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Abstract. Clustering is a significant unsupervised machine learning
task widely used for data mining and analysis. Fully homomorphic
encryption allows data owners to outsource privacy-preserving compu-
tations without interaction. In this paper, we propose a fully privacy-
preserving, effective, and efficient clustering scheme based on CKKS,
in which we construct two iterative formulas to solve the challeng-
ing ciphertext comparison and division problems, respectively. Although
our scheme already outperforms existing work, executing it on datasets
MNIST and CIFAR-10 still results in unacceptable run time and mem-
ory consumption. To further address the above issues, we propose a block
privacy-preserving clustering algorithm that splits records into subvec-
tors and clusters these subvectors. Experimental results show that the
clustering accuracy of our original algorithm is almost equivalent to the
classical k-means algorithm. Compared to a state-of-the-art FHE-based
scheme, our original algorithm not only outperforms theirs in accuracy
but is also 4 orders of magnitude faster than theirs. In experiments test-
ing our block algorithm, we conclude that the run time and memory
consumption of this algorithm are greatly reduced.

Keywords: Fully Homomorphic Encryption · clustering ·
privacy-preserving

1 Introduction

Clustering is a significant tool for data mining and data analysis. It reveals
intrinsic patterns in many real-world problems and is widely used in many fields
[4,23]. In many scenarios, different dimensions of the same records are held by
two parties respectively, that is, the dataset is split vertically. For example, a
bank wants to perform cluster analysis on customers, but the customer clustering
based on the customer information held by the bank is not accurate enough. The
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government holds private information such as the income status of citizens, which
can help banks obtain more accurate clustering results. Note that government
data is generally stored on specific servers and cannot be transmitted to any
organization or individual in any form. Additionally, these two organizations
typically communicate over a WAN, with no guarantees of latency or bandwidth.
Therefore, to obtain more accurate results, the bank (the data owner) needs to
send the data to the government (the server), and the government (the server)
performs clustering on the joint dataset and returns the result. However, sending
customer information to the government in plaintexts can lead to the disclosure
of private information. Thence, it is necessary to propose a privacy-preserving
and efficient clustering scheme.

Fully Homomorphic Encryption (FHE) is a cryptographic primitive that pro-
tects private information contained in data by performing homomorphic opera-
tions on encrypted data. FHE is more suitable for scenarios with high latency
as the FHE-based algorithms allow non-interactive setting. However, the previ-
ous FHE-based privacy-preserving clustering works [3,11,18] leak partial private
information to servers during the calculation. To avoid the disclosure of private
information during the calculation, Jäschke and Armknecht [13] propose a fully
privacy-preserving clustering scheme based on FHE. However, their approximate
ciphertext division introduces errors, and their expensive bitwise ciphertext com-
parison leads to impractical run times (about 6 days for 400 records).

To solve the above problems, in this paper, we propose a fully privacy-
preserving, effective, and efficient clustering scheme based on FHE. We choose
the approximate homomorphic encryption scheme CKKS [7] as our encryption
algorithm, which performs approximate arithmetic and is able to encode floating
point numbers. It is a challenge that CKKS does not directly support ciphertext
comparison and division used in the clustering algorithm. To achieve ciphertext
comparison, we construct an iterative formula with two fixed points of opposite
signs to approximate the sign function. For ciphertext division, we construct a
function whose root is the reciprocal of the divisor, and apply Newton’s method
to approximate the root of this function. After making minor changes to k-
means clustering algorithm, we propose a fully privacy-preserving and efficient
clustering algorithm that prevents the server from inferring private information.

Although, our fully privacy-preserving clustering algorithm has outperformed
existing schemes, executing it on some well-known large datasets (e.g. MNIST,
CIFAR-10, etc.) leads to unacceptable run time and memory consumption (about
3500 minutes and 1303GB memory on MNIST). Through theoretical analysis, the
number of clusters k is an important factor affecting the run time and memory
consumption, therefore, reducing k can greatly increase the practicability of our
algorithm. To reduce k, we split the input vectors into disjoint subvectors and
cluster these subvectors. We refer to this optimized clustering algorithm as the
block privacy-preserving clustering algorithm. In addition, this optimized scheme
also reduces the number of consecutive multiplications, which is limited by a pre-
determined parameter since CKKS is a leveled homomorphic encryption.

We first test our fully privacy-preserving clustering scheme on several pop-
ular small datasets to assess clustering accuracy and efficiency. In terms of
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accuracy, the results show that our method performs as well as the original
k-means clustering algorithm and significantly outperforms the state-of-the-art
privacy-preserving clustering work [13]. As for efficiency, we adopt two implemen-
tation optimization techniques, one batching, and the other multithreading. The
results show that these two optimizations reduce the run time by three orders of
magnitude in total, making our scheme more efficient. Then, we compare the effi-
ciency of our scheme with state-of-the-art [13]. We use our fully privacy-preserving
clustering algorithm with batching, which achieves nearly identical accuracy as
the original (plaintext) k-means clustering algorithm. Compared with the FHE-
based scheme [13], our method is about 19573x faster. In summary, our fully
privacy-preserving clustering scheme is efficient and effective compared to existing
works.

Afterwards, we test our block privacy-preserving clustering algorithm on two
large datasets (MNIST, CIFAR-10) on which our vanilla fully privacy-preserving
clustering algorithm fails to run using our server due to the long run time and
excessive memory consumption. As can be seen from the results, our block clus-
tering solution can be performed on these datasets with acceptable run time
and memory consumption. In addition, this block clustering algorithm is also
suitable for users who would like to trade a little accuracy for high efficiency.

– We construct two iterative formulas to solve the ciphertext comparison and
division problems respectively, and propose a fully privacy-preserving clus-
tering scheme based on FHE, which can ensure that no private information
is revealed during the calculation.

– To further reduce the run time and memory consumption of our algorithm,
we propose the block privacy-preserving clustering algorithm. This algorithm
divides the input vectors into disjoint subvectors and performs clustering on
these subvectors.

– We conduct a series of experiments on various widely used datasets to evaluate
our scheme. From the results, it can be concluded that our block clustering
solution performs well in terms of both efficiency and memory consumption.

2 Related Works

In recent years, privacy-preserving clustering has been widely discussed in the lit-
erature. Some literature [27,29,30,36] leverage Partially Homomorphic Encryp-
tion (PHE) and two non-colluding clouds and design an interactive protocol
between them. However, these schemes are not suitable for large data scenarios
due to the high communication cost. Some previous works [5,12,26,31,32] apply
differential privacy to protect the private information of individuals. However,
the accuracy drops significantly due to the noise introduced in the clustering
algorithm. Multiparty Computation (MPC) is proposed to implement privacy-
preserving clustering in [24,35], which requires interaction between data owners.

Focusing on FHE, Liu et al. [18] propose an outsourced clustering scheme.
Almutairi et al. [3] create an updatable distance matrix (UDM) and apply it to
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improve the efficiency of their clustering algorithm. Gheid et al. [11] present a
clustering protocol that does not use any cryptographic scheme. However, these
works leak intermediate values which contain private information, such as the
sizes of clusters or the distances between records and cluster centers. Wu et al.
[37] propose an efficient and privacy-preserving outsourced k-means clustering
scheme based on Yet Another Somewhat Homomorphic Encryption (YASHE).
There are two non-colluding cloud servers in their model, one of which is used
for addition and multiplication in ciphertexts, and the other is responsible for
comparison in plaintexts. Therefore, the server that computes in plaintexts can
infer partially private information from the data. Different from these works,
our clustering scheme is fully privacy-preserving, which allows data owners to
outsource clustering without revealing any private information.

Jäschke and Armknecht present a completely privacy-preserving clustering
scheme based on FHE in [13]. Due to the impractical run time of their algorithm,
they trade accuracy for efficiency. In other words, they create an approximate
comparison scheme by truncating the few least significant bits in ciphertexts.
However, the run time of the dataset with 400 records is still 25.79 days, which
is far from practical for large datasets. Different from their bitwise approximate
comparison scheme, our ciphertext comparison is more efficient through an iter-
ative approach. Also, their ciphertext division is approximate and introduces
errors into their clustering algorithm, whereas our ciphertext division is exact.

3 Background

3.1 Approximate Homomorphic Encryption CKKS

To achieve privacy-preserving clustering, we choose the approximate homomor-
phic encryption algorithm CKKS [7] as our cryptographic scheme. We use CKKS
instead of other RLWE-based schemes for two main reasons, one is its ability to
encode floating point numbers, and the other is its high efficiency.

Cheon et al. propose the formal definitions of CKKS in [7]. We define that
N is a power of two and R = Z[X]/(XN + 1) is a ring of integers, where Z[X]
is a polynomial ring with integer coefficients. A message m ∈ C

N/2 is firstly
encoded into a polynomial m ∈ R called plaintext. Let L be a level parameter
and ql = 2l for 1 ≤ l ≤ L. We denote Rq = Zq[X]/(XN + 1) as a modulo-q
quotient ring of R. The modulo q operation on each element of Rq is denoted
as [·]q. The distribution Xs = HWT (h) outputs a polynomial with coefficients
{−1, 0, 1}, whose Hamming weight is h. The distributions Xenc and Xe are the
discrete Gaussian distribution.

Set the secret key to be sk ← (1, s) and the public key to be pk ← ([−a · s +
e]qL , a), where s ← Xs, a ← U(RqL), and e ← Xe. To encrypt the plaintext m,
we can compute c = [v · pk + (m + e0, e1)]qL , where v ← Xenc and e0, e1 ← Xe.
The ciphertext c = (c0, c1) is decrypted by calculating m′ = [c0 + c1 · s]ql .

CKKS is a leveled homomorphic encryption, which means that this homo-
morphic encryption scheme limits the number of consecutive multiplications by
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a pre-determined parameter. Cheon et al. [6] extend CKKS to a fully homomor-
phic encryption scheme by proposing a bootstrapping algorithm that can refresh
low-level ciphertexts. The input of the bootstrapping algorithm is a ciphertext
with the lowest modulus c ∈ R2

q1 and the output is a ciphertext with a refreshed
modulus c′ ∈ R2

qL′ , where L′ < L. And the results of decrypting c and c′ are
almost equal.

3.2 Newton’s Method

Newton’s method is an approximate root-finding algorithm. This method can
solve equations of the form f(x) = 0, where f is a real-valued function and the
derivative of f is denoted by f ′.

Suppose x0 ∈ [a, b] is an initial guess for a root of f , denoted as r. We find
the line tangent to f(x) at x = x0 and compute the intersection of the x-axis
with this tangent, denoted by (x1, 0). x1 = x0 − f(x0)

f ′(x0)
, where x1 is a better

approximation of r than x0. Repeat the above steps to continuously refine the
approximation, and xn+1 can be computed as follows [10]:

xn+1 = xn − f(xn)
f ′(xn)

(1)

If Newton’s method converges on [a, b], a sufficiently accurate value can be
reached when the number of iterations is large enough [25]. That is lim

n→+∞ xn = r.

4 System Architecture and Threat Model

4.1 System Architecture

In our system architecture, there are two actors (server and data owner). The
dataset is split vertically, with the server and the data owner holding different
dimensions of the same records. The joint dataset, denoted D, has n records of
m dimensions. We assume that the dataset D1 held by the data owner contains
n records of m1 dimensions, and the dataset D2 owned by the server contains
the same n records of m2 dimensions, where m = m1 + m2. Since the private
set intersection technique has been proposed in previous work, we can suppose
that D1 and D2 are already aligned. Therefore, D = D1||D2.

In the scenario we describe, to get better clustering results, the data owner
has to send D1 to the server, which executes the clustering algorithm on the
joint dataset D. The server is untrusted, which means it tries to infer private
information from the data, thus the data owner needs to outsource the clustering
to the server in ciphertexts (Fig. 1).

Before exploiting the outsourced clustering service, the data owner needs to
generate the secret key sk kept private by itself as well as the public key pk
and the evaluation key evk both shared with the server. Then, the data owner
encodes n records into plaintexts and encrypts these plaintexts into ciphertexts.
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Fig. 1. Our System Architecture

After that, the data owner sends these ciphertexts and some parameters to the
server. Among them, the parameters include m1, the number of clusters denoted
by k, and the number of iterations for clustering denoted by T . After receiv-
ing these ciphertexts and parameters, the server executes k-means clustering in
ciphertexts and returns the ciphertext results to the data owner. Finally, the
data owner decrypts the results and obtains the labels of all records through a
simple calculation.

4.2 Threat Model

In this paper, we consider a semi-honest security model, which means that the
server and the user strictly follow the protocol, but they may try to infer private
information about the datasets D1 and D2. We assume that m1, k, T are the pub-
lic system parameters known by both parties: m1 only represents the dimensions
of the records owned by the data owner, and k, and T are the parameters for
clustering. Furthermore, we consider the communication channel to be insecure,
which means that eavesdropping attacks are possible.

In our protocol, D1 is homomorphically encrypted locally and transmitted to
the server as ciphertexts for clustering. Therefore, an adversary eavesdropping
the communication channel or the server cannot deduce private information from
the encrypted D1. In addition, all records in D2 are not sent to the user in any
form, so the user cannot infer any private information from D2.

Baiyu and Micciancio [16] point out that CKKS does not satisfy indistin-
guishability under chosen plaintext attacks with decryption oracles (IND-CPAD)
security. However, chosen plaintext attacks with decryption oracles cannot occur
in our system, since (1) only the data owner can choose the plaintexts to be
encrypted; (2) no ciphertext and the corresponding plaintext are sent to the
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server simultaneously; (3) the data owner never sends the decryption results to
the server.

4.3 Security

In this paper, our goal is to achieve a simulation-based security definition.

Definition. A protocol Π between a data owner having as input a dataset D1

and a server having as input a dataset D2 is a cryptographic clustering protocol
if it satisfies the following guarantees:

– Correctness. On each input dataset D1 of the data owner and each dataset
D2 held by the server, the output of the data owner at the end of the protocol
is the correct clustering result on the joint dataset.

– Security:

• We require that a corrupted, semi-honest data owner does not learn any-
thing about the input D2 of the server. Formally, we require the existence
of an efficient simulator SimC such that ViewΠ

C ≈c SimC(D1, out), where
ViewΠ

C denotes the view of the data owner in the execution of Π and out
denotes the output of the clustering.

• We also require that a corrupted, semi-honest server does not learn any-
thing about the input D1 of the data owner. Formally, we require the
existence of an efficient simulator SimS such that ViewΠ

S ≈c SimS(D2),
where ViewΠ

S denotes the view of the server in the execution of Π.

5 Fully Privacy-Preserving Clustering Scheme Based
on FHE

In this section, we propose a fully privacy-preserving clustering scheme based
on FHE algorithm CKKS. We choose Lloyd’s algorithm to solve the k-means
clustering problem. The reasons for choosing Lloyd’s algorithm are (1) it is simple
to implement; (2) it has effective local fine-tuning capability [9]. However, CKKS
cannot directly support division and comparison in ciphertexts, which are used in
Lloyd’s algorithm. Therefore, we adopt iterative method and Newton’s method
to solve ciphertext comparison and division respectively. After making minor
changes to Lloyd’s algorithm, we implement a fully privacy-preserving clustering
algorithm.

5.1 Preliminaries

The goal of k-means clustering is to partition the dataset into k sets [21]. Lloyd’s
algorithm [19] can solve the k-means clustering problem and is one of the most
extensively used clustering algorithms for statistical data analysis.

The dataset D held by the data owner contains n records denoted t1, . . . , tn.
Each record ti is an m-dimensional real vector, denoted as ti = (ti1, . . . , tim) ∈
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Algorithm 1: The Lloyd’s algorithm
1 Input n, m, k, T , D = {t1, . . . , tn}
2 Initialize centroids c1, . . . , ck randomly

repeat T times
3 Calculate distance of each record to each centroid

diffij ← ∑
q(tiq − cjq)

2

(i = 1, . . . , n, j = 1, . . . , k, q = 1, . . . , m)
4 Find the closest centroid to each record

labeli ← j with minimal diffij

(i = 1, . . . , n, j = 1, . . . , k)
5 Count the number of records in each cluster

cntj ← the number of i-s where labeli = j
(i = 1, . . . , n, j = 1, . . . , k)

6 Update centroids

cj ←
∑

i ti
cntj

where labeli = j

(i = 1, . . . , n, j = 1, . . . , k)

7 Output label and c1, . . . , ck

R
m. Lloyd’s algorithm divides the dataset into k clusters u1, . . . , uk, whose cen-

troids are denoted by c1, . . . , ck, where ci = (ci1, . . . , cim) ∈ R
m. The complete

Lloyd’s algorithm is shown in Algorithm 1.
Since we are concerned with the vertical partition scenario, for each record ti,

the data owner holds ti1, . . . , tim1 and the server holds ti(m1+1), . . . , tim. Accord-
ing to our threat model (described in Sect. 4.2), the data owner only provides
encrypted ti1, . . . , tim1 to the server, so the operation between ciphertext and
plaintext is involved in Step 3 because ti(m1+1), . . . , tim is in plaintexts. Since
CKKS supports addition, subtraction, and multiplication between ciphertext
and plaintext, and the results of these operations are in ciphertexts, the dis-
tance array diff is in ciphertexts.

In addition, in Step 3, since CKKS cannot directly support square root and
absolute value operations, we calculate the square of the Euclidean distance
between each record ti and each cluster center cj as diffij . Each element diffij

in diff array is only used to compare with some other elements, so squaring all
elements in diff does not affect the result. Step 4 to 6 must be calculated in
ciphertexts, and the ciphertext comparison in Step 4 and the ciphertext division
in Step 6 are challenging for CKKS.

5.2 Ciphertext Comparison

In Step 4, we compare the distance between each record and each centroid to find
the closest centroid for each record. Since CKKS does not support comparison
in ciphertexts directly, the label array cannot be simply calculated, and we need
to transform it into some HE-friendly representation.

Considering that the result of Step 4 is used to count the number of records
in each cluster and update centroids (Step 5 and 6), it is natural to construct a
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one-hot encoding vector for each record. The one-hot encoding vector of record
ti is denoted as minIndexi (i = 1, . . . , n):

minIndexi = (0, . . . , 0, 1, 0, . . . , 0)

minIndexij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, j = labeli
(min{diffi1, . . . ,diffik} = diffij)

0, j �= labeli
(diffij is not the minimum)

(2)

where only the labeli-th dimension of minIndexi is set to 1 and all other dimen-
sions are 0. In other words, minIndexij equals one only when cj is the closest
centroid to ti. After this transformation, Steps 5 and 6 can be immediately
rewritten as follows:

Step 5: cntj =
n∑

i=1

minIndexij (3)

Step 6: cj =

n∑

i=1

ti · minIndexij

cntj
(4)

Now the challenge is to calculate the minIndex array in ciphertexts. And we
introduce the sign function sgn(x) to facilitate comparison, where sgn(x) = 1 if
x > 0, sgn(x) = 0 if x = 0, and sgn(x) = −1 if x < 0.

During the ciphertext calculation process, the server will not obtain any
intermediate results and related information. Therefore, in order to find the
cluster center closest to the record ti and mark the corresponding dimension of
minIndexi as 1, the server needs to compare the k numbers pairwise. Obviously,
if diffij is the minimum value, then for any q ∈ [1, k] and q �= j, sgn(diffiq−diffij)+1

2
always equals 1. If diffij is not the minimum, then there exists q ∈ [1, k] and
q �= j such that sgn(diffiq−diffij)+1

2 = 0. Therefore, to compute minIndexij , we
compare diffij with the other k − 1 distance differences and multiply all the
results:

minIndexij =
k∏

q=1, q �=j

sgn(diffiq − diffij) + 1
2

(5)

According to Eq. 5, if diffij is the minimum value over {diffi1, . . . ,diffik},
then all k − 1 factors of minIndexij equal to 1, i.e., minIndexij = 1; otherwise,
minIndexij has at least one 0 in its multiplication factors, thus minIndexij = 0.
Therefore, minIndexij in Eq. 5 satisfies the definition in Eq. 2.

However, sgn(x) cannot be computed in CKKS directly since it is not a
polynomial function. Therefore, the goal is to approximate sgn(x) using HE-
friendly operations. We use the iterative method to solve the above problem. We
construct an iterative formula containing two fixed points, requiring that the
signs of these two fixed points be different:

ai+1 = ϕc(ai) = −3
2
ai(ai − 1)(ai + 1) (i ∈ N) (6)
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We can determine the convergence of Eq. 6 with a0 ∈ (−1, 1):

lim
n→+∞

√
3an =

⎧
⎪⎨

⎪⎩

1, a0 ∈ (0, 1)
−1, a0 ∈ (−1, 0)
0, a0 = 0

(7)

Therefore, the domain of Eq. 6 is defined as (−1, 1), and the initial value a0 is
chosen as the input to the sign function denoted as xin, where xin ∈ (−1, 1).

Algorithm 2: The sign function in ciphertexts
Input: xin, Rc

Output: the approximate value of sgn(xin)
1 a0 = xin

2 for i ← 0 to Rc − 1 do
3 ai+1 = − 3

2
ai(ai − 1)(ai + 1)

4 return
√

3aRc

We can also handle the case where xin are not in the range (−1, 1). Suppose
x′
in is in (−M,M) for some constant M . In this case, the initial value a0 is

assigned as x′
in/M . Since the above ciphertext sign function only contains HE-

friendly operations, CKKS can directly compute it.

5.3 Ciphertext Division

In Step 6, we need to divide the sum
n∑

i=1

ti · minIndexij by the count cntj to get

the centroid cj . We apply Newton’s method (described in Sect. 3.2) to solve the
ciphertext division. We define the output of the function div(a) as the reciprocal
of a, where a is in (0,M) for some constant M . Construct a function f(x), whose
root is 1

a , such as: f(x) = 1
x −a. And we utilize Newton’s method to approximate

the root of this function. According to Eq. 1, we can obtain the iterative formula:

xi+1 = ϕd(xi) = xi − f(xi)
f ′(xi)

= xi(2 − a · xi) (8)

We need to determine the domain (a neighborhood of 1
a ) where the above

iteration converges, and choose an appropriate initial value x0 in the domain.
Equation 8 converges if x0 = 1

a or ∃δ > 0,∀x ∈ ( 1
a − δ, 1

a + δ) \ { 1
a} satisfy

∣
∣
∣
∣ϕd(x) − 1

a

∣
∣
∣
∣ <

∣
∣
∣
∣x − 1

a

∣
∣
∣
∣ (9)

According to the above criteria, we can calculate that the domain is (0, 2
a ). Since

0 < a < M , we choose x0 = 2
M ∈ (0, 2

a ) as the initial value. Therefore, we utilize
this iteration to construct our ciphertext division algorithm (Algorithm 3).
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Algorithm 3: The ciphertext division algorithm
Input: a, M , Rd

Output: the approximate value of 1
a

1 x0 = 2
M

2 for i ← 0 to Rd − 1 do
3 xi+1 = xi(2 − a · xi)

4 return xRd

The above complete division algorithm uses only subtractions and multipli-
cations in ciphertexts, which are directly supported by the CKKS homomorphic
encryption. Hence cj =

∑n
i=1 ti · minIndexij · div(cntj), where cntj ∈ (0, n].

5.4 Converting the One-Hot Vectors to Label in Plaintexts

To achieve Step 5 and 6, we convert the label array into the one-hot encoding
array minIndex. After receiving and decrypting the minIndex array, the data
owner needs to extract the label from the minIndex. The data owner finds the
index of the element which equals one in minIndexij for each record i as labeli:

labeli = j s.t. minIndexij = 1 (10)

5.5 The Complete Algorithm for Privacy-Preserving Clustering

We summarize the above steps and describe the complete algorithm for fully
privacy-preserving clustering. Our scheme contains only HE-friendly operations
and is completely secure which means that no private information is revealed to
the server during calculation. In Step 2, the data owner randomly generates k
cluster centers c1, . . . , ck and encrypts them.

In Step 3, the server calculates the distance between each record ti and each
cluster center cj , denoted as diffij . According to our problem setting, the records
in D1 are in ciphertexts, the records in D2 are in plaintexts, and the centroids are
in ciphertexts. CKKS directly supports addition, subtraction, and multiplication
between ciphertext and plaintext, and the results of these operations are in
ciphertexts. Therefore, all terms of sum are in ciphertexts, and diffij is also
in ciphertexts. In Step 4, the server compares diffij with diffiq by computing
sgn(diffiq − diffij) (Algorithm 2), where 1 ≤ q ≤ k, q �= j. Then, the server
multiplies the k − 1 results to get minIndexij , where minIndexij = 1 when diffij

is the minimum value, and minIndexij = 0 otherwise.
In Step 5, the server counts the number of records belonging to each cluster.

In Step 6, the server recalculates each cluster center cj . Afterwards, the server
repeats Step 3 to 6 for T iterations. In Step 7, the server sends the encrypted
minIndex array to the data owner. After decrypting minIndex, the data owner
extracts the label array according to Eq. 10.
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Algorithm 4: The fully privacy-preserving clustering algorithm
1 Input n, m = m1 + m2, k, T

D1 = {t11, . . . , t1m1 , . . . , tn1, . . . , tnm1} (in ciphertexts)
D2 = {t1(m1+1), . . . , t1m, . . . , tn(m1+1), . . . , tnm} (in plaintexts)

2 Data owner generates centroids c1, . . . , ck in [0, 1]m randomly and sends them to
the server in ciphertexts
repeat T times

3 Calculate distance of each record to each centroid
for (i, j) in {1, . . . , n} × {1, . . . , k} do

diffij ←
m∑

q=1

(tiq − cjq)
2

4 Calculate the minIndex array
for (i, j) in {1, . . . , n} × {1, . . . , k} do

minIndexij ←
k∏

q=1,q �=j

sgn(diffiq−diffij)+1

2

5 Count the number of records in each cluster
for j ← 1 to k do

cntj ←
n∑

i=1

minIndexij

6 Update centroids
for j ← 1 to k do

cj ←
n∑

i=1

(ti · minIndexij · div(cntj))

7 Output minIndex (in ciphertexts)
Data owner extracts label from minIndex

5.6 Security Proof

The view of the server includes the ciphertext dataset from data owner, the
dimension of the input dataset, the number of clusters, and the number of itera-
tions for clustering. When the data owner is corrupted, Sim receives the plaintext
parameters m1, k, T , the public key and the ciphertext HE.Enc(pk,D1) from the
data owner. In return, it sends HE.Enc(pk, res) for a randomly chosen res from
R

n, and the data owner cannot distinguish between real-world distributions and
simulated distributions.

The view of the data owner includes the input dataset of the data owner,
the dimension of the input dataset, the number of clusters, and the number
of iterations for clustering. When the server is corrupted, Sim sends the plain-
text parameters m1, k, T , a randomly chosen inp from R

n and the public key
HE.Enc(pk, inp) to the server. The server cannot distinguish between real-world
distributions and simulated distributions.
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6 An Optimized Algorithm

In this section, to further reduce the run time and memory consumption, we
propose an optimized clustering algorithm called block privacy-preserving clus-
tering algorithm. We have described a fully privacy-preserving clustering scheme
in Sect. 5.5, however, when we test this algorithm on the popular MNIST dataset
[15], the results show that the run time and memory consumption are unaccept-
able (about 3500 min and 1303 GB memory).

In terms of run time, since ciphertext multiplication is a time-consuming
operation, multiple multiplications dramatically affect the efficiency of our clus-
tering algorithm. On the other hand, CKKS is a leveled homomorphic encryption
and limits the multiplication level by a pre-determined parameter. Multiple con-
secutive multiplications are also unfriendly to CKKS. In our algorithm, comput-
ing the minIndex array (Step 4 in Algorithm 4) requires multiple multiplications
in ciphertexts. This step contains two parts: evaluating the sign function using
the difference of two distances and multiplying the evaluation results. And there
are Θ(nk2) ciphertext multiplications in the second part of this step, where
Θ(k) consecutive multiplications are required to calculate each element in the
minIndex array. That is, reducing k can reduce run time.

In terms of memory consumption, in order to calculate the minIndex array
with multithreading enabled, Θ(nk2) memory is required. That is, when k is
large, calculating the minIndex requires a large amount of memory.

However, with the advent of the big data era, the scale of the dataset to be
clustered is gradually increasing, and the number of clusters k of the dataset
becomes larger. Therefore, it is necessary to propose a new clustering algorithm
that reduces run time and memory consumption by reducing k.

Fig. 2. Schematic Diagram of Splitting the Dataset
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6.1 Block Clustering Scheme

To reduce k, we split the input vectors into disjoint subvectors and cluster these
subvectors. As shown in Fig. 2, each record ti in the dataset D is divided into d
subvectors denoted ri1, . . . , rid. Each subvector riq is of m/d dimensions, where
m is a multiple of d and q is in [1, d]. We denote the set of subvectors r1q, . . . , rnq
as the subdataset Dq.

We perform our privacy-preserving clustering scheme on each subdataset Dq

independently, and each subvector riq is identified by a label Liq. The label Li of
the record ti is defined as the Cartesian product of the labels of its corresponding
subvectors:

Li = Li1 × Li2 × . . . × Lid (11)

Since all subdatasets are equally important, they have the same number of
subclusters. In that case, each subdataset is divided into k′ subclusters, where

k′ = d
√

k (12)

We assume that k′ is always a positive integer. The centroid cj is the concate-
nation of the centroids of its corresponding subclusters.

We now summarize our complete scheme for block privacy-preserving cluster-
ing. Before delivering the ciphertexts and the parameters to the server, the data
owner needs to preprocess the dataset D, including dividing ti to generate riq
and calculating k′. Then, the fully privacy-preserving block clustering algorithm
can be described as Algorithm 5.

In Step 7, the data owner needs to extract the label of each subvector from
minIndex′ according to the method described in Sect. 5.4. Afterward, the data
owner obtains the label of each record by calculating the Cartesian product of
its corresponding subvector labels according to Eq. 11.

The above algorithm only contains HE-friendly operations and does not break
our threat model in Sect. 4.2. As shown in Table 1, we compare the number of
multiplications in each calculation step between Algorithm 4 and Algorithm 5.
The efficiency of the block clustering algorithm has been significantly improved,
especially when calculating the minIndex array.

The number of consecutive multiplications also decreases in Algorithm 5.
When calculating each element in minIndex array, the number of consecutive
multiplications decreases from Θ(k) to Θ( d

√
k). Additionally, memory consump-

tion drops from Θ(nk2) to Θ(nk
2
d ).

Although Algorithm 5 can greatly reduce the run time and memory con-
sumption, it loses the clustering accuracy compared to Algorithm 4. In addition,
Algorithm 5 is more suitable for datasets whose records are relatively evenly
distributed in m-dimensional space.

6.2 Block Clustering Scheme with Cluster Selection

The fully privacy-preserving block clustering scheme described in Sect. 6.1 is
efficient. However, Algorithm 5 only works on datasets with a certain k. When
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Algorithm 5: The block privacy-preserving clustering algorithm
1 Input n, m, k′, T , d

r11, . . . , r1d, r21, . . . , r2d, . . . , rn1, . . . , rnd (Figure 2)
for q ← 1 to d do

2 Data owner generates centroids c′
1, . . . , c

′
k′ in [0, 1]m/d randomly and sends

them to the server in ciphertexts
repeat T times

3 Calculate distance of each record to each centroid
for (i, j) in {1, . . . , n} × {1, . . . , k′} do

diff ′
ij ←

m/d∑

l=1

(riql − c′
jl)

2

4 Calculate the minIndex′ array
for (i, j) in {1, . . . , n} × {1, . . . , k′} do

minIndex′
ij ←

k′∏

l=1,l�=j

sgn(diff′
il−diff′

ij)+1

2

5 Count the number of records in each cluster
for j ← 1 to k′ do

cnt′
j ←

n∑

i=1

minIndex′
ij

6 Update centroids
for j ← 1 to k′ do

c′
j ←

n∑

i=1

(riq · minIndex′
ij · div(cnt′

j))

7 Send minIndex′ (in ciphertexts), and the data owner extracts label′ from
minIndex′

for any d, there is no positive integer k′ such that k = k′d, this algorithm fails.
Therefore, to make our block clustering algorithm applicable to datasets with
arbitrary k, we add a function called cluster selection to it.

We still split each input vector into d disjoint subvectors, where each subvec-
tor is of m/d dimensions. Then we cluster each subdataset (defined in Sect. 6.1)
separately and compute the Cartesian product of corresponding subvectors’
labels to obtain the label for each vector according to the Eq. 11. Since d

√
k

is not a positive integer, we require each subdataset to be divided into ks sub-
clusters, where ks > d

√
k and ks ∈ N

∗, and the specific value of ks is determined
by the data owner. Thus, the dataset D is partitioned into ks

d clusters, where
ks

d > k.
Since the goal of the data owner is to divide D into k clusters, we now propose

the cluster selection algorithm to remove ks
d − k redundant clusters. We sort

all ks
d clusters according to the number of records in each cluster from most

to least, then keep the top k clusters and record their centroids. The records
that do not belong to these top k clusters are called remaining records and need
to be reassigned to these clusters. We separately calculate the distance between
each remaining record and each centroid, then assign each remaining record to
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Table 1. The number of multiplications involved in each step of Algorithm 4 and
Algorithm 5 in each step. Note that no multiplication is needed in Step 5.

Step 3 (distances) Step 4 (minIndex) Step 6 (centroids)

Algorithm 4 Θ(nmk) Θ(nk2) Θ(nk)

Algorithm 5 Θ(nmk
1
d ) Θ(dnk

2
d ) Θ(dnk

1
d )

the nearest centroid. Afterward, the centroids of these k clusters need to be
recalculated.

We recommend that the data owner implement the cluster selection algo-
rithm. The reason is that this algorithm is time-consuming in ciphertexts, but
requires a small amount of computation resource in plaintexts. In addition, the
communication costs remain almost unchanged.

The data owner needs to own all dimensions of the records and centroids
to guarantee correct clustering of the remaining records. Therefore, our block
clustering scheme with plaintext cluster selection only works if the data owner
possesses the complete dataset. At this time, the data owner outsources cluster-
ing in order to utilize the computation resource of the server. Only Algorithm 4
and Algorithm 5 support the user to simultaneously utilize the server’s dataset
and computation resource.

7 Experiment Results

7.1 Experiment Setup

Server Configuration. We use the Lattigo library [1] (version 4.1.0) to imple-
ment our fully privacy-preserving clustering algorithm. We choose a Ubuntu-
20.04 server with an Intel(R) Xeon(R) CPU E5-2620 v4 (2.1 GHz, 32 threads)
and 100GB RAM to perform all experiments. Our approach is written in Go.

Datasets. We select several datasets from different sources to evaluate our
algorithm. G2 [9] is a series of synthetic datasets, each of which contains 2048
points divided into two Gaussian clusters of equal size. We choose G2-1-20, G2-2-
20, G2-4-20, G2-8-20, and G2-16-20 for experiments, where 1,2,4,8,16 represent
the dimensions of the dataset.

The fundamental clustering problems suite (FCPS) [33] contains nine dif-
ferent datasets, and we choose seven of them which are widely used in
[8,17,20,28,34]. As shown in Table 2, these datasets with known labels are low-
dimensional and simple, and each of them solves a certain problem in clustering.

To demonstrate the effectiveness of the scheme described in Sect. 6, we select
two large datasets to test our block clustering scheme. The MNIST dataset [15]
of handwritten digits contains 60000 training images and 10000 testing images,
where m = 784. We run our algorithm on the testing images with 10 clusters.
The CIFAR-10 dataset [14] consists of 60000 images divided into 10 clusters. We
choose 10000 test images to perform our approach.
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Table 2. The datasets chosen from FCPS [33].

Dataset n m k Main Problems

Chainlink 1000 3 2 Not linearly separable

EngyTime 4096 2 2 Gaussian mixture

Hepta 212 3 7 None

Lsun 400 2 3 Different variances and shapes

Tetra 400 3 4 Almost touching

TwoDiamonds 800 2 2 Touching clusters

WingNut 1016 2 2 Non-uniform density

Parameter Selection. We choose the following parameters for our experi-
ments:

– Parameters of CKKS: We use a default parameter set in the Lattigo library
called PN16QP1761CI. logN is 16, which means that at most 65536 values
can be batched simultaneously. The multiplication level is 34, indicating that
the number of consecutive multiplications cannot exceed 34.

– Number of iterations: 5, 10, 20.

In all experiments, the initial k centroids are uniformly and independently
randomly sampled from [0, 1]m. We run each experiment with five different ran-
dom seeds and average the results.

Since we focus on the vertical partition scenario, the input to Algorithm 4
consists of encrypted dataset D1 and unencrypted dataset D2. The operation
between plaintext and ciphertext is faster than that between ciphertext, there-
fore, in order to make the result more convincing, we encrypt all dimensions of
the records in all experiments.

7.2 Clustering Accuracy

In this section, we conduct experiments on datasets G2 and FCPS to test the
clustering accuracy of the algorithm described in Sect. 5. We then compare the
accuracy of our approach with the state-of-the-art privacy-preserving clustering
algorithm proposed in [13].

We separately run our algorithm and vanilla Lloyd’s algorithm on the
datasets and count the number of records that are correctly clustered. Then
we calculate the clustering accuracy by dividing the number of correctly clus-
tered records by n. In this part, we choose T = 5 for G2 and T = 10 for FCPS.
Since the order of clusters in the experiments may be different from that in the
ground truths, we enumerate full permutations of {1, . . . , k} as the mapping of
labels from the algorithm outputs to the ground truth, and find the one with
most correctly clustered records.

As shown in Table 3, for all datasets, the clustering accuracy of our approach
is almost identical to that of Lloyd’s algorithm. On most datasets, our algorithm
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Table 3. Clustering accuracy of our algorithm and Lloyd’s algorithm on G2 and FCPS.

Dataset Our Algorithm Lloyd’s Algorithm Difference

G2-1-20 99.3% 99.4% 0.1%

G2-2-20 100% 100% 0.0%

G2-4-20 100% 100% 0.0%

G2-8-20 100% 100% 0.0%

G2-16-20 100% 100% 0.0%

Chainlink 66.5% 65.9% −0.6%

EngyTime 94.9% 95.1% 0.2%

Hepta 85.8% 85.4% −0.4%

Lsun 77.5% 76.8% −0.7%

Tetra 100% 100% 0.0%

TwoDiamonds 100% 100% 0.0%

WingNut 96.3% 96.4% 0.1%

correctly clusters the same number of records as Lloyd’s algorithm. Therefore,
we conclude that adding privacy protection to the clustering scheme does not
affect accuracy.

We compare the clustering accuracy of our approach with that of the approx-
imate algorithm proposed in [13] and record the results in Table 4. Since the
bitwise ciphertext comparison used in their algorithm would lead to unaccept-
able run time, they propose an approximate version that improves efficiency by
truncating several least significant bits. They compute the difference in clus-
tering accuracy between the exact clustering and their approximate algorithm
to demonstrate the accuracy (exact − approximate). In addition, we calculate
the difference in clustering accuracy between Lloyd’s algorithm and ours, and
compare our results to theirs on the four datasets, as shown in Table 4. There
are two negative numbers in the second line, indicating that the accuracy of our
scheme is higher than that of Lloyd’s algorithm. For these four datasets, our
algorithm obviously outperforms theirs in clustering accuracy.

Table 4. Accuracy difference between exact algorithm and privacy-preserving version

Lsun Hepta Tetra WingNut

Approximate Version in [13] 3.5% 4% 13% 1.25%

This Work −0.8% −0.5% 0% 0.1%

7.3 Run Time

In this section, we test the run time of our fully privacy-preserving clustering
algorithm described in Sect. 5. Then, we compare the efficiency of our algorithm
with that of the state-of-the-art FHE-based clustering scheme [13].
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Due to the inefficiency of direct implementation based on CKKS, we optimize
our method for efficiency by parallelizing ciphertext computation (a.k.a. batching)
and multithreading. First, we leverage the SIMD capability of CKKS to parallelize
operations. Denote N as the ring dimension, which defines the number of coef-
ficients of the plaintext/ciphertext polynomials. Since we choose the conjugate-
invariant variant of CKKS for the ring type, at most N real values of the plain-
text can be packed into one ciphertext. In Algorithm 4, the calculation of the diff
array and the minIndex array can be parallelized min(n,N) times by simply pack-
ing min(n,N) coordinates into a single ciphertext. When counting the number of
records in each cluster, we sum the n values (w.l.o.g. assuming n ≤ N) in the
packed minIndex array, which can be solved by rotations and additions.

Second, we can further improve the efficiency of our algorithm by multi-
threading. All operations in our algorithm are independent of each cluster. When
computing the distances and the minIndex array, the operations are independent
of each record. Therefore, we can achieve multithreading across different batches
and different clusters.

We execute the unoptimized algorithm and the algorithm with batching and
multithreading on G2 and FCPS respectively, then record the results in Table 5.
In this part, we choose T = 5 for G2 and T = 10 for FCPS. As shown in Table 5,
batching and multithreading can significantly reduce the run time of our scheme,
and the total speedup of these two optimizations reaches a maximum value of
about 6426x on G2-16-20. As shown in Table 6, our optimized algorithm is 4∼5
orders of magnitude slower than vanilla Lloyd’s algorithm. It is known that FHE-
based algorithms are generally 9 orders of magnitude slower than corresponding
plaintext algorithms [22]. We conclude that our privacy-preserving clustering
scheme is efficient.

Table 5. Run time of G2 and FCPS with and without batching

Dataset Without Optimization4 With Optimizations Speedup

G2-1-20 271.0 h 222.41 s 4386 x

G2-2-20 305.5 h 221.11 s 4974 x

G2-4-20 374.6 h 250.20 s 5390 x

G2-8-20 512.6 h 311.55 s 5923 x

G2-16-20 788.8 h 441.89 s 6426 x

Chainlink 106.3 h 421.09 s 909 x

EngyTime 488.5 h 394.87 s 4454 x

Hepta 440.2 h 1213.90 s 1305 x

Lsun 129.7 h 442.65 s 1055 x

Tetra 239.6 h 620.42 s 1390 x

TwoDiamonds 95.5 h 397.73 s 864 x

WingNut 121.2 h 395.45 s 1103 x

To avoid the long run time, we run several synthetic datasets with small
sizes and fit the run time in the table using least squares.
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Table 6. Plaintext run time of vanilla Lloyd’s algorithm on G2 and FCPS

G2-1-20 G2-2-20 G2-4-20 G2-8-20 G2-16-20 Chainlink

0.042 s 0.048 s 0.060 s 0.084 s 0.130 s 0.050 s

EngyTime Hepta Lsun Tetra TwoDiamonds WingNut

0.177 s 0.025 s 0.023 s 0.031 s 0.036 s 0.045 s

We then compare the efficiency of our algorithm with that of [13] on the Lsun
dataset. The run time reported in [13] is single-threaded. Thus, to achieve a fair
comparison, we test the run time of our algorithm with a single thread. Since our
method does not lose clustering accuracy, we choose the exact version of their
work for comparison. As shown in Table 7, our approach spends 1606.36 s on the
Lsun dataset, which is 19573x faster than [13]. Furthermore, our approach is
still 1258x faster than their approximate algorithm (the fastest version in [13]),
which trades accuracy for efficiency. To sum up, our fully privacy-preserving
clustering scheme significantly outperforms [13] in terms of efficiency.

Table 7. Efficiency comparison with [13] on Lsun.

Work Version Threads Run Time (T = 10)

Jäschke et al. [13] exact one 363.90 days

Jäschke et al. [13] approximate one 154.70 h

This work exact one 1606.36 s

7.4 Performance of Block Clustering Scheme with Cluster Selection

In this section, we evaluate the efficiency, memory consumption, and accuracy
of our block clustering scheme described in Sect. 6. To demonstrate the superior
performance of our block clustering algorithm, we select two large-scale, widely
used datasets (MNIST, CIFAR-10) to test the run time and memory consump-
tion. For CIFAR-10, we use the resnet20 model [2] to extract the feature vectors
with m = 64. We choose T = 20 for all experiments in this section. Since k = 10
for MNIST and CIFAR-10, there is no d greater than 1, making d

√
k a positive

integer. Therefore, we execute our block clustering scheme with cluster selection
described in Sect. 6.2 on them, where d = 4, ks = 2 for MNIST, and d = 2, ks = 4
for CIFAR-10.

As shown in Table 8, we first measure the run time and memory consumption
of our block clustering algorithm, where timeblock and memoryblock represent the
run time and memory consumption of the block clustering algorithm respectively,
and timeoriginal and memoryoriginal represent these two indicators of our vanilla
privacy-preserving clustering algorithm. Since our server configuration does not
support our original algorithm to perform on such large datasets, timeoriginal
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and memoryoriginal in Table 8 are estimated. Notably, our block clustering solu-
tion can be executed on these datasets with acceptable run time. Among them,
only 127 min and 47GB memory are required on CIFAR-10. That is, our block
clustering scheme makes it possible to outsource privacy-preserving clustering
on large datasets.

Table 8. Efficiency of block clustering scheme on MNIST and CIFAR-10

MNIST(d = 4, ks = 2) CIFAR-10(d = 2, ks = 4)

timeoriginal
2 about 3500min about 350min

timeblock 850 min 127 min

memoryoriginal
2 about 1303 GB about 226 GB

memoryblock 75 GB 47 GB

Due to insufficient memory, we run our original algorithm on several
small datasets and fit the memory consumption and run time in the
table by least squares.

We then test the clustering accuracy of our method on MNIST and CIFAR-
10. We count the number of correctly clustered records and divide them by n
to calculate the accuracy. The experimental results show that the accuracy loss
is 10.35% on MNIST and 8.55% on CIFAR-10, which can be acceptable. In
summary, our block privacy-preserving clustering algorithm is suitable for data
owners who would like to trade a little accuracy for high efficiency. Further-
more, this solution enables outsourced clustering of large-scale datasets while
preserving privacy.

8 Conclusions

We achieve ciphertext comparison by constructing an iterative formula with two
fixed points of opposite signs to approximate the sign function. The solution of
ciphertext division is to use Newton’s method to approximate the reciprocal of
the divisor. After solving the challenging ciphertext comparison and division,
we propose a fully privacy-preserving, effective, and efficient clustering algo-
rithm based on CKKS. However, executing our fully privacy-preserving clus-
tering scheme on the large-scale datasets results in unacceptable run time and
memory consumption. To further reduce the run time and memory consumption
of our algorithm, we propose a block privacy-preserving clustering algorithm that
splits records into subvectors and clusters these subvectors. Experiment results
show that our original clustering algorithm has the same accuracy as Lloyd’s
algorithm and has a huge efficiency advantage over the baseline. In experiments
testing our block clustering algorithm, it can be concluded that this algorithm
performs well in terms of both efficiency and memory consumption.
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