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Preface

ACNS 2024, the 22nd International Conference on Applied Cryptography and Network
Security, was held in Abu Dhabi, United Arab Emirates, on March 5-8, 2024. The
conference covered all technical aspects of applied cryptography, network and computer
security and privacy, representing both academic research work as well as developments
in industrial and technical frontiers.

The conference had two submission deadlines, in July and October 2023. We received
a total of 238 submissions over the two cycles (230 unique submissions incl. eight
major revisions from the first submission cycle that were resubmitted as revisions in the
second submission cycle). From all submissions, the Program Committee (PC) selected
54 papers for publication in the proceedings of the conference, some after minor or major
revisions. This led to an acceptance rate of 23.5%.

The two program chairs were supported by a PC consisting of 76 leading experts in
all aspects of applied cryptography and security whose expertise and work were crucial
for the paper selection process. Each submission received around 4 reviews from the
committee. Strong conflict of interest rules ensured that papers were not handled by PC
members with a close personal or professional relationship with the authors. The program
chairs were not allowed to submit papers and did not handle any submissions they were
in conflict with. There were an additional 55 external reviewers, whose expertise the PC
relied upon in the selection of papers. The review process was conducted as a double-
blind peer review. The authors of 10 submissions rejected from the July deadline, but
considered promising, were encouraged to resubmit to the October deadline after major
revisions of their paper. From these 10 papers invited for a major revision, 8 papers got
resubmitted to the second cycle, 5 of which were finally accepted.

Alongside the presentations of the accepted papers, the program of ACNS 2024
featured three invited talks given by Elisa Bertino, Nadia Heninger, and Gene Tsudik.
The three volumes of the conference proceedings contain the revised versions of the 54
papers that were selected, together with the abstracts of the invited talks.

Following a long tradition, ACNS gives a best student paper award to encourage
promising students to publish their best results at the conference. The award recipients
share a monetary prize of 2,000 EUR generously sponsored by Springer.

Many people contributed to the success of ACNS 2024. We would like to thank the
authors for submitting their research results to the conference. We are very grateful to the
PC members and external reviewers for contributing their knowledge and expertise and
for the tremendous amount of work and time involved in reviewing papers, contributing
to the discussions, and shepherding the revisions. We are greatly indebted to Mihalis
Maniatakos and Ozgur Sinanoglu, the ACNS’24 General Chairs, for their efforts and
overall guidance as well as all the members of the organization committee. We thank
the steering committee, Moti Yung and Jianying Zhou, for their direction and valuable
advice throughout the preparation of the conference. We also thank the team at Springer
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for handling the publication of these conference proceedings, as well as Shujaat Mirza
for working on the preparation of the proceedings volumes.

March 2024 Lejla Batina
Christina P&pper
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Applying Machine Learning to Securing Cellular
Networks

Elisa Bertino
Purdue University, Indiana, USA

Abstract. Cellular network security is more critical than ever, given the
increased complexity of these networks and the numbers of applications
that depend on them, including telehealth, remote education, ubiqui-
tous robotics and autonomous vehicles, smart cities, and Industry 4.0.
In order to devise more effective defenses, a recent trend is to lever-
age machine learning (ML) techniques, which have become applicable
because of today’s advanced capabilities for collecting data as well as
high-performance computing systems for training ML models. Recent
large language models (LLMs) are also opening new interesting direc-
tions for security applications. In this talk, I will first present a compre-
hensive threat analysis in the context of 5G cellular networks to give a
concrete example of the magnitude of the problem of cellular network
security. Then, I will present two specific applications of ML techniques
for the security of cellular networks. The first application focuses on the
use of natural language processing techniques to the problem of detecting
inconsistencies in the “natural specifications” of cellular network proto-
cols. The second application addresses the design of an anomaly detection
system able to detect the presence of malicious base stations and deter-
mine the type of attack. Then I’ll conclude with a discussion on research
directions.



Real-World Cryptanalysis

Nadia Heninger
University of California, San Diego, USA

Abstract. Cryptography has traditionally been considered to be one of the
strong points of computer security. However, a number of the public-key
cryptographic algorithms that we use are fragile in the face of implemen-
tation mistakes or misunderstandings. In this talk, I will survey “weapons
of math destruction” that have been surprisingly effective in finding bro-
ken cryptographic implementations in the wild, and some adventures in
active and passive network measurement of cryptographic protocols.



CAPTCHASs: What Are They Good For?

Gene Tsudik
University of California, Irvine, USA

Abstract. Since about 2003, CAPTCHAs have been widely used as
a barrier against bots, while simultaneously annoying great multitudes
of users worldwide. As their use grew, techniques to defeat or bypass
CAPTCHAs kept improving, while CAPTCHAS themselves evolved in
terms of sophistication and diversity, becoming increasingly difficult
to solve for both bots and humans. Given this long-standing and still-
ongoing arms race, it is important to investigate usability, solving per-
formance, and user perceptions of modern CAPTCHAs. This talk will
discuss two such efforts:

In the first part, we explore CAPTCHAs in the wild by evaluating
users’ solving performance and perceptions of unmodified currently-
deployed CAPTCHASs. We obtain this data through manual inspection
of popular websites and user studies in which 1,400 participants collec-
tively solved 14,000 CAPTCHAs. Results show significant differences
between the most popular types of CAPTCHAS: surprisingly, solving
time and user perception are not always correlated. We performed a com-
parative study to investigate the effect of experimental context — specifi-
cally the difference between solving CAPTCHAs directly versus solving
them as part of a more natural task, such as account creation. Whilst there
were several potential confounding factors, our results show that experi-
mental context could have an impact on this task, and must be taken into
account in future CAPTCHA studies. Finally, we investigate CAPTCHA-
induced user task abandonment by analyzing participants who start and
do not complete the task.

In the second part of this work, we conduct a large-scale (over 3,600
distinct users) 13-month real-world user study and post-study survey.
The study, performed at a large public university, was based on a live
account creation and password recovery service with currently prevalent
captcha type: reCAPTCHAV2. Results show that, with more attempts,
users improve in solving checkbox challenges. For website developers
and user study designers, results indicate that the website context directly
influences (with statistically significant differences) solving time between
password recovery and account creation. We consider the impact of par-
ticipants’ major and education level, showing that certain majors exhibit
better performance, while, in general, education level has a direct impact
on solving time. Unsurprisingly, we discover that participants find image
challenges to be annoying, while checkbox challenges are perceived as
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easy. We also show that, rated via System Usability Scale (SUS), image
tasks are viewed as “OK”, while checkbox tasks are viewed as “good”.
We explore the cost and security of reCAPTCHAvV2 and conclude that
it has an immense cost and no security. Overall, we believe that this
study’s results prompt a natural conclusion: reCAPTCHAV?2 and similar
reCAPTCHA technology should be deprecated.
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Automated Issuance of Post-Quantum
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4 Technology Innovation Institute (TII), Abu Dhabi, UAE

Abstract. The Automatic Certificate Management Environment pro-
tocol (ACME) has significantly contributed to the widespread use of
digital certificates in safeguarding the authenticity and privacy of Inter-
net data. These certificates are required for implementing the Transport
Layer Security (TLS) protocol. However, it is well known that the cryp-
tographic algorithms employed in these certificates will become insecure
with the emergence of quantum computers. This study assesses the chal-
lenges in transitioning ACME to the post-quantum landscape using Post-
Quantum Cryptography (PQC). To evaluate the cost of ACME’s PQC
migration, we create a simulation environment for issuing PQC-only and
hybrid digital certificates. Our experiments reveal performance draw-
backs associated with the switch to PQC or hybrid solutions. However,
considering the high volume of certificates issued daily by organizations
like Let’s Encrypt, the performance of ACME is of utmost importance.
To address this concern, we propose a novel challenge method for ACME.
Compared to the widely used HTTP-01 method, our findings indicate an
average PQC certificate issuance time that is 4.22 times faster, along with
a potential reduction of up to 35% in communication size.

Keywords: Post-Quantum Cryptography - ACME Protocol -
Certificate Management

1 Introduction

Encrypted data channels play a crucial role in ensuring data privacy on the
Internet. One of the most widely used protocols for implementing these chan-
nels is the Transport Layer Security (TLS) [21]. However, the rapid and reliable
issuance of digital certificates at minimal cost and the management of associ-
ated cryptographic keys throughout their lifecycle presents a bottleneck in the
large-scale adoption of TLS. The widespread deployment of the protocol became
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

C. Popper and L. Batina (Eds.): ACNS 2024, LNCS 14584, pp. 3-23, 2024.
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possible only with the emergence of the Let’s Encrypt project. Let’s Encrypt’s
Certificate Authority (CA) has issued over 1 billion digital certificates and con-
tinues to experience substantial growth [6]. The success of Let’s Encrypt can
be attributed to the automation of all necessary steps for issuing and renewing
digital certificates. The automation of certificate issuance is facilitated by the
Automatic Certificate Management Environment (ACME) protocol [1].

TLS and ACME protocols rely on classical cryptography to guarantee their
security properties. However, the existence of Shor’s quantum algorithm [27]
gives an expiry date to the current protocols dated at the time a Cryptograph-
ically Relevant Quantum Computer (CRQC) [13] exists. This computer could
compromise digital certificates and Key Exchange (KEX) mechanisms based on
classical Public Key Cryptography (PKC). Consequently, attackers could collect
transmitted data today with the anticipation of decrypting it using a CRQC
in the future, a scenario known as “store-now-decrypt-later” attacks [3]. Such
attacks would impact the security of existing protocols and applications depen-
dent on TLS before a CRQC exists.

It is necessary to replace vulnerable algorithms to mitigate the quantum
threats to classical cryptography. The cryptographic algorithms that can exe-
cute on a classical computer and offer security against attackers with access to a
CRQC are called Post-Quantum Cryptography (PQC) [2]. The security of these
cryptographic schemes relies on mathematical problems with no known efficient
solutions for both quantum and classical computation. There is currently a signif-
icant global effort to evaluate and standardize post-quantum schemes. Regarding
the adoption of these schemes, two primary strategies have emerged. The first
strategy involves directly replacing classical algorithms with post-quantum ones.
The second strategy, “hybrid mode” [3], utilizes both classical and post-quantum
algorithms. Proponents of hybrid methods argue that post-quantum algorithms
are relatively new and have not undergone the same level of scrutiny as clas-
sical algorithms. Their reasoning states that by including a classical algorithm
alongside a post-quantum one, the security properties of the cryptographic pro-
tocol can still be guaranteed in case of a flaw or cryptanalytic attack on the
post-quantum algorithm.

The transition from classical to PQC presents several challenges. One of the
most relevant ones is the significantly increased size of cryptographic objects,
such as public keys and signatures, and their impact on the protocol perfor-
mance. For example, certain post-quantum algorithms like Classic McEliece are
impractical for regular TLS handshakes due to the size of their public keys. To
address this issue, researchers have conducted numerous benchmarks of PQC in
network protocols like TLS [18,28], and others have proposed protocol changes
to better accommodate PQC [24,25]. Such changes and evaluations are crucial
to understand the performance implications imposed by PQC in advance. There-
fore, adapting and evaluating protocol changes must be undertaken prior to the
arrival of quantum computers to ensure a smooth transition to PQC.

Although several PQC-based TLS proposals and experiments have been
proposed, we could not find any proposal for PQC in the context of ACME.
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Therefore, the impacts of using post-quantum schemes in such a scenario still
need to be explored. In this paper, we address this gap by providing the following
contributions:

1. We integrate PQC schemes, namely Dilithium, Falcon, and Sphincs+, along
with hybrid modes, into ACME implementations and the required libraries.
Our modified implementations are publicly available.

2. We evaluate ACME using geographically-distant peers, where the server is
close to the Let’s Encrypt CA location. Such a distance allows us to compare
and estimate the impact of PQC on certificate issuance in a more realistic
scenario.

3. To expedite the certificate issuance process, we propose an alternative ACME
challenge which can be used for issuing both classical and PQC certificates.

4. We analyze the time and communication costs associated with our proposed
challenge, demonstrating that it reduces issuance time and byte cost for cer-
tificates with both classical and post-quantum cryptography.

The remainder of this paper is organized as follows. Section 2 presents the
necessary background concepts for understanding this work. Section 3 discusses
quantum threats in ACME, the details of PQC integration, and the evalua-
tion methodology. Section4 presents our proposed ACME challenge design, its
evaluation, and a discussion of the obtained results. Finally, Sect.5 provides
concluding remarks and outlines potential future work.

2 Background

First, we present the main characteristics of TLS and ACME. After that, we
describe PQC concepts and the standardization process conducted by NIST.
Finally, we conclude this section by showing related works about PQC adoption
in network protocols.

2.1 TLS Version 1.3

Formerly known as Secure Sockets Layer (SSL), the TLS protocol, in its current
version (1.3), is described in RFC 8446 [21]. TLS provides a communication
channel with confidentiality and authentication assurances between two peers: a
client (e.g., a browser) and a server (e.g., a web server). TLS requires the server
to provide authentication credentials when establishing a connection, while client
authentication is optional.

The TLS 1.3 specification divides the protocol into three parts: (1) a Hand-
shake protocol; (2) a Record protocol; and (3) an Alert protocol. The first part
covers how the two communicating peers establish a session, aided by an Authen-
ticated Key Exchange (AKE) and cryptographic computations ordered in a Key
Schedule [21]. The second part covers how peers use their session data (and keys)
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to exchange application data securely, typically utilizing Authenticated Encryp-
tion with Associated Data (AEAD) algorithms. The last part covers how the
peers should handle alert messages and protocol exceptions.

The mechanics of a complete TLS 1.3 handshake are as follows. First,
a TLS client initiates the handshake by sending a ClientHello message.
The message can include several pieces of information, such as supported
algorithms, cipher suites, and an extension message called keyshare. The
keyshare is an ephemeral Elliptic Curve Diffie-Hellman (ECDH) public key
used to create shared secrets for deriving symmetric keys. Upon receiving
the ClientHello, the server responds with a set of messages: ServerHello,
Certificate, CertificateVerify, EncryptedExtensions, and Finished. The
server hello includes information about algorithm selection, the corresponding
ECDH keyshare, and additional extensions (if available). The server provides a
set of certificates, a digital signature, and an HMAC [15] to authenticate over the
handshake transcript data (Certificate, CertificateVerify, and Finished
messages, respectively). Except for the ServerHello, all messages are encrypted
using keys derived from the keyshare pair. The EncryptedExtensions message,
sent immediately after the ServerHello, is also encrypted.

The client receives the server’s response and processes it. It verifies the
handshake signature, validates the certificates, and the Finished message.
Additionally, the client checks if the server’s reply includes the optional
CertificateRequest message. If it does, the client will authenticate using a cer-
tificate and a handshake signature with its private key. Otherwise, it sends the
mandatory Finished message and any desired application data to the server,
concluding the handshake and initiating secure communication. TLS is com-
monly used in upper-layer network protocols like HTTPS and network appli-
cations like OpenVPN. In this work, we focus on using TLS by the ACME
protocol.

2.2 ACMEv2 Characteristics

The Automated Certificate Management Environment (ACME) protocol is
defined in RFC 8555 [1]. ACME offers services for verifying identity over the
Internet and managing certificates. The primary objective of the protocol is to
minimize the need for human intervention in configuring web servers and han-
dling certificates. ACME enables an ACME server (controlled by an Issuer CA)
to issue a Domain-Validated (DV) digital certificate to the ACME client. The
issuance and domain validation processes are fully automated. Currently in its
version 2, ACME plays a crucial role in Let’s Encrypt, one of the largest CAs
on the Internet. Moreover, many certification authorities and PKI vendors, such
as ZeroSSL [30], are adopting the ACME protocol in their products because it
simplifies and enhances the quality of service provided to their customers.
ACME relies on two communication channels: (1) the ACME Channel, pro-
tected by TLS; and (2) the Validation channel, which depends on the validation
method. An ACME client uses TLS to request the issuance of one or more DV
certificates from an ACME server. ACME servers store ACME client accounts
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associated with a public-key pair that clients use to authenticate themselves to
the server. However, the server only issues a certificate after the client proves con-
trol over the desired identifier to be certified, i.e., the domain name. To accom-
plish this, the client must solve an ACME challenge. RFC 8555 [1] specifies the
HTTP and DNS challenge types, and RFC 8737 [26] describes the TLS-ALPN
challenge. Generally, a challenge is considered fulfilled if (a) the client proves
control of the private key associated with the ACME account and (b) the client
proves control of the domain name in question.

ACME protocol messages are based on the JSON Web Signature (JWS)
standard [9] and transmitted through HTTPS/TLS requests. Typically, ACME
HTTPS requests are signed using the account’s private key, while the public
key is usually not included in the JWS body. However, when creating a new
account or revoking a certificate, the “jwk” field (i.e., the public key) is included
in the request. Other requests identify keys using a “Key ID” (“kid”) field in the
request [9]. This way, the server can determine which key to verify subsequent
requests.

Figure 1 illustrates the necessary ACME messages for issuing an X.509 cer-
tificate. The issuance process is divided into three steps: (1) account creation;
(2) challenge; and (3) issuance. Communication between the ACME client and
server occurs through HTTPS requests, requiring the ACME client to trust the
ACME server. This trust is established by the ACME client’s confidence in the
server’s certificate chain, which includes intermediate and root CAs. Typically,
root CAs are pre-installed in the client’s certificate repository.

ACME Client ACME Server ACME Client ACME Server
= ,
5 GET Jdir _ {POST /new-order oy
w < 2 201 Created+JSON °
& 200 OK + JSON POST /authZ-URL #1 b
< | HEAD /new-nonce N < 200 OK+JSON{Token(s)}{
3 h 200 OK POST /chalZ-URL o <
Q — < ©
S POST /new-account £ #r & 4 200 OK+JSON .
A z -
B h 201 Created+JSON ,POST [authZ-URL il
- 200 OK+JSON
\Z v v \Z

ACME Client ACME Server Caption: (A' Content-Type: application/jose+json
- Y

g POST /finalize =1 1 £ publc Key

g 200 OK+JSON —> HTTP Message

2 / Key Authorization String (KAS)

2 POST t7/1234... 4@

= < [certZ] il [=] Certificate-Signing Request
200 O@ Al x.509 Certificate

\4 \4

Fig.1. ACME Issuance Overview

The client initiates an account creation request with the ACME server in the
first step. The client’s account can optionally include contact information and
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is associated with a key pair generated by the client. To initiate the creation
process, the client requests server resources by sending a GET /dir message.
The server responds with an HTTP code (typically 200 for success) and a JSON
payload. The JSON payload contains the URLs for the desired resources and the
Terms of Service. If it is the client’s first connection, a new nonce is required. The
client obtains the nonce by sending a HEAD /new-nonce message. This nonce is
used to protect against possible replay attacks. The registration is concluded
with a POST /new-account request. At this point, it is important to note that
the ACME server does not have any means to confirm the claimed identity other
than the newly registered authentication key, referred to as the “account key”.
Subsequent HTTP requests from the client must be signed with the account key.

The second step aims to prove the client’s identity through an Identifier Vali-
dation Challenge [1]. The ACME protocol specification focuses on domain name
identifiers. There are different types of challenges available, such as HTTP-01,
DNS-01, and TLS-ALPN-01, with HTTP-01 being the most commonly used [5].
In general, to complete the challenge, the client must demonstrate possession of
the account key and control over the identifier. In the case of HT'TP-01, the client
must serve a file over HT'TP containing the Key Authorization String (KAS). A
KAS is formed by concatenating a 128-bit random token (previously generated
by the server), a dot separator (*.), and the base64-encoded key fingerprint. The
ACME server retrieves and checks the file over HTTP to validate the challenge.
Refer to Appendix A for additional details on HTTP-01.

Figure 1 provides an abstract representation of the challenge-solving step.
First, the client requests a new certificate by sending a POST /new-order mes-
sage. The server’s response includes information about the available challenges,
their respective URLs, and the KAS for each challenge. Each challenge requires
a unique KAS generated on demand, meaning authorization requests can fail,
and the client may need to retry them. Additionally, each challenge has a state
(e.g., pending, valid, deactivated), allowing the server to expect multiple requests
using the same KAS until the certificate is issued. Therefore, the client must
check the status of the desired KAS by sending a POST /authZ/... request and
then proceed with the relevant challenge.

After completing the challenge, the client sends a POST /chal/... message
to inform the server that the challenge has been completed, and it waits for the
server to validate the challenge. The client can check the challenge’s status by
sending POST /authZ/... requests. Once the challenge is deemed valid by the
server, it is considered completed. The server stores the authorization and marks
it as valid for a specific period (not controlled by RFC 8555 [1]).

The issuance step, as depicted in Fig. 1, is the final part of the process. The
client sends a POST /finalize message, which includes a PKCS#10 Certificate-
Signing Request (CSR) [17], to the server. It is important to note that the
account key pair used for the CSR generation differs from the one used for the
account registration. Specifically, the CSR must not contain a public key for
any known account. The server validates the CSR and generates the certificate.
Finally, the client can download the issued certificate using a POST /certZ/. ..
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message, often referred to as “POST-AS-GET” [1]. Once the client has obtained
the certificate, the ACME client’s request flow is complete. ACME client imple-
mentations like Certbot [8] typically store and automatically configure the cer-
tificate(s) in the web server repository. It enables the seamless activation of an
HTTPS-secured web server with just a few command-line instructions. Addi-
tionally, Certbot configures automatic certificate renewal, thereby simplifying
certificate management operations. It is worth mentioning that RFC 8555 does
not distinguish between certificate issuance and renewal, meaning the renewal
process starts with a new request to /new-order.

2.3 Post-Quantum Cryptography

Post-Quantum Cryptography (PQC) or Quantum-Safe Cryptography is an area
of research that focuses on developing cryptographic algorithms that are resistant
to attacks from quantum computers. Traditional public-key schemes based on
problems such as the Discrete Logarithm Problem (DLP), Elliptic Curve Discrete
Logarithm Problem (ECDLP), and Integer Factorization Problem (IFP), are
considered to be vulnerable to attacks by quantum computers, specifically Shor’s
algorithm [27].

The threat of quantum computers to current cryptographic systems raises
concerns about the confidentiality and authentication of data transmitted over
the internet. While the impact on confidentiality is more immediate, as an adver-
sary can gather encrypted data today and decrypt it in the future with the help
of a quantum computer, the impact on authentication is less urgent since quan-
tum adversaries cannot retroactively impersonate past communications [3].

In this context, efforts are underway to standardize post-quantum algorithms.
One notable initiative is led by the National Institute of Standards and Technol-
ogy (NIST) [14]. NIST has been running a standardization process for PQC algo-
rithms, including key exchange, public-key encryption, and digital signatures.
The initial choice of standards includes Kyber for key exchange and public-key
encryption, as well as Dilithium, Falcon, and Sphincs+ for digital signatures.
These algorithms have gone through multiple rounds of evaluation, and the pro-
cess is currently in the fourth round, with additional schemes under scrutiny [16].

Regarding the impact on the ACME protocol and TLS, the transition to
post-quantum cryptography will involve replacing current signature algorithms
with post-quantum digital signature schemes. However, the transition process is
expected to take significant time, as it requires coordination among various enti-
ties such as certificate authorities (CAs), client and server implementations, and
browsers. Therefore, it is crucial to experiment, evaluate, and plan for a smooth
transition to post-quantum cryptography in ACME and TLS [10]. Table 1 pro-
vides an overview of the post-quantum signature schemes expected to be stan-
dardized by NIST, along with their sizes and corresponding security levels.

There is limited work specifically focusing on the issuance of post-quantum
certificates. Two main methods have been proposed for implementing hybrid
post-quantum certificates within the X.509 standard format. One method
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involves concatenating cryptographic objects, such as public keys and signa-
tures, while the other adds PQC algorithm information as X.509 extensions.
The second method uses non-critical extensions and minimizes the risk of com-
patibility issues with legacy implementations that do not support post-quantum
algorithms. Security analyses have been conducted to evaluate the effectiveness
of these combining methods [4]. The impact of post-quantum certificates on PKI
operations and TLS connections has been discussed in the literature, highlight-
ing concerns about performance, particularly when dealing with the certificate
chain. However, there are often no objections to using the hybrid mode, which
combines both classical and post-quantum algorithms, regarding performance
penalties [11,20].

Table 1. Currently digital signature schemes to be standardized by the NIST PQC
process.

Algorithm Parameter Set Name | NIST SecurityLevel | Public key size +
Signature size
(bytes)
Dilithium2 1 3732
Dilithium3 3 5245
Dilithiumb 5 7187
Falcon-512 1 1587
Falcon-1024 5 3123
SPHINCS+-SHAKE256-128s-simple | 1 7888
SPHINCS+-SHAKE256-128f-simple |1 17120
SPHINCS+-SHAKE256-192f-simple |3 35712
SPHINCS+-SHAKE256-192s-simple | 3 16272
SPHINCS+-SHAKE256-256f-simple |5 49920
SPHINCS+-SHAKE256-256s-simple |5 29856

3 Quantum Threat and PQC Adoption

We begin by examining the threats to ACME security in the presence of a
quantum computer in Sect. 3.1. Subsequently, we delve into implementation and

design specifics in Sect. 3.2. Finally, we explore the implications of evaluating
ACME with PQC in Sect. 3.3.

3.1 Quantum Threats in ACME

The ACME protocol relies on PKC to ensure its cryptographic properties. Con-
sequently, once a CRQC exists, the protocol would become insecure. While the
threat exists, the transition to PQC may not be as urgent for ACME com-
pared to other cases, given that most interactions are certificate-related. How-
ever, RFC 8555 [1] specifies that a secure channel, often implemented using
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TLS, must be used for client requests to the server. Therefore, a quantum-safe
ACME implementation depends on a quantum-safe TLS. To prevent “store-now-
decrypt-later” attacks, a quantum-safe Key Exchange (KEX) algorithm must
be used before a CRQC arrives. It is worth noting that the challenge validation
channel in ACME does not necessarily require TLS.

One of the benefits that ACME provides to clients is the ability to reuse
valid authorizations. After completing a challenge, a client can reuse the autho-
rization to issue a new certificate more efficiently. This feature allows clients
to issue certificates at their convenience, not necessarily immediately after chal-
lenge validation. However, it introduces a potential vulnerability in the form of a
store-now-decrypt-later attack. An attacker could collect TLS-encrypted ACME
messages and, in the future, exploit a hypothetical quantum attack on the TLS
layer to gain access to the ACME information containing challenge authoriza-
tion details. Since RFC 8555 [1] leaves the deactivation of authorizations up
to implementations, many challenge authorizations could remain valid for an
extended period. As a result, an attacker could exploit old valid authorizations
to issue unauthorized certificates. Figure 2 illustrates the attack. Therefore, the
authorization reuse feature needs careful redesign considering the existence of
future CRQCs. More details about authorizations and their validity times are
discussed in Sect. 4.3.
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Fig. 2. Unauthorized issuance of a certificate with the help of a quantum computer.

Both attack scenarios, targeting classical certificates and the classical com-
munication channel, can be mitigated by using PQC.
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3.2 Integrating PQC Algorithms

We selected PQC implementations from the Open Quantum-Safe project
libogs [29]. Since our project is developed using the Go language, we used
the libogs-go binding [19]. We integrated them into Pebble’s ACME server and
LEGO (“Let’s Encrypt Client and ACME Library in Go”). Pebble is suitable
for testing ACME client implementations. For reproducibility, our ACME imple-
mentations and test scripts are publicly available!. We used the selected standard
candidates from the NIST PQC standardization process for integration:

— Kyber: for Key Exchange in TLS, using security levels 1, 3 and 5.

— Dilithium and Falcon: we use the same algorithm and security level parame-
ters in all required cryptographic objects. Namely: ACME client account keys
and CSR; ACME server digital certificate (TLS level); issued certificates; and
the certificate chains of issued certificates (Root CA certificate and Interme-
diate CA certificate). For simplicity, we did not change Pebble’s certificate
chain size for TLS. We only alter Pebble’s TLS chain to use PQC algorithms
without adding a new Intermediate CA certificate.

— Sphincs+: due to its increased signature sizes, we restrict Sphincs+ only for
the Root CA certificate. We omit Root CA certificates in TLS handshakes,
so Sphincs+ increased sizes are not transmitted in the handshake. Sphincs+
selected parameters are: SHAKE for the hash function, “s” for compact signa-
tures and improved verification timings, and “simple” for performance.

— Hybrid modes: using NIST P-curves, namely P256, combined by concate-
nating with Kyber, Dilithium, and Falcon cryptographic objects. For sim-
plicity, we opted to concatenate cryptographic objects into certificates (pub-
lic keys and signatures). Hybrids are recommended because the confidence in
PQC security is not well established yet [3], but also because RFC 8555 states
“MUST/SHOULD implement” for some classical algorithms [1], thus keeping
our integration close to the specification. We refer to the hybrid mode using
the’H’ letter (e.g., “Dilithium H.”).

3.3 Impacts of PQC in ACME

To better understand the consequences of using PQC in ACME, we run sev-
eral experiments using two geographically distant Google N2 Virtual Machines
(VMs) with identical configurations (8 GB memory, two vCPUs). The ACME
client VM was hosted in Osasco, Sdo Paulo, Brazil, while the ACME server loca-
tion was based on one of Let’s Encrypt’s data centers in Salt Lake City, Utah,
USA. The average round-trip time (RTT) for this geographically distant network
was measured to be 157 ms. The number of successful requests was computed
by employing 1024 threads to POST requests to the /finalize endpoint for six
minutes. Each thread simulated a different client sending CSRs, thereby increas-
ing the server’s load during certificate issuance. We set ulimit -n 1048576 to
enhance the server’s load test configuration.

! https://github.com/AAGiron/acme-newchallenge.
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Figure 3 illustrates the impacts of PQC observed during a load test experi-
ment. For automation purposes, the default option is to generate a CSR during
protocol execution, which we refer to as the “CSR-on-the-fly” test. This approach
includes key generation and signing computational times, resulting in delayed
clients and fewer successful requests handled by the server. Alternatively, using
a pre-computed CSR can reduce the PQC impact at the cost of some of ACME’s
automation properties.

From the CA’s perspective, the results demonstrated a noticeable impact
when deploying PQC in the standard ACME configuration. The reduced number
of successfully handled requests implies fewer certificates generated and issued
by the ACME server. Furthermore, larger PQC objects can congest the network
earlier than the baseline configuration (see Sect.4.3).

It is worth noting that our experiments did not provide an exact measurement
of the number of certificates issued per second due to the protocol’s design (e.g.,
“REST-based” implementation, polling times, etc.). However, our load test is
representative as it involves handling multiple signed requests, CSR generation
by client threads, and verification by the server.
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Fig. 3. Load test experiment with and without CSR cryptographic operations.

4 Proposed ACME Challenge

In order to speed up the issuance of digital certificates, we propose an alternate
ACME challenge. In this section, we present our proposed ACME challenge
(Sect.4.1). After that, we evaluate and compare our proposed challenge against
standard ACME certificate issuance and renewal. Lastly, we discuss the experi-
mental findings in Sect. 4.3.
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4.1 Design Details

We can consider two general scenarios when an ACME client C will ask an
ACME server S for a new certificate. In the first scenario, C already has a
classical certificate, so C' can ask: (a) for a renewal, using the same ACME
account; (b) for a new classical certificate (new account); or (c) a new PQC (or
hybrid) certificate. In the second scenario, C' does not have a classical certificate:
in this case, C' can only ask for a new PQC (or hybrid) certificate.

In the first scenario, we assume that C already has a previously issued cer-
tificate. Having a certificate means that these ACME peers have a relationship
that could be used to optimize the certificate issuance process. In the second
scenario, there is no previous relationship available. Therefore, for the second
scenario, C' must comply with all ACME requirements, i.e., fulfill the account
creation, challenge validation, and issuance steps.

As described in Sect.2.2, the issuance flow has several digitally-signed
requests between peers. Using PQC signatures in such requests would increase
protocol communication costs and impact the overall interaction between those
peers. Also, one could take advantage of the scenario in which the server already
has a certificate. To speed up the issuance process, we propose a new ACME
challenge, depicted in Fig. 4.

ACME Client ACME Server
ClientHello !I
“r ServerHello..., CertificateRequest
Certificate, Certificate Verify, Finished
Layer.
Finished
POST /pg-order =] %,
Generating
Certificate
200 OK+JSON
POST /certZ/1234... #ar
200 OK &5
Caption: g4y Content-Type: application/jose+json [E] Certificate-Signing Request
—> Protocol Message |§| x.509 Certificate

Fig. 4. Proposed ACME Challenge

Note that our proposal is valid for the scenario in which ACME clients already
have a certificate. We provide an alternative to the original /new-order ACME
server endpoint, called /pg-order. This new endpoint (at the server) expects
a CSR in an HTTP POST message, as the usual /finalize endpoint. The
main difference is that it requires a mutually authenticated TLS handshake.
Mutual authentication means that the ACME client authenticates directly in
the TLS layer, proving that it possesses the private key of that certificate. If
the client successfully authenticates to the server, the server can issue the new
(PQC or hybrid) certificate, replying with the URL where the certificate can be
downloaded.
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The fact that the ACME client already possesses a certificate plays a crucial
role in this approach. For example, let Ceigssic—cert be the certificate the client
is willing to use in the TLS authentication layer, and Cpgc—cert the certificate
the client requests. If Cgjgssic—cert Was issued by the same ACME server where
Cpge—cert Will be requested, then the peer trust relationship is already estab-
lished. The ACME server will trust Cejgssic—cert (in the pre-quantum scenario),
so additional configuration or protocol messages are unnecessary. In this exam-
ple, the ACME client can ask for a PQC certificate with this new challenge in a
single request. Comparatively, we remove (at least) 4 signed requests from the
ACME flow and replace the challenge with TLS client authentication using the
Cclassic—cert~

Since the /pg-order is an endpoint of the ACME server, clients perform
POST requests with their account information accompanied by a CSR. In this
case, the CSR can be created using a PQC algorithm (hybrid or not), allowing
the issuance of a post-quantum certificate. Note, however, that the signature
present in the request also uses a post-quantum algorithm. Appendix B gives
an example of a POST message. Additionally, our proposed challenge applies to
clients willing to issue a classical certificate, if desired.

Regarding the request validation, the server uses the algorithm name, nonce,
and key ID (kid) information to search for the required account information.
Note that the kid field can be replaced by the public key in a field called jwk
for verifying the message. The optional certhash value is a way of binding the
request to the particular certificate used in the TLS mutual authentication. In
this way, the server can check if the hash is on his list of issued certificates
and if it belongs to the corresponding account in the request. Alternatively, the
ACME server can obtain the client certificate from the TLS layer and compare
domain names and hashes. Golang provides access directly through the standard
library [12]. The ACME server processes the CSR as usual. If the validation is
successful, the server can issue the certificate.

Security Considerations. RFC 8555 describes a threat model against active
and passive attackers considering two communication channels: the ACME chan-
nel, using TLS for security, and the Validation channel, which is dependent on
the ACME challenge (e.g., HT'TP). Since the validation channel is bound to the
signatures transferred in the ACME channel, abusing only the validation channel
should not be enough to impersonate a client (i.e., obtain a valid authorization).

Regarding the ACME channel, the only thing we changed is that it uses PQC
algorithms. On the other hand, our proposed challenge replaces the available
validation channels from the original ACME challenges with a mutually authen-
ticated TLS connection channel. Note that our proposed challenge requires a
valid mutual authentication TLS session and a valid signature in the request.
Therefore, our challenge keeps the binding between the validation and ACME
channels, thus not deviating from the RFC’s threat model. The main require-
ment is a mandatory client authentication policy since client authentication is
optional in TLS. An additional consideration is to avoid TLS Post-Handshake
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Authentication [21] because the ACME server can issue the certificate only after
the mutually authenticated connection is established.

Our proposed challenge assumes that who owns a certified (and valid) key
pair for a particular domain owns the identifier in question, i.e., the domain.
This might not be directly applicable in some cases, such as hosting providers.
For example, when the domain ownership is transferred, the original owner could
use the certificate to obtain a new one through our proposed challenge. Although
this is a problem, it could be mitigated by simply revoking the certificate before
transferring a domain. If revoked, the certificate can not be used to authenticate
in our proposed challenge. Therefore, the server will not issue a new certificate
in this case. This requirement implies keeping the certificate’s validity period
within the granted domain ownership validity period.

4.2 Issuance and Renewal Timings

We use the same experiment methodology as described in Sect. 3.3. In this case,
the issuance time was measured at the client and encompassed all ACME steps
(depicted in Fig. 1) until the client obtained its certificate. The renewal time was
considered as a new issuance process by requesting the /new-order endpoint
without creating a new account. Consequently, this metric measured the time
from the /new-order POST request until the client received the certificate.
Both renewal and issuance times were computed from 500 protocol executions
(resulting in 500 certificates per algorithm instance) to obtain the average and
standard deviation statistics.

Figure 5 shows the issuance and renewal times for ACME with baseline (clas-
sical) and PQC compared to our proposed challenge. The bars correspond to
average timings, and the graph includes standard deviation information (above
the bars). All standard deviations obtained from our proposed challenge execu-
tions are below 10 ms, whereas in standard ACME, it reaches 1.4s. All bars are
below the baseline standard deviation (using NIST’s P256), which suggests no
PQC transition impact in the timings perceived by the ACME client.

From the ACME client’s perspective, Fig. 5 shows that the average impact in
PQC is not significant. Here the network time dominates, and ACME’s query-
response nature increases the variations (as shown by the standard deviations).
Sphincs+, Dilithium3, Dilithiumb, and Falcon-1024 also do not greatly influ-
ence the timings, so these configurations are also viable. On average, it took near
to 7.5s to issue a classical, PQC, or hybrid certificate.

On the other hand, our results suggest that the issuance and renewal time
can be significantly reduced using our proposed challenge. The issuance times
are, on average, 4.22x faster compared to the commonly-used HTTP challenge.
Renewals are also much faster: without the account creation time, our renewals
are near or below 1s (on average), regardless of the algorithm selected for the new
certificate (P256 or PQC). We highlight that our proposed challenge can be used
generically, both for renewing classical certificates or issuing PQC certificates.
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Fig. 5. Issuance and renewal average timings for different PQC algorithm instantia-
tions. Note: Issuance time is the sum of Account Creation and Renewal time.

4.3 Discussion

In the context of PQC, we expected a significant slowdown in issuance and
renewal times due to the increased sizes of PQC instances. For example, using
Dilithium2 imposes a payload size of 64.21 KiB on the network. However, this
payload size is divided among several request messages in ACME (as depicted
in Fig.1). Assuming at least seven signed requests in ACME, each carrying
less than 10 KB (except for certificate download), the data can be transported
within a single round trip without requiring additional RTTs, assuming a stan-
dard TCP/IP network stack. Furthermore, we are not transmitting the Sphincs+
certificate, which saves bytes and keeps the size below network limits, such as the
TCP window size. While literature shows scenarios where PQC imposes addi-
tional RTTs in other designs [28], issuance times depend not only on RTTs but
also on the variable number of requests and waiting times. Our results indicate
that the average issuance time for PQC was close to the baseline.

We were able to modify ACME and achieved better performance under rea-
sonable assumptions, such as the client already having a classical certificate. By
transitivity, having control of the certificate that certifies a domain demonstrates
control over that domain, even if the certificate’s private key is not stored on
the server. In this scenario, our proposed modification reduced the byte costs of
ACME. Table 2 illustrates the impacts of PQC on ACME and the sizes of our
proposed challenge. Since not all ACME requests are used in our challenge, it
reduces network RTTs. Compared to the original ACME flow, our challenge saves
35.39% and 32.14% for Dilithium2 and Falcon-512 instantiations, respectively.

It is important to note that our challenge differs from the TLS-ALPN-01
challenge. Defined in RFC 8737 [26], the ACME client generates a self-signed
X.509 certificate with the challenge information, such as the KAS, and starts the
TLS server under its control. The ACME server performs a handshake with this
new TLS server to check the required information. However, the TLS-ALPN-01
challenge focuses on cases where the web service providing content is separate
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Table 2. Comparison of sizes of ACME client requests, sampled from a pcapng capture
file. Note: “Total (ACME)” excludes repeated requests (like POST /authZ); however,
in practice, more bytes are transmitted (see Sect.2.2). Certificate sizes include server
and intermediate CA certificate.

Request Request is in P256 (baseline) | Dilithium?2 size | Falcon-512 size
our challenge? | size (bytes) (bytes) (bytes)
GET /dir v 223 223 223
HEAD /new-nonce 4 207 207 207
POST /new-account v 718 6097 3010
POST /new-order X 594 3747 1399
POST /pqg-order v 1194 10558 4336
POST /authZ X 624 3776 1423
POST /challZ X 627 3779 1425
POST /finalize X 1088 10648 4417
POST-AS-GET /certZ v 649 3713 1361
Total (ACME¥*) - 4730 32190 13465
Total (Our Challenge) 2991 20798 9137
Certificate size - 1913 17838 7157

from the TLS server, such as reverse proxies. Additionally, the DNS-1 challenge
can take up to one hour or up to five minutes under specific conditions [22], mak-
ing it unsuitable for direct comparison against our challenge. Since the HTTP
challenge is the most commonly used, our experiments focused on this scenario.

While our proposed challenge provides faster issuance times, it is not meant
to replace other existing ACME challenges. There may be scenarios where our
challenge is not suitable. One example is when the client does not have a classical
certificate. Another example relates to the validity period of certificates and the
reuse of valid authorizations, as allowed in RFC 8555 [1].

RFC 8555 [1] does not impose a limit on the expiration time of authorizations,
leaving the validity period of a valid authorization to the implementation. For
instance, Let’s Encrypt’s current policy allows reuse for up to 30 days. Therefore,
if an HTTP challenge has been fulfilled, the ACME client has 30 days to issue or
renew certificates, improving performance by skipping the challenge step. How-
ever, this 30-day policy is subject to change [7] and may vary or be denied in
other implementations. On the other hand, our challenge’s validity is limited
to the certificate’s validity period (currently 90 days in Let’s Encrypt’s policy).
In the context of PQC transition, we highly recommend deactivating authoriza-
tions of accounts created with classical cryptography. Deactivation is necessary
because ACME servers cannot guarantee that the TLS connection established
by ACME clients is quantum-safe. Non-PQC TLS usage by clients and valid
authorizations facilitate quantum attacks, as discussed in Sect. 3.1.

Nevertheless, our proposal improves performance for issuing certificates
(including account creation time) and renewals (assuming the client has an
account with the server). In scenarios where our challenge’s assumptions hold,
ACME clients can utilize our approach for renewing classical certificates faster,
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or during the PQC transition phase and subsequently renew their PQC certifi-
cates. For security reasons, Issuer CA policies can impose usage limits on clients
renewing with our challenge. These limits can reduce the impact of a certificate’s
key compromise, forcing the client to prove ownership using a different challenge.
Our proposed challenge can be further optimized if additional modifications
are made at the TLS layer. Specifically, mutual authentication in TLS involves
transferring certificates over the network, increasing the size of TLS messages.
RFC 7924 [23] specifies certificate caching mechanisms (client or server), which
could be employed in ACME’s TLS channel to reduce the TLS payload size.

5 Final Remarks and Future Work

This work provided a comprehensive evaluation of ACME’s performance when
secured with PQC algorithms, considering the perspectives of ACME clients
(e.g., web servers) and servers (e.g., Issuer CAs). The comparison against clas-
sical cryptography highlighted different impacts on these entities.

Regarding challenges required for the certificate issuance process, our pro-
posed design showed favorable results. We achieved smaller communication sizes
and decreased network bandwidth by replacing the HTTP challenge and elim-
inating associated signed requests. To encourage practical adoption, we have
made our design and prototype implementation available to the community. We
have also provided an RFC-like description of our challenge as a guide for future
implementations.

There are interesting opportunities for further research and evaluation of
ACME. For instance, investigating ACME’s performance in different computing
environments, such as the Internet of Things (IoT), would be valuable. Addi-
tionally, exploring how ACME performs when issuing certificates for KEMTLS,
a key encapsulation mechanism-based TLS, could provide valuable insights. It
is worth noting that issuing KEM-based certificates in ACME poses challenges
due to the typical usage of CSRs with signature methods. Nonetheless, ACME
remains a significant security-enabling protocol that has already benefited vari-
ous applications and is likely to continue doing so in the future.

Acknowledgements. This work was supported by the Federal University of Tech-
nology - Parana (UTFPR) and the Technology Innovation Institute (TII).

Appendix
A ACME’s HTTP-01 Challenge

Figure 6 focus on the HTTP challenge message flow, which is more commonly
used, probably due to its simplicity. We omit account creation messages, order
and download requests. First, the client obtains the necessary information for
the challenge (e.g., KAS) with the steps presented in Fig. 1. Basically, the client
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places the KAS file in (one or more) HTTP servers that it controls. There-
fore, the KAS binds the HTTP server to the ACME client’s account. Then, the
client notifies the server with a POST to /challZ endpoint. The validation steps
include checking the response (e.g., if the domain name matches the previous
order information) and, most importantly: (i) if the KAS inside the downloaded
file matches; and (ii) if the digital signatures (in the requests) can be verified
using the corresponding account’s public key. Otherwise, the challenge fails.

ACME Client ACME Server
POST /authZ-URL #r
Provisioning 200 OK+JSON({Token}
Challenge
Fiowin g |POST lehalZ-URL 2 N
HTTP:80 200 OK+JSON
GET {domain}/.well-known/acme/&g)
200 OK+ &
Validation
Steps

POST /authZ-URL #r

200 OK+JSON

Caption: 44,y Content-Type: application/jose+json &3 Key Authorization
—> HTTP Message String (KAS)

Fig. 6. HTTP challenge flow

In practice, the HTTP challenge (and the other types) can consume more
POST requests to /authZ endpoint than shown in Fig. 6. The ACME client will
repeat such a POST request until the status of the order is “valid” (or “invalid”
in the case of an error). This can increase network traffic when considering
multiple clients at the same time. Moreover, Although the most common option,
the HTTP-01 challenge is not the best option for issuing multiple certificates for
multiple servers and if firewalls are blocking HTTP port (80).

B POST Request Example

Figure 7 shows an example of a POST request to /pg-order (in our proposed
ACME challenge). We followed the notation of the /new-order endpoint [1].
The main differences are: we removed the order’s validity period, when focusing
on the PQC transition, due to the uncertainty of when quantum computers will
arrive; and we included an (optional) certhash field in the protected header.
Both protected and payload fields have integrity guarantees (e.g., by signing).
In this example, Dilithium2 is the PQC algorithm used for signing. The CSR
included in the payload in this case use a post-quantum signature algorithm.
However, we note that one could also use classical algorithms in the POST and
CSR, aiming at renewing classical certificates.
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POST /acme/pg-order HTTP /1.1
Host: example.com
Content-Type: application/jose+json

"protected": base64url({
"alg": "Dilithium2",
"kid": "https://example.com/acme/acct/evOfKhNU60wg",
"nonce": "5XJ1L3IEKMGT7tR6pA00clA",
"url": "https://example.com/acme/pg-order",
"certhash": "89f308210c7c7820b...947c3188dedbabe3"

1)

"payload": base64url({
"esr": "MIIBPTCBxAIBADBFMQ...KdZeGsysoCo4H9P",
"identifiers": [
{ "type": "dns", "value": "www.teste.org" },
{ "type": "dns", "value': "teste.org" }
I
1}

"si’gnat,ure“: "H6ZXtGjTZyUnPeKn...wEA4TklIBdh3e454g"

}

Fig. 7. POST request example

The POST message uses the account’s private key to sign the protected
and payload JSON fields. This complies to JSON Web Signature (JWS) [9]
requirements. After validating the POST message, the server issues the certificate
and returns to the client the URL for the certificate’s location (similarly as in
standard ACME). In this way, the ACME client can ask for a classical or PQC
certificate with our proposed challenge in a single request.
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At PQCrypto 2016, the National Institute of Standards and Technology (NIST)
announced the Post-Quantum Cryptography Standardization Process for replac-
ing existing standards for public-key cryptography with quantum-resistant cryp-
tosystems. For lattice-based cryptosystems, polynomial multiplications have
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Abstract. In this paper, we explore the cost of vectorization for multi-
plying polynomials with coefficients in Z, for an odd prime ¢, as exem-
plified by NTRU Prime, a postquantum cryptosystem that found early
adoption due to its inclusion in OpenSSH.

If there is a large power of two dividing ¢ — 1, we can apply radix-2
Cooley—Tukey fast Fourier transforms to multiply polynomials in Zg[z].
The radix-2 nature admits efficient vectorization. Conversely, if 2 is the
only power of two dividing ¢ — 1, we can apply Schonhage’s and Nuss-
baumer’s FFT's to craft radix-2 roots of unity, but these double the num-
ber of coefficients.

We show how to avoid the doubling while maintaining the vector-
ization friendliness with Good—Thomas, Rader’s, and Bruun’s FFTs. In
particular, in sntrup761, the most common instance of NTRU Prime we
have ¢ = 4591, and we exploit the existing Fermat-prime factor of ¢ — 1
for Rader’s FFT and power-of-two factor of ¢ + 1 for Bruun’s FFT.

Polynomial multiplications in Zaso1[2]/ (™' —  — 1) is still a worth-
while target because while out of the NIST PQC competition, sntrup761
is still going to be used with OpenSSH by default in the near future.

Our polynomial multiplication outperforms the state-of-the-art
vector-optimized implementation by 6.1x. For ntrulpr761, our keygen,
encap, and decap are 2.98x, 2.79x, and 3.07x faster than the state-of-
the-art vector-optimized implementation. For sntrup761, we outperform
the reference implementation significantly.
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been the most time-consuming operations. Recently standardized [AACH22]
Dilithium, Kyber, and Falcon wrote number—theoretic transforms (NTTs) into
their specifications in response.

OpenSSH 9.0 defaults to NTRU Prime!. However, in NTRU Prime the poly-
nomial ring doesn’t allow NTT-based multiplications naturally. State-of-the-art
vectorized implementations introduced various techniques extending coefficient
rings, or computed the results over Z. In each of these approaches, empirically
small-degree polynomial multiplications is always an important bottleneck. We
study the compatibility of vectorization and various algorithmic techniques in the
literature and choose the ARM Cortex-A72 implementing the Armv8-A architec-
ture? for this work. We are interested in vectorized polynomial multiplications
for NTRU Prime. [BBCT22] showed that a vectorized generic polynomial mul-
tiplication takes ~ 1.5 time of a “generic by small (ternary coefficients)” one
with AVX2. [BBCT22| applied Schonhage and Nussbaumer to ease vectoriza-
tion. Schonhage and Nussbaumer double the sizes of the coefficient rings and
lead to a larger number of small-degree polynomial multiplications. We explain
how to avoid the doubling with Good-Thomas, Rader’s, and Bruun’s FFTs.

We implement our ideas on Cortex-A72 implementing Armv8.0-A with the
vector instruction set Neon. However, we emphasize that our approaches are
built around the notion of vectorization and not a specific architecture.

1.1 Contributions
We summarize our contributions as follows.

— We formalize the needs of vectorization commonly involved in vectorized
implementations.

— We propose vectorized polynomial multipliers essentially quartering and halv-
ing the number of small-dimensional polynomial multiplications after FFTs.

— We propose novel accumulative (subtractive) variants of Barrett multiplica-
tion absorbing the follow up addition (subtraction).

— We implement the ideas with the SIMD technology Neon in Armv8.0-A on a
Cortex-A72. Our fastest polynomial multiplier outperforms the state-of-the-
art optimized implementation by a factor of 6.1x.

— In addition to the polynomial multiplication, we vectorize the sorting net-
work, polynomial inversions, encoding, and decoding subroutines used in
ntrulpr761 and sntrup761. For ntrulpr761, our key generation, encap-
sulation, and decapsulation are 2.98x, 2.79x, and 3.07x faster than the
state-of-the-art optimized implementation. For sntrup761, we outperform
the reference implementation significantly.

! https://marc.info/?1=openssh-unix-dev&m=164939371201404& w=2.
2 ARMv8-A, which naturally comes with the SIMD technology Neon, is currently the
most prevalent architecture for mobile devices and is used for all Apple hardware.
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1.2 Code

Our source code can be found at https://github.com/vector-polymul-ntru-
ntrup/NTRU_Prime under the CCO license.

1.3 Structure of This Paper

Section 2 goes through the preliminaries. Section3 surveys FFTs. Section4
describes our implementations. We show the performance numbers in Sect. 5.

2 Preliminaries

Section 2.1 describes the polynomials rings in NTRU Prime, Sect. 2.2 describes
our target platform Cortex-A72, and Sect. 2.3 describes the modular arithmetic.

2.1 Polynomials in NTRU Prime

The NTRU Prime submission comprises two families: Streamlined NTRU Prime
and NTRU LPRime. Both operate on the polynomial ring Z,[z]/(zP —z — 1)
where g and p are primes such that the ring is a finite field. We target the poly-
nomial multiplications for parameter sets sntrup761 and ntrulpr761 where
g = 4591 and p = 761. One should note that sntrup761, which is used
by OpenSSH, uses a (Quotient) NTRU structure, and requires inversions in
Zslax] [{(x™ —x — 1) and Zyse1[x]/(z"® — 2z — 1). We refer the readers to the
specification [BBC+20] for more details. With no other assumptions on the
inputs, we call a polynomial multiplication “big by big”. If one of the inputs is
guaranteed to be ternary, we call it “big by small”. We optimize both although
the former is required only if we apply the fast constant-time GCD [BY19] to
the inversions in the key generation of sntrup761. The fast constant-time GCD
is left as a future work.

2.2 Cortex-A72

Our target platform is the ARM Cortex-AT72, implementing the 64-bit Armv8.0-
A instruction set architecture. It is a superscalar Central Processing Unit (CPU)
with an in-order frontend and an out-of-order backend. Instructions are first
decoded into pops in the frontend and dispatched to the backend, which con-
tains these eight pipelines: L for loads, S for stores, B for branches, 10/I1 for
integer instructions, M for multi-cycle integer instructions, and FO/F1 for Single-
Instruction-Multiple-Data (SIMD) instructions. The frontend can only dispatch
at most three pops per cycle. Furthermore, in a single cycle, the frontend dis-
patches at most one pop using B, at most two pops using I0/I1, at most two
pops using M, at most one pop using FO, at most one pop using F1, and at most
two pops using L/S [ARM15, Sect. 4.1].

We mainly focus on the pipelines FO, F1, L, and S for performance. FO/F1
are both capable of various additions, subtractions, permutations, comparisons,
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minimums/maximums, and table lookups®. However, multiplications can only
be dispatched to FO, and shifts to F1. The most heavily-loaded pipeline is clearly
the critical path. If there are more multiplications than shifts, we much prefer
instructions that can use either pipeline to go to F1 since the time spent in FO
will dominate our runtime. Conversely, with more shifts than multiplications,
we want to dispatch most non-shifts to FO. In practice, we interleave instruc-
tions dispatched to the pipeline with the most workload with other pipelines
(or even L/S)—and pray. Our experiment shows that this approach generally
works well. In the case of chacha20 implementing randombytes for bench-
marking [BHK+22], we even consider a compiler-aided mixing of 10/I11, FO/F1,
and L/S*. The idea also proved valuable for Keccak on some other Cortex-A
cores [BK22, Table1].

SIMD Registers. The 64-bit Armv8-A has 32 architectural 128-bit SIMD
registers with each viewable as packed 8-, 16-, 32, or 64-bit elements ([ARM21,
Fig. A1-1]), denoted by suffixes .16B .8H, .4S, and .2D on the register name,
respectively.

Armv8-A Vector Instructions

Multiplications. A plain mul multiplies corresponding vector elements and
returns same-sized results. There are many variants of multiplications: mla/mls
computes the same product vector and accumulates to or subtracts from the des-
tination. There are high-half products sqdmulh and sqrdmulh. The former com-
putes the double-size products, doubles the results, and returns the upper halves.
The latter first rounds to the upper halves before returning them. There are
long multiplications s{mul,mla,mls}1{,2}. smull multiplies the corresponding
signed elements from the lower 64-bit of the source registers and places the
resulting double-width vector elements in the destination register. It is usually
paired with an smull2 using the upper 64-bit instead. Their accumulating and
subtracting variants are s{mla,mls}1{,2}. We will not use the unsigned coun-
terparts u{mul,mla,mls}1{,2}.

Shifts. shl shifts left; sshr arithmetically shifts right; srshr rounds the results
after shifting. We won’t use the unsigned ushr and urshr.

Additions/Subtractions. For basic arithmetic, the usual add/sub adds/subtracts
the corresponding elements. Long variants s{add,sub}1{,2} add or subtract the
corresponding elements from the lower or upper 64-bit halves and signed-extend
into double-width results®.

3 There are some exceptions, including addv, smaxv, sadalp. We are not using them
in this paper and refer to [ARM15] for more details.

4 We write some assembly and only obtain comparable performance. So we keep the
implementations with intrinsics instead for readability.

5 There are several options for signed-extending vector elements—saddl1{,2} and
ssubl{,2} which go to either FO/F1, sxt1{,2} to F1, and smull{,2} going to FO.
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Permutations. Then we have permutations—uzp{1,2} extracts the even and
odd positions respectively from a pair of vectors and concatenates the results
into a vector. ext extracts the lowest elements (there is an immediate operand
specifying the number of bytes) of the second source vector (as the high part)
and concatenates to the highest elements of the first source vector. zip{1,2}
takes the bottom and top halves of a pair of vectors and riffle-shuffles them into
the destination.

2.3 Modular Arithmetic

Algorithm 1. Barrett reduction. Algorithm 2. Barrett multiplication.
This is [BHK+22, Algorithm 11]. This is [BHK+22, Algorithm 10].
Input: a =a. Input: a =a.
gz o3

Output: a = a — {?“R-‘ q = amod Output: a = ab — {#—‘ q = abmod
*q. *q.

1: sqdmulh t 2R L]

© sqdmu > & q 1: sqrdmulh t, a, q2 2

2: srshr  t, t, #(e+1) 2: mul a, a, b

3: mls a, t, q 3: mls a, t, ¢q

Let g be an odd modulus, and R be the size of the arithmetic. We describe
the modular reductions and multiplications for computing in Z,. Barrett reduc-

| 2°R
tion [Bar86] reduces a value a by approximating a mod *¢ with a— V EQ; ] —‘ (cf.

Algorithm 1). For multiplying an unknown a with a fixed value b, we compute
ol B
ab — {L;]z-‘ q = abmod *¢ (Barrett multiplication [BHK+22]) where [], is

the function mapping a real number 7 to 2 L%] (cf. Algorithm 2). We give novel
multiply-add/sub variants of Barrett multiplication in Algorithms 3 and 4. Algo-
rithm 3 (resp. Algorithm4) computes a representation of a + be (resp. a — be)
by merging a mul with an add (resp. a sub) into an mla (resp. mls), saving 1
instruction.

Algorithm 3. Barrett_mla. Algorithm 4. Barrett_mls.
Input: a = a. Input: a = a.
4] 4]
Output: a =a + bc — L%—‘ q. Output: a=a — bc + {%—‘ q.
3] 2]
1: sqrdmulh t, b, q2 2 1: sqrdmulh t, b, %
2: mla a, b, ¢ 2: mls a, b, ¢

3: mls a, t, q 3: mla a, t, q
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3 Fast Fourier Transforms

We go through the mathematics behind various fast Fourier transforms (FFTs)
and emphasize their defining conditions. This section is structured as follows.
Section 3.1 reviews the Chinese remainder theorem for polynomial rings and
discrete Fourier transform (DFT). We then survey various FFTs, including
Cooley—Tukey in Sect.3.2, Bruun and its finite field counterpart in Sect. 3.3,
Good—Thomas in Sect. 3.4, Rader in Sect. 3.5, and Schonhage and Nussbaumer
in Sect. 3.6. We use number—theoretic transform (NTT) as a synonym of FFT.

3.1 The Chinese Remainder Theorem (CRT) for Polynomial Rings

Let n = [[,m, and g, ;, , € R[z] be coprime polynomials for all indices

(i1)1=0.-.n—1 where 0 <i; < mn;. The CRT gives us a chain of isomorphisms
Rl - Rl
<Hi0 ..... ih,_lgio,...,ih,1> io <Hi1 ..... i,,_lgio,...,ih,1>

11 Rlz] _
<9i0,...7ih,1 >

20, th—1

(a3

1%

Multiplying in [T, | R[x]/<gi0’wih1> is cheap if the polynomial modulus
is small. If the isomorphism chain is also cheap, we improve the polynomial mul-
tiplications in R[sc]/<1_[Z-Ow’ih_1 gi07,,.,ih71>. For small n;’s, it is usually cheap

to decompose a polynomial ring into a product of n; polynomial rings.
Transformations will be described with the words “radix”, “split”, and
“layer”. We demonstrated below for h = 2. Suppose we have isomorphisms

R[:z:]/< H gi0,¢1> g HR[I]/<H910“> 7& H R[x]/<gio,i1>

10,11 90,91

where iy € {0,...,n9 — 1} and i1 € {0,...,n7 — 1}. We call ny a radiz-ng
split and an implementation of 7y a radix-ng computation, and similarly for ;.
Usually, we implement several isomorphisms together to minimize memory oper-
ations. The resulting computation is called a multi-layer computation. Suppose
we implement 1y and 7; with a single pair of loads and stores, and 79 and n;
both rely on X, a shape of computations, then the resulting multi-layer compu-
tation is called a 2-layer X. If additionally ng = n1, the computation is a 2-layer
radiz-ng X, and similarly for more layers.

3.2 Cooley—Tukey FFT

In a Cooley—Tukey FFT [CT65], we have ( € R, w, € R a principal nth root

of unity, n coprime to char(R), and g, _,; , = = — (wn vitllams o R[z].
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Since Hi07~~-7ih—1 Gio.....in_, =" — (", the efficiency of multiplying polynomials
in R[z]/{z™ — ¢™) boils down to the efficiency of the isomorphisms indexed by
i;’s. Furthermore, it is a cyclic NTT if (" = 1.

3.3 Bruun-Like FFTs

[Bru78] first introduced the idea of factoring into trinomials g;  ;  when n

is a power of two—to reduce the number of multiplications in R while operating
over C. [Mur96] generalized this to arbitrary even n. For our implementations,

we need the results on factoring 22° + 1 € F,[x] when ¢ = 3 (mod 4) [BGM93]
and composed multiplications of polynomials in F,[z] [BC87]. Factoring =™ — 1
over Fy is actively researched [BGM93, Mey96, TW13,MVdO14, WYF18, WY21].

Review: The Original Bruun’s FFT (R = C). We choose g, _;, , =
xZ_(gwg:ﬂijd +C 1 lenj<lnj)x—|—180$ (Cn_‘_c: ) "+ 1=
Hio) in_1 9io,...in_, - This provides us an alternative factorization for it —1 =

(22" — 1)(2*" + 1) by choosing (" = wy. For a complex number with norm 1,
since the sum of its inverse and itself is real, we only need arithmetic in R to

reach Hz‘o,...,ih,l C[‘x]/<gio,“.,ih_1(z)>'
R = F, where ¢ = 3 (mod 4). We need Theorem 1 for our implementations.

Theorem 1 ([BGM93, Theorem 1]). Let ¢ =3 (mod 4) and 2% be the high-

est power of two in g+ 1. If £ < w, then 22" +1 factors into irreducible trinomials
22 + vz +1in Fy[z]. Else (i.e., k > w) 22° + 1 factors into irreducible trinomials
22 4 4a? T — 1 in Ffa].

Given f, f1 € Fy[z], we define their “composed multiplication” as (f, © f;) =
Hfo(a)zo Hfl(ﬁ):o (x — af) where a, f run over all the roots of f, f; in an
extension field of F,.We need the following from [BC87]:

Lemma 1 ([BC87, Eq.8]). [1,, foi, @I, f1:, = L, (foi © f1,5,) holds
for any sequences of polynomials f ; , f1,;, € Fylz].

Lemma 2 ([BC87,Eq.5]). If f, = H (x—a) € Fy[x], then for any f, € Fy[x],
we have f, © f, = [[, a?e) £ (a~1xz) € Fylz].

Lemma 3. Let r be odd, 2" —1 :H ( wi) € F,[z], and z? "1 =1L, fi, €
zodeg(fll)

Folal: We have a2 =1 =T, (% =) = [y o™ i o 0.
Proof. First observe 227 —1 = (2" — 1) ® (xzk - 1)6. By Lemma 1, this equals
1L, ((55 —w)® (x2 - 1)) = Il (z—wi)® f;,). According to

5 coprime qo, g1, {w”’w” |0 <0 < qo,0< i1 < ql} = {wq0q1|0 <i< qoql} in the
splitting field of x%0% — 1.
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A A , iod
Lemma 2, (z —w?) ® (I'Qk - 1) =22 — w%k“’ and (z —w)*) O f;, = . eelfi)
fi, (wyox) as desired.
In summary, by Lemma 3 we have the following isomorphisms:

Fy[z] Fy[z] ~ ‘ Fy[z] .
<I2kr N 1> <Hi0 (w2k - w%kio)> <Hi0,i1 W?deg(fil)fil(wr_ioww

I

Radix-2 Bruun’s Butterflies and Inverses. Define Bruun, s as follows:

R[z] N Rlz] % Rlx]
Bruun, PE (z2+(2B—a?)z2+[2) (z24+az+6) (x2—az+3)
’ ag + a1z + ax?® + azxr®  — ((ag + ar1z), (ag + asx))

where

(a0,a1) = (ao — Bas + aBaz, a1 + (@ — B)az — aaz),

(&2, a3) = (ao — 6a2 — aﬁag, a; + (042 - ﬁ)a3 + Olag) .
We compute (ag — Bas,a; + (a® — B)as, aaz, aBas), swap the last two values
implicitly, and do an addition-subtraction (cf. Fig.1). Notice that we can use

Barrett_mla and Barrett_mls whenever a product is followed by only one accu-
mulation (a; + (a? — 3) az) or subtraction (ag — Basz).

a (O - ao
al O - S _ dl
az (O a2
as O/ d3

Fig. 1. Bruun’s butterfly. (&07 ai,asz, &3) = Bruuna,@(ao, ai,az, ag).

Rlz] % Rlx] _ Rlx]
2Bruun_}, : { (eitaetf) 7 (et —artf) (#T+ (26~ a?)z?+57) .
p ((ao + arz), (a2 + azx)) + 2ag + 2a12 + 2a22% + 2a32>

correspondingly defines the inverse, where

2(ao0,a1) = (do + a2 + (a3 — a1) @™ B, a1 + as — (a0 — a2)a” ' (042 -8)),
2((12,(13) = ((&3—&1)(1_1,(&0 —&Q)Cl_lﬁ_l).
We compute (Gg + ag, a1 + as, o — Go, a3 — a1), swap the last two values implic-

itly, multiply the constants a~', 3,a~ 137!, and (oz2 —B), and add-sub (cf.
Fig. 2). Both Bruun, g and 2Bruun;,15 take 4 multiplications.
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flo 2(10
dl 2&1
&2 2(12
d3 2(13

Fig. 2. Bruun’s Inverse butterfly. (2ao, 2a1, 2a2,2a3) = 2Bruun;’1ﬁ(do, a1, a2,a03).

We will use three special cases of Bruun’s butterflies.

Bruun g ;: The initial split of 22" +11s Bruun g ;. Since 8 = o2 —0=1, we
only need two multiplications by x+/2.
Bruun,, +;: We avoid multiplying with 8 = £1 in Bruun,, +; and 2Bruun, 1ﬂ

Bruun  ,»: We save no multiplications, but only use 2 constants « and %-
RN

instead of 4. It is used in the split of z2° + wf ¢ for an odd 7.

3.4 Good—Thomas FFTs

A Good-Thomas FFT [Goob8] converts cyclic FFTs and convolutions into
multi-dimensional ones for coprime n;’s. For the polynomial ring R[z]/{z" — 1),
we implement R[z]/(z" —1) = [[, .,  Rlx 1/{z = [[,w) with a multi-
dimensional FFT induced by the equivalences x ~ ], u; and Vi, u;" ~ 1. For-
mally, we have

R Rle.uo, .. un 1]
(@r = 1) (z—-[Lw,us® —1,...,u" 7" — 1)

H Rz, uo7 ey UR—1] ' > o H R|[z]

) ! io
905 sin—1 <x - Hl UL, UD — Wngy - ooy Uh—1 — Wny, G0 seesih—1 <‘T - Hl wnl>

1%

We illustrate the idea for h = 2,n9g = 2, and ny = 3. Let P14y be the
permutation matrix exchanging the 1st and the 4th rows. We write the size-6
FFT matrix as follows:

111 1 11 111111

1wgw§wgw§w§ lwgwélwéwé 111

1(4}6&)61&)6(4)6 _ 1w6w61w6w6 _ 11 4 2
Pan i 1w 1w [Po= 11 1 wdwiws |~ 121)® 133?

1lwgwd 1 wiw? 1wéw§wg’w6wg’ 6 %6

1w wa wi wd we 1 w2 wi wé w? we

3.5 Rader’s FFT for Odd Prime p

Suppose w, € R for an odd prime p. [Rad68] introduced how to map a polynomial
>o;aix’ € Rlz]/(xP — 1) to the tuple (a;) = (3, awy) € I]; Rlz 1/{z —w >
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with a size-(p — 1) cyclic convolution. Let g be a generator of Z* and write

j=g"and i =g " Then as —ag = a; —ap = Y o_ lalw” Ze 0 Qg—ew gt~
fork=0,...,p—2.
The sequence ( b2 aq_ewf,k4> is the size-(p — 1) cyclic convolu-
: §=0 2

. » 9
tion of sequences (a, )z':o,...,p—z and (w

pl . For example, let p = 5.
2
We have (1,2,3,4) = (24,2,23,22) and

az — ap ws w2 wi wd as
g —ao | w3 ws w2 wé ay
ag —ap | | wdwdwsw? | | a2
ai — ap w?, wg wg ws ai

3.6 Schonhage’s and Nussbaumer’s FFTs

Instead of isomorphisms based on CRT, we sometimes compute chains of
monomorphisms and determine the unique inverse image from the product of two
images. Given polynomials a,b € R[z]/(g) where g is a degree-ngn; polynomial,
we introduce y = 2™, and write @ and b as polynomials in R[x,y]/(z"™ —y,g,)

where gg|,—sm = g(z). In other words, a(y) := 3.7 (Z"la Qitign, T ) ylo €

10:0
nq

Rlz,y]/(x™ —y,gy). We recap transforms when R[z,y]/{z™ —y,g,) does not
naturally split.

We want an injection R[x]/(z™ — y) — R such that R[z,y]/(z™ —y,g,) —
Rlyl/(gy) is a monomorphism with R[y]/(g,) = I1; R[y]/<goyj>. A Schoénhage
FFT [Sch77] is when g,|(y™ — 1), and R = R[x]/(h) with h|®,,, (z) (the ng-th
cyclotomic polynomial). E.g., “cyclic Schonhage” for powers of two ng, ny = %2,
go=y" —1,and h = 2™ + 1 is:

Rzl . ooyl meamll . Ryl . x RW
{@rom — 1)~ (yro—1)  (yo—1) (yo—1) 1 (y —a?)

We can also exchange the roles of x and y and get Nussbaumer’s FFT [Nus80].
We map Rz, y]/(z"™ ~ y,90) — Rlz,4/(h. 9o} for go|P2n, (y) and hi(z*" —1).
This can be illustrated for powers of two ng = ny, h = 22" —1,and g, = y™ +1:

Ral _ Ry  _ muioll . Rl o q P
S R RS R T A T VA |

%

Our presentation is motivated by [Ber0Ol, Sect. 9, Paragraph “High-radix
variants”] and [vdHO04, Sect. 3].

4 Implementations

In this section, we discuss our ideas for multiplying polynomials over Z4591. For
brevity, we assume R = Zj591 in this section. The state-of-the-art vectorized
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“big by big” polynomial multiplication in NTRU Prime [BBCT22] computed
the product in R[z]/((#'°** +1)(2'2 — 1)) with Schonhage and Nussbaumer.
This leads to 768 size-8 base multiplications where all of them are negacyclic
convolutions. [BBCT22] justified the choice as follows:

. since 4591 —1 = 2-33.5-17, no simple root of unity is available for recur-
sive radix-2 FFT tricks. ... They ([ACC+21]) performed radix-3, radix-5,
and radix-17 NTT stages in their NTT (defined in R[z] /(x5 — 1)). We
instead use a radix-2 algorithm that efficiently utilizes the full ymm regis-
ters (for vectorization) in the Haswell architecture.

We propose transformations (essentially) quartering and halving the number
of coefficients involved in base multiplications for vectorization. Our first trans-
formation computes the result in R[z] / <x1536 — 1>. We apply Good—Thomas
with w3 € R for a more rapid decrease of the sizes of polynomial rings, Schénhage
for radix-2 butterflies, and Bruun over R[z]/(#3? + 1). This leads to 384 size-8
base multiplications defined over trinomial moduli. Our second transformation
computes the result in R[z] / <x1632 - 1>. We show how to incorporate Rader for
radix-17 butterflies and Good—Thomas for the coprime factorization 17-3-2. For
computing the size-16 weighted convolutions, we split with Cooley—Tukey and
Bruun for R[z]/(z'® + wiy,). Since no coefficient ring extensions are involved,
this leads to 96 size-8 base multiplication with binomial moduli, 96 size-8 base
multiplications with trinomial moduli, and six size-16 base multiplications with
binomial moduli.

Section 4.1 formalizes the needs of vectorization, and Sect. 4.2 goes through
our implementation Good--Thomas for big-by-small polynomial multiplica-
tions. We then go through big-by-big polynomial multiplications. Section 4.3
goes through our implementation Good--Schénhage--Bruun, and Sect. 4.4 goes
through our implementation Good--Rader--Bruun.

4.1 The Needs of Vectorization

We formalize “the needs of vectorization” to justify how we choose among trans-
formations. In the literature, power-of-two-sized FFTs are oftenly described as
easily vectorizable. In this paper, we explicitly state and relate them to the
designs of vectorization-friendly polynomial multiplications. Our definition is
based on our programming experience.

We assume that a reasonable vector instruction set should provide the fol-
lowing features accessible to programmers:

— Several vector registers each holding a large number of bits of data. Com-
monly, each register holds 2% bits.
— Several vector arithmetic instructions computing 2¥-bit data from 2*-bit data
while regarding each 2F-bit data as packed elements.
e If input and output are regarded as packed 2K _bit data, we call the
instruction a single-width instruction.



Algorithmic Views of Vectorized Polynomial Multipliers - NTRU Prime 35

e If input is regarded as packed 2K ~1_bit data and output is regarded as
packed 2K bit data, we call the instruction a widening instruction.

e If input is regarded as packed 2K _bit data and output is regarded as
packed ok —1_bit data, we call the instruction a narrowing instruction.

4

The terminologies “widening” and “narrowing” come from [ARM21]. For a k’ <
k, we are interested in the number of elements v = 2k=F" contained in a vector
register. Intuivitely, we want to compute with minimal number of data shuffling
while maintaining the vectorization feature: if we want to add up several pairs
(a;, b;) of elements, we assign (a;) to one vector register and (b;) to another
one and issue a vector addtion, similarly for subtractions, multiplications, and
bitwise operations. We formalize this intuition for algebra homomorphisms.

Let 7 be a platform-dependent set of module homomorphisms. We’ll specify
7w = m(neon) in the case of Neon shortly. Let f be an algebra homomorphism.
We call f “vectorization friendly” if f is a composition of homomorphisms of the
form g®id, ®d for g an algebra homomorphism, d a composition of elements from
m. Since g ® id,, operates over several chunks of v-sets, we need no permutations
for this part. For the set 7, we define it with the matrix view for simplicity. 7 is
defined as the set of module homomorphisms representable as a v' x v" diagonal
matrix or a size-v’ cyclic/negacyclic shift for v’ a multiple of v.

In this paper, we start with R[x] /<g (x”/>> =~ Rly] /<Jc”/ — y,g(y)> for v’
a multiple of v and transform accordingly.

4.2 Good—Thomas FFT in “BigxSmall” Polynomial Multiplications

We recall below the design principle of vectorization—friendly Good-Thomas
from [AHY?22], and describe our implementation Good--Thomas for the “big by
small” polynomial multiplications. For a cyclic convolution R[z]/{z*"0™ — 1)
where ng and nq coprime, and v a multiple of the number of coefficients in a
vector, one introduces the equivalences z¥ ~ uww, u™ ~ w™ ~ 1. Usually, one
picks ng and n; carefully for fast computations. In the simplest form, one picks
ng as a power of 2 and n; = 3. Our Good--Thomas computes the polynomial
multiplication in Z[z]/(2'% — 1) with (v,n9,n1) = (4,128,3) where v = 4
comes from the fact that each Neon SIMD register holds four 32-bit values.
After reaching Z|x, u, w]/<x4 —uw,ud — 1, w!?® — 1>, we want to compute size-
3 NTT over u® — 1 and size-128 NTT over w'?® — 1. It suffices to choose a large
modulus ¢’ with a principal 384-th root of unity. We choose ¢’ as a 32-bit modulus
bounding the maximum value of the product in Z|x] / <w1536 — 1>. Obviously, our
Good--Thomas supports any “big-by-small” polynomial multiplications with size
less than or equal to 1536.

4.3 Good—Thomas, Schonhage’s, and Bruun’s FFT

This section describes our Good--Schénhage--Bruun. We briefly recall the
AVX2-optimized “big by big” polynomial multiplication by [BBCT22]. They
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computed the product in R[z]/((z%? —1)(2'%?* +1)). They first applied
Schonhage as follows.

R[x]

Rlz] N gy (Y]
(@2 -DE 1)~ (- D=+ 1)
Gazat) Gzl
o (x4 1) o~ H (x4 1)

16 __ 32 _ 204875\
G- D), A Ty a2

They then applied Nussbaumer for multiplying in % as follows.

R wgl] il | gl 0 oty L]
@ +1) " G+ D) @-1) (x—2F)"

k=0,...,15

The vectorization-friendliness of Schonhage is obvious. In principle, Nussbaumer
is vectorization-friendly since it shares the same computation as Schonhage after
transposing.

Truncated Schonhage vs Good—Thomas and Schonhage. We first discuss
an optimization of Schonhage if there is a principal root of unity with order
coprime to the one defining Schonhage.

How it Works, Mathematically. In R = Zy4591, we know that there is a principal
3rd root of unity ws € R. Instead of computing in R[z]/((2°'% — 1)(z0% + 1)),
we apply Schénhage and Good-Thomas FFTs to R[z]/(x'%% —1). By defini-
tion, if w is a principal 2*-th root of unity, then wsw is a principal 3 - 2F-th root
of unity. Let’s define R = R[z]/(2%? +1). We introduce a principal 32-th root
of unity wss = 22 as follows:

Rle] _ wedsly] Rly]

@ 1) G- G-

~

Then wswsy is a principal 96-th root of unity implementing R[y]/(y*® — 1) =

[lico12=0.. 3 R[y]/<y — wiw] > However, one should not implement this

isomorphism with Cooley—Tukey FFT. Observe that multiplication by wsy = 22

requires negating and permuting whereas multiplication by ws requires actual
modular multiplication. Cooley—Tukey FFT requires one to multiply wgwég
which is unreasonably complicated while optimizing for i, j # 0. We apply Good—
Thomas FFT implementing R[y]/(y*® — 1) = R[y]/(y — vw,v® — 1,w* — 1).
Obviously, we only need multiplications by powers of w3 and w3s and not wswss.
See Table 1 for an overview of available approaches.
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Table 1. Approaches for computing the size-1536 product of two polynomials drawn
from R[z]/(z"" — 2 —1).

Approach Domain Image Twiddle factors
18
.. R R i
Truncated Schonhage [BBCT22] <(m1024+1£g€is12,1)> ((Iaiﬁw) 220
96 "
Cooley-Tukey and Schonhage (zlggl ) ( (11;2[1]@ wi 2j
96 ] _
Good—Thomas and Schénhage (zlg?’[gl—w (<z§2[“+]1>> wi, 27

How it Works, Concretely. We detail the implementation as follows.

— We transform the input array in[761] into a temporary array
out [3] [32] [32], where outl[:][j][0-31] is the size-32 polynomial in

R[z] . . B
I ——— Concretely, we combine the permutations of Good

Thomas and Schonhage as out [¢] [j] [k] = in[(16(647 + 335) mod 96) + k]
if (16(64¢ + 337) mod 96) + k < 761 and zero otherwise. This step is the
foundation of the implicit permutations [ACC+21].

— For input small, we start with the 8-bit form of the polynomial. Since coef-
ficients are in {1, 0}, we first perform five layers of radix-2 butterflies with-
out any modular reductions. The initial three layers of radix-2 butterflies are
combined with the implicit permutations. For the last two layers of radix-2
butterflies, we use ext if the root is not a power of z'6. For the last layer of
radix-2 butterflies, we merge the sign-extension and add-sub pairs into the
sequence saddl, saddl2, ssubl, ssubl2. We then apply one layer of radix-3
butterflies based on the improvement of [DV78, Equation 8]. We compute the
radix-3 NTT (9, 01,02) of size-32 polynomials (v, ve, v3) as:

U9 = vo + v1 + va,
01 = (vo — v2) + ws(v1 — v2),

'192 = ('UO — Ul) —u}3(’01 — ’Ug).

— For the input big, we use the 16-bit form and perform one layer of radix-
3 butterflies followed by five layers of radix-2 butterflies. This implies only
1536 coefficients are involved in radix-3 butterflies instead of 3072 as for the
input small. We first apply one layer of radix-3 butterflies and two layers of
radix-2 butterflies followed by one layer of Barrett reductions while permuting
implicitly for Good—Thomas and Schénhage. Then, we perform three layers
of radix-2 butterflies and another layer of Barrett reductions.

Nussbaumer vs Bruun. Next, we discuss efficient polynomial multiplications
in R[z]/(x% +1). [BBCT22] applied Nussbaumer to R[z]/(xz%* + 1). We state
without proof that applying Nussbaumer to R[x] / <x32 + 1> results in 8 polyno-
mial multiplications in R[z]/<28 + 1>. We instead apply Brunn’s FFT resulting
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Algorithm 5. Radix-2 butterfly with symbolic root z2.

Input: Size-32 8-bit polynomials a = a0 + a1z'® b = b0 + b12'%, where a0, a1,b0, b1
are SIMD registers containing:

a0 = az|| - - -[|ao,
al = 1115H~~'||1187
b0 = br|[ -+ - [|bo,
bl = b15H~~~||b8.

Output: a0 + a1z'® = (a + bz?) mod (2 + 1),b0 + b1z'® = (a — bz?) mod (232 + 1)

1: ext v0.16b, b0.16b, bl.16b, #14 > v0 = bag|| - - - [|b1a
2: neg bl.16b, bl.16Db

3: ext v1.16b, bl.16b, b0.16b, #14 >V1=b13||~~~||b0||( b31 H( b30
4: sub  b0.16b, a0.16b, v0.16b

5: sub  bl.16b, al.16b, v1.16b > b0 + b1z'® = (a — 22b) mod (2** + 1)
6: add  a0.16b, a0.16b, v0.16b

7: add al.16b, al.16b, v1.16b > a0 + a1z'® = (a + £2b) mod (232 + 1)

in multiplications in rings R[z / <x + ozt + 1> for 4 different «. Since

232 41 = (2% 4+ 122927 + 1) (20 — 122922 + 1)
= (2% 4+ 5821 + 1) (2® — 582% 4 1) (2% + 21162 4 1)(2® — 21162 + 1),

we apply Bruun;szg; followed by Bruunsg ; and Bruung;s,;. We have slower
FFT and base multiplications, but we do only half as many as in [BBCT22]. See
Table 2 for comparisons.

Table 2. Approaches for multiplying in R[z]/(2%* 4+ 1) and R[z]/(z** + 1).

Approach Domain Image Twiddle factors
16
R R i
Nussbaumer [BBCT22] <364[j_]1) ((28[-42-]1)> 2
8
R R i
Nussbaumer <x32[i]1) ( e s[j]1> ) 221
R R -
Bruun <z%2[j_]1) [Ticoa I1 W"% Elements in R.

Then, we perform 96 - 4 = 384 size-8 base multiplications and compute the
inverses of Bruun’s, Schonhage’s, and Good—Thomas FFT.

4.4 Good—Thomas, Rader’s, and Bruun’s FFT

In the previous section, we replace Nussbaumer with Bruun. This section shows
how to replace Schonhage with Rader while computing in R[z] / <x1632 — 1>. We
name the resulting computation Good--Rader--Bruun.
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Schonhage vs Rader-17. We first observe that the Schénhage in [BBCT22]
reduced a size-1536 problem to several size-64 problems. We are looking for
a multiple of 17 close to % = 48. We choose 51 since one can define
a size-51 cyclic NTT nicely over Z, and optimize further by extending the
size-51 cyclic NTT to size-102. For the size-102 cyclic NTT, we apply the 3-
dimensional Good-Thomas FFT by identifying (w17, ws,ws2) = (wids, wihs, wids)
as the principal roots of unity where (eg,e1,e2) is the unique tuple satisfying
VYa € Zip2,a = ep(amod 17) + e1(a mod 3) + ez(a mod 2) (mod 102). Algo-
rithm 6 is an illustration. Radix-2 and radix-3 computations are straightfor-
ward. For the radix-17 cyclic FFT, we apply Rader’s FFT. Algorithm 7 illus-
trates the multi-dimensional cyclic FFT. Obviously, the above computation is

vectorization—friendly.

Algorithm 6. Good-Thomas, in practice merged with Algorithm 7.
Inputs: src[1632].
Outputs: poly NTT[17] [3] [2] [16].

1: for i =0,...,1631 do

2: Let t = i/16.

3: poly NTT [t mod 17] [t mod 3] [t mod 2] [ mod 16] = src[:].

4: end for

Algorithm 7. FFTs over chunks of 16 coefficients.
Inputs: poly NTT[17] [3] [2] [16].

Outputs: poly NTT[17][3] [2] [16].

1: for i3 € {0,...,15} do

2. fori € {0,1,2},iz € {0,1} do
3 rader-17 (poly NTT[0-16] [i1] [i2] [is]).
4 end for

5: for ip € {0,...,16} do
6:

7
8:

radix-(3,2) (poly_NTT[io] [0-2] [0-1] [is]).
end for
end for

Generalize Bruun Over z2' + ¢ for ¢ # £+1. The composed multiplica-
tion over a finite field shows that the remaining factorization follows the same
pattern of factorizing R[xz]/(x'® £ 1). The isomorphism Rlz]/{z'® —w?},)
[1R[z]/(z® £ wiy,) is obvious. Since we also have [], R[z]/(z'® —with!')
[1; R[z]/{z'® + wii,) by permuting, it suffices to understand the isomorphisms
defined on R[z]/(2'¢ + wi,). Applying Lemma 3, we have R[z]/(z'® + wii,) =
[T Riel/(a* & Vawlgsia® + ).

R 1R
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Finally, the remaining computing task is multiplication in R[z]/
<x8 +axt + ﬁ> for some «, 3 € R. We extend the idea of [CHK+21, Algorithm
17] by altering between multiplying in R[] and reducing modulo z® + az* + 3.

5 Results

We present the performance numbers in this section. We focus on polynomial
multiplications, leaving the fast constant-time GCD [BY19] as future work.

5.1 Benchmark Environment

We use the Raspberry Pi 4 Model B featuring the quad-core Broadcom BCM2711
chipset. It comes with a 32 kB L1 data cache, a 48 kB L1 instruction cache, and
a 1 MB L2 cache and runs at 1.5 GHz. For hashing, we use the aes, sha2,
and £ips202 from PQClean [KSSW] without any optimizations due to the lack
of corresponding cryptographic units. For the randombytes, [BHK+22] used
the randombytes from SUPERCOP which in turn used chacha20. We extract
the conversion from chacha20 into randombytes from SUPERCOP and replace
chacha20 with our optimized implementations using the pipelines I0/I11, FO/F1.
We use the cycle counter of the PMU for benchmarking. Our programs are com-
pilable with GCC 10.3.0, GCC 11.2.0, Clang 13.1.6, and Clang 14.0.0. We report
numbers for the binaries compiled with GCC 11.2.0.

Table 3. Overview of polynomial multiplications in ntrulpr761/sntrup761.

Armv8-A Neon ‘ ‘ x86 AVX2

Implementation ‘ Cycles H Implementation ‘ Cycles

Big-by-small polynomial multiplications

Good--Thomas 47696 || [BBCT22] 16 992
[Haa21] 242585

Big-by-big polynomial multiplications

Good--Rader--Bruun 39788 || [BBCT22] 25113
Good--Schénhage--Bruun | 50398
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5.2 Performance of Vectorized Polynomial Multiplications
Table 3 summarizes the performance of vectorized polynomial multiplications.
Table 4. Detailed Good--Schénhage--Bruun cycle counts including reducing to

Z4591 (]
<x761 —r— 1> ’

Good--Schoénhage--Bruun

Operation ‘ Count ‘ Cycles ‘ Total cycles
polymul \ - | - | 50398
Good-Schénhage-3-2x2 1| 1708 1708
Schénhage-3x2 3| 1246 3738
Good-Schénhage-5x2 1] 1527 1527
Radix-3 1| 2084 2084
Bruun 24 291 6984
Trinomial-8x8 12| 1115 13380
Bruun inverse 12 409 4908
Schénhage-2x4 inverse 3| 1304 3912
Good-Schdnhage-2-3 inverse 1| 7653 7653

For NTRU Prime, our Good--Rader--Bruun performs the best. It
is followed by Good--Thomas and Good--Schonhage--Bruun. Notice that
Good--Rader--Bruun requires no extensions or changes of coefficient rings. The
closest instances in the literature regarding vectorization are the Good--Thomas
and Schénhage--Nussbaumer by [BBCT22], and Good--Thomas by [Haa2l].
[BBCT22]’s, [Haa2l], and our Good--Thomas compute “big by small” poly-
nomial multiplications. We outperform [Haa2l] Good--Thomas by a factor of
6.1x since they implemented the base multiplications with scalar code using
the C % operator. On the other hand, [BBCT22)’s Schénhage--Nussbaumer
and our Good--Schénhage--Bruun compute “big by big” polynomial multipli-
cations. Regarding the impact of switching “big by small” to “big by big”,
[BBCT22]’s Schénhage--Nussbaumer takes 2313 ~ 147.79% cycles of their own
Good--Thomas [BBCT22, Sect. 3.4.2] while our Good--Schénhage--Bruun takes
only igggg ~ 105.67% cycles of our own Good--Thomas. Essentially, this demon-
strates the benefit of vectorization-friendly Good—Thomas and Bruun over trun-

cated [vdHO04] Schonhage and Nussbaumer.
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Table 5. Detailed cycle counts of Good--Rader--Bruun, excluding reductions to
Z4591[$]/<£B761 —r — 1>.

Good--Rader--Bruun

Operation ‘ Count ‘ Cycles ‘ Total
polymul ‘ - -1 37475
Good-Rader-17 24 407 | 9768
Radix-(3, 2) 2| 2339| 4678
CT 2 570 1140
Bruun 2 838 1676
Weighted-8x8 12 244 | 2928
Trinomial-8x8 12 328 | 3936
cr! 1 592 | 592
Bruun—! 1 989 989
Weighted-16x16 1| 1019| 1019
Radix-(3, 2)~! 1| 2341 2341
Good-Rader-17—1 12 543 | 6516

We also provide the detailed cycle counts of the polynomial multiplications.
For the “big by big” polynomial multiplications in sntrup761/ntrulpr761,
Table 5 details the numbers of Good--Rader--Bruun and Table4 details the
numbers of Good--Schénhage--Bruun.

5.3 Performance of Schemes

Before comparing the overall performance, we first illustrate the performance
numbers of some other critical subroutines. Most of our optimized implementa-
tions of these subroutines are not seriously optimized except for parts involving
polynomial multiplications. We simply translate existing techniques and AVX2-
optimized implementations into Neon. Table 6 summarizes the performance of
inversions, encoding, and decoding.

Table 6. Performance of inversions, encoding, and decoding in NTRU Prime.

Operation Ref Ours
sntrup761/ntrulpr761
Rg-recip3 116353545 | 5811777
R3_recip 127578811 | 587407
Rg-encode 17753 2084
Rq-decode 31715 3914
Rounded_encode 14707 3145
Rounded_decode 31832 3445
crypto_sort_uint32 186 867 21659
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Inversions, Sorting Network, Encoding, and Decoding. For sntrup761,
we need one inversion over Zgssg9; and one inversion over Zsz. We bitslice the
inversion over Zs, and identify and vectorize the hottest loop in the inversion over
Z4s91. Additionally, we translate AVX2-optimized sorting network, encoding,
and decoding into Neon. Notice that inversions over Zs, Zs, and Z4s91, sorting
networks, encoding, and decoding are implemented in a generic sense. With fairly
little effort, they can be used for other parameter sets.

Performance of sntrup761/ntrulpr761. Table7 summarizes the overall per-
formance. For ntrulpr761, our key generation, encapsulation, and decapsulation
are 2.98x, 2.79x, and 3.07x faster than [Haa21]. For sntrup761, we outperform
the reference implementation significantly. Finally, Table8 details the perfor-
mance.

Constant-Time Concerns. There are no input-dependent branches in our
code. Our program is constant-time only if one believes the documenta-
tion [ARM15]. The source code from [Haa2l] and Armv8-A works [NG21,
BHK+22], indicate the requirement of the same assumption. In the most rel-
evant documented Neon implementations, our code is constant-time, but this is
never strictly guaranteed” even with Data-Independent Timing (DIT). If ARM
decides to extend the domain of DIT to relevant multiplication instructions used
in this paper, our code is guaranteed to be constant-time once the DIT flag is set.
Furthermore, literally all the lattice-based post-quantum cryptosystems will be
benefit from this since the constant-time concerns arise from the basic building
blocks implementing modular multiplications.

Table 7. Overall cycles of sntrup761/ntrulpr761.

sntrup761
Operation Key generation ‘ Encapsulation ‘ Decapsulation
Ref 273598 470 29750035 89968 342
Good--Rader--Bruun 6333403 147977 158233
Good--Thomas 6340758 153465 182271
Good--Schénhage--Bruun 6345 787 163 305 193 626

ntrulpr761
Operation Key generation | Encapsulation | Decapsulation
Ref 29853635 59572637 89185030
[Haa21] 775472 1150294 1417394
Good--Rader--Bruun 260 606 412629 461250
Good--Thomas 269 590 422102 471014
Good--Schénhage--Bruun 272738 436 965 499 559

" ARM’s DIT flag, according to https://developer.arm.com/documentation/ddi0595/
2021-06/A Arch64-Registers/DIT--Data-Independent- Timing, does not guarantee
the high half multiplications sqrdmulh and sqdmulh to be constant-time.


https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
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A Detailed Performance Numbers

Table 8. Detailed performance numbers of sntrup761 and ntrulpr761 with
Good--Rader--Bruun. Only performance-critical subroutines are shown.

sntrup761 ‘ ‘ ntrulpr761
Operation ‘ Cycles ‘ ‘ Operation ‘ Cycles
crypto_kem_keypair 6333403 || crypto_kem keypair 260 606
ZKeyGen 6248 089 ZKeyGen 247919
XKeyGen 243332
KeyGen 6194194 KeyGen 112496
Rq-recip3 5811777
R3_recip 587407
Rgmult_small 39829 Rgmult_small 39 829
sort 22369 sort 21243
randombytes 86932 randombytes 44713
aes 127203
Rg-encode 2084 Rounded_encode 3145
sha2 13207 sha2 16 386
crypto_kem_enc 147977 || crypto_kem_enc 412629
ZEncrypt 48639 ZEncrypt 383991
XEncrypt 374695
Encrypt 40650 Encrypt 83487
Rq-mult_small 39829 Rqmult_small (2X) 2x 39829
aes 253597
sort 21773
sha2 2914
Rq-decode 3914 Rounded_decode 3445
Rounded_encode 3145 Rounded_encode 3145
randombytes 45109
sha2 29713 sha2™ 26 548
sort 21659
crypto_kem_dec 158233 || crypto_kem_dec 461 250
ZDecrypt 88 054 ZDecrypt 47573
Decrypt 83892 XDecrypt (defined as Decrypt) 43799
Rgmult_small 39829 Rgmult_small 39829
R3mult 42059
Rounded._decode 3445 Rounded_decode 3445
ZEncrypt 48 639 ZEncrypt 383991
sha2 18111 sha2™ 16 982

* The numbers of sha2 cycles of XEncrypt are included.
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Abstract. We propose the first distributed version of a simple, effi-
cient, and provably quantum-safe pseudorandom function (PRF). The
distributed PRF (DPRF) supports arbitrary threshold access struc-
tures based on the hardness of the well-studied Learning with Round-
ing (LWR) problem. Our construction (abbreviated as PQDPRF) prac-
tically outperforms not only existing constructions of DPRF based on
lattice-based assumptions, but also outperforms (in terms of evaluation
time) existing constructions of: (i) classically secure DPRFs based on
discrete-log hard groups, and (ii) quantum-safe DPRFs based on any
generic quantum-safe PRF (e.g. AES). The efficiency of PQDPRF stems
from the extreme simplicity of its construction, consisting of a simple
inner product computation over Zg, followed by a rounding to a smaller
modulus p < g. The key technical novelty of our proposal lies in our
proof technique, where we prove the correctness and post-quantum secu-
rity of PQDPRF (against semi-honest corruptions of any less than thresh-
old number of parties) for a polynomial q/p (equivalently, “modulus to
modulus”)-ratio.

Our proposed DPRF construction immediately enables efficient yet
quantum-safe instantiations of several practical applications, including
key distribution centers, distributed coin tossing, long-term encryption
of information, etc. We showcase a particular application of PQDPRF in
realizing an efficient yet quantum-safe version of distributed symmetric-
key encryption (DiSE — originally proposed by Agrawal et al. in CCS
2018), which we call PQ — DiSE. For semi-honest adversarial corruptions
across a wide variety of corruption thresholds, PQ — DiSE substantially
outperforms existing instantiations of DiSE based on discrete-log hard
groups and generic PRFs (e.g. AES). We illustrate the practical efficiency
of our PQDPRF via prototype implementation of PQ — DiSE.
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1 Introduction

Threshold Cryptography. The privacy guarantees of any (computationally
secure) cryptosystem fundamentally rely on the secure storage of a secret key. If
the secret key is stored on a single server, this server becomes the single point
of vulnerability, i.e., if an adversary successfully manages to corrupt the server,
the secret key is retrieved and the security of the whole system is compromised.
Threshold cryptography provides a solution to this problem by allowing the
secret key to remain distributed among multiple (say, T') servers in the form
of several key shares. Among them, if ¢ servers (for 1 < ¢t < T) can collabo-
rate with their respective key shares to successfully perform the cryptographic
computation without any knowledge of the actual secret key, we call it (¢,7)-
threshold cryptography. An underlying threshold secret sharing algorithm makes
sure that collaboration of at least ¢ servers is necessary to reconstruct the secret,
or in other words, less than t servers together can not reconstruct the secret.
Hence, if an adversary manages to corrupt (¢ — 1) number of servers (at most)
in a (¢, T)-threshold cryptosystem, the system still continues to remain secure,
as the adversary can not retrieve the actual secret from secret shares of (¢t — 1)
servers.

In this paper, we focus on threshold cryptographic systems [8,14] where the
secret key is shared once during the initial setup phase (either by a trusted dealer
or in a decentralized manner) and is never explicitly reconstructed in the clear.
Subsequently, any cryptographic computation is performed in two phases: (a)
first, each of the participating t servers does the some partial computation with
its own key share, and then (b) these partial computations are combined together
either by one of the participating servers or a separate evaluating entity to get
the final result. Crucially, the combination process should leak no additional
information about the secret key beyond what is revealed by the final output.

Threshold PRF and Applications. In a threshold or distributed PRF, the
PRF key is distributed across multiple (say, T') parties, and evaluations can
be performed on any given input in a distributed manner by a threshold ¢ €
[2, T] number of parties. Informally, the primitive retains its pseudorandomness
guarantees against any adversary that corrupts ¢’ < ¢ parties. Some applications
of a distributed PRF are as follows.

— Distributed KDC [28]: Key Distribution Center (KDC) provides keys to the
users in a network that shares sensitive data. Usually, there is a dedicated key
between the KDC and each user in the network. Whenever two users have to
communicate securely, one of them requests a key to the KDC. KDC chooses a
random key and sends it to each of the two parties, keeping it encrypted with
their respective dedicated keys. The users can then decrypt it and retrieve
the key for the secure communication session between them. This approach
was introduced by Needham and Schroeder in [30], and KDC has been widely
implemented in Kerberos System'. However, KDC is a single point of vulner-
ability as it stores the dedicated keys of all the users. KDC, being a single

1 / s /
https://web.mit.edu/kerberos/.
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point of contact, also suffers from the availability problem whenever there is
a need for communication between multiple pairs of users or communication
is needed among a set of more than two parties. To avoid these scenarios,
distributed KDC is considered, which consists of multiple (say, T') servers
to service the key requests, and a user can contact any available subset of ¢
servers out of them and receive a key irrespective of which particular subset
it contacted. Distributed PRF is a building block of distributed KDC [28].

— DiSE [1,19]: A formal construction of threshold distributed symmetric-key
encryption (DiSE) was proposed in [1], where a user has to contact t-out-of-T'
servers for both encryption and decryption. The construction is discussed in
detail later in Sect. 4.1 as an application context of threshold PRF.

Post-quantum Security. Once physical quantum computer comes to exis-
tence [7], various quantum algorithms [22,32,33] can be used to break classi-
cal cryptosystems built on the hardness assumption of mathematical problems
like integer factorization, discrete logarithm. Lattice-based cryptography offers
security against cryptanalytic attack by quantum computers. Although NIST?
launched standardization process of quantum-safe asymmetric-key cryptography,
need for standard post-quantum symmetric-key cryptography [12] still persists.
As PRF is a building block of various symmetric-key primitives, we take a step
towards this goal by constructing a simple but efficient quantum-safe threshold
PRF.

1.1 Related Works and Our Contributions

The concept of shared evaluation of a PRF was initially proposed in [26], albeit
for restricted threshold access structures. This was generalized to arbitrary
threshold access structures in follow-up works [28,29,31], with new applications
in [1,19]. Now we highlight our contributions in this paper in the context of
related works.

First Practically Efficient Quantum-Safe Distributed PRF. We provide
the first non-interactive distributed version of a simple but efficient quantum-
safe PRF (PQDPRF) in random oracle model based on lattice-based Learning
with Rounding (LWR) assumption. Such efficient straight-forward construction
of quantum-safe distributed PRF with polynomial ratio between input and out-
put modulus is the first of its kind to the best of our knowledge. We claim novelty
of our contribution with respect to existing works as follows.

— Efficient DPRFs with their possible application areas have been proposed [28,
31], but they are not quantum-safe.

— LWR assumption was introduced in [10] along with a proposed PRF in stan-
dard model, but their construction was inefficient as it required superpolyno-
mial modulus-to-modulus ratio. Also, the aspect of thresholdization was not
captured there.

2 National Institute of Standards and Technology.
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— Some other PRF contructions based on variants of LWE assumption [9,15,17]
can further be used in constructing threshold PRF. “Universal thresholdizer”
tool by [14] can be used to construct threshold PRF from an underlying
threshold FHE protocol. However, none of them is a straightforward and
efficient approach to designing quantum-safe threshold PRF.

— A robust non-interactive lattice-based DPRF construction with theoreti-
cally efficient parameters is proposed in [25] for adaptive corruption settings.
Although our construction is in the semi-honest setting against static corrup-
tions, its main advantage lies in its simplicity, superior practical efficiency,
and ease of implementation as compared to the scheme in [25]. In particular,
our proposed construction provides a practically efficient quantum-safe drop-
in replacement for AES/DDH-based DPRFs for applications (e.g., DiSE [1],
distributed KDC [28]) where robustness can be achieved more efficiently and
directly at the application level instead of trying to achieve the same at the
DPRF level, requiring costlier and more mathematically involved techniques.

We prove the correctness, consistency, and security of our proposed PQDPRF,
described in Sect. 3.2 and Sect. 3.3.

A Practical Use-Case of Proposed Distributed PRF. We validate the
efficacy of proposed PQDPRF by plugging it into existing DIiSE (distributed
symmetric-key encryption) protocol [1], to get an improved quantum-safe ver-
sion of DIiSE, which we call PQ — DiSE. We also show that our proposed LWR-
based DPRF, apart from being quantum-safe, is more efficient than other DPRFs
(i.e., DDH-based DPRF and AES-based DPRF) previously used in DiSE, and
consequently, PQ — DiSE outperforms DiSE in terms of throughput (number of
encryptions per second). We emphasize that, to the best of our knowledge, no
prior work has actually explored practical implementations and prototype real-
izations of applications such as in [1,19] based on quantum-safe distributed PRFs
from lattice-based assumptions.

2 Preliminaries and Background

This section presents notations and background material.

2.1 Notation

The notation = «— X signifies that x is sampled according to distribution X,

whereas z <% X means that, z is uniform random choice over set X. Upper case
(e.g., A) and lower case (e.g., a) variables in bold denote a matrix and a vector,
respectively. With two vectors a,b € Zy, (a,b) = >, aib; (mod q) represents
their vector dot product modulo ¢. The cardinality of a set S is denoted by |5/
The notation [n] for some n € N denotes the set {1,...,n}. For any y € Z,, the
round-off operation, denoted by |y], gives the nearest integral value of (y-£) in

Z,; in particular, if (y - %) has a fractional part exactly equal to 0.5, we choose
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to always round it down to |y - gj to avoid ambiguity. We can apply the round-
off operator to vectors and matrices as well to denote element-wise round-off
operation. A negligible function of X is denoted by negl(\); poly(A) denotes a
polynomial function of A. Terms “threshold PRF” and “distributed PRF” are
used alternatively throughout the paper.

2.2 Some Terminologies and Definitions

Here, we provide definitions of some terminologies that have been used frequently
in the paper.

Threshold Access Structure. Let P = {Py,...,Pr} be a set of T parties,
and suppose that some secret k is distributed among them in form of secret
shares. Access structure is a set consisting of all “valid” subsets P C P of parties
that can recover the secret k by combining their key shares together. For any
t,T € N (t <T), a minimal (¢,T)-threshold access structure over P is defined
as a collection of valid subsets of the form A,z = {P C P : |f} = t}, such that

we have |A; p| = (F‘f) as the number of valid subsets.

Monotone Boolean Formula (MBF). A Boolean formula is monotone if
it has a single output and it consists of only AND and OR combination of
Boolean variables. Note that any (¢,T)-threshold access structure A;r can be
represented by a MBF. The fact that a particular collaboration of ¢ parties
is able to reconstruct the secret, is captured by Boolean formula of the form
(1 A ... Ax) and that any such t-collaboration is a way of reconstruction, is
captured by ORing (%) such terms. For e.g., Az 4 is represented by (1 A 22 A
$3) \Y (1‘1 VAN WA I4) \Y (1’1 VAN 2 AN I’4) \ (ZZJQ N3 A$4).

Pseudo Random Function (PRF). We recall the formal definition of a pseu-
dorandom function (PRF). Let F : K x X — Y be a family of pseudo random
functions and F' = {f’|f’ : X — Y} be the set of all possible functions with
the same domain and range. Let us assume that, f; € F uses a uniform random

secret k <& K and, on input z € X, outputs fi(x), using both k and x. Then,
the advantage of any PPT distinguisher D is negligible, i.e.,

Pr[D/ ) (1) = 1] — Pr[D/ (1) = 1]| < negl()),

where )\ is a security parameter. The first probability is taken over uniform choice
of k and randomness of D, and the second probability is taken over uniform choice
of f and randomness of D.

Weak Pseudo Random Function. A PRF is weak if its output is pseudo-
random, only when the inputs are uniformly random over the input space. This
is in contrast to the case of (strong) PRF, where indistinguishability holds for
any input from the input space. However a weak PRF can be converted to a
PRF by relying on existence of a random oracle. If fi(-): K x X — ) is a weak
PRF and H : {0,1}* — X is a hash function modeled as a random oracle, then
ge() = fu(M() is a PRF [28].
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Learning with Rounding (LWR) Problem. LWR problem is a “derandom-
ized” version of Learning with Errors (LWE) problem, first introduced in [10].
Given a parameter n € N, two moduli ¢,p € N such that ¢ > p > 2, the LWR
distribution L; for a secret s € Zg is defined over Zy x Z,, of the form (a, b), where

we choose a <+ Zy and then calculate b = [(a,s)],,. The decision LWR problem
is to distinguish samples of Ls from uniformly random samples of Zg X Z,.

2.3 Distributed PRF (DPRF)

If the evaluation of a PRF is performed in a distributed way, we call it a dis-
tributed PRF. In this case, the secret k of the PRF always remains distributed
as shares among multiple parties. Here, we define distributed PRF formally.

Definition 1 (Distributed Pseudo Random Function (DPRF)). Let P =
{P1,...,Pr} be a set of T parties, and let S be a class of threshold access struc-
tures on P. A threshold PRF scheme for S over an input space X and key space
K is a tuple of probabilistic polynomial-time algorithms as follows,

DPRF = (DPRF.Setup, DPRF.PartialEval, DPRF.FinalEval).

DPRF.Setup(1*,A): On input the security parameter X and an access structure

A €S, this algorithm generates a key k £ K, and then generates multiple key
shares of k corresponding to A. At the end of key sharing among T parties, the
actual key k is not stored anywhere. Each party has to store one or more than
one key share depending on the particular threshold secret sharing scheme used.

DPRF.PartialEval(x, P;, A): On input a valid subset A € A, an input x € X and
a party P; € A, the appropriate key share (say, k;) of P; corresponding to A is
chosen and a partial evaluation fi,(x) is returned.

DPRF.FinalEval(A, { fx,(x)}pr,ca): On input a valid subset A € A and all the
partial evaluations by parties P; € A, this algorithm combines them to get the
final PRF evaluation. The actual combination procedure depends upon the recon-
struction property of the underlying threshold secret sharing scheme.

Correctness and Consistency. A (¢, T)-distributed PRF with fi(-) as its
underlying PRF is correct if given an input, its distributed evaluation by any
valid subset A € A outputs the same value as would be obtained by directly
evaluating fi(-) on the same input except with negligible probability, i.e.,

Pr[DPRF.FinalEval(A, {DPRF.PartialEval(z, P, A)} pca) = fr(2)] > 1 — negl(\).

A (t,T)-distributed PRF is consistent if distributed evaluation on a given input
by any two distinct valid subsets S1,.52 € A outputs the same value except with
negligible probability, i.e.,
’F’r[DPRF.FinaIEvaI(Sl7 {DPRF.PartialEval(z, P;, S1)} p,cs, )
£DPRF FinalEval(Sz, {DPRF.PartialEval(z, P;, S2)} £, es,)]| < negl(\).
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Note that the correctness of (¢,T)-distributed PRF implies its consistency, but
not the other way around.

Security. We borrow the notion of DPRF security from [28].

The Adversarial Model. We assume a probabilistic polynomial time (PPT)
adversary that can statically corrupt (i.e., announces the set of corrupt par-
ties before the partial evaluation query phase starts) at most (¢ — 1) number of
parties and each party if corrupted, is honest but curious.

The Security Notion. Let P = {P1,...,Pr} be the set of T parties and A be
a PPT adversary as described above. Let P’ be a statically corrupted set such
that, |P’'| = (t—1). Hence, after DPRF.Setup(1*, A; r) is run, A has access to key
shares of each P; € P’. We say that DPRF is secure if the winning probability of
A against a challenger C in the following game is negligible.

Game:

1. A sends a query input z € X' to C. C sends (fi(x),{fx,(%)}p,ep\p/) to A,
where fi, (z) = DPRF.PartialEval(z, P;, P’ | B;).

2. The above step is repeated at most a priori bounded number of times for
adaptive choice of query input z € X.

3. A sends a new challenge query x* (different from query phase inputs) to C.

4. C chooses a random bit b <= {0,1}. If b= 0, it sends fi(z*) to A, otherwise,

it sends some y £ Y to A, where ) is the range of underlying PRF.
5. A has to output a distinguishing bit 4'.

A wins the game, if b=10.

2.4 (t,T)-Threshold Secret Sharing

A threshold secret sharing scheme is an essential underlying primitive to build
a distributed PRF protocol. A (¢,T)-threshold secret sharing scheme shares a
key k among these T parties in such a way that any ¢ or more parties are able
to reconstruct it from their respective shares, though collaboration of less than
t parties does not suffice. We choose to use Benaloh-Leichter Linear Integer
Secret Sharing Scheme (LISSS) as described in [20]. The secret sharing scheme
is “linear integer” because key shares can be linearly combined to get the actual
secret back in a way that the coefficients of the linear combination are integers.
These coefficients used during the reconstruction of the secret are called recovery
coefficients. Though the original Benaloh-Leichter LISSS shares a scalar secret,
it can naturally be extended to share a secret in vector form. As we deal with
secrets belonging to Zy in later sections, we describe the LISSS scheme in the
context of sharing a secret vector k € Zg here.



54 S. Sinha et al.

Preprocessing. Here, we discuss some necessary preprocessing steps for thresh-
old secret sharing.

Formation of Distribution Matrix M: Formation of distribution matrix M
depends upon the MBF, representing a (¢, T)-threshold access structure. As any
MBF is a combination of AND and OR of Boolean variables, we need to focus
on the three following cases.

FEach Boolean variable x; corresponds to a singleton matrix with 1 as its only
element.

AND-ing of Mg, and Mg, : Let Mg, with dimension d, x e, and Mg, with
dimension d; X e, be the distribution matrices for Boolean formulae f, and f;
respectively. Then we form Mg, 1, as follows:

Calca  ColO

0 Cb() Cb

Here, ¢, and ¢, denote the first column of Mg, and Mg, respectively. C,
and Cj denote the rest of the columns of Mg, and Mg, respectively. Mg, n¢, has
dimension (d, + dp) X (eq + €p).

OR-ing of Mg, and Mg, : Let Mg, with dimension d, x e, and Mg, with dimen-
sion dp X e be the distribution matrices for Boolean formulae f, and f; respec-
tively. Then we form Mg, ¢, as follows:

co | Co |0
e |0 | Cy

Here, ¢, and ¢, denote the first column of Mg, and My, respectively. C,
and Cj denote the rest of the columns of Mg, and Mg, respectively. Mg, v ¢, has
dimension (d, + dp) X (eq + €5 — 1).

It can be easily verified that, the distribution matrix M for (¢, T')-threshold
secret sharing has dimension d x e, where d = (1)t and e = (1 + (1) (¢t — 1)).

Formation of Share Matrix p: p is a matrix with dimension e x n. Its first
row is populated from the n elements of the actual secret vector k € Zj. The
rest of the elements of the matrix are filled uniformly randomly from Z,.

Sharing. First we compute the matrix Mp that has d = (:f)t rows. Each of the

rows is a unique key share. Note that the number of t-sized subset of P is (f)
and each of the t parties in a t-sized subset will hold a keyshare corresponding
to that specific group, which justifies d = @)t to be the total number of unique

keyshares. For ease of explanation, we identify each keyshare with the following
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two attributes: (1) party _id ( which party the key share belongs to), (2) group _id
(which ¢-sized group the key share is used for). By enumerating over all ¢-sized
subsets and tagging them with corresponding enumerating serial numbers, we
get group_id’s of all ¢-sized subsets.

Now sharing of d rows among T parties happens in the following manner: we
consider d = (f)t TOWS as (?) chunks of rows of size t. Now for i € [(f)], we pick
i*" such chunk at a time and assign each of the ¢ rows to parties belonging to the
subset with group id i. For example, in a (3,5)-threshold secret sharing, subset
{P1, P2, P;} has group_id 1, so first three rows of Mp are assigned to Py, Py, P3
respectively. { Py, P2, Py} has group id 2, so next three rows of Mp are assigned
to Py, P», P; respectively and so on.

Reconstruction. Any ¢-sized group of parties, with their key shares, should
be able to reconstruct k. Given P’ = {P;,, P;,,..., P;,} C P with i1 < -+ <y,
each of the t parties will have one key share with group id corresponding to P’.
Let us denote these t key shares as {k;,,...,k;, }. In any t-sized group, the party
with minimum value of party id is called the group leader. Hence, P;, is the
group _leader here. In this LISSS the recovery coefficient is 1 for the group leader
and -1 for the rest of the (¢ — 1) parties. The key k can be reconstructed as
k=k; — Z;:z k;,. We exploit this reconstruction property in final evaluation
of (t,T)-threshold PRF.

Size of Secret Shares. After applying (¢, T)-threshold secret sharing on k €
Zq, each party gets (:tr_—11 ) key shares to store. So each party has to store (::_—11) .
n - [log, ¢] bits in total.

3 Owur Contribution: Proposed Distributed PRF

In this section, we first describe a post-quantum secure PRF in the random ora-
cle model. Next, in Sect. 3.2, we construct a distributed version of the same PRF
such that, if the key is distributed among T" parties, participation of all T' parties
is necessary to evaluate the PRF on a given input. We call it (T, T')-distributed
PRF, denoted with PQDPRFt 1. In Sect. 3.3, we provide a generalized construc-
tion of quantum-safe (¢,T)-distributed PRF, denoted with PQDPRF, 1, where
participation of all T parties is no longer a necessity, but the collaboration of
at least t (¢t < T') parties is required to evaluate the PRF on any given input.
In general, PQDPRF refers to both of these schemes in subsequent sections. We
elaborate on the choice of parameters for PQDPRF in Sect. 3.4. Section 3.5 com-
pares our work with existing lattice-based DPRF [25].

3.1 Underlying Quantum-Safe PRF

We discuss the straightforward construction of underlying quantum-safe PRF
from the Learning with Rounding (LWR) assumption in the following.
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The PRF Construction
Fixed parameters:

~ Key: k < K, where K = Zy. |Secret]

— ¢ € N, modulus of input space. [Public]

— p € N, modulus of output space. [Public|

Input: x € X = Zj

Evaluation: fi(x) = [(H(x), k)|, where H : {0, 1}* — Zg is a hash function,
modeled as a random oracle.

Choice of LWR over LWE. To realize a distributed PRF, we typically need an
algebraically structured PRF with some kind of “deterministic homomorphism”
between key space and output space. Unfortunately, it is hard to achieve such
an algebraically structured PRF from standard LWE. For example, the natural
LWE-based (weak) PRF would be: fx(x) = (x,k) + e, where the error e needs
to be deterministic, and thus needs to be generated using some (weak) PRF as
e = gk(x). Now, unless g is thresholdizable, f can not be thresholdized. Hence, in
order to avoid this circular requirement, we resort to LWR, where the rounding
operation enables deterministic homomorphism. Several advantages of choosing
LWR over LWE in the construction of PRF have been discussed in [27].

Post-quantum Security of the PRF. We discuss the security of underlying
PRF here.

Theorem 1. The above construction of PRF is secure in the random oracle
model if the LWR assumption holds.

Proof. We assume a distinguisher D which distinguishes PRF outputs on a poly-
nomial number of inputs of its choice from outputs of a truly random function
on the same set of inputs. Assuming that an LWR challenger C chooses to always
generate samples either from an LWR distribution with fixed secret k € IC or
from uniform random distribution over Zg x Z,, we build another distinguisher
D’ to distinguish LWR samples from uniformly random samples generated by C
in the following manner:

— D sends an input x; of its choice to D’.

— D' requests for a sample of the form (a;, b;) € Zy x Z, from C.

— Upon receiving (a;, b;), D’ now programs the random oracle such that H(x;) =
a;. It returns b; to D as the output for input x;.

After polynomial repetitions of above three steps, D returns a distinguishing
bit b.

D’ forwards the same bit b as distinguishing bit to C.

If C chooses to generate all (a;, b;) samples from LWR distribution, b; is indeed
PRF output for an input x;, since b; = [(a;, k)], = [(H(x:), k)], = fx(x;). On
the other hand if C chooses to generate samples from uniform distribution, b; is a
TRF (truly random function) output for input x;. Hence, if D guesses b correctly

with non-negligible probability, D’ wins the game against C with non-negligible
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probability, thus breaking the LWR assumption. Therefore, by contradiction, we
conclude that the above PRF construction is secure due to LWR assumption
with the same moduli p, q.

Furthermore, the proposed PRF is a post-quantum secure construction in
random oracle model?, since it relies upon quantum-safe LWR assumption. O

Polynomial Modulus-to-Modulus Ratio of LWR Parameters. During
the introduction of the LWR assumption [10], the hardness of decision-LWR
problem, when derived from the hardness of the well-established decision-LWE
problem, required a superpolynomial (in security parameter) “2” ratio while
keeping the dimension (n) and modulus (¢) same and allowing unbounded
number (m) of adversarial queries. Later, several works [6,11] focused on new
reduction techniques from LWE problem to LWR, problem, which would require
only polynomial “%” ratio, but allow a priori bounded number of adversarial
queries and a multiplicative decrease in dimension. Another work [27] proposed
a (non-practical) variant of LWR problem where reduction from LWE allows
an unbounded number of adversarial queries while achieving a polynomial “%”
ratio. However [5] proposes a dimension-preserving reduction from LWE to LWR
problem requiring only polynomial “4” ratio allowing a priori bounded number

of queries. Formally, we summarize the following theorem from Theorem 1.1
of [5].

Theorem 2 (Theorem 1.1 of [5]). Let A be the security parameter. Let W be
a B-bounded LWE noise distribution over Z and p,q = poly()\), m = poly(}),
n € N with % > mBM\. Suppose a PPT adversary A can distinguish LWR samples
with parameter (n, q, p,m) from uniform random samples with advantage e > A€
for some constant ¢ > 1. In that case, there must exist another adversary A’
which can distinguish LWE samples with parameters (n,q, m,¥) from uniform
random samples with advantage € = e(mB)~¢.

We conclude from the above theorem that it is possible to obtain a hard instance
of decision-LWR problem from a hard instance of LWE problem with the same

set of parameters (n,¢q) and polynomially large “%” ratio.

Concrete Choice of LWR Parameters. Although the theoretical analysis
above implies a technical gap between the hardness of LWE problem and LWR
problem, no practical attack on LWR exploits this gap to perform better than
an attack on LWE with the same set of parameters. Hence, several LWR-based
constructions [18,21], including NIST candidates (e.g., SABER) make a more
aggressive choice of LWR parameters than what is suggested by the theoretical
analysis, to build practically efficient cryptosystems. We follow the same app-
roach while providing a concrete choice of LWR parameters for our construction
in Sect. 3.4. Since the existing attacks on LWR do not capture the loss in security
while traversing from an LWE-based construction to an LWR-based construc-
tion, we first find a set of LWE parameters for which LWE problem is hard to

3 We assume quantum adversary with classical access to random oracle here [13].
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solve. Then we use them as LWR parameters while maintaining polynomial “%”
ratio.

3.2 Proposed (T, T)-Distributed PRF

Here, we propose the formal construction of (T, T')-distributed PRF, based on
the PRF described in 3.1, and discuss its proof of correctness, consistency, and
security.

Construction 1 (Post-quantum Secure (7,7)-Distributed Pseudo Random
Function (PQDPRFtT)). PQDPRFy 1 is a post-quantum secure (T,T)-
distributed PRF over an input space (or, domain) X = Ly and key space K = Zj .
The range of PRF is Y = 7Z,. Here q,p € N are publicly known moduli of input
and output space respectively; g1 € N (p < q1 < q) is another public modulus to
be used during partial evaluation. Assume, H : {0,1}* — Z7 is a hash function
modeled as a random oracle. Also, let us assume P = {Py,...,Pr} to be the
set of T' parties. The access structure Ar 1 here is a singleton set, such that,
Ap 1 = {P}. The protocol consists of the following three PPT algorithms,

PQDPRFt 1+ = (PQDPRF+ 1.Setup, PQDPRF+ 1.PartialEval, PQDPRF+ 1.FinalEval).

PQDPRFt 1.Setup(1*, A7 7): First, on input security parameter \, a key k Riay's
1s generated. Next, it is distributed among T parties using additive secret sharing
such that each party P; € P gets a key share k; and ZiTzl k; =k.

PQDPRF+ 1.PartialEval(x, P;): For a given input x, each party P; partially eval-
uates the PRF with its own share k; as follows: fi,(x) = [(H(x),ki)],, , and
broadcasts it to other (T — 1) parties.

PQDPRF 1.FinalEval({ fi, (x) }icr]): Each party having its own partial evalua-

tion and partial evaluations of rest (T — 1) parties, computes the final evaluation
of the PRF on the given input x as follows: fi(x) = inT:1 fie (x)1,,-

Remark. The construction PQDPRFt 1 requires a two-layered rounding; first
from modulo ¢ to ¢; during partial evaluation, and then from modulo ¢; to p
during final evaluation.

Proof of Correctness and Consistency. Here, we formally prove the cor-
rectness of our proposed PQDPRF~ . Let us express direct and distributed PRF
evaluation as

R = LHE) K0T, iy () = Do LHG0 k)], T,

Claim. The difference between direct PRF evaluation and distributed PRF eval-
uation on some input x is strictly upper bounded by 1 with high probability,
ie.,

S oy 00) = FE0) < 1.
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Proof. Note that by definition of round-off operation (Sect. 2.1), for any y € Z,,

we can express [y], as By + e, where —0.5 < e <0.5.
Now, assuming r = H(x), the direct evaluation can be written as,

00 = Lr )], = Do k) + ¢

where —0.5 < e’ < 0.5. The distributed evaluation can be expressed as,

T T
is q1
1 00 = (3oL, T, = [k - L e,
i=1 i=1
e d T
1
— L; Z )+ Z (r,k) + 2]}3
D, ¢ T D p T
= —(r,k)+ =) +e==(r,k)+ — - — +e,
QI( . (r.k) + ) q< ) o2
where, each —0.5 < e; < 0.5 and —0.5 < e < 0.5. Thus,
is ir p T
ff{ikt}le[T]( x) — fi"(x) < P +e—¢
1 Ir p
HE 0 = 5700 < | 2 G e

Ase,e’ € [-0.5,0.5), |e — €| < 1 holds true. Subsequently in Sect. 3.4 we discuss

choice of values p, ¢; such that € = q% . % is small enough and |e — €’| + € does

not exceed 1. O

Now, as both ff{fit}iel ]( x) and fg"(x) are integers, we can conclude that their
values are same except with a negligible probability. Thus, the correctness of our
proposed distributed PRF is satisfied.

Please note that in the case of (7', T)-distributed PRF, Ar r is a singleton
set, and hence, the consistency of PQDPRFt T is trivially satisfied.

Proof of Security. We recall the definition of security for a DPRF in the ran-
dom oracle model in Sect. 2.3. We provide the formal statement on the security
of the proposed DPRF in the following.

Theorem 3. Our proposed PQDPRFt 1 is secure if the underlying PRF is
secure.

Proof Overview. The underlying PRF, described in Sect. 3.1, is secure based
on the LWR assumption (see Theorem 1). The hardness of the LWR problem
is argued in Theorem 2 from the hardness of LWE problem. In the proposed
DPREF, as described in Construction 1, we rely on the hardness of the same LWR
instance, on which the underlying PRF relies. As the construction is in a (T, T')-
threshold scenario, we follow the security notion of Sect. 2.3 and assume maximal
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corruption by the adversary. In other words, we assume a PPT adversary that
has corrupted (7' — 1) parties and gained access to their key shares. Apart from
the actual PRF evaluation for each query input, it is also allowed to see the
partial evaluations of the honest parties for each queried input. The crux of
the proof of security for the proposed DPRF (over and above the security of
the underlying PRF) is to prove that the partial evaluation of an honest party
does not leak any meaningful information about the honest party’s key share. To
prove this, we propose a strategy to simulate the partial evaluation of the honest
party without using its actual key share, and then show that the distributions
of the real and simulated partial evaluations are statistically indistinguishable.

Proof of Theorem 3. We define four hybrids Hybrid,,, Hybrid,, Hybrid, and Hybrid,
(see the hybrid diagrams in the following page), such that in each hybrid,
the game is between a PPT adversary A and a challenger C. We assume
P = {P,...,Pr} to be a set of T parties. The adversary A has corrupted
(T — 1) parties among them (say, Ps,..., Pr without loss of generality). So, P,
is the only honest party, and its key share k; is unknown to the adversary. Each
hybrid consists of a query phase and a challenge phase. Only a priori bounded
number of queries are allowed in the query phase, whereas the challenge phase
consists of a single challenge. In the first hybrid (Hybrid,), the adversary sees the
actual partial evaluations in the query phase, and in the challenge phase, it sees
the actual DPRF evaluation on challenge input. In the last hybrid (Hybridy),
the adversary still sees the actual partial evaluations in the query phase, but
in the challenge phase, it sees a truly random value. We aim to prove indistin-
guishability of Hybrid; from Hybrid,, such that the adversary can not distinguish
the output of the proposed DPRF and the output of a truly random function
for the challenge input x* even in the presence of direct PRF evaluation and
partial evaluation by the honest party (P;) on a bounded number of uniform
random query inputs. For the sake of argument, we introduce two intermediate
hybrids. In Hybrid,, the adversary sees simulated partial evaluations in the query
phase, but in the challenge phase, it still sees the actual DPRF evaluation on
the challenge input. In the next hybrid (Hybrid,), the adversary keeps on see-
ing simulated partial evaluations in the query phase, whereas, in the challenge
phase, it sees a truly random value.

We prove the indistinguishability between the chain of hybrids in the form
of some lemmas, which, in turn, proves the theorem. a

Indistinguishability Between Chain of Hybrids
Lemma 1. Hybrid, is statistically indistinguishable from Hybrid,.

Proof. These two hybrids differ in the query phase, as in the first case the adver-
sary A sees the actual partial evaluation by the honest party, while in the second
case, A sees the simulated partial evaluation.

Actual partial evaluation in Hybridy: fi, (x) = [(r,k1)],, -
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Query Phase

Challenge Phase

The adversary A
sends a query input x
to the challenger C.
In response, C sends
fi(x) and fi, (x) to
A, where

r =H(x),

felx) = 1011,

fix (X) = |_<I‘, k1>.|q1

x*. In response,

A sends a
challenge input

it receives

from C.

Hybrid,
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Query Phase

Challenge Phase

A sends a query input
x to C.
In response, C sends

Sfr(x) and fi, (x) to A,

where

r =H(x),
fi(x) = [(r, k)] .,

) = [(r ki),

’fkl (x

A sends a
challenge input
x*. In response,
it receives from

C

Y = Lp.

Hybridg

Query Phase

Challenge Phase

Query Phase

Challenge Phase

A sends a query input
x to C.

In response, C sends
fielx) and fE7() to
A, where

r = H(x),

fi(x) = [, k)1,

The adversary
sends a
challenge input
x*. In response,
it receives

) = L) - 4 from the
p challenger.
T
= k),
=2
Hybrid,

The adversary sends a
query input x to the
challenger.

In response, the
challenger sends fx(x)
and fi™(x) to the
adversary, where

r = H(x),

A sends a
challenge input
x*. In response,
it receives from

Simulated partial evaluation in Hybrid;:

fil(x) =

= [(r,k) -

Lfi(x

) .

’6\@

Mﬂ E;Mﬂ

s
||
N

(r, ki) ]y,

(r, ki) g,

fix) = [, k)], ¢
- y* i Zp.
fim(x) = | fic(x) - %
=Y k),
Hybrid,
T

= L)1, 0= D ()],

= [(r, k1) — €],

Now we will prove that, the error term e in the expression of fs'm( ) can be
rewritten as (r,k’) for some k’ € {0,1}", such that,

fim(x) =

[(r,ka) — el = [(r ki) -

(r, k)1, =

[~ K)],, =

L{r k1)1,

which essentially has the same distribution as of fy, (x). Note that e = (r, k) —

L k)1, - 5

is non-zero with high probability and it is independent of ky. So,
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k' satisfying e = (r,k’) is independent of ky. Hence although, ki = k; — k’, k)
and ki are independent of each other.

Since actual partial evaluation fi, (x) = [(r,k1)],, in Hybrid, and simulated
partial evaluation fi™(x) = |(r,k})] g, in Hybrid; come from the same distribu-
tion, Hybrid, is statistically indistinguishable from Hybrid,,. a

What remains to be proved is the following claim.

Claim. Given r € Zy, and an error term e € Zy, e can be represented as (r, k')
for some k' € {0,1}"™.

Proof. We recall a simple application of leftover hash lemma [2,23,24], which
states that given an additive group G, and n elements of that group g1, ..., gn,
an arbitrary subset sum of those group elements is statistically indistinguishable

from a random group element g £ G. In other words, for a random k £ {0,1}"
with high entropy, .., k;g; is uniformly random over G, provided n > 3log |G|.
Analogously, Z, is an additive group with ¢ elements. For any r € Z; and
k' € {0,1}™, (r,k’) represents a subset sum of group elements, which is uniformly
random over Z, by leftover hash lemma, for unknown k' and n > 3logg.

Now let us assume that e can not be represented as (r,k’), which implies
that there exists at least one e € Z,, that can not be produced from the subset
sum Y., kir;, thus leading to the violation of leftover hash lemma.

Hence by contradiction we can say that for any e € Z,, there exists a k/,
such that (r, k') =e. 0

Lemma 2. Hybrid, is computationally indistinguishable from Hybrid, .

Proof. The challenger C in both these hybrids, responds to a query input x with
fi(x) and fi™(x). As fi™(x) is not a function of ky, it is never able to leak
any meaningful information about ky to the adversary .A. Hence the problem of
distinguishing Hybrid, from Hybrid; reduces to the problem of distinguishing the
PRF output of the form | (H(x), k)], from the output of a truly random function
in the challenge phase, which is hard since the underlying PRF has already been
discussed to be secure due to hardness of LWR problem (Theorem 1). Thus, we
conclude that Hybrid, is indistinguishable from Hybrid;. Also, since our DPRF
relies on the hardness of the same LWR instance, on which the underlying PRF
relies, no loss in security is incurred owing to the choice of LWR parameters for
PQDPREF. O

Lemma 3. Hybrid; is statistically indistinguishable from Hybrid,.
Proof. Lemma 2 implies the proof of this lemma. a

Finally, Lemma 1, Lemma 2, and Lemma 3 together establish the fact that
Hybrid, is indistinguishable from Hybrid;, which implies that, A can not dis-
tinguish PRF output from the output of a truly random function even after
seeing actual partial evaluations of the honest party for bounded number of
query inputs, thus completing the proof of Theorem 3. Hence, the proposed
(T, T)-distributed PRF is secure.
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3.3 Generalised (t, T)-Threshold PRF

Now we extend the protocol described in the previous section for a more general
setting of (¢, T)-threshold PRF, where 2 < ¢ < T.

Construction 2 (Post-quantum Secure (¢,T)-distributed Pseudo Random
Function (PQDPRF; t)). PQDPRF, 1 is a post-quantum secure (t,T)-threshold
PRF, whose input space X, key space KC and range Y are same as of PQDPRF+ T.
Here q,p € N are publicly known moduli of input and output space respectively,
while g1 € N (p < q1 < q) is the publicly known modulus of partial evaluation.
Let H : {0,1}* — Z be a hash function modeled as a random oracle. With the
key k € KC, distributed beforehand among T parties of the set P = {Py,...,Pr}
by some threshold secret sharing procedure, we expect any subset of P having size
at least t to be able to collaboratively evaluate the PRE on a given input x € X.
Ay ={A C P |Al =t} is the threshold access structure with |Ay | = (7;)
Any set with cardinality more than t is not explicitly considered as a member of
A; 1, because one can pick any t number of parties from that set and perform
the threshold evaluation on a given input. Hence, it is redundant to keep A C P
with |A| >t as a member of Ay r. PQDPRF, 1 consists of three PPT algorithms,

PQDPRF; 1t = (PQDPRF, 1.Setup, PQDPRF, 1.PartialEval, PQDPRF, 1.FinalEval).

PQDPRFt)T.Setup(l)‘,At’T): On input security parameter X\ and the threshold

access structure A¢ 7, a key k LK ois generated first. Next, it is distributed
among T parties with a threshold secret sharing scheme, as described in Sect. 2.4,
after which, each P; € P has to store (:f__ll) number of shares, each corresponding
to one of the (7;_711) number of t-sized subset of P, that P; belongs to. Notice
that the original key k is destroyed and stored nowhere once the threshold secret

sharing is done.

PQDPRF; t.PartialEval(x, P;, P’): For a given input x and a valid t-sized subset
P’ € Ay, party P, € P’ partially evaluates the PRF with its own share k;
corresponding to the subset P’ as fi,(x) = [(H(x), ki), , and broadcasts it to
other collaborating parties in P’ \ P;.

PQDPRF; 1.FinalEval(P’, { fi; (x) }ic[r)): Each party P; € P' having its own par-
tial evaluation and partial evaluations of rest of the (t — 1) parties, computes the
final evaluation of the PRF on the given input x as fi(x) = [ p,cps Cifi (X)],,-
Here, c;’s are the recovery coefficients and according to the threshold secret shar-
ing scheme, described in Sect. 2.4, recovery coefficient of the group leader (the
party in P’ with minimum party id) is 1 and recovery coefficient of each of the
other parties in P’ \ P; is —1.

Proof of Correctness and Consistency. Correctness of PQDPRF; 1t can be
proved essentially in the same way as of PQDPRFt 1, which in turn implies its
consistency (see Appendix A.1 for details).
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Proof of Security. The idea of the proof remains essentially the same as the
proof of security of (T, T)-distributed PRF (Sect. 3.2). We provide the detailed
proof of security of PQDPRF; 1 in Appendix A.2.

3.4 Choice of Parameters

The security of our proposed DPRF directly relies on the security of underlying
PRF (Theorem 3), which in turn relies on the hardness of decision-LWR prob-
lem (Theorem 1). Hence, we need to find a suitable set of parameters n, p, g for
which LWR problem is hard.

While an approach for determining LWR parameters (n,p,q) from LWE
parameters (n, ¢, o) (where « is the rate of Gaussian LWE noise) could be to fol-
low the theoretical analysis of LWE-to-LWR reduction maintaining polynomial
“%” ratio with a priori bounded number of samples (Theorem 2), we find the line
of works in [18,21] more suitable to choose LWR parameters for practical instan-
tiations. While analyzing the concrete hardness of LWR problem, they convert
the LWR samples to LWE samples by multiplying the sample with % and then
analyze the cost of known attacks to solve LWE. The works [4,16,18,21] based
on LWE or LWR assumption considers only primal and dual attacks as num-
ber of samples(m) in their case is at most 2n. However, there are several known
attacks against LWE [3] and none of the attacks on LWR exploits the theoretical
gap between the hardness of LWE and LWR problem to perform better than an
attack on LWE. So, we focus on finding parameters (n, ¢, &), for which the LWE
problem is hard with m number of samples. Here, we consider a larger a priori
bounded value of m, which can be interpreted as the allowed number of samples
during LWE-to-LWR reduction or the allowed number of queries in the query
phase of security game of DPRF. Note that lattice estimator® [3] evaluates the
hardness of LWE problem for a given set of parameters based on its resistance
against all practical attack methods. We use lattice estimator to find a suitable
LWE parameter choice n = 512,q¢ = 232, = 277, m = 22 with secret distri-
bution being uniform over Z%, and LWE noise distribution being Gaussian with
standard deviation agq, such that all the known attack methods have run time
more than 2190 which indicates that these parameter choices provide 160 bit of
classical security. We accordingly choose our LWR parameters n = 512, ¢ = 232.

Table 1. Parameters used in PQDPRF implementation

Parameter Value

Modulus of input space (X) of PQDPRF (g) |23
928

Modulus of partial evaluation space (¢1)
Modulus of output space () of PQDPRF (p) | 2'°
Dimension of key in PQDPRF (n) 512

4 https://github.com/malb /lattice-estimator.
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Now what remains is to choose a suitable value of modulus p and ¢ (p < q1 <
q) such that (1) I is polynomial in security parameter and (2) L is sufficiently
small to ensure the correctness of our proposed DPRF. We observe that choosing

p = 210 ¢; = 228 makes the value of qﬂl sufficiently small. Also note that the

ratio £ = 222 ig still polynomial in security parameter A = 160.
Finally, we provide our concrete choice of parameters for the proposed DPRF
in Table 1. We continue using this set of parameters while using it in PQ — DiSE.

3.5 Proposed PQDPRF vs. the Lattice-Based DPRF in [25]

A robust construction of lattice-based distributed PRF in adaptive corruption
settings with theoretically efficient parameters in the standard model was pro-
posed in [25], which builds upon LWE-to-LWR reductions preserving polynomial
large modulus-to-noise ratios [6,11]. On the contrary, our construction is in the
random oracle model and is targeted for semi-honest settings against static cor-
ruption. Hence, a direct experimental comparison is not feasible. However, the
fact that our construction is in the random oracle model makes it more efficient,
and hence, more suitable for real-world applications.

We compare the overheads of a single DPRF evaluation in [25] vs a single
DPRF evaluation in our case for the same LWR parameters (n, ¢, p). In [25] the
PRF evaluation assumes a L-bit input and the evaluation (see Eq 2 of Sect. 3.2)
requires (i) L matrix multiplications with each matrix in Zg*™, which needs
a O(log L)-depth circuit with w(m?) field operations per matrix multiplication
(leading to a total cost of L-w(m?) field operations), (ii) A matrix multiplication
between two matrices of dimension n x m and m x m respectively (leading to
a cost of w(mn) field operations), (iii) A matrix-vector multiplication where the
matrix has dimension n x m and the vector has dimension n (leading to a cost of
O(mn) field operations). So, the overall cost of single PRF evaluation in [25] is
L -w(m?). On the other hand a single PRF evaluation in our case (see Sect. 3.1)
requires multiplying two vectors of Zj which only costs O(n) field operations.
In the case of the DPRFs obtained by distributing the evaluation of the above
PRFs, the above cost analysis still applies for a single partial evaluation done by
each of the parties.

We now present a back-of-the-envelope calculation to compare these over-
heads for typical parameters used in practical applications (e.g., n = 512, ¢ = 232
for LWR hardness, an input length of L = nlogq¢ and dimension m = 2nlog q).
In this case, the number of field operations required for a single PRF evalua-
tion (equivalently, a single DPRF partial evaluation) in [25] is at least 10'0x
larger than that for our construction. This clearly establishes that our construc-
tion is practically more efficient.

We defer the performance comparison of the proposed DPRF with
other (more practically efficient) existing DPRFs (namely the AES-based DPRF
and the quantum-broken DDH-based DPRF) till Sect. 5, where the experimental
results are provided in the context of an application (DiSE).
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4 Application

The LWR-based distributed PRF, that we propose and discuss in detail in the
previous section, can be plugged into various real-world applications of dis-
tributed PRF. In this work, we particularly focus on the DiSE (Distributed
Symmetric Encryption) protocol, originally proposed in [1] and view it as an
application of DPRF. We validate our proposed LWR-based DPRF by using it
in DIiSE to make it quantum-safe and call it PQ — DiSE. For the sake of exposi-
tion, we dedicate one subsection below to recall the original DIiSE protocol of [1]
and then discuss the proposed PQ — DiSE in the following subsection.

4.1 An Overview of the DIiSE Protocol

Like any other encryption scheme, the distributed symmetric-key encryption
(DiSE) scheme also consists of three PPT algorithms: (i) Setup, (ii) Encrypt and
(iii) Decrypt, but with a difference that, both Encrypt and Decrypt are distributed,
i.e., encryption and decryption are performed by, instead of a single server, a
number of servers in distributed manner. In a (¢,7)-DiSE, any t(< T') parties
among the T parties are contacted with a request of encryption or decryption
and each of them contributes some partially computed values, which are then
combined in order to get the end result of encryption or decryption.

Definition 2 (Distributed Symmetric-key Encryption (DiSE)). Let P =
{P;}icrm be the set of parties/servers to perform DPRF evaluation. DiSE protocol
internally uses the following cryptographic primitives as its building blocks:

(i) A DPRF DP = (DP.Setup, DP.PartialEval, DP.FinalEval),

(ii) A PRG (pseudo random generator) of polynomial stretch,

(iii) A commitment scheme C = (C.Setup, C.Com).

DiSE consists of the following three protocols built over these primitives,

DiSE.Setup(1*,¢,T): DP.Setup(1*,t,T) is evecuted to provide evaluation key
shares ek; to P; Vi € [T]. Also C.Setup(1*) outputs public parameters pp om-

DiSE.DistEncrypt(m, S, {ek;} p,cs): An entity E requiring encryption of plaintext
m follows the method below.

— E contacts a set S C P of servers, such that |S| =t and provides them with
a = C.Com(m, ppeom; p), where p is randomness used in commitment.

— Now z; = DP.PartialEval(a, P;, S) is generated parallelly by each P; € S with
its evaluation key share ek; and sent back to E.

- E now computes w = DP.FinalEval(S,{z;}p,cs) and then e =
PRG(w) @(m||p). Finally ¢ = («a,e) is the ciphertext of m. Here, w can
be viewed as the message-specific encryption key.

DiSE.DistDecrypt(c, S, {ek;} p,cs): Distributed decryption of a ciphertext c is per-
formed by an entity D as follows.

— D parses ¢ into (a, e) and contacts a set S C P of t servers and provides them
with «.
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- Each P; € S computes z; = DP.PartialBval(«, P;, S) with its evaluation key
share and sends it to D.

- D combines the z;’s to retrieve w = DP.FinalEval(S,{z;}p,es). Next
e P PRG(w) gives back m||p. It then checks if « is indeed a commitment to
m with randomness p. If it is, then m is returned as the result of distributed
decryption.

Relation Between DIiSE and the Underlying DPRF DP. We recall a the-
orem from [1] in order to better understand how the security of DiSE depends
upon the underlying distributed PRF (assume that other two primitives PRG
and C are already secure).

Theorem 4. DiSE is secure if the underlying DPRF DP is secure.

Informally, the security of a DPRF DP implies that its output retains pseudoran-
domness even when evaluated in a distributed manner (See Sect. 2.3 for formal
security notion). The interesting part of the theorem is that the security of the
underlying DPRF DP directly implies the security of the distributed encryption
scheme.

Instantiations of DP. DiSE [1] use the following two instantiations of DP for
semi-honest settings:

— DDH-based DPRF: Proposed in [28], DDH-based DPRF is secure due to
the hardness of the classical DDH problem. It uses Shamir’s secret sharing
scheme for sharing the PRF evaluation key among the servers. However, it is
vulnerable to quantum attack.

— AES-based DPRF: A general construction of DPRF from any existing PRF
was proposed in [28]. DiSE uses AES-based DPRF accordingly and proves it to
be secure. It uses replicated secret sharing to share the evaluation key among
the T servers. Although AES(128)-based DPRF is believed to provide 64-bit
quantum security, it is also not built upon any quantum-safe assumption.

The paper [1] compares performances of both these instantiations and concludes
that DiSE performs well with AES-based DPRF for lesser values of T'. Note that
none of the underlying DPRF is inherently quantum-safe.

4.2 Our Improved PQ — DIiSE Protocol

As security of DIiSE directly depends upon the security of the underlying DP
(Theorem 4), we obtain post-quantum secure version of DiSE (i.e., PQ — DiSE)
by instantiating the underlying DP with our proposed post-quantum secure
PQDPRF. Our implementation of PQ — DiSE is publicly available here®.

Technical Challenges of PQ — DiSE Implementation. DPRF implementa-
tion in original DiSE generates 128-bit DPRF output from 128-bit input, whereas
our proposed DPRF generates logp = 10 bit output from n -log ¢ = 512 x 32 bit

5 https://github.com/SayaniSinha97/PQDiSE-from-PQDPRF.
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input. We face two-fold challenge here: (i) converting 128-bit input to 512 x 32-bit
input in order to apply PQDPRF, and (ii) generating a total of 128 pseudorandom
bits in the output. The first challenge is overcome by applying hash function on
the input concatenated with a counter value repeatedly until the length of these
concatenated hash outputs equals 512 x 32 bits. The next challenge is handled
by running 13 instances of PQDPRF together in order to obtain (13 x 10) = 130
bits and extract 128 bits as the message-specific encryption key to be used later.
We use Blake2° to instantiate the hash function, modeled as a random oracle.

Table 2. Comparison of key sizes for DPRFs

DPRFs Size of secret key Total number of Number of key Secret sharing
(as well as each key | unique key shares | shares that each method
share) party stores
AES-based 128-bits ( : 1) (7;:11) Replicated secret
sharing
DDH-based 256-bits T 1 Shamir’s secret
sharing
LWR-based | 512x32-bits () -t () Benaloh-Leichter
(proposed) LISSS

An Analysis on the Key and Key Shares. Table 2 provides a comparative
analysis on the size of secret key and key shares with respect to the three DPRF
instantiations. Even with a larger key-size requirement, our proposed LWR-based
DPRF outperforms the other two due to its highly parallelizable nature, as
evident from the results in the next section.

5 Experimental Result

We now provide a detailed performance analysis of our proposed PQDPRF in
PQ — DiSE based on various metrics with respect to DDH-based DPRF and
AES-based DPRF, used in DiSE, all in semi-honest adversarial settings. All
experiments have been executed on a high-end server with an Intel(R) Xeon(R)
Gold 6226 CPU (2.70GHz clock frequency), 96 cores, 256GB RAM. All graphs
have their y-axis in logarithmic scale. During performance evaluation, we disable
the use of AES-NI instructions by AES-based DPRF to ensure fair comparison
among software implementations of the three DPRFs. We optimize our LWR-
based DPRF implementation that involves arithmetic in Z, using NTL".

Partial Evaluation Time vs. (¢,7) Values [Fig. 1]. In any (¢, T)-distributed
PRF scheme, the partial evaluation of the DPRF on a given input is computed
parallelly by all ¢ collaborating parties with their respective secret share. Here,
we analyze the maximum partial evaluation time required by any of the ¢ par-
ticipating parties for all three DPRFs under consideration.

6 https://www.blake2.net /.
7 https://libntl.org/.
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AES-based DPRF: A linear increase in partial evaluation time in a loga-
rithmic y-axis actually reflects an exponential increase in time. In AES-based
DPRF, computation of partial evaluations by ¢ parties involves all ( tfl) key
shares; however, the load of computation is not evenly distributed among all ¢

parties. In particular, the maximum computation time increases linearly with
T-1

(4 1)

DDH-based and LWR-based DPRF: Partial evaluation time remains

almost constant with increasing T' for both these DPRFs. Because, in both
cases, given an input, each of the ¢ parties parallelly performs a similar com-
putation with its own secret share. Hence, each of the ¢ parties requires a
similar time in computing partial evaluation. Thus, the maximum time taken
by any party to complete the partial evaluation phase does not depend upon
the value of t or T'. The graph line of LWR-based DPRF lies slightly below
the line of DDH-based DPRF due to the fact that the modular dot product
of two vectors in Zj takes less time than modular exponentiation.

Final Evaluation Time vs. (¢,7) values [Fig. 2]. This graph compares the
three DPRFs in terms of final evaluation time required by them with varying 7T'.

Partial Evaluation Time (in ps)

The final evaluation time of combining ¢ partial evaluations increases lin-
early with increasing value of ¢ for all the three DPRFs due to the fact that,
in final evaluation phase, LWR-based DPRF involves modular vector addi-
tion of ¢ partial evaluations, whereas AES-based DPRF involves XORing of
t partial evaluations. XORing, being a lighter operation than vector addi-
tion, places AES-based DPRF at a lower position in y-axis than LWR-based
DPRF. DDH-based DPRF involves exponentiation and then multiplication
of ¢ partial evaluations, leading to its higher value along y-axis. Note that
although the final evaluation time of the proposed LWR-based DPRF is more
than that of AES-based DPRF, we argue the efficiency of LWR-based DPRF
considering the total (partial + final) evaluation time of both the DPRFs, as
we discuss next.
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Total Evaluation Time vs. (¢,7) Values [Fig. 3]. This graph compares the
three DPRFs in terms of total (partial + final) evaluation time required by them
with varying T. Keeping Fig. 1 and Fig. 2 in mind, the plots here are quite self-
explanatory and clearly depict the efficiency of the proposed LWR-based DPRF
for larger values of T

Partial Evaluation Time vs. Party-id [Fig. 4]. We plot in this graph the
partial evaluation time taken by each of the ¢ collaborating parties in a ¢-sized
subset for a specific pair of values, (¢,7) = (12,24).

— AES-based DPRF: As mentioned earlier, all the ¢ parties here do not have
the same amount of computation load during partial evaluation phase. With-
out loss of generality, if we denote the collaborating parties with {Py,..., P;},
P requires computation using (:tr:ll) key shares, P, requires (:::22) key shares

and so on. Finally P; requires (Ta t) = 1 key share in its partial evaluation,
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thus involving all (:1) key shares. Thus, each participating party has a dif-
ferent computation cost, as depicted in the graph.

— DDH-based and LWR-based DPRF: In both cases, each participat-
ing party needs only one key share for partial evaluation computation and
involves the same modular dot product operation between vectors (LWR-
based DPRF) or exponentiation operation (DDH-based DPRF) irrespective
of its party-id. This feature can be useful while enabling parallel computation
by all participating parties.

Throughput vs. (¢,7) Values [Fig. 5]. We plot the throughput (number of
encryptions per second) of DiSE using DDH-based and AES-based DPRF and
PQ — DiSE using LWR-based DPRF.

— DiSE: When instantiated with AES-based DPRF, its throughput decreases
with increasing value of ¢, T, but remains stable with increasing value of t,T
if DDH-based DPRF is used.

— PQ — DiSE: Its throughput is stable for all values of ¢, T'. It performs slightly
better than DIiSE using DDH-based DPRF and significantly better than DiSE
using AES-based DPRF for larger values of ¢, T.

Ezxplanation: Our PQ — DiSE outperforms DiSE in terms of throughput
owing to the fact that LWR-based DPRF outperforms AES-based and DDH-
based DPRF in terms of evaluation cost as discussed in analysis of Fig. 1.

Note: Although we provide the analysis with respect to (£, T')-distributed PRF,
the graph patterns of Fig. 1, 2, 4, 5 retain for any 1 < ¢ < T. However we prefer
(%, T)-distributed PRF for the sake of analysis, as the value of (z) is the largest
fort =21,

2

Concluding Remark. AES-128 provides 128-bit classical security and 64-bit
quantum security (against Grover’s algorithm [22]), which is also the security
level for the AES-based DPRF implemented in DIiSE. One could upgrade to
AES-256 to provide stronger quantum security, but this would only degrade the
performance of the AES-based DPRF further. The DDH-based DPRF provides
128 bits of classical security, and is quantum-broken. In contrast, our proposed
DPRF uses an LWR parameter set that provides the quantum-equivalent of 160-
bit classical security (as per the latest lattice estimator) but still outperforms
AES-based DPRF for higher values of T' and DDH-based DPRF slightly for all
values of T'.

6 Conclusion and Future Work

We proposed a (T, T)-distributed quantum-safe PRF based on Learning with
Rounding (LWR) problem and its generalized (t,T")-distributed version in this
work. We proved its correctness, consistency as well as security. We also showed
how to use our proposed DPRF to obtain an efficient quantum-safe version of
DiSE [1], namely PQ — DIiSE. We outline some future research directions below.
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— Scalability with an even larger number of parties. Our (¢,7)-DPRF
requires each party to store (:tr:ll) number of key shares after threshold secret
sharing, thus suffering from high space complexity. Future works may consider
modifying the linear integer secret sharing protocol in order to reduce space
complexity and make the DPRF scalable for an even larger number of parties.

— Adaptive security. We assumed that the corrupted set of parties is statically
fixed before the game begins between the challenger and the adversary. We
leave it as an open problem to allow our DPRF to handle the scenario, where
parties are corrupted dynamically during the game.

— Security in Quantum Random Oracle Model. We leave it as an open
problem to prove the security of the proposed LWR-based distributed PRF in
the quantum random oracle model, where the quantum adversary has quan-
tum access to the random oracle and, thus is able to query the random oracle
with a state in superposition.

Acknowledgement. We would like to thank the Prime Minister Research Fellowship
(PMRF) funded by the Ministry of Human Resource Development, Government of
India, for supporting our research.

A Generalised (t,T)-Threshold PRF

A.1 Proof of Correctness and Consistency

Correctness of PQDPRF; 1 can be proved essentially in the same way as of
PQDPRF 1, which in turn implies its consistency. Let P = {P;};c[r] be a set of
T parties, and A; r be a threshold access structure defined on it. Without loss of
generality let us consider P’ = {Py,..., P;} € A7 to be a valid t-sized subset.
Clearly P; is the group_leader of P'. Let H : {0,1}* — Z7 be a hash function
modeled as a random oracle. Given an input x, let us denote the direct PRF
evaluation with fd"(x) and distributed PRF evaluation by ¢ number of parties
in P’ using PQDPRF, 1 as fJ*(x). They are computed as follows.

t

ARG = LMK, ) = LR k), = D LRG0 ki), 1,

=2

Claim. Difference between direct PRF evaluation (fd"(x)) and distributed PRF

evaluation (fZ*(x)) on some input x is strictly upper bounded by 1, i.e.,

A () — ()] < 1.

Proof. Note that by definition of round-off operation (Sect. 2.1), for any y € Z,,
we can express [y], as %y + e, where —0.5 < e < 0.5.
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We assume r = H(x). Now the direct evaluation can be written as,
dir _ K\ = p k ’
k(%) =[{rk)], = q(r, )te

where |¢/| < 0.5. The distributed evaluation can be expressed as,

t

FE ) = LUk, — DL ki), T,

i=2
q : q
=(rke)- e =Y ((n k) = +ei)l,
q P q
t t
= I‘k1 Z Zez
=2 =2
Q1 t
S\_ <r?k>+§—|p
@)+ o) +e
q1
p p t
==(r,k)+—- - +e
q< ) q 2

where, each —0.5 < e; < 0.5 and —0.5 < e < 0.5 due to the definition of the
round-off operation. Thus,

. . t )
R - 0 < B Lo — (500 - o) < |2 e el
1
We choose values of p, t and ¢; such that, the quantity ¢ = :41 . % becomes

sufficiently small. As —0.5 < e < 0.5 and —0.5 < ¢’ < 0.5, |e — €’| < 1 always
holds true. Thus, the quantity € + |e — €’| is highly unlikely to exceed 1. Hence,
the difference between direct PRF evaluation and distributed PRF evaluation is
strictly upper bounded by 1, i.e.,

| (x) - A" (x)] < 1
O

As both fit(x) and fdi"(x) are integers, we conclude that their values are same
except with a negligible probability. Thus correctness of our proposed distributed
PRF PQDPRF; 1 is satisfied.

As correctness of distributed PRF implies its consistency, the proposed
PQDPRF; T is consistent. We can see the consistency of the proposed DPRF by a
different argument as well. Let us assume two distinct valid subsets 51, .52 € A 7,
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such that fg(x)| s, and St (x)| g, are result of DPRF evaluations computed
by S; and S, respectively. We can write,

dist p p 1 dist p p t
R T T P N N PRI
fk (X)|Sl q<r? >+q1 2+€1, k (X)‘S2 q(rv >+q1 2+627
so that they together imply,
|05, = S (3] g, | = ler — el

Now as —0.5 < e; < 0.5 and —0.5 < ep < 0.5, ler — e2| < 1 always holds true.
And both fﬁ'“(x)’ s, and fﬂ'“(x)‘ g, being integral values, they always evaluate
to the same value.

A.2 Proof of Security

The idea of the proof remains essentially the same as of proof of security of
(T, T)-distributed PRF (Sect.3.2). However among T parties of the set P =
{P1,...,Pr}, only t parties are required to collaborate to evaluate the PRF on
a given input. We assume a PPT adversary .4 which has corrupted a subset
Pe C P of size (t —1) and thus acquired all their key shares. We show that, even
if A is able to see the PRF evaluation and all the partial evaluations of the honest
parties in P\ P¢ for a priori bounded number of query inputs, it will not be able
to distinguish output of the PRF from the output of a truly random function on
a challenge input, which is essentially different from the query inputs.

Recall that, after PQDPRF; 1.Setup, each P; € P gets to store (:tp__ll) number
of secret shares, each corresponding to one of the t-sized subsets, that P; may
belong to. In each of the hybrids, if P; € P\ P is a honest party, we denote
by k; its key share corresponding to the t-sized group {P;} |JPc, and by gl, the
group leader of {P;} | Pc.

Now we define four hybrids consisting of game between the PPT adversary
A and a challenger C as described in the tabular forms for the ease of exposition.

Indistinguishibility Between the Hybrids

The indistinguishibility of Hybrid, from Hybrid, for (¢,7T)-distributed PRF can
be proved analogously as done in Sect. 3.2 for (T, T)-distributed PRF. Please see
the detailed hybrids on the next page.
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Challenge
Query Phase Challenge Query Phase Phase
Phase C. on
A sends at(iugry mput x A sends a query input x | Treceiving a
Then, C reSp(.)nds with C, on to €. C responds with challenge
’fk(X) and receiving a fie(x) and nput x
{fis (%)} p,ep\ P, Where challenge {fx; (%)} p,eP\ P Where from A,
i : 1: H(;) input x* r = H(x), resi(})lnds
’ from A, fux) = [(r,k)] , Wit a
fx(x) = [{r, kﬂp, responds k(x) = Hp random
ith ). — )
fio) = L kT, | | £ 00 = L kla | | [ Z g,
Hybrid
yorido Hybrid,
Challenge Challenge
Query Phase Phase Query Phase Phase
On receiving query input x On receiving query input x
from A, C responds with PRF from A, C responds with PRF
evaluation fx(x) and evaluation fx(x) and
simulated partial evaluations simulated partial evaluations
fqr the honest parties fqr the honest parties
{f&7 (%)} p,ep\pe, where {f&™(x)}p,ep\pc, Where
r =H(x), f(x) = [(r,K)],, r =H(x), flx) = [(r, k)], C. on
if i == gl, if i == gl, receiving
C, on a
EPGo = LA - 4| reeaTe i) = L) - 1| chatlonee
! D a ' D input x*
hallenge f; A
+ r, k; ) C * + r, k s rom A,
PEZPC < J H q1 lnput X P;)c < J>—| q1 responds
’ from A, ’ with a
otherwise, reSp,OndS otherwise, random
with
* * R
sim q X ). sim q L.
Fir o) = Linvdeg) = At - ) LM i) — i) — oy - 20—
- > k), - > k),
P;ePc,j#8l P;EPc,j#8l
In the above expression, k; is In the above expression, k; is
the key share of P; € Pc the key share of P; € Pc
corresponding to t-sized corresponding to t-sized
group {P;} JPc. group {P;} U Pec.

Hybrid,

Hybrid,
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Abstract. Thus far, several papers estimated concrete quantum
resources of Shor’s algorithm for solving a binary elliptic curve discrete
logarithm problem. In particular, the complexity of computing quantum
inversions over a binary field Fan is dominant when running the algo-
rithm, where n is a degree of a binary elliptic curve. There are two major
methods for quantum inversion, i.e., the quantum GCD-based inversion
and the quantum FLT-based inversion. Among them, the latter method
is known to require more qubits; however, the latter one is valuable since
it requires much fewer Toffoli gates and less depth. When n = 571, Kim-
Hong’s quantum GCD-based inversion algorithm (Quantum Information
Processing 2023) and Taguchi-Takayasu’s quantum FLT-based inversion
algorithm (CT-RSA 2023) require 3,473 qubits and 8, 566 qubits, respec-
tively. In contrast, for the same n = 571, the latter algorithm requires
only 2.3% of Toffoli gates and 84% of depth compared to the former one.
In this paper, we modify Taguchi-Takayasu’s quantum FLT-based inver-
sion algorithm to reduce the required qubits. While Taguch-Takayasu’s
FLT-based inversion algorithm takes an addition chain for n—1 as input
and computes a sequence whose number is the same as the length of the
chain, our proposed algorithm employs an uncomputation step and stores
a shorter one. As a result, our proposed algorithm requires only 3,998
qubits for n = 571, which is only 15% more than Kim-Hong’s GCD-based
inversion algorithm. Furthermore, our proposed algorithm preserves the
advantage of FLT-based inversion since it requires only 3.7% of Toffoli
gates and 77% of depth compared to Kim-Hong’s GCD-based inversion
algorithm for n = 571.

Keywords: ECDLP - quantum cryptanalysis - FLT-based inversion -
quantum resource estimate - addition chain

Introduction

1.1 Background

RSA [11] and elliptic-curve cryptography (ECC) [8,9] are the most widely used
public-key cryptosystems in practice. The security of RSA and ECC relates
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to the computational complexity of the factorization problem and the elliptic
curve discrete logarithm problem (ECDLP). Since there are no algorithms that
solve the factorization problem/ECDLP in polynomial time, RSA and ECC are
believed to be secure. In 1994, Shor [13| proposed a quantum polynomial time
algorithm for solving the problems. Thus, quantum resource estimates and opti-
mized quantum circuits of the algorithm has been actively studied.

In this paper, we focus on the ECDLP over a binary elliptic curve called the
binary ECDLP. Banegas et al. [1] presented the first concrete quantum circuits
for solving the problem. For this purpose, they proposed a quantum elliptic curve
point addition algorithm and two quantum inversion algorithms over Fyn, where
n is called a degree of a binary field and n = 163, 233, 283, 571 are recommended
by NIST [2]. Banegas et al. estimated the concrete quantum resource, where they
regarded required qubits as the main optimization target. The number of Toffoli
gates is their secondary one since the gates are much more expensive than CNOT
gates. Since the depth of circuits is also known to be cared as mentioned in [12],
we collectively call the required qubits, Toffoli gates, and the depth the main
quantum resource throughout the paper. Banegas et al.’s analysis indicates that
the quantum resource varies greatly depending on which of their two quantum
inversion algorithms is used. They concluded that their GCD-based inversion
algorithm is better than their FLT-based one'since the former requires fewer
qubits, while the latter requires much fewer Toffoli gates and less depth. When
n = 571, their GCD-based and FLT-based inversion algorithms require 4,015 and
9, 137 qubits, respectively, while the latter requires only 2.4% of Toffoli gates and
94%?2 of depth to run Shor’s algorithm. A point to note is that the depth of a
circuit is not an exact value but an upper bound. In general, it is technically hard
to analyze fully parallel quantum computation towards minimizing the depth.

Afterward, there have been several subsequent works that updated the quan-
tum resource estimate by presenting improved quantum inversion algorithms.
Kim and Hong [6] proposed a GCD-based inversion algorithm that reduces all
main quantum resources of Banegas et al.’s GCD-based algorithm. Although
Putranto et al. [10] proposed an FLT-based inversion algorithm that reduces the
depth of Banegas et al.’s FLT-based algorithm, it requires more qubits. Tag-
uchi and Takayasu [15] proposed FLT-based inversion algorithms that reduce
the depth (resp. required qubits) of Banegas et al.’s (resp. Putranto et al.’s)
FLT-based algorithms. On the other hand, these works do not change the
relationship between GCD-based and FLT-based inversion algorithms. When
n = 571, Kim-Hong’s GCD-based and Taguchi-Takayasu’s FLT-based inversion
algorithms require 3,473 and 8, 566 qubits, respectively, while the latter requires
only 2.3% of Toffoli gates and 84% of depth to run Shor’s algorithm. Therefore,
it is desirable to develop GCD-based (resp. FLT-based) inversion algorithms

! FLT is the abbreviation of Fermat’s little theorem.

2 Although Banegas et al. [1] used Hoof’s quantum multiplication algorithm [5], we
replace it with more efficient Kim et al.’s quantum multiplication algorithm [7] and
update their analysis. We use the more efficient algorithm throughout the paper.
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that drastically reduce required Toffoli gates and depth (resp. required qubits)
of Kim-Hong’s GCD-based (resp. Taguchi-Takayasu’s FLT-based) algorithms.

1.2 Owur Contribution

In this paper, we break the relationship between GCD-based and FLT-based
inversion algorithms by presenting an FLT-based method that requires much
fewer qubits. When n = 571, our method requires 3,998 qubits to run Shor’s
algorithm and reduces all main quantum resources of Banegas et al.’s GCD-
based algorithm [1]. Although the required qubits are still more than Kim-Hong’s
GCD-based algorithm, they are competitive since ours are just 15% more than
Kim-Hong. Furthermore, our method preserves the advantage of FLT-based
inversion since it requires only 3.7% of Toffoli gates and 77% of depth to run
Shor’s algorithm compared to Kim-Hong’s GCD-based inversion algorithm.
We briefly explain three technical ingredients to obtain the result.

Register-Bounded Addition Chain. Taguchi-Takayasu’s FLT-based inver-
sion algorithm takes an addition chain as input and computes a sequence whose
number is the same as the length of the chain. Briefly speaking, the addition
chain represents the sequence of computation. Unfortunately, this procedure
wastes the number of ancillary registers since there are several terms that are
stored until the end of the computation, while they are used only at an early step
of the computation. If we delete such terms, we can save the required qubits;
however, an addition chain does not indicate which terms should be deleted
and when. For this purpose, we introduce a register-bounded addition chain.
A register-bounded addition chain is a longer sequence than an addition chain
and represents the sequence of computation/uncomputation. We find register-
bounded addition chains for NIST recommended degrees n = 163, 233,283,571
and reduce the required qubits for inversions.

Modified Elliptic Curve Point Addition Algorithm. Although a register-
bounded addition chain enables us to reduce required qubits, the resulting inver-
sion algorithm requires slightly more qubits than Banegas et al.’s GCD-based
inversion algorithm. Since our final target is not an inversion itself but Shor’s
algorithm, we modify Banegas et al.’s point addition algorithm [1] and further
reduce the required qubits for running Shor’s algorithm. Interestingly, our pro-
posed point addition algorithm itself does not reduce the required qubits; how-
ever, it becomes effective when combined with our inversion algorithm. Specif-
ically, we design our point addition algorithm so that the proposed inversion
algorithm and the point addition algorithm share the same ancillary registers.

Depth Reduction of Quantum Multiple Squaring Circuits. The above
two ingredients enable us to run Shor’s algorithm with 3,998 qubits for n = 571.
However, the algorithm lost the advantage of FLT-based inversion since it
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requires more depth than GCD-based inversion algorithms. To preserve the
advantage, we find how to perform parallel quantum computation during FLT-
based inversion and reduce the depth. Since FLT-based inversion is inherently
required to compute 2F-th powers many times for large k, previous FLT-based
inversion algorithms applied a circuit for computing squaring k times for comput-
ing 2F-th power. In contrast, we analyze quantum circuits for computing 2*-th
powers directly and find that much less depth is sufficient for any n. The circuits
are effective for all FLT-based inversion algorithms and enable our algorithm to
preserve the advantage of FLT-based inversion.

Organization. In Sect. 3, we present our FLT-based method. In Sect. 4, we analyze
the quantum resource and compare it with previous ones.

2 Preliminaries

In Sect. 2.1, we explain binary elliptic curves and a binary elliptic curve discrete
logarithm problem (binary ECDLP). In Sect. 2.2, we explain quantum compu-
tations and quantum basic arithmetics over Fan. In Sect. 2.3, we describe Shor’s
algorithm for solving the binary ECDLP.

2.1 Binary Elliptic Curve Discrete Logarithm Problem

Let n be a non-negative integer. A binary elliptic curve of degree n is given
by y? + zy = 2% + ax? + b, where a € Fon and b € F,. The set of rational
points on an elliptic curve and a special point O form an abelian group under
point addition, where O is the identity element called a point at infinity. Let
P = (z1,y1) and Q = (x2,y2) denote rational points on a binary elliptic curve.
If P#Q, P+ Q= (x3,y3) is given by

23 =N+ +z+32+0a, y3= (24 23)A+ 23+ V2,
where A = (y1 + y2)/(x1 + z2). Otherwise, P+ P = (x3,ys3) is given by
r3=M4+A+a, y3=27+(\+1)zs,

where A = x1 4 y1/21. As the above formulas imply, we compute an inversion
when we compute a point addition. Hereafter, [k] P denotes a sum of k P’s under
point addition. The above two formulas indicate that we can compute [k]P from
P and k in polynomial time. However, there is no known polynomial time algo-
rithm that computes k from P and [k]P. This problem over a binary field is
called the binary elliptic curve discrete logarithm problem (binary ECDLP).

2.2 Quantum Computation in Fax

In classical computation, we use a “bit” represented by 0 or 1. In contrast,
in quantum computation, we use a “qubit” represented by [0),|1) and their
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superposition. Let m(z) be an irreducible polynomial in Fy[z] of degree n and
(m(z)) be an ideal generated by m(z) over Fy[z]. To represent an element
in f €Fan by qubits, we use a polynomial representation based on a relation
Fan ~ Fa[z]/(m(z)). Since f is represented by a polynomial of degree less than
n—1, we represent it by n qubits and corresponding coefficients of the polynomial
as the quantum state of |0) or |1). Hereafter, we call the n qubits representing
an element in Fon a register.

We employs quantum circuits to describe quantum computations, where X
gates, CNOT gates, Toffoli (TOF) gates, and SWAP gates are basic quantum
gates. An X gate exchanges the coefficients of |0) and |1). Let a,b, and ¢ denote
|0) or |1). Then, CNOT, TOF, and SWAP operations are given by CNOT(a,b) =
(a,a®b), TOF(a,b,c) = (a,b,c® (a-b)), and SWAP(a,b) = (b, a), respectively.
A TOF gate is believed to be much more expensive than a CNOT gate. To
explain our method in Sect.3, we may use a SWAP gate; however, we do not
use the gate actually by designing subsequent circuits appropriately.

Next, we explain quantum basic arithmetics. Let f,g, and h denote quan-
tum states of elements in Fon. We use ADD (resp. SQUARE and spSQUARE) to
denote Banegas et al.’s algorithm [1] for addition (resp. squaring) over Fan,
where ADD (f,g) = (f, f +g), SQUARE (f) = f?, and spSQUARE (f,g) = (f, f*>+9).
We can use ADD to compute a copy of a given element by ADD(f,0) = (f, f).
We use SQUARE™! and spSQUARE_1 to denote inverse operations of SQUARE
and spSQUARE, respectively. Banegas et al.’s algorithms [1] for computing the
operations are based only on CNOT gates, where ADD, SQUARE, and spSQUARE
require n, at most n? — n, and at most n?> CNOT gates, respectively. Circuits
for computing SQUARE™! and spSQUARE™! are reversed circuits for computing
SQUARE and spSQUARE, respectively. We use MODMULT to denote Kim et al.’s
multiplication algorithm over Fan [7], where MODMULT (f,g,h) = (f,g,f g + h)
which requires TOF gates as well as CNOT gates. Indeed, we can compute
multiplication of given two elements by MODMULT (f,¢,0) = (f,g, f-g). Since
we consider the arithmetics over Fon, it holds that ADD(f, f) = (f,0) and
MODMULT (fvga fg) = (fu 9, O)

Finally, we describe INV which denotes the inversion computation over Fon,
where INV(f,[0,...,0],0) = (f,[r1,.--,7m], f~1). Observe that INV requires
m + 2 registers whose first one stores f € Fan. The other m + 1 registers are
ancillary registers that include the last one to store f~!. We call the regis-
ter for output and the m registers enclosed by [ | inversion ancillary registers.
Moreover, we call an inversion ancillary register a dirty ancillary register if the
output r; is non-zero. We use INV~! to denote an inverse operation of INV, where
INVY(F e, rm), 78 = (F,[0,. .., 0],0). We use INV™! only when the input
[r1,...,7m] in the inversion ancillary registers is the same as the output of INV
in the same registers.

In this paper, the above quantum computations also take registers as input,
e.g., ADD(g1, g2), where g; and go is a register which stores f € Fan and 0,
respectively. Then, ADD(g1, g2) describes ADD(f,0) = (f, f).
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2.3 Shor’s Algorithm for Solving the Binary ECDLP

Shor’s algorithm mainly consists of a point addition part and a quantum Fourier
transform. Since the former and the latter require O(n®) and O(n?) quan-
tum gates, respectively, the point addition part is relatively expensive. Bane-
gas et al.’s point addition algorithm [1] consists of quantum arithmetics over
Fyn denoted by MODMULT, INV, INV~!, spSQUARE, const ADD, ctrl ADD, and
ctrl const_ADD. Although we do not explain in detail, const ADD, ctrl ADD,
and ctrl const ADD operate addition, where they require at most n X gates,
at most n TOF gates, and at most n CNOT gates, respectively. In this paper,
we count the numbers of TOF and CNOT gates and ignore X gates by following
previous works [1]. Banegas et al.’s point addition algorithm requires 3n + 1
qubits except inversion ancillary registers. More precisely, they require 2n + 1
qubits for input and n qubits for an ancillary register of point addition which
we call a point addition ancillary register.

3 Owur Method

In Sect. 3.1, we explain register-bounded addition chain. In Sect. 3.2, we propose
a quantum point addition algorithm. In Sect. 3.3, we describe the depth reduction
of squaring. In Sect. 3.4, we show our quantum FLT-based inversion algorithm.

3.1 Register-Bounded Addition Chain

Hereafter, we use a notation (a) := f* for simplicity for f € Fj.. Then, the
FLT-based inversion computes (—1) = (2" — 2). We focus on the computation
of (2"~ — 1) hereafter since we can compute (2" — 2) by applying squaring to
(2n=1 1),

Taguchi-Takayasu’s FLT-Based Algorithm. At first, we summarize
overvie- ws of Taguchi-Takayasu’s quantum FLT-based inversion algorithm [15].
To be precise, Taguchi and Takayasu proposed two algorithms, i.e., Basic algo-
rithm and Extended algorithm. Hereafter, we only describe thier Extended algo-
rithm since their Extended algorithm requires fewer qubits than their Basic algo-
rithm. Therefore, we call their Extended algorithm simply Taguchi-Takayasu’s
FLT-based algorithm.

We review an addition chain that is Taguchi-Takayasu’s FLT-based essential
ingredient to improve previous FLT-based algorithms.

Definition 1 (Addition chain). Let ¢ and N denote non-negative integers.
An addition chain for N of length £ is a sequence pg = 1,p1,p2,...,p¢ = N
which satisfies the following condition:

e Forall s =1,2,...,¢, there exist i and j which satisfy p, = p; + pj, where
0<1,7<s.
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We call each term p, of an addition chain a doubled term or an added term. In
particular, if there are no ¢ and j which satisfy 0 < ¢,j < s,ps = p; + p;, and
p; # pj, and an added term otherwise. Taguchi-Takayasu’s FLT-based algorithm
takes (2P0 — 1) = f € F5, and an addition chain {ps}_, for n — 1 of length ¢ as
inputs and computes (2Pt — 1), (2P2 — 1), ..., (2P¢ — 1) = (2771 — 1) sequentially
by the relation

(2% — 1) x (28 — 1) = (2218 _ 1), (1)

Taguchi-Takayasu’s FLT-based algorithm computes (2P —1) in two distinct ways
for all 1 < s < ¢ depending on whether p; is an added term or a doubled term.
If ps is an added term, we compute (2Ps — 1) = (2Pi*tPi — 1) from (2P* — 1) and
(2Pi — 1) which have been stored distinct registers. In particular, we first apply
SQUARE p; times to (277 — 1) and obtain (2PiTPi — 2Pi). After that, we apply
MODMULT to (2Pi*Pi — 2Pi) and (2P — 1) and obtain (2PiTPi — 1) = (2P* —1). On
the other hand, if ps is a doubled term, we first compute a copy of (2P — 1)
in another ancillary register by using ADD. Then, we apply SQUARE p; times to
the copy and obtain (2Pi*Pi — 2Pi). Finally, we apply MODMULT to (2Pi — 1) and
(2pitPi — 2Pi) and obtain (2PitPi — 1) = (2Ps — 1). To reduce the qubits, we
uncompute the copy of (2P — 1) by ADD. Theorem 1 describes the quantum
resources for Taguchi-Takayasu’s FLT-based algorithm.

Theorem 1 ([15], Theorem 2). Let f be an element in Fs. and {ps}'_, be
an addition chain for n — 1 of length £ with py is an added term. Taguchi-
Takayasu’s FLT-based algorithm takes f = (1) and {ps}_, as input and outputs
(—1) = (2™ — 2) with £ ancillary registers and £ multiplications.

Taguchi-Takayasu’s FLT-based algorithm requires ¢ ancillary registers to store
(2P= — 1) for all s = 1,2, ..., ¢. Furthermore, every term of an addition chain for
Taguchi-Takayasu’s algorithm appears only once.

Our Proposed Algorithm. Now, we reduce even more qubits than Taguchi-
Takayasu’s FLT-based algorithm. Keen readers may notice that we can further
reduce required qubits by uncomputing not only copied (2Ps —1) but also original
(2P= — 1) itself. For an example of Taguchi-Takayasu’s FLT-based algorithm
with an addition chain {ps}?_, = {1,2,3,6,9,18,27,54,108, 162}, observe that
{1,2,3,6,9,18} will not be used again after computing 27. In other words, after
we compute 27, we can uncompute {2,3,6,9, 18} if possible. However, while an
addition chain tells us a sequence of computation, it does not tell us which terms
can be uncomputed and when. Therefore, we need another method to analyze our
proposed algorithm. For this purpose, we introduce register-bounded addition
chains.

Definition 2 (Register-Bounded Addition Chain). Let { and N denote
non-negative integers. A register-bounded addition chain for N of length £ is a

sequence p = {ps}icy = Do = 1,P1,P2,--- , D7 which satisfies following condi-
tions:
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e Foralls=1,... ,17, there exist i and j which satisfy p; +p; = ps and p; €
S(p,s —1),p; € S(p,s — 1), where S(p,t) :== {ps | 0 < s < t, there exists no
s" such that 0 < &' <t,s # 5, and ps = ps }.

e There exists w which satisfies p, = N.

e Fuvery term appears once or twice.

Due to the first condition, a register-bounded addition chain {js}¢_, is an addi-
tion chain. Therefore, we can also define doubled terms and added terms for a
register-bounded addition chain. Furthermore, a sequence of different terms of
{ps}_, is also an addition chain. A register-bounded addition chain explains
both computations and uncomputations. Specifically, the first and second time
each term p, appear, we compute and uncompute f2°°~!, respectively. Briefly
speaking, S(p,t) is a set of pg,p1,...,p: that appear only once. Thus, when
we compute or uncompute ps for all 1 < s < ?, we choose former terms that
appear once in pg, p1, - - - , Ps—1, while there is no condition for an addition chain.
Then, we define a function C(p,t) by C(p,t) := 1 when p; is a doubled term and
C(p,t) = 0 otherwise. We also define r(p,t) which we call the register counting
function given by r(p,t) = #S(p,t) + C(p, t) — 1. Intuitively, r(p, t) denotes the
number of required ancillary registers when we compute or uncompute (27t —1).
Moreover, we use the notation R(p) := max,,;7(p,t) hereafter. Thus, R(p)
describes the number of required ancillary registers for a whole inversion com-
putation. We explain quantum resources for a quantum FLT-based inversion
algorithm which we compute and uncompute based on a register-bounded addi-
tion chain by Theorem 2.

Theorem 2. Let f be an element in F3., {ps}i_q be a register-bounded addition
chain for n — 1 of length £, and ¢ denote the length of an addition chain which
consists of different terms of {ps}i_o. There exists a quantum algorithm that
takes f = (1) and {ps}i_y as input and outputs (—1) = (2" — 2) with R(p)
ancillary registers, £ multiplications, and 2¢ — ¢ dirty ancillary registers at the
end of the algorithm.

Proof. We compute or uncompute (2°+ — 1) in the s-th procedure for all s =
1,...,£. More precisely, we compute (2P — 1) if p, appears for the first time
in {ps}‘_, and uncompute (2Ps — 1) if it is the second time to appear. By the
second condition of Definition 2, we compute (2"~! — 1) in the w-th procedure,
where 0 < w < £ in the same way as Taguchi-Takayasu’s FLT-based algorithm.
Then, we explain uncomputations of (27¢ — 1). We only describe the case that
Ps is a doubled term.

Uncomputation of (27s — 1): We have (2P — 1) stored in the register gy, ,
0 stored in the register gi,, and (2P — 1) stored in the register gx,, where
ps = Pi +p; and ¢ € S(p,s — 1). At first, we apply ADD (g, , gk,) and obtain
(27¢ — 1) in the gy,. Next, we apply SQUARE p; times to the g, and obtain
(2Pi —1)2"" = (2Pi+Pi _2Pi) Then, we apply MODMULT (gk, , Gk, Gk, ) and obtain
<215i+17i _ 25i> % <217i _ ]_> + <2135 _ ]_> — <2P~i+ﬁz‘ _ 1> + <2135 _ ]_> — <2135 _ ]_> +
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(2P —1) = 0 in the gy, by (1). By the same procedure as the uncomputation
of copy in Taguchi-Takayasu’s FLT-based algorithm, we uncompute the g, .

Then, (2P — 1) is stored after the t-th procedure if and only if s € S(p,t).
Therefore, we can always compute or uncompute (2P — 1) since there exist
(271 — 1) and (2%7 — 1) in some registers such that 0 < i,j < s,ps = p; + p; by
the first condition of Definition 2. Furthermore, #5(p,t) describes the number
of registers that store non-zero terms including input after the ¢-th procedure.
However, we also require another register to copy (27t — 1) when p; is a doubled
term. In other words, we use #S5(p, t)+ 1 registers when p; is a doubled term and
#5(p, t) registers when p; is an added term for ¢-th procedure. Then, the number
of required ancillary registers for ¢-th procedure is #S5(p, t)+C(p, t) —1 = r(p, t).
Therefore, we require max,, ;7 (p, t) = R(p) ancillary registers. Moreover, each
procedure requires a multiplication, in other words, we require l multiplications
in total. The third condition of Definition 2 ensures that we compute ¢ different
terms only once, in other words, we do not compute (2s —1) after we uncompute
(2Ps — 1). We require ¢ registers to store them. However, there are 7(p, 57) non-
zero ancillary registers at the end of the algorithm. Therefore, we uncompute
¢ — 7(p,f) times. Then, it holds that £ = £+ (£ — 7(p,£)) = 20 — 7(p, £). By this

relation, it holds r(p, £) = 2¢ — ¢. O

By Theorem 2, we use R(p)n qubits except for gg, and 0 =20— r(p, €~) multi-
plications for our proposed inversion algorithm. Then, when we fix £ and R(p),
larger r(p,¢) is desired to reduce multiplications. On the other hand, it holds

that 7(p, ¢) < R(p) by the definition of R(p).

3.2 Modified Quantum Point Addition Algorithm

As we explained in Sect. 2.3, there are two types of ancillary registers, i.e., inver-
sion ancillary registers and a point addition ancillary register to run Shor’s
algorithm. We modify Banegas et al.’s quantum point addition algorithm [1]
described as Algorithm 1 to reduce required qubits by combining with our FLT-
based inversion algorithm in Sect.3.1, where we use R := R(p) to describe the
number of inversion ancillary registers for simplicity. Intuitively, we delete the
point addition ancillary register and perform point addition by using an inver-
sion ancillary register. Briefly speaking, Algorithm 1 is the same as Banegas et
al.’s algorithm by deleting SWAP operations in lines 6 and 16, exchanging line
5 and line 7, and exchanging line 15 and line 17. The modification changes
the role of a register A which is a point addition ancillary register in Banegas
et al.’s algorithm, while it is both a point addition ancillary register and an
inversion ancillary register in Algorithm 1. In other words, all R inversion ancil-
lary registers are divided into the registers for only inversion computation, i.e.,
gi,---,9r—1, and the register for both inversion computation and point addi-
tion computation, i.e., A. Then, the number of qubits for Shor’s algorithm with
Algorithm 1 is (2 + R)n + 1 qubits, while (3 + R)n + 1 qubits with Banegas et
al.’s point addition algorithm. We note that Algorithm 1 itself does not purely
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Algorithm 1. Proposed quantum point addition algorithm

Input: An irreducible polynomial m(z) € Fa[z] of degree n, a coefficient of an binary
elliptic curve a, single qubit ¢, an elliptic curve point Pi = (z1,y1) stored in
x,y, a fixed elliptic curve point P> = (x2,¥2), a non-negative integer R, registers
91,92, .-+, 9Rr—1,gr = A initialized to an all-|0) state

Output: (z,y) = P+ P = P3(x3,y3) ifg=1
(z,y) = P1 = (z1,22) if ¢ =10

1: const ADD (z2,x)
2: ctrl comst ADD4(y2,y) // A=0
3: INV (z,[g2,..-,9r-1,A],91)
4: MODMULT (g1,y, A)
5: MODMULT (z, \, y)
6: SWAP (y,\) // A=0
7 INV Y(z,[g2,...,9r—1, A, 91)
8: SWAP (y, )
9: spSQUARE (\,y)
10: ctrl const ADDy(a + x2,x)
11: ctrl ADDg(\,x)
12: ctrl ADD4(y,x)
13: spSQUARE (A, y)
14: SWAP (y,A) // A=0
15: INV (z,[g2,---,9R—1,A], 1)
16: SWAP (y, \)
17: MODMULT (z, A, y)
18: MODMULT (g1,y,A) // A=0
19: 1INV (2, [g2,...,9r-1, ], 91)
20: const_ADD (z2,x)
21: ctrl ADDy(z,y)
22: ctrl const_ADD,(y2,y)

improve Banegas et al.’s point addition algorithm since Algorithm 1 requires
some conditions. Concretely, Algorithm 1 requires that INV and INV~! satisfy
two conditions, i.e., (i) A store 0 at the end of INV and (ii)  at the begin-
ning of INV (INV~!) and z at the end of INV (INV~!) must be the same state.
Quantum FLT-based inversion algorithms always satisfy (ii). However, previous
FLT-based inversion algorithms do not satisfy (i) since they fully use all registers
at the end of algorihtm. Our proposed FLT-based inversion algorithm can pre-
pare a clear register at the end of algorithm by choosing {ps}§:0 properly. We
explain the detail in Sect. 3.4. On the other hand, previous quantum GCD-based
inversion algorithms satisfy (i), while they do not satisfy (ii). GCD-based inver-
sion algorithms apply Euclidean algorithm to z and m, where m is an irreducible
polynomial in Sect.2.2. In Euclidean algorithm, we compute = «+ =z mod m or
m <« m mod x until it holds x = 1 or m = 1. Thus, x at the end of quantum
GCD-based inverion algorithms is different state to z at the beginning.
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3.3 Depth Reduction of Quantum Multiple Squaring Circuits

We explain how to reduce the depth of quantum circuits for computing 2*-th
powers. Let f = ag+ajx+---+a,_12" ! be a polynomial which represents an
element in Fon with coefficients a; € Fy. For an irreducible polynomial m(z) €
Fy[z] of degree n, we have f? = ag + a12® + -+ + ap_12°"~2 mod m(z) =
ap+ajz+---+al,_ ;2" mod m(x). Since each @} is a sum of ag, a1, ..., a,_1,
there exists a matrix T, = (¢; ;) € GL,(F2) which satisfies

lah,a),db, ... al, )T = Thlag,a1,az,...,an_1]", (2)
where t; ; € Fy for all 1 < 4,5 < n. The matrix T}, is uniquely determined for
m(x); in other words, the relation (2) holds for any f.

Banegas et al.’s Estimate. We explain how Banegas et al. [1] constructed a
quantum circuit of SQUARE and spSQUARE by using the above matrix T;,. We also
review their quantum resource estimation of SQUARE and spSQUARE.

SQUARE. Let T}, = L, U, P,, be an LUP decomposition, where L,, and U,, are lower
and upper triangular matrices, respectively, and P, is a permutation matrix. The
multiplication by matrices U,, and L, (resp. P,) can be performed by CNOT
(resp. SWAP) gates. In particular, Banegas et al. showed that the numbers of
CNOT gates are the number of ones in L,, and U,, except their diagonal entries;
thus, the circuits require at most n(n — 1)/2 CNOT gates and the depth is at
most n(n — 1)/2. In total, SQUARE(f) = f2 requires at most n> —n CNOT gates
and the depth is at most n? — n. Since we can compute the concrete number of
CNOT gates of SQUARE for every irreducible polynomial m(x), we use S@,, to
denote the number, where the depth is at most SQ,,.

sSpSQUARE. For the above matrix T,, determined by an irreducible polynomial
m(z), let spSQ,, > n denote the number of ones in T;, including diagonal entries.
Let a; and b; be coefficients of f and g for x?, respectively. Then, we can describe
a computation spSQUARE (f, g) = (f, f2 +g) by

I, O
|:T: I::| [a/Oaa/la---7an71;b07b1a"'7bn71]—r7 (3)

where I,, and O, are an identity matrix and a zero matrix, respectively. As
SQUARE, we can compute spSQUARE with spSQ, CNOT gates and the upper
bound of depth of the circuit is spSQ,,.

Depth Reduction of spSQUARE. Observe that spSQ, > n holds due to T,, €
GL,(F3). However, we show that a smaller depth is sufficient for computing
spSQUARE with the following stronger claim.

Theorem 3. For a matriz H,, = (h; ;) € M, (F2), there exists a quantum circuit

) o | T .
for computing a multiplication by a matriz Hn ?n} with depth at most n.
n n
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110
Before providing a proof, we show an example for H3 = | 101 |, where
111
spSQs = 7. In this case, we want to compute
I3 O:
[H‘; [;} [ao, a1, ..., an—1,b0,b1, ..., by—1]"

= [ao,al,ag, bo + ao + ai, b1 + ag + as, bo +ag + a1 + GQ]T.

It is easy to check that spSQs = 7 CNOT gates are sufficient for the purpose
by adding ag to the fourth, fifth, and sixth bits, a; to the fourth and sixth bits,
and as to the fifth and sixth bits. We can design a circuit with depth spSQ3 =7
by applying the CNOT gates one by one. On the other hand, we find that the
depth n = 3 is sufficient by applying several CNOT gates simultaneously. In
particular, the following design of a circuit works with the claimed depth, while
distinct CNOT gates do not share their working bits at the same time:

e Add ag and as to the fourth and sixth bits, respectively.
e Add ag,ay, and as to the sixth, fourth, and fifth bits, respectively.
e Add ag and a; to the fifth and sixth bits, respectively.

We express the design by matrices

100 010 000
Ihb=1000], In=1001], In=1100
001 100 010

such that H3 = Iy + I + I and every rows and columns have at most one
1. The three columns of the matrices correspond to the first, second, and third
bits, while the three rows correspond to the fourth, fifth, and sixth bits. The
condition Hy = I'y + Iy + I3 ensures that matrices Iy, I, and I'; represent the
computation by Hj, while the other condition ensures that distinct CNOT gates
do not share their working bits at the same time. We show how to decompose
H,, to at most n I;’s in general and provide a proof of Theorem 3.

Proof. We define a matrix I'(H,, ) = (¢(t);,;), where ¢(¢); ; = h; jif h; ; = 1 and
j—i=t modnfor.=0,1,...,n—1. Then, H, = I'(H,,0)+ '(H,,1)+---+
I'(H,,n—1). We can compute CNOT(a;, b;) for (i, j) € I'(Hp, ) simultaneously
for each t = 0,1,...,n— 1. Therefore, the depth for computing H,, is at most n.

O

By Theorem 3, we reduce the depth for spSQUARE from S@Q,, to n. However,
this is only a small contribution when we estimate the resources for Shor’s algo-
rithm since H,, = T, is a sparse matrix and S@, is sufficiently close to n for all
NIST-recommended n. On the other hand, if H,, is not sparse, we can drastically
reduce the depth.

We consider quantum FLT-based inversion algorithms. Let k be a non-
negative integer. When we compute a doubled term, i.e., (22 — 1) by using
a register g; which stores (2% — 1) and g, which stores 0, we employ a quantum
computation called ADD-SQUARE” given by
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1: ADD (g1, 92)
2: fors=1,...,k do
3:  SQUARE (g2)

Previous works estimated the depth for ADD-SQUARE® is 1 + kSQ,,. We give a
tighter upper bound for ADD-SQUAREF.

Let f in Fo» and denote f = ag+a1z+asx?+- - +an_12"" ", where a; € Fs.
By observing (2), T¥ satisfies

[a(()k)7 agk), a;k), cee a;kzl]T = T ag,a1,a9,...,a4n_1]", (4)
where agk) is a coefficient of ¢ for f2° for i = 0,1,...,n — 1. Then, a quantum
computation called spSQUARE® given by

ITL O7l
|:Tk I :| [ao,al,...,an,l,0,0,... ,O]T

also describes ADD-SQUARE*. Thus, let H,, = T* in Theorem 3, the depth for
spSQUAREF is at most n. This is a significantly large contribution since T con-
tains about n?/2 ones for almost all k for all n. In almost all k, the upper
bound of the depth for spSQUARE” is much smaller than the upper bound of the
depth for ADD-SQUARE"* for all n, however, we choose the lesser way when we
apply this in FLT-based inversion algorithms. We note that we use an inverse
of spSQUAREF or ADD-SQUAREF written by (spSQUAREF)™! or (ADD-SQUAREF)~!
when we uncompute (22% — 1). Then, we use a reversed circuit of spSQUARE” or
ADD-SQUARE”. We repeatedly claim that we can apply the above depth reduction
to all quantum FLT-based inversion algorithms.

When we compute or uncompute an added term, we can use SQUARE® which
is given by applying LUP decomposition to T*. Let SQ%k) denote the upper
bound of the CNOT gates and the depth for SQUARE*. In FLT-based inversion
algorithms, we compare the depth of applying SQUARE k times, i.e., kSQ,, and
the depth of SQUAREF, i.e., SQ%’O and choose the lesser way.

3.4 Proposed Inversion Algorithm

In this section, we construct our proposed quantum inversion algorithm that

is based on the idea in Sect.3.1. As we described in Sect. 3.1, larger r(p,¢) is
desired to reduce multiplications and it follows (5, /) < R(p). However, to apply
our proposed quantum point addition algorithm in Sect. 3.2, conditions (i) and
(ii) must be satisfied. Our proposed inversion algorithm always satisfies (ii). On
the other hand, (i) is satisfied if and only if r(j,£) < R(p). For this reason, we
consider the case of (p, EN) = R(p)—1 hereafter. We apply the depth reduction in
squaring described in Sect. 3.3. Then, we prepare several sequences that describe
our proposed inversion algorithm. We define two sequences {as}*_, {bs}’_, that
satisfy pa, € S(p,s—1) and pg_ € S(p,s—1), and ps = pa, +p;_ forall1 <s < l,

where {ps }fzo is a register-bounded addition chain for n — 1. We assume that
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s = by if and only if ps is a doubled term of {ps }fzo. For the register-bounded
addition chain {p,}’_,, we define two sets

D= {se{1,2,...,0} | a, = bs},
M= {s€{1,2,....0} | as # bs}.

Now, we consider the general case of computation or uncomputation of (2Ps — 1)
by using (273 — 1) and (2P%: — 1) for all 1 < s < / since we explained only a
simple case. More precisely, we compute or uncompute (2P — 1}2% in the hs-th
register by using (265 —1)2™* in the hy-th register and (2% —1)2”" in the ho-th
register, where ay, Bs,7vs are integers for all s =1,... ,0. We decide that vs =0
when we compute <2ﬁs — 1) and oy = (s when ps is a doubled term. Then,
we define the sequences {an) ‘L, {ng) ¢, {Qs}'_, such that an), ~§”>,c}s
describe the times to apply squaring or its inverse to the hi-th register, the ho-th
register, hs-th register in the s-th procedure, respectively. In this case, it holds

that an) = —ayg, ~§b) = Pa. — Bs, and Qs = —v, by observing

—as 2Pag —Ps

(@ =) Tk (@ = 1) = et 1y = (),

((2135 _ 1>2“’5>27% — <2ﬁs _ 1>_

As we described in a proof of Theorem 2, we can construct a quantum algorithm
that computes or uncomputes by the above two relations based on a register-
bounded addition chain {ps}_,.

We describe our proposed algorithm in Algorithm 2 which takes a register-
bounded addition chain {p,}‘_, for n — 1 of length 7 and sequences {a,}‘_,,
{bs}e_,, {an) ‘ {ng) ¢, {Qs}_, as input. caseOPTSQUARE(g,v) applies
ca- seSQUARE(g,v) if [v|SQ, < SQ&UD and applies caseSQUAREY(g) otherwise,
where caseSQUARE (g,v) applies SQUARE v times to g when v > 0, applies
SQUARE™! —wv times to g when v < 0, and do nothing when v = 0 and
caseSQUAREY(g) applies SQUAREY(g) when v > 0, applies (SQUARE™")"!(g)
when v < 0, and do nothing when v = 0. caseOPTspSQUARE(g1, g2,v)
applies ADD(g1,g2) and caseSQUARE(go,v) if 1 + [v|SQ, < n and
applies casespSQUAREY (g, g2) otherwise, where casespSQUARE" (g1, g2) applies
spSQUARE? (g1, g2) when v > 0, applies (spSQUARE™")"!(g1,g2) when v < 0,
and applies ADD(g;,g2) when v = 0. We note that a (SQUAREY)™! circuit,
a (spSQUARE”)’1 circuit, and a caseOPTspSQUA- RE~! are a reversed cir-
cuit of SQUAREY, a reversed circuit of spSQUAREY, and a reversed circuit of
case0PTspSQUAREY, respectively. pl[s] stores the register number which stores
f2lforalll1 <s< l. pld[s] stores the register number which stores the copy
of 2" =1 for all s € D. The size of pld, i.e., d equals #D. We note that j; does
not always equal n — 1. In other words, Ip11d) does not always store (2"~! — 1).
Then, we define the non-negative integer w such that g, stores (2n=1 —1)
at the end of the loop from line 2 to line 16. By SWAP procedure in line 18,
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Algorithm 2. Proposed inversion algorithm

Input: An irreducible polynomial m(z ) € Fa[z] of degree n, a register-bounded addi-

tion chain {5.}—o, sequences {a:}o1, (b}l (G Vs, (O} mr, {@eH o, &
register go which stores a polynomial f € F3. of degree up to n — 1, registers
g1,..-,9R(5) initialized to an all-|0) state, arrays pl[@}, pld[J], a non-negative inte-
ger w which satisfies p, =n — 1

Output: g1 = f2 —2

1: dcount < 0

2: for s = 1,...,l7d0

3 if s € D then

4: caseOPTspSQUARE (gpi(a.]s gpld[dmnt] Q")
5: case0PTSQUARE (gpi(a,), QL )

6 case0PTSQUARE (gp1(], @s)

7 MODMULT (gp1(a ], Gpld[deount]> pl[s])

8 caseOPTspSQUARE ™! (9pifas]» Ipldjdeount] , Pas)
9: decount < dcount + 1

10: else //seM

11: case0PTSQUARE (gpi[a,), Qg )

12: caseOPTSQUARE (g5 | QM)

13: case0PTSQUARE (gpi(s], Qs)

14: MODMULT (pi(a.}» Gpifs.» 9plls])

15: SQUARE (gpije))
16: SWAP (gpifi, 91)

(2" — 2) = (—1) is always stored in g;. However, this procedure can be abbre-
viated because we can change the registers in advance such that pllw] = 1. In
Sect. 4, we explain our choices of £ and R(p) and show {f,}’_, for all n.
Finally, we describe the number of qubits of our method and Banegas et al.’s
method for Shor’s algorithm. Banegas et al. [1] showed the number of qubits
for Shor’s algorithm using their quantum point addition algorithm with their
quantum GCD-based inversion algorithm is 7n + [logn] + 9 for all n. Then, we
show the number of qubits for our method for Shor’s algorithm in Theorem 4

Theorem 4. The number of qubits for using Algorithm 1 as a point addition

with Algorithm 2 as an inversion algorithm which takes {p‘s}ﬁzo as an input is
gwen by (2+ R(p))n + 1.

Therefore, if we find a register-bounded addition chain with R(p) < 5, our
method achieves fewer qubits than Banegas et al.’s GCD-based method.

4 Comparison

In Sect. 4.1, we explain our choice of register-bounded addition chains and com-
pare the number of qubits for an inversion. In Sect. 4.2, we describe the trade-off
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Table 1. Our choice of register-bounded addition chains {ﬁs}gzo

n Register-bounded addition chains

163 | {p:}12, = {1,2,3,6,9,6,3,2,18,27, 54,27, 18, 108, 162}

233 | {ps}18, = {1,2,3,4,7,4,3,2, 14,28, 29, 28, 14, 58, 116, 58, 232}

283 | {ps}i8, ={1,2,3,6,9,15,9,6,3, 30,45, 47,45, 30, 2, 94, 141, 94, 282}

571 | {ps}2%, = {1,2,3,4,7,4,3,2,14,28,29, 57,29, 28, 14, 114, 171, 285, 171, 114, 570}

for our proposed inversion algorithm. In Sect.4.3, we compare the quantum
resources in a whole Shor’s algorithm between our proposed method and previ-
ous methods.

4.1 Our Choice of Register-Bounded Addition Chains

As we showed in Theorem 2, the number of ancillary registers and the number
of multiplications for our proposed inversion algorithm depends on {ps ﬁ:o for
n—1. In particular, the number of ancillary registers equals R(p), and the number
of multiplications equal 7, where ¢ is the length of an addition chain {ps}Ye_, for
n—1 which consists of the different terms in {5, }¢_,. As we described in Sect. 3.1,
we consider the case of r(j, £) = 20—¢ = R(p)—1. In this situation, we reduce the
number of qubits as much as possible, in other words, we find register-bounded
addition chains {p,}‘_, with as small R(p) as possible. For this purpose, we find
the shortest addition chains for n — 1 at first. After that, we add some terms to
the shortest addition chains and get register-bounded addition chains. Thus, we
find some register-bounded addition chains with as small R(p) as possible.

In Table 1, we show our register-bounded addition chains {p}%_, for NIST-
recommended degrees n = 163,233,283, and 571. In Table 2, we show ¢, R and
the number of qubits for our proposed inversion algorithm and previous quantum
inversion algorithms, i.e., Banegas et al.’s quantum GCD-based inversion algo-
rithm which we call BBHL21-GCD, Kim-Hong’s quantum GCD-based inversion
algorithm which we call KH23-GCD, and Taguchi-Takayasu’s quantum FLT-
based inversion algorithm which we call TT23-FLT for all n. R for our proposed
algorithm is minimum R(p). We do not compare quantum FLT-based inver-
sion algorithms proposed by Putranto et al. [10] and Banegas et al. [1] since
Taguchi-Takayasu’s FLT-based Basic and Extended algorithm reduce all quan-
tum resources compared to them. We also do not compare Taguchi-Takayasu’s
Basic algorithm since their Extended algorithm requires fewer qubits than Basic
algorithm. The number of qubits in Table 2 includes an input f € F3,.. Table2
indicates the minimum R = R(p) of register-bounded addition chains for n — 1
is 5 for all NIST-recommended n when we use shortest addition chains for n — 1.
Then, our proposed algorithm achieves the fewest qubits compared to the pre-
vious quantum FLT-based inversion algorithms, however, it is still larger than
the number of both GCD-based algorithms for all cases.
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Table 2. Comparison of ¢, R and the number of qubits for an inversion between ours
and prior works

n | Proposed algorithm | BBHL21-GCD | KH23-GCD | TT23-FLT

¢ | R|qubits { | R | qubits { | R|qubits | ¢ | R | qubits
16319 |5 |978 - |- 1830 - |- 1690 9 |9 |1,630
233/10|5 |1,398 - |- 11,180 - |- 1970 10| 1012,563
283 |11|5 | 1,698 — |- 11,431 —|—= 11,174 |11 |11 3,396
571112|5 |3,426 — = 12,872 —1-12,330 |12 12| 7,423

4.2 Quantum Resources Trade-Off in Our Proposed Inversion
Algorithm

In Sect. 4.1, we showed register-bounded addition chains with R(p) = 5 for all n,
where R(p) describes the number of ancillary registers. On the other hand, TT23-
FLT requires ¢ ancillary registers, where £ is the length of shortest addition chains
for n—1. As we described in Table 2, £ = 9,10, 11,12 when n = 163, 233, 283, 571,
respectively. Then, we also consider all possible cases, i.e., R(p) = 5,6,...,¢ for
our proposed inversion algorithm for all n and estimate the quantum resources.
We note that R(j) = £ is not the case of TT23-FLT since r(p, £) = R(p)—1 = £—1
for our proposed algorithm. In other words, our proposed algorithm has a clear
ancillary register at the end of the algorithm, while TT23-FLT has no clear
ancillary register at the end of the algorithm. In Sect. 4.3, we show which R(p)
is preferable in some parameters.

4.3 Comparison with Previous Methods in Shor’s Algorithm

In this section, we compare the quantum resources of our method for Shor’s
algorithm, i.e., our proposed quantum inversion algorithm in Sect. 3.3 with our
proposed quantum point addition algorithm described in Algorithm 1 and previ-
ous methods, i.e., BBHL21-GCD, KH23-GCD, and TT23-FLT with Banegas et
al.’s quantum point addition algorithm, since previous three algorithms do not
satisfy the conditions (i) and (ii) in Sect. 3.2.

Here, we concretely estimate the quantum resources, i.e., the number of
qubits, TOF gates, and depth of our method and previous methods for Shor’s
algorithm. We also compute the number of CNOT gates, however, we note that
a CNOT gate is much cheaper than a TOF gate. We note that Shor’s algorithm
requires 2n+ 2 point additions. As Roetteler et al. [12] mentioned, we can ignore
the special cases of point addition since it does not affect quantum Fourier trans-
form. Moreover, we apply semiclassical Fourier transform [4] in Shor’s algorithm
since it requires only 1 qubit. Our proposed inversion algorithm uses the register-
bounded addition chains of Table 1. For estimating the resources of TT23-FLT,
we use addition chains that Taguchi and Takayasu [15] used. Values of the depth
are upper bounds because we do not completely consider parallel quantum com-
putation. Moreover, we compute the concrete number of CNOT gates of SQUARE,
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Table 3. Comparison of the number of qubits, TOF gates, depth, and CNOT gates
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for Shor’s algorithm between ours and prior works

n | Proposed method

qubits | TOF depth CNOT
163 | 1,142 | 19,682,952 233,563, 552 1,672,852,808
233 1,632 | 46,185,516 536, 005, 548 5,556,172, 752
283 1,982 | 77,493,944 1,170,486,688 | 10,840,880, 376
571 3,998 | 368,373,720 9,751,547,520 | 95,224,517,960
n BBHL21-GCD method

qubits | TOF depth CNOT
163 | 1,157 | 288,641,640 341,963,616 322,348,232
233 1,647 | 772,092,828 | 945,129,276 | 926,188,848
283 11,998 | 1,359,458,584 |1,672,107,936 |1,644,678,648
571 4,015 |10, 156,396,536 | 12,962, 714,336 | 13,091, 280, 488
n | KH23-GCD method

qubits | TOF depth CNOT
163 1,017 | 243,048, 328 319,284, 384 391,632, 328
233 1,437 | 694,262,556 898,421,004 1,128, 567,024
283 11,741 |1,237,627,128 |1,594,550,944 |2,006,665,048
571 3,473 9,942,884,952 |12,608,046,880 | 16,064, 737,832
n | TT23-FLT method

qubits | TOF depth CNOT
163 1,957 | 13,175,432 159,675, 648 1,130,020, 680
233 3,030 | 30,000,204 345,703, 644 3,604, 728,816
283 3,963 | 49,121,208 708,332,352 | 6,782,597, 624
571 8,566 | 228,787,416 5,143,602,464 | 57,782,226,216

SQUARE™!, and spSQUARE, and assume that const ADD requires n/2 X gates on
average, ctrl ADD requires n/2 TOF gates on average, and ctrl const ADD
requires n/2 CNOT gates on average. We estimate the upper bound of the
depth of SQUARE as the number of CNOT gates for SQUARE, while we estimate
the depth of spSQUARE as described in Sect. 3.3. We also apply the depth reduc-
tion for SQUARE and spSQUARE described in Sect. 3.3 to the TT23-FLT method
and estimate the quantum resources. When we estimate the upper bound of the
depth for Shor’s algorithm, we simply add the upper bound of the depth for
each distinct quantum computation. Banegas et al. [1] applied windowing that
reduces the number of TOF gates by using some lookups from a QROM and
estimated the number of TOF gates. We note that we can also apply window-
ing our proposed method while we do not estimate the quantum resources. We
provide a python code [14] for computing quantum resources.
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Table 4. Comparison of QD = “the number of qubits” x “depth” in Shor’s algorithm
between ours and prior works

n QD
Proposed method | BBHL21-GCD method | KH23-GCD method | TT23-FLT method
163 | 2.67 - 10! 3.96 - 10'! 3.25- 10 3.12-10%
233 8.75 - 10! 1.56 - 1012 1.29 - 1012 1.05 - 1012
283 2.32 - 10'2 3.34-10%2 2.78 - 10%2 2.81 - 102
571 3.89 - 103 5.20 - 10'3 4.38 - 103 4.41-10%3

Table 5. Comparison of QT = “the number of qubits” x “the number of TOF gates”
in Shor’s algorithm between ours and prior works

n QT
Proposed method | BBHL21-GCD method | KH23-GCD method | TT23-FLT method
163 | 2.25 - 101° 3.34 .10 2.47 - 10 2.58 - 101°
233 | 7.54 - 10%° 1.27 - 10*2 9.98 - 10** 9.09 - 10%°
283 | 1.54 - 10! 2.72 - 102 2.15 - 10%2 1.95 - 101!
571 | 1.47 - 10'2 4.08 - 103 3.45-10'3 1.96 - 102

Table 3 compares the number of qubits, TOF gates, depth, and CNOT gates
in all cases for all n. We show the quantum resources in the case of R(p) = 5

for our proposed method. We compare our proposed method with the previous
GCD-based methods and the FLT-based method.

Comparison with the GCD-Based Methods. The number of qubits for our
proposed method is close to the GCD-based methods, i.e., the BBHL21-GCD
method and the KH23-GCD method for all n. Especially, our proposed method
achieves fewer qubits than the BBHL21-GCD method, while it does not for an
inversion as shown in Table 2. As described in Sect. 3.2, our proposed method for
Shor’s algorithm requires (24 R(p))n+ 1 qubits. Furthermore, we found register-
bounded addition chains with R(p) = 5 for all n. Then, the number of qubits
is 7n + 1 and it is smaller than the number of qubits for the BBHL21-GCD
method, i.e., Tn + [logn| + 9. The KH23-GCD method requires fewer qubits
than our proposed method, however, the difference is less than n. Precisely, the
KH23-GCD method requires 6n + 4|logn| + 11 qubits and the difference to
™ + 1 is n — 4|logn| — 10. Furthermore, our proposed method still achieves
much fewer TOF gates and less depth compared to the GCD-based methods
while we halve the number of qubits from the TT23-FLT method. The number
of TOF gates of our proposed method is from only 2% to 5% of the number of the
GCD-based methods. As for the depth, the depth reduction of the squaring part
in our algorithm in Sect. 3.3 contributes to keeping fewer than the GCD-based
methods.
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Fig. 1. Quantum resources trade-off in all methods for n = 571

Comparison with the TT23-FLT Method. Our proposed method drasti-
cally reduces the number of qubits from the TT23-FLT method. Precisely, we
halve the qubits for all n. Our proposed inversion algorithm applies additional
procedures for uncomputations which require TOF gates, depth, and CNOT
gates to TT23-FLT. When n = 571, our proposed inversion algorithm requires 8
additional procedures which is about 70% of the number of procedures for TT23-
FLT. As you can see in Table 3, the number of TOF gates, depth, and CNOT
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gates for our proposed method is about 170% of the number for the TT23-FLT
method.

By using the concrete number of quantum resources, we compute two values,
i.e., “the number of qubits” x “depth” called QD and “the number of qubits”
X “the number of TOF gates” called QT. QD is a same metric to “spacetime
volume” by Gidney and Ekera [3] and QT is a similar metric. Gidney and Ekera
used spacetime volume to evaluate Shor’s algorithm for solving a factoring prob-
lem. Briefly speaking, QD and QT describe how a quantum algorithm works
better on both the number of qubits and the number of TOF gates and both
the number of qubits and depth, respectively. We show QD and QT for our
proposed method and previous methods for all n in Tables 4, 5, respectively. We
also illustrate the relation between the number of qubits and depth and between
the number of qubits and the number of TOF gates of our proposed method
and the previous methods for n = 571 in Fig. 1. Blue lines in Fig. 1 describe the
points that QD = const. and QT = const.

In Tables4, 5, R(p) = 5,5,5,7 and R(p) = 5,5,5,5 for our proposed method
for n = 163,233, 283, 571, respectively. Our proposed method achieves the fewest
QD and QT compared to the previous method for all n. Thus, our proposed
algorithm gives good trade-offs between the number of qubits and depth and
between the number of qubits and the number of TOF gates.
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Abstract. We introduce a novel template attack for secret key recov-
ery in Kyber, leveraging side-channel information from polynomial
multiplication during decapsulation. Conceptually, our attack exploits
that Kyber’s incomplete number-theoretic transform (NTT) causes each
secret coefficient to be used multiple times, unlike when performing a
complete NTT.

Our attack is a single trace known ciphertext attack that avoids
machine-learning techniques and instead relies on correlation-matching
only. Additionally, our template generation method is very simple and
easy to replicate, and we describe different attack strategies, varying on
the number of templates required. Moreover, our attack applies to both
masked implementations as well as designs with multiplication shuffling.

We demonstrate its effectiveness by targeting a masked implementa-
tion from the mkm4 repository. We initially perform simulations in the
noisy Hamming-Weight model and achieve high success rates with just
13316 templates while tolerating noise values up to ¢ = 0.3. In a prac-
tical setup, we measure power consumption and notice that our attack
falls short of expectations. However, we introduce an extension inspired
by known online template attacks, enabling us to recover 128 coefficient
pairs from a single polynomial multiplication. Our results provide evi-
dence that the incomplete NTT, which is used in Kyber-768 and similar
schemes, introduces an additional side-channel weakness worth further
exploration.
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1 Introduction

NIST selected Kyber [3,8] to be standardized as a post-quantum secure key
encapsulation mechanism (KEM) after a rigorous competition. The primary
security requirement of the NIST competition is achieving message confidential-
ity against chosen-plaintext (CPA) and chosen-ciphertext attacks (CCA) based
on plausibly post-quantum hard problems. Additionally, the competition empha-
sizes the resistance of implementations to side-channel attacks. This paper builds
upon the previous research exploiting differences in side-channel traces based
on the chosen inputs [6,20,21] to design a new single-trace template attack
against masked Kyber implementations. In particular, we target the decapsu-
lation phase, leveraging templates to extract the long-term secret key from the
polynomial multiplication process. Our goal is to show that in this context,
masking is not sufficient protection, even considering relatively simple attacks.

Kyber’s key encapsulation (encryption) performs a matrix-vector multiplica-
tion in the ring of polynomials R, = Z,[z]/(2*5°+1) and then adds a small noise
vector to the result. In turn, Kyber’s decapsulation (decryption), multiplies a
ciphertext b and a secret a, each of which corresponds to a polynomial. Poly-
nomials in Kyber are of degree 255 and their coefficients are integers between
0 and ¢ — 1, with ¢ = 3329. Kyber turns this core IND-CPA-secure scheme
into IND-CCA-secure encryption using the Fujisaki-Okamoto (FO) transform
[16]. Black-box security against IND-CCA security, however, does not protect
against known/chosen ciphertext side-channel attacks, since the input cipher-
text is always multiplied with the secret key right at the beginning of the decap-
sulation process, cf. [4,14,17,33].

Number Theoretic Transform and Pair-Pointwise Multiplication.
Standard polynomial multiplication has a quadratic time complexity. There-
fore, Kyber and similar lattice-based systems employ the Number Theoretic
Transform (NTT) to convert polynomials into a representation where multi-
plication takes linear time. In the NTT domain, polynomial multiplications
can be computed point-wise. Given polynomials 3 and b with coefficients
(ag,ai,...,an—1) and (bo,b1,...,b,—1) respectively, their point-wise multipli-
cation is dob = (ap-bo,a1-b1,...,an_1 by_1), whereby each pointwise multipli-
cation is performed independently. Kyber uses a small modulus and thus applies
the NTT partially, resulting in multiplications of polynomials of degree 1, e.g.,
(a0 + a1X) - (b + b1 X) which we refer to as pair-pointwise multiplication.

1.1 Owur Contribution

We propose an attack on the pair-pointwise multiplication of Kyber-like imple-
mentations and start by observing that Kyber executes more secret-dependent
operations than lattice-based schemes, which perform a full NTT:

1. Instead of one multiplication (as in full NTT), in pair-point multiplications,
three multiplications (cf. Eq. (3)) depend on the same coefficient pair.
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2. Since multiplications are performed mod ¢, the code requires 3 additional
operations to execute a modulus reduction after each multiplication.

3. While a; € [0,...,q — 1] are 12-bit integers, the registers operate on 24-bit
and 28-bit integers before the modulus reduction. Thus, in the Hamming
weight model, the expected information per instruction is H(24) ~ 3.34 and
H(28) = 3.45 bits of information rather than only H(12) =~ 2.84.

Starting from these observations, we devise an attack which extracts each coef-
ficient from a pair-point multiplication individually and requires ¢+¢ templates.
We next explore an extension of our attack that extracts pairs of coefficients from
each pair-point multiplication via ¢? templates, but has a much higher success
probability given that the templates target complete regions of pair-point mul-
tiplications and thus have more samples for comparison with the target trace.
Then we validate our attacks against the masked implementation of [2]. We
first conduct simulations showing that a template attack with 100g templates
succeeds with the probability > 0.999 even in the presence of Gaussian noise
with standard deviation ¢ < 0.87. Our attack strategy requires a single target
trace from a known ciphertext and avoids complex attack methods like machine
learning, since it succeeds by performing simple correlation analysis. We refer
the reader to Sect. 3 for the specific steps of our attack and its adaptations.

Experimental Results. We perform a power analysis attack also on the masked
implementation of Kyber [2] using the ChipWhisperer Lite platform [30]. We
detect leakage for both g+¢ and ¢ attacks, but unfortunately it is not enough
to recover a pair of coefficients from a pair-point multiplication. We show that
the low success of these experiments is influenced by microarchitectural aspects
and the implementation we target: essentially, the power profile of a pair-point
multiplication is slightly influenced by the operations done before it started’.

However, the success rate, especially for the ¢? attack, is quite promising
and therefore, to make the attack work we come up with an extension inspired
by the Online Template Attack (OTA), originally used to attack elliptic curve
cryptography [5,6]. OTA is a powerful technique residing between horizontal
and template attacks with the main distinctive characteristics of building the
templates after capturing the target trace and not before. The combined attack
works as follows: first we reduce the number of candidate templates using the
¢* attack and then we launch iteratively OTA to limit the microarchitectural
noise. This way we are able to recover all the coefficients of 128 pair-pointwise
multiplications. In particular, we completely recover all coefficients for 3 attacked
target traces at the cost of maximum 43M templates. While these numbers are
high, they are required to recover all the coefficients from a single trace.

We also estimated how many templates we need to attack masked Kyber768
with the order 2. Here we need more templates since such implementation uses
6 full polynomial multiplications. For such attack we would need 78M to achieve
43% success rate and to increase it to 90% we need approximately 105M traces.

1 For details the attacks and the experiments see Sect. 5.
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With respect to the experiments it is also an interesting question whether our
experiments may provide better results if we use electro-magnetic emanations
as the side-channel information instead of power consumption. It would be also
interesting to see whether we can lower the number of used templates. We leave
these investigations as future work.

1.2 State of the Art

Attacks on the polynomial multiplication of Kyber were successfully performed
using correlation power analysis techniques [27]. However, early proposals recog-
nized the need to apply masking to the polynomial multiplication in lattice-based
schemes as a countermeasure against side-channel analysis [29,34,35]. Conse-
quently, many research efforts have focused on attacking other components of
the Kyber decapsulation process. Primas, Pessl, and Mangard introduced a tem-
plate attack on the inverse NTT during decryption, enabling them to recover
a decrypted message and subsequently extract the session key [32]. This attack
leverages belief propagation for template matching and has since been extended
and improved in subsequent works [17,31]. In a different approach, Dubrova,
Ngo, and Gartner propose the use of deep learning techniques to recover the
message and subsequently extract the long-term secret key [15] from the re-
encryption step of decapsulation. Notably, research in this area has demonstrated
the success of deep learning in attacking lattice-based schemes [4,22,26,28]. Fur-
ther SCA attacks on masked implementations of Kyber were presented on the
message encoding [37] and on the arithmetic-to-boolean conversion step [38].
Note that all works cited above attack parts of Kyber other than the pointwise
multiplication.

Our attack differs from the previous attacks in two significant ways when
applied to masked implementations: we directly extract the long-term secret
key from pointwise multiplication and we do not require deep learning or belief
propagation for template construction and matching. Although machine learning
(ML) techniques were shown to be particularly successful again post-quantum
schemes, for example, in [15], we prefer a more classical approach based on Pear-
son correlation matching due to the following reasons: (1) the attack description
is simpler, (2) the attack is easier to replicate since the adversary does not require
the knowledge of ML, (3) it is easier to explain where the leakage comes from
and thus come up with countermeasures, and (4) crucially we wanted to show
that (even) classic side-channel methods effectively extract the key from masked
Kyber.

In parallel to this work, the authors of [40] developed a single-trace template
attack on Kyber’s polynomial multiplication. Their successful experiments val-
idate exploitable leakage in single traces, but their approach differs from ours.
They focus on key generation and encryption, exploiting additional side-channel
leakage due to the multiplication of secret polynomials with & values in matrix
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A. Their method employs Hamming Weight templates for multiple intermedi-
ates, using key enumeration akin to belief propagation. Notably, they target
an unmasked implementation pgmJ [1], while we target the optimized masked
implementation mkmJ [2], enhancing the practicality of our approach for pro-
tected libraries. See Appendix D for a detailed comparison.

2 Notation and Preliminaries

We represent matrices by bold capital letters A, and vectors by bold small let-
ters b, b. Given a polynomial a = leol a; X" of degree n — 1, we usually write
a as a vector a = (ag, ay,as, ..., a,—1). Also, the operation - represents standard
multiplication between two integers, while o represents point-wise multiplication
between two polynomials in NTT domain (cf. Subsect. 2.2). When writing poly-
nomial a in NTT domain, we will often write a for clarity and also use the hat
notation for matrices, e.g., A.

We next provide descriptions of Kyber. Our descriptions of the algorithms
will be simplified and we will elaborate mostly on the parts of the KEM that
are relevant to our attack. We refer the reader to the supporting documentation
from Kyber for more details on the KEM [3].

2.1 Kyber

As previously mentioned, Kyber is a lattice-based KEM. It relies on the hardness
of the Module-LWE problem. The latest parameters for Kyber are: n = 256, ¢ =
3329,n7 = 2 and module dimension k = 2, 3, or 4. The security level of Kyber
increases with its module dimension (in the case k).

Algorithm 1 gives the overview of the key generation. The private key of
Kyber consists of a vector of polynomials of degree n = 256, and with coefficients
in R, with ¢ = 3329. The k determines the dimension of the vector. The functions
SAMPLEy and SAMPLEpg are functions which uniformly sample values in the
ring R, given a seed. The SAMPLEy provides a uniform random matrix, and
SAMPLE g gives uniform random vectors. The function H is a secure hash function
(SHA3 in Kyber).

Algorithm 2 shows the decapsulation algorithm. Note that the ciphertext is
first decompressed into its standard form b, and then in line 3 the ciphertext
is transformed to its NTT domain. After this transformation, a pair-pointwise
multiplication between & and b. This operation will be the target of our attack.
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Alg. 1: Kyber-CCA2-KEM Key Alg. 2:  Kyber-CCA2-KEM
Generation (simplified) Decryption (simplified)
1 Public key pk, secret key sk Choose 1 secret key sk = (&, pk, H(pk), z),
uniform seeds p, o, 2; ciphertext ¢ = (c1, ¢2)
2 Ac R(’;Xk — SAMPLEy (p); Output: Shared key K
k 2 b,v < DECOMPRESS(c1, €2);
3 a,e € R) « SAMPLEB(0); 3 m e
4 &« NTT(a); DicobE(v — NTT-1(&)T o NTT(b)));
5 b AoA+NTT(e); a (K,7) < H(m|[H(pk));
6 pk — (t,p); sk < (& pk,H(pk), 2); 5 ¢ — PKE.ENc(pk,m,T);
7 return pk, sk; 6 if ¢ = ¢’ then
7 | K «— KDF(K||H(c));
8 else
o | K «— KDF(z|[H(¢));
10 return K;

We do not describe the encryption and encapsulation functions of Kyber
since we do not attack these algorithms, for details, see Appendix A.

2.2 Number Theoretic Transform (NTT)

Kyber performs polynomial multiplications and speeds it up to linear time by
transforming the polynomials into the NTT domain, allowing for a so-called
pointwise multiplication between the polynomials. The NTT is a version of Fast
Fourier Transform (FFT) over a finite ring. To perform the transformation, one
evaluates the polynomial at powers of a primitive root of unity, which are usually
represented by the symbol . We refer to [23] for details on how to implement
the NTT (in Kyber and Dilithium) and cover relevant aspects of Kyber below.
Kyber has dimension k, and each dimension has its own roots C,g, C,i, ceey 2—1
In the following, we focus on a single dimension for ease of presentation.

The NTT on Kyber. In Kyber, the n-th root of unity does not exist and
therefore, the 2n-th roots of unity are used so that modulus polynomial X™ + 1
is factored into polynomials of degree 2 rather, i.e., Kyber performs an incom-
plete NTT, where the last layer is not executed. Therefore, in Kyber, after the
(incomplete) NTT transformation, a polynomial a corresponds to 128 poly-
nomials of degree 1 each. Polynomial a is thus transformed to NTT(a) =
ag + a1, . .., 42547 + ass5x. The incomplete transformation of the polynomials
to their NTT domains has an impact on the way, multiplications are performed
in Kyber. Namely, when computing the multiplication between two transformed
polynomials, we are not computing a point-wise multiplication between the coef-
ficients of the polynomials (i.e. @ - b = (agby = cp,a1b1 = c1,...,anb, = ¢y)).
Instead, we multiply the coefficients pairwise and, for instance, the first two
coefficients of the resulting polynomial are obtained as follows:

Cc1 = a0b1 + albo, Co = aobo + lelg. (1)

We will denote the multiplication in Eq. (1) as pair-pointwise.
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Multiplication Optimizations. In Eq. (1), we see a very straightforward way
of calculating a pair-pointwise multiplication, and obtaining the resulting two
adjacent coefficients of a polynomial. We see that a total of 5 multiplications
are performed. This multiplication process can be optimized via the Karatsuba
algorithm in such a way that we only need to perform 4 multiplications per each
pair-pointwise multiplication:

(ap + a1z)(by + biz) mod (22 — )
= agbo + ((ao + al)(bo + bl) — agby — albl)x + a1b1x2 (2)
= agpbg + albIC + ((CLO =+ al)(bo =+ bl) — agbg — albl)x.

Thus, we can obtain the resulting polynomial ¢y + ¢z via
Co :aobo—i-alblc, C1 = (&0+(11)(b0+b1) - (a0b0+a1b1). (3)

Observe that Karatsuba multiplication is the most popular approach for
implementing pair-pointwise multiplication in Kyber. It allows us to reduce the
number of multiplications from five to four. The software implementation has
adopted the approach we analyze in this paper; it was also used in public hard-
ware implementations of Kyber such as [39].

Masking Kyber. There are several proposals to mask lattice-based schemes
such as NTRU [29] and Saber [7], whereby the following works present con-
crete masking schemes for Kyber [10,18]. The masking of the schemes addresses
various secret-dependent operations, such as computing inverse NTT, the key
derivation function in the decapsulation process, or more commonly, masking
polynomial multiplication with the long-term secret. The approach for masking
polynomial multiplication in Kyber follows a similar pattern to other crypto-
graphic schemes: the secret is divided into shares, and secret-dependent opera-
tions are performed on each share. The results are then combined. In the case of
Kyber, this involves splitting the secret polynomials into shares and multiplying
the input ciphertext separately with each share.

2.3 Online Template Attacks

Online Template Attack (OTA), introduced in [5,6], is a powerful technique
residing between horizontal and template attacks. The main distinctive charac-
teristic is building the templates after capturing the target trace and not before
like in classical template attacks [12]. In general, creating templates in advance
is feasible when the number of possible templates is small, like for example, for
a binary exponentiation algorithm, where templates need to distinguish a single
branch result, which only requires two templates [12]. However, if the number of
leaking features increases, the number of different templates could be infeasible
to generate in advance. This scenario is where OTAs enter into play by capturing
templates on-demand based on secret guesses [5,6].
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In general, OTA works as follows: the attacker creates templates correspond-
ing to partial guesses of the secret and then matches the templates to the target
trace; the best matching indicates which guess was correct. The attacker contin-
ues by iteratively targeting new parts of the secret until it is fully recovered.

In recent years OTA was applied in many scenarios, most notably, against
Frodo post-quantum proposal [9] and several crypto-libraries (libgcrypt,
mbedTLS, and wolfSSL) using microarchitectural side-channels [11].

We will use OTA in our experiments to improve the success rate of our attacks
to 100%, namely, we will first use attacks to learn the secret coefficients and the
remaining entropy we will recover using OTA (for details see Sect. 5).

3 Our Attack

In this section, we detail our template attack on Kyber’s decapsulation, extract-
ing secret coefficients a during polynomial multiplication. We outline the attack
steps, explore variations with fewer or more templates impacting key recovery
success, and discuss its application to masked implementations. Additionally, we
explain its extension to target implementations employing shuffling in polyno-
mial multiplication.

3.1 Attack Steps—Extracting the Key via q + q Templates

The ciphertexts which we use for creating our templates have a specific struc-
ture when represented in NTT (see below). Since the (incomplete) NTT is an
efficiently computable bijection, we can create the desired structure by choosing
a vector of which we set 128 polynomials of degree 1 (in NTT domain) and then
compute the ciphertext by applying the inverse NTT (see Sect.2.2) to this vec-
tor. Additionally, we also perform the compression since the input ciphertexts are
provided to the decapsulation algorithm in compressed form (see Algorithm 2).

We recall that the compression and decompression algorithms may introduce
some errors in the least significant bits of some coefficients of the polynomials.
Thus, when setting a value b with a desired structure, and then transforming
it into its standard domain b, we should check whether b can be compressed
and decompressed such that DECOMPRESS(COMPRESS(b)) = b. If that holds,
we ensure that on line 2 of Algorithm 2, NTT(b) is indeed transformed into
a vector with the structure we initially desired. In [17], the authors deal with
the same issue for their chosen ciphertext attack on the decapsulation process of
Kyber. The authors need a ciphertext b which on NTT domain would be sparse,
and they present two methods for generating such ciphertexts and ensuring that
they would preserve the desired properties after compression and decompression.
For our attack, it is much easier to deal with this issue since the structure we
desire for the NTT-ed value is much more flexible as we explain below.

In essence, for our attack, we simply require a ciphertext vector which on
NTT domain has either of the two following properties: (1) For each pair of
coefficient values by, by, it holds that by # by, or (2) For any two coefficients
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bi, b; in b it holds that b; # b;. The first property is enough for attacking unpro-
tected and even masked implementations. The second property will be relevant
for attacking designs that implement shuffling of the polynomial multiplication
(see Subsect. 3.2). Naturally, vectors with the second property can also be used
for attacking masked or unprotected implementations since the second property
implies the first property. Our advantage is that there is no restriction with
respect to the specific values these coefficients should have. Thus, when gener-
ating the inputs, we could simply set the desired vector B, run the inverse NTT
on it and then check whether the result preserves its form after compression and
decompression. Moreover, it is not even necessary that the vector in the standard
domain preserves its original form. It is only important that the resulting vec-
tor can be transformed via NTT into a vector with any of the properties listed
above. Therefore, it should be easy to just try out some values. Another simple
strategy could be to set a vector in the standard domain b with small coeffi-
cients. The small values ensure that the coefficients will preserve their original
values after compression and decompression. Then, we can simply apply NTT to
b and check whether the resulting vector b has the desired properties. Finally,
we point out that finding input ciphertexts that achieve the second property
can be done very easily and we may not even need to choose those ciphertexts
ourselves. Thus, our attack can also be described as a known ciphertext attack.
We will now explain the attack that uses only 2¢ templates to recover a.

Step 1: Template Building. We build our templates on a device identi-
cal to the device we are going to attack. In this device, we are able to set
the value of the secret key. We start by building a template for the case that
the secret & consists only of zero coefficients: & = (0O, ..., 0255). For the input
ciphertext, we can choose any ciphertext for which the coefficients correspond-
ing to by and by are always different, i.e. by # b;. For example, we consider
the following ciphertext: b = (26490, 3171,26492, 3173, ..., 2649254, 317255). We
record thus a power trace and obtain the template Ty. We repeat this process
for all possible values between 0 and ¢ —1 and obtain templates 71,75, ...,Ty—1.
For each new template, we change the value of & accordingly (i.e. setting
4 = (lo,11,12,...,1955),8 = (20,21,29,...,2255), etc) and we always use the
same ciphertext b.

Step 2: Obtaining the Target Trace. We now turn to the target device
running a key decapsulation of Kyber and querying it using the same ciphertext
b, which on NTT domain maps to the ciphertext b we used in Step 1. We record
a power trace during execution and obtain our target trace T;.

We now have our set of templates and our target trace and can perform
template matching. The idea is that we will obtain enough information to identify
good matches for operations involving the operands ai, since this coefficient is
used independently in several operations during each pair-point multiplication.
We assume that it would be harder to identify any matches for coeflicients ag
since this coefficient is only used once during each pair-point multiplication.
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Step 3: Template Matching. We match the target trace T; with each tem-
plate T} and we expect to see no correlations between any regions of the traces,
unless both the target trace and the template used the same operands a1, by, by
within some pair-point multiplication. First, we compare the target trace with
the template Ty. There are a total of 128 pair-point multiplications and, thus, a
total of 128 regions corresponding to this operation in the power traces. We can
numerate each region sequentially from 0 to 127. If we observe some correlations
between the target T; and our template Ty on region i, then we will know that
the operand as; 11 has the value 0. We then repeat the process with all remaining
templates, or until we have extracted all a; operands of the polynomial 3.

Step 4: Template Building with Extracted Coefficients. We will now
use the coefficient values extracted in the previous step to build a new set of
templates. These templates will help us extract all operands corresponding to
ag in each pair-point multiplication, i.e. all even coefficients.

Let us denote by v an operand a; whose value was extracted in the pre-
vious step. In essence, we can now build templates in the same way as we
did in Step 1, but the keys & will now have the following structure. For
each value j € [0,1,...,3328] we construct a template for, i.e. each value we
set for the key during each template generation, we set the key as follows:
3 = (Jo,¥1,J2, U3, - .., Josa, Y255). We will denote the templates generated during
this step as T, and we will generate all of them the same way as described in
Step 1, using the same input ciphertext b. We obtain a total of q new templates
T

Step 5: Template Matching. We perform template matching in the exact
same way as we did in Step 3, but using the templates T} , obtained in Step
4. We now expect to see correlations, which will let us extract all ag values. As
opposed to the template matching we performed on Step 3, we now will have
more points of comparison for finding correlations between some template T 4,
and the target trace T;. Namely, for a template corresponding to the correct j for
some ag, we now expect to find correlations not only on the single multiplication
ap - bp, but also on all remaining operations dependent on ag and aj, i.e. all
operations within the pair-point multiplication. Since the value for a; has already
been taken into consideration, a correct guess for ag will lead to a good match
for the complete region corresponding to the whole pair-point multiplication.

Now, let us discuss how the above attack can be implemented using a smaller
or a larger number of templates. The attack strategy remains the same, but
varying the number of templates might affect our attack success rate.

Attack Using q Templates. Ideally, a total of ¢ templates would be enough
for extracting each coefficient in a one by one. In that case, we would only need
to perform the first three steps of the attack described above. Such an attack
may work if we assume, for instance, that the pair-point multiplication is imple-
mented according to Eq. (1) and not optimized via Karatsuba. In that case, we’d
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have more points of comparison for extracting ag and a1 independently. g tem-
plates may also be enough, for instance, if each integer multiplication requires
several clock cycles, extending thus the points of comparison as well. If single
integer multiplications are enough for successfully performing template match-
ing, our attack could potentially generalize to implementations of Dilithium [25]
as well, when collecting ¢ traces for the (larger) Dilithium modulus. Namely,
Dilithium actually performs complete NTTs on its polynomials and, thus, mul-
tiplications are actually point-wise and not pair-pointwise. Thus, each secret
coefficient is multiplied once, and then a modulus reduction is performed. In the
Hamming weight model (see Sect.4), this might not provide sufficient leakage
(since Hamming leakage of k bits scales with v/k), but the real-life leakage might
nevertheless suffice to attack also Dilithium.

Attack Using g Templates. Each pair-point multiplication involves two adja-
cent coefficients of 4, which we have referred so far as ag and a; (see Equation
(1)). We could thus build templates for each possible pair of coefficients ag, a;.
When performing template matching, we will be comparing regions correspond-
ing to the complete pair-point multiplication (similar to Step 5 in Sect.3.1).
This increases our chances of performing a key extraction.

Making templates for each possible pair of coefficients implies that we need
a total of ¢2 templates, which in Kyber translates to 33292 ~ 11M templates.
While this number is much larger than what we considered initially, this attack
strategy is very likely to work. Acquiring 11M traces may need a couple of days.
However such an attack complexity is still considered a real threat.

Improving Success Rates of the Attacks Using Online Template
Attack. We now consider the case where the success rate of an attack (either
q or ¢?) is too low to recover all coefficients, e.g., when mounting a single-trace
attack or when the attack is affected by noise. Then, in the ¢? attack, correla-
tion analysis might not rank the template with the correct pair (ag, a1) first, but
rather as the z-th most likely template. To recover (ag, a1 ), enumerating over all
possible x pairs is prohibitive for all 128 coefficient pairs since it would require
2128 trials.

In this case, it is worth to check whether the first pair of coefficients is always
determined correctly. Indeed, this is the case in our experiments (Sect.5). Our
interpretation is that values in registers set by multiplications in previous itera-
tions slightly affect the power consumption when the registers are overwritten.
On the other hand, since there is no previous operation for the first multiplica-
tion, the initial register state is deterministic, and the attack is successful. Thus,
the attack improves if we proceed adaptively and only attack the y-th pair after
having correctly recovered the y—1 coeflicient pairs before. Since all registers are
now set correctly, the attack on the y-th multiplication should succeed similarly
to the attack on the first multiplication. This attack creates template online, i.e.,
after obtaining the target power trace. Similarly to improving the ¢? attack, it
can also improve the accuracy of the g + ¢ attack and all intermediate variants.
For details about this method in practice, see Sect. 5.
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3.2 Attack on DPA-Protected Kyber

We can apply the previously described attack analogously on masked implemen-
tations of Kyber. In this case, we recover each share of the secret key using our
method and then add them to obtain the secret key.

Also in this case, one target trace suffices if each share is used independently
and sequentially, which is the case in software implementations that first multiply
the ciphertext with share one and then multiply the ciphertext with share two
(and so on in case of higher-order masking). For hardware implementations, there
exists the possibility of performing some multiplications in parallel as long as
the Kyber module counts on more than one multiplier. However, not all designs
of Kyber can afford to have several multiplier due to the costs in the area.

Let us assume that we are attacking a masked implementation that produces
shares with all coefficients taking values between 0 and g — 1 = 3328. In this
case, we will be able to perform a key extraction using the same number of tem-
plates as for an unmasked implementation. Namely, the templates we need for
attacking such a masked implementation correspond to multiplications between
known coeflicients (for our chosen ciphertext), and unknown coefficients with val-
ues between 0 and g — 1. Thus, after obtaining all ¢ templates, we only need to
perform the template matching twice with respect to an unmasked implemen-
tation (once for each share). The number of templates matchings we perform
increases linearly with the masking degree. However, if we perform template
matching over a power trace corresponding to the complete multiplication pro-
cess involving both shares, we only need to perform the matching once for each
template. For each 0 < j7 < ¢ —1, each match will reveal which coefficient in any
of the two shares and has a value equal to j. Note, however, that if the masked
implementation operates on a modulus notably larger than ¢, the complexity
increases linearly, and the success probability is affected (see Sect. 6).

Attack on Shuffled Implementations—Distinguishing via the Input
Ciphertext. A potential countermeasure against our attack might be random-
izing the shuffling of pair-point multiplications. While a shuffled Kyber imple-
mentation would still allow us to correctly extract all coeflicients, determining
their original order in the resulting polynomial becomes challenging. However,
we find that our attack can be adapted for effectiveness on shuffled implemen-
tations with just one target trace. Using a ciphertext with unique coefficient
values for template generation, we obtain templates as before. During template
matching, each template is attempted 3 times, with varied pair-point multi-
plication positions. Successful matches reveal operand values and their original
positions, exposing the secret coefficient’s location. This attack initially focuses
on extracting coefficients as;11 (specifically, coefficient a1 within each pair-point
multiplication), akin to our approach in Subsect. 3.1.

Generating the Inputs. We choose an input ciphertext for which (in the NTT
domain) each of its coefficients has a unique value, i.e., given the ciphertext b =
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bo, b1, b2, ..., bass, it holds that for each b;, b;, with ¢ # 7, b; # b;. For illustration
purposes, let us set b as follows: b = 9¢, 781,17532, 73, . .., 17254, 104055.

Template Building. We build templates like described in Step 1 of Subsect.
3.1. Thus, we obtain a total of ¢ templates. For a coefficient j, the templates
will be of the form: Tj = (_]Q —|—]1) . (90 + 781)7 ey <j254 +j255) . (17254 + 104255).

Obtaining the Target Trace. We obtain the target trace the same way as
described in Step 2 of Subsect. 3.1, i.e. by providing our chosen ciphertext b as
input. Moreover, note that the resulting target trace corresponds to a shuffled
evaluation of the pair-pointwise multiplication. For instance, the target trace
might correspond to the following shuffled sequence of operations

T; = (a2 + a23)-(baz + ba3), (a104 + a105) - (bioa + bios), - - -,
(ap + a1) - (bo +b1), (ase + as7) - (bse + bs7).

Secret Coefficient Extraction and Location Identification via Template
Matching. Now, we match our templates with the target trace in a similar
way as described in Step 3 of Subsect. 3.1 with some additional steps. For
each template Tj, we will perform a template matching with the target trace as
follows.

(1) We first test a matching with the template T; and target T} the same way
as in our original attack. Let us assume that we find a match at position
i, revealing that the secret coefficient used at that position equals j, i.e.
a2i+1 = j. Let us recall that at this point, the template T} corresponds to a
non-shuffled sequence of pair-point multiplications and that for generating
the template and the target traces, we used a ciphertext polynomial whose
coefficients (in the NTT domain) are all different from each other. Finally,
observe that for obtaining a match, all input operands used within the ana-
lyzed computations need to be the same, i.e., for a pair-point multiplication,
the same by, b1 and a; need to be used in the template and in the target.
Given the observations above, we know that if now we obtain a match at
position 4, then the original, non-shuffled position of the extracted coeffi-
cient in the secret key is 7. The coefficients of our input ciphertext serve
as orientation since they are unique, and we know their positions in the
templates.

(2) We will now try to find out whether a value j appears in some shuffled pair-
point multiplication, and we will also find out where in the non-shuffled key
7 is located. For this, we start shifting the multiplication regions of our trace
T;. Concretely, we will shift the positions of all pair-point multiplications.
Thus, for each template, there is a total of 128 shifts we can do since each
template corresponds to 128 pair-point multiplications. Let w denote the
number of shifts we do on a template and let Tj>w denote the template
built for the coefficient j and shifted a total of w times. For instance, if
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we shift the multiplications once, we obtain the template with the following
form: Tj>l = (Jasa + J2s5) + (basa + bass), (Jo + 1) - (bo + b1), (2 + J3) - (b2 +
b3), ..., (Ja2s2 + J253) - (b2s2 + b2s3).

Next, we perform template matching with Tj>“’ and T;. Let us assume that
we find a match at position 4. The match tells us that ag;41 in the target trace
has the value j. However, since we know that Tj>“’ shifted the pair-point
multiplications by w positions, we know that it is actually the coefficient
@3(i—w)+1 in the (non-shuffled) secret key which equals j.

We repeat the same matching + shifting process with all templates until we
recover all coefficients. Recall that we are recovering all coeflicients a; for
each pair-point multiplication. Once we have recovered them, we can build
a new set of ¢ templates by placing all recovered coefficients in their shuffled
position and then just repeat the matching process from Step 5 in Subsect.
3.1. This will let us recover all coefficients ag in each (shuffled) pair-point
multiplication. In the previous step, we learnt the original (non-shuffled)
position of each multiplication, we will also know the original position of the

extracted ag coefficients in the non-shuffled secret key.

4 Simulations

This section presents simulations for the masked Kyber implementation [2,18].

4.1 Implementation of Pair-Point Multiplication

The code which we analyze imple-
ments the pair-pointwise multiplica-

Listing 1.1. Multiplication.

K . o ldr polyO, [aptr], #4
tion as in Listing 1.1 and corresponds 1dr polyl, [bptrl, #4
to the Karatsuba multiplication algo- ldr poly2, [aptr], #4

ldr poly3, [bptrl, #4

rithm [24] (see Eq.(3) for reference).
The procedure first loads a pair of

[o I B N A N

ldrh zeta, [zetaptr], #2

secret coefficients apl|la; into a 32-bit smultt tmp, poly0, polyil
register poly0 and a pair of public | ¢ ®monrtgomery q, gqinv, tmp, tmp2
. . . . 10 smultb tmp2, tmp2, zeta
coefficients by||b; into a 32-bit register |11 smlabb tmp2, poly0, polyl, tmp2
polyl. The coefficients ag, a1, by, and by ﬁ montgomery q, qinv, tmp2, tmp
are 12-b1t integers in ‘{O7 .. 73328} In 14 smuadx tmp2, polyO, polyl
15 montgomery q, qinv, tmp2, tmp3

this overview, we skip over the instruc-
tions at lines 3 and 4 which are the anal-
ogous load operations for the next

Listing 1.2. Montgomery subroutine.

pair of coefficients in the key and in the | ! -macro montgomery q, ginv, a, tmp
R i X . 2 smulbt \tmp, \a, \qinv
ciphertext. Next, in line 8, we multiply | s smlabb \tmp, \q, \tmp, \a
4 .endm

the top parts of the registers poly0 and
polyl, obtaining a product correspond-

ing to a; -by. This product is a 24-bit result and it is stored in tmp. The value in
tmp is then reduced mod 3329 (line 9). Listing 1.2 gives the code of the Mont-
gomery subroutine and Appendix B explains why the deployed Montgomery
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reduction algorithm for mod 3329 computation induces 3 further operations on
28-bit values. Next, the result is multiplied by ¢ (line 10), added to ag - by (line
11) and reduced mod 3329 via Montgomery reduction (line 12), resulting in the
term aq - by - ¢ + ag - by (cf. Eq. (1)). Next, the code sums of the cross terms as
ay - by + ag - by (line 14) and reduces it mod 3329 (line 15).

4.2 Hamming Weight Model

We analyze our attack in the Hamming weight model which leaks the number of
ones in the processed values. We assume that the power consumption of a device
correlates with the Hamming weights of the computed states. In our analysis,
we will check whether each possible secret coefficient a; € {0, ..,3328} (or each
possible pair of coefficients) leads to a unique sequence of hamming weight values
during the pair-point multiplication. If this is the case, then we expect that the
leakage coming from a pair-point multiplication will allow us to identify the value
of the secret coefficients used within that pair-point multiplication.

For the first heuristic estimate, let us compute an upper bound on the leaked
information by assuming that all computations correspond to independent uni-
formly random k-bit strings. The expected information we obtain from the Ham-
ming weight of a uniformly random k-bit string |log Pr[HW = ]| is the number
of bits of information which we weigh by the probability of obtaining a state with
hamming weight ¢, leading to the expected information (or Shannon Entropy)

k k (k k
H(k):= Y Pr[HW =] - [log (Pr[ HW = i])| = > (22 log <(2k)>
i=0 i=0
for a uniformly random k-bitstring. Asymptotically, the expected information
H (k) grows linearly in v/k. For example, we have H(24)=3.34 and H(28)=3.45.

Recall that our attack using ¢+ ¢ templates (see Subsect. 3.1) first extracts a;
before extracting ag. Concretely, the five operations up to and including line 10 in
Listing 1.1 only depend on a;. They first write a 24-bit value for multiplication of
ay and by, then three 28-bit values in the Montgomery reduction (cf. Appendix B)
and then another 24-bit value for multiplication of a; -b; -(. We obtain the overall
expected information of H(24)+3- H(28)+ H(24) ~ 13.69 bits leakage about a;
only. Since a7 is a 12-bit value, it is plausible that we extract a; correctly with
good probability from these five operations, even if not always, since 13.69 bits
is only slightly above 12 bits and the random variable is concentrated around its
expectation rather than exactly at its expectation.

To extract both values ag and a1, we have two Montgomery reductions (line 12
and line 15), each resulting in 3 more operations, leaking together 6- H(28) ~ 20.7
additional bits and the computation and addition of cross terms in line 14, which
generate another H(24)-bit value, leading to an overall leakage of 13.69 + 20.7 +
3.34 = 37.73 bits to extract a 12 + 12 = 24-bit value (ap, a1), suggesting that
trying out all pairs should succeed with a high probability. Appendix C confirms
our heuristic calculus with simulations. Additionally, the heuristic calculations
and the simulations from the next section suggest that the ¢ + ¢ attack and the
¢® attack are robust even when adding a certain amount of Gaussian noise.
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4.3 Simulations of Gaussian Noise

We now simulate the aforementioned operations while adding a small Gaussian
noise with standard deviation ¢ to the simulated target trace. Subsequently, we
list the best coefficient candidates according to the Lo-norm.

Using this method (see Appendix C for details), we analyze the probability
of ag; being amongst the top 1, 2, 3, 10, 100 candidates (cf. Fig.6) when ana-
lyzing only the operations that depend on as; alone as well as the probability
of (ag;,a2,+1) being amongst the top candidates (cf. Fig.7) when analyzing all
operations depending on (ag;, as;+1). Since the probability of as; being the top
1 candidate is only 0.9475 when no noise is added, the probability of obtaining
all 128 correct ag; is (0.9475)128 ~ 0.001 and thus too low to be useful. However,
up to o = 0.87, the probability of as; being amongst the top 100 candidates is
> 0.999 and thus, up to a noise of o = 0.7, with probability 0.99128 ~ 0.88, we
can significantly reduce the search space for the coefficient pairs from ¢ to 100q.

For larger noise, we need to run the ¢2 attack. The probability of (a2i,a2i41)
being the top 1 candidate drops below % at 0 = 0.54. In turn, the probability
of (ag;,a21+1) being amongst the top 100 candidates stays above 0.99 up to
o = 0.72. When aiming to brute-force the remaining uncertainty, in expectation,
for 0 = 0.72, we have % - 128 =~ 16 positions where we need to try out 100

candidates yielding a computation cost of 1001¢ < 220 times (') ~ 2!2%. The

brute-forcing cost is thus dominated by the binomial coefficient (158), determined

by the number ¢ positions which we need to brute-force. (158) remains below 240
for ¢ < 5. For each noise rate, we can now compute the probability of extracting

all 128 coefficients if we brute-force only up to 5 positions as follows:

5
128 L 128—¢
> (1) e an

£=0

where pioo is the probability that (as;, as;41) is amongst the top 100 candidates
and p; is the probability that it is the top candidate. This probability is almost
1 when ¢ < 0.4 and then drops to almost 0 sharply for 0.4 < ¢ < 0.55, also see
the dashed line in Fig.7.

5 Experimental Evidence

This section presents experimental results for three attack variations from Sect. 3:
q?, ¢, and an improved version using an online template attack (OTA)?2. Similar
to the original OTA [5,6], we calculate the correlation between the target trace
and a template, resulting in a matching trace that indicates a match. If the secret
coefficient pair in the template matches that used in some multiplication in the
target trace, we observe a region in the matching trace with values close to one.
We first describe our experimental setup and then discuss our results.

2 Paper supplementary materials, the attack scripts in particular, are available at:
https://github.com/crocs-muni/Attack_Kyber ACNS2024.
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We target the masked Kyber implementation from the mkm4 repository [18].
Our experiments use the same setup as described in that paper, utilizing the
ChipWhisperer Lite platform with an STM32F303 target [30], featuring an Arm
Cortex-M4 core. This setup ensures low noise and well-aligned traces. Our focus
is the poly_basemul function, where we compute pair-pointwise multiplication.

In our experiments, we use the same physical instance of the ChipWhisperer
device for profiling and attacking, which is the best scenario for an attacker.
However, this might not reflect a real-world scenario and we leave investigating
the portability of templates in our attack as future work.

Before launching the attack, we need to select relevant regions of the traces.
After testing multiple methods and approaches, the Difference-of-Means app-
roach described in [5] proved to be the best. We always select 33 points of
interest per pair-pointwise multiplication for all our attacks.

In the g + ¢ attack, we observe a limited leakage and the results are rather
modest. We obtain a more accurate success rate for the first pair-pointwise mul-
tiplication than the remaining ones. On average, the correct candidate for the
first multiplication is ranked at 282, and for all multiplications, it is at 1623 (out
of 3329). This is insufficient for the attack to succeed. Improving the success
rate, possibly using deep learning, is left for future work.

Next, we attempt ¢ attack. We obtain the ¢? templates for all pairs of
coefficients and each template is exactly one trace. Therefore, for this experiment,
we use exactly 11082241 template traces to attack single target traces separately.

In Fig. 1, we illustrate our method for visualizing leakage, following the app-
roach outlined in [21]. This approach involves calculating the difference between
a template and our target trace, as depicted in Figures 3 and 4 of [21]. The top
trace in Fig. 1 represents our target trace, with the highlighted area indicating
the calculation of a pair-point multiplication. The middle trace shows the result
when we subtract the target from a template that does not match the secret
coefficients used in the highlighted pair-point multiplication. The bottom trace
corresponds to the difference between the target and a template using the correct
pair of secret coeflicients. Notably, the highlighted region in this trace contains
sample values very close to zero.

When comparing a target traces to the template corresponding to the pair
of coefficients found in the secret key, our difference trace consistently contains
a region with samples close to zero, as shown at the bottom of Fig. 1. However,
when attempting to compare a template for a pair of coefficients that do not
appear in the key, the difference trace does not exhibit such a low region.

In the ¢? attack, we compare each pair of coefficients with templates, result-
ing in an ordered list of candidate values. Notably, there is a significant difference
in accuracy between the first pair of coefficients and the rest. As shown in Fig. 3,
the first pair is correctly recovered in about 86% of cases, while the average
success rate across all multiplications is 34%. This discrepancy is due to traces
being influenced by previous multiplications, as illustrated in Fig. 2, where the
coefficient from the first multiplication affects slightly the subsequent multiplica-
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Fig. 1. Characterization: target trace (top), subtraction of the target trace from an
incorrect template (middle) and from the correct template (bottom).

tion, too. The first multiplication is not affected by any previous multiplication
and that is why the corresponding success rate is much better.
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Fig. 2. The effect of previous multiplication on the following one: the correlation
between the current multiplication value and the whole trace (in blue). (Color figure
online)

Given the high success rates of the ¢? attack in recovering the first multiplica-
tion, we can reduce the number of candidate templates and initiate a combined
attack using both ¢ and OTA. We begin with the ¢* attack. Assuming success-
ful recovery of the first multiplication, we generate a new set of templates by
combining the top two results for the first multiplication with a select number of
top candidates for the second multiplication. These new templates cover a larger
portion of the trace and are fewer in number, resulting in improved matching



Breaking DPA-Protected Kyber via the Pair-Pointwise Multiplication 119

Rank 1 and 100 average of traces

100 ——Rank 1
Rank 1 - 100

90

80

70

60

Percentage

50

40

30

1 11 21 31 41 51 61 71 81 91 101 111 121 127
Multiplications

Fig. 3. ¢> attack success rate: blue line corresponds to the first candidate being correct
and orange line to the correct candidate being in the top 100 results. (Color figure
online)

rates. We now repeat this process, assuming the first two multiplication coef-
ficients have been recovered correctly, iterating through the whole trace. The
main downside of this approach is requiring additional templates.

We successfully recover all coefficients for 3 attacked traces with this app-
roach, at the cost of the increased number of templates - 20 600 000, 43 000 000,
and 20600000, respectively. These numbers can be lowered, as described in the
analysis of the required number of traces in the following section. With our
setup, gathering additional 15000 templates per multiplication takes about 9
days® and cover 87% of attacked traces. The success rates for different amounts
of templates for the full attack on masked Kyber768 are shown in Fig. 4.

Cumulative success rate based on number of templates Required number of additional templates
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Fig. 4. Left: success rates of the full attack on masked Kyber768 wrt. the number of
captured templates, estimated from 100 random target traces. Right: the extra number
of templates required for the OTA attack (only non-zero values).

3 Note, however, that we did not optimize our setup for the speed of acquisition.
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5.1 Attack Analysis

In order to launch the ¢> + OTA attack, it is necessary to collect the 11M
templates for the ¢ attack and the additional traces for each multiplication.
Based on the analysis of 100 random traces, the additional requirement is, on
average 13000 - 15000 per candidate for each multiplication, as shown in Fig. 4.

To successfully attack unmasked Kyber768, we need to repeat the attack
3 times, reducing the experimental success rate to 65%. Kyber768 performs
three polynomial multiplications: the initial poly_basemul and two subsequent
poly_basemul _acc operations. The poly basemul acc function is similar to
operation poly_basemul but also accumulates its results into the previous mul-
tiplication, hence the name “accumulation.”

The code of poly_basemul_acc mixes accumulation instructions with other
multiplication instructions, necessitating separate template collection. These
templates rely on results from previous multiplications. However, we already
have these coefficients from previous attacks (notably, on poly_basemul). While
the attack on poly_basemul_acc should perform better due to more leaking
instructions, new templates must be collected for each execution, depending
on the previously recovered coefficients.* For a complete attack on unmasked
Kyber768, we would need approximately 44.5M templates: 3 x 11 million (for
3 executions) and 3 x 15000 x 2 x 128. Here, we assume that we need 15000
additional templates per multiplication and a conservative estimate that we can-
not reuse templates for poly_basemul_acc if accumulation inputs differ. Based
on preliminary characterization, it seems that re-using templates for different
inputs is challenging and we leave it to be investigated in future work.

To attack masked Kyber768 with order 2, we need to execute attack 6 times:
2 times for poly_basemul and 4 times for poly_basemul_acc. For poly_basemul
we would need to collect templates once, but for poly_basemul_acc templates
need to be collected each time. Therefore, we would need the following number
of templates: 5 * 11M + 6 * 15000 * 2 x 128 =~ 78M to achieve 43% success rate;
to increase it to 90% we need approximately 105M traces as shown in Fig. 4.
At the time of writing, the current setup was able to capture 1500 traces per
minute. At this rate, gathering the full 78M templates would take about 45 days.
In general, we leave improving the efficiency of this attack as future work.

6 Possible Countermeasures

One possible countermeasure against our attack may be the random shuffling of
the operations within each pair-point multiplication (see the listings in Sect. 4).
Moreover as discussed in Subsect. 3.2, masking schemes with coefficients with
larger values would imply an increase in the number of templates needed for
our attack and in the chances of getting false positive matches. There also exist

4 TInitial tests hint at a 30% acquisition reduction for the OTA step with a single
poly_basemul_acc experiment. However, we exclude this result from our estimates,
reserving exploration of this optimization for future work.
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schemes which blind the secret coefficients [19,41] in a similar way as the blind-
ing countermeasure for elliptic curve crypto [13] and schemes which mask the
input ciphertext [34]. Parallelizing pair-point multiplications requires designs
with spare multipliers, but it adds extra noise to computations, making our
attack more difficult. Also, if Kyber employs a complete NTT and actual point
multiplication between secret and known coefficients, our attack becomes more
challenging given the reduced number of secret-dependent operations.
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A Kyber Algorithms

Algorithms 3 and 4 describe the encryption and encapsulation functions
in Kyber. The functions COMPRESS and DECOMPRESS are defined as
ComPRESS(u) = |u - 2%/q] mod (2)¢ and DECOMPRESS := [gq/2? - u], with
d=101if k=2 or 3 and d = 11 if k = 4. Note that the output of the encryption
corresponds to a ciphertext ¢, which consists of two compressed ciphertexts. This
ciphertext ¢ will be the input to the decapsulation algorithm.

Alg. 3: Kyber-PKE Encryption (simplified)

Public key pk = (&, p), message m, seed 7 Output: Ciphertext ¢
A € RF**F — SampLey (p);

r,e; € R}, e2 € Ry « SampLEg(7);

b — NTT AT o NTT(x)) + e1;

v — NTT &7 o NTT(r)) + e2 + ENCODE(m);

c1, ca «— CoMPRESS(b, v);

c=(c1,c2);

return c;

N oo s~ W N

Alg. 4: Kyber-CCA2-KEM Encryption (simplified)

Public key pk = (t, p) Output: Ciphertext ¢, shared key K
Choose uniform m;

(K, 7) < H(m||H(pk));

¢ «+ PKE.ENc(pk, m, T);

K « KDF(K]||H(c));

return c, K;

[ N N N




122 E. A. Bock et al.

Alg. 5: Montgomery reduction

1 modulus ¢, R =2" > ¢, ¢_ ! mod (R), a € Z such that a < ¢R Output: t = aR™*
(mod ¢),0 <t < 2sq

2 t <« a(—¢ ') mod (R);

3 t— (a+tq)/R;

4 s return t;

Alg. 6: Signed Montgomery reduction from [36]

1 modulus ¢, R =2" > ¢, ¢~ ! mod® (R), a € Z such that a < ¢R Output: t = aR™'
(mod q), |t| < q

2 t — ag” ! mod* (R);

3 t«— (tq)/R;

a t«— |la/R] —t;

5 return t;

B Montgomery Reduction

Kyber represents elements in Montgomery representation in order to avoid
expensive division by ¢ and computation mod ¢ and replace it by division by 26
(taking the top half of a register) and computation mod 2'¢ (taking the bottom
half of a register). In the following, we present the Montgomery reduction with
general R and ¢, but Kyber indeed uses R = 2'6.Consider R = 2* > ¢, and an
element a < gR. To reduce the memory footprint, we can store a/R and this
reduces the element a by k bits, and it can be efficiently implemented. In the
Montgomery domain, the idea is to make sure that the element a is a multiple
of R by introducing a correction step. More precisely, imagine that we want to
find a value t, such that a — tq is divisible by R. To bring the element to the
Montgomery domain, one computes ¢ as ag~! (mod R) in a way that a —aq~'q
(mod R) = 0. Following closely Sect. 2.3.2 in [23], Algorithm 6 shows the case of
signed Montgomery reduction from [36].

We now provide more details on how we determined the length of values for
the Hamming weight that we use in our numerical estimates in Sect. 4.2:

1. ay- by 12 4+ 12 = 24 bits
take bottom of register 16 bits
then multiply by gin. |giny| = 12 bits

2. (a1 . bl)B * Jinv 16 +12 =28 bits
take bottom of register 16 bits
then multiply by g lg| = 12 bits

3. ((a1-b1)B  Ginv)g - ¢ 16 + 12 = 28 bits
add (aq - by) lay - b1| = 24 bits

4. ((a1-b1)B - Ginv) g + (a1 - b1) max{24,48} = 28 bits
take top of register and call it ¢ |c| = 12 bits

5. ¢ 12 4 12 = 28 bits
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C Details on Noiseless and Noisy Simulations

We now discuss our simulations for noiseless operations within the pair-point
multiplications comprehensively and additionally explain how we calculated
probabilities in our noisy simulations. We first focus on the first 5 instructions
of the pair-point multiplication, cf. Section 4.2. Our simulations calculate which
coefficients ag; 11 € [0,...,q — 1] have unique combinations of hamming weight
values (hamming weight tuples) during these instructions. Recall from Eq.3
that pair-point multiplication also computes the term a1b1(, where the value of
¢ changes for each pair-point multiplication. So for our simulations, we initially
fix (p and try out all possible values for a; and all possible values b;. We obtain
the average probability that a value for a; leads to a unique hamming weight
tuple. Then, we change to (; and iterate over all possible values for as and all
possible values for b3. We continue this process, obtaining the averages for all
agi+1, given all ¢;. We thus obtain probabilities for extracting each odd coef-
ficient, given a random ciphertext. Observe that in our simulations we do not
consider micro-architectural aspects, like instruction pipelining, of our target.

As we show, most of the values for an odd coefficient indeed lead to unique
hamming weight tuples. Only a small fraction of coefficients have collisions. On
average, 3031 of these values have unique hamming weight tuples, i.e. there exist
3031 hamming weight tuples which map to exactly one coefficient value. 259
coefficients lead to 2-way collisions. This means that there exist 259/2 ~ 130
hamming weight tuples which map to exactly two different coefficient values.
Subsequently, there exist 34 coefficients which have 3-way collisions and 4 coeffi-
cients which have 4-way collisions each. On the average only a 0.03125 fraction of
tuples maps to more than 4 different coefficient values. We now provide further
details about the results of our simulations.

Extracting Odd Coefficients (ag;+1). Our simulations show that for a uniformly
random bg;11, the probability of extracting ag;41 from the first 5 instruction
is &~ 0.90. This means that given a random ciphertext, we have good chances
of extracting each odd coefficient. The probability of obtaining two possible
candidates for each odd coefficient is ~ 0.085, and the probability of obtaining
three possible candidates for each odd coeflicient is &~ 0.011. Thus, taking a union
bound, we obtain that the probability that a given ag;11 has either a unique
hamming weight tuple, or a 2- or 3-way collision is ~ 0.996. For this reason
in the rest of this analysis we only consider the case that we are dealing with
coefficients with unique hamming weight tuples, or with 2- or 3-way collisions.

In the table under Number of Matches (1), we see the probability that
each odd coefficient a1, as, ..., ass5 has a unique hamming weight tuple. We cal-
culate this probability over all b; € [1,...,¢— 1], and note that the probability is
dependent on the value of . Thus, the probability that a; has a unique hamming
weight tuple is different from that of as, as, etc., but the probability is always
between 0.801 and 0.937, with an average of 0.90. Under Number of Matches
(2) and (3), we see the analogous probabilities that each odd coefficient ag;41
has a hamming weight tuple with a 2- and 3-way collision correspondingly.
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We recall that in our attack using ¢ + ¢ templates (cf Subsect. 3.1), we use
the first set of ¢ templates for extracting the odd coefficients. According to our
results, we should have a 90% chance of correctly extracting each odd coefficient
- but we should recall that in Kyber, the secret keys consist of polynomials of
degree 255. Thus, the probability of extracting all odd coefficients correctly is
notably smaller. In fact, if we consider all probabilities of Fig.5 for the chances
that each odd coefficient has a unique hamming weight tuple, we obtain a prob-
ability of IT}2Tp; ~ 1.2967 x 1076 of extracting all odd coefficients from one
polynomial, given only ¢ templates. We will explain later in this section how we
can use the results of our simulations to outline an attack strategy that easily
increases our success probabilities, with just a linear increase in the number of
templates needed.

Extracting Coefficient Pairs (ag;, az;+1). The lower part of Fig. 5 gives the prob-
abilities that each secret coefficient pair leads to a unique hamming weight tuple.
We obtain these probabilities in an analogous way as for the odd coefficients.
Thus, the probabilities for each pair (ag, a1), (az,as), (ag,as), ..., (a2s4, agss) are
different as they are dependent on (. Note that in this case, the hamming weight
tuples consist of more values since we are considering all instructions within one
pair-point multiplication. Hence, the very high probabilities under Number of
Matches (1). We can conclude from these results that if we create templates for
all possible pairs of secret coefficients, our success probabilities are fairly high,
while, on the other hand, it also requires creating a total of ¢? templates.

Eﬁcwncy OPthzzatlons' Nr. of templates Root Number of Matches
While ¢? is a reasonable | 1 2 3
number of template traces, Co 2226 |0.8696 0.108 0.018
; ; ) ¢ —2226(0.9344 0.0603  0.0042
collecting all of them is g-templates | 2l TISP| 00608 071087 0.0178
still quite consuming. Thus, .
we may indeed try extract- Ci26 1628 [0.8715 0.1067  0.0173
ing all odd coefficients first Cia7 —16280.9329 0.0615  0.0044

and then extracting all even X .
Co 2226 [0.9974 0.0025 1.01 x 10~°

coefficients with an addi-  ;2.templates | ¢; —2226]0.9973 0.0026 7.1474 x 10~°
tional set of templates. ¢ 430 [0.9978 0.0021 4.6282 x 10~°
From the discussions above, : : : : :

we can conclude that our Cizs 1628 |0.9973 0.0027 7.4805 x 10~°

C1a7 —1628[0.9976 0.0024 5.5263 x 10~

success probabilities of run-
ning a ¢+q attack are not as
high as we would originally
hope (for the mkm4 imple-
mentation in the Hamming
weight model). However, the
simulation results suggest a
natural and very simple way of optimizing the success of the attack. In the fol-
lowing, we outline an attack adaptation that increases the success probability of
our attack and only requires a linear increase in the number of templates.

Fig. 5. Number of Matches: given (;, probability of
a 1-, 2- or 3-way collision. Upper part: the proba-
bility of extracting odd coefficients with ¢ templates.
Lower part: probability of extracting pairs of coeffi-
cients with ¢? templates.
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First, we can perform a template matching using ¢ templates (as originally
done in Subsect. 3.1). For each coefficient we are trying to extract, we rank
the top 3 candidate values for which we get the best matches. Now, we build
templates for extracting the even coefficients. We will create 3 versions of these
templates. In each version, we use a different top 3 candidate for each odd
coefficient, creating an additional set of 3¢ templates. Thus, we first determine
the top three candidates for each ag;11 (with high probability) and then try all
three of them in combination with all possible as;, leading to an overall number
of ¢ + 3¢ templates. When trying to extract the even coeflicients, we get a very
high success rate iff we are using the correct odd coefficient ag;1. Namely, as
we see in Fig. 5, each secret coefficient pair has a very high probability of having
a unique hamming weight tuple.

We can even optimize our attack further by considering the top 4 match
candidates for each coefficient, generating an additional set of 4¢ templates.
Concretely for the optimized attacks using ¢+ 3¢ and ¢+ 4q templates, we obtain
success probabilities of IT}2Tp; ~ 0.6755 and I1}%7p; ~ 0.875, respectively.
With 6¢g = 19974 templates, we have a very high success probability of 0.944,
given a single target trace and a random ciphertext. Subsequently, we can use
our analysis of the coeflicients to determine the (expected) ~ 0.875 fraction
of coefficients that are unique, given our list of coefficients that have a unique
Hamming weight pattern. For the remaining ~ 0.125 coefficients, brute-forcing
over 40-125:128 — 932 coefficients is feasible (Table 1).

Table 1. Simulation results for noisy traces.

# templates o | Probability of being amongst top .. matches
1 2 3
g-templates | 0.3 |0.8915 | 0.9775 | 0.9936
0.4 0.7851 | 0.9205 | 0.9617
0.5 0.6530 | 0.8231 | 0.8948
0.6 | 0.5291 | 0.7027 | 0.7911
0.7 0.4214 | 0.5860 | 0.6775
¢>-templates | 0.5 | 0.9336 | 0.9788 | 0.9890
0.6 | 0.8234 | 0.9112 | 0.9415
0.7 | 0.6707 | 0.7906 | 0.8419
0.8 0.4998 | 0.6310 | 0.7027
0.9 0.3697 | 0.4839 | 0.5517
1.0 | 0.2581 | 0.3559 | 0.4135

Noise. We now add Gaussian noise with standard deviation o to the target
trace and see for which o we can still extract one or both coefficients. Instead
of searching for perfect matchings, we minimize the Lo-norm of the differences
between the simulated target trace and the template. Unfortunately, even for the
¢? attack, the best match under the L, norms provides the correct (a2i,a2i4+1)
value with probability < 0.5 when o > 0.8. All probabilities are calculated via
10,000 samples and using a random root out of all possible 128 roots.



126

E. A. Bock et al.

1.0

Y
o o
oo O

robability
-1

p
=

CeSS

£0.5 Top 1
%0.4 Top 2
%043 — Top 3
Z02| —— Top 10
0.1 —— Top 100
090 01 02 03 04 05 06 07 08 09 Lo 1l
Noise level o
Fig. 6. Noisy g + q attack simulations.
1.0
2.0.9
208
207
£ 0.6 — Topl
éU,S Top 2
U%O#’l — Top3
£03{ —— Top 10
Z0.2{ —— Top 100
0.1{ - All 128 coefficients
09001 02 03 02 05 06 07 08 09 10 Ll

Noise level o

Fig. 7. Noisy ¢° attack simulations.

D Comparison

To the best of our knowledge, there exist two other works in the literature that
target polynomial multiplication in Kyber. In [27], the authors present a CPA
attack on an unprotected polynomial multiplication implementation of Kyber.
This attack led to the extraction of the long-term secret using approximately
200 traces. The main difference in comparison to our work is that the attack [27]
requires multiple target traces and thus is not successful in the presence of a
masking countermeasure. Our attack, on the other hand, requires a single tar-
get trace and, therefore, can successfully target masked implementations. The
drawback of our approach is that we consider an adversary who can build tem-
plate traces using a profiling device on which the secret can be freely changed.
A classic CPA attack, as presented in [27], does not require any such profiling.
Another related work [40] presents a single-trace template attack on the
polynomial multiplication of an unmasked implementation pgm4 [1] during key
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generation®. There are several differences between this work and ours. First,
note that they did not attack any masked implementation, but only argue about
the attack’s applicability to masking schemes since it attacks single traces. The
attack is performed against a non-optimized implementation, utilizing straight-
forward polynomial multiplication without Karatsuba, leading to each secret
coefficient being loaded twice, while our attack is on the mkm4 masked imple-
mentation, which accesses the secret only once. Second, the attack [40] cannot
be replicated on decapsulation since their template requires the leakage from
the multiplication of k£ different polynomial values in the matrix A — which
happens in the key generation. On the other hand, our attack can be applied
to the key generation by utilizing the public polynomial values in A. Finally,
their attack does not recover the full secret, but employs an extra key enu-
meration to finish the attack; as a result, their attack works for Kyber768 and
Kyber1024, but not for Kyber512. Precise performance comparison is challenging
due to uncertainties about the number of required templates in [40]. The authors
mention using 500 traces to build templates for each intermediate, with approx-
imately 14 attacked intermediates in each multiplication. This means that their
attack would require only 7000 templates if one template can be created for all
pairwise multiplications or 896 000 if each multiplication needs to be templated
separately. Consequently, it seems that the attack [40] requires fewer template
traces for profiling than our approach, albeit with increased complexity and a
lower success rate, necessitating final key enumeration.

Comparing our approach with [40] is intricate due to the mentioned differ-
ences. Foremost, [40] attacks key generation of the unprotected implementation,
which involves a broader range of secret-dependent operations than our target.
Therefore, we cannot estimate how well the attack from [40] would work against
protected implementation like mkm4. In summary, the attack in [40] has advan-
tages as it exploits various leaks and capitalizes on them. However, it is not easy
to adapt to other procedures, such as the technique presented in this paper.
Thus, this makes our attack more generic than the one presented in [40].

Table 2. Comparison of attacks on the long-term secret key from the polynomial
multiplications; the analysis is made for Kyber768 unless stated otherwise.

Work
[27]
[40]

No. of target traces No. of templates Target algorithm Remaining Brute-Force
200 0 Decapsulation No

e [1 Not provided, estimation: | Key generation For pqmd Kyber:

7000 or 896 000 512 — infeasible; 768 — 2%;
1024 - 2°.

This work Optimized masked 1 6628 (q + q attack), or Key generation and | No

(Simulation) mkmd imp. 11082241 (¢ attack) Decapsulation
This work ¢>+OTA attack: 78M (43%
(Experiment) SR) or 105M (90% SR)

5 They also attack a reference implementation, but we do not concentrate on that since
this implementation leaks much more than pgm/ and the attacked by us mkm4. We
are only looking at the long-term secret key and we do not consider the attacks on
the encryption procedure.
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In Table2, we give a summary of the comparison with [27] and [40]. From
our work, we present the two versions, i.e., “Simulation” refers to the numbers
of the original introduction of our attack described in Sect.3 and concerning
the results obtained via simulations in Sect.4. The “Experiment” work refers
to the real-world attack from Sect.5, where 78M traces give a 43% success of
extracting the secret key, while 105M traces give over 90% success rate.
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Abstract. Today, two-party secure messaging is well-understood and
widely adopted, e.g., Signal and WhatsApp. Multiparty protocols for
secure group messaging are less mature and many protocols with dif-
ferent tradeoffs exist. Generally, such protocols require parties to first
agree on a shared secret group key and then periodically update it while
preserving forward secrecy (FS) and post compromise security (PCS).

We present a new framework, called a key lattice, for managing keys in
concurrent group messaging. Our framework can be seen as a “key man-
agement” layer that enables concurrent group messaging when secure
pairwise channels are available. Security of group messaging protocols
defined using the key lattice incorporates both FS and PCS simply and
naturally. Our framework combines both FS and PCS into directional
variants of the same abstraction, and additionally avoids dependence on
time-based epochs.

1 Introduction

End-to-end encrypted secure messaging systems such as Signal and WhatsApp
are widely deployed and used. The case of two-party protocols is well-understood,
and has been extensively analyzed in the literature [3,8,18,20,26], but multi-
party protocols (for group messaging) are still an active research area. At the
moment, the Message Layer Security (MLS) IETF working group! is developing
a standard to define an efficient and secure group messaging protocol. The key
building block of MLS is continuous group key agreement (CGKA), which lets
a group of users securely agree on a shared secret key [4], evolve it continuously
while ensuring forward secrecy (FS) and post compromise security (PCS).
Many existing CGKA protocols, and their extension to group messaging
protocols, require an additional infrastructure server that guarantees availabil-
ity and orders messages. Recent work reduces dependence on the additional
infrastructure, but still depends on a propose-and-commit paradigm [1,2,6] that

! https://messaginglayersecurity.rocks/.
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allows concurrent update proposals but requires serial commitments to accept
the changes. This work develops abstractions and protocols to advance group
messaging towards truly asynchronous channels and a decentralized environment
where there is no central server to order messages. In such an environment, there
may be a different “latest” group key in the view of every honest user—all of
whom simultaneously encrypt messages, all of which must be decrypted.

Our main contribution is conceptual. We model the group keys used within
the protocol via a key lattice, which can be seen as an n-dimensional grid if
there are n participants. The key lattice tracks all the group keys that will ever
be used by the parties. Each key evolution travels along a path in the lattice.
Every party uses the key lattice to track not only its own view of the current
group key(s), but also the information it has about the other parties’ views. To
both permit concurrency (via the ability to swap the order of key updates) and
to prevent the state space from exploding, we require that the key evolution
functions are commutative.

By framing our (new) security definitions with respect to the key lattice, we
intuitively find that the dual (and simultaneous) notions of FS and PCS become
directional variants of the same simple notion, which states that the adversary
cannot traverse the key lattice to learn keys which it has not yet compromised.?
We also eliminate any dependence on epoch-based time from the analysis and
solely focus on the keys’ relationships to each other. To ensure PCS, parties
evolve the group key with random updates and define new points on the key
lattice. To ensure FS, each party tracks other parties’ views of the group key,
and deletes keys which it knows will never be used again. We also show how to
trade F'S for correctness when desired, since in a fully asynchronous network, the
adversary may arbitrarily delay delivery of an encrypted application message in
order to force one party to hold old keys.

Our secondary contribution is an instantiation of a novel group messaging
protocol that uses the key lattice, and we prove its security.

Group Key Agreement vs. Group Messaging: It is not always straightfor-
ward to transform from group key agreement to group messaging. Key exchange
protocols usually contain a key-confirmation step, but when the key exchange
protocol is used as a building block in a larger protocol (e.g., secure messaging),
this step breaks the key indistinguishability property of key exchange. This is a
well known problem even for two-party key agreement followed by composition
with a secure channel, see for example [15,16]. We avoid this definitional prob-
lem by treating key-agreement and messaging together and directly analyzing
the scheme for group messaging.

Asynchrony vs. Concurrency: An asynchronous group messaging protocol
means that the adversary can arbitrarily reorder messages that are sent, as long

2 This approach bears some resemblance to the analysis of Fuchsbauer et al. [24] for
public key re-encryption.
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as all are eventually delivered. This models a highly adversarial network, and
subsumes the scenario that some parties can temporarily “go offline” (if the
adverary does not deliver messages to them) and then receive messages later
when they come back online. A concurrent protocol allows messages, includ-
ing update messages, to be sent and processed concurrently. But messages are
delivered within some round of execution. The work by Bienstock, Dodis and
Rosler [7] studied the trade-off between PCS, concurrency, and communication
complexity. They show an upper-bound in terms of communication overhead
that increases from O(logn) when there is no concurrency, to O(n) when the
update messages are fully concurrent.

Concurrent group messaging is suitable for the decentralized setting where
there does not exist a central party to order messages. Nevertheless, it is possible
to use a central server as a broadcast station to improve the communication cost,
this way parties no longer need to broadcast messages to the group by themselves.

1.1 Related Work

Group key agreement and group messaging protocols have a long history. Early
work focused on generalizing the Diffie-Hellman key exchange protocol [25,32].
Later work extended the security guarantees (e.g., by providing authentication,
forward secrecy, and post-compromise security) [10,12-14], and improved per-
formance and added new features (e.g., support for dynamic groups) [11]. This
section outlines a few of the related work that are similar to our work. For the
full details on the related work, please see the full version [21].

The closest work to ours is the recent paper by Weidner et al. [33], who
introduced “decentralized” continuous group key agreement (DCGKA). DCGKA
makes progress on the concurrency problems in ART and RTreeKEM so that all
group members converge to the same view if they receive the same set of messages
(possibly in different orders). The key primitive that enables concurrent updates
is authenticated causal broadcast, defined in a similar way as Lamport’s vector
clocks [27]. Additionally, the authors made progress on how to manage group
membership in an asynchronous network without a central server. However, their
construction still requires a serial commitment.

In comparison to Weidner et al. [33], our construction does not require
authenticated causal broadcast; we permit asynchronous messaging by buffering
messages that are received out of order, and we authenticate via authenticated
encryption. Our construction also does not require acknowledgements. This sub-
stantially reduces the cost of an update because DCGKA requires n—1 broadcast
acknowledgements for an update.

Sender Keys, currently deployed by WhatsApp [35], also builds group mes-
saging from pairwise Signal. During initialization, each party sends a symmetric
“sender” key to all the group members using the pairwise Signal protocol. This
key is used for encrypting payload messages by that party. Every party keeps
n “sender” keys in their state where n — 1 keys are used for decryption and 1
is used for encryption. Sender Keys does not provide PCS since an adversary
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Table 1. Comparing our work and existing work. PCS denotes post compromise secu-
rity, and FS denotes forward secrecy. ROM stands for the random oracle model, StM
denotes the standard model. (O) an update for DCGKA requires n — 1 broadcast
acknowledgements, so the total complexity is O(n2), although the sender’s compu-
tational complexity is O(n). (¢) These works use the propose-and-commit paradigm,
where assumes the existence of epochs and allows concurrent proposals but a serial com-
mitment is required. (f) ¢ is the number of corrupt parties. (f) The server in CoCoA
and SAIK processes an update to send an individual packet to each participant. They
also order messages. (A) The SAIK server arbitrarily chooses one of concurrent updates
to be processed. Our work is the only one which supports concurrent updates, does
not require an active server, is PCS and FS and has a proof of security against adap-
tive adversaries. In this table desired features are highlighted in blue and those which
negative impact security are in red.

Protocol Update Cost, PCS FS [ Active Server | Concurrent Updates Proof Adaptive

R Healin

Sender Receiver Rmmdf
Original TreeKEM [30] | O(log n) o(1) n yes | yes Ordering no None n/a
Causal TreeKEM [34] O(logn) o(1) n yes | yes causal StM yes
RTreeKEM [4] O(logn) o(1) 2 yes | ye no ROM yes
Concurrent TreeKEM (7] | O(n) o(1) 2 yes yes StM yes
Signal group [22,31] O(n) o(1) 2 yes | ye yes None n/a
Sender Keys [31,35] 0(n?) O(n) 2 yes yes None n/a
DCGKA [33] O(n) (O) o(1) 2 yes yes (o) ROM no
CoCoA [2] O(logn) o(1) log(n) ye s-Updates (f) yes (o) ROM yes
SAIK [6] O(logn) o(1) 2 yes s-Updates (f) yes (a) ROM yes
DeCAF [1] O(logt) (1) | O(1) log(t) yes | yes b yes (o) ROM yes
Our work Oo(n) o(1) 2 yes | yes none yes StM yes

who corrupts a party will learn all the symmetric keys and decrypt future mes-
sages sent to all parties. Fully healing the state therefore requires every party to
update its symmetric key, which has a cost of O(n?).

Our work can be viewed as a generalization of Sender Keys with improved
security and functionality, where parties update the key lattice instead of hold-
ing symmetric keys for each party. The group session heals once a corrupted
party’s pairwise channels heal because the next update it sends or receives is
indecipherable to the adversary. This requires O(n) public key operations (also
O(n) communication complexity) after one corruption.

Summary: Table 1 summarizes a representative sample of recent literature on
group key agreement and group messaging. “Update Cost” gives the communi-
cation complexity to update a shared or pairwise key, for the sender and the
receiver, and “Healing rounds” describes the round complexity of healing the
session after a corruption. “Active Server” is a server that provides additional
functionalities other than a PKI, such as ordering messages or post-processing
updates. For example, the Signal servers need to store single-use pre-keys and
the TreeKEM servers need to order messages. “Adaptive” means whether the
adversary can adaptively pick which oracles to query during the security game.

Our work, on the last row, carves out a new trade-off in the group messaging
design space. Specifically, we use pairwise channels which results in O(n) update
cost and, in contrast to prior work, maintain a set of evolving shared group key
without compromising security, i.e., allowing adaptive queries.
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1.2 Technical Overview

Our group messaging (GM) protocol consists of three building blocks: (1) an
initial group key agreement (GKA) protocol, (2) a group randomness messag-
ing (GRM) protocol used to transport key updates, and (3) a key lattice. We
overview all blocks but focus on the key lattice as it is our primary contribution.

Group Key Agreement (GKA): Our GKA assumes existence of a public key
infrastructure (PKI). In other words, each party knows the other party’s long-
term public key. The protocol takes as input the identities and public keys of the
group members and outputs a symmetric key shared by those members. This
symmetric key is used by the other two building blocks detailed below. We use
the GKA as a black box and thus are not concerned with the exact construction
in this work. Nevertheless, we require that it is forward secure, i.e., if the long-
term secret key is compromised after agreeing on a shared key, the adversary
still learns nothing about the shared key. Note that many GKA protocols exist
in the literature [9,13,14,29]. In this work we use the definition from [14], which
allows for asynchrony (as needed by our construction).

Group Randomness Messaging (GRM): GRM abstracts the transport
mechanism used to communicate key updates and make our proof more modu-
lar. Because GRM requires pairwise channels with FS & PCS, it could be imple-
mented using pairwise 2-party secure messaging e.g., pairwise Signal or another
double-ratchet-based protocol. We provide a custom instantiation of GRM in
Sect. 5 that better fits our assumptions (specifically, we assume only a public
key infrastructure and do not require a server to distribute pre-key bundles), is
conceptually simpler than a double-ratchet, and is easier to prove secure. Never-
theless, we give an outline of how to build a concurrent group messaging protocol
from black-box primitives in Sect. 3.4.

Our GRM protocol is intuitively simple. Whenever a party U sends a random
message x to party V', U samples a fresh key pair (pk’, sk’), and encrypts (z, pk’)
under the public key pky, that U holds for V. When V receives (z, pk’), it assigns
pk’ as its latest public key for U and outputs = as U’s message. Future messages
sent by V' to U must be encrypted under the latest ephemeral public key that
V holds for U. The scheme achieves both FS and PCS because all secret keys
are independently sampled with every message sent, and therefore leaking one
secret key never reveals information about another. The scheme uses a public
key AEAD scheme for all encrypted messages, where the associated data are
bookkeeping material on the order of updates.

Key Lattice: We now explain our key lattice framework, including our security
game and its representation of FS and PCS.

Framework: Every group key in a group messaging protocol is associated with
a coordinate in a discrete n-dimensional space, where n is the number of players
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plicitly revealed to the adversary. adversary can compute from 1la.

Fig. 1. In Fig. a, the red vertices and edges are explicitly revealed to the adversary. If
PCS holds, then the adversary cannot compute the key ka2 because there is no path
of red edges from a red vertex to ko2. In Fig. b, the adversary can compute the keys
ko,1, and ko,1, and k1,1 by starting at ko,0 and following a path of red edges. F'S can
analogously be visualized by (preventing) traversing the directed graph “backwards”
from a compromised vertex. (Color figure online)

in the group. When parties update the group key (at some index), the new key
produced is mapped to a larger index. For example, for n = 2, a key ki o at
coordinate (1,0) may be updated to a new key with an associated coordinate
ki1,1. We also provide a graphical explanation of a key lattice in which the indices
in the discrete n-dimensional space are vertices, and each vertex is labeled with
a key. In the graph, edges between vertices represent key updates.

FS & PCS: Our key lattice allows us to discuss F'S & PCS in a unified and simple
manner, as directional variants of the same abstraction. In Fig. 1, every key is
mapped to a point on the graph, and updates are mapped to edges in the graph.
Black vertices and edges are not revealed to the adversary, and red vertices and
edges are revealed. A party that “knows” both the key corresponding to a vertex
and an edge leaving that vertex will also “know” the vertex’s neighbor. FS &
PCS mean that the only way the adversary can learn a key k* at some target
vertex v* is by starting with a red vertex on the graph and following a path of
red edges to v*. In the traditional definition of F'S, this would mean that given
a vertex v, without following (in reverse) a path of red edges, the adversary
cannot learn a predecessor of v. In the traditional definition of PCS, this would
mean that given a vertex v, without following a path of red edges, the adversary
cannot learn a successor of v. The key lattice is described in full in Sect. 3.

Security Game and Freshness: Our security game is an oracle game in which the
adversary activates oracles corresponding to parties running a polynomial num-
ber of protocol executions. The adversary plays a semantic security game against
a “fresh” key on one of the lattices. A key is “fresh” precisely if the adversary
cannot derive that key from its view of the execution thus far; graphically, this
means that the key is black in the corresponding graph akin to Fig.1b. The
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Fig. 2. An example of a local key lattice in an execution with two players (blue and
red) from the perspective of the red party. (Color figure online)

adversary wins the semantic security game if it can distinguish two ciphertexts
encrypted under a fresh key.

Tracking Keys of Other Parties: Each party maintains a local key lattice to track
the group keys, but does not (necessarily) need to maintain a full view of the key
lattice. Each party tracks only the keys it needs in order to decrypt a message
that it has not yet received. This permits the construction to achieve the best
possible FS while also achieving correctness; as soon as some party knows it no
longer needs some key, it deletes the key from its view (in order to prevent an
adversary from learning the key after it has become deprecated).

We illustrate our approach in Fig.2. For simplicity, we only consider two
parties labelled with the colors red and blue. The shaded regions, assigned by
color, indicate the set of points towards which the corresponding party may
define a new group key in the future. Any point in a totally unshaded region
represents an index of a key that can be deleted. In our construction, when any
party updates the key, it moves the latest group key towards a point in the n-
dimensional space along an axis that has been assigned uniquely to it. Blue and
red update the key towards higher indices on the x axis and y axis, respectively.

1. In Fig. 2a, the red and blue parties initialize their local lattices with kg .

2. In Fig. 2b, red evolves the group key, which moves red’s latest key to ko, 1.

3. In Fig. 2c, suppose red received an update message from blue. Red applies
the update and evolves its own index from ko1 to ki ;. Because red knows
that blue evolved its key, red updates its view of blue’s index kg to ki .
Specifically, red’s perspective of the latest key for blue becomes k; . Since
ko,o and ko ;1 are outside the shaded region, these keys are removed.

Windowing to Limit State Fxpansion: In addition to the state reduction
described above, we also apply a state “window” that prevents the state from
blowing up in case encrypted messages are delayed over the network, at the
expense of the ability to decrypt long-delayed messages. Consider that if one
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party makes m updates to the shared group key, resulting in m possible differ-
ent group keys, then parties must keep O(m) states in case another party sends
a message using one of those m keys. In our windowing scheme, each party main-
tains at most the latest w key evolutions from every other party, which provides
the ability to compute at most w™ total keys on the key lattice at any time.

When using this scheme, there are situations in which parties may send
messages such that some application messages are not decryptable. Suppose
sender S sends an application message m encrypted under key k, and then
suppose S updates the group key w times starting with k. If S’s message m is
delayed until after receiver R receives S’s key updates, then R will delete the key
material describing how to decrypt m. In synchronous networks, the window can
be set such that parties update their keys once per epoch, and the window can be
set large enough (by setting w is equal to the number of epochs that measure the
network delay) for sent messages to always be received in time to be decrypted.
In the general asynchronous case, the window can be set to oo in order to always
guarantee decryption, but this approach loses FS.?> Thus, windowing allows us
to trade between security and correctness.

Group Messaging (GM): In our construction, parties who wish to participate
in a GM instance begin by running a GKA protocol to obtain a shared symmetric
key k. They use k to initialize their key lattice, and then use GRM to securely
communicate update messages that can be applied to the key lattice to evolve
the shared group key. When a party encrypts an application (payload) message,
it always uses the latest key in its key lattice.

Dynamic Membership: We provide an informal extension of our framework
that permits dynamic group membership “for free,” and additionally handles
simultaneous adds and removals with no additional effort, thus completely avoid-
ing “splitting” [5] issues in synchronous protocols where multiple parties make
competing simultaneous updates. The intuitive understanding is to view our rep-
resentation of a key lattice as a lossless compression of an n-dimensional space
in which only a finite number of points are defined, where n is the number of
all possible identities. Each dimension in the key lattice represents a party that
belongs to the group, and all other dimensions in the lattice are defined to con-
tain points set to L. When a party joins the group, points become defined in
its corresponding dimension. When it leaves the group, its future group updates
become invalid.

Treating dynamic membership in this way averts all of the problems of con-
currency incurred by other works, including with respect to insider attacks, since
groups including the new members are only defined in the lattice as successor
points of the addition operation, and we incur no conflicts by maintaining mul-
tiple copies of the lattice that correspond to groups both with and without the

3 This tradeoff was similarly explored by [28]; our asynchronous security model specif-
ically accounts for the attacks they describe by withholding some ciphertexts and
corrupting a party days later to recover the messages.
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new member. Dynamic membership is not the main focus of our work and a
formal definition and analysis is needed before it can be considered for practical
use, which we leave for future work. Nevertheless, we provide more details of our
dynamic group extension in the full version [21].

2 General Definitions and Notation

We denote by N the natural numbers. For a list £, £[i] denotes the ith element of
£. We write [m] = {1,...,m}, and [a,b] = {a,a+1,...,b—1,b} where b > a. P
is the set of all possible parties, and n = |P|. We define a function ¢ : P — [n]
that assigns a canonical ordering of P, i.e., to each U € P, ¢(U) assigns a unique
index between 1 and n.

Let i € N™ denote an index vector. All keys will be indexed by index vectors,
i.e., we will always write the secret keys as k;. The j-th element of index vector
i will be denoted by i/). We introduce a function increment(i, j) with inputs an
index vector i and an integer j € [n] and returns an index vector i’ such that
for i # 7, ) =i and U) = i) + 1. Similarly, decrement(i, j) returns an
index vector i’ such that for i # j, D = i® and ') = i) — 1. We define a
partial ordering over index vectors by saying i > ¢ if i) > ¢U) for all j. H>
for a constant index vector ¢ € N denotes the n-dimensional hyperplane of all
index vectors i such that i¥) > ¢ for all j € [n].

Network Model: Parties are connected via pairwise channels such that both
parties know the identity of the party on the other end. A PKI provides a
mapping between an identity U € P and its long-term public key. Every U € P
also has its own long-term private key.

Adversarial Model: In our security game, the adversary is responsible for
delivering all messages to its oracles. It may reorder messages arbitrarily, as
per the definition of an asynchronous network [17]. Proper ordering of mes-
sages within a subprotool is enforced by sequence numbers on our updates and
encrypted messages, and therefore in the exposition we assume that each subpro-
tocol’s messages are ordered, but messages sent by different subprotocols (such
as GKA, GRM, and GM application messages) are not ordered with respect to
each other.

The adversary may call its oracles on messages that have not been sent by
honest parties. This is an injection attack. However, because all messages in
our constructions are authenticated, successfully changing the state of an oracle
without knowledge of a party’s underlying key would break the security of an
authenticated cryptographic primitive (e.g., AEAD).

The adversary can corrupt parties to learn protocol keys, and in some cases
may inject messages based on those keys. For example, learning a group key
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allows the adversary to inject application messages, but these injections do not
affect the security of other keys.*
We defer a discussion of insider security in our model to the full version [21].

Encryption: In the full version [21] we give the standard definitions for encryp-
tion, key encapsulation mechanisms (KEMs) and authenticated encryption with
associated data (AEAD) that we use in this paper. Notably, we use a variant of
public key encryption—public key encryption with additional data (PKEAD).
It is similar to an IND-CCA secure public key encryption scheme that allows
additional plaintext data to be appended, where the additional data binds to
the ciphertext.

3 Key Lattice

The key lattice is our central idea for managing concurrent key updates. Because
the key lattice tracks the set of group keys generated during a group messaging
execution, we additionally define security of group messaging with respect to the
key lattice. We now formally define a key lattice.

Definition 3.1 (Key Lattice). We define K to be the space of keys, and we
define 1L to be the lattice of N™ where the ordering is defined by i, < i, if all
elements in i, are less or equal to iy, and i € N™ denotes a point on the lattice.
A key lattice L = {(i, ki) }ier. where ki € KU {L} is a discrete lattice for which
every point i € L is associated with either a single key or L.

We denote the association by letting k; be the key associated with i. We also say
that the key for an index i is defined if k; L. Intuitively, parties will compute
and agree on many pairs (i, k;).

Given a key lattice, a key k; is j-maximal if there is no j € N™ for which
9 > i) and k; #L. If a key is j maximal for all j € [n], we say the key is
maximal in the lattice. Looking ahead, in each party’s local lattice there is always
a maximal key, computed by all applying all updates that the party knows.

3.1 Key Evolution

When a party evolves the group key, it adds a new key (or, as in our con-
struction in Sect.3.3, a group of keys), to the key lattice. Key evolution is
described by a function KeyRoll : K x X — K, where K is the key space and X
is the update space, which encodes the data applied to the key during evolution.
In our construction, we will require a few properties of the KeyRoll function.
First, we require that KeyRoll is commutative, i.e. KeyRoll(KeyRoll(k,z),z’) =
KeyRoll(KeyRoll(k, z'), z) for all k € K and z,2’ € X.

4 Some authentication schemes require parties to sign messages with their long-term
keys [23] but adapting this to concurrent group messaging is non-trivial, and not the
focus of this work.
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In addition to commutativity, we require that KeyRoll : K x & — K is
unpredictable in its second input. Intuitively, knowing only the first input (a key
from K), no adversary can “predict” the output (another key from K), if the
second input (an update from X') is sampled at random. Similarly, we say that
KeyRoll’s inverse is unpredictable if given only k' < KeyRoll(k, z), no adversary
can “guess” the input k. More formally, we have the following.

Definition 3.2 (Unpredictability). A family of functions F = {Fy} where
F): Ky x X\ — K, is unpredictable in its second input if there exists a negligible
function negl such that for every probabilistic polynomial time adversary A and
every A:

Prly = Fa(k,2): k — Ky, z — X\,y — .A(1>‘, k)] < negl())

F’s inverse is unpredictable if there exists a negligible function negl such that for
any polynomial time adversary A and every A:

Prk' = k: k — Ky, z — X\, k' «— A1, Fx(k, z))] < negl()\)

where in each experiment, k and x are sampled uniformly at random from their
respective domains.

We remark that there are many families of unpredictable functions. For
instance, KeyRoll(k, z) = k @ x satisfies the unpredictability definition, as well as
KeyRoll(k, z) = PRF,(k)®. In both cases, it is not possible to predict the output
without knowing the key. The difference between the first construction and the
second is that in the first case, knowing the first input and the output completely
leaks the update material x. This property is not critical to our construction; we
can prove security for our main protocol assuming only that KeyRoll is unpre-
dictable. However, for completeness (and for situations where unpredictability
is not enough), one can define a variant of one-wayness.

One-Wayness. We introduce a non-standard form of one-wayness to analyze
the properties of our scheme. Intuitively, a function is one-way on a challenge
(first or second) input if, given F'(k,z) and the other input, it is hard for any
adversary to compute the challenge input. Below we provide definitions of one-
wayness on the second input. Although we do not use it in our construction, it
is also possible to define one-way-ness in the first input analogously to one-way-
ness in the second input. Intuitively, given x and F(k,x), it should be hard to
compute k. If KeyRoll is one-way in the first input, then the construction inherits
additional useful properties, which we describe in the full version [21]. We now
present our definitions for one-wayness on the second input.b

5 In practice we cannot use the PRF construction because it is not commutative.
5 We remark that the standard definition of one-wayness requires the adversary to
find an equivalent pre-image of the function, and not the exact same pre-image.
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Definition 3.3 (One-Wayness (on the Second Input)). A family of func-
tions F = {F)}x where Fy: Kyx X\ — Ky is one-way on its second input if there
exists a negligible function negl such that for every probabilistic polynomial-time
adversary A and every A

PI‘[I/ =x:k K)\ax — X)\,‘T/ — A(l)\,k,F)\(k,l’))] < negl(A)

where k and x are sampled randomly from their respective domains.

£-Point One-Wayness. The definition above can be generalized to the setting
where A obtains polynomially many (in the security parameter) samples of
(k, Fx(k, z)) pairs for different randomly sampled k but the same x. This addi-
tional property allows us to further constrain the power of the adversary. We
defer the definition and discussion to the full version [21].

3.2 The Key Graph

In our construction, parties track the group key(s) by assigning each key to a
point on the lattice. When a party evolves the group key, it defines the transition
from one point on the lattice to another. In fact, our construction defines the
transitions from a family of points to another family of points. Therefore, it is
useful to describe the key lattice as a directed acyclic graph, where the vertices
are labeled with keys, and the edges encode key evolutions.” Specifically, we
define a key graph G, where each lattice point i € N” is a vertex, and each
vertex is labeled with a single key or with L. In our discussion, we refer to
vertices by the lattice points they represent. There exists a directed edge from
vertex i to j if j = increment(i, k) for some k € [n], and we say that i precedes
j, or j succeeds i, if there is an edge from i to j. Edges in a key graph are
labeled with the key evolutions that they represent. We say there exists a path
p of length ¢ between two vertices i and i’ if there exists a sequence of edges
(v1,v2), (v2,v3), ..., (ve—1,ve) such that (a) vy = i, (b) vy = ¥, and (c) v;_1
precedes v; for all j € [2,¢]. The local state held by each party in our protocol is
a pair (L, E), where L denotes the key lattice held by the party and F represents
the edges representing the transformation between keys.

3.3 Instantiation

We now describe how parties manipulate a key lattice.

Generating a Set of Key Evolutions. In our construction, each party updates the
group key in its own “direction” in L; the dth party (U € P for which ¢(U) = d)
always updates the group key towards larger indices in the dth dimension on
the lattice. A key update o € X sent by one party to another is therefore a
tuple (d, j, z), where d is a dimension in the key lattice (generated by the party

" In this work, every graph is a directed acyclic graph.
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U such that ¢(U) = d), j € N is an index that annotates how many times the
updating party has updated the group key, and x € X is data that describes
how to update the key (for KeyRoll). In other words, X' = [n] x N x X. The jth
key evolution generated by any party therefore defines the transition from every
index i to index i’ such that i(Y = j and i’ = increment(i, d), and it defines the
evolution to use update data x. In our construction, the space X is the same as
described in Definitions 3.2 and 3.3.

Observe that each key update in our construction defines a group of key
evolutions, which can be described in our graphical representation as a group of
edges. We require commutativity of KeyRoll to guarantee that when transitioning
from key k to key k' (over one or more edges), where k is represented by vertex
u, k' is represented by vertex v, and there are multiple paths between u and v
in some party’s key lattice, it does not matter which path is taken.

Our KeyRoll Function. Our construction depends on the discrete logarithm
assumption to instantiate KeyRoll(k,z) as k*. That is to say, let key space K
be a prime-order group G in which the discrete log problem is hard, and let
update space X be Zg . This construction easily satisfies our commutativity
requirement since (kf”)f”' = (kx,)z. For appropriately chosen parameters, the
construction is trivially unpredictable. If the discrete logarithm problem is hard
in G, then KeyRoll is also one-way on its second input.

Computable Lattice: The description of a key lattice L may not be “com-
plete” in the sense that given a set L = {(i,k)} representing a key lattice, it
may be possible to infer the keys assigned to other indices on the lattice (i.e.,
points not in L). Below we illustrate the possible inferences depend on the choice
of the KeyRoll function. Consider the case where KeyRoll is defined using XOR,
then knowing the key at i and a succeeding key at i’ = increment(i, d) allows us
to derive the update o, which may allow us to derive the keys at other lattice
points j such that j(@ = i(@.

The function Computable(L, E) — L’ outputs all the computable lattice
points L’ given the original lattice L and a set of updates E = {(d, j,x)}, where
d € [n] is the dimension, j is an index and z is the argument to KeyRoll.

Two examples below illustrate the dependence of Computable on the proper-
ties of KeyRoll. Figure 3 illustrates how Computable works if a KeyRoll function
is not one-way. Figure 4 illustrates the difference when KeyRoll is one-way.

The function Computable(L, E) can be realized as follows:

1. Interpret the lattice L as a directed graph G. Initially this graph has no edges,
only vertices from L.

2. Add every edge from F to the graph. Recall that every edge in E corresponds
to multiple edges in G. Specifically, e = (d, j, z) describes all edges that begin
with a vertex (...,J,...) and end with a vertex (...,j + 1,...) where j and
j + 1 are on the dth position, and each edge is labeled with the update x.
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Fig. 3. Suppose the red keys in the figure on the left are revealed in a key lattice. If the
KeyRoll function is unpredictable but not one-way, then knowledge of a pair of adjacent
keys would reveal all edges (updates) in the corresponding row or column, as shown in
the middle figure. These inferred edges lead to additional computable keys (colored in
red) in the right figure. (Color figure online)

NN D A N A O
NN O S D B

Fig. 4. Begin with the same lattice as in Fig. 3 but assume that KeyRoll is one-way.
The lattice points in the left figure do not allow us to compute a new lattice with more
keys. Given additional information on the edges in the middle figure, one additional
lattice point is computable (top left in the right figure).

3. Traverse G from the origin. For every pair of predecessor-successor vertices
(u,v) where u #1 and v =1, if there exists an edge labeled with « connecting
u to v, then compute k, «— KeyRoll(k,, x).

4. Similar as above, but traverse G backwards and if there exist two predecessor-
successor vertices (u,v) where k, =1 and k, #L1 then compute k, «—
KeyRoII_l(kv,x)7 where z is the label on the edge between v and v. Note
that, if KeyRoll is one-way on its first input, then this step is omitted, as it is
hard to compute u given x and v.

Adding Keys: Parties may update the key lattice using Update(L,e) — L'
which takes a key lattice L and an update e = (d, j,«) and a returns a new key
lattice L’ as follows:

— Let D = {i,,} be all d-maximal index vectors in L.
— Output a new lattice L' with additional points defined by (increment(i),
KeyRoll(k;, z)) for all i € D.
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Note that since the lattice points included in D are d-maximal, all keys in
increment(i,d+1) are L in the original lattice L. One can think of this operation
as (possibly) adding keys to the lattice based on e.

In the key graph interpretation of the lattice, Update looks at the largest
index i for which a key is defined in dimension d, and labels every edge from i
to 7+ 1 in dimension d (holding every other dimension constant) with update e.

Forgetting Keys: A key lattice is an infinite object. To manage memory
requirements, (and looking ahead, to provide FS) we remove keys from a party’s
local version of the key lattice. The function Forget(L,i) — L’ takes a key lattice
L and an index vector i, and returns a new lattice L’ such that all keys in index
vectors i’ such that i’ < i, are set to L. Implicitly, Forget also deletes from a
party’s state all of the edges leading to vertices that have been forgotten.

We use windowing to limit state expansion and provide FS (Sect. 1.2). When
we write Forget(L, w) — L', then Forget works as follows, where w is the window
parameter. We call i,, below the threshold index vector.

— For every dimension d € [n], let iy the maximum j such that there is a key
defined in L at index j in dimension d.

— Let i, be an index vector such that for every d € [n],

— Execute Forget(L,i,) and return the new lattice L’.

i = max(0,ig — w).

3.4 Key Lattice as a Key Management Technique

The key lattice is enough to build a concurrent group messaging protocol from
existing primitives such as pairwise channels. The following generic approach
uses a key lattice to build concurrent group messaging using three building
blocks: (1) an initial group key, (2) secure pairwise channels between all par-
ties in a group and (3) an AEAD scheme for sending payload messages.

— Given the initial group key kg, the parties initialize their key lattice with
(0,ko), and assign L to the key at every other lattice point.

— If a party at index d € [n] updates the key for the jth time, it samples x Sy
and sends (d, j, z) using the secure pairwise channels.

— Upon receiving (d, j, z) the receiver adds key k' < KeyRoll(k, z) to the lattice
at point i’, where k is the maximal key in the lattice and is located at point
i, and i’ « increment(i, d).

— When a party at index d € [n] sends an application message, it encrypts
the message using the maximal key k in its local key lattice and sends the
ciphertext to the group members (without using secure pairwise channels).
The ciphertext is encrypted using AEAD where the associated data is the
lattice index corresponding to the key used to encrypt the message.

— Upon receiving the ciphertext encrypting a payload message, the receiver
checks whether it has the key in the key lattice required to decrypt. If so,
then the receiver decrypts it immediately. Otherwise, the receiver buffers the
message until it receives sufficient information to decrypt.
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— Storing all the keys that are in the key lattice is expensive and trades off for-
ward security. Every party runs Forget(L, w) for its lattice L and the window
parameter w every time the party processes an update message.

4 Group Key Agreement

To agree on the very first shared key we use an existing group key agreement
(GKA) protocol. There are many definitions of security of GKA protocols; for
our purposes we adapt the one from [14] as it captures strong-forward secrecy
and a strong corruption model. For our GM protocol to be asynchronous, the
GKA subprotocol must also be asynchronous; this is true for the model of [14].

In this section, we reproduce the definition and introduce a few syntactic
tweaks. For the full security definition we refer the reader to the full version [21].
The GKA will be used to construct our GM protocol in Sect. 6.

Definition 4.1 (Group Key Agreement). We use G C P to denote some
group of players that participate in the protocol. Each party U € P is assumed to
already have a long term public/private key pair (pky, sky). We assume a PKI
exists and the public keys are available to all parties.

The protocol consist of two stateful algorithms.

- {mv}vec «— GKA.Init(G): Initialize an instance of the GKA protocol for a
group G and return a set of responses, one for every party in G.

- {mv}tvec <« GKA.Recv(M): Process message M and return a set of res-
ponses.

The GKA outputs done with a key k to notify that the protocol completed.

5 Group Randomness Messaging

We present the group randomness messaging (GRM) abstraction through which
the parties communicate update messages. The main functionality is to send
authenticated data and a ciphertext encrypting a random key update to all
members in the group using pairwise channels. We require the pairwise channels
to have F'S & PCS properties.

Definition 5.1 (Group Randomness Messaging (GRM)). Consider the
player executing the protocol is U, a GRM scheme consists of three stateful algo-
rithms.

- {cuv}vee < GRMy.Init(k,w, G): initialize the GRM instance using the ini-
tial key k, the window size w, and the group members G.
This step initializes the internal state statey ;. The output is a set of cipher-
texts, one for every player in G.

- {cvv}vee — GRMy.Evolve(): output a ciphertext cyy for every V € G.
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- oyu < GRMy.Recv(cy,i): process the ciphertext cy,y, update the internal
state and return the plaintext oy, if the decryption is successful. If decryption
18 unsuccessful, return L.

In the above definition, oy, is a triple (U, j, z) where U is the identity of the
sender, j is a positive integer and x € X. The full version [21] discusses the
correctness and security definitions for GRM.

5.1 Instantiation

We instantiate GRM using PKEAD. In essence, every party keeps a queue of
w public and secret key-pairs. This queue is updated every time the party calls
Evolve by dropping the oldest keypair and adding a new one. Each party U also
maintains a public key for every other party V which is updated whenever U
receives the output of V’s Evolve. U uses this public key in order to encrypt
messages to V. U also maintains an integer jy that tracks the index of the latest
public key U has received from V.

This initial message sent by each party is a pair (pk?], m), where pk?] is the
party’s initial ephemeral public key, m is a MAC on the public key using the
key k provided as input to Init. Where k is the key output by a GKA execution,
this effectively “ties” a GRM to the GM application that uses it, as the MAC
links the output k of a GKA session with the GRM session that will be used to
evolve the key.

On a high level, the protocol achieves PCS because public keys are cycled
over time and FS because old keys are dropped. Our construction is detailed
below. Let the set X to be domain from which updates are randomly sampled.

~ GRMy.Init(k,w,G@): Generate an ephemeral key pair (pk{,sk?). Initialize
statey.sks = {sk¥} and statey.pks = 0, and save w as the window parame-
ter. Compute m « MAC(pkY; k), where k is the input key, pk?; is the message
and MAC is a cryptographic MAC scheme. Send the same message (pky;, m)
to every member in G.
— GRMy.Evolve(): A A
1. A new private key sk%fl is generated, along with its public key pk%fl.

2. Sample x S Xandlet o — (U,j+1,z), where j is the index of the latest
secret key in statey .sks.
3. Repeat the steps below for every V' € G (including U).
e If the public key of the receiver V' is not known, abort.
e Call (¢,t) «— PKEAD.Enc(pk}||o,jv;pkl’) and then set cpy
(c,t,jv). Note that pk{/‘/ can be found in statey.pks and jy is the
index of the public key associated with V.
4. statey is updated as follows.
e Add sk{fl to statey;.sks
o If |statey.sks| > w, remove the oldest one (i.e., sk{fw).
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— GRMy.Recv(cy,): There are two possible message formats. The message out-
put by Init is an ephemeral public key pkY, with a Mac; if the message is this
type, then verify the Mac using the key k provided to Init® and then set V’s
public key in statey.pks to be (O,pk?/). All other messages are handled as
follows.

1. Parse the message cy,y as (c,t,j), where j is an index into the current
user U’s secret key.

Find secret key sk,. Abort the protocol if it does not exist.

pklY ||ov.r «— PKEAD.Dec(c, t, j; ski, ), abort if this step returns L.

Add or update V’s public key in statey.pks to be (7, pk{,").

Let jmin be the smallest j in {(j,pky) : V € G}.

Delete all secret keys skj; where j < jmin-

Return oy

No ot W

Theorem 5.1. Let A be an adversary against the GRM game, let B be an adver-
sary against the PKEAD game, and let C be an adversary against the MAC
EUF-CMA game. Then

AdVE™ < ng - AdVE® + 2 - |Q|max - N - Advie.

where |Q|max 15 the upperbound for the number of oracles in a group, ng is the
upperbound of the number of queries to the encryption oracle that B makes on
behalf of A for the instance under test, and ng = poly(X) is the mazimum number
of concurrent GRM sessions that A is allowed to invoke in its security game.

For a proof of this theorem see the full version [21].

6 Group Messaging

We define group messaging as a protocol which establishes and evolves a lattice
of keys. Parties may additionally send messages encrypted under the group keys,
which must be decrypted successfully by the other group members.

Our definition of group messaging assumes the existence of a Group Key
Agreement (GKA) primitive (Sect. 4).

Definition 6.1 (Group Messaging). A group messaging protocol consists of
five stateful algorithms defined as follows:

- GM.Init(G, w): Initialize the protocol with group G C P and the windows size
w. Qutput a set of messages, one for each party in G.

— GM.Evolve(): Outputs a set of update messages, one for each party in G.

~ GM.Recv(M): Processes the message M (e.g., from the network), and outputs
a response.

— GM.Enc(m): Encrypts a plaintext m and oulpuls a ciphertext.

— GM.Dec(c): Decrypts ciphertext ¢ and outputs a plaintext.

8 If verification fails due to trying the wrong key from multiple concurrent sessions,
return | and process the incoming message via Recv of a different session.
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6.1 Security Definition

The security of GM is modeled via a game between a challenger and an adversary,
where the key lattice tracks the evolution of the group key(s) over time. Our
freshness definition specifies the conditions under which a particular state (in our
case the state is a key in the key lattice) is not compromised by the adversary.
Contrary to the definitions of freshness in other key agreement works (e.g., [4,
19]), we state freshness below with respect to a specific lattice point.

The adversary invokes oracles I 5"; where U is a group member and i €
[1,...,ng], where the subscript i denotes a specific instance of the oracle that
belongs to party U. Different instances that belong to the same party may share
long-term keys, e.g., identity keys. The adversary invokes the oracles arbitrarily
as long as it follows the constraints described in Sect. 2.

We assume there is an instance of the GKA oracle running under every GM
oracle. This method allows us to inherit the partnering definition and many
oracle queries. Nevertheless, our description is self-contained since we reproduce
the common oracle queries in the GM definition. Additional details of the GKA
can be found in Sect. 4.

Each oracle I1 IgJ"; maintains internal variables to track each party’s view of
the key lattice and the group messages that have been received by that party.
They also collectively maintain global state that tracks which elements of the key
lattice and which key updates have been explicitly revealed to the adversary. We
denote by LT the key lattice describing all keys (points on the lattice) which are
revealed to the adversary, and we denote by ET the set of key updates, modeled
as edges in the graphical interpretation of the key lattice, which are revealed to
the adversary. Sy = (LY, EX) denotes all of the key material that is revealed
to the adversary in some session sid. The session ID sid is a unique identifier
for the group members who have successfully completed the initial group key
agreement and established a session (described in detail in Sect.4 since it is a
property inherited from GKA). Indeed, sid is not defined when a GKA session
begins, but this is not an issue since the session’s lattice is instantiated only
after the session is established. The full information on the key lattice available
to the adversary is given by Computable(LZY, ELY). We remark that the session
ID (sid) is not the same as the instance ID. The instance of an oracle, e.g.,
(U, 1), is established when the oracles are initialized, but the session ID is only
established some time later, after the oracles are ready to evolve keys.

Specifically, the oracles maintain the following state:

— 0y, € {pending,accept, abort} indicates whether the oracle is ready to start
evolving keys.

— Ly, represents the key lattice maintained by oracle I1 lg]"; We use the language
from Sect. 3 to describe the key lattice.

— statey,; is the remaining state that the implementation may keep. (For our
protocol, this includes Ey;, a set of edges between lattice points, as well as
the state held by underlying subprotocols.)

rev

— S = (LY, EXY) represents the key lattice L) containing all the revealed
keys by the adversary as well as the revealed updates £ in session sid.



152 K. Cong et al.

The full details of the GM oracles are specified below.

- H[g]r:;.lnit(G, w): Initialize an instance of the GM protocol for the group mem-
bers in G where U € G and w is the window size. Set dy; = pending and
return a hash function H. The response is returned to the adversary.

— 1137 .Corrupt(): Return the long-term secret to the adversary.

- ngj';.Reveal(): If 6y; # accept then return L. Otherwise, return the set of
keys that are computable from Ly ;, and add these keys to LY

— IIF" StateReveal(): If 6y,; # accept then return L. Else, return the internal
state statey;, excluding the computable keys Ly ;. °

— I3 .Evolve(): If dy; = abort then return L. Else, return a set of message
{My}vea.

~ IIF .Recv(M):

o If §yy; = abort then this call does nothing.

e Otherwise process the message, optionally update the state statey; and
the key lattice Ly ;. Return a set of messages {My }veg. The input M
should be from either the output of Recv or Evolve.

- II gg.Dec(c): Use the available internal state to decrypt the ciphertext ¢ and
output the plaintext. If the oracle does not have enough information to
decrypt the message, then it is buffered.

- 1T (gjrj;.Enc(m): Encrypts the plaintext m using the maximal key in Ly; and
returns a ciphertext.

— I3 Test(mg, my): This is defined in the security game below.

By execution of Corrupt, Reveal and StateReveal queries the adversary can
learn the entire secret internal state of the oracle IT 5"; Specifically, Reveal gives
the party’s current group keys, and StateReveal gives the party’s internal state
except for what is provided by the former two queries. Corrupt gives the party’s
long-term public key and secret key (from the PKI); because this is only used
for the GKA protocol, which we require to be forward secure, this reveals the
initial group keys in future GKA executions. Also note that the above gives the
adversary a decryption oracle via Dec.

Modeling Pairwise Channels in the Oracle Game: In our general oracle
game, the adversary is permitted to invoke the oracles in any order, which models
an asynchronous network. However, to describe the guarantees that the protocol
achieves when windowing, we define a syntactic model to describe the messages
sent “between parties” in the oracle game. Specifically, between every ordered
pair of parties (U,V) the adversary maintains a special buffer Cyy called a
channel representing the pairwise connection between U and V. When an oracle
query returns a message ¢ to be sent from U to V, the adversary places (¢,n)
into Cy,y, where n is an integer recording that c is the nth message placed into
the channel.

rev

9 For our construction, this adds all of the edges in Ey; to EL.
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In the above game description, each oracle provides three queries to gener-
ate messages to other parties. I7, 5’2.Enc(m) encrypts a message using the oracle’s
latest key and returns a ciphertext which is forwarded to all other parties. When-
ever a IT lg]';.Enc(m) query is made, the returned message c is simultaneously put
into the channels Cy v for all V € G. Hfg]r:;.Evolve() generates a key evolution,
but returns a different message for each other party in the execution. Simi-
larly, IT5;.Recv(M) may output a different message for every other party in the
execution, but it may also output no messages. Whenever a ng]':;.Evolve() or
Hf}';.Recv(M ) query is made, the oracle returns a list of ciphertexts ¢y, one for
each V € G. Each of these messages is immediately placed into the corresponding
channel Cy v along with its index.

A message ¢ generated by an Enc query is removed from its corresponding
buffer only when it is input to a corresponding oracle ITj;.Dec(c). A message ¢
generated by an Recv or Evolve query is removed from its corresponding buffer
only when it is input to a corresponding oracle H{g/t']‘..Recv(c). Note that if an
oracle receives a message that it cannot yet process due to reordering of messages
over a pairwise channel, then the oracle is expected to buffer the message until it
can process the message, and return the result once it can process the message.

The adversary may additionally invoke Recv or Dec oracles on messages that
have not been placed in channels but instead were adversarially generated. These
actions do not affect the channels.

Partnering: For group messaging, partnering is analogous to the case for GKA.
Intuitively, a group in a GKA protocol is partnered if the parties participate in
the same session and agreed on the same group key. For group messaging, parties
are partnered if they are running a protocol with each other to agree on a lattice
of group keys.

Definition 6.2 (Partnering). Given a group G C P and a set of pairs Q =
(U,iv)vec defining associated oracles H[gjr;U, we say the oracles are partnered

if the underlying GKA oracles IT [g}f?U are partnered.

For some security parameter A we define a security game for the adversary A,
this consists of the set of participants P where n (the number of participants) is a
polynomial function of A, as is the maximum number of sessions per participant
ng. Thus the number of oracles HE;; is also a polynomial function of A. The
adversary A is given at the start of the game all the public keys pk;, for pk € P
and it interacts with the oracles IT¢; via the sequence of oracle queries as above.

Freshness: We now define freshness for our game. Intuitively, we say that a key
is fresh if it has not been revealed to the adversary, either explicitly via Reveal
queries, or implicitly, via a combination of Reveal and StateReveal queries. The
global state ST tracks the keys computable by the adversary, and a key is fresh

if and only if it is not computable from SY.
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Definition 6.3 (Freshness). In a session sid, a key ki« with at index i* is fresh
if and only if it is not computable from Sy using the Computable function, as
defined in the group messaging definition (Definition 6.1).

Depending on when the adversary invokes Corrupt on a party and learns its
long-term secret key, the adversary might learn all messages delivered to that
party, and any such key or update material is included in ST. Therefore, keys
that the adversary can learn from messages delivered to this party are not fresh.

Security Game: The security game tries to break the semantic security of a
message sent between the parties. It runs in two phases, the division between the
two phases is given by the point in which the adversary executes a Test query.

— Phase 1: All queries can be executed without restriction.

— Test Query: H[%'E.Test(mo,ml): Given two equal length messages mg and
myq, if ky is fresh, where ky is the maximal key of instance(U, i), then the
challenger selects a bit b € {0,1} and applies IT¢;.Enc(my), returning the
output ct* to the adversary. We denote the test oracle by II5" ;.. We call i*
the test index.

— Phase 2: All queries can be executed except for:

1. Any query that would add ki~ to the set of keys computable from SZ.
2. If ct* is at any point processed by Dec(ct*), by the oracles, then the
result is not returned to the adversary but the game still continues.

At the end of the game, the adversary A needs to output its guess b’, and wins
the game if b = b'. We define Adva(A) =2-|Pr[b =b'] —1/2|.

Definition 6.4 (Security of Group Messaging). A GM scheme is secure
if for any probabilistic polynomial time adversary A the advantage Adv4(X) is
negligible in the security parameter \.

Thanks to the underlying key lattice, our security game captures F'S and PCS
at the same time in a natural way. Specifically, queries to Reveal, StateReveal or
Corrupt during Phase 1 are used for capturing PCS and queries to these oracles
during Phase 2 captures FS. Unlike prior definitions [4,33] we do not need to
use epoches or separate definitions for PCS and FS.

Correctness. Intuitively, a GM protocol is correct if every message that is
encrypted with the group key is correctly decrypted by every recipient. We write
the formal definition with respect to the oracles defined for our security game.
Our definition of correctness requires all encrypted messages must eventually be
correctly decrypted under a property called “well-ordered execution” which we
define as well.

Definition 6.5 (Correctness of Group Messaging). A GM protocol is cor-
rect if in every infinite execution by every PPT adversary A who is allowed
to query the GM oracles except Corrupt, StateReveal, Reveal and Test and must
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deliver all messages, for allU, 1, for all ¢ +— HEE.Enc(m), and for allV € G\{U}

there exists a j and an oracle call m' « I3 .Dec(c) such that (U,4) is partnered
with (V,j) and m' = m.

Recall that when we apply windowing, some party may be forced by the
protocol to discard the group key used to decrypt a message that has still not
been delivered to it. To facilitate our analysis of correctness when windowing,
we define an ordering property of an execution that describes how many times
a party may evolve the group key between the moment it sends a message and
that message is delivered.

w-Well-Ordered Ezecution. Recall that our oracle game tracks the order in which
messages are returned from oracles to be sent to other parties via our abstraction
of pairwise channels, and that the adversary may delay and reorder messages
sent via the pairwise channels. A channel is w-well-ordered if the nth message
sent over C is removed from the channel before the (n + w)th message (via
delivery to the correct oracle), for all n € N. An execution is w-well-ordered if
all pairwise channels are w well-ordered.

We claim that when windowing with our protocol, for any w-well-ordered
execution, if the window parameter w is greater than or equal to w, then the
protocol is correct. The proof is trivial by construction of the protocol. When
w < w, windowing may force some decryption keys to be purged before the
corresponding message is delivered.

Remark 6.1 (Well Ordering and Network Synchrony). Well-ordering is a strict
relaxation of network synchrony that depends on ordering messages rather than
on time. In a synchronous network, a delay parameter of A implies A-well-
ordered channels; therefore, setting w = A implies correctness. If the network is
asynchronous, then w must be set to co to guarantee correctness. However, this
sacrifices forward secrecy, as parties may store old group keys indefinitely.

6.2 GM from GRM and GKA

We first present our construction of GM from GKA, GRM, and a CCA-secure
AEAD scheme; we then prove security of GM based on the underlying primitives.

Protocol Overview. In our construction of a group messaging protocol, parties
maintain local versions of a global key lattice in order to track the group key.
They then encrypt and decrypt messages using keys from the lattice, and they
update the group key by adding new keys on the key lattice. Our protocol uses
the above primitives to initialize their key lattices, encrypt and decrypt messages
using the keys in the lattice, send updates to the group key, and remove keys
from their lattices. Specifically, each party maintains a local key lattice £, a local
set of key updates £, and a buffer B of unprocessed messages, which contains
both GRM messages that it cannot yet process and application messages that
it is not yet able to decrypt. Every update e € £ has the form (d,i,xz) where
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d € [n] corresponds to the dimension of the party that generates the update, i is
an index and z is key transformation data. Parties also maintain a list of index
vectors Z € (N™)" that tracks each party’s view of the current key of every other
party, which is used to optimistically exclude keys from its state.

Message Headers and the Recv Subprotocol. We make the distinction between
protocol messages and application messages. Protocol messages in GM are either
GKA messages (to agree on an initial group key) or GRM messages (to evolve
the group key). Application messages are encryptions under some group key.

Our construction uses a single Recv function to process every incoming pro-
tocol message, provided in Fig.7, which directs the incoming message to the
appropriate subprotocol (either GKA or GRM). To help distinguish between
GKA protocol messages and GRM protocol messages in the descriptions of the
protocols and the proofs, we say that a message is a “GKA message” if it con-
tains a prefix gka, and a message is a “GRM message” if it contains a prefix grm.
In an implementation, these headers can be encoded as flags. Where the context
is clear, we elide these prefixes from the exposition.

Initialization: When a group of parties begin a GM protocol, they initialize
the execution via GM.Init(), which is described in Fig. 5. Each party saves the set
of other parties in the protocol and the window parameter. They also agree on a
hash function H described below, which is a public parameter. The parties then
run GKA in order to agree on an initial group key. Note that the key lattice and
GRM is not initialized yet; they can only be initialized after the GKA outputs
the initial key as shown in Fig. 6.

Sending and Receiving Key Updates: Our GM construction uses GRM as
a transport for generating and communicating random key updates. In Fig. 6
and Fig. 7 we specify how parties generate new key updates and process updates
form other parties, respectively.

Specifically, parties invoke GRM.Evolve() to receive a random key update o
along with an encryptions of the update to send to each other party via pairwise
channel. The calling party adds o to its set of edges £ and computes any possible
new points in £. When a party receives a key update, it calls GRM.Recv() on
the update, and if a key update is returned then it adds the update as an edge
in £ and computes any possible new keys in L. If it cannot yet decrypt the key
update, it buffers the message.

Encrypting and Decrypting a Message: Whenever a party wishes to en-
crypt a message m using the group key, it calls GM.Enc using the maximal
key in its key store. Specifically, we require a hash function H: K — K, that
maps from the keyspace of the key lattice to the keyspace for a CCA-secure
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AEAD encryption scheme.'® When a party encrypts a message, it provides the
hashed key corresponding to the maximal index i in its key lattice £ as input to
AEAD.Enc, and it includes the index i as associated data. The encrypting party
then forwards the encrypted message to every other party.

When a party seeks to decrypt a message, it looks up the corresponding key
(the index of which is found in associated data), and supplies the hashed key to
AEAD.Dec. When a party receives an encrypted message, it checks whether the
index of the key used to encrypt is in Computable(L, E). If so, it uses the key at
that index to decrypt the message. If not, it adds the message to the buffer B.
The implementations of encryption and decryption in given in Fig.8 and Fig. 9.

Pruning the Key Lattice: Parties continuously attempt to prune elements
from their local state, both in order to manage the size of the state they keep,
and also because deleting old keys facilitates forward secrecy. When a party
knows that it will no longer receive any messages encrypted with keys below
a particular key index i, it optimistically prunes all such keys from its lattice
via Forget(L£,1). Additionally, if ever a key index exceeds the key window (keys
whose index vector that are less than the threshold index vector i,) it purges
the key (and relevant updates) from £ (and &).

Whenever a party receives an encryption from a party V, it updates its index
vector Z[p(V)] tracking the keys used by V. Recall that because our construction
requires key updates to move toward higher lattice indices, the set of future
indices is the union of the n-dimensional hyperplanes H* = ;<7 H>i, . Any
index outside this union represents an obsolete key, and the related keys are
deleted via Forget in Fig.9.

In summary, keys and edges that fall outside the window parameter are
deleted as specified in Fig. 7. Keys and edges that will not be used in the future
are deleted as specified in Fig. 9. This is possible because parties also send their
maximal lattice point along with their message (in Fig. 8) so that the receiving
party can compute the minimum view (lattice point) of all parties and delete
keys and edges that are smaller than the minimum view.

On execution of GM.Init(), run GKA.Init(G) and output the result. Note that

U holds the long-term key pair (pkit, skit).

Fig. 5. Algorithm for GM.Init(G, w)

10 This hash function’s purpose is semantic to convert between types. We only require
(informally) that if the adversary does not know k then it does not know H(k). We
elide discussion of H in the proof.
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[ U calls {cu,x } xec — GRM.Evolve(), and outputs cy,x to X for X € G.

Fig. 6. Algorithm for GM.Evolve()

If M is a GKA message:

— Compute {mu,v}vea «— GKA.Recv(M), and output my,v to party V for
Vea.
— If GKA outputs done with a key k:
e Initialize £ with the point (0, k).
e Initialize a GRM execution via {cu,v }veec < GRM.Init(k,w,G) and
send cy,y to V for V € G.
e Initialize an empty message buffer B « 0.

If M is a GRM message received from party V:

1. Compute o « GRM.Recv(M). If o =L, then add M to B and return. Oth-
erwise, let (d, j,x) < o, add (d, j, ) to the set of edges £ and then compute
L < Computable(L, £).°

2. Delete deprecated keys using £ < Forget(L, w).

3. Delete deprecated edges from £ that precede the corresponding index in the
threshold index vector (see Section 3.3). Specifically, suppose the threshold
index vector is iw = (1,...,ing) and E = {(dk, jr, Tx)}r, then remove all
edges (d, jr, k) where ji < iq, .

4. While B is not empty or B has not changed from the previous iteration:

— For every message M € B, execute GM.Recv(M)

@ A sanity check would be that d = ¢(V') and j should equal the dth element
of the maximal index vector of L.

Fig. 7. Algorithm for GM.Recv(M)

Player U finds the ¢(U)-maximal lattice point i in its local lattice £, computes
(ct,t) < AEAD.Enc(m, U||i; H(k;)), and then returns (ct, U||i,t).

Fig. 8. Algorithm for GM.Enc(M)

6.3 Concrete Costs

We give an estimate of our concrete communication cost for 128-bit security.
Since the payload ciphertext form is (ct,Ul|4,t), the concrete communication
cost for 32 bytes payload is 32 4+ 3 - 16 = 80 bytes, assuming the identity U,
the lattice point 7, and the AEAD tag t are 128 bits. Additionally, the update
ciphertext has the form (c,t,j) where ¢ is a ciphertext encrypting pk||U]||¢||«,
under a public key encryption scheme, where pk is assumed to be 32 bytes and
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Parse M as (ct, V||i,¢). If M is not of this form, return L. Then:

— If i < iy, where i, is the threshold index vector, or if i < Z[¢(V)], return L.

— Update Z[¢(V)] < i, compute imin as the index vector of the element-wise
minimum of all i € Z, and then execute £ < Forget(L, imin)-

— Find the key at i in £ using Computable(L, ), if k; =L, then add M to B
and return L.

— If ki #1, compute m «— AEAD.Dec(ct, V||i,¢; H(k;)). If mm =L, abort the
protocol. Otherwise, return m.

Fig. 9. Algorithm for GM.Dec(M)

z is from the update space assumed to be 16 bytes. One update message is
needed for every party in the group, for a group size of 128, the update cost is
128-(32+5-16) = 14.3 KB. Our scheme uses less communication than Weidner
et al. [33] which has a payload ciphertext cost of 139 bytes and an update cost
of 39.6 KB in the same setting.

The storage overhead comes from the window parameter w and the group
size N. Specifically, we need to maintain at most w update messages per party
and only one key in the lattice at the minimum view. For a window size of 1,000
and 128 parties, the storage requirement would be just over 14 MB in the worst
case which is insignificant in today’s devices.

6.4 Main Theorem
We now state our main theorem. The proof is in the full version [21].

Theorem 6.1 (Security of Group Messaging). If A is an adversary against
the GM game, then there exist adversaries B, C, and D such that

AdvE™ (A) < 2ngAdvE? (B) 4 2nsnAdvE™ (C) + ngngAdve? (D),

where ng = poly(X) is the mazimum the number of GM sessions A may invoke,
and ng = poly(X) is the mazimum number of keys that A may query in a session.
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Abstract. Identity-Based Matchmaking Encryption (IB-ME), initially
proposed by Ateniese et al. (Crypto 2019), is an extension of Identity-
Based Encryption (IBE) that emphasizes privacy and authenticity. It
ensures that the content of a message is only revealed when the recip-
ient’s identity matches the intended recipient specified by the sender,
and when the target sender’s identity, chosen by the receiver during
decryption, matches the actual sender’s identity. In cases where there
is a mismatch, no information about the sender, receiver, or message is
disclosed.

Francati et al. (IndoCrypt 2021) observed that the privacy definition
for IB-ME solely guarantees the concealment of the message and sender
identity when the receiver’s identity does not match the intended recip-
ient specified by the sender. It does not consider whether the target
sender’s identity matches the actual sender’s identity. To overcome this
limitation, they proposed an enhanced privacy notion and developed an
IB-ME scheme that achieves it in the plain model, even though relying
on non-standard assumptions.

In this paper, we address the problem of constructing an IB-ME
scheme that offers enhanced privacy under standard assumptions with
particular emphasis on post quantum security. Specifically, we first show
how to obtain an IB-ME that achieves the notion of enhanced privacy
using as building blocks any anonymous IBE and reusable computational
extractors. Next, we show how to construct an IB-ME starting from an
IB-ME satisfying enhanced privacy and a context-hiding homomorphic
signature, thereby ensuring not only enhanced privacy but also authen-
ticity. Notably, our framework allows for secure IB-ME schemes to be
instantiated in the standard model from lattice assumptions, thus pro-
viding also post-quantum security.
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1 Introduction

Matchmaking Encryption (ME), as introduced by Ateniese et al. in [4], enables
the sender and receiver to establish policies that must be met for an encrypted
message to be disclosed. ME schemes must guarantee two fundamental security
properties: privacy and authenticity. Privacy ensures that the sender’s private
information, such as the selected policy and its attributes, as well as the confiden-
tiality of the ciphertext, remain completely concealed from unintended receivers.
Authenticity, on the other hand, guarantees that an adversarial sender cannot
generate a valid ciphertext if it fails to satisfy the receiver’s policy requirements.

The notions of privacy and authenticity make ME highly applicable in covert
communication services. When both communicating parties are designated as
intended targets by each other, the encrypted traffic can be correctly retrieved.
However, if this is not the case, the decryption process fails without revealing the
cause of failure. Furthermore, ME can find practical use in Internet of Things
(IoT) applications and data sharing services [7,21].

Building upon the concept of matchmaking encryption in the identity-based
context, Ateniese et al. [4] further developed and formalized the concept of
Identity-Based Matchmaking Encryption (IB-ME) exploring its applications,
particularly in the creation of an anonymous bulletin board operating over a
Tor network.

In IB-ME, the receiver p specifies a target sender’s identity snd during decryp-
tion, while the sender ¢ beside specifying the intended receiver’s identity rcv,
must obtain an encryption key ek, from the authority to encrypt a message.
Messages can be decrypted by a receiver only if its identity matches the sender’s
intended recipient, and the target sender’s identity also matches the identity
associated with the encryption key ek, used in the encryption process. In other
words, the encrypted message can only be decrypted if there is a match in both
directions (i.e., p = rcv and o = snd); otherwise, no information beyond the
mismatch is leaked. Specifically, in IB-ME privacy ensures that unauthorized
parties cannot access the plaintext or learn any additional information about
the sender’s or the receiver’s identities, while authenticity guarantees that the
ciphertext can only be generated by means of the actual sender’s encryption key.

Francati et al. [12] observed that the privacy definition for IB-ME defined
in [4] solely ensures the secrecy of the message and sender identity when the
recipient’s identity does not match the one specified by the sender. However,
it does not take into account whether the actual sender’s identity corresponds
to the desired sender’s identity. To overcome this limitation, they proposed an
enhanced privacy notion which ensures that the identities o and rcv, along with
the message derived from the ciphertext, remain hidden even when p = rcv and
o # snd. They also developed an IB-ME scheme that achieves enhanced privacy
in the plain model, even though relying on non-standard assumptions.

Our Contribution. In this paper, we address the problem of designing an IB-
ME scheme achieving both enhanced privacy and authenticity from standard
assumptions by proposing a generic construction. Specifically, we first show how
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to obtain an IB-ME that achieves the notion of enhanced privacy using as build-
ing blocks any anonymous IBE and any reusable extractor. In particular, the
scheme allows the recipient to only decrypt a ciphertext if it knows, or can
guess, the sender’s identity. This is done by adding an extra layer of encryption
that uses a one-time pad generated from the sender’s identity through a reusable
computational extractor. Moreover, we show how to construct an IB-ME that
satisfies both enhanced privacy and authenticity starting from any IB-ME that
satisfies enhanced privacy and a context-hiding fully homomorphic signature.
Given a Boolean circuit C, and a signature ¢, that verifies the authenticity of a
message X, a fully homomorphic signature scheme allows to generate a signature
Sc(x) that certifies the value of C(x). A homomorphic signature scheme, roughly
speaking, is said to be context hiding if ¢ (,) does not contain any information
on the original message x. The main idea behind our construction is to let the
sender’s encryption key consist of a homomorphic signature ¢, over the sender’s
identity o (computed during the setup by means of secret parameters). More-
over, we define a family of circuits C such that for each circuit C' € C it holds
that C(c) = 1 if and only if the sender identity o matches a target identity snd
hard-wired in the circuit C' along with a message m, a receiver identity rcv and
the ciphertext ¢ computed encrypting m for the receiver rcv with the underly-
ing IB-ME. When the sender ¢ encrypts m it produces a ciphertext (c,<c(o))
where the signature ¢¢(,y certifies that C'(o) =1 (i.e., it ensures that snd hard-
wired in C' matches the sender’s identity o). Intuitively, the enhanced privacy
follows by the privacy property of the underlying IB-ME along with the context-
hiding property of the homomorphic signature scheme which ensures that, when
homomorphically evaluating the pair (o,¢,) with respect to the circuit C, the
resulting signature o,y will not reveal anything about o making it difficult for
an attacker to guess the sender’s identity. On the other hand, authenticity fol-
lows by the unforgeability of the homomorphic signature scheme which ensures
that, it is difficult for an adversary to produce a valid signature ¢o(,) that verifies
with respect to the circuit C' without knowing a signature on the identity o.

Our framework leads to IB-ME schemes that achieve both enhanced privacy
and authenticity. Moreover, since it allows for IB-ME schemes to be instan-
tiated in the standard model from lattice assumptions (as discussed later in
the paper), the framework yields constructions achieving both enhanced privacy
and authenticity from standard lattice assumptions, thus also providing post-
quantum security.

Related Works. IB-ME schemes have been introduced by Ateniese et al. in [4].
Specifically, they presented the more general concept of ME, where both the
sender and receiver (each with their own attributes) can specify policies the
other party must meet for the message to be revealed. The authors also designed
an IB-ME scheme in the random oracle model from the bilinear Diffie-Hellman
assumption. Francati et al. later showed the first construction for IB-ME with-
out random oracles [12]. The construction uses as building block the anonymous
IBE in [13] to achieve privacy and relies on a generic transform that uses a signa-
ture scheme and a multi-theorem Non-Interactive Zero Knowledge (NIZK) proof
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system for any NP language to achieve authenticity. Additionally, they defined
the stronger security notion for privacy, known as enhanced privacy. Subse-
quently, Chen et al. [8] presented an IB-ME from symmetric external Diffie-
Hellman assumption in the standard model. The scheme is proven to be secure
under the weaker notion of privacy, but does not achieve enhanced privacy.
Wang et al. in [20] proposed a different security model for IB-ME and showed a
construction inspired by Chen’s work [8] from lattice assumptions which, how-
ever, does not achieve enhanced privacy. Finally, we note that an IB-ME that
achieves both enhanced privacy and authenticity based on lattice assumptions
can be obtained by building upon the enhanced private IB-ME achieved through
our construction that utilizes any anonymous IBE and reusable extractors from
lattice assumptions. The addition of authenticity can be achieved through the
transformation described by Francati et al. [12]. However, implementing this
transformation needs the use of signature schemes and expensive multi-theorem
NIZK proofs. Recently, Peikert et al. [18] instantiated NIZK proof systems for
any NP language based on the plain Learning With Errors (LWE) problem, with
polynomial approximation factors. The zero-knowledge property of such NIZK
constructions holds for a single statement and proof. To achieve a multi-theorem
NIZK, it must be combined with transformations described in [10,11] that gen-
erally turn single-theorem NIZK proofs into multi-theorem zero-knowledge pro-
tocols.

Organization. The remainder of this paper is organized as follows. In Sect. 2 we
review some useful concepts. In Sect. 3, we present a generic construction for IB-
ME that satisfies enhanced privacy. Then, we propose a generic transform that
results in an IB-ME that also satisfies the authenticity security notion. In Sect. 4,
we point out possible instantiations of our framework from lattice assumptions.
We conclude the paper in Sect. 5.

2 Preliminaries

Notation. We denote by N the set of non-negative integers, by Z the set of
integers, and by R the set of real numbers. For a positive integer n, we write [n]
to denote the set of integers {1,...,n}.

Uppercase boldface letters (such as X) are used to denote random variables,
lowercase letters (such as ) to denote concrete values, and uppercase letters
(such as X) to denote sets.

Vectors are denoted by lowercase boldface letters (such as v), we refer to
the i-th component of v as v;. We use calligraphic letters (such as A) to denote
algorithms. When an algorithm A has access to an oracle O, we define the set
of queries that A issues to O as Qo, and the set of outputs that O provides
to A as Op, respectively. Given a set S, the notation x < S means that z is
sampled from S, whereas z «+$S5 means that x is chosen uniformly at random
from S; if D is a distribution, we use the notation x «<s$D to mean that x is
chosen according to the distribution D. A run of a PPT algorithm A4 having
input = and output y is denoted as y «3$ A(x).
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Negligible Functions. We denote by A € N the security parameter. We assume
that every algorithm takes as input the security parameter, written in unary
(i.e. 1%). A function e: N — [0, 1] is negligible in the security parameter \ if
it is asymptotically smaller than any inverse polynomial function in A i.e. if
e(A) € O(1/p(X)). We refer to an unspecified negligible function in the security
parameter as negl(A). We say that an event occurs with overwhelming probability
if it occurs with probability at least 1 — ¢(\), for some negligible function e(\).
Unpredictability and Indistinguishability. The min-entropy of a random variable
X € X is Hoo(X) = — log max,e xPr[X = z], and it measures the best chance
to predict X (by a computationally unbounded algorithm).

Given two random variables X and Y, we say that they are computation-

ally indistinguishable (X éY) if for all PPT distinguishers D it holds that the
advantage Ade,'Q,({D()\) = |Pr[D(1*,X) = 1] — Pr[D(1*,Y) = 1]] is negligible.

2.1 Identity-Based Matchmaking Encryption

Let 0 and p respectively denote the identities of the sender and the receiver,
whereas let rcv and snd denote the target identities specified by the sender and
the receiver, respectively. Thus, in order to encrypt a message using the sender’s
own encryption key ek,, the sender o must specify the identity of the intended
receiver rcv. Similarly, when decrypting a ciphertext, the receiver p specifies the
identity of the sender snd and uses its own decryption key dk, to decrypt the
message. The original message is revealed only in case of a match, that is when
o =snd and p = rev. If o # snd or p # rcv we say that a mismatch occurs.

Formally, an IB-ME [4,12] with message space M, ciphertext space C, and
identity space Z, is a tuple of five probabilistic polynomial-time algorithms
(Setup, SKGen, RKGen, Enc, Dec) such that:

Setup(1?): On input the security parameter 1*, the randomized setup algorithm
returns as output a master public-key mpk and a master secret-key msk. We
assume that all the other algorithms take mpk as input.

SKGen(msk,o): On input the master secret-key msk, and an identity o, the
randomized sender-key generator algorithm returns as output an encryption
key ek, for the identity o.

RKGen(msk, p): On input the master secret-key msk, and an identity p, the
randomized receiver-key generator algorithm returns as output a decryption
key dk, for the identity p.

Enc(ek,, rcv, m): On input the encryption key ek, for identity o, a target identity
rcv, and a message m € M, the randomized encryption algorithm returns as
output a ciphertext c.

Dec(dk,,snd,c): On input the decryption key dk, for identity p, a target identity
snd, and a ciphertext c, the deterministic decryption algorithm returns as
output either a message m or a special symbol 1 denoting a failure.

Definition 1 ([12] Correctness of IB-ME). An IB-ME scheme II = (Setup,
SKGen, RKGen, Enc, Dec) is correct if VA € N, V(mpk, msk) output by Setup(1*),
VYm € M, Vo, p, rcv, snd € T such that o = snd and p = rcv it holds that
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Pr[Dec(dk,, snd, Enc(eky, rcv,m)) = m] > 1 — negl(X)
where ek, «—$SKGen(msk, o) and dk, «—s$ RKGen(msk, p).

Security Notions. An IB-ME should satisfy two main security properties:
authenticity and enhanced privacy.
Authenticity. Informally, the authenticity property requires that no PPT adver-
sary can compute a valid ciphertext c under the identity o without holding the
corresponding encryption key ek, .

Definition 2 ([12] Authenticity of IB-ME). An IB-ME scheme II = (Setup,
SKGen, RKGen, Enc, Dec) satisfies authenticity if for all PPT adversaries A it
holds that

Succi 4" () = Pr [Gameitﬁ?jfh(/\) = 1| < negl())

where Game”ﬁ?ﬁfh()\) is defined in Fig. 1.

Game'574" ()

1. (mpk, msk) <8 Setup(1*)

2. (c,p,snd) — A°192(1* mpk)

3. dk, <$ RKGen(msk, p)

4. m = Dec(dk,,snd,c)

5. if Vo € Qo,: (0 #snd) A (m # L)
return 1

6. else return 0

Fig. 1. Gameitﬁff}h (M) defining authenticity. O1 and Oz are implemented respectively

throughout the SKGen and RKGen algorithms and on input an arbitrary identity return
respectively the corresponding encryption key and decryption key.

Enhanced Privacy. The original privacy definition in [4] captures the secrecy of
the sender’s inputs (o, rcv, m) according to every possible mismatch condition
for the receiver. However, given a known decryption key dk, for an identity p,
the adversary can always choose a target sender’s identity snd on the fly and
try to decrypt the ciphertext. To rule out this attack, the enhanced privacy
defines a mismatch condition that hides the sender’s identity oy and o7 into two
adversarial distributions IDy and ID;, respectively, each having a non-trivial
amount of min-entropy.
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Game”i-'['i’:i‘er \)

. (mpk, msk) <8 Setup(1™)

. (mo, my, revo, revy, IDg, ID; ) 8 AP192 (1% mpk)
. o9 «$IDg

o1 «—$1ID;

. ekoy <—$SKGen(msk, o)

. eky, «—$SKGen(msk,o1)

. b—s{0,1}

. ¢ —$Enc(ekq,, revy, mpy)

I N S

9.4 <_$A;91702~,{O§}1:e{0,1}(1>\7c)
10. if (b' = b) return 1

11. else return 0

Fig. 2. Gameiti-'f”:i{'+ (M) defining enhanced privacy. O; and Oz are implemented respec-
tively throughout the SKGen and RKGen algorithms and on input an arbitrary identity
return respectively the corresponding encryption key and decryption key. 0% allows
the adversary to obtain the ciphertexts of arbitrary (m,rcv) encrypted by sender o;.

Definition 3 ([12] Enhanced Privacy of IB-ME). An IB-ME scheme 11 =
(Setup, SKGen, RKGen, Enc, Dec) satisfies enhanced privacy if for all valid PPT
adversaries A = (A1, Az) it holds that

AdVEPRYT(A) =

Pr {Gameiﬁi'ﬂﬁ()\) = 1] — ;‘ < negl(\)

where Gameiti-if’;itv+ (N) is defined in Fig. 2.

An adversary is considered valid if for every identity p for which it knows the
corresponding decryption key dk, either (i) p # rcvg and p # rcvy, or (ii) the
distributions IDy and ID; have a non-trivial amount of min-entropy H., (ID;) >
w(log(N)), or (iii) p # revp and ID; has a non-trivial amount of min-entropy
Hoo(ID1) > w(log(A)), or (iv) p # rcvy and IDg has a non-trivial amount of
min-entropy Hy, (IDg) > w(log())).

2.2 Homomorphic Signatures

Homomorphic signature schemes allow to perform computations on data that
have been signed. In particular, for a function f represented as a Boolean circuit
C, and a signature g, that verifies the authenticity of a message x, it is possible
to generate a signature g that certifies the value of f(x) with respect to the
function f. We adapt the following definitions from [6,15,16].
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Definition 4 (Homomorphic Signatures). Let X be the message space and
n € N be the mazximum length of a dataset. Let C be a family of circuits such
that each C' € C denote a circuit that implements a function from X™ to X
(i.e., C: X" — X ). A homomorphic signature scheme is a tuple of four PPT
algorithms (Setup, Sign, Eval, Verify) with the following properties:

Setup(1*,1™): On input the security parameter 1* and maximum dataset length
n, the randomized setup algorithm outputs a public-key pk and a secret-key
sk.

Sign(sk,7,x): On input the secret-key sk, a tag 7 € {0,1}*, and a dataset

X = (X1,...,Xp), outputs a signature ¢ = (¢1,...,n).
Eval(pk, 7,x,5,C): On input the public-key pk, a tag 7 € {0,1}*, a dataset
X = (X1,...,X,) with corresponding signature ¢ = (<,...,,), and a circuit

C, outputs a signature ¢’ on the value x’ = C(x).
Verify(pk, 7,%,5,C): On input the public-key pk, a tag 7 € {0,1}*, a message
x € X with signature ¢, outputs either 1 (accept) or 0 (reject).

Note that the tags serve to distinguish between different datasets, with the
intent being that only signatures with matching tags be combinable homomor-
phically. From the user’s viewpoint, the tag is a bit-string of length \ selected
uniformly at random.

Definition 5 ([6,15] Correctness of Homomorphic Signatures). We say
that a homomorphic signature scheme is correct if for any tag T € {0,1}*,
for any circuit C : X" — X, when (pk,sk) is output of Setup(1*,1"), and
s <« Sign(sk, 7,x), it holds that:

1. for any index i € [n], Verify(pk, 7,%;,;, C) returns 1
2. for any message X' € X, Verify(pk,7,x',¢',C) returns 1 when ¢
Eval(pk, 7,x, ¢,C) and x' = C(x).

The security of such schemes is ensured by two main properties: unforgeability
and context-hiding.

Definition 6 (Existential unforgeability against adaptive chosen-
dataset

attacks). A homomorphic signature scheme ¥ = (Setup, Sign, Eval, Verify) is
fully unforgeable against adaptive chosen-dataset queries if for all n € N and
for all PPT adversaries A it holds that

SuCCEUF'EFE‘{CDA()\) = Pr [GameEUF'EF,'j‘{CDA()\) = 1} < negl(\)

where GameEUF‘EF’Hf{CDA()\) is defined in Fig. 5.

Eventually, the attacker produces a forgery (7*,x*,¢*, C*) and the winning
condition captures two distinct types of forgeries. In a type 1 forgery, for any 7
such that (7,¢x) € Op, 7* # 7. In a type 2 forgery, there exist a pair (7%, ¢;) in
Op for some dataset x (i.e. x is the dataset associated to tag 7*) but x* # C(x).
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GameEUF'gﬁACDA ()\)

(pk, sk) <8 Setup(1*,1™)
(T, X", 6%, C") —$ A° (1%, pk)
if Verify(pk, 7%,x",¢*,C") = 1 and either
(1) 7" #£ 7 for all 7 s.t. (1,5x) € Op, or
(2) 7" =7 for some T s.t. (T,5x) € Op but x* # C(x) where x is the

dataset associated to tag T;

return 1

else return 0

Fig. 3. Unforgeability of homomorphic signatures. The oracle O on input x =
(x1,...,%n), replies with a tag 7 and a signature ¢ «$ Sign(sk, 7, x).

The context-hiding requirement, roughly says that if a user evaluates a func-
tion f on a dataset-signature pair (x,¢) to obtain a signature ¢ on C(x), and
then runs the ReRand algorithm on ¢, the resulting signature does not contain
any information about the dataset x.

Definition 7 (Context-hiding). A homomorphic signature scheme is context
hiding if there exist two additional PPT algorithms:

ReRand(pk,7, x,5,C) On input the public-key pk, a tag 7 € {0,1}*, a message x
with signature ¢, a circuit C returns as output ¢’;

RVerify(pk, 7, x,5,C) On input the public-key pk, a tag 7 € {0,1}*, a message
x € X with signature ¢, outputs either 1 (accept) or 0 (reject);

and it holds that:

Correctness: for any (pk,sk) < Setup(1*,1"), and any tuple tag/message/sig-
nature (7,%,<) such that Verify(pk, 7,x,5) = 1, RVerify(pk, 7, x, ReRand(pk, 7, x,
5, 0),C)=1;

Unforgeability: the unforgeability property still holds when replacing the origi-
nal verify algorithm with RVerify in the security game;

Context-hiding: for any fived (pk,sk) < Setup(1*,1"), and any tuple tag/mes-
sage/signature (7,%,<) for which RVerify(pk, 7,x,5,C) = 1 there exists a sim-
ulator Sim such that ReRand(pk, 7,x, ¢, C) ~ Sim(sk, x, 7).

3 IB-ME: Generic Construction

In this section, we first present a generic construction for IB-ME that satisfies
enhanced privacy. Then, we propose a generic transform that, by combining any
IB-ME achieving enhanced privacy and a context-hiding homomorphic signature,
results in an IB-ME that also satisfies the authenticity security notion.
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3.1 IB-ME Achieving Enhanced Privacy

In Fig.4 we show an IB-ME achieving enhanced privacy. It uses a reusable
computational extractor and any IBE achieving INDr-ID-CPA security. Formal
definitions regarding IBE and reusable computational extractors can be find
respectively in Appendix B and Appendix A.

Let A € N be the security parameter. Let X = (Setup, Extract, Encrypt, Decrypt) be
an IBE with identity space Z = {0, 1}[, message space M and ciphertext space C,
satisfying INDr-ID-CPA security. Let Ext: S x Z — C be a reusable computational
extractor. We define an IB-ME as follows:

Algorithm Setup(1*)
1. Execute (mpk, msk) «$ X.Setup(1*);
2. Output (mpk, msk).

Algorithm SKGen(msk, o)
1. Output ek, := 0.

Algorithm RKGen(msk, p)
1. Execute dk, «$ X.Extract(msk, p);
2. Output dk,,.

Algorithm Enc(ek,, rcv, m)

Sample a seed s «$ S}

Compute go «<$ Exts(eks) = Exts(0);
Execute ¢1 «$ X.Encrypt(rcv, m);
Compute ¢ = c1 D go;

Output ¢ = (e2, ).

Algorithm Dec(dk,, snd, c)

. Parse c := (ca, s)

Compute gsng <3 Exts(snd);
Compute ¢1 = c2 @ gsnd;
Execute m = X.Decrypt(dk,, ¢1);
Output m.

A

GU W=

Fig. 4. An IB-ME construction achieving enhanced privacy.

In this construction we let ek, be equal to the identity ¢ obtained through
SKGen(msk, o). Indeed, the secret encryption key ek, is needed only when
authenticity is required.

It is straightforward to see that the correctness of the scheme follows from
that of the underlying IBE. Indeed, it is correct if VA € N, V(mpk, msk) output
by Setup(1?), Ym € M, Vo, p, rcv, snd in the identity space Z = {0,1}¢ such
that o := snd and p := rcv, it holds that:

Pr[Dec(dk,,snd, Enc(ek,,rcv, m)) = m] > 1 — negl(\)
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where ek, := o and dk, «s Extract(msk, p).

In order to prove that the construction in Fig.4 achieves enhanced privacy,
we introduce a security game that captures a strong privacy property, that we
dub indistinguishable from random privacy, in which the challenge ciphertext is
indistinguishable from a uniform random string of equal length. Such a definition
subsumes recipient’s identity anonymity, meaning that even if the adversary
presumes the identity of the actual receiver, it cannot confirm it. This definition
is similar to the notion of indistinguishable from random for IBE [1].

Gameib—ll\ll[[?;priv ()\)

(mpk, msk) < Setup(1™)

(Mo, revg, IDg) —$ AL192 (17, mpk)
oo «—$1IDg

eks, <—$ SKGen(msk, o9)

co <$ Enc(eke,, revo, mo)

c1 +$C

b—s{0,1}

b —s ATV (1% o)

if (b =b) return 1

10. else return 0

© XN g W

Fig. 5. Gameib'”\ﬁ[?;priv()\) defining the indistinguishable from random privacy.

Consider the game in Fig. 5. The adversary A selects a challenge tuple (my,
rcvg, IDg). The challenger samples an identity o from the distribution IDg
and randomly extracts a bit b+«s${0,1} to determine whether to compute the
challenge ciphertext ¢ as Enc(ek,,, rcvg, mg) (if b = 0), or sample a random
ciphertext c in the ciphertext space C (if b = 1).

Oracles O and Qs are implemented by SKGen(msk, -), and RKGen(msk, -),
respectively. The oracle O3 allows the adversary to choose a message m and a
target receiver’s identity rcv, and obtain the ciphertext c when ek, is unknown to
A. Specifically, if b = 0 then O3 will output the ciphertext ¢ as Enc(ek,,, rcv, m),
otherwise c is randomly chosen in the ciphertext space C.

Definition 8 (Indistinguishable from random privacy). We say that an
IB-MFE scheme 11 satisfies indistinguishable from random privacy if for all valid
PPT adversaries A = (Ay, As):

Advib—ll}l_[l?;prIV()\) —

. . 1
Pr [Game'b"NH'?;p”"(/\) = 1} — 2‘ < negl(})
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where Gameib'”\ﬁszriv()\) is described in Fig. 5.
An adversary A = (Ay, As) is valid if ¥p € Qo, the following invariant
holds:
(p # revo) V (Hoo (IDg) = w(log(X))) (1)

An adversary is valid if for every identity p for which it knows the corre-
sponding decryption key dk,, either (i) p # rcvy (i.e., the adversary does not
know the decryption key for the challenge target receiver’s identity), or (ii) the
distribution ID has a non-trivial amount of min-entropy H., (IDg) > w(log(X))
(i.e., the adversary has the decryption key for the challenge target receiver’s
identity, but does not know the challenge sender’s identity g, so it can not set
snd = 0y).

It is easy to see that indistinguishability from random privacy implies
enhanced privacy, for completeness we include the proof in Appendix C. Thus, in
order to prove that the construction in Fig. 4 achieves enhanced privacy, we show
that it satisfies indistinguishable from random privacy. Specifically, we define the
events corresponding to each mismatch conditions given in Eq.1 as follows:

Mismatch;: Vp € Qo,, p # rcvg;
Mismatchs: H,, (IDg) > w(log(X)).

Since the adversary A must satisfy at least one of the two mismatch conditions to
be valid, we analyze these events separately. We begin by studying the advantage
of the adversary in the Game™ ;"™ (\) when Mismatch; occurs.

Lemma 1. Let IT = (Setup, SKGen, RKGen, Enc, Dec) be the IB-ME described
in Fig. 4, and let ¥ = (Setup, Extract, Encrypt, Decrypt) be the underlying IBE
satisfying INDr-ID-CPA security. It holds that:

: . 1
Pr [Game'b'”\ﬁ?;p”v(/\) =1 Mismatchl} - 2‘ < negl(\)

Proof. To prove the lemma, we need to show that, when Mismatch; occurs,
the adversary’s view in the Gameib‘”}'[D;{p'iv()\) with challenge bit b = 0 is com-
putationally indistinguishable from the adversary’s view when the challenge bit
is b = 1. We consider a sequence of hybrid experiments H;(\), for i € 1,...,3.
For the remainder of this proof, these experiments will assume that the event

Mismatch; has occurred.

H;()\): This experiment is identical to Gameib'lﬁ?jpriv(/\) with challenge bit b =

L;

H>()\): This experiment is identical to H;(\), except that the challenge cipher-
text c¢ is not chosen completely at random in the ciphertext space but it is
computed as ¢ = '@ gy, where ¢’ is randomly chosen in C and g¢,, «<$ Exts(o0)
for some seed s chosen at random.

H3()\): This is identical to Gameib"ﬁDjpriv(A) with challenge bit b = 0.

)
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Tt is easy to see that H;(\) and Ha()\) are identically distributed, as the only
difference between the two experiments is that the ciphertext in Hj()\) is a
random element in C, while in Hy(\) it is computed by xoring a random element
in C to the extractor gg,.

We now prove that the adversary’s views in the experiments Ha () and H3(\)
are computationally indistinguishable. In particular, we show that if there exists
a PPT algorithm D which is able to distinguish between experiments Hy(\) and
H;()\) with non-negligible probability then it is possible to construct a PPT
adversary B = (Bi,B2) that running D as a sub-routine has a non-negligible
advantage in the Game'ND'i'%‘CPA()\) against the underlying IBE X.

Game’p (A) Game’z(\)
1. (mpk, msk) <8 IL.Setup(1) 1. (mpk, msk) «$T1.Setup(1*)
2. (mo, revo, IDg) s DP192 (1% mpk) 2. (mo, revo, IDg) —$ BY 192 (1%, mpk)
3. 00 —$IDg 3. oo «<$IDg
4. ¢y «—sC 4. s+$8
5. s<$S 5. goo <% Exts(00)
6. go, <—$Exts(oo) 6. co «$X.Enc(rcvo, mo) ® goy
7. co = ¢ D gop 7. Y —sC
8. ¢1 «+$I1.Enc(oo, revg, mg) = 8. ¢1 «$2.Enc(revo, mo) ® ¢
= X.Enc(revo, mo) @ goy 9. d—s{0,1}
9. d—${0,1} 10. d' B 9>93(1% ¢4)
10. d' «—sDS1O>93 (1% ¢,) 11. if (d' = d) return 1
11. if (d' = d) return 1 12. else return 0
12. else return 0
(a) (b)

Fig. 6. Auxiliary games. Oracles O; and O3 on input an identity return respectively
the corresponding encryption key and decryption key. Oracle O3 on input a message
and a receiver return a ciphertexts encrypted under the encryption key of sender oy.

Counsider the game Game’,(\) in Fig. 6(a). Notice that Game’,(\) with chal-
lenge bit d = 0 corresponds to experiment Hy(\), whereas Game’, (\) with chal-
lenge bit d = 1 corresponds to experiment Hg(A). The algorithm B;, on input
the security parameter 1* and the master public-key mpk, runs D; on input 1*
and mpk. The oracles O; and Oy for D; can be implemented by B;; in partic-
ular, when D; asks for the encryption key for a sender’s identity o, B returns
ek, = o, whereas when D; asks for the decryption key for a receiver’s identity
p where p # rcvg, By issues the same query to its decryption key oracle. We are
assuming that D; will not ask for the decryption key of the identity rcvg because
we are operating under the assumption that Mismatch; event occurs.
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When the adversary Dy outputs its challenge tuple (mg, rcvg, IDg), By sets
its challenge tuple (mq,idg) = (mg,rcvg). Then, the adversary By, on input
a ciphertext ¢, randomly samples oy «—$IDj and a seed s+«+$S. Next it com-
putes ¢g,, = Exts(op) and sets the challenge ciphertext cg4 for Ds, where
¢y = IL.Enc(og, revg, mp) @ go, and ¢y = ¢ D go, such that cf, <sC. Notice
that Dy’s queries to oracles @7 and Oy can be implemented by By as in the
first phase of the game. Moreover, By is able to answer to Dy’s queries to
oracle O3 regarding a message m and a receiver rcv, if d = 1 by running the
algorithm X.Enc(rcv,m) @ g5, on input the sender key ek,, = og. If d = 0,
Co = ¢ B go, such that ¢} «sC. Eventually, the adversary Dy outputs its answer
d', if d = d then By outputs 1. Otherwise, By outputs 0. It is easy to see that
the advantage Adv'NPS'R-CPA()) of B in the Game'NDE'%'CPA()\) is the same that
D has in Game’, (). Thus, assuming the existence of a distinguisher D whose
advantage is non-negligible leads to a contradiction because it also implies that
Adv 'NDHD CPA()\) is non-negligible. Since we have reached a contradiction, we
can conclude that the experiments Ho(\) and Hs(\) are computationally indis-
tinguishable.

Finally, since Hy()\) and H3(\) correspond to Gameib"ﬁDjpriv(/\) when the
challenge bit b = 1 and b = 0, respectively, we can conclude that when the

Mismatch; event occurs the advantage Advib_lﬁD;priv()\) of an adversary A in

the Game™' [ P™()\) is negligible in A. 0
Now, we analyze the Mismatchs event.

Lemma 2. Let II = (Setup, SKGen, RKGen, Enc, Dec) be the IB-ME described in
Fig. 4 and let ¥ = (Setup, Extract, Encrypt, Decrypt) the underlying IBE satisfying
INDr-ID-CPA security.

Let Ext: S x X — C be an (w(log())), qo,)-reusable extractor (where qo, is
the number of queries submitted to oracle O3z in the game Gameib'”\ﬁ?;priv()\)), it
holds that:

. : 1
T {Game'b"'}'f;p”"()\) =1 Mismatchz} - 2‘ < negl()).

Proof. To prove the lemma, we need to show that, when Mismatchy occurs,
the adversary’s view in the game Gameib'lﬁ");priv()\) with challenge bit b = 0 is
computationally indistinguishable from the adversary’s view when the challenge
bit is b = 1. We consider a sequence of hybrid experiments H;(\), for ¢,...,3.
For the remainder of this proof, these experiments will assume that the event

Mismatchs has occurred.

H;(\): This experiment is identical to Gameib_lﬁ?jpriv()\) with challenge bit b =
0;

H>()\): This experiment is identical to H;(\), except that the challenge cipher-
text is computed as ¢ «sX.Enc(rcv,m) @ ¢ where ¢ —s$C, see lines 7-8 of
Fig. 6(b).
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H3(\): This is identical to Ha(\) except that the challenge ciphertext is com-
puted as ¢ = ¢’ @ ) where both ¢’ and ¢ are randomly chosen in C.

We first prove the following claim:
Claim 1. Experiments H; (\) and Ho(\) are computationally indistinguishable.

We will show that if there exists a PPT algorithm B = (By, By) which is
able to distinguish between experiments Hj(A) and Hy(\) with non-negligible
probability then there exists an id € 7 such that Ho, (id) > w(log(A)) and a PPT
adversary D that running B as a sub-routine has a non-negligible advantage in
breaking the security of the (w(log())), go,)-reusable extractor Ext: S x T — C.

Consider the auxiliary game Game’z(A) in Fig. 6(b). Notice that Gamez(\)
with challenge bit d = 0 corresponds to experiment Hj (\), whereas Gamez(A)
with challenge bit d = 1 corresponds to experiment Ha()).

The distinguisher D instantiates the scheme II by running the I1.Setup algo-
rithm and runs the algorithm B; on input the security parameter 1* and the mas-
ter public-key mpk. The distinguisher D is able to implement B;’s oracles O; and
O3 by simply running SKGen(msk, -) and RKGen(msk, -), respectively. Eventually,
B1 outputs the challenge tuple (mg, rcvg, IDg). Let the random variable X of Def-
inition 9, be IDg. The distinguisher D randomly samples an identity oy from IDy
and on input the tuple (sq, ..., 540,905+ - - gqog) computes the challenge cipher-
text cq for Bs. Specifically, if d = 0, samples g,, <$ Exts(0p), where s = s¢ and
cqg «—$ X.Enc(revg, mg) @ gop- If d =1, ¢ <3 C and ¢4 <3 3.Enc(rcvg, mg) @ ;

The distinguisher D works similarly according to the value of the bit d, when
responding to each query ¢ € [go,] to the oracle O3 made by Bs.

Eventually, B will output its guess about whether it is interacting with Hy ()
or Ha(A). If B believes it is interacting with Hy (), the distinguisher D will con-
clude that the tuple (go, ..., gqo3) is the output of the extractor Ext. Otherwise,
D will conclude that the tuple was randomly chosen.

It is easy to see that the advantage AdvE;t'ij()\) of D is the same as the
one of adversary B. Since we assumed by contradiction that the advantage of B
in non-negligible, this leads to the contradiction that AdVE)L:fiD()\) is also non-
negligible. Thus, we can conclude that the experiments H;(\) and Hy(\) are
computationally indistinguishable.

Next, we prove the following claim:

Claim 2. Experiments Ha () and H3()) are computationally indistinguishable.

We now prove that the adversary’s views in the experiments Ho(A) and H3(\)
are computationally indistinguishable. In particular, we show that if there exists
a PPT algorithm D which is able to distinguish between experiments Hy(\) and
H3()\) with non-negligible probability then it is possible to construct a PPT
adversary B = (B1,B2) that running D as a sub-routine has a non-negligible
advantage in the Game'ND'S%CPA()\) against the underlying IBE X.

Consider the game Game’s(A) in Fig. 7. Notice that Game’, (A) with challenge
bit d = 1 corresponds to experiment Hy(\), whereas Game’, () with challenge
bit d = 0 corresponds to experiment H3(\). The algorithm B;, on input the
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Game™p ()

. (mpk, msk) «$ TI.Setup(1*)

. (mo, revo, IDg) «—$ D192 (17 mpk)

. 09 «—$IDg

cy —$C

P —8C;

. Co = cy D Y.

. 1 «$IL.Enc(oo, revo, mo) =
= X.Enc(revo, mo) @ ¢

8. d—${0,1}

9. d —sDFC293 (17 ¢,)

10. if (d' = d) return 1

11. else return 0

Fig. 7. Auxiliary game. O; and Oz on input an arbitrary identity return respectively
the corresponding encryption key and decryption key. O3 allows the adversary to obtain
the ciphertexts of arbitrary (m,rcv) encrypted by the sender o.

security parameter 1* and the master public-key mpk, runs D; on input 1* and
mpk. The oracles O; and Oy for D; can be implemented by Bi; in particular,
when D; asks for the encryption key for a sender’s identity o, By returns ek, = o,
whereas when D; asks for the decryption key for a receiver’s identity p, B; issues
the same query to its decryption key oracle. When the adversary D; outputs its
challenge tuple (mg,rcvg, IDg), By outputs (mg,idg) where idg = rcvg. Then,
the adversary Bs, on input a challenge ciphertext c, randomly samples a value
1) «+s$C. Next it sets the challenge ciphertext cg for Do, as cg = c® ). Notice that
Ds’s queries to oracles 07 and Oy can be implemented by Bs as in the first phase
of the game. Moreover, Bs is able to answer to Dsy’s queries to oracle O3 regarding
a message m and a receiver rcv, by first sampling a random ¢ «s$C,if d=1 8
runs the algorithm X.Enc(rcv,m) @& . If d = 0, c¢g = ¢, @ ¥ such that cj, «sC.
Eventually, the adversary Dy outputs its answer d’. If d’ = d then By outputs 1.

Otherwise, By outputs 0. It is easy to see that the advantage Adv'NDE"’lg “CPA(N) of

B in the Game'NDg%CPA()\) is the same that D has in Game™, () in Fig. 7. Thus,

assuming the existence of a distinguisher D whose advantage is non-negligible
leads to a contradiction because it also implies that Adv'NDZ","g'CPA(/\) is non-
negligible. Since we have reached a contradiction, we can conclude that the

experiments Ho()\) and H3(A) are computationally indistinguishable.

Finally, since H; (\) and H3(\) correspond to Game'b'lﬁ?jp”v()\) respectively
with the challenge bit b = 0 and b = 1, we can conclude that the advan-
tage Adv'b‘lﬁDjp"V()\) of any adversary A in the game Game'b'lﬁDJXp"v()\) when

Mismatchs occurs is negligible in A. a
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From Lemma1l and Lemma 2 the following result holds:

Theorem 1. The IB-MFE construction of Fig. 4 achieves indistinguishable from
random privacy.

Since indistinguishable from random privacy implies enhanced privacy (see
Appendix C), from Theorem 1 it holds that:

Corollary 1. The IB-ME construction of Fig. 4 satisfies enhanced privacy.

3.2 Achieving Authenticity

In this section we show how to build an IB-ME which achieves both authenticity
and enhanced privacy by using as building blocks any IB-ME satisfying enhanced
privacy and a context-hiding homomorphic signature scheme. Figure 8 shows our
generic construction. In our construction the sender’s encryption key consist of
a homomorphic signature ¢, over the sender’s identity . We define a family of
circuits C such that for each circuit C' € C it holds that C[m,rcv,snd, c](o) = 1 if
and only if the sender identity o matches a target identity snd hard-wired in the
circuit C' along with a message m, a receiver identity rcv and the ciphertext c
which is computed encrypting m for the receiver rcv with the underlying IB-ME.
When the sender ¢ encrypts m it produces a ciphertext (c,<o(o)) ! where the
signature Scim.rev.snd,cj(o) certifies that C[m,rcv,snd,c|(o) = 1 (i.e., given that
snd = o, the signature ¢cjm,rev,snd,cj(o) certifies that snd hard-wired in C' matches
the sender’s identity o) and that ¢ decrypts to m when using the decryption key
associated to the receiver p. Notice that a receiver p will successfully decrypt a
ciphertext only if C[m, rcv,snd, c](o) = 1, otherwise the verification procedure of
the underlying signature scheme will not succeed (see line 4 of Algorithm Dec in
Fig.8). Thus, it is easy to see that the correctness of the IB-ME of Fig. 8 follows
by the correctness of both the underlying IB-ME achieving enhanced privacy
and the homomorphic signature scheme.

3.3 Security Analysis

Next, we show that the construction of Fig.8 satisfies the security notions of
authenticity and enhanced privacy. Informally, the enhanced privacy follows by
the privacy property of the underlying IB-ME along with the context-hiding
property of the homomorphic signature scheme which ensures that, when homo-
morphically evaluating the pair (o, ¢, ) with respect to the circuit C[m, rcv, snd, c],
the resulting signature <gjm,rev,snd,cj(o) Will not reveal anything about o making
it difficult for an attacker to guess the sender’s identity. On the other hand,
authenticity follows by the unforgeability of the homomorphic signature scheme
which ensures that, it is difficult for an adversary to produce a valid signature
SC[m,rev,snd,c](o) that verifies with respect to the circuit C[m,rcv, snd, c].

! Notice that in the construction the ciphertext also contains a tag, this is included
only for consistency with the definition of homomorphic signatures.
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Let IT = (Setup, SKGen, RKGen, Enc, Dec) be an IB-ME, with message space M, ci-
phertext space C, and identity space Z = {0, 1}2 which achieves enhanced privacy. Let
3 = (Setup, Sign, Eval, Verify, ReRand, RVerify) be a homomorphic signature scheme
with message space {0,1} and maximum dataset length ¢. Define a family of circuits
C such that each C[m,rcv,snd,c] € C denote a circuit that implements a function
from {0, 1}* to {0,1} such that:

1 iff snd = o and m = I1.Dec(dkj,, snd, c’), where
Clm, p,snd, c](o) == dk), —$II.RKGen(msk', p);
0 otherwise
where m € M,rcv € Z, snd € Z, c € C are hard-weired in the circuit.
We design an IB-ME as follows:

Algorithm Setup(1*)
1. Execute (mpk’, msk’) «sTI.Setup(1*);
2. Execute (pk,sk) «$3.Setup(1*,1");
3. Set mpk = (mpk’, pk) and msk = (msk’, sk, pk);
4. Output (mpk, msk).

Algorithm SKGen(msk, o)

Parse msk as (msk’, sk, pk);
Execute ek, «+$I1.SKGen(msk’, o);
Pick random 7, € {0,1}*

Execute ¢, «$ 3.Sign(sk, 75, 0);
Set eky = (0, ekl,, 5o, o );

Output ek,.

Algorithm RKGen(msk, p)
1. Parse msk as (msk’, sk, pk);
2. Execute dkj, <$II.RKGen(msk', p);
3. Output dk, = (dk,, pk).

A e e

Algorithm Enc(mpk, ek, rcv, m)

1. Parse mpk as (mpk’, pk);
2. Parse ek, as (0,ek},, <o, 7o);
3. Execute ¢’ «—s$II.Enc(mpk’, ek, rcv, m);
4. Let the circuit C[m, rev, o, c'] defined as above.
Execute ¢ «$ X.Eval(pk, 7o, 0, 5o, C[m, rev, o, c']);
5. Execute ¢ «$X.ReRand(pk, 7, C[m, rev, o, '] (0), s, Clm, rev, o, ')
6. Set c = (c',s,70);
7. Output c.

Algorithm Dec(dk,,snd,c)

Parse c as (¢, s, 7o );

Parse dk, as (dk),, pk);

Execute m := II.Dec(dk},, snd, c');

Let the circuit C[m, p, snd, c] be defined as above.

If ¥.RVerify(pk, 7o, 1,5, C[m, p,snd, c’']) = 0 then output L.
5. Otherwise, output m.

e e

Fig. 8. An IB-ME Generic Construction.



Identity-Based Matchmaking Encryption from Standard Lattice Assumptions 181

Theorem 2. Let ¥ = (Setup, Sign, Eval, RVerify, ReRand, RVerify) be a homo-
morphic signature scheme fully unforgeable against adaptive chosen-dataset
attacks. The IB-ME T = (Setup, SKGen, RKGen, Enc, Dec) obtained from the
construction of Fig. 8 achieves the security notion of authenticity.

Proof. Assume by contradiction that ' does not achieve authenticity. In other
words there exists a PPT adversary .4 whose advantage Succ”}"ajth (A) in the game
of Fig. 1 is non-negligible in A. Next, we show that there exists a PPT adversary
B that by using A will produce a forgery for the homomorphic signature scheme
Y (see GameEUFig‘CDA(A) in Fig. 3).

The adversary B, on input the public key pk, runs IT.Setup to obtain (msk’,
mpk’) and set mpk = (mpk’, pk). Then, B runs the algorithm A on input mpk.

Notice that B is able to implement the interactions between A and its oracles
O and Os. Specifically, in order to produce an answer to an O1’s query regarding
a sender identity o, B, first execute ek «sI[.SKGen(msk’, o) and then calls its
signing oracle O to obtain a signature ¢, on ¢ and a tag 7,. Thus, B generates the
response from O as ek, = (o,ek],s,, 7,) and stores (7,,0) in Op. On the other
hand, B can easily implement Oy when queried on a receiver identity p by running
IT.RKGen(msk’, p). Eventually, A outputs (c, p,snd) where ¢ = (¢, <, 7*). Since A
wins the game Game”}’,aA“th()\) it holds that .Dec(dk,,snd,c) # L meaning that
I.RVerify(pk, 7%, 1,5, C[m, p,snd,c’]) = 1 where m := H.Dec(dk;,snd,c’). Then,
B returns (7*,x*,¢*, C*) where x* = 1, ¢* = ¢ and C* = C[m, p,snd,c’]. We
distinguish two cases:

[7* # 7 for all T s.t. (7,0) € Op]. This is a Type (1) forgery for the signature
scheme.

[7* = 7 for some T s.t. (7,0) € Op]. Notice that if (7,0) € Op then o € Qo,.
Since A wins the game Gameibrfj{th(/\), snd cannot be equal to o (see Fig. 1).
Then, it must be the case that A gave as output 7* and snd such that 7* =
7 for some 7 s.t. (1,0) € Op but o # snd. However, when o # snd it holds
that C[m, rev, snd, c'|(0) = 0 # x*. Since o is the dataset associated to 7, the

tuple (7%,x*,¢*,C*) is a type (2) forgery for the signature scheme.

Thus, if Succibr'izth()\) in the game of Fig. 1 is non-negligible then B wins the
game GameEUF'EF"g'CDA()\) with non-negligible probability in A. Contradiction. O

Theorem 3. Let II be an IB-MFE that achieves the motion of enhanced pri-
vacy and let 3 be a context-hiding homomorphic signature scheme. The IB-MFE
I = (Setup, SKGen, RKGen, Enc, Dec) obtained from the construction of Fig. 8
satisfies enhanced privacy.

Proof. Consider the following hybrid experiments:

H;(\): This is identical to the game Game"f-'fj{{"+ (M) defined in Fig. 2.

Hy(\): Same as H; (), but now the challenger uses the simulator Sim to
generate the signature belonging to the challenge ciphertext. Formally, when
the adversary A outputs the challenge (mg, my,revg, revy, IDg, ID;), the chal-
lenger generates the ciphertext c* = (c/,s,7,), where ¢’ «sII.Enc(mpk’, oy,
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rcvy, my), op «<$ 1Dy, (mpk’, msk’) «—sTL.Setup(1*), and ¢ «$Sim(sk, C[m, rcvy,
op,¢')(0b), 75 ), where b € {0,1}.

It is easy to see that H;y (\) and Hy(\) are computationally indistinguishable,
given the context hiding property of the homomorphic signature scheme .. Thus,
the proof follows by proving the next claim:

[Claim 3.] |Pr[Hy(A) = 1] — 1| < negl(A).

We now prove Claim 3. Assume by contradiction that I' does not achieve
enhanced privacy. In other words there exists a PPT adversary A whose advan-
tage in the game Hy(\) is non-negligible in A. Next, we show that there exists a
PPT adversary B for the game Ga meiﬁip{;ﬁ (A) that by using A has non-negligible
advantage in breaking the game of Figy. 2 with respect to the underlying IB-ME.
The adversary B, on input the public key mpk’, runs X.Setup to obtain (pk, sk)
and set mpk = (mpk’, pk). Then, B runs the algorithm A on input mpk.

Notice that B is able to implement the interactions between A and its oracles
01, O,. Specifically, in order to produce an answer to an O;’s query regarding
a sender identity o, B calls its oracle O; to obtain ek., then it simply generates
a signature on the sender identity to obtain a signature on ¢ and a tag 7,.
On the other hand, B can easily implement O when queried on a receiver
identity p by using his oracle Os. The adversary A; outputs a challenge tuple
(mg, my, rcvg, revy, IDg, ID1), and then B also chooses the same challenge. In order
to compute the challenge ciphertext ¢ = (¢, ¢, 7,) for A, By on input its challenge
ciphertext ¢’ picks a random tag 7, and runs ¢ <3 Sim(sk, 1, 7). As’s queries to
oracles 07 and Os can be implemented by By as in the first phase of the game.
Moreover, B is able to answer to Asy’s queries to oracle Of by first running its own
oracle O% to get the ciphertext ¢, then picking a random tag 7, and executing
¢ «$Sim(sk, 1, 7,). When A outputs its answer b, B output b. Since A wins its
game in experiment Hy(\) with non negligible probability, then B also wins the
game Gameitﬂ'?gv+ (\) with non-negligible probability in A. Contradiction.

O

4 Instantiations from Lattice Assumptions

Our framework enables instantiations in the standard model based on lat-
tice assumptions. Specifically, in order to achieve enhanced privacy, it requires
reusable extractors and anonymous IBE meeting INDr-ID-CPA security.
Reusable extractors can be efficiently built from LWE as shown by Alwen et
al. in [3]. Examples of anonymous IBE achieving INDr-ID-CPA based on the
LWE problem include the IBE proposed by Agrawal et al. [2], and the construc-
tion by Gentry et al. [14] in the random oracle model. Agrawal et al. provide
detailed parameter choices for their IBE scheme, which are essential for its secu-
rity and efficiency. Notably, Agrawal et al.’s IBE scheme has the advantage of
maintaining a compact ciphertext size. Let ¢ be a prime, n a positive integer
and m > n. Specifically, the total ciphertext size using this technique amounts
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to 1 element of Z, for each bit of the message, along with a constant 2m ele-
ments of Z,, irrespective of the message length. This results in a ciphertext size
of (N + 2m) elements of Z,, where N represents the number of bits in the mes-
sage [2]. The public parameters in Agrawal et al.’s IBE scheme consist of three
n x m matrices in Z,; and a vector in Zy. On the other hand Gentry et al.’s
scheme security is based on the Learning With Errors (LWE) problem in the
random oracle model. The scheme is asymptotically highly efficient, where the
master public key and individual secret keys are O(\?) bits in size, where  is
the security parameter.

To achieve authenticity our construction needs adaptively unforgeable fully
homomorphic signatures also meeting the context hiding property. Efficient solu-
tions based on the hardness of the Small Integer Solution (SIS) problem in stan-
dard lattices include the fully homomorphic signatures by Boyen et al. [6], and
the construction by Luo et al. [17]. In Boyen et al.’s construction [6], the size
of signatures is proportional to that of the data being signed. Signature are ele-
ments in ngxm. Let A be the security parameter, [ be the maximum number
of inputs for the circuit family, and |7| be the number of bits for the tag (where
|7| = |t| + |b|, typically |7|] = A+ 1). The public key pk consists of a total of
3 + 20 + X matrices, each of size n x m, where each element is in Z;. Luo et al.’s
[17] construction has similar features of that of Boyen’s with respect of public
key and signature sizes while improving the efficiency of generating signatures.

5 Conclusions

In this paper, we focused on the design of IB-ME schemes from lattice assump-
tions. To begin, we built upon an anonymous IBE to produce an IB-ME that
ensured enhanced privacy. Additionally, we presented a generic method that,
by using any IB-ME achieving enhanced privacy and a context-hiding homo-
morphic signature scheme as building blocks, resulted in an IB-ME that guar-
antees both enhanced privacy and authenticity. By appropriately instantiating
the underlying components, our framework yields secure IB-ME schemes from
lattice assumptions in the standard model.

Acknowledgements. This work was partially supported by projects VITALITY
Ecosystem, Spoke 1 MEGHALITIC (E13C22001060006) under the NRRP MUR pro-
gram funded by the EU - NGEU and Verifica di proprieta di sicurezza nello sviluppo del
software under the Start-up 2022 program funded by the Computer Science Division,
UNIMOL and by INDAM-GNCS 2023.

A Reusable Computational Extractors

A computational extractor is a polynomial-time algorithm Ext: S x X — Y that
on input a seed s € S and a value x € X outputs Exts(z) = y € Y. The security
of a computational extractor guarantees that y € Y is pseudorandom when the
seed is sampled at random from S and zx is sampled from an input distribution
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X (defined over the input space X) of min-entropy Hoo(X) > k, even if the seed
is made public. We will rely on so-called reusable [9] computational extractors,
that produce random looking outputs even if evaluated multiple times on the
same input.

Definition 9 (Reusable computational extractor). An algorithm Ext : S x
X — Y is a (k,q)-reusable extractor if for all random variables X € X such
that Hoo (X) > k, and for all PPT distinguishers D, the advantage AdVE;?,qD(/\)
defined as

|Pr[D(sl,...,sq,Extsl(x), o Extg, (7)) = 1] —Pr[D(s1,...,8¢,Y15---,Yq) = 1”

where © «—$X, s; s S, and y; —sY (for all i € [q]), is negligible in X.

B Identity-Based Encryption

In IBE, each user has as a public-key an arbitrary string representing its identity
(e.g. its email address). In order to encrypt a message, the sender only has to
specify the identity rcv of the receiver. The user whose identity p = rcv is the
only one that holds the decryption key to correctly reveal the message.

An Identity-Based Encryption (IBE) scheme [5,19] with message space M
and ciphertext space C, is a tuple of four probabilistic polynomial-time algo-
rithms (Setup, Extract, Encrypt, Decrypt) such that:

Setup(1?): On input the security parameter 1*, the randomized setup algorithm
returns as output a master public-key mpk (i.e. the system parameters) and
a master secret-key msk. We assume that all the algorithms of the tuple take
mpk as input.

Extract(msk,id): On input the master secret-key msk, and an identity id, the
randomized extract algorithm returns as output a secret-key (or private-key)
skiq for the identity id.

Encrypt(id,m): On input an identity id and a message m € M, the randomized
encryption algorithm returns as output a ciphertext c € C.

Decrypt(skig,c): On input the secret-key skiq for identity id, and a ciphertext c,
the deterministic decryption algorithm returns as output either a message m
or a special symbol L denoting a failure.

Definition 10 ([1] Correctness of IBE). An IBE scheme II = (Setup,
Extract, Encrypt, Decrypt) is correct if YA € N, V(mpk, msk) output by Setup(1*),
and Ym € M:

Pr[Decrypt (skiq, Encrypt(id,m)) = m] > 1 — negl(})

where skig < Extract(msk, id).
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Security. To define IBE adaptive security, in [1] Agrawal et al. introduce a
security game that captures a strong privacy property known as indistinguishable
from random, see Fig. 9. Such a property requires that the challenge ciphertext is
indistinguishable from a random element in the ciphertext space. This definition,
dubbed as INDr-ID-CPA, implies semantic security, recipient anonymity.

Definition 11 ([1] INDr-ID-CPA). We say that an IBE scheme 11 satisfies
indistinguishable from random under an adaptive chosen-identity and chosen-
plaintext attack if for all PPT adversaries A = (A1, As):

AdVINDHIB‘_CPA()\) —

3

1
Pr [Game'ND}}?f"A(A) = 1] - 2‘ < negl(\)

where Game'NDrHPACPA()\) is defined in Fig. 9.

Game'NDrﬁ"iZ‘CPA (A)

(mpk, msk) «—$ Setup(1*)
(Mo, ido) «—$ AT (17, mpk)
co <$ Encrypt(ido, mo)

c1 +$C

b—s{0,1}

b —s AT (1, o)

if (b =b) return 1

else return 0

® N o ok W

Fig. 9. Game defining the INDr-ID-CPA for IBE.

A has access to an oracle O; that, given an identity id, returns as output
the corresponding secret-key skiq. In order to be valid, A cannot set as the
challenge identity idy an identity id for which it has issued a private-key query
(ie. idg € Qo,)-

C Indistinguishable from Random Privacy vs Enhanced
Privacy

Theorem 4. Let IT = (Setup, SKGen, RKGen, Enc, Dec) be an IB-MFE scheme. If
IT satisfies indistinguishable from random privacy then IT achieves also enhanced
privacy.
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Proof. Assume, by contradiction, that IT achieves indistinguishability from ran-
dom privacy but it does not satisfy enhanced privacy; this means that there exists
a PPT adversary B = (Bi,B2) whose advantage in the Gameitﬂf’gw()\) of Fig.2
is non-negligible. We show how to construct a PPT adversary A = (A, Ap)
that running B as a sub-routine has a non-negligible advantage in winning the
Game'b'lﬁ[’jp”v(/\) of Fig. 5.

The algorithm A7, on input the security parameter 1* and the master public-
key mpk, runs the algorithm B; on the same inputs (i.e., 1* and mpk). The
adversary A; will answer to any oracle call that B; issues to its oracles O] and
O} by calling its own corresponding oracles. When B; outputs the tuple (mo,
my, rcvg, revy, IDg, IDy), the algorithm A4; randomly samples a bit b «s{0,1}
and outputs the tuple (my, rcvy, IDy).

The challenger for A samples an identity o}, «3$IDy,.

The challenger for A then randomly samples a bit by <${0,1} and sets the
challenge ciphertext c in such a way that ¢ <$ Enc(eks,, rcvy, mp) when b g = 0,
or c is a randomly generated ciphertext when b4 = 1.

As randomly samples an identity o1_p <$ID;_; and queries its oracle Oy for the
corresponding encryption key ek, _, . This is necessary to allow Ay to answer
the queries of Bs to (’)é_b for ciphertexts generated by the sender’s identity
o1_p. On the other hand, when By asks to O} the ciphertexts generated by the
sender’s identity oy, Ag calls its oracle Os. Finally, A5 sets as a challenge for Bs
the challenge ciphertext c received from its own challenger.

Eventually, B> outputs a bit b'. If ' = b, then A, return b’y = 0, otherwise
Ag return b/ = 1.

From Definition 3 the advantage of B is:

AV (\) =

Pr [Gameibﬁ’,’gv+ ) = 1} - ;‘ = ‘Pr[b’ =b - =

As stated in Definition 8, the advantage of A is:

. , : ) 1
Advlb—lll\_lll?;‘-PrN(A) — |Pr [Gamelb—lﬁl?‘;er()\) _ 1} _ 2‘
— |Pefpa =) — =
- roa = A 2
1
= Pr[bA :b;l :O]+Pr[bA :b;\: 1] - 2’
1
= |Prfb =]+ Prlby = by = 1] - 2’

1 -
> [Prb =] - 5| = A 0

Since, by assumption, Adv“ﬁf’gv+ (A) is non-negligible, the advantage of A is
also non-negligible. Contradiction.
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We can therefore conclude that such an adversary B cannot exist and thus
a scheme that satisfies indistinguishable from random privacy also satisfies
enhanced privacy. a
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Abstract. As various industries and government agencies increasingly
seek to build quantum computers, the development of post-quantum con-
structions for different primitives becomes crucial. Lattice-based cryp-
tography is one of the top candidates for constructing quantum-resistant
primitives. In this paper, we propose a decentralized Private Stream
Aggregation (PSA) protocol based on the Learning with Errors (LWE)
problem. PSA allows secure aggregation of time-series data over multiple
users without compromising the privacy of the individual data. In almost
all previous constructions, a trusted entity is used for the generation of
keys. We consider a scenario where the users do not want to rely on a
trusted authority. We, therefore, propose a decentralized PSA (DPSA)
scheme where each user generates their own keys without the need for a
trusted setup. We give a concrete construction based on the hardness of
the LWE problem both in the random oracle model and in the standard
model.

Keywords: Private Stream Aggregation - Learning with Errors -
Post-quantum cryptography - Decentralized

1 Introduction

The growing interest in building quantum computers has led to a widespread
need for the development of post-quantum cryptographic protocols. Lattice-
based cryptography is among the best candidates for post-quantum cryptog-
raphy due to its versatility and resistance to quantum attacks. The hardness of
lattice-based cryptographic algorithms is based on the assumed worst-case hard-
ness of lattice problems. A well-known computational problem based on lattices
is the Learning with Errors (LWE) problem introduced in [19]. In this paper, we
focus on constructing a Private Stream Aggregation (PSA) protocol based on
the LWE problem.

In various real-world scenarios, a data aggregator may seek to collect data
from multiple organizations or individuals to compute various statistics over the
data. However, a significant challenge in such applications is to ensure the pri-
vacy of the participants, particularly when the aggregator is not trusted. Certain
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examples of such applications include personal identifiable information such as
social security numbers, financial data such as credit card details, medical data
such as health records, or educational data such as transcripts, etc. This moti-
vated the construction of private stream aggregation protocols that preserves
individual data privacy and enables secure aggregation of time-series data across
multiple users.

In a PSA protocol, there are multiple clients and one untrusted aggregator.
Each client sends an encrypted message over a time period, usually called a
timestamp (also called a label in some papers [15]), to the aggregator and the
aggregator decrypts the sum of the messages over that time period without the
knowledge of the individual messages. Timestamps are used to prevent the aggre-
gator from mixing ciphertexts with different timestamps which in turn prevents
the leakage of information about the values of individual clients. The security
of a PSA protocol is captured by the notion of aggregator obliviousness which
requires that the aggregator learns nothing more than the aggregated sum. A
PSA protocol remains secure even in situations where the aggregator colludes
with a subset of clients. In this case, the aggregator can only learn the sum of
the messages from the non-colluding clients. A possible application scenario for
PSA is Smart Grids where PSA can be used to collect and analyze real-time
energy consumption data from different households or businesses for load bal-
ancing, energy management, or renewable energy integration, while maintaining
the privacy of the customers. Another possible application is Traffic Management
where it can be used to collect and analyze real-time traffic data from different
sensors or vehicles for traffic prediction, route optimization, or accident preven-
tion, while preserving the privacy of individuals. Private stream aggregation can
also be applied in federated learning to enable the aggregation of locally trained
models from multiple devices, while preserving privacy. In federated learning,
each device trains a model on its local data and sends the updated model to a
centralized server for aggregation. However, the privacy of local data is a major
concern in this process.

Furthermore, to provide an additional layer of privacy protection, differential
privacy can be used with PSA [21]. Private stream aggregation with differential
privacy involves the addition of noise to the data prior to aggregation. The
amount of noise added is defined by a privacy budget that limits the amount
of information that can be revealed about an individual. Various PSA construc-
tions consider the distributed model of differential privacy, where the clients add
differentially private noise to their data [21,24] before encryption. In this paper,
we do not explicitly consider differential privacy in our construction. However,
similar procedures can be adopted as in previous works [21] to add differentially
private noise to the inputs.

A closely related notion to private stream aggregation is Multi-Client Func-
tional Encryption (MCFE) for inner products. In contrast to traditional public
key encryption that either decrypts the entire message or nothing, Functional
Encryption (FE) allows a user to learn specific functions of the encrypted data
without disclosing any other information. More specifically, in FE, a secret key
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sk is associated to a function f and the ciphertext cty encrypts a message x and
decrypting ctx with sky reveals f(x) and nothing else. In Inner Product Func-
tional Encryption (IPFE), the ciphertext cty is associated to a message vector
x and the secret keys sk, can be generated with respect to some vector y, while
the decryption of cty with sk, recovers the inner product (x,y). In inner prod-
uct MCFE, there are multiple clients and one or more aggregators. Each user
encrypts their input z; using a secret key sk; and sends the ciphertext ct,, to
the aggregator. Using the functional key sk,,, the aggregator recovers the inner
product (x,y) = >, x;y; where x := (x1,%2,...) and y := (y1,¥2,...). Observe
that for the all ones vector y = (1,...,1), this is exactly a PSA scheme. There-
fore, PSA can be seen as a specific case of MCFE for the evaluation of inner
products where only a single key corresponding to the vector y = (1,...,1) is
revealed to the aggregator.

1.1 Owur Contributions

Almost all known PSA schemes [4,7,13,15,21,23,24,27] use a trusted author-
ity for key generation that generates the client keys for encryption and aggre-
gator key for decryption. However, since the main goal of PSA is to allow an
untrusted aggregator to perform aggregate statistics without compromising indi-
vidual data, the use of a trusted authority is not aligned with the objectives of
PSA. The use of a trusted authority can be avoided by decentralizing the setup
and key generation procedure.

In this paper, we propose a decentralized private stream aggregation (DPSA)
protocol that does not rely on a trusted authority for key generation. We take
inspiration from the decentralized multi-client functional encryption scheme pro-
posed in [12]. In the DPSA scheme, the clients generate their own keys and share
it with the aggregator in a secure way such that the aggregator does not learn
the individual client keys and only learns the aggregator decryption key which
is equal to the sum of the client keys. We first give a construction in the ran-
dom oracle model using a hash function modeled as a random oracle. We then
show how to modify it into a construction in the standard model using a weak
pseudorandom function (PRF). For the standard model we modify the ideas
from [26] to achieve a construction with unbounded timestamps. Our scheme
achieves aggregator oblivious security with static corruptions based on the LWE
problem. If instantiated with a trusted setup, the protocol achieves aggregator
obliviousness with adaptive corruptions. We also discuss possible solutions for
practical deployments such as clients joining and leaving the system. Further, we
provide example parameter choices for the proposed scheme based on the LWE
assumption and show that our scheme achieves competitive ciphertext sizes to
that of SLAP [24] for equivalent plaintext spaces.

1.2 Related Work

The notion of PSA was introduced by Shi et al. in [21]. They proposed a construc-
tion based on the Decisional Diffie-Hellman (DDH) assumption. The decryption
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procedure is inefficient due to its requirement for computing a discrete logarithm.
Subsequent works [7,14,17] focused on constructing PSA with better efficiency
and larger plaintext space. Leontiadis et al. introduced PSA with verifiability of
the aggregated sum [18] followed by a construction by Emura [13]. These works
are not post-quantum secure and can be broken easily by a quantum computer
using Shor’s algorithm [22].

A number of post-quantum PSA constructions have been proposed in previ-
ous works. Valovich proposed a PSA scheme from key homomorphic weak PRF's
and gave an instantiation based on the LWE problem [26]. Their construction
achieves a weaker variant of aggregator obliviousness (AO) called non-adaptive
AO in the standard model. Further, the set of timestamps needs to be fixed
at the setup and therefore their scheme only supports a bounded number of
timestamps. Our scheme in the standard model follows a similar design policy
as Valovich but we show how to get unbounded number of timestamps using
a PRF. Becker et al. proposed a generic PSA scheme called LaPS [4] based
on the LWE problem. Their construction can be instantiated using any addi-
tively homomorphic encryption scheme. However, their scheme uses two layers
of encryption where the homomorphically encrypted input is encoded again using
an Augmented-LWE (A-LWE) term. Further, their construction does not rely on
timestamps directly and they only give a brief description on how to extend the
scheme to work with timestamps. Takeshita et al. proposed two PSA schemes
called SLAP [24] using two different fully homomorphic encryption schemes.
Their schemes achieve aggregator obliviousness based on the RLWE problem in
the random oracle model. The authors also implement their scheme and show
their improvements over the LaPS protocol. In a subsequent work [23], Takeshita
et al. proposed a variant of their SLAP protocol with better efficiency.

Other post-quantum secure works that do not use the RLWE problem include
[15,27]. Ernst et al. proposed a PSA scheme using key-homomorphic PRFs [15]
based on the Learning with Rounding (LWR) problem. Currently, this is one of
the most efficient schemes that achieve smaller ciphertexts compared to previous
works. Another efficient PSA scheme using labeled secret sharing schemes (LaSS)
was proposed in [27]. However, it is not efficient for a large number of users due
to multiple rounds of communication to generate shared keys among the users
which leads to key sizes quadratic in the number of users.

All of these schemes rely on a trusted setup for key generation. There are
brief discussions in [15,27] on how to modify their schemes to avoid a central
authority. Recently, Brorsson et al. proposed a distributed setup PSA protocol
called DIPSAUCE [10] that does not rely on a trusted party. Their protocol is
a distributed setup variant of the protocol in [27]. In contrast to the other PSA
schemes, no key is required for aggregating the sum of the inputs. However,
their distributed key generation procedure relies on a Public Key Infrastructure
(PKI) to provide the keys to each user which in turn is usually implemented as
a central authority. Further DIPSAUCE relies on a randomness beacon and care
should be taken not to introduce a trusted party to realize the beacon.
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Another line of work focuses on constructing secure aggregation protocols for
the aggregation of model updates in distributed machine learning [5,6,8,16,25].
These works are not directly comparable to ours as their work has a distinct
focus, specifically designed to meet the requirements of distributed machine
learning.

We give a comparison of the various PSA schemes described in this section
with respect to different characteristics in Table 1.

Table 1. Comparison of different PSA schemes with respect to different characteristics

Scheme Decentralized Timestamps | Assumption Post-
Setup quantum
security
Shi et al. [21] X unbounded | DDH X
Valovich [26] X bounded LWE v
LaPS [4] X none (R)LWE v
SLAP [24] X unbounded | RLWE v
Ernst et al. [15] X unbounded |LWR v
Waldner et al. [27] | X unbounded | security of LaSS | v
DIPSAUCE [10] |V unbounded | security of LaSS | v/
Our Scheme v unbounded | LWE 4

1.3 Organization

We organize the paper as follows. Section 2 contains some necessary background
and definitions. In Sect. 3, we formally define the DPSA protocol and give a
concrete construction based on the LWE problem in the ROM. In Sect. 4, we
give a construction in the standard model based on LWE.

2 Preliminaries

Notation: A denotes the security parameter. For a set S, a <—¢ S means that a
is sampled uniformly at random from S. For a probability distribution X over a
set S, z «— X means that x is sampled from S according to the distribution X'. A
distribution X over the set of integers is said to be B-bounded if it is supported
on [—B, B]. For a number z, [z], |z] and |2] denotes the rounding x up, down
and to the closest integer respectively. We use ‘log’ to denote a logarithm to the
base 2. For a prime ¢, Z, denotes the set of integers in the interval (—gq/2, ¢/2|NZ.
For some a € Z, we use (a mod ¢) and [a], interchangeably to denote the modular
reduction of a by ¢ into the interval (—gq/2,q/2] N Z. We use lowercase boldface
letters (e.g., a) to denote row vectors and uppercase boldface letters (e.g., A) to
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denote matrices. The notation [n] denotes the set of integers {1,2,...,n}. An
arbitrary negligible function is denoted by negl(-) where the function negl(z) :
N — R is called negligible if for every c € N, there exists an integer 7. such that
Inegl(z)| < X for all > 7.

2.1 Lattices

A k dimensional lattice A is a discrete additive subgroup of R* given by the set
of all integer linear combinations of [ < k linearly independent vectors in RF
where [ is called the rank of A. We are interested in g-ary integer lattices. A
g-ary lattice can be thought of as a discrete additive subgroup of Z’;. A vector
v is in the lattice A if v mod ¢ € A. Given a matrix B € fok, the following are
two k dimensional g-ary lattices.

Aq(B):{VGZZ\v:W~B modqforsomewEZlq}
A;(B):{vez’;w.BT:Omod q}

2.2 Learning with Errors

Learning with Errors is the problem of solving a system of noisy linear equations
over Zg [19]. It can be defined as follows.

Definition 1 (Learning with errors). Let X be a probability distribution on
Z and s be a secret vector chosen uniformly at random from Zg for somen,q € N.
Let As x be the distribution that generates a pair (a,b = (a,s) +e) € Zy x Zg
obtained by choosing a vector a «g Zy and an error e < X. Given polynomially
many samples from As x, the learning with errors problem is to output the vector
s € Zy with overwhelming probability.

The decisional LWE problem is to distinguish the distribution As x from the
uniform distribution over Zy x Zq. We use LWE,, ¢ x to denote the LWE problem

with parameters n,q, X .

The decisional LWE problem has been shown to be at least as hard as the
LWE search problem [19,20]. There are known quantum and classical reductions
of LWE to approximating short vector problems in lattices [9,20]. In these reduc-
tions, the noise distribution X is usually considered to be a discretized Gaussian
distribution that is indistinguishable from a B-bounded distribution for some
appropriate B.

The security of our protocol is based on a variant of the decisional LWE
problem where along with the noise, the secret s is chosen from the distribution
X.

Definition 2 (LWE problem with short secrets). Let X' be a probability
distribution on Z and s be a secret vector chosen from the distribution X over Zy
for somen,q € N. Let A x be the distribution defined in Definition 1. Then, the
decision LWE problem with short secrets is to distinguish the distribution Ag x
Jrom the uniform distribution over Zy x Zq,. We use ss-LWE,, ; x» to denote the
LWE problem with short secrets.
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A reduction from the short secret variant exists to the decisional LWE prob-
lem as shown in [2].

Lemma 1 ([2]). Let n, q, X be as described above. If there exists a distinguishing
algorithm A for the decision LWE problem with short secrets, then there exists
a distinguishing algorithm B for the decision LWE problem that runs in roughly
the same time as A, with B making O(n?) calls to its oracle and satisfying
AdvRVE(N) = Advss™WE(N).

In this paper, we consider an extended form of the problem where the secret
is a matrix. We consider the LWE distribution with N > 1 secrets sq,...,sy
for some N = poly(n). Then Ag x is defined as the distribution that generates
a pair (a,b:=a- ST+ e) obtained by choosing a «g Zq and an error vector
e «—g XN where the i-th row of S € ZéVX” is the secret s;. Using a standard
hybrid argument, it can be shown that distinguishing S from uniformly random
is as hard as the LWE,, 4 » problem.

2.3 Pseudorandom Functions

A pseudorandom function (PRF) is an efficiently computable deterministic func-
tion that is computationally indistinguishable from a truly random function.

Definition 3 (PRF). A pseudorandom function family F = {Fk}xei, with
keyspace Ky is a family of functions F : X — Y such that Fg can be computed
in poly(X) time and for any x € X, Fi(x) cannot be distinguished from a random
function (RF) in polynomial time. For all PPT adversaries A, the advantage of
A in distinguishing a PRF from a RF is given by

Adv"RF(\) = | PrlAFEO(\) = 1] — PriARFO(\) = 1]| < negl())

3 Decentralized Private Stream Aggregation

In this section, we formally define a decentralized PSA (DPSA) scheme and give
a concrete construction based on the LWE problem. Consider a scenario with /¢
users for some ¢ € N and an untrusted aggregator. We consider the users to be
semi honest, i.e., honest but curious. Each user generates private data x;; with
respect to some time stamp ¢ and wishes to compute the sum Zle X;,+ securely
and privately. In Private Stream Aggregation (PSA) the sum can be computed by
the aggregator given only the encrypted values of the user’s data while preserving
the user’s privacy. The users encrypt their data x;; using a user specific secret
key sk; before sending it to the aggregator. The aggregator then performs the
aggregating function on the encrypted data and recovers the sum of the input
data using an aggregator decryption key dkg. In a centralized PSA scheme, the
encryption and decryption keys are generated by a trusted setup. Since the setup
in DPSA is decentralized, the users need to generate the aggregator decryption
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key themselves apart from their own encryption keys. Each user generates a share
of the aggregator key and sends it to the aggregator in a secure way without
revealing their individual keys. Upon receiving the partial keys from all the users,
the aggregator can recover its decryption key for aggregation.

Definition 4 (Decentralized Private Stream Aggregation). A decentral-
ized private stream aggregation scheme over a message space M consists of the
following PPT algorithms:

Setup(1*,19): This is a procedure between the users. It takes the security param-
eter X\ and the number of users ¢ and generates the public parameters pp and
their own secret keys sk; for i € [f]. The public parameters pp is an implicit
input to the rest of the algorithms.

AggKeyGenShare(i, sk;): It takes user index i and secret key sk; and outputs the
partial aggregator key dk;.

AggKeyGen({dk;};cjg): It takes the partial aggregator keys dk; for i € [(] and
computes aggregator decryption key dkg = Zle dk;.

Enc(i, ski,x;¢,t): It takes as input the user index i, the secret key sk;, timestamp
t and input data x;+ € M and outputs a ciphertext ct; ;.

AggDec(dko, {cti ¢ }icpq, t): It outputs the aggregated sum x; = Zle X, ¢ from
the ciphertexts {ct; s }icpq using dko for the time period t.

Here, the Setup algorithm is run between the users to generate the public
parameters pp and their secret keys sk;. The users compute partial aggregator
keys dk; using AggKeyGenShare and sends dk; to the aggregator. The aggregator
computes its decryption key dkg using dko < AggKeyGen({dk;};c[s). Each user i
then encrypts their input x; ; at timestamp ¢ such that ct; ; < Enc(7, sk;, x; ¢, ).
The aggregator outputs x; < AggDec(dko, {ct; t}ic[g,t). The algorithms Setup,
AggKeyGenShare and AggKeyGen are run only once in the beginning of the pro-
tocol.

Correctness: The above DPSA scheme DPSA=(Setup, AggKeyGenShare,
AggKeyGen, Enc, AggDec) is said to be correct if for any A, ¢ € N, any message
x;+ € M, it holds that

(PP, {ski}icie) < Setup(1*,1°)
{dki}ie[q < AggKeyGenShare(i, sk;)
dko — AggKeyGen({dki}ic(q)

cti,e < Enc(i, ski, Xs ¢, )

¢
Pr | AggDec(dko, {cti,: }icie, t) = in,t : =1
i=1

Security: The security of a private stream aggregation scheme is captured by
the notion of aggregator obliviousness. It requires that the aggregator does not
learn anything more than the aggregated value of their input values at each
time period. If some parties collude with the aggregator then it requires that
the aggregator only learns the aggregated value of the honest users and nothing
more. Further, each user encrypts their data only once every time period.
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Definition 5 (Aggregator Obliviousness for DPSA). The aggregator
obliviousness security for a DPSA scheme can be defined in terms of the security
experiment AOg(A, ¢, A) given in Fig. 1. No adversary A should be able to win
this game with non-negligible advantage.

AOg (M, ¢, A)

1: (pp, {ski}icig) Setup(1*,19)

2. ﬁ (_AQCorr(-),QEnc(-,v,4,-),QChallenge(-,-,-,-)(pp)
3: if condition (%) is satisfied then

4: output 5

5: else

6: output 0

Fig. 1. Aggregator Obliviousness experiment for DPSA

The challenger first runs the Setup algorithm and returns the public param-
eters pp to the adversary. The adversary makes queries to the following oracles:

e Corruption oracle QCorr(i): The adversary submits an integer i €
{1,...,¢} and gets back the i-th user’s secret key sk;. If the adversary submits
i =0, then it gets dk; — AggKeyGenShare(j,sk;) for all j € [€].

e Encryption oracle QEnc(i,x;.,t): The adversary submits (i,X;.,t) and
receives ct; ¢, < Enc(i,ski,x;¢,t) from the challenger.

e Challenge oracle QChallenge(U, {x} .. }icur, {X] 4+ Vieu, t*): This query can
be made only once by the adversary. The adversary selects a set of users U
and time period t* and for each i € U, the adversary chooses two sets of
inputs X?,t*; Xz{t*. The challenger randomly samples b — {0,1} and returns
Cty e Enc(ski,x?’t*,t*) foralli € U if b =0 and ct; 4 — Enc(ski,xll,t*,t*)
forallielU ifb=1.

Finally, the adversary outputs a guess b’ for the value of b and the experiment
outputs B depending on the following conditions.

Let CS be the set of corrupted users, HS be the set of honest users at the
end of the game and let E be the set of users for which an encryption query
has been made at time t*. Let Qu« := U U &= be the set of users for which A
receives an encryption or a challenge ciphertext at timestamp t*. The condition
(x) is satisfied if all of the following conditions hold:

~UNCS = (0: The set of users specified during the Challenge phase must be
uncorrupted at the end of the game.

- Adversary A has not queried QEnc(i,x; ¢, t*) for the same i and t*. Otherwise,
this would violate the encrypt-once policy.

~UNEx = 0: The adversary cannot query challenge ciphertexts to the users
in E. In other words, the adversary cannot get a challenge ciphertext from
users for which it has queried the encryption oracle at time t*.
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— If the adversary has compromised the aggregator and Qu UCS = [{], then the
following condition must be satisfied.

E 0o _ 2 1
:ICLt* - Zci,t*

icU iU
We set 3 < b if the above conditions are satisfied, otherwise we set 3 = 0.

A DPSA scheme is said to be aggregator oblivious if for any PPT adversary
A, there exists a negligible function negl such that

Advippsa(M, £) = [Pr[AOy(A, £, A) = 1] — Pr[AO; (), £, A) = 1]| < negl()\)

If an adversary can corrupt the parties only at the beginning of the protocol,
then we say that the scheme is secure against static corruptions. On the other
hand, if an adversary can corrupt the parties dynamically during the execution
of the protocol, then we say that the scheme is secure against adaptive corrup-
tions. For static security, the corruption queries are sent by the adversary before
obtaining the public parameters.

3.1 Our Construction

Our concrete DPSA scheme over the plaintext space M := Zj can be described
in terms of the following PPT algorithms.

Setup(1*,1%): This is a protocol between the users. Let H be a hash function
mapping from the domain of all timestamps onto Zy. Let X be a B-bounded
distribution over Z. Each user generates a matrix S;«—gX"™*™ and interactively
generates secret shares V; « Zg7*" of 0 such that Zle V,; = 0 mod ¢g. Output
public parameters pp = (p, q,n, ¢, H, X) and user secret keys sk; = (S;, V;) for
i € [£]. The public parameters pp is an implicit input to all the algorithms.

AggKeyGenShare(i, sk; ): Given user index 4 and secret key sk; = (S;, V;), com-
pute partial aggregator key dk; = S; + V; (mod q).

AggKeygen({dk; }ic[q): Given {dk;};cq, compute aggregator decryption key

14 0 14
dko := Y dki = (S;i+V;) =) _S; (mod q) =S (1)

i=1 i=1

Enc(i, ski, X ¢, t): Given input x;; € Z; and timestamp ¢, sample e; ; < X™. Set
y; := H(t) € Zj and compute the ciphertext ct;; as

ctit =Xttty Sz‘T +p-e; (mod gq) (2)

AggDec(dkO, {Cti,t}ie[z],t)i Compute y, = H(t) and output the aggregated sum

4
Xy = KZ ctir —y; S (mod @)] (3)

i=1
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Correctness: The correctness of the sum can be verified as follows:
¢

th” ¥, - Sy (mod q) = let—i—p Ze” (mod q) 4)

i=1

The magnitude of the sum of the errors is bounded by ¢ - p - B where B is

the maximum bound on the error distribution X. The magnitude of the sum

of the inputs is bounded by ¢ - 2. If £2(1 + 2B) < %, then Y¢_ x;; + p -

Zle e;; (mod ¢) = Zle Xit+p- Zle e;; and reducing it modulo p removes
¢

the error and recovers the sum ), | X; ;.

3.2 Aggregator Obliviousness

We show that the proposed construction achieves aggregator obliviousness with
static corruptions in the encrypt-once security model under the hardness of the
LWE problem.

Theorem 1. For any PPT adversary A against the aggregator obliviousness
game, there exists a PPT adversary B against the LWE problem such that

AdVAO (N, €) < (863 + 4£%) - AdvgE(N)

Proof. We use similar ideas from [15] to prove this Theorem. WLOG, we assume
that the adversary queries the QChallenge oracle only at one timestamp ¢* that
has not been queried to the QEnc oracle.

We proceed via a series of Games G; for ¢ € {0,1,2,3} described in Fig. 4
of Appendix B. A summary of the transitions is provided in Table 2. We denote
the advantage of A in game G; using Adv 4(G;). Similar to [15], we consider two
cases. I) When the adversary corrupts the aggregator: The adversary can decrypt
the sum in this case and therefore, we need to make sure that the sum remains
unchanged throughout the games. II) When the adversary does not corrupt the
aggregator: In this case we can directly go from game Gg to Gs using a hybrid
argument over all the users.

Game Gy: This is the AOg game where the challenge query is answered with
the encryption of x?’t

Game G;: In Game G;, we change the way the vectors c;; in QChallenge are
generated. The challenge query is still answered with encryptions of X?t but we
add a share of a perfect p-out-of-p secret sharing of zero denoted by r; «+ SS5(0)
to ¢;+s where p is the number of users in the challenge query. We need to make
this change in such a way that the aggregate sum on decryption remains the
same. The transition from Gy to G; can be proved via a hybrid argument over
the ¢ users relying on the LWE assumption.

Lemma 2 (Transition from Gy to G;). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

|Adv_4(Go) — Adv.4(Gy)| < 2¢h(h — 1) - Advi E(N)
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Table 2. A summary of the games used in the proof of Theorem 1. Change in each
game is highlighted with a square box

Game | ct; ¢ Justification

Cit — Y, Si+p-eis

0
Cti,t «— Xt + Cit

Go AOQy game

/
Cit Y, Si+p-e

G1 , r; — SS(0) | LWE assumption

0
Cti,t < X + Cit

’
Cit <Y, Sit+p-eis

Go Cit < C;,t +1;, 1 SS(0) information-theoretic

1
Ctit <= X;t + Ciyt

Ci,t<—yt'Si+p'ei,t‘

Gs LWE assumption

1
ctit «— X+ Cin

Proof. To prove this transition, we use a sequence of hybrid games Gg; for [ € [{]
defined in Fig. 5 of Appendix B. Note that, Gg := Gg.1 and Gy := Gg¢. The goal
in each hybrid game is to add a perfect secret share of 0 to the LWE mask
Cit =Y, SZT + p-e;, of one more user. Let p := || where U := {31,...,7,} is
the set of users specified by A during QChallenge. Let K := min(u,l). If K > 2
in hybrid step [, then a share of a perfect K-out-of-K secret sharing of 0 is added
to the LWE masks of the first K users in /. This can be done using two users at
a time and the condition K > 2 is needed to go from one hybrid to another. To
prove the indistinguishability of G; from Gy, it suffices to show that the adjacent
games Gg ;1 and Gg; are computationally indistinguishable. Precisely, we have

14

Adv.a(Go) — Adv.a(G1)l =D [Adva(Go.i—1) — Adva(Go.r)|
=1

If there is an adversary A that can distinguish Gg;_1 from Gg;, then there
exists an adversary B against the LWE,, ; » assumption. We consider the case
K > 2. In Gg;_1, we have secret shares added to ¢;; =y, - SiT +p-e;; of the
first K — 1 users in U. To add a share of a perfect K-out-of-K secret sharing of
0 to the K-th user in U, B first guesses the first and the K-th users of U such
that i} «—g [HS], i}, < [HS]\ {i7} where HS = [{] \ CS is the set of honest
users. B then samples S; «g X™*™ and V; g Zp*" for i € [{]\ {i7,if}. It
can therefore set sk; := (S;, V;) for i € CS and send them to A. It also samples
aggregator key Sg «— X™*™ uniformly at random. If the guess is incorrect, the
simulation aborts the game and outputs 0. If the guess is correct then it replaces
Cixt with a random vector b; «g ZZ using the LWE assumption on Si;. To

make sure that the sum Sy = Zle Si is satisfied, we need to modify c¢;: ; as
ciz = H(t) - So — H(t) Zje[é]\{i* 718 —by. Then ¢;; ¢ and ¢;; 4 + ug are

1K
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indistinguishable where ux «g Z;. Then, replace c;: + back with y, SZ +p-eit
using the LWE assumption on S;:.

The guessing of the users i} and i} incurs a security loss of h(h —1) where h
is the number of users in HS. Therefore for all I € {2, ..., /] there exists a PPT
adversary B such that

|Adv A(Go—1) — Adva(Go,)| < h(h —1) - Advg'E

Summing up for all the hybrid games, it leads to a security loss of ¢h(h — 1).
Since the reduction is applied twice, total loss is 2¢h(h —1). Therefore, we obtain
a PPT adversary B such that

|Adv_4(Go) — Adv4(Gy)| < 2¢h(h — 1) - AdvE'E
O

Now, we are in game G; and QChallenge(U, {x{ . }icus, {X] 4 }icu, t*) in Gy
is answered with x{ ;. + ¢; ¢+ + > jeun iy Wy for i =iy and Xy, + ¢y —u for
i € U\ {i1}. This is clear that these shares form a perfect u out of u secret
sharing of 0. Further, the corruption queries in G; are answered as follows.
On input ¢ € [CS], B returns the key sk; to A. If the adversary corrupts the
aggregator, then QCorr queries are answered with partial decryption keys for
the honest users because the keys for the corrupted users can be generated by
the adversary itself. To answer QCorr(0), B first generates secret shares of 0 for
all the honest users, R; < 55(0) and computes

dk; =S; + V; + R; fori e HS\ {i},i%}
B =So— 3 (8,4 V,) + Ry
jJ€E[CS]
dkz} = — Z (Sj + Vj) + Rz}}
JERS\{if i}

Game Gs: In this game, all the challenge queries are answered with encryptions
of x;, instead of x{,. This is possible because the secret shares hide all the
information on the individual ciphertexts.

Lemma 3 (Transition from G; to Gz2). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

[Adv.a(G1) — Adva(Ga)| < 2- Advg"E(\)
Proof. Let Q;« be the set of users for which A has a ciphertext at timestamp ¢*
and let HS be the set of honest users. We consider the following two cases here.

Case 1 (9 = HS): In this case, the adversary receives a ciphertext for all
the honest users at timestamp t* either from the encryption oracle or from the
challenge oracle. Then Q;« UCS = [{] and the condition Y7, ,, X7 1 = >; 0y X 4
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must be satisfied. Let r; be the pads added to the ciphertexts of the users in U
at the end of game Gy, where

Z u; if 1= il
r; = < ie\{i1} (5)
—u; if ield \ {Zl}

These r;’s are perfect secret shares of 0. Therefore {x?, +¢;;+r;}icys and {x],+
Cit + I'; }icu are perfect secret shares of Zieu(xgt +cit) and ), o, (X%’75 +cit)
respectively. Since, Y-, X0 1o = Yy Xi e, {X0 4+ Cot 15 bicy and {x] +ci+
r; }icu are perfect secret shares of the same secret and are therefore perfectly
indistinguishable from each other.

Case 2 (Qi; # HS): In this case, there exists an honest user from which
the adversary does not get a ciphertext at timestamp t*. Therefore the con-
dition 7,y X7 o = D, X 4+ does not hold in this case. Since HS is known in
advance, it is possible to identify an user in HS \ Q;+ that is not in . B then
chooses two such users i, € HS \ Q¢+ and 4,, € U and simulates the ciphertexts
as follows. For ¢ = i,, B sets c¢; ; = b; where b, is a random vector in Zg. For
i =ip, Bsets c;y = H(t)-So — Zie[[]\ih, H(t) - S; + ;1. Next, we change the
challenge queries from encryption of x, to encryptions of x},. For b € {0,1},
we have Y7, (xP, 4+ i) = Dy, (X0 + Cit) + X7, 4 €, 0 Since ¢, 4 s a
random vector in Z, {xgt + ¢t + v bie and {x},t + ¢t + ri}ticu are secret
shares of a random value. Therefore, they are indistinguishable from each other.
Finally, we change the random vector with an LWE mask again.

Game Gz: In this game we remove the secret shares from the challenge cipher-
texts. Therefore, this game is identical to AO; where the challenge queries are
answered with encryptions of x; ;.

Lemma 4 (Transition from Gy to G3). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

|Adv 4 (Gz) — Adv.a(Gs)| < 2¢h(h — 1) - Advig = (N)

Proof. This is symmetric to the transition from Gg to G; applying the changes
backwards.

For the case when the adversary does not corrupt the aggregator, we can
directly go from Gg to Ggs.

Lemma 5 (Transition from Gg to G3). For all PPT adversaries A, that do
not corrupt the aggregator, there exists a PPT adversary B such that

|Adv_4(Go) — Adv.4(Gs)| < 2¢h - Advg'E(N)
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Proof. In this case, the adversary does not corrupt the aggregator and we can
directly go from Gy to Gg using a hybrid argument over all the users. Let U :=
{i1,...,1,} be the set of users specified in the challenge phase. The hybrid game
H; is given by

H Enc(i,x?,.,t*) if i =i, for 7>1
1 Cigr = o1 oo s
o Enc(i,x} 4, t*) if i =i, for 7<I

In other words, in H;, the challenge query is answered with encryptions of le,t*
for ¢ € {iy,...,4} and with encryptions of x?,t* for the rest of the users. Note
that Gg = Hp and Gz = H,. It suffices to show that the adjacent games H;_ 1
and H; are computationally indistinguishable. Let A be an adversary that can
distinguish H;—; and H;. Then there exists an adversary B against the LWE
problem. In H;_;, the challenge query for users i, with 7 < [ — 1 is answered
with encryptions of le,,t* and for users ¢, with 7 > [ — 1, it is answered with
encryptions of x{ ;.. The simulation B first guesses the user i; «g [HS] and
replaces ¢; » = H(t*)- SiT +p-e; 4 for i = 4; with a random vector by~ using the
LWE assumption on S;. Then x,. 4 ¢;+ is computationally indistinguishable
from x}’t* +c; - for i = 4;. Then, change c; .+ back to ¢; ;- = H(t*)- SiT +p-e;
for i = il.

The guessing of the user 4; incurs a loss of h where h is the number of
uncompromised users and this leads to £h for ¢ hybrid games. Total loss in this
case is 2¢h. Therefore, there is a PPT adversary B such that

|Adv_4(Go) — Adv.4(Gs)| < 2¢h - Advg'E(N)

3.3 Parameters

In this section, we describe how to choose parameters for the proposed scheme
for correctness and security. The LWE problem is parameterised by n, ¢, X where
X is a discrete Gaussian distribution with mean 0 and standard deviation o. The
choice of n, g, 0 determines the security level of the scheme. For correctness, we
need Z'77”(14—23) < 4.

We use the LWE estimator [1] and the condition for correctness to determine
parameters for a security level of 128 bits. Given n, modulus ¢ is determined
for an error distribution with standard deviation ¢ = 3.2. We give example
parameters for 128 bit security level in Table 3 when the secret is sampled from
the error distribution.

Further, we compare the size of the ciphertexts between our DPSA scheme
and the noise scaled version of SLAP as shown in Table 4. For a smaller number
of users, the ciphertext size of the proposed DPSA scheme is either the same as
or smaller than that of the SLAP scheme. However, for a larger number of users,
the SLAP scheme has a slightly better ciphertext size compared to the proposed
DPSA scheme.
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Table 3. Example parameters for the DPSA scheme with LWE dimension n, modulus
g and noise distribution with standard deviation ¢ = 3.2 for 128-bit security level for
varying number of users ¢ and plaintext modulus p

No. of users |logp | n log g | Ciphertext bytes
100 16 | 1200 | 29 4350
1000 16 | 1400 | 31 5425
10000 32 | 2510 | 51 | 16001
10" 32 | 4892 | 80 | 48920
10%° 128 | 13800 | 183 |315675
10% 128 | 17300 | 203 | 438987

Table 4. Comparison of ciphertext size between SLAP and our DPSA scheme

No. of users | logp | logq Ciphertext bytes

SLAPxs | DPSA | SLAPys | DPSA
1000 16 | 28 31 16384 5425
10000 32 | 48 51 16384 16001
10%° 128 | 184 183 196608 | 315675
10% 128 | 204 203 | 262144 | 438987

3.4 Decentralized Setup

In the proposed DPSA construction, the setup is an interactive protocol between
the users who generate their own keys and share it with the aggregator in a secure
way. The aggregator then recovers the aggregate key for decryption which is the
sum of the user keys. The users can generate their keys by sampling S; uniformly
at random from X"*"(Z,) and setting sk, = S; for ¢ € [¢]. To share the key
with the aggregator, each user adds a random pad to their key which when
added sums to zero. These random pads can be generated using a secret sharing
protocol among the users. Each user U; generates secret shares {V;1,...,V; ¢}
of 0 and shares V; ; with user U; for j € [¢]\ {i}. User U; then generates its pad
as'V; = Z§:1 V;; for i € [(] which is added to its secret key and the partial key
S; + V; is sent to the aggregator. When these partial keys are added together,
the V;s sum to zero and the aggregator recovers Sy = Zle S;.

The communication cost per client during setup is sending one share to every
other user and sending the partial key to the aggregator. The computational cost
involves generating its share V; and computing the partial aggregator key dk;.
The setup is executed only once in the beginning of the protocol and does not
affect the overall performance of the scheme.
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3.5 Client Failures

If a client fails to submit its input messa%e, then the aggregator cannot evaluate
the sum because the equation So = ), | S; does not satisfy (because of the
missing ciphertext) and the decryption outputs a random value. Chan et al. [11]
proposed a generic solution to deal with this problem and it is applicable to all
PSA schemes. They use differential privacy and allow the aggregator to learn
partial sums of the user’s inputs such that the total sum can always be computed
for the non-failing clients.

Their idea is to use a binary tree where the leaf nodes represent the clients
and the intermediate nodes represent the partial sums of the clients beneath
that node. Technically, the aggregator and the clients run an instance of the
PSA protocol for each intermediate node. Therefore, each client generates log ¢
ciphertexts using log ¢ secret keys corresponding to the number of nodes from
the client to the root of the binary tree. The aggregator is given an aggregator
key for each intermediate node. The aggregator will always be able to compute
the sum for the non-failing clients, albeit with an increase in noise in the overall
sum. For example, consider the binary tree in Fig. 2 [11] for £ = 8. The notation
[i,7] denotes the sum of the inputs of clients {i,...,j}. If client 4 fails, the
aggregator fails to obtain the sums [4,4], [3,4] and [1,4]. The aggregator then
uses the blocks corresponding to the black nodes in the tree to compute the sum
of the remaining clients.

3.6 Optimizing Peer-to-Peer Communication

As a byproduct of the fault tolerance technique, we can also use the binary
tree to reduce peer-to-peer communication among the clients during the setup
phase. Instead of generating secret shares for all the ¢ — 1 clients, each client can
now generate shares only for those clients with whom they share an intermediate
node. This will reduce the communication cost per client during the setup phase.

Fig. 2. When client 4 fails, the aggregator uses the partial sums corresponding to the
black nodes (Color figure online)
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3.7 Dynamic Join and Leave

Dynamic Join: Chan et al. [11] proposed the idea to create a tree with more
leaf nodes than the number of clients to accommodate future client joining. In a
centralized scheme, the trusted setup generates secret keys for every leaf node.
The additional clients that have not joined the protocol yet are considered as
failed until they join. Once a new client joins it receives a secret key from the
setup. However, the trusted party needs to be present when a new client joins.
In our DPSA scheme, we can use this technique as follows. When a new client
Uyy1 joins the protocol before the computation of a new sum, the client first
generates a uniformly random Sy € X™*™ and sets Sy41 as its secret key. The
client can broadcast its joining to the other clients through a bulletin board.
Then each client that shares an intermediate node with the new client, chooses
a new secret key and generates secret shares of zero and send these shares to the
other clients that they share a node with. Using these shares, the clients then
generate new aggregator keys and shares them with the aggregator. This is done
for all the log £ nodes.

Dynamic Leave: If some clients leave the protocol before the evaluation of a new
sum, we can consider them as permanently failed. For the remaining clients,
one possible solution is to run the Setup again. This will update their pads V;,
which now consist of shares from the remaining users. Similarly, the aggregator
receives a new key consisting of partial keys from the remaining users. Since the
setup is decentralized, the users do not need to depend on a trusted entity to
generate the updated pads or the updated aggregator key which makes it more
practical than having a centralized setup.

4 DPSA in the Standard Model

In this section, we give a possible construction of a DPSA scheme in the standard
model. We use similar ideas from [26] that uses a weak PRF to construct a PSA
scheme based on the LWE problem. However, in [26], the number of timestamps
is bounded as it needs to be fixed in the setup phase. We show how to get
unbounded timestamps using a PRF. Let 1 := {Fs | F's : Z) — Z7,S € Zy*"}
such that Fg(t) = t-S' + e. Here F; is a randomized weak pseudorandom
function family as described in [2,3]. Let Fo = {Fk | F : Z — Zy, K € K\} be
a PRF family such that Fi (i) = t; € Zy. Then, a DPSA scheme in the standard
model can be described in terms of the following algorithms.

Setup(1*,1¢): This is a protocol between the users. Each user generates a
matrix S; g Zg*" and interactively generates V; « Zy*" such that
Zle V; = 0mod q. Choose PRF key K « K, and output public parame-
ters pp = (p,q,n, ¢, K, X) and each user’s secret key sk; = (S;, V;). Since the
PRF key is a public information, one of the clients can choose this key and
broadcast it to the other clients.
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AggKeyGenShare(i, sk; ): Given user index i and secret key sk; = (S;, V;), com-
pute partial aggregator key dk; = S; + V; (mod q).
AggKeygen({dk;}ic(q): Given {dk;};c[s, compute aggregator decryption key

L
dko —de _Z i+ Vi) =3 Si (mod ) =Sy (6)

i=1 =1

Enc(i,ski, x; ¢,t): Given input x;; € Z, and a timestamp ¢ = t;, generate a
vector t; = Fi(j ) € Z" Sample e; ; — X" and compute the ciphertext ct; ; as

ctiy = LZJ X+t S; + e;t (mod q) (7)

AggDec(dko, {cti ¢ }icpg,t): Given timestamp ¢ = t;, generate the vector t; =
Fi(j) € Zy and compute the aggregated sum as

¢
= H‘Z (Z ctit —t;-Sy (mod q)>—H (8

Correctness: Correctness follows similarly as described in Sect. 3.1. At times-
tamp t = t;, we have

[
thi,t —t;-Sy (mod q)
i=1

Observe that for an odd prime g¢,

(2] x=[2] S -4 (Exe- )

i=1 i=1

~—

MN

-3 |4 Y e (mod g ()

i=1 i=1

To make sure that L%J . Zle X ¢+ Zle e;+ does not flow over the modulus g,

we need to ensure that

(11)

l\D\Q

o (e o)

i=1

oo

This is satisfied when £(p + 2B) < 4.

Security: The security of the above DPSA scheme can be proved using the
same proof strategy as described in Sect. 3.2. It can be proved using a hybrid
argument consisting of the games outlined in Table5. Here Gy corresponds to
the AOy game where QChallenge queries are answered with an encryption of x?_’t
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and Gg corresponds to the AO; game where the challenge queries are answered
with an encryption of x; ;.

The transition from Gp to G; consists of adding perfect secret shares of 0
denoted by r; «— SS(0) to the challenge ciphertexts. It can be achieved by
replacing the PRF Fg, (t;) with a random function (RF) and using a sequence
of hybrid games as described in Lemma 2. Transition from G; to Gy can be done
similarly by changing the PRF with an RF for the two users as described in
Case 2 of Lemma 3. Case 1 follows directly from Lemma 3. Finally, transition
from Gs to Gg consists of making the changes backwards.

Table 5. Hybrid games for the AO security of the DPSA scheme in the standard
model. Change in each games is highlighted with a square box

Game | ct; ¢ Justification
ci,e < Fs, (t;)
ctiy — i + [a/p] X0
ciy — Fs,(t;)
G1 , r; < SS(0) | c; ¢ indistinguishable from random
Ctie — Cit + [q/p] - X34
ci — Fs;(t5)

Go Cit — Cjp+1i, r;i— SS(0) | information-theoretic

Go AQp game

Cti — Cie + /D) - X0
Cit — Fs,(t))

Gs

c;,: indistinguishable from random

Cti,e — Cit + [q/p] - Xi4

5 Conclusion

In this paper, we presented a decentralized private stream aggregation (DPSA)
protocol that does not rely on a trusted authority for key generation. We gave
a formal definition of a DPSA scheme and presented a concrete construction
based on the LWE problem both in the random oracle model as well as the stan-
dard model. We proved the security of the DPSA scheme under the aggregator
obliviousness notion with static corruptions. Further, we discussed possible solu-
tions for practical deployments such as clients joining and leaving the system. In
addition, we provided sample parameters for the concrete construction based on
the LWE assumption, and demonstrated that our scheme achieves comparable
ciphertext sizes to that of SLAP [24] for equivalent plaintext spaces.

Acknowledgements. This work was partially supported by the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.
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Appendix
A Private Stream Aggregation

Definition 6 (Private Stream Aggregation [21]). A private stream aggre-
gation scheme over an input space M consists of the following PPT algorithms:

Setup(1*,1°): Takes as input the security parameter A\ and number of users £ and
generates public parameters pp, user secret keys sk; and aggregator decryption key
dko. Each user gets the corresponding secret key sk; for i € [{] and the aggregator
receives the decryption key dkg. The public parameters pp is implicitly an input
to all the algorithms.

Enc(i,sk;,x;,.,t): Takes as input the user index i, the secret key sk;, the input
xi+ € M and generates an encryption of x;; using sk;. Outputs the ciphertext
Cti7t.

AggDec(dko, {ct; ¢ }icpq,t): Takes the aggregator decryption key dko and cipher-
texts {ctit}icrg for the time period t and outputs the aggregated sum x; =

Zf:l Xi7t'

Correctness: The above PSA scheme PSA = (Setup, Enc, AggDec) is said to be
correct if for any A, ¢ € N, any message x;; € M, it holds that

L

Pr | AggDec(dko, {cti i }icfe,t) = D Xiy :
=1

(PP, {ski}ic[e) dko) «— Setup(1*,1°)

cty¢ < Enc(i, skq, X4,¢,t)

=1

Definition 7 (Aggregator Obliviousness for PSA). The aggregator oblivi-
ousness security for a PSA scheme can be defined in terms of the security exper-
iment AOg(, £, A) given in Fig. 3. No adversary A should be able to win this
game with non-negligible advantage.

AOs (A, £, A)

1: (pp, {ski}ic(e, dko) < Setup(1*,1).

2. ﬂ «— AQCorr(»),QEnc(»,<,<,4),QChaIIenge(~,~,-,»)(pp)
3: if condition (*) is satisfied then

4: output

5: else

6: output 0

Fig. 3. Aggregator Obliviousness experiment for PSA

The challenger first runs the Setup algorithm and returns the public param-
eters pp to the adversary. The adversary makes queries to the following oracles:
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e Corruption oracle QCorr(i): The adversary submits an integer i €
{1,...,£} and gets back the i-th user’s secret key sk;. If the adversary submits
i =0, then it gets the aggregator decryption key dkg.

o Encryption oracle QEnc(i,x;.,t): The adversary submits (i,%;4,t) and
receives ct; ¢, — Enc(i,sk;,x; ¢,t) from the challenger.

e Challenge oracle QChallenge(U, {x} . }icus, {X] ;- }icu, t*): This query can
be made only once by the adversary. The adversary selects a set of users U
and time period t* and for each i € U, the adversary chooses two sets of
mputs xgt*, Xll7t*. The challenger randomly samples b — {0,1} and returns
Ctj v — Enc(ski,xgt*,t*) foralli €U if b =0 and ct; 4« — Enc(ski,x},t*,t*)
foralli el ifb=1.

Finally, the adversary outputs a guess b’ for the value of b and the experiment
outputs B depending on the following conditions.

Let CS be the set of corrupted users, HS be the set of honest users at the
end of the game and let E be the set of users for which an encryption query
has been made at time t*. Let Q¢ := U U & be the set of users for which A
receives an encryption or a challenge ciphertext at timestamp t*. The condition
(x) is satisfied if all of the following conditions hold:

~UNCS = (: The set of users specified during the Challenge phase must be
uncorrupted at the end of the game.

- Adversary A has not queried QEnc(%, x; 4, t*) for the same i and t*. Otherwise,
this would violate the encrypt-once policy.

- UNEx = 0: The adversary cannot query challenge ciphertexts to the users
in E. In other words, the adversary cannot get a challenge ciphertext from
users for which it has queried the encryption oracle at time t*.

— If the adversary has compromised the aggregator and Q= UCS = [¢], then the
following condition must be satisfied.

0o _ 1
E Ty e = E T g
= =

We set 8« b if the above conditions are satisfied, otherwise we set 3= 0.
A PSA scheme is said to be aggregator oblivious if for any PPT adversary
A, there exists a negligible function negl such that

AvaAfPSA()\,E) = |Pr[AOg(\, ¢, A) = 1] — Pr[AO1 (A, ¢, A) = 1]| < negl())
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B Games for the Proof of Theorem 1

Go|G1 G2 | G3

CS «+ A(1M 1%

(pp, {ski }ieqe) + Setup(1*,1°).

B« AQCor(-),QEnc(-,-,-,-),QChaIIenge(-,-,-,-)(pp, {Ski}iecs)
Output 3 if condition (x) is satisfied; otherwise output 0

QCorr(i)

if ¢ € [CS] then
return sk;
if ¢ =0 then
dk; < AggKeyGenShare(j,sk;) Vj € HS

for all j € [HS] do Ry < Z7 ™ s.t. » [ R; =0

JEHS

if j =1, dkj =Sp— »
if j = ig, dkj = —

(Si +Vi)+ Ry

ZiE’HS\{il,iK}(Si + Vi) + R,
if j =i, fOrTEHS\{’il,iK},dkj :Sj +VJ‘+R]‘

i€CS

return {dk;};jcns
QEnc(i, x4 ¢, 1)

cti,¢+ < Enc(pp,ski, xi ¢, t)
return ct; ;

QChallenge(U, {X?,t* Yieu, {xit* Yieu,t™)

Let U :={t1,...,4,}
for all T € {2,...,pu} dou; <5 Z
for all i € U do
R S:r +p-e; o € Z;‘; e 4 — X"

if © > 2 then
=i, o =cipr+ " ur
ifi =i, for 7 € {2,..., 1}, ¢ 4x =c;4x —ur

cti¢ = x?vt* +c; ¢+ (mod q)

cty ¢ 1= xi,t* +¢;¢+ (mod gq)

return ct; ¢

Fig. 4. Games for the proof of Theorem 1. Here HS := [¢] \ CS. Condition (x) is given
in Definition 5.
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Go. -1 for l € {17 . ,é}:

CS + A(1M 1%

i] s [HS], i s [HS]\{iT}

(pp, {ski}ic(e) < Setup(1*,1¢)

B« AQCer(),QEnc(:,.,),QChallenge(-,--0) (p Aokt cog)

Output A3 if condition (x) is satisfied AND the game was not aborted; otherwise
output 0

QCorr(i)

if i € [CS] then
return sk;
if i = 0 then
dk; < AggKeyGenShare(j,sk;) Vj € HS

for all j € [HS] do R <5 Z*" s.t. ) R; =0

JE[HS]

if j=d1,dk; =So—) . (Si+Vi)+R;
if j =ig, dkj = — Zieﬂs\m)m}(si + Vi) +R;
if j =i, for 7 € HS\ {i1,irx}, dk; =S; + V; + R;
return {dk;};jens
QEnc(%, x4,¢,t)

Cit =y, S] +p-eis
If i =1}, cip = by, by g L7

If i =i}, ci,p = H(t) - So — H(t) Zje[z]\{i?i;(} S; — by
Ctit = Xi,t +Cit
return ct; ¢
QChallenge(U, {xY ;. Ficw, {X} ¢« bicu, t*)
Let U :={i1,...,4,} and K = min(u,l)
for all T € {2,...,K} do u; <5 Z;
for all i € U4 do
Cipx 1= Yyx - S;r +Dp-ej =
if K > 2 then
if i1 # i} and ik # i} then abort game
e K
if i =1, €j 4 =ciux + ZT:2 u,
ifi =i, for 7 € {2,...,K}, ¢; 4x =cC; 4x —us

Ctj ¢x 1= X?),,* + c¢;,¢+ (modq)
return ct; ¢

Fig. 5. Games for the proof of Lemma 2
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Abstract. Creating secure Wi-Fi hotspots has historically been chal-
lenging: when using an open network it is trivial for an adversary to
eavesdrop traffic. Alternatively, when using a password-protected net-
work and sharing the password publicly, anyone who knows the password
can create a rogue clone of the network to intercept traffic. To overcome
this problem, the Wi-Fi Alliance released SAE-PK as part of an update
to WPA3, which we will call WPA3-PK. In this protocol, a public key
is used to verify the hotspot’s authenticity, and the password of the net-
work encodes a fingerprint of this public key. As a result, someone who
knows the password can no longer clone the network, because they do
not know the corresponding private key.

In this paper, we systematically analyze the security of WPA3-PK. We
first study implementations, where we show that the private WPA3-PK
password gets leaked when using a flawed random number generator, and
confirm that this may indeed happen in practice. We then study network
aspects, where we show how a malicious insider can intercept the traffic
of others. Our third focus is cryptographic attacks, where we perform an
evaluation of time-memory trade-off attacks against WPA3-PK, and we
optimize these attacks by combining the technique of rainbow tables with
distinguished points. Additionally, we construct multi-network password
collisions that allow an adversary to build a single rainbow table that can
be used to attack multiple networks. Finally, we discuss defenses against
our attacks and propose updates to the WPA3-PK standard.

Keywords: WPA3-PK - Rainbow table -+ Time-memory trade-off

1 Introduction

Securing Wi-Fi hotspots has historically been a daunting task. Using an open,
unsecured, Wi-Fi network makes it trivial for an adversary to read and intercept
any user’s traffic. A password-protected network, where the password is shared
publicly, is not much better: anyone who knows the password can create a rogue
clone of the network to intercept all traffic. Previous works tried to improve this
situation by creating a new enterprise authentication method, where the public
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key of the network is pinned and used to authenticate the hotspot, and where the
client is not authenticated [11,14]. Unfortunately, these proposals never gained
widespread adoption, and could still be attacked when a client connects to the
network for the first time. To remedy this situation, and better protect Wi-Fi
hotspots, the Wi-Fi Alliance released the Simultaneous Authentication of Equals
Public Key (SAE-PK) protocol in December 2020 as part of an update to the
WPA3 specification. We will refer to this protocol as WPA3-PK.

The goal of WPA3-PK is to strengthen the security of password-protected
Wi-Fi hotspots by preventing an adversary from creating a rogue clone of the
hotspot, even when that adversary possesses the pre-shared password. This is
achieved by authenticating the hotspot with a public key and by verifying the
authenticity of this public key using a password. The idea is that the password is
derived from the hotspot’s public key, meaning the password effectively contains
a trusted fingerprint of the public key. When a user connects to the hotspot,
the fingerprint encoded in the password can then be used to verify the hotspot’s
public key. An adversary cannot create a rogue clone of the hotspot as long
as it is infeasible to generate a private and public key that results in the same
fingerprint and WPA3-PK password.

In this paper, we systematically analyze the security of WPA3-PK. We first
investigate existing deployments of WPA3-PK, where we analyze implementation
and network-related aspects. Doing so, we discover that using a bad random
number generator will cause the hotspot’s password to be leaked. Additionally,
because WPA3-PK does not mandate client isolation, we found that network-
layer attacks can still be abused to intercept the traffic of other users.

Our second focus is time-memory trade-off attacks against WPA3-PK. In
these attacks, the goal is to find a private and public key that result in a given
WPA3-PK password, i.e., to perform a second preimage attack. We first evaluate
the technique of distinguished points, and confirm that a precomputation attack
reduces the time to find a second preimage of a WPA3-PK password from 48
CPU years to an amortized time of fewer than 12d. We then combine this app-
roach with rainbow tables to increase the success rate of the attack. To evaluate
our rainbow table attack, we create a proof-of-concept tool that can generate
the precomputed rainbow tables. These experiments confirm that using rain-
bow tables improves the performance of time-memory trade-off attacks against
WPA3-PK. We also show how to construct multi-network WPA3-PK password
collisions. These allow an adversary to attack multiple networks using a single
precomputed table.

Finally, we propose improvements to the design of WPA3-PK that prevent
our newly discovered attacks. We also discuss backward-compatible mitigations
that either prevent or reduce the impact of our attacks.

To summarize, our contributions are:

— We analyze implementation and network aspects of WPA3-PK, such as ran-
dom number generation, client isolation, and shared group keys (Sect. 3).

— We empirically evaluate time-memory trade-off attacks against WPA3-PK.
We also show how to construct rainbow tables to more efficiently invert a
WPA3-PK password into a public and private key pair (Sect.4).
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— We construct multi-network WPA3-PK password collisions that allow an
adversary to attack multiple networks using a single rainbow table (Sect.5).

— We discuss defenses against the identified design and implementation issues
and suggest updates to the WPA3-PK standard (Sect. 6).

Disclosure. We reported our security analysis of WPA3-PK to the Wi-Fi
Alliance. Our code to construct and analyze rainbow tables, and our multi-
network WPA3-PK password collisions code, are both available online [1].

2 Background

In this section, we introduce the SAE handshake, how WPA3-PK extends SAE,
and explain the generation of WPA3-PK passwords and their security properties.

2.1 Simultaneous Authentication of Equals (SAE)

The Simultaneous Authentication of Equals (SAE) handshake, also called Drag-
onfly, lies at the basis of WPA3 and provides forward secrecy and resistance
against offline dictionary attacks. This handshake was first introduced in 2008
by Harkins [12] and in 2018 became mandatory in home WPA3 networks [29].

A client can discover nearby Wi-Fi networks that support SAE by sending
a broadcast probe request (see Fig.1). Nearby Access Points (APs) will reply
with probe responses. These responses contain various properties of the network,
including the name of the network, which is commonly also called the SSID
(Service Set Identifier), and whether the network supports SAE.

Once the client finds a network to connect to, it can initiate the SAE hand-
shake. This handshake consists of two phases, called the commit and confirm
phase, and these are illustrated in Fig. 1. The first phase can be viewed as a
variation of a Diffie-Hellman key exchange, except that the generator used for
exponentiation is derived from a pre-shared password instead of being a fixed
value [19]. In other words, the first phase negotiates a shared key between the
client and AP using Auth-Commit frames. The second phase is used to confirm
that the Access Point (AP) and client derived the same keys in the commit
phase. More precisely, the confirm element in the Auth-Confirm frame is used to
verify that the other party negotiated the same keys. After the SAE handshake,
the client associates to the AP, and finally performs a 4-way handshake to derive
pairwise transient keys that can be used to protect data frames.

The SAE password can only be shared with trusted individuals. This is
because anyone that possesses the password can create a rogue clone of the
network with the same SSID and password, and can then trick victims into con-
necting to this rogue clone. This makes SAE unsuitable for hotspots, since in
that case the password is shared publicly, meaning adversaries will also possess
the password.
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Fig. 1. Diagram of the SAE handshake and the extensions added by WPA3-PK. The
parameters and actions shown in bold are unique to SAE-PK: these additions allow
the client to verify the authenticity of the AP and assure the AP is not a rogue clone.

2.2 WPA3 Public Key (WPA3-PK)

In December 2020, the Wi-Fi Alliance released the SAE Public Key protocol as
part of an update to the WPA3 certification [29]. We will use WPA3-PK to refer
to this protocol. This protocol has as goal to improve the security of password-
protected Wi-Fi hotspots and makes it infeasible for a malicious insider to create
a rogue clone of a hotspot. In other words, even if an attacker has the hotspot’s
password, it would be infeasible to create a rogue clone of the network. The
WPAS3-PK protocol accomplishes this by authenticating the network using a
public key and by making the password encode a fingerprint of this public key.
When a client connects to the network, the AP transmits its public key pk to
the client in the confirm frame (see Fig.1), and the authenticity of this public
key is verified using the pre-shared WPA3-PK password. Once the public key is
verified, it is used to authenticate the AP. Concretely, the AP will authenticate
itself by signing the following data using its private key:

KeyAuth = Sig .. (E || Ea || sp || sa | M || pk || APymac || STAmac)
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Algorithm 1: Create a fingerprint of an SSID and public key pk. We use
PKHashg ¢(pk, SSID, M) to denote the algorithm. The parameters 6 and ¢
are dropped when clear from context.

Input: pk: Public key of the hotspot to calculate a fingerprint for.
SSID: Network name to calculate a fingerprint for.
M: Starting modifier, this is by default a random value.
0 : Number of internal digest bits that must be zero.
¢: Fingerprint length in bits (excluding removed leading zeros).
Returns: Fingerprint of the given SSID and public key.

for i =0 to 2'*® — 1 do

m; — (M +1) mod 2'%® > The modifier consists of 128 bits
h «— Hash(SSID || m; || pk) > m is encoded in big-endian
if log,(h) < 128 — 6 then > Check whether the first 6 bits are zero
‘ return L(h,0,0 + ¢) > Remove first 6 zero bits and return result
i—1i+4+1

return false > We should never get here in practice

Here sk represents the hotspot’s private key. For our purposes, the parameters
E4, EB, sa, and spg, can be treated as random values in the commit phase of
the handshake. Including these parameters in the signed data ensures that the
KeyAuth signature is unique for each execution of the handshake. The signature
is also computed over the public key pk, over the MAC addresses of the AP and
client, and over a modifier value M that is used to generate the WPA3-PK pass-
word (see Sect. 2.3). The Elliptic Curve Digital Signature Algorithm (ECDSA)
algorithm is used to create the signature, which implies that the public key pk
must be based on elliptic curves. The client can verify the KeyAuth value using
the public key pk, and in the next section, we describe how in turn the authen-
ticity of the public key pk can be checked based on the WPA3-PK password.

2.3 Generation of the WPA3-PK Password

The WPA3-PK password is generated so that it can act as a secure and user-
friendly fingerprint of the hotspot’s public key. Note that simply using the normal
fingerprint of a public key as the password would not be user-friendly, since a
traditional fingerprint is the hash of the public key and this is too long. Instead,
to balance security and usability, WPA3-PK generates a fingerprint of a public
key as shown in Algorithm 1: The public key, along with the SSID of the hotspot,
is combined with a random modifier M such that the first 6 bits of the following
hash are zero:

Hash(SSID | M || pk) (1)

Here || denotes concatenation of binary strings. Variable M denotes a 32-byte
integer which is incremented until this hash function returns an output whose
first 6 bits are zero. The modifier M is encoded in big-endian, and SSID rep-
resents the binary encoding of the network name. Including the SSID in the
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hash input ensures that each network has a different fingerprint even when they
use the same public key. The argument pk represents the public key of the net-
work and is encoded according to RFC 5480 [23]. Once a modifier has been
found that results in 6 leading zero bits, these first 8 bits are dropped, and the
next ¢ bits are returned. In other words, the function L(h,6, N) in Algorithm 1
extracts bits 8 to N of the binary string h starting from the left. The length
of the public key influences the hash function that is used [29]. At the time of
writing, this is either SHA2-256, SHA2-384, or SHA2-512 [3, §Table 12-1]. Algo-
rithm 1 shows the resulting algorithm and we will represent it using the function
PKHashg ¢(pk, SSID, M).

The output from PKHash acts as a fingerprint of the public key, where the
parameters 6 and ¢ control the fingerprint’s security. The values for both these
parameters are derived from the parameters Sec and A as follows [29]:

0 =8 Sec (2)
A
€-19~Z—5 (3)

Allowed values for Sec are 3 or 5, and allowed values for A are 12, 16, 20, and so
on [29]. For instance, when picking Sec = 3, the output of the hash operation in
Eq. (1) must start with 24 zero bits, while with Sec = 5, the hash output must
start with 40 zero bits. This fingerprint is then encoded into a human-readable
password, where the parameter A corresponds to the number of characters that
are required to encode the resulting password. The human-readable password
also encodes the security parameter Sec. For the remainder of the paper, we will
use the terms fingerprint and password as synonyms.

The AP will transmit the modifier M and public key pk to any client that
connects using WPA3-PK (see Fig. 1). This allows the client to recompute the
fingerprint of the given public key, SSID, and modifier, and compare the resulting
fingerprint with the one encoded by the WPA3-PK password. In case these
fingerprints do not match, the handshake is aborted. Note that the modifier
value is encrypted with the negotiated key to ensure that the modifier remains
unknown to outsiders. This is important, because if the modifier gets leaked to
outsiders, then the WPA3-PK password of the network will leak (see Sect. 3.1).

2.4 Security Guarantees Provided by WPA3-PK

It is important that WPA3-PK is sufficiently resistant to second preimage
attacks. That is, given a WPA3-PK password, it must be infeasible to find a mod-
ifier M and public key pk (for which the private key is known) that results in the
given WPA3-PK password. To estimate the resistance against such attacks, the
WPAS3 specification calculates the cost of a brute-force preimage search for vari-
ous security parameters A and Sec. This analysis indicates that, when targeting
a network that uses the lowest allowed security setting of A = 12 and Sec = 3,
and when using a single hash miner capable of 50 TeraHashes per second, it
would take roughly 48 CPU years to attack a WPA3-PK password [29].
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Table 1. Different implementations of PKHash and whether they let the modifier M
start from a random value, and if so, which source is used to generate random numbers.

Password generation tool | Start value of M | Source of randomness

Hostap’s sae-pk-gen Random Linux’s /dev/urandom/
OpenSSL-based tool Random Router’s MAC address

Python3 implementation | Zero —

We also remark that WPA3-PK can be used to secure private Wi-Fi networks.
Compared to plain WPA3, using WPA3-PK has the advantage that, if an internal
device is compromised, this compromised device cannot abuse the pre-shared
password to create a rogue clone of the network to attack other devices.

3 Implementation and Network-Based Attacks

In this section, we investigate implementation risks of WPA3-PK. That is, we
analyze the impact of bad randomness and study network-layer security aspects.

3.1 Bad Randomness Leaks the Password

Threat Model. In this subsection, we will assume that the adversary does
not know the password of the WPA3-PK network, but wants to obtain it. This
threat model corresponds to one of the design goals of WPA3-PK, namely, that
the password should remain secret if it is not shared publicly. This means that
in this subsection, WPA3-PK is not used to secure a hotspot, but we instead
assume that WPA3-PK is used to secure a private home network.

Flawed Randomness Risk. To ensure that the WPA3-PK password stays
secret, the modifier M should start from an unpredictable value when generating
the password (see Algorithm 1). In fact, the WPA3 specification states: “the
Modifier is generated using a random number generator with high entropy” [29].
Using high entropy is essential because, due to the design of WPA3-PK, using
low entropy randomness risks leaking the WPA3-PK password. In particular,
when an adversary does not know the password of a WPA3-PK network, they
can monitor the network until a legitimate client tries to connect. The adversary
can then capture the public key pk that is sent in plaintext in the last Auth-
Confirm frame (see Fig. 1). Once the adversary has obtained the public key, the
initial value of the modifier M can be guessed, and the PKHash algorithm can be
executed to find the WPA3-PK password of the network. It is therefore essential
that a cryptographically strong random number generator is used to initialize
the modifier M in the PKHash algorithm, since that will prevent an adversary
from guessing the (initial) value of the modifier.

Implementation Analysis. To investigate whether WPA3-PK implementa-
tions securely initialize the modifier M, we searched for open-source implemen-
tations of PKHash and studied those. More precisely, we analyzed: (1) the sae-
pk-gen password generation tool included in Linux’s hostap daemon; (2) an
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implementation of PKHash based on OpenSSL that is part of a modified dd-
wrt release; and (3) a Python3 implementation of PKHash. The analyzed source
code snapshots of these three tools are available on our repository [1]. Table 1
gives an overview of these three implementations and their properties.

We found that hostap’s sae-pk-gen uses /dev/urandom to generate an initial
value of M. Although researchers have previously identified weaknesses in older
Linux implementations of /dev/urandom [15], it is believed to be a secure source
of randomness in newer kernels. In contrast, we found that the PKHash imple-
mentation based on OpenSSL, and used in a dd-wrt fork, was using an insecure
method to initialize the modifier. In particular, it used the MAC address of the
router as the argument to srand, and then used libc’s rand function to initial-
ize the modifier. This means that the initial value of M can be inferred by an
adversary and that the resulting WPA3-PK password can be derived from the
hotspot’s public key. Finally, the Python3 implementation of PKHash always
initialized the modifier M to zero and incremented it until a valid modifier was
found. This makes it trivial for an adversary to derive the WPA3-PK password
when only knowing the public key of the network.

Evaluation. To evaluate our attack, and confirm that an adversary can infer
the WPA3-PK password generated by vulnerable implementations, we generated
WPA3-PK passwords using the three implementations in Table 1. The gener-
ated passwords and private keys were used to create a WPA3-PK hotspot using
Linux’s hostapd daemon. To then perform the attack and infer the network’s
password, we created a Python script that uses the Scapy library to monitor
Wi-Fi frames sent by the AP. When a legitimate client connects, and the Auth-
Confirm frame sent by the AP is detected, our script will extract the AP’s public
key from this frame (recall Fig.1).

Once the AP’s public key has been intercepted, our script runs the PKHash
algorithm locally with the captured public key as input. In a first run of
PKHash, the initial value of the modifier value M is set to zero, to simulate
the Python3 implementation. In a second run, the initial value is set based
on the MAC address of the AP. All combined, this results in two potential
WPA3-PK passwords. To determine whether one of these passwords is correct,
we use wpa_supplicant to try to connect to the AP using these passwords. If
one of the connections is successful, we know that the password is correct. We
repeated this experiment 10 times, where each time new WPA3-PK passwords
and public keys were generated, and each time our script was able to derive
the password generated by the OpenSSL-based and Python3 implementation of
PKHash.

3.2 Network-Based Attacks

Client-to-client Attacks. With WPA3-PK, an adversary cannot set up a
rogue AP to intercept the traffic of clients. However, by default, it remains
possible to intercept a victim’s traffic using network-based attacks. In particular,
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an attacker can connect as a client and then use ARP poisoning to redirect and
intercept the traffic of other users that are connected to the hotspot. To perform
an ARP poisoning attack, the adversary must know the IP address of the victim,
but that info can be determined by scanning the network using tools such as
nmap.

We confirmed this attack in practice against a Linux AP running hostapd
2.10 that was configured as a WPA3-PK network, connecting to the AP using
two Linux laptops, and using Scapy to perform an ARP poisoning attack. This
successfully poisoned the ARP cache of both the victim client and the AP, and
caused the attacker to intercept all traffic to and from the victim.

Abusing Group Keys. When using WPA3-PK, the group key that is used
to protect broadcast and multicast Wi-Fi traffic is shared between all clients.
This means that an adversary can connect to an WPA3-PK hotspot, learn the
group key, and abuse this key to spoof broadcast and multicast traffic to all
clients. More worrisome, previous work has shown that against many devices,
it is possible to inject unicast traffic using the group key [27], worsening the
impact of such an attack. Overall, we found that an adversary can abuse the
group key in a WPA3-PK network to send arbitrary traffic to other clients even
if client-to-client traffic was blocked by the network.

We confirmed the above attack against a Linux client that was using version
2.10 of wpa_supplicant. In our attack, we connected ourselves to the WPA3-PK
network using a modified wpa_supplicant that outputs the group key. This
group key was then used to inject both broadcast and unicast frames towards
the victim, even though client-to-client traffic was disabled by the AP.

4 Precomputation Attacks and Rainbow Tables

In this section, we study improved time-memory trade-off attacks against
WPA3’s SAE-PK protocol, i.e., against WPA3-PK. We analyze the expected
performance of a baseline attack, improve this attack using rainbow tables, and
evaluate a proof-of-concept implementation of the rainbow table attack.

4.1 Background on Time-Memory Trade-Off Attacks

Precomputation Attacks. Our goal is to find a modifier M and public key pk
that results in a given password, i.e., to perform a preimage attack. That is,
we want to invert PKHashg ¢(pk, SSID, M) when given a SSID, public key pk,
and security parameters # and ¢. One option is doing a brute-force search for
a value M that results in the desired output, but that requires either a large
amount of computational power or takes a huge amount of time. When per-
forming a preimage attack multiple times, it is typically possible to precompute
information so that subsequent attacks can be carried out faster. Such time-
memory trade-off attacks were first introduced by Hellman in 1980: he proposed
a probabilistic method to break a block cipher that supports 2™ possible keys by
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precomputing a lookup table of 22/3" elements, after which recovering the key
from a known plaintext takes 22/3" operations [13]. Another common use case
for time-memory trade-off attacks is to invert a hash function.

In a time-memory trade-off attack, intermediate results are saved so that
subsequent attacks are more efficient. For instance, assume we want to invert a
hash function H, i.e., given a hash output C' we want to find an input P such
that C = H(P). A naive idea is to iterate over all inputs and save all input and
hash output pairs. However, this requires a large amount of storage. Instead, in
a time-memory trade-off attack, the inputs and hash outputs are organized in
chains, and only the first and last elements of each chain are saved. The chains
are created by defining a reduction function R that transforms a hash output into
a new candidate hash input. We then define the function f(p) = R(H(p)) that
maps an input p to another input, and use this to construct a chain of inputs:

f(p1 f f(pe—
1 (p1) Do (p2) (pt—1) P (4)

For every chain only the first input p; and last input p; are stored. These two
points are commonly called the starting point and endpoint, respectively. By
changing the length ¢ of chains we will be able to trade lookup time with memory.

To find an input that results in a given hash output C, we first create a new
(temporary) chain of inputs of length ¢ starting with R(C'). For every output in
this temporary chain, we look up whether this input occurs as an endpoint in
the precomputed table. Once an endpoint has been found, the entire chain in
the precomputed table is reconstructed, which is possible since the precomputed
table contains the starting input of each chain. If the recreated chain contains an
input that results in the given hash output C, then the lookup was successful,
since that means we found an input that results in the given hash output C.
If the recreated chain does not contain the hash output C, then we say that a
false alarm has occurred, and we continue the search until ¢ applications of f
are applied to R(C).

Chain Collisions. Time-memory trade-off attacks are probabilistic: there is
no guarantee that all hash inputs of a given length are contained in the table.
The success probability of a preimage attack will therefore depend on the size
of the precomputed table and how the table is constructed. Additionally, chains
may collide with each other, meaning at some point they both generate the same
(partial) chain of inputs. We call this a chain collision. To increase the success
rate, and reduce the number of collisions, a common strategy is to create multiple
smaller subtables that each use a (slightly) different reduction function R.

Rainbow Tables and Distinguished Points. Various improvements to time-
memory trade-off attacks have been proposed over time. Two important ones are
Distinguished Points (DP) and rainbow tables. The idea behind distinguished
points was first mentioned by Rivest [9, p.100] and was later investigated in detail
by Borst et al [7]. When using distinguished points, the number of table lookups
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is reduced, which is important when working with slow storage mediums or large
lookup tables. Arguably the most well-known improvement is the technique of
rainbow tables, which was proposed by Oechslin in 2003 [22]. The advantage of
this technique is that the number of chain collisions is reduced, and that there is
a reduction in the expected number of table lookups compared to the classical
method of Hellman.

4.2 Motivation: SSID Reuse

The network’s SSID influences the WPA3-PK password and thereby acts as a
salt to mitigate precomputation and time-memory trade-off attacks. However,
SSIDs are frequently reused by different networks, meaning it still is beneficial to
perform precomputation attacks against WPA3-PK. To investigate how common
SSID reuse is, we analyzed the SSID statistics provided by WiGLE [2], which at
the time of our analysis contained 884 396 925 Access Points (APs). Based on this
data, Fig. 2 shows how many Wi-Fi networks are represented by the most com-
mon 100 SSIDs. We can see that the most common 100 SSIDs represent almost
10% of all Wi-Fi networks worldwide. The most common SSID, xfinitywifi,
represents 2,03% of all APs, and the top 10 SSIDs represent 5,02% of all APs.
This shows that SSIDs are frequently reused and motivates our research into
precomputation and time-memory trade-off attacks, since the reuse of SSIDs
enables the use of a single precomputed table to attack multiple networks.

4.3 Baseline Precomputation Attack Against WPA3-PK

Our rainbow attack extends the time-memory trade-off attack of [26]. We there-
fore first introduce this baseline attack and perform a more extensive evaluation
of its performance. Both attacks have as input a public key pk for which we
know the private key and a WPA3-PK password with parameters ¢ and 0, i.e.,
a fingerprint, and then find a modifier M such that PKHashy ¢(pk, SSID, M)
has as output the given fingerprint. The baseline time-memory trade-off attack
works as follows [26]:
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Fig. 2. Percentage of Access Points (APs) on WiGLE that are represented by the top
most common SSIDs [2]. This excludes the empty SSID that is used to hide networks.
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Reduction Function. The reduction function takes a fingerprint, i.e., an out-
put of PKHash, and converts it to a modifier value M. The function takes the
given fingerprint of ¢ bits, and appends it with zero bits until it has a total
length of 16 bytes. With this construction, the chance of chain collisions is
reduced, because the counter m; inside PKHash will then be unlikely to ever
equal another fingerprint.

Constructing Chains and Tables. The baseline attack uses distinguished
points to construct chains, which makes handling large tables more effi-
cient [6,22]. That is, it keeps applying the reduction and PKHash function
until a fingerprint with a given number of leading zero bits is encountered. This
fingerprint is called a distinguished endpoint or distinguished fingerprint. The
number of leading zeros of a distinguished fingerprint is represented by d. This
implies that the internal hash output in Algorithm 1 must start with 6 4+ d zero
bits.

To construct one table, m random fingerprints are picked as starting points,
denoted by p; to p,,. For each starting point, the reduction and PKHash func-
tion, which corresponds to function f in Sect.4.1, is executed until we get a
distinguished fingerprint. Function f can now be written as follows:

Dij+1 = PKHashg ¢ (pk‘, SSID, Pij <K (32 -8 — K)) (5)

Here p; ; is the j-th point in chain ¢. Each chain ¢ starts with fingerprint p; 1 = p;.
The operator < denotes a binary left shift, and the constant 32 - 8 corresponds
to the length of the modifier M. To detect loops in a chain, the length of a chain
is limited to t,,4, elements. If no distinguished fingerprint was found after ¢4
applications of the function f, the chain is discarded.

Storage. For every chain i we store the starting fingerprint p;, the distinguished
endpoint p;+, and the chain length ¢. By storing the chain length we can merge
chain collisions and only keep the longest chain. To allow lookups of an endpoint
in logarithmic time, the table is sorted based on the distinguished endpoints.

Multiple Tables. Using multiple smaller subtables, where each table uses a
unique reduction function, reduces chain collisions which improves the success
rate of table lookups and makes it easier to parallelize lookups [6,25]. One can
construct a unique reduction function per table by encoding the index of the
subtable into the high-order bits of the modifier M. After the bits that encode
the table’s index, the output of the previous PKHash call is placed. In other
words, for subtable r out of T in total, the combination of the reduction and
PKHash function becomes:

Stable = 328 — DOgQ (Tﬂ (6)
Smod = Stable — L (7)
Dij+1 = PKHaShgyg (pk, SSID, (7” < Stable) | (pm- < smod)) (8)

Operator | denotes the binary OR operation and T is the number of subtables.
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4.4 Improved Analysis of the Baseline Precomputation Attack

Table 2. Symbols used in this paper and their meaning.

Symbol | Description

Length of the SAE-PK password (defined by WPA3)
Security level of the fingerprint (defined by WPA3)
Public key

Private key

Modifier value used to calculate a fingerprint

Number of starting points in one table
Table index
Number of tables

Number of colors used in a table

Current color
Number of SHA2 output bits that must be zero
Length in bits of the desired fingerprint

Number of leading zeros in distinguished fingerprints

w&m%nmqﬁgz%gg‘?y

Represents the (average) length of a chain

To determine the performance of the above baseline time-memory trade-off
attack, we improve its proof-of-concept implementation, evaluate its resulting
performance, and compare this more thorough experimental evaluation with the
theoretical estimates of [26]. Note that in the theoretical analysis, chain merges
are ignored to simplify the analysis at the cost of some reduction in precision [25,

§8).

Experiments. We started with the proof-of-concept implementation of [26] and
carried out a more extensive evaluation over more parameters. While doing so,
we fixed a bug in the lookup function in the proof-of-concept implementation
that caused the endpoint in a chain to be overwritten, which caused the success
rate of table lookups to be underestimated. When then ran simulations with the
WPA3-PK security parameters § = 8 and ¢ = 24, used d = 8 for distinguished
fingerprints, tmee = 2'' as the maximum chain length, used m = 22 starting
points per table, and T = 28 individual tables. Based on a simulation of 400
password lookups, on average one lookup required 2'642 calls to PKHash, and
the success rate of a password lookup was 46.5%. This is a substantially higher
success rate compared to the analysis in [26], which we attribute to the bug fix
in the proof-of-concept implementation.

We also further improved the proof-of-concept code to support arbitrary bit
lengths for the parameters 6, £, and d. This enabled a more thorough performance
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Fig. 3. Performance of lookup tables for the baseline time-memory trade-off attack.
The x-axis denotes the number of subtables T. The total number of starting points
across all subtables is identical in each experiment. In other words, when employing
fewer subtables, each one contains a higher number of chains, i.e., starting points.

evaluation while still ensuring that simulations terminate within practical time.
In particular, in our second set of experiments, we set § = 0, { = 24, and
d = 8. The number of subtables T was set to 16, 32, ..., 512. The number of
chains m was chosen so the table generation covered on average 2¢ hash inputs.
That is, T = %, which ensures the generation time of the table is equal
under all parameter combinations, and ensures that all subtables combined have
the same size, resulting in a fair comparison between the different tables. For
every generated table, we looked up 400 random passwords, and measured how
many lookups were successful. The results of this experiment are shown in Fig. 3.
We can clearly see that using different smaller subtables, each with their own
unique reduction function, improves the performance of the time-memory trade-
off attack.

Precomputation Complexity. We can compare our observed performance
with the predicted theoretic performance calculated in [25,26]:

1. Success rate. The success rate of finding an WPA3-PK passphrase in a single
table equals SR ~ % [25,26]. In case we use T different tables, where each

table has a different reduction function, the probability of a successful lookup
is PS(T) =1— (1 - SR)T [25].

For example, when using T = 2% tables, the expected success rate is 50%. In
practice, we saw a success rate of 46.5% in the first experiment and 48.25% in
the second experiment. As another example, for T = 2* tables the predicted
success rate is 16%, and the observed success rate is 13.75% (see Fig.3).
Overall, the observed success rates are in line with the predicted rates.
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2. Lookup cost. The processing complexity, i.e., the expected number of calls
to PKHash when looking up an element over all T" subtables, can be estimated
using T - 8. Here (3 is the average length of a chain, which can be approxi-
mated by 2¢. This assumes that there are no false alarms when looking up a
password [25].

For example, when using T' = 2% tables, the expected lookup cost consists of
216 calls to PKHash. In practice, we observe 21642 calls to PKHash in the first
experiment, and 2!%44 in the second experiment. When using 7' = 2* tables,
we would expect 212 calls to PKHash, and in practice we observe 213-28 calls
per lookup. We conjecture that this higher time complexity is due to false
alarms during a password lookup, e.g., with T = 2%, on average there were
12 false alarms per lookup.

All combined, the results of our experiments are in line with the predicted success
rates. The above also confirms the prediction of [26] that breaking WPA3-PK
under its lowest security setting, namely when Sec = 3 and A = 12, would
require an amortized computational cost of less than 12 d, where a lookup in the
precomputed table would have a success rate of close to 50%.

4.5 Rainbow Tables for WPA3-PK

To increase the success rate of a password lookup, we will combine the above
table construction with rainbow tables. In a traditional rainbow table, the reduc-
tion function R is (slightly) changed at every point in the chain to reduce chain
collisions [16,22]. In our approach, we will change the reduction function once a
distinguished fingerprint is encountered:

fi(p1,1) fi(p1,e-1) f2(p1,¢) f2(p2,1) fa(p2,e-1)
1,1 e D1t P21 e D2t (9)

)

Here function f1(p) = R1(H(p)) is applied until we get a fingerprint that starts
with d zero bits, which is the same as a distinguished fingerprint in our previous
table. Once a distinguished fingerprint p; ; is found, we switch to a different
reduction function Rs meaning we apply the function fo = Ro(H(p)), until we
obtain another fingerprint with d leading zero bits, and so on. We say that each
reduction function R. uses a different color ¢. The total number of colors B
used in a chain is a parameter of the table. Analogous to changing the reduction
function for every table r, we create a new reduction function per color by
encoding the color ¢ in the modifier M. All combined, the function f. (p; ;) for
color c¢ in subtable r becomes:

Scolor = 328 — [10g2(B)1
]

(

Stable = Scolor — |—10g2 (T) (
Smod = Stable — l (12

(

pg-{-l = PKHaShQ)[ (pki, SSID7 (C < Scolor) | (’I" < Stable) | (pZJ < Smod))
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Here c represents the current color used in the reduction function, B the number
of colors used, r the table index, and T' the number of tables. To detect possible
loops in a chain, we discard a chain if no distinguished point was found after
24+3 applications of f. .

4.6 Rainbow Table: Performance Experiments

s . . 0.30
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Fig. 4. Performance of lookup tables in function of the number of colors used, number
of subtables, and the number of chains in a subtable (see Sect.4.6 for details). Each
point represents a lookup table containing at most 2! chains. The x-axis denotes the
number of colors in a table and the y-axis the resulting password lookup success. The
hue of the point represents the normalized, in log scale, average number of table accesses
when looking up a password, where the maximum number of table lookups was 10659.

We implemented a proof-of-concept of our rainbow table technique to esti-
mate the success probability of password lookups. To ensure simulations finish
within practical time, we set & = 0 and ¢ = 24. Our tool has as parameters
the number of leading bits d of a distinguished point, the number of colors B,
the number of subtables T, and the number of chains m in a subtable. Note
that when using B = 1, meaning only one color is used, the resulting table is
equivalent to the tables constructed in the previous two sections.

We did simulations with B € {1,2,4,8,2% 2°}, d ranging from 0 to 8, and
m € {27,...,212,213}, The number of subtables 7' was chosen so the table
generation covered on average 2¢ hashes. That is, T = %, which ensures
the generation time is equal under all parameter combinations, ensuring a fair
comparison between the created tables. Note that depending on the values for
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T and m the resulting tables may be of different size. For every combination
of parameters, our tool created the rainbow table, then performed 400 random
lookups in the table, and finally wrote the resulting statistics to a JSON file.
Figure4 shows the performance of the resulting lookup tables for tables that
store 216 chains or less. This limit for the number of chains over all subtables
effectively puts a limit on the size of the lookup table, further ensuring a fair
comparison. We observe that for tables of similar size, and with a fixed table
generation time, the usage of colors increases the attack success probability. For
instance, the highest success probability over all parameter combinations with
one color is 49%, with two colors this increases to 56%, and with 16 colors it
reaches its maximum of 65%.

SSID 1 Modifier My Public key pk: Pseudo modifier
—PP—— >

MyFree --- z!,3098 --- 308800 --- 00393013 --- BD0O0OOO --- 001CB5
+— P — >
SSID 2 Modifier Mo Public key pka Real modifier

Fig.5. Input given to PKHash such that the SAE-PK password for both SSIDs is
identical. The top shows how this input is split into the SSID, modifier, and public
key for the first network. The bottom shows how this input is mapped to the SSID,
modifier, and public key for the second network.

The increased success probability of using different colors comes at the cost
of more table accesses during the lookup of a password. For instance, for the
highest success probability for each color, the number of table accesses equal
370 for 1 color, 706 for 2 colors, and 5091 for 16 colors.

5 Multi-network Password Collisions

In this section, we propose a new method to create password collisions, that is,
we create networks with different SSIDs that have the same WPA3-PK password.
This is non-trivial because the SSID acts as a salt when calculating the password.
We also create multi-network password collisions, where multiple SSIDs have the
same WPA3-PK password. These password collisions allow an attacker to create
a single precomputed table that can be used to attack multiple networks.

5.1 Constructing Password Collisions

To create WPA3-PK password collisions, we ensure that the input to the under-
lying hash function of PKHash, i.e., Eq. 1 in Algorithm 1, is identical for different
SSIDs [26]. The core idea to achieve this is that an attacker can still change the
length of the SSID after the password has already been generated [26]. This
idea is illustrated in Fig.5, where the input to PKHash is given two interpre-
tations. In the first interpretation, the SSID equals MyFr, the modifier equals
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the binary encoding of eeWifi 2.4,,GHz!,, and the public key starts with the
bytes 30 90 and ends with the byte BD. In the second interpretation, the SSID
equals MyFreeWifi ;2.4 ,GHz! ,, the modifier equals the first 16 bytes of the pub-
lic key pki1, and the public key starts in the middle of pk; with the bytes 30 88
and ends with the byte BD (more on this later).

To create a valid WPA3-PK password, we need to be able to freely modify
certain bytes to ensure that the internal hash operation in PKHash starts with
enough zeros. However, as shown in Fig.5, the modifier M cannot be freely
changed anymore because it now overlaps with the SSID or public key of the
other network. To still be able to freely change bytes in the input of PKHash,
we will not change the encoding of the public key as in [26], but we will instead
include a pseudo modifier after the public key. This pseudo modifier can be
changed until the hash output starts with sufficiently many zeros.

Our password collision construction only works if the client does not remove
the pseudo modifier that is appended to the public key. Fortunately, when the
public key pk is sent to the client in the Auth-Confirm frame, the encoding of
the public key is treated as an opaque data blob [3, §9.4.2.180]. This means we
can add trailing data after the public key without the client noticing this.

We tested whether wpa_supplicant, which is the only open-source Wi-Fi
client that supports WPA3-PK, accepts trailing data after the public key. This
client supports two crypto libraries when using WPA3-PK, namely OpenSSL
and WolfSSL, and in both cases trailing data after the public key was accepted
and included in the input given to PKHash. This confirms that we can use the
structure in Fig. 5 to build password collisions, where the pseudo modifier can
be changed until the hash output starts with sufficiently many zero bits.

All combined, we can now build a precomputed table where the construction
in Fig. 5 is used as the input to the internal hash function in PKHash. Here the
pseudo modifier contains the argument M of PKHash. An adversary can then
use the resulting table to attack both SSIDs.

5.2 Public Key Embedding and Trailing Data

One obstacle when creating a password collision is that public key pk; must be
constructed so that public key pko starts in the middle of it, i.e., we must be
able to embed one public key into another. To achieve this, we exploit a similar
parsing vulnerability as the one in [18,26], namely that arbitrary data can be
encoded in variable length fields. In particular, when encoding a length field, if
the length is smaller or equal to 127, the length is directly encoded as a byte.
For example, the byte 0x10 encodes the length 16. Otherwise, if the length is
128 or higher, the high-order bit of the first byte is set, and the other low-order
bits denote how many subsequent bytes encode the actual length. For example,
the two bytes 0x81 OxFF represent the length 255. We can embed arbitrary data
inside this variable length encoding by using the following construction:

8C XX XX XX XX 00 00 00 00 00 00 00 39
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The first byte denotes that the next 12 bytes will be used to encode the length
field. However, most implementations can handle at most 64-bit integers. As a
result, only the last 8 bytes of the length field matter, and the 4 bytes represented
by XX are effectively ignored due to an integer overflow.

We can now encode the start of a public key into the variable length field of
another public key. In particular, we can put the bytes 30 88 in place of the last
two XX bytes in our example. Here 30 encodes the start of the public key and 88
denotes a variable length field where the length is represented using the next 8
bytes. After this length field in the byte sequence, both public keys are aligned,
meaning that the remaining bytes will encode the same public key.

5.3 Accepting Trailing Data Inside the Public Key

Table 3. Behavior of crypto libraries regarding the parsing of public keys. The second
column contains the tested function, the third whether it returns the number of bytes
read, and the fourth column whether trailing data is allowed in the ASN.1 sequence.

Library SubjectPublicKeyInfo parser Bytes read | Extra data
OpenSSL | d2i_PUBKEY Yes Rejected
WOolfSSL | wec_EccPublicKeyDecode Yes Accepted
GnuTLS | gnutls_pubkey_import No Rejected
MatrixSSL | psParseSubjectPublicKeyInfo | No Accepted

An alternative to putting the pseudo modifier as trailing data after the public
key, is to put it in the end of the public key itself. More precisely, the encoding
of the public key is defined using ASN.1 as follows:

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING
// Add trailing data, i.e., the pseudo modifier M, here 1}

The idea is that we add trailing data after the subjectPublicKey, but inside the
SubjectPublicKeyInfo sequence. Out of the 4 TLS libraries we tested, WolfSSL
and MatrixSSL accepted trailing data in this location, and this did not interfere
with the parsing of the public key. This was tested by calling the public key pars-
ing functions shown in Table 3, where for MatrixSSL the functions getEcPubKey
and PsParseSubjectPublicKeyInfo were combined to parse the public key.

5.4 Multi-network Password Collisions

Apart from creating a WPA3-PK password collision for two SSIDs, we can also
create a collision for multiple SSIDs. To accomplish this, we assume that every
SSID is a prefix or extension of another SSID, and that each SSID differs in
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length from all other SSIDs by at least two characters. This, for instance, allows
us to construct collisions for the following sets of SSIDs:

{ MyFreeWifi 2.4, GHz! , MyFreeWifi 2.4 GHz, ..., MyFree, MyFr }

The maximum difference in length between the longest and shortest SSID is 16
characters. This limitation is a result of having to use the 16-byte modifier M
to ensure that different SSIDs still result in the same hash input (recall Fig. 5).

When constructing the collision, we use the same format as in Fig. 5 where a
pseudo modifier M is placed after the public key. However, the variable length
fields of the public keys are now constructed as shown in Fig.6. The idea is
that, as long as the public key starts on one of the underlined bytes, then all the
remaining bytes will be ignored until the actual public key starts. This means
a valid public key can start at multiple locations, which in turn means multiple
SSID lengths will result in a valid starting position of the public key.

30 98 30 96 30 94 --- 30 88 00 00 00 OO OO 00 00 39 30 13

v

< pko

A

pks

pka

A
vYvYyy

A

pk1

Fig. 6. Structure of the variable length fields in a multi-network password collision.
The underlined bytes represent the start of a public key. The red bytes encode the size
of the variable length field. The green bytes encode the actual length of the remaining
public key bytes, and all preceding length bytes are ignored due to integer overflows.
(Color figure online)

We created a script to create multi-network password collisions [1]. It takes
as input a private key, the longest SSID that we want to be part of the collision,
and the security parameter Sec of the resulting WPA3-PK password. The tool
will then create collisions for all shorter SSIDs in steps of two characters.

We also created a modified AP that advertises our constructed public key
along with the given SSID. When tested against a client that is vulnerable to the
same parsing flexibility as in [18,26], the public key was accepted, and the client
could use the same WPA3-PK password to connect to all the different SSIDs.

6 Defenses and Discussion

In this section, we discuss possible defenses against all our attacks and propose
updates to the WPA3-PK standard.
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6.1 Handling Bad Randomness: Encrypting the Public Key

To prevent bad randomness from leaking the password, the AP should send the
public key to the client in an encrypted manner. This can easily be done: the
AP already encrypts the modifier M when sending it to the client (recall Fig. 1).
The AP can use the same encryption operation to also encrypt the public key.

When the client uses the correct password to connect, they can decrypt and
obtain the public key, and then verify the authenticity of the public key. In case
the client is not using the correct key, the confirm message in the Auth-Confirm
frame is invalid, and the client will drop the frame before trying to decrypt the
public key. All combined, a legitimate client will still be able to obtain the public
key, while it will remain hidden from an adversary. When adopting this approach,
it is no longer possible for an adversary to derive the WPA3-PK password, even
when the modifier M was initialized in a predictable manner.

6.2 Preventing Network-Layer Attacks

Our network-based attacks can be prevented by: (1) blocking all types of client-
to-client communication [4, §5.1]; and by (2) using the Downstream Group-
Addressed Forwarding (DGAF) Disable feature of Passpoint [4, §5.2], which
effectively disables the use of the group key in Wi-Fi networks.

6.3 Mitigating Time-Memory Trade-Off Attacks

To mitigate time-memory trade-off attacks in a backwards-compatible manner,
networks can use a WPA3-PK password of at least A = 16 characters or use a
security parameter of Sec = 5. This makes it too costly to construct a precom-
puted table. Alternatively, to prevent time-memory trade-off attacks, the user
can scan a QR code to learn the precise public key instead of only its finger-
print. Additionally, network administrators can decide to use a unique SSID,
since adversaries are less likely to create a precomputed table for unique SSIDs.

6.4 Preventing Password Collisions: Committing to an SSID Length

To prevent an adversary from constructing password collisions, the input given
to the hash function inside PKHash should be updated to start with a single byte
that represents the length of the SSID. This forces an attacker to commit to a
specific SSID length when constructing the precomputed time-memory trade-off
table, or the rainbow table, and thereby prevents our WPA3-PK password colli-
sion attacks. Unfortunately, this change requires a modification to the protocol.
A backwards-compatible mitigation is to more strictly parse the public key and
to only allow a single possible encoding of the public key.
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7 Related Work

This paper builds upon our previous preliminary analysis of WPA3-PK [26], and
also investigates network-based attacks, studies practical implementation risks
of the password generation algorithm, more accurately evaluates the baseline
time-memory trade-off attack, proposes rainbow table attacks, and explores new
techniques to construct multi-network password collisions.

The predecessor of WPA3, namely WPA2, was quickly shown to be suscep-
tible to offline dictionary attacks [20]. Internally, WPA2 employs the PBKDF2
algorithm to derive a Pairwise Master Key (PMK) from the combination of
the password and SSID. This resulting PMK serves as the input for the WPA2
4-way handshake, where the PMK, along with two random nonces, are mixed
to generate a fresh session key. An adversary can intercept the 4-way handshake
and then perform a brute-force attack to determine the password that results
in the correct session key. However, due to the inclusion of two randomly gen-
erated 32-byte nonces in the session key derivation, performing a time-memory
trade-off attack against the 4-way handshake is not possible. Nonetheless, given
the slow nature of offline brute-forcing attempts on personal computers, lookup
tables were generated to speed up the brute-force attacks against WPA2’s 4-way
handshake [24]. By using these precomputed tables, one can avoid executing the
computationally intensive PBKDF2 hash that maps an SSID and password to
the corresponding PMK. Initially, these tables covered the top 1000 SSIDs using
a dictionary of 172 000 possible passwords, which was subsequently expanded to
a dictionary containing one million words. The resulting lookup tables occupied
7 GB and 33 GB of storage space. Due to the increased adoption of GPU-based
password-cracking methods, the demand for such lookup tables has waned.

Regarding the security of WPA3, researchers quickly showed that it was
vulnerable to timing attacks [28]. Although backwards-compatible defenses were
proposed, not all implementations properly implemented these defenses [5].

Flexibilities in parsing public keys were previously abused to attack RSA [10].
Related to this, it was also discovered that some libraries accept arbitrary param-
eters in the algorithm identifier [8].

Hellman introduced time-memory trade-off attacks [13] and Oechslin
improved them using the rainbow construction [22]. Using distinguished points
to perform time-memory trade-off attacks was first proposed by Rivest [9] and
later worked out by Borst et al. [7]. Nohl combined the technique of rainbow
tables with distinguished points to break the GSM A5 /1 cipher, where this com-
bination was important to handle large lookup tables in practice [21], and the
generation of these tables was later improved by using FPGAs [17].

8 Conclusion

Our security analysis of WPA3-PK revealed that, when using this protocol
in practice, it is important to also consider implementation and network-layer
attacks. In particular, implementations must use a secure random number gener-
ator and clients must be properly isolated from each other at the network layer.
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When using the weakest allowed WPA3-PK password, we demonstrated that
time-memory trade-off attacks, including the creation of rainbow tables, are on
the verge of practicality. These attacks enable an adversary to perform a preim-
age attack, i.e., to find a public and private key that result in a given WPA3-PK
password. To mitigate these attacks, we recommend setting the parameter Sec
to 5, or using a WPA3-PK password of at least A = 16 characters. This is
especially important when using a common SSID name for the network.
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Abstract. Aggregation of message authentication codes (MACs) is a
proven and efficient method to preserve valuable bandwidth in resource-
constrained environments: Instead of appending a long authentication
tag to each message, the integrity protection of multiple messages is
aggregated into a single tag. However, while such aggregation saves band-
width, a single lost message typically means that authentication informa-
tion for multiple messages cannot be verified anymore. With the signifi-
cant increase of bandwidth-constrained lossy communication, as applica-
tions shift towards wireless channels, it thus becomes paramount to study
the impact of packet loss on the diverse MAC aggregation schemes pro-
posed over the past 15 years to assess when and how to aggregate message
authentication. Therefore, we empirically study all relevant MAC aggre-
gation schemes in the context of lossy channels, investigating achievable
goodput improvements, the resulting verification delays, processing over-
head, and resilience to denial-of-service attacks. Our analysis shows the
importance of carefully choosing and configuring MAC aggregation, as
selecting and correctly parameterizing the right scheme can, e.g., improve
goodput by 39% to 444%, depending on the scenario. However, since no
aggregation scheme performs best in all scenarios, we provide guidelines
for network operators to select optimal schemes and parameterizations
suiting specific network settings.

Keywords: Message Authentication Code - MAC Aggregation + IoT

1 Introduction

With the proliferation of the (industrial) Internet of Things (IoT), more and
more battery-operated devices, such as sensors and actuators, rely on wire-
less communications. Consequently, the number of devices sharing the same
transmission medium (with a fixed capacity) is growing, imposing increasingly

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Popper and L. Batina (Eds.): ACNS 2024, LNCS 14584, pp. 241-264, 2024.
https://doi.org/10.1007/978-3-031-54773-7_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54773-7_10&domain=pdf
https://doi.org/10.1007/978-3-031-54773-7_10

242 E. Wagner et al.

stringent bandwidth constraints on IoT applications [29]. At the same time,
wireless communication further amplifies the need to adequately secure trans-
mitted messages [26], most notably to ensure the integrity of transmitted critical
information [8], which would have prevented e.g., the 2015 and 2016 cyberat-
tacks on the Ukrainian power grid [33]. However, establishing integrity protection
requires additional bandwidth to transmit authentication tags, thus conflicting
with the already hard-to-reach constraints of IoT communication. Therefore, a
vital research topic for industry and academia centers around the question of
how to use the shared limited transmission resources efficiently and still provide
adequate security [25].

As a result, many efforts across protocol stacks have been proposed to reduce
bandwidth overhead. Prominent examples include 6LoOWPAN header compres-
sion [20] or, more recently, the record layer headers of DTLS 1.3 [22] and Com-
pact TLS 1.3 [21]. Such protocol improvements can however not address the
inherent overhead necessary to provide integrity protection. Considering, e.g.,
desirable 128-bit security requires the integration of a 16-byte authentication
tag into the message’s payload. Moreover, since (industrial) IoT protocols such
as IEEE 802.15.4, LoRaWAN; or Bluetooth Low Energy often rely on short mes-
sages, such Message Authentication Codes (MACs) typically occupy a significant
portion of each message and, in some cases, do not even fit [18].

For at least 15years, the well-established and time-proven concept of MAC
aggregation has been known to alleviate these limitations [14]. The idea is simple
yet effective: Instead of protecting the integrity of each message individually, a
single authentication tag is responsible for protecting the integrity of multiple
messages. Given a reliable channel, this approach works flawlessly and can be
reduced to a trade-off between saved bandwidth and the verification delay for
received messages: Aggregating integrity protection of more and more messages
reduces the induced overhead until it becomes negligible but implies that the
receiver has to wait for the reception of all messages affected by the aggregation
before being able to check their integrity, resulting in significant delays if too
many authentication tags are aggregated.

Over the years, different MAC aggregation schemes have been proposed
to address weaknesses [11,13,15], split authentication tags over multiple mes-
sages [18], or provide progressive security guarantees [3,17,31]. And while vari-
ous implementations of security concepts, such as message authentication [28],
have been evaluated and compared by literature, such analyses of MAC aggre-
gation schemes in realistic wireless, and thus lossy, settings are practically non-
existent. Most importantly, current evaluations of MAC aggregation schemes
neglect that losing a single message from a set of messages with aggregated
authentication tags may have cascading effects depending on the chosen MAC
aggregation scheme. This phenomenon becomes increasingly relevant as more
and more communication transitions to low-bandwidth wireless, and thus lossy,
channels in a diverse set of applications such as smart cities, underwater commu-
nication, or the (industrial) IoT [9]. Thus, MAC aggregation is arguably becom-
ing even more critical for lossy channels than for its initial setting of reliable
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communication. However, research, thus far, did not provide sufficient address
under which circumstances MAC aggregation on lossy channels is sensible and
how to unlock its full potential. This knowledge is, however, crucial to optimally
utilize scarce bandwidth in wireless scenarios with an ever-growing number of
participating devices.

To address these shortcomings, this paper addresses the hitherto neglected
analysis of the performance of relevant MAC aggregation schemes in the pres-
ence of lossy channels. We consider realistic wireless (industrial) IoT communi-
cation scenarios, which suffer from scarce transmission resources and significant
packet losses, where we compare the performance of existing MAC aggregation
schemes. Our analysis is thus a valuable contribution for security practition-
ers and researchers: On the one hand, it allows identifying suitable aggregation
schemes depending on the considered scenario, and on the other hand, it reveals
current shortcomings, which lay the foundation for identifying more effective
approaches. Ultimately, we want to answer the questions of when MAC aggrega-
tion is sensible on lossy channels and how this aggregation should be performed
by making the following contributions:

— We investigate the achievable goodput improvements of all MAC aggregation
scheme known to us under various parameterizations in synthetic and real-
world scenarios (Sect.3 and Sect. 4);

— We further analyze the impact of MAC aggregation on decisive factors such
as verification delay, processing times, memory cost, and the susceptibility to
denial-of-service attacks (Sect.5); and

— Finally, we provide actionable guidelines to help in deciding when and how
current MAC aggregation schemes are best deployed (Sect. 6).

Availability Statement. To help in the decision process of which, if any, MAC
aggregation scheme should be deployed in a concrete scenario, our tool to com-
pare MAC aggregations schemes in concrete scenarios is available at: https://
github.com /fkie-cad /mac-aggregation-analysis-tool.

2 MAC Aggregation on Lossy Channels

Achieving integrity protection is a significant challenge in bandwidth-constrained
environments. Even the tiniest message requires an authentication tag of several
bytes (e.g., 16 bytes for 128-bit security), thus occupying considerable space in
each message. MAC aggregation schemes, as presented in this section, try to
alleviate this overhead by distributing the burden of authentication over multi-
ple messages. In the following,