
Memory Efficient Privacy-Preserving
Machine Learning Based

on Homomorphic Encryption

Robert Podschwadt1(B) , Parsa Ghazvinian1, Mohammad GhasemiGol2,
and Daniel Takabi2

1 Georgia State University, Atlanta, GA 30303, USA
{rpodschwadt1,pghazvinian1}@student.gsu.edu

2 Old Dominion University, Norfolk, VA 23529, USA
{mghasemi,takabi}@odu.edu

Abstract. Fully Homomorphic Encryption (FHE) enables computation
on encrypted data and can be used to provide privacy-preserving com-
putation for machine learning models. However, FHE is computationally
expensive and requires significant memory. Single instruction multiple
data (SIMD) can offset this cost. Batch-packing, an SIMD technique
that packs data along the batch dimension, requires significant memory.
In convolutional neural networks, we can exploit their regular and repeat-
ing structure to reduce the memory cost by caching recurring values. In
this paper, we investigate strategies for dynamically loading data from
persistent storage and how to cache it effectively. We propose a method
that reorders operations inside the convectional layer to increase caching
effectiveness and reduce memory requirements. We achieve up to 50x
reduction in memory requirements with only a 13% increase in runtime
compared to keeping the data in memory during the entire computa-
tion. Our method is up to 38% faster at no significant memory difference
compared to not using caching. We also show that our approach is up
to 4.5x faster than the operating system’s swapping technique. These
improvements allow us to run the models on less powerful and cheaper
hardware.

Keywords: neural networks · homomorphic encryption · privacy ·
privacy-preserving machine learning

1 Introduction

Machine learning (ML) and neural networks specifically are widely deployed
in many different scenarios, from voice assistants like Siri [27], Alexa [6], and
Google Assistant [21] over writing assistants like Grammarly [22], and chatbots
like Bard [20] and ChatGPT [39], to medical diagnostic systems [16,30]. Many
of these systems deal with privacy-sensitive data, some of which enjoy special
legal protections, e.g., medical data. These systems send the data to a server,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14584, pp. 313–339, 2024.
https://doi.org/10.1007/978-3-031-54773-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54773-7_13&domain=pdf
http://orcid.org/0000-0003-2997-109X
https://doi.org/10.1007/978-3-031-54773-7_13

314 R. Podschwadt et al.

which runs it through its model and returns the result to the client. Since the
server needs access to the unencrypted client data to perform the computation,
the client’s privacy is at risk. The server might use the data to train further ML
models, which could expose the data to privacy attacks, or the server itself could
be breached and the data stolen. Researchers have recently proposed solutions
to protect user data privacy in ML applications using different methods. Dif-
ferential Privacy [18] solutions preserve the privacy of the training data in the
trained model [1,40]. To protect the data during inference, solutions commonly
use Secure Multiparty Computation (SMC) [12,14,36,37], Fully Homomorphic
Encryption (FHE) [31,33,34] or a mixture between the two [7,38]. SMC allows
multiple parties to jointly evaluate a function without revealing their private
inputs; however, it requires all parties to stay online during the computation.
FHE, on the other hand, can be used entirely offline. FHE is a type of encryp-
tion that allows computation on encrypted data without exposing any inputs,
intermediate, or final results. Neural networks are a popular choice for privacy-
preserving ML models since most operations, like fully connected layers or con-
volutions, can be performed easily using FHE. Additionally, neural networks
perform very well on a wide range of tasks. However, FHE introduces significant
time and memory overhead. Some FHE schemes support single instruction mul-
tiple data (SIMD) processing, which can offset some time and memory overhead.
FHE ciphertexts can be thought of as fixed-sized encrypted vectors containing
thousands of elements, called slots. Two approaches for filling the slots have been
used for ML. 1.) Pack all the features of an instance into as few ciphertexts as
possible and perform convolutions and dot products with the help of rotations
[2,9,34], called inter-axis packing. This has the advantage that the number of
ciphertexts and total operations is relatively small, making it fast for a small
number of instances. However, this approach often requires large rotation keys,
and the rotations require additional time. 2.) Pack multiple instances’ features
into a single ciphertext [17,25,42], called batch-packing. This produces as many
ciphertexts as the data has features. Batch-packing allows us to simultaneously
compute results for many instances, leading to low amortized per-instance cost
and high throughput. However, it suffers from high latency and memory require-
ments. Batch-packing is beneficial when many instances need to be processed,
and low latency is not essential. For example, in a medical image diagnostic sys-
tem, where images are collected throughout the day, and an ML system analyzes
them overnight. This work focuses on convolutional neural networks (CNN),
specifically. We address the memory requirements for convolutional layers by
trading disc space for main memory. Disc space is typically orders of magni-
tude cheaper. However, it is also slower. We dynamically load ciphertexts and
plaintexts and clear them from memory when no longer needed. We present and
compare different strategies and their impact on memory and runtime. Prior
work focuses primarily on latency reduction; reduction in memory is often a side
effect of inter-axis packing. To the best of our knowledge, this is the first study
that performs an in-depth analysis of caching strategies and memory reduction
for batch-packed inference. Brutzkus et al. [9] or Lee et al. [34] propose input
packing techniques, which reduce the number of ciphertexts and thereby

Memory Efficient PPML 315

memory requirements. However, these approaches require additional operations
like masking and rotation, which lower the overall throughput. Boemer et al. [7]
present a complex encoding, allowing them to fit more values into a ciphertext.
This can reduce the number of ciphertexts and plaintext when using inter-axis
packing. However, for batch-packing, it only affects the batch size. Approaches
that use client interaction, such as Boemer et al. [7], Podschwadt et al. [41], and
Cai et al. [10] can often use smaller crypto parameters, since the client inter-
action resets the noise level, allowing for further computation. However, these
approaches require the client to be online during the computation. We make the
following main contributions:

– We propose a schedule representation for convolutions that allows us to
reorder its fundamental operations to achieve increased caching performance.

– We propose a memory estimation algorithm for schedules.
– We propose an algorithm for executing a schedule using multiple threads.
– We propose multiple strategies for creating schedules, which we analyze and

experimentally evaluate with regard to their time and memory requirements.

The paper is organized as follows: in Sect. 2, we discuss the theoretical back-
ground and notation. In Sect. 3, we discuss related work before we describe our
proposed approach in detail in Sect. 4. Section 5 describes ways to reorder the
computation to reduce memory requirements, which we experimentally evaluate
in Sect. 6. We conclude the paper in Sect. 7.

2 Background

Here, we consider 2-D convolutional layers since they are commonly used in
image classification, a prevalent ML task. However, our proposed approach is not
limited to 2-D and can easily be transferred to convolutions in other dimensions.
We consider convolutions with inputs X, weights W , and outputs Y , where X,
W , and Y are tensors all four-dimensional tensors. The first dimension of X and
Y is the batch dimension, and | · | denotes the number of elements in a tensor.
Lowercase bold letters, e.g., x, indicate elements of a tensor.

2.1 Fully Homomorphic Encryption

FHE schemes are public key crypto schemes that can evaluate addition and mul-
tiplication on encrypted data without decrypting it at any point. The result of
the computation is also encrypted. After decryption, the result is as if the com-
putation was performed on plain data. In this paper, we use the Residue Num-
ber System (RNS) version of the Cheon-Kim-Kim-Song (CKKS) scheme [13].
Unlike most other schemes, CKKS supports real numbers. However, it performs
encrypted computation only approximately, leading to approximation errors.
The error appears first in the least significant bits of the result, keeping the error
small. We can think of CKKS plain- and ciphertexts as one-dimensional vectors
containing multiple values offering vectorized, element-wise SIMD computation

316 R. Podschwadt et al.

[44]. The maximum number of values, typically called slots, is determined by
the security parameters, which is a power of two. The number of filled slots
in ciphertext does not impact the performance of the operation, allowing us to
perform addition or multiplication of thousands of values at once.

2.2 Batch Packing

We consider ns to be the number of slots in a ciphertext. For simplicity, we
assume that the batch size is equal to ns. Otherwise, we would need to split the
data into multiple batches or pad it. We partially flatten all dimensions in X
except the batch dimension to encrypt the inputs. We take each column from the
resulting two-dimensional matrix and encrypt that into a ciphertext, leaving us
with a vector of ciphertexts. We need to encode the weights as well. Each weight
value in W is encoded into its own plaintext. Before encoding, we turn each
value into a vector by repeating it ns times. This produces |X|/ns ciphertexts
and |W | plaintexts. If the model needs to be encrypted as well, we can encrypt the
encoded plaintext weights. Similarly, the encoding of W contains |W |/ns cipher-
texts. We can think of the encoding as setting the batch axis to one. The issue
that arises is that FHE ciphertexts and plaintexts require a substantial amount
of memory. A single ciphertext can be between a few hundred kilobytes to multi-
ple megabytes, depending on the crypto parameters; a plaintext is half the size of
a ciphertext. We refer to the encoded and/or encrypted inputs, weights, and out-
puts as X ′, W ′, and Y ′, respectively, and values taken from them as x′, w′ and y′.

2.3 Convolutional Layers

Here, we consider two-dimensional convolutions commonly used in neural net-
works; however, other dimensionalities work fundamentally the same. Goodfellow
et al. [19] define the operation as follows: given the inputs X,W , and the output
Y , which are all tensors, we can define the two-dimensional convolution as:

Yb,m,n,cout =
∑

j

∑

k

∑

cin

Xb,m−j,n−k,cinWj,k,cin,cout (1)

We use the subscript to indicate a single element in the tensor, where b is the
batch index, cin the input channel index, and cout, the output channel index. Eq
1 needs to be computed for all values in Y .

2.4 Lock-Free Multi-threaded Convolution

The most straightforward way to compute a convolution with multiple threads
is to have each y computed by a thread; Eq. 1 is computed by a separated thread
for each unique (b,m, n, cout). For s = |Y |, we can use at most nt = s parallel
threads without requiring some synchronization between the threads since all
threads read from the shared resources X and W but do not modify them; every
Yb,m,n,cout is only modified by one thread, ruling out any race conditions that

Memory Efficient PPML 317

could lead to lost updates. With fewer than s threads, threads can compute
multiple Yb,m,n,cout . With more than s threads, we either need synchronization
or can not use these threads. Generally, given nt threads where each thread is
assigned a unique integer i ∈ [1, nt], we can use Algorithm 1.

Algorithm 1. Lock-free multi-threaded Convolution
Inputs: input tensor X, weight tensor W , output tensor Y , number of threads nt

Outpus: output tensor Y containing the result of the convolution

1: while t ≤ nt and t ≤ |Y | do
2: Start Thread t and execute:
3: q := t
4: while q ≤ |Y | do
5: convert q to multi-dimensional index b, m, n, cout
6: Yb,m,n,co :=

∑
j

∑
k

∑
ci

Xb,m−j,n−k,ciWj,k,ci,co

7: q := q + nt

8: end while
9: End Thread

10: end while

We assume that inputs are stored on a disk (the term disk refers to any
persistent storage, i.e., a hard disk drive or solid-state drive) and must be loaded
into memory. With the Algorithm 1, we have two options to keep it lock-free.
1.) Load X and Y before we start the computation, or 2.) Each thread loads the
x and y as needed. 1.) has the upside in that we only need to load each value
once and can reuse them at no additional cost. However, the downside is that
we need to keep them in memory for the entirety of the computation. 2.) On the
other hand, needs to keep much fewer objects in memory. Each thread has only
three objects in memory: one x, one weight w, and the output y. However, each
thread must perform two loads for each iteration of the nested sums in line 6.
Furthermore, multiple threads may load the same x and w, causing redundant
loads. A further issue with this algorithm arises when |Y | is not divisible by nt.
In this case, |Y | − |Y | mod nt threads finish one iteration, line 4, early and are
idle for the rest of the computation, leading to unused computational resources.
However, this impact is small if |Y | is large compared to nt. Performing the
second option on plain data will lead to slower results since arithmetic operations
are much faster than data loading. Additionally, single x and w are so small that
we can not save significant memory by loading them on demand.

Running Algorithm 1 on encrypted data is straightforward using batch-
packing described earlier. To do this, we replace X with X ′, W with W ′, and
Y with Y ′. This replacement sets the batch dimension to one, allowing us to
remove it from consideration. For the algorithm, it does not matter if W ′ is
encoded FHE plaintexts or ciphertexts if the model is encrypted. In the case
of the plaintext model, we assume that unencoded weights W are loaded into
memory before the computation starts and are encoded when needed; therefore,
we don’t need to load them strictly speaking. However, we call this operation
loading for simplicity in this context.

318 R. Podschwadt et al.

3 Related Work

Akavia et al. [3] focus on reducing the storage footprint of FHE ciphertext
rather than the in-memory size during computation. They design a protocol that
allows multiple data producers to upload and store data in the cloud with no
overhead compared to storing AES (Advanced Encryption Standard) encrypted
data. Storing AES encrypted on an untrusted server and using secret sharing, a
computing server can use the data for HE computation with the help of an aux-
iliary server. In contrast, our proposed solution reduces the memory footprint at
computation rather than the encrypted storage size.

Jiang et al. [28], Brutzukus et al. [9], Lee et al. [34], Dathathri et al. [15],
and Lee et al. [33] are conceptually similar works, who all reduce the number
of ciphertexts required by using inter-axis packing. While all these approaches
reduce the inference latency, they require expensive rotations, lowering the
throughput compared to batch-packed solutions. Additionally, they often rely
on designing the packing strategy for the specific network architecture.

Other studies rely on interactive solutions for privacy preservation. Hao et
al. [23] and Huang et al. [26] both propose efficient matrix multiplications in a
two-party setting. Both studies propose rotation-free matrix multiplication over
polynomial encoded ciphertexts. However, both require interactive phases where
one party must extract specific polynomial coefficients and mask the result.
Zheng et al. [46] propose a method for fast private inference using transformers
and SMC. The authors use a similar protocol to the one proposed by Juvekar et
al. [29], where the server performs much of the expensive matrix multiplication
computation in an offline phase. Zheng et al. [46] reduce the number of ciphertext
rotations required by packing the same feature of different tokens into the same
ciphertext, similar to the batch-packing we use in our approach. However, we
compute the intermediate terms in a less memory-consuming way.

Prior work on batch-packed PPML using FHE [8,11,17,24] does not explicitly
state how they perform matrix multiplication or convolutions. They focus on
other improvements like better polynomial approximation [11,24], or parameter
fusion and special value bypass [8]. We believe most of these solutions could
decrease memory requirements using our proposed algorithm. Another work that
addresses memory limitations is Badawi et al. [4], which implements a CNN
over FHE data using GPU acceleration for the basic ciphertext operation. To
fit the input to the convolution into GPU memory, they split it into multiple
blocks of the same size as the filter. The filter and as many of these blocks
as possible are loaded into GPU memory, where the convolution is performed.
Compared to our proposed approach, this process only reduces the memory
requirement on the GPU. The input and weights still need to be present in
the main memory. Shivdikar et al. [43] also present techniques aimed at GPUs.
They aim to reduce the repeated memory reads inside the GPU when performing
polynomial multiplication for HE primitives. While this speeds up the low-level
operations underpinning most HE schemes, unlike our work, it does not address
the issue of requiring a large number of plaintexts or ciphertexts in memory.

Memory Efficient PPML 319

4 Our Proposed Approach

To address the issues of memory consumption and unused resources, we model
the convolutional layer as a schedule, which determines the order of operations.
We present and compare multiple schedule construction strategies based on the
computation and available resources. We further present an algorithm to execute
a schedule. From now on, we assume that all tensors are flattened.

4.1 Modeling the Problem as a Schedule

We can write each element y as a sum of products of x and w. We denote a
product of two elements of x and w as the triple t = (x,w,y), where y is the
result that holds the sum that the product xw is a part of. To refer to an element
in a triple t, we use the following notation ti; i ∈ {x,w, y}.

Algorithm 2. Generating a schedule from a 2D Convolution
Inputs: Output shape hout, wout, cout, Input shape hin, wincin, Filter size wh, ww

Output: The schedule S

1: S := []
2: for each i ∈ [1, . . . , houtwoutcout] do
3: convert i to multi-dimensional index (m, n, ty)
4: for each j ∈ [1, . . . , whwwcin] do
5: convert j to multi-dimensional index (p, q, r)
6: tx := m − p + ((n − q)win + (rhinwin)
7: tw := p + (qwh) + (rwwwh) + (rwwwhcin))
8: append (tx, tw, ty) to S
9: end for

10: end for

Definition 1 (Schedule). Let f be a convolutional layer; we say ti ∈ f iff the
sum to compute tyi contains the product txi t

w
i . A schedule is an ordered list of

triples ti that contains all ti ∈ f exactly once.

In other words, we represent f as a sequence of all its element-wise products.
To compute the function f , we need to compute all products given in the sched-
ule. Additionally, we must sum all products with the same value for y. We call
the number of triples in a schedule the length or steps of a schedule, denoted
by |S|. Algorithm 2 shows how to generate a schedule for two-dimensional con-
volutions. Higher dimensional convolutions work analogously by expanding the
iteration bounds in lines 2 and 4, the decomposition of i and j in lines 3 and 5,
and the formula for tx and tw by the extra dimensions. In addition to the compu-
tation steps, we also insert load instructions into the schedule. Load instructions
specify which elements to load into memory, discard from memory, or write back
to disk in case they were updated.

320 R. Podschwadt et al.

4.2 Executing a Schedule

To execute a schedule, we evaluate all triples in order. To evaluate a triple t
we multiply the input Xtx with the weight Wtw and add the result to Yty ;
Ytt = Yty +XtxWtw . We assume that all y are 0 at the beginning. We parallelize
the execution of the schedule across multiple threads. Each repeatedly evaluates
the first unevaluated triple. This requires synchronization at two points. 1.) We
must ensure that every triple is evaluated exactly once. 2.) Unlike in Algorithm
1, we cannot guarantee that multiple threads do not write to the same output;
therefore, we need locking to prevent race conditions. We use the following algo-
rithm to ensure all values are correctly summed into the output value. We show
our proposed algorithm in Algorithm 3. The parts that must be protected from
concurrent access are marked as Critical Section.

Algorithm 3. Executing a schedule
Inputs: inputs X, weights W , output Y , number of threads nt, schedule S
Outputs: Y containing the result of the convolution

1: ensure Yi = ∅; ∀i ∈ [1, |Y |]
2: is := 1
3: while i ≤ nt and i ≤ |S| do
4: Start Thread i and execute:
5: while is ≤ |S| do
6: j := is

⎫
⎬

⎭

Critical
Section

7: is := is + 1
8: perform load instructions
9: t := Sj

10: r := Xtc · Wtp � HE multiplication
11: if Yto = ∅ then
12: Yto := r
13: else

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Critical
Section

14: v := Yto

15: Yto := ∅

16: r := v + r � HE addition
17: goto line 11
18: end if
19: end while
20: End Thread
21: end while

We indicate where in the algorithm process load instructions in line 8. A load
instruction has three attributes: 1.) the step that is executed on, 2.) the type
of instruction, load or unload, and 3.) the object to load. Every iteration, each
thread checks if there is an unprocessed load instruction with a step equal to
or lower than the step the thread is executing. If there is, the thread marks it
complete and executes it. Again, we must ensure that only one thread updates
the load instructions at any time. Each thread tries to execute any outstanding

Memory Efficient PPML 321

load instructions before moving on. Objects loaded through load instructions
stay cached until explicitly unloaded through another load instruction or until
the computation is complete. If a thread requires values not loaded by any load
instructions, it loads them on demand and does not cache them.

4.3 Cost of a Schedule

We can use the schedule to estimate the maximum memory required on
encrypted data. Maximum memory is important since we cannot execute the
schedule if it requires more than the available memory. Most of the memory
required during execution stems from the ciphertexts and plaintexts; therefore,
we ignore additional objects like keys, the schedule, and other data in our esti-
mation. To estimate the cost, we look at the load instructions, the number of
threads, and the objects loaded on demand. We first examine the simpler case
with only one thread and extend it to multiple threads later. Let sx be the size
of a single x′, sw the size of a single w′, and sy the size of a single y′. To estimate
the memory requirement of a schedule, we need to perform the following steps:

1. Split the schedule into parts at the load instructions so that each part begins
with load instructions and contains no other load instructions except those
at the beginning. A part must not only contain load instructions.

2. For each part, count how many x′, w′, and y′ are loaded and unloaded.
3. Weight the count of x′, w′, and y′ by sx, sw, and sp, respectively.
4. For every step, weigh the on-demand loaded objects and add them.
5. For each part, add the weighted counts from step 3 and the maximum from

step 4. The maximum of all the parts is our estimate for the schedule.

We now extend the estimation to multiple threads. The estimate for multiple
threads is less precise than that for a single thread since we can only make
assumptions about how multiple threads will interact. We make the following
simplifying assumptions: 1.) threads execute schedule steps at the same speed,
and 2.) a continuous block of load instructions is executed simultaneously, no
matter how many instructions are in that block. The main ideas are that if we
have split the schedule into parts that contain fewer steps than we have threads
nt, we merge adjacent parts until all parts contain at least as many steps as
we have threads available. Then we identifiy the nt steps that require the most
memory in each part. To do this we start as we did in the single thread case
above. Next, we look at the number of steps in each part. If the part has fewer
steps than the number of threads nt, we combine it with the next part to form a
new part by adding the cost of the load instructions. We repeat this until the new
combined part has more steps than threads. We repeat this for all parts of the
schedule. To estimate the cost of the on-demand loaded objects, we assume that
nt schedule steps are executed at the same time. In the final step, we handle the
cost of the schedule steps. We compute the on-demand cost for all steps in the
schedule parts created in the previous step. The computation happens the same
way as described in the single-threaded case above. However, now we not only

322 R. Podschwadt et al.

add the step with the highest cost; we add the nt steps with the highest costs.
This method provides a reasonable estimate for the memory cost of a schedule
with multi-threaded execution.

4.4 Threat Model

In this work, we assume that all parties are honest but curious. They follow all
protocols and algorithms without deviation. However, they do try to learn as
much information as they can. The server offers private inference to the client.
Only the dimensions of the data and the data domain need to be shared between
the client and server in plaintext. The actual instances and the inference result
are only ever shared in encrypted form. Besides the input and output dimen-
sions of the model, the client gains no additional information about the model.
However, model extraction attacks by the client, as described by Tramer et al.
[45], can still threaten the server-side model. Additionally, since we rely on the
CKKS scheme, the client needs to make sure not to share decrypted inference
results with the server since this can be used to compromise the security of the
client’s secret key [35]. Our proposed approach reorders the operation the server
performs of the encrypted data, which is not observable by the client. The client
can only observe the time the server needs to perform the computation. Without
knowing the server’s hardware configuration, this does not provide any useful
information to the client. Even if the client knows the exact hardware configu-
ration, it can not learn any other information than it would learn if the server
used a different computational model.

5 Reduced Memory Schedules

Fig. 1. Breaking an example base schedule down into multiple sub-schedules. This
schedule is executed row-wise.

In this section, we propose different ways to construct schedules. These sched-
ules provide trade-offs between runtime and memory. The fastest we can execute
a schedule is by loading all data at the beginning of the computation and then

Memory Efficient PPML 323

using the lock-free Algorithm 1. However, this requires a large amount of mem-
ory. We can reduce the memory footprint by loading everything on demand.
However, this increases runtime significantly.

We can transform the computation performed by Algorithm 1 into a schedule.
Again, consider nt to be the number of threads, no the number of outputs of the
computation, and nf the number of products that sum up into a single output. In
Algorithm 1, every thread executes a subschedule where all ty mod i = 0; t ∈ S,
where i is the thread id. We can obtain the combined schedule by taking all
subschedules and interleaving them elementwise. See Fig. 2 for an example with
three threads.

Fig. 2. Example of how to turn a lock-free execution with three threads into a schedule

The lock-free algorithm computes and needs to keep in memory nt outputs
simultaneously. The base schedule, on the other hand, fully computes a single
output before moving on to the next one. This allows us to keep fewer outputs in
memory. This is the lowest amount of memory we can achieve. However, we need
to load objects from disk frequently and are not using any caching. Caching aims
to reduce the number of loading operations as much as possible. We can exploit
the regular structure of convolutions to find the best values for caching. We can
split a schedule into a regular, repeating pattern defined by the size and number
of filters and input channels. In two-dimensional convolutions, as used in neural
networks, we have a four-dimensional filter volume, W , where the dimensions
are in order: i, j the position in the filter, cin the input channel, and cout the
output channel. We move W across the entire input, creating cout outputs at
every position. Note how far W we move the filter is given by the stride, which
we assume to be one here. However, our method remains applicable to other
stride values. Each output, at a given position of W , uses the same values from
X. We call each unique position of the filter on the inputs the filter position or
window.

We need to keep three kinds of objects in memory during the computation.
Inputs x, weights w and, outputs y. We design multiple caching strategies based
on the memory available. We will not go over the trivial case that we can fit all
values of x and w into memory.

324 R. Podschwadt et al.

5.1 Caching by Object Type

The simplest caching strategy, is to load either all values from X ′ or W ′ at the
beginning of the computation and load the other values on demand as needed.
This strategy creates very simple schedules; however, it underutilizes caching.
If we preload all x′, we load too many values much earlier than needed in the
computation, and if we preload all y′ we need to load x′ values frequently.

5.2 Full Window Caching

We can improve the caching by object type strategy by utilizing the underlying
structure of the convolution operation. To obtain the output values we move
the filter across the input values. Each filter channel creates one output value.
The filter values at every position are the same. Therefore, if we can load them
only once and cache them for the duration of the computation we can save a
significant amount of load operations. However, for each position the input values
change. Each position of W requires only |W ′|/cout x′. If we can fit these objects
and all y′ into memory, we only load W ′ once. Since W ′ usually moves over the
inputs with some overlap, i.e., the stride is smaller than the width and height
of the filter, we can reuse many x′ and only need to unload and reload a small
amount. We start at the top left and move W from left to right. Once we reach
the end on the right, we move down and start over on the right, repeating until
we reach the bottom right. If the filter size or stride is not symmetrical, it is
beneficial to change the behavior to first move in the direction that has the most
overlap, reducing the number of values that need to be loaded and increasing
the number of values that can be reused.

3,6,02,4,00,0,0 0,2,1

3,7,12,5,11,3,10,1,1

25,34,024,32,00,82,22 0,03,32

25,35,124,33,123,31,122,29,1
…

5,6,24,4,22,0,2 2,2,3

3,7,32,5,31,3,32,1,3

27,34,226,32,22,82,42 2,03,52

2735,326,33,325,31,324,19,3
…

62 72

1 0

-

-

Load X

Unload X

Load W

Unload W

Fig. 3. Load instructions that are necessary when moving from the first window to the
second using window caching with a 5 × 5x2 input and a 3 × 3x2 × 2 kernel.

5.3 Partial Window Caching

If we can fit |W ′|/cout x′ but not all of W ′ into memory, we can modify the full
window caching strategy to reduce the number of loads. Let n be the number
of w′ that we can fit into memory in addition to all the x′ in the window. We
then split the schedule into sub-schedules for every position of W . To reorder the

Memory Efficient PPML 325

sub-schedules to increase caching potential we reverse every second sub-schedule;
see Fig. 4. This reordering makes it so that i values to the left and right of the
sub-schedule boundary are the same for all i ∈ [1, |W |]. This allows us to cache
n values before the sub-schedule boundary and reuse them in the next one.

Fig. 4. Weights Wi only in Sub-Schedules that correspond to individual filter positions
and how they can be reordered to increase caching potential.

5.4 Column-Wise Caching

If we cannot fit |W |/cout x′ or W ′ into memory, we cannot use any of the caching
methods described above. However, we can construct a different schedule that
allows us to cache x′ values. For this schedule, we need to be able to fit cout
y′ into memory. By taking each window sub schedule and reordering it column-
major instead of row-major, see Fig. 5, we can reuse the same x′ multiple times
before we unload it. This ordering requires us to keep cout y′ in memory. This
ordering is most beneficial when the number of input channels is much larger
than the output channels or the filter is relatively large. Both scenarios lead to
a large number of x′ in a window. Depending on how much memory is available,
we can cache multiple columns. Additionally, we can combine this with the idea
from partial window caching of reordering the computation to generate adjacent
window subschedules that end and start with the same X values.

Fig. 5. Transforming the base schedule into a column-wise caching schedule

A downside of the proposed approach is that in order to achieve any benefits,
we require the data to be batch-packed and a convolutional layer. Only batch-
packing allows us to reorder the computation on a granular level. If this approach
provides any benefits with inter-axis packing strategies is beyond the scope of
this work. We need a convolutional layer to exploit its repeating weight structure.
It is possible that we could use similar optimizations with recurrent layers since
they also have repeating weights. However, recurrent layers impose additional
challenges when used with HE [42].

326 R. Podschwadt et al.

6 Experimental Evaluation

We evaluate our proposed solution on the layers of a convolutional neural network
(CNN) trained on the CIFAR-10 [32] dataset. We first estimate the memory
requirements and then compare them to the measurements we obtain by running
the model on encrypted data. Table 1 shows the model’s architecture. We have
two different models. One for plain data and one adapted to be HE-friendly,
meaning it only contains operations that are easy to compute on encrypted
data. Both models achieve very similar accuracies on the test data, 70.9% for
the original model and 69.7% for the HE-friendly model. The main interest of
this paper is not to propose new models or techniques that increase the accuracy
of models on encrypted data but to analyze and reduce the memory consumption
of these models.
Table 1. Architecture of the evaluation model with the layer parameters showing the
filter size (FS), stride (S), number of filters (NF), and the activation or pooling function
used on plain text (PT) and on encrypted data (HE).

Layer Input Shape Output Shape Parameters

Conv 2D (1) 32 × 32 × 3 30 × 30 × 32 FS: 3 × 3, S: 1 × 1, NF: 32, PT: ReLU,
HE: x2

Pooling 30 × 30 × 32 15 × 15 × 32 FS: 2 × 2, S: 2 × 2, PT: Max, HE:
Average

Conv 2D (2) 15 × 15 × 32 13 × 13 × 64 FS: 3 × 3, S: 1 × 1, NF: 64, PT: ReLU,
HE: x2

Pooling 13 × 13 × 64 6 × 6 × 64 FS: 2 × 2, S: 2 × 2, PT: Max, HE:
Average

Conv 2D (3) 6 × 6 × 64 4 × 4 × 64 FS: 3 × 3, S: 1 × 1, NF: 64, PT: ReLU,
HE: x2

Flatten 4 × 4 × 64 1024 -

Dense 1024 64 Units: 64, PT: ReLU, HE: x2

Dense 64 10 Units: 10

We define three sets of crypto parameters: small, medium, and large. All
parameters guarantee at least 128-bit security. We use OpenFHE [5] as the
underlying crypto library in our implementation. The small parameters have
a ring dimension of 214 and a multiplicative depth of 2. The medium parame-
ters have a ring dimension of 214 and a multiplicative depth of 8. And the large
parameters have a ring dimension of 215 and a multiplicative depth of 19. This
results in a ciphertext size of 0.75 MB, 2.225 MB, and 10 MB for the small,
medium, and large parameters respectively. A plaintext is always half the size of
a ciphertext. We have two machines. One with 16 cores, 20 GB of memory, and
32 GB of operating system (OS) swap space, and another with 104 cores and 768
GB of memory. Both machines have two TB solid-state drives. We define differ-
ent schedules, then estimate the required memory using the technique described
in Sect. 4.3, and finally execute the schedules to obtain real measurements.

Memory Efficient PPML 327

We define several schedules that we estimate and measure the memory
requirements for. The names of the schedules are given italicized. We use the
Lock-free algorithm (Algorithm 1) as our baselines once we load all values on
demand (Lock-free on demand) and once we preload all values before execution
Lock-free Preload. We compare these baselines to their direct equivalent using
our proposed algorithm (Algorithm 3), where we preload all values (Preload
everything). Next, we investigate the behavior when we either preload all of X ′,
Preload X ′, or all W ′ values Preload W ′, x′ on demand. Finally, we look closer
at the window, partial window, and column-wise caching. For (partial) window
caching, we always load all of x′ in the window and investigate the following
strategies for loading w′s:

– load all of W ′, Load X ′ window W ′

– load w′s on demand, Load X ′ window, w′ on demand
– load half of W ′ values, Load X ′ window, W ′/2
– load a quarter of W ′, Load X ′ window, W ′/4

We only cache one x′X, Column Major for column-wise caching. For all
schedules, we cache the y′s from their first appearance in the schedule to their
last.

6.1 Memory Estimate

To demonstrate that our proposed solution is scalable from large servers to
consumer hardware, we run the selected schedules on two different machines. A
desktop PC with a 16-core AMD Ryzen CPU, 20 GB of RAM, 32 GB of swap
space, and a large server with two Intel 54-core CPUs and 756 GB of RAM.
Both machines have a 2 TB solid-state drive and run Ubuntu Linux 20.04 LTS.
In the tables and figures throughout this paper, we refer to the server and PC
by their number of threads: 104 and 16, respectively.

We use the algorithm described in Sect. 4.3 to estimate the cost of all convo-
lutional layers for small, medium, and large parameters and 16 and 104 threads.
We need to estimate the memory requirements based on the number of threads
that are used during execution since that can influence the number of objects
in memory. The estimate column in Table 2, 3, and 4 shows the estimates for
each layer and schedule for large parameters (for the small parameters see the
appendix). We can see that, especially for the large parameters, the estimate
frequently goes beyond the 20 GB of the PC. The estimate also often exceeds
the 52 GB of memory and swap space combined. The estimate never exceeds the
756 GB of the server. For the estimate and following experiments, we assume
the input X ′ is encrypted while the model W ′ is in plain.

Unsurprisingly, the schedules that preload all objects, Preload everything
and Lock-free Preload, have the highest memory estimate. On the other hand,
schedules that load most objects on demand and cache very little, Lock-Free on
demand and Column Major have the lowest memory estimate. For the Conv 2d
(1) layer, the estimates range from 380 MB to about 35 GB. Schedules that do

328 R. Podschwadt et al.

not load all of X ′ are significantly below that value, estimated at most 6193 MB.
For the second layer, Conv 2D (2), both the number of x′ and w′ is significantly
larger. This, however, does not significantly change the estimate for the Lock-
Free on demand schedule. This observation also holds for the next layer, Conv
2D (3). The estimation aligns with the insights of a theoretical analysis of the
execution. As discussed earlier, during runtime, this schedule has at most nt of
each x′, w′, and y′ in memory, where nt is the number of threads. Therefore, the
memory consumption of the schedule is only influenced by the number of threads
and independent of the layer. For the Conv 2D (2) layer, we also encounter values
outside the PC’s available memory, ranging from 400 MB to 164 GB. We see a
similar picture for the last convolutional layer, Conv 2d (3). Large estimates of
up to 208 GB, especially for layers that load and cache W ′ values.

Fig. 6. Time and Memory requirements schedules, run with large parameters, on the
104 threads servers and the 16 threads PC. The memory graphs also include the PC’s
memory limit of 18000 MB.

Memory Efficient PPML 329

6.2 Measurements

After obtaining the estimates, we execute the schedules on both the server and
the PC. We measure the time it takes to execute the schedules, and the memory
the process requires. For the memory measurement, it is important to note that
it does include swap memory and only measures actual main memory usage. The
PC has 20 GB of memory, about 1.5 GB of which the OS uses, leaving about 18.5
GB for the execution of the schedule. Therefore, measurements in the range of
18.5 GB on the PC will likely have used the OS’s swapping mechanism, especially
if the estimated value is much larger. As mentioned in the previous section, for
some schedules, the memory available is insufficient, even with swapping. In these
cases, the execution is terminated by the OS, yielding no result. We deliberately
leave the OS swapping mechanism on to test if our implementation is faster than
simply relying on the in-built OS methods. We further assign each schedule
a score combining time and memory requirements. To calculate the score, we
compute the geometric mean of the time t and m as

√
tm. The lower the score,

the better. However, the schedule with the lowest score is automatically the best
schedule on a given machine. The best schedule is typically the schedule that
executes the fastest on the machine. It is possible for a slower schedule to achieve
a lower score due to it requiring less memory. This, however, indicates that we
could perform the computation on a machine with less memory.

Fig. 7. Comparison of the fastest schedule for each layer with 16 and 104 threads. For
each layer, the Figure shows the increase factor in runtime from 104 to 16 threads and
the increase factor in memory from 16 to 104 threads for the fastest schedule

Tables 2, 3, and 4 list the time and memory requirements and the score, using
the large crypto parameters (for medium and small, see the Appendix). The first
important observation is the accuracy of the estimation algorithm. We expect
the memory measurements to be larger than the estimate since there is runtime
overhead, like the schedule itself, key material, and other data structures that the
estimation does not take into account. However, in some cases, the estimate is off
by a factor of 4–5. This is especially true for smaller values. An explanation for
the discrepancy in estimate and measurements most likely lies in how we process
cache instructions that drop data from memory. To ensure that we do not delete
data that other threads still need, we only execute the delete instructions once all

330 R. Podschwadt et al.

threads have passed the point for which the instructions are scheduled. During
execution, we have little control over how fast threads advance. It is certainly
possible for some threads to fall far behind, waiting for locks or input/output
operations, thereby preventing the deletion of objects from memory. We have no
way of predicting how the threads will interact at runtime and, therefore, need
to make simplifying assumptions that can cause the differences in estimated and
measured values. Overall, the estimate can still provide us with a useful tool to
understand the schedule’s memory requirements without running it.

The most important metric is time. The schedule that executes the fastest
is typically the schedule that uses the available resources the most efficiently.
Figure 6 shows the time and memory requirement for large parameters and all
schedules. Note that the OS terminated schedules that do not display a time for
16 Threads (the PC) for running out of memory. For Conv 2d (2) and Conv 2d (3)
we can see multiple schedules that reach the critical limit of 18000 GB memory,
after which the OS’s swapping system kicks in. On the medium parameters and
Conv 2d (2) (complete Figures and Table in the Appendix), we observe that Load

Table 2. Time in s, Memory in MB requirements, for all Schedules on Conv 2d (1)
with large parameters on the PC with 16 and the server with 104 Threads. Additionally,
shown are memory Estimate in MB and Score.

Schedule Threads Time Memory Estimate Score

Lock-free Preload 16 8952 18432 35215 12845

104 1600 38839 36095 7883

Lock-free on demand 16 6830 1179 400 2838

104 2091 4662 2601 3123

Preload everything 16 6805 18408 35075 11192

104 973 38365 35885 6109

Preload X ′ 16 5812 18680 30833 10420

104 3379 33826 32084 10691

Preload W ′, x′ on demand 16 5911 5459 4502 5681

104 3925 7965 6193 5591

Load X ′ window W ′ 16 4458 5857 4622 5110

104 1183 8036 5432 3083

Load X ′ window w′ on demand 16 5278 1486 380 2801

104 933 4074 1631 1950

Load X ′ window, W ′/2 16 4955 6104 2461 5499

104 1144 7972 3271 3021

Load X ′ window, W ′/4 16 5498 3061 1451 4102

104 899 5504 2701 2225

Colum Major 16 5442 1736 410 3074

104 1452 4363 2531 2517

Memory Efficient PPML 331

Table 3. textbfTime in s, Memory in MB requirements, for all Schedules on Conv
2d (2) with large parameters on the PC with 16 and the server with 104 Threads.
Additionally, shown are memory Estimate in MB and Score.* indicate out of memory.

Schedule Threads Time Memory (MB) Estimate Score

Lock-free Preload 16 * 18875 164390

104 3257 173712 165270 23787

Lock-free on demand 16 24060 1531 400 6069

104 4599 6016 2601 5260

Preload everything 16 * 18819 164250

104 3364 173326 164250 24146

Preload X′ 16 * 18949 72131

104 4138 76506 72571 17792

Preload W ′, x′ on demand 16 * 18816 92379

104 5416 101272 93260 23419

Load X′ window W ′ 16 * 18754 95110

104 3662 106345 95110 19735

Load X′ window w′ on demand 16 20246 6888 2991 11809

104 3914 10203 3431 6319

Load X′ window, W ′/2 16 * 18839 49011

104 4003 125113 49011 22379

Load X′ window, W ′/4 16 * 18871 26031

104 3843 33731 26471 11385

Colum Major 16 22251 2809 730 7906

104 3724 6516 2291 4926

X ′ window W ′ schedule reaches the swapping limit and takes 10675 s. The Load
X ′ window w′ on demand schedule does not reach that limit needing ∼2 GB.
However, despite needing to encode data more often, it is faster at 3885 s. This
strongly suggests that our algorithm is more efficient than relying on the OS’s
swapping mechanism.

Table 5 and Fig. 7 compare the fastest schedule for each layer and set of
parameters. We are most interested in the increase in runtime and the reduction
in memory when running on the 16-thread PC as compared to running on the
104-thread server. For the small parameters, the fastest schedule is either the
Lock-free Preload or Preload everything schedule. Since these schedules have very
similar memory requirements, there is no significant reduction in memory. The
time, however, increases by a factor of 3.3–3.8. We start to see a much bigger
difference when moving to the medium parameters. For the Conv 2d (1) layer,
the time increases by a factor of 5.4 while the memory usage stays almost the
same between PC and server. For this layer, both systems can still use the Lock-
free Preload schedule, which explains the negligible reduction in memory. The

332 R. Podschwadt et al.

Table 4. Time in s, Memory in MB requirements, for all Schedules on Conv 2d (3)
with large parameters on the PC with 16 and the server with 104 Threads. Additionally,
shown are memory Estimate in MB and Score.* indicate out of memory.

Schedule Threads Time Memory (MB) Estimate Score

Lock-free Preload 16 * 18788 207608

104 7074 220310 208489 39479

Lock-free on demand 16 5054 1133 400 2393

104 1469 4823 2601 2662

Preload everything 16 * 18838 207468

104 855 219812 207468 13709

Preload X′ 16 3955 18910 23150 8648

104 815 26310 23590 4631

Preload W ′, x′ on demand 16 * 18859 184578

104 4935 196842 185459 31168

Load X′ window W ′ 16 * 18775 190191

104 831 207599 190191 13134

Load X′ window w′ on demand 16 3876 12218 5872 6881

104 913 14437 6313 3631

Load X′ window, W ′/2 16 * 18860 97992

104 1024 206385 97992 14539

Load X′ window, W ′/4 16 * 18871 51962

104 955 63491 52402 7788

Colum Major 16 3834 1714 730 2564

104 825 4609 2291 1950

time increase for the next two layers is 5.9 and 3.5, respectively; however, the
memory reduction is significant and a factor of 21 and 83.3. While the server still
uses the Lock-free Preload schedule the PC is forced to use window caching and
column-wise window caching to fit the objects into memory. The picture repeats
for the large parameters. Except that now the server uses a more memory-
efficient schedule for Conv 2d (3), which leads to only 15.3 times memory reduc-
tion and an increase in runtime by 4.7. An interesting observation: on the small
parameters, the PC seems to have a higher per-thread performance as the time
increase is only around 3.5 for all layers despite the number of threads on the
server being 6.5 more. As the parameters get larger, the time increase seems to
approach 6.5 as expected.

Additionally, we compare the time and memory of the different schedules
run on the large crypto parameters executed on the server. For the Conv 2d (1)
layer the fastest schedule is Load X ′ window, W ′/4. It is 74 s, 8%, faster than the
Preload everything schedule. The Preload everything schedule, in turn, is much

Memory Efficient PPML 333

Table 5. Fastest Schedule for each layer and parameter size (Param.) on the server, 104
Threads (T), and PC, 16 Threads. As well as the increase (Inc.) in time and reduction
(Red.) of memory.

Param Layer T Time Inc. Memory Red Schedule

small Conv 2d (1) 16 135 3.3 3084 1.1 Lock-free
Preload

104 41 3319 Lock-free
Preload

Conv 2d (2) 16 580 3.6 15164 1.0 Preload
everything

104 160 15570 Lock-free
Preload

Conv 2d (3) 16 116 3.8 18699 1.1 Lock-free
Preload

104 30 20727 Lock-free
Preload

medium Conv 2d (1) 16 859 5.4 8447 1.1 Lock-free
Preload

104 159 9141 Lock-free
Preload

Conv 2d (2) 16 3885 5.9 1939 21.0 Load X′
window w′ on
demand

104 653 40775 Lock-free
Preload

Conv 2d (3) 16 743 3.5 629 83.3 Colum Major

104 211 52415 Lock-free
Preload

large Conv 2d (1) 16 4457 5.0 5857 0.9 Load X′
window W ′

104 899 5504 Load X′
window, W ′/4

Conv 2d (2) 16 20246 6.2 6887 25.2 Load X′
window w′ on
demand

104 3257 173712 Lock-free
Preload

Conv 2d (3) 16 3834 4.7 1714 15.3 Colum Major

104 815 26309 Preload X′

faster, 627 s (64%), than the Lock-free Preload schedule. However, both preload
schedules require 38 GB of memory, compared to the 5.4 GB of the Load X ′

window, W ′/4 schedule. For the second layer, Conv 2d (2), the Lock-free Preload
schedule is the fastest at 3257 s. The Preload every is marginally slower at 3364 s.
Both schedules require 170 GB of memory. Schedules that require significantly
less memory Load X ′ window, W ′/4 (33 GB) and Column Major (6.3 GB) are

334 R. Podschwadt et al.

only slightly slower at 3662 s and 3843 s. For the Conv 2d (3) layer the Lock-free
Preload schedule is the slowest and consumes the most memory at 7074 s and
215 GB. The comparable Preload everything schedule requires approximately
the same amount of memory, but only 12.5% of the time, 855 s. Interestingly,
schedules that cache very little Preload X ′ and Column Major are faster than
the Preload everything at 815 s and 825 s. Both of these schedules also require
significantly less memory, at 25.7 GB and 4.5 GB. This is a reduction factor of
47.8 between Lock-free Preload and Column Major.

Interestingly, schedules with minimal caching of w′s are often faster than
schedules that substantially cache these values. A potential explanation could be
the cache locality inside the CPU. Values that are not cached by our method and
are loaded on demand could be accessed faster because they are placed inside the
CPU cache. Alternatively, locking that is required for processing the load instruc-
tions could introduce additional slowdowns that are not present when values are
loaded on demand. Another interesting observation is the poor performance of
the Lock-free Preload schedule in the Conv 2d (3) layer. It is eight times slower
than Preload everything schedule. Both schedules load all the required data at
the start of the computation and do not need to load any values during. Where
they differ is the points at which they write the results to disk. If we assume
that all threads advance in lockstep, in the Lock-free Preload schedule, all threads
want to write to disk at once. In Preload everything schedule, the write oper-
ations are more spaced out. It could be that the large number of simultaneous
writes slows the schedule down significantly.

7 Conclusion

In this paper, we present ways of reordering the computation to tailor the mem-
ory requirements to the hardware available while executing as fast as possible.
We further present a technique to estimate the required memory of convolu-
tions over batch-packed, encrypted data. We show that our proposed caching
mechanism is faster than relying on the OS’s swapping mechanism. The method
proposed in this paper is especially suited for ML workloads with thousands of
instances that can run longer, i.e., overnight or over the weekend, and don’t need
a fast turnaround. Since our method can reduce the memory requirements for
inference, it opens up the potential to save on hardware costs.

Memory Efficient PPML 335

Appendix

Table 6. Measurements for Time in seconds, Memory (Mem) in MB, for all Schedules
with small parameters on the PC with 16 and the server with 104 Threads. Additionally,
the table shows the memory Estimate in MB and Score.

Layer Schedule Threads Time Memory (MB) Estimate Score

Conv 2d (1) Lock-free Preload 16 136 3084 2645 648

104 42 3319 2711 372

Lock-free on demand 16 433 290 30 354

104 131 652 195 292

Preload everything 16 142 3024 2634 656

104 45 3316 2695 387

Preload X ′ 16 184 2593 2316 691

104 52 2872 2409 385

Preload W ′, x′ on demand 16 333 724 338 491

104 108 1027 465 333

Load X ′ window W ′ 16 143 771 347 332

104 46 1186 408 234

Load X ′ window w′ on demand 16 182 325 29 243

104 56 717 122 199

Load X ′ window, W ′/2 16 201 818 185 405

104 57 1197 246 261

Load X ′ window, W ′/4 16 190 450 109 293

104 74 972 203 268

Colum Major 16 233 599 31 373

104 131 891 190 342

Conv 2d (2) Lock-free Preload 16 583 15327 12346 2990

104 161 15570 12412 1583

Lock-free on demand 16 1708 529 30 951

104 524 892 195 683

Preload everything 16 581 15165 12335 2968

104 187 15446 12335 1700

Preload X ′ 16 727 5930 5417 2076

104 205 6187 5450 1127

Preload W ′, x′ on demand 16 1341 9729 6938 3613

104 449 10054 7004 2126

Load X ′ window W ′ 16 609 10180 7143 2490

104 194 10427 7143 1423

Load X ′ window w′ on demand 16 765 934 225 845

104 210 1176 258 497

Load X ′ window, W ′/2 16 816 10281 3681 2896

104 239 11778 3681 1679

Load X ′ window, W ′/4 16 796 3257 1955 1610

104 223 3770 1988 917

Colum Major 16 853 1099 55 968

104 492 1434 172 840

Conv 2d (3) Lock-free Preload 16 117 18700 15591 1477

104 31 20728 15657 800

Lock-free on demand 16 329 254 30 289

104 101 614 195 249

Preload everything 16 132 19362 15581 1601

104 45 20710 15581 970

Preload X ′ 16 141 1980 1739 528

104 39 2221 1772 292

Preload W ′, x′ on demand 16 278 18688 13862 2281

104 95 18975 13928 1346

Load X ′ window W ′ 16 134 19276 14283 1605

104 48 19769 14283 972

Load X ′ window w′ on demand 16 146 1085 441 399

104 43 1330 474 239

Load X ′ window, W ′/2 16 167 19254 7359 1792

104 56 20839 7359 1081

Load X ′ window, W ′/4 16 152 5781 3902 938

104 45 6374 3935 539

Colum Major 16 160 416 55 258

104 94 787 172 272

336 R. Podschwadt et al.

Table 7. Measurements for Time in seconds, Memory (Mem) in MB, for all Sched-
ules with medium parameters on the PC with 16 and the server with 104 Threads.
Additionally, the table shows the memory Estimate in MB and Score. * values are
unavailable because the execution ran out of memory.

Layer Schedule Threads Time Memory (MB) Estimate Score

Conv 2d (1) Lock-free Preload 16 859 8448 7928 2695

104 160 9142 8126 1208

Lock-free on demand 16 1120 409 90 676

104 233 1428 586 576

Preload everything 16 873 8422 7897 2712

104 171 9286 8079 1258

Preload X′ 16 1014 7304 6942 2721

104 215 8182 7223 1327

Preload W ′, x′ on demand 16 973 1472 1014 1197

104 188 2375 1394 669

Load X′ window W ′ 16 891 1600 1041 1194

104 174 2634 1223 677

Load X′ window w′ on demand 16 1023 519 86 729

104 188 1600 367 548

Load X′ window, W ′/2 16 988 1651 554 1277

104 194 2439 737 688

Load X′ window, W ′/4 16 993 797 327 889

104 185 1732 608 567

Colum Major 16 1177 751 92 940

104 242 1726 570 646

Conv 2d (1) Lock-free Preload 16 17154 18531 37011 17829

104 654 40776 37209 5162

Lock-free on demand 16 4636 631 90 1710

104 944 1668 586 1255

Preload everything 16 16589 18764 36979 17643

104 769 40970 36979 5612

Preload X′ 16 3946 16852 16239 8155

104 881 17736 16339 3952

Preload W ′, x′ on demand 16 12054 19356 20798 15275

104 955 24631 20996 4850

Load X′ window W ′ 16 10675 19036 21413 14255

104 803 25897 21413 4561

Load X′ window w′ on demand 16 3885 1939 673 2745

104 958 2864 773 1656

Load X′ window, W ′/2 16 11570 18950 11034 14807

104 1069 29330 11034 5598

Load X′ window, W ′/4 16 3989 8043 5861 5664

104 1438 10983 5960 3974

Colum Major 16 3933 1395 164 2342

104 1759 2758 516 2203

Conv 2d (1) Lock-free Preload 16 * 18640 46741

104 212 52416 46939 3331

Lock-free on demand 16 817 387 90 562

104 329 1396 586 677

Preload everything 16 * 18971 46709

104 325 52493 46709 4131

Preload X′ 16 748 5552 5212 2038

104 283 6296 5311 1336

Preload W ′, x′ on demand 16 5237 18853 41556 9936

104 547 47242 41754 5083

Load X′ window W ′ 16 * 18821 42819

104 347 49830 42819 4159

Load X′ window w′ on demand 16 753 2950 1322 1491

104 263 3475 1421 956

Load X′ window, W ′/2 16 * 19015 22062

104 441 52804 22062 4826

Load X′ window, W ′/4 16 752 15296 11699 3392

104 354 17400 11798 2482

Colum Major 16 744 630 164 684

104 323 1715 516 745

Memory Efficient PPML 337

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318 (2016)

2. Aharoni, E., et al.: HeLayers: A Tile Tensors Framework for Large Neural
Networks on Encrypted Data. Proceedings on Privacy Enhancing Technologies
2023(1), 325–342 (Jan 2023). https://doi.org/10.56553/popets-2023-0020, http://
arxiv.org/abs/2011.01805, arXiv:2011.01805 [cs]

3. Akavia, A., Oren, N., Sapir, B., Vald, M.: Compact storage for homomorphic
encryption. Cryptology ePrint Archive (2022)

4. Al Badawi, A., et al.: Towards the AlexNet Moment for Homomorphic Encryp-
tion: HCNN, the First Homomorphic CNN on Encrypted Data with GPUs.
IEEE Trans. Emerg. Topics Comput. (2020). https://doi.org/10.1109/TETC.2020.
3014636, conference Name: IEEE Transactions on Emerging Topics in Computing

5. Al Badawi, A., et al.: OpenFHE: open-source fully homomorphic encryption
library. in: proceedings of the 10th workshop on encrypted computing & applied
homomorphic cryptography, pp. 53–63. WAHC’22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3560827.3563379
event-place: Los Angeles, CA, USA

6. Amazon.com, I.: Amazon alexa voice ai, alexa developer offical site. https://
developer.amazon.com/en-US/alexa Accessed 17 Oct 2023

7. Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: ngraph-he2: A high-
throughput framework for neural network inference on encrypted data. In: Proceed-
ings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, pp. 45–56 (2019)

8. Boemer, F., Lao, Y., Cammarota, R., Wierzynski, C.: ngraph-he: a graph compiler
for deep learning on homomorphically encrypted data. In: Proceedings of the 16th
ACM International Conference on Computing Frontiers, pp. 3–13 (2019)

9. Brutzkus, A., Gilad-Bachrach, R., Elisha, O.: Low latency privacy preserving
inference. In: International Conference on Machine Learning, pp. 812–821. PMLR
(2019)

10. Cai, Y., Zhang, Q., Ning, R., Xin, C., Wu, H.: Hunter: he-friendly structured
pruning for efficient privacy-preserving deep learning. In: Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security, pp. 931–945
(2022)

11. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-
preserving classification on deep neural network. IACR Cryptol. ePrint Arch. 2017,
35 (2017)

12. Chaudhari, H., Rachuri, R., Suresh, A.: Trident: efficient 4pc framework for pri-
vacy preserving machine learning. In: Proceedings 2020 Network and Distributed
System Security Symposium. NDSS 2020, Internet Society (2020). https://doi.org/
10.14722/ndss.2020.23005, http://dx.doi.org/10.14722/ndss.2020.23005

13. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approxi-
mate homomorphic encryption. In: Cid, C., Jacobson, M.J. (eds.) Selected Areas in
Cryptography – SAC 2018: 25th International Conference, Calgary, AB, Canada,
August 15–17, 2018, Revised Selected Papers, pp. 347–368. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7 16

14. Choi, W.S., Reagen, B., Wei, G.Y., Brooks, D.: Impala: Low-Latency,
Communication-Efficient Private Deep Learning Inference. arXiv preprint
arXiv:2205.06437 (2022)

https://doi.org/10.56553/popets-2023-0020
http://arxiv.org/abs/2011.01805
http://arxiv.org/abs/2011.01805
http://arxiv.org/abs/2011.01805
https://doi.org/10.1109/TETC.2020.3014636
https://doi.org/10.1109/TETC.2020.3014636
https://doi.org/10.1145/3560827.3563379
https://developer.amazon.com/en-US/alexa
https://developer.amazon.com/en-US/alexa
https://doi.org/10.14722/ndss.2020.23005
https://doi.org/10.14722/ndss.2020.23005
http://dx.doi.org/10.14722/ndss.2020.23005
https://doi.org/10.1007/978-3-030-10970-7_16
http://arxiv.org/abs/2205.06437

338 R. Podschwadt et al.

15. Dathathri, R., et al.: CHET: an optimizing compiler for fully-homomorphic neural-
network inferencing. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 142–156. PLDI 2019,
Association for Computing Machinery, New York, NY, USA (Jun 2019). https://
doi.org/10.1145/3314221.3314628, https://doi.org/10.1145/3314221.3314628

16. Dilsizian, S.E., Siegel, E.L.: Artificial intelligence in medicine and cardiac imag-
ing: harnessing big data and advanced computing to provide personalized medical
diagnosis and treatment. Curr. Cardiol. Rep. 16, 1–8 (2014)

17. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

18. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

19. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

20. Google, I.: Bard - chat based ai tool from google, powered by palm2. https://bard.
google.com/ Accessed 17 Oct 2023

21. Google, I.: Google assitant, your own personal google. https://assistant.google.
com/Accessed 17 Oct 2023

22. Grammarly, I.: Grammarly: free writing ai assistance. https://www.grammarly.
com/Accessed 17 Oct 2023

23. Hao, M., Li, H., Chen, H., Xing, P., Xu, G., Zhang, T.: Iron: Private Inference on
Transformers. In: Advances in Neural Information Processing Systems (2022)

24. Hesamifard, E., Takabi, H., Ghasemi, M.: Cryptodl: Deep neural networks over
encrypted data. arXiv preprint arXiv:1711.05189 (2017)

25. Hesamifard, E., Takabi, H., Ghasemi, M.: Deep Neural networks classification over
encrypted data. In: Proceedings of the Ninth ACM Conference on Data and Appli-
cation Security and Privacy, pp. 97–108. ACM, Richardson Texas USA (Mar 2019).
https://doi.org/10.1145/3292006.3300044

26. Huang, Z., Lu, W.j., Hong, C., Ding, J.: Cheetah: Lean and Fast Secure $$two-
party$$ Deep Neural Network Inference. In: 31st USENIX Security Symposium
(USENIX Security 22), pp. 809–826 (2022)

27. Inc., A.: Siri - apple. https://www.apple.com/siri/ Accessed 17 Oct 2023
28. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation

and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1209–1222. ACM,
Toronto Canada (Oct 2018). https://doi.org/10.1145/3243734.3243837

29. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In: 27th USENIX Security Sympo-
sium (USENIX Security 18), pp. 1651–1669 (2018)

30. Kashyap, A., Plis, S., Ritter, P., Keilholz, S.: A deep learning approach to estimat-
ing initial conditions of brain network models in reference to measured fmri data.
Front. Neurosci. 17 (2023)

31. Kim, D., Park, J., Kim, J., Kim, S., Ahn, J.H.: HyPHEN: A Hybrid Packing
Method and Optimizations for Homomorphic Encryption-Based Neural Networks.
arXiv preprint arXiv:2302.02407 (2023)

32. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images,:
publisher: Toronto. ON, Canada (2009)

33. Lee, E., et al.: Low-complexity deep convolutional neural networks on fully homo-
morphic encryption using multiplexed parallel convolutions. In: International Con-
ference on Machine Learning, pp. 12403–12422. PMLR (2022)

https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1145/3314221.3314628
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://bard.google.com/
https://bard.google.com/
https://assistant.google.com/
https://assistant.google.com/
https://www.grammarly.com/
https://www.grammarly.com/
http://arxiv.org/abs/1711.05189
https://doi.org/10.1145/3292006.3300044
https://www.apple.com/siri/
https://doi.org/10.1145/3243734.3243837
http://arxiv.org/abs/2302.02407

Memory Efficient PPML 339

34. Lee, J.W., et al.: Privacy-Preserving Machine Learning With Fully Homomor-
phic Encryption for Deep Neural Network. IEEE Access 10, 30039–30054 (2022).
https://doi.org/10.1109/ACCESS.2022.3159694, conference Name: IEEE Access

35. Li, B., Micciancio, D.: On the security of homomorphic encryption on approxi-
mate numbers. In: Canteaut, A., Standaert, F.-X. (eds.) Advances in Cryptology
– EUROCRYPT 2021: 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021,
Proceedings, Part I, pp. 648–677. Springer International Publishing, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 23

36. Li, S., et al.: FALCON: a fourier transform based approach for fast and secure con-
volutional neural network predictions. In: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 8702–8711. IEEE, Seattle,
WA, USA (Jun 2020). https://doi.org/10.1109/CVPR42600.2020.00873, https://
ieeexplore.ieee.org/document/9156980/

37. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 619–631 (2017)

38. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38 (May 2017). https://doi.org/10.1109/SP.2017.12, iSSN: 2375-1207

39. OpenAI: Chatgpt. https://openai.com/chatgpt Accessed 17 Oct 2023
40. Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., Erlingsson, U.:

Scalable private learning with pate. arXiv preprint arXiv:1802.08908 (2018)
41. Podschwadt, R., Takabi, D.: Classification of encrypted word embeddings using

recurrent neural networks. In: PrivateNLP@ WSDM, pp. 27–31 (2020)
42. Podschwadt, R., Takabi, D.: Non-interactive privacy preserving recurrent neural

network prediction with homomorphic encryption. In: 2021 IEEE 14th Interna-
tional Conference on Cloud Computing (CLOUD), pp. 65–70. IEEE (2021)

43. Shivdikar, K., et al.: Accelerating polynomial multiplication for homomorphic
encryption on gpus. In: 2022 IEEE International Symposium on Secure and Private
Execution Environment Design (SEED), pp. 61–72. IEEE (2022)

44. Smart, N.. P.., Vercauteren, F..: Fully homomorphic SIMD operations. Designs,
Codes and Cryptography 71(1), 57–81 (2014). https://doi.org/10.1007/s10623-
012-9720-4

45. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing Machine
Learning Models via Prediction $$apis$$. In: 25th USENIX security symposium
(USENIX Security 16), pp. 601–618 (2016)

46. Zheng, M., Lou, Q., Jiang, L.: Primer: fast private transformer inference on
encrypted data (Mar 2023). arXiv:2303.13679 [cs]

https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1109/CVPR42600.2020.00873
https://ieeexplore.ieee.org/document/9156980/
https://ieeexplore.ieee.org/document/9156980/
https://doi.org/10.1109/SP.2017.12
https://openai.com/chatgpt
http://arxiv.org/abs/1802.08908
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
http://arxiv.org/abs/2303.13679

	Memory Efficient Privacy-Preserving Machine Learning Based on Homomorphic Encryption
	1 Introduction
	2 Background
	2.1 Fully Homomorphic Encryption
	2.2 Batch Packing
	2.3 Convolutional Layers
	2.4 Lock-Free Multi-threaded Convolution

	3 Related Work
	4 Our Proposed Approach
	4.1 Modeling the Problem as a Schedule
	4.2 Executing a Schedule
	4.3 Cost of a Schedule
	4.4 Threat Model

	5 Reduced Memory Schedules
	5.1 Caching by Object Type
	5.2 Full Window Caching
	5.3 Partial Window Caching
	5.4 Column-Wise Caching

	6 Experimental Evaluation
	6.1 Memory Estimate
	6.2 Measurements

	7 Conclusion
	References

