, due to how training is performed in
a CNN, secure classification can easily be derived from secure training. While
these works allow the entities jointly computing classification or training a CNN
model to keep their inputs private, they do not provide verifiability i.e. the abil-
ity to verify that a given classification result was indeed obtained for input x
with respect to a given model M .

A recent set of works, specifically ZEN [17], vCNN [28] and zkCNN [30],
address this by constructing zero-knowledge succinct non-interactive arguments
(zk-SNARGs) for CNN classification. Specifically, these works allow a server
holding a CNN model M to commit to this, obtaining the commitment comM ,
and subsequently producing a proof π, that a given input x will lead to a given
classification result with respect to the model committed in comM . Furthermore,
neither the input x nor the classification result need to be given in the clear to
a potential verifier, but can themselves be contained in commitments, thereby
hiding M , x and the classification result from the verifier. In other words, let-
ting y ← EvalCNN(M,x) denote that the classification result y is obtained by
evaluating the CNN model M on input x, the proof π is informally a zk-SNARG
for the language

{(comM , comx, comy) | ∃M, rM , x, rx, y, ry s.t.
comM = Commit(M, rM ) ∧ comx = Commit(x, rx)∧

comy = Commit(y, ry) ∧ y = EvalCNN(M,x)}
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where Commit denotes the commitment algorithm of a commitment scheme. A
potential verifier will of course not gain much information from verifying π alone,
but a client holding y and ry can choose to either directly provide (y, ry) or prove
additional properties about y contained in comy in a separate proof, thereby
choosing what information about y is disclosed while maintaining verifiability
of the correctness of the classification result y. Overall, this provides a privacy-
preserving way for a client to convince a verifier about the correct classification
of his input x as well as selective information about y and x. To illustrate the
usefulness of this type of primitive, [28] highlights the example of using deep
learning to diagnose diseases. In this case, a central hospital or medical company
will hold the model M and publish comM , and a patient will obtain input x via
some form of examination. Obtaining a diagnosis, i.e. the classification result of
x based on M , and proof of the above type will allow the patient to show to a
third-party e.g. an insurance company, that his diagnosis satisfies the condition
of a specific insurance policy, while keeping the exact examination results and
corresponding diagnose private.

However, in contrast to secure classification and secure learning, a shared
feature of ZEN, vCNN and zkCNN is that the proof generation requires the
input x to be available to the entity holding the model. As a consequence, this
entity learns both x and the corresponding classification result. In other words,
in the example above, the patient will have to sacrifice his privacy with respect
to the central hospital or medical company holding M , to be able to obtain a
privacy-preserving proof verifiable to a third party.
Our Contribution. In this paper, we address the above highlighted privacy
issue regarding the input x and the obtained classification result.

Specifically, our contribution consists of the following:

– Firstly, we propose a new privacy-preserving notion of a verifiable CNN that
allows the model M , the input x and the classification result to be kept
private.

– Secondly, as a stepping stone towards achieving this notion, we construct a
new collaborative zk-SNARK based on Bulletproofs [6].

– Finally, based on our collaborative zk-SNARK, we present a new construction
of a verifiable CNN that satisfies our stronger privacy-preserving notion and
provide a performance evaluation of this.

In the following, we will provide further details on each of the above items.
New Privacy-Preserving Notion for Verifiable CNNs. Our new privacy-
preserving notion for verifiable CNNs requires that the model M , the input x and
the resulting classification are kept private while still ensuring that a publicly
verifiable proof of correct classification is obtained. Additionally, our new notion
enables the entity holding x to selectively reveal properties of the classification
result. The definition of our verifiable CNN notion resembles the notion of a
publicly auditable multi-party computation (PA-MPC) introduced by Baum et
al. [2], and concretely extends the PA-MPC definition by Ozdemir-Boneh [34]
to cover randomized functionalities as well as the specialized properties required
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for our application purpose. More precisely, our definition requires a verifiable
CNN to satisfy two main properties. Firstly, a verifiable CNN must implement an
interactive proof generation protocol that satisfies the standard notion of mali-
ciously secure MPC, thereby informally guaranteeing that the protocol leaks no
information regarding the parties’ input besides what can be computed from
the protocol output. Here, the output for the party holding the model is defined
to be a commitment comy to the classification result y, whereas the output for
the party holding the input is defined to consist of comy, y and the opening of
comy. Secondly, the proof generation must satisfy the notion of a collaborative
zk-SNARK [35]. Note that the witness of the proof, the model and the input, are
essentially shared between the parties, and in this setting, a plain zk-SNARK is
insufficient since a malicious entity might be able to influence the proof genera-
tion in such a way that he can derive information about the other entity’s part
of the witness from the proof. The above two notions combined ensure that no
information leaks regarding the model, the input or the obtained classification
result.1

A New zk-SNARK Based on Bulletproofs. The main tool we use to obtain
our concrete construction of a verifiable CNN is a new collaborative zk-SNARK
based on Bulletproofs [6] i.e. we construct a new maliciously-secure protocol
for the joint generation of Bulletproofs from shared witnesses. As Bulletproofs
involve various group operations and in particular commitments, a naive imple-
mentation of this would be highly inefficient. However, we observe that a careful
setup of the groups over which the computation is performed combined with
a corresponding efficient realization of a commitment functionality, will allow
efficient joint computation of Bulletproofs. We break up our construction into
three relatively simple steps: firstly, we define a new extended arithmetic black-
box (ABB) functionality which provides a setup and commitment functionality
tailored to the requirements of Bulletproofs (Sect. 3.1); we then provide an effi-
cient protocol for the joint computation of Bulletproofs based on this (Sect. 3.2);
and finally, we show how the extended ABB can be securely realized through an
extension of SPDZ [15,40] (Sect. 3.3). We note that as discussed in [35], collab-
orative zk-SNARK has a number of practical applications, such as healthcare
statistics, calculation of credit scores, and audits of financial systems, to name
a few, and our Bulletproof-based zk-SNARK provides a new zk-SNARK with a
different set of tradeoffs that can be used in these applications
A New Privacy-Preserving Verifiable CNN. Based on our new Bulletproof-
based collaborative zk-SNARK, we build a new efficient verifiable CNN with
succint proofs. The main advantage compared to the existing schemes such as
ZEN, vCNN and zkCNN is that our scheme satisfies our new notion of a privacy-
preserving verifiable CNN and thereby provides the stronger privacy-preserving
properties guaranteed by this. (As highlighted above, the structure of ZEN,
vCNN and zkCNN requires the input x to be revealed in the clear to the entity
1 Here, the model denotes the parameters used in the CNN, and like ZEN, vCNN and

zkCNN, the structure of the CNN (i.e. the number and different types of CNN layers
used) is assumed to be public knowledge.
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Optimized
Input privacy Model privacy Transparent setup Malicious security Setting for CNNs

CNN-specific schemes
zkCNN [30] 1 1 N/A2 Standalone
vCNN [28] 1 1 N/A2 Standalone
ZEN [17] 1 1 N/A2 Standalone
pvCNN [42] 3 3 N/A3 Third-party3

Ours Collaborative
General-purpose schemes

OB22 [35] 4 Collaborative
DPPSV22 [16] Collaborative

: The property is satisfied. : The property is not satisfied. : The property is not fully satisfied.
1 These protocols are standalone algorithms for generating an NIZK proof of CNN classification, and requires plaintext access
to model and input. When used as suggested in [30, 28, 17], this leads to model privacy but no input privacy.

2 These protocols do not use an interactive protocol to generate a proof.
3 This protocol requires a semi-trusted third-party, see the explanation in Section 1.1.
4 Ozdemir-Boneh’s construction can be instantiated with various zk-SNARKs and the authors highlight that an instantiation
based on Fractal [13] enables a transparent setup. However, the authors do not implement an instantiation based on Fractal
due to the complexity of this and we thus regard the Ozdemir-Boneh construction not to have transparent setup.

Fig. 1. Comparison among verifiable CNN schemes and collaborative zero-knowledge
schemes.

holding the model M , and hence by design, these schemes cannot provide sim-
ilar privacy guarantees.) Besides the strong privacy-preserving properties, our
construction inherits the transparency property of Bulletproofs i.e. a common
reference string (CRS) generated by a trusted party is not required. By main-
taining this property of the original Bulletproofs, we ensure that the verifier need
not trust any third party to provide an honestly generated CRS. In contrast, we
note that both ZEN and vCNN rely on the zk-SNARK by Groth [21], which
requires a trusted CRS. Finally, we provide an experimental evaluation of our
verifiable CNN construction based on classifying the MNIST dataset.

1.1 Related Works

There are several recent works that consider verifiability (in a zero-knowledge
manner) of CNN classification, such as vCNN [28], zkCNN [30], and ZEN [17].
Additionally, Kang et al. [22] proposed, among other things, an approach to effi-
ciently generate a zk-SNARK for CNN classification and a protocol for verifying
accuracy of a CNN model based on this. However, these works do not achieve
the privacy guarantees we are considering in this paper i.e. that model M and
the input x are kept private by the entities holding these, and the classification
result is only learned by the entity holding x. Note that achieving this requires
a different structure of the underlying proof generation algorithms which must
allow a “joint generation” of a publicly verifiable proof.

The recently proposed pvCNN [42] for privacy-preserving CNN testing is
defined in a different setting to the above related works and ours. Specifically,
an additionally semi-trusted third party is introduced to perform a (latter) part
of the classification computation in plaintext. Due to this, some information
about the input and CNN model is leaked. In constrast, we aim to not rely on
such an external party in this work.

Ozdemir and Boneh [35] introduced the notion of collaborative zk-SNARK
which we use in this paper. This is a zk-SNARK system in which the prover’s
algorithm is distributed among multiple provers who each hold a “witness share”
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which constitute a valid witness when combined. They also constructed collab-
orative zk-SNARK protocols from the plain zk-SNARK systems [12,13,18,21],
using MPC. We point out that none of these zk-SNARKs, except for Fractal [13],
support a transparent setup (i.e. the CRS must be generated by a trusted party).
Furthermore, an instantiation using Fractal is not implemented by the authors,
as this was deemed too computationally heavy. In contrast, our collaborative zk-
SNARK is derived from Bulletproofs [6] and inherits the transparency property
from these. Furthermore, [35] also gave an alternative definition of publicly-
auditable multi-party computation (PA-MPC) [2] on which our definition of
privacy-preserving verifiable CNN is based. See Sect. 4.1 for the details.

Dayama et al. [16] introduced the notion of distributed-prover zero-knowledge
protocols, which is a special kind of interactive zero-knowledge protocols in which
multiple provers each holding a witness share try to convince the verifier of the
validity of an NP statement. Thus, when restricted to the case in which the
provers alone can generate a proof verifiable in public non-interactive manner,
it is essentially the same notion as collaborative zk-SNARK. They then con-
structed distributed-prover versions of recent interactive oracle proofs [1,3,6,39]
(which can be transformed to zk-SNARKs via the Fiat-Shamir paradigm). In
particular, they instantiated a distributed-prover version of Bulletproof [6]. We
remark that their constructions assume that there is a special entity among the
provers called an aggregator that is assumed to behave semi-honestly, which does
not have a counterpart in the collaborative zk-SNARK of [35]. This prevents the
constructions from meaningfully achieving malicious security, which we consider
in this paper.

Figure 1 shows a comparison between the above mentioned works and ours.

2 Preliminaries

Basic Notation. For a natural number n, we define [n] := {1, . . . , n}. For a
discrete finite set S, x ← S denotes sampling an element x uniformly at random
from S.

For a vector a = (a1, . . . , an) ∈ Z
n
p and 1 ≤ � ≤ n, we use the notations a≤� =

(a1, . . . , a�) and a�+1≤ = (a�+1, . . . , an). For vectors a = (a1, . . . , an) ∈ Z
n
p and

b = (b1, . . . , bn) ∈ Z
n
p , we denote by 〈a, b〉 the inner product a1b1 + · · · + anbn.

We also use the notation of a “vector polynomial” p(X) = p0+p1X+ · · ·+pdX
d

and its inner product 〈l(X), r(X)〉 = ∑d
i=0

∑d′

j=0〈li, rj〉Xi+j where l(X) = l0 +
l1X + · · · + ldX

d and r(X) = r0 + r1X + · · · + rd′Xd′
.

In this paper, N will always denote the number of parties participating in a
multi-party computation protocol, and λ (given in unary) will always denote the
security parameter. PPT stands for probabilistic polynomial-time. An efficient
algorithm is PPT.
Convolutional Neural Networks. In this paper, we consider feedforward con-
volutional neural networks (CNNs). These networks consist of several layers,
which each processes the output of the previous layer and forwards the result as
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input to the next layer. The first layer is the input layer, whereas the last layer
is the output layer, the latter typically assigning a confidence score to each class
in a set of classes into which the input is supposed to be classified. While most
CNNs can be described using a small set of layer types, the number of layers,
the ordering of these, and their exact configuration depend on the specific CNN.
In the following, we will outline the abstraction of CNNs we rely on in our defi-
nitions related to privacy-preserving verifiable CNNs, and the types of layers we
consider the CNNs to consist of.
CNN Abstraction. To capture different CNN structures, we will use a generic
CNN evaluation algorithm, denoted EvalCNN, with the following syntax:

y ← EvalCNN(S,M, x).

Here, S is a representation of the structure of the CNN i.e. the used layer types,
their ordering and interconnections. M denotes the model and consists of the
parameters determined by the training of the CNN, and x denotes the input
which is to be classified. Finally, y denotes the obtained classification of x. The
algorithm EvalCNN is assumed to iteratively evaluate each layer specified in S,
applying the corresponding parameters from M , and using the obtained result
as input for the next layer, until the output layer is reached. The output layer
typically defines several classes, and we let the final classification y denote the
class with the highest score. In the following description of the layer types we
consider, we will highlight what parameters are considered to be part of the
model M . Note that we will consider the structure S of the CNN being evaluated
to be publicly available.
Layers. In this paper, we will consider the following layers.

Convolution Layer. A convolution layer divides input variables into mutually
overlapped small local regions and computes the inner product of each square
and weights (a filter or a kernel). These inner products consist of the output
of the layer. Here, weights are a part of the model M .

Pooling Layer. Similarly to a convolution layer, a pooling layer divides input
variables into mutually overlapped small local regions. For each region, the
values are replaced with another value computed from the values in the region.
Different subtypes of pooling layers use different replacements. A max pooling
layer is a typical pooling layer, in which a region is replaced with the maximum
of the values in the region. There is no model parameter in pooling layers.

Activation Function. An activation function is a non-linear function which is
directly applied to each value in the output of a previous layer. A typical
activation function is the rectified linear unit (ReLU) function, which maps
a negative value to zero and a zero or positive value to the same value.

Fully Connected Layer. A fully connected layer, given a set of input values,
outputs a set of different values, each of which is the inner product of all the
input values and fixed weights. Different outputs use different sets of weights.
These sets of weights are a part of M .

SoftMax Function. The SoftMax function is the typical final layer. This layer
is given as input a set of input values which constitutes the confidences of
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the classifications in that i-th value is the confidence for the classification to
the i-th class. Then this layer normalizes by mapping each confidence to the
value between 0 and 1 so that the sum of all values is 1. There is no model
parameter in the SoftMax function.

We also note that we can extend our construction to support other types of
layers. See further details for Sect. 4.2.
Secure Multi-party Computation. We will make use of the standard notion
of secure multi-party computation (MPC). Particularly, our main constructions
will consider security with abort in the dishonest majority and static corruption
setting.

Let F be a (possibly probabilistic) N -input, N -output function. An N -party
computation for f is a protocol among N parties P1, . . . , PN such that each
party Pi, which takes xi as input, receives yi as the result of an execution of
the protocol, where (y1, . . . , yN ) ← F(x1, . . . , xN ). (A function computed by a
multi-party protocol is often called a functionality.)

For security definitions of a multi-party computation protocol, we use the
standard definition of security based on the real/ideal paradigm [8,20]. We will
consider security with abort as a default notion, where a malicious party may
obtain the final result while making the protocol abort and preventing honest
parties from obtaining the final results. We note that this security notion is
sufficient for our purpose. Also, we will consider the dishonest majority and
static corruption setting. The former means that the number t of corrupted
parties can be up to N − 1, and the latter means that the adversary decides
the set of corrupted parties before the execution of the protocol. We will also
consider semi-honest security, where corrupted parties do not deviate from the
protocol specification.

Definition 1. Let F :
∏

i∈[N ] Xi → ∏
i∈[N ] Yi be a (possibly probabilistic) effi-

ciently computable function. We say that an N -party protocol Π for f is secure
with abort (in the dishonest majority, static corruption setting) if for any PPT
adversary A, there exists a PPT ideal-world adversary (also called a simulator)
S such that for any input x = (x1, . . . , xN ) ∈ ∏

i∈[N ] Xi and auxiliary-input
string z ∈ {0, 1}∗, the two random variables realΠA(x, z) and idealfS(x, z) are
computationally indistinguishable, where these random variables are defined as
follows:

– Real execution realΠA(x, z), generated from an interaction among the set of
parties P1, . . . , PN and the adversary A: Given z as input, an adversary A
specifies the set of indices C ⊂ [N ] of corrupted parties such that |C| ≤ N −
1, and receives the inputs {xi}i∈C. Then, the protocol Π is executed, where
during the protocol execution, the behavior of the corrupted parties Pi with
i ∈ C is determined by A. After the execution, A outputs an arbitrary string
as its final output. realΠA(x) consists of the outputs of all the honest (i.e.
uncorrupted) parties concatenated with A’s final output.

– Ideal execution idealFS (x, z), generated from an interaction between the
trusted party (for computing F) and the ideal-world adversary S: Given z as
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input, an ideal-world adversary S specifies the set of indices C ⊂ [N ] of cor-
rupted parties such that |C| ≤ N −1. At this point, S may ask the trusted party
to abort, in which case, the honest parties’ output is forced to be the abort sym-
bol. Then, S give an arbitrary value x′

i (not necessarily xi) for all corrupted
indices i ∈ C. Also, x′

i = xi is passed to the trusted party for all non-corrupted
parties. Then, the trusted party computes (y1, . . . , yN ) ← F(x′

1, . . . , x
′
N ), and

gives (yi)i∈C to S. For each uncorrupted party index i ∈ [N ] \ C, S decides
whether the party i aborts or not. In the former case, yi is replaced with the
abort symbol, while yi is untouched in the latter case. Finally, S outputs an
arbitrary string as its final output. idealFS (x, z) consists of (yi)i∈[N ]\C concate-
nated with S’s final output.

Furthermore, we say that Π is secure against semi-honest parties if the above
indistinguishability is guaranteed only when the corrupted parties controlled by
an adversary A always follow the protocol specification.

Hybrid Model. We will show the security of our protocols in a hybrid model,
where the parties execute a protocol with real messages and also have access to
a trusted party computing a subfunctionality for them. The modular sequential
composition theorem of [8] states that one can replace the trusted party com-
puting the subfunctionality with a real secure protocol computing the subfunc-
tionality. (This works both security with abort and security against semi-honest
parties.) When the subfunctionality is G, we say that the protocol works in the
G-hybrid model.
Privacy-Preserving CNNs. To be able to define privacy-preserving verifiable
CNNs in Sect. 4, we need to first specify what it means for a 2-party proto-
col to compute a CNN classification in a privacy-preserving manner (without
considering verifiability). We define it as a secure 2-party protocol realizing the
functionality described in Fig. 2. Note that the functionality is associated with
some commitment scheme whose definition is given below.
Commitments. A commitment scheme consists of two algorithms SetupCom and
Commit: SetupCom is the setup algorithm that takes a security parameter 1λ

as input, and outputs a public parameter pp; Commit is the commitment gen-
eration algorithm that takes pp, a message m, and a randomness r as input,
and outputs a commitmemt com. As usual, we require hiding and binding for
a commitment scheme. The hiding property states that Commit(pp,m0, r) and
Commit(pp,m1, r) are indistinguishable for any two messages m0 and m1, where
pp is generated by SetupCom and r is chosen uniformly at random; The binding
property states that given pp generated by SetupCom, it is hard to find a pair
(m0, r0) and (m1, r1) such that Commit(pp,m0, r0) = Commit(pp,m1, r1) and
m0 �= m1.
Pedersen Commitment. Our proposed protocol will make use of the Pedersen
commitment: Its public parameter consists of two group elements g, h ∈ G of
prime order p. Given a message m ∈ Zp to be committed, choose a randomness
r ∈ Zp uniformly at random, and the commitment com is com = gm · hr. It is
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Fig. 2. Privacy-preserving CNN functionality.

well-known that the Pedersen commitment scheme is perfectly hiding, and com-
putationally binding under the assumption that the discrete logarithm problem
is hard in G.
Collaborative zk-SNARKs. Here, we recall the definition of a collaborative
zk-SNARK formalized by Ozdemir and Boneh [35]. (A large part of this para-
graph is taken verbatim from [35].) Let R ⊆ {0, 1}×{0, 1}∗ be a binary relation.
A collaborative zk-SNARK for R consists of (Setup,Π,Verify) each of whose
syntax is defined as follows:

– Setup is the setup algorithm that takes a security parameter 1λ as input, and
outputs a public parameter pp.

– Π is the proof generation protocol, executed among N parties (provers)
P1, . . . , PN , where the parties have a public parameter pp and a statement x
as public input, and each party Pi has a witness share2 wi as private (local)
input; As the result of the protocol, the parties output a proof π. For nota-
tional convenience, we denote an execution of the protocol (by honest parties)
by π ← Π(pp, x,w), where w = (w1, . . . , wN ).

– Verify is the verification algorithm that takes pp, a statement x, and a proof
π as input, and outputs either  (accept) or ⊥ (reject).

Note that the verification is non-interactive, and anyone given a statement and
a proof can verify the validity of the statement.

A collaborative zk-SNARK in the random oracle model, where each of the
algorithms has access to a random oracle H : Xλ → Yλ, is denoted by (SetupH ,
ΠH ,VerifyH).
2 Here, a witness share need not be a share of a secret sharing of a witness.
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Definition 2. We require a collaborative zk-SNARK for R in the random ora-
cle model (where H is modeled as a random oracle), (SetupH ,ΠH ,VerifyH), to
satisfy the following properties. Below, let U(λ) be the set of all functions from
Xλ to Yλ.

– Completeness: For all (x,w) ∈ R, the following probability is negligible in λ:

Pr

⎡

⎣
H ← U(λ);
pp ← SetupH(1λ);
π ← ΠH(pp, x,w)

: VerifyH(pp, x, π) = ⊥
⎤

⎦ .

– Knowledge soundness: For all x, for all sets of PPT algorithms P = (P ∗
1 , . . . ,

P ∗
N ), there exists a PPT extractor Ext and a negligible function ε such that

Pr

⎡

⎣
H ← U(λ);
pp ← Setup(1λ);
w ← ExtH,P H

(pp, x)
: (x,w) ∈ R

⎤

⎦ ≥

Pr

⎡

⎣
H ← U(λ);
pp ← Setup(1λ);
π ← PH(pp, x)

: VerifyH(pp, x, π) = 
⎤

⎦ − ε(λ).

Here, ExtH,P H

denotes that Ext has oracle access to H and may re-run the
collection of provers P (pp, x), reprogramming the random oracle H each time,
and receiving only the final output produced by P .

– Succinctness: Proof size and verification time are o(|R|), where |R| denotes
the size of the description.

– t-zero-knowledge: For any PPT adversary A controlling k ≤ t provers:
Pi1 , . . . , Pik

, there exists a PPT simulator S such that for all x, w, and for
all PPT distinguishers D,

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

H ← U(λ);
pp ← SetupH(1λ);
b ← R(x,w);
(tr, μ) ← SH(pp, x, wi1 , . . . , wik

, b)

: DH[μ](tr) = 1

⎤

⎥
⎥
⎦

− Pr

⎡

⎣
H ← U(λ);
pp ← SetupH(1λ);
tr ← ViewH

A(x,w)
: DH(tr) = 1

⎤

⎦

∣
∣
∣
∣
∣
∣

is negligible in λ, where tr denotes a transcript, ViewH
A(x,w) denotes the view

of A when provers P1, . . . , PN interact with input x and witness w (the honest
provers follow Π, but dishonest ones may not), μ denotes a partial function
from the domain of H, and H[μ] denotes a re-programmed random oracle (by
S) that maps x to μ(x) if x is defined in μ and H(x) otherwise.
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If the above indistinguishability is guaranteed to hold only when the corrupted
provers follow the protocol specification, we say that a collaborative zk-SNARK
is t-zero-knowledge in the presence of semi-honest provers.3

3 Collaborative Bulletproofs

In this section, we will present our new collaborative zk-SNARK based on Bul-
letproofs. This will be a crucial tool in our construction of a privacy-preserving
verifiable CNN presented in Sect. 4.

Bulletproofs support zero-knowledge arguments for arbitrary arithmetic cir-
cuits, which is achieved via a proof for a Hadamard-product relation. More
specifically, all ‘left’ and ‘right’ inputs to multiplication gates are represented
as vectors aL and aR, respectively, and the output as aO = aL ◦ aR, where
◦ denotes the Hadamard product. By adding additional Q ≤ 2 · n constraints
(expressed via matrices W L,WR,WO), where n is the number of multiplication
gates, any arithmetic circuits can be captured (see [4]). Bulletproofs additionally
include commitments Vj (and commitment weights WV) as part of the state-
ment. Concretely, for the Bulletproof relation R, a statement x is of the form:

V ∈ G
m,W L,WR,WO ∈ Z

Q×n
p ,WV ∈ Z

Q×m
p , c ∈ Z

Q
p , (1)

and a witness w is of the form:

aL,aR,aO ∈ Z
n
p , v1, . . . , vm, γ1, . . . , γm ∈ Z

m
p . (2)

Then, (x,w) ∈ R if and only if
⎧
⎪⎨

⎪⎩

Vj = gvj hγj (j ∈ [m])
aL ◦ aR = aO

W L · aL +WR · aR +WO · aO = WV · v + c

, (3)

where v = (v1, . . . , vm). Like Bulletproofs, our collaborative zk-SNARK will be
for this relation, and we will refer to x (resp. w) of the above form as a Bulletproof
statement (resp. witness).

We approach our construction gradually, firstly introducing the extended
arithmetic black-box abstraction we build our MPC protocol upon in Sect. 3.1,
and then the actual protocol construction in Sect. 3.2. Finally, and in Sect. 3.3
we show how the constructed protocol can be realized efficiently for both semi-
honest and malicious security, thereby obtaining our collaborative zk-SNARK.

3 Note that t-zero-knowledge in the presence of semi-honest provers still provides the
ordinary zero-knowledge property of a (single-prover) zk-SNARK against a malicious
verifier (that does not participate in the proof generation protocol).
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3.1 Extended Arithmetic Black-Box

The arithmetic black-box abstraction (ABB) [14] is a commonly used approach
for constructing MPC protocols. It abstracts away the details of tools (e.g. secret-
sharing, homomorphic commitments and encryption) and corresponding proto-
cols, and allows us to perform field arithmetic in an ideal “black-box” without
explicitly knowing the values of the operands. In this paper, we will only treat
an ABB functionality whose underlying field is a prime field, and denote its
characteristic by p, and for an element a ∈ Zp, we use the notation “ [a]” to mean
that a is stored in the black box maintained in the functionality.

As opposed to relying on a standard ABB implementing the most com-
mon arithmetic operations, we will define an extended ABB providing addi-
tional functionality tailored to the specific computation required in the con-
struction of Bulletproofs. This will in turn simplify and make efficient the ABB-
based construction of the protocol for the joint computation of Bulletproofs
presented in Sect. 3.2. Specifically, we consider an ABB functionality which is
parameterized by a base cyclic group G of (prime) order p.4 Besides the stan-
dard arithmetic operations on stored values, we will allow the computation
of multi-exponentiations with respect to a (public) vector of group elements
g = (g1, . . . , g�) for some � i.e. for values [a1], . . . , [a�] stored in the ABB, the
entities interacting with the ABB will be able to obtain the group element
ga1
1 · · · ga�

� ∈ G. In other words, the extended ABB implements a restricted form
of computation over the group elements g. This restricted functionality allows
the computation of Pedersen-style commitments, which play a crucial role in
Bulletproofs. Note that while it would be possible to use generic MPC protocols
for exponentiation on top of a standard ABB to achieve a similar functionality,
the crucial insight here is that the restricted functionality discussed above can be
instantiated very efficiently; see Sect. 3.3 for how we achieve this. Additionally,
we require several basic non-linear operations such as equality, max, argmax,
and bit-decomposition to be provided by the ABB. These functionalities will be
used in our verifiable CNN construction presented in Sect. 4.

The full extended ABB functionality is defined in Fig. 3. To ease the notation,
we will for values [x] and [y] stored by the ABB and a ∈ Zp use the notation
[x] + [y], a · [x], and [x] · [y] to denote the operations Add([x], [y]), SMult(a, [x]),
and Mult([x], [y]), respectively. Furthermore, we will omit the operation “·” if it
is clear from the context.

3.2 Our Construction

We will now present our construction of a collaborative zk-SNARK (Setup,Π,
Verify) based on Bulletproofs.

Note that in the prover algorithm of Bulletproofs, multi-exponentiation is
central and is used for computing the Pedersen-style commitments Bulletproofs
4 Note that the order p of G is identical to the characteristic of the field Zp which the

values in the ABB are elements of. We require p to be of 2λ bits so that the discrete
logarithm problem is hard in G.
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Fig. 3. Extended arithmetic black-box functionality.

are based on. Computing these is one of the most computationally heavy steps
of proof generation, and could be a potential bottleneck when constructing a
Bulletproof-based zk-SNARK since the exponents will correspond to witnesses
which will be shared among the collaborating parties. However, note that this
computation is straightforward to realize when relying on the extended ABB
described above, as computing a Pedersen-style commitment can be done via a
single call to Com. As a consequence, constructing an efficient prover protocol
with respect to the extended ABB becomes a much simpler task (to obtain an
efficient realization of the protocol, it will of course be required that the extended
ABB itself can be realized efficiently; how this can be done is shown in Sect. 3.3).

In the description of our protocol, we will assume the statement and the
corresponding witness are of the form described in Eq. (1) and Eq. (2), respec-
tively, and that the witness is stored (component-wise) in FABB

G
. This will be

the case for the application of our protocol in our privacy-preserving verifiable
CNN described in Sect. 4. Note, however, that for any arithmetic circuit over Zp

and a corresponding (witness) input assignment w = (w1, . . . , wN ), a representa-
tion corresponding to Eq. (1) and Eq. (2) can be computed in a straightforward
manner using the functionality of FABB

G
. In the following, we will let G be a

group with 2λ-bit prime order p, and H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → Z
2
p,

H3 : {0, 1}∗ → Zp × G, and G : N → G be hash functions (modeled as random
oracles).
Setup. This algorithm generates group elements g, h ∈ G, g,h ∈ G

n using the
hash function G, and outputs these as pp.
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Proof Generation Protocol Π. Our protocol follows the structure of the
original Bulletproofs, and consists of an ‘outer’ protocol, JointBulletproof shown
in Fig. 4, for jointly computing a proof for an arithmetic circuit of the form
described in Eq. (1) and Eq. (2), as well as an ‘inner’ sub-protocol, JointProveIP
shown in Fig. 5, for jointly computing a proof for an inner product. The latter
is invoked as part of JointBulletproof. Note that compared to the original Bul-
letproofs, recursion has been eliminated from the inner product computation to
avoid complications arising from this in a protocol setting.

Given the Bulletproof statement and the ABB-stored values of a Bulletproof
witness, our protocol(s) proceeds by iteratively computing the witness-dependent
values required for the next prover message using FABB

G
(e.g. line (5) and (6)

in Fig. 4 or line (3a) in Fig. 5). Then the protocol uses the Com functionality
of FABB

G
to reveal the prover message (e.g. line (8) in Fig. 4 or line (3b) in

Fig. 5). Both parties will then hash the revealed prover message (potentially
with addition of a public input) to obtain hash values which will be treated as
a challenge from the verifier in ordinary Bulletproofs (e.g. line (9) in Fig. 4 or
line (3c) in Fig. 5). (Note that this corresponds to the Fiat-Shamir conversion of
Bulletproofs to make these non-interactive.) Finally, the challenge will be used
in the computation of subsequent prover messages. The protocol continues this
until a full Bulletproof is obtained.

A key property here is that all hash values are computed over messages
available to both parties in the clear (revealed in Com calls). Hence, the protocol
can avoid computing the hash of ABB-stored values, which would have made the
protocol prohibitively expensive to evaluate in practice. The only computations
that need to be carried out on the ABB-stored values are modular arithmetic
over Zp and exponentiation over G. The structure of the protocols furthermore
highlights the usefulness of the Com functionality of FABB

G
which plays a crucial

role in efficiently instantiating the protocols (see also Sect. 3.3).
Since the operations in the protocols consist of only calls of the functionality

in FABB
G

or local computations by each party, the following theorem can easily
be seen to hold.

Theorem 1. The protocol JointBulletproof combined with a compiler protocol
is a secure-with-abort protocol realizing the proof generation of the Bulletproof
zk-SNARK for arithmetic circuits, in the FABB

G
-hybrid model.

Verification. The verification algorithm, VerifyAC, is identical to that of the
ordinary Bulletproof zk-SNARK. Due to space limitations, the description is
deferred to the full version.

3.3 Secure Realization

To realize our Bulletproof-based collaborative zk-SNARK presented in Sect. 3.2,
it remains to securely realize the ABB functionality FABB

G
from Sect. 3.1. Cru-

cially, to maintain the efficiency of the protocol presented in Sect. 3, the FABB
G
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Fig. 4. Protocol JointBulletproof for jointly generating Bulletproof for arithmetic cir-
cuits.

realization must itself be efficient. Note that our goal is to obtain a collabora-
tive zk-SNARK satisfying (malicious) security with abort which is achieved by
a secure-with-abort realization of the FABB

G
.

Our starting point is the SPDZ protocol [15] which is a secure-with-abort
protocol realizing the standard arithmetic functionalities (as SPDZ is based on
additive secret sharing, we will in the following use the notation [·] to denote
additive sharing as opposed to a value stored in an abstract ABB). However,
SPDZ by itself does not provide an efficient way to instantiate the Com func-
tionality of FABB

G
which is central to our protocol in Sect. 3. To efficiently realize

Com, we make use of an insight by Smart and Alaoui [40] who showed that the
SPDZ protocol that can be extended to deal with operations for cyclic groups
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Fig. 5. Protocol JointProveIP for jointly generating Bulletproof for inner products.

over an elliptic curve whose order coincides with that of the underlying field of
the SPDZ protocol. While Smart and Alaoui are concerned with implementing
full elliptic curve circuit evaluation, the restricted Com functionality required
in FABB

G
is comparably simple and can be implemented very efficiently. Specif-

ically, recall that the main idea of SPDZ is to let each party hold a share of
a global MAC key k ∈ Zp i.e. party i holds [k]i such that

∑
[k]i = k. Then

each value x (stored in the ABB) is shared among all parties where each share
is of the form ([x]i, [m]i) and

∑
[x]i = x and

∑
[m]i = k · x. The parties will

then perform any (arithmetic) computation over the shares (consuming multi-
plication tuples in the process) while maintaining the above format of shares.
Finally, when the computation is done, the parities will firstly check correctness
of any value opened during the computation and then the computation result by
checking x · k − m = 0 (for each value x). This approach readily extends to our
restricted Com functionality. Specifically, given values a1, . . . , a� shared among
the parties as ([ai], [mi]) where mi = kai, each party can locally compute

Xi = g
[a1]i
1 · · · g[a�]i

� and Mi = g
[m1]i
1 · · · g[m�]i

� .
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Note that since the characteristic of the field Zp the values ai are (additively)
shared over is the same as the order p of the group elements gi, we have that
X =

∏
i Xi = ga1

1 · · · ga�

� = Com([a]1, . . . , [a]�, g1, . . . , g�). Hence, to open X,
each party simply broadcasts Xi. Finally, to check an opened commitment X,
the parties check that Xk − M = 0 where M =

∏
i Mi. It is relatively easy to

see that this approach inherits the security properties of SPDZ.
Lastly, the additional non-linear functionalities in FABB

G
can be realized via

standard generic techniques. Specifically, equality and comparison can be effi-
ciently computed by an appropriate combination of addition, multiplication,
and output operations supported by a standard ABB functionality, as shown by
Nishide and Ohta [33]; Max and argmax can be easily realized using compari-
son [25]; Bit-decomposition can be also computed using the protocol of [33].

Based on the above, we obtain the following result.

Theorem 2. There exists a secure realization of FABB
G

based on the above
described extension of the SPDZ protocol [15].

Combining the efficient realization of FABB
G

with the protocol from Sect. 3.2
provides us with a secure-with-abort protocol for the joint computation of Bul-
letproofs. As shown by Ozdemir and Boneh [34,35], it is fairly straightforward
to show that if a (single-prover) zk-SNARK system is zero-knowledge and has
knowledge soundness, and the prover algorithm is computed by a secure-with-
abort MPC protocol against t corrupted parties so that each party’s private
input is a witness share (where the concatenation of all parties’ witness shares
constitutes a witness), then the resulting protocol is a secure-with-abort collabo-
rative zk-SNARK satisfying t-zero-knowledge. Hence, combined with Theorem 1,
we obtain the following theorem.

Theorem 3. Our collaborative Bulletproof protocol instantiated with the
extended SPDZ protocol [15] is a secure-with-abort collaborative zk-SNARK.5

4 Privacy-Preserving Verifiable CNNs

In this section, we will first introduce our formal definition of a privacy-preserving
verifiable CNN in Sect. 4.1. Then, we present our proposed privacy-preserving
verifiable CNN in Sect. 4.2.

4.1 Formal Definition

Our definition of a privacy-preserving verifiable CNN will provide strong privacy
guarantees and in particular ensure that no information regarding the CNN
model M , the input x, or the obtained classification will leak to any other party.
To achieve this, we require a privacy-preserving verifiable CNN to have similar
security properties to publicly-auditable 2-party computation [2]. Informally, a
5 If a semi-honest MPC protocol for FABB

G is used instead of SPDZ, our protocol is
still guaranteed to achieve t-zero-knowledge in the presence of semi-honest parties.
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publicly-auditable multi-party computation is an extension of a secure multi-
party computation protocol that, in addition to computing a functionality, can
generate a publicly verifiable proof that the output of the protocol is correct
with respect to commitments to each party’s input. Ozdemir and Boneh [34,
35] gave a definition of publicly auditable multi-party computation based on
collaborative ZK, and our definition of privacy-preserving verifiable CNN follows
their definitional approach, but with modifications to deal with a probabilistic
functionality6 and to capture the CNN setting we consider here.

Formally, a privacy-preserving verifiable CNN is associated with some com-
mitment scheme Com = (SetupCom,Commit), and consists of (Setup,Π,Verify)
each of whose syntax is defined as follows:

– Setup is the setup algorithm that takes a security parameter 1λ as input, and
outputs a public parameter pp.

– Π is an interactive protocol between two parties P1 (holding a CNN model)
and P2 (holding a CNN input). The protocol is executed using three types of
inputs:

• P1’s private inputs: a CNN model M and randomness rM .
• P2’s private inputs: a CNN input x and randomness rx.
• public common inputs: the CNN structure S, a public parameter ppCom of

the underlying commitmemnt scheme Com, and commitments comM and
comx (which are supposedly generated as comM = Commit(ppCom,M, rM )
and comx = Commit(ppCom, x, rx), respectively).

As the results of an execution of the protocol, P1 outputs a commitment comy

(for the CNN result y) and a proof π, and P2 outputs a CNN output y, a
randomness ry, a commitment comy, and a proof π.

– Verify is the verification algorithm that takes pp, commitments (comM , comx,
comy), and a proof π as input, and outputs either  (accept) or ⊥ (reject).

Definition 3. A privacy-preserving verfiable CNN (Setup,Π,Verify) associated
with Com = (SetupCom,Commit) is secure if it satisfies the following two proper-
ties:

– Let Πy denote Π, in which the proof π is excluded from each party’s output.
Then, Πy is a secure-with-abort 2-party protocol for the functionality FpCNN

Com .
– Let Ππ denote Π, in which only the proof π is treated as the output (of both

parties). Then, (Setup,Ππ,Verify) associated with Com satisfies the require-
ments of a collaborative ZK protocol (Definition 2) for the following relation
R:

6 The definition of publicly-auditable computation in [34, Appendix D] is for a deter-
ministic functionality.
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{ (
S, ppCom, comM , comx, comy

)

︸ ︷︷ ︸
common input/output

,

(
(M, rM )
︸ ︷︷ ︸

P1’s input/output

, (x, rx, y, ry)
︸ ︷︷ ︸

P2’s input/output

) }
∈ R

⇐⇒
comM = Commit(ppCom,M, rM ) ∧ comx = Commit(ppCom, x, rx)

∧ comy = Commit(ppCom, y, ry) ∧ y = EvalCNN(S,M, x). (4)

Furthermore, we say that a privacy-preserving verifiable CNN is semi-honest
secure if Πy is semi-honest secure and the 1-zero-knowledge property of (Setup,
Ππ,Verify) is replaced with 1-zero-knowledge property in the presence of semi-
honest parties.

4.2 Construction

Our construction of a privacy-preserving verifiable CNN (Setup,Π,Verify) is
based on the collaborative zk-SNARK presented in Sect. 3. In fact, we directly
use the Setup and Verify algorithms from Sect. 3 as the corresponding Setup and
Verify algorithms for the privacy-preserving verifiable CNN, respectively.

The interactive proof generation protocol itself will be based on an “aug-
mented” CNN computation (which we will describe with respect to the ABB
functionality presented in Sect. 3.1). The augmented CNN computation not only
computes the classification of an input, but also intermediate variables, which
will provide the parties with a witness for proving the correctness of the classi-
fication via our collaborative zk-SNARK. We will denote this process as

([y], [w]) ← JointEvalCNN(S, [M ], [x])

using the notation in Sect. 2 where M is the CNN model, x is the CNN input, y
is the result of the classification and w is the witness generated in this process
(note that the process is deterministic). This process can be divided further into
steps corresponding to each layer of the CNN:

([y1], [w1]) ← JointEvalLayer1([M ], [x])
([y2], [w2]) ← JointEvalLayer2([M ], [y1], [w1])
· · ·
([yN ], [wN ]) ← JointEvalLayerN([M ], [yN−1], [wN−1])

where each algorithm only computes a single layer in the CNN structure S, and
yi and wi are the output and corresponding witness of layer i, respectively. Here
we assume that layer i appends its new witness variables to [wi−1] and outputs
this concatenation as [wi] such that the final witness [wN ] contains all witness for
the entire classification. In the following, we explain protocols that perform the
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computations that constitute each layer, e.g., an affine relation between weights,
the ReLU relation, or a max pooling relation. Parties execute multiple instances
of these protocols to complete the computation of each layer.

This process is finalized by computing a commitment comy to the final clas-
sification result yN (the corresponding randomness rcom is given to the party
holding x). Once this step is completed, the parties will be able to use the final
witness [wN ] (which contains the witnesses for all prior layers) to jointly run the
JointBulletproof from Sect. 3.2 to obtain a proof for the computed classification.

In the following, we present protocol instantiations for the initialization and
each CNN layer described in Sect. 2 which will allow the parties to complete
the above outlined steps. Note that we will use fixed-point computation to rep-
resent all arithmetic computations done as part of CNN classification. Specif-
ically, a rational number x0 + 2−dx1 ∈ Q where x0 ∈ {−2�, . . . , 2� − 1} and
x1 ∈ {0, . . . , 2d − 1} is represented by the integer 2dx0 +x1 ∈ Zp. Note also that
when multiplication is done between two numbers in fixed-point representation,
truncation of the last d bits is required to maintain the correct representation
of the result.
Initialization. The parties will have to generate witness vectors [aL], [aR],[aO],
[v1], . . . , [vm], and [γ1], . . . , [γm], which satisfy Bulletproof’s statement Eq. (3).
Here, aL, aR, and aO should satisfy the Hadamard product relation aL◦aR = aO

and the vj ’s and γj ’s are the input values and the randomness used to commit
to these in the commitments Vj = gvj hγj . The parties receive (M, rM ) and
(x, rx) as private input, respectively, as well as public input (comM , comx), where
comM = Commit(ppCom,M, rM ) and comx = Commit(ppCom, x, rx). The values
[v1], . . . , [vm], and [γ1], . . . , [γm] are initialized by the parties calling Input of
FABB

G
on the model M , rM , the input x and rx. As described above, each of

the following layer protocols will append appropriate witnesses to [aL], [aR],
and [aO] and add linear relations to be proven among aL, aR, aO, v, and c.
The linear relations will be added by appending extra rows to the matrices
W L, WR, WO, WV, and the vector c (see Eq. (3)). Note that to compute
the layers in the model, the parties execute a set of protocols presented below
sequentially. In this sequential execution, the output of a protocol is appended
to the vector aL (as described above, each protocol appends elements to aL,
aR, and aO, some of which are intermediate variables and some of which are
the output of the protocol). This appended output of the protocol is later used
by subsequent protocols. The final classification result y and the randomness
used for the commitment comy computed in the finalization will be stored in the
appropriate [v1], . . . , [vm], and [γ1], . . . , [γm] positions. Note that some protocols
will additionally require an index to know which part of the witness from the
previous layer is used in the computation e.g. the ReLU function takes indices
(i, u) ∈ {1, . . . , n} × {L,R,O} and assumes that the input to the ReLU function
is stored at au[i].
Affine and Convolution Layers. Affine and convolution layers correspond to
the computation of an inner product relation (note that average pooling corre-
sponds to an affine layer). The computation is implemented via the JointEvalIP
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protocol which is given shares of vectors ([au1 [i1]], . . . , [aum
[im]]), and ([av1 [j1]],

. . . , [avm
[jm]]) and a scalar [aw[k]], and computes the inner product:

a = aw[k] +
m∑

t=1

aut
[it]avt

[jt]

where aw[k] is a constant term that may be utilized by an affine layer and the
result a will be appended to the vector aL during the protocol. The description
of JointEvalIP is deferred to the full version, due to the page limitation.

Note that this protocol does not perform the truncation which would nor-
mally be required by the fixed-point multiplication. Instead, this truncation will
be performed by the following ReLU protocol. Deferring this truncation improves
efficiency. Specifically, the computation of an inner product requires multiple
multiplications and thus multiple truncations, but if we defer the truncation to
the ReLU proof, just a single truncation is sufficient for each inner product.
ReLU. The protocol JointEvalReLU computes the ReLU function. Namely, given
as input a share [au[i]], the protocol computes

a = ReLU(au[i])

where a will be appended to the vector aL during the protocol. Recall that ReLU
computes the function

ReLU(x) =
{
0 if x < 0
x if x ≥ 0 .

This is equivalently represented by bit decomposition:

ReLU(x) = xm ·
m−1∑

i=0

2ixi

where x + 2m =
∑m

i=0 2
ixi with x0, . . . , xm ∈ {0, 1}.

To implement this function, the protocol JointEvalReLU utilizes the sub-
protocol JointEvalRange which computes the bit decomposition of a shared inte-
ger in Zp. The name of the protocol JointEvalRange stems from the witness com-
puted in the protocol is not only a bit decomposition, but can also be viewed
as a witness for a range proof i.e. that the input falls into a certain range. The
description of the protocols JointEvalReLU and JointEvalRange are deferred to
the full version, due to the page limitation.

Note that this protocol truncates the input value by d bits. This truncation
is realized by the summation in aR[n+1+2�+2d+1] (Here, the index n+1+
2� + 2d + 1 comes from the following calculation: The variable n indicates the
current number of the multiplication relations, 1+2�+2d comes from the range
proof with 1 + 2� + 2d bits, and the last 1 comes from an extra multiplication
relation for proving the ReLU relation) in the protocol description which runs
from i = d to 2� + 2d − 1, by which it truncates the least significant d bits.
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Finalization. To define the output of a CNN, it is standard to use SoftMax
to normalize the output of the last layer. However, since we are only interested
in proving the obtained classification, it is sufficient to prove that some given
public value is maximum in a given set of values.

The protocol JointEvalFinalize does exactly this. The protocol utilizes the
following representation of the maximum relation y = max{x1, . . . , xm}: There
exists a vector (z1, . . . , zm) satisfying that

y = x1z1 + · · · + xmzm,

z1, . . . , zm ∈ {0, 1},

z1 + · · · + zm = 1,
y − x1 ≥ 0, . . . , y − xm ≥ 0.

The description of the protocol is deferred to the full version, due to the page
limitation.
Proof Generation. Upon completion of the finalization described above, the
parties simply invoke JointBulletproof (Fig. 4) from Sect. 3.2 using the generated
witness [aL], [aR], [aO], [v1], . . . , [vm], and [γ1], . . . , [γm] as input to collabora-
tively generate a Bulletproof π of correct classification.
Obtained Proof and Disclosure of Classification Information. Upon
completion of the proof generation protocol, the party holding the input x, will
obtain a proof π with respect to a commitment to the model comM , a commit-
ment to x and a commitment to the corresponding classification comy. While
this party can present π to a third-party verifier, the latter will not gain any
information on the classification y by verifying π, as comy hides y. This is insuf-
ficient in many applications. However, as the party holding x will receive the
opening ry to comy, he will be able to disclose additional information regard-
ing y. One option is simply to reveal both y and ry, which would allow the
verifier to check that y is indeed the correct classification result via the com-
mitment scheme. However, a more fine-grained disclosure is possible. Note that
comy obtained in our verifiable CNN is simply a Pedersen commitment which
allows the party holding x to produce an additional Bulletproof πy showing any
statement regarding y e.g. that y belong to a set Y of classification results. This
proof can be generated independently and will be logarithmic in the size of the
statement. By verifying both π and πy, a third-party verifier will learn that y
has been correctly computed with respect to M and x, and that y satisfies the
additional statement shown by πy, without learning any additional information
on y.

4.3 Security

In the previous subsection, we have presented the procedures for our privacy-
preserving verifiable CNN. It is not hard to see that during the protocol, the
parties either call commands of FABB

G
, local operations (including hashing on

public values), or execute the proof generation protocol of our collaborative



396 N. Attrapadung et al.

Bulletproof protocol. Note that as the final result of an execution of our protocol,
the party P1 (holding a CNN model M) finally receives only public values (the
commitments to the witnesses and the commitment to the evaluation result y of
the CNN, and a proof of the collaborative Bulletproof); and the party P2 (holding
a CNN input x) will receive the same public values, as well as the CNN evaluation
result y and its opening in the clear. Furthermore, the proof generation part of
our protocol just invokes the proof generation of our collaborative Bulletproof
protocol. Hence, we have the following theorems.

Theorem 4. Let (Setup,Π,Verify) be our privacy-preserving verifiable CNN.
Let Πy denote the interactive protocol Π of our privacy-preserving verifiable
CNN, such that the proof π is excluded from the output, and let Ππ denote Π such
that the output is restricted to the proof π. Then, (Setup,Πy,Verify) is a secure-
with-abort protocol realizing FpCNN

Com , in the FABB
G

-hybrid model. Furthermore,
Ππ is a collaborative zk-SNARK for proving the relation in Eq. (4).

Theorem 5. Our privacy-preserving verifiable CNN instantiated with the SPDZ
protocol [15] with the extension described in Sect. 3 is secure according to Defi-
nition 3.

5 Implementation and Comparison

To measure the performance of our approach, we implemented our collabora-
tive zk-SNARK protocol and estimated the performance of our verifiable CNN
construction applied to the LeNet CNN [27] and the MNIST dataset [43]. In
the following sections we provide the details of this as well as a comparison to
related approaches.

5.1 Implementation of Collaborative Zk-SNARK

To evaluate the performance of our Bulletproof-based collaborative zk-SNARK,
we made an implementation in Rust.7 Specifically, we implemented the protocol
using the elliptic curve library “curve25519-dalek.”8 This library provides group
operations on the Edwards and Montgomery forms of Curve25519 and on the
prime-order Ristretto group.

We implemented the protocol in the following setting: Firstly, in the pro-
tocol, we need to perform two-party multiplications, which require correlated
randomness (i.e. Beaver triples). This correlated randomness is assumed to be
generated in advance and made available to each party in a preprocessing phase.
The cost of this phase can be estimated from [23] and is not included in the tim-
ing results presented below. Secondly, each party is implemented as a separate
thread on a single server i.e. the implementation of each party is not paral-
lelized. Finally, the communication between the two parties is simulated via the

7 https://www.rust-lang.org/.
8 https://doc.dalek.rs/curve25519_dalek/index.html.

https://www.rust-lang.org/
https://doc.dalek.rs/curve25519_dalek/index.html
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Fig. 6. Experimental timing results for proofs for inner products.

Fig. 7. Experimental timing results for proofs for arithmetic circuits (malicious secu-
rity).

“constrained-connection” library9 set up to simulate a 1 Gbps connection with a
round-trip-time of 0.5 ms. All experiments were performed on an Intel i5-7500
CPU @ 3.40 GHz and 16 GB of RAM.

Figure 6 shows the performance of both semi-honest and maliciously secure
versions of the sub-protocol JointProveIP (Fig. 5) and its corresponding verifi-
cation algorithm. (The verification algorithm is exactly that of the ordinary
Bulletproofs [6] for inner product relations, and will be given in the full version.)
These are for proving and verifying an inner product relation and the horizontal
axis “Length of inputs aL, aR” corresponds to the dimension of the vectors in
the inner product relation. As the figures show, the processing times increase
linearly with the length of the input vectors. Furthermore, note that malicious
security is obtained at roughly twice the cost of semi-honest security.

Figure 7 shows the performance of the maliciously-secure proof generation
protocol JointBulletproof (Fig. 4) and its verification algorithm of our collabora-
tive zk-SNARK for arithmetic circuits. (As above, the verification algorithm is
exactly that of the Bulletproofs [6], and will be given in the full version.) Here,
the horizontal axis “Length of inputs aL, aR” corresponds to the number of the
multiplications in the proven arithmetic circuit. The parameter q is the number
of the additive relations in the proven arithmetic circuit. The parameter m is
the size of the committed message, which is, in the CNN application, the sum of

9 https://docs.rs/constrained-connection/.

https://docs.rs/constrained-connection/
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Fig. 8. Proof size of arithmetic circuit proofs.

the sizes of the CNN model and the CNN input. The figures show the processing
time when the parameters n, m, and q in the protocol are varied, respectively.

Figure 8 shows the proof size of the protocol. (Note that the proof size is
irrespective of whether it is computed by the malicious secure protocol or the
semi-honest secure one.) According to the description of the protocol, the proof
size depends only on n. This measurement confirms this.

5.2 Performance Estimate for Proof System for CNN

We will now discuss performance estimates when our protocol is applied to a
CNN. For this performance estimation, we use the MNIST dataset [43]. MNIST
is a dataset of hand-written digits, and the images are of size 28 × 28 × 1. We
use the LeNet network [27] which consists of two convolution layers, two pooling
layers, and three fully connected layers. Note that for the purpose of comparison
to vCNN and zkCNN, we use average pooling. The parameters of each layer are
as follows:

– Convolution: Filter Size = 5×5, Stride = 1, Channels = 6
– Average Pooling: Filter Size = 2×2, Stride = 2, Channels = 6
– Convolution: Filter Size = 5×5, Stride = 1, Channels = 16
– Average Pooling: Filter Size = 2×2, Stride = 2, Channels = 16
– Fully-Connected 1: Input Size =400, Output Size = 120
– Fully-Connected 2: Input Size =120, Output Size = 84
– Fully-Connected 3: Input Size =84, Output Size = 10

When applying our protocol for an arithmetic circuit to the classification task
of the above model, the parameters in the scheme are n = m = 219 = 524288
and Q = 611878. We estimate the processing time of the protocol with these
parameters based on the measurements in the previous section. As a result, the
classification task of the above model takes about 2.9 h, the total communication
cost is 236 MB, and the proof size is 7.68 KiB. Finally, based on [23] we estimate
that 10 millions multiplications are needed in the on-line protocol and thus 1.7 h
are needed for the off-line preprocessing.
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Algorithm Model Privacy Input Privacy Comm. Proof Size Prover Time
Tensorflow standalone - - 0.042ms
Groth standalone - 0.12 KiB 1.5h
vCNN standalone - 0.34 KiB 5.5s
zkCNN standalone - 63.6 KiB 0.5s
Ours interactive 236 MB 7.68 KiB 2.9h

Fig. 9. Comparison of our verifiable CNN to related approaches. � means the given
property is achieved whereas � means this is not the case. The prover time for vCNN
and zkCNN are from [30], and the time for Groth from [28] (see Sects. 5.1 and 5.3 for
more details on all execution environments).

5.3 Comparison

Figure 9 shows a comparison between our verifiable CNN and related approaches.
We stress that our verifiable CNN is fundamentally different from the related
approaches shown in Fig. 9 in that it is an interactive protocol, which is required
to obtain the strong notion of privacy considered in this paper, whereas the
related approachs are all standalone algorithms executed locally by a single party.
The results for Tensorflow10 were obtained by classifying the full MNIST test
set of 10000 samples in our local execution environment11 and computing the
average time for a single sample. The results for vCNN and zkCNN are from [30]
and obtained on an AMD EPYC 7R32 64-Core CPU, whereas the results for the
naive application of the Groth zk-SNARK [21] are from [28] and obtained on an
quad-core Intel i5 CPU@3.4GHz (similar to our execution environment). While
the measurement of each protocol uses a different computation environment
and setup, the hardware differences are not significant for this comparison and
the results remain useful for obtaining an overview of the performance of the
protocols.

We note that compared to the plain Tensorflow computation, the fastest
scheme providing model privacy, zkCNN, is orders of magnitude slower. Com-
pared to zkCNN, our protocol is likewise orders of magnitude slower, but simulta-
neously provides model and input privacy which zkCNN cannot provide as it is a
non-interactive standalone algorithm. This illustrates that protecting the privacy
of the CNN input is a challenging task. However, we also note that our scheme
is within a factor of two of the prover time for the Groth zk-SNARK when this
is straightforwardly applied to ch1LeNet, despite the Groth zk-SNARK being
a standalone algorithm. Finally, we note that the proof size of our approach is
roughly an order of magnitude smaller than zkCNN, and an order of magnitude
larger than vCNN.

These results highlight that it is feasible to provide the stronger notion of
privacy we have introduced in this paper, which simultaneously protects the
privacy of both CNN model and input. We stress that our implementation is a
proof of concept only, and we believe that there is a lot of room for improvement
in terms of prover running time by optimizing the implementation.

10 https://www.tensorflow.org/.
11 MacBook Pro M2 Pro.

https://www.tensorflow.org/
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