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Preface

ACNS 2024, the 22nd International Conference on Applied Cryptography and Network
Security, was held in Abu Dhabi, United Arab Emirates, on March 5–8, 2024. The
conference covered all technical aspects of applied cryptography, network and computer
security and privacy, representing both academic research work as well as developments
in industrial and technical frontiers.

The conference had two submission deadlines, in July andOctober 2023.We received
a total of 238 submissions over the two cycles (230 unique submissions incl. eight
major revisions from the first submission cycle that were resubmitted as revisions in the
second submission cycle). From all submissions, the Program Committee (PC) selected
54 papers for publication in the proceedings of the conference, some after minor ormajor
revisions. This led to an acceptance rate of 23.5%.

The two program chairs were supported by a PC consisting of 76 leading experts in
all aspects of applied cryptography and security whose expertise and work were crucial
for the paper selection process. Each submission received around 4 reviews from the
committee. Strong conflict of interest rules ensured that papers were not handled by PC
memberswith a close personal or professional relationshipwith the authors. The program
chairs were not allowed to submit papers and did not handle any submissions they were
in conflict with. There were an additional 55 external reviewers, whose expertise the PC
relied upon in the selection of papers. The review process was conducted as a double-
blind peer review. The authors of 10 submissions rejected from the July deadline, but
considered promising, were encouraged to resubmit to the October deadline after major
revisions of their paper. From these 10 papers invited for a major revision, 8 papers got
resubmitted to the second cycle, 5 of which were finally accepted.

Alongside the presentations of the accepted papers, the program of ACNS 2024
featured three invited talks given by Elisa Bertino, Nadia Heninger, and Gene Tsudik.
The three volumes of the conference proceedings contain the revised versions of the 54
papers that were selected, together with the abstracts of the invited talks.

Following a long tradition, ACNS gives a best student paper award to encourage
promising students to publish their best results at the conference. The award recipients
share a monetary prize of 2,000 EUR generously sponsored by Springer.

Many people contributed to the success of ACNS 2024. We would like to thank the
authors for submitting their research results to the conference.We are very grateful to the
PC members and external reviewers for contributing their knowledge and expertise and
for the tremendous amount of work and time involved in reviewing papers, contributing
to the discussions, and shepherding the revisions. We are greatly indebted to Mihalis
Maniatakos and Ozgur Sinanoglu, the ACNS’24 General Chairs, for their efforts and
overall guidance as well as all the members of the organization committee. We thank
the steering committee, Moti Yung and Jianying Zhou, for their direction and valuable
advice throughout the preparation of the conference. We also thank the team at Springer
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for handling the publication of these conference proceedings, as well as Shujaat Mirza
for working on the preparation of the proceedings volumes.

March 2024 Lejla Batina
Christina Pöpper
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Applying Machine Learning to Securing Cellular
Networks

Elisa Bertino

Purdue University, Indiana, USA

Abstract. Cellular network security is more critical than ever, given the
increased complexity of these networks and the numbers of applications
that depend on them, including telehealth, remote education, ubiqui-
tous robotics and autonomous vehicles, smart cities, and Industry 4.0.
In order to devise more effective defenses, a recent trend is to lever-
age machine learning (ML) techniques, which have become applicable
because of today’s advanced capabilities for collecting data as well as
high-performance computing systems for training ML models. Recent
large language models (LLMs) are also opening new interesting direc-
tions for security applications. In this talk, I will first present a compre-
hensive threat analysis in the context of 5G cellular networks to give a
concrete example of the magnitude of the problem of cellular network
security. Then, I will present two specific applications of ML techniques
for the security of cellular networks. The first application focuses on the
use of natural language processing techniques to the problem of detecting
inconsistencies in the “natural specifications” of cellular network proto-
cols. The second application addresses the design of an anomaly detection
system able to detect the presence of malicious base stations and deter-
mine the type of attack. Then I’ll conclude with a discussion on research
directions.



Real-World Cryptanalysis

Nadia Heninger

University of California, San Diego, USA

Abstract. Cryptography has traditionally been considered to be one of the
strong points of computer security. However, a number of the public-key
cryptographic algorithms that we use are fragile in the face of implemen-
tation mistakes or misunderstandings. In this talk, I will survey “weapons
of math destruction” that have been surprisingly effective in finding bro-
ken cryptographic implementations in the wild, and some adventures in
active and passive network measurement of cryptographic protocols.



CAPTCHAs: What Are They Good For?

Gene Tsudik

University of California, Irvine, USA

Abstract. Since about 2003, CAPTCHAs have been widely used as
a barrier against bots, while simultaneously annoying great multitudes
of users worldwide. As their use grew, techniques to defeat or bypass
CAPTCHAs kept improving, while CAPTCHAs themselves evolved in
terms of sophistication and diversity, becoming increasingly difficult
to solve for both bots and humans. Given this long-standing and still-
ongoing arms race, it is important to investigate usability, solving per-
formance, and user perceptions of modern CAPTCHAs. This talk will
discuss two such efforts:

In the first part, we explore CAPTCHAs in the wild by evaluating
users’ solving performance and perceptions of unmodified currently-
deployed CAPTCHAs. We obtain this data through manual inspection
of popular websites and user studies in which 1,400 participants collec-
tively solved 14,000 CAPTCHAs. Results show significant differences
between the most popular types of CAPTCHAs: surprisingly, solving
time and user perception are not always correlated. We performed a com-
parative study to investigate the effect of experimental context – specifi-
cally the difference between solving CAPTCHAs directly versus solving
them as part of a more natural task, such as account creation.Whilst there
were several potential confounding factors, our results show that experi-
mental context could have an impact on this task, and must be taken into
account in future CAPTCHAstudies. Finally, we investigate CAPTCHA-
induced user task abandonment by analyzing participants who start and
do not complete the task.

In the second part of this work, we conduct a large-scale (over 3,600
distinct users) 13-month real-world user study and post-study survey.
The study, performed at a large public university, was based on a live
account creation and password recovery service with currently prevalent
captcha type: reCAPTCHAv2. Results show that, with more attempts,
users improve in solving checkbox challenges. For website developers
and user study designers, results indicate that the website context directly
influences (with statistically significant differences) solving timebetween
password recovery and account creation. We consider the impact of par-
ticipants’ major and education level, showing that certain majors exhibit
better performance, while, in general, education level has a direct impact
on solving time. Unsurprisingly, we discover that participants find image
challenges to be annoying, while checkbox challenges are perceived as
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easy. We also show that, rated via System Usability Scale (SUS), image
tasks are viewed as “OK”, while checkbox tasks are viewed as “good”.
We explore the cost and security of reCAPTCHAv2 and conclude that
it has an immense cost and no security. Overall, we believe that this
study’s results prompt a natural conclusion: reCAPTCHAv2 and similar
reCAPTCHA technology should be deprecated.
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Automated Issuance of Post-Quantum
Certificates: A New Challenge

Alexandre Augusto Giron1(B) , Frederico Schardong2,3 ,
Lucas Pandolfo Perin4 , Ricardo Custódio2 , Victor Valle2,

and Victor Mateu4

1 Federal University of Technology - Parana (UTFPR), Toledo-PR, Brazil
alexandregiron@utfpr.edu.br

2 Federal University of Santa Catarina (UFSC), Florianópolis-SC, Brazil
3 Instituto Federal do Rio Grande do Sul (IFRS), Rolante-RS, Brazil

4 Technology Innovation Institute (TII), Abu Dhabi, UAE

Abstract. The Automatic Certificate Management Environment pro-
tocol (ACME) has significantly contributed to the widespread use of
digital certificates in safeguarding the authenticity and privacy of Inter-
net data. These certificates are required for implementing the Transport
Layer Security (TLS) protocol. However, it is well known that the cryp-
tographic algorithms employed in these certificates will become insecure
with the emergence of quantum computers. This study assesses the chal-
lenges in transitioning ACME to the post-quantum landscape using Post-
Quantum Cryptography (PQC). To evaluate the cost of ACME’s PQC
migration, we create a simulation environment for issuing PQC-only and
hybrid digital certificates. Our experiments reveal performance draw-
backs associated with the switch to PQC or hybrid solutions. However,
considering the high volume of certificates issued daily by organizations
like Let’s Encrypt, the performance of ACME is of utmost importance.
To address this concern, we propose a novel challenge method for ACME.
Compared to the widely used HTTP-01 method, our findings indicate an
average PQC certificate issuance time that is 4.22 times faster, along with
a potential reduction of up to 35% in communication size.

Keywords: Post-Quantum Cryptography · ACME Protocol ·
Certificate Management

1 Introduction

Encrypted data channels play a crucial role in ensuring data privacy on the
Internet. One of the most widely used protocols for implementing these chan-
nels is the Transport Layer Security (TLS) [21]. However, the rapid and reliable
issuance of digital certificates at minimal cost and the management of associ-
ated cryptographic keys throughout their lifecycle presents a bottleneck in the
large-scale adoption of TLS. The widespread deployment of the protocol became

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14584, pp. 3–23, 2024.
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possible only with the emergence of the Let’s Encrypt project. Let’s Encrypt’s
Certificate Authority (CA) has issued over 1 billion digital certificates and con-
tinues to experience substantial growth [6]. The success of Let’s Encrypt can
be attributed to the automation of all necessary steps for issuing and renewing
digital certificates. The automation of certificate issuance is facilitated by the
Automatic Certificate Management Environment (ACME) protocol [1].

TLS and ACME protocols rely on classical cryptography to guarantee their
security properties. However, the existence of Shor’s quantum algorithm [27]
gives an expiry date to the current protocols dated at the time a Cryptograph-
ically Relevant Quantum Computer (CRQC) [13] exists. This computer could
compromise digital certificates and Key Exchange (KEX) mechanisms based on
classical Public Key Cryptography (PKC). Consequently, attackers could collect
transmitted data today with the anticipation of decrypting it using a CRQC
in the future, a scenario known as “store-now-decrypt-later” attacks [3]. Such
attacks would impact the security of existing protocols and applications depen-
dent on TLS before a CRQC exists.

It is necessary to replace vulnerable algorithms to mitigate the quantum
threats to classical cryptography. The cryptographic algorithms that can exe-
cute on a classical computer and offer security against attackers with access to a
CRQC are called Post-Quantum Cryptography (PQC) [2]. The security of these
cryptographic schemes relies on mathematical problems with no known efficient
solutions for both quantum and classical computation. There is currently a signif-
icant global effort to evaluate and standardize post-quantum schemes. Regarding
the adoption of these schemes, two primary strategies have emerged. The first
strategy involves directly replacing classical algorithms with post-quantum ones.
The second strategy, “hybrid mode” [3], utilizes both classical and post-quantum
algorithms. Proponents of hybrid methods argue that post-quantum algorithms
are relatively new and have not undergone the same level of scrutiny as clas-
sical algorithms. Their reasoning states that by including a classical algorithm
alongside a post-quantum one, the security properties of the cryptographic pro-
tocol can still be guaranteed in case of a flaw or cryptanalytic attack on the
post-quantum algorithm.

The transition from classical to PQC presents several challenges. One of the
most relevant ones is the significantly increased size of cryptographic objects,
such as public keys and signatures, and their impact on the protocol perfor-
mance. For example, certain post-quantum algorithms like Classic McEliece are
impractical for regular TLS handshakes due to the size of their public keys. To
address this issue, researchers have conducted numerous benchmarks of PQC in
network protocols like TLS [18,28], and others have proposed protocol changes
to better accommodate PQC [24,25]. Such changes and evaluations are crucial
to understand the performance implications imposed by PQC in advance. There-
fore, adapting and evaluating protocol changes must be undertaken prior to the
arrival of quantum computers to ensure a smooth transition to PQC.

Although several PQC-based TLS proposals and experiments have been
proposed, we could not find any proposal for PQC in the context of ACME.
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Therefore, the impacts of using post-quantum schemes in such a scenario still
need to be explored. In this paper, we address this gap by providing the following
contributions:

1. We integrate PQC schemes, namely Dilithium, Falcon, and Sphincs+, along
with hybrid modes, into ACME implementations and the required libraries.
Our modified implementations are publicly available.

2. We evaluate ACME using geographically-distant peers, where the server is
close to the Let’s Encrypt CA location. Such a distance allows us to compare
and estimate the impact of PQC on certificate issuance in a more realistic
scenario.

3. To expedite the certificate issuance process, we propose an alternative ACME
challenge which can be used for issuing both classical and PQC certificates.

4. We analyze the time and communication costs associated with our proposed
challenge, demonstrating that it reduces issuance time and byte cost for cer-
tificates with both classical and post-quantum cryptography.

The remainder of this paper is organized as follows. Section 2 presents the
necessary background concepts for understanding this work. Section 3 discusses
quantum threats in ACME, the details of PQC integration, and the evalua-
tion methodology. Section 4 presents our proposed ACME challenge design, its
evaluation, and a discussion of the obtained results. Finally, Sect. 5 provides
concluding remarks and outlines potential future work.

2 Background

First, we present the main characteristics of TLS and ACME. After that, we
describe PQC concepts and the standardization process conducted by NIST.
Finally, we conclude this section by showing related works about PQC adoption
in network protocols.

2.1 TLS Version 1.3

Formerly known as Secure Sockets Layer (SSL), the TLS protocol, in its current
version (1.3), is described in RFC 8446 [21]. TLS provides a communication
channel with confidentiality and authentication assurances between two peers: a
client (e.g., a browser) and a server (e.g., a web server). TLS requires the server
to provide authentication credentials when establishing a connection, while client
authentication is optional.

The TLS 1.3 specification divides the protocol into three parts: (1) a Hand-
shake protocol; (2) a Record protocol; and (3) an Alert protocol. The first part
covers how the two communicating peers establish a session, aided by an Authen-
ticated Key Exchange (AKE) and cryptographic computations ordered in a Key
Schedule [21]. The second part covers how peers use their session data (and keys)
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to exchange application data securely, typically utilizing Authenticated Encryp-
tion with Associated Data (AEAD) algorithms. The last part covers how the
peers should handle alert messages and protocol exceptions.

The mechanics of a complete TLS 1.3 handshake are as follows. First,
a TLS client initiates the handshake by sending a ClientHello message.
The message can include several pieces of information, such as supported
algorithms, cipher suites, and an extension message called keyshare. The
keyshare is an ephemeral Elliptic Curve Diffie-Hellman (ECDH) public key
used to create shared secrets for deriving symmetric keys. Upon receiving
the ClientHello, the server responds with a set of messages: ServerHello,
Certificate, CertificateVerify, EncryptedExtensions, and Finished. The
server hello includes information about algorithm selection, the corresponding
ECDH keyshare, and additional extensions (if available). The server provides a
set of certificates, a digital signature, and an HMAC [15] to authenticate over the
handshake transcript data (Certificate, CertificateVerify, and Finished
messages, respectively). Except for the ServerHello, all messages are encrypted
using keys derived from the keyshare pair. The EncryptedExtensions message,
sent immediately after the ServerHello, is also encrypted.

The client receives the server’s response and processes it. It verifies the
handshake signature, validates the certificates, and the Finished message.
Additionally, the client checks if the server’s reply includes the optional
CertificateRequest message. If it does, the client will authenticate using a cer-
tificate and a handshake signature with its private key. Otherwise, it sends the
mandatory Finished message and any desired application data to the server,
concluding the handshake and initiating secure communication. TLS is com-
monly used in upper-layer network protocols like HTTPS and network appli-
cations like OpenVPN. In this work, we focus on using TLS by the ACME
protocol.

2.2 ACMEv2 Characteristics

The Automated Certificate Management Environment (ACME) protocol is
defined in RFC 8555 [1]. ACME offers services for verifying identity over the
Internet and managing certificates. The primary objective of the protocol is to
minimize the need for human intervention in configuring web servers and han-
dling certificates. ACME enables an ACME server (controlled by an Issuer CA)
to issue a Domain-Validated (DV) digital certificate to the ACME client. The
issuance and domain validation processes are fully automated. Currently in its
version 2, ACME plays a crucial role in Let’s Encrypt, one of the largest CAs
on the Internet. Moreover, many certification authorities and PKI vendors, such
as ZeroSSL [30], are adopting the ACME protocol in their products because it
simplifies and enhances the quality of service provided to their customers.

ACME relies on two communication channels: (1) the ACME Channel, pro-
tected by TLS; and (2) the Validation channel, which depends on the validation
method. An ACME client uses TLS to request the issuance of one or more DV
certificates from an ACME server. ACME servers store ACME client accounts
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associated with a public-key pair that clients use to authenticate themselves to
the server. However, the server only issues a certificate after the client proves con-
trol over the desired identifier to be certified, i.e., the domain name. To accom-
plish this, the client must solve an ACME challenge. RFC 8555 [1] specifies the
HTTP and DNS challenge types, and RFC 8737 [26] describes the TLS-ALPN
challenge. Generally, a challenge is considered fulfilled if (a) the client proves
control of the private key associated with the ACME account and (b) the client
proves control of the domain name in question.

ACME protocol messages are based on the JSON Web Signature (JWS)
standard [9] and transmitted through HTTPS/TLS requests. Typically, ACME
HTTPS requests are signed using the account’s private key, while the public
key is usually not included in the JWS body. However, when creating a new
account or revoking a certificate, the “jwk” field (i.e., the public key) is included
in the request. Other requests identify keys using a “Key ID” (“kid”) field in the
request [9]. This way, the server can determine which key to verify subsequent
requests.

Figure 1 illustrates the necessary ACME messages for issuing an X.509 cer-
tificate. The issuance process is divided into three steps: (1) account creation;
(2) challenge; and (3) issuance. Communication between the ACME client and
server occurs through HTTPS requests, requiring the ACME client to trust the
ACME server. This trust is established by the ACME client’s confidence in the
server’s certificate chain, which includes intermediate and root CAs. Typically,
root CAs are pre-installed in the client’s certificate repository.

Fig. 1. ACME Issuance Overview

The client initiates an account creation request with the ACME server in the
first step. The client’s account can optionally include contact information and
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is associated with a key pair generated by the client. To initiate the creation
process, the client requests server resources by sending a GET /dir message.
The server responds with an HTTP code (typically 200 for success) and a JSON
payload. The JSON payload contains the URLs for the desired resources and the
Terms of Service. If it is the client’s first connection, a new nonce is required. The
client obtains the nonce by sending a HEAD /new-nonce message. This nonce is
used to protect against possible replay attacks. The registration is concluded
with a POST /new-account request. At this point, it is important to note that
the ACME server does not have any means to confirm the claimed identity other
than the newly registered authentication key, referred to as the “account key”.
Subsequent HTTP requests from the client must be signed with the account key.

The second step aims to prove the client’s identity through an Identifier Vali-
dation Challenge [1]. The ACME protocol specification focuses on domain name
identifiers. There are different types of challenges available, such as HTTP-01,
DNS-01, and TLS-ALPN-01, with HTTP-01 being the most commonly used [5].
In general, to complete the challenge, the client must demonstrate possession of
the account key and control over the identifier. In the case of HTTP-01, the client
must serve a file over HTTP containing the Key Authorization String (KAS). A
KAS is formed by concatenating a 128-bit random token (previously generated
by the server), a dot separator (‘.’), and the base64-encoded key fingerprint. The
ACME server retrieves and checks the file over HTTP to validate the challenge.
Refer to Appendix A for additional details on HTTP-01.

Figure 1 provides an abstract representation of the challenge-solving step.
First, the client requests a new certificate by sending a POST /new-order mes-
sage. The server’s response includes information about the available challenges,
their respective URLs, and the KAS for each challenge. Each challenge requires
a unique KAS generated on demand, meaning authorization requests can fail,
and the client may need to retry them. Additionally, each challenge has a state
(e.g., pending, valid, deactivated), allowing the server to expect multiple requests
using the same KAS until the certificate is issued. Therefore, the client must
check the status of the desired KAS by sending a POST /authZ/... request and
then proceed with the relevant challenge.

After completing the challenge, the client sends a POST /chal/... message
to inform the server that the challenge has been completed, and it waits for the
server to validate the challenge. The client can check the challenge’s status by
sending POST /authZ/... requests. Once the challenge is deemed valid by the
server, it is considered completed. The server stores the authorization and marks
it as valid for a specific period (not controlled by RFC 8555 [1]).

The issuance step, as depicted in Fig. 1, is the final part of the process. The
client sends a POST /finalize message, which includes a PKCS#10 Certificate-
Signing Request (CSR) [17], to the server. It is important to note that the
account key pair used for the CSR generation differs from the one used for the
account registration. Specifically, the CSR must not contain a public key for
any known account. The server validates the CSR and generates the certificate.
Finally, the client can download the issued certificate using a POST /certZ/...
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message, often referred to as “POST-AS-GET” [1]. Once the client has obtained
the certificate, the ACME client’s request flow is complete. ACME client imple-
mentations like Certbot [8] typically store and automatically configure the cer-
tificate(s) in the web server repository. It enables the seamless activation of an
HTTPS-secured web server with just a few command-line instructions. Addi-
tionally, Certbot configures automatic certificate renewal, thereby simplifying
certificate management operations. It is worth mentioning that RFC 8555 does
not distinguish between certificate issuance and renewal, meaning the renewal
process starts with a new request to /new-order.

2.3 Post-Quantum Cryptography

Post-Quantum Cryptography (PQC) or Quantum-Safe Cryptography is an area
of research that focuses on developing cryptographic algorithms that are resistant
to attacks from quantum computers. Traditional public-key schemes based on
problems such as the Discrete Logarithm Problem (DLP), Elliptic Curve Discrete
Logarithm Problem (ECDLP), and Integer Factorization Problem (IFP), are
considered to be vulnerable to attacks by quantum computers, specifically Shor’s
algorithm [27].

The threat of quantum computers to current cryptographic systems raises
concerns about the confidentiality and authentication of data transmitted over
the internet. While the impact on confidentiality is more immediate, as an adver-
sary can gather encrypted data today and decrypt it in the future with the help
of a quantum computer, the impact on authentication is less urgent since quan-
tum adversaries cannot retroactively impersonate past communications [3].

In this context, efforts are underway to standardize post-quantum algorithms.
One notable initiative is led by the National Institute of Standards and Technol-
ogy (NIST) [14]. NIST has been running a standardization process for PQC algo-
rithms, including key exchange, public-key encryption, and digital signatures.
The initial choice of standards includes Kyber for key exchange and public-key
encryption, as well as Dilithium, Falcon, and Sphincs+ for digital signatures.
These algorithms have gone through multiple rounds of evaluation, and the pro-
cess is currently in the fourth round, with additional schemes under scrutiny [16].

Regarding the impact on the ACME protocol and TLS, the transition to
post-quantum cryptography will involve replacing current signature algorithms
with post-quantum digital signature schemes. However, the transition process is
expected to take significant time, as it requires coordination among various enti-
ties such as certificate authorities (CAs), client and server implementations, and
browsers. Therefore, it is crucial to experiment, evaluate, and plan for a smooth
transition to post-quantum cryptography in ACME and TLS [10]. Table 1 pro-
vides an overview of the post-quantum signature schemes expected to be stan-
dardized by NIST, along with their sizes and corresponding security levels.

There is limited work specifically focusing on the issuance of post-quantum
certificates. Two main methods have been proposed for implementing hybrid
post-quantum certificates within the X.509 standard format. One method
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involves concatenating cryptographic objects, such as public keys and signa-
tures, while the other adds PQC algorithm information as X.509 extensions.
The second method uses non-critical extensions and minimizes the risk of com-
patibility issues with legacy implementations that do not support post-quantum
algorithms. Security analyses have been conducted to evaluate the effectiveness
of these combining methods [4]. The impact of post-quantum certificates on PKI
operations and TLS connections has been discussed in the literature, highlight-
ing concerns about performance, particularly when dealing with the certificate
chain. However, there are often no objections to using the hybrid mode, which
combines both classical and post-quantum algorithms, regarding performance
penalties [11,20].

Table 1. Currently digital signature schemes to be standardized by the NIST PQC
process.

Algorithm Parameter Set Name NIST SecurityLevel Public key size +

Signature size

(bytes)

Dilithium2 1 3732

Dilithium3 3 5245

Dilithium5 5 7187

Falcon-512 1 1587

Falcon-1024 5 3123

SPHINCS+-SHAKE256-128s-simple 1 7888

SPHINCS+-SHAKE256-128f-simple 1 17120

SPHINCS+-SHAKE256-192f-simple 3 35712

SPHINCS+-SHAKE256-192s-simple 3 16272

SPHINCS+-SHAKE256-256f-simple 5 49920

SPHINCS+-SHAKE256-256s-simple 5 29856

3 Quantum Threat and PQC Adoption

We begin by examining the threats to ACME security in the presence of a
quantum computer in Sect. 3.1. Subsequently, we delve into implementation and
design specifics in Sect. 3.2. Finally, we explore the implications of evaluating
ACME with PQC in Sect. 3.3.

3.1 Quantum Threats in ACME

The ACME protocol relies on PKC to ensure its cryptographic properties. Con-
sequently, once a CRQC exists, the protocol would become insecure. While the
threat exists, the transition to PQC may not be as urgent for ACME com-
pared to other cases, given that most interactions are certificate-related. How-
ever, RFC 8555 [1] specifies that a secure channel, often implemented using
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TLS, must be used for client requests to the server. Therefore, a quantum-safe
ACME implementation depends on a quantum-safe TLS. To prevent “store-now-
decrypt-later” attacks, a quantum-safe Key Exchange (KEX) algorithm must
be used before a CRQC arrives. It is worth noting that the challenge validation
channel in ACME does not necessarily require TLS.

One of the benefits that ACME provides to clients is the ability to reuse
valid authorizations. After completing a challenge, a client can reuse the autho-
rization to issue a new certificate more efficiently. This feature allows clients
to issue certificates at their convenience, not necessarily immediately after chal-
lenge validation. However, it introduces a potential vulnerability in the form of a
store-now-decrypt-later attack. An attacker could collect TLS-encrypted ACME
messages and, in the future, exploit a hypothetical quantum attack on the TLS
layer to gain access to the ACME information containing challenge authoriza-
tion details. Since RFC 8555 [1] leaves the deactivation of authorizations up
to implementations, many challenge authorizations could remain valid for an
extended period. As a result, an attacker could exploit old valid authorizations
to issue unauthorized certificates. Figure 2 illustrates the attack. Therefore, the
authorization reuse feature needs careful redesign considering the existence of
future CRQCs. More details about authorizations and their validity times are
discussed in Sect. 4.3.

Fig. 2. Unauthorized issuance of a certificate with the help of a quantum computer.

Both attack scenarios, targeting classical certificates and the classical com-
munication channel, can be mitigated by using PQC.
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3.2 Integrating PQC Algorithms

We selected PQC implementations from the Open Quantum-Safe project
liboqs [29]. Since our project is developed using the Go language, we used
the liboqs-go binding [19]. We integrated them into Pebble’s ACME server and
LEGO (“Let’s Encrypt Client and ACME Library in Go”). Pebble is suitable
for testing ACME client implementations. For reproducibility, our ACME imple-
mentations and test scripts are publicly available1. We used the selected standard
candidates from the NIST PQC standardization process for integration:

– Kyber: for Key Exchange in TLS, using security levels 1, 3 and 5.
– Dilithium and Falcon: we use the same algorithm and security level parame-

ters in all required cryptographic objects. Namely: ACME client account keys
and CSR; ACME server digital certificate (TLS level); issued certificates; and
the certificate chains of issued certificates (Root CA certificate and Interme-
diate CA certificate). For simplicity, we did not change Pebble’s certificate
chain size for TLS. We only alter Pebble’s TLS chain to use PQC algorithms
without adding a new Intermediate CA certificate.

– Sphincs+: due to its increased signature sizes, we restrict Sphincs+ only for
the Root CA certificate. We omit Root CA certificates in TLS handshakes,
so Sphincs+ increased sizes are not transmitted in the handshake. Sphincs+
selected parameters are: SHAKE for the hash function, “s” for compact signa-
tures and improved verification timings, and “simple” for performance.

– Hybrid modes: using NIST P-curves, namely P256, combined by concate-
nating with Kyber, Dilithium, and Falcon cryptographic objects. For sim-
plicity, we opted to concatenate cryptographic objects into certificates (pub-
lic keys and signatures). Hybrids are recommended because the confidence in
PQC security is not well established yet [3], but also because RFC 8555 states
“MUST/SHOULD implement” for some classical algorithms [1], thus keeping
our integration close to the specification. We refer to the hybrid mode using
the’H’ letter (e.g., “Dilithium H.”).

3.3 Impacts of PQC in ACME

To better understand the consequences of using PQC in ACME, we run sev-
eral experiments using two geographically distant Google N2 Virtual Machines
(VMs) with identical configurations (8 GB memory, two vCPUs). The ACME
client VM was hosted in Osasco, São Paulo, Brazil, while the ACME server loca-
tion was based on one of Let’s Encrypt’s data centers in Salt Lake City, Utah,
USA. The average round-trip time (RTT) for this geographically distant network
was measured to be 157 ms. The number of successful requests was computed
by employing 1024 threads to POST requests to the /finalize endpoint for six
minutes. Each thread simulated a different client sending CSRs, thereby increas-
ing the server’s load during certificate issuance. We set ulimit -n 1048576 to
enhance the server’s load test configuration.
1 https://github.com/AAGiron/acme-newchallenge.

https://github.com/AAGiron/acme-newchallenge
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Figure 3 illustrates the impacts of PQC observed during a load test experi-
ment. For automation purposes, the default option is to generate a CSR during
protocol execution, which we refer to as the “CSR-on-the-fly” test. This approach
includes key generation and signing computational times, resulting in delayed
clients and fewer successful requests handled by the server. Alternatively, using
a pre-computed CSR can reduce the PQC impact at the cost of some of ACME’s
automation properties.

From the CA’s perspective, the results demonstrated a noticeable impact
when deploying PQC in the standard ACME configuration. The reduced number
of successfully handled requests implies fewer certificates generated and issued
by the ACME server. Furthermore, larger PQC objects can congest the network
earlier than the baseline configuration (see Sect. 4.3).

It is worth noting that our experiments did not provide an exact measurement
of the number of certificates issued per second due to the protocol’s design (e.g.,
“REST-based” implementation, polling times, etc.). However, our load test is
representative as it involves handling multiple signed requests, CSR generation
by client threads, and verification by the server.

Fig. 3. Load test experiment with and without CSR cryptographic operations.

4 Proposed ACME Challenge

In order to speed up the issuance of digital certificates, we propose an alternate
ACME challenge. In this section, we present our proposed ACME challenge
(Sect. 4.1). After that, we evaluate and compare our proposed challenge against
standard ACME certificate issuance and renewal. Lastly, we discuss the experi-
mental findings in Sect. 4.3.
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4.1 Design Details

We can consider two general scenarios when an ACME client C will ask an
ACME server S for a new certificate. In the first scenario, C already has a
classical certificate, so C can ask: (a) for a renewal, using the same ACME
account; (b) for a new classical certificate (new account); or (c) a new PQC (or
hybrid) certificate. In the second scenario, C does not have a classical certificate:
in this case, C can only ask for a new PQC (or hybrid) certificate.

In the first scenario, we assume that C already has a previously issued cer-
tificate. Having a certificate means that these ACME peers have a relationship
that could be used to optimize the certificate issuance process. In the second
scenario, there is no previous relationship available. Therefore, for the second
scenario, C must comply with all ACME requirements, i.e., fulfill the account
creation, challenge validation, and issuance steps.

As described in Sect. 2.2, the issuance flow has several digitally-signed
requests between peers. Using PQC signatures in such requests would increase
protocol communication costs and impact the overall interaction between those
peers. Also, one could take advantage of the scenario in which the server already
has a certificate. To speed up the issuance process, we propose a new ACME
challenge, depicted in Fig. 4.

Fig. 4. Proposed ACME Challenge

Note that our proposal is valid for the scenario in which ACME clients already
have a certificate. We provide an alternative to the original /new-order ACME
server endpoint, called /pq-order. This new endpoint (at the server) expects
a CSR in an HTTP POST message, as the usual /finalize endpoint. The
main difference is that it requires a mutually authenticated TLS handshake.
Mutual authentication means that the ACME client authenticates directly in
the TLS layer, proving that it possesses the private key of that certificate. If
the client successfully authenticates to the server, the server can issue the new
(PQC or hybrid) certificate, replying with the URL where the certificate can be
downloaded.
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The fact that the ACME client already possesses a certificate plays a crucial
role in this approach. For example, let Cclassic−cert be the certificate the client
is willing to use in the TLS authentication layer, and Cpqc−cert the certificate
the client requests. If Cclassic−cert was issued by the same ACME server where
Cpqc−cert will be requested, then the peer trust relationship is already estab-
lished. The ACME server will trust Cclassic−cert (in the pre-quantum scenario),
so additional configuration or protocol messages are unnecessary. In this exam-
ple, the ACME client can ask for a PQC certificate with this new challenge in a
single request. Comparatively, we remove (at least) 4 signed requests from the
ACME flow and replace the challenge with TLS client authentication using the
Cclassic−cert.

Since the /pq-order is an endpoint of the ACME server, clients perform
POST requests with their account information accompanied by a CSR. In this
case, the CSR can be created using a PQC algorithm (hybrid or not), allowing
the issuance of a post-quantum certificate. Note, however, that the signature
present in the request also uses a post-quantum algorithm. Appendix B gives
an example of a POST message. Additionally, our proposed challenge applies to
clients willing to issue a classical certificate, if desired.

Regarding the request validation, the server uses the algorithm name, nonce,
and key ID (kid) information to search for the required account information.
Note that the kid field can be replaced by the public key in a field called jwk
for verifying the message. The optional certhash value is a way of binding the
request to the particular certificate used in the TLS mutual authentication. In
this way, the server can check if the hash is on his list of issued certificates
and if it belongs to the corresponding account in the request. Alternatively, the
ACME server can obtain the client certificate from the TLS layer and compare
domain names and hashes. Golang provides access directly through the standard
library [12]. The ACME server processes the CSR as usual. If the validation is
successful, the server can issue the certificate.

Security Considerations. RFC 8555 describes a threat model against active
and passive attackers considering two communication channels: the ACME chan-
nel, using TLS for security, and the Validation channel, which is dependent on
the ACME challenge (e.g., HTTP). Since the validation channel is bound to the
signatures transferred in the ACME channel, abusing only the validation channel
should not be enough to impersonate a client (i.e., obtain a valid authorization).

Regarding the ACME channel, the only thing we changed is that it uses PQC
algorithms. On the other hand, our proposed challenge replaces the available
validation channels from the original ACME challenges with a mutually authen-
ticated TLS connection channel. Note that our proposed challenge requires a
valid mutual authentication TLS session and a valid signature in the request.
Therefore, our challenge keeps the binding between the validation and ACME
channels, thus not deviating from the RFC’s threat model. The main require-
ment is a mandatory client authentication policy since client authentication is
optional in TLS. An additional consideration is to avoid TLS Post-Handshake
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Authentication [21] because the ACME server can issue the certificate only after
the mutually authenticated connection is established.

Our proposed challenge assumes that who owns a certified (and valid) key
pair for a particular domain owns the identifier in question, i.e., the domain.
This might not be directly applicable in some cases, such as hosting providers.
For example, when the domain ownership is transferred, the original owner could
use the certificate to obtain a new one through our proposed challenge. Although
this is a problem, it could be mitigated by simply revoking the certificate before
transferring a domain. If revoked, the certificate can not be used to authenticate
in our proposed challenge. Therefore, the server will not issue a new certificate
in this case. This requirement implies keeping the certificate’s validity period
within the granted domain ownership validity period.

4.2 Issuance and Renewal Timings

We use the same experiment methodology as described in Sect. 3.3. In this case,
the issuance time was measured at the client and encompassed all ACME steps
(depicted in Fig. 1) until the client obtained its certificate. The renewal time was
considered as a new issuance process by requesting the /new-order endpoint
without creating a new account. Consequently, this metric measured the time
from the /new-order POST request until the client received the certificate.
Both renewal and issuance times were computed from 500 protocol executions
(resulting in 500 certificates per algorithm instance) to obtain the average and
standard deviation statistics.

Figure 5 shows the issuance and renewal times for ACME with baseline (clas-
sical) and PQC compared to our proposed challenge. The bars correspond to
average timings, and the graph includes standard deviation information (above
the bars). All standard deviations obtained from our proposed challenge execu-
tions are below 10 ms, whereas in standard ACME, it reaches 1.4 s. All bars are
below the baseline standard deviation (using NIST’s P256), which suggests no
PQC transition impact in the timings perceived by the ACME client.

From the ACME client’s perspective, Fig. 5 shows that the average impact in
PQC is not significant. Here the network time dominates, and ACME’s query-
response nature increases the variations (as shown by the standard deviations).
Sphincs+, Dilithium3, Dilithium5, and Falcon-1024 also do not greatly influ-
ence the timings, so these configurations are also viable. On average, it took near
to 7.5 s to issue a classical, PQC, or hybrid certificate.

On the other hand, our results suggest that the issuance and renewal time
can be significantly reduced using our proposed challenge. The issuance times
are, on average, 4.22x faster compared to the commonly-used HTTP challenge.
Renewals are also much faster: without the account creation time, our renewals
are near or below 1 s (on average), regardless of the algorithm selected for the new
certificate (P256 or PQC). We highlight that our proposed challenge can be used
generically, both for renewing classical certificates or issuing PQC certificates.
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Fig. 5. Issuance and renewal average timings for different PQC algorithm instantia-
tions. Note: Issuance time is the sum of Account Creation and Renewal time.

4.3 Discussion

In the context of PQC, we expected a significant slowdown in issuance and
renewal times due to the increased sizes of PQC instances. For example, using
Dilithium2 imposes a payload size of 64.21 KiB on the network. However, this
payload size is divided among several request messages in ACME (as depicted
in Fig. 1). Assuming at least seven signed requests in ACME, each carrying
less than 10 KB (except for certificate download), the data can be transported
within a single round trip without requiring additional RTTs, assuming a stan-
dard TCP/IP network stack. Furthermore, we are not transmitting the Sphincs+
certificate, which saves bytes and keeps the size below network limits, such as the
TCP window size. While literature shows scenarios where PQC imposes addi-
tional RTTs in other designs [28], issuance times depend not only on RTTs but
also on the variable number of requests and waiting times. Our results indicate
that the average issuance time for PQC was close to the baseline.

We were able to modify ACME and achieved better performance under rea-
sonable assumptions, such as the client already having a classical certificate. By
transitivity, having control of the certificate that certifies a domain demonstrates
control over that domain, even if the certificate’s private key is not stored on
the server. In this scenario, our proposed modification reduced the byte costs of
ACME. Table 2 illustrates the impacts of PQC on ACME and the sizes of our
proposed challenge. Since not all ACME requests are used in our challenge, it
reduces network RTTs. Compared to the original ACME flow, our challenge saves
35.39% and 32.14% for Dilithium2 and Falcon-512 instantiations, respectively.

It is important to note that our challenge differs from the TLS-ALPN-01
challenge. Defined in RFC 8737 [26], the ACME client generates a self-signed
X.509 certificate with the challenge information, such as the KAS, and starts the
TLS server under its control. The ACME server performs a handshake with this
new TLS server to check the required information. However, the TLS-ALPN-01
challenge focuses on cases where the web service providing content is separate
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Table 2. Comparison of sizes of ACME client requests, sampled from a pcapng capture
file. Note: “Total (ACME)” excludes repeated requests (like POST /authZ); however,
in practice, more bytes are transmitted (see Sect. 2.2). Certificate sizes include server
and intermediate CA certificate.

Request Request is in

our challenge?

P256 (baseline)

size (bytes)

Dilithium2 size

(bytes)

Falcon-512 size

(bytes)

GET /dir ✓ 223 223 223

HEAD /new-nonce ✓ 207 207 207

POST /new-account ✓ 718 6097 3010

POST /new-order ✗ 594 3747 1399

POST /pq-order ✓ 1194 10558 4336

POST /authZ ✗ 624 3776 1423

POST /challZ ✗ 627 3779 1425

POST /finalize ✗ 1088 10648 4417

POST-AS-GET /certZ ✓ 649 3713 1361

Total (ACME*) – 4730 32190 13465

Total (Our Challenge) – 2991 20798 9137

Certificate size – 1913 17838 7157

from the TLS server, such as reverse proxies. Additionally, the DNS-1 challenge
can take up to one hour or up to five minutes under specific conditions [22], mak-
ing it unsuitable for direct comparison against our challenge. Since the HTTP
challenge is the most commonly used, our experiments focused on this scenario.

While our proposed challenge provides faster issuance times, it is not meant
to replace other existing ACME challenges. There may be scenarios where our
challenge is not suitable. One example is when the client does not have a classical
certificate. Another example relates to the validity period of certificates and the
reuse of valid authorizations, as allowed in RFC 8555 [1].

RFC 8555 [1] does not impose a limit on the expiration time of authorizations,
leaving the validity period of a valid authorization to the implementation. For
instance, Let’s Encrypt’s current policy allows reuse for up to 30 days. Therefore,
if an HTTP challenge has been fulfilled, the ACME client has 30 days to issue or
renew certificates, improving performance by skipping the challenge step. How-
ever, this 30-day policy is subject to change [7] and may vary or be denied in
other implementations. On the other hand, our challenge’s validity is limited
to the certificate’s validity period (currently 90 days in Let’s Encrypt’s policy).
In the context of PQC transition, we highly recommend deactivating authoriza-
tions of accounts created with classical cryptography. Deactivation is necessary
because ACME servers cannot guarantee that the TLS connection established
by ACME clients is quantum-safe. Non-PQC TLS usage by clients and valid
authorizations facilitate quantum attacks, as discussed in Sect. 3.1.

Nevertheless, our proposal improves performance for issuing certificates
(including account creation time) and renewals (assuming the client has an
account with the server). In scenarios where our challenge’s assumptions hold,
ACME clients can utilize our approach for renewing classical certificates faster,
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or during the PQC transition phase and subsequently renew their PQC certifi-
cates. For security reasons, Issuer CA policies can impose usage limits on clients
renewing with our challenge. These limits can reduce the impact of a certificate’s
key compromise, forcing the client to prove ownership using a different challenge.

Our proposed challenge can be further optimized if additional modifications
are made at the TLS layer. Specifically, mutual authentication in TLS involves
transferring certificates over the network, increasing the size of TLS messages.
RFC 7924 [23] specifies certificate caching mechanisms (client or server), which
could be employed in ACME’s TLS channel to reduce the TLS payload size.

5 Final Remarks and Future Work

This work provided a comprehensive evaluation of ACME’s performance when
secured with PQC algorithms, considering the perspectives of ACME clients
(e.g., web servers) and servers (e.g., Issuer CAs). The comparison against clas-
sical cryptography highlighted different impacts on these entities.

Regarding challenges required for the certificate issuance process, our pro-
posed design showed favorable results. We achieved smaller communication sizes
and decreased network bandwidth by replacing the HTTP challenge and elim-
inating associated signed requests. To encourage practical adoption, we have
made our design and prototype implementation available to the community. We
have also provided an RFC-like description of our challenge as a guide for future
implementations.

There are interesting opportunities for further research and evaluation of
ACME. For instance, investigating ACME’s performance in different computing
environments, such as the Internet of Things (IoT), would be valuable. Addi-
tionally, exploring how ACME performs when issuing certificates for KEMTLS,
a key encapsulation mechanism-based TLS, could provide valuable insights. It
is worth noting that issuing KEM-based certificates in ACME poses challenges
due to the typical usage of CSRs with signature methods. Nonetheless, ACME
remains a significant security-enabling protocol that has already benefited vari-
ous applications and is likely to continue doing so in the future.

Acknowledgements. This work was supported by the Federal University of Tech-
nology - Parana (UTFPR) and the Technology Innovation Institute (TII).

Appendix

A ACME’s HTTP-01 Challenge

Figure 6 focus on the HTTP challenge message flow, which is more commonly
used, probably due to its simplicity. We omit account creation messages, order
and download requests. First, the client obtains the necessary information for
the challenge (e.g., KAS) with the steps presented in Fig. 1. Basically, the client
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places the KAS file in (one or more) HTTP servers that it controls. There-
fore, the KAS binds the HTTP server to the ACME client’s account. Then, the
client notifies the server with a POST to /challZ endpoint. The validation steps
include checking the response (e.g., if the domain name matches the previous
order information) and, most importantly: (i) if the KAS inside the downloaded
file matches; and (ii) if the digital signatures (in the requests) can be verified
using the corresponding account’s public key. Otherwise, the challenge fails.

Fig. 6. HTTP challenge flow

In practice, the HTTP challenge (and the other types) can consume more
POST requests to /authZ endpoint than shown in Fig. 6. The ACME client will
repeat such a POST request until the status of the order is “valid” (or “invalid”
in the case of an error). This can increase network traffic when considering
multiple clients at the same time. Moreover, Although the most common option,
the HTTP-01 challenge is not the best option for issuing multiple certificates for
multiple servers and if firewalls are blocking HTTP port (80).

B POST Request Example

Figure 7 shows an example of a POST request to /pq-order (in our proposed
ACME challenge). We followed the notation of the /new-order endpoint [1].
The main differences are: we removed the order’s validity period, when focusing
on the PQC transition, due to the uncertainty of when quantum computers will
arrive; and we included an (optional) certhash field in the protected header.
Both protected and payload fields have integrity guarantees (e.g., by signing).
In this example, Dilithium2 is the PQC algorithm used for signing. The CSR
included in the payload in this case use a post-quantum signature algorithm.
However, we note that one could also use classical algorithms in the POST and
CSR, aiming at renewing classical certificates.
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Fig. 7. POST request example

The POST message uses the account’s private key to sign the protected
and payload JSON fields. This complies to JSON Web Signature (JWS) [9]
requirements. After validating the POST message, the server issues the certificate
and returns to the client the URL for the certificate’s location (similarly as in
standard ACME). In this way, the ACME client can ask for a classical or PQC
certificate with our proposed challenge in a single request.
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Abstract. In this paper, we explore the cost of vectorization for multi-
plying polynomials with coefficients in Zq for an odd prime q, as exem-
plified by NTRU Prime, a postquantum cryptosystem that found early
adoption due to its inclusion in OpenSSH.

If there is a large power of two dividing q − 1, we can apply radix-2
Cooley–Tukey fast Fourier transforms to multiply polynomials in Zq[x].
The radix-2 nature admits efficient vectorization. Conversely, if 2 is the
only power of two dividing q − 1, we can apply Schönhage’s and Nuss-
baumer’s FFTs to craft radix-2 roots of unity, but these double the num-
ber of coefficients.

We show how to avoid the doubling while maintaining the vector-
ization friendliness with Good–Thomas, Rader’s, and Bruun’s FFTs. In
particular, in sntrup761, the most common instance of NTRU Prime we
have q = 4591, and we exploit the existing Fermat-prime factor of q − 1
for Rader’s FFT and power-of-two factor of q + 1 for Bruun’s FFT.

Polynomial multiplications in Z4591[x]/
〈
x761 − x − 1

〉
is still a worth-

while target because while out of the NIST PQC competition, sntrup761
is still going to be used with OpenSSH by default in the near future.

Our polynomial multiplication outperforms the state-of-the-art
vector-optimized implementation by 6.1×. For ntrulpr761, our keygen,
encap, and decap are 2.98×, 2.79×, and 3.07× faster than the state-of-
the-art vector-optimized implementation. For sntrup761, we outperform
the reference implementation significantly.

Keywords: Good–Thomas FFT · Rader’s FFT · Bruun’s FFT ·
NTRU Prime · Vectorization

1 Introduction

At PQCrypto 2016, the National Institute of Standards and Technology (NIST)
announced the Post-Quantum Cryptography Standardization Process for replac-
ing existing standards for public-key cryptography with quantum-resistant cryp-
tosystems. For lattice-based cryptosystems, polynomial multiplications have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14584, pp. 24–46, 2024.
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been the most time-consuming operations. Recently standardized [AAC+22]
Dilithium, Kyber, and Falcon wrote number–theoretic transforms (NTTs) into
their specifications in response.

OpenSSH 9.0 defaults to NTRU Prime1. However, in NTRU Prime the poly-
nomial ring doesn’t allow NTT-based multiplications naturally. State-of-the-art
vectorized implementations introduced various techniques extending coefficient
rings, or computed the results over Z. In each of these approaches, empirically
small-degree polynomial multiplications is always an important bottleneck. We
study the compatibility of vectorization and various algorithmic techniques in the
literature and choose the ARM Cortex-A72 implementing the Armv8-A architec-
ture2 for this work. We are interested in vectorized polynomial multiplications
for NTRU Prime. [BBCT22] showed that a vectorized generic polynomial mul-
tiplication takes ∼ 1.5× time of a “generic by small (ternary coefficients)” one
with AVX2. [BBCT22] applied Schönhage and Nussbaumer to ease vectoriza-
tion. Schönhage and Nussbaumer double the sizes of the coefficient rings and
lead to a larger number of small-degree polynomial multiplications. We explain
how to avoid the doubling with Good–Thomas, Rader’s, and Bruun’s FFTs.

We implement our ideas on Cortex-A72 implementing Armv8.0-A with the
vector instruction set Neon. However, we emphasize that our approaches are
built around the notion of vectorization and not a specific architecture.

1.1 Contributions

We summarize our contributions as follows.

– We formalize the needs of vectorization commonly involved in vectorized
implementations.

– We propose vectorized polynomial multipliers essentially quartering and halv-
ing the number of small-dimensional polynomial multiplications after FFTs.

– We propose novel accumulative (subtractive) variants of Barrett multiplica-
tion absorbing the follow up addition (subtraction).

– We implement the ideas with the SIMD technology Neon in Armv8.0-A on a
Cortex-A72. Our fastest polynomial multiplier outperforms the state-of-the-
art optimized implementation by a factor of 6.1×.

– In addition to the polynomial multiplication, we vectorize the sorting net-
work, polynomial inversions, encoding, and decoding subroutines used in
ntrulpr761 and sntrup761. For ntrulpr761, our key generation, encap-
sulation, and decapsulation are 2.98×, 2.79×, and 3.07× faster than the
state-of-the-art optimized implementation. For sntrup761, we outperform
the reference implementation significantly.

1 https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2.
2 ARMv8-A, which naturally comes with the SIMD technology Neon, is currently the

most prevalent architecture for mobile devices and is used for all Apple hardware.

https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2
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1.2 Code

Our source code can be found at https://github.com/vector-polymul-ntru-
ntrup/NTRU Prime under the CC0 license.

1.3 Structure of This Paper

Section 2 goes through the preliminaries. Section 3 surveys FFTs. Section 4
describes our implementations. We show the performance numbers in Sect. 5.

2 Preliminaries

Section 2.1 describes the polynomials rings in NTRU Prime, Sect. 2.2 describes
our target platform Cortex-A72, and Sect. 2.3 describes the modular arithmetic.

2.1 Polynomials in NTRU Prime

The NTRU Prime submission comprises two families: Streamlined NTRU Prime
and NTRU LPRime. Both operate on the polynomial ring Zq[x]/〈xp − x − 1〉
where q and p are primes such that the ring is a finite field. We target the poly-
nomial multiplications for parameter sets sntrup761 and ntrulpr761 where
q = 4591 and p = 761. One should note that sntrup761, which is used
by OpenSSH, uses a (Quotient) NTRU structure, and requires inversions in
Z3[x]

/〈
x761 − x − 1

〉
and Z4591[x]

/〈
x761 − x − 1

〉
. We refer the readers to the

specification [BBC+20] for more details. With no other assumptions on the
inputs, we call a polynomial multiplication “big by big”. If one of the inputs is
guaranteed to be ternary, we call it “big by small”. We optimize both although
the former is required only if we apply the fast constant-time GCD [BY19] to
the inversions in the key generation of sntrup761. The fast constant-time GCD
is left as a future work.

2.2 Cortex-A72

Our target platform is the ARM Cortex-A72, implementing the 64-bit Armv8.0-
A instruction set architecture. It is a superscalar Central Processing Unit (CPU)
with an in-order frontend and an out-of-order backend. Instructions are first
decoded into μops in the frontend and dispatched to the backend, which con-
tains these eight pipelines: L for loads, S for stores, B for branches, I0/I1 for
integer instructions, M for multi-cycle integer instructions, and F0/F1 for Single-
Instruction-Multiple-Data (SIMD) instructions. The frontend can only dispatch
at most three μops per cycle. Furthermore, in a single cycle, the frontend dis-
patches at most one μop using B, at most two μops using I0/I1, at most two
μops using M, at most one μop using F0, at most one μop using F1, and at most
two μops using L/S [ARM15, Sect. 4.1].

We mainly focus on the pipelines F0, F1, L, and S for performance. F0/F1
are both capable of various additions, subtractions, permutations, comparisons,

https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime
https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime
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minimums/maximums, and table lookups3. However, multiplications can only
be dispatched to F0, and shifts to F1. The most heavily-loaded pipeline is clearly
the critical path. If there are more multiplications than shifts, we much prefer
instructions that can use either pipeline to go to F1 since the time spent in F0
will dominate our runtime. Conversely, with more shifts than multiplications,
we want to dispatch most non-shifts to F0. In practice, we interleave instruc-
tions dispatched to the pipeline with the most workload with other pipelines
(or even L/S)—and pray. Our experiment shows that this approach generally
works well. In the case of chacha20 implementing randombytes for bench-
marking [BHK+22], we even consider a compiler-aided mixing of I0/I1, F0/F1,
and L/S4. The idea also proved valuable for Keccak on some other Cortex-A
cores [BK22, Table 1].

SIMD Registers. The 64-bit Armv8-A has 32 architectural 128-bit SIMD
registers with each viewable as packed 8-, 16-, 32-, or 64-bit elements ([ARM21,
Fig. A1-1]), denoted by suffixes .16B .8H, .4S, and .2D on the register name,
respectively.

Armv8-A Vector Instructions

Multiplications. A plain mul multiplies corresponding vector elements and
returns same-sized results. There are many variants of multiplications: mla/mls
computes the same product vector and accumulates to or subtracts from the des-
tination. There are high-half products sqdmulh and sqrdmulh. The former com-
putes the double-size products, doubles the results, and returns the upper halves.
The latter first rounds to the upper halves before returning them. There are
long multiplications s{mul,mla,mls}l{,2}. smull multiplies the corresponding
signed elements from the lower 64-bit of the source registers and places the
resulting double-width vector elements in the destination register. It is usually
paired with an smull2 using the upper 64-bit instead. Their accumulating and
subtracting variants are s{mla,mls}l{,2}. We will not use the unsigned coun-
terparts u{mul,mla,mls}l{,2}.

Shifts. shl shifts left; sshr arithmetically shifts right; srshr rounds the results
after shifting. We won’t use the unsigned ushr and urshr.

Additions/Subtractions. For basic arithmetic, the usual add/sub adds/subtracts
the corresponding elements. Long variants s{add,sub}l{,2} add or subtract the
corresponding elements from the lower or upper 64-bit halves and signed-extend
into double-width results5.
3 There are some exceptions, including addv, smaxv, sadalp. We are not using them

in this paper and refer to [ARM15] for more details.
4 We write some assembly and only obtain comparable performance. So we keep the

implementations with intrinsics instead for readability.
5 There are several options for signed-extending vector elements—saddl{,2} and
ssubl{,2} which go to either F0/F1, sxtl{,2} to F1, and smull{,2} going to F0.
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Permutations. Then we have permutations—uzp{1,2} extracts the even and
odd positions respectively from a pair of vectors and concatenates the results
into a vector. ext extracts the lowest elements (there is an immediate operand
specifying the number of bytes) of the second source vector (as the high part)
and concatenates to the highest elements of the first source vector. zip{1,2}
takes the bottom and top halves of a pair of vectors and riffle-shuffles them into
the destination.

2.3 Modular Arithmetic

Algorithm 1. Barrett reduction.
This is [BHK+22, Algorithm 11].
Input: a = a.

Output: a = a −
⌊

a
⌊
2eR
q

⌉

2eR

⌉
q ≡ a mod

±q.

1: sqdmulh t, a,
⌊

2eR
q

⌉

2: srshr t, t, #(e + 1)
3: mls a, t, q

Algorithm 2. Barrett multiplication.
This is [BHK+22, Algorithm 10].
Input: a = a.

Output: a = ab −
⌊

a
⌊

bR
q

⌉
2

R

⌉
q ≡ ab mod

±q.

1: sqrdmulh t, a,

⌊
bR
q

⌉
2

2

2: mul a, a, b
3: mls a, t, q

Let q be an odd modulus, and R be the size of the arithmetic. We describe
the modular reductions and multiplications for computing in Zq. Barrett reduc-

tion [Bar86] reduces a value a by approximating a mod ±q with a−
⌊

a·� 2eR
q �

2eR

⌉
(cf.

Algorithm 1). For multiplying an unknown a with a fixed value b, we compute

ab −
⌊

a� bR
q �

2
R

⌉
q ≡ ab mod ±q (Barrett multiplication [BHK+22]) where ��2 is

the function mapping a real number r to 2
⌊

r
2

⌉
(cf. Algorithm 2). We give novel

multiply-add/sub variants of Barrett multiplication in Algorithms 3 and 4. Algo-
rithm 3 (resp. Algorithm 4) computes a representation of a + bc (resp. a − bc)
by merging a mul with an add (resp. a sub) into an mla (resp. mls), saving 1
instruction.

Algorithm 3. Barrett mla.
Input: a = a.

Output: a = a + bc −
⌊

b
⌊

cR
q

⌉
2

R

⌉
q.

1: sqrdmulh t, b,

⌊
cR
q

⌉
2

2

2: mla a, b, c
3: mls a, t, q

Algorithm 4. Barrett mls.
Input: a = a.

Output: a = a − bc +

⌊
b
⌊

cR
q

⌉
2

R

⌉
q.

1: sqrdmulh t, b,

⌊
cR
q

⌉
2

2

2: mls a, b, c
3: mla a, t, q
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3 Fast Fourier Transforms

We go through the mathematics behind various fast Fourier transforms (FFTs)
and emphasize their defining conditions. This section is structured as follows.
Section 3.1 reviews the Chinese remainder theorem for polynomial rings and
discrete Fourier transform (DFT). We then survey various FFTs, including
Cooley–Tukey in Sect. 3.2, Bruun and its finite field counterpart in Sect. 3.3,
Good–Thomas in Sect. 3.4, Rader in Sect. 3.5, and Schönhage and Nussbaumer
in Sect. 3.6. We use number–theoretic transform (NTT) as a synonym of FFT.

3.1 The Chinese Remainder Theorem (CRT) for Polynomial Rings

Let n =
∏

l nl, and gi0,...,ih−1
∈ R[x] be coprime polynomials for all indices

(il)l=0···h−1 where 0 ≤ il < nl. The CRT gives us a chain of isomorphisms

R[x]
〈∏

i0,...,ih−1
gi0,...,ih−1

〉 ∼=
∏

i0

R[x]
〈∏

i1,...,ih−1
gi0,...,ih−1

〉

∼= · · · ∼=
∏

i0,...,ih−1

R[x]
〈
gi0,...,ih−1

〉 .

Multiplying in
∏

i0,...,ih−1
R[x]

/〈
gi0,...,ih−1

〉
is cheap if the polynomial modulus

is small. If the isomorphism chain is also cheap, we improve the polynomial mul-

tiplications in R[x]
/〈∏

i0,...,ih−1
gi0,...,ih−1

〉
. For small nl’s, it is usually cheap

to decompose a polynomial ring into a product of nl polynomial rings.
Transformations will be described with the words “radix”, “split”, and

“layer”. We demonstrated below for h = 2. Suppose we have isomorphisms

R[x]
/〈∏

i0,i1

gi0,i1

〉
η0∼=
∏

i0

R[x]
/〈∏

i1

gi0,i1

〉
η1∼=
∏

i0,i1

R[x]
/〈

gi0,i1

〉

where i0 ∈ {0, . . . , n0 − 1} and i1 ∈ {0, . . . , n1 − 1}. We call η0 a radix -n0

split and an implementation of η0 a radix-n0 computation, and similarly for η1.
Usually, we implement several isomorphisms together to minimize memory oper-
ations. The resulting computation is called a multi-layer computation. Suppose
we implement η0 and η1 with a single pair of loads and stores, and η0 and η1
both rely on X, a shape of computations, then the resulting multi-layer compu-
tation is called a 2-layer X. If additionally n0 = n1, the computation is a 2-layer
radix -n0 X, and similarly for more layers.

3.2 Cooley–Tukey FFT

In a Cooley–Tukey FFT [CT65], we have ζ ∈ R, ωn ∈ R a principal nth root

of unity, n coprime to char(R), and gi0,...,ih−1
= x − ζω

∑
l il

∏
j<l nj

n ∈ R[x].
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Since
∏

i0,...,ih−1
gi0,...,ih−1

= xn − ζn, the efficiency of multiplying polynomials
in R[x]/〈xn − ζn〉 boils down to the efficiency of the isomorphisms indexed by
il’s. Furthermore, it is a cyclic NTT if ζn = 1.

3.3 Bruun-Like FFTs

[Bru78] first introduced the idea of factoring into trinomials gi0,...,ih−1
when n

is a power of two—to reduce the number of multiplications in R while operating
over C. [Mur96] generalized this to arbitrary even n. For our implementations,
we need the results on factoring x2k

+ 1 ∈ Fq[x] when q ≡ 3 (mod 4) [BGM93]
and composed multiplications of polynomials in Fq[x] [BC87]. Factoring xn − 1
over Fq is actively researched [BGM93,Mey96,TW13,MVdO14,WYF18,WY21].

Review: The Original Bruun’s FFT (R = C). We choose gi0,...,ih−1
=

x2 −
(
ζω

∑
l il

∏
j<l nj

n + ζ−1ω
− ∑

l il

∏
j<l nj

n

)
x + 1 so x2n − (ζn + ζ−n) xn + 1 =

∏
i0,...,ih−1

gi0,...,ih−1
. This provides us an alternative factorization for x4n − 1 =

(x2n − 1)(x2n + 1) by choosing ζn = ω4. For a complex number with norm 1,
since the sum of its inverse and itself is real, we only need arithmetic in R to

reach
∏

i0,...,ih−1
C[x]

/〈
gi0,...,ih−1(x)

〉
.

R = Fq where q ≡ 3 (mod 4). We need Theorem 1 for our implementations.

Theorem 1 ([BGM93, Theorem 1]). Let q ≡ 3 (mod 4) and 2w be the high-
est power of two in q+1. If k < w, then x2k

+1 factors into irreducible trinomials
x2 + γx + 1 in Fq[x]. Else (i.e., k ≥ w) x2k

+ 1 factors into irreducible trinomials
x2k−w+1

+ γx2k−w − 1 in Fq[x].

Given f0,f1 ∈ Fq[x], we define their “composed multiplication” as (f0 � f1) :=∏
f 0(α)=0

∏
f 1(β)=0 (x − αβ) where α, β run over all the roots of f0,f1 in an

extension field of Fq.We need the following from [BC87]:

Lemma 1 ([BC87, Eq. 8]).
∏

i0
f0,i0 �∏i1

f1,i1 =
∏

i0,i1

(
f0,i0 � f1,i1

)
holds

for any sequences of polynomials f0,i0 ,f1,i1 ∈ Fq[x].

Lemma 2 ([BC87, Eq. 5]). If f0 =
∏

α(x−α) ∈ Fq[x], then for any f1 ∈ Fq[x],
we have f0 � f1 =

∏
α αdeg(f 1)f1(α−1x) ∈ Fq[x].

Lemma 3. Let r be odd, xr −1 =
∏

i0
(x−ωi0

r ) ∈ Fq[x], and x2k −1 =
∏

i1
f i1 ∈

Fq[x]. We have x2kr − 1 =
∏

i0

(
x2k − ω2ki0

r

)
=
∏

i0,i1
ω

i0deg(f i1
)

r f i1(ω
−i0
r x).

Proof. First observe x2kr − 1 = (xr − 1) �
(
x2k − 1

)
6. By Lemma 1, this equals

∏
i0

(
(x − ωi0

r ) �
(
x2k − 1

))
=

∏
i0,i1

(
(x − ωi0

r ) � f i1

)
. According to

6 ∀ coprime q0, q1,
{
ωi0

q0ωi1
q1 |0 ≤ i0 < q0, 0 ≤ i1 < q1

}
=

{
ωi

q0q1 |0 ≤ i < q0q1
}

in the
splitting field of xq0q1 − 1.
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Lemma 2, (x − ωi0
r ) �

(
x2k − 1

)
= x2k − ω2ki0

r and (x − ωi0
r ) � f i1 = ω

i0deg(f i1
)

r

f i1(ω
−i0
r x) as desired.

In summary, by Lemma 3 we have the following isomorphisms:

Fq[x]
〈
x2kr − 1

〉 ∼= Fq[x]
〈∏

i0

(
x2k − ω2ki0

r

)〉 ∼= Fq[x]
〈∏

i0,i1
ω

i0deg(f i1
)

r f i1(ω
−i0
r x)

〉 .

Radix-2 Bruun’s Butterflies and Inverses. Define Bruunα,β as follows:

Bruunα,β :

{
R[x]

〈x4+(2β−α2)x2+β2〉 → R[x]
〈x2+αx+β〉 × R[x]

〈x2−αx+β〉
a0 + a1x + a2x

2 + a3x
3 
→ ((â0 + â1x), (â2 + â3x))

where {
(â0, â1) =

(
a0 − βa2 + αβa3, a1 + (α2 − β)a3 − αa2

)
,

(â2, â3) =
(
a0 − βa2 − αβa3, a1 + (α2 − β)a3 + αa2

)
.

We compute (a0 − βa2, a1 + (α2 − β)a3, αa2, αβa3), swap the last two values
implicitly, and do an addition-subtraction (cf. Fig. 1). Notice that we can use
Barrett mla and Barrett mls whenever a product is followed by only one accu-
mulation (a1 +

(
α2 − β

)
a3) or subtraction (a0 − βa2).

a0

a1

a2

a3

â0

â1

â2

â3

Fig. 1. Bruun’s butterfly. (â0, â1, â2, â3) = Bruunα,β(a0, a1, a2, a3).

2Bruun−1
α,β :

{
R[x]

〈x2+αx+β〉 × R[x]
〈x2−αx+β〉 → R[x]

〈x4+(2β−α2)x2+β2〉
((â0 + â1x), (â2 + â3x)) 
→ 2a0 + 2a1x + 2a2x

2 + 2a3x
3

correspondingly defines the inverse, where
{

2(a0, a1) = (â0 + â2 + (â3 − â1) α−1β, â1 + â3 − (â0 − â2) α−1β−1 (
α2 − β

)
),

2(a2, a3) = ((â3 − â1) α−1, (â0 − â2) α−1β−1).

We compute (â0 + â2, â1 + â3, â0 − â2, â3 − â1), swap the last two values implic-
itly, multiply the constants α−1, β, α−1β−1, and

(
α2 − β

)
, and add-sub (cf.

Fig. 2). Both Bruunα,β and 2Bruun−1
α,β take 4 multiplications.
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â0

â1

â2

â3

2a0

2a1

2a2

2a3

Fig. 2. Bruun’s Inverse butterfly. (2a0, 2a1, 2a2, 2a3) = 2Bruun−1
α,β(â0, â1, â2, â3).

We will use three special cases of Bruun’s butterflies.

Bruun√
2,1: The initial split of x2k

+ 1 is Bruun√
2,1. Since β = α2 − β = 1, we

only need two multiplications by ×√
2.

Bruunα,±1: We avoid multiplying with β = ±1 in Bruunα,±1 and 2Bruun−1
α,±1.

Bruun
α, α2

2
: We save no multiplications, but only use 2 constants α and α2

2

instead of 4. It is used in the split of x2k

+ ω2ki
r for an odd r.

3.4 Good–Thomas FFTs

A Good–Thomas FFT [Goo58] converts cyclic FFTs and convolutions into
multi-dimensional ones for coprime nl’s. For the polynomial ring R[x]/〈xn − 1〉,
we implement R[x]/〈xn − 1〉 ∼= ∏

i0,...,ih−1
R[x]/

〈
x −∏l ωil

nl

〉
with a multi-

dimensional FFT induced by the equivalences x ∼ ∏l ul and ∀l, unl

l ∼ 1. For-
mally, we have

R[x]]

〈xn − 1〉
∼= R[x, u0, . . . , uh−1]〈

x − ∏
l ul, u

n0
0 − 1, . . . , u

nh−1
h−1 − 1

〉

∼=
∏

i0,...,ih−1

R[x, u0, . . . , uh−1]〈
x − ∏

l ul, u0 − ωi0
n0 , . . . , uh−1 − ω

ih−1
nh−1

〉 ∼=
∏

i0,...,ih−1

R[x]〈
x − ∏

l ωil
nl

〉 .

We illustrate the idea for h = 2, n0 = 2, and n1 = 3. Let P(14) be the
permutation matrix exchanging the 1st and the 4th rows. We write the size-6
FFT matrix as follows:

P(14)

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

1 1 1 1 1 1
1 ω6 ω2

6 ω3
6 ω4

6 ω5
6

1 ω2
6 ω4

6 1 ω2
6 ω4

6

1 ω3
6 1 ω3

6 1 ω3
6

1 ω4
6 ω2

6 1 ω4
6 ω2

6

1 ω5
6 ω4

6 ω3
6 ω2

6 ω6

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

P(14) =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

1 1 1 1 1 1
1 ω4

6 ω2
6 1 ω4

6 ω2
6

1 ω2
6 ω4

6 1 ω2
6 ω4

6

1 1 1 ω3
6 ω3

6 ω3
6

1 ω4
6 ω2

6 ω3
6 ω6 ω5

6

1 ω2
6 ω4

6 ω3
6 ω5

6 ω6

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

=

(
1 1
1 −1

)
⊗

⎛

⎝
1 1 1
1 ω4

6 ω2
6

1 ω2
6 ω4

6

⎞

⎠ .

3.5 Rader’s FFT for Odd Prime p

Suppose ωp ∈ R for an odd prime p. [Rad68] introduced how to map a polynomial∑
i aix

i ∈ R[x]/〈xp − 1〉 to the tuple (âj) :=
(∑

i aiω
ij
p

) ∈ ∏i R[x]
/〈

x − ωi
p

〉
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with a size-(p − 1) cyclic convolution. Let g be a generator of Z
∗
p and write

j = gk and i = g−�. Then âgk − a0 = âj − a0 =
∑p−1

i=1 aiω
ij
p =

∑p−2
�=0 ag−�ωgk−�

p

for k = 0, . . . , p − 2.
The sequence

(∑p−2
�=0 ag−�ωgk−�

p

)

j=0,...,p−2
is the size-(p − 1) cyclic convolu-

tion of sequences
(
ag−i

)
i=0,...,p−2

and
(
ωgi

p

)

i=0,...,p−2
. For example, let p = 5.

We have (1, 2, 3, 4) = (24, 2, 23, 22) and
⎛

⎜
⎜
⎝

â2 − a0

â4 − a0

â3 − a0

â1 − a0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ω5 ω2
5 ω4

5 ω3
5

ω3
5 ω5 ω2

5 ω4
5

ω4
5 ω3

5 ω5 ω2
5

ω2
5 ω4

5 ω3
5 ω5

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

a3

a4

a2

a1

⎞

⎟
⎟
⎠ .

3.6 Schönhage’s and Nussbaumer’s FFTs

Instead of isomorphisms based on CRT, we sometimes compute chains of
monomorphisms and determine the unique inverse image from the product of two
images. Given polynomials a, b ∈ R[x]/〈g〉 where g is a degree-n0n1 polynomial,
we introduce y = xn1 , and write a and b as polynomials in R[x, y]/〈xn1 − y, g0〉
where g0|y=xn1 = g(x). In other words, a(y) :=

∑n0−1
i0=0

(∑n1−1
i=0 ai+i0n1x

i
)

yi0 ∈
R[x, y]/〈xn1 − y, g0〉. We recap transforms when R[x, y]/〈xn1 − y, g0〉 does not
naturally split.

We want an injection R[x]/〈xn1 − y〉 ↪→ R̄ such that R[x, y]/〈xn1 − y, g0〉 ↪→
R̄[y]

/〈g0〉 is a monomorphism with R̄[y]
/〈g0〉 ∼= ∏j R̄[y]

/〈
g0,j

〉
. A Schönhage

FFT [Sch77] is when g0|(yn0 − 1), and R̄ = R[x]/〈h〉 with h|Φn0(x) (the n0-th
cyclotomic polynomial). E.g., “cyclic Schönhage” for powers of two n0, n1 = n0

4 ,
g0 = yn0 − 1, and h = x2n1 + 1 is:

R[x]
〈xn0n1 − 1〉

∼=
R[x]

〈xn1−y〉 [y]

〈yn0 − 1〉 ↪→
R[x]

〈x2n1+1〉 [y]

〈yn0 − 1〉 � R̄[y]
〈yn0 − 1〉

∼=
∏

i

R̄[y]
〈y − xi〉 .

We can also exchange the roles of x and y and get Nussbaumer’s FFT [Nus80].
We map R[x, y]/〈xn1 − y, g0〉 ↪→ R[x, y]/〈h, g0〉 for g0|Φ2n1(y) and h|(x2n1 −1).
This can be illustrated for powers of two n0 = n1, h = x2n1 −1, and g0 = yn0 +1:

R[x]
〈xn0n1 + 1〉

∼= R[x, y]
〈xn1 − y, yn0 + 1〉 ↪→

R[y]
〈yn0+1〉 [x]

〈x2n1 − 1〉 � R̃[x]
〈x2n1 − 1〉

∼=
∏

i

R̃[x]
〈x − yi〉 .

Our presentation is motivated by [Ber01, Sect. 9, Paragraph “High–radix
variants”] and [vdH04, Sect. 3].

4 Implementations

In this section, we discuss our ideas for multiplying polynomials over Z4591. For
brevity, we assume R = Z4591 in this section. The state-of-the-art vectorized
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“big by big” polynomial multiplication in NTRU Prime [BBCT22] computed
the product in R[x]

/〈
(x1024 + 1)(x512 − 1)

〉
with Schönhage and Nussbaumer.

This leads to 768 size-8 base multiplications where all of them are negacyclic
convolutions. [BBCT22] justified the choice as follows:

. . . since 4591−1 = 2·33 ·5·17, no simple root of unity is available for recur-
sive radix-2 FFT tricks. . . . They ([ACC+21]) performed radix-3, radix-5,
and radix-17 NTT stages in their NTT (defined in R[x]

/〈
x1530 − 1

〉
). We

instead use a radix-2 algorithm that efficiently utilizes the full ymm regis-
ters (for vectorization) in the Haswell architecture.

We propose transformations (essentially) quartering and halving the number
of coefficients involved in base multiplications for vectorization. Our first trans-
formation computes the result in R[x]

/〈
x1536 − 1

〉
. We apply Good–Thomas

with ω3 ∈ R for a more rapid decrease of the sizes of polynomial rings, Schönhage
for radix-2 butterflies, and Bruun over R[x]

/〈
x32 + 1

〉
. This leads to 384 size-8

base multiplications defined over trinomial moduli. Our second transformation
computes the result in R[x]

/〈
x1632 − 1

〉
. We show how to incorporate Rader for

radix-17 butterflies and Good–Thomas for the coprime factorization 17 ·3 ·2. For
computing the size-16 weighted convolutions, we split with Cooley–Tukey and
Bruun for R[x]

/〈
x16 ± ωi

102

〉
. Since no coefficient ring extensions are involved,

this leads to 96 size-8 base multiplication with binomial moduli, 96 size-8 base
multiplications with trinomial moduli, and six size-16 base multiplications with
binomial moduli.

Section 4.1 formalizes the needs of vectorization, and Sect. 4.2 goes through
our implementation Good--Thomas for big-by-small polynomial multiplica-
tions. We then go through big-by-big polynomial multiplications. Section 4.3
goes through our implementation Good--Schönhage--Bruun, and Sect. 4.4 goes
through our implementation Good--Rader--Bruun.

4.1 The Needs of Vectorization

We formalize “the needs of vectorization” to justify how we choose among trans-
formations. In the literature, power-of-two-sized FFTs are oftenly described as
easily vectorizable. In this paper, we explicitly state and relate them to the
designs of vectorization-friendly polynomial multiplications. Our definition is
based on our programming experience.

We assume that a reasonable vector instruction set should provide the fol-
lowing features accessible to programmers:

– Several vector registers each holding a large number of bits of data. Com-
monly, each register holds 2k bits.

– Several vector arithmetic instructions computing 2k-bit data from 2k-bit data
while regarding each 2k-bit data as packed elements.

• If input and output are regarded as packed 2k′
-bit data, we call the

instruction a single-width instruction.



Algorithmic Views of Vectorized Polynomial Multipliers - NTRU Prime 35

• If input is regarded as packed 2k′−1-bit data and output is regarded as
packed 2k′

-bit data, we call the instruction a widening instruction.
• If input is regarded as packed 2k′

-bit data and output is regarded as
packed 2k′−1-bit data, we call the instruction a narrowing instruction.

The terminologies “widening” and “narrowing” come from [ARM21]. For a k′ ≤
k, we are interested in the number of elements v = 2k−k′

contained in a vector
register. Intuivitely, we want to compute with minimal number of data shuffling
while maintaining the vectorization feature: if we want to add up several pairs
(ai, bi) of elements, we assign (ai) to one vector register and (bi) to another
one and issue a vector addtion, similarly for subtractions, multiplications, and
bitwise operations. We formalize this intuition for algebra homomorphisms.

Let π be a platform-dependent set of module homomorphisms. We’ll specify
π = π(neon) in the case of Neon shortly. Let f be an algebra homomorphism.
We call f “vectorization friendly” if f is a composition of homomorphisms of the
form g⊗idv⊗d for g an algebra homomorphism, d a composition of elements from
π. Since g ⊗ idv operates over several chunks of v-sets, we need no permutations
for this part. For the set π, we define it with the matrix view for simplicity. π is
defined as the set of module homomorphisms representable as a v′ × v′ diagonal
matrix or a size-v′ cyclic/negacyclic shift for v′ a multiple of v.

In this paper, we start with R[x]
/〈

g
(
xv′
)〉 ∼= R[y]

/〈
xv′ − y, g(y)

〉
for v′

a multiple of v and transform accordingly.

4.2 Good–Thomas FFT in “Big×Small” Polynomial Multiplications

We recall below the design principle of vectorization–friendly Good–Thomas
from [AHY22], and describe our implementation Good--Thomas for the “big by
small” polynomial multiplications. For a cyclic convolution R[x]/〈xvn0n1 − 1〉
where n0 and n1 coprime, and v a multiple of the number of coefficients in a
vector, one introduces the equivalences xv ∼ uw, un0 ∼ wn1 ∼ 1. Usually, one
picks n0 and n1 carefully for fast computations. In the simplest form, one picks
n0 as a power of 2 and n1 = 3. Our Good--Thomas computes the polynomial
multiplication in Z[x]

/〈
x1536 − 1

〉
with (v, n0, n1) = (4, 128, 3) where v = 4

comes from the fact that each Neon SIMD register holds four 32-bit values.
After reaching Z[x, u, w]

/〈
x4 − uw, u3 − 1, w128 − 1

〉
, we want to compute size-

3 NTT over u3 − 1 and size-128 NTT over w128 − 1. It suffices to choose a large
modulus q′ with a principal 384-th root of unity. We choose q′ as a 32-bit modulus
bounding the maximum value of the product in Z[x]

/〈
x1536 − 1

〉
. Obviously, our

Good--Thomas supports any “big-by-small” polynomial multiplications with size
less than or equal to 1536.

4.3 Good–Thomas, Schönhage’s, and Bruun’s FFT

This section describes our Good--Schönhage--Bruun. We briefly recall the
AVX2-optimized “big by big” polynomial multiplication by [BBCT22]. They
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computed the product in R[x]
/〈

(x512 − 1)(x1024 + 1)
〉
. They first applied

Schönhage as follows.

R[x]
〈(x512 − 1)(x1024 + 1)〉

∼=
R[x]

〈x32−y〉 [y]

〈(y16 − 1)(y32 + 1)〉

↪→
R[x]

〈x64+1〉 [y]

〈(y16 − 1)(y32 + 1)〉
∼=

∏

i=0,1,3,j=0,...,15

R[x]
〈x64+1〉 [y]

〈y − x2i+8j〉 .

They then applied Nussbaumer for multiplying in R[x]
〈x64+1〉 as follows.

R[x]
〈x64 + 1〉

∼=
R[x]

〈x8−z〉 [z]

〈z8 + 1〉 ↪→
R[x]

〈x16−1〉 [z]

〈z8 + 1〉
∼=

R[z]
〈z8+1〉 [x]

〈x16 − 1〉
∼=

∏

k=0,...,15

R[z]
〈z8+1〉 [x]

〈x − zk〉 .

The vectorization-friendliness of Schönhage is obvious. In principle, Nussbaumer
is vectorization-friendly since it shares the same computation as Schönhage after
transposing.

Truncated Schönhage vs Good–Thomas and Schönhage. We first discuss
an optimization of Schönhage if there is a principal root of unity with order
coprime to the one defining Schönhage.

How it Works, Mathematically. In R = Z4591, we know that there is a principal
3rd root of unity ω3 ∈ R. Instead of computing in R[x]

/〈
(x512 − 1)(x1024 + 1)

〉
,

we apply Schönhage and Good–Thomas FFTs to R[x]
/〈

x1536 − 1
〉
. By defini-

tion, if ω is a principal 2k-th root of unity, then ω3ω is a principal 3 · 2k-th root
of unity. Let’s define R̄ = R[x]

/〈
x32 + 1

〉
. We introduce a principal 32-th root

of unity ω32 = x2 as follows:

R[x]
〈x1536 − 1〉

∼=
R[x]

〈x16−y〉 [y]

〈y96 − 1〉 ↪→ R̄[y]
〈y96 − 1〉 .

Then ω3ω32 is a principal 96-th root of unity implementing R̄[y]
/〈

y96 − 1
〉 ∼=

∏
i=0,1,2,j=0,...,31 R̄[y]

/〈
y − ωi

3ω
j
32

〉
. However, one should not implement this

isomorphism with Cooley–Tukey FFT. Observe that multiplication by ω32 = x2

requires negating and permuting whereas multiplication by ω3 requires actual
modular multiplication. Cooley–Tukey FFT requires one to multiply ωi

3ω
j
32

which is unreasonably complicated while optimizing for i, j �= 0. We apply Good–
Thomas FFT implementing R̄[y]

/〈
y96 − 1

〉 ∼= R̄[y]
/〈

y − uw, u3 − 1, w32 − 1
〉
.

Obviously, we only need multiplications by powers of ω3 and ω32 and not ω3ω32.
See Table 1 for an overview of available approaches.



Algorithmic Views of Vectorized Polynomial Multipliers - NTRU Prime 37

Table 1. Approaches for computing the size-1536 product of two polynomials drawn
from R[x]

/〈
x761 − x − 1

〉
.

Approach Domain Image Twiddle factors

Truncated Schönhage [BBCT22]
R[x]

〈(x1024+1)(x512−1)〉
(

R[x]

〈x64+1〉
)48

x2i

Cooley–Tukey and Schönhage
R[x]

〈x1536−1〉
(

R[x]

〈x32+1〉
)96

ωi
3x2j

Good–Thomas and Schönhage
R[x]

〈x1536−1〉
(

R[x]

〈x32+1〉
)96

ωi
3, x2j

How it Works, Concretely. We detail the implementation as follows.

– We transform the input array in[761] into a temporary array
out[3][32][32], where out[i][j][0-31] is the size-32 polynomial in

R[x]

〈x32+1,u−ωi
3,w−x2j〉 . Concretely, we combine the permutations of Good–

Thomas and Schönhage as out[i][j][k] = in[(16(64i + 33j) mod 96) + k]
if (16(64i + 33j) mod 96) + k < 761 and zero otherwise. This step is the
foundation of the implicit permutations [ACC+21].

– For input small, we start with the 8-bit form of the polynomial. Since coef-
ficients are in {±1, 0}, we first perform five layers of radix-2 butterflies with-
out any modular reductions. The initial three layers of radix-2 butterflies are
combined with the implicit permutations. For the last two layers of radix-2
butterflies, we use ext if the root is not a power of x16. For the last layer of
radix-2 butterflies, we merge the sign-extension and add-sub pairs into the
sequence saddl, saddl2, ssubl, ssubl2. We then apply one layer of radix-3
butterflies based on the improvement of [DV78, Equation 8]. We compute the
radix-3 NTT (v̂0, v̂1, v̂2) of size-32 polynomials (v1, v2, v3) as:

⎧
⎪⎨

⎪⎩

v̂0 = v0 + v1 + v2,

v̂1 = (v0 − v2) + ω3(v1 − v2),
v̂2 = (v0 − v1) − ω3(v1 − v2).

– For the input big, we use the 16-bit form and perform one layer of radix-
3 butterflies followed by five layers of radix-2 butterflies. This implies only
1536 coefficients are involved in radix-3 butterflies instead of 3072 as for the
input small. We first apply one layer of radix-3 butterflies and two layers of
radix-2 butterflies followed by one layer of Barrett reductions while permuting
implicitly for Good–Thomas and Schönhage. Then, we perform three layers
of radix-2 butterflies and another layer of Barrett reductions.

Nussbaumer vs Bruun. Next, we discuss efficient polynomial multiplications
in R[x]

/〈
x32 + 1

〉
. [BBCT22] applied Nussbaumer to R[x]

/〈
x64 + 1

〉
. We state

without proof that applying Nussbaumer to R[x]
/〈

x32 + 1
〉

results in 8 polyno-
mial multiplications in R[z]

/〈
z8 + 1

〉
. We instead apply Brunn’s FFT resulting
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Algorithm 5. Radix-2 butterfly with symbolic root x2.
Input: Size-32 8-bit polynomials a = a0 + a1x16, b = b0 + b1x16, where a0, a1, b0, b1
are SIMD registers containing:

⎧
⎪⎪⎨

⎪⎪⎩

a0 = a7|| · · · ||a0,
a1 = a15|| · · · ||a8,
b0 = b7|| · · · ||b0,
b1 = b15|| · · · ||b8.

Output: a0 + a1x16 = (a + bx2) mod (x32 + 1), b0 + b1x16 = (a − bx2) mod (x32 + 1)

1: ext v0.16b, b0.16b, b1.16b, #14 � v0 = b29|| · · · ||b14
2: neg b1.16b, b1.16b

3: ext v1.16b, b1.16b, b0.16b, #14 � v1 = b13|| · · · ||b0||(−b31)||(−b30)
4: sub b0.16b, a0.16b, v0.16b

5: sub b1.16b, a1.16b, v1.16b � b0 + b1x16 = (a − x2b) mod (x32 + 1)
6: add a0.16b, a0.16b, v0.16b

7: add a1.16b, a1.16b, v1.16b � a0 + a1x16 = (a + x2b) mod (x32 + 1)

in multiplications in rings R[x]
/〈

x8 + αx4 + 1
〉

for 4 different α. Since

x32 + 1 = (x16 + 1229x2 + 1)(x16 − 1229x2 + 1)

= (x8 + 58x4 + 1)(x8 − 58x4 + 1)(x8 + 2116x4 + 1)(x8 − 2116x4 + 1),

we apply Bruun1229,1 followed by Bruun58,1 and Bruun2116,1. We have slower
FFT and base multiplications, but we do only half as many as in [BBCT22]. See
Table 2 for comparisons.

Table 2. Approaches for multiplying in R[x]
/〈

x64 + 1
〉

and R[x]
/〈

x32 + 1
〉
.

Approach Domain Image Twiddle factors

Nussbaumer [BBCT22]
R[x]

〈x64+1〉
(

R[z]

〈z8+1〉
)16

zi

Nussbaumer
R[x]

〈x32+1〉
(

R[z]

〈z8+1〉
)8

z2i

Bruun
R[x]

〈x32+1〉
∏

i=0,1

∏ R[x]

〈x8±αix4+1〉 Elements in R.

Then, we perform 96 · 4 = 384 size-8 base multiplications and compute the
inverses of Bruun’s, Schönhage’s, and Good–Thomas FFT.

4.4 Good–Thomas, Rader’s, and Bruun’s FFT

In the previous section, we replace Nussbaumer with Bruun. This section shows
how to replace Schönhage with Rader while computing in R[x]

/〈
x1632 − 1

〉
. We

name the resulting computation Good--Rader--Bruun.
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Schönhage vs Rader-17. We first observe that the Schönhage in [BBCT22]
reduced a size-1536 problem to several size-64 problems. We are looking for
a multiple of 17 close to 1536

64 = 48. We choose 51 since one can define
a size-51 cyclic NTT nicely over Zq and optimize further by extending the
size-51 cyclic NTT to size-102. For the size-102 cyclic NTT, we apply the 3-
dimensional Good–Thomas FFT by identifying (ω17, ω3, ω2) = (ωe0

102, ω
e1
102, ω

e2
102)

as the principal roots of unity where (e0, e1, e2) is the unique tuple satisfying
∀a ∈ Z102, a ≡ e0(a mod 17) + e1(a mod 3) + e2(a mod 2) (mod 102). Algo-
rithm 6 is an illustration. Radix-2 and radix-3 computations are straightfor-
ward. For the radix-17 cyclic FFT, we apply Rader’s FFT. Algorithm 7 illus-
trates the multi-dimensional cyclic FFT. Obviously, the above computation is
vectorization–friendly.

Algorithm 6. Good–Thomas, in practice merged with Algorithm 7.
Inputs: src[1632].
Outputs: poly NTT[17][3][2][16].

1: for i = 0, . . . , 1631 do
2: Let t = i/16.
3: poly NTT[t mod 17][t mod 3][t mod 2][i mod 16] = src[i].
4: end for

Algorithm 7. FFTs over chunks of 16 coefficients.
Inputs: poly NTT[17][3][2][16].
Outputs: poly NTT[17][3][2][16].

1: for i3 ∈ {0, . . . , 15} do
2: for i1 ∈ {0, 1, 2} , i2 ∈ {0, 1} do
3: rader-17 (poly NTT[0-16][i1][i2][i3]).
4: end for
5: for i0 ∈ {0, . . . , 16} do
6: radix-(3, 2) (poly NTT[i0][0-2][0-1][i3]).
7: end for
8: end for

Generalize Bruun Over x2k

+ c for c �= ±1. The composed multiplica-
tion over a finite field shows that the remaining factorization follows the same
pattern of factorizing R[x]

/〈
x16 ± 1

〉
. The isomorphism R[x]

/〈
x16 − ω2i

102

〉 ∼=∏
R[x]

/〈
x8 ± ωi

102

〉
is obvious. Since we also have

∏
i R[x]

/〈
x16 − ω2i+1

102

〉 ∼=∏
i R[x]

/〈
x16 + ω2i

102

〉
by permuting, it suffices to understand the isomorphisms

defined on R[x]
/〈

x16 + ω2i
102

〉
. Applying Lemma 3, we have R[x]

/〈
x16 + ω2i

102

〉 ∼=∏
R[x]

/〈
x8 ± √

2ω128i
102 x4 + ω256i

102

〉
.



40 V. Hwang et al.

Finally, the remaining computing task is multiplication in R[x]
/

〈
x8 + αx4 + β

〉
for some α, β ∈ R. We extend the idea of [CHK+21, Algorithm

17] by altering between multiplying in R[x] and reducing modulo x8 + αx4 + β.

5 Results

We present the performance numbers in this section. We focus on polynomial
multiplications, leaving the fast constant-time GCD [BY19] as future work.

5.1 Benchmark Environment

We use the Raspberry Pi 4 Model B featuring the quad-core Broadcom BCM2711
chipset. It comes with a 32 kB L1 data cache, a 48 kB L1 instruction cache, and
a 1 MB L2 cache and runs at 1.5 GHz. For hashing, we use the aes, sha2,
and fips202 from PQClean [KSSW] without any optimizations due to the lack
of corresponding cryptographic units. For the randombytes, [BHK+22] used
the randombytes from SUPERCOP which in turn used chacha20. We extract
the conversion from chacha20 into randombytes from SUPERCOP and replace
chacha20 with our optimized implementations using the pipelines I0/I1, F0/F1.
We use the cycle counter of the PMU for benchmarking. Our programs are com-
pilable with GCC 10.3.0, GCC 11.2.0, Clang 13.1.6, and Clang 14.0.0. We report
numbers for the binaries compiled with GCC 11.2.0.

Table 3. Overview of polynomial multiplications in ntrulpr761/sntrup761.

Armv8-A Neon x86 AVX2

Implementation Cycles Implementation Cycles

Big-by-small polynomial multiplications

Good--Thomas 47 696 [BBCT22] 16 992

[Haa21] 242 585

Big-by-big polynomial multiplications

Good--Rader--Bruun 39 788 [BBCT22] 25 113

Good--Schönhage--Bruun 50 398
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5.2 Performance of Vectorized Polynomial Multiplications

Table 3 summarizes the performance of vectorized polynomial multiplications.

Table 4. Detailed Good--Schönhage--Bruun cycle counts including reducing to
Z4591[x]

〈x761−x−1〉 .

Good--Schönhage--Bruun

Operation Count Cycles Total cycles

polymul - - 50 398

Good-Schönhage-3-2x2 1 1 708 1 708

Schönhage-3x2 3 1 246 3738

Good-Schönhage-5x2 1 1 527 1 527

Radix-3 1 2 084 2 084

Bruun 24 291 6 984

Trinomial-8x8 12 1 115 13 380

Bruun inverse 12 409 4 908

Schönhage-2x4 inverse 3 1 304 3 912

Good-Schönhage-2-3 inverse 1 7 653 7 653

For NTRU Prime, our Good--Rader--Bruun performs the best. It
is followed by Good--Thomas and Good--Schönhage--Bruun. Notice that
Good--Rader--Bruun requires no extensions or changes of coefficient rings. The
closest instances in the literature regarding vectorization are the Good--Thomas
and Schönhage--Nussbaumer by [BBCT22], and Good--Thomas by [Haa21].
[BBCT22]’s, [Haa21], and our Good--Thomas compute “big by small” poly-
nomial multiplications. We outperform [Haa21] Good--Thomas by a factor of
6.1× since they implemented the base multiplications with scalar code using
the C % operator. On the other hand, [BBCT22]’s Schönhage--Nussbaumer
and our Good--Schönhage--Bruun compute “big by big” polynomial multipli-
cations. Regarding the impact of switching “big by small” to “big by big”,
[BBCT22]’s Schönhage--Nussbaumer takes 25113

16992 ≈ 147.79% cycles of their own
Good--Thomas [BBCT22, Sect. 3.4.2] while our Good--Schönhage--Bruun takes
only 50398

47696 ≈ 105.67% cycles of our own Good--Thomas. Essentially, this demon-
strates the benefit of vectorization-friendly Good–Thomas and Bruun over trun-
cated [vdH04] Schönhage and Nussbaumer.
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Table 5. Detailed cycle counts of Good--Rader--Bruun, excluding reductions to
Z4591[x]

/〈
x761 − x − 1

〉
.

Good--Rader--Bruun

Operation Count Cycles Total

polymul - - 37 475

Good-Rader-17 24 407 9 768

Radix-(3, 2) 2 2 339 4 678

CT 2 570 1 140

Bruun 2 838 1 676

Weighted-8x8 12 244 2 928

Trinomial-8x8 12 328 3 936

CT−1 1 592 592

Bruun−1 1 989 989

Weighted-16x16 1 1 019 1 019

Radix-(3, 2)−1 1 2 341 2 341

Good-Rader-17−1 12 543 6 516

We also provide the detailed cycle counts of the polynomial multiplications.
For the “big by big” polynomial multiplications in sntrup761/ntrulpr761,
Table 5 details the numbers of Good--Rader--Bruun and Table 4 details the
numbers of Good--Schönhage--Bruun.

5.3 Performance of Schemes

Before comparing the overall performance, we first illustrate the performance
numbers of some other critical subroutines. Most of our optimized implementa-
tions of these subroutines are not seriously optimized except for parts involving
polynomial multiplications. We simply translate existing techniques and AVX2-
optimized implementations into Neon. Table 6 summarizes the performance of
inversions, encoding, and decoding.

Table 6. Performance of inversions, encoding, and decoding in NTRU Prime.

Operation Ref Ours

sntrup761/ntrulpr761

Rq recip3 116 353 545 5 811 777

R3 recip 127 578 811 587 407

Rq encode 17 753 2 084

Rq decode 31 715 3 914

Rounded encode 14 707 3 145

Rounded decode 31 832 3 445

crypto sort uint32 186 867 21 659
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Inversions, Sorting Network, Encoding, and Decoding. For sntrup761,
we need one inversion over Z4591 and one inversion over Z3. We bitslice the
inversion over Z3, and identify and vectorize the hottest loop in the inversion over
Z4591. Additionally, we translate AVX2-optimized sorting network, encoding,
and decoding into Neon. Notice that inversions over Z2, Z3, and Z4591, sorting
networks, encoding, and decoding are implemented in a generic sense. With fairly
little effort, they can be used for other parameter sets.

Performance of sntrup761/ntrulpr761. Table 7 summarizes the overall per-
formance. For ntrulpr761, our key generation, encapsulation, and decapsulation
are 2.98×, 2.79×, and 3.07× faster than [Haa21]. For sntrup761, we outperform
the reference implementation significantly. Finally, Table 8 details the perfor-
mance.

Constant-Time Concerns. There are no input-dependent branches in our
code. Our program is constant-time only if one believes the documenta-
tion [ARM15]. The source code from [Haa21] and Armv8-A works [NG21,
BHK+22], indicate the requirement of the same assumption. In the most rel-
evant documented Neon implementations, our code is constant-time, but this is
never strictly guaranteed7 even with Data-Independent Timing (DIT). If ARM
decides to extend the domain of DIT to relevant multiplication instructions used
in this paper, our code is guaranteed to be constant-time once the DIT flag is set.
Furthermore, literally all the lattice-based post-quantum cryptosystems will be
benefit from this since the constant-time concerns arise from the basic building
blocks implementing modular multiplications.

Table 7. Overall cycles of sntrup761/ntrulpr761.

sntrup761

Operation Key generation Encapsulation Decapsulation

Ref 273 598 470 29 750 035 89 968 342

Good--Rader--Bruun 6 333 403 147 977 158 233

Good--Thomas 6 340 758 153 465 182 271

Good--Schönhage--Bruun 6 345 787 163 305 193 626

ntrulpr761

Operation Key generation Encapsulation Decapsulation

Ref 29 853 635 59 572 637 89 185 030

[Haa21] 775 472 1 150 294 1 417 394

Good--Rader--Bruun 260 606 412 629 461 250

Good--Thomas 269 590 422 102 471 014

Good--Schönhage--Bruun 272 738 436 965 499 559

7 ARM’s DIT flag, according to https://developer.arm.com/documentation/ddi0595/
2021-06/AArch64-Registers/DIT--Data-Independent-Timing, does not guarantee
the high half multiplications sqrdmulh and sqdmulh to be constant-time.

https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
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A Detailed Performance Numbers

Table 8. Detailed performance numbers of sntrup761 and ntrulpr761 with
Good--Rader--Bruun. Only performance-critical subroutines are shown.

sntrup761 ntrulpr761

Operation Cycles Operation Cycles

crypto kem keypair 6 333 403 crypto kem keypair 260 606

ZKeyGen 6 248 089 ZKeyGen 247 919

XKeyGen 243 332

KeyGen 6 194 194 KeyGen 112 496

Rq recip3 5 811 777

R3 recip 587 407

Rq mult small 39 829 Rq mult small 39 829

sort 22 369 sort 21 243

randombytes 86 932 randombytes 44 713

aes 127 203

Rq encode 2 084 Rounded encode 3 145

sha2 13 207 sha2 16 386

crypto kem enc 147 977 crypto kem enc 412 629

ZEncrypt 48 639 ZEncrypt 383 991

XEncrypt 374 695

Encrypt 40 650 Encrypt 83 487

Rq mult small 39 829 Rq mult small (2×) 2× 39 829

aes 253 597

sort 21 773

sha2 2 914

Rq decode 3 914 Rounded decode 3 445

Rounded encode 3 145 Rounded encode 3 145

randombytes 45 109

sha2 29 713 sha2∗ 26 548

sort 21 659

crypto kem dec 158 233 crypto kem dec 461 250

ZDecrypt 88 054 ZDecrypt 47 573

Decrypt 83 892 XDecrypt (defined as Decrypt) 43 799

Rq mult small 39 829 Rq mult small 39 829

R3 mult 42 059

Rounded decode 3 445 Rounded decode 3 445

ZEncrypt 48 639 ZEncrypt 383 991

sha2 18 111 sha2∗ 16 982

∗ The numbers of sha2 cycles of XEncrypt are included.
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Abstract. We propose the first distributed version of a simple, effi-
cient, and provably quantum-safe pseudorandom function (PRF). The
distributed PRF (DPRF) supports arbitrary threshold access struc-
tures based on the hardness of the well-studied Learning with Round-
ing (LWR) problem. Our construction (abbreviated as PQDPRF) prac-
tically outperforms not only existing constructions of DPRF based on
lattice-based assumptions, but also outperforms (in terms of evaluation
time) existing constructions of: (i) classically secure DPRFs based on
discrete-log hard groups, and (ii) quantum-safe DPRFs based on any
generic quantum-safe PRF (e.g. AES). The efficiency of PQDPRF stems
from the extreme simplicity of its construction, consisting of a simple
inner product computation over Zq, followed by a rounding to a smaller
modulus p < q. The key technical novelty of our proposal lies in our
proof technique, where we prove the correctness and post-quantum secu-
rity of PQDPRF (against semi-honest corruptions of any less than thresh-
old number of parties) for a polynomial q/p (equivalently, “modulus to
modulus”)-ratio.

Our proposed DPRF construction immediately enables efficient yet
quantum-safe instantiations of several practical applications, including
key distribution centers, distributed coin tossing, long-term encryption
of information, etc. We showcase a particular application of PQDPRF in
realizing an efficient yet quantum-safe version of distributed symmetric-
key encryption (DiSE – originally proposed by Agrawal et al. in CCS
2018), which we call PQ − DiSE. For semi-honest adversarial corruptions
across a wide variety of corruption thresholds, PQ − DiSE substantially
outperforms existing instantiations of DiSE based on discrete-log hard
groups and generic PRFs (e.g. AES). We illustrate the practical efficiency
of our PQDPRF via prototype implementation of PQ − DiSE.
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1 Introduction

Threshold Cryptography. The privacy guarantees of any (computationally
secure) cryptosystem fundamentally rely on the secure storage of a secret key. If
the secret key is stored on a single server, this server becomes the single point
of vulnerability, i.e., if an adversary successfully manages to corrupt the server,
the secret key is retrieved and the security of the whole system is compromised.
Threshold cryptography provides a solution to this problem by allowing the
secret key to remain distributed among multiple (say, T ) servers in the form
of several key shares. Among them, if t servers (for 1 < t ≤ T ) can collabo-
rate with their respective key shares to successfully perform the cryptographic
computation without any knowledge of the actual secret key, we call it (t, T )-
threshold cryptography. An underlying threshold secret sharing algorithm makes
sure that collaboration of at least t servers is necessary to reconstruct the secret,
or in other words, less than t servers together can not reconstruct the secret.
Hence, if an adversary manages to corrupt (t − 1) number of servers (at most)
in a (t, T )-threshold cryptosystem, the system still continues to remain secure,
as the adversary can not retrieve the actual secret from secret shares of (t − 1)
servers.

In this paper, we focus on threshold cryptographic systems [8,14] where the
secret key is shared once during the initial setup phase (either by a trusted dealer
or in a decentralized manner) and is never explicitly reconstructed in the clear.
Subsequently, any cryptographic computation is performed in two phases: (a)
first, each of the participating t servers does the some partial computation with
its own key share, and then (b) these partial computations are combined together
either by one of the participating servers or a separate evaluating entity to get
the final result. Crucially, the combination process should leak no additional
information about the secret key beyond what is revealed by the final output.

Threshold PRF and Applications. In a threshold or distributed PRF, the
PRF key is distributed across multiple (say, T ) parties, and evaluations can
be performed on any given input in a distributed manner by a threshold t ∈
[2, T ] number of parties. Informally, the primitive retains its pseudorandomness
guarantees against any adversary that corrupts t′ < t parties. Some applications
of a distributed PRF are as follows.

– Distributed KDC [28]: Key Distribution Center (KDC) provides keys to the
users in a network that shares sensitive data. Usually, there is a dedicated key
between the KDC and each user in the network. Whenever two users have to
communicate securely, one of them requests a key to the KDC. KDC chooses a
random key and sends it to each of the two parties, keeping it encrypted with
their respective dedicated keys. The users can then decrypt it and retrieve
the key for the secure communication session between them. This approach
was introduced by Needham and Schroeder in [30], and KDC has been widely
implemented in Kerberos System1. However, KDC is a single point of vulner-
ability as it stores the dedicated keys of all the users. KDC, being a single

1 https://web.mit.edu/kerberos/.

https://web.mit.edu/kerberos/
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point of contact, also suffers from the availability problem whenever there is
a need for communication between multiple pairs of users or communication
is needed among a set of more than two parties. To avoid these scenarios,
distributed KDC is considered, which consists of multiple (say, T ) servers
to service the key requests, and a user can contact any available subset of t
servers out of them and receive a key irrespective of which particular subset
it contacted. Distributed PRF is a building block of distributed KDC [28].

– DiSE [1,19]: A formal construction of threshold distributed symmetric-key
encryption (DiSE) was proposed in [1], where a user has to contact t-out-of-T
servers for both encryption and decryption. The construction is discussed in
detail later in Sect. 4.1 as an application context of threshold PRF.

Post-quantum Security. Once physical quantum computer comes to exis-
tence [7], various quantum algorithms [22,32,33] can be used to break classi-
cal cryptosystems built on the hardness assumption of mathematical problems
like integer factorization, discrete logarithm. Lattice-based cryptography offers
security against cryptanalytic attack by quantum computers. Although NIST2

launched standardization process of quantum-safe asymmetric-key cryptography,
need for standard post-quantum symmetric-key cryptography [12] still persists.
As PRF is a building block of various symmetric-key primitives, we take a step
towards this goal by constructing a simple but efficient quantum-safe threshold
PRF.

1.1 Related Works and Our Contributions

The concept of shared evaluation of a PRF was initially proposed in [26], albeit
for restricted threshold access structures. This was generalized to arbitrary
threshold access structures in follow-up works [28,29,31], with new applications
in [1,19]. Now we highlight our contributions in this paper in the context of
related works.

First Practically Efficient Quantum-Safe Distributed PRF. We provide
the first non-interactive distributed version of a simple but efficient quantum-
safe PRF (PQDPRF) in random oracle model based on lattice-based Learning
with Rounding (LWR) assumption. Such efficient straight-forward construction
of quantum-safe distributed PRF with polynomial ratio between input and out-
put modulus is the first of its kind to the best of our knowledge. We claim novelty
of our contribution with respect to existing works as follows.

– Efficient DPRFs with their possible application areas have been proposed [28,
31], but they are not quantum-safe.

– LWR assumption was introduced in [10] along with a proposed PRF in stan-
dard model, but their construction was inefficient as it required superpolyno-
mial modulus-to-modulus ratio. Also, the aspect of thresholdization was not
captured there.

2 National Institute of Standards and Technology.
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– Some other PRF contructions based on variants of LWE assumption [9,15,17]
can further be used in constructing threshold PRF. “Universal thresholdizer”
tool by [14] can be used to construct threshold PRF from an underlying
threshold FHE protocol. However, none of them is a straightforward and
efficient approach to designing quantum-safe threshold PRF.

– A robust non-interactive lattice-based DPRF construction with theoreti-
cally efficient parameters is proposed in [25] for adaptive corruption settings.
Although our construction is in the semi-honest setting against static corrup-
tions, its main advantage lies in its simplicity, superior practical efficiency,
and ease of implementation as compared to the scheme in [25]. In particular,
our proposed construction provides a practically efficient quantum-safe drop-
in replacement for AES/DDH-based DPRFs for applications (e.g., DiSE [1],
distributed KDC [28]) where robustness can be achieved more efficiently and
directly at the application level instead of trying to achieve the same at the
DPRF level, requiring costlier and more mathematically involved techniques.

We prove the correctness, consistency, and security of our proposed PQDPRF,
described in Sect. 3.2 and Sect. 3.3.

A Practical Use-Case of Proposed Distributed PRF. We validate the
efficacy of proposed PQDPRF by plugging it into existing DiSE (distributed
symmetric-key encryption) protocol [1], to get an improved quantum-safe ver-
sion of DiSE, which we call PQ − DiSE. We also show that our proposed LWR-
based DPRF, apart from being quantum-safe, is more efficient than other DPRFs
(i.e., DDH-based DPRF and AES-based DPRF) previously used in DiSE, and
consequently, PQ − DiSE outperforms DiSE in terms of throughput (number of
encryptions per second). We emphasize that, to the best of our knowledge, no
prior work has actually explored practical implementations and prototype real-
izations of applications such as in [1,19] based on quantum-safe distributed PRFs
from lattice-based assumptions.

2 Preliminaries and Background

This section presents notations and background material.

2.1 Notation

The notation x ← X signifies that x is sampled according to distribution X ,
whereas x

R←− X means that, x is uniform random choice over set X. Upper case
(e.g., A) and lower case (e.g., a) variables in bold denote a matrix and a vector,
respectively. With two vectors a,b ∈ Z

n
q , 〈a,b〉 = ∑n

i=1 aibi (mod q) represents
their vector dot product modulo q. The cardinality of a set S is denoted by |S|.
The notation [n] for some n ∈ N denotes the set {1, . . . , n}. For any y ∈ Zq, the
round-off operation, denoted by �y�p gives the nearest integral value of (y · p

q ) in
Zp; in particular, if (y · p

q ) has a fractional part exactly equal to 0.5, we choose
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to always round it down to �y · p
q 	 to avoid ambiguity. We can apply the round-

off operator to vectors and matrices as well to denote element-wise round-off
operation. A negligible function of λ is denoted by negl(λ); poly(λ) denotes a
polynomial function of λ. Terms “threshold PRF” and “distributed PRF” are
used alternatively throughout the paper.

2.2 Some Terminologies and Definitions

Here, we provide definitions of some terminologies that have been used frequently
in the paper.

Threshold Access Structure. Let P = {P1, . . . , PT } be a set of T parties,
and suppose that some secret k is distributed among them in form of secret
shares. Access structure is a set consisting of all “valid” subsets P ⊆ P of parties
that can recover the secret k by combining their key shares together. For any
t, T ∈ N (t ≤ T ), a minimal (t, T )-threshold access structure over P is defined
as a collection of valid subsets of the form At,T = {P ⊆ P :

∣
∣P∣

∣ = t}, such that
we have |At,T | = (

T
t

)
as the number of valid subsets.

Monotone Boolean Formula (MBF). A Boolean formula is monotone if
it has a single output and it consists of only AND and OR combination of
Boolean variables. Note that any (t, T )-threshold access structure At,T can be
represented by a MBF. The fact that a particular collaboration of t parties
is able to reconstruct the secret, is captured by Boolean formula of the form
(x1 ∧ . . . ∧ xt) and that any such t-collaboration is a way of reconstruction, is
captured by ORing

(
T
t

)
such terms. For e.g., A3,4 is represented by (x1 ∧ x2 ∧

x3) ∨ (x1 ∧ x2 ∧ x4) ∨ (x1 ∧ x3 ∧ x4) ∨ (x2 ∧ x3 ∧ x4).

Pseudo Random Function (PRF). We recall the formal definition of a pseu-
dorandom function (PRF). Let F : K × X → Y be a family of pseudo random
functions and F ′ = {f ′|f ′ : X → Y} be the set of all possible functions with
the same domain and range. Let us assume that, fk ∈ F uses a uniform random
secret k

R←− K and, on input x ∈ X , outputs fk(x), using both k and x. Then,
the advantage of any PPT distinguisher D is negligible, i.e.,

∣
∣
∣Pr[Dfk(·)(1λ) = 1] − Pr[Df ′(·)(1λ) = 1]

∣
∣
∣ ≤ negl(λ),

where λ is a security parameter. The first probability is taken over uniform choice
of k and randomness of D, and the second probability is taken over uniform choice
of f ′ and randomness of D.

Weak Pseudo Random Function. A PRF is weak if its output is pseudo-
random, only when the inputs are uniformly random over the input space. This
is in contrast to the case of (strong) PRF, where indistinguishability holds for
any input from the input space. However a weak PRF can be converted to a
PRF by relying on existence of a random oracle. If fk(·) : K × X → Y is a weak
PRF and H : {0, 1}� → X is a hash function modeled as a random oracle, then
gk(·) = fk(H(·)) is a PRF [28].
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Learning with Rounding (LWR) Problem. LWR problem is a “derandom-
ized” version of Learning with Errors (LWE) problem, first introduced in [10].
Given a parameter n ∈ N, two moduli q, p ∈ N such that q > p ≥ 2, the LWR
distribution Ls for a secret s ∈ Z

n
q is defined over Zn

q ×Zp of the form (a, b), where

we choose a R←− Z
n
q and then calculate b = �〈a, s〉�p. The decision LWR problem

is to distinguish samples of Ls from uniformly random samples of Zn
q × Zp.

2.3 Distributed PRF (DPRF)

If the evaluation of a PRF is performed in a distributed way, we call it a dis-
tributed PRF. In this case, the secret k of the PRF always remains distributed
as shares among multiple parties. Here, we define distributed PRF formally.

Definition 1 (Distributed Pseudo Random Function (DPRF)). Let P =
{P1, . . . , PT } be a set of T parties, and let S be a class of threshold access struc-
tures on P. A threshold PRF scheme for S over an input space X and key space
K is a tuple of probabilistic polynomial-time algorithms as follows,

DPRF = (DPRF.Setup,DPRF.PartialEval,DPRF.FinalEval).

DPRF.Setup(1λ,A): On input the security parameter λ and an access structure

A ∈ S, this algorithm generates a key k
R←− K, and then generates multiple key

shares of k corresponding to A. At the end of key sharing among T parties, the
actual key k is not stored anywhere. Each party has to store one or more than
one key share depending on the particular threshold secret sharing scheme used.

DPRF.PartialEval(x, Pi, A): On input a valid subset A ∈ A, an input x ∈ X and
a party Pi ∈ A, the appropriate key share (say, ki) of Pi corresponding to A is
chosen and a partial evaluation fki

(x) is returned.

DPRF.FinalEval(A, {fki
(x)}Pi∈A): On input a valid subset A ∈ A and all the

partial evaluations by parties Pi ∈ A, this algorithm combines them to get the
final PRF evaluation. The actual combination procedure depends upon the recon-
struction property of the underlying threshold secret sharing scheme.

Correctness and Consistency. A (t, T )-distributed PRF with fk(·) as its
underlying PRF is correct if given an input, its distributed evaluation by any
valid subset A ∈ A outputs the same value as would be obtained by directly
evaluating fk(·) on the same input except with negligible probability, i.e.,

Pr[DPRF.FinalEval(A, {DPRF.PartialEval(x, Pi, A)}Pi∈A) = fk(x)] ≥ 1 − negl(λ).

A (t, T )-distributed PRF is consistent if distributed evaluation on a given input
by any two distinct valid subsets S1, S2 ∈ A outputs the same value except with
negligible probability, i.e.,

∣
∣Pr[DPRF.FinalEval(S1, {DPRF.PartialEval(x, Pi, S1)}Pi∈S1)

�=DPRF.FinalEval(S2, {DPRF.PartialEval(x, Pj , S2)}Pj∈S2)]
∣
∣ ≤ negl(λ).
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Note that the correctness of (t, T )-distributed PRF implies its consistency, but
not the other way around.

Security. We borrow the notion of DPRF security from [28].

The Adversarial Model. We assume a probabilistic polynomial time (PPT)
adversary that can statically corrupt (i.e., announces the set of corrupt par-
ties before the partial evaluation query phase starts) at most (t − 1) number of
parties and each party if corrupted, is honest but curious.

The Security Notion. Let P = {P1, . . . , PT } be the set of T parties and A be
a PPT adversary as described above. Let P ′ be a statically corrupted set such
that, |P ′| = (t−1). Hence, after DPRF.Setup(1λ,At,T ) is run, A has access to key
shares of each Pi ∈ P ′. We say that DPRF is secure if the winning probability of
A against a challenger C in the following game is negligible.

Game:

1. A sends a query input x ∈ X to C. C sends (fk(x), {fki
(x)}Pi∈P\P′) to A,

where fki
(x) = DPRF.PartialEval(x, Pi,P ′ ⋃ Pi).

2. The above step is repeated at most a priori bounded number of times for
adaptive choice of query input x ∈ X .

3. A sends a new challenge query x� (different from query phase inputs) to C.
4. C chooses a random bit b

R←− {0, 1}. If b = 0, it sends fk(x�) to A, otherwise,
it sends some y

R←− Y to A, where Y is the range of underlying PRF.
5. A has to output a distinguishing bit b′.

A wins the game, if b = b′.

2.4 (t, T )-Threshold Secret Sharing

A threshold secret sharing scheme is an essential underlying primitive to build
a distributed PRF protocol. A (t, T )-threshold secret sharing scheme shares a
key k among these T parties in such a way that any t or more parties are able
to reconstruct it from their respective shares, though collaboration of less than
t parties does not suffice. We choose to use Benaloh-Leichter Linear Integer
Secret Sharing Scheme (LISSS) as described in [20]. The secret sharing scheme
is “linear integer” because key shares can be linearly combined to get the actual
secret back in a way that the coefficients of the linear combination are integers.
These coefficients used during the reconstruction of the secret are called recovery
coefficients. Though the original Benaloh-Leichter LISSS shares a scalar secret,
it can naturally be extended to share a secret in vector form. As we deal with
secrets belonging to Z

n
q in later sections, we describe the LISSS scheme in the

context of sharing a secret vector k ∈ Z
n
q here.
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Preprocessing. Here, we discuss some necessary preprocessing steps for thresh-
old secret sharing.

Formation of Distribution Matrix M: Formation of distribution matrix M
depends upon the MBF, representing a (t, T )-threshold access structure. As any
MBF is a combination of AND and OR of Boolean variables, we need to focus
on the three following cases.

Each Boolean variable xi corresponds to a singleton matrix with 1 as its only
element.

AND-ing of Mfa and Mfb : Let Mfa with dimension da × ea and Mfb with
dimension db × eb be the distribution matrices for Boolean formulae fa and fb

respectively. Then we form Mfa∧fb as follows:

ca ca Ca 0

0 cb 0 Cb

Here, ca and cb denote the first column of Mfa and Mfb respectively. Ca

and Cb denote the rest of the columns of Mfa and Mfb respectively. Mfa∧fb has
dimension (da + db) × (ea + eb).
OR-ing of Mfa and Mfb : Let Mfa with dimension da×ea and Mfb with dimen-
sion db × eb be the distribution matrices for Boolean formulae fa and fb respec-
tively. Then we form Mfa∨fb as follows:

ca Ca 0

cb 0 Cb

Here, ca and cb denote the first column of Mfa and Mfb respectively. Ca

and Cb denote the rest of the columns of Mfa and Mfb respectively. Mfa∨fb has
dimension (da + db) × (ea + eb − 1).

It can be easily verified that, the distribution matrix M for (t, T )-threshold
secret sharing has dimension d × e, where d =

(
T
t

)
t and e = (1 +

(
T
t

)
(t − 1)).

Formation of Share Matrix ρ: ρ is a matrix with dimension e × n. Its first
row is populated from the n elements of the actual secret vector k ∈ Z

n
q . The

rest of the elements of the matrix are filled uniformly randomly from Zq.

Sharing. First we compute the matrix Mρ that has d =
(
T
t

)
t rows. Each of the

rows is a unique key share. Note that the number of t-sized subset of P is
(
T
t

)

and each of the t parties in a t-sized subset will hold a keyshare corresponding
to that specific group, which justifies d =

(
T
t

)
t to be the total number of unique

keyshares. For ease of explanation, we identify each keyshare with the following
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two attributes: (1) party_id ( which party the key share belongs to), (2) group_id
(which t-sized group the key share is used for). By enumerating over all t-sized
subsets and tagging them with corresponding enumerating serial numbers, we
get group_id’s of all t-sized subsets.

Now sharing of d rows among T parties happens in the following manner: we
consider d =

(
T
t

)
t rows as

(
T
t

)
chunks of rows of size t. Now for i ∈ [

(
T
t

)
], we pick

ith such chunk at a time and assign each of the t rows to parties belonging to the
subset with group_id i. For example, in a (3, 5)-threshold secret sharing, subset
{P1, P2, P3} has group_id 1, so first three rows of Mρ are assigned to P1, P2, P3

respectively. {P1, P2, P4} has group_id 2, so next three rows of Mρ are assigned
to P1, P2, P4 respectively and so on.

Reconstruction. Any t-sized group of parties, with their key shares, should
be able to reconstruct k. Given P ′ = {Pi1 , Pi2 , . . . , Pit} ⊂ P with i1 < · · · < it,
each of the t parties will have one key share with group_id corresponding to P ′.
Let us denote these t key shares as {ki1 , . . . ,kit}. In any t-sized group, the party
with minimum value of party_id is called the group_leader. Hence, Pi1 is the
group_leader here. In this LISSS the recovery coefficient is 1 for the group_leader
and -1 for the rest of the (t − 1) parties. The key k can be reconstructed as
k = ki1 − ∑t

j=2 kij . We exploit this reconstruction property in final evaluation
of (t, T )-threshold PRF.

Size of Secret Shares. After applying (t, T )-threshold secret sharing on k ∈
Z

n
q , each party gets

(
T−1
t−1

)
key shares to store. So each party has to store

(
T−1
t−1

) ·
n · �log2 q� bits in total.

3 Our Contribution: Proposed Distributed PRF

In this section, we first describe a post-quantum secure PRF in the random ora-
cle model. Next, in Sect. 3.2, we construct a distributed version of the same PRF
such that, if the key is distributed among T parties, participation of all T parties
is necessary to evaluate the PRF on a given input. We call it (T, T )-distributed
PRF, denoted with PQDPRFT,T. In Sect. 3.3, we provide a generalized construc-
tion of quantum-safe (t, T )-distributed PRF, denoted with PQDPRFt,T, where
participation of all T parties is no longer a necessity, but the collaboration of
at least t (t ≤ T ) parties is required to evaluate the PRF on any given input.
In general, PQDPRF refers to both of these schemes in subsequent sections. We
elaborate on the choice of parameters for PQDPRF in Sect. 3.4. Section 3.5 com-
pares our work with existing lattice-based DPRF [25].

3.1 Underlying Quantum-Safe PRF

We discuss the straightforward construction of underlying quantum-safe PRF
from the Learning with Rounding (LWR) assumption in the following.
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The PRF Construction
Fixed parameters:

– Key: k R←− K, where K = Z
n
q . [Secret]

– q ∈ N, modulus of input space. [Public]
– p ∈ N, modulus of output space. [Public]
Input: x ∈ X = Z

n
q

Evaluation: fk(x) = �〈H(x),k〉�p, where H : {0, 1}� → Z
n
q is a hash function,

modeled as a random oracle.

Choice of LWR over LWE. To realize a distributed PRF, we typically need an
algebraically structured PRF with some kind of “deterministic homomorphism”
between key space and output space. Unfortunately, it is hard to achieve such
an algebraically structured PRF from standard LWE. For example, the natural
LWE-based (weak) PRF would be: fk(x) = 〈x,k〉 + e, where the error e needs
to be deterministic, and thus needs to be generated using some (weak) PRF as
e = gk(x). Now, unless g is thresholdizable, f can not be thresholdized. Hence, in
order to avoid this circular requirement, we resort to LWR, where the rounding
operation enables deterministic homomorphism. Several advantages of choosing
LWR over LWE in the construction of PRF have been discussed in [27].

Post-quantum Security of the PRF. We discuss the security of underlying
PRF here.

Theorem 1. The above construction of PRF is secure in the random oracle
model if the LWR assumption holds.

Proof. We assume a distinguisher D which distinguishes PRF outputs on a poly-
nomial number of inputs of its choice from outputs of a truly random function
on the same set of inputs. Assuming that an LWR challenger C chooses to always
generate samples either from an LWR distribution with fixed secret k ∈ K or
from uniform random distribution over Z

n
q × Zp, we build another distinguisher

D′ to distinguish LWR samples from uniformly random samples generated by C
in the following manner:

– D sends an input xi of its choice to D′.
– D′ requests for a sample of the form (ai, bi) ∈ Z

n
q × Zp from C.

– Upon receiving (ai, bi), D′ now programs the random oracle such that H(xi) =
ai. It returns bi to D as the output for input xi.

– After polynomial repetitions of above three steps, D returns a distinguishing
bit b.

– D′ forwards the same bit b as distinguishing bit to C.

If C chooses to generate all (ai, bi) samples from LWR distribution, bi is indeed
PRF output for an input xi, since bi = �〈ai,k〉�p = �〈H(xi),k〉�p = fk(xi). On
the other hand if C chooses to generate samples from uniform distribution, bi is a
TRF (truly random function) output for input xi. Hence, if D guesses b correctly
with non-negligible probability, D′ wins the game against C with non-negligible
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probability, thus breaking the LWR assumption. Therefore, by contradiction, we
conclude that the above PRF construction is secure due to LWR assumption
with the same moduli p, q.

Furthermore, the proposed PRF is a post-quantum secure construction in
random oracle model3, since it relies upon quantum-safe LWR assumption. ��

Polynomial Modulus-to-Modulus Ratio of LWR Parameters. During
the introduction of the LWR assumption [10], the hardness of decision-LWR
problem, when derived from the hardness of the well-established decision-LWE
problem, required a superpolynomial (in security parameter) “ q

p ” ratio while
keeping the dimension (n) and modulus (q) same and allowing unbounded
number (m) of adversarial queries. Later, several works [6,11] focused on new
reduction techniques from LWE problem to LWR problem, which would require
only polynomial “ q

p ” ratio, but allow a priori bounded number of adversarial
queries and a multiplicative decrease in dimension. Another work [27] proposed
a (non-practical) variant of LWR problem where reduction from LWE allows
an unbounded number of adversarial queries while achieving a polynomial “ q

p ”
ratio. However [5] proposes a dimension-preserving reduction from LWE to LWR
problem requiring only polynomial “ q

p ” ratio allowing a priori bounded number
of queries. Formally, we summarize the following theorem from Theorem 1.1
of [5].

Theorem 2 (Theorem 1.1 of [5]). Let λ be the security parameter. Let Ψ be
a B-bounded LWE noise distribution over Z and p, q = poly(λ), m = poly(λ),
n ∈ N with q

p ≥ mBλ. Suppose a PPT adversary A can distinguish LWR samples
with parameter (n, q, p,m) from uniform random samples with advantage ε ≥ λ−c

for some constant c ≥ 1. In that case, there must exist another adversary A′

which can distinguish LWE samples with parameters (n, q,m, Ψ) from uniform
random samples with advantage ε′ = ε(mB)−c.

We conclude from the above theorem that it is possible to obtain a hard instance
of decision-LWR problem from a hard instance of LWE problem with the same
set of parameters (n, q) and polynomially large “ q

p ” ratio.

Concrete Choice of LWR Parameters. Although the theoretical analysis
above implies a technical gap between the hardness of LWE problem and LWR
problem, no practical attack on LWR exploits this gap to perform better than
an attack on LWE with the same set of parameters. Hence, several LWR-based
constructions [18,21], including NIST candidates (e.g., SABER) make a more
aggressive choice of LWR parameters than what is suggested by the theoretical
analysis, to build practically efficient cryptosystems. We follow the same app-
roach while providing a concrete choice of LWR parameters for our construction
in Sect. 3.4. Since the existing attacks on LWR do not capture the loss in security
while traversing from an LWE-based construction to an LWR-based construc-
tion, we first find a set of LWE parameters for which LWE problem is hard to
3 We assume quantum adversary with classical access to random oracle here [13].
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solve. Then we use them as LWR parameters while maintaining polynomial “ q
p ”

ratio.

3.2 Proposed (T, T)-Distributed PRF

Here, we propose the formal construction of (T, T )-distributed PRF, based on
the PRF described in 3.1, and discuss its proof of correctness, consistency, and
security.

Construction 1 (Post-quantum Secure (T, T )-Distributed Pseudo Random
Function (PQDPRFT,T)). PQDPRFT,T is a post-quantum secure (T, T )-
distributed PRF over an input space (or, domain) X = Z

n
q and key space K = Z

n
q .

The range of PRF is Y = Zp. Here q, p ∈ N are publicly known moduli of input
and output space respectively; q1 ∈ N (p < q1 < q) is another public modulus to
be used during partial evaluation. Assume, H : {0, 1}� → Z

n
q is a hash function

modeled as a random oracle. Also, let us assume P = {P1, . . . , PT } to be the
set of T parties. The access structure AT,T here is a singleton set, such that,
AT,T = {P}. The protocol consists of the following three PPT algorithms,

PQDPRFT,T = (PQDPRFT,T.Setup,PQDPRFT,T.PartialEval,PQDPRFT,T.FinalEval).

PQDPRFT,T.Setup(1λ,AT,T ): First, on input security parameter λ, a key k R←− K
is generated. Next, it is distributed among T parties using additive secret sharing
such that each party Pi ∈ P gets a key share ki and

∑T
i=1 ki = k.

PQDPRFT,T.PartialEval(x, Pi): For a given input x, each party Pi partially eval-
uates the PRF with its own share ki as follows: fki

(x) = �〈H(x),ki〉�q1
, and

broadcasts it to other (T − 1) parties.
PQDPRFT,T.FinalEval({fki

(x)}i∈[T ]): Each party having its own partial evalua-
tion and partial evaluations of rest (T −1) parties, computes the final evaluation
of the PRF on the given input x as follows: fk(x) = �∑T

i=1 fki
(x)�p.

Remark. The construction PQDPRFT,T requires a two-layered rounding ; first
from modulo q to q1 during partial evaluation, and then from modulo q1 to p
during final evaluation.

Proof of Correctness and Consistency. Here, we formally prove the cor-
rectness of our proposed PQDPRFT,T. Let us express direct and distributed PRF
evaluation as

fdir
k (x) = �〈H(x),k〉�p, fdist

{ki}i∈[T ]
(x) = �

T∑

i=1

�〈H(x),ki〉�q1
�p.

Claim. The difference between direct PRF evaluation and distributed PRF eval-
uation on some input x is strictly upper bounded by 1 with high probability,
i.e., ∣

∣
∣fdist

{ki}i∈[T ]
(x) − fdir

k (x)
∣
∣
∣ < 1.
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Proof. Note that by definition of round-off operation (Sect. 2.1), for any y ∈ Zq,
we can express �y�p as p

q y + e, where −0.5 ≤ e < 0.5.
Now, assuming r = H(x), the direct evaluation can be written as,

fdir
k (x) = �〈r,k〉�p =

p

q
〈r,k〉 + e′,

where −0.5 ≤ e′ < 0.5. The distributed evaluation can be expressed as,

fdist
{ki}i∈[T ]

(x) = �
T∑

i=1

�〈r,ki〉�q1
�p = �

T∑

i=1

(〈r,ki〉 · q1
q

+ ei)�p

= �q1
q

T∑

i=1

〈r,ki〉 +
T∑

i=1

ei�p ≤ �q1
q

〈r,k〉 + T

2
�p

=
p

q1
(
q1
q

〈r,k〉 + T

2
) + e =

p

q
〈r,k〉 + p

q1
· T

2
+ e,

where, each −0.5 ≤ ei < 0.5 and −0.5 ≤ e < 0.5. Thus,

fdist
{ki}i∈[T ]

(x) − fdir
k (x) ≤ p

q1
· T

2
+ e − e′

=⇒
∣
∣
∣fdist

{ki}i∈[T ]
(x) − fdir

k (x)
∣
∣
∣ ≤

∣
∣
∣
∣
p

q1
· T

2

∣
∣
∣
∣ + |e − e′|

As e, e′ ∈ [−0.5, 0.5), |e − e′| < 1 holds true. Subsequently in Sect. 3.4 we discuss
choice of values p, q1 such that ε = p

q1
· T

2 is small enough and |e − e′| + ε does
not exceed 1. ��
Now, as both fdist

{ki}i∈[T ]
(x) and fdir

k (x) are integers, we can conclude that their
values are same except with a negligible probability. Thus, the correctness of our
proposed distributed PRF is satisfied.

Please note that in the case of (T, T )-distributed PRF, AT,T is a singleton
set, and hence, the consistency of PQDPRFT,T is trivially satisfied.

Proof of Security. We recall the definition of security for a DPRF in the ran-
dom oracle model in Sect. 2.3. We provide the formal statement on the security
of the proposed DPRF in the following.

Theorem 3. Our proposed PQDPRFT,T is secure if the underlying PRF is
secure.

Proof Overview. The underlying PRF, described in Sect. 3.1, is secure based
on the LWR assumption (see Theorem 1). The hardness of the LWR problem
is argued in Theorem 2 from the hardness of LWE problem. In the proposed
DPRF, as described in Construction 1, we rely on the hardness of the same LWR
instance, on which the underlying PRF relies. As the construction is in a (T, T )-
threshold scenario, we follow the security notion of Sect. 2.3 and assume maximal
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corruption by the adversary. In other words, we assume a PPT adversary that
has corrupted (T − 1) parties and gained access to their key shares. Apart from
the actual PRF evaluation for each query input, it is also allowed to see the
partial evaluations of the honest parties for each queried input. The crux of
the proof of security for the proposed DPRF (over and above the security of
the underlying PRF) is to prove that the partial evaluation of an honest party
does not leak any meaningful information about the honest party’s key share. To
prove this, we propose a strategy to simulate the partial evaluation of the honest
party without using its actual key share, and then show that the distributions
of the real and simulated partial evaluations are statistically indistinguishable.

Proof of Theorem 3. We define four hybrids Hybrid0, Hybrid1, Hybrid2 and Hybrid3
(see the hybrid diagrams in the following page), such that in each hybrid,
the game is between a PPT adversary A and a challenger C. We assume
P = {P1, . . . , PT } to be a set of T parties. The adversary A has corrupted
(T − 1) parties among them (say, P2, . . . , PT without loss of generality). So, P1

is the only honest party, and its key share k1 is unknown to the adversary. Each
hybrid consists of a query phase and a challenge phase. Only a priori bounded
number of queries are allowed in the query phase, whereas the challenge phase
consists of a single challenge. In the first hybrid (Hybrid0), the adversary sees the
actual partial evaluations in the query phase, and in the challenge phase, it sees
the actual DPRF evaluation on challenge input. In the last hybrid (Hybrid3),
the adversary still sees the actual partial evaluations in the query phase, but
in the challenge phase, it sees a truly random value. We aim to prove indistin-
guishability of Hybrid3 from Hybrid0, such that the adversary can not distinguish
the output of the proposed DPRF and the output of a truly random function
for the challenge input x� even in the presence of direct PRF evaluation and
partial evaluation by the honest party (P1) on a bounded number of uniform
random query inputs. For the sake of argument, we introduce two intermediate
hybrids. In Hybrid1, the adversary sees simulated partial evaluations in the query
phase, but in the challenge phase, it still sees the actual DPRF evaluation on
the challenge input. In the next hybrid (Hybrid2), the adversary keeps on see-
ing simulated partial evaluations in the query phase, whereas, in the challenge
phase, it sees a truly random value.

We prove the indistinguishability between the chain of hybrids in the form
of some lemmas, which, in turn, proves the theorem. ��
Indistinguishability Between Chain of Hybrids

Lemma 1. Hybrid1 is statistically indistinguishable from Hybrid0.

Proof. These two hybrids differ in the query phase, as in the first case the adver-
sary A sees the actual partial evaluation by the honest party, while in the second
case, A sees the simulated partial evaluation.

Actual partial evaluation in Hybrid0: fk1(x) = �〈r,k1〉�q1
.
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Query Phase Challenge Phase
The adversary A

sends a query input x
to the challenger C.
In response, C sends
fk(x) and fk1(x) to

A, where
r = H(x),

fk(x) = �〈r,k〉�p,

fk1(x) = �〈r,k1〉�q1
.

A sends a
challenge input
x�. In response,

it receives
fk(x

�) from C.

Hybrid0

Query Phase Challenge Phase
A sends a query input

x to C.
In response, C sends

fk(x) and fk1(x) to A,
where

r = H(x),

fk(x) = �〈r,k〉�p,

fk1(x) = �〈r,k1〉�q1
.

A sends a
challenge input
x�. In response,
it receives from

C

y� R←− Zp.

Hybrid3

Query Phase Challenge Phase
A sends a query input

x to C.
In response, C sends
fk(x) and f sim

k1
(x) to

A, where
r = H(x),

fk(x) = �〈r,k〉�p,

f sim
k1

(x) = �fk(x) · q

p

−
T∑

i=2

〈r,ki〉�q1
.

The adversary
sends a

challenge input
x�. In response,

it receives
fk(x

�) from the
challenger.

Hybrid1

Query Phase Challenge Phase
The adversary sends a
query input x to the

challenger.
In response, the

challenger sends fk(x)
and f sim

k1
(x) to the

adversary, where
r = H(x),

fk(x) = �〈r,k〉�p,

f sim
k1

(x) = �fk(x) · q

p

−
T∑

i=2

〈r,ki〉�q1
.

A sends a
challenge input
x�. In response,
it receives from

C

y� R←− Zp.

Hybrid2

Simulated partial evaluation in Hybrid1:

f sim
k1

(x) = �fk(x) · q

p
−

T∑

i=2

〈r,ki〉�q1
= ��〈r,k〉�p · q

p
−

T∑

i=2

〈r,ki〉�q1

= �〈r,k〉 − e −
T∑

i=2

〈r,ki〉�q1
= �〈r,k1〉 − e�q1

.

Now we will prove that, the error term e in the expression of f sim
k1

(x) can be
rewritten as 〈r,k′〉 for some k′ ∈ {0, 1}n, such that,

f sim
k1

(x) = �〈r,k1〉 − e�q1
= �〈r,k1〉 − 〈r,k′〉�q1

= �〈r,k1 − k′〉�q1
= �〈r,k′

1〉�q1
,

which essentially has the same distribution as of fk1(x). Note that e = 〈r,k〉 −
�〈r,k〉�p · q

p is non-zero with high probability and it is independent of k1. So,
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k′ satisfying e = 〈r,k′〉 is independent of k1. Hence although, k′
1 = k1 − k′, k′

1

and k1 are independent of each other.
Since actual partial evaluation fk1(x) = �〈r,k1〉�q1

in Hybrid0 and simulated
partial evaluation f sim

k1
(x) = �〈r,k′

1〉�q1
in Hybrid1 come from the same distribu-

tion, Hybrid1 is statistically indistinguishable from Hybrid0. ��
What remains to be proved is the following claim.

Claim. Given r ∈ Z
n
q , and an error term e ∈ Zq, e can be represented as 〈r,k′〉

for some k′ ∈ {0, 1}n.

Proof. We recall a simple application of leftover hash lemma [2,23,24], which
states that given an additive group G, and n elements of that group g1, . . . , gn,
an arbitrary subset sum of those group elements is statistically indistinguishable
from a random group element g

R←− G. In other words, for a random k R←− {0, 1}n

with high entropy,
∑n

i=1 kigi is uniformly random over G, provided n ≥ 3 log |G|.
Analogously, Zq is an additive group with q elements. For any r ∈ Z

n
q and

k′ ∈ {0, 1}n, 〈r,k′〉 represents a subset sum of group elements, which is uniformly
random over Zq by leftover hash lemma, for unknown k′ and n ≥ 3 log q.

Now let us assume that e can not be represented as 〈r,k′〉, which implies
that there exists at least one e ∈ Zq, that can not be produced from the subset
sum

∑n
i=1 k′

iri, thus leading to the violation of leftover hash lemma.
Hence by contradiction we can say that for any e ∈ Zq, there exists a k′,

such that 〈r,k′〉 = e. ��
Lemma 2. Hybrid2 is computationally indistinguishable from Hybrid1.

Proof. The challenger C in both these hybrids, responds to a query input x with
fk(x) and f sim

k1
(x). As f sim

k1
(x) is not a function of k1, it is never able to leak

any meaningful information about k1 to the adversary A. Hence the problem of
distinguishing Hybrid2 from Hybrid1 reduces to the problem of distinguishing the
PRF output of the form �〈H(x),k〉�p from the output of a truly random function
in the challenge phase, which is hard since the underlying PRF has already been
discussed to be secure due to hardness of LWR problem (Theorem 1). Thus, we
conclude that Hybrid2 is indistinguishable from Hybrid1. Also, since our DPRF
relies on the hardness of the same LWR instance, on which the underlying PRF
relies, no loss in security is incurred owing to the choice of LWR parameters for
PQDPRF. ��
Lemma 3. Hybrid3 is statistically indistinguishable from Hybrid2.

Proof. Lemma 2 implies the proof of this lemma. ��
Finally, Lemma 1, Lemma 2, and Lemma 3 together establish the fact that
Hybrid0 is indistinguishable from Hybrid3, which implies that, A can not dis-
tinguish PRF output from the output of a truly random function even after
seeing actual partial evaluations of the honest party for bounded number of
query inputs, thus completing the proof of Theorem 3. Hence, the proposed
(T, T )-distributed PRF is secure.
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3.3 Generalised (t, T)-Threshold PRF

Now we extend the protocol described in the previous section for a more general
setting of (t, T )-threshold PRF, where 2 ≤ t ≤ T .

Construction 2 (Post-quantum Secure (t, T )-distributed Pseudo Random
Function (PQDPRFt,T)). PQDPRFt,T is a post-quantum secure (t, T )-threshold
PRF, whose input space X , key space K and range Y are same as of PQDPRFT,T.
Here q, p ∈ N are publicly known moduli of input and output space respectively,
while q1 ∈ N (p < q1 < q) is the publicly known modulus of partial evaluation.
Let H : {0, 1}� → Z

n
q be a hash function modeled as a random oracle. With the

key k ∈ K, distributed beforehand among T parties of the set P = {P1, . . . , PT }
by some threshold secret sharing procedure, we expect any subset of P having size
at least t to be able to collaboratively evaluate the PRF on a given input x ∈ X .
At,T = {A ⊂ P : |A| = t} is the threshold access structure with |At,T | = (

T
t

)
.

Any set with cardinality more than t is not explicitly considered as a member of
At,T , because one can pick any t number of parties from that set and perform
the threshold evaluation on a given input. Hence, it is redundant to keep A ⊂ P
with |A| > t as a member of At,T . PQDPRFt,T consists of three PPT algorithms,

PQDPRFt,T = (PQDPRFt,T.Setup,PQDPRFt,T.PartialEval,PQDPRFt,T.FinalEval).

PQDPRFt,T.Setup(1λ,At,T ): On input security parameter λ and the threshold

access structure At,T , a key k R←− K is generated first. Next, it is distributed
among T parties with a threshold secret sharing scheme, as described in Sect. 2.4,
after which, each Pi ∈ P has to store

(
T−1
t−1

)
number of shares, each corresponding

to one of the
(
T−1
t−1

)
number of t-sized subset of P, that Pi belongs to. Notice

that the original key k is destroyed and stored nowhere once the threshold secret
sharing is done.
PQDPRFt,T.PartialEval(x, Pi,P ′): For a given input x and a valid t-sized subset
P ′ ∈ At,T , party Pi ∈ P ′ partially evaluates the PRF with its own share ki

corresponding to the subset P ′ as fki
(x) = �〈H(x),ki〉�q1

, and broadcasts it to
other collaborating parties in P ′ \ Pi.
PQDPRFt,T.FinalEval(P ′, {fki

(x)}i∈[T ]): Each party Pi ∈ P ′ having its own par-
tial evaluation and partial evaluations of rest of the (t− 1) parties, computes the
final evaluation of the PRF on the given input x as fk(x) = �∑Pi∈P′ cifki

(x)�p.
Here, ci’s are the recovery coefficients and according to the threshold secret shar-
ing scheme, described in Sect. 2.4, recovery coefficient of the group_leader (the
party in P ′ with minimum party_id) is 1 and recovery coefficient of each of the
other parties in P ′ \ Pi is –1.

Proof of Correctness and Consistency. Correctness of PQDPRFt,T can be
proved essentially in the same way as of PQDPRFT,T, which in turn implies its
consistency (see Appendix A.1 for details).
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Proof of Security. The idea of the proof remains essentially the same as the
proof of security of (T, T )-distributed PRF (Sect. 3.2). We provide the detailed
proof of security of PQDPRFt,T in Appendix A.2.

3.4 Choice of Parameters

The security of our proposed DPRF directly relies on the security of underlying
PRF (Theorem 3), which in turn relies on the hardness of decision-LWR prob-
lem (Theorem 1). Hence, we need to find a suitable set of parameters n, p, q for
which LWR problem is hard.

While an approach for determining LWR parameters (n, p, q) from LWE
parameters (n, q, α) (where α is the rate of Gaussian LWE noise) could be to fol-
low the theoretical analysis of LWE-to-LWR reduction maintaining polynomial
“ q

p ” ratio with a priori bounded number of samples (Theorem 2), we find the line
of works in [18,21] more suitable to choose LWR parameters for practical instan-
tiations. While analyzing the concrete hardness of LWR problem, they convert
the LWR samples to LWE samples by multiplying the sample with q

p and then
analyze the cost of known attacks to solve LWE. The works [4,16,18,21] based
on LWE or LWR assumption considers only primal and dual attacks as num-
ber of samples(m) in their case is at most 2n. However, there are several known
attacks against LWE [3] and none of the attacks on LWR exploits the theoretical
gap between the hardness of LWE and LWR problem to perform better than an
attack on LWE. So, we focus on finding parameters (n, q, α), for which the LWE
problem is hard with m number of samples. Here, we consider a larger a priori
bounded value of m, which can be interpreted as the allowed number of samples
during LWE-to-LWR reduction or the allowed number of queries in the query
phase of security game of DPRF. Note that lattice estimator4 [3] evaluates the
hardness of LWE problem for a given set of parameters based on its resistance
against all practical attack methods. We use lattice estimator to find a suitable
LWE parameter choice n = 512, q = 232, α = 2−17,m = 225 with secret distri-
bution being uniform over Zq

n, and LWE noise distribution being Gaussian with
standard deviation αq, such that all the known attack methods have run time
more than 2160, which indicates that these parameter choices provide 160 bit of
classical security. We accordingly choose our LWR parameters n = 512, q = 232.

Table 1. Parameters used in PQDPRF implementation

Parameter Value

Modulus of input space (X ) of PQDPRF (q) 232

Modulus of partial evaluation space (q1) 228

Modulus of output space (Y) of PQDPRF (p) 210

Dimension of key in PQDPRF (n) 512

4 https://github.com/malb/lattice-estimator.

https://github.com/malb/lattice-estimator
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Now what remains is to choose a suitable value of modulus p and q1 (p < q1 <
q) such that (1) q

p is polynomial in security parameter and (2) p
q1

is sufficiently
small to ensure the correctness of our proposed DPRF. We observe that choosing
p = 210, q1 = 228 makes the value of p

q1
sufficiently small. Also note that the

ratio q
p = 222 is still polynomial in security parameter λ = 160.

Finally, we provide our concrete choice of parameters for the proposed DPRF
in Table 1. We continue using this set of parameters while using it in PQ − DiSE.

3.5 Proposed PQDPRF vs. the Lattice-Based DPRF in [25]

A robust construction of lattice-based distributed PRF in adaptive corruption
settings with theoretically efficient parameters in the standard model was pro-
posed in [25], which builds upon LWE-to-LWR reductions preserving polynomial
large modulus-to-noise ratios [6,11]. On the contrary, our construction is in the
random oracle model and is targeted for semi-honest settings against static cor-
ruption. Hence, a direct experimental comparison is not feasible. However, the
fact that our construction is in the random oracle model makes it more efficient,
and hence, more suitable for real-world applications.

We compare the overheads of a single DPRF evaluation in [25] vs a single
DPRF evaluation in our case for the same LWR parameters (n, q, p). In [25] the
PRF evaluation assumes a L-bit input and the evaluation (see Eq 2 of Sect. 3.2)
requires (i) L matrix multiplications with each matrix in Z

m×m
q , which needs

a O(logL)-depth circuit with ω(m2) field operations per matrix multiplication
(leading to a total cost of L ·ω(m2) field operations), (ii) A matrix multiplication
between two matrices of dimension n × m and m × m respectively (leading to
a cost of ω(mn) field operations), (iii) A matrix-vector multiplication where the
matrix has dimension n×m and the vector has dimension n (leading to a cost of
O(mn) field operations). So, the overall cost of single PRF evaluation in [25] is
L · ω(m2). On the other hand a single PRF evaluation in our case (see Sect. 3.1)
requires multiplying two vectors of Zn

q which only costs O(n) field operations.
In the case of the DPRFs obtained by distributing the evaluation of the above
PRFs, the above cost analysis still applies for a single partial evaluation done by
each of the parties.

We now present a back-of-the-envelope calculation to compare these over-
heads for typical parameters used in practical applications (e.g., n = 512, q = 232

for LWR hardness, an input length of L = n log q and dimension m = 2n log q).
In this case, the number of field operations required for a single PRF evalua-
tion (equivalently, a single DPRF partial evaluation) in [25] is at least 1010×
larger than that for our construction. This clearly establishes that our construc-
tion is practically more efficient.

We defer the performance comparison of the proposed DPRF with
other (more practically efficient) existing DPRFs (namely the AES-based DPRF
and the quantum-broken DDH-based DPRF) till Sect. 5, where the experimental
results are provided in the context of an application (DiSE).
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4 Application

The LWR-based distributed PRF, that we propose and discuss in detail in the
previous section, can be plugged into various real-world applications of dis-
tributed PRF. In this work, we particularly focus on the DiSE (Distributed
Symmetric Encryption) protocol, originally proposed in [1] and view it as an
application of DPRF. We validate our proposed LWR-based DPRF by using it
in DiSE to make it quantum-safe and call it PQ − DiSE. For the sake of exposi-
tion, we dedicate one subsection below to recall the original DiSE protocol of [1]
and then discuss the proposed PQ − DiSE in the following subsection.

4.1 An Overview of the DiSE Protocol

Like any other encryption scheme, the distributed symmetric-key encryption
(DiSE) scheme also consists of three PPT algorithms: (i) Setup, (ii) Encrypt and
(iii) Decrypt, but with a difference that, both Encrypt and Decrypt are distributed,
i.e., encryption and decryption are performed by, instead of a single server, a
number of servers in distributed manner. In a (t, T )-DiSE, any t(< T ) parties
among the T parties are contacted with a request of encryption or decryption
and each of them contributes some partially computed values, which are then
combined in order to get the end result of encryption or decryption.

Definition 2 (Distributed Symmetric-key Encryption (DiSE)). Let P =
{Pi}i∈[T ] be the set of parties/servers to perform DPRF evaluation. DiSE protocol
internally uses the following cryptographic primitives as its building blocks:
(i) A DPRF DP = (DP.Setup,DP.PartialEval,DP.FinalEval),
(ii) A PRG (pseudo random generator) of polynomial stretch,
(iii) A commitment scheme C = (C.Setup,C.Com).
DiSE consists of the following three protocols built over these primitives,
DiSE.Setup(1λ, t, T ): DP.Setup(1λ, t, T ) is executed to provide evaluation key
shares eki to Pi ∀i ∈ [T ]. Also C.Setup(1λ) outputs public parameters ppcom.
DiSE.DistEncrypt(m,S, {eki}Pi∈S): An entity E requiring encryption of plaintext
m follows the method below.

– E contacts a set S ⊂ P of servers, such that |S| = t and provides them with
α = C.Com(m, ppcom; ρ), where ρ is randomness used in commitment.

– Now zi = DP.PartialEval(α, Pi, S) is generated parallelly by each Pi ∈ S with
its evaluation key share eki and sent back to E.

– E now computes w = DP.FinalEval(S, {zi}Pi∈S) and then e =
PRG(w)

⊕
(m||ρ). Finally c = (α, e) is the ciphertext of m. Here, w can

be viewed as the message-specific encryption key.

DiSE.DistDecrypt(c, S, {eki}Pi∈S): Distributed decryption of a ciphertext c is per-
formed by an entity D as follows.

– D parses c into (α, e) and contacts a set S ⊂ P of t servers and provides them
with α.
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– Each Pi ∈ S computes zi = DP.PartialEval(α, Pi, S) with its evaluation key
share and sends it to D.

– D combines the zi’s to retrieve w = DP.FinalEval(S, {zi}Pi∈S). Next
e
⊕

PRG(w) gives back m||ρ. It then checks if α is indeed a commitment to
m with randomness ρ. If it is, then m is returned as the result of distributed
decryption.

Relation Between DiSE and the Underlying DPRF DP. We recall a the-
orem from [1] in order to better understand how the security of DiSE depends
upon the underlying distributed PRF (assume that other two primitives PRG
and C are already secure).

Theorem 4. DiSE is secure if the underlying DPRF DP is secure.

Informally, the security of a DPRF DP implies that its output retains pseudoran-
domness even when evaluated in a distributed manner (See Sect. 2.3 for formal
security notion). The interesting part of the theorem is that the security of the
underlying DPRF DP directly implies the security of the distributed encryption
scheme.
Instantiations of DP. DiSE [1] use the following two instantiations of DP for
semi-honest settings:

– DDH-based DPRF: Proposed in [28], DDH-based DPRF is secure due to
the hardness of the classical DDH problem. It uses Shamir’s secret sharing
scheme for sharing the PRF evaluation key among the servers. However, it is
vulnerable to quantum attack.

– AES-based DPRF: A general construction of DPRF from any existing PRF
was proposed in [28]. DiSE uses AES-based DPRF accordingly and proves it to
be secure. It uses replicated secret sharing to share the evaluation key among
the T servers. Although AES(128)-based DPRF is believed to provide 64-bit
quantum security, it is also not built upon any quantum-safe assumption.

The paper [1] compares performances of both these instantiations and concludes
that DiSE performs well with AES-based DPRF for lesser values of T . Note that
none of the underlying DPRF is inherently quantum-safe.

4.2 Our Improved PQ − DiSE Protocol

As security of DiSE directly depends upon the security of the underlying DP
(Theorem 4), we obtain post-quantum secure version of DiSE (i.e., PQ − DiSE)
by instantiating the underlying DP with our proposed post-quantum secure
PQDPRF. Our implementation of PQ − DiSE is publicly available here5.

Technical Challenges of PQ − DiSE Implementation. DPRF implementa-
tion in original DiSE generates 128-bit DPRF output from 128-bit input, whereas
our proposed DPRF generates log p = 10 bit output from n · log q = 512× 32 bit
5 https://github.com/SayaniSinha97/PQDiSE-from-PQDPRF.

https://github.com/SayaniSinha97/PQDiSE-from-PQDPRF
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input. We face two-fold challenge here: (i) converting 128-bit input to 512×32-bit
input in order to apply PQDPRF, and (ii) generating a total of 128 pseudorandom
bits in the output. The first challenge is overcome by applying hash function on
the input concatenated with a counter value repeatedly until the length of these
concatenated hash outputs equals 512 × 32 bits. The next challenge is handled
by running 13 instances of PQDPRF together in order to obtain (13× 10) = 130
bits and extract 128 bits as the message-specific encryption key to be used later.
We use Blake26 to instantiate the hash function, modeled as a random oracle.

Table 2. Comparison of key sizes for DPRFs

DPRFs Size of secret key
(as well as each key
share)

Total number of
unique key shares

Number of key
shares that each
party stores

Secret sharing
method

AES-based 128-bits
(

T
t−1

) (
T−1
t−1

)

Replicated secret
sharing

DDH-based 256-bits T 1 Shamir’s secret
sharing

LWR-based
(proposed)

512×32-bits
(

T
t

) · t
(

T −1
t−1

)

Benaloh-Leichter
LISSS

An Analysis on the Key and Key Shares. Table 2 provides a comparative
analysis on the size of secret key and key shares with respect to the three DPRF
instantiations. Even with a larger key-size requirement, our proposed LWR-based
DPRF outperforms the other two due to its highly parallelizable nature, as
evident from the results in the next section.

5 Experimental Result

We now provide a detailed performance analysis of our proposed PQDPRF in
PQ − DiSE based on various metrics with respect to DDH-based DPRF and
AES-based DPRF, used in DiSE, all in semi-honest adversarial settings. All
experiments have been executed on a high-end server with an Intel(R) Xeon(R)
Gold 6226 CPU (2.70GHz clock frequency), 96 cores, 256GB RAM. All graphs
have their y-axis in logarithmic scale. During performance evaluation, we disable
the use of AES-NI instructions by AES-based DPRF to ensure fair comparison
among software implementations of the three DPRFs. We optimize our LWR-
based DPRF implementation that involves arithmetic in Zq using NTL7.

Partial Evaluation Time vs. (t, T ) Values [Fig. 1]. In any (t, T )-distributed
PRF scheme, the partial evaluation of the DPRF on a given input is computed
parallelly by all t collaborating parties with their respective secret share. Here,
we analyze the maximum partial evaluation time required by any of the t par-
ticipating parties for all three DPRFs under consideration.
6 https://www.blake2.net/.
7 https://libntl.org/.

https://www.blake2.net/
https://libntl.org/
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– AES-based DPRF: A linear increase in partial evaluation time in a loga-
rithmic y-axis actually reflects an exponential increase in time. In AES-based
DPRF, computation of partial evaluations by t parties involves all

(
T

t−1

)
key

shares; however, the load of computation is not evenly distributed among all t
parties. In particular, the maximum computation time increases linearly with(
T−1
t−1

)
.

– DDH-based and LWR-based DPRF: Partial evaluation time remains
almost constant with increasing T for both these DPRFs. Because, in both
cases, given an input, each of the t parties parallelly performs a similar com-
putation with its own secret share. Hence, each of the t parties requires a
similar time in computing partial evaluation. Thus, the maximum time taken
by any party to complete the partial evaluation phase does not depend upon
the value of t or T . The graph line of LWR-based DPRF lies slightly below
the line of DDH-based DPRF due to the fact that the modular dot product
of two vectors in Z

n
q takes less time than modular exponentiation.

Final Evaluation Time vs. (t, T ) values [Fig. 2]. This graph compares the
three DPRFs in terms of final evaluation time required by them with varying T .

– The final evaluation time of combining t partial evaluations increases lin-
early with increasing value of t for all the three DPRFs due to the fact that,
in final evaluation phase, LWR-based DPRF involves modular vector addi-
tion of t partial evaluations, whereas AES-based DPRF involves XORing of
t partial evaluations. XORing, being a lighter operation than vector addi-
tion, places AES-based DPRF at a lower position in y-axis than LWR-based
DPRF. DDH-based DPRF involves exponentiation and then multiplication
of t partial evaluations, leading to its higher value along y-axis. Note that
although the final evaluation time of the proposed LWR-based DPRF is more
than that of AES-based DPRF, we argue the efficiency of LWR-based DPRF
considering the total (partial + final) evaluation time of both the DPRFs, as
we discuss next.

10 12 14 16 18 20 22 24 26

101

104

107

Values of T

P
ar

ti
al

E
va

lu
at

io
n

T
im

e
(i
n

µ
s)

LWR-DPRF

AES-DPRF

DDH-DPRF

Fig. 1. Partial evaluation time of
(T
2
, T )-DPRFs

10 12 14 16 18 20 22 24 26
100

103

106

109

Values of T

F
in
al

E
va

lu
at

io
n

T
im

e
(i
n

n
s) LWR-DPRF

AES-DPRF

DDH-DPRF

Fig. 2. Final evaluation time of (T
2
, T )-

DPRFs



70 S. Sinha et al.

10 12 14 16 18 20 22 24 26

103

105

107

109

Values of T

T
ot

al
E
va

lu
at

io
n

T
im

e
(i
n

n
s)

LWR-DPRF

AES-DPRF

DDH-DPRF

Fig. 3. Total evaluation time of (T
2
, T )-

DPRFs

P1 P2 P3 P4 P5 P6 P7 P8 P9P10P11P12

100

103

106

Party IDs of t parties

P
ar

ty
-w

is
e
P
ar

t
E
va

l
T
im

e
(i
n

µ
s)

AES-DPRF

DDH-DPRF

LWR-DPRF

Fig. 4. Individual part-eval time for
(12, 24)-DPRF

4 6 8 10 12 14 16 18 20 22

100

103

106

109

Values of T

T
h
ro

u
gh

p
u
t
(e
n
cs
/s

)

LWR-DPRF [PQ-DiSE]

AES-DPRF [DiSE]

DDH-DPRF [DiSE]

Fig. 5. Throughput in PQ-DiSE and DiSE

Total Evaluation Time vs. (t, T ) Values [Fig. 3]. This graph compares the
three DPRFs in terms of total (partial + final) evaluation time required by them
with varying T . Keeping Fig. 1 and Fig. 2 in mind, the plots here are quite self-
explanatory and clearly depict the efficiency of the proposed LWR-based DPRF
for larger values of T .

Partial Evaluation Time vs. Party-id [Fig. 4]. We plot in this graph the
partial evaluation time taken by each of the t collaborating parties in a t-sized
subset for a specific pair of values, (t, T ) = (12, 24).

– AES-based DPRF: As mentioned earlier, all the t parties here do not have
the same amount of computation load during partial evaluation phase. With-
out loss of generality, if we denote the collaborating parties with {P1, . . . , Pt},
P1 requires computation using

(
T−1
t−1

)
key shares, P2 requires

(
T−2
t−2

)
key shares

and so on. Finally Pt requires
(
T−t
0

)
= 1 key share in its partial evaluation,
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thus involving all
(

T
t−1

)
key shares. Thus, each participating party has a dif-

ferent computation cost, as depicted in the graph.
– DDH-based and LWR-based DPRF: In both cases, each participat-

ing party needs only one key share for partial evaluation computation and
involves the same modular dot product operation between vectors (LWR-
based DPRF) or exponentiation operation (DDH-based DPRF) irrespective
of its party-id. This feature can be useful while enabling parallel computation
by all participating parties.

Throughput vs. (t, T ) Values [Fig. 5]. We plot the throughput (number of
encryptions per second) of DiSE using DDH-based and AES-based DPRF and
PQ − DiSE using LWR-based DPRF.

– DiSE: When instantiated with AES-based DPRF, its throughput decreases
with increasing value of t, T , but remains stable with increasing value of t, T
if DDH-based DPRF is used.

– PQ − DiSE: Its throughput is stable for all values of t, T . It performs slightly
better than DiSE using DDH-based DPRF and significantly better than DiSE
using AES-based DPRF for larger values of t, T .
Explanation: Our PQ − DiSE outperforms DiSE in terms of throughput
owing to the fact that LWR-based DPRF outperforms AES-based and DDH-
based DPRF in terms of evaluation cost as discussed in analysis of Fig. 1.

Note: Although we provide the analysis with respect to (T
2 , T )-distributed PRF,

the graph patterns of Fig. 1, 2, 4, 5 retain for any 1 < t ≤ T . However we prefer
(T
2 , T )-distributed PRF for the sake of analysis, as the value of

(
T
t

)
is the largest

for t = T
2 .

Concluding Remark. AES-128 provides 128-bit classical security and 64-bit
quantum security (against Grover’s algorithm [22]), which is also the security
level for the AES-based DPRF implemented in DiSE. One could upgrade to
AES-256 to provide stronger quantum security, but this would only degrade the
performance of the AES-based DPRF further. The DDH-based DPRF provides
128 bits of classical security, and is quantum-broken. In contrast, our proposed
DPRF uses an LWR parameter set that provides the quantum-equivalent of 160-
bit classical security (as per the latest lattice estimator) but still outperforms
AES-based DPRF for higher values of T and DDH-based DPRF slightly for all
values of T .

6 Conclusion and Future Work

We proposed a (T, T )-distributed quantum-safe PRF based on Learning with
Rounding (LWR) problem and its generalized (t, T )-distributed version in this
work. We proved its correctness, consistency as well as security. We also showed
how to use our proposed DPRF to obtain an efficient quantum-safe version of
DiSE [1], namely PQ − DiSE. We outline some future research directions below.
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– Scalability with an even larger number of parties. Our (t, T )-DPRF
requires each party to store

(
T−1
t−1

)
number of key shares after threshold secret

sharing, thus suffering from high space complexity. Future works may consider
modifying the linear integer secret sharing protocol in order to reduce space
complexity and make the DPRF scalable for an even larger number of parties.

– Adaptive security. We assumed that the corrupted set of parties is statically
fixed before the game begins between the challenger and the adversary. We
leave it as an open problem to allow our DPRF to handle the scenario, where
parties are corrupted dynamically during the game.

– Security in Quantum Random Oracle Model. We leave it as an open
problem to prove the security of the proposed LWR-based distributed PRF in
the quantum random oracle model, where the quantum adversary has quan-
tum access to the random oracle and, thus is able to query the random oracle
with a state in superposition.

Acknowledgement. We would like to thank the Prime Minister Research Fellowship
(PMRF) funded by the Ministry of Human Resource Development, Government of
India, for supporting our research.

A Generalised (t, T )-Threshold PRF

A.1 Proof of Correctness and Consistency

Correctness of PQDPRFt,T can be proved essentially in the same way as of
PQDPRFT,T, which in turn implies its consistency. Let P = {Pi}i∈[T ] be a set of
T parties, and At,T be a threshold access structure defined on it. Without loss of
generality let us consider P ′ = {P1, . . . , Pt} ∈ At,T to be a valid t-sized subset.
Clearly P1 is the group_leader of P ′. Let H : {0, 1}� → Z

n
q be a hash function

modeled as a random oracle. Given an input x, let us denote the direct PRF
evaluation with fdir

k (x) and distributed PRF evaluation by t number of parties
in P ′ using PQDPRFt,T as fdist

k (x). They are computed as follows.

fdir
k (x) = �〈H(x),k〉�p, fdist

k (x) = ��〈H(x),k1〉�q1
−

t∑

i=2

�〈H(x),ki〉�q1
�p.

Claim. Difference between direct PRF evaluation (fdir
k (x)) and distributed PRF

evaluation (fdist
k (x)) on some input x is strictly upper bounded by 1, i.e.,

∣
∣fdist

k (x) − fdir
k (x)

∣
∣ < 1.

Proof. Note that by definition of round-off operation (Sect. 2.1), for any y ∈ Zq,
we can express �y�p as p

q y + e, where −0.5 ≤ e < 0.5.
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We assume r = H(x). Now the direct evaluation can be written as,

fdir
k (x) = �〈r,k〉�p =

p

q
〈r,k〉 + e′,

where |e′| ≤ 0.5. The distributed evaluation can be expressed as,

fdist
k (x) = ��〈r,k1〉�q1

−
t∑

i=2

�〈r,ki〉�q1
�p

= �〈r,k1〉 · q1
q

+ e1 −
t∑

i=2

(〈r,ki〉 · q1
q

+ ei)�p

= �q1
q
(〈r,k1〉 −

t∑

i=2

〈r,ki〉) + (e1 −
t∑

i=2

ei)�p

≤ �q1
q

〈r,k〉 + t

2
�p

=
p

q1
(
q1
q

〈r,k〉 + t

2
) + e

=
p

q
〈r,k〉 + p

q1
· t

2
+ e,

where, each −0.5 ≤ ei < 0.5 and −0.5 ≤ e < 0.5 due to the definition of the
round-off operation. Thus,

fdist
k (x) − fdir

k (x) ≤ p

q1
· t

2
+ e − e′ =⇒ ∣

∣fdist
k (x) − fdir

k (x)
∣
∣ ≤

∣
∣
∣
∣
p

q1
· t

2

∣
∣
∣
∣ + |e − e′| .

We choose values of p, t and q1 such that, the quantity ε = p
q1

· t
2 becomes

sufficiently small. As −0.5 ≤ e < 0.5 and −0.5 ≤ e′ < 0.5, |e − e′| < 1 always
holds true. Thus, the quantity ε + |e − e′| is highly unlikely to exceed 1. Hence,
the difference between direct PRF evaluation and distributed PRF evaluation is
strictly upper bounded by 1, i.e.,

∣
∣fdist

k (x) − fdir
k (x)

∣
∣ < 1.

��
As both fdist

k (x) and fdir
k (x) are integers, we conclude that their values are same

except with a negligible probability. Thus correctness of our proposed distributed
PRF PQDPRFt,T is satisfied.

As correctness of distributed PRF implies its consistency, the proposed
PQDPRFt,T is consistent. We can see the consistency of the proposed DPRF by a
different argument as well. Let us assume two distinct valid subsets S1, S2 ∈ At,T ,
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such that fdist
k (x)

∣
∣
S1

and fdist
k (x)

∣
∣
S2

are result of DPRF evaluations computed
by S1 and S2 respectively. We can write,

fdist
k (x)

∣
∣
S1

=
p

q
〈r,k〉 + p

q1
· t

2
+ e1, fdist

k (x)
∣
∣
S2

=
p

q
〈r,k〉 + p

q1
· t

2
+ e2,

so that they together imply,
∣
∣
∣fdist

k (x)
∣
∣
S1

− fdist
k (x)

∣
∣
S2

∣
∣
∣ = |e1 − e2| .

Now as −0.5 ≤ e1 < 0.5 and −0.5 ≤ e2 < 0.5, |e1 − e2| < 1 always holds true.
And both fdist

k (x)
∣
∣
S1

and fdist
k (x)

∣
∣
S2

being integral values, they always evaluate
to the same value.

A.2 Proof of Security

The idea of the proof remains essentially the same as of proof of security of
(T, T )-distributed PRF (Sect. 3.2). However among T parties of the set P =
{P1, . . . , PT }, only t parties are required to collaborate to evaluate the PRF on
a given input. We assume a PPT adversary A which has corrupted a subset
PC ⊂ P of size (t−1) and thus acquired all their key shares. We show that, even
if A is able to see the PRF evaluation and all the partial evaluations of the honest
parties in P \PC for a priori bounded number of query inputs, it will not be able
to distinguish output of the PRF from the output of a truly random function on
a challenge input, which is essentially different from the query inputs.

Recall that, after PQDPRFt,T.Setup, each Pi ∈ P gets to store
(
T−1
t−1

)
number

of secret shares, each corresponding to one of the t-sized subsets, that Pi may
belong to. In each of the hybrids, if Pi ∈ P \ PC is a honest party, we denote
by ki its key share corresponding to the t-sized group {Pi}

⋃ PC , and by gl, the
group_leader of {Pi}

⋃ PC .
Now we define four hybrids consisting of game between the PPT adversary

A and a challenger C as described in the tabular forms for the ease of exposition.

Indistinguishibility Between the Hybrids
The indistinguishibility of Hybrid3 from Hybrid0 for (t, T )-distributed PRF can
be proved analogously as done in Sect. 3.2 for (T, T )-distributed PRF. Please see
the detailed hybrids on the next page.
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Query Phase Challenge
Phase

A sends a query input x
to C.

Then, C responds with
fk(x) and

{fki(x)}Pi∈P\PC , where
r = H(x),

fk(x) = �〈r,k〉�p,

fki(x) = �〈r,ki〉�q1
.

C, on
receiving a
challenge
input x�

from A,
responds

with fk(x
�).

Hybrid0

Query Phase Challenge
Phase

A sends a query input x
to C. C responds with

fk(x) and
{fki(x)}Pi∈P\PC , where

r = H(x),

fk(x) = �〈r,k〉�p,

fki(x) = �〈r,ki〉�q1
.

C, on
receiving a
challenge
input x�

from A,
responds
with a
random

y� R←− Zp.

Hybrid3

Query Phase Challenge
Phase

On receiving query input x
from A, C responds with PRF

evaluation fk(x) and
simulated partial evaluations

for the honest parties
{fsim

ki
(x)}Pi∈P\PC , where

r = H(x), fk(x) = �〈r,k〉�p,

if i == gl,

f sim
ki

(x) = �fk(x) · q

p

+
∑

Pj∈PC

〈r,kj〉�q1
,

otherwise,

f sim
ki

(x) = �〈r,kgl〉 − fk(x) · q

p

−
∑

Pj∈PC ,j �=gl

〈r,kj〉�q1
.

In the above expression, kj is
the key share of Pj ∈ PC
corresponding to t-sized

group {Pi} ⋃ PC .

C, on
receiving

a
challenge
input x�

from A,
responds

with
fk(x

�).

Hybrid1

Query Phase Challenge
Phase

On receiving query input x
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Abstract. Thus far, several papers estimated concrete quantum
resources of Shor’s algorithm for solving a binary elliptic curve discrete
logarithm problem. In particular, the complexity of computing quantum
inversions over a binary field F2n is dominant when running the algo-
rithm, where n is a degree of a binary elliptic curve. There are two major
methods for quantum inversion, i.e., the quantum GCD-based inversion
and the quantum FLT-based inversion. Among them, the latter method
is known to require more qubits; however, the latter one is valuable since
it requires much fewer Toffoli gates and less depth. When n = 571, Kim-
Hong’s quantum GCD-based inversion algorithm (Quantum Information
Processing 2023) and Taguchi-Takayasu’s quantum FLT-based inversion
algorithm (CT-RSA 2023) require 3, 473 qubits and 8, 566 qubits, respec-
tively. In contrast, for the same n = 571, the latter algorithm requires
only 2.3% of Toffoli gates and 84% of depth compared to the former one.
In this paper, we modify Taguchi-Takayasu’s quantum FLT-based inver-
sion algorithm to reduce the required qubits. While Taguch-Takayasu’s
FLT-based inversion algorithm takes an addition chain for n−1 as input
and computes a sequence whose number is the same as the length of the
chain, our proposed algorithm employs an uncomputation step and stores
a shorter one. As a result, our proposed algorithm requires only 3, 998
qubits for n = 571, which is only 15% more than Kim-Hong’s GCD-based
inversion algorithm. Furthermore, our proposed algorithm preserves the
advantage of FLT-based inversion since it requires only 3.7% of Toffoli
gates and 77% of depth compared to Kim-Hong’s GCD-based inversion
algorithm for n = 571.

Keywords: ECDLP · quantum cryptanalysis · FLT-based inversion ·
quantum resource estimate · addition chain

1 Introduction

1.1 Background

RSA [11] and elliptic-curve cryptography (ECC) [8,9] are the most widely used
public-key cryptosystems in practice. The security of RSA and ECC relates
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to the computational complexity of the factorization problem and the elliptic
curve discrete logarithm problem (ECDLP). Since there are no algorithms that
solve the factorization problem/ECDLP in polynomial time, RSA and ECC are
believed to be secure. In 1994, Shor [13] proposed a quantum polynomial time
algorithm for solving the problems. Thus, quantum resource estimates and opti-
mized quantum circuits of the algorithm has been actively studied.

In this paper, we focus on the ECDLP over a binary elliptic curve called the
binary ECDLP. Banegas et al. [1] presented the first concrete quantum circuits
for solving the problem. For this purpose, they proposed a quantum elliptic curve
point addition algorithm and two quantum inversion algorithms over F2n , where
n is called a degree of a binary field and n = 163, 233, 283, 571 are recommended
by NIST [2]. Banegas et al. estimated the concrete quantum resource, where they
regarded required qubits as the main optimization target. The number of Toffoli
gates is their secondary one since the gates are much more expensive than CNOT
gates. Since the depth of circuits is also known to be cared as mentioned in [12],
we collectively call the required qubits, Toffoli gates, and the depth the main
quantum resource throughout the paper. Banegas et al.’s analysis indicates that
the quantum resource varies greatly depending on which of their two quantum
inversion algorithms is used. They concluded that their GCD-based inversion
algorithm is better than their FLT-based one1since the former requires fewer
qubits, while the latter requires much fewer Toffoli gates and less depth. When
n = 571, their GCD-based and FLT-based inversion algorithms require 4, 015 and
9, 137 qubits, respectively, while the latter requires only 2.4% of Toffoli gates and
94%2 of depth to run Shor’s algorithm. A point to note is that the depth of a
circuit is not an exact value but an upper bound. In general, it is technically hard
to analyze fully parallel quantum computation towards minimizing the depth.

Afterward, there have been several subsequent works that updated the quan-
tum resource estimate by presenting improved quantum inversion algorithms.
Kim and Hong [6] proposed a GCD-based inversion algorithm that reduces all
main quantum resources of Banegas et al.’s GCD-based algorithm. Although
Putranto et al. [10] proposed an FLT-based inversion algorithm that reduces the
depth of Banegas et al.’s FLT-based algorithm, it requires more qubits. Tag-
uchi and Takayasu [15] proposed FLT-based inversion algorithms that reduce
the depth (resp. required qubits) of Banegas et al.’s (resp. Putranto et al.’s)
FLT-based algorithms. On the other hand, these works do not change the
relationship between GCD-based and FLT-based inversion algorithms. When
n = 571, Kim-Hong’s GCD-based and Taguchi-Takayasu’s FLT-based inversion
algorithms require 3, 473 and 8, 566 qubits, respectively, while the latter requires
only 2.3% of Toffoli gates and 84% of depth to run Shor’s algorithm. Therefore,
it is desirable to develop GCD-based (resp. FLT-based) inversion algorithms

1 FLT is the abbreviation of Fermat’s little theorem.
2 Although Banegas et al. [1] used Hoof’s quantum multiplication algorithm [5], we

replace it with more efficient Kim et al.’s quantum multiplication algorithm [7] and
update their analysis. We use the more efficient algorithm throughout the paper.
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that drastically reduce required Toffoli gates and depth (resp. required qubits)
of Kim-Hong’s GCD-based (resp. Taguchi-Takayasu’s FLT-based) algorithms.

1.2 Our Contribution

In this paper, we break the relationship between GCD-based and FLT-based
inversion algorithms by presenting an FLT-based method that requires much
fewer qubits. When n = 571, our method requires 3, 998 qubits to run Shor’s
algorithm and reduces all main quantum resources of Banegas et al.’s GCD-
based algorithm [1]. Although the required qubits are still more than Kim-Hong’s
GCD-based algorithm, they are competitive since ours are just 15% more than
Kim-Hong. Furthermore, our method preserves the advantage of FLT-based
inversion since it requires only 3.7% of Toffoli gates and 77% of depth to run
Shor’s algorithm compared to Kim-Hong’s GCD-based inversion algorithm.

We briefly explain three technical ingredients to obtain the result.

Register-Bounded Addition Chain. Taguchi-Takayasu’s FLT-based inver-
sion algorithm takes an addition chain as input and computes a sequence whose
number is the same as the length of the chain. Briefly speaking, the addition
chain represents the sequence of computation. Unfortunately, this procedure
wastes the number of ancillary registers since there are several terms that are
stored until the end of the computation, while they are used only at an early step
of the computation. If we delete such terms, we can save the required qubits;
however, an addition chain does not indicate which terms should be deleted
and when. For this purpose, we introduce a register-bounded addition chain.
A register-bounded addition chain is a longer sequence than an addition chain
and represents the sequence of computation/uncomputation. We find register-
bounded addition chains for NIST recommended degrees n = 163, 233, 283, 571
and reduce the required qubits for inversions.

Modified Elliptic Curve Point Addition Algorithm. Although a register-
bounded addition chain enables us to reduce required qubits, the resulting inver-
sion algorithm requires slightly more qubits than Banegas et al.’s GCD-based
inversion algorithm. Since our final target is not an inversion itself but Shor’s
algorithm, we modify Banegas et al.’s point addition algorithm [1] and further
reduce the required qubits for running Shor’s algorithm. Interestingly, our pro-
posed point addition algorithm itself does not reduce the required qubits; how-
ever, it becomes effective when combined with our inversion algorithm. Specif-
ically, we design our point addition algorithm so that the proposed inversion
algorithm and the point addition algorithm share the same ancillary registers.

Depth Reduction of Quantum Multiple Squaring Circuits. The above
two ingredients enable us to run Shor’s algorithm with 3, 998 qubits for n = 571.
However, the algorithm lost the advantage of FLT-based inversion since it
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requires more depth than GCD-based inversion algorithms. To preserve the
advantage, we find how to perform parallel quantum computation during FLT-
based inversion and reduce the depth. Since FLT-based inversion is inherently
required to compute 2k-th powers many times for large k, previous FLT-based
inversion algorithms applied a circuit for computing squaring k times for comput-
ing 2k-th power. In contrast, we analyze quantum circuits for computing 2k-th
powers directly and find that much less depth is sufficient for any n. The circuits
are effective for all FLT-based inversion algorithms and enable our algorithm to
preserve the advantage of FLT-based inversion.

Organization. In Sect. 3, we present our FLT-based method. In Sect. 4, we analyze
the quantum resource and compare it with previous ones.

2 Preliminaries

In Sect. 2.1, we explain binary elliptic curves and a binary elliptic curve discrete
logarithm problem (binary ECDLP). In Sect. 2.2, we explain quantum compu-
tations and quantum basic arithmetics over F2n . In Sect. 2.3, we describe Shor’s
algorithm for solving the binary ECDLP.

2.1 Binary Elliptic Curve Discrete Logarithm Problem

Let n be a non-negative integer. A binary elliptic curve of degree n is given
by y2 + xy = x3 + ax2 + b, where a ∈ F2n and b ∈ F

∗
2n . The set of rational

points on an elliptic curve and a special point O form an abelian group under
point addition, where O is the identity element called a point at infinity. Let
P = (x1, y1) and Q = (x2, y2) denote rational points on a binary elliptic curve.
If P �= Q, P + Q = (x3, y3) is given by

x3 = λ2 + λ + x1 + x2 + a, y3 = (x2 + x3)λ + x3 + y2,

where λ = (y1 + y2)/(x1 + x2). Otherwise, P + P = (x3, y3) is given by

x3 = λ2 + λ + a, y3 = x2
1 + (λ + 1)x3,

where λ = x1 + y1/x1. As the above formulas imply, we compute an inversion
when we compute a point addition. Hereafter, [k]P denotes a sum of k P ’s under
point addition. The above two formulas indicate that we can compute [k]P from
P and k in polynomial time. However, there is no known polynomial time algo-
rithm that computes k from P and [k]P . This problem over a binary field is
called the binary elliptic curve discrete logarithm problem (binary ECDLP).

2.2 Quantum Computation in F2n

In classical computation, we use a “bit” represented by 0 or 1. In contrast,
in quantum computation, we use a “qubit” represented by |0〉, |1〉 and their
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superposition. Let m(x) be an irreducible polynomial in F2[x] of degree n and
(m(x)) be an ideal generated by m(x) over F2[x]. To represent an element
in f ∈F2n by qubits, we use a polynomial representation based on a relation
F2n � F2[x]/(m(x)). Since f is represented by a polynomial of degree less than
n−1, we represent it by n qubits and corresponding coefficients of the polynomial
as the quantum state of |0〉 or |1〉. Hereafter, we call the n qubits representing
an element in F2n a register.

We employs quantum circuits to describe quantum computations, where X
gates, CNOT gates, Toffoli (TOF) gates, and SWAP gates are basic quantum
gates. An X gate exchanges the coefficients of |0〉 and |1〉. Let a, b, and c denote
|0〉 or |1〉. Then, CNOT, TOF, and SWAP operations are given by CNOT(a, b) =
(a, a ⊕ b), TOF(a, b, c) = (a, b, c ⊕ (a · b)), and SWAP(a, b) = (b, a), respectively.
A TOF gate is believed to be much more expensive than a CNOT gate. To
explain our method in Sect. 3, we may use a SWAP gate; however, we do not
use the gate actually by designing subsequent circuits appropriately.

Next, we explain quantum basic arithmetics. Let f, g, and h denote quan-
tum states of elements in F2n . We use ADD (resp. SQUARE and spSQUARE) to
denote Banegas et al.’s algorithm [1] for addition (resp. squaring) over F2n ,
where ADD (f, g) = (f, f +g), SQUARE (f) = f2, and spSQUARE (f, g) = (f, f2+g).
We can use ADD to compute a copy of a given element by ADD(f, 0) = (f, f).
We use SQUARE−1 and spSQUARE−1 to denote inverse operations of SQUARE
and spSQUARE, respectively. Banegas et al.’s algorithms [1] for computing the
operations are based only on CNOT gates, where ADD, SQUARE, and spSQUARE
require n, at most n2 − n, and at most n2 CNOT gates, respectively. Circuits
for computing SQUARE−1 and spSQUARE−1 are reversed circuits for computing
SQUARE and spSQUARE, respectively. We use MODMULT to denote Kim et al.’s
multiplication algorithm over F2n [7], where MODMULT (f, g, h) = (f, g, f ·g + h)
which requires TOF gates as well as CNOT gates. Indeed, we can compute
multiplication of given two elements by MODMULT (f, g, 0) = (f, g, f · g). Since
we consider the arithmetics over F2n , it holds that ADD (f, f) = (f, 0) and
MODMULT (f, g, f ·g) = (f, g, 0).

Finally, we describe INV which denotes the inversion computation over F2n ,
where INV (f, [0, . . . , 0], 0) = (f, [r1, . . . , rm], f−1). Observe that INV requires
m + 2 registers whose first one stores f ∈ F2n . The other m + 1 registers are
ancillary registers that include the last one to store f−1. We call the regis-
ter for output and the m registers enclosed by [ ] inversion ancillary registers.
Moreover, we call an inversion ancillary register a dirty ancillary register if the
output ri is non-zero. We use INV−1 to denote an inverse operation of INV, where
INV−1(f, [r1, . . . , rm], f−1) = (f, [0, . . . , 0], 0). We use INV−1 only when the input
[r1, . . . , rm] in the inversion ancillary registers is the same as the output of INV
in the same registers.

In this paper, the above quantum computations also take registers as input,
e.g., ADD(g1, g2), where g1 and g2 is a register which stores f ∈ F2n and 0,
respectively. Then, ADD(g1, g2) describes ADD(f, 0) = (f, f).
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2.3 Shor’s Algorithm for Solving the Binary ECDLP

Shor’s algorithm mainly consists of a point addition part and a quantum Fourier
transform. Since the former and the latter require O(n3) and O(n2) quan-
tum gates, respectively, the point addition part is relatively expensive. Bane-
gas et al.’s point addition algorithm [1] consists of quantum arithmetics over
F2n denoted by MODMULT, INV, INV−1, spSQUARE, const_ADD, ctrl_ADD, and
ctrl_const_ADD. Although we do not explain in detail, const_ADD, ctrl_ADD,
and ctrl_const_ADD operate addition, where they require at most n X gates,
at most n TOF gates, and at most n CNOT gates, respectively. In this paper,
we count the numbers of TOF and CNOT gates and ignore X gates by following
previous works [1]. Banegas et al.’s point addition algorithm requires 3n + 1
qubits except inversion ancillary registers. More precisely, they require 2n + 1
qubits for input and n qubits for an ancillary register of point addition which
we call a point addition ancillary register.

3 Our Method

In Sect. 3.1, we explain register-bounded addition chain. In Sect. 3.2, we propose
a quantum point addition algorithm. In Sect. 3.3, we describe the depth reduction
of squaring. In Sect. 3.4, we show our quantum FLT-based inversion algorithm.

3.1 Register-Bounded Addition Chain

Hereafter, we use a notation 〈α〉 := fα for simplicity for f ∈ F
∗
2n . Then, the

FLT-based inversion computes 〈−1〉 = 〈2n − 2〉. We focus on the computation
of 〈2n−1 − 1〉 hereafter since we can compute 〈2n − 2〉 by applying squaring to
〈2n−1 − 1〉.

Taguchi-Takayasu’s FLT-Based Algorithm. At first, we summarize
overvie- ws of Taguchi-Takayasu’s quantum FLT-based inversion algorithm [15].
To be precise, Taguchi and Takayasu proposed two algorithms, i.e., Basic algo-
rithm and Extended algorithm. Hereafter, we only describe thier Extended algo-
rithm since their Extended algorithm requires fewer qubits than their Basic algo-
rithm. Therefore, we call their Extended algorithm simply Taguchi-Takayasu’s
FLT-based algorithm.

We review an addition chain that is Taguchi-Takayasu’s FLT-based essential
ingredient to improve previous FLT-based algorithms.

Definition 1 (Addition chain). Let � and N denote non-negative integers.
An addition chain for N of length � is a sequence p0 = 1, p1, p2, . . . , p� = N
which satisfies the following condition:

• For all s = 1, 2, . . . , �, there exist i and j which satisfy ps = pi + pj, where
0 ≤ i, j < s.
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We call each term ps of an addition chain a doubled term or an added term. In
particular, if there are no i and j which satisfy 0 ≤ i, j < s, ps = pi + pj , and
pi �= pj , and an added term otherwise. Taguchi-Takayasu’s FLT-based algorithm
takes 〈2p0 − 1〉 = f ∈ F

∗
2n and an addition chain {ps}�

s=0 for n − 1 of length � as
inputs and computes 〈2p1 − 1〉, 〈2p2 − 1〉, . . . , 〈2p� − 1〉 = 〈2n−1 − 1〉 sequentially
by the relation

〈2α − 1〉2β × 〈2β − 1〉 = 〈2α+β − 1〉. (1)

Taguchi-Takayasu’s FLT-based algorithm computes 〈2ps −1〉 in two distinct ways
for all 1 ≤ s ≤ � depending on whether ps is an added term or a doubled term.
If ps is an added term, we compute 〈2ps − 1〉 = 〈2pi+pj − 1〉 from 〈2pi − 1〉 and
〈2pj − 1〉 which have been stored distinct registers. In particular, we first apply
SQUARE pi times to 〈2pj − 1〉 and obtain 〈2pi+pj − 2pi〉. After that, we apply
MODMULT to 〈2pi+pj − 2pi〉 and 〈2pi − 1〉 and obtain 〈2pi+pj − 1〉 = 〈2ps − 1〉. On
the other hand, if ps is a doubled term, we first compute a copy of 〈2pi − 1〉
in another ancillary register by using ADD. Then, we apply SQUARE pi times to
the copy and obtain 〈2pi+pi − 2pi〉. Finally, we apply MODMULT to 〈2pi − 1〉 and
〈2pi+pi − 2pi〉 and obtain 〈2pi+pi − 1〉 = 〈2ps − 1〉. To reduce the qubits, we
uncompute the copy of 〈2pi − 1〉 by ADD. Theorem 1 describes the quantum
resources for Taguchi-Takayasu’s FLT-based algorithm.

Theorem 1 ([15], Theorem 2). Let f be an element in F
∗
2n and {ps}�

s=0 be
an addition chain for n − 1 of length � with p� is an added term. Taguchi-
Takayasu’s FLT-based algorithm takes f = 〈1〉 and {ps}�

s=0 as input and outputs
〈−1〉 = 〈2n − 2〉 with � ancillary registers and � multiplications.

Taguchi-Takayasu’s FLT-based algorithm requires � ancillary registers to store
〈2ps − 1〉 for all s = 1, 2, . . . , �. Furthermore, every term of an addition chain for
Taguchi-Takayasu’s algorithm appears only once.

Our Proposed Algorithm. Now, we reduce even more qubits than Taguchi-
Takayasu’s FLT-based algorithm. Keen readers may notice that we can further
reduce required qubits by uncomputing not only copied 〈2ps −1〉 but also original
〈2ps − 1〉 itself. For an example of Taguchi-Takayasu’s FLT-based algorithm
with an addition chain {ps}9s=0 = {1, 2, 3, 6, 9, 18, 27, 54, 108, 162}, observe that
{1, 2, 3, 6, 9, 18} will not be used again after computing 27. In other words, after
we compute 27, we can uncompute {2, 3, 6, 9, 18} if possible. However, while an
addition chain tells us a sequence of computation, it does not tell us which terms
can be uncomputed and when. Therefore, we need another method to analyze our
proposed algorithm. For this purpose, we introduce register-bounded addition
chains.

Definition 2 (Register-Bounded Addition Chain). Let �̃ and N denote
non-negative integers. A register-bounded addition chain for N of length �̃ is a
sequence p̃ := {p̃s}�̃

s=0 = p̃0 = 1, p̃1, p̃2, . . . , p̃�̃ which satisfies following condi-
tions:
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• For all s = 1, . . . , �̃, there exist i and j which satisfy p̃i + p̃j = p̃s and p̃i ∈
S(p̃, s − 1), p̃j ∈ S(p̃, s − 1), where S(p̃, t) := {p̃s | 0 ≤ s ≤ t, there exists no
s′ such that 0 ≤ s′ ≤ t, s �= s′, and p̃s = p̃s′}.

• There exists ω which satisfies p̃ω = N .
• Every term appears once or twice.

Due to the first condition, a register-bounded addition chain {p̃s}�̃
s=0 is an addi-

tion chain. Therefore, we can also define doubled terms and added terms for a
register-bounded addition chain. Furthermore, a sequence of different terms of
{p̃s}�̃

s=0 is also an addition chain. A register-bounded addition chain explains
both computations and uncomputations. Specifically, the first and second time
each term p̃s appear, we compute and uncompute f2p̃s −1, respectively. Briefly
speaking, S(p̃, t) is a set of p̃0, p̃1, . . . , p̃t that appear only once. Thus, when
we compute or uncompute p̃s for all 1 ≤ s ≤ �̃, we choose former terms that
appear once in p̃0, p̃1, . . . , p̃s−1, while there is no condition for an addition chain.
Then, we define a function C(p̃, t) by C(p̃, t) := 1 when p̃t is a doubled term and
C(p̃, t) := 0 otherwise. We also define r(p̃, t) which we call the register counting
function given by r(p̃, t) := #S(p̃, t)+C(p̃, t)− 1. Intuitively, r(p̃, t) denotes the
number of required ancillary registers when we compute or uncompute 〈2p̃t −1〉.
Moreover, we use the notation R(p̃) := max1≤t≤�̃ r(p̃, t) hereafter. Thus, R(p̃)
describes the number of required ancillary registers for a whole inversion com-
putation. We explain quantum resources for a quantum FLT-based inversion
algorithm which we compute and uncompute based on a register-bounded addi-
tion chain by Theorem 2.

Theorem 2. Let f be an element in F
∗
2n , {p̃s}�̃

s=0 be a register-bounded addition
chain for n − 1 of length �̃, and � denote the length of an addition chain which
consists of different terms of {p̃s}�̃

s=0. There exists a quantum algorithm that
takes f = 〈1〉 and {p̃s}�̃

s=0 as input and outputs 〈−1〉 = 〈2n − 2〉 with R(p̃)
ancillary registers, �̃ multiplications, and 2� − �̃ dirty ancillary registers at the
end of the algorithm.

Proof. We compute or uncompute 〈2p̃s − 1〉 in the s-th procedure for all s =
1, . . . , �̃. More precisely, we compute 〈2p̃s − 1〉 if p̃s appears for the first time
in {p̃s}�̃

s=0 and uncompute 〈2p̃s − 1〉 if it is the second time to appear. By the
second condition of Definition 2, we compute 〈2n−1 − 1〉 in the ω-th procedure,
where 0 ≤ ω ≤ �̃ in the same way as Taguchi-Takayasu’s FLT-based algorithm.
Then, we explain uncomputations of 〈2p̃s − 1〉. We only describe the case that
p̃s is a doubled term.

Uncomputation of 〈2p̃s − 1〉: We have 〈2p̃i − 1〉 stored in the register gk1 ,
0 stored in the register gk2 , and 〈2p̃s − 1〉 stored in the register gk3 , where
p̃s = p̃i + p̃i and i ∈ S(p̃, s − 1). At first, we apply ADD (gk1 , gk2) and obtain
〈2p̃i − 1〉 in the gk2 . Next, we apply SQUARE p̃i times to the gk2 and obtain
〈2p̃i −1〉2p̃i = 〈2p̃i+p̃i −2p̃i〉. Then, we apply MODMULT (gk1 , gk2 , gk3) and obtain
〈2p̃i+p̃i − 2p̃i〉 × 〈2p̃i − 1〉+ 〈2p̃s − 1〉 = 〈2p̃i+p̃i − 1〉+ 〈2p̃s − 1〉 = 〈2p̃s − 1〉+
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〈2p̃s − 1〉 = 0 in the gk3 by (1). By the same procedure as the uncomputation
of copy in Taguchi-Takayasu’s FLT-based algorithm, we uncompute the gk2 .

Then, 〈2p̃s − 1〉 is stored after the t-th procedure if and only if s ∈ S(p̃, t).
Therefore, we can always compute or uncompute 〈2p̃s − 1〉 since there exist
〈2p̃i − 1〉 and 〈2p̃j − 1〉 in some registers such that 0 ≤ i, j < s, p̃s = p̃i + p̃j by
the first condition of Definition 2. Furthermore, #S(p̃, t) describes the number
of registers that store non-zero terms including input after the t-th procedure.
However, we also require another register to copy 〈2p̃t − 1〉 when p̃t is a doubled
term. In other words, we use #S(p̃, t)+1 registers when p̃t is a doubled term and
#S(p̃, t) registers when p̃t is an added term for t-th procedure. Then, the number
of required ancillary registers for t-th procedure is #S(p̃, t)+C(p̃, t)−1 = r(p̃, t).
Therefore, we require max0≤t≤�̃ r(p̃, t) = R(p̃) ancillary registers. Moreover, each
procedure requires a multiplication, in other words, we require �̃ multiplications
in total. The third condition of Definition 2 ensures that we compute � different
terms only once, in other words, we do not compute 〈2p̃s −1〉 after we uncompute
〈2p̃s − 1〉. We require � registers to store them. However, there are r(p̃, �̃) non-
zero ancillary registers at the end of the algorithm. Therefore, we uncompute
� − r(p̃, �̃) times. Then, it holds that �̃ = � + (� − r(p̃, �̃)) = 2� − r(p̃, �̃). By this
relation, it holds r(p̃, �̃) = 2� − �̃. 	

By Theorem 2, we use R(p̃)n qubits except for g0, and �̃ = 2� − r(p̃, �̃) multi-
plications for our proposed inversion algorithm. Then, when we fix � and R(p̃),
larger r(p̃, �̃) is desired to reduce multiplications. On the other hand, it holds
that r(p̃, �̃) ≤ R(p̃) by the definition of R(p̃).

3.2 Modified Quantum Point Addition Algorithm

As we explained in Sect. 2.3, there are two types of ancillary registers, i.e., inver-
sion ancillary registers and a point addition ancillary register to run Shor’s
algorithm. We modify Banegas et al.’s quantum point addition algorithm [1]
described as Algorithm 1 to reduce required qubits by combining with our FLT-
based inversion algorithm in Sect. 3.1, where we use R := R(p̃) to describe the
number of inversion ancillary registers for simplicity. Intuitively, we delete the
point addition ancillary register and perform point addition by using an inver-
sion ancillary register. Briefly speaking, Algorithm 1 is the same as Banegas et
al.’s algorithm by deleting SWAP operations in lines 6 and 16, exchanging line
5 and line 7, and exchanging line 15 and line 17. The modification changes
the role of a register λ which is a point addition ancillary register in Banegas
et al.’s algorithm, while it is both a point addition ancillary register and an
inversion ancillary register in Algorithm 1. In other words, all R inversion ancil-
lary registers are divided into the registers for only inversion computation, i.e.,
g1, . . . , gR−1, and the register for both inversion computation and point addi-
tion computation, i.e., λ. Then, the number of qubits for Shor’s algorithm with
Algorithm 1 is (2 + R)n + 1 qubits, while (3 + R)n + 1 qubits with Banegas et
al.’s point addition algorithm. We note that Algorithm 1 itself does not purely
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Algorithm 1. Proposed quantum point addition algorithm
Input: An irreducible polynomial m(x) ∈ F2[x] of degree n, a coefficient of an binary

elliptic curve a, single qubit q, an elliptic curve point P1 = (x1, y1) stored in
x, y, a fixed elliptic curve point P2 = (x2, y2), a non-negative integer R, registers
g1, g2, . . . , gR−1, gR = λ initialized to an all-|0〉 state

Output: (x, y) = P1 + P2 = P3(x3, y3) if q = 1
(x, y) = P1 = (x1, x2) if q = 0

1: const_ADD (x2, x)
2: ctrl_const_ADDq(y2, y) // λ = 0
3: INV (x, [g2, . . . , gR−1, λ], g1)
4: MODMULT (g1, y, λ)
5: MODMULT (x, λ, y)
6: SWAP (y, λ) // λ = 0
7: INV−1(x, [g2, . . . , gR−1, λ], g1)
8: SWAP (y, λ)
9: spSQUARE (λ, y)

10: ctrl_const_ADDq(a + x2, x)
11: ctrl_ADDq(λ, x)
12: ctrl_ADDq(y, x)
13: spSQUARE (λ, y)
14: SWAP (y, λ) // λ = 0
15: INV (x, [g2, . . . , gR−1, λ], g1)
16: SWAP (y, λ)
17: MODMULT (x, λ, y)
18: MODMULT (g1, y, λ) // λ = 0
19: INV−1(x, [g2, . . . , gR−1, λ], g1)
20: const_ADD (x2, x)
21: ctrl_ADDq(x, y)
22: ctrl_const_ADDq(y2, y)

improve Banegas et al.’s point addition algorithm since Algorithm 1 requires
some conditions. Concretely, Algorithm 1 requires that INV and INV−1 satisfy
two conditions, i.e., (i) λ store 0 at the end of INV and (ii) x at the begin-
ning of INV (INV−1) and x at the end of INV (INV−1) must be the same state.
Quantum FLT-based inversion algorithms always satisfy (ii). However, previous
FLT-based inversion algorithms do not satisfy (i) since they fully use all registers
at the end of algorihtm. Our proposed FLT-based inversion algorithm can pre-
pare a clear register at the end of algorithm by choosing {p̃s}�̃

s=0 properly. We
explain the detail in Sect. 3.4. On the other hand, previous quantum GCD-based
inversion algorithms satisfy (i), while they do not satisfy (ii). GCD-based inver-
sion algorithms apply Euclidean algorithm to x and m, where m is an irreducible
polynomial in Sect. 2.2. In Euclidean algorithm, we compute x ← x mod m or
m ← m mod x until it holds x = 1 or m = 1. Thus, x at the end of quantum
GCD-based inverion algorithms is different state to x at the beginning.
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3.3 Depth Reduction of Quantum Multiple Squaring Circuits

We explain how to reduce the depth of quantum circuits for computing 2k-th
powers. Let f = a0 + a1x+ · · ·+ an−1x

n−1 be a polynomial which represents an
element in F2n with coefficients ai ∈ F2. For an irreducible polynomial m(x) ∈
F2[x] of degree n, we have f2 = a0 + a1x

2 + · · · + an−1x
2n−2 mod m(x) =

a′
0+a′

1x+ · · ·+a′
n−1x

n−1 mod m(x). Since each a′
i is a sum of a0, a1, . . . , an−1,

there exists a matrix Tn = (ti,j) ∈ GLn(F2) which satisfies

[a′
0, a

′
1, a

′
2, . . . , a

′
n−1]

� = Tn[a0, a1, a2, . . . , an−1]�, (2)

where ti,j ∈ F2 for all 1 ≤ i, j ≤ n. The matrix Tn is uniquely determined for
m(x); in other words, the relation (2) holds for any f .

Banegas et al.’s Estimate. We explain how Banegas et al. [1] constructed a
quantum circuit of SQUARE and spSQUARE by using the above matrix Tn. We also
review their quantum resource estimation of SQUARE and spSQUARE.

SQUARE. Let Tn = LnUnPn be an LUP decomposition, where Ln and Un are lower
and upper triangular matrices, respectively, and Pn is a permutation matrix. The
multiplication by matrices Un and Ln (resp. Pn) can be performed by CNOT
(resp. SWAP) gates. In particular, Banegas et al. showed that the numbers of
CNOT gates are the number of ones in Ln and Un except their diagonal entries;
thus, the circuits require at most n(n − 1)/2 CNOT gates and the depth is at
most n(n − 1)/2. In total, SQUARE(f) = f2 requires at most n2 − n CNOT gates
and the depth is at most n2 − n. Since we can compute the concrete number of
CNOT gates of SQUARE for every irreducible polynomial m(x), we use SQn to
denote the number, where the depth is at most SQn.

spSQUARE. For the above matrix Tn determined by an irreducible polynomial
m(x), let spSQn ≥ n denote the number of ones in Tn including diagonal entries.
Let ai and bi be coefficients of f and g for xi, respectively. Then, we can describe
a computation spSQUARE (f, g) = (f, f2 + g) by

[
In On

Tn In

]
[a0, a1, . . . , an−1, b0, b1, . . . , bn−1]�, (3)

where In and On are an identity matrix and a zero matrix, respectively. As
SQUARE, we can compute spSQUARE with spSQn CNOT gates and the upper
bound of depth of the circuit is spSQn.

Depth Reduction of spSQUARE. Observe that spSQn ≥ n holds due to Tn ∈
GLn(F2). However, we show that a smaller depth is sufficient for computing
spSQUARE with the following stronger claim.

Theorem 3. For a matrix Hn = (hi,j) ∈ Mn(F2), there exists a quantum circuit

for computing a multiplication by a matrix
[

In On

Hn In

]
with depth at most n.
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Before providing a proof, we show an example for H3 =

⎡
⎣1 1 0
1 0 1
1 1 1

⎤
⎦, where

spSQ3 = 7. In this case, we want to compute[
I3 O3

H3 I3

]
[a0, a1, . . . , an−1, b0, b1, . . . , bn−1]�

= [a0, a1, a2, b0 + a0 + a1, b1 + a0 + a2, b2 + a0 + a1 + a2]�.

It is easy to check that spSQ3 = 7 CNOT gates are sufficient for the purpose
by adding a0 to the fourth, fifth, and sixth bits, a1 to the fourth and sixth bits,
and a2 to the fifth and sixth bits. We can design a circuit with depth spSQ3 = 7
by applying the CNOT gates one by one. On the other hand, we find that the
depth n = 3 is sufficient by applying several CNOT gates simultaneously. In
particular, the following design of a circuit works with the claimed depth, while
distinct CNOT gates do not share their working bits at the same time:

• Add a0 and a2 to the fourth and sixth bits, respectively.
• Add a0, a1, and a2 to the sixth, fourth, and fifth bits, respectively.
• Add a0 and a1 to the fifth and sixth bits, respectively.

We express the design by matrices

Γ0 =

⎡
⎣1 0 0
0 0 0
0 0 1

⎤
⎦ , Γ1 =

⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦ , Γ2 =

⎡
⎣0 0 0
1 0 0
0 1 0

⎤
⎦

such that H3 = Γ0 + Γ1 + Γ2 and every rows and columns have at most one
1. The three columns of the matrices correspond to the first, second, and third
bits, while the three rows correspond to the fourth, fifth, and sixth bits. The
condition H3 = Γ0 + Γ1 + Γ2 ensures that matrices Γ0, Γ1, and Γ2 represent the
computation by H3, while the other condition ensures that distinct CNOT gates
do not share their working bits at the same time. We show how to decompose
Hn to at most n Γi’s in general and provide a proof of Theorem 3.

Proof. We define a matrix Γ (Hn, ι) = (c(ι)i,j), where c(ι)i,j = hi,j if hi,j = 1 and
j − i = ι mod n for ι = 0, 1, . . . , n − 1. Then, Hn = Γ (Hn, 0)+Γ (Hn, 1)+ · · ·+
Γ (Hn, n−1). We can compute CNOT(ai, bj) for (i, j) ∈ Γ (Hn, ι) simultaneously
for each ι = 0, 1, . . . , n− 1. Therefore, the depth for computing Hn is at most n.

	

By Theorem 3, we reduce the depth for spSQUARE from SQn to n. However,

this is only a small contribution when we estimate the resources for Shor’s algo-
rithm since Hn = Tn is a sparse matrix and SQn is sufficiently close to n for all
NIST-recommended n. On the other hand, if Hn is not sparse, we can drastically
reduce the depth.

We consider quantum FLT-based inversion algorithms. Let k be a non-
negative integer. When we compute a doubled term, i.e., 〈22k − 1〉 by using
a register g1 which stores 〈2k − 1〉 and g2 which stores 0, we employ a quantum
computation called ADD-SQUAREk given by
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1: ADD (g1, g2)
2: for s = 1, . . . , k do
3: SQUARE (g2)

Previous works estimated the depth for ADD-SQUAREk is 1 + kSQn. We give a
tighter upper bound for ADD-SQUAREk.

Let f in F2n and denote f = a0+a1x+a2x
2+ · · ·+an−1x

n−1, where ai ∈ F2.
By observing (2), T k

n satisfies

[a(k)
0 , a

(k)
1 , a

(k)
2 , . . . , a

(k)
n−1]

� = T k
n [a0, a1, a2, . . . , an−1]�, (4)

where a
(k)
i is a coefficient of xi for f2k

for i = 0, 1, . . . , n − 1. Then, a quantum
computation called spSQUAREk given by

[
In On

T k
n In

]
[a0, a1, . . . , an−1, 0, 0, . . . , 0]�

also describes ADD-SQUAREk. Thus, let Hn = T k
n in Theorem 3, the depth for

spSQUAREk is at most n. This is a significantly large contribution since T k
n con-

tains about n2/2 ones for almost all k for all n. In almost all k, the upper
bound of the depth for spSQUAREk is much smaller than the upper bound of the
depth for ADD-SQUAREk for all n, however, we choose the lesser way when we
apply this in FLT-based inversion algorithms. We note that we use an inverse
of spSQUAREk or ADD-SQUAREk written by (spSQUAREk)−1 or (ADD-SQUAREk)−1

when we uncompute 〈22k − 1〉. Then, we use a reversed circuit of spSQUAREk or
ADD-SQUAREk. We repeatedly claim that we can apply the above depth reduction
to all quantum FLT-based inversion algorithms.

When we compute or uncompute an added term, we can use SQUAREk which
is given by applying LUP decomposition to T k

n . Let SQ
(k)
n denote the upper

bound of the CNOT gates and the depth for SQUAREk. In FLT-based inversion
algorithms, we compare the depth of applying SQUARE k times, i.e., kSQn, and
the depth of SQUAREk, i.e., SQ

(k)
n and choose the lesser way.

3.4 Proposed Inversion Algorithm

In this section, we construct our proposed quantum inversion algorithm that
is based on the idea in Sect. 3.1. As we described in Sect. 3.1, larger r(p̃, �̃) is
desired to reduce multiplications and it follows r(p̃, �̃) ≤ R(p̃). However, to apply
our proposed quantum point addition algorithm in Sect. 3.2, conditions (i) and
(ii) must be satisfied. Our proposed inversion algorithm always satisfies (ii). On
the other hand, (i) is satisfied if and only if r(p̃, �̃) < R(p̃). For this reason, we
consider the case of r(p̃, �̃) = R(p̃)−1 hereafter. We apply the depth reduction in
squaring described in Sect. 3.3. Then, we prepare several sequences that describe
our proposed inversion algorithm. We define two sequences {ãs}�̃

s=1, {b̃s}�̃
s=1 that

satisfy p̃ãs
∈ S(p̃, s−1) and p̃b̃s

∈ S(p̃, s−1), and p̃s = p̃ãs
+ p̃b̃s

for all 1 ≤ s ≤ �̃,
where {p̃s}�̃

s=0 is a register-bounded addition chain for n − 1. We assume that
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ãs = b̃s if and only if p̃s is a doubled term of {p̃s}�̃
s=0. For the register-bounded

addition chain {p̃s}�̃
s=0, we define two sets

D := {s ∈ {1, 2, . . . , �̃} | ãs = b̃s},

M := {s ∈ {1, 2, . . . , �̃} | ãs �= b̃s}.

Now, we consider the general case of computation or uncomputation of 〈2p̃s −1〉
by using 〈2p̃ãs − 1〉 and 〈2p̃b̃s − 1〉 for all 1 ≤ s ≤ �̃ since we explained only a
simple case. More precisely, we compute or uncompute 〈2p̃s − 1〉2γs in the h3-th
register by using 〈2p̃ãs −1〉2αs in the h1-th register and 〈2p̃b̃s −1〉2βs in the h2-th
register, where αs, βs, γs are integers for all s = 1, . . . , �̃. We decide that γs = 0
when we compute 〈2p̃s − 1〉 and αs = βs when p̃s is a doubled term. Then,
we define the sequences {Q̃(a)

s }�̃
s=1, {Q̃(b)

s }�̃
s=1, {Q̃s}�̃

s=1 such that Q̃
(a)
s , Q̃

(b)
s , Q̃s

describe the times to apply squaring or its inverse to the h1-th register, the h2-th
register, h3-th register in the s-th procedure, respectively. In this case, it holds
that Q̃

(a)
s = −αs, Q̃

(b)
s = p̃ãs

− βs, and Q̃s = −γs by observing

(
〈2p̃ãs − 1〉2αs

)2−αs

×
(
〈2p̃b̃s − 1〉2βs

)2p̃ãs
−βs

= 〈2p̃ãs+p̃b̃s − 1〉 = 〈2p̃s − 1〉,
(
〈2p̃s − 1〉2γs

)2−γs

= 〈2p̃s − 1〉.

As we described in a proof of Theorem 2, we can construct a quantum algorithm
that computes or uncomputes by the above two relations based on a register-
bounded addition chain {p̃s}�

s=0.
We describe our proposed algorithm in Algorithm 2 which takes a register-

bounded addition chain {p̃s}�̃
s=0 for n − 1 of length �̃ and sequences {ãs}�̃

s=1,
{b̃s}�̃

s=1, {Q̃(a)
s }�̃

s=1, {Q̃(b)
s }�̃

s=1, {Q̃s}�̃
s=1 as input. caseOPTSQUARE(g, v) applies

ca- seSQUARE(g, v) if |v|SQn < SQ
(|v|)
n and applies caseSQUAREv(g) otherwise,

where caseSQUARE (g, v) applies SQUARE v times to g when v > 0, applies
SQUARE−1 −v times to g when v < 0, and do nothing when v = 0 and
caseSQUAREv(g) applies SQUAREv(g) when v > 0, applies (SQUARE−v)−1(g)
when v < 0, and do nothing when v = 0. caseOPTspSQUARE(g1, g2, v)
applies ADD(g1, g2) and caseSQUARE(g2, v) if 1 + |v|SQn < n and
applies casespSQUAREv(g1, g2) otherwise, where casespSQUAREv(g1, g2) applies
spSQUAREv(g1, g2) when v > 0, applies (spSQUARE−v)−1(g1, g2) when v < 0,
and applies ADD(g1, g2) when v = 0. We note that a (SQUAREv)−1 circuit,
a (spSQUAREv)−1 circuit, and a caseOPTspSQUA- RE−1 are a reversed cir-
cuit of SQUAREv, a reversed circuit of spSQUAREv, and a reversed circuit of
caseOPTspSQUAREv, respectively. pl[s] stores the register number which stores
f2p̃s −1 for all 1 ≤ s ≤ �̃. pld[s] stores the register number which stores the copy
of f2p̃ãs −1 for all s ∈ D. The size of pld, i.e., d̃ equals #D. We note that p̃�̃ does
not always equal n − 1. In other words, gpl[�̃] does not always store 〈2n−1 − 1〉.
Then, we define the non-negative integer ω such that gpl[ω] stores 〈2n−1 − 1〉
at the end of the loop from line 2 to line 16. By SWAP procedure in line 18,
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Algorithm 2. Proposed inversion algorithm
Input: An irreducible polynomial m(x) ∈ F2[x] of degree n, a register-bounded addi-

tion chain {p̃s}�̃
s=0, sequences {ãs}�̃

s=1, {b̃s}�̃
s=1, {Q̃

(a)
s }�̃

s=1, {Q̃
(b)
s }�̃

s=1, {Q̃s}�̃
s=1, a

register g0 which stores a polynomial f ∈ F
∗
2n of degree up to n − 1, registers

g1, . . . , gR(p̃) initialized to an all-|0〉 state, arrays pl[�̃], pld[d̃], a non-negative inte-
ger ω which satisfies p̃ω = n − 1

Output: g1 = f2n−2

1: dcount ← 0
2: for s = 1, . . . , �̃ do
3: if s ∈ D then
4: caseOPTspSQUARE (gpl[ãs], gpld[dcount], Q̃

(b)
s )

5: caseOPTSQUARE (gpl[ãs], Q̃
(a)
s )

6: caseOPTSQUARE (gpl[s], Q̃s)
7: MODMULT (gpl[ãs], gpld[dcount], gpl[s])
8: caseOPTspSQUARE−1 (gpl[ãs], gpld[dcount], p̃ãs)
9: dcount ← dcount + 1

10: else // s ∈ M
11: caseOPTSQUARE (gpl[ãs], Q̃

(a)
s )

12: caseOPTSQUARE (gpl[b̃s]
, Q̃

(b)
s )

13: caseOPTSQUARE (gpl[s], Q̃s)
14: MODMULT (gpl[ãs], gpl[b̃s]

, gpl[s])
15: SQUARE (gpl[ω])
16: SWAP (gpl[ω], g1)

〈2n − 2〉 = 〈−1〉 is always stored in g1. However, this procedure can be abbre-
viated because we can change the registers in advance such that pl[ω] = 1. In
Sect. 4, we explain our choices of � and R(p̃) and show {p̃s}�̃

s=0 for all n.
Finally, we describe the number of qubits of our method and Banegas et al.’s

method for Shor’s algorithm. Banegas et al. [1] showed the number of qubits
for Shor’s algorithm using their quantum point addition algorithm with their
quantum GCD-based inversion algorithm is 7n+ 
log n�+ 9 for all n. Then, we
show the number of qubits for our method for Shor’s algorithm in Theorem 4

Theorem 4. The number of qubits for using Algorithm 1 as a point addition
with Algorithm 2 as an inversion algorithm which takes {p̃s}�̃

s=0 as an input is
given by (2 + R(p̃))n + 1.

Therefore, if we find a register-bounded addition chain with R(p̃) ≤ 5, our
method achieves fewer qubits than Banegas et al.’s GCD-based method.

4 Comparison

In Sect. 4.1, we explain our choice of register-bounded addition chains and com-
pare the number of qubits for an inversion. In Sect. 4.2, we describe the trade-off
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Table 1. Our choice of register-bounded addition chains {p̃s}�̃
s=0

n Register-bounded addition chains

163 {p̃s}14
s=0 = {1, 2, 3, 6, 9, 6, 3, 2, 18, 27, 54, 27, 18, 108, 162}

233 {p̃s}16
s=0 = {1, 2, 3, 4, 7, 4, 3, 2, 14, 28, 29, 28, 14, 58, 116, 58, 232}

283 {p̃s}18
s=0 = {1, 2, 3, 6, 9, 15, 9, 6, 3, 30, 45, 47, 45, 30, 2, 94, 141, 94, 282}

571 {p̃s}20
s=0 = {1, 2, 3, 4, 7, 4, 3, 2, 14, 28, 29, 57, 29, 28, 14, 114, 171, 285, 171, 114, 570}

for our proposed inversion algorithm. In Sect. 4.3, we compare the quantum
resources in a whole Shor’s algorithm between our proposed method and previ-
ous methods.

4.1 Our Choice of Register-Bounded Addition Chains

As we showed in Theorem 2, the number of ancillary registers and the number
of multiplications for our proposed inversion algorithm depends on {p̃s}�̃

s=0 for
n−1. In particular, the number of ancillary registers equals R(p̃), and the number
of multiplications equal �̃, where � is the length of an addition chain {ps}�

s=0 for
n−1 which consists of the different terms in {p̃s}�̃

s=0. As we described in Sect. 3.1,
we consider the case of r(p̃, �̃) = 2�−�̃ = R(p̃)−1. In this situation, we reduce the
number of qubits as much as possible, in other words, we find register-bounded
addition chains {p̃s}�̃

s=0 with as small R(p̃) as possible. For this purpose, we find
the shortest addition chains for n − 1 at first. After that, we add some terms to
the shortest addition chains and get register-bounded addition chains. Thus, we
find some register-bounded addition chains with as small R(p̃) as possible.

In Table 1, we show our register-bounded addition chains {p̃s}�̃
s=0 for NIST-

recommended degrees n = 163, 233, 283, and 571. In Table 2, we show �,R and
the number of qubits for our proposed inversion algorithm and previous quantum
inversion algorithms, i.e., Banegas et al.’s quantum GCD-based inversion algo-
rithm which we call BBHL21-GCD, Kim-Hong’s quantum GCD-based inversion
algorithm which we call KH23-GCD, and Taguchi-Takayasu’s quantum FLT-
based inversion algorithm which we call TT23-FLT for all n. R for our proposed
algorithm is minimum R(p̃). We do not compare quantum FLT-based inver-
sion algorithms proposed by Putranto et al. [10] and Banegas et al. [1] since
Taguchi-Takayasu’s FLT-based Basic and Extended algorithm reduce all quan-
tum resources compared to them. We also do not compare Taguchi-Takayasu’s
Basic algorithm since their Extended algorithm requires fewer qubits than Basic
algorithm. The number of qubits in Table 2 includes an input f ∈ F

∗
2n . Table 2

indicates the minimum R = R(p̃) of register-bounded addition chains for n − 1
is 5 for all NIST-recommended n when we use shortest addition chains for n−1.
Then, our proposed algorithm achieves the fewest qubits compared to the pre-
vious quantum FLT-based inversion algorithms, however, it is still larger than
the number of both GCD-based algorithms for all cases.
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Table 2. Comparison of �, R and the number of qubits for an inversion between ours
and prior works

n Proposed algorithm BBHL21-GCD KH23-GCD TT23-FLT
� R qubits � R qubits � R qubits � R qubits

163 9 5 978 – – 830 – – 690 9 9 1, 630

233 10 5 1, 398 – – 1, 180 – – 970 10 10 2, 563

283 11 5 1, 698 – – 1, 431 – – 1, 174 11 11 3, 396

571 12 5 3, 426 – – 2, 872 – – 2, 330 12 12 7, 423

4.2 Quantum Resources Trade-Off in Our Proposed Inversion
Algorithm

In Sect. 4.1, we showed register-bounded addition chains with R(p̃) = 5 for all n,
where R(p̃) describes the number of ancillary registers. On the other hand, TT23-
FLT requires � ancillary registers, where � is the length of shortest addition chains
for n−1. As we described in Table 2, � = 9, 10, 11, 12 when n = 163, 233, 283, 571,
respectively. Then, we also consider all possible cases, i.e., R(p̃) = 5, 6, . . . , � for
our proposed inversion algorithm for all n and estimate the quantum resources.
We note that R(p̃) = � is not the case of TT23-FLT since r(p̃, �̃) = R(p̃)−1 = �−1
for our proposed algorithm. In other words, our proposed algorithm has a clear
ancillary register at the end of the algorithm, while TT23-FLT has no clear
ancillary register at the end of the algorithm. In Sect. 4.3, we show which R(p̃)
is preferable in some parameters.

4.3 Comparison with Previous Methods in Shor’s Algorithm

In this section, we compare the quantum resources of our method for Shor’s
algorithm, i.e., our proposed quantum inversion algorithm in Sect. 3.3 with our
proposed quantum point addition algorithm described in Algorithm 1 and previ-
ous methods, i.e., BBHL21-GCD, KH23-GCD, and TT23-FLT with Banegas et
al.’s quantum point addition algorithm, since previous three algorithms do not
satisfy the conditions (i) and (ii) in Sect. 3.2.

Here, we concretely estimate the quantum resources, i.e., the number of
qubits, TOF gates, and depth of our method and previous methods for Shor’s
algorithm. We also compute the number of CNOT gates, however, we note that
a CNOT gate is much cheaper than a TOF gate. We note that Shor’s algorithm
requires 2n+2 point additions. As Roetteler et al. [12] mentioned, we can ignore
the special cases of point addition since it does not affect quantum Fourier trans-
form. Moreover, we apply semiclassical Fourier transform [4] in Shor’s algorithm
since it requires only 1 qubit. Our proposed inversion algorithm uses the register-
bounded addition chains of Table 1. For estimating the resources of TT23-FLT,
we use addition chains that Taguchi and Takayasu [15] used. Values of the depth
are upper bounds because we do not completely consider parallel quantum com-
putation. Moreover, we compute the concrete number of CNOT gates of SQUARE,
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Table 3. Comparison of the number of qubits, TOF gates, depth, and CNOT gates
for Shor’s algorithm between ours and prior works

n Proposed method
qubits TOF depth CNOT

163 1, 142 19, 682, 952 233, 563, 552 1, 672, 852, 808

233 1, 632 46, 185, 516 536, 005, 548 5, 556, 172, 752

283 1, 982 77, 493, 944 1, 170, 486, 688 10, 840, 880, 376

571 3, 998 368, 373, 720 9, 751, 547, 520 95, 224, 517, 960

n BBHL21-GCD method
qubits TOF depth CNOT

163 1, 157 288, 641, 640 341, 963, 616 322, 348, 232

233 1, 647 772, 092, 828 945, 129, 276 926, 188, 848

283 1, 998 1, 359, 458, 584 1, 672, 107, 936 1, 644, 678, 648

571 4, 015 10, 156, 396, 536 12, 962, 714, 336 13, 091, 280, 488

n KH23-GCD method
qubits TOF depth CNOT

163 1, 017 243, 048, 328 319, 284, 384 391, 632, 328

233 1, 437 694, 262, 556 898, 421, 004 1, 128, 567, 024

283 1, 741 1, 237, 627, 128 1, 594, 550, 944 2, 006, 665, 048

571 3, 473 9, 942, 884, 952 12, 608, 046, 880 16, 064, 737, 832

n TT23-FLT method
qubits TOF depth CNOT

163 1, 957 13, 175, 432 159, 675, 648 1, 130, 020, 680

233 3, 030 30, 000, 204 345, 703, 644 3, 604, 728, 816

283 3, 963 49, 121, 208 708, 332, 352 6, 782, 597, 624

571 8, 566 228, 787, 416 5, 143, 602, 464 57, 782, 226, 216

SQUARE−1, and spSQUARE, and assume that const_ADD requires n/2 X gates on
average, ctrl_ADD requires n/2 TOF gates on average, and ctrl_const_ADD
requires n/2 CNOT gates on average. We estimate the upper bound of the
depth of SQUARE as the number of CNOT gates for SQUARE, while we estimate
the depth of spSQUARE as described in Sect. 3.3. We also apply the depth reduc-
tion for SQUARE and spSQUARE described in Sect. 3.3 to the TT23-FLT method
and estimate the quantum resources. When we estimate the upper bound of the
depth for Shor’s algorithm, we simply add the upper bound of the depth for
each distinct quantum computation. Banegas et al. [1] applied windowing that
reduces the number of TOF gates by using some lookups from a QROM and
estimated the number of TOF gates. We note that we can also apply window-
ing our proposed method while we do not estimate the quantum resources. We
provide a python code [14] for computing quantum resources.
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Table 4. Comparison of QD = “the number of qubits” × “depth” in Shor’s algorithm
between ours and prior works

n QD
Proposed method BBHL21-GCD method KH23-GCD method TT23-FLT method

163 2.67 · 1011 3.96 · 1011 3.25 · 1011 3.12 · 1011
233 8.75 · 1011 1.56 · 1012 1.29 · 1012 1.05 · 1012
283 2.32 · 1012 3.34 · 1012 2.78 · 1012 2.81 · 1012
571 3.89 · 1013 5.20 · 1013 4.38 · 1013 4.41 · 1013

Table 5. Comparison of QT = “the number of qubits” × “the number of TOF gates”
in Shor’s algorithm between ours and prior works

n QT
Proposed method BBHL21-GCD method KH23-GCD method TT23-FLT method

163 2.25 · 1010 3.34 · 1011 2.47 · 1011 2.58 · 1010
233 7.54 · 1010 1.27 · 1012 9.98 · 1011 9.09 · 1010
283 1.54 · 1011 2.72 · 1012 2.15 · 1012 1.95 · 1011
571 1.47 · 1012 4.08 · 1013 3.45 · 1013 1.96 · 1012

Table 3 compares the number of qubits, TOF gates, depth, and CNOT gates
in all cases for all n. We show the quantum resources in the case of R(p̃) = 5
for our proposed method. We compare our proposed method with the previous
GCD-based methods and the FLT-based method.

Comparison with the GCD-Based Methods. The number of qubits for our
proposed method is close to the GCD-based methods, i.e., the BBHL21-GCD
method and the KH23-GCD method for all n. Especially, our proposed method
achieves fewer qubits than the BBHL21-GCD method, while it does not for an
inversion as shown in Table 2. As described in Sect. 3.2, our proposed method for
Shor’s algorithm requires (2+R(p̃))n+1 qubits. Furthermore, we found register-
bounded addition chains with R(p̃) = 5 for all n. Then, the number of qubits
is 7n + 1 and it is smaller than the number of qubits for the BBHL21-GCD
method, i.e., 7n + 
log n� + 9. The KH23-GCD method requires fewer qubits
than our proposed method, however, the difference is less than n. Precisely, the
KH23-GCD method requires 6n + 4
log n� + 11 qubits and the difference to
7n + 1 is n − 4
log n� − 10. Furthermore, our proposed method still achieves
much fewer TOF gates and less depth compared to the GCD-based methods
while we halve the number of qubits from the TT23-FLT method. The number
of TOF gates of our proposed method is from only 2% to 5% of the number of the
GCD-based methods. As for the depth, the depth reduction of the squaring part
in our algorithm in Sect. 3.3 contributes to keeping fewer than the GCD-based
methods.
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Fig. 1. Quantum resources trade-off in all methods for n = 571

Comparison with the TT23-FLT Method. Our proposed method drasti-
cally reduces the number of qubits from the TT23-FLT method. Precisely, we
halve the qubits for all n. Our proposed inversion algorithm applies additional
procedures for uncomputations which require TOF gates, depth, and CNOT
gates to TT23-FLT. When n = 571, our proposed inversion algorithm requires 8
additional procedures which is about 70% of the number of procedures for TT23-
FLT. As you can see in Table 3, the number of TOF gates, depth, and CNOT
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gates for our proposed method is about 170% of the number for the TT23-FLT
method.

By using the concrete number of quantum resources, we compute two values,
i.e., “the number of qubits” × “depth” called QD and “the number of qubits”
× “the number of TOF gates” called QT. QD is a same metric to “spacetime
volume” by Gidney and Ekerå [3] and QT is a similar metric. Gidney and Ekerå
used spacetime volume to evaluate Shor’s algorithm for solving a factoring prob-
lem. Briefly speaking, QD and QT describe how a quantum algorithm works
better on both the number of qubits and the number of TOF gates and both
the number of qubits and depth, respectively. We show QD and QT for our
proposed method and previous methods for all n in Tables 4, 5, respectively. We
also illustrate the relation between the number of qubits and depth and between
the number of qubits and the number of TOF gates of our proposed method
and the previous methods for n = 571 in Fig. 1. Blue lines in Fig. 1 describe the
points that QD = const. and QT = const.

In Tables 4, 5, R(p̃) = 5, 5, 5, 7 and R(p̃) = 5, 5, 5, 5 for our proposed method
for n = 163, 233, 283, 571, respectively. Our proposed method achieves the fewest
QD and QT compared to the previous method for all n. Thus, our proposed
algorithm gives good trade-offs between the number of qubits and depth and
between the number of qubits and the number of TOF gates.
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Abstract. We introduce a novel template attack for secret key recov-
ery in Kyber, leveraging side-channel information from polynomial
multiplication during decapsulation. Conceptually, our attack exploits
that Kyber’s incomplete number-theoretic transform (NTT) causes each
secret coefficient to be used multiple times, unlike when performing a
complete NTT.

Our attack is a single trace known ciphertext attack that avoids
machine-learning techniques and instead relies on correlation-matching
only. Additionally, our template generation method is very simple and
easy to replicate, and we describe different attack strategies, varying on
the number of templates required. Moreover, our attack applies to both
masked implementations as well as designs with multiplication shuffling.

We demonstrate its effectiveness by targeting a masked implementa-
tion from the mkm4 repository. We initially perform simulations in the
noisy Hamming-Weight model and achieve high success rates with just
13 316 templates while tolerating noise values up to σ = 0.3. In a prac-
tical setup, we measure power consumption and notice that our attack
falls short of expectations. However, we introduce an extension inspired
by known online template attacks, enabling us to recover 128 coefficient
pairs from a single polynomial multiplication. Our results provide evi-
dence that the incomplete NTT, which is used in Kyber-768 and similar
schemes, introduces an additional side-channel weakness worth further
exploration.

Keywords: Post-quantum Cryptography · Template attack · Kyber ·
Side-channel Attack · Single Trace

Author list in alphabetical order; see https://www.ams.org/profession/leaders/
CultureStatement04.pdf. Date of this document: 2024-02-20.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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1 Introduction

NIST selected Kyber [3,8] to be standardized as a post-quantum secure key
encapsulation mechanism (KEM) after a rigorous competition. The primary
security requirement of the NIST competition is achieving message confidential-
ity against chosen-plaintext (CPA) and chosen-ciphertext attacks (CCA) based
on plausibly post-quantum hard problems. Additionally, the competition empha-
sizes the resistance of implementations to side-channel attacks. This paper builds
upon the previous research exploiting differences in side-channel traces based
on the chosen inputs [6,20,21] to design a new single-trace template attack
against masked Kyber implementations. In particular, we target the decapsu-
lation phase, leveraging templates to extract the long-term secret key from the
polynomial multiplication process. Our goal is to show that in this context,
masking is not sufficient protection, even considering relatively simple attacks.

Kyber’s key encapsulation (encryption) performs a matrix-vector multiplica-
tion in the ring of polynomials Rq = Zq[x]/(x256+1) and then adds a small noise
vector to the result. In turn, Kyber’s decapsulation (decryption), multiplies a
ciphertext b and a secret a, each of which corresponds to a polynomial. Poly-
nomials in Kyber are of degree 255 and their coefficients are integers between
0 and q − 1, with q = 3329. Kyber turns this core IND-CPA-secure scheme
into IND-CCA-secure encryption using the Fujisaki-Okamoto (FO) transform
[16]. Black-box security against IND-CCA security, however, does not protect
against known/chosen ciphertext side-channel attacks, since the input cipher-
text is always multiplied with the secret key right at the beginning of the decap-
sulation process, cf. [4,14,17,33].

Number Theoretic Transform and Pair-Pointwise Multiplication.
Standard polynomial multiplication has a quadratic time complexity. There-
fore, Kyber and similar lattice-based systems employ the Number Theoretic
Transform (NTT) to convert polynomials into a representation where multi-
plication takes linear time. In the NTT domain, polynomial multiplications
can be computed point-wise. Given polynomials â and b̂ with coefficients
(a0, a1, . . . , an−1) and (b0, b1, . . . , bn−1) respectively, their point-wise multipli-
cation is â◦ b̂ = (a0 · b0, a1 · b1, . . . , an−1 · bn−1), whereby each pointwise multipli-
cation is performed independently. Kyber uses a small modulus and thus applies
the NTT partially, resulting in multiplications of polynomials of degree 1, e.g.,
(a0 + a1X) · (b0 + b1X) which we refer to as pair-pointwise multiplication.

1.1 Our Contribution

We propose an attack on the pair-pointwise multiplication of Kyber-like imple-
mentations and start by observing that Kyber executes more secret-dependent
operations than lattice-based schemes, which perform a full NTT:

1. Instead of one multiplication (as in full NTT), in pair-point multiplications,
three multiplications (cf. Eq. (3)) depend on the same coefficient pair.
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2. Since multiplications are performed mod q, the code requires 3 additional
operations to execute a modulus reduction after each multiplication.

3. While ai ∈ [0, . . . , q − 1] are 12-bit integers, the registers operate on 24-bit
and 28-bit integers before the modulus reduction. Thus, in the Hamming
weight model, the expected information per instruction is H(24) ≈ 3.34 and
H(28) ≈ 3.45 bits of information rather than only H(12) ≈ 2.84.

Starting from these observations, we devise an attack which extracts each coef-
ficient from a pair-point multiplication individually and requires q+q templates.
We next explore an extension of our attack that extracts pairs of coefficients from
each pair-point multiplication via q2 templates, but has a much higher success
probability given that the templates target complete regions of pair-point mul-
tiplications and thus have more samples for comparison with the target trace.
Then we validate our attacks against the masked implementation of [2]. We
first conduct simulations showing that a template attack with 100q templates
succeeds with the probability ≥ 0.999 even in the presence of Gaussian noise
with standard deviation σ ≤ 0.87. Our attack strategy requires a single target
trace from a known ciphertext and avoids complex attack methods like machine
learning, since it succeeds by performing simple correlation analysis. We refer
the reader to Sect. 3 for the specific steps of our attack and its adaptations.

Experimental Results. We perform a power analysis attack also on the masked
implementation of Kyber [2] using the ChipWhisperer Lite platform [30]. We
detect leakage for both q+q and q2 attacks, but unfortunately it is not enough
to recover a pair of coefficients from a pair-point multiplication. We show that
the low success of these experiments is influenced by microarchitectural aspects
and the implementation we target: essentially, the power profile of a pair-point
multiplication is slightly influenced by the operations done before it started1.

However, the success rate, especially for the q2 attack, is quite promising
and therefore, to make the attack work we come up with an extension inspired
by the Online Template Attack (OTA), originally used to attack elliptic curve
cryptography [5,6]. OTA is a powerful technique residing between horizontal
and template attacks with the main distinctive characteristics of building the
templates after capturing the target trace and not before. The combined attack
works as follows: first we reduce the number of candidate templates using the
q2 attack and then we launch iteratively OTA to limit the microarchitectural
noise. This way we are able to recover all the coefficients of 128 pair-pointwise
multiplications. In particular, we completely recover all coefficients for 3 attacked
target traces at the cost of maximum 43M templates. While these numbers are
high, they are required to recover all the coefficients from a single trace.

We also estimated how many templates we need to attack masked Kyber768
with the order 2. Here we need more templates since such implementation uses
6 full polynomial multiplications. For such attack we would need 78M to achieve
43% success rate and to increase it to 90% we need approximately 105M traces.

1 For details the attacks and the experiments see Sect. 5.
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With respect to the experiments it is also an interesting question whether our
experiments may provide better results if we use electro-magnetic emanations
as the side-channel information instead of power consumption. It would be also
interesting to see whether we can lower the number of used templates. We leave
these investigations as future work.

1.2 State of the Art

Attacks on the polynomial multiplication of Kyber were successfully performed
using correlation power analysis techniques [27]. However, early proposals recog-
nized the need to apply masking to the polynomial multiplication in lattice-based
schemes as a countermeasure against side-channel analysis [29,34,35]. Conse-
quently, many research efforts have focused on attacking other components of
the Kyber decapsulation process. Primas, Pessl, and Mangard introduced a tem-
plate attack on the inverse NTT during decryption, enabling them to recover
a decrypted message and subsequently extract the session key [32]. This attack
leverages belief propagation for template matching and has since been extended
and improved in subsequent works [17,31]. In a different approach, Dubrova,
Ngo, and Gärtner propose the use of deep learning techniques to recover the
message and subsequently extract the long-term secret key [15] from the re-
encryption step of decapsulation. Notably, research in this area has demonstrated
the success of deep learning in attacking lattice-based schemes [4,22,26,28]. Fur-
ther SCA attacks on masked implementations of Kyber were presented on the
message encoding [37] and on the arithmetic-to-boolean conversion step [38].
Note that all works cited above attack parts of Kyber other than the pointwise
multiplication.

Our attack differs from the previous attacks in two significant ways when
applied to masked implementations: we directly extract the long-term secret
key from pointwise multiplication and we do not require deep learning or belief
propagation for template construction and matching. Although machine learning
(ML) techniques were shown to be particularly successful again post-quantum
schemes, for example, in [15], we prefer a more classical approach based on Pear-
son correlation matching due to the following reasons: (1) the attack description
is simpler, (2) the attack is easier to replicate since the adversary does not require
the knowledge of ML, (3) it is easier to explain where the leakage comes from
and thus come up with countermeasures, and (4) crucially we wanted to show
that (even) classic side-channel methods effectively extract the key from masked
Kyber.

In parallel to this work, the authors of [40] developed a single-trace template
attack on Kyber’s polynomial multiplication. Their successful experiments val-
idate exploitable leakage in single traces, but their approach differs from ours.
They focus on key generation and encryption, exploiting additional side-channel
leakage due to the multiplication of secret polynomials with k values in matrix
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A. Their method employs Hamming Weight templates for multiple intermedi-
ates, using key enumeration akin to belief propagation. Notably, they target
an unmasked implementation pqm4 [1], while we target the optimized masked
implementation mkm4 [2], enhancing the practicality of our approach for pro-
tected libraries. See Appendix D for a detailed comparison.

2 Notation and Preliminaries

We represent matrices by bold capital letters A, and vectors by bold small let-
ters b, b. Given a polynomial a =

∑n−1
i=0 aiX

i of degree n − 1, we usually write
a as a vector a = (a0, a1, a2, ..., an−1). Also, the operation · represents standard
multiplication between two integers, while ◦ represents point-wise multiplication
between two polynomials in NTT domain (cf. Subsect. 2.2). When writing poly-
nomial a in NTT domain, we will often write â for clarity and also use the hat
notation for matrices, e.g., Â.

We next provide descriptions of Kyber. Our descriptions of the algorithms
will be simplified and we will elaborate mostly on the parts of the KEM that
are relevant to our attack. We refer the reader to the supporting documentation
from Kyber for more details on the KEM [3].

2.1 Kyber

As previously mentioned, Kyber is a lattice-based KEM. It relies on the hardness
of the Module-LWE problem. The latest parameters for Kyber are: n = 256, q =
3329, η = 2 and module dimension k = 2, 3, or 4. The security level of Kyber
increases with its module dimension (in the case k).

Algorithm 1 gives the overview of the key generation. The private key of
Kyber consists of a vector of polynomials of degree n = 256, and with coefficients
in Rq with q = 3329. The k determines the dimension of the vector. The functions
SampleU and SampleB are functions which uniformly sample values in the
ring Rq given a seed. The SampleU provides a uniform random matrix, and
SampleB gives uniform random vectors. The function H is a secure hash function
(SHA3 in Kyber).

Algorithm 2 shows the decapsulation algorithm. Note that the ciphertext is
first decompressed into its standard form b, and then in line 3 the ciphertext
is transformed to its NTT domain. After this transformation, a pair-pointwise
multiplication between â and b̂. This operation will be the target of our attack.
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Alg. 1: Kyber-CCA2-KEM Key

Generation (simplified)

1 Public key pk , secret key sk Choose
uniform seeds ρ, σ, z;

2 Â ∈ Rk×k
q ← SampleU (ρ);

3 a, e ∈ Rk
q ← SampleB(σ);

4 â ← NTT(a);

5 t̂ ← Â ◦ â + NTT(e);

6 pk ← (̂t, ρ); sk ← (â, pk ,H(pk), z);
7 return pk , sk ;

Alg. 2: Kyber-CCA2-KEM

Decryption (simplified)

1 secret key sk = (â, pk ,H(pk), z),
ciphertext c = (c1, c2)
Output: Shared key K

2 b, v ← Decompress(c1, c2);
3 m ←

Decode(v − NTT−1(â)T ◦ NTT(b)));

4 (K̄, τ) ← H(m||H(pk));
5 c′ ← PKE.Enc(pk , m, τ);

6 if c = c′ then
7 K ← KDF(K̄||H(c));
8 else
9 K ← KDF(z||H(c));

10 return K;

We do not describe the encryption and encapsulation functions of Kyber
since we do not attack these algorithms, for details, see Appendix A.

2.2 Number Theoretic Transform (NTT)

Kyber performs polynomial multiplications and speeds it up to linear time by
transforming the polynomials into the NTT domain, allowing for a so-called
pointwise multiplication between the polynomials. The NTT is a version of Fast
Fourier Transform (FFT) over a finite ring. To perform the transformation, one
evaluates the polynomial at powers of a primitive root of unity, which are usually
represented by the symbol ζ. We refer to [23] for details on how to implement
the NTT (in Kyber and Dilithium) and cover relevant aspects of Kyber below.
Kyber has dimension k, and each dimension has its own roots ζ0k , ζ1k , . . . , ζn−1

k .
In the following, we focus on a single dimension for ease of presentation.

The NTT on Kyber. In Kyber, the n-th root of unity does not exist and
therefore, the 2n-th roots of unity are used so that modulus polynomial Xn + 1
is factored into polynomials of degree 2 rather, i.e., Kyber performs an incom-
plete NTT, where the last layer is not executed. Therefore, in Kyber, after the
(incomplete) NTT transformation, a polynomial a corresponds to 128 poly-
nomials of degree 1 each. Polynomial a is thus transformed to NTT(a) =
a0 + a1x, . . . , a254x + a255x. The incomplete transformation of the polynomials
to their NTT domains has an impact on the way, multiplications are performed
in Kyber. Namely, when computing the multiplication between two transformed
polynomials, we are not computing a point-wise multiplication between the coef-
ficients of the polynomials (i.e. a · b = (a0b0 = c0, a1b1 = c1, . . . , anbn = cn)).
Instead, we multiply the coefficients pairwise and, for instance, the first two
coefficients of the resulting polynomial are obtained as follows:

c1 = a0b1 + a1b0, c0 = a0b0 + a1b1ζ. (1)

We will denote the multiplication in Eq. (1) as pair-pointwise.
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Multiplication Optimizations. In Eq. (1), we see a very straightforward way
of calculating a pair-pointwise multiplication, and obtaining the resulting two
adjacent coefficients of a polynomial. We see that a total of 5 multiplications
are performed. This multiplication process can be optimized via the Karatsuba
algorithm in such a way that we only need to perform 4 multiplications per each
pair-pointwise multiplication:

(a0 + a1x)(b0 + b1x) mod (x2 − ζ)

= a0b0 + ((a0 + a1)(b0 + b1) − a0b0 − a1b1)x + a1b1x
2

= a0b0 + a1b1ζ + ((a0 + a1)(b0 + b1) − a0b0 − a1b1)x.

(2)

Thus, we can obtain the resulting polynomial c0 + c1x via

c0 = a0b0 + a1b1ζ, c1 = (a0 + a1)(b0 + b1) − (a0b0 + a1b1). (3)

Observe that Karatsuba multiplication is the most popular approach for
implementing pair-pointwise multiplication in Kyber. It allows us to reduce the
number of multiplications from five to four. The software implementation has
adopted the approach we analyze in this paper; it was also used in public hard-
ware implementations of Kyber such as [39].

Masking Kyber. There are several proposals to mask lattice-based schemes
such as NTRU [29] and Saber [7], whereby the following works present con-
crete masking schemes for Kyber [10,18]. The masking of the schemes addresses
various secret-dependent operations, such as computing inverse NTT, the key
derivation function in the decapsulation process, or more commonly, masking
polynomial multiplication with the long-term secret. The approach for masking
polynomial multiplication in Kyber follows a similar pattern to other crypto-
graphic schemes: the secret is divided into shares, and secret-dependent opera-
tions are performed on each share. The results are then combined. In the case of
Kyber, this involves splitting the secret polynomials into shares and multiplying
the input ciphertext separately with each share.

2.3 Online Template Attacks

Online Template Attack (OTA), introduced in [5,6], is a powerful technique
residing between horizontal and template attacks. The main distinctive charac-
teristic is building the templates after capturing the target trace and not before
like in classical template attacks [12]. In general, creating templates in advance
is feasible when the number of possible templates is small, like for example, for
a binary exponentiation algorithm, where templates need to distinguish a single
branch result, which only requires two templates [12]. However, if the number of
leaking features increases, the number of different templates could be infeasible
to generate in advance. This scenario is where OTAs enter into play by capturing
templates on-demand based on secret guesses [5,6].
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In general, OTA works as follows: the attacker creates templates correspond-
ing to partial guesses of the secret and then matches the templates to the target
trace; the best matching indicates which guess was correct. The attacker contin-
ues by iteratively targeting new parts of the secret until it is fully recovered.

In recent years OTA was applied in many scenarios, most notably, against
Frodo post-quantum proposal [9] and several crypto-libraries (libgcrypt,
mbedTLS, and wolfSSL) using microarchitectural side-channels [11].

We will use OTA in our experiments to improve the success rate of our attacks
to 100%, namely, we will first use attacks to learn the secret coefficients and the
remaining entropy we will recover using OTA (for details see Sect. 5).

3 Our Attack

In this section, we detail our template attack on Kyber’s decapsulation, extract-
ing secret coefficients a during polynomial multiplication. We outline the attack
steps, explore variations with fewer or more templates impacting key recovery
success, and discuss its application to masked implementations. Additionally, we
explain its extension to target implementations employing shuffling in polyno-
mial multiplication.

3.1 Attack Steps—Extracting the Key via q + q Templates

The ciphertexts which we use for creating our templates have a specific struc-
ture when represented in NTT (see below). Since the (incomplete) NTT is an
efficiently computable bijection, we can create the desired structure by choosing
a vector of which we set 128 polynomials of degree 1 (in NTT domain) and then
compute the ciphertext by applying the inverse NTT (see Sect. 2.2) to this vec-
tor. Additionally, we also perform the compression since the input ciphertexts are
provided to the decapsulation algorithm in compressed form (see Algorithm 2).

We recall that the compression and decompression algorithms may introduce
some errors in the least significant bits of some coefficients of the polynomials.
Thus, when setting a value b̂ with a desired structure, and then transforming
it into its standard domain b, we should check whether b can be compressed
and decompressed such that Decompress(Compress(b)) = b. If that holds,
we ensure that on line 2 of Algorithm 2, NTT(b) is indeed transformed into
a vector with the structure we initially desired. In [17], the authors deal with
the same issue for their chosen ciphertext attack on the decapsulation process of
Kyber. The authors need a ciphertext b which on NTT domain would be sparse,
and they present two methods for generating such ciphertexts and ensuring that
they would preserve the desired properties after compression and decompression.
For our attack, it is much easier to deal with this issue since the structure we
desire for the NTT-ed value is much more flexible as we explain below.

In essence, for our attack, we simply require a ciphertext vector which on
NTT domain has either of the two following properties: (1) For each pair of
coefficient values b0, b1, it holds that b0 �= b1, or (2) For any two coefficients
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bi, bj in b it holds that bi �= bj . The first property is enough for attacking unpro-
tected and even masked implementations. The second property will be relevant
for attacking designs that implement shuffling of the polynomial multiplication
(see Subsect. 3.2). Naturally, vectors with the second property can also be used
for attacking masked or unprotected implementations since the second property
implies the first property. Our advantage is that there is no restriction with
respect to the specific values these coefficients should have. Thus, when gener-
ating the inputs, we could simply set the desired vector b̂, run the inverse NTT
on it and then check whether the result preserves its form after compression and
decompression. Moreover, it is not even necessary that the vector in the standard
domain preserves its original form. It is only important that the resulting vec-
tor can be transformed via NTT into a vector with any of the properties listed
above. Therefore, it should be easy to just try out some values. Another simple
strategy could be to set a vector in the standard domain b with small coeffi-
cients. The small values ensure that the coefficients will preserve their original
values after compression and decompression. Then, we can simply apply NTT to
b and check whether the resulting vector b̂ has the desired properties. Finally,
we point out that finding input ciphertexts that achieve the second property
can be done very easily and we may not even need to choose those ciphertexts
ourselves. Thus, our attack can also be described as a known ciphertext attack.

We will now explain the attack that uses only 2q templates to recover a.

Step 1: Template Building. We build our templates on a device identi-
cal to the device we are going to attack. In this device, we are able to set
the value of the secret key. We start by building a template for the case that
the secret â consists only of zero coefficients: â = (00, . . . , 0255). For the input
ciphertext, we can choose any ciphertext for which the coefficients correspond-
ing to b0 and b1 are always different, i.e. b0 �= b1. For example, we consider
the following ciphertext: b̂ = (26490, 3171, 26492, 3173, . . . , 2649254, 317255). We
record thus a power trace and obtain the template T0. We repeat this process
for all possible values between 0 and q−1 and obtain templates T1, T2, . . . , Tq−1.
For each new template, we change the value of â accordingly (i.e. setting
â = (10, 11, 12, . . . , 1255), â = (20, 21, 22, . . . , 2255), etc) and we always use the
same ciphertext b̂.

Step 2: Obtaining the Target Trace. We now turn to the target device
running a key decapsulation of Kyber and querying it using the same ciphertext
b, which on NTT domain maps to the ciphertext b̂ we used in Step 1. We record
a power trace during execution and obtain our target trace Tt.

We now have our set of templates and our target trace and can perform
template matching. The idea is that we will obtain enough information to identify
good matches for operations involving the operands a1, since this coefficient is
used independently in several operations during each pair-point multiplication.
We assume that it would be harder to identify any matches for coefficients a0

since this coefficient is only used once during each pair-point multiplication.
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Step 3: Template Matching. We match the target trace Tt with each tem-
plate Tj and we expect to see no correlations between any regions of the traces,
unless both the target trace and the template used the same operands a1, b0, b1
within some pair-point multiplication. First, we compare the target trace with
the template T0. There are a total of 128 pair-point multiplications and, thus, a
total of 128 regions corresponding to this operation in the power traces. We can
numerate each region sequentially from 0 to 127. If we observe some correlations
between the target Tt and our template T0 on region i, then we will know that
the operand a2i+1 has the value 0. We then repeat the process with all remaining
templates, or until we have extracted all a1 operands of the polynomial â.

Step 4: Template Building with Extracted Coefficients. We will now
use the coefficient values extracted in the previous step to build a new set of
templates. These templates will help us extract all operands corresponding to
a0 in each pair-point multiplication, i.e. all even coefficients.

Let us denote by ψ an operand a1 whose value was extracted in the pre-
vious step. In essence, we can now build templates in the same way as we
did in Step 1, but the keys â will now have the following structure. For
each value j ∈ [0, 1, . . . , 3328] we construct a template for, i.e. each value we
set for the key during each template generation, we set the key as follows:
â = (j0, ψ1, j2, ψ3, . . . , j254, ψ255). We will denote the templates generated during
this step as Tj,ψ, and we will generate all of them the same way as described in
Step 1, using the same input ciphertext b̂. We obtain a total of q new templates
Tj,ψ.

Step 5: Template Matching. We perform template matching in the exact
same way as we did in Step 3, but using the templates Tj,ψ obtained in Step
4. We now expect to see correlations, which will let us extract all a0 values. As
opposed to the template matching we performed on Step 3, we now will have
more points of comparison for finding correlations between some template Tj,ψ

and the target trace Tt. Namely, for a template corresponding to the correct j for
some a0, we now expect to find correlations not only on the single multiplication
a0 · b0, but also on all remaining operations dependent on a0 and a1, i.e. all
operations within the pair-point multiplication. Since the value for a1 has already
been taken into consideration, a correct guess for a0 will lead to a good match
for the complete region corresponding to the whole pair-point multiplication.

Now, let us discuss how the above attack can be implemented using a smaller
or a larger number of templates. The attack strategy remains the same, but
varying the number of templates might affect our attack success rate.

Attack Using q Templates. Ideally, a total of q templates would be enough
for extracting each coefficient in â one by one. In that case, we would only need
to perform the first three steps of the attack described above. Such an attack
may work if we assume, for instance, that the pair-point multiplication is imple-
mented according to Eq. (1) and not optimized via Karatsuba. In that case, we’d
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have more points of comparison for extracting a0 and a1 independently. q tem-
plates may also be enough, for instance, if each integer multiplication requires
several clock cycles, extending thus the points of comparison as well. If single
integer multiplications are enough for successfully performing template match-
ing, our attack could potentially generalize to implementations of Dilithium [25]
as well, when collecting q traces for the (larger) Dilithium modulus. Namely,
Dilithium actually performs complete NTTs on its polynomials and, thus, mul-
tiplications are actually point-wise and not pair-pointwise. Thus, each secret
coefficient is multiplied once, and then a modulus reduction is performed. In the
Hamming weight model (see Sect. 4), this might not provide sufficient leakage
(since Hamming leakage of k bits scales with

√
k), but the real-life leakage might

nevertheless suffice to attack also Dilithium.

Attack Using q2 Templates. Each pair-point multiplication involves two adja-
cent coefficients of â, which we have referred so far as a0 and a1 (see Equation
(1)). We could thus build templates for each possible pair of coefficients a0, a1.
When performing template matching, we will be comparing regions correspond-
ing to the complete pair-point multiplication (similar to Step 5 in Sect. 3.1).
This increases our chances of performing a key extraction.

Making templates for each possible pair of coefficients implies that we need
a total of q2 templates, which in Kyber translates to 33292 ≈ 11M templates.
While this number is much larger than what we considered initially, this attack
strategy is very likely to work. Acquiring 11M traces may need a couple of days.
However such an attack complexity is still considered a real threat.

Improving Success Rates of the Attacks Using Online Template
Attack. We now consider the case where the success rate of an attack (either
q or q2) is too low to recover all coefficients, e.g., when mounting a single-trace
attack or when the attack is affected by noise. Then, in the q2 attack, correla-
tion analysis might not rank the template with the correct pair (a0, a1) first, but
rather as the x-th most likely template. To recover (a0, a1), enumerating over all
possible x pairs is prohibitive for all 128 coefficient pairs since it would require
2128 trials.

In this case, it is worth to check whether the first pair of coefficients is always
determined correctly. Indeed, this is the case in our experiments (Sect. 5). Our
interpretation is that values in registers set by multiplications in previous itera-
tions slightly affect the power consumption when the registers are overwritten.
On the other hand, since there is no previous operation for the first multiplica-
tion, the initial register state is deterministic, and the attack is successful. Thus,
the attack improves if we proceed adaptively and only attack the y-th pair after
having correctly recovered the y−1 coefficient pairs before. Since all registers are
now set correctly, the attack on the y-th multiplication should succeed similarly
to the attack on the first multiplication. This attack creates template online, i.e.,
after obtaining the target power trace. Similarly to improving the q2 attack, it
can also improve the accuracy of the q + q attack and all intermediate variants.
For details about this method in practice, see Sect. 5.
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3.2 Attack on DPA-Protected Kyber

We can apply the previously described attack analogously on masked implemen-
tations of Kyber. In this case, we recover each share of the secret key using our
method and then add them to obtain the secret key.

Also in this case, one target trace suffices if each share is used independently
and sequentially, which is the case in software implementations that first multiply
the ciphertext with share one and then multiply the ciphertext with share two
(and so on in case of higher-order masking). For hardware implementations, there
exists the possibility of performing some multiplications in parallel as long as
the Kyber module counts on more than one multiplier. However, not all designs
of Kyber can afford to have several multiplier due to the costs in the area.

Let us assume that we are attacking a masked implementation that produces
shares with all coefficients taking values between 0 and q − 1 = 3328. In this
case, we will be able to perform a key extraction using the same number of tem-
plates as for an unmasked implementation. Namely, the templates we need for
attacking such a masked implementation correspond to multiplications between
known coefficients (for our chosen ciphertext), and unknown coefficients with val-
ues between 0 and q − 1. Thus, after obtaining all q templates, we only need to
perform the template matching twice with respect to an unmasked implemen-
tation (once for each share). The number of templates matchings we perform
increases linearly with the masking degree. However, if we perform template
matching over a power trace corresponding to the complete multiplication pro-
cess involving both shares, we only need to perform the matching once for each
template. For each 0 ≤ j ≤ q − 1, each match will reveal which coefficient in any
of the two shares and has a value equal to j. Note, however, that if the masked
implementation operates on a modulus notably larger than q, the complexity
increases linearly, and the success probability is affected (see Sect. 6).

Attack on Shuffled Implementations—Distinguishing via the Input
Ciphertext. A potential countermeasure against our attack might be random-
izing the shuffling of pair-point multiplications. While a shuffled Kyber imple-
mentation would still allow us to correctly extract all coefficients, determining
their original order in the resulting polynomial becomes challenging. However,
we find that our attack can be adapted for effectiveness on shuffled implemen-
tations with just one target trace. Using a ciphertext with unique coefficient
values for template generation, we obtain templates as before. During template
matching, each template is attempted n

2 times, with varied pair-point multi-
plication positions. Successful matches reveal operand values and their original
positions, exposing the secret coefficient’s location. This attack initially focuses
on extracting coefficients a2i+1 (specifically, coefficient a1 within each pair-point
multiplication), akin to our approach in Subsect. 3.1.

Generating the Inputs. We choose an input ciphertext for which (in the NTT
domain) each of its coefficients has a unique value, i.e., given the ciphertext b̂ =
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b0, b1, b2, . . . , b255, it holds that for each bi, bj , with i �= j, bi �= bj . For illustration
purposes, let us set b̂ as follows: b̂ = 90, 781, 17532, 73, . . . , 17254, 104255.

Template Building. We build templates like described in Step 1 of Subsect.
3.1. Thus, we obtain a total of q templates. For a coefficient j, the templates
will be of the form: Tj = (j0 + j1) · (90 + 781), . . . , (j254 + j255) · (17254 + 104255).

Obtaining the Target Trace. We obtain the target trace the same way as
described in Step 2 of Subsect. 3.1, i.e. by providing our chosen ciphertext b̂ as
input. Moreover, note that the resulting target trace corresponds to a shuffled
evaluation of the pair-pointwise multiplication. For instance, the target trace
might correspond to the following shuffled sequence of operations

Tt = (a22 + a23)·(b22 + b23), (a104 + a105) · (b104 + b105), . . . ,
(a0 + a1) · (b0 + b1), (a56 + a57) · (b56 + b57).

Secret Coefficient Extraction and Location Identification via Template
Matching. Now, we match our templates with the target trace in a similar
way as described in Step 3 of Subsect. 3.1 with some additional steps. For
each template Tj , we will perform a template matching with the target trace as
follows.

(1) We first test a matching with the template Tj and target Tt the same way
as in our original attack. Let us assume that we find a match at position
i, revealing that the secret coefficient used at that position equals j, i.e.
a2i+1 = j. Let us recall that at this point, the template Tj corresponds to a
non-shuffled sequence of pair-point multiplications and that for generating
the template and the target traces, we used a ciphertext polynomial whose
coefficients (in the NTT domain) are all different from each other. Finally,
observe that for obtaining a match, all input operands used within the ana-
lyzed computations need to be the same, i.e., for a pair-point multiplication,
the same b0, b1 and a1 need to be used in the template and in the target.
Given the observations above, we know that if now we obtain a match at
position i, then the original, non-shuffled position of the extracted coeffi-
cient in the secret key is i. The coefficients of our input ciphertext serve
as orientation since they are unique, and we know their positions in the
templates.

(2) We will now try to find out whether a value j appears in some shuffled pair-
point multiplication, and we will also find out where in the non-shuffled key
j is located. For this, we start shifting the multiplication regions of our trace
Tj . Concretely, we will shift the positions of all pair-point multiplications.
Thus, for each template, there is a total of 128 shifts we can do since each
template corresponds to 128 pair-point multiplications. Let w denote the
number of shifts we do on a template and let T>w

j denote the template
built for the coefficient j and shifted a total of w times. For instance, if
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we shift the multiplications once, we obtain the template with the following
form: T>1

j = (j254 + j255) · (b254 + b255), (j0 + j1) · (b0 + b1), (j2 + j3) · (b2 +
b3), . . . , (j252 + j253) · (b252 + b253).

(3) Next, we perform template matching with T>w
j and Tt. Let us assume that

we find a match at position i. The match tells us that a2i+1 in the target trace
has the value j. However, since we know that T>w

j shifted the pair-point
multiplications by w positions, we know that it is actually the coefficient
a2(i−w)+1 in the (non-shuffled) secret key which equals j.

(4) We repeat the same matching + shifting process with all templates until we
recover all coefficients. Recall that we are recovering all coefficients a1 for
each pair-point multiplication. Once we have recovered them, we can build
a new set of q templates by placing all recovered coefficients in their shuffled
position and then just repeat the matching process from Step 5 in Subsect.
3.1. This will let us recover all coefficients a0 in each (shuffled) pair-point
multiplication. In the previous step, we learnt the original (non-shuffled)
position of each multiplication, we will also know the original position of the
extracted a0 coefficients in the non-shuffled secret key.

4 Simulations

This section presents simulations for the masked Kyber implementation [2,18].

4.1 Implementation of Pair-Point Multiplication

Listing 1.1. Multiplication.

1 ldr poly0, [aptr], #4
2 ldr poly1, [bptr], #4
3 ldr poly2, [aptr], #4
4 ldr poly3, [bptr], #4
5

6 ldrh zeta, [zetaptr], #2
7

8 smultt tmp, poly0, poly1
9 montgomery q, qinv, tmp, tmp2

10 smultb tmp2, tmp2, zeta
11 smlabb tmp2, poly0, poly1, tmp2
12 montgomery q, qinv, tmp2, tmp
13

14 smuadx tmp2, poly0, poly1
15 montgomery q, qinv, tmp2, tmp3

The code which we analyze imple-
ments the pair-pointwise multiplica-
tion as in Listing 1.1 and corresponds
to the Karatsuba multiplication algo-
rithm [24] (see Eq. (3) for reference).
The procedure first loads a pair of
secret coefficients a0||a1 into a 32-bit
register poly0 and a pair of public
coefficients b0||b1 into a 32-bit register
poly1. The coefficients a0, a1, b0, and b1
are 12-bit integers in {0, . . . , 3328}. In
this overview, we skip over the instruc-
tions at lines 3 and 4 which are the anal-
ogous load operations for the next Listing 1.2. Montgomery subroutine.

1 .macro montgomery q, qinv, a, tmp
2 smulbt \tmp, \a, \qinv
3 smlabb \tmp, \q, \tmp, \a
4 .endm

pair of coefficients in the key and in the
ciphertext. Next, in line 8, we multiply
the top parts of the registers poly0 and
poly1, obtaining a product correspond-
ing to a1 ·b1. This product is a 24-bit result and it is stored in tmp. The value in
tmp is then reduced mod 3329 (line 9). Listing 1.2 gives the code of the Mont-
gomery subroutine and Appendix B explains why the deployed Montgomery
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reduction algorithm for mod 3329 computation induces 3 further operations on
28-bit values. Next, the result is multiplied by ζ (line 10), added to a0 · b0 (line
11) and reduced mod 3329 via Montgomery reduction (line 12), resulting in the
term a1 · b1 · ζ + a0 · b0 (cf. Eq. (1)). Next, the code sums of the cross terms as
a1 · b0 + a0 · b1 (line 14) and reduces it mod 3329 (line 15).

4.2 Hamming Weight Model

We analyze our attack in the Hamming weight model which leaks the number of
ones in the processed values. We assume that the power consumption of a device
correlates with the Hamming weights of the computed states. In our analysis,
we will check whether each possible secret coefficient ai ∈ {0, .., 3328} (or each
possible pair of coefficients) leads to a unique sequence of hamming weight values
during the pair-point multiplication. If this is the case, then we expect that the
leakage coming from a pair-point multiplication will allow us to identify the value
of the secret coefficients used within that pair-point multiplication.

For the first heuristic estimate, let us compute an upper bound on the leaked
information by assuming that all computations correspond to independent uni-
formly random k-bit strings. The expected information we obtain from the Ham-
ming weight of a uniformly random k-bit string |log Pr[HW = i]| is the number
of bits of information which we weigh by the probability of obtaining a state with
hamming weight i, leading to the expected information (or Shannon Entropy)

H(k) :=
k∑

i=0

Pr[ HW = i] · |log (Pr[ HW = i])| =
k∑

i=0

(
k
i

)

2k

∣
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for a uniformly random k-bitstring. Asymptotically, the expected information
H(k) grows linearly in

√
k. For example, we have H(24)=3.34 and H(28)=3.45.

Recall that our attack using q+q templates (see Subsect. 3.1) first extracts a1

before extracting a0. Concretely, the five operations up to and including line 10 in
Listing 1.1 only depend on a1. They first write a 24-bit value for multiplication of
a1 and b1, then three 28-bit values in the Montgomery reduction (cf. Appendix B)
and then another 24-bit value for multiplication of a1 ·b1 ·ζ. We obtain the overall
expected information of H(24)+3 ·H(28)+H(24) ≈ 13.69 bits leakage about a1

only. Since a1 is a 12-bit value, it is plausible that we extract a1 correctly with
good probability from these five operations, even if not always, since 13.69 bits
is only slightly above 12 bits and the random variable is concentrated around its
expectation rather than exactly at its expectation.

To extract both values a0 and a1, we have two Montgomery reductions (line 12
and line 15), each resulting in 3 more operations, leaking together 6·H(28) ≈ 20.7
additional bits and the computation and addition of cross terms in line 14, which
generate another H(24)-bit value, leading to an overall leakage of 13.69 + 20.7 +
3.34 = 37.73 bits to extract a 12 + 12 = 24-bit value (a0, a1), suggesting that
trying out all pairs should succeed with a high probability. Appendix C confirms
our heuristic calculus with simulations. Additionally, the heuristic calculations
and the simulations from the next section suggest that the q + q attack and the
q2 attack are robust even when adding a certain amount of Gaussian noise.
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4.3 Simulations of Gaussian Noise

We now simulate the aforementioned operations while adding a small Gaussian
noise with standard deviation σ to the simulated target trace. Subsequently, we
list the best coefficient candidates according to the L2-norm.

Using this method (see Appendix C for details), we analyze the probability
of a2i being amongst the top 1, 2, 3, 10, 100 candidates (cf. Fig. 6) when ana-
lyzing only the operations that depend on a2i alone as well as the probability
of (a2i, a2i+1) being amongst the top candidates (cf. Fig. 7) when analyzing all
operations depending on (a2i, a2i+1). Since the probability of a2i being the top
1 candidate is only 0.9475 when no noise is added, the probability of obtaining
all 128 correct a2i is (0.9475)128 ≈ 0.001 and thus too low to be useful. However,
up to σ = 0.87, the probability of a2i being amongst the top 100 candidates is
≥ 0.999 and thus, up to a noise of σ = 0.7, with probability 0.99128 ≈ 0.88, we
can significantly reduce the search space for the coefficient pairs from q2 to 100q.

For larger noise, we need to run the q2 attack. The probability of (a2i, a2i+1)
being the top 1 candidate drops below 15

16 at σ = 0.54. In turn, the probability
of (a2i, a2i+1) being amongst the top 100 candidates stays above 0.99 up to
σ = 0.72. When aiming to brute-force the remaining uncertainty, in expectation,
for σ = 0.72, we have 15

16 · 128 ≈ 16 positions where we need to try out 100
candidates yielding a computation cost of 10016 ≤ 220 times

(
128
16

) ≈ 2128. The
brute-forcing cost is thus dominated by the binomial coefficient

(
128
�

)
, determined

by the number � positions which we need to brute-force.
(
128
�

)
remains below 240

for � ≤ 5. For each noise rate, we can now compute the probability of extracting
all 128 coefficients if we brute-force only up to 5 positions as follows:

p128100 ·
5∑

�=0

(
128
�

)

· (1 − p1)� · p128−�
1 ,

where p100 is the probability that (a2i, a2i+1) is amongst the top 100 candidates
and p1 is the probability that it is the top candidate. This probability is almost
1 when σ ≤ 0.4 and then drops to almost 0 sharply for 0.4 ≤ σ ≤ 0.55, also see
the dashed line in Fig. 7.

5 Experimental Evidence

This section presents experimental results for three attack variations from Sect. 3:
q2, q, and an improved version using an online template attack (OTA)2. Similar
to the original OTA [5,6], we calculate the correlation between the target trace
and a template, resulting in a matching trace that indicates a match. If the secret
coefficient pair in the template matches that used in some multiplication in the
target trace, we observe a region in the matching trace with values close to one.
We first describe our experimental setup and then discuss our results.
2 Paper supplementary materials, the attack scripts in particular, are available at:

https://github.com/crocs-muni/Attack Kyber ACNS2024.

https://github.com/crocs-muni/Attack_Kyber_ACNS2024
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We target the masked Kyber implementation from the mkm4 repository [18].
Our experiments use the same setup as described in that paper, utilizing the
ChipWhisperer Lite platform with an STM32F303 target [30], featuring an Arm
Cortex-M4 core. This setup ensures low noise and well-aligned traces. Our focus
is the poly basemul function, where we compute pair-pointwise multiplication.

In our experiments, we use the same physical instance of the ChipWhisperer
device for profiling and attacking, which is the best scenario for an attacker.
However, this might not reflect a real-world scenario and we leave investigating
the portability of templates in our attack as future work.

Before launching the attack, we need to select relevant regions of the traces.
After testing multiple methods and approaches, the Difference-of-Means app-
roach described in [5] proved to be the best. We always select 33 points of
interest per pair-pointwise multiplication for all our attacks.

In the q + q attack, we observe a limited leakage and the results are rather
modest. We obtain a more accurate success rate for the first pair-pointwise mul-
tiplication than the remaining ones. On average, the correct candidate for the
first multiplication is ranked at 282, and for all multiplications, it is at 1623 (out
of 3329). This is insufficient for the attack to succeed. Improving the success
rate, possibly using deep learning, is left for future work.

Next, we attempt q2 attack. We obtain the q2 templates for all pairs of
coefficients and each template is exactly one trace. Therefore, for this experiment,
we use exactly 11082241 template traces to attack single target traces separately.

In Fig. 1, we illustrate our method for visualizing leakage, following the app-
roach outlined in [21]. This approach involves calculating the difference between
a template and our target trace, as depicted in Figures 3 and 4 of [21]. The top
trace in Fig. 1 represents our target trace, with the highlighted area indicating
the calculation of a pair-point multiplication. The middle trace shows the result
when we subtract the target from a template that does not match the secret
coefficients used in the highlighted pair-point multiplication. The bottom trace
corresponds to the difference between the target and a template using the correct
pair of secret coefficients. Notably, the highlighted region in this trace contains
sample values very close to zero.

When comparing a target traces to the template corresponding to the pair
of coefficients found in the secret key, our difference trace consistently contains
a region with samples close to zero, as shown at the bottom of Fig. 1. However,
when attempting to compare a template for a pair of coefficients that do not
appear in the key, the difference trace does not exhibit such a low region.

In the q2 attack, we compare each pair of coefficients with templates, result-
ing in an ordered list of candidate values. Notably, there is a significant difference
in accuracy between the first pair of coefficients and the rest. As shown in Fig. 3,
the first pair is correctly recovered in about 86% of cases, while the average
success rate across all multiplications is 34%. This discrepancy is due to traces
being influenced by previous multiplications, as illustrated in Fig. 2, where the
coefficient from the first multiplication affects slightly the subsequent multiplica-
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Fig. 1. Characterization: target trace (top), subtraction of the target trace from an
incorrect template (middle) and from the correct template (bottom).

tion, too. The first multiplication is not affected by any previous multiplication
and that is why the corresponding success rate is much better.

Fig. 2. The effect of previous multiplication on the following one: the correlation
between the current multiplication value and the whole trace (in blue). (Color figure
online)

Given the high success rates of the q2 attack in recovering the first multiplica-
tion, we can reduce the number of candidate templates and initiate a combined
attack using both q2 and OTA. We begin with the q2 attack. Assuming success-
ful recovery of the first multiplication, we generate a new set of templates by
combining the top two results for the first multiplication with a select number of
top candidates for the second multiplication. These new templates cover a larger
portion of the trace and are fewer in number, resulting in improved matching
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Fig. 3. q2 attack success rate: blue line corresponds to the first candidate being correct
and orange line to the correct candidate being in the top 100 results. (Color figure
online)

rates. We now repeat this process, assuming the first two multiplication coef-
ficients have been recovered correctly, iterating through the whole trace. The
main downside of this approach is requiring additional templates.

We successfully recover all coefficients for 3 attacked traces with this app-
roach, at the cost of the increased number of templates - 20 600 000, 43 000 000,
and 20 600 000, respectively. These numbers can be lowered, as described in the
analysis of the required number of traces in the following section. With our
setup, gathering additional 15 000 templates per multiplication takes about 9
days3 and cover 87% of attacked traces. The success rates for different amounts
of templates for the full attack on masked Kyber768 are shown in Fig. 4.

Fig. 4. Left: success rates of the full attack on masked Kyber768 wrt. the number of
captured templates, estimated from 100 random target traces. Right: the extra number
of templates required for the OTA attack (only non-zero values).

3 Note, however, that we did not optimize our setup for the speed of acquisition.
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5.1 Attack Analysis

In order to launch the q2 + OTA attack, it is necessary to collect the 11M
templates for the q2 attack and the additional traces for each multiplication.
Based on the analysis of 100 random traces, the additional requirement is, on
average 13 000 - 15 000 per candidate for each multiplication, as shown in Fig. 4.

To successfully attack unmasked Kyber768, we need to repeat the attack
3 times, reducing the experimental success rate to 65%. Kyber768 performs
three polynomial multiplications: the initial poly basemul and two subsequent
poly basemul acc operations. The poly basemul acc function is similar to
operation poly basemul but also accumulates its results into the previous mul-
tiplication, hence the name “accumulation.”

The code of poly basemul acc mixes accumulation instructions with other
multiplication instructions, necessitating separate template collection. These
templates rely on results from previous multiplications. However, we already
have these coefficients from previous attacks (notably, on poly basemul). While
the attack on poly basemul acc should perform better due to more leaking
instructions, new templates must be collected for each execution, depending
on the previously recovered coefficients.4 For a complete attack on unmasked
Kyber768, we would need approximately 44.5M templates: 3 × 11 million (for
3 executions) and 3 × 15 000 × 2 × 128. Here, we assume that we need 15 000
additional templates per multiplication and a conservative estimate that we can-
not reuse templates for poly basemul acc if accumulation inputs differ. Based
on preliminary characterization, it seems that re-using templates for different
inputs is challenging and we leave it to be investigated in future work.

To attack masked Kyber768 with order 2, we need to execute attack 6 times:
2 times for poly basemul and 4 times for poly basemul acc. For poly basemul
we would need to collect templates once, but for poly basemul acc templates
need to be collected each time. Therefore, we would need the following number
of templates: 5 ∗ 11M + 6 ∗ 15000 ∗ 2 ∗ 128 ≈ 78M to achieve 43% success rate;
to increase it to 90% we need approximately 105M traces as shown in Fig. 4.
At the time of writing, the current setup was able to capture 1 500 traces per
minute. At this rate, gathering the full 78M templates would take about 45 days.
In general, we leave improving the efficiency of this attack as future work.

6 Possible Countermeasures

One possible countermeasure against our attack may be the random shuffling of
the operations within each pair-point multiplication (see the listings in Sect. 4).
Moreover as discussed in Subsect. 3.2, masking schemes with coefficients with
larger values would imply an increase in the number of templates needed for
our attack and in the chances of getting false positive matches. There also exist

4 Initial tests hint at a 30% acquisition reduction for the OTA step with a single
poly basemul acc experiment. However, we exclude this result from our estimates,
reserving exploration of this optimization for future work.
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schemes which blind the secret coefficients [19,41] in a similar way as the blind-
ing countermeasure for elliptic curve crypto [13] and schemes which mask the
input ciphertext [34]. Parallelizing pair-point multiplications requires designs
with spare multipliers, but it adds extra noise to computations, making our
attack more difficult. Also, if Kyber employs a complete NTT and actual point
multiplication between secret and known coefficients, our attack becomes more
challenging given the reduced number of secret-dependent operations.
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A Kyber Algorithms

Algorithms 3 and 4 describe the encryption and encapsulation functions
in Kyber. The functions Compress and Decompress are defined as
Compress(u) := 
u · 2d/q� mod (2)d and Decompress := 
q/2d · u�, with
d = 10 if k = 2 or 3 and d = 11 if k = 4. Note that the output of the encryption
corresponds to a ciphertext c, which consists of two compressed ciphertexts. This
ciphertext c will be the input to the decapsulation algorithm.

Alg. 3: Kyber-PKE Encryption (simplified)
1 Public key pk = (̂t, ρ), message m, seed τ Output: Ciphertext c

2 Â ∈ Rk×k
q ← SampleU (ρ);

3 r, e1 ∈ Rk
q , e2 ∈ Rq ← SampleB(τ);

4 b ← NTT−1(ÂT ◦ NTT(r)) + e1;

5 v ← NTT−1 (̂tT ◦ NTT(r)) + e2 + Encode(m);
6 c1, c2 ← Compress(b, v);
7 c = (c1, c2);
8 return c;

Alg. 4: Kyber-CCA2-KEM Encryption (simplified)
1 Public key pk = (̂t, ρ) Output: Ciphertext c, shared key K
2 Choose uniform m;

3 (K̄, τ) ← H(m||H(pk));
4 c ← PKE.Enc(pk, m, τ);

5 K ← KDF(K̄||H(c));
6 return c, K;
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Alg. 5: Montgomery reduction
1 modulus q, R = 2n > q, q−1 mod (R), a ∈ Z such that a < qR Output: t ≡ aR−1

(mod q), 0 ≤ t ≤ 2sq

2 t ← a(−q−1) mod (R);
3 t ← (a + tq)/R;
4 s return t;

Alg. 6: Signed Montgomery reduction from [36]
1 modulus q, R = 2n > q, q−1 mod± (R), a ∈ Z such that a < qR Output: t ≡ aR−1

(mod q), |t| ≤ q

2 t ← aq−1 mod± (R);
3 t ← (tq)/R;
4 t ← �a/R	 − t;
5 return t;

B Montgomery Reduction

Kyber represents elements in Montgomery representation in order to avoid
expensive division by q and computation mod q and replace it by division by 216

(taking the top half of a register) and computation mod 216 (taking the bottom
half of a register). In the following, we present the Montgomery reduction with
general R and q, but Kyber indeed uses R = 216.Consider R = 2k > q, and an
element a < qR. To reduce the memory footprint, we can store a/R and this
reduces the element a by k bits, and it can be efficiently implemented. In the
Montgomery domain, the idea is to make sure that the element a is a multiple
of R by introducing a correction step. More precisely, imagine that we want to
find a value t, such that a − tq is divisible by R. To bring the element to the
Montgomery domain, one computes t as aq−1 (mod R) in a way that a − aq−1q
(mod R) = 0. Following closely Sect. 2.3.2 in [23], Algorithm 6 shows the case of
signed Montgomery reduction from [36].

We now provide more details on how we determined the length of values for
the Hamming weight that we use in our numerical estimates in Sect. 4.2:

1. a1 · b1 12 + 12 = 24 bits
take bottom of register 16 bits
then multiply by qinv |qinv| = 12 bits

2. (a1 · b1)B · qinv 16 + 12 = 28 bits
take bottom of register 16 bits
then multiply by q |q| = 12 bits

3. ((a1 · b1)B · qinv)B · q 16 + 12 = 28 bits
add (a1 · b1) |a1 · b1| = 24 bits

4. ((a1 · b1)B · qinv)B + (a1 · b1) max{24, 48} = 28 bits
take top of register and call it c |c| = 12 bits

5. c · ζ 12 + 12 = 28 bits
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C Details on Noiseless and Noisy Simulations

We now discuss our simulations for noiseless operations within the pair-point
multiplications comprehensively and additionally explain how we calculated
probabilities in our noisy simulations. We first focus on the first 5 instructions
of the pair-point multiplication, cf. Section 4.2. Our simulations calculate which
coefficients a2i+1 ∈ [0, . . . , q − 1] have unique combinations of hamming weight
values (hamming weight tuples) during these instructions. Recall from Eq. 3
that pair-point multiplication also computes the term a1b1ζ, where the value of
ζ changes for each pair-point multiplication. So for our simulations, we initially
fix ζ0 and try out all possible values for a1 and all possible values b1. We obtain
the average probability that a value for a1 leads to a unique hamming weight
tuple. Then, we change to ζ1 and iterate over all possible values for a3 and all
possible values for b3. We continue this process, obtaining the averages for all
a2i+1, given all ζi. We thus obtain probabilities for extracting each odd coef-
ficient, given a random ciphertext. Observe that in our simulations we do not
consider micro-architectural aspects, like instruction pipelining, of our target.

As we show, most of the values for an odd coefficient indeed lead to unique
hamming weight tuples. Only a small fraction of coefficients have collisions. On
average, 3031 of these values have unique hamming weight tuples, i.e. there exist
3031 hamming weight tuples which map to exactly one coefficient value. 259
coefficients lead to 2-way collisions. This means that there exist 259/2 ≈ 130
hamming weight tuples which map to exactly two different coefficient values.
Subsequently, there exist 34 coefficients which have 3-way collisions and 4 coeffi-
cients which have 4-way collisions each. On the average only a 0.03125 fraction of
tuples maps to more than 4 different coefficient values. We now provide further
details about the results of our simulations.

Extracting Odd Coefficients ( a2i+1). Our simulations show that for a uniformly
random b2i+1, the probability of extracting a2i+1 from the first 5 instruction
is ≈ 0.90. This means that given a random ciphertext, we have good chances
of extracting each odd coefficient. The probability of obtaining two possible
candidates for each odd coefficient is ≈ 0.085, and the probability of obtaining
three possible candidates for each odd coefficient is ≈ 0.011. Thus, taking a union
bound, we obtain that the probability that a given a2i+1 has either a unique
hamming weight tuple, or a 2- or 3-way collision is ≈ 0.996. For this reason
in the rest of this analysis we only consider the case that we are dealing with
coefficients with unique hamming weight tuples, or with 2- or 3-way collisions.

In the table under Number of Matches (1), we see the probability that
each odd coefficient a1, a3, ..., a255 has a unique hamming weight tuple. We cal-
culate this probability over all b1 ∈ [1, . . . , q−1], and note that the probability is
dependent on the value of ζ. Thus, the probability that a1 has a unique hamming
weight tuple is different from that of a3, a5, etc., but the probability is always
between 0.801 and 0.937, with an average of 0.90. Under Number of Matches
(2) and (3), we see the analogous probabilities that each odd coefficient a2i+1

has a hamming weight tuple with a 2- and 3-way collision correspondingly.
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We recall that in our attack using q + q templates (cf Subsect. 3.1), we use
the first set of q templates for extracting the odd coefficients. According to our
results, we should have a 90% chance of correctly extracting each odd coefficient
- but we should recall that in Kyber, the secret keys consist of polynomials of
degree 255. Thus, the probability of extracting all odd coefficients correctly is
notably smaller. In fact, if we consider all probabilities of Fig. 5 for the chances
that each odd coefficient has a unique hamming weight tuple, we obtain a prob-
ability of Π127

i=0pi ≈ 1.2967 × 10−6 of extracting all odd coefficients from one
polynomial, given only q templates. We will explain later in this section how we
can use the results of our simulations to outline an attack strategy that easily
increases our success probabilities, with just a linear increase in the number of
templates needed.

Extracting Coefficient Pairs (a2i, a2i+1). The lower part of Fig. 5 gives the prob-
abilities that each secret coefficient pair leads to a unique hamming weight tuple.
We obtain these probabilities in an analogous way as for the odd coefficients.
Thus, the probabilities for each pair (a0, a1), (a2, a3), (a4, a5), . . . , (a254, a255) are
different as they are dependent on ζ. Note that in this case, the hamming weight
tuples consist of more values since we are considering all instructions within one
pair-point multiplication. Hence, the very high probabilities under Number of
Matches (1). We can conclude from these results that if we create templates for
all possible pairs of secret coefficients, our success probabilities are fairly high,
while, on the other hand, it also requires creating a total of q2 templates.

Fig. 5. Number of Matches: given ζi, probability of
a 1-, 2- or 3-way collision. Upper part: the proba-
bility of extracting odd coefficients with q templates.
Lower part: probability of extracting pairs of coeffi-
cients with q2 templates.

Efficiency Optimizations.
While q2 is a reasonable
number of template traces,
collecting all of them is
still quite consuming. Thus,
we may indeed try extract-
ing all odd coefficients first
and then extracting all even
coefficients with an addi-
tional set of templates.
From the discussions above,
we can conclude that our
success probabilities of run-
ning a q+q attack are not as
high as we would originally
hope (for the mkm4 imple-
mentation in the Hamming
weight model). However, the
simulation results suggest a
natural and very simple way of optimizing the success of the attack. In the fol-
lowing, we outline an attack adaptation that increases the success probability of
our attack and only requires a linear increase in the number of templates.
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First, we can perform a template matching using q templates (as originally
done in Subsect. 3.1). For each coefficient we are trying to extract, we rank
the top 3 candidate values for which we get the best matches. Now, we build
templates for extracting the even coefficients. We will create 3 versions of these
templates. In each version, we use a different top 3 candidate for each odd
coefficient, creating an additional set of 3q templates. Thus, we first determine
the top three candidates for each a2i+1 (with high probability) and then try all
three of them in combination with all possible a2i, leading to an overall number
of q + 3q templates. When trying to extract the even coefficients, we get a very
high success rate iff we are using the correct odd coefficient a2i+1. Namely, as
we see in Fig. 5, each secret coefficient pair has a very high probability of having
a unique hamming weight tuple.

We can even optimize our attack further by considering the top 4 match
candidates for each coefficient, generating an additional set of 4q templates.
Concretely for the optimized attacks using q+3q and q+4q templates, we obtain
success probabilities of Π127

i=0pi ≈ 0.6755 and Π127
i=0pi ≈ 0.875, respectively.

With 6q = 19974 templates, we have a very high success probability of 0.944,
given a single target trace and a random ciphertext. Subsequently, we can use
our analysis of the coefficients to determine the (expected) ≈ 0.875 fraction
of coefficients that are unique, given our list of coefficients that have a unique
Hamming weight pattern. For the remaining ≈ 0.125 coefficients, brute-forcing
over 40.125·128 = 232 coefficients is feasible (Table 1).

Table 1. Simulation results for noisy traces.

# templates σ Probability of being amongst top .. matches

1 2 3

q-templates 0.3 0.8915 0.9775 0.9936

0.4 0.7851 0.9205 0.9617

0.5 0.6530 0.8231 0.8948

0.6 0.5291 0.7027 0.7911

0.7 0.4214 0.5860 0.6775

q2-templates 0.5 0.9336 0.9788 0.9890

0.6 0.8234 0.9112 0.9415

0.7 0.6707 0.7906 0.8419

0.8 0.4998 0.6310 0.7027

0.9 0.3697 0.4839 0.5517

1.0 0.2581 0.3559 0.4135

Noise. We now add Gaussian noise with standard deviation σ to the target
trace and see for which σ we can still extract one or both coefficients. Instead
of searching for perfect matchings, we minimize the L2-norm of the differences
between the simulated target trace and the template. Unfortunately, even for the
q2 attack, the best match under the L2 norms provides the correct (a2i, a2i+1)
value with probability ≤ 0.5 when σ ≥ 0.8. All probabilities are calculated via
10,000 samples and using a random root out of all possible 128 roots.
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Fig. 6. Noisy q + q attack simulations.

Fig. 7. Noisy q2 attack simulations.

D Comparison

To the best of our knowledge, there exist two other works in the literature that
target polynomial multiplication in Kyber. In [27], the authors present a CPA
attack on an unprotected polynomial multiplication implementation of Kyber.
This attack led to the extraction of the long-term secret using approximately
200 traces. The main difference in comparison to our work is that the attack [27]
requires multiple target traces and thus is not successful in the presence of a
masking countermeasure. Our attack, on the other hand, requires a single tar-
get trace and, therefore, can successfully target masked implementations. The
drawback of our approach is that we consider an adversary who can build tem-
plate traces using a profiling device on which the secret can be freely changed.
A classic CPA attack, as presented in [27], does not require any such profiling.

Another related work [40] presents a single-trace template attack on the
polynomial multiplication of an unmasked implementation pqm4 [1] during key
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generation5. There are several differences between this work and ours. First,
note that they did not attack any masked implementation, but only argue about
the attack’s applicability to masking schemes since it attacks single traces. The
attack is performed against a non-optimized implementation, utilizing straight-
forward polynomial multiplication without Karatsuba, leading to each secret
coefficient being loaded twice, while our attack is on the mkm4 masked imple-
mentation, which accesses the secret only once. Second, the attack [40] cannot
be replicated on decapsulation since their template requires the leakage from
the multiplication of k different polynomial values in the matrix A — which
happens in the key generation. On the other hand, our attack can be applied
to the key generation by utilizing the public polynomial values in A. Finally,
their attack does not recover the full secret, but employs an extra key enu-
meration to finish the attack; as a result, their attack works for Kyber768 and
Kyber1024, but not for Kyber512. Precise performance comparison is challenging
due to uncertainties about the number of required templates in [40]. The authors
mention using 500 traces to build templates for each intermediate, with approx-
imately 14 attacked intermediates in each multiplication. This means that their
attack would require only 7 000 templates if one template can be created for all
pairwise multiplications or 896 000 if each multiplication needs to be templated
separately. Consequently, it seems that the attack [40] requires fewer template
traces for profiling than our approach, albeit with increased complexity and a
lower success rate, necessitating final key enumeration.

Comparing our approach with [40] is intricate due to the mentioned differ-
ences. Foremost, [40] attacks key generation of the unprotected implementation,
which involves a broader range of secret-dependent operations than our target.
Therefore, we cannot estimate how well the attack from [40] would work against
protected implementation like mkm4. In summary, the attack in [40] has advan-
tages as it exploits various leaks and capitalizes on them. However, it is not easy
to adapt to other procedures, such as the technique presented in this paper.
Thus, this makes our attack more generic than the one presented in [40].

Table 2. Comparison of attacks on the long-term secret key from the polynomial
multiplications; the analysis is made for Kyber768 unless stated otherwise.

Work Implementation No. of target traces No. of templates Target algorithm Remaining Brute-Force

[27] Non-masked pqm4 200 0 Decapsulation No

[40] Non-masked reference
and pqm4
implementations

1 Not provided, estimation:
7 000 or 896 000

Key generation For pqm4 Kyber:
512 – infeasible; 768 – 240;
1024 – 25.

This work
(Simulation)

Optimized masked
mkm4 imp.

1 6 628 (q + q attack), or
11 082 241 (q2 attack)

Key generation and
Decapsulation

No

This work
(Experiment)

q2+OTA attack: 78M (43%
SR) or 105M (90% SR)

5 They also attack a reference implementation, but we do not concentrate on that since
this implementation leaks much more than pqm4 and the attacked by us mkm4. We
are only looking at the long-term secret key and we do not consider the attacks on
the encryption procedure.
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In Table 2, we give a summary of the comparison with [27] and [40]. From
our work, we present the two versions, i.e., “Simulation” refers to the numbers
of the original introduction of our attack described in Sect. 3 and concerning
the results obtained via simulations in Sect. 4. The “Experiment” work refers
to the real-world attack from Sect. 5, where 78M traces give a 43% success of
extracting the secret key, while 105M traces give over 90% success rate.
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4. Backlund, L., Ngo, K., Gärtner, J., Dubrova, E.: Secret key recovery attacks on
masked and shuffled implementations of CRYSTALS-Kyber and saber. Cryptology
ePrint Archive, Paper 2022/1692 (2022). https://eprint.iacr.org/2022/1692

5. Batina, L., Chmielewski, �L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online template attacks. In: Meier, W., Mukhopadhyay, D. (eds.) Progress in Cryp-
tology - INDOCRYPT 2014–15th International Conference on Cryptology in India,
New Delhi, India, 14–17 December 2014, Proceedings, vol. 8885 of Lecture Notes
in Computer Science, pp. 21–36. Springer, Heidelberg (2014). https://doi.org/10.
1007/s13389-017-0171-8

6. Batina, L., Chmielewski, �L, Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online template attacks. J. Cryptogr. Eng. 9, 1–16 (2019)

7. Van Beirendonck, M., D’Anvers, J.P., Karmakar, A., Balasch, J., Verbauwhede,
I.: A side-channel-resistant implementation of SABER. ACM J. Emerg. Technol.
Comput. Syst. 17(2), 10:1–10:26 (2021)

8. Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM.
In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, 24–26 April 2018, pp. 353–367. IEEE (2018)

9. Bos, J.W., Friedberger, S., Martinoli, M., Oswald, E., Stam, M.: Assessing the
feasibility of single trace power analysis of frodo. In: Cid, C., Jacobson Jr., M.J.
(eds.) Selected Areas in Cryptography - SAC 2018–25th International Conference,
Calgary, AB, Canada, 15–17 August 2018, Revised Selected Papers, vol. 11349
of Lecture Notes in Computer Science, pp. 216–234. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-030-10970-7 10

10. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
Kyber: first- and higher-order implementations. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021(4), 173–214 (2021)

11. Aldaya, A.C., Brumley, B.B.: Online template attacks: revisited. IACR Trans.
Cryptogr. Hardware Embed. Syst. 2021(3), 28–59 (2021). https://artifacts.iacr.
org/tches/2021/a11

12. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, Ç.K.,
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Abstract. Today, two-party secure messaging is well-understood and
widely adopted, e.g., Signal and WhatsApp. Multiparty protocols for
secure group messaging are less mature and many protocols with dif-
ferent tradeoffs exist. Generally, such protocols require parties to first
agree on a shared secret group key and then periodically update it while
preserving forward secrecy (FS) and post compromise security (PCS).

We present a new framework, called a key lattice, for managing keys in
concurrent group messaging. Our framework can be seen as a “key man-
agement” layer that enables concurrent group messaging when secure
pairwise channels are available. Security of group messaging protocols
defined using the key lattice incorporates both FS and PCS simply and
naturally. Our framework combines both FS and PCS into directional
variants of the same abstraction, and additionally avoids dependence on
time-based epochs.

1 Introduction

End-to-end encrypted secure messaging systems such as Signal and WhatsApp
are widely deployed and used. The case of two-party protocols is well-understood,
and has been extensively analyzed in the literature [3,8,18,20,26], but multi-
party protocols (for group messaging) are still an active research area. At the
moment, the Message Layer Security (MLS) IETF working group1 is developing
a standard to define an efficient and secure group messaging protocol. The key
building block of MLS is continuous group key agreement (CGKA), which lets
a group of users securely agree on a shared secret key [4], evolve it continuously
while ensuring forward secrecy (FS) and post compromise security (PCS).

Many existing CGKA protocols, and their extension to group messaging
protocols, require an additional infrastructure server that guarantees availabil-
ity and orders messages. Recent work reduces dependence on the additional
infrastructure, but still depends on a propose-and-commit paradigm [1,2,6] that

1 https://messaginglayersecurity.rocks/.
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allows concurrent update proposals but requires serial commitments to accept
the changes. This work develops abstractions and protocols to advance group
messaging towards truly asynchronous channels and a decentralized environment
where there is no central server to order messages. In such an environment, there
may be a different “latest” group key in the view of every honest user—all of
whom simultaneously encrypt messages, all of which must be decrypted.

Our main contribution is conceptual. We model the group keys used within
the protocol via a key lattice, which can be seen as an n-dimensional grid if
there are n participants. The key lattice tracks all the group keys that will ever
be used by the parties. Each key evolution travels along a path in the lattice.
Every party uses the key lattice to track not only its own view of the current
group key(s), but also the information it has about the other parties’ views. To
both permit concurrency (via the ability to swap the order of key updates) and
to prevent the state space from exploding, we require that the key evolution
functions are commutative.

By framing our (new) security definitions with respect to the key lattice, we
intuitively find that the dual (and simultaneous) notions of FS and PCS become
directional variants of the same simple notion, which states that the adversary
cannot traverse the key lattice to learn keys which it has not yet compromised.2

We also eliminate any dependence on epoch-based time from the analysis and
solely focus on the keys’ relationships to each other. To ensure PCS, parties
evolve the group key with random updates and define new points on the key
lattice. To ensure FS, each party tracks other parties’ views of the group key,
and deletes keys which it knows will never be used again. We also show how to
trade FS for correctness when desired, since in a fully asynchronous network, the
adversary may arbitrarily delay delivery of an encrypted application message in
order to force one party to hold old keys.

Our secondary contribution is an instantiation of a novel group messaging
protocol that uses the key lattice, and we prove its security.

Group Key Agreement vs. Group Messaging: It is not always straightfor-
ward to transform from group key agreement to group messaging. Key exchange
protocols usually contain a key-confirmation step, but when the key exchange
protocol is used as a building block in a larger protocol (e.g., secure messaging),
this step breaks the key indistinguishability property of key exchange. This is a
well known problem even for two-party key agreement followed by composition
with a secure channel, see for example [15,16]. We avoid this definitional prob-
lem by treating key-agreement and messaging together and directly analyzing
the scheme for group messaging.

Asynchrony vs. Concurrency: An asynchronous group messaging protocol
means that the adversary can arbitrarily reorder messages that are sent, as long

2 This approach bears some resemblance to the analysis of Fuchsbauer et al. [24] for
public key re-encryption.
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as all are eventually delivered. This models a highly adversarial network, and
subsumes the scenario that some parties can temporarily “go offline” (if the
adverary does not deliver messages to them) and then receive messages later
when they come back online. A concurrent protocol allows messages, includ-
ing update messages, to be sent and processed concurrently. But messages are
delivered within some round of execution. The work by Bienstock, Dodis and
Rösler [7] studied the trade-off between PCS, concurrency, and communication
complexity. They show an upper-bound in terms of communication overhead
that increases from O(log n) when there is no concurrency, to O(n) when the
update messages are fully concurrent.

Concurrent group messaging is suitable for the decentralized setting where
there does not exist a central party to order messages. Nevertheless, it is possible
to use a central server as a broadcast station to improve the communication cost,
this way parties no longer need to broadcast messages to the group by themselves.

1.1 Related Work

Group key agreement and group messaging protocols have a long history. Early
work focused on generalizing the Diffie-Hellman key exchange protocol [25,32].
Later work extended the security guarantees (e.g., by providing authentication,
forward secrecy, and post-compromise security) [10,12–14], and improved per-
formance and added new features (e.g., support for dynamic groups) [11]. This
section outlines a few of the related work that are similar to our work. For the
full details on the related work, please see the full version [21].

The closest work to ours is the recent paper by Weidner et al. [33], who
introduced “decentralized” continuous group key agreement (DCGKA). DCGKA
makes progress on the concurrency problems in ART and RTreeKEM so that all
group members converge to the same view if they receive the same set of messages
(possibly in different orders). The key primitive that enables concurrent updates
is authenticated causal broadcast, defined in a similar way as Lamport’s vector
clocks [27]. Additionally, the authors made progress on how to manage group
membership in an asynchronous network without a central server. However, their
construction still requires a serial commitment.

In comparison to Weidner et al. [33], our construction does not require
authenticated causal broadcast; we permit asynchronous messaging by buffering
messages that are received out of order, and we authenticate via authenticated
encryption. Our construction also does not require acknowledgements. This sub-
stantially reduces the cost of an update because DCGKA requires n−1 broadcast
acknowledgements for an update.

Sender Keys, currently deployed by WhatsApp [35], also builds group mes-
saging from pairwise Signal. During initialization, each party sends a symmetric
“sender” key to all the group members using the pairwise Signal protocol. This
key is used for encrypting payload messages by that party. Every party keeps
n “sender” keys in their state where n − 1 keys are used for decryption and 1
is used for encryption. Sender Keys does not provide PCS since an adversary
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Table 1. Comparing our work and existing work. PCS denotes post compromise secu-
rity, and FS denotes forward secrecy. ROM stands for the random oracle model, StM
denotes the standard model. (�) an update for DCGKA requires n − 1 broadcast
acknowledgements, so the total complexity is O(n2), although the sender’s compu-
tational complexity is O(n). (�) These works use the propose-and-commit paradigm,
where assumes the existence of epochs and allows concurrent proposals but a serial com-
mitment is required. (†) t is the number of corrupt parties. (‡) The server in CoCoA
and SAIK processes an update to send an individual packet to each participant. They
also order messages. (�) The SAIK server arbitrarily chooses one of concurrent updates
to be processed. Our work is the only one which supports concurrent updates, does
not require an active server, is PCS and FS and has a proof of security against adap-
tive adversaries. In this table desired features are highlighted in blue and those which
negative impact security are in red.

Protocol Update Cost PCS FS Active Server Concurrent Updates Proof Adaptive

Sender Receiver Healing
Rounds

Original TreeKEM [30] O(log n) O(1) n yes yes Ordering no None n/a
Causal TreeKEM [34] O(log n) O(1) n yes yes none causal StM yes
RTreeKEM [4] O(log n) O(1) 2 yes yes Ordering no ROM yes
Concurrent TreeKEM [7] O(n) O(1) 2 yes no none yes StM yes
Signal group [22,31] O(n) O(1) 2 yes yes Prekeys yes None n/a

Sender Keys [31,35] O(n2) O(n) 2 yes yes Prekeys yes None n/a
DCGKA [33] O(n) (�) O(1) 2 yes yes none yes (�) ROM no
CoCoA [2] O(log n) O(1) log(n) yes yes Process-Updates (‡) yes (�) ROM yes
SAIK [6] O(log n) O(1) 2 yes yes Process-Updates (‡) yes (�) ROM yes
DeCAF [1] O(log t) (†) O(1) log(t) yes yes blockchain yes (�) ROM yes
Our work O(n) O(1) 2 yes yes none yes StM yes

who corrupts a party will learn all the symmetric keys and decrypt future mes-
sages sent to all parties. Fully healing the state therefore requires every party to
update its symmetric key, which has a cost of O(n2).

Our work can be viewed as a generalization of Sender Keys with improved
security and functionality, where parties update the key lattice instead of hold-
ing symmetric keys for each party. The group session heals once a corrupted
party’s pairwise channels heal because the next update it sends or receives is
indecipherable to the adversary. This requires O(n) public key operations (also
O(n) communication complexity) after one corruption.

Summary: Table 1 summarizes a representative sample of recent literature on
group key agreement and group messaging. “Update Cost” gives the communi-
cation complexity to update a shared or pairwise key, for the sender and the
receiver, and “Healing rounds” describes the round complexity of healing the
session after a corruption. “Active Server” is a server that provides additional
functionalities other than a PKI, such as ordering messages or post-processing
updates. For example, the Signal servers need to store single-use pre-keys and
the TreeKEM servers need to order messages. “Adaptive” means whether the
adversary can adaptively pick which oracles to query during the security game.

Our work, on the last row, carves out a new trade-off in the group messaging
design space. Specifically, we use pairwise channels which results in O(n) update
cost and, in contrast to prior work, maintain a set of evolving shared group key
without compromising security, i.e., allowing adaptive queries.
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1.2 Technical Overview

Our group messaging (GM) protocol consists of three building blocks: (1) an
initial group key agreement (GKA) protocol, (2) a group randomness messag-
ing (GRM) protocol used to transport key updates, and (3) a key lattice. We
overview all blocks but focus on the key lattice as it is our primary contribution.

Group Key Agreement (GKA): Our GKA assumes existence of a public key
infrastructure (PKI). In other words, each party knows the other party’s long-
term public key. The protocol takes as input the identities and public keys of the
group members and outputs a symmetric key shared by those members. This
symmetric key is used by the other two building blocks detailed below. We use
the GKA as a black box and thus are not concerned with the exact construction
in this work. Nevertheless, we require that it is forward secure, i.e., if the long-
term secret key is compromised after agreeing on a shared key, the adversary
still learns nothing about the shared key. Note that many GKA protocols exist
in the literature [9,13,14,29]. In this work we use the definition from [14], which
allows for asynchrony (as needed by our construction).

Group Randomness Messaging (GRM): GRM abstracts the transport
mechanism used to communicate key updates and make our proof more modu-
lar. Because GRM requires pairwise channels with FS & PCS, it could be imple-
mented using pairwise 2-party secure messaging e.g., pairwise Signal or another
double-ratchet-based protocol. We provide a custom instantiation of GRM in
Sect. 5 that better fits our assumptions (specifically, we assume only a public
key infrastructure and do not require a server to distribute pre-key bundles), is
conceptually simpler than a double-ratchet, and is easier to prove secure. Never-
theless, we give an outline of how to build a concurrent group messaging protocol
from black-box primitives in Sect. 3.4.

Our GRM protocol is intuitively simple. Whenever a party U sends a random
message x to party V , U samples a fresh key pair (pk′, sk′), and encrypts (x, pk′)
under the public key pkV that U holds for V . When V receives (x, pk′), it assigns
pk′ as its latest public key for U and outputs x as U ’s message. Future messages
sent by V to U must be encrypted under the latest ephemeral public key that
V holds for U . The scheme achieves both FS and PCS because all secret keys
are independently sampled with every message sent, and therefore leaking one
secret key never reveals information about another. The scheme uses a public
key AEAD scheme for all encrypted messages, where the associated data are
bookkeeping material on the order of updates.

Key Lattice: We now explain our key lattice framework, including our security
game and its representation of FS and PCS.

Framework: Every group key in a group messaging protocol is associated with
a coordinate in a discrete n-dimensional space, where n is the number of players
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k0,0

k1,0

k2,2

k0,2

(a) The red vertices and edges are ex-
plicitly revealed to the adversary.

k0,0

k1,0

k2,2

k0,2

(b) The full set of information that an
adversary can compute from 1a.

Fig. 1. In Fig. a, the red vertices and edges are explicitly revealed to the adversary. If
PCS holds, then the adversary cannot compute the key k2,2 because there is no path
of red edges from a red vertex to k2,2. In Fig. b, the adversary can compute the keys
k0,1, and k0,1, and k1,1 by starting at k0,0 and following a path of red edges. FS can
analogously be visualized by (preventing) traversing the directed graph “backwards”
from a compromised vertex. (Color figure online)

in the group. When parties update the group key (at some index), the new key
produced is mapped to a larger index. For example, for n = 2, a key k1,0 at
coordinate (1, 0) may be updated to a new key with an associated coordinate
k1,1. We also provide a graphical explanation of a key lattice in which the indices
in the discrete n-dimensional space are vertices, and each vertex is labeled with
a key. In the graph, edges between vertices represent key updates.

FS & PCS: Our key lattice allows us to discuss FS & PCS in a unified and simple
manner, as directional variants of the same abstraction. In Fig. 1, every key is
mapped to a point on the graph, and updates are mapped to edges in the graph.
Black vertices and edges are not revealed to the adversary, and red vertices and
edges are revealed. A party that “knows” both the key corresponding to a vertex
and an edge leaving that vertex will also “know” the vertex’s neighbor. FS &
PCS mean that the only way the adversary can learn a key k∗ at some target
vertex v∗ is by starting with a red vertex on the graph and following a path of
red edges to v∗. In the traditional definition of FS, this would mean that given
a vertex v, without following (in reverse) a path of red edges, the adversary
cannot learn a predecessor of v. In the traditional definition of PCS, this would
mean that given a vertex v, without following a path of red edges, the adversary
cannot learn a successor of v. The key lattice is described in full in Sect. 3.

Security Game and Freshness: Our security game is an oracle game in which the
adversary activates oracles corresponding to parties running a polynomial num-
ber of protocol executions. The adversary plays a semantic security game against
a “fresh” key on one of the lattices. A key is “fresh” precisely if the adversary
cannot derive that key from its view of the execution thus far; graphically, this
means that the key is black in the corresponding graph akin to Fig. 1b. The
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Fig. 2. An example of a local key lattice in an execution with two players (blue and
red) from the perspective of the red party. (Color figure online)

adversary wins the semantic security game if it can distinguish two ciphertexts
encrypted under a fresh key.

Tracking Keys of Other Parties: Each party maintains a local key lattice to track
the group keys, but does not (necessarily) need to maintain a full view of the key
lattice. Each party tracks only the keys it needs in order to decrypt a message
that it has not yet received. This permits the construction to achieve the best
possible FS while also achieving correctness; as soon as some party knows it no
longer needs some key, it deletes the key from its view (in order to prevent an
adversary from learning the key after it has become deprecated).

We illustrate our approach in Fig. 2. For simplicity, we only consider two
parties labelled with the colors red and blue. The shaded regions, assigned by
color, indicate the set of points towards which the corresponding party may
define a new group key in the future. Any point in a totally unshaded region
represents an index of a key that can be deleted. In our construction, when any
party updates the key, it moves the latest group key towards a point in the n-
dimensional space along an axis that has been assigned uniquely to it. Blue and
red update the key towards higher indices on the x axis and y axis, respectively.

1. In Fig. 2a, the red and blue parties initialize their local lattices with k0,0.
2. In Fig. 2b, red evolves the group key, which moves red’s latest key to k0,1.
3. In Fig. 2c, suppose red received an update message from blue. Red applies

the update and evolves its own index from k0,1 to k1,1. Because red knows
that blue evolved its key, red updates its view of blue’s index k0,0 to k1,0.
Specifically, red’s perspective of the latest key for blue becomes k1,0. Since
k0,0 and k0,1 are outside the shaded region, these keys are removed.

Windowing to Limit State Expansion: In addition to the state reduction
described above, we also apply a state “window” that prevents the state from
blowing up in case encrypted messages are delayed over the network, at the
expense of the ability to decrypt long-delayed messages. Consider that if one
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party makes m updates to the shared group key, resulting in m possible differ-
ent group keys, then parties must keep O(m) states in case another party sends
a message using one of those m keys. In our windowing scheme, each party main-
tains at most the latest w key evolutions from every other party, which provides
the ability to compute at most wn total keys on the key lattice at any time.

When using this scheme, there are situations in which parties may send
messages such that some application messages are not decryptable. Suppose
sender S sends an application message m encrypted under key k, and then
suppose S updates the group key w times starting with k. If S’s message m is
delayed until after receiver R receives S’s key updates, then R will delete the key
material describing how to decrypt m. In synchronous networks, the window can
be set such that parties update their keys once per epoch, and the window can be
set large enough (by setting w is equal to the number of epochs that measure the
network delay) for sent messages to always be received in time to be decrypted.
In the general asynchronous case, the window can be set to ∞ in order to always
guarantee decryption, but this approach loses FS.3 Thus, windowing allows us
to trade between security and correctness.

Group Messaging (GM): In our construction, parties who wish to participate
in a GM instance begin by running a GKA protocol to obtain a shared symmetric
key k. They use k to initialize their key lattice, and then use GRM to securely
communicate update messages that can be applied to the key lattice to evolve
the shared group key. When a party encrypts an application (payload) message,
it always uses the latest key in its key lattice.

Dynamic Membership: We provide an informal extension of our framework
that permits dynamic group membership “for free,” and additionally handles
simultaneous adds and removals with no additional effort, thus completely avoid-
ing “splitting” [5] issues in synchronous protocols where multiple parties make
competing simultaneous updates. The intuitive understanding is to view our rep-
resentation of a key lattice as a lossless compression of an n-dimensional space
in which only a finite number of points are defined, where n is the number of
all possible identities. Each dimension in the key lattice represents a party that
belongs to the group, and all other dimensions in the lattice are defined to con-
tain points set to ⊥. When a party joins the group, points become defined in
its corresponding dimension. When it leaves the group, its future group updates
become invalid.

Treating dynamic membership in this way averts all of the problems of con-
currency incurred by other works, including with respect to insider attacks, since
groups including the new members are only defined in the lattice as successor
points of the addition operation, and we incur no conflicts by maintaining mul-
tiple copies of the lattice that correspond to groups both with and without the
3 This tradeoff was similarly explored by [28]; our asynchronous security model specif-

ically accounts for the attacks they describe by withholding some ciphertexts and
corrupting a party days later to recover the messages.
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new member. Dynamic membership is not the main focus of our work and a
formal definition and analysis is needed before it can be considered for practical
use, which we leave for future work. Nevertheless, we provide more details of our
dynamic group extension in the full version [21].

2 General Definitions and Notation

We denote by N the natural numbers. For a list �, �[i] denotes the ith element of
�. We write [m] = {1, . . . , m}, and [a, b] = {a, a + 1, . . . , b − 1, b} where b > a. P
is the set of all possible parties, and n = |P|. We define a function φ : P → [n]
that assigns a canonical ordering of P, i.e., to each U ∈ P, φ(U) assigns a unique
index between 1 and n.

Let i ∈ N
n denote an index vector. All keys will be indexed by index vectors,

i.e., we will always write the secret keys as ki. The j-th element of index vector
i will be denoted by i(j). We introduce a function increment(i, j) with inputs an
index vector i and an integer j ∈ [n] and returns an index vector i′ such that
for i �= j, i′(i) = i(i), and i′(j) = i(j) + 1. Similarly, decrement(i, j) returns an
index vector i′ such that for i �= j, i′(i) = i(i), and i′(j) = i(j) − 1. We define a
partial ordering over index vectors by saying i ≥ c if i(j) ≥ c(j) for all j. H≥c

for a constant index vector c ∈ N
n denotes the n-dimensional hyperplane of all

index vectors i such that i(j) ≥ c(j) for all j ∈ [n].

Network Model: Parties are connected via pairwise channels such that both
parties know the identity of the party on the other end. A PKI provides a
mapping between an identity U ∈ P and its long-term public key. Every U ∈ P
also has its own long-term private key.

Adversarial Model: In our security game, the adversary is responsible for
delivering all messages to its oracles. It may reorder messages arbitrarily, as
per the definition of an asynchronous network [17]. Proper ordering of mes-
sages within a subprotool is enforced by sequence numbers on our updates and
encrypted messages, and therefore in the exposition we assume that each subpro-
tocol’s messages are ordered, but messages sent by different subprotocols (such
as GKA, GRM, and GM application messages) are not ordered with respect to
each other.

The adversary may call its oracles on messages that have not been sent by
honest parties. This is an injection attack. However, because all messages in
our constructions are authenticated, successfully changing the state of an oracle
without knowledge of a party’s underlying key would break the security of an
authenticated cryptographic primitive (e.g., AEAD).

The adversary can corrupt parties to learn protocol keys, and in some cases
may inject messages based on those keys. For example, learning a group key
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allows the adversary to inject application messages, but these injections do not
affect the security of other keys.4

We defer a discussion of insider security in our model to the full version [21].

Encryption: In the full version [21] we give the standard definitions for encryp-
tion, key encapsulation mechanisms (KEMs) and authenticated encryption with
associated data (AEAD) that we use in this paper. Notably, we use a variant of
public key encryption—public key encryption with additional data (PKEAD).
It is similar to an IND-CCA secure public key encryption scheme that allows
additional plaintext data to be appended, where the additional data binds to
the ciphertext.

3 Key Lattice

The key lattice is our central idea for managing concurrent key updates. Because
the key lattice tracks the set of group keys generated during a group messaging
execution, we additionally define security of group messaging with respect to the
key lattice. We now formally define a key lattice.

Definition 3.1 (Key Lattice). We define K to be the space of keys, and we
define L to be the lattice of N

n where the ordering is defined by ia ≤ ib if all
elements in ia are less or equal to ib, and i ∈ N

n denotes a point on the lattice.
A key lattice L = {(i, ki)}i∈L where ki ∈ K ∪ {⊥} is a discrete lattice for which
every point i ∈ L is associated with either a single key or ⊥.

We denote the association by letting ki be the key associated with i. We also say
that the key for an index i is defined if ki �=⊥. Intuitively, parties will compute
and agree on many pairs (i, ki).

Given a key lattice, a key ki is j-maximal if there is no j ∈ N
n for which

j(j) > i(j) and kj �=⊥. If a key is j maximal for all j ∈ [n], we say the key is
maximal in the lattice. Looking ahead, in each party’s local lattice there is always
a maximal key, computed by all applying all updates that the party knows.

3.1 Key Evolution

When a party evolves the group key, it adds a new key (or, as in our con-
struction in Sect. 3.3, a group of keys), to the key lattice. Key evolution is
described by a function KeyRoll : K × X → K, where K is the key space and X
is the update space, which encodes the data applied to the key during evolution.
In our construction, we will require a few properties of the KeyRoll function.
First, we require that KeyRoll is commutative, i.e. KeyRoll(KeyRoll(k, x), x′) =
KeyRoll(KeyRoll(k, x′), x) for all k ∈ K and x, x′ ∈ X .
4 Some authentication schemes require parties to sign messages with their long-term

keys [23] but adapting this to concurrent group messaging is non-trivial, and not the
focus of this work.
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In addition to commutativity, we require that KeyRoll : K × X → K is
unpredictable in its second input. Intuitively, knowing only the first input (a key
from K), no adversary can “predict” the output (another key from K), if the
second input (an update from X ) is sampled at random. Similarly, we say that
KeyRoll’s inverse is unpredictable if given only k′ ← KeyRoll(k, x), no adversary
can “guess” the input k. More formally, we have the following.

Definition 3.2 (Unpredictability). A family of functions F = {Fλ}λ where
Fλ : Kλ×Xλ → Kλ is unpredictable in its second input if there exists a negligible
function negl such that for every probabilistic polynomial time adversary A and
every λ:

Pr[y = Fλ(k, x) : k ← Kλ, x ← Xλ, y ← A(1λ, k)] ≤ negl(λ)

F ’s inverse is unpredictable if there exists a negligible function negl such that for
any polynomial time adversary A and every λ:

Pr[k′ = k : k ← Kλ, x ← Xλ, k′ ← A(1λ, Fλ(k, x))] ≤ negl(λ)

where in each experiment, k and x are sampled uniformly at random from their
respective domains.

We remark that there are many families of unpredictable functions. For
instance, KeyRoll(k, x) = k⊕x satisfies the unpredictability definition, as well as
KeyRoll(k, x) = PRFx(k)5. In both cases, it is not possible to predict the output
without knowing the key. The difference between the first construction and the
second is that in the first case, knowing the first input and the output completely
leaks the update material x. This property is not critical to our construction; we
can prove security for our main protocol assuming only that KeyRoll is unpre-
dictable. However, for completeness (and for situations where unpredictability
is not enough), one can define a variant of one-wayness.

One-Wayness. We introduce a non-standard form of one-wayness to analyze
the properties of our scheme. Intuitively, a function is one-way on a challenge
(first or second) input if, given F (k, x) and the other input, it is hard for any
adversary to compute the challenge input. Below we provide definitions of one-
wayness on the second input. Although we do not use it in our construction, it
is also possible to define one-way-ness in the first input analogously to one-way-
ness in the second input. Intuitively, given x and F (k, x), it should be hard to
compute k. If KeyRoll is one-way in the first input, then the construction inherits
additional useful properties, which we describe in the full version [21]. We now
present our definitions for one-wayness on the second input.6

5 In practice we cannot use the PRF construction because it is not commutative.
6 We remark that the standard definition of one-wayness requires the adversary to

find an equivalent pre-image of the function, and not the exact same pre-image.
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Definition 3.3 (One-Wayness (on the Second Input)). A family of func-
tions F = {Fλ}λ where Fλ : Kλ×Xλ → Kλ is one-way on its second input if there
exists a negligible function negl such that for every probabilistic polynomial-time
adversary A and every λ

Pr[x′ = x : k ← Kλ, x ← Xλ, x′ ← A(1λ, k, Fλ(k, x))] ≤ negl(λ).

where k and x are sampled randomly from their respective domains.

�-Point One-Wayness. The definition above can be generalized to the setting
where A obtains polynomially many (in the security parameter) samples of
(k, Fλ(k, x)) pairs for different randomly sampled k but the same x. This addi-
tional property allows us to further constrain the power of the adversary. We
defer the definition and discussion to the full version [21].

3.2 The Key Graph

In our construction, parties track the group key(s) by assigning each key to a
point on the lattice. When a party evolves the group key, it defines the transition
from one point on the lattice to another. In fact, our construction defines the
transitions from a family of points to another family of points. Therefore, it is
useful to describe the key lattice as a directed acyclic graph, where the vertices
are labeled with keys, and the edges encode key evolutions.7 Specifically, we
define a key graph G, where each lattice point i ∈ N

n is a vertex, and each
vertex is labeled with a single key or with ⊥. In our discussion, we refer to
vertices by the lattice points they represent. There exists a directed edge from
vertex i to j if j = increment(i, k) for some k ∈ [n], and we say that i precedes
j, or j succeeds i, if there is an edge from i to j. Edges in a key graph are
labeled with the key evolutions that they represent. We say there exists a path
ρ of length � between two vertices i and i′ if there exists a sequence of edges
(v1, v2), (v2, v3), . . . , (v�−1, v�) such that (a) v1 = i, (b) v� = i′, and (c) vj−1

precedes vj for all j ∈ [2, �]. The local state held by each party in our protocol is
a pair (L,E), where L denotes the key lattice held by the party and E represents
the edges representing the transformation between keys.

3.3 Instantiation

We now describe how parties manipulate a key lattice.

Generating a Set of Key Evolutions. In our construction, each party updates the
group key in its own “direction” in L; the dth party (U ∈ P for which φ(U) = d)
always updates the group key towards larger indices in the dth dimension on
the lattice. A key update σ ∈ Σ sent by one party to another is therefore a
tuple (d, j, x), where d is a dimension in the key lattice (generated by the party

7 In this work, every graph is a directed acyclic graph.
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U such that φ(U) = d), j ∈ N is an index that annotates how many times the
updating party has updated the group key, and x ∈ X is data that describes
how to update the key (for KeyRoll). In other words, Σ = [n] × N × X . The jth
key evolution generated by any party therefore defines the transition from every
index i to index i′ such that i(d) = j and i′ = increment(i, d), and it defines the
evolution to use update data x. In our construction, the space X is the same as
described in Definitions 3.2 and 3.3.

Observe that each key update in our construction defines a group of key
evolutions, which can be described in our graphical representation as a group of
edges. We require commutativity of KeyRoll to guarantee that when transitioning
from key k to key k′ (over one or more edges), where k is represented by vertex
u, k′ is represented by vertex v, and there are multiple paths between u and v
in some party’s key lattice, it does not matter which path is taken.

Our KeyRoll Function. Our construction depends on the discrete logarithm
assumption to instantiate KeyRoll(k, x) as kx. That is to say, let key space K

be a prime-order group G in which the discrete log problem is hard, and let
update space X be Z|G|−1. This construction easily satisfies our commutativity
requirement since (kx)x′

= (kx′
)x. For appropriately chosen parameters, the

construction is trivially unpredictable. If the discrete logarithm problem is hard
in G, then KeyRoll is also one-way on its second input.

Computable Lattice: The description of a key lattice L may not be “com-
plete” in the sense that given a set L = {(i, k)} representing a key lattice, it
may be possible to infer the keys assigned to other indices on the lattice (i.e.,
points not in L). Below we illustrate the possible inferences depend on the choice
of the KeyRoll function. Consider the case where KeyRoll is defined using XOR,
then knowing the key at i and a succeeding key at i′ = increment(i, d) allows us
to derive the update σ, which may allow us to derive the keys at other lattice
points j such that j(d) = i(d).

The function Computable(L,E) → L′ outputs all the computable lattice
points L′ given the original lattice L and a set of updates E = {(d, j, x)}, where
d ∈ [n] is the dimension, j is an index and x is the argument to KeyRoll.

Two examples below illustrate the dependence of Computable on the proper-
ties of KeyRoll. Figure 3 illustrates how Computable works if a KeyRoll function
is not one-way. Figure 4 illustrates the difference when KeyRoll is one-way.

The function Computable(L,E) can be realized as follows:

1. Interpret the lattice L as a directed graph G. Initially this graph has no edges,
only vertices from L.

2. Add every edge from E to the graph. Recall that every edge in E corresponds
to multiple edges in G. Specifically, e = (d, j, x) describes all edges that begin
with a vertex (. . . , j, . . .) and end with a vertex (. . . , j + 1, . . .) where j and
j + 1 are on the dth position, and each edge is labeled with the update x.



146 K. Cong et al.

Fig. 3. Suppose the red keys in the figure on the left are revealed in a key lattice. If the
KeyRoll function is unpredictable but not one-way, then knowledge of a pair of adjacent
keys would reveal all edges (updates) in the corresponding row or column, as shown in
the middle figure. These inferred edges lead to additional computable keys (colored in
red) in the right figure. (Color figure online)

Fig. 4. Begin with the same lattice as in Fig. 3 but assume that KeyRoll is one-way.
The lattice points in the left figure do not allow us to compute a new lattice with more
keys. Given additional information on the edges in the middle figure, one additional
lattice point is computable (top left in the right figure).

3. Traverse G from the origin. For every pair of predecessor-successor vertices
(u, v) where u �=⊥ and v =⊥, if there exists an edge labeled with x connecting
u to v, then compute kv ← KeyRoll(ku, x).

4. Similar as above, but traverse G backwards and if there exist two predecessor-
successor vertices (u, v) where ku =⊥ and kv �=⊥ then compute ku ←
KeyRoll−1(kv, x), where x is the label on the edge between u and v. Note
that, if KeyRoll is one-way on its first input, then this step is omitted, as it is
hard to compute u given x and v.

Adding Keys: Parties may update the key lattice using Update(L, e) → L′

which takes a key lattice L and an update e = (d, j, x) and a returns a new key
lattice L′ as follows:

– Let D = {im} be all d-maximal index vectors in L.
– Output a new lattice L′ with additional points defined by (increment(i),

KeyRoll(ki, x)) for all i ∈ D.
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Note that since the lattice points included in D are d-maximal, all keys in
increment(i, d+1) are ⊥ in the original lattice L. One can think of this operation
as (possibly) adding keys to the lattice based on e.

In the key graph interpretation of the lattice, Update looks at the largest
index i for which a key is defined in dimension d, and labels every edge from i
to i + 1 in dimension d (holding every other dimension constant) with update e.

Forgetting Keys: A key lattice is an infinite object. To manage memory
requirements, (and looking ahead, to provide FS) we remove keys from a party’s
local version of the key lattice. The function Forget(L, i) → L′ takes a key lattice
L and an index vector i, and returns a new lattice L′ such that all keys in index
vectors i′ such that i′ < i, are set to ⊥. Implicitly, Forget also deletes from a
party’s state all of the edges leading to vertices that have been forgotten.

We use windowing to limit state expansion and provide FS (Sect. 1.2). When
we write Forget(L,w) → L′, then Forget works as follows, where w is the window
parameter. We call iw below the threshold index vector.

– For every dimension d ∈ [n], let id the maximum j such that there is a key
defined in L at index j in dimension d.

– Let iw be an index vector such that for every d ∈ [n], i(d)w = max(0, id − w).
– Execute Forget(L, iw) and return the new lattice L′.

3.4 Key Lattice as a Key Management Technique

The key lattice is enough to build a concurrent group messaging protocol from
existing primitives such as pairwise channels. The following generic approach
uses a key lattice to build concurrent group messaging using three building
blocks: (1) an initial group key, (2) secure pairwise channels between all par-
ties in a group and (3) an AEAD scheme for sending payload messages.

– Given the initial group key k0, the parties initialize their key lattice with
(0, k0), and assign ⊥ to the key at every other lattice point.

– If a party at index d ∈ [n] updates the key for the jth time, it samples x
$←− X

and sends (d, j, x) using the secure pairwise channels.
– Upon receiving (d, j, x) the receiver adds key k′ ← KeyRoll(k, x) to the lattice

at point i′, where k is the maximal key in the lattice and is located at point
i, and i′ ← increment(i, d).

– When a party at index d ∈ [n] sends an application message, it encrypts
the message using the maximal key k in its local key lattice and sends the
ciphertext to the group members (without using secure pairwise channels).
The ciphertext is encrypted using AEAD where the associated data is the
lattice index corresponding to the key used to encrypt the message.

– Upon receiving the ciphertext encrypting a payload message, the receiver
checks whether it has the key in the key lattice required to decrypt. If so,
then the receiver decrypts it immediately. Otherwise, the receiver buffers the
message until it receives sufficient information to decrypt.
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– Storing all the keys that are in the key lattice is expensive and trades off for-
ward security. Every party runs Forget(L,w) for its lattice L and the window
parameter w every time the party processes an update message.

4 Group Key Agreement

To agree on the very first shared key we use an existing group key agreement
(GKA) protocol. There are many definitions of security of GKA protocols; for
our purposes we adapt the one from [14] as it captures strong-forward secrecy
and a strong corruption model. For our GM protocol to be asynchronous, the
GKA subprotocol must also be asynchronous; this is true for the model of [14].

In this section, we reproduce the definition and introduce a few syntactic
tweaks. For the full security definition we refer the reader to the full version [21].
The GKA will be used to construct our GM protocol in Sect. 6.

Definition 4.1 (Group Key Agreement). We use G ⊆ P to denote some
group of players that participate in the protocol. Each party U ∈ P is assumed to
already have a long term public/private key pair (pkU , skU ). We assume a PKI
exists and the public keys are available to all parties.

The protocol consist of two stateful algorithms.

– {mV }V ∈G ← GKA.Init(G): Initialize an instance of the GKA protocol for a
group G and return a set of responses, one for every party in G.

– {mV }V ∈G ← GKA.Recv(M): Process message M and return a set of res-
ponses.

The GKA outputs done with a key k to notify that the protocol completed.

5 Group Randomness Messaging

We present the group randomness messaging (GRM) abstraction through which
the parties communicate update messages. The main functionality is to send
authenticated data and a ciphertext encrypting a random key update to all
members in the group using pairwise channels. We require the pairwise channels
to have FS & PCS properties.

Definition 5.1 (Group Randomness Messaging (GRM)). Consider the
player executing the protocol is U , a GRM scheme consists of three stateful algo-
rithms.

– {cU,V }V ∈G ← GRMU .Init(k, w,G): initialize the GRM instance using the ini-
tial key k, the window size w, and the group members G.
This step initializes the internal state stateU,i. The output is a set of cipher-
texts, one for every player in G.

– {cU,V }V ∈G ← GRMU .Evolve(): output a ciphertext cU,V for every V ∈ G.
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– σV,U ← GRMU .Recv(cV,U ): process the ciphertext cV,U , update the internal
state and return the plaintext σV,U if the decryption is successful. If decryption
is unsuccessful, return ⊥.

In the above definition, σV,U is a triple (U, j, x) where U is the identity of the
sender, j is a positive integer and x ∈ X . The full version [21] discusses the
correctness and security definitions for GRM.

5.1 Instantiation

We instantiate GRM using PKEAD. In essence, every party keeps a queue of
w public and secret key-pairs. This queue is updated every time the party calls
Evolve by dropping the oldest keypair and adding a new one. Each party U also
maintains a public key for every other party V which is updated whenever U
receives the output of V ’s Evolve. U uses this public key in order to encrypt
messages to V . U also maintains an integer jV that tracks the index of the latest
public key U has received from V .

This initial message sent by each party is a pair (pk0U ,m), where pk0U is the
party’s initial ephemeral public key, m is a MAC on the public key using the
key k provided as input to Init. Where k is the key output by a GKA execution,
this effectively “ties” a GRM to the GM application that uses it, as the MAC
links the output k of a GKA session with the GRM session that will be used to
evolve the key.

On a high level, the protocol achieves PCS because public keys are cycled
over time and FS because old keys are dropped. Our construction is detailed
below. Let the set X to be domain from which updates are randomly sampled.

– GRMU .Init(k, w,G): Generate an ephemeral key pair (pk0U , sk0U ). Initialize
stateU .sks = {sk0U} and stateU .pks = ∅, and save w as the window parame-
ter. Compute m ← MAC(pk0U ; k), where k is the input key, pk0U is the message
and MAC is a cryptographic MAC scheme. Send the same message (pk0U ,m)
to every member in G.

– GRMU .Evolve():
1. A new private key skj+1

U is generated, along with its public key pkj+1
U .

2. Sample x
$←− X and let σ ← (U, j +1, x), where j is the index of the latest

secret key in stateU .sks.
3. Repeat the steps below for every V ∈ G (including U).

• If the public key of the receiver V is not known, abort.
• Call (c, t) ← PKEAD.Enc(pkj+1

U ‖σ, jV ; pkjV
V ) and then set cU,V ←

(c, t, jV ). Note that pkjV
V can be found in stateU .pks and jV is the

index of the public key associated with V .
4. stateU is updated as follows.

• Add skj+1
U to stateU,i.sks

• If |stateU .sks| > w, remove the oldest one (i.e., skj−w
U ).



150 K. Cong et al.

– GRMU .Recv(cV,U ): There are two possible message formats. The message out-
put by Init is an ephemeral public key pk0V with a Mac; if the message is this
type, then verify the Mac using the key k provided to Init8 and then set V ’s
public key in stateU .pks to be (0, pk0V ). All other messages are handled as
follows.
1. Parse the message cV,U as (c, t, j), where j is an index into the current

user U ’s secret key.
2. Find secret key skj

U . Abort the protocol if it does not exist.
3. pkjV

V ‖σV,U ← PKEAD.Dec(c, t, j; skj
U ), abort if this step returns ⊥.

4. Add or update V ’s public key in stateU .pks to be (j, pkjV
V ).

5. Let jmin be the smallest j in {(j, pkiVV ) : V ∈ G}.
6. Delete all secret keys skj

U where j < jmin.
7. Return σV,U

Theorem 5.1. Let A be an adversary against the GRM game, let B be an adver-
sary against the PKEAD game, and let C be an adversary against the MAC
EUF-CMA game. Then

AdvgrmA ≤ nS · Advmac
C + 2 · |Q|max · nQ · AdvpkeadB .

where |Q|max is the upperbound for the number of oracles in a group, nQ is the
upperbound of the number of queries to the encryption oracle that B makes on
behalf of A for the instance under test, and nS = poly(λ) is the maximum number
of concurrent GRM sessions that A is allowed to invoke in its security game.

For a proof of this theorem see the full version [21].

6 Group Messaging

We define group messaging as a protocol which establishes and evolves a lattice
of keys. Parties may additionally send messages encrypted under the group keys,
which must be decrypted successfully by the other group members.

Our definition of group messaging assumes the existence of a Group Key
Agreement (GKA) primitive (Sect. 4).

Definition 6.1 (Group Messaging). A group messaging protocol consists of
five stateful algorithms defined as follows:

– GM.Init(G,w): Initialize the protocol with group G ⊆ P and the windows size
w. Output a set of messages, one for each party in G.

– GM.Evolve(): Outputs a set of update messages, one for each party in G.
– GM.Recv(M): Processes the message M (e.g., from the network), and outputs

a response.
– GM.Enc(m): Encrypts a plaintext m and outputs a ciphertext.
– GM.Dec(c): Decrypts ciphertext c and outputs a plaintext.
8 If verification fails due to trying the wrong key from multiple concurrent sessions,

return ⊥ and process the incoming message via Recv of a different session.
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6.1 Security Definition

The security of GM is modeled via a game between a challenger and an adversary,
where the key lattice tracks the evolution of the group key(s) over time. Our
freshness definition specifies the conditions under which a particular state (in our
case the state is a key in the key lattice) is not compromised by the adversary.
Contrary to the definitions of freshness in other key agreement works (e.g., [4,
19]), we state freshness below with respect to a specific lattice point.

The adversary invokes oracles Πgm
U,i where U is a group member and i ∈

[1, . . . , nS ], where the subscript i denotes a specific instance of the oracle that
belongs to party U . Different instances that belong to the same party may share
long-term keys, e.g., identity keys. The adversary invokes the oracles arbitrarily
as long as it follows the constraints described in Sect. 2.

We assume there is an instance of the GKA oracle running under every GM
oracle. This method allows us to inherit the partnering definition and many
oracle queries. Nevertheless, our description is self-contained since we reproduce
the common oracle queries in the GM definition. Additional details of the GKA
can be found in Sect. 4.

Each oracle Πgm
U,i maintains internal variables to track each party’s view of

the key lattice and the group messages that have been received by that party.
They also collectively maintain global state that tracks which elements of the key
lattice and which key updates have been explicitly revealed to the adversary. We
denote by Lrev

sid the key lattice describing all keys (points on the lattice) which are
revealed to the adversary, and we denote by Erev

sid the set of key updates, modeled
as edges in the graphical interpretation of the key lattice, which are revealed to
the adversary. Srev

sid = (Lrev
sid , Erev

sid ) denotes all of the key material that is revealed
to the adversary in some session sid. The session ID sid is a unique identifier
for the group members who have successfully completed the initial group key
agreement and established a session (described in detail in Sect. 4 since it is a
property inherited from GKA). Indeed, sid is not defined when a GKA session
begins, but this is not an issue since the session’s lattice is instantiated only
after the session is established. The full information on the key lattice available
to the adversary is given by Computable(Lrev

sid , Erev
sid ). We remark that the session

ID (sid) is not the same as the instance ID. The instance of an oracle, e.g.,
(U, i), is established when the oracles are initialized, but the session ID is only
established some time later, after the oracles are ready to evolve keys.

Specifically, the oracles maintain the following state:

– δU,i ∈ {pending, accept, abort} indicates whether the oracle is ready to start
evolving keys.

– LU,i represents the key lattice maintained by oracle Πgm
U,i. We use the language

from Sect. 3 to describe the key lattice.
– stateU,i is the remaining state that the implementation may keep. (For our

protocol, this includes EU,i, a set of edges between lattice points, as well as
the state held by underlying subprotocols.)

– Srev
sid = (Lrev

sid , Erev
sid ) represents the key lattice Lrev

sid containing all the revealed
keys by the adversary as well as the revealed updates Erev

sid in session sid.
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The full details of the GM oracles are specified below.

– Πgm
U,i.Init(G,w): Initialize an instance of the GM protocol for the group mem-

bers in G where U ∈ G and w is the window size. Set δU,i = pending and
return a hash function H. The response is returned to the adversary.

– Πgm
U,i.Corrupt(): Return the long-term secret to the adversary.

– Πgm
U,i.Reveal(): If δU,i �= accept then return ⊥. Otherwise, return the set of

keys that are computable from LU,i, and add these keys to Lrev
sid

– Πgm
U,i.StateReveal(): If δU,i �= accept then return ⊥. Else, return the internal

state stateU,i, excluding the computable keys LU,i. 9

– Πgm
U,i.Evolve(): If δU,i = abort then return ⊥. Else, return a set of message

{MV }V ∈G.
– Πgm

U,i.Recv(M):
• If δU,i = abort then this call does nothing.
• Otherwise process the message, optionally update the state stateU,i and

the key lattice LU,i. Return a set of messages {MV }V ∈G. The input M
should be from either the output of Recv or Evolve.

– Πgm
U,i.Dec(c): Use the available internal state to decrypt the ciphertext c and

output the plaintext. If the oracle does not have enough information to
decrypt the message, then it is buffered.

– Πgm
U,i.Enc(m): Encrypts the plaintext m using the maximal key in LU,i and

returns a ciphertext.
– Πgm

U,i.Test(m0,m1): This is defined in the security game below.

By execution of Corrupt, Reveal and StateReveal queries the adversary can
learn the entire secret internal state of the oracle Πgm

U,i. Specifically, Reveal gives
the party’s current group keys, and StateReveal gives the party’s internal state
except for what is provided by the former two queries. Corrupt gives the party’s
long-term public key and secret key (from the PKI); because this is only used
for the GKA protocol, which we require to be forward secure, this reveals the
initial group keys in future GKA executions. Also note that the above gives the
adversary a decryption oracle via Dec.

Modeling Pairwise Channels in the Oracle Game: In our general oracle
game, the adversary is permitted to invoke the oracles in any order, which models
an asynchronous network. However, to describe the guarantees that the protocol
achieves when windowing, we define a syntactic model to describe the messages
sent “between parties” in the oracle game. Specifically, between every ordered
pair of parties (U, V ) the adversary maintains a special buffer CU,V called a
channel representing the pairwise connection between U and V . When an oracle
query returns a message c to be sent from U to V , the adversary places (c, n)
into CU,V , where n is an integer recording that c is the nth message placed into
the channel.

9 For our construction, this adds all of the edges in EU,i to Erev
sid .
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In the above game description, each oracle provides three queries to gener-
ate messages to other parties. Πgm

U,i.Enc(m) encrypts a message using the oracle’s
latest key and returns a ciphertext which is forwarded to all other parties. When-
ever a Πgm

U,i.Enc(m) query is made, the returned message c is simultaneously put
into the channels CU,V for all V ∈ G. Πgm

U,i.Evolve() generates a key evolution,
but returns a different message for each other party in the execution. Simi-
larly, Πgm

U,i.Recv(M) may output a different message for every other party in the
execution, but it may also output no messages. Whenever a Πgm

U,i.Evolve() or
Πgm

U,i.Recv(M) query is made, the oracle returns a list of ciphertexts cV , one for
each V ∈ G. Each of these messages is immediately placed into the corresponding
channel CU,V along with its index.

A message c generated by an Enc query is removed from its corresponding
buffer only when it is input to a corresponding oracle Πgm

V,j .Dec(c). A message c
generated by an Recv or Evolve query is removed from its corresponding buffer
only when it is input to a corresponding oracle Πgm

V,j .Recv(c). Note that if an
oracle receives a message that it cannot yet process due to reordering of messages
over a pairwise channel, then the oracle is expected to buffer the message until it
can process the message, and return the result once it can process the message.

The adversary may additionally invoke Recv or Dec oracles on messages that
have not been placed in channels but instead were adversarially generated. These
actions do not affect the channels.

Partnering: For group messaging, partnering is analogous to the case for GKA.
Intuitively, a group in a GKA protocol is partnered if the parties participate in
the same session and agreed on the same group key. For group messaging, parties
are partnered if they are running a protocol with each other to agree on a lattice
of group keys.

Definition 6.2 (Partnering). Given a group G ⊆ P and a set of pairs Q =
(U, iU )U∈G defining associated oracles Πgm

U,iU
, we say the oracles are partnered

if the underlying GKA oracles Πgka
U,iU

are partnered.

For some security parameter λ we define a security game for the adversary A,
this consists of the set of participants P where n (the number of participants) is a
polynomial function of λ, as is the maximum number of sessions per participant
nS . Thus the number of oracles Πgm

U,i is also a polynomial function of λ. The
adversary A is given at the start of the game all the public keys pkU for pk ∈ P
and it interacts with the oracles Πgm

U,i via the sequence of oracle queries as above.

Freshness: We now define freshness for our game. Intuitively, we say that a key
is fresh if it has not been revealed to the adversary, either explicitly via Reveal
queries, or implicitly, via a combination of Reveal and StateReveal queries. The
global state Srev

sid tracks the keys computable by the adversary, and a key is fresh
if and only if it is not computable from Srev

sid .
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Definition 6.3 (Freshness). In a session sid, a key ki∗ with at index i∗ is fresh
if and only if it is not computable from Srev

sid using the Computable function, as
defined in the group messaging definition (Definition 6.1).

Depending on when the adversary invokes Corrupt on a party and learns its
long-term secret key, the adversary might learn all messages delivered to that
party, and any such key or update material is included in Srev

sid . Therefore, keys
that the adversary can learn from messages delivered to this party are not fresh.

Security Game: The security game tries to break the semantic security of a
message sent between the parties. It runs in two phases, the division between the
two phases is given by the point in which the adversary executes a Test query.

– Phase 1: All queries can be executed without restriction.
– Test Query: Πgm

U,i.Test(m0,m1): Given two equal length messages m0 and
m1, if kU is fresh, where kU is the maximal key of instance(U, i), then the
challenger selects a bit b ∈ {0, 1} and applies Πgm

U,i.Enc(mb), returning the
output ct∗ to the adversary. We denote the test oracle by Πgm

U∗,i∗ . We call i∗

the test index.
– Phase 2: All queries can be executed except for:

1. Any query that would add ki∗ to the set of keys computable from Srev
sid .

2. If ct∗ is at any point processed by Dec(ct∗), by the oracles, then the
result is not returned to the adversary but the game still continues.

At the end of the game, the adversary A needs to output its guess b′, and wins
the game if b = b′. We define AdvA(λ) = 2 · |Pr[b = b′] − 1/2|.
Definition 6.4 (Security of Group Messaging). A GM scheme is secure
if for any probabilistic polynomial time adversary A the advantage AdvA(λ) is
negligible in the security parameter λ.

Thanks to the underlying key lattice, our security game captures FS and PCS
at the same time in a natural way. Specifically, queries to Reveal, StateReveal or
Corrupt during Phase 1 are used for capturing PCS and queries to these oracles
during Phase 2 captures FS. Unlike prior definitions [4,33] we do not need to
use epoches or separate definitions for PCS and FS.

Correctness. Intuitively, a GM protocol is correct if every message that is
encrypted with the group key is correctly decrypted by every recipient. We write
the formal definition with respect to the oracles defined for our security game.
Our definition of correctness requires all encrypted messages must eventually be
correctly decrypted under a property called “well-ordered execution” which we
define as well.

Definition 6.5 (Correctness of Group Messaging). A GM protocol is cor-
rect if in every infinite execution by every PPT adversary A who is allowed
to query the GM oracles except Corrupt,StateReveal,Reveal and Test and must
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deliver all messages, for all U, i, for all c ← Πgm
U,i.Enc(m), and for all V ∈ G\{U}

there exists a j and an oracle call m′ ← Πgm
V,j .Dec(c) such that (U, i) is partnered

with (V, j) and m′ = m.

Recall that when we apply windowing, some party may be forced by the
protocol to discard the group key used to decrypt a message that has still not
been delivered to it. To facilitate our analysis of correctness when windowing,
we define an ordering property of an execution that describes how many times
a party may evolve the group key between the moment it sends a message and
that message is delivered.

ω-Well-Ordered Execution. Recall that our oracle game tracks the order in which
messages are returned from oracles to be sent to other parties via our abstraction
of pairwise channels, and that the adversary may delay and reorder messages
sent via the pairwise channels. A channel is ω-well-ordered if the nth message
sent over C is removed from the channel before the (n + ω)th message (via
delivery to the correct oracle), for all n ∈ N. An execution is ω-well-ordered if
all pairwise channels are ω well-ordered.

We claim that when windowing with our protocol, for any ω-well-ordered
execution, if the window parameter w is greater than or equal to ω, then the
protocol is correct. The proof is trivial by construction of the protocol. When
w < ω, windowing may force some decryption keys to be purged before the
corresponding message is delivered.

Remark 6.1 (Well Ordering and Network Synchrony). Well-ordering is a strict
relaxation of network synchrony that depends on ordering messages rather than
on time. In a synchronous network, a delay parameter of Δ implies Δ-well-
ordered channels; therefore, setting w = Δ implies correctness. If the network is
asynchronous, then w must be set to ∞ to guarantee correctness. However, this
sacrifices forward secrecy, as parties may store old group keys indefinitely.

6.2 GM from GRM and GKA

We first present our construction of GM from GKA, GRM, and a CCA-secure
AEAD scheme; we then prove security of GM based on the underlying primitives.

Protocol Overview. In our construction of a group messaging protocol, parties
maintain local versions of a global key lattice in order to track the group key.
They then encrypt and decrypt messages using keys from the lattice, and they
update the group key by adding new keys on the key lattice. Our protocol uses
the above primitives to initialize their key lattices, encrypt and decrypt messages
using the keys in the lattice, send updates to the group key, and remove keys
from their lattices. Specifically, each party maintains a local key lattice L, a local
set of key updates E , and a buffer B of unprocessed messages, which contains
both GRM messages that it cannot yet process and application messages that
it is not yet able to decrypt. Every update e ∈ E has the form (d, i, x) where
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d ∈ [n] corresponds to the dimension of the party that generates the update, i is
an index and x is key transformation data. Parties also maintain a list of index
vectors I ∈ (Nn)n that tracks each party’s view of the current key of every other
party, which is used to optimistically exclude keys from its state.

Message Headers and the Recv Subprotocol. We make the distinction between
protocol messages and application messages. Protocol messages in GM are either
GKA messages (to agree on an initial group key) or GRM messages (to evolve
the group key). Application messages are encryptions under some group key.

Our construction uses a single Recv function to process every incoming pro-
tocol message, provided in Fig. 7, which directs the incoming message to the
appropriate subprotocol (either GKA or GRM). To help distinguish between
GKA protocol messages and GRM protocol messages in the descriptions of the
protocols and the proofs, we say that a message is a “GKA message” if it con-
tains a prefix gka, and a message is a “GRM message” if it contains a prefix grm.
In an implementation, these headers can be encoded as flags. Where the context
is clear, we elide these prefixes from the exposition.

Initialization: When a group of parties begin a GM protocol, they initialize
the execution via GM.Init(), which is described in Fig. 5. Each party saves the set
of other parties in the protocol and the window parameter. They also agree on a
hash function H described below, which is a public parameter. The parties then
run GKA in order to agree on an initial group key. Note that the key lattice and
GRM is not initialized yet; they can only be initialized after the GKA outputs
the initial key as shown in Fig. 6.

Sending and Receiving Key Updates: Our GM construction uses GRM as
a transport for generating and communicating random key updates. In Fig. 6
and Fig. 7 we specify how parties generate new key updates and process updates
form other parties, respectively.

Specifically, parties invoke GRM.Evolve() to receive a random key update σ
along with an encryptions of the update to send to each other party via pairwise
channel. The calling party adds σ to its set of edges E and computes any possible
new points in L. When a party receives a key update, it calls GRM.Recv() on
the update, and if a key update is returned then it adds the update as an edge
in E and computes any possible new keys in L. If it cannot yet decrypt the key
update, it buffers the message.

Encrypting and Decrypting a Message: Whenever a party wishes to en-
crypt a message m using the group key, it calls GM.Enc using the maximal
key in its key store. Specifically, we require a hash function H : K → K, that
maps from the keyspace of the key lattice to the keyspace for a CCA-secure
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AEAD encryption scheme.10 When a party encrypts a message, it provides the
hashed key corresponding to the maximal index i in its key lattice L as input to
AEAD.Enc, and it includes the index i as associated data. The encrypting party
then forwards the encrypted message to every other party.

When a party seeks to decrypt a message, it looks up the corresponding key
(the index of which is found in associated data), and supplies the hashed key to
AEAD.Dec. When a party receives an encrypted message, it checks whether the
index of the key used to encrypt is in Computable(L, E). If so, it uses the key at
that index to decrypt the message. If not, it adds the message to the buffer B.
The implementations of encryption and decryption in given in Fig. 8 and Fig. 9.

Pruning the Key Lattice: Parties continuously attempt to prune elements
from their local state, both in order to manage the size of the state they keep,
and also because deleting old keys facilitates forward secrecy. When a party
knows that it will no longer receive any messages encrypted with keys below
a particular key index i, it optimistically prunes all such keys from its lattice
via Forget(L, i). Additionally, if ever a key index exceeds the key window (keys
whose index vector that are less than the threshold index vector iw) it purges
the key (and relevant updates) from L (and E).

Whenever a party receives an encryption from a party V , it updates its index
vector I[φ(V )] tracking the keys used by V . Recall that because our construction
requires key updates to move toward higher lattice indices, the set of future
indices is the union of the n-dimensional hyperplanes H∗ =

⋃
iV ∈I H≥iV . Any

index outside this union represents an obsolete key, and the related keys are
deleted via Forget in Fig. 9.

In summary, keys and edges that fall outside the window parameter are
deleted as specified in Fig. 7. Keys and edges that will not be used in the future
are deleted as specified in Fig. 9. This is possible because parties also send their
maximal lattice point along with their message (in Fig. 8) so that the receiving
party can compute the minimum view (lattice point) of all parties and delete
keys and edges that are smaller than the minimum view.

On execution of GM.Init(), run GKA.Init(G) and output the result. Note that
U holds the long-term key pair (pkltU , skltU ).

Fig. 5. Algorithm for GM.Init(G,w)

10 This hash function’s purpose is semantic to convert between types. We only require
(informally) that if the adversary does not know k then it does not know H(k). We
elide discussion of H in the proof.
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U calls {cU,X}X∈G ← GRM.Evolve(), and outputs cU,X to X for X ∈ G.

Fig. 6. Algorithm for GM.Evolve()

If M is a GKA message:

– Compute {mU,V }V ∈G ← GKA.Recv(M), and output mU,V to party V for
V ∈ G.

– If GKA outputs done with a key k:
• Initialize L with the point (0, k).
• Initialize a GRM execution via {cU,V }V ∈G ← GRM.Init(k, w, G) and

send cU,V to V for V ∈ G.
• Initialize an empty message buffer B ← ∅.

If M is a GRM message received from party V :

1. Compute σ ← GRM.Recv(M). If σ =⊥, then add M to B and return. Oth-
erwise, let (d, j, x) ← σ, add (d, j, x) to the set of edges E and then compute
L ← Computable(L, E).a

2. Delete deprecated keys using L ← Forget(L, w).
3. Delete deprecated edges from E that precede the corresponding index in the

threshold index vector (see Section 3.3). Specifically, suppose the threshold
index vector is iw = (i1, . . . , inS ) and E = {(dk, jk, xk)}k, then remove all
edges (dk, jk, xk) where jk < idk .

4. While B is not empty or B has not changed from the previous iteration:
– For every message M ∈ B, execute GM.Recv(M)

a A sanity check would be that d = φ(V ) and j should equal the dth element
of the maximal index vector of L.

Fig. 7. Algorithm for GM.Recv(M)

Player U finds the φ(U)-maximal lattice point i in its local lattice L, computes
(ct, t) ← AEAD.Enc(m, U‖i;H(ki)), and then returns (ct, U‖i, t).

Fig. 8. Algorithm for GM.Enc(M)

6.3 Concrete Costs

We give an estimate of our concrete communication cost for 128-bit security.
Since the payload ciphertext form is (ct, U‖i, t), the concrete communication
cost for 32 bytes payload is 32 + 3 · 16 = 80 bytes, assuming the identity U ,
the lattice point i, and the AEAD tag t are 128 bits. Additionally, the update
ciphertext has the form (c, t, j) where c is a ciphertext encrypting pk‖U‖i‖x,
under a public key encryption scheme, where pk is assumed to be 32 bytes and
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Parse M as (ct, V ‖i, t). If M is not of this form, return ⊥. Then:

– If i < iw, where iw is the threshold index vector, or if i < I[φ(V )], return ⊥.
– Update I[φ(V )] ← i, compute imin as the index vector of the element-wise

minimum of all i ∈ I, and then execute L ← Forget(L, imin).
– Find the key at i in L using Computable(L, E), if ki =⊥, then add M to B

and return ⊥.
– If ki �=⊥, compute m ← AEAD.Dec(ct, V ‖i, t;H(ki)). If m =⊥, abort the

protocol. Otherwise, return m.

Fig. 9. Algorithm for GM.Dec(M)

x is from the update space assumed to be 16 bytes. One update message is
needed for every party in the group, for a group size of 128, the update cost is
128 · (32+5 · 16) = 14.3 KB. Our scheme uses less communication than Weidner
et al. [33] which has a payload ciphertext cost of 139 bytes and an update cost
of 39.6 KB in the same setting.

The storage overhead comes from the window parameter w and the group
size N . Specifically, we need to maintain at most w update messages per party
and only one key in the lattice at the minimum view. For a window size of 1, 000
and 128 parties, the storage requirement would be just over 14 MB in the worst
case which is insignificant in today’s devices.

6.4 Main Theorem

We now state our main theorem. The proof is in the full version [21].

Theorem 6.1 (Security of Group Messaging). If A is an adversary against
the GM game, then there exist adversaries B, C, and D such that

Advgm(A) ≤ 2nSAdv
gka(B) + 2nSnAdvgrm(C) + nSnqAdv

cca(D),

where nS = poly(λ) is the maximum the number of GM sessions A may invoke,
and nq = poly(λ) is the maximum number of keys that A may query in a session.
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Abstract. Identity-Based Matchmaking Encryption (IB-ME), initially
proposed by Ateniese et al. (Crypto 2019), is an extension of Identity-
Based Encryption (IBE) that emphasizes privacy and authenticity. It
ensures that the content of a message is only revealed when the recip-
ient’s identity matches the intended recipient specified by the sender,
and when the target sender’s identity, chosen by the receiver during
decryption, matches the actual sender’s identity. In cases where there
is a mismatch, no information about the sender, receiver, or message is
disclosed.

Francati et al. (IndoCrypt 2021) observed that the privacy definition
for IB-ME solely guarantees the concealment of the message and sender
identity when the receiver’s identity does not match the intended recip-
ient specified by the sender. It does not consider whether the target
sender’s identity matches the actual sender’s identity. To overcome this
limitation, they proposed an enhanced privacy notion and developed an
IB-ME scheme that achieves it in the plain model, even though relying
on non-standard assumptions.

In this paper, we address the problem of constructing an IB-ME
scheme that offers enhanced privacy under standard assumptions with
particular emphasis on post quantum security. Specifically, we first show
how to obtain an IB-ME that achieves the notion of enhanced privacy
using as building blocks any anonymous IBE and reusable computational
extractors. Next, we show how to construct an IB-ME starting from an
IB-ME satisfying enhanced privacy and a context-hiding homomorphic
signature, thereby ensuring not only enhanced privacy but also authen-
ticity. Notably, our framework allows for secure IB-ME schemes to be
instantiated in the standard model from lattice assumptions, thus pro-
viding also post-quantum security.
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1 Introduction

Matchmaking Encryption (ME), as introduced by Ateniese et al. in [4], enables
the sender and receiver to establish policies that must be met for an encrypted
message to be disclosed. ME schemes must guarantee two fundamental security
properties: privacy and authenticity. Privacy ensures that the sender’s private
information, such as the selected policy and its attributes, as well as the confiden-
tiality of the ciphertext, remain completely concealed from unintended receivers.
Authenticity, on the other hand, guarantees that an adversarial sender cannot
generate a valid ciphertext if it fails to satisfy the receiver’s policy requirements.

The notions of privacy and authenticity make ME highly applicable in covert
communication services. When both communicating parties are designated as
intended targets by each other, the encrypted traffic can be correctly retrieved.
However, if this is not the case, the decryption process fails without revealing the
cause of failure. Furthermore, ME can find practical use in Internet of Things
(IoT) applications and data sharing services [7,21].

Building upon the concept of matchmaking encryption in the identity-based
context, Ateniese et al. [4] further developed and formalized the concept of
Identity-Based Matchmaking Encryption (IB-ME) exploring its applications,
particularly in the creation of an anonymous bulletin board operating over a
Tor network.

In IB-ME, the receiver ρ specifies a target sender’s identity snd during decryp-
tion, while the sender σ beside specifying the intended receiver’s identity rcv,
must obtain an encryption key ekσ from the authority to encrypt a message.
Messages can be decrypted by a receiver only if its identity matches the sender’s
intended recipient, and the target sender’s identity also matches the identity
associated with the encryption key ekσ used in the encryption process. In other
words, the encrypted message can only be decrypted if there is a match in both
directions (i.e., ρ = rcv and σ = snd); otherwise, no information beyond the
mismatch is leaked. Specifically, in IB-ME privacy ensures that unauthorized
parties cannot access the plaintext or learn any additional information about
the sender’s or the receiver’s identities, while authenticity guarantees that the
ciphertext can only be generated by means of the actual sender’s encryption key.

Francati et al. [12] observed that the privacy definition for IB-ME defined
in [4] solely ensures the secrecy of the message and sender identity when the
recipient’s identity does not match the one specified by the sender. However,
it does not take into account whether the actual sender’s identity corresponds
to the desired sender’s identity. To overcome this limitation, they proposed an
enhanced privacy notion which ensures that the identities σ and rcv, along with
the message derived from the ciphertext, remain hidden even when ρ = rcv and
σ �= snd. They also developed an IB-ME scheme that achieves enhanced privacy
in the plain model, even though relying on non-standard assumptions.

Our Contribution. In this paper, we address the problem of designing an IB-
ME scheme achieving both enhanced privacy and authenticity from standard
assumptions by proposing a generic construction. Specifically, we first show how
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to obtain an IB-ME that achieves the notion of enhanced privacy using as build-
ing blocks any anonymous IBE and any reusable extractor. In particular, the
scheme allows the recipient to only decrypt a ciphertext if it knows, or can
guess, the sender’s identity. This is done by adding an extra layer of encryption
that uses a one-time pad generated from the sender’s identity through a reusable
computational extractor. Moreover, we show how to construct an IB-ME that
satisfies both enhanced privacy and authenticity starting from any IB-ME that
satisfies enhanced privacy and a context-hiding fully homomorphic signature.
Given a Boolean circuit C, and a signature ςx that verifies the authenticity of a
message x, a fully homomorphic signature scheme allows to generate a signature
ςC(x) that certifies the value of C(x). A homomorphic signature scheme, roughly
speaking, is said to be context hiding if ςC(x) does not contain any information
on the original message x. The main idea behind our construction is to let the
sender’s encryption key consist of a homomorphic signature ςσ over the sender’s
identity σ (computed during the setup by means of secret parameters). More-
over, we define a family of circuits C such that for each circuit C ∈ C it holds
that C(σ) = 1 if and only if the sender identity σ matches a target identity snd
hard-wired in the circuit C along with a message m, a receiver identity rcv and
the ciphertext c computed encrypting m for the receiver rcv with the underly-
ing IB-ME. When the sender σ encrypts m it produces a ciphertext (c, ςC(σ))
where the signature ςC(σ) certifies that C(σ) = 1 (i.e., it ensures that snd hard-
wired in C matches the sender’s identity σ). Intuitively, the enhanced privacy
follows by the privacy property of the underlying IB-ME along with the context-
hiding property of the homomorphic signature scheme which ensures that, when
homomorphically evaluating the pair (σ, ςσ) with respect to the circuit C, the
resulting signature ςC(σ) will not reveal anything about σ making it difficult for
an attacker to guess the sender’s identity. On the other hand, authenticity fol-
lows by the unforgeability of the homomorphic signature scheme which ensures
that, it is difficult for an adversary to produce a valid signature ςC(σ) that verifies
with respect to the circuit C without knowing a signature on the identity σ.

Our framework leads to IB-ME schemes that achieve both enhanced privacy
and authenticity. Moreover, since it allows for IB-ME schemes to be instan-
tiated in the standard model from lattice assumptions (as discussed later in
the paper), the framework yields constructions achieving both enhanced privacy
and authenticity from standard lattice assumptions, thus also providing post-
quantum security.

Related Works. IB-ME schemes have been introduced by Ateniese et al. in [4].
Specifically, they presented the more general concept of ME, where both the
sender and receiver (each with their own attributes) can specify policies the
other party must meet for the message to be revealed. The authors also designed
an IB-ME scheme in the random oracle model from the bilinear Diffie-Hellman
assumption. Francati et al. later showed the first construction for IB-ME with-
out random oracles [12]. The construction uses as building block the anonymous
IBE in [13] to achieve privacy and relies on a generic transform that uses a signa-
ture scheme and a multi-theorem Non-Interactive Zero Knowledge (NIZK) proof
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system for any NP language to achieve authenticity. Additionally, they defined
the stronger security notion for privacy, known as enhanced privacy. Subse-
quently, Chen et al. [8] presented an IB-ME from symmetric external Diffie-
Hellman assumption in the standard model. The scheme is proven to be secure
under the weaker notion of privacy, but does not achieve enhanced privacy.
Wang et al. in [20] proposed a different security model for IB-ME and showed a
construction inspired by Chen’s work [8] from lattice assumptions which, how-
ever, does not achieve enhanced privacy. Finally, we note that an IB-ME that
achieves both enhanced privacy and authenticity based on lattice assumptions
can be obtained by building upon the enhanced private IB-ME achieved through
our construction that utilizes any anonymous IBE and reusable extractors from
lattice assumptions. The addition of authenticity can be achieved through the
transformation described by Francati et al. [12]. However, implementing this
transformation needs the use of signature schemes and expensive multi-theorem
NIZK proofs. Recently, Peikert et al. [18] instantiated NIZK proof systems for
any NP language based on the plain Learning With Errors (LWE) problem, with
polynomial approximation factors. The zero-knowledge property of such NIZK
constructions holds for a single statement and proof. To achieve a multi-theorem
NIZK, it must be combined with transformations described in [10,11] that gen-
erally turn single-theorem NIZK proofs into multi-theorem zero-knowledge pro-
tocols.

Organization. The remainder of this paper is organized as follows. In Sect. 2 we
review some useful concepts. In Sect. 3, we present a generic construction for IB-
ME that satisfies enhanced privacy. Then, we propose a generic transform that
results in an IB-ME that also satisfies the authenticity security notion. In Sect. 4,
we point out possible instantiations of our framework from lattice assumptions.
We conclude the paper in Sect. 5.

2 Preliminaries

Notation. We denote by N the set of non-negative integers, by Z the set of
integers, and by R the set of real numbers. For a positive integer n, we write [n]
to denote the set of integers {1, . . . , n}.

Uppercase boldface letters (such as X) are used to denote random variables,
lowercase letters (such as x) to denote concrete values, and uppercase letters
(such as X) to denote sets.

Vectors are denoted by lowercase boldface letters (such as v), we refer to
the i-th component of v as vi. We use calligraphic letters (such as A) to denote
algorithms. When an algorithm A has access to an oracle O, we define the set
of queries that A issues to O as QO, and the set of outputs that O provides
to A as OO, respectively. Given a set S, the notation x ←− S means that x is
sampled from S, whereas x ←$ S means that x is chosen uniformly at random
from S; if D is a distribution, we use the notation x ←$D to mean that x is
chosen according to the distribution D. A run of a PPT algorithm A having
input x and output y is denoted as y ←$ A(x).
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Negligible Functions. We denote by λ ∈ N the security parameter. We assume
that every algorithm takes as input the security parameter, written in unary
(i.e. 1λ). A function ε : N −→ [0, 1] is negligible in the security parameter λ if
it is asymptotically smaller than any inverse polynomial function in λ i.e. if
ε(λ) ∈ O(1/p(λ)). We refer to an unspecified negligible function in the security
parameter as negl(λ). We say that an event occurs with overwhelming probability
if it occurs with probability at least 1 − ε(λ), for some negligible function ε(λ).
Unpredictability and Indistinguishability. The min-entropy of a random variable
X ∈ X is H∞(X) def= − log maxx∈XPr[X = x], and it measures the best chance
to predict X (by a computationally unbounded algorithm).

Given two random variables X and Y, we say that they are computation-
ally indistinguishable (X

c≈Y) if for all PPT distinguishers D it holds that the
advantage Adv ind

X,Y,D(λ) :=
∣
∣Pr

[D(1λ,X) = 1
] − Pr

[D(1λ,Y) = 1
]∣
∣ is negligible.

2.1 Identity-Based Matchmaking Encryption

Let σ and ρ respectively denote the identities of the sender and the receiver,
whereas let rcv and snd denote the target identities specified by the sender and
the receiver, respectively. Thus, in order to encrypt a message using the sender’s
own encryption key ekσ, the sender σ must specify the identity of the intended
receiver rcv. Similarly, when decrypting a ciphertext, the receiver ρ specifies the
identity of the sender snd and uses its own decryption key dkρ to decrypt the
message. The original message is revealed only in case of a match, that is when
σ = snd and ρ = rcv. If σ �= snd or ρ �= rcv we say that a mismatch occurs.

Formally, an IB-ME [4,12] with message space M, ciphertext space C, and
identity space I, is a tuple of five probabilistic polynomial-time algorithms
(Setup, SKGen, RKGen, Enc, Dec) such that:

Setup(1λ) : On input the security parameter 1λ, the randomized setup algorithm
returns as output a master public-key mpk and a master secret-key msk. We
assume that all the other algorithms take mpk as input.

SKGen(msk, σ) : On input the master secret-key msk, and an identity σ, the
randomized sender-key generator algorithm returns as output an encryption
key ekσ for the identity σ.

RKGen(msk, ρ) : On input the master secret-key msk, and an identity ρ, the
randomized receiver-key generator algorithm returns as output a decryption
key dkρ for the identity ρ.

Enc(ekσ, rcv,m) : On input the encryption key ekσ for identity σ, a target identity
rcv, and a message m ∈ M, the randomized encryption algorithm returns as
output a ciphertext c.

Dec(dkρ, snd, c) : On input the decryption key dkρ for identity ρ, a target identity
snd, and a ciphertext c, the deterministic decryption algorithm returns as
output either a message m or a special symbol ⊥ denoting a failure.

Definition 1 ([12] Correctness of IB-ME). An IB-ME scheme Π = (Setup,
SKGen, RKGen, Enc, Dec) is correct if ∀λ ∈ N, ∀(mpk,msk) output by Setup(1λ),
∀m ∈ M, ∀σ, ρ, rcv, snd ∈ I such that σ = snd and ρ = rcv it holds that
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Pr[Dec(dkρ, snd,Enc(ekσ, rcv,m)) = m] ≥ 1 − negl(λ)

where ekσ ←$ SKGen(msk, σ) and dkρ ←$ RKGen(msk, ρ).

Security Notions. An IB-ME should satisfy two main security properties:
authenticity and enhanced privacy.
Authenticity. Informally, the authenticity property requires that no PPT adver-
sary can compute a valid ciphertext c under the identity σ without holding the
corresponding encryption key ekσ.

Definition 2 ([12] Authenticity of IB-ME). An IB-ME scheme Π = (Setup,
SKGen, RKGen, Enc, Dec) satisfies authenticity if for all PPT adversaries A it
holds that

Succib-auth
Π,A (λ) := Pr

[

Gameib-auth
Π,A (λ) = 1

]

≤ negl(λ)

where Gameib-auth
Π,A (λ) is defined in Fig. 1.

Gameib-authΠ,A (λ)

1. (mpk,msk) ←$ Setup(1λ)

2. (c, ρ, snd) ←$AO1,O2(1λ,mpk)

3. dkρ ←$RKGen(msk, ρ)

4. m := Dec(dkρ, snd, c)

5. if ∀σ ∈ QO1 : (σ = snd) ∧ (m = ⊥)

return 1

6. else return 0

Fig. 1. Gameib-auth
Π,A (λ) defining authenticity. O1 and O2 are implemented respectively

throughout the SKGen and RKGen algorithms and on input an arbitrary identity return
respectively the corresponding encryption key and decryption key.

Enhanced Privacy. The original privacy definition in [4] captures the secrecy of
the sender’s inputs (σ, rcv,m) according to every possible mismatch condition
for the receiver. However, given a known decryption key dkρ for an identity ρ,
the adversary can always choose a target sender’s identity snd on the fly and
try to decrypt the ciphertext. To rule out this attack, the enhanced privacy
defines a mismatch condition that hides the sender’s identity σ0 and σ1 into two
adversarial distributions ID0 and ID1, respectively, each having a non-trivial
amount of min-entropy.
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Gameib-priv
+

Π,A (λ)

1. (mpk,msk) ←$ Setup(1λ)

2. (m0,m1, rcv0, rcv1, ID0, ID1) ←$AO1,O2
1 (1λ,mpk)

3. σ0 ←$ ID0

4. σ1 ←$ ID1

5. ekσ0 ←$ SKGen(msk, σ0)

6. ekσ1 ←$ SKGen(msk, σ1)

7. b ←$ {0, 1}
8. c ←$Enc(ekσb , rcvb,mb)

9. b ←$AO1,O2,{Oi
3}i∈{0,1}

2 (1λ, c)

10. if (b = b) return 1

11. else return 0

Fig. 2. Gameib-priv+

Π,A (λ) defining enhanced privacy. O1 and O2 are implemented respec-
tively throughout the SKGen and RKGen algorithms and on input an arbitrary identity
return respectively the corresponding encryption key and decryption key. Oi

3 allows
the adversary to obtain the ciphertexts of arbitrary (m, rcv) encrypted by sender σi.

Definition 3 ([12] Enhanced Privacy of IB-ME). An IB-ME scheme Π =
(Setup, SKGen, RKGen, Enc, Dec) satisfies enhanced privacy if for all valid PPT
adversaries A = (A1,A2) it holds that

Advib-priv+

Π,A (λ) :=
∣
∣
∣
∣
Pr

[

Gameib-priv+

Π,A (λ) = 1
]

− 1
2

∣
∣
∣
∣
≤ negl(λ)

where Gameib-priv+

Π,A (λ) is defined in Fig. 2.

An adversary is considered valid if for every identity ρ for which it knows the
corresponding decryption key dkρ either (i) ρ �= rcv0 and ρ �= rcv1, or (ii) the
distributions ID0 and ID1 have a non-trivial amount of min-entropy H∞(IDi) ≥
ω(log(λ)), or (iii) ρ �= rcv0 and ID1 has a non-trivial amount of min-entropy
H∞(ID1) ≥ ω(log(λ)), or (iv) ρ �= rcv1 and ID0 has a non-trivial amount of
min-entropy H∞(ID0) ≥ ω(log(λ)).

2.2 Homomorphic Signatures

Homomorphic signature schemes allow to perform computations on data that
have been signed. In particular, for a function f represented as a Boolean circuit
C, and a signature ςx that verifies the authenticity of a message x, it is possible
to generate a signature ςf(x) that certifies the value of f(x) with respect to the
function f. We adapt the following definitions from [6,15,16].
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Definition 4 (Homomorphic Signatures). Let X be the message space and
n ∈ N be the maximum length of a dataset. Let C be a family of circuits such
that each C ∈ C denote a circuit that implements a function from Xn to X
(i.e., C : Xn → X). A homomorphic signature scheme is a tuple of four PPT
algorithms (Setup,Sign,Eval,Verify) with the following properties:

Setup(1λ, 1n) : On input the security parameter 1λ and maximum dataset length
n, the randomized setup algorithm outputs a public-key pk and a secret-key
sk.

Sign(sk, τ, x) : On input the secret-key sk, a tag τ ∈ {0, 1}λ, and a dataset
x = (x1, . . . , xn), outputs a signature ς = (ς1, . . . , ςn).

Eval(pk, τ, x, ς, C) : On input the public-key pk, a tag τ ∈ {0, 1}λ, a dataset
x = (x1, . . . , xn) with corresponding signature ς = (ς1, . . . , ςn), and a circuit
C, outputs a signature ς ′ on the value x′ = C(x).

Verify(pk, τ, x, ς, C) : On input the public-key pk, a tag τ ∈ {0, 1}λ, a message
x ∈ X with signature ς, outputs either 1 (accept) or 0 (reject).

Note that the tags serve to distinguish between different datasets, with the
intent being that only signatures with matching tags be combinable homomor-
phically. From the user’s viewpoint, the tag is a bit-string of length λ selected
uniformly at random.

Definition 5 ([6,15] Correctness of Homomorphic Signatures). We say
that a homomorphic signature scheme is correct if for any tag τ ∈ {0, 1}λ,
for any circuit C : Xn −→ X, when (pk, sk) is output of Setup(1λ, 1n), and
ς ← Sign(sk, τ, x), it holds that:

1. for any index i ∈ [n], Verify(pk, τ, xi, ςi, C) returns 1
2. for any message x′ ∈ X, Verify(pk, τ, x′, ς ′, C) returns 1 when ς ′ ←

Eval(pk, τ, x, ς, C) and x′ = C(x).

The security of such schemes is ensured by two main properties: unforgeability
and context-hiding.

Definition 6 (Existential unforgeability against adaptive chosen-
dataset
attacks). A homomorphic signature scheme Σ = (Setup,Sign,Eval,Verify) is
fully unforgeable against adaptive chosen-dataset queries if for all n ∈ N and
for all PPT adversaries A it holds that

SuccEUF-FH-CDA
Σ,A (λ) := Pr

[

GameEUF-FH-CDA
Σ,A (λ) = 1

]

≤ negl(λ)

where GameEUF-FH-CDA
Σ,A (λ) is defined in Fig. 3.

Eventually, the attacker produces a forgery (τ∗, x∗, ς∗, C∗) and the winning
condition captures two distinct types of forgeries. In a type 1 forgery, for any τ
such that (τ, ςx) ∈ OO, τ∗ �= τ . In a type 2 forgery, there exist a pair (τ∗, ςx) in
OO for some dataset x (i.e. x is the dataset associated to tag τ∗) but x∗ �= C(x).
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GameEUF-FH-CDAΣ,A (λ)

(pk, sk) ←$ Setup(1λ, 1n)

(τ∗, x∗, ς∗, C∗) ←$AO(1λ, pk)

if Verify(pk, τ∗, x∗, ς∗, C∗) = 1 and either

(1) τ∗ = τ for all τ s.t. (τ, ςx) ∈ OO, or

(2) τ∗ = τ for some τ s.t. (τ, ςx) ∈ OO but x∗ = C(x) where x is the

dataset associated to tag τ ;

return 1

else return 0

Fig. 3. Unforgeability of homomorphic signatures. The oracle O on input x =
(x1, . . . , xn), replies with a tag τ and a signature ς ←$ Sign(sk, τ, x).

The context-hiding requirement, roughly says that if a user evaluates a func-
tion f on a dataset-signature pair (x, ς) to obtain a signature ς on C(x), and
then runs the ReRand algorithm on ς, the resulting signature does not contain
any information about the dataset x.

Definition 7 (Context-hiding). A homomorphic signature scheme is context
hiding if there exist two additional PPT algorithms:

ReRand(pk,τ, x, ς, C) On input the public-key pk, a tag τ ∈ {0, 1}λ, a message x
with signature ς, a circuit C returns as output ς ′;

RVerify(pk, τ, x, ς, C) On input the public-key pk, a tag τ ∈ {0, 1}λ, a message
x ∈ X with signature ς, outputs either 1 (accept) or 0 (reject);

and it holds that:

Correctness: for any (pk, sk) ← Setup(1λ, 1n), and any tuple tag/message/sig-
nature (τ, x, ς) such that Verify(pk, τ, x, ς) = 1, RVerify(pk, τ, x,ReRand(pk, τ, x,
ς, C), C) = 1;

Unforgeability: the unforgeability property still holds when replacing the origi-
nal verify algorithm with RVerify in the security game;

Context-hiding: for any fixed (pk, sk) ←− Setup(1λ, 1n), and any tuple tag/mes-
sage/signature (τ, x, ς) for which RVerify(pk, τ, x, ς, C) = 1 there exists a sim-
ulator Sim such that ReRand(pk, τ, x, ς, C)

c≈ Sim(sk, x, τ).

3 IB-ME: Generic Construction

In this section, we first present a generic construction for IB-ME that satisfies
enhanced privacy. Then, we propose a generic transform that, by combining any
IB-ME achieving enhanced privacy and a context-hiding homomorphic signature,
results in an IB-ME that also satisfies the authenticity security notion.
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3.1 IB-ME Achieving Enhanced Privacy

In Fig. 4 we show an IB-ME achieving enhanced privacy. It uses a reusable
computational extractor and any IBE achieving INDr-ID-CPA security. Formal
definitions regarding IBE and reusable computational extractors can be find
respectively in Appendix B and AppendixA.

Let λ ∈ N be the security parameter. Let Σ = (Setup,Extract,Encrypt,Decrypt) be
an IBE with identity space I = {0, 1} , message space M and ciphertext space C,
satisfying INDr-ID-CPA security. Let Ext : S × I −→ C be a reusable computational

Algorithm Setup(1λ)
1. Execute (mpk,msk) ←$Σ.Setup(1λ);
2. Output (mpk,msk).

Algorithm SKGen(msk, σ)
1. Output ekσ := σ.

Algorithm RKGen(msk, ρ)
1. Execute dkρ ←$Σ.Extract(msk, ρ);
2. Output dkρ.

Algorithm Enc(ekσ, rcv,m)
1. Sample a seed s ←$S;
2. Compute gσ ←$Exts(ekσ) = Exts(σ);
3. Execute c1 ←$Σ.Encrypt(rcv,m);
4. Compute c2 := c1 ⊕ gσ;
5. Output c := (c2, s).

Algorithm Dec(dkρ, snd, c)
1. Parse c := (c2, s)
2. Compute gsnd ←$Exts(snd);
3. Compute c1 := c2 ⊕ gsnd;
4. Execute m := Σ.Decrypt(dkρ, c1);
5. Output m.

Fig. 4. An IB-ME construction achieving enhanced privacy.

In this construction we let ekσ be equal to the identity σ obtained through
SKGen(msk, σ). Indeed, the secret encryption key ekσ is needed only when
authenticity is required.

It is straightforward to see that the correctness of the scheme follows from
that of the underlying IBE. Indeed, it is correct if ∀λ ∈ N, ∀(mpk,msk) output
by Setup(1λ), ∀m ∈ M, ∀σ, ρ, rcv, snd in the identity space I = {0, 1}� such
that σ := snd and ρ := rcv, it holds that:

Pr[Dec(dkρ, snd,Enc(ekσ, rcv,m)) = m] ≥ 1 − negl(λ)
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where ekσ := σ and dkρ ←$ Extract(msk, ρ).

In order to prove that the construction in Fig. 4 achieves enhanced privacy,
we introduce a security game that captures a strong privacy property, that we
dub indistinguishable from random privacy, in which the challenge ciphertext is
indistinguishable from a uniform random string of equal length. Such a definition
subsumes recipient’s identity anonymity, meaning that even if the adversary
presumes the identity of the actual receiver, it cannot confirm it. This definition
is similar to the notion of indistinguishable from random for IBE [1].

Gameib-INDr-priv
Π,A (λ)

1. (mpk,msk) ←$ Setup(1λ)

2. (m0, rcv0, ID0) ←$AO1,O2
1 (1λ,mpk)

3. σ0 ←$ ID0

4. ekσ0 ←$ SKGen(msk, σ0)

5. c0 ←$Enc(ekσ0 , rcv0,m0)

6. c1 ←$ C
7. b ←$ {0, 1}
8. b ←$AO1,O2,O3

2 (1λ, cb)

9. if (b = b) return 1

10. else return 0

Fig. 5. Gameib-INDr-priv
Π,A (λ) defining the indistinguishable from random privacy.

Consider the game in Fig. 5. The adversary A selects a challenge tuple (m0,
rcv0, ID0). The challenger samples an identity σ0 from the distribution ID0

and randomly extracts a bit b ←$ {0, 1} to determine whether to compute the
challenge ciphertext c as Enc(ekσ0 , rcv0, m0) (if b = 0), or sample a random
ciphertext c in the ciphertext space C (if b = 1).

Oracles O1 and O2 are implemented by SKGen(msk, ·), and RKGen(msk, ·),
respectively. The oracle O3 allows the adversary to choose a message m and a
target receiver’s identity rcv, and obtain the ciphertext c when ekσ0 is unknown to
A. Specifically, if b = 0 then O3 will output the ciphertext c as Enc(ekσ0 , rcv,m),
otherwise c is randomly chosen in the ciphertext space C.

Definition 8 (Indistinguishable from random privacy). We say that an
IB-ME scheme Π satisfies indistinguishable from random privacy if for all valid
PPT adversaries A = (A1,A2) :

Advib-INDr-priv
Π,A (λ) :=

∣
∣
∣
∣
Pr

[

Gameib-INDr-priv
Π,A (λ) = 1

]

− 1
2

∣
∣
∣
∣
≤ negl(λ)
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where Gameib-INDr-priv
Π,A (λ) is described in Fig. 5.

An adversary A = (A1,A2) is valid if ∀ρ ∈ QO2 the following invariant
holds:

(ρ �= rcv0) ∨ (H∞(ID0) ≥ ω(log(λ))) (1)

An adversary is valid if for every identity ρ for which it knows the corre-
sponding decryption key dkρ, either (i) ρ �= rcv0 (i.e., the adversary does not
know the decryption key for the challenge target receiver’s identity), or (ii) the
distribution ID0 has a non-trivial amount of min-entropy H∞(ID0) ≥ ω(log(λ))
(i.e., the adversary has the decryption key for the challenge target receiver’s
identity, but does not know the challenge sender’s identity σ0, so it can not set
snd = σ0).

It is easy to see that indistinguishability from random privacy implies
enhanced privacy, for completeness we include the proof in AppendixC. Thus, in
order to prove that the construction in Fig. 4 achieves enhanced privacy, we show
that it satisfies indistinguishable from random privacy. Specifically, we define the
events corresponding to each mismatch conditions given in Eq. 1 as follows:

Mismatch1 : ∀ρ ∈ QO2 , ρ �= rcv0;
Mismatch2 : H∞(ID0) ≥ ω(log(λ)).

Since the adversary A must satisfy at least one of the two mismatch conditions to
be valid, we analyze these events separately. We begin by studying the advantage
of the adversary in the Gameib-INDr-priv

Π,A (λ) when Mismatch1 occurs.

Lemma 1. Let Π = (Setup,SKGen,RKGen,Enc,Dec) be the IB-ME described
in Fig. 4, and let Σ = (Setup,Extract,Encrypt,Decrypt) be the underlying IBE
satisfying INDr-ID-CPA security. It holds that:

∣
∣
∣
∣
Pr

[

Gameib-INDr-priv
Π,A (λ) = 1

∣
∣
∣Mismatch1

]

− 1
2

∣
∣
∣
∣
≤ negl(λ)

Proof. To prove the lemma, we need to show that, when Mismatch1 occurs,
the adversary’s view in the Gameib-INDr-priv

Π,A (λ) with challenge bit b = 0 is com-
putationally indistinguishable from the adversary’s view when the challenge bit
is b = 1. We consider a sequence of hybrid experiments Hi(λ), for i ∈ 1, . . . , 3.
For the remainder of this proof, these experiments will assume that the event
Mismatch1 has occurred.

H1(λ) : This experiment is identical to Gameib-INDr-priv
Π,A (λ) with challenge bit b =

1;
H2(λ) : This experiment is identical to H1(λ), except that the challenge cipher-

text c is not chosen completely at random in the ciphertext space but it is
computed as c = c′⊕gσ0 where c′ is randomly chosen in C and gσ0 ←$ Exts(σ0)
for some seed s chosen at random.

H3(λ) : This is identical to Gameib-INDr-priv
Π,A (λ) with challenge bit b = 0.
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It is easy to see that H1(λ) and H2(λ) are identically distributed, as the only
difference between the two experiments is that the ciphertext in H1(λ) is a
random element in C, while in H2(λ) it is computed by xoring a random element
in C to the extractor gσ0 .

We now prove that the adversary’s views in the experiments H2(λ) and H3(λ)
are computationally indistinguishable. In particular, we show that if there exists
a PPT algorithm D which is able to distinguish between experiments H2(λ) and
H3(λ) with non-negligible probability then it is possible to construct a PPT
adversary B = (B1,B2) that running D as a sub-routine has a non-negligible
advantage in the GameINDr-ID-CPA

Σ,B (λ) against the underlying IBE Σ.

Game∗
D(λ)

1. (mpk,msk) ←$Π.Setup(1λ)

2. (m0, rcv0, ID0) ←$DO1,O2
1 (1λ,mpk)

3. σ0 ←$ ID0

4. c0 ←$ C
5. s ←$S

6. gσ0 ←$Exts(σ0)

7. c0 := c0 ⊕ gσ0

8. c1 ←$Π.Enc(σ0, rcv0,m0) =

= Σ.Enc(rcv0,m0) ⊕ gσ0

9. d ←$ {0, 1}
10. d ←$DO1,O2,O3

2 (1λ, cd)

11. if (d = d) return 1

12. else return 0

(a)

Game∗
B(λ)

1. (mpk,msk) ←$Π.Setup(1λ)

2. (m0, rcv0, ID0) ←$BO1,O2
1 (1λ,mpk)

3. σ0 ←$ ID0

4. s ←$S

5. gσ0 ←$Exts(σ0)

6. c0 ←$Σ.Enc(rcv0,m0) ⊕ gσ0

7. ψ ←$ C
8. c1 ←$Σ.Enc(rcv0,m0) ⊕ ψ

9. d ←$ {0, 1}
10. d ←$BO1,O2,O3

2 (1λ, cd)

11. if (d = d) return 1

12. else return 0

(b)

Fig. 6. Auxiliary games. Oracles O1 and O2 on input an identity return respectively
the corresponding encryption key and decryption key. Oracle O3 on input a message
and a receiver return a ciphertexts encrypted under the encryption key of sender σ0.

Consider the game Game∗
D(λ) in Fig. 6(a). Notice that Game∗

D(λ) with chal-
lenge bit d = 0 corresponds to experiment H2(λ), whereas Game∗

D(λ) with chal-
lenge bit d = 1 corresponds to experiment H3(λ). The algorithm B1, on input
the security parameter 1λ and the master public-key mpk, runs D1 on input 1λ

and mpk. The oracles O1 and O2 for D1 can be implemented by B1; in partic-
ular, when D1 asks for the encryption key for a sender’s identity σ, B1 returns
ekσ = σ, whereas when D1 asks for the decryption key for a receiver’s identity
ρ where ρ �= rcv0, B1 issues the same query to its decryption key oracle. We are
assuming that D1 will not ask for the decryption key of the identity rcv0 because
we are operating under the assumption that Mismatch1 event occurs.
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When the adversary D1 outputs its challenge tuple (m0, rcv0, ID0), B1 sets
its challenge tuple (m0, id0) := (m0, rcv0). Then, the adversary B2, on input
a ciphertext c, randomly samples σ0 ←$ ID0 and a seed s ←$ S. Next it com-
putes gσ0 = Exts(σ0) and sets the challenge ciphertext cd for D2, where
c1 := Π.Enc(σ0, rcv0,m0) ⊕ gσ0 and c0 = c′

0 ⊕ gσ0 such that c′
0 ←$ C. Notice

that D2’s queries to oracles O1 and O2 can be implemented by B2 as in the
first phase of the game. Moreover, B2 is able to answer to D2’s queries to
oracle O3 regarding a message m and a receiver rcv, if d = 1 by running the
algorithm Σ.Enc(rcv,m) ⊕ gσ0 on input the sender key ekσ0 = σ0. If d = 0,
c0 = c′

0 ⊕gσ0 such that c′
0 ←$ C. Eventually, the adversary D2 outputs its answer

d′, if d′ = d then B2 outputs 1. Otherwise, B2 outputs 0. It is easy to see that
the advantage AdvINDr-ID-CPA

Σ,B (λ) of B in the GameINDr-ID-CPA
Σ,B (λ) is the same that

D has in Game∗
D(λ). Thus, assuming the existence of a distinguisher D whose

advantage is non-negligible leads to a contradiction because it also implies that
AdvINDr-ID-CPA

Σ,B (λ) is non-negligible. Since we have reached a contradiction, we
can conclude that the experiments H2(λ) and H3(λ) are computationally indis-
tinguishable.

Finally, since H1(λ) and H3(λ) correspond to Gameib-INDr-priv
Π,A (λ) when the

challenge bit b = 1 and b = 0, respectively, we can conclude that when the
Mismatch1 event occurs the advantage Advib-INDr-priv

Π,A (λ) of an adversary A in
the Gameib-INDr-priv

Π,A (λ) is negligible in λ. 
�
Now, we analyze the Mismatch2 event.

Lemma 2. Let Π = (Setup,SKGen,RKGen,Enc,Dec) be the IB-ME described in
Fig. 4 and let Σ = (Setup,Extract,Encrypt,Decrypt) the underlying IBE satisfying
INDr-ID-CPA security.

Let Ext : S × X −→ C be an (ω(log(λ)), qO3)-reusable extractor (where qO3 is
the number of queries submitted to oracle O3 in the game Gameib-INDr-priv

Π,A (λ)), it
holds that:

∣
∣
∣
∣
Pr

[

Gameib-INDr-priv
Π,A (λ) = 1

∣
∣
∣Mismatch2

]

− 1
2

∣
∣
∣
∣
≤ negl(λ).

Proof. To prove the lemma, we need to show that, when Mismatch2 occurs,
the adversary’s view in the game Gameib-INDr-priv

Π,A (λ) with challenge bit b = 0 is
computationally indistinguishable from the adversary’s view when the challenge
bit is b = 1. We consider a sequence of hybrid experiments Hi(λ), for i, . . . , 3.
For the remainder of this proof, these experiments will assume that the event
Mismatch2 has occurred.

H1(λ) : This experiment is identical to Gameib-INDr-priv
Π,A (λ) with challenge bit b =

0;
H2(λ) : This experiment is identical to H1(λ), except that the challenge cipher-

text is computed as c ←$ Σ.Enc(rcv,m) ⊕ ψ where ψ ←$ C, see lines 7–8 of
Fig. 6(b).
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H3(λ) : This is identical to H2(λ) except that the challenge ciphertext is com-
puted as c = c′ ⊕ ψ where both c′ and ψ are randomly chosen in C.

We first prove the following claim:

Claim 1. Experiments H1(λ) and H2(λ) are computationally indistinguishable.

We will show that if there exists a PPT algorithm B = (B1,B2) which is
able to distinguish between experiments H1(λ) and H2(λ) with non-negligible
probability then there exists an id ∈ I such that H∞(id) ≥ ω(log(λ)) and a PPT
adversary D that running B as a sub-routine has a non-negligible advantage in
breaking the security of the (ω(log(λ)), qO3)-reusable extractor Ext : S × I −→ C.

Consider the auxiliary game Game∗
B(λ) in Fig. 6(b). Notice that Game∗

B(λ)
with challenge bit d = 0 corresponds to experiment H1(λ), whereas Game∗

B(λ)
with challenge bit d = 1 corresponds to experiment H2(λ).

The distinguisher D instantiates the scheme Π by running the Π.Setup algo-
rithm and runs the algorithm B1 on input the security parameter 1λ and the mas-
ter public-key mpk. The distinguisher D is able to implement B1’s oracles O1 and
O2 by simply running SKGen(msk, ·) and RKGen(msk, ·), respectively. Eventually,
B1 outputs the challenge tuple (m0, rcv0, ID0). Let the random variable X of Def-
inition 9, be ID0. The distinguisher D randomly samples an identity σ0 from ID0

and on input the tuple (s0, . . . , sqO3
, g0, . . . , gqO3

) computes the challenge cipher-
text cd for B2. Specifically, if d = 0, samples gσ0 ←$ Exts(σ0), where s = s0 and
cd ←$ Σ.Enc(rcv0,m0) ⊕ gσ0 . If d = 1, ψ ←$ C and cd ←$ Σ.Enc(rcv0,m0) ⊕ ψ;

The distinguisher D works similarly according to the value of the bit d, when
responding to each query i ∈ [qO3 ] to the oracle O3 made by B2.

Eventually, B will output its guess about whether it is interacting with H1(λ)
or H2(λ). If B believes it is interacting with H1(λ), the distinguisher D will con-
clude that the tuple (g0, . . . , gqO3

) is the output of the extractor Ext. Otherwise,
D will conclude that the tuple was randomly chosen.

It is easy to see that the advantage Adv ind
Ext,D(λ) of D is the same as the

one of adversary B. Since we assumed by contradiction that the advantage of B
in non-negligible, this leads to the contradiction that Adv ind

Ext,D(λ) is also non-
negligible. Thus, we can conclude that the experiments H1(λ) and H2(λ) are
computationally indistinguishable.

Next, we prove the following claim:

Claim 2. Experiments H2(λ) and H3(λ) are computationally indistinguishable.

We now prove that the adversary’s views in the experiments H2(λ) and H3(λ)
are computationally indistinguishable. In particular, we show that if there exists
a PPT algorithm D which is able to distinguish between experiments H2(λ) and
H3(λ) with non-negligible probability then it is possible to construct a PPT
adversary B = (B1,B2) that running D as a sub-routine has a non-negligible
advantage in the GameINDr-ID-CPA

Σ,B (λ) against the underlying IBE Σ.
Consider the game Game∗

D(λ) in Fig. 7. Notice that Game∗
D(λ) with challenge

bit d = 1 corresponds to experiment H2(λ), whereas Game∗
D(λ) with challenge

bit d = 0 corresponds to experiment H3(λ). The algorithm B1, on input the



178 R. Cimorelli Belfiore et al.

Game∗
D(λ)

1. (mpk,msk) ←$Π.Setup(1λ)

2. (m0, rcv0, ID0) ←$DO1,O2
1 (1λ,mpk)

3. σ0 ←$ ID0

4. c0 ←$ C
5. ψ ←$ C;

6. c0 := c0 ⊕ ψ.

7. c1 ←$Π.Enc(σ0, rcv0,m0) =

= Σ.Enc(rcv0,m0) ⊕ ψ

8. d ←$ {0, 1}
9. d ←$DO1,O2,O3

2 (1λ, cd)

10. if (d = d) return 1

11. else return 0

Fig. 7. Auxiliary game. O1 and O2 on input an arbitrary identity return respectively
the corresponding encryption key and decryption key. O3 allows the adversary to obtain
the ciphertexts of arbitrary (m, rcv) encrypted by the sender σ.

security parameter 1λ and the master public-key mpk, runs D1 on input 1λ and
mpk. The oracles O1 and O2 for D1 can be implemented by B1; in particular,
when D1 asks for the encryption key for a sender’s identity σ, B1 returns ekσ = σ,
whereas when D1 asks for the decryption key for a receiver’s identity ρ, B1 issues
the same query to its decryption key oracle. When the adversary D1 outputs its
challenge tuple (m0, rcv0, ID0), B1 outputs (m0, id0) where id0 = rcv0. Then,
the adversary B2, on input a challenge ciphertext c, randomly samples a value
ψ ←$ C. Next it sets the challenge ciphertext cd for D2, as cd = c⊕ψ. Notice that
D2’s queries to oracles O1 and O2 can be implemented by B2 as in the first phase
of the game. Moreover, B2 is able to answer to D2’s queries to oracle O3 regarding
a message m and a receiver rcv, by first sampling a random ψ ←$ C, if d = 1 B
runs the algorithm Σ.Enc(rcv,m) ⊕ ψ. If d = 0, cd = c′

0 ⊕ ψ such that c′
0 ←$ C.

Eventually, the adversary D2 outputs its answer d′. If d′ = d then B2 outputs 1.
Otherwise, B2 outputs 0. It is easy to see that the advantage AdvINDr-ID-CPA

Σ,B (λ) of
B in the GameINDr-ID-CPA

Σ,B (λ) is the same that D has in Game∗
D(λ) in Fig. 7. Thus,

assuming the existence of a distinguisher D whose advantage is non-negligible
leads to a contradiction because it also implies that AdvINDr-ID-CPA

Σ,B (λ) is non-
negligible. Since we have reached a contradiction, we can conclude that the
experiments H2(λ) and H3(λ) are computationally indistinguishable.

Finally, since H1(λ) and H3(λ) correspond to Gameib-INDr-priv
Π,A (λ) respectively

with the challenge bit b = 0 and b = 1, we can conclude that the advan-
tage Advib-INDr-priv

Π,A (λ) of any adversary A in the game Gameib-INDr-priv
Π,A (λ) when

Mismatch2 occurs is negligible in λ. 
�
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From Lemma 1 and Lemma 2 the following result holds:

Theorem 1. The IB-ME construction of Fig. 4 achieves indistinguishable from
random privacy.

Since indistinguishable from random privacy implies enhanced privacy (see
Appendix C), from Theorem1 it holds that:

Corollary 1. The IB-ME construction of Fig. 4 satisfies enhanced privacy.

3.2 Achieving Authenticity

In this section we show how to build an IB-ME which achieves both authenticity
and enhanced privacy by using as building blocks any IB-ME satisfying enhanced
privacy and a context-hiding homomorphic signature scheme. Figure 8 shows our
generic construction. In our construction the sender’s encryption key consist of
a homomorphic signature ςσ over the sender’s identity σ. We define a family of
circuits C such that for each circuit C ∈ C it holds that C[m, rcv, snd, c](σ) = 1 if
and only if the sender identity σ matches a target identity snd hard-wired in the
circuit C along with a message m, a receiver identity rcv and the ciphertext c
which is computed encrypting m for the receiver rcv with the underlying IB-ME.
When the sender σ encrypts m it produces a ciphertext (c, ςC(σ)) 1 where the
signature ςC[m,rcv,snd,c](σ) certifies that C[m, rcv, snd, c](σ) = 1 (i.e., given that
snd = σ, the signature ςC[m,rcv,snd,c](σ) certifies that snd hard-wired in C matches
the sender’s identity σ) and that c decrypts to m when using the decryption key
associated to the receiver ρ. Notice that a receiver ρ will successfully decrypt a
ciphertext only if C[m, rcv, snd, c](σ) = 1, otherwise the verification procedure of
the underlying signature scheme will not succeed (see line 4 of Algorithm Dec in
Fig. 8). Thus, it is easy to see that the correctness of the IB-ME of Fig. 8 follows
by the correctness of both the underlying IB-ME achieving enhanced privacy
and the homomorphic signature scheme.

3.3 Security Analysis

Next, we show that the construction of Fig. 8 satisfies the security notions of
authenticity and enhanced privacy. Informally, the enhanced privacy follows by
the privacy property of the underlying IB-ME along with the context-hiding
property of the homomorphic signature scheme which ensures that, when homo-
morphically evaluating the pair (σ, ςσ) with respect to the circuit C[m, rcv, snd, c],
the resulting signature ςC[m,rcv,snd,c](σ) will not reveal anything about σ making
it difficult for an attacker to guess the sender’s identity. On the other hand,
authenticity follows by the unforgeability of the homomorphic signature scheme
which ensures that, it is difficult for an adversary to produce a valid signature
ςC[m,rcv,snd,c](σ) that verifies with respect to the circuit C[m, rcv, snd, c].

1 Notice that in the construction the ciphertext also contains a tag, this is included
only for consistency with the definition of homomorphic signatures.
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Let Π = (Setup, SKGen,RKGen,Enc,Dec) be an IB-ME, with message space M, ci-
phertext space C, and identity space I = {0, 1} which achieves enhanced privacy. Let
Σ = (Setup, Sign,Eval,Verify,ReRand,RVerify) be a homomorphic signature scheme
with message space {0, 1} and maximum dataset length
C such that each C[m, rcv, snd, c] ∈ C denote a circuit that implements a function
from {0, 1} to {0, 1} such that:

C[m, ρ, snd, c](σ) :=

⎧
⎪⎨

⎪⎩

1 snd = σ and m = Π.Dec(dkρ, snd, c ), where
dkρ ←$Π.RKGen(msk , ρ);

0 otherwise

where m ∈ M, rcv ∈ I, snd ∈ I, c ∈ C are hard-weired in the circuit.

We design an IB-ME as follows:

Algorithm Setup(1λ)
1. Execute (mpk ,msk ) ←$Π.Setup(1λ);
2. Execute (pk, sk) ←$Σ.Setup(1λ, 1n);
3. Set mpk = (mpk , pk) and msk = (msk , sk, pk);
4. Output (mpk,msk).

Algorithm SKGen(msk, σ)
1. Parse msk as (msk , sk, pk);
2. Execute ekσ ←$Π.SKGen(msk , σ);
3. Pick random τσ ∈ {0, 1}λ

4. Execute ςσ ←$Σ.Sign(sk, τσ, σ);
5. Set ekσ = (σ, ekσ, ςσ, τσ);
6. Output ekσ.

Algorithm RKGen(msk, ρ)
1. Parse msk as (msk , sk, pk);
2. Execute dkρ ←$Π.RKGen(msk , ρ);
3. Output dkρ = (dkρ, pk).

Algorithm Enc(mpk, ekσ, rcv,m)
1. Parse mpk as (mpk , pk);
2. Parse ekσ as (σ, ekσ, ςσ, τσ);
3. Execute c ←$Π.Enc(mpk , ekσ, rcv,m);
4. Let the circuit C[m, rcv, σ, c ]

Execute ς ←$Σ.Eval(pk, τσ, σ, ςσ, C[m, rcv, σ, c ]);
5. Execute ς ←$Σ.ReRand(pk, τσ, C[m, rcv, σ, c ](σ), ς , C[m, rcv, σ, c ])
6. Set c = (c , ς, τσ);
7. Output c.

Algorithm Dec(dkρ, snd, c)
1. Parse c as (c , ς, τσ);
2. Parse dkρ as (dkρ, pk);
3. Execute m := Π.Dec(dkρ, snd, c );
4. Let the circuit C[m, ρ, snd, c ]

If Σ.RVerify(pk, τσ, 1, ς, C[m, ρ, snd, c ]) = 0 then output ⊥.
5. Otherwise, output m.

Fig. 8. An IB-ME Generic Construction.
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Theorem 2. Let Σ = (Setup,Sign,Eval,RVerify,ReRand,RVerify) be a homo-
morphic signature scheme fully unforgeable against adaptive chosen-dataset
attacks. The IB-ME Γ = (Setup, SKGen, RKGen, Enc, Dec) obtained from the
construction of Fig. 8 achieves the security notion of authenticity.

Proof. Assume by contradiction that Γ does not achieve authenticity. In other
words there exists a PPT adversary A whose advantage Succib-auth

Γ,A (λ) in the game
of Fig. 1 is non-negligible in λ. Next, we show that there exists a PPT adversary
B that by using A will produce a forgery for the homomorphic signature scheme
Σ (see GameEUF-FH-CDA

Σ,B (λ) in Fig. 3).
The adversary B, on input the public key pk, runs Π.Setup to obtain (msk′,

mpk′) and set mpk = (mpk′, pk). Then, B runs the algorithm A on input mpk.
Notice that B is able to implement the interactions between A and its oracles

O1 and O2. Specifically, in order to produce an answer to an O1’s query regarding
a sender identity σ, B, first execute ek′

σ ←$ Π.SKGen(msk′, σ) and then calls its
signing oracle O to obtain a signature ςσ on σ and a tag τσ. Thus, B generates the
response from O1 as ekσ = (σ, ek′

σ, ςσ, τσ) and stores (τσ, σ) in OO. On the other
hand, B can easily implement O2 when queried on a receiver identity ρ by running
Π.RKGen(msk′, ρ). Eventually, A outputs (c, ρ, snd) where c = (c′, ς, τ∗). Since A
wins the game Gameib-auth

Γ,A (λ) it holds that Γ.Dec(dkρ, snd, c) �= ⊥ meaning that
Γ.RVerify(pk, τ∗, 1, ς, C[m, ρ, snd, c′]) = 1 where m := Π.Dec(dk′

ρ, snd, c′). Then,
B returns (τ∗, x∗, ς∗, C∗) where x∗ = 1, ς∗ = ς and C∗ = C[m, ρ, snd, c′]. We
distinguish two cases:

[τ∗ �= τ for all τ s.t. (τ, σ) ∈ OO]. This is a Type (1) forgery for the signature
scheme.

[τ∗ = τ for some τ s.t. (τ, σ) ∈ OO]. Notice that if (τ, σ) ∈ OO then σ ∈ QO1 .
Since A wins the game Gameib-auth

Γ,A (λ), snd cannot be equal to σ (see Fig. 1).
Then, it must be the case that A gave as output τ∗ and snd such that τ∗ =
τ for some τ s.t. (τ, σ) ∈ OO but σ �= snd. However, when σ �= snd it holds
that C[m, rcv, snd, c′](σ) = 0 �= x∗. Since σ is the dataset associated to τ , the
tuple (τ∗, x∗, ς∗, C∗) is a type (2) forgery for the signature scheme.

Thus, if Succib-auth
Γ,A (λ) in the game of Fig. 1 is non-negligible then B wins the

game GameEUF-FH-CDA
Σ,B (λ) with non-negligible probability in λ. Contradiction. 
�

Theorem 3. Let Π be an IB-ME that achieves the notion of enhanced pri-
vacy and let Σ be a context-hiding homomorphic signature scheme. The IB-ME
Γ = (Setup, SKGen, RKGen, Enc, Dec) obtained from the construction of Fig. 8
satisfies enhanced privacy.

Proof. Consider the following hybrid experiments:
H1(λ) : This is identical to the game Gameib-priv+

Γ,A (λ) defined in Fig. 2.
H2(λ) : Same as H1(λ), but now the challenger uses the simulator Sim to

generate the signature belonging to the challenge ciphertext. Formally, when
the adversary A outputs the challenge (m0,m1, rcv0, rcv1, ID0, ID1), the chal-
lenger generates the ciphertext c∗ = (c′, ς, τσ), where c′ ←$ Π.Enc(mpk′, σb,
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rcvb,mb), σb ←$ IDb, (mpk′,msk′) ←$ Π.Setup(1λ), and ς ←$ Sim(sk, C[m, rcvb,
σb, c

′](σb), τσ), where b ∈ {0, 1}.
It is easy to see that H1(λ) and H2(λ) are computationally indistinguishable,

given the context hiding property of the homomorphic signature scheme Σ. Thus,
the proof follows by proving the next claim:

[Claim 3.]
∣
∣Pr[H2(λ) = 1] − 1

2

∣
∣ ≤ negl(λ).

We now prove Claim 3. Assume by contradiction that Γ does not achieve
enhanced privacy. In other words there exists a PPT adversary A whose advan-
tage in the game H2(λ) is non-negligible in λ. Next, we show that there exists a
PPT adversary B for the game Gameib-priv+

Π,B (λ) that by using A has non-negligible
advantage in breaking the game of Fig. 2 with respect to the underlying IB-ME.
The adversary B, on input the public key mpk′, runs Σ.Setup to obtain (pk, sk)
and set mpk = (mpk′, pk). Then, B runs the algorithm A on input mpk.

Notice that B is able to implement the interactions between A and its oracles
O1, O2. Specifically, in order to produce an answer to an O1’s query regarding
a sender identity σ, B calls its oracle O1 to obtain ek′

σ, then it simply generates
a signature on the sender identity to obtain a signature on σ and a tag τσ.
On the other hand, B can easily implement O2 when queried on a receiver
identity ρ by using his oracle O2. The adversary A1 outputs a challenge tuple
(m0,m1, rcv0, rcv1, ID0, ID1), and then B also chooses the same challenge. In order
to compute the challenge ciphertext c = (c′, ς, τσ) for A, B2 on input its challenge
ciphertext c′ picks a random tag τσ and runs ς ←$ Sim(sk, 1, τσ). A2’s queries to
oracles O1 and O2 can be implemented by B2 as in the first phase of the game.
Moreover, B is able to answer to A2’s queries to oracle Oi

3 by first running its own
oracle Oi

3 to get the ciphertext c′, then picking a random tag τσ and executing
ς ←$ Sim(sk, 1, τσ). When A2 outputs its answer b, B output b. Since A wins its
game in experiment H2(λ) with non negligible probability, then B also wins the
game Gameib-priv+

Π,B (λ) with non-negligible probability in λ. Contradiction.

�

4 Instantiations from Lattice Assumptions

Our framework enables instantiations in the standard model based on lat-
tice assumptions. Specifically, in order to achieve enhanced privacy, it requires
reusable extractors and anonymous IBE meeting INDr-ID-CPA security.
Reusable extractors can be efficiently built from LWE as shown by Alwen et
al. in [3]. Examples of anonymous IBE achieving INDr-ID-CPA based on the
LWE problem include the IBE proposed by Agrawal et al. [2], and the construc-
tion by Gentry et al. [14] in the random oracle model. Agrawal et al. provide
detailed parameter choices for their IBE scheme, which are essential for its secu-
rity and efficiency. Notably, Agrawal et al.’s IBE scheme has the advantage of
maintaining a compact ciphertext size. Let q be a prime, n a positive integer
and m > n. Specifically, the total ciphertext size using this technique amounts
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to 1 element of Zq for each bit of the message, along with a constant 2m ele-
ments of Zq, irrespective of the message length. This results in a ciphertext size
of (N + 2m) elements of Zq, where N represents the number of bits in the mes-
sage [2]. The public parameters in Agrawal et al.’s IBE scheme consist of three
n × m matrices in Zq and a vector in Z

n
q . On the other hand Gentry et al.’s

scheme security is based on the Learning With Errors (LWE) problem in the
random oracle model. The scheme is asymptotically highly efficient, where the
master public key and individual secret keys are O(λ2) bits in size, where λ is
the security parameter.

To achieve authenticity our construction needs adaptively unforgeable fully
homomorphic signatures also meeting the context hiding property. Efficient solu-
tions based on the hardness of the Small Integer Solution (SIS) problem in stan-
dard lattices include the fully homomorphic signatures by Boyen et al. [6], and
the construction by Luo et al. [17]. In Boyen et al.’s construction [6], the size
of signatures is proportional to that of the data being signed. Signature are ele-
ments in Z2m×m

q . Let λ be the security parameter, l be the maximum number
of inputs for the circuit family, and |τ | be the number of bits for the tag (where
|τ | = |t| + |b|, typically |τ | = λ + l). The public key pk consists of a total of
3 + 2l + λ matrices, each of size n × m, where each element is in Zq. Luo et al.’s
[17] construction has similar features of that of Boyen’s with respect of public
key and signature sizes while improving the efficiency of generating signatures.

5 Conclusions

In this paper, we focused on the design of IB-ME schemes from lattice assump-
tions. To begin, we built upon an anonymous IBE to produce an IB-ME that
ensured enhanced privacy. Additionally, we presented a generic method that,
by using any IB-ME achieving enhanced privacy and a context-hiding homo-
morphic signature scheme as building blocks, resulted in an IB-ME that guar-
antees both enhanced privacy and authenticity. By appropriately instantiating
the underlying components, our framework yields secure IB-ME schemes from
lattice assumptions in the standard model.

Acknowledgements. This work was partially supported by projects VITALITY
Ecosystem, Spoke 1 MEGHALITIC (E13C22001060006) under the NRRP MUR pro-
gram funded by the EU - NGEU and Verifica di proprietà di sicurezza nello sviluppo del
software under the Start-up 2022 program funded by the Computer Science Division,
UNIMOL and by INDAM-GNCS 2023.

A Reusable Computational Extractors

A computational extractor is a polynomial-time algorithm Ext : S ×X −→ Y that
on input a seed s ∈ S and a value x ∈ X outputs Exts(x) = y ∈ Y . The security
of a computational extractor guarantees that y ∈ Y is pseudorandom when the
seed is sampled at random from S and x is sampled from an input distribution
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X (defined over the input space X) of min-entropy H∞(X) ≥ k, even if the seed
is made public. We will rely on so-called reusable [9] computational extractors,
that produce random looking outputs even if evaluated multiple times on the
same input.

Definition 9 (Reusable computational extractor). An algorithm Ext : S×
X −→ Y is a (k, q)-reusable extractor if for all random variables X ∈ X such
that H∞(X) ≥ k, and for all PPT distinguishers D, the advantage Adv ind

Ext,D(λ)
defined as
∣
∣Pr

[D(s1, . . . , sq,Exts1(x), . . . ,Extsq
(x)) = 1

] − Pr[D(s1, . . . , sq, y1, . . . , yq) = 1]
∣
∣

where x ←$X, si ←$ S, and yi ←$ Y (for all i ∈ [q]), is negligible in λ.

B Identity-Based Encryption

In IBE, each user has as a public-key an arbitrary string representing its identity
(e.g. its email address). In order to encrypt a message, the sender only has to
specify the identity rcv of the receiver. The user whose identity ρ = rcv is the
only one that holds the decryption key to correctly reveal the message.

An Identity-Based Encryption (IBE) scheme [5,19] with message space M
and ciphertext space C, is a tuple of four probabilistic polynomial-time algo-
rithms (Setup, Extract, Encrypt, Decrypt) such that:

Setup(1λ) : On input the security parameter 1λ, the randomized setup algorithm
returns as output a master public-key mpk (i.e. the system parameters) and
a master secret-key msk. We assume that all the algorithms of the tuple take
mpk as input.

Extract(msk, id) : On input the master secret-key msk, and an identity id, the
randomized extract algorithm returns as output a secret-key (or private-key)
skid for the identity id.

Encrypt(id,m) : On input an identity id and a message m ∈ M, the randomized
encryption algorithm returns as output a ciphertext c ∈ C.

Decrypt(skid, c) : On input the secret-key skid for identity id, and a ciphertext c,
the deterministic decryption algorithm returns as output either a message m
or a special symbol ⊥ denoting a failure.

Definition 10 ([1] Correctness of IBE). An IBE scheme Π = (Setup,
Extract, Encrypt, Decrypt) is correct if ∀λ ∈ N, ∀(mpk,msk) output by Setup(1λ),
and ∀m ∈ M :

Pr[Decrypt (skid,Encrypt(id,m)) = m] ≥ 1 − negl(λ)

where skid ←$ Extract(msk, id).
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Security. To define IBE adaptive security, in [1] Agrawal et al. introduce a
security game that captures a strong privacy property known as indistinguishable
from random, see Fig. 9. Such a property requires that the challenge ciphertext is
indistinguishable from a random element in the ciphertext space. This definition,
dubbed as INDr-ID-CPA, implies semantic security, recipient anonymity.

Definition 11 ([1] INDr-ID-CPA). We say that an IBE scheme Π satisfies
indistinguishable from random under an adaptive chosen-identity and chosen-
plaintext attack if for all PPT adversaries A = (A1,A2) :

AdvINDr-ID-CPA
Π,A (λ) :=

∣
∣
∣
∣
Pr

[

GameINDr-ID-CPA
Π,A (λ) = 1

]

− 1
2

∣
∣
∣
∣
≤ negl(λ)

where GameINDr-ID-CPA
Π,A (λ) is defined in Fig. 9.

GameINDr-ID-CPA
Π,A (λ)

1. (mpk,msk) ←$ Setup(1λ)

2. (m0, id0) ←$AO1
1 (1λ,mpk)

3. c0 ←$Encrypt(id0,m0)

4. c1 ←$ C
5. b ←$ {0, 1}
6. b ←$AO1

2 (1λ, cb)

7. if (b = b) return 1

8. else return 0

Fig. 9. Game defining the INDr-ID-CPA for IBE.

A has access to an oracle O1 that, given an identity id, returns as output
the corresponding secret-key skid. In order to be valid, A cannot set as the
challenge identity id0 an identity id for which it has issued a private-key query
(i.e. id0 /∈ QO1).

C Indistinguishable from Random Privacy vs Enhanced
Privacy

Theorem 4. Let Π = (Setup,SKGen,RKGen,Enc,Dec) be an IB-ME scheme. If
Π satisfies indistinguishable from random privacy then Π achieves also enhanced
privacy.
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Proof. Assume, by contradiction, that Π achieves indistinguishability from ran-
dom privacy but it does not satisfy enhanced privacy; this means that there exists
a PPT adversary B = (B1,B2) whose advantage in the Gameib-priv+

Π,B (λ) of Fig. 2
is non-negligible. We show how to construct a PPT adversary A = (A1,A2)
that running B as a sub-routine has a non-negligible advantage in winning the
Gameib-INDr-priv

Π,A (λ) of Fig. 5.
The algorithm A1, on input the security parameter 1λ and the master public-

key mpk, runs the algorithm B1 on the same inputs (i.e., 1λ and mpk). The
adversary A1 will answer to any oracle call that B1 issues to its oracles O′

1 and
O′

2 by calling its own corresponding oracles. When B1 outputs the tuple (m0,
m1, rcv0, rcv1, ID0, ID1), the algorithm A1 randomly samples a bit b ←$ {0, 1}
and outputs the tuple (mb, rcvb, IDb).
The challenger for A samples an identity σb ←$ IDb.
The challenger for A then randomly samples a bit bA ←$ {0, 1} and sets the
challenge ciphertext c in such a way that c ←$ Enc(ekσb

, rcvb,mb) when bA = 0,
or c is a randomly generated ciphertext when bA = 1.
A2 randomly samples an identity σ1−b ←$ ID1−b and queries its oracle O2 for the
corresponding encryption key ekσ(1−b) . This is necessary to allow A2 to answer
the queries of B2 to O1−b

3 for ciphertexts generated by the sender’s identity
σ1−b. On the other hand, when B2 asks to Ob

3 the ciphertexts generated by the
sender’s identity σb, A2 calls its oracle O3. Finally, A2 sets as a challenge for B2

the challenge ciphertext c received from its own challenger.
Eventually, B2 outputs a bit b′. If b′ = b, then A2 return b′

A = 0, otherwise
A2 return b′

A = 1.

From Definition 3 the advantage of B is:

Advib-priv+

Π,B (λ) :=
∣
∣
∣
∣
Pr

[

Gameib-priv+

Π,B (λ) = 1
]

− 1
2

∣
∣
∣
∣
=

∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣

As stated in Definition 8, the advantage of A is:

Advib-INDr-priv
Π,A (λ) :=

∣
∣
∣
∣
Pr

[

Gameib-INDr-priv
Π,A (λ) = 1

]

− 1
2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[bA = b′

A] − 1
2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[bA = b′

A = 0] + Pr[bA = b′
A = 1] − 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[b = b′] + Pr[bA = b′

A = 1] − 1
2

∣
∣
∣
∣

≥
∣
∣
∣
∣
Pr[b = b′] − 1

2

∣
∣
∣
∣
= Advib-priv+

Π,B (λ)

Since, by assumption, Advib-priv+

Π,B (λ) is non-negligible, the advantage of A is
also non-negligible. Contradiction.
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We can therefore conclude that such an adversary B cannot exist and thus
a scheme that satisfies indistinguishable from random privacy also satisfies
enhanced privacy. 
�
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(eds.) INDOCRYPT 2021. LNCS, vol. 13143, pp. 415–435. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-92518-5 19

13. Gentry, C.: Practical identity-based encryption without Random Oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11761679 27

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/s00145-021-09381-4
https://doi.org/10.1007/s00145-021-09381-4
https://doi.org/10.1007/3-540-44647-8_13
https://eprint.iacr.org/2014/916
https://eprint.iacr.org/2014/916
https://doi.org/10.1109/JIOT.2021.3073008
https://doi.org/10.1007/978-3-031-22969-5_14
https://doi.org/10.1007/978-3-031-22969-5_14
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1007/978-3-030-75248-4_8
https://doi.org/10.1007/978-3-030-75248-4_8
https://doi.org/10.1007/978-3-030-92518-5_19
https://doi.org/10.1007/11761679_27


188 R. Cimorelli Belfiore et al.

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sym-
posium on Theory of Computing, STOC 2008, pp. 197–206. Association for Com-
puting Machinery, New York (2008). https://doi.org/10.1145/1374376.1374407

15. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, pp. 469–477. ACM (2015)

16. Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 733–765. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 25

17. Luo, F., Wang, F., Wang, K., Chen, K.: A more efficient leveled
strongly-unforgeable fully homomorphic signature scheme. Inf. Sci. 480, 70–
89 (2019). https://doi.org/10.1016/j.ins.2018.12.025. https://www.sciencedirect.
com/science/article/pii/S002002551830971X

18. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for np from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

20. Wang, Y., Wang, B., Lai, Q., Zhan, Y.: Identity-based matchmaking encryption
with stronger security and instantiation on lattices. Cryptology ePrint Archive,
Paper 2022/1718 (2022). https://eprint.iacr.org/2022/1718

21. Xu, S., Ning, J., Huang, X., Zhou, J., Deng, R.H.: Server-aided bilateral access con-
trol for secure data sharing with dynamic user groups. IEEE Trans. Inf. Forensics
Secur. 16, 4746–4761 (2021). https://doi.org/10.1109/TIFS.2021.3113516

https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1016/j.ins.2018.12.025
https://www.sciencedirect.com/science/article/pii/S002002551830971X
https://www.sciencedirect.com/science/article/pii/S002002551830971X
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/3-540-39568-7_5
https://eprint.iacr.org/2022/1718
https://doi.org/10.1109/TIFS.2021.3113516


Decentralized Private Stream
Aggregation from Lattices

Uddipana Dowerah1,2(B) and Aikaterini Mitrokotsa2

1 Chalmers University of Technology, Gothenburg, Sweden
2 University of St. Gallen, St. Gallen, Switzerland

{uddipana.dowerah,katerina.mitrokotsa}@unisg.ch

Abstract. As various industries and government agencies increasingly
seek to build quantum computers, the development of post-quantum con-
structions for different primitives becomes crucial. Lattice-based cryp-
tography is one of the top candidates for constructing quantum-resistant
primitives. In this paper, we propose a decentralized Private Stream
Aggregation (PSA) protocol based on the Learning with Errors (LWE)
problem. PSA allows secure aggregation of time-series data over multiple
users without compromising the privacy of the individual data. In almost
all previous constructions, a trusted entity is used for the generation of
keys. We consider a scenario where the users do not want to rely on a
trusted authority. We, therefore, propose a decentralized PSA (DPSA)
scheme where each user generates their own keys without the need for a
trusted setup. We give a concrete construction based on the hardness of
the LWE problem both in the random oracle model and in the standard
model.

Keywords: Private Stream Aggregation · Learning with Errors ·
Post-quantum cryptography · Decentralized

1 Introduction

The growing interest in building quantum computers has led to a widespread
need for the development of post-quantum cryptographic protocols. Lattice-
based cryptography is among the best candidates for post-quantum cryptog-
raphy due to its versatility and resistance to quantum attacks. The hardness of
lattice-based cryptographic algorithms is based on the assumed worst-case hard-
ness of lattice problems. A well-known computational problem based on lattices
is the Learning with Errors (LWE) problem introduced in [19]. In this paper, we
focus on constructing a Private Stream Aggregation (PSA) protocol based on
the LWE problem.

In various real-world scenarios, a data aggregator may seek to collect data
from multiple organizations or individuals to compute various statistics over the
data. However, a significant challenge in such applications is to ensure the pri-
vacy of the participants, particularly when the aggregator is not trusted. Certain
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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examples of such applications include personal identifiable information such as
social security numbers, financial data such as credit card details, medical data
such as health records, or educational data such as transcripts, etc. This moti-
vated the construction of private stream aggregation protocols that preserves
individual data privacy and enables secure aggregation of time-series data across
multiple users.

In a PSA protocol, there are multiple clients and one untrusted aggregator.
Each client sends an encrypted message over a time period, usually called a
timestamp (also called a label in some papers [15]), to the aggregator and the
aggregator decrypts the sum of the messages over that time period without the
knowledge of the individual messages. Timestamps are used to prevent the aggre-
gator from mixing ciphertexts with different timestamps which in turn prevents
the leakage of information about the values of individual clients. The security
of a PSA protocol is captured by the notion of aggregator obliviousness which
requires that the aggregator learns nothing more than the aggregated sum. A
PSA protocol remains secure even in situations where the aggregator colludes
with a subset of clients. In this case, the aggregator can only learn the sum of
the messages from the non-colluding clients. A possible application scenario for
PSA is Smart Grids where PSA can be used to collect and analyze real-time
energy consumption data from different households or businesses for load bal-
ancing, energy management, or renewable energy integration, while maintaining
the privacy of the customers. Another possible application is Traffic Management
where it can be used to collect and analyze real-time traffic data from different
sensors or vehicles for traffic prediction, route optimization, or accident preven-
tion, while preserving the privacy of individuals. Private stream aggregation can
also be applied in federated learning to enable the aggregation of locally trained
models from multiple devices, while preserving privacy. In federated learning,
each device trains a model on its local data and sends the updated model to a
centralized server for aggregation. However, the privacy of local data is a major
concern in this process.

Furthermore, to provide an additional layer of privacy protection, differential
privacy can be used with PSA [21]. Private stream aggregation with differential
privacy involves the addition of noise to the data prior to aggregation. The
amount of noise added is defined by a privacy budget that limits the amount
of information that can be revealed about an individual. Various PSA construc-
tions consider the distributed model of differential privacy, where the clients add
differentially private noise to their data [21,24] before encryption. In this paper,
we do not explicitly consider differential privacy in our construction. However,
similar procedures can be adopted as in previous works [21] to add differentially
private noise to the inputs.

A closely related notion to private stream aggregation is Multi-Client Func-
tional Encryption (MCFE) for inner products. In contrast to traditional public
key encryption that either decrypts the entire message or nothing, Functional
Encryption (FE) allows a user to learn specific functions of the encrypted data
without disclosing any other information. More specifically, in FE, a secret key
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skf is associated to a function f and the ciphertext ctx encrypts a message x and
decrypting ctx with skf reveals f(x) and nothing else. In Inner Product Func-
tional Encryption (IPFE), the ciphertext ctx is associated to a message vector
x and the secret keys sky can be generated with respect to some vector y, while
the decryption of ctx with sky recovers the inner product 〈x,y〉. In inner prod-
uct MCFE, there are multiple clients and one or more aggregators. Each user
encrypts their input xi using a secret key ski and sends the ciphertext ctxi

to
the aggregator. Using the functional key sky, the aggregator recovers the inner
product 〈x,y〉 =

∑
i xiyi where x := (x1, x2, . . .) and y := (y1, y2, . . .). Observe

that for the all ones vector y = (1, . . . , 1), this is exactly a PSA scheme. There-
fore, PSA can be seen as a specific case of MCFE for the evaluation of inner
products where only a single key corresponding to the vector y = (1, . . . , 1) is
revealed to the aggregator.

1.1 Our Contributions

Almost all known PSA schemes [4,7,13,15,21,23,24,27] use a trusted author-
ity for key generation that generates the client keys for encryption and aggre-
gator key for decryption. However, since the main goal of PSA is to allow an
untrusted aggregator to perform aggregate statistics without compromising indi-
vidual data, the use of a trusted authority is not aligned with the objectives of
PSA. The use of a trusted authority can be avoided by decentralizing the setup
and key generation procedure.

In this paper, we propose a decentralized private stream aggregation (DPSA)
protocol that does not rely on a trusted authority for key generation. We take
inspiration from the decentralized multi-client functional encryption scheme pro-
posed in [12]. In the DPSA scheme, the clients generate their own keys and share
it with the aggregator in a secure way such that the aggregator does not learn
the individual client keys and only learns the aggregator decryption key which
is equal to the sum of the client keys. We first give a construction in the ran-
dom oracle model using a hash function modeled as a random oracle. We then
show how to modify it into a construction in the standard model using a weak
pseudorandom function (PRF). For the standard model we modify the ideas
from [26] to achieve a construction with unbounded timestamps. Our scheme
achieves aggregator oblivious security with static corruptions based on the LWE
problem. If instantiated with a trusted setup, the protocol achieves aggregator
obliviousness with adaptive corruptions. We also discuss possible solutions for
practical deployments such as clients joining and leaving the system. Further, we
provide example parameter choices for the proposed scheme based on the LWE
assumption and show that our scheme achieves competitive ciphertext sizes to
that of SLAP [24] for equivalent plaintext spaces.

1.2 Related Work

The notion of PSA was introduced by Shi et al. in [21]. They proposed a construc-
tion based on the Decisional Diffie-Hellman (DDH) assumption. The decryption
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procedure is inefficient due to its requirement for computing a discrete logarithm.
Subsequent works [7,14,17] focused on constructing PSA with better efficiency
and larger plaintext space. Leontiadis et al. introduced PSA with verifiability of
the aggregated sum [18] followed by a construction by Emura [13]. These works
are not post-quantum secure and can be broken easily by a quantum computer
using Shor’s algorithm [22].

A number of post-quantum PSA constructions have been proposed in previ-
ous works. Valovich proposed a PSA scheme from key homomorphic weak PRFs
and gave an instantiation based on the LWE problem [26]. Their construction
achieves a weaker variant of aggregator obliviousness (AO) called non-adaptive
AO in the standard model. Further, the set of timestamps needs to be fixed
at the setup and therefore their scheme only supports a bounded number of
timestamps. Our scheme in the standard model follows a similar design policy
as Valovich but we show how to get unbounded number of timestamps using
a PRF. Becker et al. proposed a generic PSA scheme called LaPS [4] based
on the LWE problem. Their construction can be instantiated using any addi-
tively homomorphic encryption scheme. However, their scheme uses two layers
of encryption where the homomorphically encrypted input is encoded again using
an Augmented-LWE (A-LWE) term. Further, their construction does not rely on
timestamps directly and they only give a brief description on how to extend the
scheme to work with timestamps. Takeshita et al. proposed two PSA schemes
called SLAP [24] using two different fully homomorphic encryption schemes.
Their schemes achieve aggregator obliviousness based on the RLWE problem in
the random oracle model. The authors also implement their scheme and show
their improvements over the LaPS protocol. In a subsequent work [23], Takeshita
et al. proposed a variant of their SLAP protocol with better efficiency.

Other post-quantum secure works that do not use the RLWE problem include
[15,27]. Ernst et al. proposed a PSA scheme using key-homomorphic PRFs [15]
based on the Learning with Rounding (LWR) problem. Currently, this is one of
the most efficient schemes that achieve smaller ciphertexts compared to previous
works. Another efficient PSA scheme using labeled secret sharing schemes (LaSS)
was proposed in [27]. However, it is not efficient for a large number of users due
to multiple rounds of communication to generate shared keys among the users
which leads to key sizes quadratic in the number of users.

All of these schemes rely on a trusted setup for key generation. There are
brief discussions in [15,27] on how to modify their schemes to avoid a central
authority. Recently, Brorsson et al. proposed a distributed setup PSA protocol
called DIPSAUCE [10] that does not rely on a trusted party. Their protocol is
a distributed setup variant of the protocol in [27]. In contrast to the other PSA
schemes, no key is required for aggregating the sum of the inputs. However,
their distributed key generation procedure relies on a Public Key Infrastructure
(PKI) to provide the keys to each user which in turn is usually implemented as
a central authority. Further DIPSAUCE relies on a randomness beacon and care
should be taken not to introduce a trusted party to realize the beacon.
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Another line of work focuses on constructing secure aggregation protocols for
the aggregation of model updates in distributed machine learning [5,6,8,16,25].
These works are not directly comparable to ours as their work has a distinct
focus, specifically designed to meet the requirements of distributed machine
learning.

We give a comparison of the various PSA schemes described in this section
with respect to different characteristics in Table 1.

Table 1. Comparison of different PSA schemes with respect to different characteristics

Scheme Decentralized
Setup

Timestamps Assumption Post-
quantum
security

Shi et al. [21] ✗ unbounded DDH ✗

Valovich [26] ✗ bounded LWE ✓

LaPS [4] ✗ none (R)LWE ✓

SLAP [24] ✗ unbounded RLWE ✓

Ernst et al. [15] ✗ unbounded LWR ✓

Waldner et al. [27] ✗ unbounded security of LaSS ✓

DIPSAUCE [10] ✓ unbounded security of LaSS ✓

Our Scheme ✓ unbounded LWE ✓

1.3 Organization

We organize the paper as follows. Section 2 contains some necessary background
and definitions. In Sect. 3, we formally define the DPSA protocol and give a
concrete construction based on the LWE problem in the ROM. In Sect. 4, we
give a construction in the standard model based on LWE.

2 Preliminaries

Notation: λ denotes the security parameter. For a set S, a ←$ S means that a
is sampled uniformly at random from S. For a probability distribution X over a
set S, x ← X means that x is sampled from S according to the distribution X . A
distribution X over the set of integers is said to be B-bounded if it is supported
on [−B,B]. For a number x, �x�, �x� and �x� denotes the rounding x up, down
and to the closest integer respectively. We use ‘log’ to denote a logarithm to the
base 2. For a prime q, Zq denotes the set of integers in the interval (−q/2, q/2]∩Z.
For some a ∈ Z, we use (a mod q) and [a]q interchangeably to denote the modular
reduction of a by q into the interval (−q/2, q/2] ∩ Z. We use lowercase boldface
letters (e.g., a) to denote row vectors and uppercase boldface letters (e.g., A) to
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denote matrices. The notation [n] denotes the set of integers {1, 2, . . . , n}. An
arbitrary negligible function is denoted by negl(·) where the function negl(x) :
N → R is called negligible if for every c ∈ N, there exists an integer ηc such that
|negl(x)| < 1

xc for all x > ηc.

2.1 Lattices

A k dimensional lattice Λ is a discrete additive subgroup of Rk given by the set
of all integer linear combinations of l ≤ k linearly independent vectors in R

k

where l is called the rank of Λ. We are interested in q-ary integer lattices. A
q-ary lattice can be thought of as a discrete additive subgroup of Zk

q . A vector
v is in the lattice Λ if v mod q ∈ Λ. Given a matrix B ∈ Z

l×k
q , the following are

two k dimensional q-ary lattices.

Λq(B) =
{
v ∈ Z

k
q | v = w · B mod q for some w ∈ Z

l
q

}

Λ⊥
q (B) =

{
v ∈ Z

k
q | v · BT = 0 mod q

}

2.2 Learning with Errors

Learning with Errors is the problem of solving a system of noisy linear equations
over Zq [19]. It can be defined as follows.

Definition 1 (Learning with errors). Let X be a probability distribution on
Z and s be a secret vector chosen uniformly at random from Z

n
q for some n, q ∈ N.

Let As,X be the distribution that generates a pair (a, b = 〈a, s〉 + e) ∈ Z
n
q × Zq

obtained by choosing a vector a ←$ Z
n
q and an error e ← X . Given polynomially

many samples from As,X , the learning with errors problem is to output the vector
s ∈ Z

n
q with overwhelming probability.

The decisional LWE problem is to distinguish the distribution As,X from the
uniform distribution over Zn

q ×Zq. We use LWEn,q,X to denote the LWE problem
with parameters n, q,X .

The decisional LWE problem has been shown to be at least as hard as the
LWE search problem [19,20]. There are known quantum and classical reductions
of LWE to approximating short vector problems in lattices [9,20]. In these reduc-
tions, the noise distribution X is usually considered to be a discretized Gaussian
distribution that is indistinguishable from a B-bounded distribution for some
appropriate B.

The security of our protocol is based on a variant of the decisional LWE
problem where along with the noise, the secret s is chosen from the distribution
X .

Definition 2 (LWE problem with short secrets). Let X be a probability
distribution on Z and s be a secret vector chosen from the distribution X over Zn

q

for some n, q ∈ N. Let As,X be the distribution defined in Definition 1. Then, the
decision LWE problem with short secrets is to distinguish the distribution As,X
from the uniform distribution over Z

n
q × Zq. We use ss-LWEn,q,X to denote the

LWE problem with short secrets.
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A reduction from the short secret variant exists to the decisional LWE prob-
lem as shown in [2].

Lemma 1 ([2]). Let n, q,X be as described above. If there exists a distinguishing
algorithm A for the decision LWE problem with short secrets, then there exists
a distinguishing algorithm B for the decision LWE problem that runs in roughly
the same time as A, with B making O(n2) calls to its oracle and satisfying
AdvLWE

B (λ) = Advss-LWE
A (λ).

In this paper, we consider an extended form of the problem where the secret
is a matrix. We consider the LWE distribution with N ≥ 1 secrets s1, . . . , sN

for some N = poly(n). Then AS,X is defined as the distribution that generates
a pair (a,b := a · S� + e) obtained by choosing a ←$ Z

n
q and an error vector

e ←$ X N where the i-th row of S ∈ Z
N×n
q is the secret si. Using a standard

hybrid argument, it can be shown that distinguishing S from uniformly random
is as hard as the LWEn,q,X problem.

2.3 Pseudorandom Functions

A pseudorandom function (PRF) is an efficiently computable deterministic func-
tion that is computationally indistinguishable from a truly random function.

Definition 3 (PRF). A pseudorandom function family F = {FK}K∈Kλ
with

keyspace Kλ is a family of functions FK : X → Y such that FK can be computed
in poly(λ) time and for any x ∈ X , FK(x) cannot be distinguished from a random
function (RF) in polynomial time. For all PPT adversaries A, the advantage of
A in distinguishing a PRF from a RF is given by

AdvPRF
A (λ) =

∣
∣
∣Pr[AFK(·)(λ) = 1] − Pr[ARF(·)(λ) = 1]

∣
∣
∣ ≤ negl(λ)

3 Decentralized Private Stream Aggregation

In this section, we formally define a decentralized PSA (DPSA) scheme and give
a concrete construction based on the LWE problem. Consider a scenario with �
users for some � ∈ N and an untrusted aggregator. We consider the users to be
semi honest, i.e., honest but curious. Each user generates private data xi,t with
respect to some time stamp t and wishes to compute the sum

∑�
i=1 xi,t securely

and privately. In Private Stream Aggregation (PSA) the sum can be computed by
the aggregator given only the encrypted values of the user’s data while preserving
the user’s privacy. The users encrypt their data xi,t using a user specific secret
key ski before sending it to the aggregator. The aggregator then performs the
aggregating function on the encrypted data and recovers the sum of the input
data using an aggregator decryption key dk0. In a centralized PSA scheme, the
encryption and decryption keys are generated by a trusted setup. Since the setup
in DPSA is decentralized, the users need to generate the aggregator decryption
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key themselves apart from their own encryption keys. Each user generates a share
of the aggregator key and sends it to the aggregator in a secure way without
revealing their individual keys. Upon receiving the partial keys from all the users,
the aggregator can recover its decryption key for aggregation.

Definition 4 (Decentralized Private Stream Aggregation). A decentral-
ized private stream aggregation scheme over a message space M consists of the
following PPT algorithms:

Setup(1λ, 1�): This is a procedure between the users. It takes the security param-
eter λ and the number of users � and generates the public parameters pp and
their own secret keys ski for i ∈ [�]. The public parameters pp is an implicit
input to the rest of the algorithms.

AggKeyGenShare(i, ski): It takes user index i and secret key ski and outputs the
partial aggregator key dki.

AggKeyGen({dki}i∈[�]): It takes the partial aggregator keys dki for i ∈ [�] and
computes aggregator decryption key dk0 =

∑�
i=1 dki.

Enc(i, ski,xi,t, t): It takes as input the user index i, the secret key ski, timestamp
t and input data xi,t ∈ M and outputs a ciphertext cti,t.

AggDec(dk0, {cti,t}i∈[�], t): It outputs the aggregated sum xt =
∑�

i=1 xi,t from
the ciphertexts {cti,t}i∈[�] using dk0 for the time period t.

Here, the Setup algorithm is run between the users to generate the public
parameters pp and their secret keys ski. The users compute partial aggregator
keys dki using AggKeyGenShare and sends dki to the aggregator. The aggregator
computes its decryption key dk0 using dk0 ← AggKeyGen({dki}i∈[�]). Each user i
then encrypts their input xi,t at timestamp t such that cti,t ← Enc(i, ski,xi,t, t).
The aggregator outputs xt ← AggDec(dk0, {cti,t}i∈[�], t). The algorithms Setup,
AggKeyGenShare and AggKeyGen are run only once in the beginning of the pro-
tocol.

Correctness: The above DPSA scheme DPSA=(Setup,AggKeyGenShare,
AggKeyGen,Enc,AggDec) is said to be correct if for any λ, � ∈ N, any message
xi,t ∈ M, it holds that

Pr

⎡
⎢⎢⎢⎢⎣
AggDec(dk0, {cti,t}i∈[�], t) =

�∑
i=1

xi,t :

(pp, {ski}i∈[�]) ← Setup(1λ, 1�)

{dki}i∈[�] ← AggKeyGenShare(i, ski)

dk0 ← AggKeyGen({dki}i∈[�])

cti,t ← Enc(i, ski,xi,t, t)

⎤
⎥⎥⎥⎥⎦

= 1

Security: The security of a private stream aggregation scheme is captured by
the notion of aggregator obliviousness. It requires that the aggregator does not
learn anything more than the aggregated value of their input values at each
time period. If some parties collude with the aggregator then it requires that
the aggregator only learns the aggregated value of the honest users and nothing
more. Further, each user encrypts their data only once every time period.
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Definition 5 (Aggregator Obliviousness for DPSA). The aggregator
obliviousness security for a DPSA scheme can be defined in terms of the security
experiment AOβ(λ, �,A) given in Fig. 1. No adversary A should be able to win
this game with non-negligible advantage.

Fig. 1. Aggregator Obliviousness experiment for DPSA

The challenger first runs the Setup algorithm and returns the public param-
eters pp to the adversary. The adversary makes queries to the following oracles:

• Corruption oracle QCorr(i): The adversary submits an integer i ∈
{1, . . . , �} and gets back the i-th user’s secret key ski. If the adversary submits
i = 0, then it gets dkj ← AggKeyGenShare(j, skj) for all j ∈ [�].

• Encryption oracle QEnc(i,xi,t, t): The adversary submits (i,xi,t, t) and
receives cti,t,← Enc(i, ski,xi,t, t) from the challenger.

• Challenge oracle QChallenge(U , {x0
i,t∗}i∈U , {x1

i,t∗}i∈U , t∗): This query can
be made only once by the adversary. The adversary selects a set of users U
and time period t∗ and for each i ∈ U , the adversary chooses two sets of
inputs x0

i,t∗ , x1
i,t∗ . The challenger randomly samples b ← {0, 1} and returns

cti,t∗ ← Enc(ski,x0
i,t∗ , t∗) for all i ∈ U if b = 0 and cti,t∗ ← Enc(ski,x1

i,t∗ , t∗)
for all i ∈ U if b = 1.

Finally, the adversary outputs a guess b′ for the value of b and the experiment
outputs β depending on the following conditions.

Let CS be the set of corrupted users, HS be the set of honest users at the
end of the game and let Et∗ be the set of users for which an encryption query
has been made at time t∗. Let Qt∗ := U ∪ Et∗ be the set of users for which A
receives an encryption or a challenge ciphertext at timestamp t∗. The condition
(∗) is satisfied if all of the following conditions hold:

– U ∩ CS = ∅: The set of users specified during the Challenge phase must be
uncorrupted at the end of the game.

– Adversary A has not queried QEnc(i,xi,t, t
∗) for the same i and t∗. Otherwise,

this would violate the encrypt-once policy.
– U ∩ Et∗ = ∅: The adversary cannot query challenge ciphertexts to the users

in Et∗ . In other words, the adversary cannot get a challenge ciphertext from
users for which it has queried the encryption oracle at time t∗.



198 U. Dowerah and A. Mitrokotsa

– If the adversary has compromised the aggregator and Qt∗ ∪CS = [�], then the
following condition must be satisfied.

∑

i∈U
x0

i,t∗ =
∑

i∈U
x1

i,t∗

We set β ← b′ if the above conditions are satisfied, otherwise we set β = 0.
A DPSA scheme is said to be aggregator oblivious if for any PPT adversary

A, there exists a negligible function negl such that

AdvAOA,DPSA(λ, �) = |Pr[AO0(λ, �,A) = 1] − Pr[AO1(λ, �,A) = 1]| ≤ negl(λ)

If an adversary can corrupt the parties only at the beginning of the protocol,
then we say that the scheme is secure against static corruptions. On the other
hand, if an adversary can corrupt the parties dynamically during the execution
of the protocol, then we say that the scheme is secure against adaptive corrup-
tions. For static security, the corruption queries are sent by the adversary before
obtaining the public parameters.

3.1 Our Construction

Our concrete DPSA scheme over the plaintext space M := Z
n
p can be described

in terms of the following PPT algorithms.

Setup(1λ, 1�): This is a protocol between the users. Let H be a hash function
mapping from the domain of all timestamps onto Z

n
q . Let X be a B-bounded

distribution over Z. Each user generates a matrix Si←$X n×n and interactively
generates secret shares Vi ← Z

n×n
q of 0 such that

∑�
i=1 Vi = 0 mod q. Output

public parameters pp = (p, q, n, �,H,X ) and user secret keys ski = (Si,Vi) for
i ∈ [�]. The public parameters pp is an implicit input to all the algorithms.

AggKeyGenShare(i, ski): Given user index i and secret key ski = (Si,Vi), com-
pute partial aggregator key dki = Si + Vi (mod q).

AggKeygen({dki}i∈[�]): Given {dki}i∈[�], compute aggregator decryption key

dk0 :=
�∑

i=1

dki =
�∑

i=1

(Si + Vi) =
�∑

i=1

Si (mod q) = S0 (1)

Enc(i, ski,xi,t, t): Given input xi,t ∈ Z
n
p and timestamp t, sample ei,t ← X n. Set

yt := H(t) ∈ Z
n
q and compute the ciphertext cti,t as

cti,t = xi,t + yt · S�
i + p · ei,t (mod q) (2)

AggDec
(
dk0, {cti,t}i∈[�], t

)
: Compute yt = H(t) and output the aggregated sum

xt =

[(
�∑

i=1

cti,t − yt · S�
0 (mod q)

)]

p

(3)
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Correctness: The correctness of the sum can be verified as follows:
�∑

i=1

cti,t − yt · S�
0 (mod q) =

�∑

i=1

xi,t + p ·
�∑

i=1

ei,t (mod q) (4)

The magnitude of the sum of the errors is bounded by � · p · B where B is
the maximum bound on the error distribution X . The magnitude of the sum
of the inputs is bounded by � · p

2 . If �·p
2 (1 + 2B) < q

2 , then
∑�

i=1 xi,t + p ·
∑�

i=1 ei,t (mod q) =
∑�

i=1 xi,t + p · ∑�
i=1 ei,t and reducing it modulo p removes

the error and recovers the sum
∑�

i=1 xi,t.

3.2 Aggregator Obliviousness

We show that the proposed construction achieves aggregator obliviousness with
static corruptions in the encrypt-once security model under the hardness of the
LWE problem.

Theorem 1. For any PPT adversary A against the aggregator obliviousness
game, there exists a PPT adversary B against the LWE problem such that

AdvAOA (λ, �) ≤ (8�3 + 4�2) · AdvLWE
B (λ)

Proof. We use similar ideas from [15] to prove this Theorem. WLOG, we assume
that the adversary queries the QChallenge oracle only at one timestamp t∗ that
has not been queried to the QEnc oracle.

We proceed via a series of Games Gi for i ∈ {0, 1, 2, 3} described in Fig. 4
of Appendix B. A summary of the transitions is provided in Table 2. We denote
the advantage of A in game Gi using AdvA(Gi). Similar to [15], we consider two
cases. I) When the adversary corrupts the aggregator : The adversary can decrypt
the sum in this case and therefore, we need to make sure that the sum remains
unchanged throughout the games. II) When the adversary does not corrupt the
aggregator : In this case we can directly go from game G0 to G3 using a hybrid
argument over all the users.

Game G0: This is the AO0 game where the challenge query is answered with
the encryption of x0

i,t.

Game G1: In Game G1, we change the way the vectors ci,t in QChallenge are
generated. The challenge query is still answered with encryptions of x0

i,t but we
add a share of a perfect μ-out-of-μ secret sharing of zero denoted by ri ← SS(0)
to ci,ts where μ is the number of users in the challenge query. We need to make
this change in such a way that the aggregate sum on decryption remains the
same. The transition from G0 to G1 can be proved via a hybrid argument over
the � users relying on the LWE assumption.

Lemma 2 (Transition from G0 to G1). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

|AdvA(G0) − AdvA(G1)| ≤ 2�h(h − 1) · AdvLWE
B (λ)
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Table 2. A summary of the games used in the proof of Theorem 1. Change in each
game is highlighted with a square box

Game cti,t Justification

G0
ci,t ← yt · Si + p · ei,t

cti,t ← x0
i,t + ci,t

AO0 game

G1

c′
i,t ← yt · Si + p · ei,t

ci,t ← c′
i,t + ri , ri ← SS(0)

cti,t ← x0
i,t + ci,t

LWE assumption

G2

c′
i,t ← yt · Si + p · ei,t

ci,t ← c′
i,t + ri, ri ← SS(0)

cti,t ← x1
i,t + ci,t

information-theoretic

G3

ci,t ← yt · Si + p · ei,t

cti,t ← x1
i,t + ci,t

LWE assumption

Proof. To prove this transition, we use a sequence of hybrid games G0.l for l ∈ [�]
defined in Fig. 5 of Appendix B. Note that, G0 := G0.1 and G1 := G0.�. The goal
in each hybrid game is to add a perfect secret share of 0 to the LWE mask
ci,t := yt · S�

i + p · ei,t of one more user. Let μ := |U| where U := {i1, . . . , iμ} is
the set of users specified by A during QChallenge. Let K := min(μ, l). If K ≥ 2
in hybrid step l, then a share of a perfect K-out-of-K secret sharing of 0 is added
to the LWE masks of the first K users in U . This can be done using two users at
a time and the condition K ≥ 2 is needed to go from one hybrid to another. To
prove the indistinguishability of G1 from G0, it suffices to show that the adjacent
games G0.l−1 and G0.l are computationally indistinguishable. Precisely, we have

|AdvA(G0) − AdvA(G1)| =
�∑

l=1

|AdvA(G0.l−1) − AdvA(G0.l)|

If there is an adversary A that can distinguish G0.l−1 from G0.l, then there
exists an adversary B against the LWEn,q,X assumption. We consider the case
K ≥ 2. In G0.l−1, we have secret shares added to ci,t = yt · S�

i + p · ei,t of the
first K − 1 users in U . To add a share of a perfect K-out-of-K secret sharing of
0 to the K-th user in U , B first guesses the first and the K-th users of U such
that i∗1 ←$ [HS], i∗K ←$ [HS] \ {i∗1} where HS = [�] \ CS is the set of honest
users. B then samples Si ←$ X n×n and Vi ←$ Z

n×n
q for i ∈ [�] \ {i∗1, i

∗
K}. It

can therefore set ski := (Si,Vi) for i ∈ CS and send them to A. It also samples
aggregator key S0 ← X n×n uniformly at random. If the guess is incorrect, the
simulation aborts the game and outputs 0. If the guess is correct then it replaces
ci∗

1 ,t with a random vector bt ←$ Z
n
q using the LWE assumption on Si∗

1
. To

make sure that the sum S0 =
∑�

i=1 Si is satisfied, we need to modify ci∗
K ,t as

ci∗
K ,t := H(t) · S0 − H(t)

∑
j∈[�]\{i∗

1 ,i∗
K} Sj − bt. Then ci∗

1 ,t and ci∗
1 ,t + uK are
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indistinguishable where uK ←$ Z
n
q . Then, replace ci∗

1 ,t back with yt ·S�
i∗
1
+p·ei∗

1 ,t

using the LWE assumption on Si∗
1
.

The guessing of the users i∗1 and i∗K incurs a security loss of h(h−1) where h
is the number of users in HS. Therefore for all l ∈ {2, . . . , �] there exists a PPT
adversary B such that

|AdvA(G0.l−1) − AdvA(G0.l)| ≤ h(h − 1) · AdvLWE
B

Summing up for all the hybrid games, it leads to a security loss of �h(h − 1).
Since the reduction is applied twice, total loss is 2�h(h−1). Therefore, we obtain
a PPT adversary B such that

|AdvA(G0) − AdvA(G1)| ≤ 2�h(h − 1) · AdvLWE
B

��
Now, we are in game G1 and QChallenge(U , {x0

i,t∗}i∈U , {x1
i,t∗}i∈U , t∗) in G1

is answered with x0
i,t∗ + ci,t∗ +

∑
j∈U\{i1} uj for i = i1 and x0

i,t∗ + ci,t∗ − ui for
i ∈ U \ {i1}. This is clear that these shares form a perfect μ out of μ secret
sharing of 0. Further, the corruption queries in G1 are answered as follows.
On input i ∈ [CS], B returns the key ski to A. If the adversary corrupts the
aggregator, then QCorr queries are answered with partial decryption keys for
the honest users because the keys for the corrupted users can be generated by
the adversary itself. To answer QCorr(0), B first generates secret shares of 0 for
all the honest users, Ri ← SS(0) and computes

dki = Si + Vi + Ri for i ∈ HS \ {i∗1, i∗K}
dki∗

1
= S0 −

∑

j∈[CS]

(Sj + Vj) + Ri1∗

dki∗
K

= −
∑

j∈HS\{i∗
1 ,i∗

K}
(Sj + Vj) + Ri∗

K

Game G2: In this game, all the challenge queries are answered with encryptions
of x1

i,t instead of x0
i,t. This is possible because the secret shares hide all the

information on the individual ciphertexts.

Lemma 3 (Transition from G1 to G2). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

|AdvA(G1) − AdvA(G2)| ≤ 2 · AdvLWE
B (λ)

Proof. Let Qt∗ be the set of users for which A has a ciphertext at timestamp t∗

and let HS be the set of honest users. We consider the following two cases here.

Case 1 (Qt∗ = HS): In this case, the adversary receives a ciphertext for all
the honest users at timestamp t∗ either from the encryption oracle or from the
challenge oracle. Then Qt∗ ∪CS = [�] and the condition

∑
i∈U x0

i,t∗ =
∑

i∈U x1
i,t∗
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must be satisfied. Let ri be the pads added to the ciphertexts of the users in U
at the end of game G1, where

ri =

⎧
⎨

⎩

∑

i∈U\{i1}
ui if i = i1

−ui if i ∈ U \ {i1}
(5)

These ri’s are perfect secret shares of 0. Therefore {x0
i,t+ci,t+ri}i∈U and {x1

i,t+
ci,t + ri}i∈U are perfect secret shares of

∑
i∈U (x0

i,t + ci,t) and
∑

i∈U (x1
i,t + ci,t)

respectively. Since,
∑

i∈U x0
i,t∗ =

∑
i∈U x1

i,t∗ , {x0
i,t+ci,t+ri}i∈U and {x1

i,t+ci,t+
ri}i∈U are perfect secret shares of the same secret and are therefore perfectly
indistinguishable from each other.

Case 2 (Qt∗ �= HS): In this case, there exists an honest user from which
the adversary does not get a ciphertext at timestamp t∗. Therefore the con-
dition

∑
i∈U x0

i,t∗ =
∑

i∈U x1
i,t∗ does not hold in this case. Since HS is known in

advance, it is possible to identify an user in HS \ Qt∗ that is not in U . B then
chooses two such users ih ∈ HS \ Qt∗ and iu ∈ U and simulates the ciphertexts
as follows. For i = iu, B sets ci,t = bt where bt is a random vector in Z

n
q . For

i = ih, B sets ci,t = H(t) · S0 − ∑
i∈[�]\ih

H(t) · Si + ei,t. Next, we change the
challenge queries from encryption of x0

i,t to encryptions of x1
i,t. For b ∈ {0, 1},

we have
∑

i∈U (xb
i,t + ci,t) =

∑
i∈U\iu

(xb
i,t + ci,t) + xb

iu,t + ciu,t. Since ciu,t is a
random vector in Z

n
q , {x0

i,t + ci,t + ri}i∈U and {x1
i,t + ci,t + ri}i∈U are secret

shares of a random value. Therefore, they are indistinguishable from each other.
Finally, we change the random vector with an LWE mask again.

Game G3: In this game we remove the secret shares from the challenge cipher-
texts. Therefore, this game is identical to AO1 where the challenge queries are
answered with encryptions of x1

i,t.

Lemma 4 (Transition from G2 to G3). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

|AdvA(G2) − AdvA(G3)| ≤ 2�h(h − 1) · AdvLWE
B (λ)

Proof. This is symmetric to the transition from G0 to G1 applying the changes
backwards.

For the case when the adversary does not corrupt the aggregator, we can
directly go from G0 to G3.

Lemma 5 (Transition from G0 to G3). For all PPT adversaries A, that do
not corrupt the aggregator, there exists a PPT adversary B such that

|AdvA(G0) − AdvA(G3)| ≤ 2�h · AdvLWE
B (λ)
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Proof. In this case, the adversary does not corrupt the aggregator and we can
directly go from G0 to G3 using a hybrid argument over all the users. Let U :=
{i1, . . . , iμ} be the set of users specified in the challenge phase. The hybrid game
Hl is given by

Hl : ci,t∗ =

{
Enc(i,x0

i,t∗ , t∗) if i = iτ for τ > l

Enc(i,x1
i,t∗ , t∗) if i = iτ for τ ≤ l

In other words, in Hl, the challenge query is answered with encryptions of x1
i,t∗

for i ∈ {i1, . . . , il} and with encryptions of x0
i,t∗ for the rest of the users. Note

that G0 = H0 and G3 = H�. It suffices to show that the adjacent games Hl−1

and Hl are computationally indistinguishable. Let A be an adversary that can
distinguish Hl−1 and Hl. Then there exists an adversary B against the LWE
problem. In Hl−1, the challenge query for users iτ with τ ≤ l − 1 is answered
with encryptions of x1

iτ ,t∗ and for users iτ with τ > l − 1, it is answered with
encryptions of x0

iτ ,t∗ . The simulation B first guesses the user il ←$ [HS] and
replaces ci,t∗ = H(t∗) ·S�

i +p ·ei,t∗ for i = il with a random vector bt∗ using the
LWE assumption on Si. Then x0

i,t∗ + ci,t∗ is computationally indistinguishable
from x1

i,t∗ +ci,t∗ for i = il. Then, change ci,t∗ back to ci,t∗ = H(t∗) ·S�
i +p ·ei,t∗

for i = il.
The guessing of the user il incurs a loss of h where h is the number of

uncompromised users and this leads to �h for � hybrid games. Total loss in this
case is 2�h. Therefore, there is a PPT adversary B such that

|AdvA(G0) − AdvA(G3)| ≤ 2�h · AdvLWE
B (λ)

��
��

3.3 Parameters

In this section, we describe how to choose parameters for the proposed scheme
for correctness and security. The LWE problem is parameterised by n, q,X where
X is a discrete Gaussian distribution with mean 0 and standard deviation σ. The
choice of n, q, σ determines the security level of the scheme. For correctness, we
need �·p

2 (1 + 2B) < q
2 .

We use the LWE estimator [1] and the condition for correctness to determine
parameters for a security level of 128 bits. Given n, modulus q is determined
for an error distribution with standard deviation σ = 3.2. We give example
parameters for 128 bit security level in Table 3 when the secret is sampled from
the error distribution.

Further, we compare the size of the ciphertexts between our DPSA scheme
and the noise scaled version of SLAP as shown in Table 4. For a smaller number
of users, the ciphertext size of the proposed DPSA scheme is either the same as
or smaller than that of the SLAP scheme. However, for a larger number of users,
the SLAP scheme has a slightly better ciphertext size compared to the proposed
DPSA scheme.
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Table 3. Example parameters for the DPSA scheme with LWE dimension n, modulus
q and noise distribution with standard deviation σ = 3.2 for 128-bit security level for
varying number of users � and plaintext modulus p

No. of users log p n log q Ciphertext bytes

100 16 1200 29 4350

1000 16 1400 31 5425

10000 32 2510 51 16001

1013 32 4892 80 48920

1015 128 13800 183 315675

1021 128 17300 203 438987

Table 4. Comparison of ciphertext size between SLAP and our DPSA scheme

No. of users log p log q Ciphertext bytes

SLAPNS DPSA SLAPNS DPSA

1000 16 28 31 16384 5425

10000 32 48 51 16384 16001

1015 128 184 183 196608 315675

1021 128 204 203 262144 438987

3.4 Decentralized Setup

In the proposed DPSA construction, the setup is an interactive protocol between
the users who generate their own keys and share it with the aggregator in a secure
way. The aggregator then recovers the aggregate key for decryption which is the
sum of the user keys. The users can generate their keys by sampling Si uniformly
at random from X n×n(Zq) and setting ski = Si for i ∈ [�]. To share the key
with the aggregator, each user adds a random pad to their key which when
added sums to zero. These random pads can be generated using a secret sharing
protocol among the users. Each user Ui generates secret shares {Vi,1, . . . ,Vi,�}
of 0 and shares Vi,j with user Uj for j ∈ [�] \ {i}. User Ui then generates its pad
as Vi =

∑�
j=1 Vj,i for i ∈ [�] which is added to its secret key and the partial key

Si + Vi is sent to the aggregator. When these partial keys are added together,
the Vis sum to zero and the aggregator recovers S0 =

∑�
i=1 Si.

The communication cost per client during setup is sending one share to every
other user and sending the partial key to the aggregator. The computational cost
involves generating its share Vi and computing the partial aggregator key dki.
The setup is executed only once in the beginning of the protocol and does not
affect the overall performance of the scheme.
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3.5 Client Failures

If a client fails to submit its input message, then the aggregator cannot evaluate
the sum because the equation S0 =

∑�
i=1 Si does not satisfy (because of the

missing ciphertext) and the decryption outputs a random value. Chan et al. [11]
proposed a generic solution to deal with this problem and it is applicable to all
PSA schemes. They use differential privacy and allow the aggregator to learn
partial sums of the user’s inputs such that the total sum can always be computed
for the non-failing clients.

Their idea is to use a binary tree where the leaf nodes represent the clients
and the intermediate nodes represent the partial sums of the clients beneath
that node. Technically, the aggregator and the clients run an instance of the
PSA protocol for each intermediate node. Therefore, each client generates log �
ciphertexts using log � secret keys corresponding to the number of nodes from
the client to the root of the binary tree. The aggregator is given an aggregator
key for each intermediate node. The aggregator will always be able to compute
the sum for the non-failing clients, albeit with an increase in noise in the overall
sum. For example, consider the binary tree in Fig. 2 [11] for � = 8. The notation
[i, j] denotes the sum of the inputs of clients {i, . . . , j}. If client 4 fails, the
aggregator fails to obtain the sums [4, 4], [3, 4] and [1, 4]. The aggregator then
uses the blocks corresponding to the black nodes in the tree to compute the sum
of the remaining clients.

3.6 Optimizing Peer-to-Peer Communication

As a byproduct of the fault tolerance technique, we can also use the binary
tree to reduce peer-to-peer communication among the clients during the setup
phase. Instead of generating secret shares for all the �−1 clients, each client can
now generate shares only for those clients with whom they share an intermediate
node. This will reduce the communication cost per client during the setup phase.

Fig. 2. When client 4 fails, the aggregator uses the partial sums corresponding to the
black nodes (Color figure online)
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3.7 Dynamic Join and Leave

Dynamic Join: Chan et al. [11] proposed the idea to create a tree with more
leaf nodes than the number of clients to accommodate future client joining. In a
centralized scheme, the trusted setup generates secret keys for every leaf node.
The additional clients that have not joined the protocol yet are considered as
failed until they join. Once a new client joins it receives a secret key from the
setup. However, the trusted party needs to be present when a new client joins.
In our DPSA scheme, we can use this technique as follows. When a new client
U�+1 joins the protocol before the computation of a new sum, the client first
generates a uniformly random S�+1 ∈ X n×n and sets S�+1 as its secret key. The
client can broadcast its joining to the other clients through a bulletin board.
Then each client that shares an intermediate node with the new client, chooses
a new secret key and generates secret shares of zero and send these shares to the
other clients that they share a node with. Using these shares, the clients then
generate new aggregator keys and shares them with the aggregator. This is done
for all the log � nodes.

Dynamic Leave: If some clients leave the protocol before the evaluation of a new
sum, we can consider them as permanently failed. For the remaining clients,
one possible solution is to run the Setup again. This will update their pads Vi,
which now consist of shares from the remaining users. Similarly, the aggregator
receives a new key consisting of partial keys from the remaining users. Since the
setup is decentralized, the users do not need to depend on a trusted entity to
generate the updated pads or the updated aggregator key which makes it more
practical than having a centralized setup.

4 DPSA in the Standard Model

In this section, we give a possible construction of a DPSA scheme in the standard
model. We use similar ideas from [26] that uses a weak PRF to construct a PSA
scheme based on the LWE problem. However, in [26], the number of timestamps
is bounded as it needs to be fixed in the setup phase. We show how to get
unbounded timestamps using a PRF. Let F1 := {FS | FS : Zn

q → Z
n
q ,S ∈ Z

n×n
q }

such that FS(t) = t · S� + e. Here F1 is a randomized weak pseudorandom
function family as described in [2,3]. Let F2 = {FK | FK : Z → Z

n
q ,K ∈ Kλ} be

a PRF family such that FK(i) = ti ∈ Z
n
q . Then, a DPSA scheme in the standard

model can be described in terms of the following algorithms.

Setup(1λ, 1�): This is a protocol between the users. Each user generates a
matrix Si ←$ Z

n×n
q and interactively generates Vi ← Z

n×n
q such that

∑�
i=1 Vi = 0 mod q. Choose PRF key K ← Kλ and output public parame-

ters pp = (p, q, n, �,K,X ) and each user’s secret key ski = (Si,Vi). Since the
PRF key is a public information, one of the clients can choose this key and
broadcast it to the other clients.
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AggKeyGenShare(i, ski): Given user index i and secret key ski = (Si,Vi), com-
pute partial aggregator key dki = Si + Vi (mod q).

AggKeygen({dki}i∈[�]): Given {dki}i∈[�], compute aggregator decryption key

dk0 :=
�∑

i=1

dki =
�∑

i=1

(Si + Vi) =
�∑

i=1

Si (mod q) = S0 (6)

Enc(i, ski,xi,t, t): Given input xi,t ∈ Z
n
p and a timestamp t = tj , generate a

vector tj = FK(j) ∈ Z
n
q . Sample ei,t ← X n and compute the ciphertext cti,t as

cti,t =
⌊

q

p

⌋

· xi,t + tj · S�
i + ei,t (mod q) (7)

AggDec
(
dk0, {cti,t}i∈[�], t

)
: Given timestamp t = tj , generate the vector tj =

FK(j) ∈ Z
n
q and compute the aggregated sum as

xt =

[⌊
p

q

(
�∑

i=1

cti,t − tj · S�
0 (mod q)

)⌉]

p

(8)

Correctness: Correctness follows similarly as described in Sect. 3.1. At times-
tamp t = tj , we have

�∑

i=1

cti,t − tj · S�
0 (mod q) =

�∑

i=1

⌊
q

p

⌋

· xi,t +
�∑

i=1

ei,t (mod q) (9)

Observe that for an odd prime q,

�∑

i=1

⌊
q

p

⌋

· xi,t =
⌊

q

p

⌋

·
�∑

i=1

[xi,t]p − 1
2

(
�∑

i=1

xi,t −
�∑

i=1

[xi,t]p

)

(10)

To make sure that
⌊

q
p

⌋
· ∑�

i=1 xi,t +
∑�

i=1 ei,t does not flow over the modulus q,
we need to ensure that

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

�∑

i=1

ei,t − 1
2

(
�∑

i=1

xi,t −
�∑

i=1

[xi,t]p

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

<
q

2
(11)

This is satisfied when �
2 (p + 2B) < q

2 .

Security: The security of the above DPSA scheme can be proved using the
same proof strategy as described in Sect. 3.2. It can be proved using a hybrid
argument consisting of the games outlined in Table 5. Here G0 corresponds to
the AO0 game where QChallenge queries are answered with an encryption of x0

i,t
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and G3 corresponds to the AO1 game where the challenge queries are answered
with an encryption of x1

i,t.
The transition from G0 to G1 consists of adding perfect secret shares of 0

denoted by ri ← SS(0) to the challenge ciphertexts. It can be achieved by
replacing the PRF FSi

(tj) with a random function (RF) and using a sequence
of hybrid games as described in Lemma 2. Transition from G1 to G2 can be done
similarly by changing the PRF with an RF for the two users as described in
Case 2 of Lemma 3. Case 1 follows directly from Lemma 3. Finally, transition
from G2 to G3 consists of making the changes backwards.

Table 5. Hybrid games for the AO security of the DPSA scheme in the standard
model. Change in each games is highlighted with a square box

Game cti,t Justification

G0
ci,t ← FSi(tj)

cti,t ← ci,t + �q/p� · x0
i,t

AO0 game

G1

c′
i,t ← FSi(tj)

ci,t ← c′
i,t + ri , ri ← SS(0)

cti,t ← ci,t + �q/p� · x0
i,t

ci,t indistinguishable from random

G2

c′
i,t ← FSi(tj)

ci,t ← c′
i,t + ri, ri ← SS(0)

cti,t ← ci,t + �q/p� · x1
i,t

information-theoretic

G3

ci,t ← FSi(tj)

cti,t ← ci,t + �q/p� · x1
i,t

ci,t indistinguishable from random

5 Conclusion

In this paper, we presented a decentralized private stream aggregation (DPSA)
protocol that does not rely on a trusted authority for key generation. We gave
a formal definition of a DPSA scheme and presented a concrete construction
based on the LWE problem both in the random oracle model as well as the stan-
dard model. We proved the security of the DPSA scheme under the aggregator
obliviousness notion with static corruptions. Further, we discussed possible solu-
tions for practical deployments such as clients joining and leaving the system. In
addition, we provided sample parameters for the concrete construction based on
the LWE assumption, and demonstrated that our scheme achieves comparable
ciphertext sizes to that of SLAP [24] for equivalent plaintext spaces.

Acknowledgements. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.
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Appendix

A Private Stream Aggregation

Definition 6 (Private Stream Aggregation [21]). A private stream aggre-
gation scheme over an input space M consists of the following PPT algorithms:

Setup(1λ, 1�): Takes as input the security parameter λ and number of users � and
generates public parameters pp, user secret keys ski and aggregator decryption key
dk0. Each user gets the corresponding secret key ski for i ∈ [�] and the aggregator
receives the decryption key dk0. The public parameters pp is implicitly an input
to all the algorithms.

Enc(i, ski,xi,t, t): Takes as input the user index i, the secret key ski, the input
xi,t ∈ M and generates an encryption of xi,t using ski. Outputs the ciphertext
cti,t.

AggDec(dk0, {cti,t}i∈[�], t): Takes the aggregator decryption key dk0 and cipher-
texts {cti,t}i∈[�] for the time period t and outputs the aggregated sum xt =
∑�

i=1 xi,t.

Correctness: The above PSA scheme PSA= (Setup,Enc,AggDec) is said to be
correct if for any λ, � ∈ N, any message xi,t ∈ M, it holds that

Pr

[
AggDec(dk0, {cti,t}i∈[�], t) =

�∑
i=1

xi,t :
(pp, {ski}i∈[�], dk0) ← Setup(1λ, 1�)

cti,t ← Enc(i, ski,xi,t, t)

]
= 1

Definition 7 (Aggregator Obliviousness for PSA). The aggregator oblivi-
ousness security for a PSA scheme can be defined in terms of the security exper-
iment AOβ(λ, �,A) given in Fig. 3. No adversary A should be able to win this
game with non-negligible advantage.

Fig. 3. Aggregator Obliviousness experiment for PSA

The challenger first runs the Setup algorithm and returns the public param-
eters pp to the adversary. The adversary makes queries to the following oracles:
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• Corruption oracle QCorr(i): The adversary submits an integer i ∈
{1, . . . , �} and gets back the i-th user’s secret key ski. If the adversary submits
i = 0, then it gets the aggregator decryption key dk0.

• Encryption oracle QEnc(i,xi,t, t): The adversary submits (i,xi,t, t) and
receives cti,t,← Enc(i, ski,xi,t, t) from the challenger.

• Challenge oracle QChallenge(U , {x0
i,t∗}i∈U , {x1

i,t∗}i∈U , t∗): This query can
be made only once by the adversary. The adversary selects a set of users U
and time period t∗ and for each i ∈ U , the adversary chooses two sets of
inputs x0

i,t∗ , x1
i,t∗ . The challenger randomly samples b ← {0, 1} and returns

cti,t∗ ← Enc(ski,x0
i,t∗ , t∗) for all i ∈ U if b = 0 and cti,t∗ ← Enc(ski,x1

i,t∗ , t∗)
for all i ∈ U if b = 1.

Finally, the adversary outputs a guess b′ for the value of b and the experiment
outputs β depending on the following conditions.

Let CS be the set of corrupted users, HS be the set of honest users at the
end of the game and let Et∗ be the set of users for which an encryption query
has been made at time t∗. Let Qt∗ := U ∪ Et∗ be the set of users for which A
receives an encryption or a challenge ciphertext at timestamp t∗. The condition
(∗) is satisfied if all of the following conditions hold:

– U ∩ CS = ∅: The set of users specified during the Challenge phase must be
uncorrupted at the end of the game.

– Adversary A has not queried QEnc(i,xi,t, t
∗) for the same i and t∗. Otherwise,

this would violate the encrypt-once policy.
– U ∩ Et∗ = ∅: The adversary cannot query challenge ciphertexts to the users

in Et∗ . In other words, the adversary cannot get a challenge ciphertext from
users for which it has queried the encryption oracle at time t∗.

– If the adversary has compromised the aggregator and Qt∗ ∪CS = [�], then the
following condition must be satisfied.

∑

i∈U
x0

i,t∗ =
∑

i∈U
x1

i,t∗

We set β ← b′ if the above conditions are satisfied, otherwise we set β = 0.
A PSA scheme is said to be aggregator oblivious if for any PPT adversary

A, there exists a negligible function negl such that

AdvAOA,PSA(λ, �) = |Pr[AO0(λ, �,A) = 1] − Pr[AO1(λ, �,A) = 1]| ≤ negl(λ)
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B Games for the Proof of Theorem 1

Fig. 4. Games for the proof of Theorem 1. Here HS := [�] \ CS. Condition (∗) is given
in Definition 5.
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Fig. 5. Games for the proof of Lemma 2
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Abstract. Creating secure Wi-Fi hotspots has historically been chal-
lenging: when using an open network it is trivial for an adversary to
eavesdrop traffic. Alternatively, when using a password-protected net-
work and sharing the password publicly, anyone who knows the password
can create a rogue clone of the network to intercept traffic. To overcome
this problem, the Wi-Fi Alliance released SAE-PK as part of an update
to WPA3, which we will call WPA3-PK. In this protocol, a public key
is used to verify the hotspot’s authenticity, and the password of the net-
work encodes a fingerprint of this public key. As a result, someone who
knows the password can no longer clone the network, because they do
not know the corresponding private key.

In this paper, we systematically analyze the security of WPA3-PK. We
first study implementations, where we show that the private WPA3-PK
password gets leaked when using a flawed random number generator, and
confirm that this may indeed happen in practice. We then study network
aspects, where we show how a malicious insider can intercept the traffic
of others. Our third focus is cryptographic attacks, where we perform an
evaluation of time-memory trade-off attacks against WPA3-PK, and we
optimize these attacks by combining the technique of rainbow tables with
distinguished points. Additionally, we construct multi-network password
collisions that allow an adversary to build a single rainbow table that can
be used to attack multiple networks. Finally, we discuss defenses against
our attacks and propose updates to the WPA3-PK standard.

Keywords: WPA3-PK · Rainbow table · Time-memory trade-off

1 Introduction

Securing Wi-Fi hotspots has historically been a daunting task. Using an open,
unsecured, Wi-Fi network makes it trivial for an adversary to read and intercept
any user’s traffic. A password-protected network, where the password is shared
publicly, is not much better: anyone who knows the password can create a rogue
clone of the network to intercept all traffic. Previous works tried to improve this
situation by creating a new enterprise authentication method, where the public
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key of the network is pinned and used to authenticate the hotspot, and where the
client is not authenticated [11,14]. Unfortunately, these proposals never gained
widespread adoption, and could still be attacked when a client connects to the
network for the first time. To remedy this situation, and better protect Wi-Fi
hotspots, the Wi-Fi Alliance released the Simultaneous Authentication of Equals
Public Key (SAE-PK) protocol in December 2020 as part of an update to the
WPA3 specification. We will refer to this protocol as WPA3-PK.

The goal of WPA3-PK is to strengthen the security of password-protected
Wi-Fi hotspots by preventing an adversary from creating a rogue clone of the
hotspot, even when that adversary possesses the pre-shared password. This is
achieved by authenticating the hotspot with a public key and by verifying the
authenticity of this public key using a password. The idea is that the password is
derived from the hotspot’s public key, meaning the password effectively contains
a trusted fingerprint of the public key. When a user connects to the hotspot,
the fingerprint encoded in the password can then be used to verify the hotspot’s
public key. An adversary cannot create a rogue clone of the hotspot as long
as it is infeasible to generate a private and public key that results in the same
fingerprint and WPA3-PK password.

In this paper, we systematically analyze the security of WPA3-PK. We first
investigate existing deployments of WPA3-PK, where we analyze implementation
and network-related aspects. Doing so, we discover that using a bad random
number generator will cause the hotspot’s password to be leaked. Additionally,
because WPA3-PK does not mandate client isolation, we found that network-
layer attacks can still be abused to intercept the traffic of other users.

Our second focus is time-memory trade-off attacks against WPA3-PK. In
these attacks, the goal is to find a private and public key that result in a given
WPA3-PK password, i.e., to perform a second preimage attack. We first evaluate
the technique of distinguished points, and confirm that a precomputation attack
reduces the time to find a second preimage of a WPA3-PK password from 48
CPU years to an amortized time of fewer than 12 d. We then combine this app-
roach with rainbow tables to increase the success rate of the attack. To evaluate
our rainbow table attack, we create a proof-of-concept tool that can generate
the precomputed rainbow tables. These experiments confirm that using rain-
bow tables improves the performance of time-memory trade-off attacks against
WPA3-PK. We also show how to construct multi-network WPA3-PK password
collisions. These allow an adversary to attack multiple networks using a single
precomputed table.

Finally, we propose improvements to the design of WPA3-PK that prevent
our newly discovered attacks. We also discuss backward-compatible mitigations
that either prevent or reduce the impact of our attacks.

To summarize, our contributions are:

– We analyze implementation and network aspects of WPA3-PK, such as ran-
dom number generation, client isolation, and shared group keys (Sect. 3).

– We empirically evaluate time-memory trade-off attacks against WPA3-PK.
We also show how to construct rainbow tables to more efficiently invert a
WPA3-PK password into a public and private key pair (Sect. 4).
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– We construct multi-network WPA3-PK password collisions that allow an
adversary to attack multiple networks using a single rainbow table (Sect. 5).

– We discuss defenses against the identified design and implementation issues
and suggest updates to the WPA3-PK standard (Sect. 6).

Disclosure. We reported our security analysis of WPA3-PK to the Wi-Fi
Alliance. Our code to construct and analyze rainbow tables, and our multi-
network WPA3-PK password collisions code, are both available online [1].

2 Background

In this section, we introduce the SAE handshake, how WPA3-PK extends SAE,
and explain the generation of WPA3-PK passwords and their security properties.

2.1 Simultaneous Authentication of Equals (SAE)

The Simultaneous Authentication of Equals (SAE) handshake, also called Drag-
onfly, lies at the basis of WPA3 and provides forward secrecy and resistance
against offline dictionary attacks. This handshake was first introduced in 2008
by Harkins [12] and in 2018 became mandatory in home WPA3 networks [29].

A client can discover nearby Wi-Fi networks that support SAE by sending
a broadcast probe request (see Fig. 1). Nearby Access Points (APs) will reply
with probe responses. These responses contain various properties of the network,
including the name of the network, which is commonly also called the SSID
(Service Set Identifier), and whether the network supports SAE.

Once the client finds a network to connect to, it can initiate the SAE hand-
shake. This handshake consists of two phases, called the commit and confirm
phase, and these are illustrated in Fig. 1. The first phase can be viewed as a
variation of a Diffie-Hellman key exchange, except that the generator used for
exponentiation is derived from a pre-shared password instead of being a fixed
value [19]. In other words, the first phase negotiates a shared key between the
client and AP using Auth-Commit frames. The second phase is used to confirm
that the Access Point (AP) and client derived the same keys in the commit
phase. More precisely, the confirm element in the Auth-Confirm frame is used to
verify that the other party negotiated the same keys. After the SAE handshake,
the client associates to the AP, and finally performs a 4-way handshake to derive
pairwise transient keys that can be used to protect data frames.

The SAE password can only be shared with trusted individuals. This is
because anyone that possesses the password can create a rogue clone of the
network with the same SSID and password, and can then trick victims into con-
necting to this rogue clone. This makes SAE unsuitable for hotspots, since in
that case the password is shared publicly, meaning adversaries will also possess
the password.



220 M. Vanhoef and J. Robben

Client Access Point (AP)

Probe-Request

Probe-Response(SSID)

Auth-Commit(scalar sA, element EA)

Auth-Commit(scalar sB , element EB)

Derive master keys Derive master keys

Auth-Confirm(confirm)

Verify confirm

Auth-Confirm(confirm, Enc–Modifier˝, pk, KeyAuth)

Verify confirm
Decrypt modifier
Verify public key fingerprint
Verify KeyAuth signature

C
om

m
it

ph
as
e

C
on

fir
m

ph
as
e

SA
E

H
an

ds
ha

ke

Association

4-way handshake

Fig. 1. Diagram of the SAE handshake and the extensions added by WPA3-PK. The
parameters and actions shown in bold are unique to SAE-PK: these additions allow
the client to verify the authenticity of the AP and assure the AP is not a rogue clone.

2.2 WPA3 Public Key (WPA3-PK)

In December 2020, the Wi-Fi Alliance released the SAE Public Key protocol as
part of an update to the WPA3 certification [29]. We will use WPA3-PK to refer
to this protocol. This protocol has as goal to improve the security of password-
protected Wi-Fi hotspots and makes it infeasible for a malicious insider to create
a rogue clone of a hotspot. In other words, even if an attacker has the hotspot’s
password, it would be infeasible to create a rogue clone of the network. The
WPA3-PK protocol accomplishes this by authenticating the network using a
public key and by making the password encode a fingerprint of this public key.
When a client connects to the network, the AP transmits its public key pk to
the client in the confirm frame (see Fig. 1), and the authenticity of this public
key is verified using the pre-shared WPA3-PK password. Once the public key is
verified, it is used to authenticate the AP. Concretely, the AP will authenticate
itself by signing the following data using its private key:

KeyAuth = Sigsk(EB ‖ EA ‖ sB ‖ sA ‖ M ‖ pk ‖ APMAC ‖ STAMAC)
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Algorithm 1: Create a fingerprint of an SSID and public key pk. We use
PKHashθ,�(pk,SSID,M) to denote the algorithm. The parameters θ and �
are dropped when clear from context.
Input: pk: Public key of the hotspot to calculate a fingerprint for.

SSID: Network name to calculate a fingerprint for.
M : Starting modifier, this is by default a random value.
θ : Number of internal digest bits that must be zero.
�: Fingerprint length in bits (excluding removed leading zeros).

Returns: Fingerprint of the given SSID and public key.

for i = 0 to 2128 − 1 do
mi ← (M + i) mod 2128 � The modifier consists of 128 bits
h ← Hash(SSID ‖ mi ‖ pk) � m is encoded in big-endian
if log2(h) < 128 − θ then � Check whether the first θ bits are zero

return L(h, θ, θ + �) � Remove first θ zero bits and return result
i ← i + 1

return false � We should never get here in practice

Here sk represents the hotspot’s private key. For our purposes, the parameters
EA, EB , sA, and sB , can be treated as random values in the commit phase of
the handshake. Including these parameters in the signed data ensures that the
KeyAuth signature is unique for each execution of the handshake. The signature
is also computed over the public key pk, over the MAC addresses of the AP and
client, and over a modifier value M that is used to generate the WPA3-PK pass-
word (see Sect. 2.3). The Elliptic Curve Digital Signature Algorithm (ECDSA)
algorithm is used to create the signature, which implies that the public key pk
must be based on elliptic curves. The client can verify the KeyAuth value using
the public key pk, and in the next section, we describe how in turn the authen-
ticity of the public key pk can be checked based on the WPA3-PK password.

2.3 Generation of the WPA3-PK Password

The WPA3-PK password is generated so that it can act as a secure and user-
friendly fingerprint of the hotspot’s public key. Note that simply using the normal
fingerprint of a public key as the password would not be user-friendly, since a
traditional fingerprint is the hash of the public key and this is too long. Instead,
to balance security and usability, WPA3-PK generates a fingerprint of a public
key as shown in Algorithm 1: The public key, along with the SSID of the hotspot,
is combined with a random modifier M such that the first θ bits of the following
hash are zero:

Hash(SSID ‖ M ‖ pk) (1)

Here ‖ denotes concatenation of binary strings. Variable M denotes a 32-byte
integer which is incremented until this hash function returns an output whose
first θ bits are zero. The modifier M is encoded in big-endian, and SSID rep-
resents the binary encoding of the network name. Including the SSID in the
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hash input ensures that each network has a different fingerprint even when they
use the same public key. The argument pk represents the public key of the net-
work and is encoded according to RFC 5480 [23]. Once a modifier has been
found that results in θ leading zero bits, these first θ bits are dropped, and the
next � bits are returned. In other words, the function L(h, θ,N) in Algorithm 1
extracts bits θ to N of the binary string h starting from the left. The length
of the public key influences the hash function that is used [29]. At the time of
writing, this is either SHA2-256, SHA2-384, or SHA2-512 [3, §Table 12-1]. Algo-
rithm 1 shows the resulting algorithm and we will represent it using the function
PKHashθ,�(pk, SSID,M).

The output from PKHash acts as a fingerprint of the public key, where the
parameters θ and � control the fingerprint’s security. The values for both these
parameters are derived from the parameters Sec and λ as follows [29]:

θ = 8 · Sec (2)

� = 19 · λ

4
− 5 (3)

Allowed values for Sec are 3 or 5, and allowed values for λ are 12, 16, 20, and so
on [29]. For instance, when picking Sec = 3, the output of the hash operation in
Eq. (1) must start with 24 zero bits, while with Sec = 5, the hash output must
start with 40 zero bits. This fingerprint is then encoded into a human-readable
password, where the parameter λ corresponds to the number of characters that
are required to encode the resulting password. The human-readable password
also encodes the security parameter Sec. For the remainder of the paper, we will
use the terms fingerprint and password as synonyms.

The AP will transmit the modifier M and public key pk to any client that
connects using WPA3-PK (see Fig. 1). This allows the client to recompute the
fingerprint of the given public key, SSID, and modifier, and compare the resulting
fingerprint with the one encoded by the WPA3-PK password. In case these
fingerprints do not match, the handshake is aborted. Note that the modifier
value is encrypted with the negotiated key to ensure that the modifier remains
unknown to outsiders. This is important, because if the modifier gets leaked to
outsiders, then the WPA3-PK password of the network will leak (see Sect. 3.1).

2.4 Security Guarantees Provided by WPA3-PK

It is important that WPA3-PK is sufficiently resistant to second preimage
attacks. That is, given a WPA3-PK password, it must be infeasible to find a mod-
ifier M and public key pk (for which the private key is known) that results in the
given WPA3-PK password. To estimate the resistance against such attacks, the
WPA3 specification calculates the cost of a brute-force preimage search for vari-
ous security parameters λ and Sec. This analysis indicates that, when targeting
a network that uses the lowest allowed security setting of λ = 12 and Sec = 3,
and when using a single hash miner capable of 50 TeraHashes per second, it
would take roughly 48 CPU years to attack a WPA3-PK password [29].
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Table 1. Different implementations of PKHash and whether they let the modifier M
start from a random value, and if so, which source is used to generate random numbers.

Password generation tool Start value of M Source of randomness

Hostap’s sae-pk-gen Random Linux’s /dev/urandom/

OpenSSL-based tool Random Router’s MAC address
Python3 implementation Zero —

We also remark that WPA3-PK can be used to secure private Wi-Fi networks.
Compared to plain WPA3, using WPA3-PK has the advantage that, if an internal
device is compromised, this compromised device cannot abuse the pre-shared
password to create a rogue clone of the network to attack other devices.

3 Implementation and Network-Based Attacks

In this section, we investigate implementation risks of WPA3-PK. That is, we
analyze the impact of bad randomness and study network-layer security aspects.

3.1 Bad Randomness Leaks the Password

Threat Model. In this subsection, we will assume that the adversary does
not know the password of the WPA3-PK network, but wants to obtain it. This
threat model corresponds to one of the design goals of WPA3-PK, namely, that
the password should remain secret if it is not shared publicly. This means that
in this subsection, WPA3-PK is not used to secure a hotspot, but we instead
assume that WPA3-PK is used to secure a private home network.

Flawed Randomness Risk. To ensure that the WPA3-PK password stays
secret, the modifier M should start from an unpredictable value when generating
the password (see Algorithm 1). In fact, the WPA3 specification states: “the
Modifier is generated using a random number generator with high entropy” [29].
Using high entropy is essential because, due to the design of WPA3-PK, using
low entropy randomness risks leaking the WPA3-PK password. In particular,
when an adversary does not know the password of a WPA3-PK network, they
can monitor the network until a legitimate client tries to connect. The adversary
can then capture the public key pk that is sent in plaintext in the last Auth-
Confirm frame (see Fig. 1). Once the adversary has obtained the public key, the
initial value of the modifier M can be guessed, and the PKHash algorithm can be
executed to find the WPA3-PK password of the network. It is therefore essential
that a cryptographically strong random number generator is used to initialize
the modifier M in the PKHash algorithm, since that will prevent an adversary
from guessing the (initial) value of the modifier.

Implementation Analysis. To investigate whether WPA3-PK implementa-
tions securely initialize the modifier M , we searched for open-source implemen-
tations of PKHash and studied those. More precisely, we analyzed: (1) the sae-
pk-gen password generation tool included in Linux’s hostap daemon; (2) an
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implementation of PKHash based on OpenSSL that is part of a modified dd-
wrt release; and (3) a Python3 implementation of PKHash. The analyzed source
code snapshots of these three tools are available on our repository [1]. Table 1
gives an overview of these three implementations and their properties.

We found that hostap’s sae-pk-gen uses /dev/urandom to generate an initial
value of M . Although researchers have previously identified weaknesses in older
Linux implementations of /dev/urandom [15], it is believed to be a secure source
of randomness in newer kernels. In contrast, we found that the PKHash imple-
mentation based on OpenSSL, and used in a dd-wrt fork, was using an insecure
method to initialize the modifier. In particular, it used the MAC address of the
router as the argument to srand, and then used libc’s rand function to initial-
ize the modifier. This means that the initial value of M can be inferred by an
adversary and that the resulting WPA3-PK password can be derived from the
hotspot’s public key. Finally, the Python3 implementation of PKHash always
initialized the modifier M to zero and incremented it until a valid modifier was
found. This makes it trivial for an adversary to derive the WPA3-PK password
when only knowing the public key of the network.

Evaluation. To evaluate our attack, and confirm that an adversary can infer
the WPA3-PK password generated by vulnerable implementations, we generated
WPA3-PK passwords using the three implementations in Table 1. The gener-
ated passwords and private keys were used to create a WPA3-PK hotspot using
Linux’s hostapd daemon. To then perform the attack and infer the network’s
password, we created a Python script that uses the Scapy library to monitor
Wi-Fi frames sent by the AP. When a legitimate client connects, and the Auth-
Confirm frame sent by the AP is detected, our script will extract the AP’s public
key from this frame (recall Fig. 1).

Once the AP’s public key has been intercepted, our script runs the PKHash
algorithm locally with the captured public key as input. In a first run of
PKHash, the initial value of the modifier value M is set to zero, to simulate
the Python3 implementation. In a second run, the initial value is set based
on the MAC address of the AP. All combined, this results in two potential
WPA3-PK passwords. To determine whether one of these passwords is correct,
we use wpa_supplicant to try to connect to the AP using these passwords. If
one of the connections is successful, we know that the password is correct. We
repeated this experiment 10 times, where each time new WPA3-PK passwords
and public keys were generated, and each time our script was able to derive
the password generated by the OpenSSL-based and Python3 implementation of
PKHash.

3.2 Network-Based Attacks

Client-to-client Attacks. With WPA3-PK, an adversary cannot set up a
rogue AP to intercept the traffic of clients. However, by default, it remains
possible to intercept a victim’s traffic using network-based attacks. In particular,
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an attacker can connect as a client and then use ARP poisoning to redirect and
intercept the traffic of other users that are connected to the hotspot. To perform
an ARP poisoning attack, the adversary must know the IP address of the victim,
but that info can be determined by scanning the network using tools such as
nmap.

We confirmed this attack in practice against a Linux AP running hostapd
2.10 that was configured as a WPA3-PK network, connecting to the AP using
two Linux laptops, and using Scapy to perform an ARP poisoning attack. This
successfully poisoned the ARP cache of both the victim client and the AP, and
caused the attacker to intercept all traffic to and from the victim.

Abusing Group Keys. When using WPA3-PK, the group key that is used
to protect broadcast and multicast Wi-Fi traffic is shared between all clients.
This means that an adversary can connect to an WPA3-PK hotspot, learn the
group key, and abuse this key to spoof broadcast and multicast traffic to all
clients. More worrisome, previous work has shown that against many devices,
it is possible to inject unicast traffic using the group key [27], worsening the
impact of such an attack. Overall, we found that an adversary can abuse the
group key in a WPA3-PK network to send arbitrary traffic to other clients even
if client-to-client traffic was blocked by the network.

We confirmed the above attack against a Linux client that was using version
2.10 of wpa_supplicant. In our attack, we connected ourselves to the WPA3-PK
network using a modified wpa_supplicant that outputs the group key. This
group key was then used to inject both broadcast and unicast frames towards
the victim, even though client-to-client traffic was disabled by the AP.

4 Precomputation Attacks and Rainbow Tables

In this section, we study improved time-memory trade-off attacks against
WPA3’s SAE-PK protocol, i.e., against WPA3-PK. We analyze the expected
performance of a baseline attack, improve this attack using rainbow tables, and
evaluate a proof-of-concept implementation of the rainbow table attack.

4.1 Background on Time-Memory Trade-Off Attacks

Precomputation Attacks. Our goal is to find a modifier M and public key pk
that results in a given password, i.e., to perform a preimage attack. That is,
we want to invert PKHashθ,�(pk,SSID,M) when given a SSID, public key pk,
and security parameters θ and �. One option is doing a brute-force search for
a value M that results in the desired output, but that requires either a large
amount of computational power or takes a huge amount of time. When per-
forming a preimage attack multiple times, it is typically possible to precompute
information so that subsequent attacks can be carried out faster. Such time-
memory trade-off attacks were first introduced by Hellman in 1980: he proposed
a probabilistic method to break a block cipher that supports 2n possible keys by
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precomputing a lookup table of 22/3n elements, after which recovering the key
from a known plaintext takes 22/3n operations [13]. Another common use case
for time-memory trade-off attacks is to invert a hash function.

In a time-memory trade-off attack, intermediate results are saved so that
subsequent attacks are more efficient. For instance, assume we want to invert a
hash function H, i.e., given a hash output C we want to find an input P such
that C = H(P ). A naive idea is to iterate over all inputs and save all input and
hash output pairs. However, this requires a large amount of storage. Instead, in
a time-memory trade-off attack, the inputs and hash outputs are organized in
chains, and only the first and last elements of each chain are saved. The chains
are created by defining a reduction function R that transforms a hash output into
a new candidate hash input. We then define the function f(p) = R(H(p)) that
maps an input p to another input, and use this to construct a chain of inputs:

p1
f(p1)−−−→ p2

f(p2)−−−→ . . .
f(pt−1)−−−−−→ pt (4)

For every chain only the first input p1 and last input pt are stored. These two
points are commonly called the starting point and endpoint, respectively. By
changing the length t of chains we will be able to trade lookup time with memory.

To find an input that results in a given hash output C, we first create a new
(temporary) chain of inputs of length t starting with R(C). For every output in
this temporary chain, we look up whether this input occurs as an endpoint in
the precomputed table. Once an endpoint has been found, the entire chain in
the precomputed table is reconstructed, which is possible since the precomputed
table contains the starting input of each chain. If the recreated chain contains an
input that results in the given hash output C, then the lookup was successful,
since that means we found an input that results in the given hash output C.
If the recreated chain does not contain the hash output C, then we say that a
false alarm has occurred, and we continue the search until t applications of f
are applied to R(C).

Chain Collisions. Time-memory trade-off attacks are probabilistic: there is
no guarantee that all hash inputs of a given length are contained in the table.
The success probability of a preimage attack will therefore depend on the size
of the precomputed table and how the table is constructed. Additionally, chains
may collide with each other, meaning at some point they both generate the same
(partial) chain of inputs. We call this a chain collision. To increase the success
rate, and reduce the number of collisions, a common strategy is to create multiple
smaller subtables that each use a (slightly) different reduction function R.

Rainbow Tables and Distinguished Points. Various improvements to time-
memory trade-off attacks have been proposed over time. Two important ones are
Distinguished Points (DP) and rainbow tables. The idea behind distinguished
points was first mentioned by Rivest [9, p.100] and was later investigated in detail
by Borst et al [7]. When using distinguished points, the number of table lookups
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is reduced, which is important when working with slow storage mediums or large
lookup tables. Arguably the most well-known improvement is the technique of
rainbow tables, which was proposed by Oechslin in 2003 [22]. The advantage of
this technique is that the number of chain collisions is reduced, and that there is
a reduction in the expected number of table lookups compared to the classical
method of Hellman.

4.2 Motivation: SSID Reuse

The network’s SSID influences the WPA3-PK password and thereby acts as a
salt to mitigate precomputation and time-memory trade-off attacks. However,
SSIDs are frequently reused by different networks, meaning it still is beneficial to
perform precomputation attacks against WPA3-PK. To investigate how common
SSID reuse is, we analyzed the SSID statistics provided by WiGLE [2], which at
the time of our analysis contained 884 396 925 Access Points (APs). Based on this
data, Fig. 2 shows how many Wi-Fi networks are represented by the most com-
mon 100 SSIDs. We can see that the most common 100 SSIDs represent almost
10% of all Wi-Fi networks worldwide. The most common SSID, xfinitywifi,
represents 2,03% of all APs, and the top 10 SSIDs represent 5,02% of all APs.
This shows that SSIDs are frequently reused and motivates our research into
precomputation and time-memory trade-off attacks, since the reuse of SSIDs
enables the use of a single precomputed table to attack multiple networks.

4.3 Baseline Precomputation Attack Against WPA3-PK

Our rainbow attack extends the time-memory trade-off attack of [26]. We there-
fore first introduce this baseline attack and perform a more extensive evaluation
of its performance. Both attacks have as input a public key pk for which we
know the private key and a WPA3-PK password with parameters � and θ, i.e.,
a fingerprint, and then find a modifier M such that PKHashθ,�(pk,SSID,M)
has as output the given fingerprint. The baseline time-memory trade-off attack
works as follows [26]:
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Fig. 2. Percentage of Access Points (APs) on WiGLE that are represented by the top
most common SSIDs [2]. This excludes the empty SSID that is used to hide networks.
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Reduction Function. The reduction function takes a fingerprint, i.e., an out-
put of PKHash, and converts it to a modifier value M . The function takes the
given fingerprint of � bits, and appends it with zero bits until it has a total
length of 16 bytes. With this construction, the chance of chain collisions is
reduced, because the counter mi inside PKHash will then be unlikely to ever
equal another fingerprint.

Constructing Chains and Tables. The baseline attack uses distinguished
points to construct chains, which makes handling large tables more effi-
cient [6,22]. That is, it keeps applying the reduction and PKHash function
until a fingerprint with a given number of leading zero bits is encountered. This
fingerprint is called a distinguished endpoint or distinguished fingerprint. The
number of leading zeros of a distinguished fingerprint is represented by d. This
implies that the internal hash output in Algorithm 1 must start with θ + d zero
bits.

To construct one table, m random fingerprints are picked as starting points,
denoted by p1 to pm. For each starting point, the reduction and PKHash func-
tion, which corresponds to function f in Sect. 4.1, is executed until we get a
distinguished fingerprint. Function f can now be written as follows:

pi,j+1 = PKHashθ,� (pk, SSID, pi,j � (32 · 8 − �)) (5)

Here pi,j is the j-th point in chain i. Each chain i starts with fingerprint pi,1 = pi.
The operator � denotes a binary left shift, and the constant 32 · 8 corresponds
to the length of the modifier M . To detect loops in a chain, the length of a chain
is limited to tmax elements. If no distinguished fingerprint was found after tmax

applications of the function f , the chain is discarded.

Storage. For every chain i we store the starting fingerprint pi, the distinguished
endpoint pi,t, and the chain length t. By storing the chain length we can merge
chain collisions and only keep the longest chain. To allow lookups of an endpoint
in logarithmic time, the table is sorted based on the distinguished endpoints.

Multiple Tables. Using multiple smaller subtables, where each table uses a
unique reduction function, reduces chain collisions which improves the success
rate of table lookups and makes it easier to parallelize lookups [6,25]. One can
construct a unique reduction function per table by encoding the index of the
subtable into the high-order bits of the modifier M . After the bits that encode
the table’s index, the output of the previous PKHash call is placed. In other
words, for subtable r out of T in total, the combination of the reduction and
PKHash function becomes:

stable = 32 · 8 − �log2(T )� (6)
smod = stable − � (7)

pi,j+1 = PKHashθ,� (pk, SSID, (r � stable) | (pi,j � smod)) (8)

Operator | denotes the binary OR operation and T is the number of subtables.



A Security Analysis of WPA3-PK 229

4.4 Improved Analysis of the Baseline Precomputation Attack

Table 2. Symbols used in this paper and their meaning.

Symbol Description

λ Length of the SAE-PK password (defined by WPA3)
Sec Security level of the fingerprint (defined by WPA3)
pk Public key
sk Private key
M Modifier value used to calculate a fingerprint
m Number of starting points in one table
r Table index
T Number of tables
B Number of colors used in a table
c Current color
θ Number of SHA2 output bits that must be zero
� Length in bits of the desired fingerprint
d Number of leading zeros in distinguished fingerprints
t Represents the (average) length of a chain

To determine the performance of the above baseline time-memory trade-off
attack, we improve its proof-of-concept implementation, evaluate its resulting
performance, and compare this more thorough experimental evaluation with the
theoretical estimates of [26]. Note that in the theoretical analysis, chain merges
are ignored to simplify the analysis at the cost of some reduction in precision [25,
§8].

Experiments. We started with the proof-of-concept implementation of [26] and
carried out a more extensive evaluation over more parameters. While doing so,
we fixed a bug in the lookup function in the proof-of-concept implementation
that caused the endpoint in a chain to be overwritten, which caused the success
rate of table lookups to be underestimated. When then ran simulations with the
WPA3-PK security parameters θ = 8 and � = 24, used d = 8 for distinguished
fingerprints, tmax = 211 as the maximum chain length, used m = 28 starting
points per table, and T = 28 individual tables. Based on a simulation of 400
password lookups, on average one lookup required 216.42 calls to PKHash, and
the success rate of a password lookup was 46.5%. This is a substantially higher
success rate compared to the analysis in [26], which we attribute to the bug fix
in the proof-of-concept implementation.

We also further improved the proof-of-concept code to support arbitrary bit
lengths for the parameters θ, �, and d. This enabled a more thorough performance
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Fig. 3. Performance of lookup tables for the baseline time-memory trade-off attack.
The x-axis denotes the number of subtables T. The total number of starting points
across all subtables is identical in each experiment. In other words, when employing
fewer subtables, each one contains a higher number of chains, i.e., starting points.

evaluation while still ensuring that simulations terminate within practical time.
In particular, in our second set of experiments, we set θ = 0, � = 24, and
d = 8. The number of subtables T was set to 16, 32, . . . , 512. The number of
chains m was chosen so the table generation covered on average 2� hash inputs.
That is, T = 2�

2d·m , which ensures the generation time of the table is equal
under all parameter combinations, and ensures that all subtables combined have
the same size, resulting in a fair comparison between the different tables. For
every generated table, we looked up 400 random passwords, and measured how
many lookups were successful. The results of this experiment are shown in Fig. 3.
We can clearly see that using different smaller subtables, each with their own
unique reduction function, improves the performance of the time-memory trade-
off attack.

Precomputation Complexity. We can compare our observed performance
with the predicted theoretic performance calculated in [25,26]:

1. Success rate. The success rate of finding an WPA3-PK passphrase in a single
table equals SR ≈ s(γm)

2� [25,26]. In case we use T different tables, where each
table has a different reduction function, the probability of a successful lookup
is PS(T ) = 1 − (1 − SR)T [25].

For example, when using T = 28 tables, the expected success rate is 50%. In
practice, we saw a success rate of 46.5% in the first experiment and 48.25% in
the second experiment. As another example, for T = 24 tables the predicted
success rate is 16%, and the observed success rate is 13.75% (see Fig. 3).
Overall, the observed success rates are in line with the predicted rates.
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2. Lookup cost. The processing complexity, i.e., the expected number of calls
to PKHash when looking up an element over all T subtables, can be estimated
using T · β. Here β is the average length of a chain, which can be approxi-
mated by 2d. This assumes that there are no false alarms when looking up a
password [25].

For example, when using T = 28 tables, the expected lookup cost consists of
216 calls to PKHash. In practice, we observe 216.42 calls to PKHash in the first
experiment, and 216.44 in the second experiment. When using T = 24 tables,
we would expect 212 calls to PKHash, and in practice we observe 213.28 calls
per lookup. We conjecture that this higher time complexity is due to false
alarms during a password lookup, e.g., with T = 24, on average there were
12 false alarms per lookup.

All combined, the results of our experiments are in line with the predicted success
rates. The above also confirms the prediction of [26] that breaking WPA3-PK
under its lowest security setting, namely when Sec = 3 and λ = 12, would
require an amortized computational cost of less than 12 d, where a lookup in the
precomputed table would have a success rate of close to 50%.

4.5 Rainbow Tables for WPA3-PK

To increase the success rate of a password lookup, we will combine the above
table construction with rainbow tables. In a traditional rainbow table, the reduc-
tion function R is (slightly) changed at every point in the chain to reduce chain
collisions [16,22]. In our approach, we will change the reduction function once a
distinguished fingerprint is encountered:

p1,1
f1(p1,1)−−−−−→ . . .

f1(p1,t−1)−−−−−−→ p1,t
f2(p1,t)−−−−−→ p2,1

f2(p2,1)−−−−−→ . . .
f2(p2,t−1)−−−−−−→ p2,t (9)

Here function f1(p) = R1(H(p)) is applied until we get a fingerprint that starts
with d zero bits, which is the same as a distinguished fingerprint in our previous
table. Once a distinguished fingerprint p1,t is found, we switch to a different
reduction function R2 meaning we apply the function f2 = R2(H(p)), until we
obtain another fingerprint with d leading zero bits, and so on. We say that each
reduction function Rc uses a different color c. The total number of colors B
used in a chain is a parameter of the table. Analogous to changing the reduction
function for every table r, we create a new reduction function per color by
encoding the color c in the modifier M . All combined, the function fc,r(pi,j) for
color c in subtable r becomes:

scolor = 32 · 8 − �log2(B)� (10)
stable = scolor − �log2(T )� (11)
smod = stable − � (12)

pj+1
i = PKHashθ,� (pk, SSID, (c � scolor ) | (r � stable) | (pi,j � smod)) (13)
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Here c represents the current color used in the reduction function, B the number
of colors used, r the table index, and T the number of tables. To detect possible
loops in a chain, we discard a chain if no distinguished point was found after
2d+3 applications of fc,r.

4.6 Rainbow Table: Performance Experiments

Fig. 4. Performance of lookup tables in function of the number of colors used, number
of subtables, and the number of chains in a subtable (see Sect. 4.6 for details). Each
point represents a lookup table containing at most 216 chains. The x-axis denotes the
number of colors in a table and the y-axis the resulting password lookup success. The
hue of the point represents the normalized, in log scale, average number of table accesses
when looking up a password, where the maximum number of table lookups was 10659.

We implemented a proof-of-concept of our rainbow table technique to esti-
mate the success probability of password lookups. To ensure simulations finish
within practical time, we set θ = 0 and � = 24. Our tool has as parameters
the number of leading bits d of a distinguished point, the number of colors B,
the number of subtables T , and the number of chains m in a subtable. Note
that when using B = 1, meaning only one color is used, the resulting table is
equivalent to the tables constructed in the previous two sections.

We did simulations with B ∈ {1, 2, 4, 8, 24, 25}, d ranging from 0 to 8, and
m ∈ {27, . . . , 212, 213}. The number of subtables T was chosen so the table
generation covered on average 2� hashes. That is, T = 2�

2d·B·m , which ensures
the generation time is equal under all parameter combinations, ensuring a fair
comparison between the created tables. Note that depending on the values for
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T and m the resulting tables may be of different size. For every combination
of parameters, our tool created the rainbow table, then performed 400 random
lookups in the table, and finally wrote the resulting statistics to a JSON file.
Figure 4 shows the performance of the resulting lookup tables for tables that
store 216 chains or less. This limit for the number of chains over all subtables
effectively puts a limit on the size of the lookup table, further ensuring a fair
comparison. We observe that for tables of similar size, and with a fixed table
generation time, the usage of colors increases the attack success probability. For
instance, the highest success probability over all parameter combinations with
one color is 49%, with two colors this increases to 56%, and with 16 colors it
reaches its maximum of 65%.

Fig. 5. Input given to PKHash such that the SAE-PK password for both SSIDs is
identical. The top shows how this input is split into the SSID, modifier, and public
key for the first network. The bottom shows how this input is mapped to the SSID,
modifier, and public key for the second network.

The increased success probability of using different colors comes at the cost
of more table accesses during the lookup of a password. For instance, for the
highest success probability for each color, the number of table accesses equal
370 for 1 color, 706 for 2 colors, and 5091 for 16 colors.

5 Multi-network Password Collisions

In this section, we propose a new method to create password collisions, that is,
we create networks with different SSIDs that have the same WPA3-PK password.
This is non-trivial because the SSID acts as a salt when calculating the password.
We also create multi-network password collisions, where multiple SSIDs have the
same WPA3-PK password. These password collisions allow an attacker to create
a single precomputed table that can be used to attack multiple networks.

5.1 Constructing Password Collisions

To create WPA3-PK password collisions, we ensure that the input to the under-
lying hash function of PKHash, i.e., Eq. 1 in Algorithm 1, is identical for different
SSIDs [26]. The core idea to achieve this is that an attacker can still change the
length of the SSID after the password has already been generated [26]. This
idea is illustrated in Fig. 5, where the input to PKHash is given two interpre-
tations. In the first interpretation, the SSID equals MyFr, the modifier equals
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the binary encoding of eeWifi␣2.4␣GHz!␣, and the public key starts with the
bytes 30 90 and ends with the byte BD. In the second interpretation, the SSID
equals MyFreeWifi␣2.4␣GHz!␣, the modifier equals the first 16 bytes of the pub-
lic key pk1, and the public key starts in the middle of pk1 with the bytes 30 88
and ends with the byte BD (more on this later).

To create a valid WPA3-PK password, we need to be able to freely modify
certain bytes to ensure that the internal hash operation in PKHash starts with
enough zeros. However, as shown in Fig. 5, the modifier M cannot be freely
changed anymore because it now overlaps with the SSID or public key of the
other network. To still be able to freely change bytes in the input of PKHash,
we will not change the encoding of the public key as in [26], but we will instead
include a pseudo modifier after the public key. This pseudo modifier can be
changed until the hash output starts with sufficiently many zeros.

Our password collision construction only works if the client does not remove
the pseudo modifier that is appended to the public key. Fortunately, when the
public key pk is sent to the client in the Auth-Confirm frame, the encoding of
the public key is treated as an opaque data blob [3, §9.4.2.180]. This means we
can add trailing data after the public key without the client noticing this.

We tested whether wpa_supplicant, which is the only open-source Wi-Fi
client that supports WPA3-PK, accepts trailing data after the public key. This
client supports two crypto libraries when using WPA3-PK, namely OpenSSL
and WolfSSL, and in both cases trailing data after the public key was accepted
and included in the input given to PKHash. This confirms that we can use the
structure in Fig. 5 to build password collisions, where the pseudo modifier can
be changed until the hash output starts with sufficiently many zero bits.

All combined, we can now build a precomputed table where the construction
in Fig. 5 is used as the input to the internal hash function in PKHash. Here the
pseudo modifier contains the argument M of PKHash. An adversary can then
use the resulting table to attack both SSIDs.

5.2 Public Key Embedding and Trailing Data

One obstacle when creating a password collision is that public key pk1 must be
constructed so that public key pk2 starts in the middle of it, i.e., we must be
able to embed one public key into another. To achieve this, we exploit a similar
parsing vulnerability as the one in [18,26], namely that arbitrary data can be
encoded in variable length fields. In particular, when encoding a length field, if
the length is smaller or equal to 127, the length is directly encoded as a byte.
For example, the byte 0x10 encodes the length 16. Otherwise, if the length is
128 or higher, the high-order bit of the first byte is set, and the other low-order
bits denote how many subsequent bytes encode the actual length. For example,
the two bytes 0x81 0xFF represent the length 255. We can embed arbitrary data
inside this variable length encoding by using the following construction:

8C XX XX XX XX 00 00 00 00 00 00 00 39
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The first byte denotes that the next 12 bytes will be used to encode the length
field. However, most implementations can handle at most 64-bit integers. As a
result, only the last 8 bytes of the length field matter, and the 4 bytes represented
by XX are effectively ignored due to an integer overflow.

We can now encode the start of a public key into the variable length field of
another public key. In particular, we can put the bytes 30 88 in place of the last
two XX bytes in our example. Here 30 encodes the start of the public key and 88
denotes a variable length field where the length is represented using the next 8
bytes. After this length field in the byte sequence, both public keys are aligned,
meaning that the remaining bytes will encode the same public key.

5.3 Accepting Trailing Data Inside the Public Key

Table 3. Behavior of crypto libraries regarding the parsing of public keys. The second
column contains the tested function, the third whether it returns the number of bytes
read, and the fourth column whether trailing data is allowed in the ASN.1 sequence.

Library SubjectPublicKeyInfo parser Bytes read Extra data

OpenSSL d2i_PUBKEY Yes Rejected
WolfSSL wc_EccPublicKeyDecode Yes Accepted
GnuTLS gnutls_pubkey_import No Rejected
MatrixSSL psParseSubjectPublicKeyInfo No Accepted

An alternative to putting the pseudo modifier as trailing data after the public
key, is to put it in the end of the public key itself. More precisely, the encoding
of the public key is defined using ASN.1 as follows:

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING
// Add trailing data, i.e., the pseudo modifier M, here }

The idea is that we add trailing data after the subjectPublicKey, but inside the
SubjectPublicKeyInfo sequence. Out of the 4 TLS libraries we tested, WolfSSL
and MatrixSSL accepted trailing data in this location, and this did not interfere
with the parsing of the public key. This was tested by calling the public key pars-
ing functions shown in Table 3, where for MatrixSSL the functions getEcPubKey
and PsParseSubjectPublicKeyInfo were combined to parse the public key.

5.4 Multi-network Password Collisions

Apart from creating a WPA3-PK password collision for two SSIDs, we can also
create a collision for multiple SSIDs. To accomplish this, we assume that every
SSID is a prefix or extension of another SSID, and that each SSID differs in
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length from all other SSIDs by at least two characters. This, for instance, allows
us to construct collisions for the following sets of SSIDs:

{ MyFreeWifi␣2.4␣GHz!␣, MyFreeWifi␣2.4␣GHz, . . . , MyFree, MyFr }

The maximum difference in length between the longest and shortest SSID is 16
characters. This limitation is a result of having to use the 16-byte modifier M
to ensure that different SSIDs still result in the same hash input (recall Fig. 5).

When constructing the collision, we use the same format as in Fig. 5 where a
pseudo modifier M is placed after the public key. However, the variable length
fields of the public keys are now constructed as shown in Fig. 6. The idea is
that, as long as the public key starts on one of the underlined bytes, then all the
remaining bytes will be ignored until the actual public key starts. This means
a valid public key can start at multiple locations, which in turn means multiple
SSID lengths will result in a valid starting position of the public key.

Fig. 6. Structure of the variable length fields in a multi-network password collision.
The underlined bytes represent the start of a public key. The red bytes encode the size
of the variable length field. The green bytes encode the actual length of the remaining
public key bytes, and all preceding length bytes are ignored due to integer overflows.
(Color figure online)

We created a script to create multi-network password collisions [1]. It takes
as input a private key, the longest SSID that we want to be part of the collision,
and the security parameter Sec of the resulting WPA3-PK password. The tool
will then create collisions for all shorter SSIDs in steps of two characters.

We also created a modified AP that advertises our constructed public key
along with the given SSID. When tested against a client that is vulnerable to the
same parsing flexibility as in [18,26], the public key was accepted, and the client
could use the same WPA3-PK password to connect to all the different SSIDs.

6 Defenses and Discussion

In this section, we discuss possible defenses against all our attacks and propose
updates to the WPA3-PK standard.
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6.1 Handling Bad Randomness: Encrypting the Public Key

To prevent bad randomness from leaking the password, the AP should send the
public key to the client in an encrypted manner. This can easily be done: the
AP already encrypts the modifier M when sending it to the client (recall Fig. 1).
The AP can use the same encryption operation to also encrypt the public key.

When the client uses the correct password to connect, they can decrypt and
obtain the public key, and then verify the authenticity of the public key. In case
the client is not using the correct key, the confirm message in the Auth-Confirm
frame is invalid, and the client will drop the frame before trying to decrypt the
public key. All combined, a legitimate client will still be able to obtain the public
key, while it will remain hidden from an adversary. When adopting this approach,
it is no longer possible for an adversary to derive the WPA3-PK password, even
when the modifier M was initialized in a predictable manner.

6.2 Preventing Network-Layer Attacks

Our network-based attacks can be prevented by: (1) blocking all types of client-
to-client communication [4, §5.1]; and by (2) using the Downstream Group-
Addressed Forwarding (DGAF) Disable feature of Passpoint [4, §5.2], which
effectively disables the use of the group key in Wi-Fi networks.

6.3 Mitigating Time-Memory Trade-Off Attacks

To mitigate time-memory trade-off attacks in a backwards-compatible manner,
networks can use a WPA3-PK password of at least λ = 16 characters or use a
security parameter of Sec = 5. This makes it too costly to construct a precom-
puted table. Alternatively, to prevent time-memory trade-off attacks, the user
can scan a QR code to learn the precise public key instead of only its finger-
print. Additionally, network administrators can decide to use a unique SSID,
since adversaries are less likely to create a precomputed table for unique SSIDs.

6.4 Preventing Password Collisions: Committing to an SSID Length

To prevent an adversary from constructing password collisions, the input given
to the hash function inside PKHash should be updated to start with a single byte
that represents the length of the SSID. This forces an attacker to commit to a
specific SSID length when constructing the precomputed time-memory trade-off
table, or the rainbow table, and thereby prevents our WPA3-PK password colli-
sion attacks. Unfortunately, this change requires a modification to the protocol.
A backwards-compatible mitigation is to more strictly parse the public key and
to only allow a single possible encoding of the public key.
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7 Related Work

This paper builds upon our previous preliminary analysis of WPA3-PK [26], and
also investigates network-based attacks, studies practical implementation risks
of the password generation algorithm, more accurately evaluates the baseline
time-memory trade-off attack, proposes rainbow table attacks, and explores new
techniques to construct multi-network password collisions.

The predecessor of WPA3, namely WPA2, was quickly shown to be suscep-
tible to offline dictionary attacks [20]. Internally, WPA2 employs the PBKDF2
algorithm to derive a Pairwise Master Key (PMK) from the combination of
the password and SSID. This resulting PMK serves as the input for the WPA2
4-way handshake, where the PMK, along with two random nonces, are mixed
to generate a fresh session key. An adversary can intercept the 4-way handshake
and then perform a brute-force attack to determine the password that results
in the correct session key. However, due to the inclusion of two randomly gen-
erated 32-byte nonces in the session key derivation, performing a time-memory
trade-off attack against the 4-way handshake is not possible. Nonetheless, given
the slow nature of offline brute-forcing attempts on personal computers, lookup
tables were generated to speed up the brute-force attacks against WPA2’s 4-way
handshake [24]. By using these precomputed tables, one can avoid executing the
computationally intensive PBKDF2 hash that maps an SSID and password to
the corresponding PMK. Initially, these tables covered the top 1 000 SSIDs using
a dictionary of 172 000 possible passwords, which was subsequently expanded to
a dictionary containing one million words. The resulting lookup tables occupied
7 GB and 33 GB of storage space. Due to the increased adoption of GPU-based
password-cracking methods, the demand for such lookup tables has waned.

Regarding the security of WPA3, researchers quickly showed that it was
vulnerable to timing attacks [28]. Although backwards-compatible defenses were
proposed, not all implementations properly implemented these defenses [5].

Flexibilities in parsing public keys were previously abused to attack RSA [10].
Related to this, it was also discovered that some libraries accept arbitrary param-
eters in the algorithm identifier [8].

Hellman introduced time-memory trade-off attacks [13] and Oechslin
improved them using the rainbow construction [22]. Using distinguished points
to perform time-memory trade-off attacks was first proposed by Rivest [9] and
later worked out by Borst et al. [7]. Nohl combined the technique of rainbow
tables with distinguished points to break the GSM A5/1 cipher, where this com-
bination was important to handle large lookup tables in practice [21], and the
generation of these tables was later improved by using FPGAs [17].

8 Conclusion

Our security analysis of WPA3-PK revealed that, when using this protocol
in practice, it is important to also consider implementation and network-layer
attacks. In particular, implementations must use a secure random number gener-
ator and clients must be properly isolated from each other at the network layer.
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When using the weakest allowed WPA3-PK password, we demonstrated that
time-memory trade-off attacks, including the creation of rainbow tables, are on
the verge of practicality. These attacks enable an adversary to perform a preim-
age attack, i.e., to find a public and private key that result in a given WPA3-PK
password. To mitigate these attacks, we recommend setting the parameter Sec
to 5, or using a WPA3-PK password of at least λ = 16 characters. This is
especially important when using a common SSID name for the network.
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Abstract. Aggregation of message authentication codes (MACs) is a
proven and efficient method to preserve valuable bandwidth in resource-
constrained environments: Instead of appending a long authentication
tag to each message, the integrity protection of multiple messages is
aggregated into a single tag. However, while such aggregation saves band-
width, a single lost message typically means that authentication informa-
tion for multiple messages cannot be verified anymore. With the signifi-
cant increase of bandwidth-constrained lossy communication, as applica-
tions shift towards wireless channels, it thus becomes paramount to study
the impact of packet loss on the diverse MAC aggregation schemes pro-
posed over the past 15 years to assess when and how to aggregate message
authentication. Therefore, we empirically study all relevant MAC aggre-
gation schemes in the context of lossy channels, investigating achievable
goodput improvements, the resulting verification delays, processing over-
head, and resilience to denial-of-service attacks. Our analysis shows the
importance of carefully choosing and configuring MAC aggregation, as
selecting and correctly parameterizing the right scheme can, e.g., improve
goodput by 39% to 444%, depending on the scenario. However, since no
aggregation scheme performs best in all scenarios, we provide guidelines
for network operators to select optimal schemes and parameterizations
suiting specific network settings.

Keywords: Message Authentication Code · MAC Aggregation · IoT

1 Introduction

With the proliferation of the (industrial) Internet of Things (IoT), more and
more battery-operated devices, such as sensors and actuators, rely on wire-
less communications. Consequently, the number of devices sharing the same
transmission medium (with a fixed capacity) is growing, imposing increasingly
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stringent bandwidth constraints on IoT applications [29]. At the same time,
wireless communication further amplifies the need to adequately secure trans-
mitted messages [26], most notably to ensure the integrity of transmitted critical
information [8], which would have prevented e.g., the 2015 and 2016 cyberat-
tacks on the Ukrainian power grid [33]. However, establishing integrity protection
requires additional bandwidth to transmit authentication tags, thus conflicting
with the already hard-to-reach constraints of IoT communication. Therefore, a
vital research topic for industry and academia centers around the question of
how to use the shared limited transmission resources efficiently and still provide
adequate security [25].

As a result, many efforts across protocol stacks have been proposed to reduce
bandwidth overhead. Prominent examples include 6LoWPAN header compres-
sion [20] or, more recently, the record layer headers of DTLS 1.3 [22] and Com-
pact TLS 1.3 [21]. Such protocol improvements can however not address the
inherent overhead necessary to provide integrity protection. Considering, e.g.,
desirable 128-bit security requires the integration of a 16-byte authentication
tag into the message’s payload. Moreover, since (industrial) IoT protocols such
as IEEE 802.15.4, LoRaWAN, or Bluetooth Low Energy often rely on short mes-
sages, such Message Authentication Codes (MACs) typically occupy a significant
portion of each message and, in some cases, do not even fit [18].

For at least 15 years, the well-established and time-proven concept of MAC
aggregation has been known to alleviate these limitations [14]. The idea is simple
yet effective: Instead of protecting the integrity of each message individually, a
single authentication tag is responsible for protecting the integrity of multiple
messages. Given a reliable channel, this approach works flawlessly and can be
reduced to a trade-off between saved bandwidth and the verification delay for
received messages: Aggregating integrity protection of more and more messages
reduces the induced overhead until it becomes negligible but implies that the
receiver has to wait for the reception of all messages affected by the aggregation
before being able to check their integrity, resulting in significant delays if too
many authentication tags are aggregated.

Over the years, different MAC aggregation schemes have been proposed
to address weaknesses [11,13,15], split authentication tags over multiple mes-
sages [18], or provide progressive security guarantees [3,17,31]. And while vari-
ous implementations of security concepts, such as message authentication [28],
have been evaluated and compared by literature, such analyses of MAC aggre-
gation schemes in realistic wireless, and thus lossy, settings are practically non-
existent. Most importantly, current evaluations of MAC aggregation schemes
neglect that losing a single message from a set of messages with aggregated
authentication tags may have cascading effects depending on the chosen MAC
aggregation scheme. This phenomenon becomes increasingly relevant as more
and more communication transitions to low-bandwidth wireless, and thus lossy,
channels in a diverse set of applications such as smart cities, underwater commu-
nication, or the (industrial) IoT [9]. Thus, MAC aggregation is arguably becom-
ing even more critical for lossy channels than for its initial setting of reliable
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communication. However, research, thus far, did not provide sufficient address
under which circumstances MAC aggregation on lossy channels is sensible and
how to unlock its full potential. This knowledge is, however, crucial to optimally
utilize scarce bandwidth in wireless scenarios with an ever-growing number of
participating devices.

To address these shortcomings, this paper addresses the hitherto neglected
analysis of the performance of relevant MAC aggregation schemes in the pres-
ence of lossy channels. We consider realistic wireless (industrial) IoT communi-
cation scenarios, which suffer from scarce transmission resources and significant
packet losses, where we compare the performance of existing MAC aggregation
schemes. Our analysis is thus a valuable contribution for security practition-
ers and researchers: On the one hand, it allows identifying suitable aggregation
schemes depending on the considered scenario, and on the other hand, it reveals
current shortcomings, which lay the foundation for identifying more effective
approaches. Ultimately, we want to answer the questions of when MAC aggrega-
tion is sensible on lossy channels and how this aggregation should be performed
by making the following contributions:

– We investigate the achievable goodput improvements of all MAC aggregation
scheme known to us under various parameterizations in synthetic and real-
world scenarios (Sect. 3 and Sect. 4);

– We further analyze the impact of MAC aggregation on decisive factors such
as verification delay, processing times, memory cost, and the susceptibility to
denial-of-service attacks (Sect. 5); and

– Finally, we provide actionable guidelines to help in deciding when and how
current MAC aggregation schemes are best deployed (Sect. 6).

Availability Statement. To help in the decision process of which, if any, MAC
aggregation scheme should be deployed in a concrete scenario, our tool to com-
pare MAC aggregations schemes in concrete scenarios is available at: https://
github.com/fkie-cad/mac-aggregation-analysis-tool.

2 MAC Aggregation on Lossy Channels

Achieving integrity protection is a significant challenge in bandwidth-constrained
environments. Even the tiniest message requires an authentication tag of several
bytes (e.g., 16 bytes for 128-bit security), thus occupying considerable space in
each message. MAC aggregation schemes, as presented in this section, try to
alleviate this overhead by distributing the burden of authentication over multi-
ple messages. In the following, we first define MACs (Sect. 2.1) before formally
introducing the concept of MAC aggregation (Sect. 2.2). To conclude, we intro-
duce the existing MAC aggregation schemes (Sect. 2.3) and motivate research
into their applicability in lossy conditions (Sect. 2.4).

https://github.com/fkie-cad/mac-aggregation-analysis-tool
https://github.com/fkie-cad/mac-aggregation-analysis-tool
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2.1 Message Authentication Codes

Message Authentication Codes (MACs) allow two communication partners to
verify the integrity of exchanged messages using a pre-shared secret k [7]. This
key k can be derived dynamically through a key exchange protocol or hardcoded
at both communicating entities. To authenticate a message m, the sender uses
the tag generation algorithm Sigk(m) to generate the corresponding authentica-
tion tag t. Upon reception of a message, the verification algorithm Vrfyk(m, t)
enables the recipient to evaluate whether the received tag is valid. Typically,
this verification is done by computing the tag t∗ = Sigk(m∗) for the received
message m∗ and comparing it to the received tag t. A MAC scheme is considered
secure if it is computationally infeasible to generate a (m,t)-pair that Vrfyk(·)
would accept without knowing the secret k. This requirement can be achieved
by, e.g., using keyed hash functions such as HMAC-SHA256 to compute t. Thus,
MACs provide integrity protection for communication channels, where they pre-
vent any attacker not knowing k from undetectably manipulating the content of
transmitted messages.

2.2 MAC Aggregation to Combat Bandwidth Scarcity

Traditional MAC schemes consume significant bandwidth in constrained envi-
ronments. Over 15 years ago, the concept of MAC aggregation was promoted to
combat these limitations [14]. The idea is elegant and effective: Instead of authen-
ticating each message individually, a single tag is responsible for protecting the
integrity of multiple messages. Thus, the overhead of each tag is distributed over
multiple messages, saving valuable bandwidth.

Formally, MAC aggregation schemes can be defined as an extension of tra-
ditional MAC schemes. In a traditional MAC scheme, the tag ti is computed
over and transmitted alongside message mi. For MAC aggregation schemes, the
aggregated tag taggi , which is transmitted alongside mi, is computed by aggregat-
ing the integrity protection of multiple messages mi−d(d ∈ D) with an additional
keyless function Agg(·), such that taggi = Agg(ti−d|d ∈ D). We say that D ⊂ N0

is the set of dependencies of a MAC aggregation scheme and, e.g., 2 ∈ D means
that the tag ti−2 is included in the computation of the aggregated tag taggi . Vice
versa, the integrity of message mi−2 is protected by tags ti.

Thus, aggregated authentication tags protect multiple messages. At the same
time, each message is potentially protected by multiple tags as each (potentially
shortened) tag may only be responsible for providing a fraction of the overall
targeted security level. Since each tag aggregates integrity protection for multiple
messages, aggregated MAC schemes result in, on average, shorter tags. In this
context, the dependencies D describe how the reception of one message influences
the verifiability of tags and the authenticity of surrounding messages. We say
that if an aggregated MAC scheme has the dependencies D, the generation and
verification of tag ti require knowledge of {mi−d|d ∈ D}, as ti−d = Sigk(mi−d).
Consequently, a message mi blends into all tags {ti+d|d ∈ D}, and a tag ti
protects the integrity of all messages {mi−d|d ∈ D}.
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A specific MAC aggregation scheme defines the underlying MAC scheme,
the dependencies D, and the aggregation function Agg(·). In the following, we
consider a simple XOR of authentication tags for the aggregation function, i.e.,
taggi = Agg(ti−d|d ∈ D) =

⊕
d∈D ti−d. This aggregation of tags is efficient and

has been shown to be secure [4]. If, for example, ti and tj provide 128-bit integrity
protection for mi and mj , then tagg = ti⊕tj provides 128-bit integrity protection
for both messages mi and mj . However, the security of this aggregation function
requires that the chosen MAC function is pseudorandom and includes a nonce
for replay protection to prevent mix-and-match attacks within one set of jointly
authenticated messages [11]. Consequently, MAC schemes based on universal
hashing, such as UMAC [6], should not be used in combination with XOR-
based MAC aggregation1. Most prominent MAC schemes, such as HMAC-SHA256,
can, however, be securely used with XOR-based MAC aggregation if used in
combination with nonce-based replay protection.

2.3 Introducing Existing MAC Aggregation Schemes

After formalizing the concept of MAC aggregation in Sect. 2.2, we now intro-
duce the different sets of MAC aggregation schemes, grouped by their choice
of dependencies D and computation of tagg. We do, however, not focus on the
exact aggregation function or the underlying MAC scheme, as those choices do
not impact the scheme’s susceptibility to packet loss. Under these aspects, we
present all four classes of aggregation that cover, to the best of our knowledge,
all proposed schemes. For this presentation, we assume XOR-based aggregation
with HMAC-SHA256 as a suitable MAC scheme (including an appended nonce for
replay protection).

Traditional (Trad.): To quantify the performance of existing MAC aggrega-
tion schemes, we compare them to the baseline performance of traditional MAC
schemes. Therefore, we consider a traditional MAC scheme that authenticates
each message mi with an individual tag ti. This computation thus solely depends
on mi, i.e., D = {0}. As we target 128-bit security, the HMAC-SHA256 is trun-
cated to 16B.

Aggregated MAC (Agg(n)): The most prominent scheme is aggregated MAC
as introduced in 2008 [14] and later extended to prevent reordering attacks [11],
allow messages to occur multiple times [15], and identify faulty messages in
an aggregate [13]. For these schemes, a tag tagg is only appended to each n-th
message, where n is the parameter for how many messages’ authentication tags
are aggregated together. For our evaluation, we consider the aggregation of two,

1 BP-MAC [32] (based on a Carter-Wegman construction), for example, is insecure if
used in combination with XOR-based MAC aggregation. As each bit is authenticated
individually and replay protection is only provided through a blinding tag, an attack
can undetectably swap the x-th bits’ values of two messages.
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four, eight, and sixteen tags, i.e., n ∈ 2, 4, 8, 16 to cover a range of different
parameterizations. For every n-th message, a tag is then computed by XORing
the authentication tags of all considered messages, as formalized in the following:

taggi =
⊕

i−n<k≤i

tk for i ≡ 0 (mod n)

Compound MAC (Comp(n)): As the tags computed by Agg(·) are too long
for some applications, Compound MAC is proposed that splits across multiple
messages [18]. Thus, each message carries a shortened authentication tag, the
length of which is inversely proportional to the number of aggregated messages,
i.e.,|t| = 128/n. For our analysis, we again consider n ∈ 2, 4, 8, 16. We formalize
Comp(·) in the following, where t[a : b] means the chunk from the a-th to the b-th
bit of tag t:

taggi =
⊕

� i
n �·(n−1)≤k<� i

n �·n
tk[(k mod n) · |t| : ((k + 1) mod n) · |t|]

Sliding Window-Based Progressive MACs (SW(n,o)): Progressive MAC
has been introduced to provide initially reduced security that is improved even-
tually upon message reception [3,17,24]. Therefore, each message is protected
by a shortened tag that also verifies the integrity of the previous n messages. As
SW(·) is not equipped to provide full security under packet loss, it can be com-
pensated by additionally considering an overprovisioning factor o. This factor
defines in percent how much security may be extended beyond the target, i.e.,
o = 100 means that messages may have 256-security at the expense of longer
tags as |tagg| = 128/n · (1 + o/100). Here, we select a number of parameter combi-
nations that perform best under various scenarios. The tag computation of SW(·)
can be formalized as follows:

taggi =
⊕

i−n<k≤i

tk[k · |t| : (k + 1) · |t|]

Randomized and Resilient Dependency Distribution (R2D2(n,g,o)):
To address weaknesses of SW(·) in the presence of packet loss, R2D2(·) introduces
dependencies that bound the effect a dropped packet can have on the verifiability
of any other message [31]. Therefore, the parameter g is introduced, which defines
how much security any message loses at most if a surrounding packet is lost,
i.e., g = 1 in combination with 2 B long packets means that any message can
lose at most 16 bit of security. Furthermore, R2D2(·) randomizes the concrete
dependency set D and assigns a different set to each bit of a tag. The final
aggregate tag tagg is thus a juxtaposition of bit-long tags taggj and is defined as:

taggj =
⊕

0≤k<|Dj |
ti−Dj [k][k ∗ |t| + i]

with Dj [n] representing the n-th entry of j-th bit dependency set Dj .
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2.4 Interplay of Lossy Channels and MAC Aggregation

MAC aggregation can bring benefits to a wide range of constrained environ-
ments, such as Industrial Control Systems (ICSs), smart homes, smart city, or
underwater networks. However, we see these targeted environments quickly shift-
ing towards more and more lossy communication with protocols such as ZigBee,
Sigfox, Bluetooth Low Energy, or LoRaWAN, to name only a few. This shift can
significantly impact the performance of MAC aggregation schemes, especially
considering Packet Error Rates (PERs) that can rise to 10% and above for cer-
tain scenarios [31]. With MAC aggregation, a lost packet means that the receiver
cannot authenticate the initially transmitted message and all other messages
that depend on it. Arguably, MAC aggregation has become even more critical
in the lossy settings than for reliable communications since these networks more
often expose bandwidth constraints due to the high number of nodes sharing the
same transmission medium. LoRaWAN, for example, is often limited to less than
10 KB or even 1 KB of throughput per hour per device. Despite this stringent
requirement of conserving bandwidth in lossy networks, no accurate performance
analysis of MAC aggregation in this context has been conducted thus far to the
best of our knowledge. In the following section, we provide the first such analyses
for the different MAC aggregation schemes presented in Sect. 2.3.

3 Synthetic Measurements

We begin our analyses of MAC aggregations schemes by looking at synthetic
measurements of simulated wireless channels. These measurements give us fine
control over channel quality and payload length to investigate how these param-
eters influence the different MAC aggregation schemes. In Sect. 3.1, we first
describe our setup before diving into the influence of channel quality and payload
lengths in Sects. 3.2 and 3.3, respectively. Finally, we look at the established chal-
lenge of determining optimal payload lengths for given channel qualities under
the additional constraint that the received data must be authenticated.

3.1 Simulation Setup

For our synthetic measurements, we use the network simulator ns-3 (version
3.37), giving us fine-grained control over the underlying communication channel.
As communication protocol, we choose the IEEE 802.15.4 protocol commonly
used in constrained wireless environments and included in ns-3, where we con-
sider the most compact header of 5 B. For payload lengths varying between 1 B
and the maximum supported 115 B, we simulate the communication between
two static antennas placed 25 m apart and extract binary loss traces of which
transmitted packets have been correctly received or not. We additionally vary
the transmit power varying between –21 dBm and –16 dBm using 0.1 dBm steps
to increase the signal-to-noise ratio progressively, thus improving the chan-
nel quality and reducing PER. We only transmit each message once and do
implement acknowledgments or retransmission, as these features are not always
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Fig. 1. Traditional MAC performs best with high packet error as all received data can
be verified. For medium PERs, the aggregation of two tags with Agg(·) and various
R2D2(·) parameterizations are preferable, while the aggregation of more messages with
the simpler Agg(·) and Comp(·) scheme are is desirable with low PERs.

available. For all combinations of transmit power and payload length, we simu-
lated the transmission of 10 000 packets, of which we selected a random sequence
of 5000 packets for each of the following analyses. In a standalone simulation,
we then implement the behavior of the different classes of MAC aggregation
schemes and their selected parameterizations to extract which messages eventu-
ally become authenticated for a given binary loss trace. Our measurements focus
on the achieved goodput by the different MAC aggregation schemes, where good-
put is the ratio of received (and authenticated) payload bytes (i.e., excluding
header and authentication tag) to the number of transmitted bytes. We initially
focus on goodput as performance metrics as it directly measures how efficient
the transmission channel is utilized, the improvement of which is the main goal
of MAC aggregation.

3.2 Influence of Channel Quality on Goodput

For an initial understanding of the different MAC aggregation schemes, we fixed
the payload length to 48 B and gradually increased the transmission power,
resulting in a slowly decreasing PER from 100% to 0%. Figure 1 shows our
results.

We observe that all aggregation schemes exhibit the same general sigmoidal
behavior: As the PER decreases, the achieved goodput increases slowly before
increasing quickly and then leveling off. This behavior can be explained by the
behavior of the packet delivery ratio (i.e., the opposite of the packet error rate),
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which also increases first slowly and then rapidly as the channel quality improves.
The interesting differences between the schemes and their parameterizations are
thus defined by when and how goodput increases as the channel improves.

For the different aggregation schemes, we see that the maximally achieved
goodput correlates inversely with the number of aggregated tags (parameter n).
As a higher n results in, on average, shorter tags, a better maximal goodput
can be achieved due to less overhead. Similarly, the transmit power where the
goodput of the different schemes starts to take off also correlates with n. The
increasing likelihood can explain this observation that at least one of the tags
in an aggregate cannot be computed as the set of aggregated messages becomes
larger. Thus, the parameterizations with the higher bandwidth saving potential
also require a better channel (i.e., lower PER) to be beneficial over more con-
servative parameterizations. Consequently, traditional MACs perform best with
high PERs while exposing the overall worst goodput as PER approaches 0%.

Comparing the performance of the different aggregation schemes, we observe
that all schemes tend towards the same discrete goodput dictated by their aver-
age tag length. However, the goodput provided by Agg(·), Comp(·), and SW(·)
increases earlier but more slowly with increasing transmit power in contrast to
R2D2(·), which suddenly jumps up once the channel is good enough. The behav-
ior of R2D2(·) can be explained by ideally distributing the effects of packet loss to
surrounding messages, such that if security levels for a few messages become good
enough to consider the message authenticated, surrounding messages are close to
the threshold as well. Overall, for transmit powers up –18.9 dBm (PER=18.5%),
traditional MACs perform best as they are not handicapped by the many lost
packets. Then, the aggregation of two messages with Agg(·) is best until, between
–18.3 dBm (PER=8.5%) and –17.1 dBm (PER=0.4%), there are different param-
eterizations of R2D2(·) that perform best. As the PER reduces further, the
selected scheme becomes, however, less critical, and the differences for the same
average tag length are marginal. Here, simpler schemes with no overprovision-
ing, such as Agg(·) and Comp(·), are usually preferable. Consequently, it mostly
depends on the channel quality, which aggregation scheme and parameterization
achieve the best goodput.

3.3 Influence of Payload Length on Goodput

In Sect. 3.2, we consider a fixed payload length and slowly increase the transmit
power to improve the signal-to-noise ratio. To better understand the behavior
of the different MAC aggregation schemes, we now vary the payload length for
a fixed transmit power of –18.3 dBm, where we have realistic PER between 1.5
and 10.9% across the payload length range. We show our results in Fig. 2.

With changing transmit power, we observe the same characteristics in the
goodput curves of all aggregation schemes. Goodput first quickly increases before
slowly dropping after reaching a maximum. This phenomenon can be explained
by the overlapping effects of reduced relative overhead of authentication tags
and growing numbers of unverifiable tags due to raised PERs with increased
payload lengths. Thus, selecting the best MAC aggregation scheme depends on
the underlying channel quality, packet lengths, and resulting variable PERs.
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Fig. 2. For larger payloads, the PER increases and the relative overhead of authenti-
cation tags decrease. Therefore, different schemes and parameterizations are optimal
depending on payload lengths.

Furthermore, we can see that not all aggregation schemes can be employed
for short payload lengths. Traditional MAC and Agg(·) append 16-byte authen-
tication tags (to a fraction of all) messages and thus require payload lengths
of at least 17 B. The other aggregation schemes append a shortened tag to all
messages, but the size of these tags also dictates how small messages can be.
Thus, if transmitted packets can only carry a few bytes of payload, such as the
unreliable CAN bus protocol, which supports at most 8-byte payloads and has
no header fields intended for integrity protection, the choice of available MAC
aggregation scheme shrinks.

Moreover, we observe different optimal payload lengths w.r.t. to goodput for
the distinct schemes and parameterizations. While using the maximal payload
length of 114 B yields the optimal goodput of 71.7% for traditional MACs, the
overall maximal goodput of 74.4% is achieved by R2D2(8,1,200) with a payload
length of 54 B. Hence, investigating the combined impact of packet lengths and
MAC aggregation under varying conditions is essential to determine optimal
network configurations in novel deployments.

3.4 Optimal Packet Lengths for Authenticated Data

Prior results indicate that considering the MAC aggregation scheme is crucial
when optimizing packet lengths for a given channel. This search for optimal
payload length gathered interest in the past [1,16,23,30] to make use of limited
bandwidth availability or optimize the lifetimes of battery-powered devices. As
resource-constrained devices consume most of their power for wireless transmis-
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Fig. 3. Different MAC (aggregation) schemes achieve a higher goodput as channel
quality improves under optimal payload lengths. Unintuitively, changing a scheme can
result in a reduced optimal payload length even if the channel improves.

sions [27], optimizing goodput is essential for improving device lifetimes. Assum-
ing constant energy consumption for each transmitted bit at a given transmit
power, the optimal combination of payload lengths and MAC aggregation scheme
also optimizes device lifetimes. These packet length optimizations, thus far, only
looked at received data and not received and authenticated data. Assuming the
imperative requirement of authenticated data, we search for the optimal pay-
load lengths to optimize goodput across varying channel qualities, considering
the different MAC aggregation schemes. Our results are shown in Fig. 3.

For low transmission powers, i.e., low signal-to-noise ratio, we see that tradi-
tional MACs,i.e., no aggregation, perform best. This behavior can be explained
by the initially high PER, even for small messages, such that aggregated tags
have a high risk of being composed of at least one message that did not arrive.
Here, the behavior observed in our setup matches related work [1,16,23,30] in
that optimal payload lengths are initially short and then slowly increase as the
transmit power is increased.

As the transmission channel improves, message aggregation starts to pay off
since the benefits of shorter tags outweigh the risk of received data that cannot
be authenticated. Here, initially, between -18.4 and –17.2 dBM, R2D2(·) under
various parameterizations performs best. However, the best MAC aggregation
scheme does not only change with better channels; the optimal payload also
decreases on each change before slowly increasing again. Therefore, the optimal
payload length for a transmit power of –18.5 dBM is 113 B (with traditional
MACs), but for a slightly higher transmit power of –18.4 dBM, it drops down
to 47 B (for R2D2(8,1,100)). We can observe this same phenomenon for other
changes between MAC aggregation schemes, and it is more or less pronounced
depending on the header sizes, where the static overhead of larger packet headers
dampens the drop in optimal packet sizes.
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Table 1. Limited bandwidth availability for integrity protection is a serious challenge
across a wide range of lossy environments.

Scenario Duration Protocol Header Data #pkts PER Src

ICS 8 h IEEE802.15.4 11 B 20B 57648 4.79% [12]

Office 22 h BLE 10 B 32B 79032 3.22% [12]

Smart City (sta.) 131 days LoRaWAN 13 B 16B 18790 1.97% [5]

Smart City (mob.) 250 days LoRaWAN 13 B 24B 17415 7.09% [19]

Underwater 327min GUWMANET 31 bit 16B 334 16.46% [10]

Overall, we can see that the average tag lengths of the optimal schemes
shrink for higher transmission power. Looking at the achieved goodput by the
respective optimal scheme, we see a sigmoid curve that instead of leveling off at
82.5% if only using traditional MACs, the different MAC aggregation schemes
boosts this achievable goodput to 95.0% as the PER approaches 0. However, it
must also be understood that transmitting with optimal payload lengths is often
not an option in practice. Here, the (established) applications and protocols often
dictate the payload lengths, e.g., a sensor may only have a single reading that
should be transmitted quickly and thus has no other data to fill into the payload.
Therefore, and because real wireless channels change over time, it is necessary
to investigate MAC aggregation in real-world scenarios.

4 MAC Aggregation in Real-World Scenarios

Thus far, we have analyzed MAC aggregation schemes in controlled synthetic
environments. While these analyses gave us insights into the behavior and
nuances of the different schemes, they do not necessarily represent the entire
story for realistic deployments. Here, we often have predetermined payload
lengths dictated by available data or protocol specifications. Also, channel qual-
ities vary dynamically over time, especially if some communication partners are
mobile. In the following subsection, we first introduce distinct real-world scenar-
ios, which we subsequently use to evaluate and compare the performance of the
MAC aggregation schemes (cf. Sect. 2.3) under realistic conditions.

4.1 Description of the Scenarios

For our realistic measurements, we rely on network traces collected from real-
world scenarios. Each trace has constant payload lengths and transmission con-
figurations, and we extract a binary loss trace of which transmitted packets have
been correctly received or not. This trace is then fed into our simulation to ana-
lyze the MAC aggregation schemes. We summarize the scenarios in Table 1 and
briefly introduce them in the following subsections.
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Industrial Control System (ICS) Scenario. For the first scenario, we look
at a measurement campaign of wireless communication in a 3600 m2 production
hall with nearly a billion transmitted packets [12]. We select a single representa-
tive link from the various configurations using the IEEE 802.15.4 protocol with
a payload length of 20 B. Our trace covers a total of 8 h of traffic on a typical
workday with an overall PER of 4.79%. In this scenario, we observe primarily
short bursts of packet loss with channel quality changing mostly over longer time
windows (hours), while phases of high error rates (upwards of 50%) are possible
for several minutes.

Office Scenario. With the same measurement setup as for the ICS scenario,
wireless links between nodes placed in various office rooms on a single floor have
been measured [12]. Here, we select a Bluetooth Low Energy (BLE) communi-
cation link with 32 B payloads over a 22 h window during a workday. We observe
a relatively constant error distribution with short error bursts of a few packets
each and an overall PER of 3.22%.

Smart City (Stationary) Scenario. Our first smart city scenario is based
on the LoED dataset [5], where nine LoRaWAN gateways were placed in central
London. We focus on the 18790 packets transmitted by a single stationary sender
and received by any of the gateways. With an overall PER of 1.97%, we see
primarily isolated packet loss due to long idle times between two transmissions,
and the channel only experiences long-term changes in quality over several days,
potentially due to altering weather conditions.

Smart City (Mobile) Scenario. In this scenario, mobile LoRaWAN senders
transmit to a total of nine stationary gateways for 250 days. Specifically, the
sender was mounted to the top of a garbage truck driving through a 200 km2

area in the city of Bonn [19]. We observe burstier errors and overall channel
qualities changing significantly over days and weeks. The burstiness is likely due
to the sender quickly entering and exiting the line of sight of a gateway, while the
long-term changes changing presumably again relate to the weather conditions.

Underwater Scenario. Finally, we consider acoustic underwater communica-
tion, with a trace of 334 16-byte messages being transmitted over 327 m between
two stationary nodes placed in the sea [10]. The measurements were conducted
during moderately rough weather conditions. Despite an overall high PER of
16.46%, most of these errors occurred during long bursts interspersed with peri-
ods of high packet delivery rates.

4.2 Evaluating MAC Aggregation in Realistic Scenarios

We now analyze MAC aggregation schemes in the different realistic scenarios
introduced in the previous section. These scenarios are characterized by dynamic
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Fig. 4. Different MAC aggregation schemes and parameterizations perform best,
depending on the payload lengths, error burstiness, and overall PERs, such that the
right scheme selection is non-trivial but crucial for the optimal use of constrained
channels.

channels, differing communication protocols, and prespecified header and pay-
load lengths. For each scenario, we analyze the goodput (i.e., the amount of
received and authenticated data) in Fig. 4. We express the goodput as a per-
centage of the total amount of received payload data if no integrity protection
was used. For the urban (static) and underwater scenarios, traditional MACs and
Agg(·) cannot be included since the tags do not fit into the available payload.

We see different MAC aggregation schemes performing best in the synthetic
measurements, depending on the investigated scenario. Payload lengths influence
the concrete parameterization but do not directly correlate with which scheme
performs best under the relatively small variations observed across the different
scenarios. The best-performing MAC aggregation scheme thus depends primarily
on two factors: overall PER and burstiness.

For the industry and urban (mobile) scenario, where overall PER is low and
burstiness relatively high, Agg(·) performs best. During a burst, most packets in
one set of aggregated messages are lost, while otherwise, most sets are received
entirely and can be authenticated. For the office and urban (static) scenarios,
R2D2(·) performs best due to the high PER and the short error bursts, where
often only a single packet is lost. However, higher PERs do not immediately
mean that R2D2(·) performs best (until traditional MACs are more favorable),
as suggested by the synthetic scenarios. The long burst, where no traffic passes,
in combination with a relatively good delivery ratio otherwise mean that SW(·)
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and Comp(·) perform best in the underwater scenario. Overall, the best MAC
aggregation scheme can achieve relative improvements of up to 24.2% better
goodput compared to the second best scheme.

However, more important than selecting the scheme is using the correct
parameterization. If the wrong parameters are used for the best-performing
MAC aggregation scheme, performance can drop by an average between 14.0
and 57.4% in the worst case. With the PER of the different scenarios ranging
between 1.97 and 16.46%, we have parameterizations that result in average tag
lengths of 4 B performing best, which is more or less in line with the synthetic
measurements from Sect. 3.2.

Overall, we see that PER and error burstiness play a significant role in find-
ing the best scheme and parameterizations. Due to relatively small variance in
payload lengths across the scenarios, we, however, cannot confirm its low impact
in selecting the best schemes. Nevertheless, we know that the potential gains
achieved through MAC aggregation shrink with larger payloads. Most impor-
tantly, we can conclude that adequate parameterization is more important than
finding the best MAC aggregation scheme. Ultimately, both optimizations have
a non-negligible effect on the achievable goodput.

5 Beyond Goodput as Evaluation Metric

Optimizing the goodput of MAC aggregation is the main goal for most scenarios.
However, other effects must also be considered when choosing the MAC aggre-
gation scheme, such as verification delay, processing overhead, and susceptibility
to jamming attacks. In the following subsections, we compare the different MAC
aggregation schemes (cf. Sec. 2.3) w.r.t. these effects.

5.1 Average Delay Until Authentication

First, we look at the authentication delay for the different MAC aggregation
schemes. Traditional authentication tags can be verified immediately upon mes-
sage reception, so no delay occurs due to waiting for additional data. With MAC
aggregation, on the other hand, we need to wait until all messages depending on
a specific tag have been received to verify it, which might introduce significant
delays. To analyze these effects, we plotted the delay from the measurements on
all traces from Sect. 4.1 as a CDF in Fig. 5.

We see major differences in the behavior of the different aggregation schemes
for these measurements. Agg(·) and Comp(·) periodically verify a set of prior
messages together, such that a range of different delays occur with the same fre-
quency. The concrete span of possible delay is then proportional to the parameter
n of how many tags are aggregated together.

SW(·), on the other hand, verifies messages continuously with an almost con-
stant delay. This delay only varies if some messages get lost, which incurs a
verification delay for surrounding messages. This behavior is beneficial for appli-
cations requiring periodic messages with practically no jitter, e.g., control algo-
rithms in ICSs relying on a constant delay of the received information. R2D2(·)
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Fig. 5. Verification delay is an inherent drawback of MAC aggregation. For scenarios
where verification delay is critical, SW(·) does, however, provide highly consistent delays
which control algorithms can thus anticipate.

shows similar behavior for about half of all the received messages, while the rest
have increasing delays. Again, the packet loss is responsible for higher delays,
but since R2D2(·) distributed the effects of packet losses over multiple packets,
more of them experience delayed verification. Moreover, the magnitude of these
delays correlated with the overprovisioning factor o, allowing late authentication
for messages that could otherwise not be authenticated.

In summary, the average delay until authentication of the different authenti-
cation schemes strongly differs. While Agg(·) offers, on average, the lowest delays,
SW(·) has the most constant delays. On the other hand, R2D2(·) offers the best
goodput for many scenarios with higher PER while messages have higher and
more varying verification delays. Selecting the best aggregation scheme accord-
ing to this delay thus depends on which balance the concrete application scenario
demands between the goodput reduction and the type of verification delay.

5.2 Performance and Memory Overhead

Many of the considered scenarios involve resource-constrained IoT devices where
substantial additional processing and memory overhead from the MAC aggre-
gation scheme could significantly impact performance. Hence, we measure and
compare the processing delay and memory overhead for tag computation and
buffering by the different schemes. We conducted the analysis on the Arm Cortex
M3 processor of a Zolertia RE-Mote board, a common choice to evaluate realistic
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Fig. 6. Only R2D2(·) introduces significant processing overhead over traditional MACs.
Memory overhead, on the other hand, is mostly dependent on how many tags are
aggregated together but so small that it should rarely be a decisive factor.

resource-constrained hardware. As a baseline, we capture the time to authen-
ticate a single 32 B message with hardware-accelerated HMAC-SHA256, which
is the underlying MAC scheme used for the aggregation schemes as well. We
averaged the average processing times over 16 tag generations (not all schemes
do the same computations for each message) and repeated this measurement 30
times. For the memory overhead, we measure the memory necessary to buffer
tags before their aggregation, as all other memory overhead is implementation-
dependent and is mostly optimized away by the compiler. The results of both
measurements are presented in Fig. 6.

Regarding processing times, we see only marginal overhead for all aggregation
schemes except R2D2(·). There, we have a 168 to 237% increase in processing
times compared to the baseline, where the differences across parameterizations
are mostly insignificant. This overhead stems from the bitwise processing of
R2D2(·), which requires a significant amount of XOR and bitshift operations. This
processing overhead is, however, mostly only impactful for applications that run
on slower hardware and have tight latency requirements, especially considering
that the sender and receiver must conduct this additional processing.

We see a different picture across the MAC aggregation schemes for the mem-
ory overhead. For Agg(·), Comp(·), and SW(·), the needed memory depends on
the message history. More tags must be stored concurrently for shorter aggre-
gated tags, resulting in higher memory overhead. Here, the bitwise processing of
R2D2(·) helps to partially process tags when new messages arise. Consequently,
the memory depends mainly on the overprovisioning factor and less on the num-
ber of aggregated tags. The magnitude of the required additional memory for
MAC aggregation schemes is, however, small enough that it should rarely influ-
ence the decision on which scheme should be deployed.
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Fig. 7. R2D2(·) shows significantly increased resilience to denial-of-service attacks
through selective jamming, especially if an attacker jams less than 10% of messages to
remain stealthy or conserve energy.

5.3 Resilience to Adversarial Interference

In our final analysis, we compare the resilience of MAC aggregation schemes to
selective jamming attacks. Selective jamming refers to jamming specific mes-
sages to prevent their correct reception which enables stealthy and energy-
saving attacks as dropped packets are hardly distinguishable from random packet
loss [2,34]. In the context of MAC aggregation schemes, a sophisticated attacker
can amplify the effects of a denial-of-service attack due to the employed MAC
aggregation. For example, for Agg(16), it suffices to jam every 16th packet to
reduce the (authenticated) goodput of the channel to zero.

For our measurements, we considered the trace from the urban (mobile)
scenario introduced previously, as its payload is large enough for all schemes, and
urban settings provide easy access to potential attackers. For each aggregation
scheme, we developed the optimal jamming attack strategy to minimize the
goodput at the receiver. In Fig. 7, we show how the achieved goodput of the
different aggregation schemes is impacted by increased attacking capabilities.

The x-axis represents the number of overall dropped packets in percent on a
logarithmic scale. For traditional authentication, we see, as expected, that the
channel can still transmit authenticated data as long as not the entire channel
is jammed. In general, we note that shorter average tags are more susceptible
to selective jamming attacks, as each tag requires many received messages to
become verifiable. Considering the shortest tags (n=16) for Agg(·), Comp(·), and
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SW(·), we see that dropping between 27 and 29% targeted packet already suffices
to prevent all data transmission over the channel.

The behavior of R2D2(·) requires, however, a separate analysis since one of the
protocol’s design goals is resilience against jamming attacks. Therefore, the exact
dependencies between tags and messages are kept secret, such that attackers can
only design their strategy to inflict the most damage for the average dependency
selection. Furthermore, the design of R2D2(·) explicitly distributes the effects of
packet losses (malicious or not) over many packets, thus cushioning the impact
of selective jamming. Hence, up to 15% of packets need to be dropped to reduce
goodput by even 20%. However, once a critical mass of packet loss occurs, such
distribution no longer suffices for compensation, and the goodput quickly drops.

Overall, we can say that R2D2(·) is the most resilient scheme in the presence
of a selective jammer. Considering our entire analysis, no scheme is an outright
winner, and each scheme has its benefits. To summarize these findings, guide
operators toward the right MAC aggregation scheme, and identify open research
questions, we provide general recommendations in the following section.

6 Guidelines on Employing MAC Aggregation

In general, MAC aggregation shows promising potential to boost available band-
width on lossy channels for various scenarios. However, not every scenario ben-
efits from MAC aggregation compared to traditional MACs. More importantly,
choosing the correct scheme and parameters is decisive in answering the ques-
tions of when and how to use MAC aggregation. Therefore, in the following, we
deepen this discussion towards providing general guidelines on employing MAC
aggregation based on our empirical measurements.

6.1 When to Use MAC Aggregation on Lossy Channels?

From our analysis, it is evident that MAC aggregation reliably improves goodput
for relatively high PERs of 10% or below. In cases where the PER is higher, it is
often more beneficial to rely on traditional MACs or, at most, aggregate MACs
for no more than two messages (i.e., setting the parameter n to 2). However,
for high PERs due to long error bursts where hardly any traffic arrives, MAC
aggregation can still be beneficial (cf. Sect. 4.2).

Furthermore, we investigated the relationship between payload lengths and
the resulting benefits of MAC aggregation. For instance, in scenarios involv-
ing 200 B payloads and minimalistic 5 B headers, a MAC aggregation scheme
aggregating 16 tags (i.e., n = 16) could still generate a 7.3% goodput improve-
ment. Consequently, we conclude that MAC aggregation, in general, offers the
most substantial benefits for short payload lengths, up to a few hundred bytes,
and moderate PERs of up to 10%. As substantiated by the real-world scenar-
ios (cf. Sect. 4.1), this is precisely the kind of communication that occurs in
many (industrial) IoT scenarios, leading to the question of how to use MAC
aggregation in such scenarios to gain the most benefit.
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6.2 How to Employ MAC Aggregation on Lossy Channels?

In our evaluations of the goodput improvements that different MAC aggregation
schemes and parameterizations can bring in real-world scenarios (cf. Sect. 4.2),
we have seen that no aggregation scheme is a clear-cut winner (even when solely
focusing on goodput as an evaluation metric). Moreover, we have seen that the
correct parameterization for a given scenario is crucial to achieving optimal
performance. These observations thus warrant a more nuanced discussion of
when to use which MAC aggregation scheme and with which parameters.

Focusing solely on goodput, we see that generally R2D2(·) achieves the highest
performance for PER between 0.4 and 8.5%, especially when packet errors occur
as short bursts. For lower PERs and traffic with longer error bursts, the better
performance and simplicity of Agg(·) is often preferable. If the periodic 16-byte
tags for Agg(·) are not supported by the application (e.g., due to fixed message
sizes), Comp(·) is a good alternative to realize a constant tag size across all mes-
sages. Considering the parameterizations, a high n has the potential to realize
better goodput, but only if the PER is relatively low. For the overprovisioning
factor o of SW(·) and R2D2(·), 100 is usually the best or least a decent choice.
R2D2(·)’s g-factor is best set to 1 in those scenarios where R2D2(·) achieves the
best goodput. Overall, SW(·) rarely outperforms the other schemes if only consid-
ering goodput since it is not designed for lossy communication [31]. Nevertheless,
it can still be a sensitive choice when also considering e.g., verification delays.

One disadvantage of MAC aggregation compared to traditional MACs is the
inherent verification delay which we investigated in Sect. 5.1. This delay occurs
as most messages cannot be verified directly upon reception and thus need to be
buffered or processed optimistically [31], i.e., processed under the assumption of
being genuine before full integrity verification. This risk can be reduced by the
two progressive schemes SW(·) and R2D2(·), already providing some, yet reduced,
security guarantees immediately upon message reception. Furthermore, if an
application requires complete message verification, SW(·) provides deterministic
verification delays, beneficial for real-time control.

Concerning other potential dimensions for selecting the best MAC aggrega-
tion scheme for a given scenario, memory overhead is so small that it should
rarely be a decisive factor. When interested in optimizing processing overhead,
only R2D2(·) shows a clear disadvantage (cf. Sect. 5.2) compared to the other
aggregation schemes. Finally, if resilience to denial-of-service attacks through
selective jamming is essential, R2D2(·) shows clear advantages over the other
schemes. However, if another scheme must be used (e.g., due to the excessive
processing overhead of R2D2(·)), then lowering the parameter n can reduce the
effects of attacks at the cost of reduced goodput under normal operation.
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Fig. 8. The optimal MAC aggregation scheme depends on many different characteris-
tics. This decision diagram assists in this selection process.

6.3 Selecting an MAC Aggregation Scheme

We observe that often many dimensions must be considered to decide when and
how to perform MAC aggregation. To help operators in their decision process,
we provide two forms of assistance. First, we provide a decision diagram to select
the right MAC aggregation scheme in Fig. 8 based on basic network characteris-
tics and feature demands. Secondly, and for more detailed analysis, we provide
an evaluation tool2 to aid further in this decision process. Our evaluation tool
takes as input the header and payload lengths as well as an example binary loss
trace, i.e., a series of 1 s and 0 s for received and dropped packets, respectively.
It provides a comparison of all MAC aggregation schemes and their parame-
terizations (as analyzed in this paper) for the given scenario. In combination
with these tools, our guidelines support operators in deciding when and how to
employ MAC aggregation and help researchers to identify further opportunities
to optimize existing MAC aggregation schemes.

7 Conclusion

MAC aggregation effectively saves valuable bandwidth in resource-constrained
networks by shifting integrity protection from single to multiple packets. How-
ever, as shown in this paper, the potential benefits of MAC aggregation strongly
depend on the individual network scenario. In particular, the effects of (bursty)

2 https://github.com/fkie-cad/mac-aggregation-analysis-tool.

https://github.com/fkie-cad/mac-aggregation-analysis-tool
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packet losses, as experienced in wireless communication, severely impact the per-
formance of MAC aggregation. Therefore, we specifically address the research
question of when and how to aggregate MACs by comparing existing aggrega-
tion schemes in synthetic and real-world scenarios. Our empirical results indicate
that, in general, MAC aggregation is particularly effective in scenarios with rela-
tively reliable communication (i.e., with PERs below 10%) and for short payload
lengths (i.e., below a few hundred bytes). Most importantly, however, correctly
parameterizing MAC aggregation is even more critical than choosing the right
scheme. Moreover, other optimization metrics than goodput may limit the choice
of applicable MAC aggregation schemes and thus need to be considered. With our
detailed guidelines and our public evaluation tool, we intend to support opera-
tors in deciding when and how to employ MAC aggregation for their applications
and researchers to improve MAC aggregation further, ultimately strengthening
security even under adverse networking conditions.
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Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy – EXC-2023 Internet of Production – 390621612. The authors are respon-
sible for the contents of this work.

References

1. Akbas, A., Yildiz, H.U., Tavli, B., Uludag, S.: Joint Optimization of transmission
power level and packet size for WSN lifetime maximization. IEEE Sensors J. 16(12)
(2016). https://doi.org/10.1109/JSEN.2016.2548661

2. Aras, E., Small, N., Ramachandran, G.S., Delbruel, S., Joosen, W., Hughes, D.:
Selective jamming of LoRaWAN using commodity hardware. In: Proceedings of the
14th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services (MobiQuitous). ACM (2017). https://doi.org/10.1145/
3144457.3144478

3. Armknecht, F., Walther, P., Tsudik, G., Beck, M., Strufe, T.: ProMACs: progres-
sive and resynchronizing macs for continuous efficient authentication of message
streams. In: Proceedings of the Conference on Computer and Communications
Security (CCS). ACM (2020). https://doi.org/10.1145/3372297.3423349
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Abstract. Low Earth orbit (LEO) satellite networks, which feature low-
latency and full-coverage connectivity, promise to revolutionize the Inter-
net and become an indispensable part of the next-generation communi-
cations network. However, due to the limited bandwidth and processing
resources available on board, LEO satellite networks are susceptible to
network attacks, especially link flooding attacks (LFAs). LFAs are a spe-
cific type of the notorious DoS attack where the attacker tries to cut off
critical network links using seemingly legitimate traffic. Unlike attacks
targeted directly on servers, LFAs undermine networks in a more insid-
ious manner. In this paper, we present DoSat (DDoS on Satellites), an
LFA attack model that focuses on the time-varying topology of satellite
networks. The model takes advantage of such an opportunity to concen-
trate attack traffic: the traffic having been sent out during the process of
path delay switching will reach the destination in tandem. We demon-
strate through simulation experiments that DoSat can reduce the cost
of LFAs by approximately 20% without any tradeoffs of attack’s unde-
tectability.

Keywords: LEO satellite network · Network topology · Link flooding
attack · DDoS

1 Introduction

In the early days, satellite communications served as a supplement to the land-
based communications technologies, relaying mostly low-frequency, narrowband
signals that carry audio and video information. Nowadays, SpaceX, OneWeb
and other companies are launching thousands of artificial satellites into space
with the ultimate goal of building satellite internet constellations that provide
low-latency, broadband global internet service.

Security is a constant topic of discussion. As the reliance on satellite com-
munications keeps expanding, the protection of satellite networks from sabotage
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has become of significance. As for the emerging LEO satellite networks (LSNs),
researchers today focus most of their attention on reducing communications
delay [1,9], improving network topology [2] and designing new routing strategies
[7,10]. The security issues of LSNs, however, are often overlooked.

In this paper, we propose DoSat (the abbreviation for DDoS on Satellites),
a DDoS attack model against LSNs. DoSat fully leverages the topological char-
acteristics of LSNs to concentrate the attack traffic on a small set of carefully
chosen links, thereby congesting the target network. In addition, traffic of DoSat
is generated only by bots (i.e. compromised satellite-enabled terminals) sending
data to each other, which makes it less probable for the attack to be detected.

Our main contributions are:

– We develop a formal model of LSNs, based on which a vulnerability to DDoS
caused by the time-varying property of dynamic networks is spotted and
thoroughly analyzed.

– We present the DoSat attack and the pseudo-code for its core steps. It mainly
consists of three steps: scheduling bot pairs, constructing cooperative flows
and calculating the sent traffic.

– We implement the attack model in a simulation environment. Experiments
suggest that our attack can be carried out with little risk of being detected,
and its bandwidth costs are about 20% less than other similar work.

The remainder of this work is structured as follows. Section 2 gives necessary
background knowledge about LSN and DoS, on which we base our discussion of
DoSat. Section 3 analyzes the feasibility of DoSat attack, followed by a detailed
description of the workflow of the proposed model. The simulation setup and
performance evaluation are given in Sect. 4. Section 5 discusses how some of
the existing countermeasures may be applied to mitigate DoSat. Finally, Sect. 6
concludes this paper.

2 Background and Related Work

2.1 LEO Satellite Network

The incorporation of satellites into Internet connections is not a new topic, but
it’s not until recent years that the exciting prospect of LSNs has started to reveal.
Prior to 2015, two major satellite telecommunications companies, Globalstar and
Iridium, had offered mobile-satellite service that relayed voice and data through
LSNs. But they struggled to compete with terrestrial cellular networks due to
high operating costs. Globalstar eventually repositioned itself as an emergency
messaging service provider, while Iridium unfortunately went bankrupt. Later,
SpaceX and Amazon have proven that it is commercially feasible to provide
global coverage of high-speed Internet access to the entire Earth using satellite
constellations.

LSNs are not just a complement to terrestrial networks, as demonstrated by
the following three factors: (1) Scale: the current LSN is planned to have hun-
dreds or thousands of satellites, providing sufficient access bandwidth, compared
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Fig. 1. A typical LEO satellite network.

to the previous dozens of satellites; (2) Frequency band: satellites use higher fre-
quency bands simultaneously, mainly Ku-band (12–18 GHz) and Ka-band (26.5–
40 GHz), to obtain greater bandwidth with rich frequency resources; (3) Orbital
height: LSNs operate in low-Earth orbit, which is situated at most 2,000 km
above the Earth’s surface. The low-Earth orbit is at most 2,000 km above the
Earth surface, and the transmission delay is less than 10ms. This kind of spe-
cial network has aroused wide attention in the academic community. The main
research challenge is that each satellite moves at a speed of about 27,000 km per
hour, and this high speed motion poses difficulties for link switching, dynamic
routing strategies, network security and so on.

The high motion of the satellite makes the network topology show dynamic
changes, so that the inter-satellite links are constantly disconnected and recon-
nected. At present, there are two kinds of modeling methods. One is virtual topol-
ogy, also known as snapshot, which was first proposed by [5], referring to the dis-
cretization of time domain into several time slices, in which a dynamic topology
can be regarded as a static snapshot. The other is virtual node, which was first
proposed by [19]. The earth surface is divided into several geographic regions,
and the satellite is bound to the geographic region through which it passes, so
as to obtain logical addresses. Both of the two modeling methods have their own
advantages and disadvantages. Both are used to model LEO satellite networks,
so as to shield network dynamics and facilitate research. As shown in Fig. 1,
traffic of user terminals is transmitted to the satellite network through uplinks,
then routed through the inter-satellite links (ISLs) between satellites, and finally
transmitted back to user terminals through downlinks. In this way, the satellite
provides services for the equipment on the ground, achieving full coverage.

2.2 Denial-of-Service Attack

Denial-of-service (DoS) attack is a notorious form of cyber-attack, in which the
attacker attempts to make a service degraded or even unavailable to its legitimate
users by overloading the servers or the routers that the servers connect to. And
the distributed denial-of-service (DDoS) attack is a distributed augmentation
of DoS. In DDoS, the attacker floods the targeted service with the help of a
botnet containing typically thousands of bots. More sophisticated strategies are
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required to mitigate this type of attack, as simply attempting to block one or
two IP addresses would be insufficient.

Link Flooding Attack. Our proposed DoSat originates from a specific type of
DDoS called link flooding attack (LFA), which congests a target link by coordi-
nating traffic through it. Unlike DDoS attacks that directly attack endpoints, the
attack traffic of LFA appears legitimate, making it more challenging to detect.
The concept of LFA was first proposed by Coremelt [22], in which N com-
promised bots send seemingly legitimate traffic to each other to overload the
core network with

(
N
2

)
connections. Crossfire [13] extended this idea by flood-

ing a small set of carefully chosen links, effectively cutting off the connection of
the selected region from the Internet. In 2019, CrossPath [3] adopted LFA in
software-defined networks (SDNs) to disrupt the SDN control channel by using
the shared links in control traffic and data traffic.

In 2021, ICARUS [6] proposed to turn the key benefits of LSNs into vulner-
abilities to launch LFA attacks, which represents, to the best of our knowledge,
the only instance of an LFA attack model specifically designed for LSNs. The
paper presented as an open problem to employ the “pulsing attack” technique
to temporarily increase the intensity of the attack traffic. Our work is inspired
by ICARUS and extends the LFA attack on LSNs with temporal lensing.

Temporal Lensing Attack. Temporal lensing, a form of amplification DDoS,
is inspired by a military tactic known as TOT (Time-On-Target). TOT involves
synchronizing clocks and estimating projectile flight times to ensure that multiple
guns fire at different locations and times, but converge their shells to hit the
target simultaneously, maximizing the damage inflicted. In 2015, Rasti et al.’s
Temporal Lensing [21] utilized DNS infrastructure as reflectors to create delay
differences in paths so as to concentrate attack traffic. They suggested that
“the temporal lensing can be combined with LFA because the amplified attack
flows can better reduce throughput on the target link”. In 2016, the authors of
Coremelt proposed a temporal lensing enhancement called Cicadas [15], which
used congestion as an implicit signal, combined with Kalman filter to achieve
accurate synchronization.

Our DoSat Attack. Now, LFA is no longer simply used, but the infrastructure
in the network is used to enhance the effect. However, the attack of LSN still stays
in primitive LFA, which can be solved by some defense strategies [11,17]. We
mainly consider the scenario where temporal lensing strengthens LFA in LSN,
because the delay difference required by the temporal lensing can naturally be
provided by the time-varying topology of LEO satellite network itself. When the
network switches from a snapshot to the next, the network topology changes,
including path delays. We propose an attack model based on this, due to the
limited bandwidth resources on the satellite, such attacks will be more severe.

As shown in Fig. 2, LSN is modeled for each individual snapshot. A period
of motion of satellites is divided into n time slots, which is called a cycle. The
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Fig. 2. Temporal lens in snapshots.

network topology is treated as a static snapshot in each time slot. At the 0 ms,
the attacker sends a packet to the victim along the 110 ms path along the routing
algorithm in Snapshot0, and sends another packet at 70 ms. At this time, due
to the change of the satellite position, the Snapshot1 path has become 40 ms,
while the previous packet is still along the original path, which is demonstrated
in [14]. Finally, at 110 ms, both packets arrive at the destination at the same
time, doubling the attack bandwidth.

2.3 LSN Simulation

LSNs possess distinctive characteristics that set them apart from terrestrial net-
works, presenting new challenges for network modeling. With the aim of facil-
itating research on LSNs, Simon Kassing et al. [14] proposed Hypatia in 2020,
a framework for simulating and visualizing the network behavior of satellite
constellations. Based on publicly available design details for commercial constel-
lations like StarLink, Hypatia is able to capture the unique dynamics of these
satellite networks.

In our work, we rely on Hypatia to setup the simulation environment for
StarLink S1 to evaluate the performance of DoSat.

3 DoSat Attack

3.1 Threat Model

We consider a rational adversary that seeks to strategically inflict as much dam-
age as possible on the target LSN while keeping the cost and detectability min-
imal. More specifically, the adversary has the following objectives in mind while
launching an attack.

– Minimize cost. Cost represents the amount of resources (i.e. the computing
power, bandwidth and number of satellite-enabled bots) an adversary has to
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invest for a successful attack. A rational adversary would seek to minimize the
cost of the attack, because it would be less demanding to construct and main-
tain a botnet of a smaller scale. The way we quantify cost will be described
in Sect. 4.3.

– Hamper detection. Oftentimes, an adversary would keep the attack covert
to avoid the detection of malicious traffic and protect the bots. To evade
detection, the attack must mimic legitimate traffic patterns, a task at which
our proposed DoSat excels, as it relies solely on communication traffic between
bot pairs. The way we quantify detectability will also be described in Sect. 4.3.

3.2 Feasibility Analysis

Table 1. Notations

Network Topologies
Nodes N = n1, n2, ..., nN

Links L ⊆ N × N

Latency Lat ≈ RTT/2

Topologies G = (N, L)

Time period T = t1, t2, ..., tT

Time slots ST = {t ∈ T |t′ ≤ t ≤ t′′, t′ ≤ t′′}
Transition set I ⊆ T

Snapshots S = (t, G)

Attack Components
Bot nodes B ⊆ N

Cooperative flows f = (ti, (s, d), Lf , Lati)

Cooperative flows set F = f1, f2, ..., fF

Link Capacity C = {cl|l ∈ L}
Bot bandwidth R = {rf |f = (s, d) ∈ B}
Attack window W ⊆ T

Attack Parameters
Failure probability w1

Risk of self-congestion w2

Amplification factor ε

A summary of symbols and notations that will be used is given in Table 1
beforehand for the sake of readability.

We take a snapshot-based approach, which slices the time into consecutive
time slots during which the network topology is considered static. The snapshot
corresponding to ti is (ti, Gi), where G = (N,L) is the network connectivity
graph, N is the node set, and L is the link set. The snapshot was originally
formalized by [5], for a time period T , given such t′, t′′ ∈ T that t′ < t′′, a time
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slot ST is defined by {t ∈ T |t′ ≤ t < t′′}. If for any t ∈ T , t falls into [t′, t′′], and
t′, t′′ ∈ I, then I is defined as transition set. It’s apparent that I is a countably
finite subset of T .

LFA [22] refers to the flow sent by the attacker between bots s and d as
cooperative flow f = ((s, d), Lf ), (s, d) ∈ B is the pair of bots, Lf is the for-
warding path that flow f passes through. We assume that all messages in the
flow between source and destination propagate on the same path, specifically, it
is a set of inter-satellite links. It is verified experimentally in the temporal lens-
ing [21] that the latency of the forwarding path can be estimated by Round-Trip
Time (RTT), i.e. Lat = RTT/2 + ω, where ω is an error constant. Even though
halving the RTT value does not actually give an accurate result of the delay
due to the existence of asymmetric routing protocols on the Internet, it is still
possible to get an estimate of the delay within the margin of error.

We measure latency for each cooperative flow and define it as

f = (ti, (s, d), Lf , Lati) (1)

For ti in each time slot, the attacker needs to construct a cooperative flow set
F = {f1, f2, ...fF }, set the bandwidth of each flow as rf , then the condition for
successful LFA attack is that the sum of bandwidth of n flows is greater than
the capacity C of the target link, n · rf > C. Target link is the concept of LFA,
which refers to inter-satellite link in LSN.

The introduction of temporal lensing into snapshots of satellite networks
relies on two key operations: estimating attack path delay, and establishing opti-
mal send scheduling. Temporal lensing also proposed the concept of attack win-
dow W , which refers to the duration of an attack. If the flow f in the attack
window W is superimposed to ε times after send scheduling, then the number n
of flows in the attack flow set F in DoSat should be satisfied

n > C/(rf · ε) (2)

Typical values are W = 200s and C is 20Gbps according to Starlink’s files
[14]. In order to obtain the forwarding path Lf of cooperation flow f , the attacker
needs to know the routing policy in the network. The routing strategy in LEO
satellite network is a widely discussed topic. The current research on satellite net-
work simulation adopts the shortest path algorithm (Dijkstra) to realize the rout-
ing simulation [2]. In ICARUS [6], the author considers the case of single shortest
path and multi-path, divides multi-path into four categories, namely k shortest
intersection path, k Earth-earth intersection path, k satellite intersection path
and k minimum coverage shortest path, and proposes a probabilistic routing
strategy, that is, based on the idea of equal-cost multi-path routing (ECMP).
From a group of k pre-calculated shortest paths, one is randomly selected as the
forwarding path. Compared with the traditional Dijkstra algorithm, this setting
makes the attacker face a greater challenge, because the routing situation of
the network is not completely transparent, in order to successfully congest the
target, the attacker needs to make more sophisticated planning.
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Fig. 3. An overview of DoSat.

The probability of success has been analyzed by ICARUS, given that the
attacker does not know exactly which particular path the cooperation flow will
take. However, it only considers the distribution of the attack flow in one snap-
shot, and its probability constraint is only for the original attack flow. In this
paper, all the snapshots in a time cycle are calculated, and a set of cooperative
flows is generated for each snapshot. Finally, the attack success probability of the
amplified flow is deduced. Suppose that a pair of bot nodes (s, d) selected by the
attacker cooperate on a path, where m crosses the target link. In probabilistic
routing of ICARUS, the event “Cooperative flow across the target link" can be
described as Bernoulli random variable Xf , and the probability that f crosses
the target link is pf = m/k′, and k′ ≤ k because there may not be enough
paths between the source and the destination. Then, the random variable δ of
the whole set F should satisfy

δ =
∑

f∈F

Xf ≥ C/(rf · ε) (3)

Assuming the configuration failure probability is w1, the attacker is targeting
P [δ < C/(rf · ε)] ≤ w1. The attacker also needs to consider that the sent traffic
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will not self-congestion before reaching the target, so for non-target link l, ml <
cl. Let w2 be the acceptable risk of self-congestion, then P [ml ≥ cl] ≤ w2.

For target P [δ < C/(rf · ε)] ≤ w1, the expectation of δ is μ = E[δ] =∑
f∈F pf . Then the Chernoff bound [20] can be used in the approximate cal-

culation. We get P [δ < C/(rf · ε)] ≤ exp(−μ(1 − C/rf · ε · μ)2/2) ≤ w1, where
w1 ∈ (0, 1) and rf ∈ [1, μ], we can obtain

μ >
√

lnw1 · (lnw1 − 2 · rf · ε) + rf · ε − lnw1 (4)

For the attack target P [ml ≥ cl] ≤ w2, there is μl =
∑

f∈F pf similarly. Here con-
sidering the Chernoff upper-tail bound, we have P [ml ≥ cl] ≤ exp(−μl(cl/μl −
1)2/(2 + cl/μl − 1))) ≤ w2, finally we get

μl < 1/2(−
√

lnw2 · (lnw2 − 8cl) − lnw2 + 2cl) (5)

then the success probability is Psuccess ≥ 1 − (P [δ < C/rf · ε] +
∑|L|−1

l=1 P [ml ≥
cl]) ≥ 1 − [w1 + (|L| − 1)w2].

Based on the preceding analysis, we only need to construct an F that meets
the constraint Eqs. 4 & 5 to achieve a success probability of Psuccess, whose
minimum value is 1 − [w1 + (|L| − 1)w2]. Meanwhile, the smaller the failure
probability and self-congestion risk are, the higher the success probability will
be, aligning with common intuition. Although the conclusions are consistent
with ICARUS, we have derived a new probabilistic constraint that guides the
adversary’s traffic sending behavior.

3.3 DoSat Overview

Figure 3 illustrates schematically the overview of our DoSat attack model, which
involves three different roles.

Cooperative Administrator. It is responsible for the global orchestration
of the attack, selecting target links and pairing up bots whose communication
traffic can effectively congest these links. Actually, the fact that the information
on satellites’ position is publicly available makes the orchestration much easier,
as the cooperative administrator gets to predict the network topology in the
upcoming time slots with high accuracy.

Control Channels. They are normally servers scattering around the Internet
whose IP addresses or domain names can be hidden in the bots’ code or passed
on later through updates. They act as brokers that relay commands from the
cooperative administrator to the bots. Communications between control chan-
nels and bots are often encapsulated into various secure network protocols to
make their actions covert.

Bots. Bots, in this context, are subverted satellite-enabled terminals that have
legitimate access to the target LSN. According to speedtest results from SpaceX,
the capacity of an ISL is 20 Gbps, which means that it only takes 500 bots each
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sending data at a rate of 40 Mbps to launch a brute-force DDoS attack. For
comparison, SpaceX has licensed 5 million terminals as of 2020 in the United
States.

3.4 Attack Mechanism

The deployment of DoSat attack relies on two intermediate artifacts: the flow
set F and the traffic set T . F stores the paths between the source and desti-
nation bots, while T indicates the timings and bandwidth of attack traffic. The
attack can be divided into three core steps: Scheduling bot pairs, constructing
cooperative flows and calculating the sent traffic.

Scheduling Bot Pairs. This step is aimed at cherry-picking a set of bot pairs
whose transmission paths will cross the target link, as described in Algorithm 1.
The attack window is evenly sliced into time slots ST of size slot_size (line 3).
Then, the topology snapshot is constructed for each ST (lines 5–6) by calculating
each satellite’s position and constructing ISLs. For N bots, there are

(
N
2

)
possible

bot pairs (line 7). We select the bot pairs so that their flows cross the target link
(lines 9–11).

In the G = (N,L) of each time slot, each bot is bound to the reachable
satellite. For Starlink, the satellite-enabled terminal will establish uplink and
downlink to the nearest satellite when the user accesses the network. We record
the bot pairs crossing the target link and their flows for subsequent steps.

Algorithm 1. Scheduling bots for the target link
Input: W (attack window size), slot_size (time slot size), bot_pool (candidate bots

set) and l (target link)
1: var Snaps < t, G > // hashmap of ti and Gi

2: var bots_selected // the selected bot pairs
3: cnt ← TimeSharding(W, slot_size)
4: for all t = 0 to cnt do
5: Gt ← PositionOffset(t)
6: Snapst ← ISLBuild(Gt)
7: bot_pair_list ← BotWithBot(bot_pool)
8: for all pair in bot_pair_list do
9: bot_flow ← DijksKRoute(Snapst, pair)

10: if IsCrossTarget(bot_flow, l) then
11: Add pair to bots_selected.
12: end if
13: end for
14: end for

Constructing Cooperative Flows. For the scheduled bot pairs, we use
DijksKRoute to calculate k shortest paths, in which m cross through the tar-
get link. Recall the analysis in §3.2, in the cooperative flow set F , μ = E[δ] =
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∑
f∈F pf satisfies the constraint, the attack succeeds with probability of Psuccess.

The construction process of the cooperative flows is described by Algorithm 2.
Since μ is cumulative, a pair of bots is iteratively added to F , and removed if
Eq. 5 is not satisfied (lines 5–8). If the addition is complete, consider reducing
pf (line 11) and continue the above process until Eq. 4 is met (lines 3–4).

Calculating the Sent Traffic. This step is adopted to make the traffic sent
by the bot pairs on the cooperative flows exactly congested the target link, as
shown in Algorithm 3.

The bandwidth of each bot is greedily initialized to the uplink capacity to
obtain a maximum attack effect (line 2), and then the traffic is iteratively reduced
until it is exactly greater than the bandwidth required to successfully launch the
attack (lines 10–12). (lines 3–6) is the amplification factor calculation, if flow’s
probability meets the temporal lens, ε increase by one (lines 13–14). Finally,
the bandwidth of traffic sent by each bot is rf , and the sum of traffic sent by
bots is

∑
f∈F ruplink/εf , which is optimized compared with the previous work

ruplink · |F | proposed by ICARUS.

Algorithm 2. Construct cooperative flows for bots_selected
Input: bots_flows_list (flows set), w1 (failure probability) and w2 (acceptance risk

of self-congestion)
1: var F ← ∅ // set of cooperative flows
2: var m ← k // k paths in the routing policy
3: while F not satify Equation 4 do
4: SortByM(bots_selected, m)
5: for all pair in bots_selected do
6: Add pair to F .
7: if F not satify Equation 5 then
8: Remove pair in F .
9: end if

10: end for
11: m decrease by 1
12: end while

In line 5, IsPulseArrive() relies on two key operations: estimated path delay
and flows send scheduling. In order to construct the attack path delay table, we
measured the RTT through the network layer simulation of Hypatia platform
[14]. In the 200 s time cycle, the bot source s sent a Packet Internet Groper (ping)
to the bot destination d every 1ms, and recorded the response time. Measure the
RTT of all bot pairs and record the result in a txt file, the first column contains
the packet sending time, and the second column contains the RTT value, in
nanoseconds (ns).

Process all files, each pair of endpoints with 50 ms slot size, numbered from
0. A record is stored in the delay table: lat=(source s, destination d, slot number
i, latency), where path latency is estimated by RTT/2. Iterate over the records
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in the table, when

((STj − STi) × slot_size = latencyj − latencyi (6)

The two flows in slots i and j will arrive at their destinations at the same
time in a small time range, doubling the bandwidth pressure on the target link,
where slot_size is the size of the slot. For example, RTT in slot 0 is 140 ms,
RTT in slot 2 is 40 ms, and slot size is 50 ms. When the flow in slot 0 has passed
100 ms after being sent, it still has a 40 ms path, which happens to arrive at
the same time as the flow in slot 2. Add the slot number to the ST set, and
recording it in T .

Finally, the update of T for ε = |ST |, because when there are ε flows to arrive
at the same time, equivalent to amplify the bandwidth of a bot to ε times.

Algorithm 3. Send traffic for each bot_pair
Input: Snaps, F , C (capacity of target link)
1: var εf // the amplification factor
2: var rf ← Ruplink // initial to the capacity of uplink
3: for all f in F do
4: for all t in Snaps do
5: if IsPulseArrive(f) then
6: εf increase by 1
7: end if
8: end for
9: end for

10: while Ruplink × |F | > C do
11: Ruplink decrease by 1
12: end while
13: for all f in F do
14: rf ← Ruplink/εf
15: end for

4 Simulation and Evaluation

4.1 Simulation Setup

In order to verify the effect of the proposed attack model, we built an experimen-
tal system based on Hypatia [14], the satellite visualization framework proposed
by kassing. The experimental environment was Linux Ubuntu 20.04 LTS sys-
tem with 20 processors: 12th Gen Intel(R) Core(TM) i7-12700H, 2.30 GHz and
16 GBRAM. The simulation is based on the largest LEO constellation in exis-
tence: SpaceX’s Starlink. According to the regulatory information submitted by
SpaceX to the US Federal Communications Commission (FCC) and the Interna-
tional Telecommunication Union (ITU) and other regulatory bodies [16], orbital
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Fig. 4. Simulation results.

parameters of the constellation structure can be obtained, in which each shell
constitutes a different constellation and is evenly distributed in different orbital
space.

SpaceX is currently deploying shell S1, which is composed of 1,584 satellites
with an altitude of h=550 km and an orbital inclination angle of i = 53◦. S1 is
a Walker delta constellation with 72 orbits, each with 22 satellites. S1 will cover
most of the world’s population, but will not extend the service to less populated
areas in high latitudes, as will be the case with the high-inclination shell S3-S5.
We takes Starlink S1 as LEO satellite network environment, firstly studies the
visualization of satellite network topology, then studies the dynamic changes of
network structure over time, and finally analyzes the effect and evaluates the
performance of the DoSat attack scheme.

4.2 Network Setup

The simulation of LEO satellite network Starlink is demonstrated in Fig. 4 (a).
The inter-satellite links adopt the classic mode of four ISLs: a link between
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satellites in one orbit and two satellites in two orbits. Recent work has referred
to this grid-like connectivity as “+Grid” [2], and we use +Grid as the default
ISL interconnection.

The top 1000 most populous cities are set as the terminals which connect
to the nearest satellite. Each satellite can be connected to multiple terminals
with multi-beam antennas. A single satellite covers an area of about 3.53 million
km2, about ten times the size of a city, this setup helps observe differences in the
location of different terminals. For the traffic distribution, [10] means that it’s
difficult to evaluate matrix traffic in a topology, as it will be driven by market,
regulatory, geographic changes and so on. Therefore, We use Gross Domestic
Product (GDP) dataset traffic to simulate the legitimate traffic between two
terminals. The higher the GDP is, the darker the link color is, indicating that
bandwidth resources are more scarce, which is consistent with ICARUS.

4.3 Evaluation Metrics

As discussed in Sect. 3.1, the adversary strives to inflict as much damage as
possible on the target LSN using minimal resources while remaining covert. Thus,
we evaluate the performance of DoSat in terms of its cost and detectability. And
the cost and detectabiliy are defined similarly to ICARUS [6].

Cost: The cost of a DDoS attack can be intuitively defined as the aggregate
traffic volume (measured in Gbps) a botnet has to generate for the attack to be
successful. A lower cost translates to smaller botnet scale and lighter stress on
each individual bot, thus making it easier to launch an attack.

Detectability: Anomalies in traffic patterns detected on uplinks are more likely
to lead to the identification of the compromised bots compared to ISLs and
downlinks. The adversary, aware of this, will attempt to avoid abnormal surge
in traffic volume on the uplinks by scheduling tasks to geographically dispersed
bots. Therefore, the maximum absolute increase of uplink bandwidth caused by
attack traffic is chosen to be the measurement of detectability.

For result demonstration as in Fig. 4, we employ cumulative distribution func-
tion (CDF) and empirical CDF (ECDF) from probability theory to portray the
distribution of random variables representing certain properties of the traffic,
CDF for continuous ones while ECDF for discrete ones. Formally, the CDF and
ECDF of a real-valued random variable X is given by

FX(x) = P (X ≤ x) (7)

where the right-hand side represents the probability that the random variable
X takes on a value less than or equal to x.

4.4 Results

We analyze the above attack with Starlink shell S1 constellation.
The opportunity of attack lies in the dynamic nature of satellite network, so

the changes of the path structure of Starlink are studied. Figure 4 (b) shows the
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ECDF of the number of dynamic changes of the whole Starlink in the simulation
for 200 s, and ECDF represents the cumulative proportion of values. The green
line is the number of path changes, with four changes at the median; The blue
line shows the difference in the number of hops, with more than a third of the
connections exceeding two hops; The yellow line shows the ratio of maximum
hops to minimum hops, and you can see that more than 10% of connections see
a change in hops of more than 50%. Obviously, LEO network paths change many
times per minute, which provides a opportunity for the attacks proposed.

For each bot pair, we study the change of its RTT over time, measured by
the source bot sending a ping to the destination every 1ms and recording the
response time. Figure 4 (c) shows the results for three pairs of endpoints as an
example. We take 50 ms as time slot, and take 200 s as the attack window W
to observe the distribution of attack flows in snapshots. The path from Beijing
to Sydney has the biggest change, with t = 95.9 s and two switches of 110.6 s,
resulting in the RTT rising from 93 ms to 112 ms. For the other two paths,
the minimum RTT of the Shanghai-Moscow route is 52.1 ms and the maximum
RTT is 57 ms. For the New York-Paris route, this RTT ranges from 43.7–47.2
ms. The last two changes are small but still show regularity.

We take 200 s as the attack window to observe the amplification of the flow.
Figure 4 (d), in the simulation for 200 s, compared with the path changes of
Starlink as a whole, about 47% of the flows have one or more amplified flows, and
the distribution ratio is similar to the hop number change. This fits intuitively,
since a necessary condition for a time lens is that the path delay changes from
large to small, which is satisfied when the path switches from a high-hop path
to a low-hop path. The results show that about half of the flow can be amplified
when the path RTT changes from long to short.

We launch attacks for ISLs, calculate the bandwidth uploaded and normalize
the cost to the capacity of a single ISL (i.e. uplinks/downlinks cost 0.2 and an
ISL cost 1 to fully congest). In Fig. 4 (e), the blue line is the empty network with
no traffic within, there are only two situations: congesting the uplink/downlink
and ISLs. The capacity of the uplink/downlink is 1/5 of that of the ISL [14],
and the congesting of the ISLs must fill the links. The green line is the result
in ICARUS [6]. The figure demonstrates that the presence of legitimate traffic
reduces the cost, albeit with a negligible effect. The orange line is our setting, and
the median cost is reduced by about 20%. For bot pairs with large path changes,
the profit of temporal lensing is about half, about (0.82 − 0.96) · 20Gbps. This
is because a bot pair with a large path change will receive about half of the
amplification flow revenue, while the median path switching in Starlink is four
times. After obtaining the amplification revenue, the cost can be reduced by
halving the bandwidth without affecting the blocking of the target link.

Figure 4 (f) shows that both ICARUS and DoSat cause approximately the
same bandwidth increase as in the empty network. It can be speculated that the
exist of bots cannot be detected on the traffic, especially when the bots send
legitimate requests.
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5 Mitigations

There has been extensive research on defending against traditional DDoS attacks
and several effective countermeasures have been proposed. Here we discuss the
possibility to adapt them to mitigate the DoSat attack.

Attack Detection and Malicious Node Identification. There arise some
open problems when it comes to deploying attack detection onto LSNs: (1) tra-
ditional DDoS detection mechanisms assume abundant computing power and
bandwidth while satellites have limited resources on board; (2) It is challenging
to identify abnormal characteristics within traffic generated by valid user termi-
nals communicating through legitimate protocols. Although recent work [8,12]
has proposed a few lightweight detection procedures for satellite networks, it is
still unclear how to distinguish malicious traffic from the benign one.

Congestion management schemes. As RFC 3272 [4] suggests, the network
may try to address existing and/or anticipated congestion problems by provi-
sioning additional bandwidth resources. It is, however, a palliative instead of a
cure for ever-expanding botnets the adversary may gain, not to mention that it
would be highly expensive to increase ISL capacity.

Dynamic routing. The fairly fixed ISL topology and routing algorithm are
exposing current LSNs to various forms of attacks. The obfuscation of network
topology and forwarding path seems to be a promising approach to thwarting
DoSat. Bhattacherjee et al. [2] suggested a rearrangement of ISLs and Liu et
al. [18] proposed a multi-path transmission algorithm based on fountain codes.
The underlying idea is to minimize the path similarity, thereby reducing the
probability of the adversary successfully creating temporal lenses. However, the
tradeoffs of security and latency must be carefully balanced.

6 Conclusion

This paper mainly studies DDoS attacks in LEO satellite networks. In order
to achieve lower cost and better concealment, we propose DoSat, which focuses
on the time-varying topology of satellite networks. By dispatching bots in all
snapshots in a time period, traffic is sent between bots. When the traffic passes
through the same link, the target link is congested, so as to achieve the effect of
link flooding. Through theoretical analysis and simulation, we take Starlink, the
largest LEO satellite network, as an example to prove that DoSat is practically
feasible. The experimental results show that this attack can reduce the cost of
attack while maintaining the concealment, compared with the advanced ICARUS
attack.
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Abstract. With the proliferation of Internet development, Distributed
Denial of Service (DDoS) attacks are on the rise. As rule-based traf-
fic analysis frameworks and Deep Packet Inspection (DPI) defense mea-
sures can effectively thwart many DDoS attacks, attackers keep exploring
various attack surfaces and traffic amplification strategies to nullify the
defense. In this paper, we propose DDoSMiner, an automated framework
for DDoS attack characterization and vulnerability mining. DDoSMiner
analyzes system call patterns of the TCP-based DDoS attack family,
then generates Attack Call Flow Graph (ACFG) by discerning the dif-
ferences between DDoS attack traffic and benign traffic. Furthermore,
DDoSMiner identifies and extracts drop nodes and pivotal TCP states
from the distinctive characteristics of attack traffic, then passes to the
symbolic execution framework for exploring variants of the DDoS attack.
We collectively analyze six types of TCP-based DDoS attacks, construct
the corresponding ACFG, and identify a set of attack traffic variants.
The attack traffic variants are evaluated on the widely used Network
Intrusion Detection System (NIDS) Snort with three popular rule sets.
The result shows that DDoSMiner indeed discovers the new DDoS attack
trace, and the corresponding attack traffic can bypass all three defense
toolkits.

Keywords: TCP-based DDoS attacks · Attack Call Flow Graph ·
Symbolic execution

1 Introduction

With the evolution of the Internet, the security issues of the Internet have gar-
nered increasing attention. Among the various threats to networks, Distributed
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Denial of Service (DDoS) attacks are regarded as one of the most serious and
commonly employed attack methods in practice [16,35,37,56,61]. For instance,
Cloudflare has reported a DDoS attack which is launched by a botnet comprising
approximately 11,000 IP addresses, peaking at an alarming 1.4 Tbps of attack
traffic [55].

Although there are various detection and defense techniques for DDoS attacks
[9,29,59], the main defense methods rely on traffic scrubbing [50], which requires
expensive dedicated hardware. The core idea of this approach is redirecting the
traffic of the target to the scrubbing centers of the Internet security service
providers, where malicious traffic is identified and filtered. To be more effec-
tive, traffic scrubbing has evolved from centralized single-point detection to dis-
tributed detection solutions [31]. However, these methods still face challenges,
specifically in terms of flexibility. On one hand, these detection methods heavily
depends on filtering strategies crafted from known attacks, making it vulner-
able to zero-day threats. [23]. On the other hand, middle-box-based detection
and defense systems rely on hardware devices [13,22] and lack adaptability to
various attack scenarios and network configurations. In addition, these methods
increase the cost for transmission and storage, and bring more attack surfaces
targeting middleware and cloud platforms [1,12].

Fortunately, with the emergence of Software-Defined Networking (SDN)
[15] and Network Function Virtualization (NFV) [19] technologies, research on
defense systems based on programmable networks has also pointed out new direc-
tions for DDoS detection and defense [54]. Bohatei et al. [14] is the first to design
a flexible and resilient DDoS detection and mitigation system based on SDN.
Although, subsequent studies based on this new network paradigm and network
devices (e.g., programmable switches and smart NICs) have improved the flexi-
bility and scalability of defense systems [28,52,57], the real-time response speed
and performance overhead need to be further improved.

Despite defense research efforts, the development of new DDoS attacks con-
tinues. Conversely, more and more diverse strategies have been shown in DDoS
attacks [30,34,43]. Firstly, emergent malware [39,45,46], such as Mirai [2], has
notably bolstered the potency of DDoS attacks by rapidly commandeering the
ever-increasing Internet of Things devices [33], leading to increased peak traf-
fic and diversified attack vectors. Secondly, many vulnerabilities are constantly
being exploited in network protocols, especially those based on the TCP pro-
tocol. Bock et al. [6] show that attackers exploiting vulnerabilities in the TCP
protocol for reflection amplification attacks is a potential new attack way, and the
amplification effect produced surpasses that of UDP-based attacks. TCP-based
DDoS attacks exploit the inherent characteristics of the TCP protocol. Attackers
employ a myriad of strategies and techniques to implement these attacks and
evolve them to evade detection. Thus, excavating attack patterns and identify-
ing vulnerabilities in existing protocols and systems is imperative for effective
detection.

Symbolic execution has been wilde used for is vulnerability exploitation and
patching [4,42]. Its prowess in navigating through intricate branch conditions can
achieve a deeper path execution. Further, Selective symbolic execution improves
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it, as it can analyze multiple execution paths of a program and switch modes
between symbolic execution and concrete execution. Its flexibility in testing large
and complex systems, such as operating system kernels, gives it superior per-
formance in detecting bugs and vulnerabilities in binary-based projects [47].
Therefore, in this work, we adopt selective symbolic execution to discover more
variants of TCP-based DDoS Attacks and recognize the different categories of
attack methods at the system level, observing the depth of system calls and the
behavior of the TCP protocol during the attack.

In this work, we propose an automated framework termed DDoSMiner, which
can characterize DDoS attack patterns and explore variants of DDoS attack traf-
fic. Specifically, DDoSMiner would initially record TCP traffic and generate the
corresponding Attack Call Flow Graph (ACFG) for further recognition of the
DDoS attack patterns. The key nodes of the ACFG are extracted by differentiat-
ing between benign and attack traffic for subsequent symbolic execution analysis.
For the symbolic execution module, DDoSMiner explores potential attack traces
within the TCP protocol based on reachable path termination key states from the
ACFG, generating various reachable candidate attack packet sequences. Based
on our experiments, we identify a new attack traffic, which is a variant of SYN
Flood Attack related to timestamp obfuscation. The evaluation of the results on
three popular rule sets of Snort demonstrates the new attack could bypass all
defense rule sets, while traditional DDoS attacks cannot.

In summary, the contributions are as follows:

– We propose an automated framework DDoSMiner for characterizing the sys-
tem control flow behavior of DDoS attacks and exploring new DDoS attacks.

– We gather 6 TCP-based DDoS attacks and adopt DDoSMiner to generate
ACFG for analyzers. Furthermore, we discover a new DDoS attack trace and
collect corresponding attack traffic.

– Empirical results show that the attack generated by DDoSMiner successfully
evades three popular detection rule sets on NIDS.

2 Background and Related Work

In this section, we provide a brief background for TCP-based DDoS attack detec-
tion and defense. Subsequently, we summarize existing DDoS mining/exploit
schemes. Finally, we introduce symbolic execution technology, which is used to
construct DDoSMiner.

2.1 TCP-Based DDoS Attacks

DDoS attacks refer to attackers control devices on the Internet to generate mas-
sive malicious or useless packets to disrupt the target network services. Most
DDoS attacks are developed based on TCP [32], and typical categories involve
bandwidth attacks and resource exhaustion attacks [16]. This is because the char-
acteristics of the TCP protocol could be exploited by adversaries to transport-
layer paralyze target systems or services. For example, a series of TCP-based
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DDoS attacks lies in exploiting TCP control packets by deceiving the three-way
handshake between the source and target servers, exhausting the resources of
the target server, eventually resulting in unavailable services. To resist these
attacks, defenders typically adopt various strategies, such as IP address-based
access control [21,48,49,53], intrusion detection system (IDS) [5,44,51,60,62],
and distributed firewalls [3,24], to filter out forged connection requests and mit-
igate the impact of attacks.

2.2 DDoS Mining/Exploit Schemes

To mine more DDoS attack strategies, existing solutions mainly involve manual
schemes and fuzzing-based. The former mainly mines emerging attacks in a man-
ual manner and requires domain-specific expert experience. Rossow et al. [38]
propose 14 types of reflective DDoS attacks based on features including proto-
cols, payload sizes, and packet transmission frequency. Hong et al. [20] propose
two attacks against network topologies by finding that most mainstream SDN
controllers are vulnerable to network visibility poisoning. These works rely on
expert knowledge and cannot be automatically conducted/explored.

The latter mainly leverages fuzzing to discover new DDoS strategies. Among
them, AMPFUZZ [25] introduces a protocol-agnostic approach for UDP vulner-
ability, significantly enhancing the fuzzing performance of AMPFUZZ with UDP
awareness. However, this work only covers states while ignoring state transitions,
which has a significant impact on TCP implementation (compared with stateless
UDP). For instance, TCP-Fuzz [63] proposes a new strategy for generating effec-
tive test cases for TCP stacks by considering the dependencies between inputs.
TCP-Fuzz only tests TCP stacks in user space and does not check kernel-level
TCP stacks, thus it cannot obtain coverage of their branches and branch tran-
sitions. StateDiver [58] is based on fuzzing and uses the discrepancy between
the two inputs in the protocol stack as feedback to explore abnormal nodes in
TCP implementations (on DPI). While there is a lack of relevant feedback for
DDoS. Our work is based on the TCP stack at the Linux kernel level, allowing
more precise analysis of TCP’s state transitions and using symbolic execution
to explore the TCP stack at the source code level.

2.3 Exploration TCP Stack with Symbolic Execution

Symbolic execution is a white-box program analysis technique. It explores mul-
tiple possible execution paths by adopting symbolic input values instead of
concrete input values. This allows the exploration of various paths a program
might take under different inputs, achieving good performance on program anal-
ysis/vulnerability detection. However, it has some problems regarding the explo-
sion of path state space.

With the development of constraint satisfaction problems and the emergence
of more scalable dynamic methods that combine concrete and symbolic exe-
cution [8], concolic testing merges symbolic execution with concrete execution,
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aiming to automatically discover vulnerabilities and errors in programs. Selec-
tive symbolic execution [10] further extends concolic execution, enabling pro-
gram analysis in real software stacks (user programs, libraries, kernels, drivers,
etc.) rather than using abstract models of these layers, and directly operating
on binary files.

As a leading work, SYMTCP [51] uses symbolic execution technology to
construct adversarial packets targeting TCP implementations. These packets
are designed to leverage the discrepancies between Deep Packet Inspection (DPI)
middleboxes and end hosts, to achieve eluding attacks. However, this requires
the manual review of the TCP stack’s source code and manual marking of drop
points (serve as termination points) in the Linux kernel.

Based on these studies, we intend to utilize symbolic execution to ana-
lyze TCP-based DDoS attack patterns. Different from SYMTCP, our pipeline
involves establishing and analyzing the ACFG by tracking TCP behavior on a
white-box target. By comparing normal traffic with various categories of attack
traffic, we identify drop nodes in the attack and generate related constraints for
symbolic execution.

3 Threat Model and Problem Definition

In this section, we describe the threat model in the context of DDoS attacks
and defense. We will provide a detailed definition of the ACFG in the following
sections, which will be used to outline path constraints.

3.1 Threat Model

Consider the DDoS Attack Defense Architecture as illustrated in Fig. 1. Attack-
ers send a large number of bogus TCP connection requests to the target system
through infected computers or devices, aiming to exhaust the resources of the
target server and thus prevent legitimate users from accessing the target service.
The IDS acts as a middlebox to monitor and report the traffic.

Actually, the TCP protocol on the server can be regarded as a discrete state
transition process, and the attack on the transmission protocol can be regarded
as a process of finite state machine state transitions. The execution of the TCP
protocol on the server can be modeled as a TCP finite state machine for program
analysis. The attackers aim to change the state of the TCP state machine by
sending probing attack packets and altering the response of the server to these
probing packets.

We adopt the TCP stack of the Linux kernel for system-level program anal-
ysis. Furthermore, to expand attack scenarios, we assume that attackers can
spoof addresses, which means they can disguise the source IP address of their
attack traffic. This assumption increases the diversity and applicability of the
attacks. Through comparative experiments between attack traffic and benign
traffic, we ensure that the anomalies observed on the server side after an attack
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Fig. 1. Illustration of DDoS attack pipeline and IDS.

are due to resource exhaustion attacks caused by the TCP protocol, not band-
width attacks overwhelmed by high traffic volume, because the server system
will not be destroyed by benign packets under the equivalent traffic loads.

3.2 Problem Definition

In this section, we provide a detailed definition of this work and offer a charac-
terization of the ACFG and its elements.

Definition 1: TCP State Machine. Based on the TCP protocol specifica-
tions, the Mealy TCP state machine [27,51] can be described as follows,

M = (S, I,O,Σ,Z) , (1)

S: The finite non-empty set of states. For instance, the typical set of TCP
states includes LISTEN, SYN RCVD, ESTABLISHED states. s0 ∈ S represents
the initial state.

I: The input symbol set, representing input events of the state machine, i.e.,
TCP packets.

O: The output symbol set, represents the output actions of the state machine.
For example, sending SYN packets, sending ACK packets, closing connections,
etc.

Σ: The state transition function, which defines the transition rules between
states, denoted as S × I → S. It specifies the next state the state machine will
move to, given a certain state and input event.

Z: Output function, which defines the relationship between the output sym-
bol, state, and input event, denoted as S × I → O. It specifies which output
action the state machine should perform, given a state and input event.
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Fig. 2. Syscall interaction analysis based on categories and connectivity.

Definition 2: Attack Call Flow Graph. The ACFG is a directed weighted
graph G = (V,E), where each node in the set of vertices represents a function
of the TCP stack. The call relationships between functions are represented by
directed edges. We extract different classes of ACFGs based on the characteristics
of benign traffic and attack traffic.

Definition 3: Malicious Nodes. Malicious nodes represent the function nodes
involved in the attack. These nodes are typically the functions abused by attack-
ers in the target system to initiate attacks or bypass security mechanisms. The
set of malicious nodes is denoted as VM .

Definition 4: Critical Nodes. Critical nodes represent important functional
nodes in the TCP stack, and their stability and correctness are crucial for the
operation of the entire system. Attackers may attempt to destroy the target
system through these nodes. After visualizing the system calls of benign and
attack traffic, we discover both of them rely on a specific node in a chained
call process. These malicious nodes resemble nodes in the normal traffic. While
there may be recursive calls within the path, such patterns often accompany the
presence of a critical node. Therefore, we further extract the critical nodes from
the ACFG.

As shown in Fig. 2, after clustering network nodes based on connectivity
and categories, we find that some nodes have an impact on the network’s cluster
structure. The key to defining critical nodes is to find an optimal subset of nodes
in the graph, denoted as VC ⊆ VM , such that the removal of these nodes has
the maximum impact on the network’s connectivity [26]. Let the set of critical
nodes be denoted as VC = {v1, v2, ..., vl},

λ1 = λN−1, (2)

λ2 = λN−l, (3)
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]
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where λN−1 represents the eigenvalue of the original matrix, λN−l represents
the eigenvalue of the matrix after removing the set of critical nodes, and λτ

represents the maximum eigenvalue of the internal coupling matrix between
the state variables of each node. The values cr > 0, r = 1, ..., k represent the
connectivity strengths of the r-th sub-network. The matrix PN(r) =

[
p(r)ij

]
N×N

represents the external coupling matrix of the r-th sub-network, used to describe
the network topology. The definition of the matrix PN = [pij ]N×N is as follows:
if there is an edge connecting node i and node j, then p(r)ij = p(r)ji = −1,
otherwise, it is 0.

The set of critical nodes should also satisfy that the nodes in VC have the
maximum total weighted sum, where f(vi) represents the attribute value of node
vi,

max
∑

f (vi) , vi ∈ VC . (5)

According to Definition 2 and Definition 4, we generate the critical nodes as
described in Algorithm 1.

Definition 5: Pivotal Nodes. Pivotal nodes represent the distinctive nodes
that cause a change of the TCP state. The set of pivotal nodes is denoted as VP .

Definition 6: Drop Nodes. We focus primarily on nodes that not only have
malicious behavior but also play a crucial role in the network. These types of
nodes are not just potentially malicious in intent but also have a significant
impact due to their critical position in the network structure. In addition, we
consider those nodes that represent state transitions in TCP connections because
they play an important role in determining the TCP state machine.

Thus, drop nodes are defined as the intersection of malicious nodes and crit-
ical nodes union with pivotal nodes, represented as,

VD = VM ∩ VC ∪ VP . (6)

Definition 7: Candidate Attack Sequence. When exploring the TCP state
machine M , if the TCP packet Packeti ∈ I either reaches our defined termi-
nation point or neither causes a change in the TCP state machine’s state nor
generates any output, then that packet belongs to the candidate attack sequence,
as follows,

Σ(s, Packeti) = s ∧ Z(s, Packeti) = ε. (7)
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Algorithm 1: Critical Nodes Algorithm
Input: Directed graph G, node attribute value f , eigenvalues of the original

matrix λN−1, maximum eigenvalue of inner coupling matrix λτ , external
coupling matrix of rth subnetwork PN(r).

Output: criticalNodes
1 // Step 1: Initialize criticalNodes and maxImpact

2 criticalNodes ← ∅, maxImpact ← −∞;
3 // Step 2: Traverse each node in the graph G

4 for node in G.nodes do
5 // Step 3: Remove the current node, create graph G′

6 G′ ← G.removeNode(node);
7 // Step 4: Initialize the impact of cluster C

8 C.impact.init();
9 // Step 5: Traverse each cluster in graph G

10 for C in G.clusters do
11 // Step 6: Traverse each node in the cluster C

12 for node in C.nodes do
13 // Step 7: The dependency of current and next node

14 C.conn ← any(G.hasEdge(node, node.next) ∧ node �= node.next);
15 C′.conn ← ¬all(G′.hasEdge(node, node.next) ∧ node �= node.next);
16 if C.conn ∧ C′.conn then
17 // Step 8: Calculate the sum of attribute value and

update the impact of cluster C

18
∑

fC ← ∑
(fnode for node in C);

19 C.impact ← C.impact + P 2
N(r) · (λN−1 − λτ ) · ∑

fC;

20 end

21 end

22 end
23 if C.impact > G.initImpact and C.impact > maxImpact then
24 // Step 9: Update maxImpact, add node to criticalNode

25 maxImpact ← C.impact;
26 criticalNodes.add(node);

27 end

28 end

4 Workflow of DDoSMiner

The overview of the DDoSMiner workflow is illustrated in Fig. 3, which consists
of three modules. In Module 1, DDoSMiner traces the kernel for both benign
and attack packets, and modeling attacks to generate a visual ACFG. In this
stage, we aim to collect all attack paths and critical nodes under different TCP
states when attacks occur. Module 2 refers to the symbolic execution phase. The
inputs consist of a set of TCP seed packets that drive the selective symbolic
execution engine to explore the TCP stack based on the drop nodes. Module 3 is
the online verification phase, launching the generated candidate attack sequence
to bypass the existing IDS.
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Fig. 3. Workflow of DDoSMiner.

4.1 Generation of Attack Call Flow Graph

The complete TCP state transition involves 11 states [18], and we simplify the
states of the TCP finite state machine as shown in Fig. 4. When a TCP con-
nection is established, both the client and server are in the CLOSED state. The
server creates a socket and begins listening for incoming remote requests, at
which point it enters the LISTEN state. The client initiates a connection by
sending a SYN segment (SYN=1) to the server, requesting to establish a con-
nection. Upon receiving the segment, the server responds by sending an ACK
and SYN segment (SYN=1, ACK=1) to the client. Meanwhile, the server’s state
transitions to SYN RCVD. After receiving the segment, the client sends an ACK
to the server. Upon receiving the ACK, the server’s state transitions to ESTAB-
LISHED. Then the three-way handshake is completed, and the TCP connection
is established.

We establish an experimental environment running on a standard Linux oper-
ating system, designed to collect kernel information and recreate TCP-based
DDoS attacks from datasets [40,41] for kernel tracing and analysis.

LISTEN SYN_RCVD ESTABLISHED NORMCON

Fig. 4. Simplified TCP states.
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Specifically, six categories of attacks are considered, including TCP Connect
Flood, TCP SYN Flood, TCP ACK Flood, TCP RST Flood, ACK-PSH Flood,
and SYN-RST-ACK Flood attacks. Each attack class abuses TCP connections
consumes resources of the target server, or obfuscates network traffic in its unique
way. Learning from these categories of attacks allows us to gain a more compre-
hensive understanding of the DDoS threats based on the TCP protocol and how
to effectively identify and respond to these threats.

According to the definitions provided in Sect. 3.2, we generate ACFGs asso-
ciated with different attack categories and present them through visualization.
In Fig. 5, we use different colors to represent different classes of nodes. Blue
nodes represent malicious nodes, orange nodes represent critical nodes, and red
nodes represent pivotal nodes. The radius of each node reflects the size of its
attribute value, with larger nodes indicating higher importance. Directed edges
in the graph represent the call relationships between functions, and the edge
weights indicate the level of dependence between different functions under the
same traffic conditions.

 Malicious Nodes Critical Nodes  Pivotal Nodes   Other Nodes

Fig. 5. Diagram depicting paths for benign and attack TCP packets.

4.2 Selective Symbolic Execution

S2E utilizes the symbolic execution engine KLEE [7] and conducts kernel testing
through the QEMU simulation system. It also offers an API interface [11] that
enables users to customize the scope of symbolic execution, facilitating a seamless
transition between symbolic execution and concrete execution modes. Firstly, the
symbolic execution engine initiates the running Linux kernel using a TCP socket
in the LISTEN state. Subsequently, it provides multiple symbolized TCP packets
to the kernel to comprehensively explore the server’s TCP stack. The generation
of symbolized data packets is divided into two parts:

(i) Generating TCP header packets with various combinations. During the sub-
sequent symbolic execution process, we focus on how changes in TCP header
fields such as sequence number, acknowledgment number, data offset, flags,
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Fig. 6. Symbolized TCP header and options [51].

window size, and urgent pointer affect path exploration. We automatically
generate various TCP header segments using script files, combine them with
other components, and create TCP seed packets.

(ii) Symbolizing data packets. The input for symbolic execution is not concrete
data, it requires symbolizing data values. A TCP header consists of a min-
imum of 20 bytes of fixed data (as shown in Fig. 6), storing the necessary
information for the packet transmission. The 20-byte TCP header does not
include options or data. Symbolizing TCP packets is one of the essential
tasks in symbolic execution analysis. It allows analysis tools to use symbolic
variables instead of concrete data values. This helps simulate various TCP
packet transmission paths, identifying potential vulnerabilities or issues.

Consider DDoS attackers typically deliberately mask their source IP
addresses and send a large number of false or invalid requests to the target
port. Therefore, we do not symbolize the source port and destination port
to avoid impacting the performance of symbolic execution. Symbolized fields
include sequence number, acknowledgment number, data offset, flags, window
size, urgent pointer, and TCP options. Changes in these fields can involve alter-
ations in the TCP state. After constructing the TCP seed packets sent to the
Linux host in S2E, we call the symbolization module for processing.

All execution paths for symbolic execution form a tree-like structure known
as the symbolic execution tree. We convert the directed weighted graph G cor-
responding to the ACFG into a directed spanning tree. We utilize a recursive
depth-first search (DFS) to explore the graph G and construct a directed span-
ning tree T , ensuring that no cycles are encountered during the analysis process.
This way, we can define symbolic execution path constraints through the gener-
ated tree T .

Through symbolic execution, we are able to identify a candidate attack
sequence that satisfies the branch termination conditions, and record the path
selections and symbolic constraints from the path exploration process in an out-
put document. This enables us to obtain attack patterns on the white-box sys-
tem, allowing for a detailed analysis of the attacks and the discovery of new
attack sequences.
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5 Evaluation

In this section, we first introduce the environment and configuration of our
experiment. We list the packet variants found by symbolic execution and check
whether IDS can prevent the corresponding attack behavior. After that, we in-
depth analyze the details of packet variants that can successfully bypass the
defense of IDS, while others can not.

5.1 Experiment Configuration

Testbed. We develop the prototype of DDoSMiner based on S2E 2.0 and Linux
kernel with S2E extension. The host operating system is Ubuntu 22.04, 64-bit,
with a 12-core CPU, specifically the 12-th Gen Intel(R) Core(TM) i5-12400,
and the GUEST operating system is Debian 11.3, 64-bit, with a 12-core CPU,
specifically the 12-th Gen Intel(R) Core(TM) i5-12400. Both systems are all
running based on Linux kernel v4.9.3. We run S2E in parallel mode with 48
cores, which is the maximum number of processes supported at present.

We use S2E to test the TCP stack implementation in the Linux kernel and
switch between the concrete mode and symbolic execution mode. When the pro-
gram reaches the tcp v4 rcv() code segment, we switch to symbolic execution
mode, while the rest of the code segments on the kernel remain in concrete exe-
cution mode. Test cases and symbolic constraints are generated when we reach
the code segment where our marked drop nodes are located.

IDS and Rule Sets. For evaluation, we use Snort 3 [36] as the deployed IDS
by the victim. Given Snort is the foremost open-source NIDS in the world, and
it employs a set of defined rules to identify harmful network activities and alerts.
In high-speed bandwidth environments, different rule sets vary in detection per-
formance [17]. We evaluate the performance using Snort Registered (SR), Snort
Community (SC), and Emerging Threats (ET) rule sets.

5.2 Attack Call Flow Graph Analysis

To better understand the attack patterns and find the key point, we construct
ACFG to assist in identifying and analyzing existing DDoS attacks, especially
for the difference of distinctive paths between attack and benign traffic. We
conduct kernel tracing on benign TCP traffic, which amounts to approximately
30GB in total. This benign flow serves as a reference baseline and assists us in
gaining a deeper understanding of the impact of DDoS attacks on the kernel and
in identifying characteristics of abnormal behavior.

Take TCP Connect Flood attack and the TCP SYN Flood attack as exam-
ples, as shown in Fig. 12 in Appendix. TCP Connect Flood attack potentially
triggers several TCP connection management functions within the kernel, such
as tcp rcv established() and tcp time wait(), among others. This class of
attack results in a large influx of connection requests, causing the server to
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Table 1. Drop nodes counts in various states

TCP-based DDoS Attacks State Count TCP-based DDoS

Attacks

State Count

TCP Connect Flood LISTEN 1 TCP SYN Flood LISTEN 7

SYN RCVD 2 SYN RCVD 12

ESTABLISHED 5 ESTABLISHED 44

ALL STATES - ALL STATES 3

TCP ACK Flood LISTEN 6 TCP RST Flood LISTEN 2

SYN RCVD 11 SYN RCVD 1

ESTABLISHED 18 ESTABLISHED 10

ALL STATES 3 ALL STATES 1

ACK-PSH Flood LISTEN 6 SYN-RST-ACK Flood LISTEN 2

SYN RCVD 11 SYN RCVD 4

ESTABLISHED 21 ESTABLISHED 2

ALL STATES 2 ALL STATES -

continuously attempt to allocate resources to handle these requests, ultimately
leading to resource exhaustion. TCP SYN Flood attacks trigger a large number
of invocations of the tcp syn ack timeout() function within the TCP stack.
This function defines the timeout period during which the server waits for the
client to respond with an ACK after sending a SYN-ACK response. In TCP
SYN Flood attack scenario, the TCP state machine remains in the SYN RCVD
state and cannot progress to the next state.

We consider resolve oracle in the TCP LISTEN, SYN RCVD, and ESTAB-
LISHED states, given these states cover the complete window of the server side in
the TCP three-way handshake. Such a way of focusing on core state transitions
simplifies the state machine, making symbolic execution more efficient. Thus, in
other TCP states, such as CLOSE WAIT, the server will not accept any further
packets. For different attacks, we mark different drop nodes in the source code.
S2E symbolically executes Linux binary files, so these points will be mapped to
the binary level. The number of drop nodes corresponding to different attacks is
shown in Table 1. Due to space limitations, we have placed the original address
table of drop nodes in Table 2 of the Appendix.

5.3 Symbol Execution Experiment Setup

Symbolic execution may get stuck at the beginning of execution and hard to
reach deep paths, which is caused by path selection heuristic methods. Therefore,
the key of the symbolic execution phase lies in the construction of TCP seed
packets and the definition of pruning strategies. TCP seed packets guide the
program along the path to the parts of the kernel and create side branches.
Once construction process of the main path is completed, S2E explores side
branches in depth. The promising seed packets help us penetrate deeper into the
TCP stack quickly.
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Fig. 7. Time costs and drop nodes coverage in symbolic execution.

In symbolic execution, we discard uninteresting paths, including: (i) Redun-
dant paths that re-explore the same parts of the kernel code, i.e., if a program
path is identified to a previously explored path and reaches the same address with
the same symbolic constraints, it will continue executing the same next branch.
As a result, it can be discarded. (ii) Error detection path branches caused by
incorrect concrete values generated by the solver. (iii) Path branches caused by
Linux kernel check failures. (iv) Path branches leading to drop nodes. These
strategies help us reduce the symbolic state space.

Although we generate specific TCP seed packets to reach drop nodes’
addresses and employ optimization strategies to narrow down the search space
for solutions, the complexity of the TCP stack makes it challenging for symbolic
execution to provide comprehensive coverage. We examine the path coverage of
the stack and track the accessed drop nodes, which can ensure critical nodes
associated with potential attack paths have been checked.

In experiments, we send three types of symbolic data packets: 20-byte pack-
ets, 40-byte packets, and 60-byte packets, each of which includes a TCP header
and payload. We observe that the composition of seed packet fields significantly
affects the time cost of symbolic execution, especially when handling 40-byte
and 60-byte packets, as shown in Fig. 7. We label six categories of attacks using
Roman numerals: TCP Connect Flood (I), TCP SYN Flood (II), TCP ACK
Flood (III), TCP RST Flood (IV), ACK-PSH Flood (V), and SYN-RST-ACK
Flood (VI).

Large seed packets contain more variables and data to be symbolized, result-
ing in a significant increase in the number of paths that the symbolic execution
engine needs to explore. This is because every possible branch of each conditional
statement needs to be considered. It needs to backtrack to a previous branching
point and reselect a path when the constraint is unsatisfied. These packets not
only introduce more code blocks, increasing the time cost of symbolic execution
but also imply exploring more paths to achieve higher code coverage.

After approximately 20 h of symbolic execution exploration, we utilize six
instances to explore over 100,000 execution paths. During this process, more than
4,000 state transitions were triggered. Due to the server-side TCP state machine
experiencing numerous repetitive cycles of state sequence (such as LISTEN →
SYN RCVD → SYN RCVD), these transitions include repeated states, covering
approximately 2,000 lines of code. Subsequently, we conduct further analysis of
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Fig. 8. Analysis of Testcase under various attacks.

the test cases associated with these newly discovered attack paths and perform
kernel tracing. In subsequent experiments, we assess these new potential threats
to better understand their potential risks and the impact of attacks.

5.4 Symbolic Execution Results

We solve the test cases for candidate attack sequences to generate specific values
for TCP header fields and perform field padding and validation for the packets.
Although selective symbolic execution explores paths close to the seed packets,
the randomness of paths due to the complexity of the TCP protocol stack may
lead to differences in path search results. Therefore, with the same configuration,
we conduct five sets of experiments (labeled A to E) for six categories of attacks
and record the following metrics:

Testcase Count. This metric represents the number of generated test cases.
It demonstrates the exploration of potential attack paths by the symbolic exe-
cution engine and the quantity of generated attack samples.

Attack Success Rate. This metric reflects the ratio of actual successful
attack attempts. It helps evaluate the effectiveness of the generated test cases in
simulating real attacks.

CPU Utilization. By monitoring CPU utilization, we understand the sys-
tem resource load during the attack.

Connection Queueing Rate. This metric shows the situation where TCP
connection requests are forced to queue for processing due to the attack. This
metric helps evaluate the performance of the system’s responsiveness to service
requests.

For the candidate attack sequence of each class attack, we conduct five inde-
pendent simulations to observe the impact of different factors under the above
metrics, as shown in Fig. 8 and 9. Actual data may varies due to network devices,
configurations, and defense strategies in place traffic patterns can also influence
the results. By monitoring and analyzing these metrics, we can more accurately
assess the actual performance and effectiveness of the test cases generated by
symbolic execution in the context of DDoS attack and defense.
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Fig. 9. Comparative metrics and impact of various attacks.

For the Testcase Count, the average number of Testcase Count is around
9300 for each type of attack, indicating that the symbolic execution engine
explored attack paths to a similar extent across various types of attacks. The
curves in Fig. 8 represent the average of five independent experiments for each
type of attack, and the bars represent the standard deviation for each type of
attack. From the averages, ACK-PSH Flood attack (V) and SYN-RST-ACK
Flood attack (VI) had fewer test cases, indicating that the symbolic execution
engine encountered fewer variants when exploring paths for these two types of
attacks. The standard deviation indicates that the TCP RST Flood attack (IV)
has the minimum fluctuation in test case count across different experiments.

Under different attacks, CPU utilization, connection queueing rate, and
attack success rate show different performances as shown in Fig. 9. TCP Connect
Flood and SYN-RST-ACK Flood attacks generally introduced more computa-
tion and connection requests, leading to higher CPU utilization, which was above
96% in experiments, even reaching 100%. Although TCP SYN Flood and TCP
RST Flood attacks involve a large number of connection requests, their attack
processes are simpler, thus requiring less CPU resources. TCP ACK Flood and
ACK-PSH Flood attacks show moderate CPU utilization.

For the Connection Queueing Rate, the six attacks do not show significant
differences. Effective test cases in most evaluations cause system capacity insuf-
ficiency and queuing of connection requests. This indicates that categories of
attacks effectively exhaust server resources.

For the Attack Success Rate, TCP ACK Flood and TCP RST Flood attacks
show lower success rates because these two types of attacks require matching
valid connection states to deceive the TCP protocol stack, otherwise they would
not affect the establishment of new connections or the continuation of existing
ones. In contrast, attacks like TCP SYN Flood or TCP Connect Flood directly
target the initialization process of connections, quickly filling the server’s half-
open connection queue and preventing the establishment of new legitimate con-
nections. This directly affects server availability, hence they have higher attack
success rates. ACK-PSH Flood and SYN-RST-ACK Flood attacks increase
server processing load, leading to connection interruptions or service delays.
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Fig. 10. Analysis of Benign vs. Known attack vs. New attack TCP traffic.

5.5 Evasion Evaluation Against IDS

We utilize three rule sets compatible with the Snort: SR, SC, and ET, and eval-
uate about 10,000 candidate attack sequences generated by symbolic execution.

We analyze the network traffic without IDS and then apply the SR, SC,
and ET rule sets for attack detection. To better understand this detection and
filtering process, we visualize this process, as shown in Fig. 10. The Fig. 10(a)
shows the states of benign traffic, known attack traffic, and new attack traffic
when no IDS checks are enabled. The other three figures in Fig. 10 are the traffic
conditions using the SR, SC, and ET rule sets. It shows that the ET rule set has
better detection performance than the other two.

Under baseline conditions without IDS inspection enabled, we first verify
known attack traffic, which mainly consists of traffic in public datasets. The
results show that when rule inspection is enabled, the defense system can effec-
tively mark and filter known attack traffic. However, for new attack traffic
generated by candidate attack sequences through symbolic execution, although
Snort successfully detects and blocks some attacks, a significant amount of traffic
bypasses Snort’s detection and successfully reaches its intended victim.

We evaluate CPU Utilization and Connection Queueing Rate as mentioned
above, confirming they indeed caused resource occupancy and TCP connection
queue congestion. Figure 11 shows the state of system resources is saturated dur-
ing new attacks and queuing of TCP connection requests caused by the limitation
of CPU capacity.

In the first 15 s, CPU occupancy is low, maintaining around 20%, and the
message queuing rate is nearly zero, indicating the system is operating nor-
mally without significant load or congestion. However, after 15 s, CPU occupancy
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Fig. 11. Changes in CPU Utilization and Connection Queueing Rate over time.

began to rise sharply, quickly approaching 100%, indicating the attack started
to cause significant processing pressure.

Meanwhile, the queuing rate of TCP connections began to rise slowly.
After the CPU utilization reaches its peak, the message queuing rate gradually
increases and reaches 100% at around 25 s. This means all new TCP connection
requests are queuing up for processing, i.e., unable to handle any TCP connec-
tion immediately. In this state, the system could not handle more load, and new
requests could only wait, leading to service timeouts.

We found despite setting defense levels for the known six categories of attacks
in the IDS, attackers can evade detection by adopting various attack variants,
aiming to increase attack success or reduce detection risk. These variants include
parameter randomization, attack mixing, malware use, IP address spoofing,
attack segmentation, and evasion of known rules.

Further, we discover that successful evasion strategies are related to TCP
timestamp option verification. Packets with time stamp echo reply (TSecr) not
matching timestamp value (TSval) are usually detected and reported by rules,
but successful IDS evasion cases with timestamped packet sequences include:

Insert Invalid Values. Randomizing Flag fields and TSval not conforming
to the normal time progression pattern (e.g., echoing a value in the TSecr field
that was never sent before in TSval), making packets appear as benign, delayed
arrivals.

Imitate Normal Communication. Attackers observe normal TCP traf-
fic timestamp patterns and imitate these patterns, using specific modes (e.g.,
adding extra microseconds every few packets) to alter the normal progression of
timestamps.

Timestamp Obfuscation. Some sequence timestamps are abnormal, with
their parsing observed to be incorrect on target servers. Compared to known
attack traffic, IDS does not report these packets, but their TIME WAIT state
often last twice as long as the Maximum Segment Lifetime (MSL). Also, part of
the timestamp confusion packets lead to abnormal transitions in the TCP state
machine.
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These attacks affect the TCP Retransmission Queue, with abnormal TSval
causing the TCP stack to misjudge network conditions, affecting the calcula-
tion of retransmission timeouts. Multiple timers and timeout mechanisms in the
TCP stack, like Keepalive timers and TIME WAIT state processing, are also
disrupted, affecting the TCP states.

Attackers could exploit flaws in TCP timestamp verification to disguise
attack traffic as normal, avoiding detection by IDS. This camouflage method
tampers with timestamps or inserts erroneous ones in attack packets, further
increasing detection complexity and reducing accuracy. Although attacks using
TCP timestamp options are not common, they are significantly effective. Devel-
oping IDS capable of deep analysis will help increase detection accuracy and
reduce false positives.

6 Conclusion

In this work, we introduce DDoSMiner, an automated framework which utilizes
the ACFG to extract critical attack points. In addition, we explore the system-
level performance of an attack and provide visualization results. DDoSMiner
integrates symbolic execution to systematically explore DDoS traffic variants
with the guidance of identified key states in the TCP state machine. Our exper-
iments generate a total of 9,741 candidate attack traffic variants, which are
evaluated on the popular NIDS Snort with three main defense rule set toolkits.
The result identifies one new attack traffic which is capable of bypassing all three
defense measures, demonstrating the effectiveness of DDoSMiner in uncovering
TCP-based DDoS attacks. Our work not only reveals potential security threats
in the TCP protocol but also provides a new perspective on attack methodology,
assisting researchers in better understanding and preventing network attacks.

7 Limitations and Future Work

Due to the complexity of the Linux kernel, exploration based on white-box strate-
gies still has the problem of inefficiency. Distributed strategies can be considered
to improve the efficiency of system operation. In addition, we chose a specific
version of the Linux kernel v4.9.3 to evaluate our system. TCP state machines for
other kernel versions and categories of attacks can be built through patch instal-
lation and other methods. Moreover, although we choose three widely covered
and mature IDS rule sets for verification against new threats, specific subsequent
defensive strategies and measures still need further research and exploration. In
the future, we plan to improve DDoSMiner by increasing the path coverage of
detection and applying DDoSMiner to other TCP stacks. Furthermore, DDoS-
Miner could be extended to explore more protocols. For different protocols, dif-
ferent drop nodes can be designed for expansion.
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A Visualization and Analysis of System Calls

The ACFG extracted from the TCP Connect Flood and TCP SYN Flood attacks
are shown in Fig. 12. The nodes and edges of ACFG are highlighted in different
colors to represent the corresponding types of packets (benign or attack). In
the figure, green-colored elements represent syscalls triggered by benign packets,
orange-colored elements represent syscalls triggered by attack packets, and blue
elements represent syscalls triggered by both types of packets. The red colored
nodes are identified as Pivotal Nodes. According to the definition in Sect. 3.2,
the following nodes represent the change of TCP state:

(i) tcp v4 syn recv sock: This is a critical function for handling client SYN
packets. This function checks the current TCP state (for example, whether
it is in LISTEN state) to determine if the connection can be established.

(ii) tcp check req: This function checks whether the SYN packet is valid and
whether there are resources available to handle this new connection request.
If the SYN packet is invalid, a RST packet will be sent to refuse the con-
nection.

(iii) tcp v4 do rcv: When the client sends an ACK packet in response to the
server’s SYN and ACK, this function processes the ACK packet, thereby
advancing the connection state transition process.

(iv) tcp rcv state process: This function is crucial in the TCP state machine.
Within this function, if the current connection state is SYN RCVD and
an appropriate ACK segment is received, the state transitions to ESTAB-
LISHED. Other state transitions in the TCP connection and the processing
of related packets also call this function.

(v) tcp rcv established: This function handles inputs in the ESTABLISHED
state.

(vi) tcp close: This function is used to close a TCP connection. It releases the
resources occupied by the connection and changes the connection state.

By comparing the orange nodes in the syscall of TCP Connect Flood and
TCP SYN Flood attacks, we can see that the two attacks have different charac-
teristics (detailed analysis in Sect. 5.2).

B The Kernel Address Corresponding to the Full Drop
Nodes for Six Categories of Attacks

We extract the potential drop nodes from the ACFG and then indexed the
corresponding addresses in the kernel. These addresses serve as path termination
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Fig. 12. Visualization of system calls for TCP Connect Flood Attack and TCP SYN
Flood Attack.
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Table 2. Kernel addresses associated with drop nodes for different attacks

TCP-based
DDoS Attacks

Address

TCP Connect Flood ffffffff819dc550 ffffffff819d93d0 ffffffff819e04d0 ffffffff819e9bf0

ffffffff819dc3a0 ffffffff819f1910 ffffffff819ef4d0

TCP SYN Flood ffffffff819f63b0 ffffffff819e5410 ffffffff819eaee0 ffffffff819eda80

ffffffff819d9ce0 ffffffff819de910 ffffffff819ead60 ffffffff819de6e0

ffffffff819d9e30 ffffffff819e63d0 ffffffff819de950 ffffffff819d2250

ffffffff819d5010 ffffffff819e4dd0 ffffffff819f5720 ffffffff819eb9d0

ffffffff819f6330 ffffffff819d1830 ffffffff819f5790 ffffffff819d3290

ffffffff819dc3a0 ffffffff819d9ef0 ffffffff819e91a0 ffffffff819e2a70

ffffffff819da3e0 ffffffff819f5a90 ffffffff819eafe0 ffffffff819ebbf0

ffffffff819de6a0 ffffffff819d38d0 ffffffff819e4600 ffffffff819ea720

ffffffff819d9e60 ffffffff819d19d0 ffffffff819e4550 ffffffff819dee80

ffffffff819d9f50 ffffffff819eca70 ffffffff819d1c00 ffffffff819ea5d0

ffffffff819dbee0 ffffffff819ed670 ffffffff819d7890 ffffffff819d1790

ffffffff819d3490 ffffffff81a87d40 ffffffff819d6af0 ffffffff819f5440

ffffffff819f25c0

TCP ACK Flood ffffffff819e5410 ffffffff819de6a0 ffffffff819d19d0 ffffffff819eca70

ffffffff819de910 ffffffff819d1830 ffffffff819f5790 ffffffff819ef4d0

ffffffff819e63d0 ffffffff819d38d0 ffffffff819d1c00 ffffffff819ed670

ffffffff819f5440 ffffffff819d3490 ffffffff819eda80 ffffffff819d3290

ffffffff819d7890 ffffffff819d6af0

TCP RST Flood ffffffff819d9470 ffffffff819d9080 ffffffff819efb70 ffffffff819f06c0

ffffffff819f6a30 ffffffff819e2b60 ffffffff819f0560 ffffffff819f6d10

ffffffff819ebfe0 ffffffff819ee750

ACK-PSH Flood ffffffff819e5410 ffffffff819e2a70 ffffffff819d38d0 ffffffff819eb9d0

ffffffff819de910 ffffffff819dc3a0 ffffffff819d19d0 ffffffff819ef4d0

ffffffff819e63d0 ffffffff819de6a0 ffffffff819f5790 ffffffff819eda80

ffffffff819f5440 ffffffff819d1830 ffffffff819e4600 ffffffff819ebbf0

ffffffff819d3290 ffffffff819e0460 ffffffff819eca70 ffffffff819d6af0

ffffffff819ea5d0 ffffffff819d3490 ffffffff819ed670 ffffffff819d1c00

ffffffff819e4550 ffffffff819d7890 ffffffff81a87d40

SYN-RST-ACK Flood ffffffff819e0460 ffffffff819ea5d0 ffffffff819ef4d0 ffffffff81a87d40

ffffffff819e4600 ffffffff819e4550

points for symbolic execution. The detailed attack types and the corresponding
address we extracted for the experiment are listed in Table 2.
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Abstract. Fully Homomorphic Encryption (FHE) enables computation
on encrypted data and can be used to provide privacy-preserving com-
putation for machine learning models. However, FHE is computationally
expensive and requires significant memory. Single instruction multiple
data (SIMD) can offset this cost. Batch-packing, an SIMD technique
that packs data along the batch dimension, requires significant memory.
In convolutional neural networks, we can exploit their regular and repeat-
ing structure to reduce the memory cost by caching recurring values. In
this paper, we investigate strategies for dynamically loading data from
persistent storage and how to cache it effectively. We propose a method
that reorders operations inside the convectional layer to increase caching
effectiveness and reduce memory requirements. We achieve up to 50x
reduction in memory requirements with only a 13% increase in runtime
compared to keeping the data in memory during the entire computa-
tion. Our method is up to 38% faster at no significant memory difference
compared to not using caching. We also show that our approach is up
to 4.5x faster than the operating system’s swapping technique. These
improvements allow us to run the models on less powerful and cheaper
hardware.

Keywords: neural networks · homomorphic encryption · privacy ·
privacy-preserving machine learning

1 Introduction

Machine learning (ML) and neural networks specifically are widely deployed
in many different scenarios, from voice assistants like Siri [27], Alexa [6], and
Google Assistant [21] over writing assistants like Grammarly [22], and chatbots
like Bard [20] and ChatGPT [39], to medical diagnostic systems [16,30]. Many
of these systems deal with privacy-sensitive data, some of which enjoy special
legal protections, e.g., medical data. These systems send the data to a server,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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which runs it through its model and returns the result to the client. Since the
server needs access to the unencrypted client data to perform the computation,
the client’s privacy is at risk. The server might use the data to train further ML
models, which could expose the data to privacy attacks, or the server itself could
be breached and the data stolen. Researchers have recently proposed solutions
to protect user data privacy in ML applications using different methods. Dif-
ferential Privacy [18] solutions preserve the privacy of the training data in the
trained model [1,40]. To protect the data during inference, solutions commonly
use Secure Multiparty Computation (SMC) [12,14,36,37], Fully Homomorphic
Encryption (FHE) [31,33,34] or a mixture between the two [7,38]. SMC allows
multiple parties to jointly evaluate a function without revealing their private
inputs; however, it requires all parties to stay online during the computation.
FHE, on the other hand, can be used entirely offline. FHE is a type of encryp-
tion that allows computation on encrypted data without exposing any inputs,
intermediate, or final results. Neural networks are a popular choice for privacy-
preserving ML models since most operations, like fully connected layers or con-
volutions, can be performed easily using FHE. Additionally, neural networks
perform very well on a wide range of tasks. However, FHE introduces significant
time and memory overhead. Some FHE schemes support single instruction mul-
tiple data (SIMD) processing, which can offset some time and memory overhead.
FHE ciphertexts can be thought of as fixed-sized encrypted vectors containing
thousands of elements, called slots. Two approaches for filling the slots have been
used for ML. 1.) Pack all the features of an instance into as few ciphertexts as
possible and perform convolutions and dot products with the help of rotations
[2,9,34], called inter-axis packing. This has the advantage that the number of
ciphertexts and total operations is relatively small, making it fast for a small
number of instances. However, this approach often requires large rotation keys,
and the rotations require additional time. 2.) Pack multiple instances’ features
into a single ciphertext [17,25,42], called batch-packing. This produces as many
ciphertexts as the data has features. Batch-packing allows us to simultaneously
compute results for many instances, leading to low amortized per-instance cost
and high throughput. However, it suffers from high latency and memory require-
ments. Batch-packing is beneficial when many instances need to be processed,
and low latency is not essential. For example, in a medical image diagnostic sys-
tem, where images are collected throughout the day, and an ML system analyzes
them overnight. This work focuses on convolutional neural networks (CNN),
specifically. We address the memory requirements for convolutional layers by
trading disc space for main memory. Disc space is typically orders of magni-
tude cheaper. However, it is also slower. We dynamically load ciphertexts and
plaintexts and clear them from memory when no longer needed. We present and
compare different strategies and their impact on memory and runtime. Prior
work focuses primarily on latency reduction; reduction in memory is often a side
effect of inter-axis packing. To the best of our knowledge, this is the first study
that performs an in-depth analysis of caching strategies and memory reduction
for batch-packed inference. Brutzkus et al. [9] or Lee et al. [34] propose input
packing techniques, which reduce the number of ciphertexts and thereby
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memory requirements. However, these approaches require additional operations
like masking and rotation, which lower the overall throughput. Boemer et al. [7]
present a complex encoding, allowing them to fit more values into a ciphertext.
This can reduce the number of ciphertexts and plaintext when using inter-axis
packing. However, for batch-packing, it only affects the batch size. Approaches
that use client interaction, such as Boemer et al. [7], Podschwadt et al. [41], and
Cai et al. [10] can often use smaller crypto parameters, since the client inter-
action resets the noise level, allowing for further computation. However, these
approaches require the client to be online during the computation. We make the
following main contributions:

– We propose a schedule representation for convolutions that allows us to
reorder its fundamental operations to achieve increased caching performance.

– We propose a memory estimation algorithm for schedules.
– We propose an algorithm for executing a schedule using multiple threads.
– We propose multiple strategies for creating schedules, which we analyze and

experimentally evaluate with regard to their time and memory requirements.

The paper is organized as follows: in Sect. 2, we discuss the theoretical back-
ground and notation. In Sect. 3, we discuss related work before we describe our
proposed approach in detail in Sect. 4. Section 5 describes ways to reorder the
computation to reduce memory requirements, which we experimentally evaluate
in Sect. 6. We conclude the paper in Sect. 7.

2 Background

Here, we consider 2-D convolutional layers since they are commonly used in
image classification, a prevalent ML task. However, our proposed approach is not
limited to 2-D and can easily be transferred to convolutions in other dimensions.
We consider convolutions with inputs X, weights W , and outputs Y , where X,
W , and Y are tensors all four-dimensional tensors. The first dimension of X and
Y is the batch dimension, and | · | denotes the number of elements in a tensor.
Lowercase bold letters, e.g., x, indicate elements of a tensor.

2.1 Fully Homomorphic Encryption

FHE schemes are public key crypto schemes that can evaluate addition and mul-
tiplication on encrypted data without decrypting it at any point. The result of
the computation is also encrypted. After decryption, the result is as if the com-
putation was performed on plain data. In this paper, we use the Residue Num-
ber System (RNS) version of the Cheon-Kim-Kim-Song (CKKS) scheme [13].
Unlike most other schemes, CKKS supports real numbers. However, it performs
encrypted computation only approximately, leading to approximation errors.
The error appears first in the least significant bits of the result, keeping the error
small. We can think of CKKS plain- and ciphertexts as one-dimensional vectors
containing multiple values offering vectorized, element-wise SIMD computation
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[44]. The maximum number of values, typically called slots, is determined by
the security parameters, which is a power of two. The number of filled slots
in ciphertext does not impact the performance of the operation, allowing us to
perform addition or multiplication of thousands of values at once.

2.2 Batch Packing

We consider ns to be the number of slots in a ciphertext. For simplicity, we
assume that the batch size is equal to ns. Otherwise, we would need to split the
data into multiple batches or pad it. We partially flatten all dimensions in X
except the batch dimension to encrypt the inputs. We take each column from the
resulting two-dimensional matrix and encrypt that into a ciphertext, leaving us
with a vector of ciphertexts. We need to encode the weights as well. Each weight
value in W is encoded into its own plaintext. Before encoding, we turn each
value into a vector by repeating it ns times. This produces |X|/ns ciphertexts
and |W | plaintexts. If the model needs to be encrypted as well, we can encrypt the
encoded plaintext weights. Similarly, the encoding of W contains |W |/ns cipher-
texts. We can think of the encoding as setting the batch axis to one. The issue
that arises is that FHE ciphertexts and plaintexts require a substantial amount
of memory. A single ciphertext can be between a few hundred kilobytes to multi-
ple megabytes, depending on the crypto parameters; a plaintext is half the size of
a ciphertext. We refer to the encoded and/or encrypted inputs, weights, and out-
puts as X ′, W ′, and Y ′, respectively, and values taken from them as x′, w′ and y′.

2.3 Convolutional Layers

Here, we consider two-dimensional convolutions commonly used in neural net-
works; however, other dimensionalities work fundamentally the same. Goodfellow
et al. [19] define the operation as follows: given the inputs X,W , and the output
Y , which are all tensors, we can define the two-dimensional convolution as:

Yb,m,n,cout =
∑

j

∑

k

∑

cin

Xb,m−j,n−k,cinWj,k,cin,cout (1)

We use the subscript to indicate a single element in the tensor, where b is the
batch index, cin the input channel index, and cout, the output channel index. Eq
1 needs to be computed for all values in Y .

2.4 Lock-Free Multi-threaded Convolution

The most straightforward way to compute a convolution with multiple threads
is to have each y computed by a thread; Eq. 1 is computed by a separated thread
for each unique (b,m, n, cout). For s = |Y |, we can use at most nt = s parallel
threads without requiring some synchronization between the threads since all
threads read from the shared resources X and W but do not modify them; every
Yb,m,n,cout is only modified by one thread, ruling out any race conditions that
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could lead to lost updates. With fewer than s threads, threads can compute
multiple Yb,m,n,cout . With more than s threads, we either need synchronization
or can not use these threads. Generally, given nt threads where each thread is
assigned a unique integer i ∈ [1, nt], we can use Algorithm 1.

Algorithm 1. Lock-free multi-threaded Convolution
Inputs: input tensor X, weight tensor W , output tensor Y , number of threads nt

Outpus: output tensor Y containing the result of the convolution

1: while t ≤ nt and t ≤ |Y | do
2: Start Thread t and execute:
3: q := t
4: while q ≤ |Y | do
5: convert q to multi-dimensional index b, m, n, cout
6: Yb,m,n,co :=

∑
j

∑
k

∑
ci

Xb,m−j,n−k,ciWj,k,ci,co

7: q := q + nt

8: end while
9: End Thread

10: end while

We assume that inputs are stored on a disk (the term disk refers to any
persistent storage, i.e., a hard disk drive or solid-state drive) and must be loaded
into memory. With the Algorithm 1, we have two options to keep it lock-free.
1.) Load X and Y before we start the computation, or 2.) Each thread loads the
x and y as needed. 1.) has the upside in that we only need to load each value
once and can reuse them at no additional cost. However, the downside is that
we need to keep them in memory for the entirety of the computation. 2.) On the
other hand, needs to keep much fewer objects in memory. Each thread has only
three objects in memory: one x, one weight w, and the output y. However, each
thread must perform two loads for each iteration of the nested sums in line 6.
Furthermore, multiple threads may load the same x and w, causing redundant
loads. A further issue with this algorithm arises when |Y | is not divisible by nt.
In this case, |Y | − |Y | mod nt threads finish one iteration, line 4, early and are
idle for the rest of the computation, leading to unused computational resources.
However, this impact is small if |Y | is large compared to nt. Performing the
second option on plain data will lead to slower results since arithmetic operations
are much faster than data loading. Additionally, single x and w are so small that
we can not save significant memory by loading them on demand.

Running Algorithm 1 on encrypted data is straightforward using batch-
packing described earlier. To do this, we replace X with X ′, W with W ′, and
Y with Y ′. This replacement sets the batch dimension to one, allowing us to
remove it from consideration. For the algorithm, it does not matter if W ′ is
encoded FHE plaintexts or ciphertexts if the model is encrypted. In the case
of the plaintext model, we assume that unencoded weights W are loaded into
memory before the computation starts and are encoded when needed; therefore,
we don’t need to load them strictly speaking. However, we call this operation
loading for simplicity in this context.
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3 Related Work

Akavia et al. [3] focus on reducing the storage footprint of FHE ciphertext
rather than the in-memory size during computation. They design a protocol that
allows multiple data producers to upload and store data in the cloud with no
overhead compared to storing AES (Advanced Encryption Standard) encrypted
data. Storing AES encrypted on an untrusted server and using secret sharing, a
computing server can use the data for HE computation with the help of an aux-
iliary server. In contrast, our proposed solution reduces the memory footprint at
computation rather than the encrypted storage size.

Jiang et al. [28], Brutzukus et al. [9], Lee et al. [34], Dathathri et al. [15],
and Lee et al. [33] are conceptually similar works, who all reduce the number
of ciphertexts required by using inter-axis packing. While all these approaches
reduce the inference latency, they require expensive rotations, lowering the
throughput compared to batch-packed solutions. Additionally, they often rely
on designing the packing strategy for the specific network architecture.

Other studies rely on interactive solutions for privacy preservation. Hao et
al. [23] and Huang et al. [26] both propose efficient matrix multiplications in a
two-party setting. Both studies propose rotation-free matrix multiplication over
polynomial encoded ciphertexts. However, both require interactive phases where
one party must extract specific polynomial coefficients and mask the result.
Zheng et al. [46] propose a method for fast private inference using transformers
and SMC. The authors use a similar protocol to the one proposed by Juvekar et
al. [29], where the server performs much of the expensive matrix multiplication
computation in an offline phase. Zheng et al. [46] reduce the number of ciphertext
rotations required by packing the same feature of different tokens into the same
ciphertext, similar to the batch-packing we use in our approach. However, we
compute the intermediate terms in a less memory-consuming way.

Prior work on batch-packed PPML using FHE [8,11,17,24] does not explicitly
state how they perform matrix multiplication or convolutions. They focus on
other improvements like better polynomial approximation [11,24], or parameter
fusion and special value bypass [8]. We believe most of these solutions could
decrease memory requirements using our proposed algorithm. Another work that
addresses memory limitations is Badawi et al. [4], which implements a CNN
over FHE data using GPU acceleration for the basic ciphertext operation. To
fit the input to the convolution into GPU memory, they split it into multiple
blocks of the same size as the filter. The filter and as many of these blocks
as possible are loaded into GPU memory, where the convolution is performed.
Compared to our proposed approach, this process only reduces the memory
requirement on the GPU. The input and weights still need to be present in
the main memory. Shivdikar et al. [43] also present techniques aimed at GPUs.
They aim to reduce the repeated memory reads inside the GPU when performing
polynomial multiplication for HE primitives. While this speeds up the low-level
operations underpinning most HE schemes, unlike our work, it does not address
the issue of requiring a large number of plaintexts or ciphertexts in memory.
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4 Our Proposed Approach

To address the issues of memory consumption and unused resources, we model
the convolutional layer as a schedule, which determines the order of operations.
We present and compare multiple schedule construction strategies based on the
computation and available resources. We further present an algorithm to execute
a schedule. From now on, we assume that all tensors are flattened.

4.1 Modeling the Problem as a Schedule

We can write each element y as a sum of products of x and w. We denote a
product of two elements of x and w as the triple t = (x,w,y), where y is the
result that holds the sum that the product xw is a part of. To refer to an element
in a triple t, we use the following notation ti; i ∈ {x,w, y}.

Algorithm 2. Generating a schedule from a 2D Convolution
Inputs: Output shape hout, wout, cout, Input shape hin, wincin, Filter size wh, ww

Output: The schedule S

1: S := [ ]
2: for each i ∈ [1, . . . , houtwoutcout] do
3: convert i to multi-dimensional index (m, n, ty)
4: for each j ∈ [1, . . . , whwwcin] do
5: convert j to multi-dimensional index (p, q, r)
6: tx := m − p + ((n − q)win + (rhinwin)
7: tw := p + (qwh) + (rwwwh) + (rwwwhcin))
8: append (tx, tw, ty) to S
9: end for

10: end for

Definition 1 (Schedule). Let f be a convolutional layer; we say ti ∈ f iff the
sum to compute tyi contains the product txi t

w
i . A schedule is an ordered list of

triples ti that contains all ti ∈ f exactly once.

In other words, we represent f as a sequence of all its element-wise products.
To compute the function f , we need to compute all products given in the sched-
ule. Additionally, we must sum all products with the same value for y. We call
the number of triples in a schedule the length or steps of a schedule, denoted
by |S|. Algorithm 2 shows how to generate a schedule for two-dimensional con-
volutions. Higher dimensional convolutions work analogously by expanding the
iteration bounds in lines 2 and 4, the decomposition of i and j in lines 3 and 5,
and the formula for tx and tw by the extra dimensions. In addition to the compu-
tation steps, we also insert load instructions into the schedule. Load instructions
specify which elements to load into memory, discard from memory, or write back
to disk in case they were updated.
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4.2 Executing a Schedule

To execute a schedule, we evaluate all triples in order. To evaluate a triple t
we multiply the input Xtx with the weight Wtw and add the result to Yty ;
Ytt = Yty +XtxWtw . We assume that all y are 0 at the beginning. We parallelize
the execution of the schedule across multiple threads. Each repeatedly evaluates
the first unevaluated triple. This requires synchronization at two points. 1.) We
must ensure that every triple is evaluated exactly once. 2.) Unlike in Algorithm
1, we cannot guarantee that multiple threads do not write to the same output;
therefore, we need locking to prevent race conditions. We use the following algo-
rithm to ensure all values are correctly summed into the output value. We show
our proposed algorithm in Algorithm 3. The parts that must be protected from
concurrent access are marked as Critical Section.

Algorithm 3. Executing a schedule
Inputs: inputs X, weights W , output Y , number of threads nt, schedule S
Outputs: Y containing the result of the convolution

1: ensure Yi = ∅; ∀i ∈ [1, |Y |]
2: is := 1
3: while i ≤ nt and i ≤ |S| do
4: Start Thread i and execute:
5: while is ≤ |S| do
6: j := is

⎫
⎬

⎭

Critical
Section

7: is := is + 1
8: perform load instructions
9: t := Sj

10: r := Xtc · Wtp � HE multiplication
11: if Yto = ∅ then
12: Yto := r
13: else

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Critical
Section

14: v := Yto

15: Yto := ∅

16: r := v + r � HE addition
17: goto line 11
18: end if
19: end while
20: End Thread
21: end while

We indicate where in the algorithm process load instructions in line 8. A load
instruction has three attributes: 1.) the step that is executed on, 2.) the type
of instruction, load or unload, and 3.) the object to load. Every iteration, each
thread checks if there is an unprocessed load instruction with a step equal to
or lower than the step the thread is executing. If there is, the thread marks it
complete and executes it. Again, we must ensure that only one thread updates
the load instructions at any time. Each thread tries to execute any outstanding
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load instructions before moving on. Objects loaded through load instructions
stay cached until explicitly unloaded through another load instruction or until
the computation is complete. If a thread requires values not loaded by any load
instructions, it loads them on demand and does not cache them.

4.3 Cost of a Schedule

We can use the schedule to estimate the maximum memory required on
encrypted data. Maximum memory is important since we cannot execute the
schedule if it requires more than the available memory. Most of the memory
required during execution stems from the ciphertexts and plaintexts; therefore,
we ignore additional objects like keys, the schedule, and other data in our esti-
mation. To estimate the cost, we look at the load instructions, the number of
threads, and the objects loaded on demand. We first examine the simpler case
with only one thread and extend it to multiple threads later. Let sx be the size
of a single x′, sw the size of a single w′, and sy the size of a single y′. To estimate
the memory requirement of a schedule, we need to perform the following steps:

1. Split the schedule into parts at the load instructions so that each part begins
with load instructions and contains no other load instructions except those
at the beginning. A part must not only contain load instructions.

2. For each part, count how many x′, w′, and y′ are loaded and unloaded.
3. Weight the count of x′, w′, and y′ by sx, sw, and sp, respectively.
4. For every step, weigh the on-demand loaded objects and add them.
5. For each part, add the weighted counts from step 3 and the maximum from

step 4. The maximum of all the parts is our estimate for the schedule.

We now extend the estimation to multiple threads. The estimate for multiple
threads is less precise than that for a single thread since we can only make
assumptions about how multiple threads will interact. We make the following
simplifying assumptions: 1.) threads execute schedule steps at the same speed,
and 2.) a continuous block of load instructions is executed simultaneously, no
matter how many instructions are in that block. The main ideas are that if we
have split the schedule into parts that contain fewer steps than we have threads
nt, we merge adjacent parts until all parts contain at least as many steps as
we have threads available. Then we identifiy the nt steps that require the most
memory in each part. To do this we start as we did in the single thread case
above. Next, we look at the number of steps in each part. If the part has fewer
steps than the number of threads nt, we combine it with the next part to form a
new part by adding the cost of the load instructions. We repeat this until the new
combined part has more steps than threads. We repeat this for all parts of the
schedule. To estimate the cost of the on-demand loaded objects, we assume that
nt schedule steps are executed at the same time. In the final step, we handle the
cost of the schedule steps. We compute the on-demand cost for all steps in the
schedule parts created in the previous step. The computation happens the same
way as described in the single-threaded case above. However, now we not only
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add the step with the highest cost; we add the nt steps with the highest costs.
This method provides a reasonable estimate for the memory cost of a schedule
with multi-threaded execution.

4.4 Threat Model

In this work, we assume that all parties are honest but curious. They follow all
protocols and algorithms without deviation. However, they do try to learn as
much information as they can. The server offers private inference to the client.
Only the dimensions of the data and the data domain need to be shared between
the client and server in plaintext. The actual instances and the inference result
are only ever shared in encrypted form. Besides the input and output dimen-
sions of the model, the client gains no additional information about the model.
However, model extraction attacks by the client, as described by Tramer et al.
[45], can still threaten the server-side model. Additionally, since we rely on the
CKKS scheme, the client needs to make sure not to share decrypted inference
results with the server since this can be used to compromise the security of the
client’s secret key [35]. Our proposed approach reorders the operation the server
performs of the encrypted data, which is not observable by the client. The client
can only observe the time the server needs to perform the computation. Without
knowing the server’s hardware configuration, this does not provide any useful
information to the client. Even if the client knows the exact hardware configu-
ration, it can not learn any other information than it would learn if the server
used a different computational model.

5 Reduced Memory Schedules

Fig. 1. Breaking an example base schedule down into multiple sub-schedules. This
schedule is executed row-wise.

In this section, we propose different ways to construct schedules. These sched-
ules provide trade-offs between runtime and memory. The fastest we can execute
a schedule is by loading all data at the beginning of the computation and then
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using the lock-free Algorithm 1. However, this requires a large amount of mem-
ory. We can reduce the memory footprint by loading everything on demand.
However, this increases runtime significantly.

We can transform the computation performed by Algorithm 1 into a schedule.
Again, consider nt to be the number of threads, no the number of outputs of the
computation, and nf the number of products that sum up into a single output. In
Algorithm 1, every thread executes a subschedule where all ty mod i = 0; t ∈ S,
where i is the thread id. We can obtain the combined schedule by taking all
subschedules and interleaving them elementwise. See Fig. 2 for an example with
three threads.

Fig. 2. Example of how to turn a lock-free execution with three threads into a schedule

The lock-free algorithm computes and needs to keep in memory nt outputs
simultaneously. The base schedule, on the other hand, fully computes a single
output before moving on to the next one. This allows us to keep fewer outputs in
memory. This is the lowest amount of memory we can achieve. However, we need
to load objects from disk frequently and are not using any caching. Caching aims
to reduce the number of loading operations as much as possible. We can exploit
the regular structure of convolutions to find the best values for caching. We can
split a schedule into a regular, repeating pattern defined by the size and number
of filters and input channels. In two-dimensional convolutions, as used in neural
networks, we have a four-dimensional filter volume, W , where the dimensions
are in order: i, j the position in the filter, cin the input channel, and cout the
output channel. We move W across the entire input, creating cout outputs at
every position. Note how far W we move the filter is given by the stride, which
we assume to be one here. However, our method remains applicable to other
stride values. Each output, at a given position of W , uses the same values from
X. We call each unique position of the filter on the inputs the filter position or
window.

We need to keep three kinds of objects in memory during the computation.
Inputs x, weights w and, outputs y. We design multiple caching strategies based
on the memory available. We will not go over the trivial case that we can fit all
values of x and w into memory.
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5.1 Caching by Object Type

The simplest caching strategy, is to load either all values from X ′ or W ′ at the
beginning of the computation and load the other values on demand as needed.
This strategy creates very simple schedules; however, it underutilizes caching.
If we preload all x′, we load too many values much earlier than needed in the
computation, and if we preload all y′ we need to load x′ values frequently.

5.2 Full Window Caching

We can improve the caching by object type strategy by utilizing the underlying
structure of the convolution operation. To obtain the output values we move
the filter across the input values. Each filter channel creates one output value.
The filter values at every position are the same. Therefore, if we can load them
only once and cache them for the duration of the computation we can save a
significant amount of load operations. However, for each position the input values
change. Each position of W requires only |W ′|/cout x′. If we can fit these objects
and all y′ into memory, we only load W ′ once. Since W ′ usually moves over the
inputs with some overlap, i.e., the stride is smaller than the width and height
of the filter, we can reuse many x′ and only need to unload and reload a small
amount. We start at the top left and move W from left to right. Once we reach
the end on the right, we move down and start over on the right, repeating until
we reach the bottom right. If the filter size or stride is not symmetrical, it is
beneficial to change the behavior to first move in the direction that has the most
overlap, reducing the number of values that need to be loaded and increasing
the number of values that can be reused.

3,6,02,4,00,0,0 0,2,1

3,7,12,5,11,3,10,1,1

25,34,024,32,00,82,22 0,03,32

25,35,124,33,123,31,122,29,1
…

5,6,24,4,22,0,2 2,2,3

3,7,32,5,31,3,32,1,3

27,34,226,32,22,82,42 2,03,52

2735,326,33,325,31,324,19,3
…

62 72

1 0

-

-

Load X

Unload X

Load W

Unload W

Fig. 3. Load instructions that are necessary when moving from the first window to the
second using window caching with a 5 × 5x2 input and a 3 × 3x2 × 2 kernel.

5.3 Partial Window Caching

If we can fit |W ′|/cout x′ but not all of W ′ into memory, we can modify the full
window caching strategy to reduce the number of loads. Let n be the number
of w′ that we can fit into memory in addition to all the x′ in the window. We
then split the schedule into sub-schedules for every position of W . To reorder the
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sub-schedules to increase caching potential we reverse every second sub-schedule;
see Fig. 4. This reordering makes it so that i values to the left and right of the
sub-schedule boundary are the same for all i ∈ [1, |W |]. This allows us to cache
n values before the sub-schedule boundary and reuse them in the next one.

Fig. 4. Weights Wi only in Sub-Schedules that correspond to individual filter positions
and how they can be reordered to increase caching potential.

5.4 Column-Wise Caching

If we cannot fit |W |/cout x′ or W ′ into memory, we cannot use any of the caching
methods described above. However, we can construct a different schedule that
allows us to cache x′ values. For this schedule, we need to be able to fit cout
y′ into memory. By taking each window sub schedule and reordering it column-
major instead of row-major, see Fig. 5, we can reuse the same x′ multiple times
before we unload it. This ordering requires us to keep cout y′ in memory. This
ordering is most beneficial when the number of input channels is much larger
than the output channels or the filter is relatively large. Both scenarios lead to
a large number of x′ in a window. Depending on how much memory is available,
we can cache multiple columns. Additionally, we can combine this with the idea
from partial window caching of reordering the computation to generate adjacent
window subschedules that end and start with the same X values.

Fig. 5. Transforming the base schedule into a column-wise caching schedule

A downside of the proposed approach is that in order to achieve any benefits,
we require the data to be batch-packed and a convolutional layer. Only batch-
packing allows us to reorder the computation on a granular level. If this approach
provides any benefits with inter-axis packing strategies is beyond the scope of
this work. We need a convolutional layer to exploit its repeating weight structure.
It is possible that we could use similar optimizations with recurrent layers since
they also have repeating weights. However, recurrent layers impose additional
challenges when used with HE [42].
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6 Experimental Evaluation

We evaluate our proposed solution on the layers of a convolutional neural network
(CNN) trained on the CIFAR-10 [32] dataset. We first estimate the memory
requirements and then compare them to the measurements we obtain by running
the model on encrypted data. Table 1 shows the model’s architecture. We have
two different models. One for plain data and one adapted to be HE-friendly,
meaning it only contains operations that are easy to compute on encrypted
data. Both models achieve very similar accuracies on the test data, 70.9% for
the original model and 69.7% for the HE-friendly model. The main interest of
this paper is not to propose new models or techniques that increase the accuracy
of models on encrypted data but to analyze and reduce the memory consumption
of these models.
Table 1. Architecture of the evaluation model with the layer parameters showing the
filter size (FS), stride (S), number of filters (NF), and the activation or pooling function
used on plain text (PT) and on encrypted data (HE).

Layer Input Shape Output Shape Parameters

Conv 2D (1) 32 × 32 × 3 30 × 30 × 32 FS: 3 × 3, S: 1 × 1, NF: 32, PT: ReLU,
HE: x2

Pooling 30 × 30 × 32 15 × 15 × 32 FS: 2 × 2, S: 2 × 2, PT: Max, HE:
Average

Conv 2D (2) 15 × 15 × 32 13 × 13 × 64 FS: 3 × 3, S: 1 × 1, NF: 64, PT: ReLU,
HE: x2

Pooling 13 × 13 × 64 6 × 6 × 64 FS: 2 × 2, S: 2 × 2, PT: Max, HE:
Average

Conv 2D (3) 6 × 6 × 64 4 × 4 × 64 FS: 3 × 3, S: 1 × 1, NF: 64, PT: ReLU,
HE: x2

Flatten 4 × 4 × 64 1024 -

Dense 1024 64 Units: 64, PT: ReLU, HE: x2

Dense 64 10 Units: 10

We define three sets of crypto parameters: small, medium, and large. All
parameters guarantee at least 128-bit security. We use OpenFHE [5] as the
underlying crypto library in our implementation. The small parameters have
a ring dimension of 214 and a multiplicative depth of 2. The medium parame-
ters have a ring dimension of 214 and a multiplicative depth of 8. And the large
parameters have a ring dimension of 215 and a multiplicative depth of 19. This
results in a ciphertext size of 0.75 MB, 2.225 MB, and 10 MB for the small,
medium, and large parameters respectively. A plaintext is always half the size of
a ciphertext. We have two machines. One with 16 cores, 20 GB of memory, and
32 GB of operating system (OS) swap space, and another with 104 cores and 768
GB of memory. Both machines have two TB solid-state drives. We define differ-
ent schedules, then estimate the required memory using the technique described
in Sect. 4.3, and finally execute the schedules to obtain real measurements.
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We define several schedules that we estimate and measure the memory
requirements for. The names of the schedules are given italicized. We use the
Lock-free algorithm (Algorithm 1) as our baselines once we load all values on
demand (Lock-free on demand) and once we preload all values before execution
Lock-free Preload. We compare these baselines to their direct equivalent using
our proposed algorithm (Algorithm 3), where we preload all values (Preload
everything). Next, we investigate the behavior when we either preload all of X ′,
Preload X ′, or all W ′ values Preload W ′, x′ on demand. Finally, we look closer
at the window, partial window, and column-wise caching. For (partial) window
caching, we always load all of x′ in the window and investigate the following
strategies for loading w′s:

– load all of W ′, Load X ′ window W ′

– load w′s on demand, Load X ′ window, w′ on demand
– load half of W ′ values, Load X ′ window, W ′/2
– load a quarter of W ′, Load X ′ window, W ′/4

We only cache one x′X, Column Major for column-wise caching. For all
schedules, we cache the y′s from their first appearance in the schedule to their
last.

6.1 Memory Estimate

To demonstrate that our proposed solution is scalable from large servers to
consumer hardware, we run the selected schedules on two different machines. A
desktop PC with a 16-core AMD Ryzen CPU, 20 GB of RAM, 32 GB of swap
space, and a large server with two Intel 54-core CPUs and 756 GB of RAM.
Both machines have a 2 TB solid-state drive and run Ubuntu Linux 20.04 LTS.
In the tables and figures throughout this paper, we refer to the server and PC
by their number of threads: 104 and 16, respectively.

We use the algorithm described in Sect. 4.3 to estimate the cost of all convo-
lutional layers for small, medium, and large parameters and 16 and 104 threads.
We need to estimate the memory requirements based on the number of threads
that are used during execution since that can influence the number of objects
in memory. The estimate column in Table 2, 3, and 4 shows the estimates for
each layer and schedule for large parameters (for the small parameters see the
appendix). We can see that, especially for the large parameters, the estimate
frequently goes beyond the 20 GB of the PC. The estimate also often exceeds
the 52 GB of memory and swap space combined. The estimate never exceeds the
756 GB of the server. For the estimate and following experiments, we assume
the input X ′ is encrypted while the model W ′ is in plain.

Unsurprisingly, the schedules that preload all objects, Preload everything
and Lock-free Preload, have the highest memory estimate. On the other hand,
schedules that load most objects on demand and cache very little, Lock-Free on
demand and Column Major have the lowest memory estimate. For the Conv 2d
(1) layer, the estimates range from 380 MB to about 35 GB. Schedules that do



328 R. Podschwadt et al.

not load all of X ′ are significantly below that value, estimated at most 6193 MB.
For the second layer, Conv 2D (2), both the number of x′ and w′ is significantly
larger. This, however, does not significantly change the estimate for the Lock-
Free on demand schedule. This observation also holds for the next layer, Conv
2D (3). The estimation aligns with the insights of a theoretical analysis of the
execution. As discussed earlier, during runtime, this schedule has at most nt of
each x′, w′, and y′ in memory, where nt is the number of threads. Therefore, the
memory consumption of the schedule is only influenced by the number of threads
and independent of the layer. For the Conv 2D (2) layer, we also encounter values
outside the PC’s available memory, ranging from 400 MB to 164 GB. We see a
similar picture for the last convolutional layer, Conv 2d (3). Large estimates of
up to 208 GB, especially for layers that load and cache W ′ values.

Fig. 6. Time and Memory requirements schedules, run with large parameters, on the
104 threads servers and the 16 threads PC. The memory graphs also include the PC’s
memory limit of 18000 MB.
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6.2 Measurements

After obtaining the estimates, we execute the schedules on both the server and
the PC. We measure the time it takes to execute the schedules, and the memory
the process requires. For the memory measurement, it is important to note that
it does include swap memory and only measures actual main memory usage. The
PC has 20 GB of memory, about 1.5 GB of which the OS uses, leaving about 18.5
GB for the execution of the schedule. Therefore, measurements in the range of
18.5 GB on the PC will likely have used the OS’s swapping mechanism, especially
if the estimated value is much larger. As mentioned in the previous section, for
some schedules, the memory available is insufficient, even with swapping. In these
cases, the execution is terminated by the OS, yielding no result. We deliberately
leave the OS swapping mechanism on to test if our implementation is faster than
simply relying on the in-built OS methods. We further assign each schedule
a score combining time and memory requirements. To calculate the score, we
compute the geometric mean of the time t and m as

√
tm. The lower the score,

the better. However, the schedule with the lowest score is automatically the best
schedule on a given machine. The best schedule is typically the schedule that
executes the fastest on the machine. It is possible for a slower schedule to achieve
a lower score due to it requiring less memory. This, however, indicates that we
could perform the computation on a machine with less memory.

Fig. 7. Comparison of the fastest schedule for each layer with 16 and 104 threads. For
each layer, the Figure shows the increase factor in runtime from 104 to 16 threads and
the increase factor in memory from 16 to 104 threads for the fastest schedule

Tables 2, 3, and 4 list the time and memory requirements and the score, using
the large crypto parameters (for medium and small, see the Appendix). The first
important observation is the accuracy of the estimation algorithm. We expect
the memory measurements to be larger than the estimate since there is runtime
overhead, like the schedule itself, key material, and other data structures that the
estimation does not take into account. However, in some cases, the estimate is off
by a factor of 4–5. This is especially true for smaller values. An explanation for
the discrepancy in estimate and measurements most likely lies in how we process
cache instructions that drop data from memory. To ensure that we do not delete
data that other threads still need, we only execute the delete instructions once all
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threads have passed the point for which the instructions are scheduled. During
execution, we have little control over how fast threads advance. It is certainly
possible for some threads to fall far behind, waiting for locks or input/output
operations, thereby preventing the deletion of objects from memory. We have no
way of predicting how the threads will interact at runtime and, therefore, need
to make simplifying assumptions that can cause the differences in estimated and
measured values. Overall, the estimate can still provide us with a useful tool to
understand the schedule’s memory requirements without running it.

The most important metric is time. The schedule that executes the fastest
is typically the schedule that uses the available resources the most efficiently.
Figure 6 shows the time and memory requirement for large parameters and all
schedules. Note that the OS terminated schedules that do not display a time for
16 Threads (the PC) for running out of memory. For Conv 2d (2) and Conv 2d (3)
we can see multiple schedules that reach the critical limit of 18000 GB memory,
after which the OS’s swapping system kicks in. On the medium parameters and
Conv 2d (2) (complete Figures and Table in the Appendix), we observe that Load

Table 2. Time in s, Memory in MB requirements, for all Schedules on Conv 2d (1)
with large parameters on the PC with 16 and the server with 104 Threads. Additionally,
shown are memory Estimate in MB and Score.

Schedule Threads Time Memory Estimate Score

Lock-free Preload 16 8952 18432 35215 12845

104 1600 38839 36095 7883

Lock-free on demand 16 6830 1179 400 2838

104 2091 4662 2601 3123

Preload everything 16 6805 18408 35075 11192

104 973 38365 35885 6109

Preload X ′ 16 5812 18680 30833 10420

104 3379 33826 32084 10691

Preload W ′, x′ on demand 16 5911 5459 4502 5681

104 3925 7965 6193 5591

Load X ′ window W ′ 16 4458 5857 4622 5110

104 1183 8036 5432 3083

Load X ′ window w′ on demand 16 5278 1486 380 2801

104 933 4074 1631 1950

Load X ′ window, W ′/2 16 4955 6104 2461 5499

104 1144 7972 3271 3021

Load X ′ window, W ′/4 16 5498 3061 1451 4102

104 899 5504 2701 2225

Colum Major 16 5442 1736 410 3074

104 1452 4363 2531 2517
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Table 3. textbfTime in s, Memory in MB requirements, for all Schedules on Conv
2d (2) with large parameters on the PC with 16 and the server with 104 Threads.
Additionally, shown are memory Estimate in MB and Score.* indicate out of memory.

Schedule Threads Time Memory (MB) Estimate Score

Lock-free Preload 16 * 18875 164390

104 3257 173712 165270 23787

Lock-free on demand 16 24060 1531 400 6069

104 4599 6016 2601 5260

Preload everything 16 * 18819 164250

104 3364 173326 164250 24146

Preload X′ 16 * 18949 72131

104 4138 76506 72571 17792

Preload W ′, x′ on demand 16 * 18816 92379

104 5416 101272 93260 23419

Load X′ window W ′ 16 * 18754 95110

104 3662 106345 95110 19735

Load X′ window w′ on demand 16 20246 6888 2991 11809

104 3914 10203 3431 6319

Load X′ window, W ′/2 16 * 18839 49011

104 4003 125113 49011 22379

Load X′ window, W ′/4 16 * 18871 26031

104 3843 33731 26471 11385

Colum Major 16 22251 2809 730 7906

104 3724 6516 2291 4926

X ′ window W ′ schedule reaches the swapping limit and takes 10675 s. The Load
X ′ window w′ on demand schedule does not reach that limit needing ∼2 GB.
However, despite needing to encode data more often, it is faster at 3885 s. This
strongly suggests that our algorithm is more efficient than relying on the OS’s
swapping mechanism.

Table 5 and Fig. 7 compare the fastest schedule for each layer and set of
parameters. We are most interested in the increase in runtime and the reduction
in memory when running on the 16-thread PC as compared to running on the
104-thread server. For the small parameters, the fastest schedule is either the
Lock-free Preload or Preload everything schedule. Since these schedules have very
similar memory requirements, there is no significant reduction in memory. The
time, however, increases by a factor of 3.3–3.8. We start to see a much bigger
difference when moving to the medium parameters. For the Conv 2d (1) layer,
the time increases by a factor of 5.4 while the memory usage stays almost the
same between PC and server. For this layer, both systems can still use the Lock-
free Preload schedule, which explains the negligible reduction in memory. The
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Table 4. Time in s, Memory in MB requirements, for all Schedules on Conv 2d (3)
with large parameters on the PC with 16 and the server with 104 Threads. Additionally,
shown are memory Estimate in MB and Score.* indicate out of memory.

Schedule Threads Time Memory (MB) Estimate Score

Lock-free Preload 16 * 18788 207608

104 7074 220310 208489 39479

Lock-free on demand 16 5054 1133 400 2393

104 1469 4823 2601 2662

Preload everything 16 * 18838 207468

104 855 219812 207468 13709

Preload X′ 16 3955 18910 23150 8648

104 815 26310 23590 4631

Preload W ′, x′ on demand 16 * 18859 184578

104 4935 196842 185459 31168

Load X′ window W ′ 16 * 18775 190191

104 831 207599 190191 13134

Load X′ window w′ on demand 16 3876 12218 5872 6881

104 913 14437 6313 3631

Load X′ window, W ′/2 16 * 18860 97992

104 1024 206385 97992 14539

Load X′ window, W ′/4 16 * 18871 51962

104 955 63491 52402 7788

Colum Major 16 3834 1714 730 2564

104 825 4609 2291 1950

time increase for the next two layers is 5.9 and 3.5, respectively; however, the
memory reduction is significant and a factor of 21 and 83.3. While the server still
uses the Lock-free Preload schedule the PC is forced to use window caching and
column-wise window caching to fit the objects into memory. The picture repeats
for the large parameters. Except that now the server uses a more memory-
efficient schedule for Conv 2d (3), which leads to only 15.3 times memory reduc-
tion and an increase in runtime by 4.7. An interesting observation: on the small
parameters, the PC seems to have a higher per-thread performance as the time
increase is only around 3.5 for all layers despite the number of threads on the
server being 6.5 more. As the parameters get larger, the time increase seems to
approach 6.5 as expected.

Additionally, we compare the time and memory of the different schedules
run on the large crypto parameters executed on the server. For the Conv 2d (1)
layer the fastest schedule is Load X ′ window, W ′/4. It is 74 s, 8%, faster than the
Preload everything schedule. The Preload everything schedule, in turn, is much
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Table 5. Fastest Schedule for each layer and parameter size (Param.) on the server, 104
Threads (T), and PC, 16 Threads. As well as the increase (Inc.) in time and reduction
(Red.) of memory.

Param Layer T Time Inc. Memory Red Schedule

small Conv 2d (1) 16 135 3.3 3084 1.1 Lock-free
Preload

104 41 3319 Lock-free
Preload

Conv 2d (2) 16 580 3.6 15164 1.0 Preload
everything

104 160 15570 Lock-free
Preload

Conv 2d (3) 16 116 3.8 18699 1.1 Lock-free
Preload

104 30 20727 Lock-free
Preload

medium Conv 2d (1) 16 859 5.4 8447 1.1 Lock-free
Preload

104 159 9141 Lock-free
Preload

Conv 2d (2) 16 3885 5.9 1939 21.0 Load X′
window w′ on
demand

104 653 40775 Lock-free
Preload

Conv 2d (3) 16 743 3.5 629 83.3 Colum Major

104 211 52415 Lock-free
Preload

large Conv 2d (1) 16 4457 5.0 5857 0.9 Load X′
window W ′

104 899 5504 Load X′
window, W ′/4

Conv 2d (2) 16 20246 6.2 6887 25.2 Load X′
window w′ on
demand

104 3257 173712 Lock-free
Preload

Conv 2d (3) 16 3834 4.7 1714 15.3 Colum Major

104 815 26309 Preload X′

faster, 627 s (64%), than the Lock-free Preload schedule. However, both preload
schedules require 38 GB of memory, compared to the 5.4 GB of the Load X ′

window, W ′/4 schedule. For the second layer, Conv 2d (2), the Lock-free Preload
schedule is the fastest at 3257 s. The Preload every is marginally slower at 3364 s.
Both schedules require 170 GB of memory. Schedules that require significantly
less memory Load X ′ window, W ′/4 (33 GB) and Column Major (6.3 GB) are
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only slightly slower at 3662 s and 3843 s. For the Conv 2d (3) layer the Lock-free
Preload schedule is the slowest and consumes the most memory at 7074 s and
215 GB. The comparable Preload everything schedule requires approximately
the same amount of memory, but only 12.5% of the time, 855 s. Interestingly,
schedules that cache very little Preload X ′ and Column Major are faster than
the Preload everything at 815 s and 825 s. Both of these schedules also require
significantly less memory, at 25.7 GB and 4.5 GB. This is a reduction factor of
47.8 between Lock-free Preload and Column Major.

Interestingly, schedules with minimal caching of w′s are often faster than
schedules that substantially cache these values. A potential explanation could be
the cache locality inside the CPU. Values that are not cached by our method and
are loaded on demand could be accessed faster because they are placed inside the
CPU cache. Alternatively, locking that is required for processing the load instruc-
tions could introduce additional slowdowns that are not present when values are
loaded on demand. Another interesting observation is the poor performance of
the Lock-free Preload schedule in the Conv 2d (3) layer. It is eight times slower
than Preload everything schedule. Both schedules load all the required data at
the start of the computation and do not need to load any values during. Where
they differ is the points at which they write the results to disk. If we assume
that all threads advance in lockstep, in the Lock-free Preload schedule, all threads
want to write to disk at once. In Preload everything schedule, the write oper-
ations are more spaced out. It could be that the large number of simultaneous
writes slows the schedule down significantly.

7 Conclusion

In this paper, we present ways of reordering the computation to tailor the mem-
ory requirements to the hardware available while executing as fast as possible.
We further present a technique to estimate the required memory of convolu-
tions over batch-packed, encrypted data. We show that our proposed caching
mechanism is faster than relying on the OS’s swapping mechanism. The method
proposed in this paper is especially suited for ML workloads with thousands of
instances that can run longer, i.e., overnight or over the weekend, and don’t need
a fast turnaround. Since our method can reduce the memory requirements for
inference, it opens up the potential to save on hardware costs.
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Appendix

Table 6. Measurements for Time in seconds, Memory (Mem) in MB, for all Schedules
with small parameters on the PC with 16 and the server with 104 Threads. Additionally,
the table shows the memory Estimate in MB and Score.

Layer Schedule Threads Time Memory (MB) Estimate Score

Conv 2d (1) Lock-free Preload 16 136 3084 2645 648

104 42 3319 2711 372

Lock-free on demand 16 433 290 30 354

104 131 652 195 292

Preload everything 16 142 3024 2634 656

104 45 3316 2695 387

Preload X ′ 16 184 2593 2316 691

104 52 2872 2409 385

Preload W ′, x′ on demand 16 333 724 338 491

104 108 1027 465 333

Load X ′ window W ′ 16 143 771 347 332

104 46 1186 408 234

Load X ′ window w′ on demand 16 182 325 29 243

104 56 717 122 199

Load X ′ window, W ′/2 16 201 818 185 405

104 57 1197 246 261

Load X ′ window, W ′/4 16 190 450 109 293

104 74 972 203 268

Colum Major 16 233 599 31 373

104 131 891 190 342

Conv 2d (2) Lock-free Preload 16 583 15327 12346 2990

104 161 15570 12412 1583

Lock-free on demand 16 1708 529 30 951

104 524 892 195 683

Preload everything 16 581 15165 12335 2968

104 187 15446 12335 1700

Preload X ′ 16 727 5930 5417 2076

104 205 6187 5450 1127

Preload W ′, x′ on demand 16 1341 9729 6938 3613

104 449 10054 7004 2126

Load X ′ window W ′ 16 609 10180 7143 2490

104 194 10427 7143 1423

Load X ′ window w′ on demand 16 765 934 225 845

104 210 1176 258 497

Load X ′ window, W ′/2 16 816 10281 3681 2896

104 239 11778 3681 1679

Load X ′ window, W ′/4 16 796 3257 1955 1610

104 223 3770 1988 917

Colum Major 16 853 1099 55 968

104 492 1434 172 840

Conv 2d (3) Lock-free Preload 16 117 18700 15591 1477

104 31 20728 15657 800

Lock-free on demand 16 329 254 30 289

104 101 614 195 249

Preload everything 16 132 19362 15581 1601

104 45 20710 15581 970

Preload X ′ 16 141 1980 1739 528

104 39 2221 1772 292

Preload W ′, x′ on demand 16 278 18688 13862 2281

104 95 18975 13928 1346

Load X ′ window W ′ 16 134 19276 14283 1605

104 48 19769 14283 972

Load X ′ window w′ on demand 16 146 1085 441 399

104 43 1330 474 239

Load X ′ window, W ′/2 16 167 19254 7359 1792

104 56 20839 7359 1081

Load X ′ window, W ′/4 16 152 5781 3902 938

104 45 6374 3935 539

Colum Major 16 160 416 55 258

104 94 787 172 272
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Table 7. Measurements for Time in seconds, Memory (Mem) in MB, for all Sched-
ules with medium parameters on the PC with 16 and the server with 104 Threads.
Additionally, the table shows the memory Estimate in MB and Score. * values are
unavailable because the execution ran out of memory.

Layer Schedule Threads Time Memory (MB) Estimate Score

Conv 2d (1) Lock-free Preload 16 859 8448 7928 2695

104 160 9142 8126 1208

Lock-free on demand 16 1120 409 90 676

104 233 1428 586 576

Preload everything 16 873 8422 7897 2712

104 171 9286 8079 1258

Preload X′ 16 1014 7304 6942 2721

104 215 8182 7223 1327

Preload W ′, x′ on demand 16 973 1472 1014 1197

104 188 2375 1394 669

Load X′ window W ′ 16 891 1600 1041 1194

104 174 2634 1223 677

Load X′ window w′ on demand 16 1023 519 86 729

104 188 1600 367 548

Load X′ window, W ′/2 16 988 1651 554 1277

104 194 2439 737 688

Load X′ window, W ′/4 16 993 797 327 889

104 185 1732 608 567

Colum Major 16 1177 751 92 940

104 242 1726 570 646

Conv 2d (1) Lock-free Preload 16 17154 18531 37011 17829

104 654 40776 37209 5162

Lock-free on demand 16 4636 631 90 1710

104 944 1668 586 1255

Preload everything 16 16589 18764 36979 17643

104 769 40970 36979 5612

Preload X′ 16 3946 16852 16239 8155

104 881 17736 16339 3952

Preload W ′, x′ on demand 16 12054 19356 20798 15275

104 955 24631 20996 4850

Load X′ window W ′ 16 10675 19036 21413 14255

104 803 25897 21413 4561

Load X′ window w′ on demand 16 3885 1939 673 2745

104 958 2864 773 1656

Load X′ window, W ′/2 16 11570 18950 11034 14807

104 1069 29330 11034 5598

Load X′ window, W ′/4 16 3989 8043 5861 5664

104 1438 10983 5960 3974

Colum Major 16 3933 1395 164 2342

104 1759 2758 516 2203

Conv 2d (1) Lock-free Preload 16 * 18640 46741

104 212 52416 46939 3331

Lock-free on demand 16 817 387 90 562

104 329 1396 586 677

Preload everything 16 * 18971 46709

104 325 52493 46709 4131

Preload X′ 16 748 5552 5212 2038

104 283 6296 5311 1336

Preload W ′, x′ on demand 16 5237 18853 41556 9936

104 547 47242 41754 5083

Load X′ window W ′ 16 * 18821 42819

104 347 49830 42819 4159

Load X′ window w′ on demand 16 753 2950 1322 1491

104 263 3475 1421 956

Load X′ window, W ′/2 16 * 19015 22062

104 441 52804 22062 4826

Load X′ window, W ′/4 16 752 15296 11699 3392

104 354 17400 11798 2482

Colum Major 16 744 630 164 684

104 323 1715 516 745
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Abstract. With the growing interest in privacy-enhancing technolo-
gies, we are seeing a complementary growth in the desire to build and
deploy complex cryptographic systems that involve techniques like zero-
knowledge proofs. Of these, general purpose proof systems like zkSNARKs
have seen the most interest, due to their small proof size, fast verification,
and expressiveness. Unfortunately, as we have seen with many areas of
cryptography, guaranteeing correct implementations can be tricky, as the
protocols themselves are complicated and often require substantial low-
level manual effort to achieve maximum performance. To help with this
problem, and gain better assurances about the correctness and security
of already implemented zkSNARK protocols and the privacy-enhancing
applications that use them, we design and build SNARKProbe, an auto-
mated security analysis framework for zkSNARKs that can scan R1CS-
based libraries and applications to detect various issues, such as edge
case crashing, cryptographic operation errors, and/or inconsistencies with
protocol descriptions. SNARKProbe leverages a variety of analysis tech-
niques, including fuzzing and SMT solvers. We test the performance of
SNARKProbe on a variety of different experimental parameters to demon-
strate its practicality and reasonable runtime, and we also evaluate its
ability to find potential inconsistencies and errors in implementations.

Keywords: Cryptography · zkSNARKs · automation · software
security

1 Introduction

We have seen a growing interest in privacy and privacy-enhancing technologies
from the general public [49], which has led to subsequent increased interest from
parties that build and deploy the technologies that we use every day, with even
the US government expressing interest in ways to best deploy privacy-enhancing
technologies for data analytics [45]. One of the key components in many privacy-
enhancing protocols are zero-knowledge proofs [37], which are cryptographic
algorithms that allow one party (the prover) to prove to another (the veri-
fier) that a statement is true, without revealing any information beyond the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14584, pp. 340–372, 2024.
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validity of the statement itself. Of these, one of the most popular instantia-
tions are zkSNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of
Knowledge) [26,39,52], because of their small proof size, fast verification, and
expressiveness.

Because of this popularity, we have seen an explosion of new zkSNARK pro-
tocols and libraries being developed in academia, and substantial interest from
industry and other domains in actually deploying these protocols for real world
usage [6–8,19,20]. Unfortunately, they can be quite difficult to implement cor-
rectly, as the protocols themselves can be complicated and involved, and much
of the work to generate a single proof for a single application is often done man-
ually and hand-tuned to ensure maximum performance, with developers often
working at the circuit or gate level to design the best protocols. Additionally, as
we have seen in the past, deploying complex cryptography has not come with-
out its challenges [35,48,51,56], and applications that use zkSNARKs have not
been immune to these either, as Zcash for example has found various crypto-
graphic bugs in different components [1,2,4]. And checking any cryptographic
implementation manually can be time consuming and potentially error prone.

While automated techniques like fuzzing have been used to test cryptographic
implementations specifically before [21], we cannot use existing cryptographic
fuzzers here as they generally test only for known weaknesses in certain schemes
and are unable to produce the types of inputs that we need in a cost-effective
way. Additionally, most general purpose fuzzing tools cannot detect what we
refer to as cryptographic logic errors, i.e., errors that might result in an incorrect
computation but not a program crash, particularly with regards to zkSNARK
libraries.

All of this motivates us to ask the question:
Can we develop better tooling to automatically check the security of and precisely
locate software bugs and cryptographic logic errors in the proof generation pro-
cesses and libraries of zkSNARK protocols and the applications that use them?

To help answer this question in the affirmative, we design and build
SNARKProbe to automatically both check the correctness and consistency of proof
programs generated by R1CS-based zkSNARK libraries, as well as inspect the
security of the libraries themselves and flag any inconsistencies between a pro-
tocol’s implementation and its description, no matter how minor1. Our primary
goal is to make the process as automated as possible, thus reducing the chance of
human error in the process, as well as lowering the barrier to entry for usage. We
wish to enable even those who might not be cryptographic experts to inspect a
library or proof implementation without understanding details of the underlying
protocol or specifics of the library. Users need only indicate some configuration
settings such as the fuzzer parameters and expected proof statement, and our
tool will automatically analyze the library and proof program to detect possible
implementation and cryptography related errors.
1 Note that this is something that professional security audits do flag, as these can

lead to potential future problems, see [4].
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In order to achieve this, we utilize a combination of techniques. Dynamic
analysis allows us to trace real-time data and variable values, as well as han-
dle a variety of different zkSNARK libraries written in different programming
languages without needing additional (manual) language specific adaptations.
Custom fuzzing techniques allow us to produce a variety of valid or invalid
R1CS matrices (i.e., proofs) to exercise the different codepaths in a library.
SMT (Satisfiability Modulo Theory) solvers allow us to help verify the consis-
tency of a user-specified set of statement equations (i.e., the desired proof) with
the actual R1CS matrix used in the application. And the notion of ideal files and
a value checker helps ensure that a library correctly realizes the given underlying
protocol.

While one could tackle some of this from a formal analysis approach [15],
we view SNARKProbe to be complementary, as formal analysis works best for
specific, static protocol implementations (like libraries), and we wish to also be
able to check application-specific proofs. Formal verification in such a scenario
would need to be done for each individual proof, which is both time-consuming
and requires expertise in such techniques for every project that wishes to use a
zkSNARK. SNARKProbe, on the other hand, is designed to work with a variety
of different protocols and to be easy to run on a given proof implementation
in an application, without requiring substantial expertise. We will see later on
how a formally verified library for a specific protocol could be adapted as part
of SNARKProbe to provide stronger guarantees, though we leave this for future
work. As such, we believe SNARKProbe is a step in the right direction for ensuring
the correctness of existing zkSNARK implementations and applications.

We choose to focus on two widely used zkSNARK protocols, Pinocchio [27,52]
and Groth16 [39], and four libraries, libsnark [3], Bellman [10], arkworks [14],
and gnark [13]. libsnark implements both Pinocchio and Groth16 in C++,
while Bellman and arkworks implement Groth16 in Rust, and gnark implements
Groth16 in Go. These represent four of the most popular and widespread open
source libraries that have seen real world usage and underpin many projects that
use zkSNARKs. This selection also demonstrates the flexibility of SNARKProbe to
handle different R1CS-based zkSNARK protocols, as well as diverse languages.

In addition to designing and implementing SNARKProbe, we tested its per-
formance extensively, using a number of different statement types to test the
Constraint Checker, and a wide variety of R1CS matrix sizes and configurations
(which are representative of statements of varying complexity) to test Snark-
Fuzzer. We demonstrate performance that we believe is both reasonable and
scalable for existing zkSNARK use cases2. We also evaluated SNARKProbe’s abil-
ity to detect potential inconsistencies or different types of errors. While we did
not find any new exploitable errors, we did find a number of issues across the
various libraries that we consider to be potentially unsafe or that might require
special care by a developer to navigate correctly.

Our Contributions. In this paper we make the following contributions:
2 And, in fact, in one instance the underlying library was actually unable to scale and

run before we ran into any issues with our tool.
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– We design SNARKProbe, a tool that can automatically check for potential
software errors and cryptographic logic errors, as well as for consistency in
the implemented proof statement, in R1CS-based zkSNARK libraries.

– We implement and build SNARKProbe3 for two zkSNARK protocols, Pinoc-
chio [27,52] and Groth16 [39], and four libraries, libsnark [3], Bellman [10],
arkworks [14], and gnark [13], to demonstrate its flexibility and extensibility.

– To the best of our knowledge, we are the first to explore applying fuzzing and
other analysis techniques to zkSNARKs specifically.

– We evaluate the performance of SNARKProbe in an extensive set of experi-
ments, demonstrating its acceptable performance for real world applications.

– We demonstrate and discuss SNARKProbe’s ability to automatically catch dif-
ferent types of errors in zkSNARK libraries, finding seven inconsistencies and
successfully locating a prior CVE.

Possible Ethical Considerations. While our tool did find a few inconsisten-
cies in gadgets and protocol specification versus implementation throughout our
testing, all of these issues were either not exploitable, already known, or just
require care from a developer when implementing a proof, and as such we do
not believe there is anything to disclose.

2 Background and Related Work

In this section, we introduce relevant background and prior work.

zkSNARKs. In a zero-knowledge protocol [37] a user (the prover) proves a
statement to another party (the verifier) without revealing anything about the
statement other than that it is true. zkSNARKs (Zero-Knowledge Succinct Non-
Interactive Arguments of Knowledge) [26,39,52] are one of the current most
popular zero-knowledge proof systems, and have begun to see increasingly com-
plex, real world deployment in a number of privacy-preserving applications [6–
8,19,20]. At a very high level, zkSNARKs work as follows. The first step in
proof creation is to turn the statement that one wishes to prove into an equiv-
alent form that relies on knowing a solution to some algebraic equations. This
representation is then broken down into an arithmetic circuit. To ensure the cor-
rect evaluation of the circuit (and thus the proof), a programmer must express
a series of constraints on the wires, called a constraint system, which is typi-
cally a Rank 1 constraint system or R1CS. zkSNARK libraries often provide an
abstraction called a gadget, as expressing large programs with constraints can be
quite difficult. A gadget allows programmers to specify a series of inputs, hidden
internal variables and constraints on the inputs and internal variables. Rather
than expressing a large program as many constraints, one can instead express it
as some gadgets, and a few constraints binding them together.

Fuzzing. Fuzzing is an automated software security testing technique to explore
software for bugs that cause incorrect or unexpected results, program crashes,
3 https://github.com/BARC-Purdue/SNARKProbe.
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Table 1. Comparison of SNARKProbe and a selection of cryptographic and generic
fuzzing tools. A �� means achieves in select instances.

Fuzzer
Adapt to

zkSNARK

Error Types Error Location

Program
Logic

Code Scheme
Crypto zkSNARK

AFL [60] � � � � � �
CDF [21] � � �� � � �
SHA-3 Test [46] � � � � � �
TLS-Attacker [57] � � �� � � ��
SNARKProbe � � � � � �

or in some extreme cases, lead to exploit paths. Fuzzing works by generating
inputs and monitoring the program for crashing, assertions, and memory leaks
[30] without the need for manual review by developers, security engineers, and
auditors. An important part of fuzzing is code coverage, a metric used to evaluate
how much of the target program is tested. Early fuzzing systems only generated
inputs by mutating a seed input and watching for crashes or errors. Over time,
fuzzing test structure has been improved and other techniques have been devel-
oped to improve the effectiveness [28,29,36,38,40,59,60].

SMT Solvers. Satisfiability modulo theory (SMT) is a complex version of the
boolean satisfiability problem (SAT) that can determine if a mathematical equa-
tion is satisfiable or unsatisfiable. Z3 (which we choose to use in this paper) is
an efficient SMT solver that has been used in various software verification and
analysis applications [47]. Typically, SMT solvers such as Z3 can only handle
first-order logic, but recent research [23] proposed a pragmatic extension for
SMT solvers to support higher-order logic.

2.1 Prior Work

There has been work to automate the conversion between proof statement and
R1CS [33,41,42,44], but they do not necessarily guarantee the correctness of the
translation. Manually writing/editing R1CS is also still popular as it can result
in substantial efficiency gains. Such work can help secure new applications but
cannot help with the security of existing implementations.

Fuzzing has been used for some cryptographic implementations. Special-
purpose fuzzing has been used for TLS [57,58]. CDF [21] targets cryptographic
algorithms such as DSA, ECDSA, and RSA. We are inspired in part by these
ideas, though we have no known test vectors or reference implementations to
compare against and use more targetted input generation techniques.

We provide a comparison of SNARKProbe and the most relevant existing
fuzzing tools in Table 1, focusing on the types of errors they are able to catch, if
they can precisely locate such errors, and their adaptability to zkSNARKs. Cur-
rently, most fuzzing tools are limited to identifying software errors. While some
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tools such as CDF and SHA-3 Test have the capability to identify cryptographic
logic errors, their functionality is restricted and cannot be easily extended.
Presently, our SnarkFuzzer stands as the only fuzzing tool capable of detect-
ing both software and cryptographic logic errors for zkSNARKs, accompanied
by source code references and protocol location information.

Additionally, an important part of many fuzzers is how they handle code
coverage analysis. While off-the-shelf tools like LLVM might seem to fit well for
this, as it natively provides a source code line coverage data report [11], this is
insufficient for our desired application. Our fuzzer focuses specifically on branch
coverage and coverage of critical cryptographic components, not generic line
coverage. Additionally, we found that many existing zkSNARK libraries may
not work well (or even compile) with LLVM. This motivates our development of
the Branch Model and its use of GDB, as existing tools do not suffice.

There has also been prior work on automating the development of cryp-
tographic attacks. Much of this work has focused on side-channels [22,53,54],
though it has also seen other applications [25]. Prior work has also sought to
automatically deploy existing, known attacks [43]. These are largely orthogonal
and do not extend to existing zkSNARK systems.

There is a growing trend towards computer aided cryptography and formal
verification of implementations (see [24] for a detailed discussion). Project Ever-
est [15] contains a variety of formally verified software components. While we
are seeing increasingly complex protocols being formally verified [55], we have
not yet seen these techniques applied to zkSNARKs. We see our work both as a
step towards a formally verified zkSNARK implementation, bridging the current
gap through the use of heuristic techniques like fuzzing, as well as a complement
to it. A formally verified implementation could be used to provide a trustwor-
thy ground truth for our fuzzing techniques, for example. In addition, formal
verification is typically targeted at a single implementation, which necessitates
re-running the often complicated process for each new application. SNARKProbe
is designed to streamline the process and make it easy for a user to check a
variety of applications or libraries, with little manual effort.

3 Overview

Before diving into the details of our design, we give a brief high-level overview
of our SNARKProbe system, its workflow, and the intended use cases and users.

3.1 Users and Use Cases

We view the targeted users of SNARKProbe to fall into three main categories: 1.
An application user that wishes to evaluate if a given (open-source) application
correctly implemented their specified proof statement without having to dig
through source code or understand the protocol; 2. Developers who want to build
applications using zkSNARKs and wish to gain assurances in the correctness
of a library and that a proof they built correctly realizes a given statement;
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and 3. Security engineers that want to automatically scan a library/application
and detect various issues, such as edge case crashing, cryptographic operation
errors, and/or inconsistencies with protocol descriptions, allowing them to focus
their time and manual effort on potential issues. SNARKProbe helps achieve all
these use cases by outputting a full evaluation report that includes a notion of
security confidence, any discovered (known) security vulnerabilities or warnings,
and potential risks of the target library or proof.

Fig. 1. Workflow of SNARKProbe. White boxes represent subcomponents universal for
all zkSNARK libraries, forward diagonal stripes represent those designed for a specific
library, and backward diagonal stripes represent those designed for a specific program-
ming language.

3.2 Workflow

We now outline the workflow of running SNARKProbe, as well as establish termi-
nology, before presenting the details and implementation in subsequent sections.
SNARKProbe is composed of two broad sub-tools: the Constraint Checker and
SnarkFuzzer. These components can operate both independently of each other
as well as in sequence, depending on what the user wishes to check.

Recall that at a high level, a zkSNARK proof is generated in two main
phases. First (circuit generation), the user has a (proof) statement that they
wish to prove about, which requires converting this statement into a circuit that
the zkSNARK protocol understands. R1CS is a specific form of this that we
focus on in this work. Second (proof generation), a zkSNARK library takes the
circuit (R1CS) as input and produces a proving key, verification key, and a proof.

The first step verifies the consistency of a user-specified set of proof statement
equations with the actual R1CS matrix used in the application, to ensure that
the circuit generation process generates the same proof as the developer states.
The Constraint Checker uses an SMT solver to compare the input values, output
values, domain, and range of the given statement equations with R1CS matrix
to find any errors in the conversion. Figure 1a shows the internal steps of the
Constraint Checker, which we discuss in detail in Sect. 4.1.

The second step checks the correctness of the library and proof generation
process. Figure 1b shows the steps of SnarkFuzzer, which we discuss in detail
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in Sect. 4.2. First, the Input Generator produces an R1CS matrix (i.e., proof)
using a variety of fuzzing techniques and compiles this into an executable proof
program with the selected library, which serves as the input for the Branch
Model. Then, the Branch Model investigates the visitation status for each branch
during execution and provides feedback to the Input Generator to determine
if another input is needed. This coverage feedback fuzzing helps improve the
coverage rate of SnarkFuzzer, which improves the chance of catching errors in
the target library. Finally, the Value Model re-evaluates the protocol calculations
to detect any potential cryptographic logic errors and looks for inconsistencies
caused by unexpected value changes or implementation errors.

Together, these two components allow SNARKProbe to evaluate the end-to-end
correctness and security of a specific implementation of a given proof statement
for a given library (or to individually check different parts if desired).

Unlike standard fuzzers, SnarkFuzzer can detect both software and crypto-
graphic logic errors. We consider a software error to be a bug or fault in the
software that causes unintended behaviors or incorrect performance, such as
crashing, overflow, or a system error. A cryptographic logic error, on the other
hand, is one that causes a program to produce an incorrect result due to errors
in the cryptographic protocol implementation, such as incorrect mathematical
operations or disregarding the specification. A cryptographic logic error will not
cause a software crash or raise an error message, making them much harder to
detect. For a basic example, in RSA, software errors might cause a program
crash, but cryptographic logic errors are issues where the ciphertext value was
not computed correctly (me mod N computed incorrectly) or too large a cipher-
text was used (e.g., larger than the modulus).

While we currently focus on R1CS-based zkSNARKS, we believe this high
level design can be adapted without major changes to support additional (newer)
types of proofs, particularly in the case of SnarkFuzzer, which would largely only
involve changing the input generation methodology and format.

Why Dynamic Analysis? Dynamic analysis supports our goal of finding cryp-
tographic logic errors by allowing us to trace and extract real-time data and
variable values, which we can then use to check for cryptographic protocol con-
formance and implementation errors. It also allows us to easily support a number
of different zkSNARK libraries written in different languages without the need
for additional manual intervention, extensions, or program instrumentation by
the user, making SNARKProbe flexible as well.

4 Design and Implementation

In this section, we introduce both the high level goals and concrete implemen-
tation decisions, tools, and techniques that allow us to realize SNARKProbe. We
start with the Constraint Checker and then discuss the various components of
SnarkFuzzer. These two sub-tools can be used either in conjunction with each
other, or separately, depending on what the developer wishes to check.
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4.1 Constraint Checker

Goals: The Constraint Checker helps ensure that the realized proof is equivalent
to a specified statement. This also allows the Constraint Checker to find errors
in flattening and/or gadget use. It achieves this by comparing the equivalence of
a user-specified proof statement and the compiled R1CS gates to ensure that the
proof generated by the library represents the developer’s specified statement4.

Design. The first step in generating a zkSNARK proof is converting the desired
proof statement equations into R1CS. These R1CS gates should have the same
domain, range, and output value as input statement equations. To check this,
we developed our Constraint Checker, which leverages an SMT solver and asso-
ciated techniques to verify the equivalence of R1CS gates to the specified proof
statement functions5. To run the tool, the user only needs to write a short
script to define the statement function, primary inputs, and auxiliary inputs in
their zkSNARK proof, and everything else then happens automatically. Figure 1a
shows the key steps in the Constraint Checker, and we also provide an example
in Appendix A.3. We note that our SMT solver could be replaced by any other
techniques that allow one to check for function equality and fit the desired goals.

Implementation. The Constraint Checker contains two major components—
the Circuit Extractor and a three step equivalence check—which we discuss now.
We discuss optimizations in Appendix A.1.

Circuit Extractor. The Circuit Extractor can extract R1CS gates with private
inputs, witness, and gadget relations from an executing zkSNARK binary pro-
gram. We do this using GDB. We set a GDB breakpoint at the circuit declara-
tion line, convert the circuit to an R1CS matrix when the program reaches the
breakpoint, and save the formatted R1CS matrix for equivalence comparison.
Automatic extraction both makes the tool more usable and reduces the poten-
tial for human errors in the equivalence comparison. Many zkSNARK libraries
use Montgomery modular multiplication as an optimization. We also developed
a Montgomery representation translator that can convert the Montgomery form
to a standard integer format, so that our circuit extractor can produce a z3py
(our SMT solver of choice) readable integer format.

After extracting the circuit, the Constraint Checker uses the SMT solver to
verify the equivalence of functions through a three step process: a function valid
check, equivalence comparison, and domain comparison. If one or more tests fail,
4 We note that we cannot do anything about the garbage-in-garbage-out problem (for

example, the case where a developer implements a proof that misses a necessary case,
such as omitting checking if a value is greater than 0). We can just help determine
if the specified statement and realized proof are likely equivalent.

5 We work around the general undecidability of function equality by operating in the
more constrained setting (over the finite fields) and adding special rules for primary
variables and auxiliary variables.
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then we determine that the given statement equation is not equivalent to the
produced program. Otherwise, then we can provide assurances that it is highly
likely that the proof realizes the specified statement correctly6.

Function Valid Check. As the witness should be a solution in both the statement
equations and equations built by the R1CS gates, we first create two SMT solvers
S1 and S2 to verify that fact (see Appendix A.2 (b)). The Constraint Checker
considers the statement equations and R1CS gates to not be equivalent if the
witness is not a valid solution for both.

Equivalence Comparison. The equivalence comparison verifies if the statement
equations y1 = f(x1) and R1CS gates y2 = f(x2) have the same output for
all the same inputs. First, the Constraint Checker creates a solver S, and adds
y1 = f(x1), y2 = f(x2), x1 = x2 and y1 �= y2 to the solver S (see Appendix A.2
(c)). If S results in SAT, then the SMT solver has discovered that the statement
equations and R1CS gates have a different output for at least one input and thus
considers them not equivalent, and otherwise, it results in UNSAT. Like in many
other use cases, the Constraint Checker cannot guarantee equivalency if the
SMT solver returns UNSAT or UNKNOWN. Note that the SMT solver may return
UNKNOWN for a variety of reasons, including running out of memory, or if the
quantifier-free fragment is undecidable (such as nonlinear integer arithmetic) or
too “expensive” (such as finding primes p ∗ q = N for some N).

Domain Comparison. The SMT solver cannot directly calculate an equation’s
domain, but it can find the maximum and minimum values for an equation
(Fig. 4a in Appendix A.4 shows an example of different upper and/or lower
bounds). We also use the SMT solver to find out if there is a gap between
the domains’ of the statement equations and R1CS gates, though we cannot
guarantee to find all such gaps that may exist (see Appendix A.4 for a detailed
discussion).

4.2 SnarkFuzzer

Goals: SnarkFuzzer is a smart fuzzing tool with the primary goal of finding
potential logic or software errors in zkSNARK libraries. It produces zkSNARK
programs with different proofs as input, to detect and catch these errors and
provide full (important) code coverage.

SnarkFuzzer is composed of four major subcomponents: the Input Generator,
Branch Model, Value Model, and Value Monitor. The Input Generator is respon-
sible for generating an R1CS matrix and converting it to a zkSNARK program
as input for the target library. The Value Model and Value Monitor are designed
to detect implementation and cryptography related errors. The Branch Model
helps manage branch coverage and provides feedback to help SnarkFuzzer decide

6 We cannot guarantee equivalence due to the fact that the SMT solver might output
UNKNOWN, as well as possible domain gaps (see Appendix A.4).
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if it needs to generate another input program. Figure 1b shows the structure of
SnarkFuzzer with both its high level design as well as its implementation details.

SnarkFuzzer: Input Generator

Goals: The Input Generator produces valid or invalid R1CS matrices and com-
piles them into executable proof programs for use by other components as testing
inputs. This should be done in a “smart” manner to help better catch errors.

Design. The first step for our fuzzer is the generation of inputs to test a target
library. In SnarkFuzzer, these inputs are simply valid or invalid R1CS matrices
that represent a variety of (possibly random) proof statements. To improve the
chances of catching potential logic or software errors in the library, we desire this
input generator to be “smart”, in the sense that it should not just randomly gen-
erate inputs, but should take into consideration both the concept of valid/invalid
proofs, as well as proof or R1CS edge cases. At a high level, the Input Generator
generates an R1CS matrix, and then the Program Generator uses this matrix
to produce and compile an executable zkSNARK program with a given library.
The compiled program will then be used as input for other components, like the
Branch Model, Value Model, and Value Monitor. Before generating the R1CS
matrix, the Input Generator needs to decide on the size of the generated matrix
(number of rows nr and columns nc) and the number of public inputs np. This
can be done by simply choosing randomly, or in a smarter way by choosing
from a specified distribution. The Input Generator can be instantiated with any
type of fuzzer that meets the aforementioned goals, giving it the flexibility and
adaptability to use new techniques and tools, as they are developed.

Implementation. We developed four different methods of input generation to
produce these matrices based on mutation-based and generation-based fuzzing.
These methods are complementary and all work in tandem to generate the
fuzzing inputs (the user can specify the percentage of inputs generated by each
method). Each method targets a specific type of R1CS matrix to provide better
overall coverage and comes with its own set of unique benefits (and trade-offs).

Generation-Based Invalid Matrix. Our generation-based fuzzer is designed to
create an R1CS matrix from scratch. Generation-based fuzzing has the advantage
of not depending on input seeds, allowing it to function without (user) input.
The random number generator will generate nr ∗ nc integers as an R1CS matrix
and nr −1 integers as the witness w (since the first value of the witness is always
equal to 1), and we use the constraint relation w ·A×w ·B −w ·C = 0 to verify
the ground truth of the matrix. This tests a library with possible but unrealistic
examples to search for edge case errors that are hard to reach with traditional
examples.
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Generation-Based Valid Matrix. To produce a valid matrix that simulates a real
world proof example, the random number generator will generate nr −1 integers
as a witness w. Then, a valid matrix will be calculated with z3py based on this
witness and the constraints relations in w · A × w · B − w · C = 0. Depending
on the actual values in the randomly chosen witness, the complexity of solving
the equations to fill out the matrix may vary, but a larger matrix (i.e., larger
witness) usually results in a longer generation time. As such, we recommend
that for testing large R1CS matrices, the generation-based fuzzer is run once to
generate an input seed that can be given to the mutation-based fuzzer.

Mutation-Based Invalid Matrix. The mutation-based fuzzer requires an R1CS
matrix with a number of public variables as a seed, and then flips values to
generate a new matrix. We use Atheris, a mutation-based, coverage-guided fuzzer
developed by Google [9]. The seed is converted into a byte array, then Atheris
will flip the array, and then it is converted back to a (new) R1CS matrix. Because
we have randomly flipped values in the matrix, the R1CS constraint relations
will be destroyed, and the matrix will be invalid. This technique can work off of
and mutate input examples that might be hard to produce by generation-based
fuzzing.

Mutation-Based Valid Matrix. Our mutation-based fuzzer can also produce a
valid R1CS matrix. Instead of flipping random values, a random number c will
be generated, and the new matrix M will be calculated based on the seed matrix
M0 as M = cM0. This multiplication will not break the constraint relations, so
the new matrix is still valid. This can be used with the generation-based fuzzer to
produce valid large R1CS matrices in a short time, thus increasing performance.

SnarkFuzzer: Ideal Files

Goals: The ideal files act as a guide for the Branch Model and Value Model to
check code coverage and protocol calculations. They contain information related
to the source zkSNARK library such as branch locations, variable names, and
data types.

Design. Each library and protocol needs two ideal files: an ideal branch file
that contains the locations of the branches in a library (automatically gener-
ated), and an ideal value file that contains information about the variables in a
program (manually generated). Manually creating the ideal value file does not
require any specialized knowledge related to zkSNARK protocols, the library, or
cryptographic techniques, and the user only needs basic skills such as defining
functions, conditions, and assigning variables. These ideal files can be reused for
any program using the same protocol and library.

Ideal Branch File. An ideal branch file contains protocol-specific information
related to the branches in a library. Function calls, if-conditions, and loops
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are all considered branches. The branch file also contains information about
IMPORTANT versus UNIMPORTANT branches to help the Value Model. Important
branches include cryptographic calculations and other core protocol components
that we wish to ensure testing and coverage of, while unimportant branches are
those that do not involve relevant computation.

Ideal Value File. An ideal value file contains location information for all variables
that must be used to evaluate the protocol calculation. The Value Model will
use line and path information in this file to extract all variables’ values. Only
variables defined in the official protocol paper should be added to the ideal value
file.

Implementation. We have already developed the ideal files for Pinocchio and
Groth16 in libsnark and Groth16 in Bellman, arkworks, and gnark.

Ideal Branch File. By default, all branches are marked as IMPORTANT and
thus covered. We asked four researchers in our group (including people with
experience using zkSNARKs and those with only programming experience) to
label branches as IMPORTANT or UNIMPORTANT. To ensure SnarkFuzzer does not
miss any critical components, only branches labeled as UNIMPORTANT by all
four researchers could be marked as UNIMPORTANT in our example ideal branch
files7. We provide an example snippet of an ideal model file for libsnark in
Appendix B.1.

In order to find uncallable functions, we used a static analysis tool called
Doxygen [12] to draw the library functions’ call graph. Doxygen can help a user
generate the call graph for a library, and by using this call graph, the user can
easily find unused and uncallable functions to reduce fuzzing costs.

Ideal Value File. The ideal value file contains “official” variable names, variable
types, and variable names, path, and line number (the final assignment location
for a variable) in the library’s source code. We provide an example snippet of an
ideal value file for the libsnark library in Appendix B.1. While line numbers
might change as code is maintained, one should not need to manually create a
new file often. If there are only minor or non-cryptographic related changes, our
tool will automatically match the new line numbers.

SnarkFuzzer: Branch Model

Goals: The Branch Model monitors and records branch visitation status as
SnarkFuzzer runs, and informs and stops it after all IMPORTANT branches have
been covered.

7 Incorrectly labeling UNIMPORTANT branches as IMPORTANT only increases the fuzzing
time without affecting the accuracy of the analysis.
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Design. The Branch Model is used to evaluate if the target library has been
fully tested. Traditional fuzzers often work by examining utilized memory bytes
in a binary or lines of source code hit to check for program coverage, and then
mapping this coverage to an input to determine the next one. However, in a
zkSNARK library, it is difficult to correlate the exact relation between a specific
branch and values in the input program that could trigger it. Therefore, we
instead use the idea of function and condition branches to evaluate coverage.

Since any unvisited branches may cause errors, the Branch Model evaluates
each input program to acquire the list of branches that the program visited. The
Input Generator will continuously generate new program inputs with different
proof statements/matrices until all IMPORTANT branches have been visited.

To ensure that we achieve both breadth and depth in code coverage, the
Branch Model also works to ensure that each branch is covered multiple times
with different inputs, keeping a count of the number of times each IMPORTANT
branch is hit. We allow the user to define a visitation threshold to balance per-
formance with coverage and confidence. As more inputs are generated, we have
a higher chance of finding potential issues in the target library or, conversely,
more confidence that the target library is safe, at the cost of runtime.

Implementation. Our Branch Model uses GDB breakpoints to investigate
the visitation status for each branch defined in the ideal branch file. A GDB
breakpoint stops the program whenever the selected location in the program
is reached for debugging, and it can be set by line number, function name,
or address in the program. When the Input Generator produces a zkSNARK
program, the Branch Model sets a GDB breakpoint at the start line for each
branch. If a branch is then visited during runtime, GDB will temporarily stop the
input program at the corresponding breakpoint. After the program is finished
running, the Branch Model records a list of visited branches for the current
program. If all important branches have not been visited at least once, or the
visitation threshold has not been met, the Branch Model will instruct the Input
Generator to generate a new program with a different proof until all important
branches have been covered.

SnarkFuzzer: Value Model

Goals: The Value Model’s goal is to find cryptographic logic errors, such as
inconsistencies with the protocol definition or incorrect cryptographic operations.

Design. The Value Model is one of the most important components in Snark-
Fuzzer, and one of the biggest improvements compared with other fuzzers. Its
job is to detect cryptographic logic errors in a library. At a high level, the Value
Model must extract all necessary variable values from the input program, which
it then feeds to the other components. It achieves this through two major sub-
components: the Value Extractor and Value Checker.
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Value Extractor. The Value Extractor extracts variables’ values from the source
zkSNARK program, which are then used in the Value Checker. The ideal value
file provides a list of variables that need to be extracted. Then, the Value Extrac-
tor recursively extracts these values from the last assignment location in the
program and library, and reformats the values to the Value Checker readable
format.

Value Checker. The Value Checker re-evaluates all protocol calculations and com-
pares these ground-truth values to the values extracted from the input program
by the Value Extractor to find any possible logic errors. In the re-evaluation
process, the Value Checker will faithfully follow the protocol from the formal
specification without any optimization, simplification, or reformatting. To build
a trustable re-evaluation process, our Value Checker uses ECC libraries that have
been tested and widely used. In the future, this component could be replaced by
any trusted evaluation source, such as a formally verified implementation.

Implementation

GDB PrettyPrint. GDB can display both the structure and value(s) for a vari-
able. However, for more complicated variables GDB displays some unnecessary
variable structure and data. Also, different libraries usually have different data
structures (even for the “same” variables), and, as such, the Value Checker can-
not directly use the raw, unformatted variable value extracted from the library.
For example, Figs. 7a, 7b, and 7c in Appendix B.2 show a G1 type variable that
represents the same number in both libsnark, Bellman, and arkworks but has
different structure and value when printed naively.

To make the Value Checker more universal, we developed a PrettyPrint func-
tionality for each library to convert all data structures into the same format. The
goals of PrettyPrint are twofold: 1) to allow the extractor to keep only the nec-
essary values for a variable, and 2) to convert the same types of variables from
different libraries into a common universal format that the Value Checker can
then accept. Figure 7d in Appendix B.2 shows an example of the PrettyPrint
result for the same G1 variable as before.

Value Extractor. The Value Extractor extracts all variables defined in the ideal
value file using GDB and PrettyPrint. As the ideal value file contains the line
number where each variable is assigned, the Value Extractor can automatically
set up a breakpoint for each variable immediately after its assignment. Then,
when the input program reaches this, the Value Extractor uses PrettyPrint to
save the variable’s formatted value.

Value Checker. We developed the Value Checker for Pinocchio by following [52]
and [27] and Groth16 by [39] and [50]. To help ensure accurate re-evaluation
of the protocol calculations, the Value Checker uses exactly the same variable
names as the original papers, and we follow the protocol description exactly,
without any optimizations, to avoid introducing mistakes.
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ECC Libraries. We use two well-tested elliptic curve libraries to demonstrate
diversity and flexibility. py ecc [31], developed by Ethereum in Python, supports
both the BN128 and BLS12-381 curves. CIRCL [32], developed by Cloudflare in
Go, supports BLS12-381. Since it is written in Go, we developed the necessary
APIs so that our Python-based Value Checker can access the functions. If users
would like to test a new zkSNARK library using a curve that py ecc or CIRCL
do not support, they can easily plug it into the Value Checker in this same
manner.

SnarkFuzzer: Value Monitor

Goals: The Value Monitor detects any unexpected value changes after the extrac-
tion of initial variable values from the source program.

Design. While the Value Model extracts all necessary variables’ values at the
location where the variables are first assigned, and we also need to check if there
is a value change after the model extracts these values to ensure consistency
between the library and the Value Checker. The Value Monitor can also detect
any unexpected side effects caused by the library or dependent functions due to
incorrect implementation, out of memory, or other unexpected errors.

Implementation. GDB watch allows SnarkFuzzer to monitor value changes
in a debugging session with four CPU debug registers called hardware watch-
points. A hardware watchpoint is very efficient, but it does not support larger
data structures given the limited debug registers. Software watchpoints will be
automatically applied if GDB tries to setup a watchpoint for a variable that
cannot be handled by a hardware watchpoint. Unlike hardware watchpoints,
software watchpoints are extremely slow, and watching dozens of variables may
require unacceptable processing time. For example, using GDB software watch
for a single variable A query in libsnark takes more than 30 min.

Therefore, we instead used Valgrind, a dynamic analysis tool that analyzes
a program to automatically detect memory management and threading bugs.
Valgrind has a gdbserver to simulate traditional GDB hardware watchpoints.
Simulation still takes longer than pure GDB hardware watchpoints, but the
hardware watchpoint simulation is much faster than GDB software watchpoints.
Meanwhile, Valgrind hardware watchpoint simulation does not have any limi-
tation on the number and length of variables, so Valgrind can be used for any
zkSNARK source program and libraries with complex data structures.

5 Performance Evaluation

Our first set of evaluations for SNARKProbe explores its performance and scala-
bility. All experiments run on an Intel Core i7-8700 CPU @ 3.20 GHz × 12 with
32 GB of RAM running 64-bit Ubuntu 22.04 LTS.
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5.1 Performance of the Constraint Checker

We start by testing the Constraint Checker and evaluate its performance on
statements with different types of operations and complexities, and present the
runtimes in Table 2. There are two runtime results for each experiment. We first
recorded the runtime for the SMT solver, which is the most important step
in the Constraint Checker, and we also recorded the total runtime, including
the processing time of the Circuit Extractor, SMT solver, and other internal
evaluations.

Table 2. Constraint Checker runtime for different proof statements

Statement Equation Runtime (in seconds)

SMT Solver Overall

Cube y = x3 + x + 5 0.49 4.18

Cube with Error y = x3 + x + 5 0.24 3.94

Comparison x < 60 0.54 12.39

SHA-256 Hash y = sha256(x) 0.71 15.39

Inner Product 〈u, v〉 < c1 ∧ 〈u, v〉 > c2 0.59 18.34

We tested different types of proofs, including the well-known cube example, a
comparison (which requires using a gadget), a hash (a complicated mathematics
equation), and a proof with inner product, logical operators, and comparison
(which requires multiple gadgets and more complex logic). As expected, as we
progress in terms of “complexity”, runtime generally increases. Interestingly, the
hash proof takes the longest in the SMT solver, demonstrating that there are
different notions of “complexity” than just statement size.

We also sought to test if the correctness of the statement checked had any
impact on performance. We did this by running two different experiments with
the cube proof, one where we model a developer correctly flattening the state-
ment equation into R1CS, and a second where we model a mistake in the flat-
tening that introduces an error. Our Constraint Checker took a shorter time to
evaluate the incorrect cube program since the Constraint Checker aborts as soon
as it finds an error (such as a different domain or output value).

5.2 Performance of SnarkFuzzer

We tested SnarkFuzzer on libsnark, Bellman, arkworks, and gnark to evaluate
the processing time and performance in different configurations. All experiments
run on a single core, except for the Value Monitor which is trivially paralleliz-
able across all cores. We start by evaluating the overall tool to examine the run-
time percentage that is dedicated to each sub-component. We then drill down
and individually explore the scalability of each sub-component to gain a fuller
understanding of SnarkFuzzer’s overall scalability.
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Overall Runtime with Different Libraries and Protocols. We first explore
the proportion of total running time that each different facet of SnarkFuzzer
takes, and present the results in Fig. 2.

We ran with five different configurations: libsnark with Pinocchio, libsnark
with Groth16, Bellman with Groth16, arkworks with Groth16, and gnark with
Groth16. All of these experiments use generation-based fuzzers to produce valid
R1CS matrices (the slowest of the four fuzzing methods we provide) with dimen-
sions in [30, 60]. We ran 30 iterations of the Branch Model (since as shown in
Fig. 3 that provides reasonable coverage) and calculated the average runtime to
complete a full “run”8 and proof check for each library and protocol.

Fig. 2. Runtime of each component in SnarkFuzzer with different libraries and proto-
cols, both in terms of actual time as well as percentage of the total.

We observe that for all libraries and protocols, the majority of time is spent
in the Value Monitor and Value Model phases. This is somewhat expected, as
the cryptographic operations in the Value Model require time to calculate, and
Valgrind’s simulation hardware watch also introduces substantial overhead. Since
Groth16 has fewer elliptic curve and pairing operations than Pinocchio, testing
that involves Groth16 costs less time. However, Valgrind spends a longer time
executing a program in Rust than a program in C and Go. Since we use Valgrind
in the Value Monitor to find and monitor value changes, we see a longer overall
runtime with Bellman and arkworks than libsnark and gnark.

We do use small R1CS matrices in these experiments, as the primary goal is
to demonstrate the runtime proportion for each component. We make a few key
observations about this. We noticed that unless one uses only generation-based
fuzzing to produce valid inputs, the size of the R1CS matrix (i.e., the proof) will

8 We define a “full run” to be using the Input Generator to produce one zkSNARK
program, analyzing coverage status with the Branch Model, and looking for any
software and cryptographic related bugs with the Value Model and Value Monitor.
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not substantially affect the performance of the Input Generator. The Branch
Model does not work with the R1CS matrix, so different sizes will result in the
same runtime. However, a large matrix will significantly increase the runtime of
the Value Model and Value Monitor (see Table 4 for more realistic values). For
total runtime reference, an R1CS matrix of size 100 × 5000 takes about 940 s to
run the complete SnarkFuzzer with our generation-based invalid matrix fuzzer.

Performance of the Input Generator. Unlike a mutation-based or generation-
based fuzzer for an invalid matrix (which are very quick since they only require
straightforward operations), generating a valid R1CS matrix with our generation-
based fuzzer requires the SMT solver to produce a matrix based on the random
witness array. Thus the processing time depends on the matrix size and random
value(s) in the witness list, which generally results in a larger matrix taking longer
to process. To validate this, we used our various fuzzers to produce matrices of
varying sizes (remember that the rows represent the number of constraints and
columns the number of variables). In Table 3, we present the processing time for
each method (generally under one second for most methods), which confirms our
general intuition. We also note that the Input Generator must compile the input
matrix (proof) and source code into a binary program, which can require substan-
tial time that is outside of our control.

Table 3. Runtime (in seconds) of the Input Generator to produce R1CS matrices of
different sizes.

Matrix Size 5 × 10 20 × 40 50 × 100 50 × 200

Generation Based Invalid Matrix <0.01 <0.01 <0.01 0.02

Valid Matrix 0.16 2.06 23.02 51.27

Mutation Based Invalid Matrix 0.38 0.49 0.65 0.77

Valid Matrix <0.01 <0.01 <0.01 0.02

Performance of the Branch Model. Next, we explore the coverage ability
of the Branch Model in terms of breadth, as well as how quickly we achieve a
high percentage of branch coverage. We ran 50 iterations of the Branch Model
with libsnark, which covers more than 85% of all branches. We stopped our
experiments after 50 iterations as SnarkFuzzer did not reach any new branches
over the previous 10 prior iterations. Even with this, we note that after roughly
30 iterations we see the breadth of our coverage begin to taper off. A graph can
be found in Fig. 3.
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Fig. 3. Percentage (breadth) of library coverage after a given number of iterations

Performance of Value Model and Value Monitor. The primary effects on
overall performance are our Value Model and Value Monitor. Table 4 shows the
runtime with different matrix sizes. We expect the size of our matrices to be one
of the primary influences on the runtime of these components.

Recall that the computation of the proving key requires calculations with
the circuit. Therefore, a larger R1CS matrix will result in longer runtime in
our Value Model. At the same time, the shape of the matrix will also affect its
runtime. As we can see in Table 4, a matrix of size 20 × 45 takes less time than
one of size 30 × 30 or 45 × 20, even though they all contain 900 integers. In
fact, the number of variables (columns) plays a greater role than the number of

Table 4. Runtime of the Value Model and Value Monitor to process an R1CS matrix
of varying size. For example, 10 × 30 is a matrix with 10 variables and 30 constraints.

Matrix Setting Processing Time (in second)

Matrix Size Items in Matrix Value Model Value Monitor

10 × 10 100 23.33 29.21

10 × 30 300 25.96 33.09

30 × 10 32.78 34.21

20 × 45 900 29.52 43.99

30 × 30 33.01 46.30

45 × 20 40.14 47.68

45 × 60 2700 41.29 81.69

60 × 45 46.03 80.21

100 × 1500 150000 200.84 223.49

100 × 5000 500000 580.97 344.83
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constraints (rows) in Value Model runtime, since this plays a larger role in the
size of the proving and verification keys.

Similarly, the Value Monitor requires more time to watch variables in a pro-
gram with a larger matrix. However, the reason for this is different. Since the
runtime of Valgrind depends on the space complexity of a variable, the matrix
shape will not have an effect. Instead, the Value Monitor spends more time mon-
itoring a program with a larger matrix, but it takes similar time for programs
with the same number of integers but different shapes. For example, each matrix
of size 20 × 45, 30 × 30, and 45 × 20 has 900 integers, and the Value Monitor
takes around 46 s to run, even though they have a different shape.

Discussion of Total Runtime. Our experiments only provide an upper bound
on the worst case runtime for SnarkFuzzer. We did not perform any runtime
optimizations, and in all of our experiments, we used the slowest options or con-
figurations that we knew of. While SnarkFuzzer does require extra runtime in the
Value Monitor and Value Checker for each individual input seed, in comparison
to a traditional fuzzer, which might spend hundreds or thousands of core hours
to produce inputs, the framework and Branch Model designs allowSnarkFuzzer
to find issues with a relatively small number of generated input seeds. In fact,
most errors that SnarkFuzzer detected (see Sect. 6) were found with less than
ten seeds. Therefore, we view performance to be acceptable for real world usage.

Table 5. Summary of the current potential errors and inconsistencies, and previous
vulnerabilities, that SNARKProbe is able to catch and locate.

Error/Vulnerability Type Affected Component Program Found by

Potentially Locatable in Current Libraries

Incorrect manual flattening by developer Logic Error R1CS Circuit All libraries ConstraintChecker

Multiple gadget misuse Logic Error R1CS Circuit All libraries ConstraintChecker

Found in Current Libraries

Incorrect bit/comparison gadget implementation Logic Error R1CS Circuit libsnark ConstraintChecker

Mismatch in circuit generation and usage Logic Error R1CS Circuit All libraries ConstraintChecker

Groth16 pre-pairing computation in Setup Logic Error Groth16 Protocol bellman/arkworks SnarkFuzzer

Inconsistent QAP extension index usage Logic Error PGHR13 Protocol libsnark SnarkFuzzer

Toxic waste not safely destroyed Logic Error PGHR13 Protocol playsnark SnarkFuzzer

Program out of memory with large circuit Software Error - libsnark SnarkFuzzer

Found in Previous Versions of Libraries

CVE-2019-7167 Logic Error PGHR13 Protocol libsnark (2018) SnarkFuzzer

6 Error Catching Evaluation

Our second set of evaluations demonstrates SNARKProbe’s ability to automati-
cally catch different types of errors in zkSNARK libraries. We test SNARKProbe
on libsnark, Bellman, arkworks, and playsnark, as well as on the circuit gen-
erator Circom. Additionally, we show how SNARKProbe would have caught a pre-
vious CVE in the zkSNARK component of Zcash, a popular privacy-preserving
cryptocurrency. In total, SNARKProbe detected seven inconsistencies in current
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zkSNARK libraries, successfully automatically located the previous vulnerabil-
ity, and could potentially detect two additional types of errors. We summarize
our results in Table 5.

6.1 Potentially Locatable in Current Libraries

Incorrect Flattening. There is always a possibility that a developer may gen-
erate an incorrect R1CS matrix for their circuit, since this process is often
done by hand. While we did not find any examples of this in the few appli-
cations we tested, consider the following scenario. Take a statement equation
like x3 + x + 5 = y which the developer will typically flatten into R1CS gates
with private input x = 3 and public input y = 35. This set of equations is then
equal to x3 + x + 5 = 35. However, the developer may incorrectly flatten the
statement equation into R1CS gates 2.

R1CS gates =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∗ x = w1

w1 ∗ x = w2

w2 + x = w3

w3 + 5 = y

R1CS gates 2 :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∗ x = w1

w1 ∗ x = w2

w2 + 2 ∗ x = w3

w3 + 2 = y

While R1CS gates 2 still satisfies the private input x = 3 and public input
y = 35, causing the underlying library to output an acceptable proof, this flat-
tening does not in fact equal the statement equation x3 + x + 5 = y. Although
the statement equation and R1CS gates 2 satisfy the witness, and their domains
have the same upper and lower bounds, they have a different output range, which
our Constraint Checker will catch and flag as an error.

Combining Multiple Gadgets. Recall that a gadget is an abstraction that
many zkSNARK libraries contain to make developing proofs easier for develop-
ers. Multiple gadgets may also be combined to create a single proof. Gadgets are
generally created and provided independently, which means that one must com-
bine them with care. For example, say a developer uses the gadgets greater than
and equal to to create a proof that a prover has a value which is greater than
or equal to a certain number. For this proof, only one input should be used for
both gadgets. However, a naive developer may create a proof that has an indi-
vidual input for each gadget instead of a single input for the entire circuit. In
this case, a malicious prover can create a separate program with the same circuit
and use two inputs with different values to satisfy each gadget and hence the
entire circuit (when in reality these two inputs need to be identical). In this case,
our Constraint Checker can detect the inconsistency between the R1CS matrix
and statement equations to find potential issues with using multiple gadgets
incorrectly.
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6.2 Found in Current Libraries

Defective Gadgets. Gadgets may be implemented incorrectly, causing incon-
sistencies between the original (desired) statement equation and the R1CS gates
generated. Our Constraint Checker is able to find these inconsistencies in its
checks for equivalence, regardless of whether a gadget was used or not.

The comparison gadget in libsnark uses bit shifting to compare two vari-
ables A and B by calculating 2n + B − A and then counting the number
of 0 s and 1 s in the resulting bit array (the corresponding R1CS constraints
are shown in Appendix C). If the developer incorrectly specifies a bit length
smaller than the size of A or B, the comparison gadget will not generate
the correct R1CS, which may result in a “fake proof”9. libsnark will not
block this behavior or raise any warning messages. Consider a developer that
uses the comparison gadget to generate the statement equation x < 60 where
x ∈ Fp. The R1CS should then only have a valid solution in [0, 60). However, if
an incorrect bit length is provided, we found that all numbers in the range
(21888242871839275222246405745257275088548364400416034343698204186575
808494653, p) still satisfy this incorrect R1CS, allowing a dishonest prover to
generate a valid proof without knowledge of a correct secret value. After our
tool flagged this potential issue, on further manual investigation we did see that
the libsnark source code contains a comment about using the correct bit size,
though this could go unnoticed by a novice user or be abused by a malicious one
to forge proofs.

Mismatch Between Circuit Generation and Usage. In addition to end-to-
end libraries, there are a growing number of circuit generators available to assist
developers in constructing R1CS/circuits for proof generation, with Circom [41]
being a widespread example10. Circom generates R1CS files that can then be
utilized by libraries such as snarkjs [17], wasmsnark [18], and rapidSnark [16].
However, during our evaluation process, our Constraint Checker identified a
crucial potential issue: the absence of attribute cross-checking between the circuit
generator and formal proof generation library.

While the circuit generator may produce valid R1CS that accurately rep-
resents the prover’s original statement, the proof generation library might, for
example, employ a different elliptic curve and finite field to generate the proof
by default. Consequently, when operating under distinct elliptic curve and finite
field settings, the circuit no longer maintains equivalence with the original state-
ment. This discrepancy can be problematic both for a developer and a verifier
who are unaware that a circuit can yield different representations under different
elliptic curve configurations. In such cases, the prover can produce a seemingly
“valid” proof for the verifier without knowledge of the secret value.

9 One that will verify even though the prover does not actually have a valid witness.
10 We note that Circom is just an example that we tested, and that the same should

hold true for other circuit generators as well.
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Groth16 Pre-pairing. The Groth16 protocol produces P = gα and Q = hβ

as part of Setup, which are subsequently used in Verify to calculate the pair-
ing e(P,Q). However, our Value Checker found that Bellman stores the pairing
e(P,Q) as part of the verification key instead of P and Q. Pre-computing and
directly providing e(P,Q) is an optimization that helps make verification more
efficient (as pairings are quite slow to calculate). As this is a well-known opti-
mization, we can confidently say that this will not cause any sort of vulnerability,
but we err on the side of caution and flag all inconsistencies between the source
code and protocol for further review since these can greatly increase the risk of
actual vulnerabilities.

Pinocchio Protocol Inconsistencies. In the Pinocchio key generator, there
exist values

−→
A ,

−→
B , and

−→
C that need to be extended via Am+1 = Bm+2 = Cm+3

and Am+2 = Am+3 = Bm+1 = Bm+3 = Cm+1 = Cm+2 per the specification [27].
However, our Value Checker found that libsnark only extended

−→
A ,

−→
B , and

−→
C

via Am+1 = Bm+1 = Cm+1 as an optimization for space complexity. After a
review of the libsnark source code and protocol, we believe this inconsistency
will not lead to a security vulnerability given how the values are used in practice.
However, this instance is more subtle and less well-known than the previous one,
so while it might not be exploitable, we believe inconsistencies of this nature are
still valuable to flag for further review as this might not always be the case.

Toxic Waste. As part of the zkSNARK setup process, a set of private param-
eters informally referred to as “toxic waste” are generated. This toxic waste
must be destroyed after the setup process, as possession of it allows one to
forge proofs. However, our SnarkFuzzer identified an actual implementation error
in a zkSNARK library called playsnark, whereby toxic waste is not properly
destroyed during the setup phase. playsnark [5] serves as a learning playground
for proof systems, including Pinocchio and Groth16. While playsnark makes no
claims that it should be used for security-sensitive applications, we feel that this
example still exemplifies valuable use cases for SNARKProbe. First, it can indeed
catch errors that would be exploitable in real applications. And second, while
libraries like Bellman and libsnark are professionally audited, this will likely
not always be the case for all zkSNARK code in production usage in the future
(as we have seen in many other domains). Tooling such as SNARKProbe can be
an invaluable resource for non-experts and small organizations, enabling them
to assess the security posture of unaudited zkSNARK libraries, audit their own
code throughout the development process, and facilitating informed decisions
regarding future security implementations.
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libsnark Out of Memory. SnarkFuzzer detects a corner-case software error
in libsnark. When our Input Generator tried to produce a large R1CS matrix
with tens of thousands of variables and constraints, we discovered that libsnark
cannot compile and produce a zkSNARK program with such a large R1CS matrix
without throwing a segmentation fault or memory error. Intuitively, this occurs
because the input matrix we generated was quite dense, i.e., it had a large
number of both variables and constraints, as opposed to being quite sparse like
most typical R1CS matrices. libsnark’s R1CS storage format is clearly not
setup to handle such cases. In general, this would not impact the typical usage
of the libsnark, as our fuzzer is designed to look for extreme cases like this that
might not happen with a typical real world proof statement.

We take this example as a chance to take a step back and revisit our compar-
ison of SnarkFuzzer to a traditional, more generic fuzzer like AFL. As generic
memory and software errors such as this have nothing to do with the actual cryp-
tography and zkSNARK logic, traditional fuzzers are also able to detect them.
However, it is likely to take a generic fuzzer significantly longer (and many more
inputs) to catch such errors, as they lack the context to understand what an
“extreme” input means in this instance, and, as we have seen, it is not easy to
instrument a fuzzer with this context. Additionally, all previous instances that
we discussed would not be detectable by a generic fuzzer, as they are specifically
cryptographic logic errors.

6.3 Found in Previous Versions of Libraries

CVE-2019-7167 Problem. Finally, we discuss how SNARKProbe (specifi-
cally SnarkFuzzer) is able to detect real world vulnerabilities by demonstrat-
ing its ability to pinpoint a previous CVE. CVE-2019-7167 [34] was found in
libsnark through a manual code audit, as part of its usage in the popular
privacy-preserving cryptocurrency Zcash [19] (and has since been patched). At
a high level, this vulnerability produced a bypass element in the key genera-
tion that damaged the soundness of the zkSNARK proof system. To fix this
vulnerability, the value of pk

′
A must be replaced from {Ai(τ)αAρAP}m+3

i=0 to
{Ai(τ)αAρAP}m+3

i=n+1, with all other values the same.
To test this, we downloaded a version of libsnark from 2018 (Commit

hash: bf2146b). When running SnarkFuzzer, the Value Checker automatically
found this inconsistency and vulnerability in key generation. Additionally, while
libsnark has since fixed this issue, it did not directly modify the structure of
pk

′
A in order to keep consistency with the structure of the other proving keys.

Therefore, pk
′
A still has size m + 3 instead of (m + 3) − (n + 1). libsnark just

added an extra handler to reformat the pk
′
A size in the prover, and while this

does not appear to have caused any additional issues, it is unclear if this could
result in other corner case issues.
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7 Conclusion

In this paper we present SNARKProbe, a framework that can automatically
and systematically check for potential software errors and cryptographic logic
errors, as well as for consistency in the implemented proof statement, in R1CS-
based zkSNARK libraries, with little manual input from the user. We demon-
strated SNARKProbe’s design flexibility by implementing it for multiple different
zkSNARK protocols and libraries. In addition, we performed extensive perfor-
mance evaluations, as well as tested its ability to detect potential errors and
inconsistencies. We believe SNARKProbe is a step in the right direction for ensur-
ing the correctness of existing zkSNARK implementations and applications.

Acknowledgments. This work was supported by NSF grant CNS-2047991.

A Additional Information for Constraint Checker

A.1 An optimization for the SMT solver

The SMT solver may take a while to solve some complicated equations. To
reduce the processing time in the equality check, we introduce optimizations
and simplify some equations in the R1CS matrix. For example, many libsnark
gadgets use bit shifting, which produces the equation (x∗(1+(p−1)∗x)) mod p =
0 in R1CS gates. This equation represents x = 0 or x = 1. For our optimization,
if the Constraint Checker detects such a relation, it will be replaced with 0 ≤
x ∧ x ≤ 1 where x ∈ F. These are logically equivalent, but our replacement
is much easier for the SMT solver to work with. A real world gadget like the
comparison gadget in libsnark has 16 constraints, and there are 11 constraints
representing x = 0 or x = 1 (see Appendix C).



366 Y. Fan et al.

A.2 Protocol of the Constraint Checker by the SMT Solver

(a) Parameters.

A set of statement equations E1 in size p where equation

ei1 ∈ E1 and i ∈ [1, p].

A set of equations E2 converted from R1CS gates in size

q where ei2 ∈ E2 and i ∈ [1, q].

m private variables xi
1 in E1 where i ∈ [1,m] and

n private variables xi
2 in E2 where i ∈ [1, n] and n ≥ m.

A set of

auxiliary input vi
x.

k public variables yi
1 in E1 and k public variables yi

2 in

E2 where i ∈ [1, k]. A set of primary input vi
y.

A SMT Pro Solver S and Optimizer O with modulus P .

0 ≤ x1 < P , 0 ≤ x2 < P , 0 ≤ y1 < P , and 0 ≤ y2 <
P without optimization.

(c) Equivalent comparison.
INPUTS: E1, E2, S.

OUTPUTS: Boolean result of function equality.

Set two solvers S1 and S2 ∈ S.

1. Comparing with public variables:

Add ei1 ∈ E1 where i ∈ [1, p] and range of xi
1, yi

1
to S1.

Add ei2 ∈ E2 where i ∈ [1, q] and range of xi
2, yi

2
to S1.

Add xi
1 == xi

2 where i ∈ [1,m] to S1.

Add yi
1 �= yi

2 where i ∈ [1, k] to S1.

Check if S1 is SAT, UNSAT, or UNSURE as c1.

2. Comparing with Boolean variables:

Set b1 and b2 ∈ BOOLEAN

Add b1 = AND (E1) to S2.

Add b2 = AND (E2) to S2.

Add xi
1 == xi

2 where i ∈ [1,m] to S2.

Add yi
1 == yi

2 where i ∈ [1, k] to S2.

Add b1 �= b2 to S2.

Check if S2 is SAT, UNSAT, or UNSURE as c2.

3. Output (c1 == UNSAT AND c2 == UNSAT ).

(b) Function valid check.
INPUTS: E1, E2, S.

OUTPUTS: Boolean result of function validation.

1. Check and solve the R1CS gates:

Set a solvers S1 ∈ S.

Add ei1 ∈ E1 where i ∈ [1, p] and range of xi
1, xi

2 to

S1.

Solve S1 and get the set of private variables solution as

Mi
1x

and set of public variables solution as Mi
1y

.

2. Check and solve the statement equations:

Set a solvers S2 ∈ S.

Add ei2 ∈ E1 where i ∈ [1, q] and range of yi
1, yi

2 to

S2.

Solve S2 and get the set of private variables solution as

Mi
2x

and set of public variables solution as Mi
2y

.

3. Output vi
x ∈ Mi

1x
AND vi

x ∈ Mi
2x

AND vi
y ∈ Mi

1y
AND

vi
y ∈ Mi

2y
.

(d) Domain comparison.
INPUTS: E1, E2, S, O.

OUTPUTS: Boolean result of domain comparison.

1. Comparing upper and lower bond:

Add ei1 ∈ E1 where i ∈ [1, p] and range of xi
1, xi

2
to O.

Add ei2 ∈ E1 where i ∈ [1, q] and range of yi
1, yi

2
to O.

Solve the upper bond u1 and lower bond l1 from O
Solve the upper bond u2 and lower bond l2 from O

2. Check if R1CS is valid outside statement domain:

Add NOT(AND(range of xi
1, xi

2)) to S.

Add ei2 ∈ E1 where i ∈ [1, q] and range of xi
2, yi

2
to S.

Check if S is SAT, UNSAT, or UNSURE as c.

3. Output (c == UNSAT AND u1 == u2 AND l1 ==
l2).

A.3 Example Constraint Checker

For the interested reader, we provide an example of our Constraint Checker to
show how a developer can run the tool. More examples can be found in our code.

x = z3.Int("x")

## Indicate the public variables and private variables

allocate = ["x"]

variables = [x]

## Indicate the statement of a proof

statement = [x < 60]

## Provide the snark program to automatically extract the R1CS matrix

## Developer can also manually provide the R1CS matrix

path = os.path.join(currentdir, "range")

## Call the functions in ConstraintChecker to evaluate the correctness

fcmp = FunctionComparison(path)
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fcmp.allocate(allocate)

fcmp.set_input_sizes(0)

fcmp.addVariables(variables)

fcmp.addStatement(statement)

fcmp.addGadget(gadget1.comparison_gadget("max")) ## Optional

fcmp.addRange(x, z3.And(x < 60))

fcmp.runComparisonTests()

A.4 Domain Gap Issues

The same upper bound and lower bound does not guarantee that statement
equations and R1CS gates have the same range. Figure 4c and 4d shows an
example of an unmatched domain with the same upper bound and lower bound.

Domain Gap in Statement Equations
The ground truth domain of statement equations is known and provided by
the user (which means we know the domain gap in the statement equations),
the Constraint Checker can use the SMT solver to find if the R1CS gates have
solution(s) outside the domain of statement equations (e.g. in the gap). If the
SMT solver returns SAT, then the domains’ of the statement equations and R1CS
gates do not match and thus they are not equivalent. This example corresponds
to Fig. 4d.

Domain Gap in R1CS Gates
Since the domain of the R1CS gates is unknown, the Constraint Checker cannot
use the SMT solver to detect an unmatched domain as in the previous example.
However, in this instance, the prover likely will not be able to generate a proof
for a secret value in the gap because these secret values are not in the domain
of R1CS Gates even though they are valid solutions to the original statement
equations. That is, the set of allowable input values for the implemented R1CS
matrix is a subset of the set of input values for the desired proof statement.
Therefore, while this leads to undesirable behavior as the prover cannot generate
proofs for the entire valid input range, it does not lead to any exploits or “fake”
proofs (i.e., the ability to generate a valid proof without knowledge of the secret
value). This example corresponds to Fig. 4c.

We believe this type of gap is very rare, but we still try to find this issue by
producing a set of uniform random numbers as input for statement equations
and R1CS gates. If the R1CS gates do not have a solution but the statement
equations do have a valid solution for an input number, then there is a gap in
the statement equations, which is not equivalent to the statement equations’
domain. This test does not guarantee finding an existing domain gap, but a
larger set of numbers has higher confidence in finding any existing gaps.
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Fig. 4. Examples of Domain Comparison

B Additional Information for SnarkFuzzer

B.1 Example Ideal Model Files

See Figs. 5 and 6.

Relative Path: knowledge_commitment/kc_multiexp.tcc
FUNCTION,2,99,127,kc_batch_exp_internal,IMPORTANT
CONDITION,4,117,124,2,IMPORTANT
CONDITION,5,119,123,2,IMPORTANT
RETURN,2,126,126,2,IMPORTANT

Fig. 5. Example file for the ideal branch file

tau,Fr,t,zk_proof_systems/.../r1cs_ppzksnark.tcc,252
rhoA,Fr,rA,zk_proof_systems/.../r1cs_ppzksnark.tcc,300
rhoB,Fr,rB,zk_proof_systems/.../r1cs_ppzksnark.tcc,301

Fig. 6. Example file for the ideal value file
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B.2 PrettyPrint Example

Fig. 7. Content of variable type G1

C Equations comparison gadget Represents

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w14 ∗ (1 + (p − 1) ∗ w14)) mod p = 0

(1024 + w3 + 2 ∗ w4 + 4 ∗ w5 + 8 ∗ w6 + 16 ∗ w7 + 32∗
w8 + 64 ∗ w9 + 128 ∗ w10 + 256 ∗ w11 + 512 ∗ w12)

modp = w13

(w3 ∗ (1 + (p − 1) ∗ w3)) mod p = 0

(w4 ∗ (1 + (p − 1) ∗ w4)) mod p = 0

(w5 ∗ (1 + (p − 1) ∗ w5)) mod p = 0

(w6 ∗ (1 + (p − 1) ∗ w6)) mod p = 0

(w7 ∗ (1 + (p − 1) ∗ w7)) mod p = 0

(w8 ∗ (1 + (p − 1) ∗ w8)) mod p = 0

(w9 ∗ (1 + (p − 1) ∗ w9)) mod p = 0

(w10 ∗ (1 + (p − 1) ∗ w10)) mod p = 0

(w11 ∗ (1 + (p − 1) ∗ w11)) mod p = 0

(w12 ∗ (1 + (p − 1) ∗ w12)) mod p = 0

(1024 − 1 ∗ w1 + w2) mod p = w13

(w15 ∗ (w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10+

w11 + w12)) mod p = w14

((1 + (p − 1) ∗ w14) ∗ (w3 + w4 + w5 + w6 + w7 + w8

+w9 + w10 + w11 + w12)) mod p = 0

w14 mod p = 1
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Abstract. Convolutional neural networks (CNNs) have emerged as one
of the most successful deep learning approaches to image recognition and
classification. A recent line of research, which includes zkCNN (ACM
CCS ’21), vCNN (Cryptology ePrint Archive), and ZEN (Cryptology
ePrint Archive), aims at protecting the privacy of CNN models by devel-
oping publicly verifiable proofs of correct classification which do not leak
any information about the underlying CNN models themselves. A shared
feature of these schemes is that they require the entity constructing the
proof to have access to both the model and the input in the clear. In
other words, a client holding a potentially sensitive input is required to
reveal this input to the entity holding the CNN model, thereby sacrificing
his privacy, to be able to obtain a verifiable proof of correct classifica-
tion. This is in contrast to the security guarantees provided by secure
classification considered in privacy-preserving machine learning, which
does not require the client to reveal his input to obtain a (non-verifiable)
classification.

In this paper, we propose a privacy-preserving verifiable CNN scheme
that overcomes this limitation of the previous schemes by allowing the
client to obtain a classification proof without having to reveal his input.
The obtained proof allows the client to selectively reveal properties of
the obtained classification and his input, which will be verifiable to any
third-party verifier. Our scheme is based on the recent notion of collabo-
rative zk-SNARKs by Ozdemir and Boneh (USENIX ’22). Specifically, we
construct a new collaborative zk-SNARK based on Bulletproofs achiev-
ing an efficient maliciously secure proof generation protocol. Based on
this, we then present an optimized approach to CNN evaluation. Finally,
we demonstrate the feasibility of our approach by measuring the perfor-
mance of our scheme on a CNN for classifying the MNIST dataset.
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1 Introduction

Deep learning has shown itself to be a tremendously useful tool in many applica-
tion areas, and convolution neural networks (CNNs) in particular have emerged
as one of the most successful deep learning techniques for tasks such as image
recognition and classification. However, to provide accurate results, CNNs often
require a large amount of training data. While this is unproblematic in appli-
cation areas where training data is readily available, obtaining and correctly
labeling sufficient training data in other areas is a challenging task made more
difficult by issues related to data ownership. To further complicate matters, the
training data, as well as the input data to be classified, might, in some applica-
tions, be sensitive, and data holders might be unable to share their data with
any other party due to privacy concerns.

Privacy-preserving machine learning aims at addressing these issues by mak-
ing deep learning techniques applicable to sensitive data which cannot be publicly
shared. More specifically, a particular active line of research within this research
area focuses on secure classification (e.g. see [5,7,9,10,19,24,26,29,36–38] to
name just a few works). This allows a server, holding a CNN model M and a
client, holding an input x, to evaluate the CNN defined by M on x, without
the server having to disclose M or the client having to reveal x to the server.
A different, but closely related line of research focuses on secure learning (e.g.
see [11,31,32,41]), which enables a set of servers, each holding different datasets,
to train a CNN based on the combined dataset, without each server having to
reveal his individual dataset. Note that, due to how training is performed in
a CNN, secure classification can easily be derived from secure training. While
these works allow the entities jointly computing classification or training a CNN
model to keep their inputs private, they do not provide verifiability i.e. the abil-
ity to verify that a given classification result was indeed obtained for input x
with respect to a given model M .

A recent set of works, specifically ZEN [17], vCNN [28] and zkCNN [30],
address this by constructing zero-knowledge succinct non-interactive arguments
(zk-SNARGs) for CNN classification. Specifically, these works allow a server
holding a CNN model M to commit to this, obtaining the commitment comM ,
and subsequently producing a proof π, that a given input x will lead to a given
classification result with respect to the model committed in comM . Furthermore,
neither the input x nor the classification result need to be given in the clear to
a potential verifier, but can themselves be contained in commitments, thereby
hiding M , x and the classification result from the verifier. In other words, let-
ting y ← EvalCNN(M,x) denote that the classification result y is obtained by
evaluating the CNN model M on input x, the proof π is informally a zk-SNARG
for the language

{(comM , comx, comy) | ∃M, rM , x, rx, y, ry s.t.
comM = Commit(M, rM ) ∧ comx = Commit(x, rx)∧

comy = Commit(y, ry) ∧ y = EvalCNN(M,x)}
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where Commit denotes the commitment algorithm of a commitment scheme. A
potential verifier will of course not gain much information from verifying π alone,
but a client holding y and ry can choose to either directly provide (y, ry) or prove
additional properties about y contained in comy in a separate proof, thereby
choosing what information about y is disclosed while maintaining verifiability
of the correctness of the classification result y. Overall, this provides a privacy-
preserving way for a client to convince a verifier about the correct classification
of his input x as well as selective information about y and x. To illustrate the
usefulness of this type of primitive, [28] highlights the example of using deep
learning to diagnose diseases. In this case, a central hospital or medical company
will hold the model M and publish comM , and a patient will obtain input x via
some form of examination. Obtaining a diagnosis, i.e. the classification result of
x based on M , and proof of the above type will allow the patient to show to a
third-party e.g. an insurance company, that his diagnosis satisfies the condition
of a specific insurance policy, while keeping the exact examination results and
corresponding diagnose private.

However, in contrast to secure classification and secure learning, a shared
feature of ZEN, vCNN and zkCNN is that the proof generation requires the
input x to be available to the entity holding the model. As a consequence, this
entity learns both x and the corresponding classification result. In other words,
in the example above, the patient will have to sacrifice his privacy with respect
to the central hospital or medical company holding M , to be able to obtain a
privacy-preserving proof verifiable to a third party.
Our Contribution. In this paper, we address the above highlighted privacy
issue regarding the input x and the obtained classification result.

Specifically, our contribution consists of the following:

– Firstly, we propose a new privacy-preserving notion of a verifiable CNN that
allows the model M , the input x and the classification result to be kept
private.

– Secondly, as a stepping stone towards achieving this notion, we construct a
new collaborative zk-SNARK based on Bulletproofs [6].

– Finally, based on our collaborative zk-SNARK, we present a new construction
of a verifiable CNN that satisfies our stronger privacy-preserving notion and
provide a performance evaluation of this.

In the following, we will provide further details on each of the above items.
New Privacy-Preserving Notion for Verifiable CNNs. Our new privacy-
preserving notion for verifiable CNNs requires that the model M , the input x and
the resulting classification are kept private while still ensuring that a publicly
verifiable proof of correct classification is obtained. Additionally, our new notion
enables the entity holding x to selectively reveal properties of the classification
result. The definition of our verifiable CNN notion resembles the notion of a
publicly auditable multi-party computation (PA-MPC) introduced by Baum et
al. [2], and concretely extends the PA-MPC definition by Ozdemir-Boneh [34]
to cover randomized functionalities as well as the specialized properties required
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for our application purpose. More precisely, our definition requires a verifiable
CNN to satisfy two main properties. Firstly, a verifiable CNN must implement an
interactive proof generation protocol that satisfies the standard notion of mali-
ciously secure MPC, thereby informally guaranteeing that the protocol leaks no
information regarding the parties’ input besides what can be computed from
the protocol output. Here, the output for the party holding the model is defined
to be a commitment comy to the classification result y, whereas the output for
the party holding the input is defined to consist of comy, y and the opening of
comy. Secondly, the proof generation must satisfy the notion of a collaborative
zk-SNARK [35]. Note that the witness of the proof, the model and the input, are
essentially shared between the parties, and in this setting, a plain zk-SNARK is
insufficient since a malicious entity might be able to influence the proof genera-
tion in such a way that he can derive information about the other entity’s part
of the witness from the proof. The above two notions combined ensure that no
information leaks regarding the model, the input or the obtained classification
result.1

A New zk-SNARK Based on Bulletproofs. The main tool we use to obtain
our concrete construction of a verifiable CNN is a new collaborative zk-SNARK
based on Bulletproofs [6] i.e. we construct a new maliciously-secure protocol
for the joint generation of Bulletproofs from shared witnesses. As Bulletproofs
involve various group operations and in particular commitments, a naive imple-
mentation of this would be highly inefficient. However, we observe that a careful
setup of the groups over which the computation is performed combined with
a corresponding efficient realization of a commitment functionality, will allow
efficient joint computation of Bulletproofs. We break up our construction into
three relatively simple steps: firstly, we define a new extended arithmetic black-
box (ABB) functionality which provides a setup and commitment functionality
tailored to the requirements of Bulletproofs (Sect. 3.1); we then provide an effi-
cient protocol for the joint computation of Bulletproofs based on this (Sect. 3.2);
and finally, we show how the extended ABB can be securely realized through an
extension of SPDZ [15,40] (Sect. 3.3). We note that as discussed in [35], collab-
orative zk-SNARK has a number of practical applications, such as healthcare
statistics, calculation of credit scores, and audits of financial systems, to name
a few, and our Bulletproof-based zk-SNARK provides a new zk-SNARK with a
different set of tradeoffs that can be used in these applications
A New Privacy-Preserving Verifiable CNN. Based on our new Bulletproof-
based collaborative zk-SNARK, we build a new efficient verifiable CNN with
succint proofs. The main advantage compared to the existing schemes such as
ZEN, vCNN and zkCNN is that our scheme satisfies our new notion of a privacy-
preserving verifiable CNN and thereby provides the stronger privacy-preserving
properties guaranteed by this. (As highlighted above, the structure of ZEN,
vCNN and zkCNN requires the input x to be revealed in the clear to the entity
1 Here, the model denotes the parameters used in the CNN, and like ZEN, vCNN and

zkCNN, the structure of the CNN (i.e. the number and different types of CNN layers
used) is assumed to be public knowledge.
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Optimized
Input privacy Model privacy Transparent setup Malicious security Setting for CNNs

CNN-specific schemes
zkCNN [30] 1 1 N/A2 Standalone
vCNN [28] 1 1 N/A2 Standalone
ZEN [17] 1 1 N/A2 Standalone
pvCNN [42] 3 3 N/A3 Third-party3

Ours Collaborative
General-purpose schemes

OB22 [35] 4 Collaborative
DPPSV22 [16] Collaborative

: The property is satisfied. : The property is not satisfied. : The property is not fully satisfied.
1 These protocols are standalone algorithms for generating an NIZK proof of CNN classification, and requires plaintext access
to model and input. When used as suggested in [30, 28, 17], this leads to model privacy but no input privacy.

2 These protocols do not use an interactive protocol to generate a proof.
3 This protocol requires a semi-trusted third-party, see the explanation in Section 1.1.
4 Ozdemir-Boneh’s construction can be instantiated with various zk-SNARKs and the authors highlight that an instantiation
based on Fractal [13] enables a transparent setup. However, the authors do not implement an instantiation based on Fractal
due to the complexity of this and we thus regard the Ozdemir-Boneh construction not to have transparent setup.

Fig. 1. Comparison among verifiable CNN schemes and collaborative zero-knowledge
schemes.

holding the model M , and hence by design, these schemes cannot provide sim-
ilar privacy guarantees.) Besides the strong privacy-preserving properties, our
construction inherits the transparency property of Bulletproofs i.e. a common
reference string (CRS) generated by a trusted party is not required. By main-
taining this property of the original Bulletproofs, we ensure that the verifier need
not trust any third party to provide an honestly generated CRS. In contrast, we
note that both ZEN and vCNN rely on the zk-SNARK by Groth [21], which
requires a trusted CRS. Finally, we provide an experimental evaluation of our
verifiable CNN construction based on classifying the MNIST dataset.

1.1 Related Works

There are several recent works that consider verifiability (in a zero-knowledge
manner) of CNN classification, such as vCNN [28], zkCNN [30], and ZEN [17].
Additionally, Kang et al. [22] proposed, among other things, an approach to effi-
ciently generate a zk-SNARK for CNN classification and a protocol for verifying
accuracy of a CNN model based on this. However, these works do not achieve
the privacy guarantees we are considering in this paper i.e. that model M and
the input x are kept private by the entities holding these, and the classification
result is only learned by the entity holding x. Note that achieving this requires
a different structure of the underlying proof generation algorithms which must
allow a “joint generation” of a publicly verifiable proof.

The recently proposed pvCNN [42] for privacy-preserving CNN testing is
defined in a different setting to the above related works and ours. Specifically,
an additionally semi-trusted third party is introduced to perform a (latter) part
of the classification computation in plaintext. Due to this, some information
about the input and CNN model is leaked. In constrast, we aim to not rely on
such an external party in this work.

Ozdemir and Boneh [35] introduced the notion of collaborative zk-SNARK
which we use in this paper. This is a zk-SNARK system in which the prover’s
algorithm is distributed among multiple provers who each hold a “witness share”
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which constitute a valid witness when combined. They also constructed collab-
orative zk-SNARK protocols from the plain zk-SNARK systems [12,13,18,21],
using MPC. We point out that none of these zk-SNARKs, except for Fractal [13],
support a transparent setup (i.e. the CRS must be generated by a trusted party).
Furthermore, an instantiation using Fractal is not implemented by the authors,
as this was deemed too computationally heavy. In contrast, our collaborative zk-
SNARK is derived from Bulletproofs [6] and inherits the transparency property
from these. Furthermore, [35] also gave an alternative definition of publicly-
auditable multi-party computation (PA-MPC) [2] on which our definition of
privacy-preserving verifiable CNN is based. See Sect. 4.1 for the details.

Dayama et al. [16] introduced the notion of distributed-prover zero-knowledge
protocols, which is a special kind of interactive zero-knowledge protocols in which
multiple provers each holding a witness share try to convince the verifier of the
validity of an NP statement. Thus, when restricted to the case in which the
provers alone can generate a proof verifiable in public non-interactive manner,
it is essentially the same notion as collaborative zk-SNARK. They then con-
structed distributed-prover versions of recent interactive oracle proofs [1,3,6,39]
(which can be transformed to zk-SNARKs via the Fiat-Shamir paradigm). In
particular, they instantiated a distributed-prover version of Bulletproof [6]. We
remark that their constructions assume that there is a special entity among the
provers called an aggregator that is assumed to behave semi-honestly, which does
not have a counterpart in the collaborative zk-SNARK of [35]. This prevents the
constructions from meaningfully achieving malicious security, which we consider
in this paper.

Figure 1 shows a comparison between the above mentioned works and ours.

2 Preliminaries

Basic Notation. For a natural number n, we define [n] := {1, . . . , n}. For a
discrete finite set S, x ← S denotes sampling an element x uniformly at random
from S.

For a vector a = (a1, . . . , an) ∈ Z
n
p and 1 ≤ � ≤ n, we use the notations a≤� =

(a1, . . . , a�) and a�+1≤ = (a�+1, . . . , an). For vectors a = (a1, . . . , an) ∈ Z
n
p and

b = (b1, . . . , bn) ∈ Z
n
p , we denote by 〈a, b〉 the inner product a1b1 + · · · + anbn.

We also use the notation of a “vector polynomial” p(X) = p0+p1X+ · · ·+pdX
d

and its inner product 〈l(X), r(X)〉 = ∑d
i=0

∑d′

j=0〈li, rj〉Xi+j where l(X) = l0 +
l1X + · · · + ldX

d and r(X) = r0 + r1X + · · · + rd′Xd′
.

In this paper, N will always denote the number of parties participating in a
multi-party computation protocol, and λ (given in unary) will always denote the
security parameter. PPT stands for probabilistic polynomial-time. An efficient
algorithm is PPT.
Convolutional Neural Networks. In this paper, we consider feedforward con-
volutional neural networks (CNNs). These networks consist of several layers,
which each processes the output of the previous layer and forwards the result as
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input to the next layer. The first layer is the input layer, whereas the last layer
is the output layer, the latter typically assigning a confidence score to each class
in a set of classes into which the input is supposed to be classified. While most
CNNs can be described using a small set of layer types, the number of layers,
the ordering of these, and their exact configuration depend on the specific CNN.
In the following, we will outline the abstraction of CNNs we rely on in our defi-
nitions related to privacy-preserving verifiable CNNs, and the types of layers we
consider the CNNs to consist of.
CNN Abstraction. To capture different CNN structures, we will use a generic
CNN evaluation algorithm, denoted EvalCNN, with the following syntax:

y ← EvalCNN(S,M, x).

Here, S is a representation of the structure of the CNN i.e. the used layer types,
their ordering and interconnections. M denotes the model and consists of the
parameters determined by the training of the CNN, and x denotes the input
which is to be classified. Finally, y denotes the obtained classification of x. The
algorithm EvalCNN is assumed to iteratively evaluate each layer specified in S,
applying the corresponding parameters from M , and using the obtained result
as input for the next layer, until the output layer is reached. The output layer
typically defines several classes, and we let the final classification y denote the
class with the highest score. In the following description of the layer types we
consider, we will highlight what parameters are considered to be part of the
model M . Note that we will consider the structure S of the CNN being evaluated
to be publicly available.
Layers. In this paper, we will consider the following layers.

Convolution Layer. A convolution layer divides input variables into mutually
overlapped small local regions and computes the inner product of each square
and weights (a filter or a kernel). These inner products consist of the output
of the layer. Here, weights are a part of the model M .

Pooling Layer. Similarly to a convolution layer, a pooling layer divides input
variables into mutually overlapped small local regions. For each region, the
values are replaced with another value computed from the values in the region.
Different subtypes of pooling layers use different replacements. A max pooling
layer is a typical pooling layer, in which a region is replaced with the maximum
of the values in the region. There is no model parameter in pooling layers.

Activation Function. An activation function is a non-linear function which is
directly applied to each value in the output of a previous layer. A typical
activation function is the rectified linear unit (ReLU) function, which maps
a negative value to zero and a zero or positive value to the same value.

Fully Connected Layer. A fully connected layer, given a set of input values,
outputs a set of different values, each of which is the inner product of all the
input values and fixed weights. Different outputs use different sets of weights.
These sets of weights are a part of M .

SoftMax Function. The SoftMax function is the typical final layer. This layer
is given as input a set of input values which constitutes the confidences of



380 N. Attrapadung et al.

the classifications in that i-th value is the confidence for the classification to
the i-th class. Then this layer normalizes by mapping each confidence to the
value between 0 and 1 so that the sum of all values is 1. There is no model
parameter in the SoftMax function.

We also note that we can extend our construction to support other types of
layers. See further details for Sect. 4.2.
Secure Multi-party Computation. We will make use of the standard notion
of secure multi-party computation (MPC). Particularly, our main constructions
will consider security with abort in the dishonest majority and static corruption
setting.

Let F be a (possibly probabilistic) N -input, N -output function. An N -party
computation for f is a protocol among N parties P1, . . . , PN such that each
party Pi, which takes xi as input, receives yi as the result of an execution of
the protocol, where (y1, . . . , yN ) ← F(x1, . . . , xN ). (A function computed by a
multi-party protocol is often called a functionality.)

For security definitions of a multi-party computation protocol, we use the
standard definition of security based on the real/ideal paradigm [8,20]. We will
consider security with abort as a default notion, where a malicious party may
obtain the final result while making the protocol abort and preventing honest
parties from obtaining the final results. We note that this security notion is
sufficient for our purpose. Also, we will consider the dishonest majority and
static corruption setting. The former means that the number t of corrupted
parties can be up to N − 1, and the latter means that the adversary decides
the set of corrupted parties before the execution of the protocol. We will also
consider semi-honest security, where corrupted parties do not deviate from the
protocol specification.

Definition 1. Let F :
∏

i∈[N ] Xi → ∏
i∈[N ] Yi be a (possibly probabilistic) effi-

ciently computable function. We say that an N -party protocol Π for f is secure
with abort (in the dishonest majority, static corruption setting) if for any PPT
adversary A, there exists a PPT ideal-world adversary (also called a simulator)
S such that for any input x = (x1, . . . , xN ) ∈ ∏

i∈[N ] Xi and auxiliary-input
string z ∈ {0, 1}∗, the two random variables realΠA(x, z) and idealfS(x, z) are
computationally indistinguishable, where these random variables are defined as
follows:

– Real execution realΠA(x, z), generated from an interaction among the set of
parties P1, . . . , PN and the adversary A: Given z as input, an adversary A
specifies the set of indices C ⊂ [N ] of corrupted parties such that |C| ≤ N −
1, and receives the inputs {xi}i∈C. Then, the protocol Π is executed, where
during the protocol execution, the behavior of the corrupted parties Pi with
i ∈ C is determined by A. After the execution, A outputs an arbitrary string
as its final output. realΠA(x) consists of the outputs of all the honest (i.e.
uncorrupted) parties concatenated with A’s final output.

– Ideal execution idealFS (x, z), generated from an interaction between the
trusted party (for computing F) and the ideal-world adversary S: Given z as
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input, an ideal-world adversary S specifies the set of indices C ⊂ [N ] of cor-
rupted parties such that |C| ≤ N −1. At this point, S may ask the trusted party
to abort, in which case, the honest parties’ output is forced to be the abort sym-
bol. Then, S give an arbitrary value x′

i (not necessarily xi) for all corrupted
indices i ∈ C. Also, x′

i = xi is passed to the trusted party for all non-corrupted
parties. Then, the trusted party computes (y1, . . . , yN ) ← F(x′

1, . . . , x
′
N ), and

gives (yi)i∈C to S. For each uncorrupted party index i ∈ [N ] \ C, S decides
whether the party i aborts or not. In the former case, yi is replaced with the
abort symbol, while yi is untouched in the latter case. Finally, S outputs an
arbitrary string as its final output. idealFS (x, z) consists of (yi)i∈[N ]\C concate-
nated with S’s final output.

Furthermore, we say that Π is secure against semi-honest parties if the above
indistinguishability is guaranteed only when the corrupted parties controlled by
an adversary A always follow the protocol specification.

Hybrid Model. We will show the security of our protocols in a hybrid model,
where the parties execute a protocol with real messages and also have access to
a trusted party computing a subfunctionality for them. The modular sequential
composition theorem of [8] states that one can replace the trusted party com-
puting the subfunctionality with a real secure protocol computing the subfunc-
tionality. (This works both security with abort and security against semi-honest
parties.) When the subfunctionality is G, we say that the protocol works in the
G-hybrid model.
Privacy-Preserving CNNs. To be able to define privacy-preserving verifiable
CNNs in Sect. 4, we need to first specify what it means for a 2-party proto-
col to compute a CNN classification in a privacy-preserving manner (without
considering verifiability). We define it as a secure 2-party protocol realizing the
functionality described in Fig. 2. Note that the functionality is associated with
some commitment scheme whose definition is given below.
Commitments. A commitment scheme consists of two algorithms SetupCom and
Commit: SetupCom is the setup algorithm that takes a security parameter 1λ

as input, and outputs a public parameter pp; Commit is the commitment gen-
eration algorithm that takes pp, a message m, and a randomness r as input,
and outputs a commitmemt com. As usual, we require hiding and binding for
a commitment scheme. The hiding property states that Commit(pp,m0, r) and
Commit(pp,m1, r) are indistinguishable for any two messages m0 and m1, where
pp is generated by SetupCom and r is chosen uniformly at random; The binding
property states that given pp generated by SetupCom, it is hard to find a pair
(m0, r0) and (m1, r1) such that Commit(pp,m0, r0) = Commit(pp,m1, r1) and
m0 �= m1.
Pedersen Commitment. Our proposed protocol will make use of the Pedersen
commitment: Its public parameter consists of two group elements g, h ∈ G of
prime order p. Given a message m ∈ Zp to be committed, choose a randomness
r ∈ Zp uniformly at random, and the commitment com is com = gm · hr. It is
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Fig. 2. Privacy-preserving CNN functionality.

well-known that the Pedersen commitment scheme is perfectly hiding, and com-
putationally binding under the assumption that the discrete logarithm problem
is hard in G.
Collaborative zk-SNARKs. Here, we recall the definition of a collaborative
zk-SNARK formalized by Ozdemir and Boneh [35]. (A large part of this para-
graph is taken verbatim from [35].) Let R ⊆ {0, 1}×{0, 1}∗ be a binary relation.
A collaborative zk-SNARK for R consists of (Setup,Π,Verify) each of whose
syntax is defined as follows:

– Setup is the setup algorithm that takes a security parameter 1λ as input, and
outputs a public parameter pp.

– Π is the proof generation protocol, executed among N parties (provers)
P1, . . . , PN , where the parties have a public parameter pp and a statement x
as public input, and each party Pi has a witness share2 wi as private (local)
input; As the result of the protocol, the parties output a proof π. For nota-
tional convenience, we denote an execution of the protocol (by honest parties)
by π ← Π(pp, x,w), where w = (w1, . . . , wN ).

– Verify is the verification algorithm that takes pp, a statement x, and a proof
π as input, and outputs either 
 (accept) or ⊥ (reject).

Note that the verification is non-interactive, and anyone given a statement and
a proof can verify the validity of the statement.

A collaborative zk-SNARK in the random oracle model, where each of the
algorithms has access to a random oracle H : Xλ → Yλ, is denoted by (SetupH ,
ΠH ,VerifyH).
2 Here, a witness share need not be a share of a secret sharing of a witness.
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Definition 2. We require a collaborative zk-SNARK for R in the random ora-
cle model (where H is modeled as a random oracle), (SetupH ,ΠH ,VerifyH), to
satisfy the following properties. Below, let U(λ) be the set of all functions from
Xλ to Yλ.

– Completeness: For all (x,w) ∈ R, the following probability is negligible in λ:

Pr

⎡

⎣
H ← U(λ);
pp ← SetupH(1λ);
π ← ΠH(pp, x,w)

: VerifyH(pp, x, π) = ⊥
⎤

⎦ .

– Knowledge soundness: For all x, for all sets of PPT algorithms P = (P ∗
1 , . . . ,

P ∗
N ), there exists a PPT extractor Ext and a negligible function ε such that

Pr

⎡

⎣
H ← U(λ);
pp ← Setup(1λ);
w ← ExtH,P H

(pp, x)
: (x,w) ∈ R

⎤

⎦ ≥

Pr

⎡

⎣
H ← U(λ);
pp ← Setup(1λ);
π ← PH(pp, x)

: VerifyH(pp, x, π) = 

⎤

⎦ − ε(λ).

Here, ExtH,P H

denotes that Ext has oracle access to H and may re-run the
collection of provers P (pp, x), reprogramming the random oracle H each time,
and receiving only the final output produced by P .

– Succinctness: Proof size and verification time are o(|R|), where |R| denotes
the size of the description.

– t-zero-knowledge: For any PPT adversary A controlling k ≤ t provers:
Pi1 , . . . , Pik

, there exists a PPT simulator S such that for all x, w, and for
all PPT distinguishers D,

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

H ← U(λ);
pp ← SetupH(1λ);
b ← R(x,w);
(tr, μ) ← SH(pp, x, wi1 , . . . , wik

, b)

: DH[μ](tr) = 1

⎤

⎥
⎥
⎦

− Pr

⎡

⎣
H ← U(λ);
pp ← SetupH(1λ);
tr ← ViewH

A(x,w)
: DH(tr) = 1

⎤

⎦

∣
∣
∣
∣
∣
∣

is negligible in λ, where tr denotes a transcript, ViewH
A(x,w) denotes the view

of A when provers P1, . . . , PN interact with input x and witness w (the honest
provers follow Π, but dishonest ones may not), μ denotes a partial function
from the domain of H, and H[μ] denotes a re-programmed random oracle (by
S) that maps x to μ(x) if x is defined in μ and H(x) otherwise.
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If the above indistinguishability is guaranteed to hold only when the corrupted
provers follow the protocol specification, we say that a collaborative zk-SNARK
is t-zero-knowledge in the presence of semi-honest provers.3

3 Collaborative Bulletproofs

In this section, we will present our new collaborative zk-SNARK based on Bul-
letproofs. This will be a crucial tool in our construction of a privacy-preserving
verifiable CNN presented in Sect. 4.

Bulletproofs support zero-knowledge arguments for arbitrary arithmetic cir-
cuits, which is achieved via a proof for a Hadamard-product relation. More
specifically, all ‘left’ and ‘right’ inputs to multiplication gates are represented
as vectors aL and aR, respectively, and the output as aO = aL ◦ aR, where
◦ denotes the Hadamard product. By adding additional Q ≤ 2 · n constraints
(expressed via matrices W L,WR,WO), where n is the number of multiplication
gates, any arithmetic circuits can be captured (see [4]). Bulletproofs additionally
include commitments Vj (and commitment weights WV) as part of the state-
ment. Concretely, for the Bulletproof relation R, a statement x is of the form:

V ∈ G
m,W L,WR,WO ∈ Z

Q×n
p ,WV ∈ Z

Q×m
p , c ∈ Z

Q
p , (1)

and a witness w is of the form:

aL,aR,aO ∈ Z
n
p , v1, . . . , vm, γ1, . . . , γm ∈ Z

m
p . (2)

Then, (x,w) ∈ R if and only if
⎧
⎪⎨

⎪⎩

Vj = gvj hγj (j ∈ [m])
aL ◦ aR = aO

W L · aL +WR · aR +WO · aO = WV · v + c

, (3)

where v = (v1, . . . , vm). Like Bulletproofs, our collaborative zk-SNARK will be
for this relation, and we will refer to x (resp. w) of the above form as a Bulletproof
statement (resp. witness).

We approach our construction gradually, firstly introducing the extended
arithmetic black-box abstraction we build our MPC protocol upon in Sect. 3.1,
and then the actual protocol construction in Sect. 3.2. Finally, and in Sect. 3.3
we show how the constructed protocol can be realized efficiently for both semi-
honest and malicious security, thereby obtaining our collaborative zk-SNARK.

3 Note that t-zero-knowledge in the presence of semi-honest provers still provides the
ordinary zero-knowledge property of a (single-prover) zk-SNARK against a malicious
verifier (that does not participate in the proof generation protocol).
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3.1 Extended Arithmetic Black-Box

The arithmetic black-box abstraction (ABB) [14] is a commonly used approach
for constructing MPC protocols. It abstracts away the details of tools (e.g. secret-
sharing, homomorphic commitments and encryption) and corresponding proto-
cols, and allows us to perform field arithmetic in an ideal “black-box” without
explicitly knowing the values of the operands. In this paper, we will only treat
an ABB functionality whose underlying field is a prime field, and denote its
characteristic by p, and for an element a ∈ Zp, we use the notation “ [a]” to mean
that a is stored in the black box maintained in the functionality.

As opposed to relying on a standard ABB implementing the most com-
mon arithmetic operations, we will define an extended ABB providing addi-
tional functionality tailored to the specific computation required in the con-
struction of Bulletproofs. This will in turn simplify and make efficient the ABB-
based construction of the protocol for the joint computation of Bulletproofs
presented in Sect. 3.2. Specifically, we consider an ABB functionality which is
parameterized by a base cyclic group G of (prime) order p.4 Besides the stan-
dard arithmetic operations on stored values, we will allow the computation
of multi-exponentiations with respect to a (public) vector of group elements
g = (g1, . . . , g�) for some � i.e. for values [a1], . . . , [a�] stored in the ABB, the
entities interacting with the ABB will be able to obtain the group element
ga1
1 · · · ga�

� ∈ G. In other words, the extended ABB implements a restricted form
of computation over the group elements g. This restricted functionality allows
the computation of Pedersen-style commitments, which play a crucial role in
Bulletproofs. Note that while it would be possible to use generic MPC protocols
for exponentiation on top of a standard ABB to achieve a similar functionality,
the crucial insight here is that the restricted functionality discussed above can be
instantiated very efficiently; see Sect. 3.3 for how we achieve this. Additionally,
we require several basic non-linear operations such as equality, max, argmax,
and bit-decomposition to be provided by the ABB. These functionalities will be
used in our verifiable CNN construction presented in Sect. 4.

The full extended ABB functionality is defined in Fig. 3. To ease the notation,
we will for values [x] and [y] stored by the ABB and a ∈ Zp use the notation
[x] + [y], a · [x], and [x] · [y] to denote the operations Add([x], [y]), SMult(a, [x]),
and Mult([x], [y]), respectively. Furthermore, we will omit the operation “·” if it
is clear from the context.

3.2 Our Construction

We will now present our construction of a collaborative zk-SNARK (Setup,Π,
Verify) based on Bulletproofs.

Note that in the prover algorithm of Bulletproofs, multi-exponentiation is
central and is used for computing the Pedersen-style commitments Bulletproofs
4 Note that the order p of G is identical to the characteristic of the field Zp which the

values in the ABB are elements of. We require p to be of 2λ bits so that the discrete
logarithm problem is hard in G.
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Fig. 3. Extended arithmetic black-box functionality.

are based on. Computing these is one of the most computationally heavy steps
of proof generation, and could be a potential bottleneck when constructing a
Bulletproof-based zk-SNARK since the exponents will correspond to witnesses
which will be shared among the collaborating parties. However, note that this
computation is straightforward to realize when relying on the extended ABB
described above, as computing a Pedersen-style commitment can be done via a
single call to Com. As a consequence, constructing an efficient prover protocol
with respect to the extended ABB becomes a much simpler task (to obtain an
efficient realization of the protocol, it will of course be required that the extended
ABB itself can be realized efficiently; how this can be done is shown in Sect. 3.3).

In the description of our protocol, we will assume the statement and the
corresponding witness are of the form described in Eq. (1) and Eq. (2), respec-
tively, and that the witness is stored (component-wise) in FABB

G
. This will be

the case for the application of our protocol in our privacy-preserving verifiable
CNN described in Sect. 4. Note, however, that for any arithmetic circuit over Zp

and a corresponding (witness) input assignment w = (w1, . . . , wN ), a representa-
tion corresponding to Eq. (1) and Eq. (2) can be computed in a straightforward
manner using the functionality of FABB

G
. In the following, we will let G be a

group with 2λ-bit prime order p, and H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → Z
2
p,

H3 : {0, 1}∗ → Zp × G, and G : N → G be hash functions (modeled as random
oracles).
Setup. This algorithm generates group elements g, h ∈ G, g,h ∈ G

n using the
hash function G, and outputs these as pp.
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Proof Generation Protocol Π. Our protocol follows the structure of the
original Bulletproofs, and consists of an ‘outer’ protocol, JointBulletproof shown
in Fig. 4, for jointly computing a proof for an arithmetic circuit of the form
described in Eq. (1) and Eq. (2), as well as an ‘inner’ sub-protocol, JointProveIP
shown in Fig. 5, for jointly computing a proof for an inner product. The latter
is invoked as part of JointBulletproof. Note that compared to the original Bul-
letproofs, recursion has been eliminated from the inner product computation to
avoid complications arising from this in a protocol setting.

Given the Bulletproof statement and the ABB-stored values of a Bulletproof
witness, our protocol(s) proceeds by iteratively computing the witness-dependent
values required for the next prover message using FABB

G
(e.g. line (5) and (6)

in Fig. 4 or line (3a) in Fig. 5). Then the protocol uses the Com functionality
of FABB

G
to reveal the prover message (e.g. line (8) in Fig. 4 or line (3b) in

Fig. 5). Both parties will then hash the revealed prover message (potentially
with addition of a public input) to obtain hash values which will be treated as
a challenge from the verifier in ordinary Bulletproofs (e.g. line (9) in Fig. 4 or
line (3c) in Fig. 5). (Note that this corresponds to the Fiat-Shamir conversion of
Bulletproofs to make these non-interactive.) Finally, the challenge will be used
in the computation of subsequent prover messages. The protocol continues this
until a full Bulletproof is obtained.

A key property here is that all hash values are computed over messages
available to both parties in the clear (revealed in Com calls). Hence, the protocol
can avoid computing the hash of ABB-stored values, which would have made the
protocol prohibitively expensive to evaluate in practice. The only computations
that need to be carried out on the ABB-stored values are modular arithmetic
over Zp and exponentiation over G. The structure of the protocols furthermore
highlights the usefulness of the Com functionality of FABB

G
which plays a crucial

role in efficiently instantiating the protocols (see also Sect. 3.3).
Since the operations in the protocols consist of only calls of the functionality

in FABB
G

or local computations by each party, the following theorem can easily
be seen to hold.

Theorem 1. The protocol JointBulletproof combined with a compiler protocol
is a secure-with-abort protocol realizing the proof generation of the Bulletproof
zk-SNARK for arithmetic circuits, in the FABB

G
-hybrid model.

Verification. The verification algorithm, VerifyAC, is identical to that of the
ordinary Bulletproof zk-SNARK. Due to space limitations, the description is
deferred to the full version.

3.3 Secure Realization

To realize our Bulletproof-based collaborative zk-SNARK presented in Sect. 3.2,
it remains to securely realize the ABB functionality FABB

G
from Sect. 3.1. Cru-

cially, to maintain the efficiency of the protocol presented in Sect. 3, the FABB
G
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Fig. 4. Protocol JointBulletproof for jointly generating Bulletproof for arithmetic cir-
cuits.

realization must itself be efficient. Note that our goal is to obtain a collabora-
tive zk-SNARK satisfying (malicious) security with abort which is achieved by
a secure-with-abort realization of the FABB

G
.

Our starting point is the SPDZ protocol [15] which is a secure-with-abort
protocol realizing the standard arithmetic functionalities (as SPDZ is based on
additive secret sharing, we will in the following use the notation [·] to denote
additive sharing as opposed to a value stored in an abstract ABB). However,
SPDZ by itself does not provide an efficient way to instantiate the Com func-
tionality of FABB

G
which is central to our protocol in Sect. 3. To efficiently realize

Com, we make use of an insight by Smart and Alaoui [40] who showed that the
SPDZ protocol that can be extended to deal with operations for cyclic groups
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Fig. 5. Protocol JointProveIP for jointly generating Bulletproof for inner products.

over an elliptic curve whose order coincides with that of the underlying field of
the SPDZ protocol. While Smart and Alaoui are concerned with implementing
full elliptic curve circuit evaluation, the restricted Com functionality required
in FABB

G
is comparably simple and can be implemented very efficiently. Specif-

ically, recall that the main idea of SPDZ is to let each party hold a share of
a global MAC key k ∈ Zp i.e. party i holds [k]i such that

∑
[k]i = k. Then

each value x (stored in the ABB) is shared among all parties where each share
is of the form ([x]i, [m]i) and

∑
[x]i = x and

∑
[m]i = k · x. The parties will

then perform any (arithmetic) computation over the shares (consuming multi-
plication tuples in the process) while maintaining the above format of shares.
Finally, when the computation is done, the parities will firstly check correctness
of any value opened during the computation and then the computation result by
checking x · k − m = 0 (for each value x). This approach readily extends to our
restricted Com functionality. Specifically, given values a1, . . . , a� shared among
the parties as ([ai], [mi]) where mi = kai, each party can locally compute

Xi = g
[a1]i
1 · · · g[a�]i

� and Mi = g
[m1]i
1 · · · g[m�]i

� .
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Note that since the characteristic of the field Zp the values ai are (additively)
shared over is the same as the order p of the group elements gi, we have that
X =

∏
i Xi = ga1

1 · · · ga�

� = Com([a]1, . . . , [a]�, g1, . . . , g�). Hence, to open X,
each party simply broadcasts Xi. Finally, to check an opened commitment X,
the parties check that Xk − M = 0 where M =

∏
i Mi. It is relatively easy to

see that this approach inherits the security properties of SPDZ.
Lastly, the additional non-linear functionalities in FABB

G
can be realized via

standard generic techniques. Specifically, equality and comparison can be effi-
ciently computed by an appropriate combination of addition, multiplication,
and output operations supported by a standard ABB functionality, as shown by
Nishide and Ohta [33]; Max and argmax can be easily realized using compari-
son [25]; Bit-decomposition can be also computed using the protocol of [33].

Based on the above, we obtain the following result.

Theorem 2. There exists a secure realization of FABB
G

based on the above
described extension of the SPDZ protocol [15].

Combining the efficient realization of FABB
G

with the protocol from Sect. 3.2
provides us with a secure-with-abort protocol for the joint computation of Bul-
letproofs. As shown by Ozdemir and Boneh [34,35], it is fairly straightforward
to show that if a (single-prover) zk-SNARK system is zero-knowledge and has
knowledge soundness, and the prover algorithm is computed by a secure-with-
abort MPC protocol against t corrupted parties so that each party’s private
input is a witness share (where the concatenation of all parties’ witness shares
constitutes a witness), then the resulting protocol is a secure-with-abort collabo-
rative zk-SNARK satisfying t-zero-knowledge. Hence, combined with Theorem 1,
we obtain the following theorem.

Theorem 3. Our collaborative Bulletproof protocol instantiated with the
extended SPDZ protocol [15] is a secure-with-abort collaborative zk-SNARK.5

4 Privacy-Preserving Verifiable CNNs

In this section, we will first introduce our formal definition of a privacy-preserving
verifiable CNN in Sect. 4.1. Then, we present our proposed privacy-preserving
verifiable CNN in Sect. 4.2.

4.1 Formal Definition

Our definition of a privacy-preserving verifiable CNN will provide strong privacy
guarantees and in particular ensure that no information regarding the CNN
model M , the input x, or the obtained classification will leak to any other party.
To achieve this, we require a privacy-preserving verifiable CNN to have similar
security properties to publicly-auditable 2-party computation [2]. Informally, a
5 If a semi-honest MPC protocol for FABB

G is used instead of SPDZ, our protocol is
still guaranteed to achieve t-zero-knowledge in the presence of semi-honest parties.
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publicly-auditable multi-party computation is an extension of a secure multi-
party computation protocol that, in addition to computing a functionality, can
generate a publicly verifiable proof that the output of the protocol is correct
with respect to commitments to each party’s input. Ozdemir and Boneh [34,
35] gave a definition of publicly auditable multi-party computation based on
collaborative ZK, and our definition of privacy-preserving verifiable CNN follows
their definitional approach, but with modifications to deal with a probabilistic
functionality6 and to capture the CNN setting we consider here.

Formally, a privacy-preserving verifiable CNN is associated with some com-
mitment scheme Com = (SetupCom,Commit), and consists of (Setup,Π,Verify)
each of whose syntax is defined as follows:

– Setup is the setup algorithm that takes a security parameter 1λ as input, and
outputs a public parameter pp.

– Π is an interactive protocol between two parties P1 (holding a CNN model)
and P2 (holding a CNN input). The protocol is executed using three types of
inputs:

• P1’s private inputs: a CNN model M and randomness rM .
• P2’s private inputs: a CNN input x and randomness rx.
• public common inputs: the CNN structure S, a public parameter ppCom of

the underlying commitmemnt scheme Com, and commitments comM and
comx (which are supposedly generated as comM = Commit(ppCom,M, rM )
and comx = Commit(ppCom, x, rx), respectively).

As the results of an execution of the protocol, P1 outputs a commitment comy

(for the CNN result y) and a proof π, and P2 outputs a CNN output y, a
randomness ry, a commitment comy, and a proof π.

– Verify is the verification algorithm that takes pp, commitments (comM , comx,
comy), and a proof π as input, and outputs either 
 (accept) or ⊥ (reject).

Definition 3. A privacy-preserving verfiable CNN (Setup,Π,Verify) associated
with Com = (SetupCom,Commit) is secure if it satisfies the following two proper-
ties:

– Let Πy denote Π, in which the proof π is excluded from each party’s output.
Then, Πy is a secure-with-abort 2-party protocol for the functionality FpCNN

Com .
– Let Ππ denote Π, in which only the proof π is treated as the output (of both

parties). Then, (Setup,Ππ,Verify) associated with Com satisfies the require-
ments of a collaborative ZK protocol (Definition 2) for the following relation
R:

6 The definition of publicly-auditable computation in [34, Appendix D] is for a deter-
ministic functionality.
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{ (
S, ppCom, comM , comx, comy

)

︸ ︷︷ ︸
common input/output

,

(
(M, rM )
︸ ︷︷ ︸

P1’s input/output

, (x, rx, y, ry)
︸ ︷︷ ︸

P2’s input/output

) }
∈ R

⇐⇒
comM = Commit(ppCom,M, rM ) ∧ comx = Commit(ppCom, x, rx)

∧ comy = Commit(ppCom, y, ry) ∧ y = EvalCNN(S,M, x). (4)

Furthermore, we say that a privacy-preserving verifiable CNN is semi-honest
secure if Πy is semi-honest secure and the 1-zero-knowledge property of (Setup,
Ππ,Verify) is replaced with 1-zero-knowledge property in the presence of semi-
honest parties.

4.2 Construction

Our construction of a privacy-preserving verifiable CNN (Setup,Π,Verify) is
based on the collaborative zk-SNARK presented in Sect. 3. In fact, we directly
use the Setup and Verify algorithms from Sect. 3 as the corresponding Setup and
Verify algorithms for the privacy-preserving verifiable CNN, respectively.

The interactive proof generation protocol itself will be based on an “aug-
mented” CNN computation (which we will describe with respect to the ABB
functionality presented in Sect. 3.1). The augmented CNN computation not only
computes the classification of an input, but also intermediate variables, which
will provide the parties with a witness for proving the correctness of the classi-
fication via our collaborative zk-SNARK. We will denote this process as

([y], [w]) ← JointEvalCNN(S, [M ], [x])

using the notation in Sect. 2 where M is the CNN model, x is the CNN input, y
is the result of the classification and w is the witness generated in this process
(note that the process is deterministic). This process can be divided further into
steps corresponding to each layer of the CNN:

([y1], [w1]) ← JointEvalLayer1([M ], [x])
([y2], [w2]) ← JointEvalLayer2([M ], [y1], [w1])
· · ·
([yN ], [wN ]) ← JointEvalLayerN([M ], [yN−1], [wN−1])

where each algorithm only computes a single layer in the CNN structure S, and
yi and wi are the output and corresponding witness of layer i, respectively. Here
we assume that layer i appends its new witness variables to [wi−1] and outputs
this concatenation as [wi] such that the final witness [wN ] contains all witness for
the entire classification. In the following, we explain protocols that perform the
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computations that constitute each layer, e.g., an affine relation between weights,
the ReLU relation, or a max pooling relation. Parties execute multiple instances
of these protocols to complete the computation of each layer.

This process is finalized by computing a commitment comy to the final clas-
sification result yN (the corresponding randomness rcom is given to the party
holding x). Once this step is completed, the parties will be able to use the final
witness [wN ] (which contains the witnesses for all prior layers) to jointly run the
JointBulletproof from Sect. 3.2 to obtain a proof for the computed classification.

In the following, we present protocol instantiations for the initialization and
each CNN layer described in Sect. 2 which will allow the parties to complete
the above outlined steps. Note that we will use fixed-point computation to rep-
resent all arithmetic computations done as part of CNN classification. Specif-
ically, a rational number x0 + 2−dx1 ∈ Q where x0 ∈ {−2�, . . . , 2� − 1} and
x1 ∈ {0, . . . , 2d − 1} is represented by the integer 2dx0 +x1 ∈ Zp. Note also that
when multiplication is done between two numbers in fixed-point representation,
truncation of the last d bits is required to maintain the correct representation
of the result.
Initialization. The parties will have to generate witness vectors [aL], [aR],[aO],
[v1], . . . , [vm], and [γ1], . . . , [γm], which satisfy Bulletproof’s statement Eq. (3).
Here, aL, aR, and aO should satisfy the Hadamard product relation aL◦aR = aO

and the vj ’s and γj ’s are the input values and the randomness used to commit
to these in the commitments Vj = gvj hγj . The parties receive (M, rM ) and
(x, rx) as private input, respectively, as well as public input (comM , comx), where
comM = Commit(ppCom,M, rM ) and comx = Commit(ppCom, x, rx). The values
[v1], . . . , [vm], and [γ1], . . . , [γm] are initialized by the parties calling Input of
FABB

G
on the model M , rM , the input x and rx. As described above, each of

the following layer protocols will append appropriate witnesses to [aL], [aR],
and [aO] and add linear relations to be proven among aL, aR, aO, v, and c.
The linear relations will be added by appending extra rows to the matrices
W L, WR, WO, WV, and the vector c (see Eq. (3)). Note that to compute
the layers in the model, the parties execute a set of protocols presented below
sequentially. In this sequential execution, the output of a protocol is appended
to the vector aL (as described above, each protocol appends elements to aL,
aR, and aO, some of which are intermediate variables and some of which are
the output of the protocol). This appended output of the protocol is later used
by subsequent protocols. The final classification result y and the randomness
used for the commitment comy computed in the finalization will be stored in the
appropriate [v1], . . . , [vm], and [γ1], . . . , [γm] positions. Note that some protocols
will additionally require an index to know which part of the witness from the
previous layer is used in the computation e.g. the ReLU function takes indices
(i, u) ∈ {1, . . . , n} × {L,R,O} and assumes that the input to the ReLU function
is stored at au[i].
Affine and Convolution Layers. Affine and convolution layers correspond to
the computation of an inner product relation (note that average pooling corre-
sponds to an affine layer). The computation is implemented via the JointEvalIP
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protocol which is given shares of vectors ([au1 [i1]], . . . , [aum
[im]]), and ([av1 [j1]],

. . . , [avm
[jm]]) and a scalar [aw[k]], and computes the inner product:

a = aw[k] +
m∑

t=1

aut
[it]avt

[jt]

where aw[k] is a constant term that may be utilized by an affine layer and the
result a will be appended to the vector aL during the protocol. The description
of JointEvalIP is deferred to the full version, due to the page limitation.

Note that this protocol does not perform the truncation which would nor-
mally be required by the fixed-point multiplication. Instead, this truncation will
be performed by the following ReLU protocol. Deferring this truncation improves
efficiency. Specifically, the computation of an inner product requires multiple
multiplications and thus multiple truncations, but if we defer the truncation to
the ReLU proof, just a single truncation is sufficient for each inner product.
ReLU. The protocol JointEvalReLU computes the ReLU function. Namely, given
as input a share [au[i]], the protocol computes

a = ReLU(au[i])

where a will be appended to the vector aL during the protocol. Recall that ReLU
computes the function

ReLU(x) =
{
0 if x < 0
x if x ≥ 0 .

This is equivalently represented by bit decomposition:

ReLU(x) = xm ·
m−1∑

i=0

2ixi

where x + 2m =
∑m

i=0 2
ixi with x0, . . . , xm ∈ {0, 1}.

To implement this function, the protocol JointEvalReLU utilizes the sub-
protocol JointEvalRange which computes the bit decomposition of a shared inte-
ger in Zp. The name of the protocol JointEvalRange stems from the witness com-
puted in the protocol is not only a bit decomposition, but can also be viewed
as a witness for a range proof i.e. that the input falls into a certain range. The
description of the protocols JointEvalReLU and JointEvalRange are deferred to
the full version, due to the page limitation.

Note that this protocol truncates the input value by d bits. This truncation
is realized by the summation in aR[n+1+2�+2d+1] (Here, the index n+1+
2� + 2d + 1 comes from the following calculation: The variable n indicates the
current number of the multiplication relations, 1+2�+2d comes from the range
proof with 1 + 2� + 2d bits, and the last 1 comes from an extra multiplication
relation for proving the ReLU relation) in the protocol description which runs
from i = d to 2� + 2d − 1, by which it truncates the least significant d bits.
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Finalization. To define the output of a CNN, it is standard to use SoftMax
to normalize the output of the last layer. However, since we are only interested
in proving the obtained classification, it is sufficient to prove that some given
public value is maximum in a given set of values.

The protocol JointEvalFinalize does exactly this. The protocol utilizes the
following representation of the maximum relation y = max{x1, . . . , xm}: There
exists a vector (z1, . . . , zm) satisfying that

y = x1z1 + · · · + xmzm,

z1, . . . , zm ∈ {0, 1},

z1 + · · · + zm = 1,
y − x1 ≥ 0, . . . , y − xm ≥ 0.

The description of the protocol is deferred to the full version, due to the page
limitation.
Proof Generation. Upon completion of the finalization described above, the
parties simply invoke JointBulletproof (Fig. 4) from Sect. 3.2 using the generated
witness [aL], [aR], [aO], [v1], . . . , [vm], and [γ1], . . . , [γm] as input to collabora-
tively generate a Bulletproof π of correct classification.
Obtained Proof and Disclosure of Classification Information. Upon
completion of the proof generation protocol, the party holding the input x, will
obtain a proof π with respect to a commitment to the model comM , a commit-
ment to x and a commitment to the corresponding classification comy. While
this party can present π to a third-party verifier, the latter will not gain any
information on the classification y by verifying π, as comy hides y. This is insuf-
ficient in many applications. However, as the party holding x will receive the
opening ry to comy, he will be able to disclose additional information regard-
ing y. One option is simply to reveal both y and ry, which would allow the
verifier to check that y is indeed the correct classification result via the com-
mitment scheme. However, a more fine-grained disclosure is possible. Note that
comy obtained in our verifiable CNN is simply a Pedersen commitment which
allows the party holding x to produce an additional Bulletproof πy showing any
statement regarding y e.g. that y belong to a set Y of classification results. This
proof can be generated independently and will be logarithmic in the size of the
statement. By verifying both π and πy, a third-party verifier will learn that y
has been correctly computed with respect to M and x, and that y satisfies the
additional statement shown by πy, without learning any additional information
on y.

4.3 Security

In the previous subsection, we have presented the procedures for our privacy-
preserving verifiable CNN. It is not hard to see that during the protocol, the
parties either call commands of FABB

G
, local operations (including hashing on

public values), or execute the proof generation protocol of our collaborative
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Bulletproof protocol. Note that as the final result of an execution of our protocol,
the party P1 (holding a CNN model M) finally receives only public values (the
commitments to the witnesses and the commitment to the evaluation result y of
the CNN, and a proof of the collaborative Bulletproof); and the party P2 (holding
a CNN input x) will receive the same public values, as well as the CNN evaluation
result y and its opening in the clear. Furthermore, the proof generation part of
our protocol just invokes the proof generation of our collaborative Bulletproof
protocol. Hence, we have the following theorems.

Theorem 4. Let (Setup,Π,Verify) be our privacy-preserving verifiable CNN.
Let Πy denote the interactive protocol Π of our privacy-preserving verifiable
CNN, such that the proof π is excluded from the output, and let Ππ denote Π such
that the output is restricted to the proof π. Then, (Setup,Πy,Verify) is a secure-
with-abort protocol realizing FpCNN

Com , in the FABB
G

-hybrid model. Furthermore,
Ππ is a collaborative zk-SNARK for proving the relation in Eq. (4).

Theorem 5. Our privacy-preserving verifiable CNN instantiated with the SPDZ
protocol [15] with the extension described in Sect. 3 is secure according to Defi-
nition 3.

5 Implementation and Comparison

To measure the performance of our approach, we implemented our collabora-
tive zk-SNARK protocol and estimated the performance of our verifiable CNN
construction applied to the LeNet CNN [27] and the MNIST dataset [43]. In
the following sections we provide the details of this as well as a comparison to
related approaches.

5.1 Implementation of Collaborative Zk-SNARK

To evaluate the performance of our Bulletproof-based collaborative zk-SNARK,
we made an implementation in Rust.7 Specifically, we implemented the protocol
using the elliptic curve library “curve25519-dalek.”8 This library provides group
operations on the Edwards and Montgomery forms of Curve25519 and on the
prime-order Ristretto group.

We implemented the protocol in the following setting: Firstly, in the pro-
tocol, we need to perform two-party multiplications, which require correlated
randomness (i.e. Beaver triples). This correlated randomness is assumed to be
generated in advance and made available to each party in a preprocessing phase.
The cost of this phase can be estimated from [23] and is not included in the tim-
ing results presented below. Secondly, each party is implemented as a separate
thread on a single server i.e. the implementation of each party is not paral-
lelized. Finally, the communication between the two parties is simulated via the

7 https://www.rust-lang.org/.
8 https://doc.dalek.rs/curve25519_dalek/index.html.

https://www.rust-lang.org/
https://doc.dalek.rs/curve25519_dalek/index.html
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Fig. 6. Experimental timing results for proofs for inner products.

Fig. 7. Experimental timing results for proofs for arithmetic circuits (malicious secu-
rity).

“constrained-connection” library9 set up to simulate a 1 Gbps connection with a
round-trip-time of 0.5 ms. All experiments were performed on an Intel i5-7500
CPU @ 3.40 GHz and 16 GB of RAM.

Figure 6 shows the performance of both semi-honest and maliciously secure
versions of the sub-protocol JointProveIP (Fig. 5) and its corresponding verifi-
cation algorithm. (The verification algorithm is exactly that of the ordinary
Bulletproofs [6] for inner product relations, and will be given in the full version.)
These are for proving and verifying an inner product relation and the horizontal
axis “Length of inputs aL, aR” corresponds to the dimension of the vectors in
the inner product relation. As the figures show, the processing times increase
linearly with the length of the input vectors. Furthermore, note that malicious
security is obtained at roughly twice the cost of semi-honest security.

Figure 7 shows the performance of the maliciously-secure proof generation
protocol JointBulletproof (Fig. 4) and its verification algorithm of our collabora-
tive zk-SNARK for arithmetic circuits. (As above, the verification algorithm is
exactly that of the Bulletproofs [6], and will be given in the full version.) Here,
the horizontal axis “Length of inputs aL, aR” corresponds to the number of the
multiplications in the proven arithmetic circuit. The parameter q is the number
of the additive relations in the proven arithmetic circuit. The parameter m is
the size of the committed message, which is, in the CNN application, the sum of

9 https://docs.rs/constrained-connection/.

https://docs.rs/constrained-connection/
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Fig. 8. Proof size of arithmetic circuit proofs.

the sizes of the CNN model and the CNN input. The figures show the processing
time when the parameters n, m, and q in the protocol are varied, respectively.

Figure 8 shows the proof size of the protocol. (Note that the proof size is
irrespective of whether it is computed by the malicious secure protocol or the
semi-honest secure one.) According to the description of the protocol, the proof
size depends only on n. This measurement confirms this.

5.2 Performance Estimate for Proof System for CNN

We will now discuss performance estimates when our protocol is applied to a
CNN. For this performance estimation, we use the MNIST dataset [43]. MNIST
is a dataset of hand-written digits, and the images are of size 28 × 28 × 1. We
use the LeNet network [27] which consists of two convolution layers, two pooling
layers, and three fully connected layers. Note that for the purpose of comparison
to vCNN and zkCNN, we use average pooling. The parameters of each layer are
as follows:

– Convolution: Filter Size = 5×5, Stride = 1, Channels = 6
– Average Pooling: Filter Size = 2×2, Stride = 2, Channels = 6
– Convolution: Filter Size = 5×5, Stride = 1, Channels = 16
– Average Pooling: Filter Size = 2×2, Stride = 2, Channels = 16
– Fully-Connected 1: Input Size =400, Output Size = 120
– Fully-Connected 2: Input Size =120, Output Size = 84
– Fully-Connected 3: Input Size =84, Output Size = 10

When applying our protocol for an arithmetic circuit to the classification task
of the above model, the parameters in the scheme are n = m = 219 = 524288
and Q = 611878. We estimate the processing time of the protocol with these
parameters based on the measurements in the previous section. As a result, the
classification task of the above model takes about 2.9 h, the total communication
cost is 236 MB, and the proof size is 7.68 KiB. Finally, based on [23] we estimate
that 10 millions multiplications are needed in the on-line protocol and thus 1.7 h
are needed for the off-line preprocessing.
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Algorithm Model Privacy Input Privacy Comm. Proof Size Prover Time
Tensorflow standalone - - 0.042ms
Groth standalone - 0.12 KiB 1.5h
vCNN standalone - 0.34 KiB 5.5s
zkCNN standalone - 63.6 KiB 0.5s
Ours interactive 236 MB 7.68 KiB 2.9h

Fig. 9. Comparison of our verifiable CNN to related approaches. � means the given
property is achieved whereas � means this is not the case. The prover time for vCNN
and zkCNN are from [30], and the time for Groth from [28] (see Sects. 5.1 and 5.3 for
more details on all execution environments).

5.3 Comparison

Figure 9 shows a comparison between our verifiable CNN and related approaches.
We stress that our verifiable CNN is fundamentally different from the related
approaches shown in Fig. 9 in that it is an interactive protocol, which is required
to obtain the strong notion of privacy considered in this paper, whereas the
related approachs are all standalone algorithms executed locally by a single party.
The results for Tensorflow10 were obtained by classifying the full MNIST test
set of 10000 samples in our local execution environment11 and computing the
average time for a single sample. The results for vCNN and zkCNN are from [30]
and obtained on an AMD EPYC 7R32 64-Core CPU, whereas the results for the
naive application of the Groth zk-SNARK [21] are from [28] and obtained on an
quad-core Intel i5 CPU@3.4GHz (similar to our execution environment). While
the measurement of each protocol uses a different computation environment
and setup, the hardware differences are not significant for this comparison and
the results remain useful for obtaining an overview of the performance of the
protocols.

We note that compared to the plain Tensorflow computation, the fastest
scheme providing model privacy, zkCNN, is orders of magnitude slower. Com-
pared to zkCNN, our protocol is likewise orders of magnitude slower, but simulta-
neously provides model and input privacy which zkCNN cannot provide as it is a
non-interactive standalone algorithm. This illustrates that protecting the privacy
of the CNN input is a challenging task. However, we also note that our scheme
is within a factor of two of the prover time for the Groth zk-SNARK when this
is straightforwardly applied to ch1LeNet, despite the Groth zk-SNARK being
a standalone algorithm. Finally, we note that the proof size of our approach is
roughly an order of magnitude smaller than zkCNN, and an order of magnitude
larger than vCNN.

These results highlight that it is feasible to provide the stronger notion of
privacy we have introduced in this paper, which simultaneously protects the
privacy of both CNN model and input. We stress that our implementation is a
proof of concept only, and we believe that there is a lot of room for improvement
in terms of prover running time by optimizing the implementation.

10 https://www.tensorflow.org/.
11 MacBook Pro M2 Pro.

https://www.tensorflow.org/
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Abstract. Homomorphic Encryption (HE) is a useful primitive for
secure computation, but it is not generally applicable when multiple
parties are involved, as the authority is solely concentrated in a single
party, the secret key owner. To solve this issue, several variants of HE
have emerged in the context of multiparty setting, resulting in two major
lines of work – Multi-Party HE (MPHE) and Multi-Key HE (MKHE).
In short, MPHEs tend to be more efficient, but all parties should be
specified at the beginning to collaboratively generate a public key, and
the access structure is fixed throughout the entire computation. On the
other hand, MKHEs have relatively poor performance but provide bet-
ter flexibility in that a new party can generate its own key and join the
computation anytime.

In this work, we propose a new HE primitive, called Multi-Group HE
(MGHE). Stated informally, an MGHE scheme provides seamless inte-
gration between MPHE and MKHE, and has the best of both worlds.
In an MGHE scheme, a group of parties jointly generates a public key
for efficient single-key encryption and homomorphic operations similar
to MPHE. However, it also supports computation on encrypted data
under different keys, in the MKHE manner. We formalize the security
and correctness notions for MGHE and discuss the relation with previous
approaches.

We also present a concrete instantiation of MGHE from the BFV
scheme and provide a proof-of-concept implementation to demonstrate
its performance. In particular, our MGHE construction has a useful prop-
erty that the key generation is simply done by aggregating individual
keys without any interaction between the parties, while all the exist-
ing MPHE constructions relied on multi-round key-generation protocols.
Finally, we propose a general methodology to build a multi-party com-
putational protocol from our MGHE scheme.
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1 Introduction

Homomorphic Encryption (HE) enables computation over encrypted data with-
out decryption. It prevents the leakage of private information while evaluating
data within an untrusted environment. However, HE requires a large resource
even when it computes a simple arithmetic operation such as multiplication. As
a result, HE is particularly well-suited for implementation in cloud systems that
can supply large computing power for evaluation.

A typical HE only supports computations between data encrypted by the
same key. Consequently, when multiple data owners are involved, it relies on a
trusted third party who possesses a key distributed to each party for encryption.
Still, this merely transfers the trust problem from the cloud service provider to
the new third party and thus does not provide an acceptable solution to this
problem. To overcome this challenge, extensive research has explored the use of
distributed trust in designing HE schemes involving multiple parties.

In the context of multiple parties, two important lines of HE schemes
have emerged: Threshold HE and Multi-Key HE (MKHE). In Threshold
HE [5,8,30,31,33], multiple parties collaborate to generate a joint public key,
and encryption is performed under this joint key. Threshold HE has a t-out-of-n
(t ≤ n) access structure where any t parties can reconstruct the secret key to
decrypt the ciphertext. Studies on Threshold HE are again diverged into two dif-
ferent directions: the case where t < n and the case where t = n. In our work, we
focus on the case when t = n, which is referred as Multi-Party HE (MPHE). Like
any other Threhold HE schemes, MPHE is comparable to that of the single-key
HE schemes since encryption and homomorphic computation are performed in
a similar manner with the joint key. However, the set of participants should be
determined beforehand and fixed in the preparation phase and no other parties
can join the computation in the middle. Moreover, the existing MPHE schemes
are based on a multi-round key generation protocol in which the involved parties
should interact with each other.

On the other hand, MKHE [12,13,18,29,32,34] features a distributed setup
phase where each party independently generates its own key pair, without requir-
ing any information about other participants. The encryption can be done by
an individual key, and it allows to perform arithmetic operations on ciphertexts
that do not necessarily have to be encrypted under the same key. The main
advantage of MKHE lies in its flexibility: it is not necessary to pre-determine
the list of participants or the computational task. From the performance per-
spective, however, the size of ciphertexts increases with the number of involved
parties, and so does the complexity of homomorphic operations.

1.1 Our Contributions

Formalization of Multi-group HE. We propose a novel variant of HE
designed for multiple parties, called Multi-Group HE (MGHE), and define its
security notion. An MGHE scheme can be viewed as a generalization of both
MPHE and MKHE, which enjoys the best of both primitives. In MGHE, a group
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of parties collaboratively generates a public key that is commonly used among
the parties for encryption. Hence, MGHE behaves like an MPHE scheme in a sin-
gle group. Moreover, an MGHE scheme has the capability to perform arbitrary
computations on encrypted data, regardless of whether the input ciphertexts are
encrypted under the same group key or not, a crucial property of MKHE.

Construction of MGHE. We construct an MGHE scheme and provide a rigor-
ous proof of its semantic security. Our MGHE scheme regards an MPHE cipher-
text as a single-key encryption under the joint secret key so that ciphertexts
corresponding to different group keys can be operated in a MKHE manner. Con-
sequently, our MGHE scheme has a hierarchical structure where a ciphertext is
decryptable by the joint secret keys of the associated groups, each of which is
additively shared among the group members. From the perspective of MPHE,
it is also the first construction of the MPHE scheme with non-interactive key
aggregation where the joint encryption and evaluation keys are obtained from
independently generated individual keys by simply summing them.

Building Multi-party Computation Protocol from MGHE. We build a
round-optimal Multi-Party Computation (MPC) protocol on top of our MGHE
scheme, which is naturally derived from the non-interactive key aggregation
(setup). We show that the protocol is secure against semi-malicious adversaries
in the dishonest majority setting, relying on the semantic security of MGHE.

Experimental Results. We implement our MGHE scheme based on both BFV
and CKKS and provide a basic benchmark compared to the previous MPHE and
MKHE works.

1.2 Technical Overview

At the heart of our construction lies a non-interactive key generation algorithm.
This allows the joint key of a group to be constructed non-interactively from
independently generated keys of the group members. The key generation follows
a hybrid construction between MPHE (the encryption key aspects) and MKHE
(the relinearization mechanisms).

We assume that each party is identified as a unique index i and let I be
a group of parties. The homomorphic property of LWE makes the summation
of public and secret key pairs be a valid key pair. To be precise, an MPHE
scheme behaves like a single-key HE scheme where the joint secret key s =∑

i∈I [s]i is additively shared among the members of I. We make the Common
Random String (CRS) assumption to construct a joint public (encryption) key:
given a random polynomial a ∈ Rq, each party i ∈ I generates [b]i = a · [s]i +
[e]i (mod q) for some error [e]i, then the joint public key is obtained as b =∑

i∈I [b]i ≈ a · s (mod q). However, it is more challenging to generate a joint
evaluation key, especially a relinearization key, because the relinearization key is
usually supposed to be an ‘encryption’ of s2 which has quadratic structure with
respect to the individual secrets [s]i. In the previous constructions [5,31], the
key generation procedure involves a multi-round protocol among the parties: (1)
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Fig. 1. A schematic presenting the overall structure of MGHE schemes. Each boxed
group of participants acts as an MPHE scheme. The secret keys and ciphertext equa-
tions for each group and the entire set of participants (including between groups) are
described above.

parties publish individual encryption keys to build a joint encryption key, then
(2) use it to generate ‘encryptions’ of [s]i · s and broadcast them to construct a
joint evaluation key.

To reduce the multiple rounds of the protocol, we propose a new key gen-
eration algorithm which is nearly linear with respect to the secret key. This
property enables the non-interactive key generation in that each party indepen-
dently generates and broadcasts its public key [pk]i once, which adds up to the
joint public (encryption and evaluation) key pk =

∑
i∈I [pk]i corresponding to

the joint secret s =
∑

i∈I [s]i.
To construct our MGHE scheme, we apply this key generation protocol to

support homomorphic computation between ciphertexts under different keys.
For example, if we perform homomorphic computation on MPHE ciphertexts
ctj under the joint secret keys sj =

∑
i∈Ij

[s]i of groups Ij for 1 ≤ j ≤ k, then
it outputs a ‘multi-group’ ciphertext under the secret (s1, . . . , sk). In particular,
the joint public keys of the involved groups themselves are used in the relin-
earization process of multi-group ciphertexts so that no further interaction is
required among the parties. The technical details of our MGHE constructions
are described in Sect. 4. Thus, our MGHE scheme behaves as if it is an MKHE
scheme in which each key is jointly generated by a group of parties (akin to
MPHE). This makes MGHE an ideal generalization of both these HE variants
and the hierarchical key structure allows an MGHE scheme to take advantage
of strengths of both MPHE and MKHE.

1.3 Related Work

We first remark that the terminology for HE-like primitive has not been agreed
upon yet in the literature. We use the terms ‘MPHE’ and ‘MKHE’ to classify
the related works.
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Asharov et al. [5] designed the first MPHE scheme from BGV [10]. Mouchet et
al. [31] proposed a simplified construction from BFV [9,20] and presented some
experimental results. Park [33] recently modified the key generation protocol
to reduce the interaction and also suggested a conversion between MPHE and
MKHE. To the best of our knowledge, all known MPHE schemes require a multi-
round protocol among the parties to generate a shared key pair.

On the other hand, there have been several attempts to construct an MKHE
scheme by generalizing single-key HE schemes. López-Alt et al. [29] designed
the first MKHE from NTRU [25], and [18,32,34] studied multi-key variants
of GSW [22]. Then, Brakerski and Perlman [11] presented an LWE-based
MKHE [11], followed by Chen et al. [12] who presented a multi-key variant of
TFHE [16]. Other works [13,14] studied MKHE schemes from batched HEs such
as BGV [10], BFV [9,20] and CKKS [15]. Ananth et al. [4] proposed a general
methodology to design an MKHE scheme in the plain model. The construction
is done by combining an oblivious transfer protocol and MKHE schemes with
limited functionality or trusted setup.

We remark that some MKHE schemes can be converted into MGHE: if the
key generation algorithm of an MKHE scheme has the homomorphic property,
then we can simply operate on the public keys of multiple parties to build a
shared key for the group. For example, multi-key GSW schemes [18,32,34] hold
the condition since GSW does not require an evaluation key for multiplication.

Aloufi et al. [3] combined MPHE and MKHE to perform computation on
ciphertexts under two different keys: a joint key of model owners and the other
of a client. It can be viewed as a special case of MGHE in which there are
two groups consisting of model owners and a client. However, its key generation
procedure also involves an interactive protocol to obtain an evaluation key.

Boneh et al. [8] suggested the notion of threshold FHE that has t-out-of-n
access structure protocol by splitting the secret key into shares. Its key generation
is based on a Shamir secret sharing scheme where each party receives a share of
the secret key.

2 Background

2.1 Notation

Let N be a power of two. We denote by R = Z[X]/(XN +1) the ring of integers
of the (2N)-th cyclotomic field and Rq = Zq[X]/(XN + 1) the residue ring of
R modulo an integer q. An element of R (or Rq) is uniquely represented as a
polynomial of degree less than N with coefficients in Z (or Zq). We identify
a =

∑
0≤i<N ai · Xi ∈ R with the vector of its coefficients (a0, . . . , aN−1) ∈ Z

N .
For σ > 0, we denote by Dσ a distribution over R which samples N coefficients
independently from the discrete Gaussian distribution of variance σ2 and χ as a
key distribution.
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2.2 Ring Learning with Errors

Given the parameters (N, q, χ, σ), consider the samples of the form bi = s ·ai +ei

(mod q) for polynomial number of i’s where ai ← U(Rq) and ei ← Dσ for a fixed
s ← χ. The Ring Learning with Errors (RLWE) assumption states that the
RLWE samples (bi, ai)’s are computationally indistinguishable from uniformly
random elements of U(R2

q).

2.3 Gadget Decomposition and External Product

A function h : Rq → Rd is called a gadget decomposition if there exists a gad-
get vector g = (gi) ∈ Z

d
q such that a = 〈h(a),g〉 (mod q) for all a ∈ Rq.

Typical examples are bit decomposition [9,10], digit decomposition [16], and
Residue Number System (RNS) based decompositions [6,24]. Our implementa-
tion is based on an RNS-friendly decomposition for efficiency.

For μ ∈ R, we call U = (u0,u1) ∈ Rd×2
q a gadget encryption of μ under a

secret s if u0 + s · u1 = μ · g + e (mod q) for some e sampled from an error
distribution. Chillotti et al. [16] formalized external product operation between
RLWE and RGSW ciphertexts. We adopt and generalize this concept as follows:
for c ∈ Rq and v ∈ Rd

q , the external product is defined as c � v := 〈h(c),v〉
(mod q). We also write c � U = (c � u0, c � u1) for U = (u0,u1) ∈ Rd×2

q . We
note that if U is a gadget encryption of μ such that u0 + s · u1 = μ · g + e
(mod q) for some e, then the external product (c0, c1) ← c � U satisfies that
c0 + c1 · s = c � (u0 + s · u1) = c · μ + 〈h(c), e〉 (mod q) .

The gadget decomposition technique is widely used in HE schemes to reduce
the noise growth of homomorphic operations. In addition, it is often combined
with the special modulus technique [21]. Although the special modulus technique
is applied to the external product in our implementation, we do not describe it
in the main body of this paper for simplicity.

3 Formalizing Multi-group Homomorphic Encryption

The ordinary HE schemes support computation on ciphertexts, but the same
key should be used for encryption. This major constraint raises the key man-
agement problem and makes it difficult to apply the HE technology to a variety
of applications. For the last few years, substantial research has been undertaken
to solve the issue by distributing the authority of HE system. Currently, there
are two main approaches to extend the functionality of HE to the multi-party
setting: Threshold HE (ThHE) and Multi-Key HE (MKHE).

First, Threshold HE (e.g. [5,8,30,31,33]) is similar to HE, except the fact
that the secret key is shared among several parties. In particular, most studies
are dedicated to the case of t = n, which we call Multi-party HE (MPHE), while
there have been limited results for t < n. In practice, ThHE (or MPHE) schemes
are derived from single-key HEs by replacing their key-generation algorithms
with distributed protocols, while the evaluation procedures remain the same. To
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the best of our knowledge, all existing schemes require interaction between the
parties to build a relinearization key for multiplication. This approach tends to
be more efficient, but it is required to fix the parties at the setup phase which
cannot change during the entire operation.

Meanwhile, Multi-key HE (e.g. [12,13,18,29,32,34]) is another variant of HE
with different pros and cons. In this primitive, each party can generate its own
key and use it to encrypt data without any interaction with other users. More-
over, it is possible to evaluate a circuit over ciphertexts under different keys,
which results in a multi-key ciphertext decryptable by the associated parties.
The MKHE schemes enjoy better flexibility and dynamism since it allows a new
party to join the computation anytime. On the other hand, they suffer from rel-
atively poor performance where the space and time complexity grow depending
on the number of parties involved in the computation.

In this section, we propose a new variant of HE for multiple parties, called
Multi-Group HE (MGHE), which allows the seamless integration of MPHE and
MKHE and has the best of both worlds.

3.1 Definition

An MGHE scheme consists of several algorithms and protocols below:

• Setup(1λ, 1d): Given the security parameter λ and the maximal level d, the
setup algorithm generates a public parameter set pp.

• KeyGen({Pi : i ∈ I}): A set of parties {Pi : i ∈ I} execute the key-generation
protocol to jointly generate a public key pk. Each party Pi also obtains a
secret share [sk]i.

• Enc(pk;m): Given a public key pk and a message m, the encryption algorithm
returns a ciphertext ct.

• Eval({pk1, . . . , pkk;C, ct1, . . . , ctk): Given a circuit C, ciphertexts ct1, . . . , ctk
and their associated public keys pk1, . . . , pkk, the evaluation algorithm out-
puts a ciphertext ct.

• DistDec({Pi : i ∈ I}; ct). Given a ciphertext ct, the associated parties execute
the distributed decryption protocol and recover a message m.

First of all, the key-generation protocol can be conducted by a set of parties
(which we call a group) to build a public key and corresponding secret key shares.
A group of parties {Pi : i ∈ I} will be represented as an index set I. Unlike
MPHE, it is not necessary to specify a group at the setup phase, but any group
of parties can execute the protocol at any time. In addition, each party may join
several groups and run the key-generation protocol with different parties. A data
owner needs to pick a public key in the encrypt algorithm so that the output
ciphertext is collaboratively decryptable by the corresponding group of parties.
We require that an MGHE scheme is semantically secure in the semi-honest
model. In other words, the adversary learns no information about the message
if at least one party in the group is honest.

The evaluation algorithm of MGHE allows us to compute a circuit on
encrypted messages, which are not necessarily encrypted under the same key.
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To be precise, if we evaluate a circuit over ciphertexts associated with groups
I1, . . . , Ik, then the output ciphertext is no longer decryptable by a single group
but its decryption requires all parties in I := I1 ∪ · · · ∪ Ik to be involved in the
distributed decryption protocol.

In the security game, we assume that the key-generation protocol is executed
honestly by the parties. The correctness guarantees that the output of evaluation
and decryption protocols in MGHE is same as the result of the evaluation circuit
with plain messages. The security of MGHE indicates that when there is at least
one honest party among sets of parties, an encryption for that party does not
reveal any information about the message.

Definition 1 (Security). Let I1, I2, . . . , Ik be sets of parties and let I =
∪1≤j≤kIj. Let A ⊆ I denote the set of adversarial parties and H = I\A. An
MGHE scheme is said to be secure if the advantage of A in the following game
is negligible for any PPT adversary A:

– The challenger generates a public parameter pp ← Setup(1λ, 1d).
– The challenger executes the key generation protocol KeyGen(pp, Ij) for all

1 ≤ j ≤ k. The challenger sends the public keys pk1, . . . , pkk and secret
shares {[skj ]i : i ∈ A, 1 ≤ j ≤ k} of A to the adversary.

– The adversary chooses messages m0,m1 ∈ M and picks an index j such that
Ij � A, and sends them to the challenger. The challenger samples a random
bit b ∈ {0, 1} and sends Enc(pkj ;mb) back to the adversary.

– The adversary A outputs a bit b′. The advantage is defined as
∣
∣Pr[b = b′] − 1

2

∣
∣.

Definition 2 (Correctness). Let pp ← Setup(1λ, 1d). For 1 ≤ i ≤ k, let
pki ← KeyGen(Ii) be a public key generated by a set of parties {Pj : j ∈ Ii} and
cti ← Enc(pki;mi) be an encryption of a message mi. An MGHE scheme is said
to be correct if for any circuit C : Mk → M whose depth is bounded by d, the
following holds with an overwhelming probability in λ:

DistDec

⎛
⎝{

Pi : i ∈
⋃

1≤i≤k

Ii

}
; Eval(pk1, . . . , pkk; C, ct1, . . . , ctk)

⎞
⎠ = C(m1, . . . , mk).

3.2 Relations with MPHE and MKHE

Let us explain how MGHE is related with other approaches, MPHE and MKHE.
As mentioned before, these primitives differ in various respects such as key struc-
ture and functionality. Recall that all parties use the same public key for encryp-
tion and evaluation in the MPHE setting, while an MKHE scheme allows each
party to generate a key pair independently so that different keys can be involved
in the computation.

Our suggestion, the MGHE primitive, can be viewed as a generalization of
both primitives. In other words, MPHE and MKHE are special instantiations
of MGHE with different group structures. First, suppose that all parties join a
single group in the MGHE setting. Then, they share the same key for encryption
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and the whole evaluation is done within the group, similar to the case of MPHE.
Conversely, if each user forms a group alone, then the group key is solely gener-
ated and owned by a single party and the evaluation across different parties are
performed in the MKHE manner.

Moreover, in these examples, our security definition of MGHE corresponds
to the security definitions of MPHE and MKHE. In the single-group case, there
is only group to be chosen by the adversary, so the security game is exactly the
same as that of MPHE [28]. On the other hand, if every group consists of a single
party, then our security game for MGHE defines the ordinary semantic security
for (MK)HE.

4 MGHE Construction

In this section, we present a concrete instantiation of MGHE from the BFV
scheme. Recall that, in the MGHE setting, we can perform computation over
ciphertexts which are not necessarily encrypted under the same key. In addition,
our idea is easily applicable to design multi-group variants of other HE schemes
such as BGV [10] and CKKS [15]. In particular, we implement MGHE schemes
from both BFV and CKKS and present experimental results in Sect. 6. We also
provide a formal description of multi-group CKKS in Appendix A.1.

In Sects. 4.1 and 4.2, we outline the basic scheme consisting of setup, key gen-
eration, encryption, and decryption of the MGHE scheme. In Sects. 4.3 and 4.4,
we provide the algorithms of arithmetic operations and automorphism of MGHE,
respectively, with its correctness proof and we provide the security analysis of
MGHE in Sect. 4.5.

4.1 Key Generation

In this section, we describe a key generation procedure of our MGHE scheme.
Our scheme is based on the CRS model, i.e., all parties have access to the same
random string. A parameter set also includes the RLWE dimensions, ciphertext
modulus, the key distribution, as well as the error parameter. We firstly explain
the setup phase which is a stage to determine some parameters for further pro-
cedures with a certain security level before introducing the key generation.

• Setup(1λ): Set the RLWE dimension N , the plaintext modulus t, the cipher-
text modulus q, the key distribution χ over R, and the error parameter σ. Choose
a gadget decomposition h : Rq → Rd with a gadget vector g ∈ Rd

q . Sample ran-
dom vectors a,u and k1, . . . ,kL from U(Rd

q) where L is the number of different
automorphisms to be used in the evaluation process. Return the public param-
eter pp = (N, t, q, χ, σ,g, h) and common random string crs = (a,u,k1, . . . ,kL).
We write Δ = �q/t�.

Our scheme generates several CRSs in the setup phase, but this can be imple-
mented efficiently using a keyed pseudo-random function (PRF). This allows us
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to rely on the CRS assumption for a fixed-size seed, regardless of the number of
common random polynomials used for public and automorphism keys.

Recall the definition of MGHE in Sect. 3.1: a group of parties executes the key
generation protocol to build a joint public key while each party obtains its own
secret. In our construction, the key generation proceeds in two steps of generating
individual secret keys and aggregating them into a public key. To be precise, each
party Pi first generates its own key pair ([sk]i, [pk]i) and broadcasts the public
component [pk]i. We stress that the generation of an individual key pair can be
done locally by each party without any interaction with other parties. In the
following step, a public key for a group of parties {Pi : i ∈ I} can be obtained
from the individual public keys [pk]i of the group members. This aggregation
can be done by a public cloud without further interaction between the parties.
We note that a public key includes an encryption key, a relinearization key for
multiplication and automorphism keys for homomorphic rotation.

Note that the individual key generation can be regarded as a preprocessing
phase of the key generation protocol since other parties do not affect and thus
each party is able to run this protocol at any time. In addition, even if a party
belongs to several groups, the party generates only one key pair of its own and
uses it several times to create multiple public keys corresponding to the groups
that the party belongs to. It makes our construction more efficient because the
party does not need to generate a new key pair for each key aggregation step. We
guarantee that the MGHE scheme is secure and the security proof is described
in Sect. 4.5.

• IndKeyGen(Pi; {ψ�}1≤�≤L): Each party Pi generates individual secret and pub-
lic keys as follows:

– Sample [s]i ← χ and set the secret key as [sk]i = si.
– Sample [r]i ← χ and [e0]i, [e1]i, [e2]i ← Dd

σ, and compute

[b]i = −[s]i · a + [e0]i (mod q),
[d]i = −[r]i · a + [s]i · g + [e1]i (mod q),
[v]i = −[s]i · u − [r]i · g + [e2]i (mod q).

– For given automorphisms ψ1, . . . , ψL, sample [e′
�]i ← Dd

σ and compute

[h�]i = −[s]i · k + ψ�([s]i) · g + [e′
�]i (mod q)

for 1 ≤ � ≤ L. Set the public key as [pk]i = ([b]i, [d]i, [v]i, [h1]i, . . . , [hL]i).

• JointKeyGen({[pk]i : i ∈ I}): Let I be the index set for a group of parties.
Given the collection of public keys [pk]i with i ∈ I, compute the public key as
pk =

∑
i∈I [pk]i, i.e., pk = (b,d,v,h1, . . . ,hL) ∈ Rd×4

q where

b =
∑

i∈I

[b]i, d =
∑

i∈I

[d]i, v =
∑

i∈I

[v]i, and h� =
∑

i∈I

[h�]i (mod q)
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for 1 ≤ � ≤ L. Specifically, we denote the encryption key as ek = (b[0],a[0]), the
relinearization key as rlk = (b,d,v), and the automorphism keys as ak� = h�.

Each component of the public key [pk]i forms a gadget encryption with a
CRS under the secrets [s]i or [r]i. We call s =

∑
i∈I [s]i the (implicitly defined)

secret key for the group I. The individual secrets [s]i can be viewed as additive
shares of s. Furthermore, the public key [pk]i is nearly linear with respect to [s]i
and [r]i so that the joint public key pk = (b,d,v,h�)1≤�≤L satisfies the same
properties as the individual keys:

b ≈ −s · a (mod q), d ≈ −r · a + s · g (mod q)
v ≈ −s · u − r · g (mod q), h� ≈ −s · k� + ψ�(s) · g (mod q)

Non-interactive Key Aggregation. In the construction of existing MPHE,
the main challenge is to generate the relinearization key for a group of parties.
To be precise, the relinearization key of BFV is a key-switching key from s2

to s, or equivalently, a gadget encryption of s2 under s. However, the secret
key is additively shared among the parties in the multi-party setting, so it is
not easy to generate the relinearization key in a distributed manner due to
its quadratic structure. Therefore, the existing MPHE schemes [5,31,33] had a
common limitation in that they rely on a multi-round key generation protocol
requiring interaction between the parties.

For instance, the public key generation of [33] consists of two steps: all par-
ties broadcast individual encryption keys [b]i ≈ a · [s]i (mod q) to build a joint
encryption key b =

∑
i∈I [b]i first, then use it to generate a gadget encryption of

[s]i · s and aggregate them to build a gadget encryption of s2.
In this work, we solve the issue by introducing a novel key-generation algo-

rithm such that the public key is nearly linear with the corresponding secret key.
In other words, our relinearization key has a completely different structure where
the summation of [pk]i for i ∈ I becomes a valid public key corresponding to the
secret

∑
i∈I [sk]i. Our key-generation algorithm is inspired from the idea of Chen

et al. [13] introducing the second secret [r]i to reconstruct the relinearization key
structure. Although the prior method is not nearly linear so cannot be directly
used in the MPHE construction, we achieve the desired property by making an
additional CRS assumption.

Consequently, our MGHE scheme allows each party to independently gen-
erate an individual public key once even without any information about other
parties, and the public key for a group can be built on the server by simply
adding individual public keys. This ‘non-interactive’ nature of key aggregation
offers several advantages, including performance and flexibility. For instance, if
a party Pi belongs to several groups, it suffices to generate a single individual
public key [pk]i and reuse it across all groups, instead of joining the key-general
protocol repeatedly once for each group. More discussions on this feature will be
given in Sect. 5.1.
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4.2 Encryption and Decryption

As explained above, the encryption key ek = (b[0],a[0]) satisfies b[0]+a[0]·s ≈ 0
(mod q), so it can be viewed as an RLWE instance with secret s. Therefore,
we use the same BFV encryption and decryption algorithms in our scheme as
follows.

• Enc(ek;m): Given a message m ∈ Rp and the joint encryption key ek, sample
w ← χ and e0, e1 ← Dσ. Return the ciphertext ct = w · ek + (Δ · m + e0, e1)
(mod q).

Suppose that a message m is encrypted using a public key generated by
a group of parties {Pi : i ∈ I}. Then, the output ciphertext ct = (c0, c1) ←
Enc(ek,m) satisfies that c0 + c1s ≈ Δm (mod q) where s =

∑
i∈I [s]i is the

secret key for the group I. Therefore, it is required to store the information
In our MGHE scheme, it is As we discussed in Sect. 3.1, an MGHE ciphertext

holds the references to the associated public keys. In our scheme, each ciphertext
stores an ordered set of the involved groups. For example, a fresh ciphertext
encrypted by a joint public key pk =

∑
i∈I [pk]i is linked to the set containing a

single element I. More generally, a multi-group encryption of m corresponding an
ordered set of k groups {I1, . . . , Ik} is an (k+1) tuple ct = (c0, c1, . . . , ck) ∈ Rk+1

q

satisfying c0 + c1 · s1 + · · · + ck · sk = Δ · m + e (mod q) for some error e where
sj =

∑
i∈Ij

[s]i is the joint secret key of Ij for 1 ≤ j ≤ k.
Finally, we present a basic (ideal) decryption algorithm and a distributed

decryption protocol. For given a ciphertext ct = (c0, . . . , ck) which is linked to k
groups I1, . . . , Ik, the basic algorithm takes as input the joint secret keys si of
the associated groups Ii and recovers the plaintext message while the distributed
decryption protocol let the parties in

⋃
1≤j≤k Ij perform the same computation

securely in a distributed manner. As we mentioned before, we describe how to
set concrete σ′ for the distributed decryption in Sect. 5.2.

• Dec(sk1, . . . , skk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint secret

keys skj = sj for 1 ≤ j ≤ k, return m =
⌊
(t/q) · (c0 +

∑
1≤j≤k cj · sj)

⌉
(mod t).

• DistDec({[sk]i : i ∈ ∪1≤j≤kIj}, σ′; ct): Let ct = (c0, . . . , ck) be a multi-group
ciphertext corresponding to an ordered set of groups (I1, . . . , Ik). The distributed
decryption protocol consists of the following procedures:

– Partial decryption: Let I = ∪1≤j≤kIj . Each party i ∈ I samples [e′]i ← Dσ′ ,

then broadcasts [μ]i =
(∑

1≤j≤k, i∈Ij
cj

)
· [s]i + [e′]i (mod q).

– Merge: Compute m =
⌊
(t/q) · (c0 +

∑
i∈I [μ]i

)⌉
(mod t).

4.3 Arithmetic Operations

Homomorphic operations include a pre-processing step that aligns the com-
ponents of input ciphertexts as follows. For given two multi-group cipher-
texts, we consider the corresponding ordered sets and compute their union,
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Algorithm 1. Relinearization procedure of MGHE
Input: ctmul = (ci,j)0≤i,j≤k, rlkj = (bj ,dj ,vj) for 1 ≤ j ≤ k.
Output: ctrelin = (c∗

j )0≤j≤k ∈ Rk+1
q .

1: c∗
0 ← c0,0

2: for 1 ≤ j ≤ k do
3: c∗

j ← c0,j + cj,0 (mod q)
4: end for
5: for 1 ≤ j ≤ k do
6: c∗

j ← c∗
j +

∑
1≤i≤k ci,j � di (mod q)

7: end for
8: for 1 ≤ i ≤ k do
9: c′′

i ← ∑
1≤j≤k ci,j � bj

10: (c∗
0, c

∗
i ) ← (c∗

0, c
∗
i ) + c′′

i � (vi,u) (mod q)
11: end for

say {I1, . . . , Ik}. Then, we extend the input ciphertexts by padding some zeros
and rearranging their components so that both ciphertexts are decryptable with
respect to the same secret sk = (s1, . . . , sk) where sj is the joint secret of group
Ij , 1 ≤ j ≤ k. We assume that this pre-processing is always performed on the
input ciphertext and the output ciphertext is linked to the union {I1, . . . , Ik} of
ordered sets even if it is not explicitly mentioned in the algorithm description.

• Add(ct, ct′): Given two ciphertexts ct and ct′, return the ciphertext ctadd =
ct + ct′ (mod q).

• Mult(rlk1, . . . , rlkk; ct, ct′): Given two multi-group ciphertexts ct = (c0, . . . , ck),
ct′ = (c′

0, . . . , c
′
k) and k joint relinearization keys rlk1, . . . , rlkk, compute ctmul =

(ci,j)0≤i,j≤k where ci,j =
⌊
(t/q) · cic

′
j

⌉
(mod q) for 0 ≤ i, j ≤ k. Return the

ciphertext ctrelin ← Relin(rlk1, . . . , rlkk; ctmul) where Relin(·) is the relineariza-
tion procedure described in Algorithm 1.

We remark that the relinearization algorithm can be shared between our
MGHE scheme and the previous MKHE scheme [13] as they have the same
ciphertext structure. Our relinearization algorithm is an improvement of the
previous method which reduces the number of external products by almost a
factor of 2. More formally, the prior algorithm computes lines 8–11 of Algorithm 1
by repeating the following computation iteratively over 1 ≤ i, j ≤ k:

(c∗
0, c

∗
i ) ← (c∗

0, c
∗
i ) + (ci,j � bj) � (vi,u) (mod q).

We observe that
∑

1≤j≤k ci,j � bj is pre-computable and reusable for the relin-
earization of multiple ciphertext components. This idea consequently reduces the
number of external products down to 2k2 + 2k in total, compared to the former
method which requires 4k2 external products. We refer the reader to Appendix B
for details about the noise analysis.

Correctness of Homomorphic Multiplication. Suppose that ct and ct′ are
encryptions of m and m′ under secret sk = (s1, . . . , sk), respectively, and let
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ctmul = (ci,j)0≤i,j≤k = �(t/q) · ct ⊗ ct′� (mod q). Then, it satisfies following
relation:

〈
ctmul, (1, sk) ⊗ (1, sk)

〉 ≈ Δ · mm′ (mod q). We claim that if ctrelin ←
Relin({rlkj}1≤j≤k; ctmul), then the output ciphertext ctrelin = (c∗

0, . . . , c
∗
k) satis-

fies c∗
0 +

∑
1≤j≤k c∗

j · sj ≈ ∑
0≤i,j≤k ci,j · sisj and thereby is a valid encryption

of mm′.
First, we have

c∗
0+

∑
1≤j≤k

c∗
j ·sj = c0,0+

∑
1≤j≤k

(c0,j +cj,0)·sj +
∑

1≤i,j≤k

(ci,j �di)·sj +
∑

1≤i≤k

c′′
i �(vi+si ·u)

where c′′
i =

∑
1≤j≤k ci,j � bj from the definition of Algorithm 1.

We also consider the properties sj ·di ≈ −risi · a+ sisj · g ≈ ri ·bj + sisj · g
(mod q) and vi + si · u ≈ −ri · g (mod q) of the joint public keys and deduce
the following equations:

∑

1≤i,j≤k

(ci,j � di) · sj ≈
∑

1≤i,j≤k

ri · (ci,j � bj) +
∑

1≤i,j≤k

ci,j · sisj (mod q),

∑

1≤i≤k

c′′
i � (vi + si · u) ≈ −

∑

1≤i≤k

ri · c′′
i = −

∑

1≤i,j≤k

ri · (ci,j � bj) (mod q).

Putting them all together, we obtain

c∗
0+

∑
1≤j≤k

c∗
j ·sj ≈ c0,0+

∑
1≤j≤k

(c0,i+ci,0)·sj+
∑

1≤i,j≤k

ci,j ·sisj =
∑

0≤i,j≤k

ci,j ·sisj (mod q)

which completes the correctness proof of the relinearization algorithm.

Asymptotically Faster Multiplication. Recent research [26] has enhanced
the multiplication of BFV and CKKS in MKHE to achieve a linear time com-
plexity. They leverage a newly proposed concept called homomorphic gadget
decomposition, which satisfies 〈h(a) � h(b),g〉 = ab (mod q) for a, b ∈ Rq, to
replace the term h(ci,j) with h(ci) � h(c′

j). As our MGHE is a natural exten-
sion of MKHE, we can directly adopt their algorithm to both BFV and CKKS.
Notably, their multiplication in BFV entails additional (homomorphic) gadget
decomposition h̃ : Rq̃ → Rd̃ on q̃ := q2 with a gadget vector h ∈ Rd̃

q̃ and the

corresponding external product c�̃v =
〈
h̃(c),v

〉
(mod q̃). We refer the reader

to [26] for further details.

4.4 Automorphism

The packing technique of the BFV scheme enables us to encode multiple val-
ues in a finite field into a single plaintext polynomial for better efficiency [10].
The (un)packing algorithm has a similar algebraic structure with the canonical
embedding map over the cyclotomic field K = Q[X]/(XN + 1), and the auto-
morphisms in the Galois group Gal(K/Q) provide special functionality on the
plaintext slots such as rotation.

We present a multi-group variant of homomorphic automorphism such that
the joint automorphism key is generated non-interactively. Given a multi-group
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ciphertext ct = (c0, . . . , ck) linked to k groups I1, . . . , Ik, the joint automorphism
key of Ij is used to perform the key-switching procedure of the j-th entry ψ(cj)
during the homomorphic evaluation of ψ� ∈ Gal(K/Q). For simplicity, we will
describe the case with one automorphism for simplicity in the following sections.

• Auto(ak1, . . . , akk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and the joint
automorphism keys akj = hj for 1 ≤ j ≤ k, compute and return the ciphertext
ctaut = (c′

0, c
′
1, . . . , c

′
k) where c′

0 = ψ(c0) +
∑

1≤j≤k(ψ(cj) � hj) (mod q) and
c′
j = ψ(cj) � k (mod q) for 1 ≤ j ≤ k.

Correctness of Homomorphic Automorphism. We show below the cor-
rectness of multi-group homomorphic automorphism algorithm:

c′
0 +

∑
1≤j≤k

c′
j · sj = ψ�(c0) +

∑
1≤j≤k

ψ�(cj) � (hj + sj · k)

≈ ψ�(c0) +
∑

1≤j≤k

ψ�(cj) · ψ�(sj) = ψ�(c0 +
∑

1≤j≤k

cj · sj) (mod q)

where ct = (c0, . . . , ck) and ctaut = (c′
0, . . . , c

′
k) ← Auto(h1, . . . ,hk; ct).

4.5 Security

In this section, we show that our MGHE scheme achieves a semantic security
that we defined in Sect. 3.1 under the RLWE assumption.

Lemma 1 (Security of MGHE). The MGHE scheme described above is
semantically secure under the RLWE assumption with parameter (n, q, χ, σ).

Proof. Let Ii be sets such that I = ∪0≤i≤kIi and H = I\A for any set A � I.
We define some hybrid games as follows:

– Game 0: This is a real world execution of the security game defined in
Definition 1.

– Game 1: It is similar to Game 0, but the challenger samples [pk]i uniformly
at random from Rd×4

q for i ∈ H.
– Game 2: It is similar to Game 1, but the challenger encrypts 0 instead of

mb.

Let [pk]i = ([b]i, [d]i, [v]i, [h]i) be the public key of party i ∈ H. Since ([b]i,a)
and ([v]i,u) follow the RLWE distribution of secret [s]i, a pair ([b]i, [v]i) is indis-
tinguishable from a uniform distribution over Rd×2

q . In addition, ([d]i,a) follows
the RLWE distribution of secret [r]i, [d]i is also indistinguishable from a uniform
distribution over Rd

q . Meanwhile, ([d]i,a) and ([v]i,u) can be viewed as a ‘chain’
of two gadget encryptions of [s]i and −[r]i under secrets [r]i and [s]i, respectively.
Here we make an additional circular security assumption which guarantees that
our scheme remains secure even if [d]i, [v]i, and [h]i are public. On the other
hand, [h]i is an gadget encryption of ψ([s]i) under [s]i with a random vector k.
Therefore, Game 0 and Game 1 are computationally indistinguishable.
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In both Game 1 and Game 2, the adversary sends a group index j to the
challenger in the security game. The encryption key b[0] used in these games
is given by b[0] =

∑
i∈Ij∩A[b]i[0] +

∑
i∈Ij∩H [b]i[0]. Since Ij ∩ H is non-empty

and each [b]i is uniformly sampled from Rd
q for all i ∈ H, b[0] is computation-

ally indistinguishable from a uniform random variable over Rq. Thus, under the
RLWE assumption, the encryptions of 0 and mb in both games are also com-
putationally indistinguishable. Therefore, the difference in advantage between
these two games is negligible.

According to the aforementioned reasons, we can conclude that the advantage
of the adversary in Game 0 is negligible. Since Game 0 is a real world-execution
game with the MGHE scheme, our MGHE scheme achieves semantic security
against semi-malicious corruptions. ��

5 Constructing MPC from MGHE

The MGHE sheme, being a generalization of both the MKHE and MPHE prim-
itives, can serve as a drop-in replacement for these primitives in any application
built with them. As a result, MGHE can be effectively utilized in general 2-
round MPC computation [32], outsourced computation applications [31], and
distributed machine learning setups [19]. Additionally, it can be employed as a
building block in MPC protocols that require varying number of parties [17].

5.1 Overview

MPHE and MKHE are both viable options for building an MPC protocol [29,31,
32], but each has limitations that restrict their usefulness in certain applications.
For example, MPHE-based MPC protocols require parties to communicate with
each other to generate a shared key. On the other hand, MKHE schemes are
more time and space intensive than MPHE because ciphertexts expand as they
interact with other ciphertexts under different keys. Thus, an MGHE scheme
that integrates the strengths of both these schemes can be used to construct
round-efficient MPC protocols. In Fig. 2, we describe a high-level structure of an
MPC computation in three phases. Here, we assume three entities consisting of
key owners, data owners, and a cloud server.

– [Phase I] Setup: In the first step of the protocol, key owners generate their
key pairs and broadcast the public keys. We can treat this step as an offline
phase since these procedures have to be run only once and each party is able
to produce a key pair independently. When Phase I is ended, a joint public
key is built publicly by summing up the individual public keys without any
interaction between the parties.

– [Phase II] Encryption: After encrypting inputs with the joint encryption
key, the ciphertexts are provided to the server which may be an external
entity such as a cloud service provider. In general, semi-honest cloud service
providers or parties themselves in MPC may play the role of computing party.
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Fig. 2. MPC protocol using MGHE and previous work [31]. In [31], cpk and rlk rep-
resent the common public key for encryption and evaluation key, respectively. In our
MGHE scheme, these keys can be obtained from the joint public key jpk directly.

When Phase II is ended, the circuit is evaluated using the homomorphic
properties of the encryption scheme and thus does not require any interaction.

– [Phase III] Decryption: When the evaluation is over, we use an interac-
tive protocol known as distributed decryption to securely decrypt the result
without revealing the secret key of each party. In the protocol, each party
partially decrypts the ciphertext using its own secret key with noise smudg-
ing technique [5], and the output message is obtained by adding all of the
partially decrypted results.

Implication of Non-interactive Key Aggregation. Recall that all prior
MPHE yields multi-round key generation in Phase I due to the quadratic struc-
ture of the evaluation key with respect to the individual secret keys. In the MPC
protocol derived from the previous MPHE, each party broadcasts twice for the
key generation: (1) individual encryption key to generate the joint encryption key
and (2) individual evaluation key, which is constructed using the joint encryption
key, to generate the joint evaluation key. In other words, it requires an interaction
between parties for key aggregation during the setup. In our scheme, the novel
refactoring of the evaluation key enables the parties to broadcast their keys only
once. Each party broadcasts the individual public key, which implicitly contains
the shares of the evaluation key. Then, the joint public key is generated publicly
to be used for encryption and evaluation. By sharing the individual key pair in
the first round itself, each party does not require interaction with other parties
in the rest of the process (and can be offline until the decryption process). Thus



420 H. Kwak et al.

our setup phase is non-interactive in the sense of Non-Interactive MPC [7,23]
that each party independently and asynchronously broadcasts a single message.

The advantages of this non-interactivity are even more pronounced when
a key owner belongs to multiple groups. For example, in the MPC protocol
with interactive setup, a key owner must join several key generation protocols
to generate joint public keys corresponding to the groups containing the party.
Moreover, all parties in the group have to participate simultaneously since the
key generation requires communications between the parties. However, with the
non-interactive key aggregation, the server or the parties can generate joint pub-
lic keys after each party broadcasts its own public key without any interaction
with other parties. Therefore, we can achieve better efficiency since there is no
need to participate in the key generation protocol multiple times and each party
can broadcast its own key at any time before generating the joint public key.

5.2 MPC Protocol Secure Against Semi-malicious Corruptions

We provide a concrete MPC protocol in Fig. 3 for a polynomial-time determinis-
tic circuit C. The correctness of the protocol follows from the correctness of the
MGHE construction. In this section, we prove the protocol’s security against a
semi-malicious adversary which the definition is referred from [5]. Note that a
semi-malicious adversary follows the honest protocol specification with arbitrary
values for their random coins [5,29,32].

To prove the security of the MPC protocol from MGHE, we begin by demon-
strating the simulation security [27] of the distributed decryption process in
MGHE. For a circuit C, let us denote by BC an error bound of a ciphertext
obtained by evaluating the circuit C over fresh ciphertexts. Given BC , we can
guarantee the correctness and simulation security of the distributed decryption
if σ′ is exponentially larger than the bound BC .

Lemma 2 (Correctness of Distributed Decryption). Let n be the number
of parties in I = ∪1≤j≤kIj and Bσ′ be bound of the samples from Dσ′ with
non-negligible probability. If q ≥ 2nt(BC + Bσ′), then the distributed decryption
procedure DistDec satisfy correctness.

Proof. Given the partial decryptions [μ]i of parties i ∈ I, we have

c0 +
∑

i∈I

μi = c0 +
∑

i∈I

⎛

⎝
∑

1≤j≤k,i∈Ij

cj

⎞

⎠ · [s]i +
∑

i∈I

[e′]i

= Δ · m + e + e′

where e is bounded by nBC and e′ =
∑

i∈I [e
′]i is bounded by nBσ′ . Since

q ≥ 2nt(BC + Bσ′), we have |e + e′| ≤ q/2t, which ensures the correctness. ��
Lemma 3 (Security of Distributed Decryption). If σ′ > 0 is a real num-
ber such that the samples from Dσ′ are larger than 2λBC without negligible
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Fig. 3. πC : MPC protocol for a circuit C using MGHE

probability, then the distributed decryption procedure DistDec achieves statis-
tical simulation security against any static semi-malicious adversary corrupting
exactly n − 1 parties.

Proof. Let a party h be the only honest party. We construct a simulator S
against the adversary A which has an access to the inputs and secret keys of all
parties except h and receives the output message m from the ideal functionality.
For given evaluated ciphertext ct = (c0, . . . , cL), the simulator computes and
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publishes the simulated partial decryption [μ]′h of the honest party h using a
smudging error [e′]sm

h ← Dσ′ :

[μ]′h = Δ · m + [e′]sm
h −

∑

i�=h

γi − c0 (1)

where γi =
(∑

1≤j≤k,i∈Ij
cj

)
· [s]i (mod q) for i �= h.

Then, the partial decryption of h is generated from the partial decryptions
of corrupted parties and the output message as Δ · m + [e′]sm

h − ∑
i�=h γi − c0.

On the other hand, the real partial decryption also can be written as Δ · m +
e + [e′]sm

h − ∑
i�=h γi − c0 where e is the noise in the ciphertext ct. By the

smudging lemma [5], the distributions of [e′]sm
h and e + [e′]sm

h are statistically
indistinguishable. It concludes that the simulated partial decryption and the real
partial decryption are statistically indistinguishable. ��
Theorem 1 (Security of MPC Protocol). Given a poly-time computable
deterministic circuit C with L inputs, the protocol πC described in Fig. 3 UC-
realizes the circuit C against any static semi-malicious adversary corrupting
exactly n − 1 parties.

Proof. Let a party h be the only honest party. We construct a simulator S
against the adversary A as follows.

The Simulator. In Phase I, the simulator samples the public key of h from
uniform distribution over Rd×4

q instead of IndKeyGen(h). The simulator also
plays Phase II honestly on behalf of the honest party, but encrypts 0 instead of
the real input from h, if any. As the simulator has access to the inputs and secret
keys of all parties except h from the witness tape, the simulator can evaluate
the circuit C on ciphertexts ct1, . . . , ctL and obtain the resulting ciphertext ct.
In addition, it also receives the output message m from the ideal functionality.
In Phase III, the simulator computes the partial decryption for the party h as
same as the simulator introduced in the security proof of Lemma 3.

Now, we define some hybrid games and prove the computational indistin-
guishability between the real and ideal worlds.

– The game REAL(π,A,Z): An execution of the protocol π in the real world
with environment Z and semi-malicious adversary A.

– The game HYB1
(π,A,Z): This is the same as REAL(π,A,Z) except the output

of partial decrpytion of h. In Phase III, it publishes the simulated partial
decryption which is computed via (1).

– The game HYB2
(π,A,Z): This is similar to HYB1

(π,A,Z), but in Phase II the
party h encrypts 0 instead of the real input if any.

– The game IDEAL(F,S,Z): It executes the MPC protocol with the simulator
S. The difference from HYB2

(π,A,Z) is that the public key of h is sampled from
a uniform distribution over Rd×4

q instead of the individual key generation
algorithm IndKeyGen(h) in Phase I.
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From the above games, we consider the following claims.

Claim 1. REAL(π,A,Z) and HYB1
(π,A,Z) are statistically indistinguishable.

Proof. According to the description of the simulator, the partial decryption of h
in the game HYB1

(π,A,Z) is generated from the partial decryptions of corrupted
parties and the output message as Δ · m + [e′]sm

h − ∑
i�=h γi − c0, while the real

partial decryption also can be written as Δ · m + e + [e′]h − ∑
i�=h γi − c0 where

e is the noise in the ciphertext ct. By Lemma 3, the distributions of [e′]sm
h and

e+[e′]h are statistically indistinguishable. This indicates that REAL(π,A,Z) and
HYB1

(π,A,Z) are also statistically indistinguishable.

Claim 2. HYB1
(π,A,Z), HYB2

(π,A,Z), and IDEAL(F,S,Z) are computationally
indistinguishable.

Proof. The differences in three games correspond to the differences in Game 0,
Game 1, and Game 2 of Lemma 1. In detail, the difference between HYB1

(π,A,Z)

and HYB2
(π,A,Z) is that the party h encrypts the real input in HYB1

(π,A,Z) while
it encrypts 0 in the game HYB2

(π,A,Z), if any. Furthermore, the difference between
HYB2

(π,A,Z) and IDEAL(F,S,Z) is in the public key pkh. In HYB2
(π,A,Z), pkh is

a valid public key generated by h while it is sampled from a uniform distribu-
tion over Rd×4

q in the game IDEAL(F,S,Z). Thus, by Lemma 1, the three games
HYB1

(π,A,Z), HYB
2
(π,A,Z), and IDEAL(F,S,Z) are computationally indistinguish-

able.

According to the claims, we conclude that the MPC protocol πC is secure in
the semi-malicious model against n − 1 corrupted parties. ��

To handle the arbitrary number of corruptions, we can establish security
proof by constructing the extended protocol as outlined in [32]. In addition,
we can transform our MPC protocol, which is secure against semi-malicious
attackers, into a protocol that offers security against malicious corruptions with-
out introducing any additional rounds. This transformation can be achieved by
leveraging non-interactive zero-knowledge proofs, as described in [5].

6 Experimental Results

We implement our MGHE scheme based on BFV and CKKS. The source code is
written in GO programming language and is built on Lattigo [1] version 2.3.0. We
conducted experiments on a system equipped with Intel(R) Core(TM) i9-10900
CPU @ 2.80 GHz and 64 GB RAM. In our implementation, the key distribution
χ samples the coefficients from the ternary set −1, 0, 1 with equal probabilities
of 0.25 for −1 and 1, and a probability of 0.5 for 0. The error parameter is set
to σ = 3.2.

Table 1 shows the execution time of multiplication of our MGHE scheme. The
experiment was conducted using two different parameter sets: (N, �log pq�) =
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Table 1. Performance of our MGHE schemes, the MKHE scheme by Chen et al. [13],
and the MPHE scheme by Mouchet et al. [31]: execution times to operate homomorphic
multiplication (Mult + Relin), taken in milliseconds (ms). N denotes the dimension
of base ring, n and k denote the number of the associated parties and groups (keys),
respectively, to the ciphertext. Ours+ refers to our MGHE scheme combined with the
technique of [26].

N n k Mult + Relin

BFV CKKS

Ours Ours+ [13] [31] Ours Ours+ [13] [31]

214 1 1 78.7 118.4 84.1 32.6 51.6 72.9 51.2 17.7

2 1 77.9 120.4 – 33.4 50.8 75.3 – 17.1

2 173.4 224.4 196.2 – 122.8 133.4 139.7 –

4 1 80.1 121.6 – 32.9 51.6 76.9 – 17.4

2 175.3 224.1 – – 124.5 133.6 – –

4 476.4 420.8 589.7 – 335.8 250.5 450.7 –

8 1 78.4 118.9 – 33.3 50.8 77.2 – 17.2

2 178.1 223.5 – – 123.6 135.1 – –

4 461.4 422.7 – – 337.1 249.4 – –

8 1473.0 811.7 2014.2 – 1081.9 495.9 1600.7 –

215 1 1 595.9 1036.8 605.5 202.0 414.2 642.5 404.1 165.7

2 1 593.1 1019.4 – 201.5 412.9 640.7 – 170.8

2 1308.3 1929.8 1477.9 – 1014.9 1094.3 1089.7 –

4 1 599.2 1024.4 – 204.2 413.7 643.1 – 164.6

2 1324.9 1945.7 – – 1008.4 1100.6 – –

4 3556.5 4006.8 4582.9 – 2844.5 2177.3 3553.1 –

8 1 593.2 1033.9 – 202.7 413.3 645.5 – 168.7

2 1319.8 1987.1 – – 1011.4 1103.5 – –

4 3515.2 3954.5 – – 2825.1 2147.2 – –

8 10681.1 6871.5 15257.5 – 9008.9 4449.3 13052.8 –

(214, 438) and (215, 880) where p is a special modulus. Both parameter sets
ensure a security level of at least 128 bits [2]. Ours shows the performance of
Algorithm 1 where a minor optimization is introduced and Ours+ shows that of
multiplication algorithm which applies the technique of [26]. As our MGHE sup-
ports computation on groups of parties, we measured the performance varying
the number of groups.

We also present the performance of the MKHE scheme [13] and MPHE
scheme [31] for comparison. Since MKHE and MPHE are instances of MGHE
where each group consists of a single party and single group, respectively, the
MKHE scheme and MPHE scheme have its results in Table 1 only when n = k
and k = 1, respectively. Upon comparing the performance of MKHE and our
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method, the table shows that our multiplication algorithm exhibits slightly faster
operation times than previous MKHE. This is due to our approach, as explained
in Sect. 4.3, where we reduce the number of external products during the relin-
earization. Moreover, in the case of a large number of groups, it is even faster
than our method when we apply the recent technique introduced in [26]. We also
remark that although MPHE shows better performance than other methods, it
requires interactions among the parties before the evaluation to generate the
joint public key.

A Construction of MGHE with CKKS

The CKKS supports approximate arithmetic operations for complex numbers.
The BFV and CKKS have similar structure, we can easily extend MGHE scheme
of the CKKS. The difference is that it adds an error into the plaintext itself and
additionally supports the rescaling algorithm to control the size of ciphertext.
The ciphertext has a level and it decreases whenever rescaling is performed. To
proceed arithmetics between two ciphertexts, they should have same level and
it requires bootstrapping when level is low in order to continue evaluation. We
are going to provide MGHE scheme without interactive key generation. In this
description, we skip setup, key generation, and joint key generation phase since
they are same as BFV. Galois automorphism is also not included since it has
same procedure with the BFV. We assume the ciphertext modulus q =

∏L
i=1 pi

for some integers pi and denote ql =
∏l

i=1 pi.

A.1 MGHE with CKKS

• MG-CKKS.Enc(ek;m): For a joint encryption key ek and a message m, return
ct ← MP-CKKS.Enc(ek;m).

• MG-CKKS.Add(ct, ct′): If two given ciphertexts ct and ct′ has same level, return
the ciphertext ctadd = ct+ ct′ (mod q). If not, modify ciphertexts to have same
level before the computation.

• MG-CKKS.Mult({rlkj}1≤j≤k; ct, ct′): Set ct and ct′ have same level. Let ct =
(ci)0≤i≤k and ct′ = (c′

i)0≤i≤k be two multi-group ciphertexts and {rlkj}1≤j≤k

the collection of the joint relinearization keys of groups Ij for 1 ≤ j ≤ k. Com-
pute ctmul = (ci,j)0≤i,j≤k where ci,j = cic

′
j (mod q) for 0 ≤ i, j ≤ k. Return

the ciphertext MG-CKKS.Relin({rlkj}1≤j≤k; ctmul) where MG-CKKS.Relin(·) is the
relinearization procedure described in Algorithm 1.

• MG-CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1, . . . , ck) ∈ Rk+1
ql

at level
l, compute c′

i =
⌊
p−1

l · ci

⌉
for 1 ≤ i ≤ k, and return ct′ = (c′

0, c
′
1, . . . , c

′
k) ∈ Rk+1

ql−1

which is at level l − 1.

• MG-CKKS.Dec({skj}1≤j≤k; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint
secret keys skj = sj for 1 ≤ j ≤ k, return m = 〈ct, sk〉 = (c0 +

∑
1≤j≤k ci · sj)

(mod t).
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• MG-CKKS.DistDec({[skj ]i}1≤j≤k,i∈Ij , σ
′; ct): Let ct = (c0, . . . , ck) be a multi-

group ciphertext corresponding to the set of groups {I1, . . . , Ik} and [sk]i = [s]i
be the secret of party i ∈ Ij .

– Partial decryption: For 1 ≤ j ≤ k, each party i ∈ Ij samples [e′
j ]i ← Dσ′ ,

then computes and publishes [μj ]i = cj · [s]i + [e′
j ]i (mod q).

– Merge: Compute m = (c0 +
∑

1≤j≤k

∑
i∈Ij

[μj ]i) (mod t).

B Noise Analysis

Before estimating a noise growth, we specify some distributions for sampling
randomness or errors. Let the key distribution χ be the distribution where each
coefficient is sampled from the set {0,±1} with probability 0.25 for each of −1
and 1 and with probability 0.5 for 0. Set the error distribution ψ� be the discrete
Gaussian distribution of variance σ2. We also assume that the coefficients of
the polynomials are independent zero-mean random variables with the same
variances. We denote by Var(a) = Var(ai) the variance of coefficients for random
variable a =

∑
i ai ·Xi over the ring R. Then the variance of the product c = a ·b

of two polynomials with degree n can be represented as Var(c) = n·Var(a)·Var(b)
if a and b are independent. Similarly, we define variance for a vector a ∈ Rd

of random variables as Var(a) = 1
d

∑d
i=1 Var(a[i]). We also assume that each

ciphertext behaves as if it is a uniform random variable over Rk+1
q . We analyze

the noise growth of k-group case, each comprising Ni parties for 1 ≤ i ≤ k.

B.1 Encryption

Recall that the encryption ct = (c0, c1) ∈ R2
q of m ∈ Rp is ct = t · ek + (Δ ·

m + e0, e1) (mod q) where t ← χ and e0, e1 ← Dσ. For ek = (b[0],a[0]) ∈ R2
q ,

we remark that b[0] + a[0] · s =
∑

i∈I [e0]i[0] and each [e0]i[0] is sampled from
Dσ. Then, it satisfies that c0 + c1 · s = Δ · m + t(b[0] + a[0] · s) + (e0 + e1 ·
s) = Δ · m + (t

∑
i∈I [e0]i[0] + e0 + e1 · s) (mod q). The encryption noise eenc =

t
∑

i∈I [e0]i[0]+e0+e1 ·s has the variance of Venc = σ2 ·(n|I|
2 +1+ n

2 ) ≈ nσ2(|I|+1)
2 .

The CKKS scheme has the same encryption error as the BFV scheme. The
only difference is that there is no scaling factor Δ in the result of decryption.

B.2 Relinearization

In Algorithm 1 of Sect. 4.3, it satisfies that
∑

1≤i≤k

c′′
i � (vi + si · u) = −

∑

1≤i≤k

ri · c′′
i +

∑

1≤i≤k

c′′
i � ei,2

= −
∑

1≤i,j≤k

ri · (ci,j � bj) +
∑

1≤i≤k

c′′
i � ei,2 (mod q)
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and
∑

1≤i,j≤k

(ci,j � di) · sj

=
∑

1≤i,j≤k

ri · (ci,j � (bj − ej,0)) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

sj · (ci,j � ei,1)

=
∑

1≤i,j≤k

ri · (ci,j � bj) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

e′
i,j (mod q)

where e′
i,j = ci,j � (sj · ei,1 − ri · ej,0).

We denote by Vg = Var(h(a)) where a is a uniform random variable over
Rq. Then, the variance of relinearization error erelin =

∑
1≤i≤k c′′

i � ei,2 +∑
1≤i,j≤k e′

i,j is obtained as follows:

Vrelin = ndVgσ
2

∑

1≤i≤k

N2
i + 2n2dVgσ

2k2
∑

1≤i≤k

N2
i ≈ 2n2dVgσ

2k
∑

1≤i≤k

N2
i

In our implementation, we use RNS-friendly decomposition Rq =
∏

i Rpi

such that pi’s have the same bit-size. Here, we have Vg = 1
12d

∑d
i=1 p2i for

d = �log q/ log pi�.

B.3 Multiplication

We again consider k-group case, each comprising Ni parties for 1 ≤ i ≤ k. Let
ct1 and ct2 be the input ciphertexts of messages m1 and m2 respectively. Each
ciphertext cti satisfies that

〈
cti, sk

〉
= q ·Ii +Δ ·mi +ei for Ii = � 1

q

〈
cti, sk

〉� and
some ei. Here, we have the variance Var(Ii) ≈ 1

12 (1 + 1
2kn) ≈ 1

24kn since 1
q · cti

behaves as an uniform random variable over 1
q · Rk+1

q .
The result of tensor product satisfies that

〈
ct1 ⊗ ct2, sk ⊗ sk

〉
=

〈
ct1, sk

〉 ·
〈
ct2, sk

〉
= Δ2 ·m1m2+q ·(I1e2+I2e1)+Δ·(m1e2+m2e1)+e1e2 (mod q ·Δ) and

for ctmul =
⌊

p
q · ct1 ⊗ ct2

⌉
, we have

〈
ctmul, sk ⊗ sk

〉
= Δ·m1m2+p·(I1e2+I2e1)+

(m1e2 + m2e1) + Δ−1 · e1e2 + erd where erd =
〈

p
q · ct1 ⊗ ct2 − ctmul, sk ⊗ sk

〉
.

That is, the multiplication error is obtained by emul = p · (I1e2 + I2e1)+(m1e2 +
m2e1)+Δ−1 ·e1e2 +erd. From the above equation, the first term p · (I1e2 +I2e1)
dominates the whole multiplication error. Therefore, we have the variance of
multiplication error by

Vmul ≈ np2 · (Var(I1)Var(e2) + Var(I2)Var(e1)) ≈ 1
24

kn2p2(Var(e1) + Var(e2)).

While the relinearization error has a fixed size depending on the parameters, the
multiplication error increases by a certain ratio as the computation proceeds.
Therefore, the total noise is eventually dominated by the multiplication error
unless (Var(e1) + Var(e2)) is very small (e.g. fresh ciphertext).
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5. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

6. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

7. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1 22

8. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

9. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

10. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 1–36 (2014)

11. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 7417, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 8

12. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11992, pp.
446–472. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 16

13. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 395–412 (2019)

14. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from ring-LWE
with compact ciphertext extension. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryp-
tography. LNCS, vol. 10678, pp. 597–627. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70503-3 20

https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-030-34621-8_16
https://doi.org/10.1007/978-3-319-70503-3_20
https://doi.org/10.1007/978-3-319-70503-3_20


A General Framework of Homomorphic Encryption 429

15. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

17. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure
multiparty computation with dynamic participants. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 94–123. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1 4

18. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learn-
ing with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 31

19. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

20. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

21. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

23. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-
interactive multiparty computation without correlated randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 181–211. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 7

24. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homo-
morphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 5

25. Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. ANTS 1998. LNCS,
vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054868

26. Kim, T., Kwak, H., Lee, D., Seo, J., Song, Y.: Asymptotically faster multi-key
homomorphic encryption from homomorphic gadget decomposition. In: Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pp. 726–740 (2023)

27. Lindell, Y.: How to simulate it—a tutorial on the simulation proof technique.
In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. Information
Security and Cryptography. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-57048-8 6
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Abstract. Many modes of operations for block ciphers or tweakable
block ciphers do not require invertibility from their underlying primitive.
In this work, we study fixed-length Tweakable Pseudorandom Function
(TPRF) with large domain expansion, a novel primitive that can bring
high security and significant performance optimizations in symmetric
schemes, such as (authenticated) encryption.

Our first contribution is to introduce a new design paradigm, derived
from the Iterate-Fork-Iterate construction, in order to build n-to-αn-bit
(α ≥ 2), n-bit secure, domain expanding TPRF. We dub this new generic
composition masked Iterate-Fork-Iterate mIFI. We then propose a con-
crete TPRF instantiation ButterKnife that expands an n-bit input to
8n-bit output via a public tweak and secret key. ButterKnife is built with
high efficiency and security in mind. It is fully parallelizable and based on
Deoxys-BC, the AES-based tweakable block cipher used in the authen-
ticated encryption winner algorithm in the defense-in-depth category of
the CAESAR competition. We analyze the resistance of ButterKnife to
differential, linear, meet-in-the-middle, impossible differentials and rect-
angle attacks. A special care is taken to the attack scenarios made pos-
sible by the multiple branches.

Our next contribution is to design and provably analyze two new
TPRF-based deterministic authenticated encryption (DAE) schemes
called SAFE and ZAFE that are highly efficient, parallelizable, and offer
(n+min(n, t))/2 bits of security, where n, t denote respectively the input
block and the tweak sizes of the underlying primitives. We further imple-
ment SAFE with ButterKnife to show that it achieves an encryption per-
formance of 1.18 c/B for long messages on Skylake, which is 24% faster
than the comparable Crypto’17 TBC-based ZAE DAE. Our second can-
didate ZAFE, which uses the same authentication pass as ZAE, offers a
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similar level of speedup. Besides, we show that ButterKnife, when used
in Counter Mode, is slightly faster than AES (0.55 c/B vs 0.63 c/B on
Skylake).

Keywords: tweakable pseudorandom functions · expanding
primitives · deterministic authenticated encryption ·
beyond-birthday-bound security

1 Introduction

Building Blocks. Block ciphers (BCs) are fundamental symmetric crypto-
graphic primitives. AES [1] is the most popular block cipher today, a fact that has
prompted processor vendors, like Intel and ARM, to equip their products with
AES hardware acceleration, enabling excellent software performance. Tweakable
block ciphers (TBC) [36] are an extension of BCs by adding a public tweak input.
Secure TBCs, similarly to BCs, are modeled as tweak-keyed pseudorandom per-
mutations (TPRPs). TBCs also enable designs with higher security [27,37,43].
Towards building secure TBCs, recent works investigate how to integrate a tweak
into the BC. TBC designs like SKINNY [9], the AES-based Deoxys-BC, Joltic-BC
and KIASU-BC follow the TWEAKEY [29] design framework.

(Multi)-forkciphers [2,4] (M/FC) are tweakable n-to-αn (α = 2 for FC)
domain-expanding functions with forward, inverse, and a reconstruction func-
tionalities. ForkSkinny [4] is a secure FC instance where each branch realizes a
SKINNY TBC. Each branch is an n-bit permutation under a fixed key, hence
the maximal security is n/2 bits, set by the birthday bound. ForkSkinny achieves
2n-bit domain extension cheaper than 2 SKINNY calls and that allows for perfor-
mance improvements for authenticated encryption (AE) [4], counter-style (CTR)
encryption [2], pseudo-random number generation [6]. Yet, for all these modes,
just like in counter mode, the primitive does not need to be invertible. Addition-
ally, they achieve beyond birthday bound (BBB) security which is a sought for
security level given the current advancements in computation, resource aggrega-
tion in powerful entities, and multi-user security considerations.

A natural candidate for achieving similar security and efficiency optimiza-
tions is a 2n-to-αn domain-expanding function with inherent n-bit security.
Since a tweakable PRF (TPRF) is equivalent to a PRF with a bigger input
space (that subsumes the tweak), the only point of introducing a tweak/block
distinction would be to bring down the computational cost of processing changes
of these different parts. TPRF can then be built upon existing TBCs that readily
support the 2n-bit input space as compared to 2n-bit BCs building blocks.

Combining the objectives of building a fixed-length n-to-αn-bit TPRF and
achieving BBB security, in this work we pose the central research question:
“Can we design an efficient, provably and cryptanalytically sound, n-bit secure
fixed-length n-to-αn TPRF for α ≥ 2 and demonstrate highly efficient, beyond
birthday bound secure applications of it in symmetric cryptography?”
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(Deterministic) Authenticated Encryption. AE guarantees both privacy
and authenticity of data. Contemporary AE schemes are nonce-based, exam-
ples are the OCB [44] and the NIST-recommended [42] GCM [39] and CCM [25]
modes. Oftentimes, the nonce may repeat when a user mishandles them, or the
device is equipped with a weak or flawed software randomness source, or has a
restricted secure storage. The consequences vary from a total loss of confidential-
ity to forgeability attacks. In some applications, the ciphertext differentiation (of
repeated messages) is not wanted, instead the deterministic feature is looked for,
e.g. access for encrypted database storage. Similar features might be of use for
lightweight AE [7] when devices lack a secure randomness generator or memory.
In all these cases one uses deterministic AE or DAE schemes which are nonce
misuse-resistant [45] and two-pass, and security-wise leak nothing beyond the
repetitions of identical messages.

SIV [45] and its GCM-SIV [24] instantiation are well-known DAEs. A modified
version AES-GCM-SIV was defined in RFC 8452 [23]. Although (AES)-GCM-SIV
performs close to 1 cpb, it failed to deliver strong security guarantees [26,28]. As
a consequence, more recent DAE designs target beyond birthday bound (BBB)
security. GCM-SIV2 [26] is secure up to about 22n/3 queries. The SCT scheme [43]
achieves BBB security when nonces do not repeat and its security degrades to
the birthday bound with reuse of nonces. The ZAE DAE mode [27] achieves BBB
security by processing n(n + t)/(2n + t) input bits per TBC. This was possible
due to the use of the ZMAC authentication that “absorbs” (n+ t) bits per block.
ZAE is instantiated with the Deoxys-BC [31] and SKINNY [9] TBCs. Table 1
summarizes the security and performance of these DAE schemes. Security-wise
the ZAE DAE excels and efficiency-wise the AES-GCM-SIV outperforms ZAE (see
performance numbers in Table 4). One reason is that using TBCs towards BBB
secure DAE comes with a performance penalty compared to BC-based DAE,
such as GCM-SIV DAE, admittedly with lower security due to the computational
overhead associated with the tweakey processing. Our next research question is:
“How to apply fixed-length TPRFs in DAE schemes to achieve with security
comparable to ZAE and performance closer to GCM-SIV?”

Table 1. DAE: security against nonce respecting (NR) and nonce-misuse (NM) adver-
saries and performance for long messages on Intel Skylake. By n we denote the block
size, t the tweak size, Q the number of distinct nonces (in enc.), R is the maximal
number of nonce repetitions (in enc.), σ the total length in blocks of queried messages,
q the number of encryption queries, and the maximum message length by 2k−1 blocks.

AE Scheme Security (NR) Security (NM) Performance [c/B]

AES-GCM-SIV [22] Q

2n−2k
QR2

2n−2k 0.93

SCT [43] q
2n

+ σ2

2n+t
q2

2n
+ Rσ

2t
1.74

ZAE [27] σ2

2n+min(n,t)
σ2

2n+min(n,t) 1.46

ZAFE; SAFE [This work] σ2

2n+min(n,t)
σ2

2n+min(n,t) 1.15; 1.18
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1.1 Contributions

Novel and Generic n-to-αn-bit TPRF. We propose a generic masked Iterate-
Fork-Iterate mIFI method for building an n-bit secure TPRF. mIFI uses (α + 1)
independent permutations, the first one to generate a fork state and the rest for
all output branches. The internal fork state masks the outputs of each branch
to preclude invertibility. The TPRF has inputs: a key K, a tweak T , an n-bit
message M ; and outputs a ciphertext C of αn bits. The TPRF makes (α + 1)
calls to independent random permutations (α ≥ 2). The design resembles the
iterate-fork-iterate [4] composition. Its proof takes an entirely different approach
that is enabled by the application of the χ2 method [15]. We prove that mIFI
is indistinguishable from a uniformly random αn-bit string with n-bit security.
Up to our knowledge, this is the first fixed-length TPRF composition to achieve
arbitrary but fixed expansion with n-bit security.

ButterKnife and Cryptanalysis. The mIFI approach allows us to effi-
ciently reuse well-analyzed and optimized TBC components to instantiate our
ButterKnife design (in Sect. 3.2). Our design approach is reminiscent of the n-
to-n-bit AES-based (T)PRF [17] method. We use the AES-based Deoxys TBC
components due to its robustness in terms of security and its AES internal struc-
ture. Deoxys-BC is used in ZAE and the Deoxys [31,32] AE designs. ButterKnife
uses a 256-bit tweakey and applies 7 Deoxys-BC-256 rounds until the forking
point and another 8 rounds in each of the α = 8 fully parallelizable branches
(see Fig. 1) to expand an n-bit input to an 8n-bit output.

ButterKnife benefits from the cryptanalysis of Deoxys-BC-256. Due to the
feed-forward of the 8 output branches in ButterKnife, the security arguments of
Deoxys-BC-256 do not directly apply. ButterKnife also benefits from the crypt-
analysis of AES-PRF [40]. Our design choices are rooted in the detailed security
analysis (in Sect. 4) of our proposal against well-known techniques namely, dif-
ferential, linear, impossible differential and rectangle attacks.

Encryption, Authentication and DAE Algorithms. Towards secure DAE,
we propose encryption and authentication schemes of n-bit security and tweaks
of size t ≥ n. We introduce FEnc that uses (n + min(n, t))-bit IVs to encrypt
on average m = αn bits of plaintext for each call to the underlying expanding
TPRF. Our new PRF SFMac takes as inputs (A,M,K) to produce a tag of size
2n bits. SFMac uses a GHash-like construction and spends about one multipli-
cation in GF(22n) to process 2n bits of data and two calls to the underlying
TPRF for the total data processing. The encryption scheme has optimized mes-
sage processing due to the use of αn bit outputs from the TPRF (versus n-bit
outputs for TBCs). Both schemes also support reducing the tag and IV length
to any λ ≤ 2n, which is reflected in the security of min(λ, n + min(n, t))/2 bits.

We combine the latter algorithms under the SIV composition [45] to achieve
the n-bit secure DAE SAFE. Since some platforms do not offer instructions to
speed-up finite field multiplication, we also introduce the ZAFE DAE scheme,
that combines the TPRF-based encryption from FEnc to the efficient TBC-based
ZMAC MAC algorithm. All our designs are parallelizable. The proofs rely on the
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H coefficients technique and take advantage of the additional input space that
comes from the tweak and of the larger output space to achieve full security
using a number of primitive calls that is as small as possible.

Efficiency. We implement SAFE and compare it to state-of-the-art DAE
schemes. Our results are demonstrated in Table 4. Owing to the large TPRF
output at reduced computational cost, our fully parallelizable encryption pass
FEnc features significant improvements in throughput (≈ 58%) with respect to
ZAE. In the scope of n-bit secure DAEs, we observe our proposals SAFE and
ZAFE to compare favorably. Our SFMac implementation shows that GHash-
style multiplication in GF(22n) may, depending on the platform, contribute to
no less effective SFMac processing than, e.g., ZMAC. Globally, SAFE and ZAFE
maintain n-bit security, like ZAE, while moving much closer to AES-GCM-SIV in
terms of performance (e.g., with 1.15 c/B on Skylake).

Related Work. In a parallel work, Dutta et al. [19] realize a systematic study
of all possible high-level structures to create secure and efficient PRFs with
(possibly) variable-length outputs from PRPs. This work complements ours as
we focus on a specific design paradigm (mIFI) and use it to propose an actual
instantiation with additional cryptanalysis and an optimized implementation.

Complete Version of the Paper. We refer to the full version of this paper [3]
for missing proofs and any additional resources.

2 Preliminaries

2.1 General Notation

For every positive integer n, we denote by {0, 1}n the set of all n-bit binary
strings, and by ({0, 1}n)+ the set of all bit strings whose size is a non-zero
multiple of n. The set of all bit strings will be denoted by {0, 1}∗, and the empty
string by ε. For any M in {0, 1}∗, |M | will be the bit length of the string M .
M [1]|| . . . ||M [m] n←− M means that we split M into m blocks of n-bit strings,
where m = �|M |/n�. If M �∈ ({0, 1}n)+, the one-zero padding is used on M
beforehand. For any T in {0, 1}∗, [T ]n denotes the first n bits of T if |T | ≥ n,

or T ||0n−|T | otherwise. M [1]||M [2]
(n,t)←− M means that we split the (n + t)-bit

string [M ]n+t into 2 blocks, where M [1] is a n-bit string and M [2] a t-bit string.
Perm(n) is the set of all permutations of {0, 1}n. For every positive integer

m, t such that m ≥ n, ˜Perm(t, n) is the set of all tweakable permutations of
{0, 1}n with tweak space {0, 1}t and Func(t, n,m) is the set of all tweakable
functions from {0, 1}n to {0, 1}m. For any keyed tweakable P : K ×T ×X → Y
with key and tweak spaces K and T , domain X and range Y, we will indifferently
write P (k, t, x), Pk(t, x) or P t

k(x) for every tuple (k, t, x) in K × T × X .
As usual, for any positive integers a, b such that a ≥ b, we denote by (a)b the

falling factorial a(a − 1) · · · (a − b + 1), with the convention that (a)0 = 1. Let
GF(2n) be the field of order 2n. We identify n-bit strings and finite field elements
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of GF(2n) by representing the string a = an−1an−2...a1a0 as the polynomial
a(x) = an−1x

n−1 + an−2x
n−2 + ... + a1x + a0 and vice versa. For any a, b in

{0, 1}n, their sum a ⊕ b is the sum of polynomials a(x) + b(x). a ⊗ b or ab is
defined with respect to the irreducible polynomial f(x) used to represent GF(2n)
as a(x) · b(x)modf(x). Thus, we view {0, 1}n as the finite field GF(2n) with ⊕
as field addition and ⊗ as field multiplication. Sometimes, we also identify n-bit
strings with integers in {0, . . . , 2n−1}. In that case, � and � denote the addition
and subtraction modulo 2n. Moreover, we define the ⊕t operation as follows: for
any x ∈ {0, 1}n, and any y ∈ {0, 1}t, x ⊕t y = [x]t ⊕ y. Note that |x ⊕t y| = t.

2.2 The H Coefficients and χ2 Proof Techniques

We use the H coefficients technique [24] to upper bound the advantage of a
computationally unbounded and deterministic distinguisher D with access to a
tuple of oracles: Ore (resp. Oid) the tuple of real (resp. ideal) world oracles. The
advantage of D is defined as

Adv(D) = |Pr
[
DOre = 1

]
− Pr

[
DOid = 1

]
|.

D’s oracles interaction is summarized in the queries transcript τ : θid (resp.
θre) are obtained by the interaction of D with the ideal (resp. real) world oracles.
τ is attainable if and only if Pr [θid = τ ] > 0. The set of all attainable transcripts
is denoted by Θ. Then, one has the following classical lemma.

Lemma 1 ([13,24]). Let Θbad, Θgood be two sets such that Θ = Θbad 
 Θgood.
If we assume that, for every transcript τ in Θgood, one has

Pr [θre = τ ]
Pr [θid = τ ]

≥ 1 − ε,

then one has Adv(D) ≤ Pr [θid ∈ Θbad] + ε.

The set Θbad (resp. Θgood) are the set of bad (resp. good) transcripts.
In [15], Dai, Hoang, and Tessaro introduced the χ2 method to upper bound

the statistical distance between the probability distributions of two sequences
of random variables by computing the expectation of the χ2 distances of the
corresponding conditional distributions of the random variables. Their core result
is Lemma 2 that has been used to prove the security of XORP [11,15], encrypted
Davies-Meyer [15], and the Swap-Or-Not [15] constructions.

Given a set Ω, let X := Xq := (X1, . . . , Xq) and Y := Y q := (Y1, . . . , Yq)
be two random vectors over Ωq. For ∀i ∈ [q] and Z ∈ {X,Y}, we write
PrZ

[
zi|zi−1

]
:= Pr

[
Zi = zi|Zi−1 = zi−1

]
. When i = 1, we define PrZ

[
z1|z0

]
:=

Pr [Z1 = z1].

Definition 1. Suppose that for every i and every yi such that Pr
[
Y i = yi

]
> 0,

one also has Pr
[
Xi = yi

]
> 0. For every zi−1 in the support of Y i−1, the χ2-

distance between these two conditional probability distributions is defined as

χ2(zi−1) :=
∑

xi

(
PrY

[
xi|zi−1

]
− PrX

[
xi|zi−1

])2

PrX [xi|zi−1]
,
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where the sum is taken over all xi such that PrX
[
xi|zi−1

]
> 0.

Before stating the core technical Lemma of the χ2 method, we recall that the
statistical distance between the Pr0 and Pr1 distributions whose supports are in
a set Ω, is defined as:

‖Pr0 − Pr1‖ =
1
2

∑

x∈Ω

|Pr0(x) − Pr1(x)| .

Besides, the statistical distance also satisfies the following well-known property:

‖Pr0 − Pr1‖ = max
X⊂Ω

|Pr0(X) − Pr1(X)| .

Lemma 2. Assuming that the support of Y i is included in the support of Xi

for every i = 1, . . . , q, one has

‖PrX − PrY‖ ≤
(

1
2

q∑

i=1

E

[
χ2(Y i−1)

]
) 1

2

. (1)

2.3 Security Notions

Tweakable Pseudorandom Functions/Permutations. A secure TPRF
with tweak T and input X spaces, and a secure PRF with input space T × X
are identical. We adopt the former due to the different impact of the inputs on
performance in our instantiation. When F is a TPRP, we define its tprp security
in a similar way to tprf but with respect to the set of all P from T × X to X .

Definition 2. Let F : K × T × X → Y be a TPRF. The advantage of an
adversary A in breaking the tprf-security of F is defined as

Advtprf
F (A) =

∣
∣Pr

[
AFK = 1

]
− Pr

[
AR = 1

]∣∣ ,

where the probabilities are taken over the random choices of A and the uniformly
random draw of K from K and R from the set of all functions from T × X to
Y. When T = ∅, we recover the standard prf security notion.

Deterministic AE (DAE). DAE = (K,AD,M, C,DAE.Enc,DAE.Dec) where
K,AD,M, C are non-empty sets and DAE.Enc,DAE.Dec are deterministic algo-
rithms such that:

– DAE.Enc takes inputs: K ∈ K, M ∈ M and A ∈ AD; and returns C ∈ C;
– DAE.Dec takes inputs K ∈ K, C ∈ C and A ∈ AD; and returns either a

plaintext M ∈ M, or the special symbol ⊥ if C is invalid;
– for all (K,A,M) in (K,AD,M), DAE.DecK(A,DAE.EncK(A,M)) = M .



440 E. Andreeva et al.

Definition 3. Let DAE be a DAE scheme. The advantage of an adversary A in
breaking the dae-security of DAE is defined as

Advdae
DAE(A) =

∣
∣
∣Pr

[
ADAE.EncK ,DAE.Deck = 1

]
− Pr

[
A$(·,·),⊥(·,·) = 1

]∣∣
∣ ,

where oracle ⊥ always returns ⊥, and the probabilities are taken over the random
choices of A, the uniformly random draw of K from K, and the randomness of
the oracle $ which returns a uniformly random bit string of the same length as
the corresponding output of DAE.Enc.

IV-Based Encryption Scheme. IVE = (K, IV,M, C, IVE.Enc) where
K, IV,M, C are non-empty sets and IVE.Enc is a deterministic algorithm such
that IVE.Enc takes as inputs: K ∈ K, an IV I ∈ IV and a plaintext M ∈ M;
and returns a ciphertext C ∈ C. IVE$ is the associated randomized algorithm
that draws a uniformly random IV from IV.

Definition 4. Let IVE be an IV-based encryption scheme. The advantage of an
adversary A in breaking the ive-security of IVE is defined as

Advive
IVE(A) =

∣
∣
∣Pr

[
AIVE$.EncK = 1

]
− Pr

[
A$(·,·) = 1

]∣∣
∣ ,

where the first probability is taken over the uniformly random draw of K from
K and oracle $ returns a uniformly random bit string of the same length as the
corresponding output of IVE.Enc.

3 Masked Iterate-Fork-Iterate and ButterKnife

3.1 Masked Iterate-Fork-Iterate

mIFI is inspired by the Iterate-Fork-Iterate (IFI) paradigm [4]. The main differ-
ence is that we XOR the forking state to all output blocks, see Fig. 1. In existing
forkciphers each branch is a TBC which limits their security to the birthday
bound. Our simple change makes the construction an n-bit secure TPRF (n-bit
input message), and further boosts the performance benefits of forkciphers. The
feed-forward precludes decryption and reconstruction queries.

We then prove the following result.

Theorem 1. Let α, q and n be three strictly positive integers such that (α+1)q <
2n and let T be a non-empty set. We denote by F0 the mIFI paradigm where
P

$←− ˜Perm([α]×T , n). Then, for any distinguisher D against the tprf-security
of F0 that issues at most q queries to its oracle, one has

Advtprf
F0

(D) ≤
√

2(α + 1)q
2n

.
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P 0

P 1 P 2 · · · Pα

X

Y1 Y2 Yα

T

T T T

Fig. 1. mIFI with a tweakable permutation P and a tweak space [α] × {0, 1}t.

Proof Strategy. In our proof, we focus on information-theoretical adversaries,
that are computationally unbounded, and deterministic without loss of gener-
ality. Let D be any distinguisher against the tprf-security of F0 that issues at
most q queries to its oracle. We will assume (also w.l.o.g.) that D does not make
any redundant queries, and that it always issues exactly q queries.

The first step of the proof is to show that, in the real world, P can be
lazily sampled. As long as a random tweakable permutation is queried on a new
pair (T,X), the answer can be chosen uniformly at random outside of the set
of the previous outputs with the same tweak value T . When a new (T,X) is
queried to F0, X has never been queried to P 0(T, ·). Hence, Z0 := P 0(T,X)
is chosen uniformly at random outside of the set of the Z0 from the previous
queries with tweak T . Then, the values Zi := Pα(T, Y0) can be chosen uniformly
at random from the set of values that are different from the previous Zis with
the same tweak. F0 is indistinguishable from F1 : T × {0, 1}n → {0, 1}αn and
(T,X) �→ ‖α

i=1P
0(T,X) ⊕ P i(T,X). Hence, Advtprf

F0
(D) = Advtprf

F1
(D).

The construction can be seen as a variant of the XORP construction, where
independent P s are used for each permutation call (with a tweak parameter
added). We follow in parts the idea for the proof of [11] and their notation for
an m-tuple (x1, . . . , xm) as xm. This makes the size of each tuple in the proof
easier to follow. First, we reveal additional information to the adversary: 1. in
the real world, the intermediate values Z0 will be revealed alongside each query;
2. in the ideal world, a dummy value is chosen uniformly at random in a set of
authorized values (the set of all values not colliding with a previous query).

S (resp. R) is the random variable that corresponds to the transcript of the
interaction of D with the real (resp. ideal) world oracle. We define both in
Algorithms 1 and 2. Recall that D is deterministic, hence, all adversarial queries
can be computed from the outputs of the oracle. We make the queries explicit
in the transcript in order to make the proof easier to follow.

Note that Di[T ] = {0, 1}n and D = {0, 1}n cannot occur as we assume
(α + 1)q < 2n. Thus, for every y ∈ {0, 1}αn, there exists at least one z0 such
that the probability of getting (y, z0) as an output is non-zero, both in the
real and the ideal world. We let Ωq (depends on the adversary D) denote the
set of all transcripts sq such that PrS [sq] > 0. Such a transcript is parsed as
a list of q tuples (ti, xi, y1,i‖ · · · ‖yα,i, z0,i), where: 1. (ti, xi) is D’s i-th query,
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Algorithm 1. S is the random variable corresponding to the outputs created
by the interaction of D with the real-world oracle defined here.

variables
Tables of sets of previous Tweakable Permutation Outputs (Di[T ])i∈{0,...,α},T∈T

end variables

function Initialize
for i ∈ {0, . . . , α} do

for T ∈ T do
Di[T ] ←− ∅

end for
end for

end function

function Query(T ,X)
for i ∈ {0, . . . , α} do

if Di[T ] = {0, 1}n then

return 0n

end if
Zi

$←− {0, 1}n \ Di[T ]
Di[T ] ←− Di[T ] ∪ {Zi}

end for
for i ∈ {0, . . . , α} do

Yi ←− Z0 ⊕ Zi

end for
return (T, X, Y1‖ . . . ‖Yα, Z0)

end function

Algorithm 2. R is the random variable corresponding to the outputs created
by the interaction of D with the ideal-world oracle defined here.

variables
Tables of sets of previous Tweakable Permutation Outputs (Di[T ])i∈{0,...,α},T∈T

end variables

function Initialize
for i ∈ {0, . . . , α} do

for T ∈ T do
Di[T ] ← ∅

end for
end for

end function

function Query(T ,X)
for i ∈ {1, . . . , α} do

Yi
$←− {0, 1}n

end for
D ←− D0[T ]

for i ∈ {1, . . . , α} do
D ←− D ∪ (Yi ⊕ Di[T ])

end for
if D = {0, 1}n then

return 0n

end if
Z0

$←− {0, 1}n \ D
D0[T ] ←− D0[T ] ∪ {Z0}
for i ∈ {1, . . . , α} do

Di[T ] ←− Di[T ] ∪ {Z0 ⊕ Yi}
end for
return (T, X, Y1‖ . . . ‖Yα, Z0)

end function

that deterministically depends on yk,j and z0,j for j < i and k = 1, . . . , α; 2.
(y1,i‖ · · · ‖yα,i, z0,i) is the output of F1, which means that, for every 1 ≤ i < j ≤
q, if ti = tj , then z0,i �= z0,j and yk,i ⊕z0,i �= yk,j ⊕z0,j for k = 1, . . . , α. We have
also PrR [sq] > 0 as it would have been possible for the ideal-world oracle to give
the same outputs, yet with a different probability. Conversely, any transcript
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rq such that PrR [rq] > 0 also satisfies PrS [rq] > 0. Hence, both distributions
have the same support Ωq, and we can apply the χ2 technique to S and R to
lower bound ‖PrS − PrR‖. Given that Advtprf

F0
(D) = Advtprf

F1
(D) ≤ ‖PrS − PrR‖,

it allows to conclude the proof of Theorem 1.
The following Lemma is proven in the full version of the paper [3].

Lemma 1.

‖PrS − PrR‖ ≤
√

2(α + 1)q
2n

.

3.2 Specification of ButterKnife

In order to inherit from both the performance and security arguments of Deoxys-
BC, and to serve our design purposes, we modified as few elements of Deoxys-
BC as possible in ButterKnife. ButterKnife uses Deoxys-BC that is supported
by extensive security analyses [14,38,46], see Table 6. except for the round con-
stants.

ButterKnife uses a 256-bit tweakey and is based on Deoxys-BC-256. P 0 con-
tains 7 and P j (1 ≤ j ≤ α = 8) contains 8 rounds (15 out of 7 common rounds
are iterated to obtain Yjs from X), resp. The 128-bit state of ButterKnife is rep-
resented as a 4 × 4 matrix of bytes. The tweakey is represented as two matrices
in the same format. The round operations are:

– AddRoundTweakey (ART) adds the (128-bit) round tweakey to the state,
– SubBytes (SB) transforms each of the 16 bytes by applying the AES Sbox,
– ShiftRows (SR) rotates row i to the left by i positions for i ∈ {0, 1, 2, 3},
– MixColumns (MC) corresponds to the multiplication in F28 of each column

by the circulant matrix M = circ(02, 03, 01, 01).

A final tweakey addition is done before the final feed forward leading to Yj , 1 ≤
j ≤ 8. As in Deoxys, the last MixColumns is not omitted. The tweakey follows
the TWEAKEY framework [29]. At round i, the tweakey RTKi is obtained by
xoring the state of the two tweakey words with a round constant depending on
i and on the branch index jb (jb = 0 before branching, and jb = j ≥ 1 after
branching for the branch leading to Yj): RTKi = TK1

i ⊕ TK2
i ⊕ Rconstjb,i.

The number of rounds for ButterKnife and the other parameters are decided by
the security analysis (given in Sect. 4). The set of round constants is detailed
in Sect. A.

4 Security Analysis of ButterKnife

To determine the number of rounds, we examine distinct attack techniques con-
sidering the single key and related-tweakey adversarial model and aiming for
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128-bit security. We recommend a number of rounds before and after branching
that is equal or close and that every output Yj has the same number of rounds.
Note the branches of ButterKnife, from X to Yj (1 ≤ j ≤ 8), follow the Fast-
PRF construction [40]. Consequently, parts of the analysis made on the concrete
instance AES-PRF in [17] apply to our case. Also, the attacks on ForkAES [5]
(exploiting the reconstruction functionality) do not apply to ButterKnife. That
is because each branch of ButterKnife is not a permutation of the input, i.e. to
obtain a Yi from a Yj (for i �= j and i, j ≥ 1), is impossible in ButterKnife.
Our analysis takes into account that different output branches share the first 7
rounds and that up to our analysis no weakness is induced by this.

4.1 Differential Distinguishers

Scenario I. One branch of ButterKnife follows Deoxys-BC. The final feed for-
ward and different round constants do no impact the number of active Sboxes of
a differential characteristic, and thus the bounds in [14] apply (we recall them
in Table 5 in Supplementary Material A).

Let us consider the differential characteristic corresponding to a single
branch, w.l.o.g. the first branch producing the outputs Y1, Y

′
1 under two dis-

tinct tweaks T, T ′ respectively. Suppose there is a tweakey differential charac-
teristic with probability p observed for 15-round of Deoxys-BC-256 i.e. before
adding the feed-forward internal state in ButterKnife, given by (Δin → Δ1 →
. . . Δ → . . . ∇̃1

) where Δ is the difference in the internal state at the round
before branching. Then any branch j has a tweakey differential characteristic
Δin → Δ1 → . . . Δ → . . . ∇̃j

⊕ Δ with probability p. Since the S-box used in
ButterKnife is differentially 4-uniform, a characteristic with 22 or more active
Sboxes does not allow to distinguish the cipher, and thus the previous bounds
show that this scenario does not threaten ButterKnife.

Scenario II. A second possibility is to obtain information from the difference
branch propagation, say the one leading to Yi and the one to Yj , all computed
from X. In ButterKnife the difference only comes from the distinct P i and P j (see
the blue differences on the left in Fig. 2). After branching δ = 0. The question is
if the variation between P i and P j avoids high probability differential character-
istics. The variation comes from the constants added in the tweakey, so in each

P 0

P i P j

X

T

T

Yi
Yj

δ = 0

Δ?

T

P 0

P i P j

P 0

P i P j

X X

T

T

T

T

Yi YiYj Yj

· · · · · ·

Fig. 2. Second and third scenarios for a differential attack.
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round the difference is in the third column, and is equal to (i⊕j, i⊕j, i⊕j, i⊕j)T .
Our MILP model of the problem returns the bounds (Table 2) and we obtain
that after 3 rounds there are 22 active Sboxes, and that a single characteristic
does not allow to distinguish. Moreover, these bounds can easily be shown to
not be tight.

Table 2. Bounds on the number of active Sboxes in the second scenario.

rounds after branching 1 2 3 4 5 6 7 8

active Sboxes 4 16 22 22 23 24 25 26

Scenario III. We consider inputs X and X ′ (under T and T ′), and look at the
difference propagation from the inputs to two different branches. For instance,
a difference from X ⊕ X ′ to Yi ⊕ Y ′

j . (see on the right of Fig. 2). The first part
of a characteristic follows the same constraints as in Deoxys-BC, and thus the
same bounds as in Table 5 apply. The lower part is more complex, we may have
a difference in the internal state, in the tweak, and coming from the round
constants. We make a byte-wise MILP model to estimate the number of active
Sboxes (Table 3). Note that we did not force a difference in the tweakey nor in
the input so that the minimum returned corresponds to characteristics from the
previous scenario with no difference in X and T .

Table 3. Bounds on the number of active Sboxes in the third scenario.

rounds before + after branching 2+2 3+3 4+4 5+5 6+6 7+7 7+8

active Sboxes 2 7 17 22 24 25 26

4.2 Linear Trails

Any 4 consecutive rounds of ButterKnife have the same property as Deoxys-BC
and in AES, that is, activate at least 25 Sboxes. Moreover, the impact of a tweak
on the resistance to linear cryptanalysis was studied in detail in [34], with the
important conclusion that “tweaking a block cipher with a linear tweak schedule
does not introduce any new linear trails”.

4.3 Meet-in-the-Middle Attacks

AES-PRF [40] has a MitM attack [17] which shows that 7 rounds (s rounds
before and 7 − s rounds after the feed-forward) can be attacked with time and
(chosen plaintext) data complexity 2107. A single branch in ButterKnife resembles
the FastPRF (or AES-PRF) construction. The attack in [17] can also be applied
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against a single branch of ButterKnife. However, this only compromises 7 out
of 15 rounds. The MiTM attack [35] on Deoxys-BC-256 (128-bit key) breaks 8
rounds and is based on the distinguishing technique [16] that is also used in [17].
For ButterKnife (with a 128-bit key), it is possible to break at most 8 rounds.

4.4 Impossible Differentials and Zero-Correlation

Scenario I. Here, we look at a single branch (X to one of the Yi), which
corresponds to the FastPRF construction. The impossible differential technique
used against AES-PRF [17] can be applied to any branch of ButterKnife, for a
version with P j (1 ≤ j ≤ 8) of any number of rounds. This is depicted in Fig. 3.

P 1P 0
Γin Γout

Γout

0 ΓoutΓout
P 1P 0

Δin Δout

Δout

Δout Δout0

Fig. 3. Impossible differential and Zero-correlation attacks (from [17]).

In the single tweakey scenario, P j cannot cancel a difference: for any non-zero
input difference Δout the output difference �= 0. If the output difference of P 0 is
Δout, we can not have Δout after the feed forward. This is a distinguisher, and
it can be converted into an attack by positioning the key-recovery rounds in P 0.
An impossible differential attack [17] against AES-PRF2,8 (2 rounds before and
8 rounds after the feed forward) can be mounted. ButterKnife with 7 and 8
rounds before and after feed forward respectively, is secure here as we expect
that no more than 3 key recovery rounds can be added. A similar technique can
be used to create a zero-correlation linear distinguisher (on the right in Fig. 3)
that leads to an attack against AES-PRF2,8. We expect that the same number of
rounds of ButterKnife can be attacked. We note that like different configurations
of AES-PRF in [17], it is possible to attack different round-reduced versions of
ButterKnife. For example, corresponding to AES-PRF6,4, 6 and 4 rounds before
and after feed-forward in ButterKnife, corresponding to AES-PRF7,3, 7 and 3
rounds before and after feed forward are possible to attack using zero-correlation
attack. However, the full ButterKnife remains secure.

Scenario II. The second possible scenario studies two different outputs Yi

and Yj , and thus looks for impossible differences between these two branches.
By searching for a trail in a miss in the middle way, our best result reached 3
rounds.

4.5 Amplified Boomerang Distinguishers

Given that decryption queries are impossible, we focus on the chosen plaintexts
variant of the boomerang attack, or amplified boomerangs [33]. Basic amplified
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distinguishers are built by splitting the cipher E into1 E = E1 ◦ E0 and using
differentials with probabilities p and q over E0 and E1, respectively. The distin-
guisher uses messages (Xi, 0 ≤ i ≤ 3) with two fixed input differences (X0 ⊕X1

and X2 ⊕ X3), and counts the number of times a specific difference is both
in E(X0) ⊕ E(X2) and E(X1) ⊕ E(X3). A first estimate gives the probability
of a distinguisher based on the previous differentials to be p2q22−n, which is
compared to 2−2n for the ideal case.

Once again, several scenarios are possible (with the feed forward omitted).
The first one (top left in Fig. 4) corresponds to constructing quartets with 4
independent branches built from 4 different inputs ((Xi, Y i

j ) for a fixed j and
0 ≤ i ≤ 3). In the best case, the result is the same as for Deoxys-BC. A second
possibility is to consider the setting depicted on the top right of Fig. 4 for which
a quartet is obtained from 4 different inputs at two different branches (number
i ≥ 1 and j ≥ 1). By using the bounds by the MILP models for these scenarios,
the number of rounds that can be attacked in this setting is 10: the upper trail
covers a part E0 made of 3 rounds of P 0, while the lower trail covers the next
3 rounds of P 0 and 4 rounds of the bottom part. Namely, the first differential
characteristic would be in the first differential scenario (3 rounds, 1 active Sbox),
and the second differential characteristic would be in the third differential sce-
nario and covers 3 rounds before and 4 rounds after branching, with 9 active
Sboxes. Assuming our bounds are tight (as previously, it can be shown that it is
not the case) and that each Sbox transition can be done with probability 2−6,
it results in a distinguisher of probability p2q22−n = 2−122−1082−128 = 2−248.

Another setting considers two different inputs and two of their branches
(see Fig. 4, bottom left). On the left, we consider the first differential to be
starting from the 0 difference, right after branching, while the second differential
characteristic is put between the two branches of equal index. A maximum of
12 rounds can be covered: 1 round (4 active Sboxes) after branching, followed
by 4 rounds (5 active Sboxes), and since any number of rounds can be added
on top (before branching), all 7 can be included. Such a distinguisher has a
probability around 2−128−108. However, a problem here is the difficulty to detect
the boomerang once the feed forward is taken into account. To work around this,
we consider the setting (on the bottom right in Fig. 4) where the characteristic
over E0 is not existing: we consider that a certain difference γ appears between
the two branching point of two different states and use a (or two different)
characteristic(s) from the branching point to the two outputs of equal index,
leading to the difference Δ (or Δ1 and Δ2) before the feed forward, and equal
to Δ ⊕ δ (or Δ1 ⊕ δ and Δ2 ⊕ δ) after it. Again, the 7 rounds before branching
can be included, and 5 rounds can be considered after branching with 10 active
Sboxes, thus reaching a probability close to 2−128−120.

Given that ButterKnife has 8 rounds after branching, we believe that only
reduced round versions could be attacked with this technique.

We provide a discussion on some additional cryptanalysis aspects in Supple-
mentary Material A.1.

1 Better probability estimates might be obtained with the sandwich technique [18].
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Fig. 4. Settings 1, 2, 3 and 4 for the boomerang attack.

5 DAE for TPRFs: Security and Performance

TPRFs naturally support CTR-style modes to output a keystream as fast as
possible. Conversely, expansion is not a best fit for data absorption. In order
to build a fast DAE, one of our proposed authentication mechanisms will be
TPRF independent. To this end, we propose 2 DAE constructions: SAFE and
ZAFE, that both use a fast TPRF-based CTR-style encryption. SAFE applies a
polynomial-based hash function and ZAFE a TBC-based MAC for authentication
to enable support for more applications and platforms.

Let F : K × {0, 1}t+1 × {0, 1}n → {0, 1}m denote a TPRF with key space
K, tweak space {0, 1}t+1, domain {0, 1}n and range {0, 1}m. SAFE and ZAFE
offer security level of (n + min(n, t))/2 bits. We implement both schemes with
ButterKnife and compare their performance with Deoxys modes of operations.

5.1 The SAFE Mode of Operation

Let us fix an integer λ such that λ ≤ 2n. SAFE is divided into: 1. FEnc with
min(λ, n + t)-bit IVs encrypts on average m bits of plaintext for each call to
F , using a constant tweak; 2. SFMac[F ] PRF that takes as input two messages
(message and associated data), and processes 2n bits of input for every multi-
plication in GF(22n). SFMac[F ] uses a single call to F during the finalization to
output a λ-bit tag. We combine both primitives via the SIV framework [45] and
have both passes computed in parallel. The encryption of (A, M) starts with a
2n-bit hashing key L derivation from the key via a call to F with the all-zero
tweak and message as its inputs. Then, A and M are parsed into 2n-bit blocks.
A 2n-bit hash Y of (A,M) is computed, the tag T equals [F 0||Y [2]

K (Y1)]λ where
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Y1||Y2
n,t←− Y . This tag is used as IV in FEnc[F ]. SAFE is specified in Algorithm 3

and the encryption algorithm is illustrated in Fig. 5 in Appendix B. We prove
the security of SAFE[F ] via the following theorem.

Theorem 2. Let n,m, t, σ, q, λ be positive integers such that m ≥ 2n ≥ 1, q, σ <
2n and λ ≤ 2n. Let F be a TPRF with tweak space {0, 1}t+1, domain {0, 1}n and
range {0, 1}m. Let also D be an adversary against the dae-security of SAFE[F ]
that runs in time at most time, and makes at most q queries for a total of at
most σ n-bit blocks. Then there exists an adversary B against the prf-security
of F that runs in time at most time+O(σ) and makes at most σ + q +1 chosen
plaintext queries such that

Advdae
SAFE[F ](A) ≤ Advtprf

F (B) +
q

2λ
+

2(q − 1)σ
2m′ +

2qσ + 2q2 + σ + 4q

2n+min(n,t)
,

where m′ = min(λ, n + t).

Proof. We defer the proof of Theorem 2 to the full version of this work, but we
sketch its ingredients here. First, we apply a hybrid argument to replace F by
its ideal counterpart. We then use a composition result to split the dae-security
in two parts: the prf-security of its authentication pass, and the ive-security of
its encryption pass. Both are then studied with the H coefficients technique, and
rely on the fact that inputs to F only collide with negligible probabilities.

Remark 1. λ allows for flexibility of the tag. Also, the bound from Theorem 2
tells us that λ ≥ n + min(n, t) is a reasonable choice. When t + 1 = n, λ = 2n
is preferable if n is a multiple of 8 since it will prevent having an unused bit in
one byte of the tag.

5.2 The ZAFE Mode of Operation

ZAFE uses a TBC E : K × {0, 1}t′ × {0, . . . , 9} × {0, 1}n → {0, 1}n with key
space K′, tweak space {0, 1}t′ ×{0, . . . , 9}, and block space {0, 1}n. ZAFE uses a
PRF algorithm ZMAC that processes on average n+t′ bits of data per TBC call,
and an IV-based encryption scheme FEnc. Note that here both primitives rely on
different keys. This is not necessary for ZAE, as both components relied on the
same TBC, and could be replaced by two independent tweakable permutations
thanks to domain separation. A solution in our case would be to derive both
keys from the same master key, by using calls to F in order to generate both
subkeys. For the sake of simplicity, we present the 2-key version in Algorithm 4.

We obtain the following result.

Theorem 3. Let n,m, t, σ, q, λ be positive integers such that m ≥ 2n ≥ 1, q, σ <
2n and λ ≤ 2n. Let F be a TPRF with tweak space {0, 1}t+1, domain {0, 1}n and
range {0, 1}m, and let E : K×{0, 1}t′ ×{0, . . . , 9}×{0, 1}n → {0, 1}n be a TBC
with key space K′, tweak space {0, 1}t+1×{0, . . . , 9}, and block space {0, 1}n. Let
also D be an adversary against the dae-security of ZAFE[F,E] that runs in time
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Algorithm 3. SAFE [F ] where FK ∈ Func(t + 1, n,m) for every K. Here ⊗
denotes the multiplication in the field GF(22n).

1: function SFMac(K,A,M)
2: T ←− 02n

3: L ←−
[
F 0t+1

K (0n)
]
2n

4: X ←− Pad10(A)||Pad10(M)
5: X ←− X||〈|A|〉n||〈|M |〉n

6: X[1]|| · · · ||X[x]
2n←− X

7: for i ←− 1, x do
8: T ←− (T ⊕ X[i]) ⊗ L
9: end for

10: U ||V (n,t)←− [T ]n+t

11: T ←− F
0||V
K (U)

12: return [T ]λ
13: end function

1: function SAFE.Enc(K,A,M)
2: T ←− SFMac(K, A, M)
3: IV ←− [T ]min(λ,n+t)

4: C ←− FEnc(K, IV, M)
5: return (C, T )
6: end function

1: function FEnc(K,I,M)

2: U ||V (n,t)←− [I]n+t

3: C[1]|| · · · ||C[c]
m←− M

4: for i ←− 1, c do
5: C[i] ←− C[i]⊕[F

1||V
K (U�i−1)]|C[i]|

6: end for
7: return C[1]|| · · · ||C[c]
8: end function

1: function SAFE.Dec(K,A,C,T )
2: IV ←− [T ]min(λ,n+t)

3: M ←− FEnc(K, IV, C)
4: T ′ ←− SFMac(K, A, M)
5: if T = T ′ then
6: return M
7: else
8: return ⊥
9: end if

10: end function

Algorithm 4. ZAFE [F,E] where FK ∈ Func(t + 1, n,m) for every key K, and
EK′ ∈ Perm({0, 1}t′ × {0, . . . , 9}, n). A formal specification of ZMAC can be
found in Appendix C.
1: function ZFMac(K,A,M)
2: X ←− Pad10(A)||Pad10(M)
3: X ←− X||〈|A|〉n||〈|M |〉n

4: T ←− ZMAC(K, X)
5: return [T ]λ
6: end function

1: function ZAFE.Enc(K,K′,A,M)
2: T ←− ZFMac(K′, A, M)
3: IV ←− [T ]min(λ,n+t)

4: C ←− FEnc(K, IV, M)
5: return (C, T )
6: end function

1: function ZAFE.Dec(K,K′,A,C,T )
2: IV ←− [T ]min(λ,n+t)

3: M ←− FEnc(K, IV, C)
4: T ′ ←− ZFMac(K′, A, M)
5: if T = T ′ then
6: return M
7: else
8: return ⊥
9: end if

10: end function

at most time, and makes at most q queries for a total of at most σ n-bit blocks.
Then there exist an adversary B against the tprf-security of F an adversary C
against the tprp-security of E that both run in time at most time + O(σ) and
make at most σ + 4q + 2 chosen plaintext queries, such that

Advdae
ZAFE[F,E](A)

≤ Advtprf
F (B) + Advtprp

E (C) +
q

2λ
+

2(q − 1)σ
2m′ +

2.5σ2

2n+min(n,t′) + 4
( q

2n

)3/2

,

where m′ = min(λ, n + t).
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Proof. The proof is very similar to the proof of Theorem 2, and we only highlight
the differences here. We first start by applying a hybrid argument to replace
both F and E by their ideal counterparts. Then, the variant of [45, Theorem 1]
allows us to separate the study of the authentication pass and the encryption
pass. Since the latter simply corresponds to FEnc, we can directly reuse the
corresponding term from Theorem 2 to upper-bound its ive-advantage. Finally,
we upper-bound the prf-security of ZMAC with [27, Theorem 1]. Note that the
fact that we truncate the output of ZMAC to λ bits does not reduce its security,
since a prf-adversary against the truncated version can always be turned into
a prf-adversary against the full version, with the same advantage, and a small
time complexity overhead.

5.3 Implementation Aspects

Implementation of FEnc and SFMac. Many contemporary devices support
the AES round function in hardware (e.g., AES-NI). Similar to other parallel
AES-based modes, SAFE and ZAFE can harness the full power of the AES-NI
pipeline for sufficiently long messages [20], or with task-level parallelism [12].
We consider eight simultaneous AES-based primitives (i.e., AES, Deoxys and
ButterKnife). Within ButterKnife, all branches are computed independently, and
round tweakeys can be precomputed. As the counter is given as an input block
to ButterKnife, as opposed to the tweak, the tweakey-schedule only needs to be
evaluated once for all calls to the primitive.

For the authentication portion we use the carry-less multiplication instruc-
tions (PCLMULQDQ) that are supported on many recent processors, as well as
the fast reduction algorithm from [21] to implement the multiplication in the
finite field GF(2256) (Note that in prior work, it was uncertain whether an
implementation in a larger field would maintain competitive performance [27]).
In order to keep the reduction algorithm efficient, we used the polynomial
x256 + x10 + x5 + x2 + 1. Moreover, we aggregate the reduction step by com-
puting the first λ powers of the hashing key, and by only reducing once every
λ multiplications. The optimal value of λ depends on the message length and
the microarchitecture. Based on experiments, we find λ = 32 to be an adequate
aggregation level.

Comparisons and Results. Our SAFE implementations are in C, using com-
piler intrinsics for AES-NI and PCLMULQDQ instructions. For the encryption pass
with ButterKnife, we adapt the Deoxys implementations from [30]. For AES-GCM-
SIV, we use assembly-optimized implementations2 from [22], noting that assem-
bly implementations may further improve the throughput of SAFE/ZAFE as well.
To our knowledge, there are no publicly available implementations of ZAE and
SCT. Yet, as explored by Iwata et al. [27], the performance of their TBC-based
building blocks is well-understood. We adopt their estimation methodology to
estimate the performance of ZAFE, and compare our modes with other DAE

2 Taken from https://github.com/Shay-Gueron/AES-GCM-SIV (September 2021).

https://github.com/Shay-Gueron/AES-GCM-SIV
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Table 4. DAEs in cycles per byte (c/B) for 64KiB messages, decoupled in authenti-
cation and encryption. ZAE instances use Deoxys-256 and/or Deoxys-384.

Mode Security Skylake (3.2 GHz) Cascade Lake SP (2.7 GHz)

Auth. Enc. Total Auth. Enc. Total

AES-GCM-SIV [22] 64 0.30 0.63 0.93 0.31 0.63 0.94

SCT [43] 64 0.87† 0.87† 1.74† 0.87† 0.87† 1.74†

ZAE (256) [27] 128 0.61† 0.87† 1.48† 0.61† 0.87† 1.48†

ZAE (384) [27] 128 0.59† 0.99† 1.58† 0.59† 0.99† 1.58†

ZAE (256-384) [27] 128 0.59† 0.87† 1.46† 0.59† 0.87† 1.46†

SAFE 128 0.63 0.55 1.18 0.62 0.55 1.17

ZAFE 128 0.60† 0.55 1.15† 0.60† 0.55 1.15†

(† are estimates based on measured counter-in-tweak performance, cf. [27])

schemes (ZAE and SCT). We confirm their long-message estimates for Deoxys
counter-in-tweak on Skylake (i.e., 0.87 c/B for Deoxys-256 and 0.99 c/B for
Deoxys-384). Like Iwata et al., for random tweak inputs, we apply a penalty of
1.4 for Deoxys-256 and 1.8 for Deoxys-384.

We use the rdstc(p) instructions on x86 to measure performance across
50 batches, each 500 measurements, of which the fastest batch is retained. To
reflect practical scenarios and match prior work [22], measurement iterations are
preceded by iterations that warm up the instruction and data caches. In addition
to Skylake (i5-6500, legacy, 2015), we also evaluate performance of SAFE/ZAFE
on the server-grade Cascade Lake SP (Xeon Platinum 8280, server, 2019).

Table 4 gives performance of SAFE/ZAFE w.r.t. comparable schemes (authen-
tication and encryption decoupled). First, ButterKnife itself has excellent perfor-
mance due to the use of AES rounds (i.e., ≈ 8.875 AES rounds per output
block, compared to 14 or 16 for Deoxys). Second, the static tweakey schedule
throughout the entire encryption pass compares favorably to a counter in the
tweak. As a result, we observe an estimated throughput increase of ≈58% w.r.t.
counter-in-tweak with Deoxys-256 (SCT and ZAE) and ≈80% w.r.t. Deoxys-384
(ZAE). ButterKnife is even competitive to AES in counter mode (cf. AES-GCM-
SIV). Our SFMac implementation in GF (2256) is approximately twice as slow
as in GF (2128), e.g., as used in AES-GCM-SIV. Our findings suggest that it is
at least competitive to ZMAC [27], provided that the platform supports efficient
field multiplications (e.g., PCLMULQDQ on x86). On platforms without such hard-
ware support, we expect ZMAC to outperform SFMac (and ZAFE to outperform
SAFE). Globally, SAFE/ZAFE outperform current state-of-the-art n-bit secure
DAE schemes with an estimated 27% on both Skylake and Cascade Lake SP.
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6 Conclusion

We gave the first n-to-αn (α ≥ 2) domain-expanding mIFI design with n-bit
security. We proposed the domain-expanding TPRF ButterKnife and supported
its security with extensive cryptanalysis. We then designed two provably secure
DAE schemes: SAFE and ZAFE, that combine a fast TPRF-based encryption pass
with two efficient authentication algorithms. Both schemes come with approxi-
mately n-bit security and give important efficiency improvements over ZAE when
instantiated with ButterKnife.

Natural TPRF candidate applications are nonce-based AE, encryption, data
expansion. In a recent work [10] TPRFs are used for constructing an efficient and
secure key-derivation function (KDF) which is then implemented in the Signal
end-to-end encrypted messaging protocol to demonstrate a significant efficiency
gain over the present HMAC-based HKDF solution in Signal. The exploration of
the broader security and privacy application scenarios where the use of expanding
TPRF can be beneficial is an interesting and novel research direction.

Acknowledgments. Elena Andreeva was supported in part by the Austrian Science
Fund (FWF) grant SpyCoDe with number 10.55776/F8507-N. Part of this work was
written while Benôıt Cogliati was affiliated with the CISPA Helmholtz Center for
Information Security.

A Details on ButterKnife

ButterKnife Constants. In ButterKnife the round constant RC[i] is the AES
round constant in the ith round as defined below:

Rconstjb,i =

⎛
⎜⎝

1 RC[i] jb 0
2 RC[i] jb 0
4 RC[i] jb 0
8 RC[i] jb 0

⎞
⎟⎠

Existing Lower Bounds. The bounds are summarized in Table 5.

Table 5. Lower bounds on the number of active S-boxes in the related-tweakey model
for Deoxys-BC-256 [14].

rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Deoxys-BC-256 0 0 1 5 9 12 16 19 23 26 29 32 35 38
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Reminder of the Best Results on Deoxys-BC-256 with 128-bit Key
and Tweak. The results are summarized in Table 6.

Table 6. Some of the best results on Deoxys-BC-256 with 128-bit key and tweak.

rounds Technique Time Data Memory ref.

8 MITM 2113 2113 297 [35]

9 RK Imp. dif. 2118 2118 2102 [41]

10 RK boomerang 2109.1 298.4 288 [46]

RK rectangle 2114.2 2114.2 2112.2 [46]

A.1 Additional Aspects

In the main body we focused on distinguishers that do not take into account the
final feed forward as this final operation makes it hard to mount a key recovery
part at the bottom. The key recovery requires to invert rounds in value to access
the end of the distinguisher, which is made difficult by the unknown value of the
middle internal state. When given the full code book a zero-sum distinguisher
can be constructed against one or more branches as described in [40, Appendix
A.1] with distinguishing advantage 1− 1

2128 . In an integral attack, adding a round
tweakey does not have any impact. This allows an adversary to apply the integral
attacks on reduced-round AES to round-reduced ButterKnife also.

Cryptanalysis of ForkCiphers [8] applies as well, but with the difference that
the reconstruction setting is not available given that one cannot make decryption
queries. A reflection differential distinguishers might exist between two branches,
but accessing it and building the required pair is troublesome.
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B Graphical Representation of SAFE

SAFE.Enc

(A,M)

encode

X

0n 0t

F 0
K

Trunc2n 02n

X[1] X[2] · · · X[l]

Truncλ

T

F 0
K

Splitn,t

U V

Splitn,t

U

V

F 1
K F 1

K

C[1]

M [1]

C[c]

M [c]

1

· · ·

Trunc|M [c]|

Fig. 5. The SAFE authenticated encryption function which, given a plaintext M and
associated data A, outputs the ciphertext C and the tag T . Here Trunci simply trun-
cates its input to i bits if it is longer or fills it with zeroes otherwise, and Splita,b

additionally splits it into its leftmost a bits and rightmost b bits. ⊗ denotes the multi-
plication in GF(22n). Recall that λ ≤ 2n.
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C ZMAC Pseudocode

Algorithm 5. Specification of ZMAC [27]. Here 2a denotes the multiplication
by the element of the finite field GF(2n) that is represented by the polynomial
x.
1: function ZHASH(K,X)
2: U ← 0n, V ← 0t

3: Ll ← E9
K(0t, 0n)

4: Lr ← E9
K(0t−11, 0n)

5: (X[1], . . . , X[m])
n+t←− X

6: for i = 1 to m do
7: (Xl, Xr)

n,t←− X[i]
8: Sl ← Ll ⊕ Xl

9: Sr ← Lr ⊕t Xr

10: Cl ← E8
K(Sr, Sl)

11: Cr ← Cl ⊕t Xr

12: U ← 2(U ⊕ Cl)
13: V ← V ⊕ Cr

14: (Ll, Ll) ← (2Ll, 2Ll)
15: end for
16: return (U, V )
17: end function

1: function ZFIN(K,i,U ,V )
2: Y [1] ←− Ei

K(V, U) ⊕ Ei+1
K (V, U)

3: Y [2] ←− Ei+2
K (V, U) ⊕ Ei+3

K (V, U)
4: Y ←− Y [1]||Y [2]
5: return Y
6: end function

1: function ZMAC(K,M)
2: X ←− Pad10(M)
3: (U, V ) ←− ZHASH(K, X)
4: if n + t | |M | then
5: return ZFIN(K, 0, U, V )
6: else
7: return ZFIN(K, 4, U, V )
8: end if
9: end function
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Abstract. The duplex construction is already well analyzed with many
papers proving its security in the random permutation model. However,
so far, the first phase of the duplex, where the state is initialized with
a secret key and an initialization vector (IV ), is typically analyzed in a
worst case manner. More detailed, it is always assumed that the adver-
sary is allowed to choose the IV at will. However, in practice, the adver-
sary can be stripped of its power to control the IV in several ways. One
prominent way of doing this is the use of a nonce (IV ) masked with
a secret, as done in AES-GCM in TLS 1.3. In this paper, we analyze
how the security of the duplex construction changes if restrictions on the
choice of the IV are imposed. In particular, we evaluate several strategies
that can achieve this, varying from the IV on key case over the global
nonce case to the random IV case. We apply our findings to duplex-
based encryption and authenticated encryption, compare the different
strategies, and discuss the practical applications of our results.

Keywords: symmetric cryptography · duplex construction ·
initialization vector · nonce

1 Introduction

The duplex construction of Bertoni et al. [8], the sibling of the sponge con-
struction [7], lends itself to efficiently fulfill many cryptographic tasks includ-
ing encryption and authenticated encryption. The impact the duplex has on
symmetric cryptography has recently been impressively showcased in the NIST
lightweight standardization process, where 5 (including the winner) [1,2,11,14,
18] out of 10 algorithms follow the duplex construction or are duplex-inspired.
Those schemes are nonce-based authenticated encryption schemes with the prop-
erty that their security relies just on the uniqueness of the nonce, but not on
how it is chosen. The same level of nonce formalism is also followed by the vari-
ous security proofs of the various different duplex constructions we have seen in
literature [8,13,19,23,24]: the proofs in large parts assume an attacker-favorable
choice of nonce, or, as called more generally in the duplex, the initialization
vector (IV ).
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However, in practice, it is possible to take the choice over the IV out of the
hands of an attacker. One prominent example of how this is done, is the use
of an additional secret to mask the nonce (IV ) with a secret in AES-GCM in
TLS 1.3. In this work, we will show that the analogue strategy applies to the
duplex construction, with the additional benefit that it can be seen as an increase
of the size of the secret key. Since practical applications of the sponge/duplex
construction use permutations up to 1600 bits as in SHA-3/Keccak [9], the duplex
construction allows for more space in the initialization compared to blockcipher-
based modes. Hence, we also analyze other ways of restricting the control on the
IV from attackers, e.g., by using globally unique key identifiers, as suggested by
Daemen et al. [11].

In our analysis, we will restrict our focus to the very general duplex construc-
tion of Daemen et al. [13], but with the rephasing suggested by Mennink [23].
(We also refer to the excellent work of Mennink [23] for a detailed treatment
of the duplex in full generality (in his Sect. 3.1) and the role and importance of
rephasing (in his Sect. 3.4).) In a nutshell, the duplex consists of an initialization
interface, where a b-bit state is initialized using a key K and an initialization
vector IV . Then an arbitrary amount of duplexing calls can be made. Each
duplexing call first evaluates a cryptographic b-bit permutation p on the state,
then squeezes its r outermost bits of the state (as digest), and it absorbs a b-bit
message. There is an additional input, namely a flag, that indicates whether the
r outermost bits of the message will be added to the outer part of the state, or
will overwrite that part. A detailed version of this duplex construction — or, in
fact, a construction that generalizes the initialization function as we will discuss
shortly — is given in Sect. 3.1.

Daemen et al. [13] derived a general security bound of this duplex con-
struction, which gives an indication of the degree at which the construction
is indistinguishable from random depending on a fine-grained set of adversar-
ial resources. Dobraunig and Mennink [19] considered this construction in the
leakage resilience setting. A crucial observation in their security analyses is that,
intuitively, security of the scheme is guaranteed as long as the intermediate inner
parts stay unknown to the adversary and these inner parts never collide. Dif-
ferent keys or different IV s will give a different initialization, and thus (likely)
different and unpredictable inner parts after evaluation of the permutation. How-
ever, current duplex results assume that the attacker has full control over the
IV , and the influence of initialization calls on the security bound only appears
in two terms of the entire security bound:

μ · N

2k
+

(
μ
2

)

2k
, (1)

where k is the key size, μ the number of users/keys, and N is the number of
permutation queries that the adversary can make. The terms of (1) are the last
two terms of (5c) of the bound of Theorem 1, where in general Qi ≤ μ. The first
term of (1) comes from the event that the adversary can “guess a key”, i.e., it
makes a permutation query (N attempts) for one of the μ k-bit keys. The second
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term comes from “unlucky key collisions”, as they would lead to colliding inner
parts for different users.1

However, as said, these bounds assume that the attacker has fairly full control
over the choice of IV and they are merely dominated by the adversarial power
in guessing one of the μ keys. Yet, in practice, restrictions on the IV are quite
conceivable. A typical example of this is the idea of masking the IV with a
secret, as recently proposed for AES-GCM in TLS 1.3 [25,26]. In detail, for an
instantiation of GCM with AES-128, the blockcipher key is of size 128 bits and
the nonce of size 96 bits. However, if an attacker would have access to many
endpoints that encrypt the same plaintext block with the same nonce under
different keys, we end up in a scenario where the same input is encrypted by the
underlying blockcipher with different keys. This means that one key used by a
pool of users can be recovered considerably faster than a single key in a targeted
attack for a single user [10]. This problem gets resolved by masking the nonce
with extra key material [5].

Improved Bounds for Different IV Usages. The two terms capturing
“guessing the key” and “unlucky key collisions” of (1) are tight in the general
case, where the attacker is allowed to repeat IV s under different keys. However,
if this is not the case, these two terms change and can be significantly improved
in some use cases. In this paper, we investigate how the security bound of the
duplex construction changes if we impose restrictions on the IV .

To investigate the exact role of the initialization in the duplex, we first con-
sider a generalization of it in Sect. 3.1. In this generalization, the initialization
does not anymore consist of just a concatenation of the key with the IV , but
instead, we consider initialization as a concatenation of two functions that ini-
tialize both parts of the state on input of the key array and an (always unique)
index. The generalization seems subtle but is strictly necessary to capture appli-
cations that rely on random IV s.

Now, using our generalized duplex construction, we consider five different
practical cases to initialize the state of the duplex.

– The first case we consider is the globally unique IV in Sect. 4.1. This principle
is just the description of the idea of a globally unique key identifier presented
by, e.g., Daemen et al. [11]: the IV is unique over all μ users. Intuitively (but
technically the story is a little bit more involved), this ensures that μ = 1
and we get N

2k + 0
2k ;

– For the second case, we consider randomly chosen IV s in Sect. 4.2. If it can be
ensured that the IV is chosen randomly outside the influence of an attacker,
the collision of IV s for a single user or between different users becomes prob-
abilistic. On the other hand, contrary to the attacker-favorable case where all

1 We remark that there is a third term influenced by initialization calls, namely the first
term of (5c) of Theorem 1. This term is not relevant for the introductory discussion
of our work, but is taken into account in the technical analysis; see also Sect. 3.5.
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parties may start using as IV an encoding of 0 and count upwards, a ran-
domly chosen IV does improve the bound, although it becomes a bit more
technical;

– For the third case, we assume that the involved parties agree on a random
offset from which they then count upwards in Sect. 4.3. Compared to the
previous case, this eliminates IV collisions of a single user, thus improving
the bound further;

– As a fourth scenario, we consider that the IV is masked with additional key
material in Sect. 4.4. In contrast to all previous scenarios, the actual choice of
the IV does not matter in this case, as long as it is unique per user. This is
akin to what is done in TLS 1.3 for AES-GCM [25], which is analyzed in [5].
We show that this is also possible for the duplex, with a potential strong
uplift in the security bound, because for the duplex, this has a similar (albeit
a bit weaker) effect than just extending the size of the key;

– Finally, we show that the security can further be improved, by combining the
ideas of a masked IV (fourth case) with a globally unique IV (first case) in
Sect. 4.5.

Implications. For all five cases, the precise details/conditions and improved
security bounds are given in Sect. 4. We apply the improved bounds to duplex-
based stream encryption in Sect. 5 and authenticated encryption in Sect. 6, and
we discuss the practical meaning and limitations of the results using a typical
parameter set inspired by the NIST Lightweight Cryptography winner Ascon [17,
18] in Sect. 7.

One notable implication of our results mapped to the Ascon parameters is
that masking the IV with additional key material indeed gives additional gain in
multi-user security. In other words, the improvement observed for AES-GCM [5]
also works for the keyed duplex. Concretely, if we run a proper duplex-based
authenticated encryption scheme with a key and a nonce of 128 bits each, multi-
user security improves from roughly 2128/μ, where μ is the number of users, to
2256/Q, where Q is the total number of online evaluations of the scheme.

That said, our observations demonstrate that masking the IV is not the only
viable solution for duplex-based modes. Indeed, one can take a larger key and/or
a globally unique IV provided the permutation width permits it. Whereas for
AES-GCM, the key and nonce size are dominated by the relatively small domain
of AES, for duplex-based authenticated encryption schemes the underlying per-
mutation may be large, e.g., 320 bits for Ascon or even 1600 bits for schemes
based on the SHA-3 permutation. We can conclude that it highly depends on
the size of the underlying permutation which of the proposed solutions fits best.

Outline. We describe basic preliminaries in Sect. 2. The duplex construction,
including our generalization with respect to the initialization interface, is given
in Sect. 3. This section also includes the duplex security model and a copy of
the existing security result (adapted to our generalization) of Daemen et al. [13].
We derive improved security bounds for the five types of initialization in Sect. 4.
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These improved bounds are then applied to stream encryption in Sect. 5 and
authenticated encryption in Sect. 6. Afterwards, we discuss practical implication
of our results in Sect. 7 and conclude in Sect. 8.

2 Preliminaries

We consider 0 to be a member of N. For a value n ∈ N, the set of bit strings of
length n is defined as {0, 1}n. We denote {0, 1}∗ = ∪n∈N{0, 1}n, and we denote
the set of infinitely long strings by {0, 1}∞. We define by perm(n) the set of
all permutations p on {0, 1}n. For a bit string X ∈ {0, 1}∗, the length of X is
denoted as |X|, and for an additional bit string Y ∈ {0, 1}∗, the concatenation
of X and Y is denoted as X‖Y and their bitwise exclusive or (XOR) as X ⊕ Y

truncated to min{|X|, |Y |} bits. For a finite set S, we denote by S
$←− S the

uniformly random drawing of an element S from a finite set S.
For X ∈ {0, 1}n and for m ≤ n, the function leftm(X) outputs the m leftmost

bits of X and rightm(X) the m rightmost bits of X. For Y ∈ {1, . . . , 2n}, we
denote by encoden[Y ] the encoding of Y as an n-bit string.

2.1 Distinguisher

A distinguisher D is an algorithm. It is given access to a list of oracles, either
O or P, which we denote as DO or DP. It can make queries to its list of oracles,
and in the end it outputs a decision bit b ∈ {0, 1}. We denote by

ΔD (O ; P) =
∣
∣Pr

(
DO = 1

) − Pr
(
DP = 1

)∣∣

the advantage that distinguisher D has in distinguishing the lists of oracles O
from P. In our work, distinguishers have unbounded computational power, and
we will measure their success probabilities solely by the number of queries made
(see also Sect. 3.3).

2.2 Multicollision Limit Function

We will use the notion of multicollision limit functions from Daemen et al. [13],
which considers a balls-into-bins experiment tailored to sponge constructions.

Definition 1 (multicollision limit function (mulf)). Let Q, c, r ∈ N. Con-
sider the experiment of throwing Q balls uniformly at random in 2r bins, and let
ν be the maximum number of balls in a single bin. We define the multicollision
limit function (mulf) νQ

r,c as the smallest natural number x that satisfies

Pr (ν > x) ≤ x

2c
.
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The mulf appears a bit artificial, but can be easily bounded. In particular, Dae-
men et al. [13, Section 6.5] demonstrated that the value x targeted in Definition 1
satisfies

2be−λλx

(x − λ)x!
≤ 1 . (2)

where b = c + r and λ = Q/2r. We will not dive into detail on how this bound
is derived, but will highlight the core idea as we will use it later on. This bound
is obtained by observing that for any particular bin, the number of balls in that
bin follows the binomial distribution with n = Q trials and probability p = 1/2r,
and for large enough values it is upper bounded by a Poisson distribution with
mean λ = np = Q/2r. We refer to [13, Sect. 6.5] for the detailed reasoning behind
(2) and to Mennink [23, Sect. 4.2] for a more detailed discussion of the mulf in
general.

3 Duplex Construction and Security

We will consider the description of the duplex construction of Daemen et al. [13]
and Dobraunig and Mennink [19]. We will, however, adopt the description of
Mennink [23], who described the duplex in the more convenient permute-squeeze-
absorb phasing (a detailed discussion on the sponge phasing is given in [23,
Sect. 3.4]). However, we will not consider this duplex construction as is: we
will consider a generalization to be able to properly and rigorously study the
initialization of the duplex. Our generalized duplex construction is given in
Sect. 3.1. We describe the security model in Sect. 3.2 and an explanation on
how to parametrize distinguishers in Sect. 3.3. These two sections are based on
[23, Sects. 3.2, 3.3, and 4.1], but generalized to reflect the generalization in the
initialization phase. The security result of Daemen et al. [13] for the generalized
duplex construction for the default (baseline) initialization is given in Sect. 3.4.
Finally, in Sect. 3.5 we dive into the security proof of Daemen et al., isolate the
parts in the security proof where the initialization plays a role, and re-describe
them for our generalized initialization phase.

3.1 Construction

Let b, c, r, k, l, μ ∈ N such that c + r = b and k ≤ b. We describe our generalized
version of the keyed duplex construction KD in Algorithm 1. It operates on a
key array K = (K[1], . . . ,K[μ]) ∈ ({0, 1}k)μ consisting of μ keys, and it is
instantiated using a b-bit permutation p ∈ perm(b). The construction internally
maintains a b-bit state S, and has two interfaces: KD.init and KD.duplex. Typical
interface calls are depicted in Fig. 1.

Duplexing Interface. The duplexing interface KD.duplex is identical to that of
Mennink [23]. The duplexing interface is phased in the permute-squeeze-absorb
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Algorithm 1. Keyed duplex construction KD[p]K
Interface: KD.init
Input: (δ, i) ∈ {1, . . . , μ} × {1, . . . , 2l}
Output: ∅

S ← initL(K , δ, i) ‖ initR(K , δ, i)
return ∅

Interface: KD.duplex
Input: (flag , P ) ∈ {true, false} × {0, 1}b

Output: Z ∈ {0, 1}r

S ← p(S)
Z ← leftr(S)
S ← S ⊕ [flag ] · (Z‖0b−r) ⊕ P � if flag , overwrite outer part
return Z

Fig. 1. The duplexing interface of KD. The sole difference with the duplexing interface
of Mennink [23] is in the initialization.

fashion: first the underlying permutation p is applied on the state S. Then, it
outputs an r-bit block Z ∈ {0, 1}r off the internal state S. Finally, it absorbs
P ∈ {0, 1}b, where the flag flag ∈ {true, false} indicates whether the outer r
bits of P are XORed to the outer part of the state (if flag = false) or if they
overwrite the outer part of the state (if flag = true).

Initialization Interface. The initialization interface is structurally different
from that of Mennink [23], both in the actual inputs that it receives as in the
way it processes these inputs. This is done to make it possible to rigorously
define and study different initialization approaches. In detail, the initialization
interface gets two inputs (apart from the implicit key array K), a key index
δ ∈ {1, . . . , μ} and an index i ∈ {1, . . . , 2l} in such a way that (δ, i) is always
unique. The value i may be a global counter, a counter per δ, or anything else,
and this does not yet matter for the specification. Then, KD.init initializes the
state as

S ← initL(K, δ, i) ‖ initR(K, δ, i)
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for certain initialization functions

initL : ({0, 1}k)μ × {1, . . . , μ} × {1, . . . , 2l} �→ {0, 1}k ,

initR : ({0, 1}k)μ × {1, . . . , μ} × {1, . . . , 2l} �→ {0, 1}b−k .

It outputs nothing.

Comparison with Original Duplex. We remark that this initialization is
different from that of Mennink [23] in the fact that his initialization (just like
that of [13,19]) got as input the key index δ and an initialization vector IV ∈
{0, 1}b−k, and initialized the state as S ← K[δ] ‖ IV . It can be seen to be
covered by restricting the domain of i to {1, . . . , 2b−k} and by taking initialization
functions

initL(K, δ, i) = K[δ] , (3a)
initR(K, δ, i) = encodeb−k[i] . (3b)

We will refer to this case as the baseline case.

3.2 Security Model

Daemen et al. [13] described the ideal extendable input function (IXIF) as ideal
equivalent for the keyed duplex. We will also consider this function, but adapted
to the superficial changes implemented by Mennink [23] and to our generalized
initialization of Sect. 3.1. The function is described in Algorithm 2.

The IXIF has the same interface as the keyed duplex. However, it is not
based on a key array K and primitive p, but rather on a random oracle ro :
{0, 1}∗ × N → {0, 1}∗ that is defined as follows. Let ro∞ : {0, 1}∗ → {0, 1}∞

be a random oracle in the sense of Bellare and Rogaway [4]. For P ∈ {0, 1}∗,
ro(P, r) outputs the first r bits of ro∞(P ). The IXIF additionally maintains a
path path. In this path, it stores all data input by the user. It is initialized
by encodelog2 μ[δ] ‖ encodel[i], and upon each duplexing call the new plaintext
block is appended to the path. Duplexing output is generated by evaluating the
random oracle on path.

The security of the duplex construction is defined as the distance between
KD and IXIF. More formally, let p

$←− perm(b) be a random transformation,
K

$←− ({0, 1}k)μ a random array of keys, and ro be a random oracle. One considers
a distinguisher D that has access to either (KD[p]K , p±) in the real world or
(IXIF[ro], p±) in the ideal world, where ± indicates that the distinguisher has
two-sided access to the primitive:

AdvKD(D) = ΔD

(
KD[p]K , p, p−1 ; IXIF[ro], p, p−1

)
. (4)

Without loss of generality, the distinguisher always makes at least one duplexing
call after each initialization call.
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Algorithm 2. Ideal extendable input function IXIF[ro]
Interface: IXIF.init
Input: (δ, i) ∈ {1, . . . , μ} × {1, . . . , 2l}
Output: ∅

path ← encodelog2 μ[δ] ‖ encodel[i]
return ∅

Interface: IXIF.duplex
Input: (flag , P ) ∈ {true, false} × {0, 1}b

Output: Z ∈ {0, 1}r

Z ← ro(path, r)
path ← path ‖ ([flag ] · (Z‖0b−r) ⊕ P )

� if flag , overwrite outer part
return Z

3.3 Parameterization of Distinguishers

The three main measures to quantify the resources of D are the number of queries
it can make to its oracles:

– Q: the number of distinct initialization queries;
– M : the number of distinct duplexing queries;
– N : the number of distinct primitive queries.

The number of initialization calls are further refined in the maximum number
of calls per δ and per i, and per (δ, i):

– Qδ: the maximum number of initialization queries for a single δ;
– Qi: the maximum number of initialization calls for a single i;
– Qδ,i: the maximum number of initialization calls for a single δ, i.

We remark that earlier works [13,19] used QIV as the maximum number of
initialization calls for a single IV (or more broadly seen, for a single inner part).
This notation is deprecated, as we will consider different inner parts that depend
only on δ, on i, on (δ, i), or on neither of them.

Finally, different evaluations of the duplex can be the same up to a common
prefix, and common subpaths can actually benefit the distinguisher. To measure
the degree in which it could help the distinguisher, we will define a path path
that keeps track of the data that got absorbed in the duplex up to the point
that the cryptographic primitive (p in the real world and ro in the ideal world)
is evaluated. For an initialization call (δ, i) �→ ∅, the associated path is defined
as path = encodelog2 μ[δ] ‖ encodel[i]. For each duplexing call (flag , P ) �→ Z, the
value [flag ] · (Z‖0b−r) ⊕ P is appended to the path of the previous construction
query. In order to reason about duplexing calls, we will also define a subpath of a
path, which is the path leading to the particular duplexing call. In other words,
for a path path, its subpath is simply path with the last b bits removed. Using
this terminology, we define additional measures:
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– L: the number of duplexing calls with repeated subpath, i.e., M minus the
number of distinct subpaths;

– Ω: the number of duplexing queries with flag = true.

3.4 Security of Baseline Case

As the current duplex construction of Sect. 3.1 has a more general initialization
than that of Daemen et al. [13], we cannot translate their security result to the
current duplex construction. Nevertheless, the duplex construction of Daemen
et al. is in fact the baseline case, i.e., our duplex construction but with the
initialization functions of (3). For this baseline case, we can thus carry over the
result of Daemen et al. [13]:

Theorem 1 (security of duplex construction [13]). Let b, c, r, k, l, μ ∈ N,
with c + r = b, and k ≤ b. Let p

$←− perm(b) be a random permutation, and
K

$←− ({0, 1}k)μ a random array of keys. For any distinguisher D quantified as
in Sect. 3.3 and with M + N ≤ 0.1 · 2c,

AdvKD(D) ≤ (L + Ω)N
2c

+
2ν

2(M−L)
r,c (N + 1)

2c
+

(
L+Ω+1

2

)

2c
(5a)

+
(M − L − Q)Q

2b − Q
+

M(M − L − 1)
2b

(5b)

+
Q(M − L − Q)

2min{c+k,b} +
QiN

2k
+

(
μ
2

)

2k
. (5c)

3.5 Role of Initialization Vector

The bound of Theorem 1 is rather involved, but the part that matters for our
analysis is only (5c). In detail, these three terms are related to key guessing or
key hitting problems that may occur in a security game and that involve the
initialization of the duplex. These three terms correspond to three bad events in
the analysis of Daemen et al., namely (in this order) [13, (22)], [13, (20)], and
[13, (23)]. We will restate those (and exactly those) bad events, but updated2

for the initialization interface of our duplex of Sect. 3.1 and with conveniently
identifiable names:

colduplexinit (corresponding to [13, (22)]): There exists an initialization call (δ, i)
to KD.init and a duplex evaluation (s, t) of p within KD.duplex such that
initL(K, δ, i) ‖ initR(K, δ, i) = s ⊕ 0r‖κ, where κ is a random c-bit dummy
key;

colpriminit (corresponding to [13, (20)]): There exists an initialization call (δ, i)
to KD.init and a primitive evaluation (x, y) of p such that initL(K, δ, i) ‖
initR(K, δ, i) = x;

2 The update is fairly straightforward, merely replacing K [δ] ‖ IV with initL(K , δ, i) ‖
initR(K , δ, i).
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Table 1. Different types of IV generation cases considered in this work, and a reference
to their security analyses. Here, RIV stands for “random IV ” for each evaluation, and
RIV δ is a unique random IV per user (independently distributed for each user). They
are of length n bits, and 0-padded.

case initL(K , δ, i) initR(K , δ, i) restriction reference

baseline K [δ] encodeb−k[i] l ≤ b − k Sect. 3.4

globally unique IV K [δ] encodeb−k[(δ, i)] log2 μ + l ≤ b − k Sect. 4.1

random IV K [δ] RIV ‖0b−k−n — Sect. 4.2

quasi-random IV K [δ] (RIV δ ⊕ encoden[i])‖0b−k−n i counter, l ≤ n Sect. 4.3

IV on key K [δ] ⊕ encodek[i] 0b−k l ≤ k Sect. 4.4

globally unique IV on key K [δ] ⊕ encodek[i] encodeb−k[δ] l ≤ k, log2 μ ≤ b − k Sect. 4.5

colinitinit (corresponding to [13, (23)]): There exist two distinct initialization
calls (δ, i), (δ′, i′) to KD.init such that
initL(K, δ, i) ‖ initR(K, δ, i) = initL(K, δ′, i′) ‖ initR(K, δ′, i′).

We recall from Sect. 3.3 that the distinguisher makes at most Q initialization
calls, where at most Qi are made for a single i, at most M − Q duplex calls,
and at most N primitive calls. Using this, we can easily obtain that colpriminit

happens with probability at most QiN
2k and colinitinit with probability at most (μ

2)
2k .

Event colduplexinit , finally, occurs with probability at most Q(M−L−Q)
2min{c+k,b} , where the

presence of −L in the numerator is for technical reasons that are irrelevant for
the remainder of the work.

4 Improvements Under Specific IV Generation

We will discuss improvements of the security bound of Theorem 1, and in par-
ticular the terms in equation (5c), in case of various types of IV conventions,
as outlined in Table 1. Here, RIV is an independently drawn random IV each
evaluation and RIV δ is a random IV independently drawn per user.

4.1 Globally Unique IV

A globally unique IV , in this context, means that different users never employ
the same IV . In Table 1, this is formally defined by using an encoding function
for initR that encodes both the δ ∈ {1, . . . , μ} and the i ∈ {1, . . . , 2l}, where we
require that log2 μ + l ≤ b − k. As KD is never initialized twice for the same
(δ, i), the rightmost b − k bits of the initialization will always be distinct.

This use case is in fact the easiest one to consider, as it allows to derive
quite strong improved bounds on the relevant bad events of [13] as outlined in
Sect. 3.5:

colduplexinit : The analysis of this event remains mostly unchanged. The reason is
that the dummy key κ “blinds” the rightmost c bits of initR(K, δ, i) =
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encodeb−k[(δ, i)] anyway. A small improvement may be possible in case the
blinding is incomplete, i.e., if |initR(K, δ, i)| = b−k > c, but the improvement
is negligible as, even though initR(K, δ, i) is distinct for each input (δ, i), they
may collide on their left b−k−c bits and we cannot rely on their uniqueness;

colpriminit : Consider any primitive evaluation (x, y). In case of a globally unique
IV , initR(K, δ, i) = encodeb−k[(δ, i)] is distinct for each input (δ, i). This
means that there is only 1 initialization call (δ, i) that satisfies rightb−k(x) =
initR(K, δ, i). For this initialization call, we have leftk(x) = initL(K, δ, i) with
probability 1/2k. (For inverse queries, the probability is strictly smaller as also
rightb−k(x) = initR(K, δ, i) needs to hold, and it holds only with probability
less than 1.) Summing over all initialization calls, we obtain that this bad
event occurs with probability at most N/2k;

colinitinit: In the case of a globally unique IV , we have initR(K, δ, i) 
= initR(K, δ′, i′)
for any two distinct initialization calls, and hence this bad event occurs with
probability 0.

In the case of a globally unique IV , we can thus replace (5c) of Theorem 1
by:

Q(M − L − Q)
2min{c+k,b} +

N

2k
. (6)

4.2 Random IV

In the case of random IV generation, we will consider a setting where each user
will always select the right part of the state, initR(K, δ, i) uniformly randomly
from {0, 1}n with n ≤ b − k, denoted as RIV in Table 1.

The analysis is a bit different to that of Sect. 4.1. To wit, for the case of a
globally unique IV , event colpriminit was very similar to the original analysis of [13],
and for event colinitinit it sufficed to observe that [13] made the assumption that
the IV is always chosen in favor of the attacker. Now, in the case of random
IV s, the situation changes in that (i) IV s may repeat, and (ii) there is no clear
bound on the maximum occurrence of a single IV . The latter issue is partic-
ularly problematic as we cannot claim a clear upper bound on the maximum
number of initialization calls for a single inner part (formally known as QIV (see
Sect. 3.3)). Instead, we will have to employ a probabilistic argument using the
mulf (Definition 1). In detail, we will obtain the following improved bounds on
the three relevant bad events of [13] as outlined in Sect. 3.5:

colduplexinit : This event remains mostly unchanged, for the same reason as in
Sect. 4.1;

colpriminit : Consider any primitive evaluation (x, y). As the RIV s are chosen uni-
formly at random, we can use the mulf νQ

n,k on the maximum multicollision
on RIV (note that the RIV is of size n ≤ b − k bits). More detailed, assume
the highest occurrence of an inner part of RIV is ν, then there are at most
ν initialization calls (δ, i) that satisfy rightb−k(x) = initR(K, δ, i). For those
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specific initialization calls, we have leftk(x) = initL(K, δ, i) with probability
ν/2k. (As before, for inverse queries, the probability is strictly smaller.) Sum-
ming over all initialization calls, we obtain that this bad event occurs with
probability at most νN/2k. We then select the term ν so that the sum of
this term and the probability of a ν-collision is small, and this minimum is
achieved for the mulf νQ

n,k:

min
ν

νN

2k
+ Pr

(
ν > νQ

n,k

)
≤ νQ

n,k · (N + 1)
2k

;

colinitinit: In the original proof, the authors simply assumed that the IV was always
chosen in favor of the attacker, and the bad event simplified to a simple key
collision in initL(K, δ, i). Now, not only the k-bit keys initL(K, δ, i) = K[δ]
and initL(K, δ′, i′) = K[δ′] are randomly distributed but also the n-bit IV s
initR(K, δ, i) = RIV ‖0b−k−n and initR(K, δ′, i′) = RIV ′‖0b−k−n (here, the
accent is put in RIV ′ to make the distinction clear). This leads to a more
complex analysis of colinitinit, and we have to distinguish depending on whether
δ = δ′ or not:

– δ = δ′: in this case, K[δ] = K[δ′] by default, but RIV = RIV ′ with
probability 1/2n;

– δ 
= δ′: in this case K[δ]‖RIV = K[δ′]‖RIV ′ with probability at most
1/2k+n.3

There are at most μ
(
Qδ

2

)
tuples {(δ, i), (δ′, i′)} of the former category and

at most
(
Q
2

)
tuples of the second category. The bad event is thus set with

probability at most μ
(
Qδ

2

)
/2n +

(
Q
2

)
/2k+n.

In the case of a random IV , we can thus replace (5c) of Theorem 1 by:

Q(M − L − Q)
2min{c+k,b} +

νQ
b−k,k · (N + 1)

2k
+

μ
(
Qδ

2

)

2n
+

(
Q
2

)

2k+n
. (7)

4.3 Quasi-Random IV

The case of a quasi-random IV is a subtle combination of the globally unique
IV and a random IV . In detail, we consider a setting where each user δ uses a
counter starting from a random offset RIV δ. For example, in a simplified case
of two users Alice and Bob, Alice will be assigned a random initialization vector
RIV A

$←− {0, 1}n and will use {RIV A ⊕ encoden[1],RIV A ⊕ encoden[2]), . . .}
padded with 0b−k−n, whereas Bob will be assigned a random initialization vector
RIV B

$←− {0, 1}n and will use {RIV B ⊕ encoden[1],RIV B ⊕ encoden[2], . . .}
padded with 0b−k−n.

The security analysis, for this case, becomes much more subtle. Indeed, the
initialization vectors (RIV A and RIV B in above use case) are random, but the

3 This could be improved by conditioning on which keys in K actually collide, but
the gain in following this avenue is negligible as this is not the main term anyway.
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following IV s have no randomness given the initial ones. To resolve the issue, we
need to define a variant of the mulf of Definition 1, namely one that considers
collisions in sets.

Definition 2 (sequence multicollision limit function (smulf)). Let
Qi, Qδ, c, r ∈ N. Consider the experiment of throwing Qi balls uniformly at
random in 2r bins and for each of the randomly thrown balls, throwing a ball in
the Qδ subsequent bins, and let ν be the maximum number of balls in a single
bin. We define the sequence multicollision limit function (smulf) ν̄Qi,Qδ

r,c as the
smallest natural number x that satisfies

Pr (ν > x) ≤ x

2c
.

Intuitively, the smulf on parameters Qi, Qδ is at most the mulf on parameter
QiQδ. As a matter of fact, it can be argued that the value x targeted in Defini-
tion 2 also satisfies (2), but with adjusted λ. The reason is almost identical to
that of [13, Section 6.5]. In detail, they observe that Pr (ν > x) ≤ 2rPr (X > x),
where Pr (X > x) is the probability that any particular bin has more than x
balls, then they observe that the number of balls in a particular bin is binomi-
ally distributed with n = Q trials and success probability p = 1/2r, and finally
they observe that for sufficiently large parameters this is upper bounded by a
Poisson distribution with mean λ = np = Q/2r. In the case of the smulf of
Definition 2, the same story applies with the difference that the number of balls
in a particular bin is now binomially distributed with n = Qi trials and success
probability p = Qδ/2r, which can be upper bounded by a Poisson distribution
with mean λ = np = QiQδ/2r.

Using the definition of the smulf, can derive the following improved bounds
on the three relevant bad events of [13] as outlined in Sect. 3.5:

colduplexinit : This event remains mostly unchanged, for the same reason as in
Sect. 4.1;

colpriminit : The first part of the analysis is identical to that of Sect. 4.2. Consider
any primitive evaluation (x, y). Denoting the highest occurrence of an inner
part of RIV δ ⊕ encoden[i] by ν, then there are at most ν initialization calls
(δ, i) that satisfy rightb−k(x) = initR(K, δ, i), and the bad event occurs with
probability at most νN/2k. We then select the term ν so that the sum of
this term and the probability of a ν-collision is small, and this minimum is
achieved for the smulf ν̄Qi,Qδ

n,k on sets defined by RIV δ for δ ∈ {1, . . . , μ}:

min
ν

νN

2k
+ Pr

(
ν > ν̄Qi,Qδ

n,k

)
≤ ν̄Qi,Qδ

n,k · (N + 1)
2k

;

colinitinit: The analysis of Sect. 4.2 mostly carries over, a difficulty occurs in that
we have to investigate the probability that two sets (with specific distri-
butions) collide or not. Note that the k-bit keys initL(K, δ, i) = K[δ] and
initL(K, δ′, i′) = K[δ′] are randomly distributed but the n-bit IV s satisfy
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initR(K, δ, i) = (RIV δ ⊕ encoden[i])‖0b−k−n and initR(K, δ′, i′) = (RIV δ′ ⊕
encoden[i′])‖0b−k−n for counters i, i′ ≤ Qδ. We again distinguish depending
on whether δ = δ′ or not:

– δ = δ′: in this case, K[δ] = K[δ′] by default, but RIV δ = RIV δ′ and
encoden[i] 
= encoden[i′], so the initializations collide with probability 0;

– δ 
= δ′: in this case K[δ] = K[δ′] with probability 1/2k. For RIV δ ⊕
encoden[i] = RIV δ′ ⊕ encoden[i′], we can observe that any pair
(δ, i), (δ′, i′) fixes encoden[i] and encoden[i′] and thus collides with proba-
bility 1/2n. We can tighten this by only focusing on δ and δ′. Per δ, there
are at most Qδ consecutive values i. Thus, the sets

{RIV δ ⊕ encoden[1],RIV δ ⊕ encoden[2], . . .} ,

{RIV δ′ ⊕ encoden[1],RIV δ′ ⊕ encoden[2], . . .}
overlap with probability at most (2Qδ − 1)/2n.

There are at most
(
μ
2

)
different choices {δ, δ′} for bounding the second cate-

gory. The bad event thus occurs with probability at most
(
μ
2

)
(2Qδ −1)/2k+n.

In the case of a quasi-random IV , we can thus replace (5c) of Theorem 1 by:

Q(M − L − Q)
2min{c+k,b} +

ν̄Qi,Qδ

n,k · (N + 1)
2k

+

(
μ
2

)
(2Qδ − 1)
2k+n

. (8)

4.4 IV on Key

The case of an IV added to the key is structurally different from previous ones.
In detail, we will consider a setting where an IV is added to a user’s key K[δ]:
initL(K, δ, i) = K[δ]⊕encodek[i]. The right part of the initialization stays blank.

The analysis is a bit different to the previous ones, but not necessarily harder,
simply as it leads to a similar query trade-off that can already be observed
in the Even-Mansour construction [21]. We will see that event colpriminit intro-
duces a multiplicative term between initialization and primitive queries. Event
colinitinit corresponds to two different initializations for which K[δ]⊕encodek[i] and
K[δ′] ⊕ encodek[i′] collide (looking ahead, in the case of Sect. 4.5 the latter case
is avoided by encoding the user index in the right part of the initial state). In
detail, we will obtain the following bounds on the three relevant bad events of
[13] as outlined in Sect. 3.5:

colduplexinit : This event remains mostly unchanged, for the same reason as in
Sect. 4.1;

colpriminit : Consider any primitive evaluation (x, y), without loss of generality
satisfying rightb−k(x) = 0b−k. For any initialization query, the probabil-
ity that leftk(x) = K[δ] ⊕ encodek[i] is the same as the probability that
leftk(x) ⊕ encodek[i] = K[δ], which entirely depends on the randomness of
the key and is 1/2k. (As before, for inverse queries, the probability is strictly
smaller.) Summing over all primitive queries and all initialization queries, the
bad event is set with probability at most QN/2k;
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colinitinit: For any two initialization calls, the (b − k)-bit outer parts initR(K, δ, i)
always equal 0b−k. For any two initialization queries, we have to consider
collisions between initL(K, δ, i) = K[δ] ⊕ encodek[i] and initL(K, δ′, i′) =
K[δ′] ⊕ encodek[i′]. Again, the probability that K[δ] ⊕ encodek[i] = K[δ′] ⊕
encodek[i′] is the same to the probability that K[δ] ⊕ K[δ′] = encodek[i] ⊕
encodek[i′]. This probability 1/2k due to K[δ] and K[δ′] being randomly
chosen. The bad event is thus set with probability at most

(
Q
2

)
/2k.

In the case of an IV on the key, we can thus replace (5c) of Theorem 1 by:

Q(M − L − Q)
2min{c+k,b} +

QN

2k
+

(
Q
2

)

2k
. (9)

4.5 Globally Unique IV on Key

In this section, we extend the case of Sect. 4.4 to a globally unique IV on the
key, where “global” refers to the fact that the inner part of the initialization
is an encoding of the user: initL(K, δ, i) = K[δ] ⊕ encodek[i] as before but
initR(K, δ, i) = encodeb−k[δ].

By encoding the user index into the outer part, key collisions among different
users do not matter anymore for the security, only colliding IV ’s for a fixed user.
This affects the analysis of both colpriminit and colinitinit. In detail, we will obtain the
following improved bounds on the three relevant bad events of [13] as outlined
in Sect. 3.5:

colduplexinit : This event remains mostly unchanged, for the same reason as in
Sect. 4.1;

colpriminit : Consider any primitive evaluation (x, y). Let δ be such that rightb−k(x) =
encodeb−k[δ]. By assumption, there are at most Qδ initialization queries for
this particular δ. For any of those queries, the probability that leftk(x) =
initL(K, δ, i) = K[δ] ⊕ encodek[i] is 1/2k. (As before, for inverse queries, the
probability is strictly smaller.) Summing over all primitive queries and all Qδ

initialization queries, the bad event is set with probability at most QδN/2k;
colinitinit: Clearly, if δ 
= δ′, then initR(K, δ, i) 
= initR(K, δ′, i′) and the bad event

cannot be set. On the other hand, if δ = δ′, the right part of the initial
states are equal, and the left parts initL(K, δ, i) = K[δ] ⊕ encodek[i] and
initL(K, δ′, i′) = K[δ′] ⊕ encodek[i′] collide with probability 1/2k. There are
at most μ

(
Qδ

2

)
tuples {(δ, i), (δ′, i′)} such that δ = δ′. Summing over all these

queries, the bad event is set with probability at most μ
(
Qδ

2

)
/2k.

In the case of a globally unique IV on the key, we can thus replace (5c) of
Theorem 1 by:

Q(M − L − Q)
2min{c+k,b} +

QδN

2k
+

μ
(
Qδ

2

)

2k
. (10)
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5 Stream Encryption

We will consider one of the most elementary use case of the duplex, namely
(sequential) stream encryption, following Mennink [23, Section 7]. The construc-
tion and its security model are outlined in Sect. 5.1, and we discuss its security
under different types of initialization in Sect. 5.2.

5.1 Construction and Security Model

Consider the stream cipher SC : {0, 1}k × {1, . . . , 2l} × N → {0, 1}∗, that gets
as input a k-bit key K, an index value i ∈ {1, . . . , 2l}, and a requested output
length �, and that outputs a key stream S of length � bits. It is defined using
the duplex as follows:

– Initialize the keyed duplex of Algorithm 1 with permutation p and key array
K = (K);

– Evaluate KD.init(1, i);
– Evaluate KD.duplex(false, 0b) for exactly ��/r� times, concatenate their out-

puts, and truncate this string to � bits to obtain S.

The scheme is depicted in the multi-user setting in Fig. 2. We note that this is
a very natural way of duplex-based stream generation; a variant of it (with a
significantly more involved initialization to suit side-channel resilience) can be
observed in ISAP v2 [14–16] and in Asakey [20].

We will consider its security as indistinguishability from a random function
in the multi-user setting. Let p

$←− perm(b) be a random permutation. Let K $←−
({0, 1}k)μ be a random array of keys and ($j)

μ
j=1 be functions that for each

input i ∈ {1, . . . , 2l} define a random string of infinite length and on input of
a tuple (i, �) return the first � bits of the string related to input i. Let case ∈
{baseline, global, random, quasirandom, onkey, globalonkey} describe the type of
initialization, corresponding to the six cases outlined in Table 1.

Fig. 2. Stream cipher SC in the multi-user setting. The function gets as input a key
array K , key index δ, and index i. It outputs keystream blocks (S1, S2, . . .). The actual
number of output blocks is determined by an additional input parameter �. The sole
difference with the sequential keystream generation construction of Mennink [23] is in
the initialization.
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We define the multi-user security of SC under initialization type case as

Advμ-prf-case
SC = ΔD

(
(SC[p]K j

)μ
j=1, p

± ; ($j)
μ
j=1, p

±)
. (11)

5.2 Security Under Different Initializations

We will consider a distinguisher that can make Q initialization queries (i.e., Q
queries to its construction oracle), M duplexing queries (i.e., the Q queries are
of total length M duplexing calls), and N primitive queries, in accordance with
Sect. 3.3. For the refined values of Q, we have that Qδ ≤ min{2l, Q}, Qi ≤ μ,
and Qδ,i = 1. Finally, just like in [23, Section 7], all queries start with a new i
(so L = 0) and all duplexing calls are for flag = false (so Ω = 0).

We obtain the following general bound over all cases:

Advμ-prf-case
SC (D) ≤ 2ν2M

r,c (N + 1)
2c

+
(M − Q)Q

2b − Q
+

M(M − 1)
2b

(12a)

+
Q(M − Q)
2min{c+k,b} + Ξcase . (12b)

The first part (12a) is the same for all different initializations and corresponds
to (5a) and (5b). Part (12b) corresponds to (5c), which is actually improved for
the specific cases:

Ξcase =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μN
2k + (μ

2)
2k (case = baseline) ,

N
2k (case = global) ,

νQ
n,k·(N+1)

2k +
μ(min{2l,Q}

2 )
2n + (Q

2)
2k+n (case = random) ,

ν̄
μ,min{2l,Q}
n,k ·(N+1)

2k + (μ
2)(2min{2l,Q}−1)

2k+n (case = quasirandom) ,

QN
2k + (Q

2)
2k (case = onkey) ,

min{2l,Q}N
2k +

μ(min{2l,Q}
2 )

2k (case = globalonkey) ,

(13)

which are based on (5c), (6), (7), (8), (9), and (10), respectively.

6 Authenticated Encryption

The main raison d’être of the duplex construction is authenticated encryption.
We will consider the MonkeySpongeWrap construction as described by Men-
nink [23, Section 9], which generalizes the original SpongeWrap construction [8].
However, we do so including our generalized initialization. The construction and
its security model are outlined in Sect. 6.1, and we discuss its security under
different types of initialization in Sect. 6.2.
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6.1 Construction and Security Model

Consider the authenticated encryption scheme AE : {0, 1}k × {1, . . . , 2l} ×
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t, that gets as input a k-bit key K, an index
value i ∈ {1, . . . , 2l}, arbitrary length associated data A, and arbitrary length
message P , and that outputs a ciphertext C of size |P | bits and a tag T of size
t bits. It is defined using the duplex as follows:

– Initialize the keyed duplex of Algorithm 1 with permutation p and key array
K = (K);

– Evaluate KD.init(1, i);
– Append a single 1 and a sufficient number of 0s to A to obtain r-

bit associated data blocks (A1, . . . , Av), and for each block, evaluate
KD.duplex(false, Ai‖0‖0c−1) and discard the output;

– Append a single 1 and a sufficient number of 0s to M to obtain r-bit plaintext
blocks (P1, . . . , Pw), and, for each block, evaluate KD.duplex(false, Pi‖1‖0c−1)
and XOR the output with Pi to obtain Ci;

– Evaluate KD.duplex(false, 0b) for exactly �t/r� times, concatenate their out-
puts, and truncate this string to t bits to obtain T .

The scheme is depicted in the multi-user setting in Fig. 3. This variant of authen-
ticated encryption can be observed in various NIST candidates, most notably
Xoodyak [11,12] and Gimli [6]. We refer to [23, Section 9] for a more detailed
algorithmic description as well as a discussion of the inverse AE−1.

We will consider its security as indistinguishability from ideal in the multi-
user setting. Here, we consider the ideal setting as the scheme that upon encryp-
tion, always outputs random strings, and upon decryption always outputs the
failure symbol ⊥, assuming that the distinguisher never relays an encryption
output to the decryption oracle. Let p

$←− perm(b) be a random permutation.
Let K

$←− ({0, 1}k)μ be a random array of keys and ($j)
μ
j=1 be functions that

for each input i ∈ {1, . . . , 2l} define a random string of infinite length and on
input of a tuple (i, A, P ) return the first |P | + t bits of the string related to
input i. Let ⊥ be the function that always returns the failure symbol ⊥. Let
case ∈ {baseline, global, random, quasirandom, onkey, globalonkey} describe the
type of initialization, corresponding to the six cases outlined in Table 1.

We define the multi-user security of AE under initialization type case as

Advμ-ae-case
AE = ΔD

(
(AE[p]K j

,AE[p]−1
K j

)μ
j=1, p

± ; ($j ,⊥)μ
j=1, p

±
)

. (14)

Distinguisher D is not allowed to repeat an index for encryption queries but it
may do so for decryption queries. In the (quasi-)random IV case we assume that
the oracle maintains a table to re-use earlier RIV or RIV δ in case of repeated
indices. It is not allowed to relay an encryption output to the decryption oracle.

6.2 Security Under Different Initializations

We will consider a distinguisher that can make Q initialization queries (i.e., Q
queries to its construction oracle), split into Qe encryption and Qd decryption
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Fig. 3. Authenticated encryption scheme AE in the multi-user setting. The func-
tion gets as input a key array K , key index δ, index i, associated data blocks
(A1, A2, . . . , Av), and plaintext blocks (P1, P2, . . . , Pw) (the last blocks of associated
data and plaintext may be partial). It outputs a ciphertext C = (C1, C2, . . . , Cw) of
size |P | bits and tag blocks (T1, T2, . . .) truncated to t bits (the last blocks of ciphertext
and tag may be partial). The sole difference with the MonkeySpongeWrap construction
of Mennink [23] is in the initialization.

queries, M duplexing queries (i.e., the Q queries are of total length M duplexing
calls), again split into Me encryption and Md decryption queries, and N primitive
queries, in accordance with Sect. 3.3. For the refined values of Q, we have that
Qδ ≤ min{2l, Q}, Qi ≤ μ, and Qδ,i = 1. Finally, just like in [23, Section 9], all
encryption queries start with a new i, but decryption queries may repeat i (so
L ≤ Qd) and all duplexing encryption calls are for flag = false but duplexing
decryption calls may be for flag = true (so Ω ≤ Md − 2Qd).

We obtain the following general bound over all cases:

Advμ-ae-case
AE (D) ≤ 2ν2M

r,c (N + 1)
2c

+
(M − Q)Q

2b − Q
+

M(M − 1)
2b

(15a)

+
MdN +

(
Md

2

)

2c
+

Qd

2t
(15b)

+
Q(M − Q)
2min{c+k,b} + Ξcase . (15c)

The first part (15a) is identical to what we saw for stream encryption in (12a)
as derived from (5a) and (5b). The second part (15b) has an additional fraction
coming from (5a) due to the fact that now L + Ω may be as high as Md − Qd,
and an additional term Qd/2t corresponding to random tag guesses (refer to [23,
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Theorem 7]). The third part (15c) corresponds to (5c) and is identical to (12b).
As such, the term Ξcase is actually the same as for encryption, i.e., as in (13).

7 Practical Implications

Given the improved bounds of Sect. 4 and its generic application to duplex-based
stream encryption in Sect. 5 and authenticated encryption in Sect. 6, we next
discuss the practical implications (and limitations) of the different strategies to
choose the IV /nonce. We will perform this discussion using a typical parameters
set, namely b = 320, r = 64, c = 256, k = 128, and a 128-bit IV . This parameter
set is analogue to the NIST Lightweight Cryptography winner Ascon-128 [17,18].

Note that, in practice, we can assume that the entity that performs the
encryption chooses the IV outside the influence of a potential adversary. How-
ever, for decryption, an adversary can potentially manipulate the transmitted
IV .

7.1 Baseline

For the baseline version, we assume that an attacker can manipulate the IV any-
way. In this case, we get as a bound following Sect. 5.2 (similar for authenticated
encryption following Sect. 6.2):

2ν2M
r,c (N + 1)

2256
+

(M − Q)Q
2320 − Q

+
M(M − 1)

2320
+

Q(M − Q)
2320

+ Ξbaseline , (16)

with

Ξbaseline =
μN

2128
+

(
μ
2

)

2128
.

For practical settings, Ξbaseline likely dominates the bound.

7.2 Globally Unique IV

If a globally unique IV is used, the bound is independent of the number of users
and we get (16) but instead with

Ξglobal =
N

2128
.

However, in practice, the question is how to ensure the use of a globally unique
IV . Ensuring a globally unique IV with just 128 bits seems to be unrealistic.
One way would be to allocate a bit more space and separate the IV into a unique
identifier per key and an actual nonce per transmission akin to [11]. Assuming
the unique identifier is randomly chosen like the key during the key setup, it also
does not have to be transmitted. To be sure that the identifier is unique, it is
probably wise to use a 256-bit value. Combined with a 128-bit key and a 128-bit
actual nonce, relying on a globally unique IV seems to be a viable choice for
permutations with b ≥ 512 bits.
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7.3 Random IV

Considering a random IV , we get (16) but instead with

Ξrandom =
νQ
128,128 · (N + 1)

2128
+

μ
(
min{2l,Q}

2

)

2128
+

(
Q
2

)

2256
.

Here, we must ensure the decryption party has authentic access to the random
IV chosen by the encrypting party. This is in practice often not the case for
single-pass (authenticated) encryption schemes. In some two-pass schemes like
encrypt-then-MAC [3,22], the authenticity of the random IV can be verified
before decryption starts as it is done for, e.g., ISAP v2 [14–16]. However, in this
case the MAC verification cannot rely on the randomness of the IV for security
reasons.

7.4 Quasi-Random IV

With the quasi-random IV we get (16) but instead with

Ξquasirandom =
ν̄

μ,min{2l,Q}
128,128 · (N + 1)

2128
+

(
μ
2

)
(2min{2l, Q} − 1)

2256
.

In practice, such a scheme could be realized by setting up the random starting
point of the IV during the setup of the keys and then both communicating
parties count upwards per message. In essence, this then works similarly to the
method described in Sect. 7.2. However, it can be easily realized with smaller
permutations.

7.5 IV on Key

With the IV on key scheme, we want to essentially picture what happens in TLS
1.3 for AES-GCM [25] which is analyzed in [5]. In principle, we have additional
key material that masks the IV . When doing this in a duplex-based scheme, one
can potentially profit more from having this additional key material compared
to AES-GCM since it effectively extends the key. In our example, we would move
from a 128-bit key and a 128-bit IV to a 128-bit IV on 256-bit key scheme, and
we get (16) but instead with

Ξonkey =
QN

2256
+

(
Q
2

)

2256
.

One may wonder why to define the IV usage this way and not just concatenate
a larger key with the IV . First, having an additional key to mask the IV can
be agreed on protocol level without changing the underlying scheme. Second,
for small permutations, like in our 320-bit example, there must be some overlap
between a 256-bit key and a 128-bit IV .
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7.6 Globally Unique IV on Key

This is the extension of Sect. 7.5, which in practice would require additional
space to fit a unique partial IV . This would then lead to (16) but instead with

Ξglobalonkey =
min{2l, Q}N

2256
+

μ
(
min{2l,Q}

2

)

2256
.

8 Conclusion

In this paper, we have shown that different ways to initialize the state of a duplex
can lead to a significant improvement in the security bound considering multi-
user setting. What is even more interesting is that many approaches we discuss,
like masking the IV with an additional key, can be retrofitted on protocol level
without changing the specification of the underlying algorithm. However, one
still has to consider that the proofs are done in the random permutation model.
Concretely, this means that for an actual instantiation of the duplex, assuming
that it uses a permutation designed for 128-bit security, using the IV on key
method (of Sect. 4.4) with a 256-bit key might not necessarily result in 256-bit
security. Overall, care must be taken when instantiating a permutation-based
cryptographic construction with any actual permutation.
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discussions. Bart Mennink is supported by the Netherlands Organisation for Scientific
Research (NWO) under grant VI.Vidi.203.099.
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Abstract. The AES block cipher is today the most important and ana-
lyzed symmetric algorithm. While all versions of the AES are known to
be secure in the single-key setting, this is not the case in the related-key
scenario. In this article we try to answer the question whether the AES
would resist better differential-like related-key attacks if the key sched-
ule was different. For this, we search for alternative permutation-based
key schedules by extending the work of Khoo et al. at ToSC 2017 and
Derbez et al. at SAC 2018. We first show that the model of Derbez et al.
was flawed. Then, we develop different approaches together with MILP-
based tools to find good permutations that could be used as the key
schedule for AES-128, AES-192 and AES-256. Our methods permitted to
find permutations that outperform the permutation exhibited by Khoo
et al. for AES-128. Moreover, our new approach based on two MILP mod-
els that call one another allowed us to handle a larger search space and
thus to search for alternative key schedules for the two bigger versions
of AES. This method permitted us to find permutations for AES-192 and
AES-256 that provide better resistance to related-key differential attacks.
Most importantly, we showed that these variants can resist full-round
boomerang attacks.

Keywords: AES · key schedule MILP · related-key attacks ·
differential cryptanalysis

1 Introduction

The Rijndael family of block ciphers was designed by Joan Daemen and Vin-
cent Rijmen in the late 90’s. In 2000, the National Institute of Standards and
Technology (NIST) selected three members of this family of ciphers to replace
the DES and to form what is known today as the Advanced Encryption Standard
(AES) [10]. In the standardized version, the block size is equal to 128 bits and
the key size can be 128, 192 or 256 bits. The AES is considered today as the
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most important and widely deployed symmetric primitive and its elegant design
inspired several others through the years.

After almost 25 years of intense analysis and scrutiny, all three versions,
i.e. AES-128, AES-192 and AES-256, are still considered secure in the single-key
scenario. However, in the related-key setting, the two bigger variants of the AES
were shown to be much weaker. In 2009, Biryuvov et al. discovered full-round
related-key boomerang attacks, with respectively 299.5 time and data complexity
for AES-256 and 2123 data and 2176 time complexity for AES-192 [2,3]. More
attacks on AES-192 or AES-256, breaking all rounds or a high number of them,
were described later, notably boomerang attacks [8,12], differential meet-in-the-
middle attacks [5] or attacks exploiting other properties [11].

The design of the AES round function, including its S-box as well as the
MixColumns operation, was done with concrete criteria in mind and was based
on solid mathematical arguments borrowed from the theory of Boolean functions
and error-correcting codes. On the other hand, the design of the key schedule
was much more ad-hoc with much less precise and formal security arguments
employed. Mainly, the authors wanted the key schedule to be “different enough”
from the round function. It is today considered that this component is responsible
for the weaknesses discovered on the biggest versions in the related-key setting.

Even if the AES was not designed with related-key security in mind, the
importance of this design necessitates that its security is analyzed even in weaker
scenarios in which the adversary has access to data encrypted through related
keys. In parallel, a natural question that is often asked for such important targets,
is whether replacing a particular component of the cipher would make it more
resistant to attacks the original version is not so strong against. As the AES
is weaker than expected against related-key attacks of differential nature, i.e.
attacks exploiting the existence of high-probability differential characteristics, it
is therefore interesting to see whether the level of security would increase against
such attacks if the original key schedule of AES was replaced by an alternative
one.

This question was first investigated by Nikolic in [18] just after the attacks on
the full AES-192 and the full AES-256 in the related-key setting got published.
In this paper, Nikolic proposed to tweak the original key schedule of all three
versions of the AES by adding more rotations and some additional S-box appli-
cations but keeping a global structure quite close to the original key schedule.
Much later, Khoo et al. focused only on the smallest AES version and presented
an alternative key schedule for AES-128 that could ensure pure differential trun-
cated characteristics with more active S-boxes in the related-key setting than the
original key schedule [15]. A very interesting approach in this paper is that the
proposed key schedule consisted of a simple byte permutation of the 16 bytes of
the key state and offered for this reason excellent performances in both software
and hardware. This work was further extended by Derbez et al. who automated
the search for good permutations to replace the key schedule of AES-128 and
used a constraint programming (CP) model to evaluate the minimum number
of active S-boxes of an AES-128 cipher with a modified key schedule [9]. This
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permitted them to find the first permutation reaching at least 16 active S-boxes
for 5 rounds of AES-128 and a different permutation that could reach at least
20 active S-boxes for 6 rounds, thus improving the results of [15].

Our Contributions. In this paper we focus on the design of alternative key
schedules for all three versions of the AES. Similarly to what was done in [15]
and [9], we only analyzed key schedules that are built as a byte permutation of
the key state, as these key schedules have excellent implementation properties.
We first prove that the CP-model used in [9] is flawed and thus all the results
obtained in this paper are wrong. Then, we build our own MILP model to com-
pute the minimum number of active S-boxes for a modified AES and investigate
several strategies to search for good permutation-based key schedules. Our first
strategy improves the method used in [9] which consisted in searching for good
permutations by decomposing them into disjoint cycles. The idea is to build a
permutation cycle by cycle and early abort when we are sure a partially formed
permutation cannot be extended to a strong one. This method works well for
AES-128 and permitted us to obtain many different permutations that could
reach 15 active S-boxes for 5 rounds and 20 active S-boxes for 6 rounds, lead-
ing thus to better permutations than the one designed by Khoo et al. in [15].
However, this method scales badly for the other two variants. For this reason,
we propose a different strategy based on two MILP models that call each other.
The first model starts to search for a key schedule by having as its only con-
straint that this key schedule should be a permutation. This model then calls
a second model that computes the minimum number of active S-boxes of any
characteristic of the AES with key schedule the one found by the first model. If
a characteristic activating less S-boxes than the desired bound is found, then
this second model calls again the first one by adding to it extra constraints for
the key schedule to prevent that such a weak characteristic reappears. This is
done until a good permutation is found or until the problem has no solution.
This method is efficient, as each time the first model is called, extra constraints
are added on the top of the previous ones, restricting the search space more and
more. This strategy permitted us to find strong permutations that can be used
as the key schedule for all three AES variants. In particular, we show in the last
part of this article, that the key schedules we propose would permit AES-192
and AES-256 to resist full-round boomerang attacks in the related-key setting.

The rest of the paper is organized as follows. Section 2 provides a brief descrip-
tion of the AES, introduces some preliminary notions on differential character-
istics and introduces the Mixed Integer Linear Programming (MILP) principle.
In Sect. 3 we recall previous results on alternative key schedules for the AES and
prove that the results of [9] are wrong. Then, in Sect. 4 we describe our first
method based on the decomposition of a permutation into cycles for AES-128.
Section 5 presents our new method based on the two MILP models that call
each other. Finally, our results for all versions of the AES are summarized and
discussed in Sect. 6.
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Our code is available at:

https://github.com/pderbez/acns2024/

2 Background

2.1 Description of the AES

The AES is a Substitution Permutation Network that processes data blocks of
128 bits, using keys of 128, 192 or 256 bits. The number of rounds Nr depends
on the key size. It is Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14
for AES-256. From the initial master key, Nr + 1 round subkeys of 128 bits are
generated with a key schedule algorithm that is composed of XORs and the
application of an 8-bit S-box (the same as in the round function). We refer the
reader to [10] for the detailed specification of the key schedule.

Both the internal block state and each 128-bit subkey can be represented by
an array of 4 × 4 bytes. We will use the numbering below to refer to the bytes
of such a state.

After an initial subkey addition, the state is transformed by iterating a round
function composed of four byte-oriented transformations as depicted in Fig. 1.
SubBytes (SB) applies to each byte of the state the same non-linear bijection
called S-box. ShiftRows (SR) shifts the i-th row by i bytes to the left. MixColumns
(MC) transforms each column of the state by multiplying it by an MDS (Maxi-
mum Distance Separable) matrix. Finally, AddRoundKey (ARK) XORs the state
with the round subkey. For the last round, the MixColumns operation is omitted.

Fig. 1. The AES round function. X1 is obtained by xoring the input block and the
subkey K0. The output block is XNr+1. MC is omitted for the last round.

https://github.com/pderbez/acns2024/


Alternative Key Schedules for the AES 489

2.2 AES Differential Characteristics

Differential cryptanalysis is a classical technique for symmetric primitives intro-
duced in 1990 by Biham and Shamir [1]. The idea of this technique is to study
the propagation of an input difference through several rounds of the cipher. In
order for a cipher to be immune against this family of attacks, there should
not exist an input difference a that propagates to an output difference b with
a probability higher than expected for a random permutation. Such couples
of input/output differences (a, b) are called differentials. Computing the exact
probability of a differential is a very hard computational problem. In practice,
we search to approximate this probability by studying sequences of differences
(a = δ0, δ1, . . . , δR = b) that start from the difference a and end with the differ-
ence b, and that we call differential characteristics. As the number of differential
characteristics is too high to be exhausted, a common search method is to use
a truncated representation of the characteristics [16]. This approach that works
particularly well for word-oriented ciphers consists in abstracting each word by
a Boolean value that indicates whether this word is active, i.e. has a non-zero
difference on it, or inactive. Furthermore, we say that an S-box is active if there
exists a non-zero difference at its input. The number of active S-boxes of a differ-
ential characteristic is an important quantity as, combined with the maximum
differential probability of a non-trivial transition through the S-box, permits
to provide an upper bound on the probability of any differential characteristic
following the truncated pattern. The higher the number of active S-boxes, the
lower the probability of a characteristic can be.

The authors of the AES employed an approach known as the wide-trail strat-
egy [7] to ensure that all characteristics have, after a certain number of rounds, a
relatively high number of active S-boxes. Thanks to this, the AES can be proven
immune to classical differential attacks in the single-key setting. On the other
hand, the attacks of Biryukov et al. [3,4] and the works that followed showed
that if differences are permitted in the key, then there exist related-key charac-
teristics with much less active S-boxes than classical characteristics of the same
length.

Modeling the Propagation of Truncated Differences Through the AES.
Modeling the propagation of truncated differences on the AES can be done quite
easily by exploiting the byte-oriented structure of the cipher. A state in a trun-
cated differential of the AES is seen as the concatenation of 16 Boolean variables,
each indicating whether the corresponding byte is active or inactive. Then the
activity pattern of a byte does not change after the application of the S-box, as
this operation is bijective. ShiftRows is a simple reorganization of the bytes inside
the state and for MixColumns we use the fact that the matrix is MDS and that
its branch number is 5. This means that the sum of the active bytes in a column
before and after the application of the matrix is 0 if the column is inactive and
at least 5 if the column is active. Finally, we model the AddRoundKey operation,
by supposing that the XOR of two active bytes can give an active byte or an
inactive byte. We call a pure truncated differential characteristic a sequence of



490 C. Boura et al.

truncated differences that respect these propagation rules. A truncated related-
key characteristic for 3 rounds of AES-128 is depicted in Fig. 2.

Fig. 2. A 3-round related key characteristic for AES-128 (drawn with the library [14]).

Invalid Truncated Differential Characteristics. It can happen that a trun-
cated differential characteristic that follows the propagation rules described
above cannot be instantiated with real differences. Such characteristics are called
invalid. Some invalid characteristics can however directly be avoided by exploit-
ing linear relations between the round function and the key schedule. An example
of an invalid truncated differential characteristic is shown in Fig. 3.

Fig. 3. Example of a linear incompatibility. The key schedule’s transition is only pos-
sible if the subkeys’ active columns k0 and k1 are equal. This equality also implies an
equality between the columns y0 and y1. This contradicts the fact that the columns x0
and x1 are different.

A common method to remove such invalid characteristics consists in writing
down a system of equations including all or a subset of linear relations resulting
from the round function and the key schedule and apply linear algebra to it.

2.3 Mixed Integer Linear Programming

A well-known method to get a lower bound on the number of active S-boxes of a
differential characteristic consists in reducing the problem to a Constraint Opti-
mization Problem (COP) than can be solved by a dedicated solver. Among all
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existing methods, the MILP (Mixed Integer Linear Program) approach became
during the last decade particularly popular among cryptographers. This app-
roach was used for the first time by Mouha et al. in [17] and by Wu and Wang
in [19] to prove, among others, lower bounds on the minimal number of active
S-boxes for the AES in the single key setting. In a MILP model the variables are
either integers or real numbers, the constraints are linear inequalities and the
objective function, if any, is a linear function of the variables. The goal is to find
values for the variables such that all the constraints are satisfied and such that
the objective function is optimized (i.e. maximized or minimized). This model-
ing technique is particularly well suited for byte-oriented ciphers like the AES:
each byte is abstracted by a Boolean that indicates whether this byte is active
or not; the objective function simply corresponds to the sum of all the variables
that go through an S-box and each of the byte-oriented operations can easily be
encoded. For instance, the XOR of 3 bytes a, b and c can be modeled with 3
linear inequalities (see Algorithm 1).

Algorithm 1: XOR(model, a, b, c)
model.addConstr(1 - a + b + c ≥ 1)
model.addConstr(a + 1 - b + c ≥ 1)
model.addConstr(a + b + 1 - c ≥ 1)

The constraints for the basic model for the AES are described in Algorithms 2
and 3 with the same notations as in Fig. 1 (i.e. for 1 ≤ r ≤ R, Xr refers to the
state after the AddRoundKey operation of round r-1, Yr corresponds to the
state after the MixColumns operation and Kr is the subkey used in round r).
The objective function to be minimized is returned by the function getSboxes.
This basic model allows one to easily get a bound on the number of active S-
boxes. However, all the truncated characteristics that are solutions of the model
cannot be instantiated into actual characteristics. In particular, inconsistencies
may come from the fact that encoding a set of linear equations between variables
does not encode the vector space spanned by these equations. A first approach
to reduce the number of invalid trails is to add extra variables and constraints
to the model. Another approach, used by Derbez et al. in [8] is to perform linear
algebra to check if the solution found by the solver respects the whole system of
linear equations induced by the cipher. When a linear inconsistency is detected,
the authors of [8] used the callback functionality of the solver Gurobi [13] to add
new constraints during the solving process in order to prevent this inconsistency
for the upcoming solutions.

Algorithm 2: addConstrForAddRoundKey(model, R)
for r = 1 . . . R-1 do

for i = 0 . . . 15 do
XOR(model, Xr+1[i], Kr[i], Yr[i])
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Algorithm 3: addConstrForShiftRowsMixColumns(model, R)
for r = 1 . . . R−1 do

for c = 0 . . . 3 do
e ← 0
for i = 0 . . . 3 do

e ← e + Yr[c + 4i]
e ← e + Xr[(c + i) mod 4 + 4i]

Let f be a dummy binary variable
model.addConstr(e ≤ 8f)
model.addConstr(e ≥ 5f)

Algorithm 4: getSboxes(model, R)
output: The number of active S-boxes
Sboxes ← 0
for r = 1 . . . R do

for i = 0 . . . 15 do
Sboxes ← Sboxes + Xr[i]

return Sboxes

3 Permutation-Based Key Schedules for the AES

While the AES is secure in the single key model, its two bigger variants were shown
to be vulnerable to full-round related-key attacks that exploit the existence of
high probability differential characteristics for some number of rounds [2,3]. It
is widely admitted today that the success of these attacks is mainly due to
weaknesses in the key schedules of AES-192 and AES-256. Furthermore, while
the design of the AES round function was based on solid mathematical properties,
the design of the key schedule was done with much less formal criteria in mind.
It is therefore natural to ask the question whether an alternative key schedule
design could strengthen the resistance of the AES against related-key differential-
like attacks.

A natural idea for designing an alternative key schedule is to use a simple
byte-permutation of the master key. This design choice is clearly relevant, as key
schedules of this type offer excellent implementation properties both in software
and hardware. This idea was investigated notably by Khoo et al. in [15], where
the authors searched (among others) to replace the key schedule of AES-128
by a key schedule of this type with the goal of increasing the minimal number
of active S-boxes of any differential characteristic after some rounds. The main
result of this part of their paper is the discovery of a byte-permutation that
could play the role of the AES-128 key schedule and that permits to reach more
active S-boxes in the pure related-key setting starting from the third round. This
permutation is:
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⎛
⎜⎜⎝

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝
14 15 12 13
3 0 1 2
4 5 6 7
8 9 10 11

⎞
⎟⎟⎠ ,

and its table representation is

P1 = (5, 6, 7, 4, 8, 9, 10, 11, 12, 13, 14, 15, 2, 3, 0, 1).

This key schedule permits to achieve at least 5, 10, 14, 18 and 21 active
S-boxes after respectively 3, 4, 5, 6 and 7 rounds of computation in the pure
truncated differential setting, i.e. when linear inconsistencies are not taken into
account. To compare, the original AES-128 key schedule leads to only 3, 9, 11
and 13 active S-boxes for the same number of rounds in the same setting. To
design this permutation, the authors of [15] started from their human-readable
proof of the bound on 3 rounds of AES-128 and searched for modifications in the
design that could increase the minimum number of active S-boxes.

The problem of finding a byte-permutation to replace the key schedule of
AES, was then further analyzed by Derbez et al. in [9]. First, they showed that,
without considering linear inconsistencies, the permutation from [15] is opti-
mal by exhibiting differential characteristics that hold for any permutation and
reaching the corresponding number of active S-boxes. Then, they introduced the
idea to use a more automated approach to search for good permutations and to
consider the underlying equations as well, hence removing all linearly inconsis-
tent truncated characteristics. For this search, to test the minimum number of
active S-boxes of AES-128 with a permutation playing the role of the key sched-
ule could achieve, the authors wrote up a Constraint Programming (CP) model.
As a result, they provided permutations achieving a better security than the one
from [15] and gave upper bounds on the minimum number of active S-boxes a
permutation could reach. More precisely, the authors proposed the permutation

P2 = (4, 1, 10, 6, 7, 9, 3, 11, 8, 2, 14, 15, 12, 13, 5, 0),

that could reach at least 16 active S-boxes for 5 rounds and the permutation

P3 = (14, 5, 0, 7, 4, 3, 6, 15, 9, 2, 1, 11, 13, 8, 10, 12)

that could reach at least 20 active S-boxes for 6 rounds.

3.1 Analyzing the Results of [9]

We wrote a simple MILP model to compute the minimum number of active
S-boxes that could be achieved by any truncated differential characteristic for
AES-128 with a given permutation-based key schedule. The constraints to add
to the model are described in Algorithms 2, 3 and 5 and the objective func-
tion to minimize (i.e. the number of active Sboxes) is returned by the function
getSboxes. We also handled linear dependencies of the truncated differential
characteristics with the same method as Derbez et al. in [8].
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Algorithm 5: addConstrForKeySchedule128(model, R, P)
for r = 2 . . . R-1 do

for i = 0 . . . 15 do
model.addConstr(Kr[P(i)] = Kr−1[i])

With this MILP model, we confirmed the bounds for the permutation P1
built in [15] in the pure truncated differential model announced by the authors
and showed, that by taking linear dependencies into account, this permutation
actually leads to at least 19 active S-boxes for 6 rounds (see Table 5 of [15]).

However, we were not able to confirm any of the results of [9] obtained with
their CP model. We checked the two proposed permutations P2 and P3 with our
MILP model and we got that the minimum number of active S-boxes reached was
much smaller than what the authors announced. More precisely, we discovered
that the permutation P2 led to a minimum number of 10 active S-boxes after
5 rounds instead of the 16 S-boxes announced, and that P3 resulted in at least
17 active S-boxes after 6 rounds instead of the claimed 20 active S-boxes. As a
proof, we provide an example of a truncated differential characteristic with 10
active S-boxes for 5 rounds with the permutation P2 in Fig. 4 and a characteristic
with 17 active S-boxes for 6 rounds with the permutation P3 is given in Fig. 5.
The above prove that the CP model used in [9] was flawed and thus none of the
results of that paper can be considered as correct1. For example, the “proof” that
there exists no permutation for the key schedule permitting to reach a minimum
of 18 active S-boxes after 5 rounds of AES-128, cannot be trusted anymore as
this proof was computational and the computations were based on the badly
flawed CP model.

Fig. 4. Example of a truncated differential characteristic with 10 active S-boxes (in
red) for 5 rounds with the permutation P2. (Color figure online)

1 We contacted the authors of [9] to let them know about our findings and after
verification they confirmed there is indeed a problem with their CP model and that
the results of this paper should be considered as flawed.
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Fig. 5. Example of a truncated characteristic with 17 active S-boxes (in red) for 6
rounds with the permutation P3. (Color figure online)

4 A Cycle-Decomposition Approach to Search for Good
Key Schedules

Once we saw that the results of [9] were wrong, we decided to search ourselves
for alternative permutation-based key schedules for AES-128. We describe in this
section the method we used to do so. This method is based on the decomposition
of a permutation in its disjoint cycles and is inspired from what was done in [9].
As we will see, this method is efficient for AES-128 but is too expensive for
AES-192 and AES-256. Thus, we develop a different approach in Sect. 5 that we
successfully adapt to all three AES variants.

4.1 Description of the Method

The idea on which the method is based is the following. It is a well known fact that
any permutation can be decomposed in cycles in a unique way. For example, the
permutation P1 above can be written as (0, 5, 9, 13, 3, 4, 8, 12, 2, 7, 11, 15,
1, 6, 10, 14) and consists of a single cycle of length 16, while the permutation
P2 can be written as (0, 4, 7, 11, 15)(2, 10, 14, 5, 9)(3, 6)(1)(8)(12)(13) and is
thus decomposed in 2 cycles of length 5, a cycle of length 2 and four cycles of length
1. Viewing a permutation as a composition of cycles has an important advantage:
it is possible to evaluate the quality of a permutation to play the role of the key
schedule by only partially defining its decomposition in cycles. Suppose for exam-
ple, that we want to verify if a permutation that has in its decomposition the cycle
(0, 2, 7, 13, 15) can lead to a minimum of 15 active S-boxes after 5 rounds. Then
we can write a MILP model for which the key schedule is only partially defined and
the only permitted active bytes in the first subkey are among the bytes 0, 2, 7, 13
and 15. The cycle structure permits us to know where these active bytes will be
moved to by the key schedule in any of the following subkeys. If the MILP program
manages to find a valid differential characteristic with less than 15 active S-boxes
then we know that we can throw away all permutations that have this cycle as
part of their decomposition.
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Moreover, we do not need to restrict ourselves to complete cycles and can
check with this method permutations for which we have only partially spec-
ified a cycle they contain. To give an example, suppose we want to evalu-
ate a permutation that has in its decomposition the partially defined cycle
(0, 2, 7, 13, 15, . . .). If the partially defined cycle is at least as long as the
number of rounds we want to find a bound for, we can still partially evaluate
its strength, by activating only bytes in the key for which the partial knowledge
of the incomplete cycle permits us to propagate through all subkeys that are
needed for the computation. If our target is again at least 15 active S-boxes for
5 rounds and if this partial evaluation permits to exhibit a characteristic with
less than 15 active S-boxes, we know that we can remove all permutations that
have inside cycles containing the trail 0 → 2 → 7 → 13 → 15.

We describe now our global approach for this method. This approach is based
on the recursive Algorithm 6. This algorithm takes as input the number of rounds
r to analyze, a target bound b for the minimum number of active S-boxes, a table
PKS corresponding to the partially specified permutation the algorithm is work-
ing on, an element x for which we want to fix the image by the permutation and
a variable length corresponding to the actual length of the cycle the algorithm
is working on.

The first call to the algorithm is done for x = 0 and length = 1. The algo-
rithm first checks (line 1) if the image of x has been fixed. If this is the case, mean-
ing that the cycle is complete, the MILP-based routine EvaluatePerm(PKS)
checks whether the partial knowledge of PKS permits to exhibit a characteris-
tic activating less than b S-boxes. At this step, with the method of Derbez et
al. in [8], we also detect linear inconsistencies using linear algebra and handle
them using the callback functionality of the solver Gurobi. If a valid character-
istic is found, then the algorithm returns to the instance that called it as this
means that this partially defined cycle decomposition can never lead to permu-
tations reaching more than b active S-boxes. On the other hand, if the routine
EvaluatePerm(PKS) returns a value higher or equal to the bound b, then if
PKS is entirely specified (line 4) this means that a permutation with the desired
property has been found. If there are still values that remain to be fixed, the
algorithm will start working on a new cycle, by choosing as the beginning of this
new cycle the first available element y (line 7).

Finally, if the image of x has not yet been fixed meaning that the cycle is
not yet complete (line 9), then if the current length of the cycle is long enough
to permit an evaluation of the permutation, the routine EvaluatePerm(PKS) is
called (line 10). If the return value is smaller than b then this partially defined
cycle is abandoned. Otherwise, the next available value y is chosen to continue
the cycle (line 12), the image of x is set to y and the search continues (line 13).

An Improvement. The basic algorithm described above can be improved by
taking into account the column symmetry. Indeed let PKS be a permutation for
the key schedule and let P≫ a permutation that shifts the columns of PKS .
Then, both the permutations PKS and P≫ ◦ PKS ◦ P −1

≫ are equivalent and
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Algorithm 6: CycleSearch(r, b, PKS, x, length)
output: All permutations reaching at least b active S-boxes for r rounds of

AES-128
1 if PKS[x] has been fixed then
2 if EvaluatePerm(PKS) < b then
3 return
4 if all the images of PKS have been fixed then
5 return PKS

6 else
7 Choose the next available value y to start a new cycle.
8 CycleSearch(r,b,PKS,y,1)

9 else
10 if length >= r-1 and EvaluatePerm(PKS) < b then
11 return
12 Find the next available value y to continue the cycle.
13 PKS[x] = y
14 CycleSearch(r,b,PKS,y,length + 1)

lead to exactly the same bounds. We have incorporated this observation to our
algorithm to decrease the search space.

5 Double-MILP Model for Permutations

The strategy we presented in Sect. 4 can be hardly adapted to the bigger vari-
ants of the AES. The reason is that the search space becomes too big, as it
necessitates going through permutations of 24 bytes for AES-192 and 32 bytes
for AES-256. For this reason, we present here an entirely different strategy to
find good alternative permutation-based key schedules that we applied to all AES
versions. This method combines a first MILP model to generate permutations
with a second MILP model to evaluate the generated permutations. The aim of
the second model is twofold. First, it detects when a permutation leads to the
desired minimum number of active S-boxes. Second, it identifies bad subkeys
patterns that a good permutation should prevent. This information is used to
refine the constraints of the first model.

In the following, to simplify the notations, we only describe our algorithms
for the case of AES-128. Note that they can be extended to AES-192 and AES-256
in a rather straightforward way.

Algorithm 7 summarizes the overall search process. For the initialization of
the model m1 that generates permutations, we add constraints to restrict the
solutions of m1 to permutation matrices of size 16 × 16. Some extra empirical
constraints can possibly be added at this step (see discussion below). Then, we
generate a permutation with the model m1 and evaluate it with the function
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evaluateP128. If the key schedule defined by this permutation allows a differen-
tial characteristic with too few active S-boxes, the function evaluateP128 out-
puts a bad subkey pattern to be removed by calling the function addConstrTo-
RemoveKeyPattern128. The form of this bad subkey pattern and the constraints
to remove it will be detailed below. We repeat this until there is no more permu-
tation matrix satisfying the constraints in m1 or until a permutation guarantying
nbWantedSboxes after R rounds of AES-128 is found.

Algorithm 7: searchP128(R, nbWantedSboxes)
Initialize a model m1� Ensure that P is a permutation matrix.
e1 ← 0
e2 ← 0
for i = 0 . . . 15 do

for j = 0 . . . 15 do
e1 ← e1 + P[i][j]
e2 ← e2 + P[j][i]

m1.addConstr(e1 = 1)
m1.addConstr(e2 = 1)� Generate a permutation P with the model m1 and test it
while True do

m1.optimize()
if No solution found then

return
P ← m1.getASolution()
badKeyPattern ← evaluateP128(P, nbWantedSboxes, R)
if badKeyPattern = ∅ then

// P guarantees nbWantedSboxes after R rounds
return P

addConstrToRemoveKeyPattern128(m1, badKeyPattern)

The function evaluateP128 describes a basic MILP model similar to the one
we used for Algorithm 6. However, note that we do not optimize the number of
active S-boxes. Instead, we only add a constraint to know whether there exists
a truncated differential characteristic activating less than nbWantedSboxes S-
boxes. Then, if such a truncated differential characteristic exists, the model will
minimize the number of active bytes in the master key. This is directly related
to the number of permutations for which the characteristic does hold. Indeed,
we observed that in practice, valid truncated characteristics have few active key
bytes (hardly more than 6) and thus, lower this number is, higher the number
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Algorithm 8: evaluateP128(P, nbWantedSboxes, R)
output:

– ∅ if there is no R-round characteristic with less than NbWantedSboxes when the
alternative AES-128 key schedule is based on the permutation P,

– A tuple of subkeys which leads to a characteristic with less than NbWantedSboxes
and which minimizes the number of active bytes in the master key otherwise.

Initialize a model m2.� Key schedule and round constraints
addConstrForKeySchedule128(m2, R, P)
addConstrForShiftRowsMixColumns(m2, R)
addConstrForAddRoundKey(m2, R)� Number of active Sboxes
Sboxes ← getSboxes(m2, R)
m2.addConstr(sboxes ≥ 1)
m2.addConstr(sboxes ≤ nbWantedSboxes)� Number of active bytes in the master key for AES-128
obj ← 0
for i = 0 . . . 15 do

obj ← obj + K1[i]

m2.addConstr(obj ≥ 1)� Minimize the objective function� Handle linear inconsistencies with the callback functionality of Gurobi
m2.minimize(obj)
if No solution found then

return ∅
else

badKeyPattern ← (K1, K2, K3, ..., KR−1)
return badKeyPattern

of permutations satisfying the pattern and as a consequence, higher the number
of permutations removed by the constraint will be. Of course, this is not always
true but remains a quite reasonable assumption.

Algorithm 9: addConstrToRemoveKeyPattern128(m1,(K1,K2,. . . ,KR−1))

e ← 0
for r = 1, . . . , R-2 do

for a such that Kr[a] is an active byte do
bound ← bound + 1
for b such that Kr+1[b] is an active byte do

e ← e + P[a][b]

m1.addConstr(e ≤ bound -1)
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Removing Patterns. In order to better explain how we exploit a particular
“bad” truncated differential characteristic to reduce the search space of possible
permutations, let us focus on a simple example. For this, we denote by P the
permutation that plays the role of the key schedule, and we write P 2 = P ◦ P ,
P 3 = P ◦ P ◦ P , etc. Further, we suppose that MP represents the permutation
matrix associated to P , that is MP [i][j] = 1 if P (i) = j and is 0 otherwise.
Assume now for instance that the active bytes of the characteristic are {0, 1} on
the first subkey and {2, 6} on the second one and that P (0) = 2 and P (1) = 6.
A naive way to discard the permutations leading to the exact same truncated
characteristic is to forbid either P (0) = 2 or P (1) = 6. This can be easily done by
adding the constraint MP [0][2] + MP [1][6] ≤ 1. However, in many cases we can
safely remove the transition P ({0, 1}) = {2, 6}, which includes, among others,
the configuration P (0) = 6 and P (1) = 2. Being allowed to remove the transition
from the first set to the second one, depends on the characteristic and more pre-
cisely on the relation between the active key bytes. If the characteristic is valid
if and only if Δk0[0] = αΔk0[1] with α �= α−1, then we cannot ensure that swap-
ping the images of P (0) and P (1) will not affect the validity of the truncated
characteristic and thus we cannot discard the transition P ({0, 1}) = {2, 6}. On
another hand, whenever α = α−1 or if both Δk0[0] and Δk0[1] can be chosen
independently, we can immediately forbid the transition between both sets by
adding the constraint MP [0][2] + MP [0][6] + MP [1][2] + MP [1][6] ≤ 1. In prac-
tice, two key bytes have to be related only to satisfy linear constraints on specific
rounds but rarely on all the rounds. As a consequence, given a truncated differ-
ential characteristic, the corresponding constraint added to discard it consists
in forbidding at least one transition between the sets of active bytes on two
consecutive subkeys or at least one transition between actual values for powers
of P .

Note that the accurate constraint makes the model more complicated since
we might need to add constraints on P 2, P 3, etc. Removing the constraints on
them, and by then potentially discarding good permutations, leads to a simpler
and faster model which can be useful as a heuristic search algorithm. This is
actually the version we used for the two bigger versions of AES since exhausting
the whole search space would have been out of reach anyway.
An Additional Constraint for AES-128. We tried to add several constraints
to the MILP model that generates permutations for AES-128 in order to restrict
the search space while ensuring good properties. One of them permitted us to
find permutations that outperform the permutation in [15]. This constraint is
as follows: a byte of the state cannot be sent by the permutation to a column
where the ShiftRows (SR) permutation would send it. For example byte 0 cannot
be sent by the permutation to the first column while byte 4 cannot be sent to
the last column. This constraint, while being simple, is quite natural as it tries
to minimize the overlapping between ShiftRows and the key schedule in order
to avoid cancellations between the state and the key addition. As a result we
noticed that the permutation P1 found in [15] was actually quite common as we
were able to generate a very high number of permutations achieving a minimum
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of 14 active S-boxes after 5 rounds and a minimum of 19 active S-boxes after 6
rounds. More importantly, we were also able to generate permutations achieving
a minimum of 15 active S-boxes after 5 rounds and at least 20 active S-boxes
after 6 rounds.

6 Results

In this section we present the results we obtained with the algorithms and models
described in the previous sections.

6.1 Results for AES-128

We obtained several permutations reaching at least 20 active S-boxes for 6
rounds. We present two such permutations, respectively denoted by P4 and P5.
The permutation P4 was discovered with the method of Sect. 4, while P5 was
found with the method of Sect. 5.

P4 = (6, 0, 4, 9, 13, 10, 8, 3, 7, 12, 15, 14, 11, 5, 1, 2)
P5 = (3, 15, 11, 8, 2, 1, 10, 5, 4, 0, 9, 7, 6, 12, 13, 14)

The bounds for 2 to 7 rounds for these two permutations are given in Table 1.
These permutations can be compared to P1 given in [15] and to P2 and P3
given in [9]. These permutations P4 and P5 achieve better differential bounds
than the one proposed by Khoo et al. but none of them is strictly better. Still,
permutation P4 reaches similar or higher bounds up to 6 rounds and ensures
that no differential characteristic with a probability higher than 2−128 does exist
on 7 rounds (assuming the best probability of a non-trivial transition through
the S-box is 2−6 as for AES).

Table 1. Bounds on the minimal number of active S-boxes for 2 to 7 rounds for our
permutations P4 and P5 and for the three permutations given previously by Khoo et
al. [15] and Derbez et al. [9].

Rounds 2 3 4 5 6 7 Ref.
P1 1 5 10 14 19 23 [15]
P2 1 3 7 10 12 14 [9]
P3 1 3 7 11 17 22 [9]
P4 1 5 9 15 20 23 Sect. 4
P5 1 5 10 14 20 22 Sect. 5
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Other Results and Open Problems. We used Algorithm 6 on a cluster
equipped with 128 cores to scan the space of all permutations and show that
there does not exist a permutation that could lead to 18 active S-boxes for
5 rounds. We also searched with both methods of Sect. 4 and Sect. 5 to find
permutations that could give at least 16 S-boxes for 5 rounds or at least 21 S-
boxes for 6 rounds, but we were not able to find any such permutation. It is thus
an open problem if such permutations exist.

6.2 Results for AES-192 and AES-256

For the first time, we investigate how a permutation as a key schedule could
affect the resistance against differential cryptanalysis for the two bigger versions
of AES. Because the search space is very big for those two variants, we only
used the approach described in Sect. 5. Actually, it was surprisingly easy to
obtain permutations leading to much stronger variants than with the original
key schedules. In particular, while 9 and 13 rounds respectively are required
to ensure the non-existence of differential distinguishers on both the 192 and
256-bit versions of AES, we found permutations for which only 8 and 9 rounds
are enough2. For AES-256 this is 4 rounds less, something we believe is quite
impressive and supports the belief that the key schedule for this version was far
from being optimal with respect to differential cryptanalysis.

The two permutations we propose for these two versions are:

P192 = {2, 17, 19, 9, 13, 12, 23, 0, 4, 21, 18, 16, 10, 20, 22, 1, 11, 3, 7, 5,

15, 6, 14, 8}
P256 = {27, 16, 9, 25, 11, 13, 14, 18, 22, 21, 19, 23, 28, 31, 29, 3, 2, 15, 8,

24, 17, 1, 26, 0, 7, 20, 10, 4, 6, 30, 12, 5}
These two permutations are visualized below by showing how the bytes are

re-arranged inside the key state:
⎛
⎜⎜⎝

0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

7 15 0 17 8 19
21 18 23 3 12 16
5 4 22 20 11 1
10 2 13 9 14 6

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝
23 21 16 15 27 31 28 24
18 2 26 4 30 5 6 17
1 20 7 10 25 9 8 11
19 3 22 0 12 14 29 13

⎞
⎟⎟⎠

As already stated in the introduction, it is well-known that there exist
related-key boomerang attacks on the full AES-192 and on the full AES-256.
A boomerang distinguisher is composed of two differentials and its probability
2 Note that the bounds are computed assuming the master key is filled into the first

round keys. Shifting the round keys does slightly modify some of the bounds.
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mostly depends on the probability of the underlying differentials. Let denote
by nr the minimum number of active S-boxes after r rounds. A first approxi-
mation of the probability of a boomerang characteristic on R-round AES would
be minr 2−6×2(nr+nR−r). While we know this formula is not accurate, especially
since the work of Cid et al. regarding Boomerang Connectivity Table (BCT) [6],
it still gives the intuition that nr + nR−r should be as high as possible to ensure
good resistance against boomerang attacks. Hence, when searching for replace-
ment permutations for both AES-192 and AES-256 we tried to reach 22 active
S-boxes with as few rounds as possible and to optimize minr nr+nR−r for several
values of R. Since most boomerang attacks only add few rounds around their
inner distinguisher, we primarily focused on R = 10 for AES-192 and R = 12
for AES-256. We also decided empirically to favor 5 and 6 rounds respectively
to decide between two permutations (Table 2).

Table 2. Bounds on the minimal number of active S-boxes for 2 to 10 rounds for the
permutations P192 and P256.

Rounds 2 3 4 5 6 7 8 9 10
P192 0 1 5 10 13 17 22 25 28
P256 0 1 2 5 10 14 16 22 26

To test our permutations against boomerang cryptanalysis we modified the
MILP model proposed in [8] to handle a linear key schedule. We also removed
the part of the model related to the key recovery process since the complete
model was too slow to finish in a reasonable time. Hence we only searched for
the number of rounds after which there is no boomerang characteristic with a
probability higher than 2−128. As a result we obtain that 10 rounds are enough
for AES-192 and 11 rounds for AES-256. This is much better than with the
original versions of the key schedule and it is highly unlikely that our variants
could be fully broken by this cryptanalysis technique. We believe this result is
important since it supports that the number of rounds set by the designers for
all the different versions would have been enough to ensure full security of the
AES family.
Generic Bounds for Reduced-Round AES-192 and AES-256. By looking at
the bounds obtained for AES-192 and AES-256, one may wonder if it is possible
to establish in a generic way bounds on the minimum number of active S-boxes
for a modified AES with a permutation-based key schedule. As we show in Propo-
sition 1 such bounds can be easily obtained for a small number of rounds and
are valid for any key schedule of this form.
Proposition 1. For AES-256 or AES-192 used with a permutation-based key
schedule there always exist a 4-round differential characteristic with 5 or less
active S-boxes and a 2-round differential characteristic with 0 active S-box. More-
over for AES-256 (resp. AES-192) there exists a 3-round differential character-
istic with 1 (resp. less than 2) active S-boxes.
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4 1 0 0 0 0 1
MC

SB, SR

MC

SB, SR

MC

SB, SR

1 0 1

2 rounds

3 rounds

Fig. 6. A 4-round differential characteristic. The numerals represent the number of
active bytes. They are depicted in red if these bytes go through an S-box. (Color figure
online)

Proof. Let us denote by w(Ki) the number of active bytes of a subkey Ki. For
any permutation-based key schedule for AES-256 there exist

– a configuration such that (w(K1), w(K2), w(K3)) ∈ {(1, 0, 0), (1, 0, 1)};
– a configuration such that ((w(K1), w(K2)) = (0, 1).

For any permutation-based key schedule for AES-192 there exist

– a configuration such that ((w(K1), w(K2), w(K3)) = (1, 0, 1);
– a configuration such that ((w(K1), w(K2)) ∈ {(0, 1), (0, 2)}.

Together with Fig. 6, the following table finishes the proof.

# rounds w(K1) w(K2) w(K3) # active S-boxes that can be reached
4 1 0 1 5 (see the 4 rounds of Fig. 6)
4 1 0 0 4 (change the last subkey of the 4 rounds)
3 0 1 1 (see the 3 rounds of Fig. 6)
3 0 2 2 (change the last subkey of the 3 rounds)
2 0 0 (see the 2 rounds of Fig. 6)

7 Conclusion and Open Problems

We investigate in this work two strategies to find, in an automated way, alterna-
tive permutation-based key schedules for AES that resist differential related-key
attacks. The first one is based as in [9] on a cycle decomposition of permuta-
tions. The other one is based on two nested MILP models that generate and test
permutations. We were able to confirm the results of [15] with our tool, which
is an indication that our program is correct. Further, we analyzed the differen-
tial characteristics matching the lower bound and verified that for none of them
removing one of their active S-boxes was possible, which is another indication
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that the bounds obtained are exact. These arguments do not form of course a
formal proof, but providing such a proof is extremely difficult.

Our work is a step forward to the understanding of how to design good key
schedules and raises new questions. First, regarding our double-MILP model,
it is natural to ask whether adding some extra constraints to the model that
generates permutations can improve the search. For AES-128 we tried to add
several constraints related to the composition of permutations and their relations
to the ShiftRows operation. It was in fact the simplest one that gave the best
results. For the other versions of AES, as there is a discrepancy between the size
of the permutation and the size of the subkeys, it is not clear what would good
constraints for these cases be. More generally, more research efforts are needed
to better understand how good key schedules for block ciphers and tweakable
block ciphers should be designed and what the design criteria should be.
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4. Biryukov, A., Nikolić, I.: Automatic search for related-key differential character-
istics in byte-oriented block ciphers: application to AES, Camellia, Khazad and
others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 17

5. Boura, C., David, N., Derbez, P., Leander, G., Naya-Plasencia, M.: Differen-
tial meet-in-the-middle cryptanalysis. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part III. LNCS, vol. 14083, pp. 240–272. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-38548-3 9

6. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78375-8 22

7. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3 20

8. Derbez, P., Euler, M., Fouque, P., Nguyen, P.H.: Revisiting related-key boomerang
attacks on AES using computer-aided tool. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part III. LNCS, vol. 13793, pp. 68–88. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-22969-5 3

9. Derbez, P., Fouque, P., Jean, J., Lambin, B.: Variants of the AES key schedule
for better truncated differential bounds. In: Cid, C., Jacobson Jr., M. (eds.) SAC
2018. LNCS, vol. 11349, pp. 27–49. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-10970-7 2

https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1007/978-3-642-13190-5_17
https://doi.org/10.1007/978-3-031-38548-3_9
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-031-22969-5_3
https://doi.org/10.1007/978-3-030-10970-7_2
https://doi.org/10.1007/978-3-030-10970-7_2


506 C. Boura et al.

10. FIPS 197: Announcing the Advanced Encryption Standard (AES). National Insti-
tute for Standards and Technology, Gaithersburg, MD, USA, November 2001
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