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Abstract. Constructing a committing authenticated encryption (AE)
satisfying theCMT-4 security notion is an ongoing research challenge. We
propose a new mode KIVR, a black-box conversion for adding the CMT-
4 security to existing AEs. KIVR is a generalization of the Hash-then-
Enc (HtE) [Bellare and Hoang, EUROCRYPT 2022] and uses a collision-
resistant hash function to generate an initial value (or nonce) and a mask
for redundant bits, in addition to a temporary key. We obtain a general
bound r/2+ tag-col with r-bit redundancy for a large class of CTR-based
AEs, where tag-col is the security against tag-collision attacks. UnlikeHtE,
the security of KIVR linearly increases with r, achieving beyond-birthday-
bound security. With a t-bit tag, tag-col lies 0 ≤ tag-col ≤ t/2 depend-
ing on the target AE. We set tag-col = 0 for GCM, GCM-SIV, and CCM,
and the corresponding bound r/2 is tight for GCM and GCM-SIV. With
CTR-HMAC, tag-col = t/2, and the bound (r + t)/2 is tight.

Keywords: Key Commitment · Context Commitment · Authenticated
Encryption · Security Proof · CTR · GCM · GCM-SIV · CCM · HMAC

1 Introduction

Authenticated encryption with associated data (AE) schemes that achieve confi-
dentiality and authenticity are essential components in symmetric-key cryptog-
raphy. The security of AE is well-studied, and the schemes usually come with
security proofs based on a formal security notion. However, AE schemes are
sometimes misused in a way beyond their promise, resulting in security prob-
lems. Committing security of AEs falls in this category and has been actively
studied in the last few years [1,5,6,9,11,15,16,21,22].

Farshim et al. initiated the theoretical study of key commitment in 2017 [15],
followed by the real-world attacks, including the multi-recipient integrity
attack that delivers malicious content to a targeted user [1,11,16] and the
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partitioning oracle attack that achieves efficient password brute-force
attacks [21]. The absence of the commitment to a secret key is the root cause of
these problems. An AE encryption ΠEnc receives a secret key K, nonce N , asso-
ciated data A, and plaintext M and generates a ciphertext ΠEnc(K,N,A,M).
Without key-committing security, an adversary can efficiently find a cipher-
text decrypted with multiple keys, i.e., ΠEnc(K,N,A,M) = ΠEnc(K ′, N ′, A′,M ′)
with K �= K ′. Unfortunately, the previous AE security notions do not support
key commitment, and there are O(1) attacks on GCM [11,16], GCM-SIV [21],
CCM [22], and ChaCha20-Poly1305 [16].

In the meantime, standardization bodies are starting to support committing
security in AEs. For example, the recent RFC draft on usage limits on AEs
considers key-committing security [19]. Similarly, the recent NIST workshop for
updating the federal standard of block-cipher modes noted explicitly that key
commitment is an additional security feature [25].

Context commitment is the generalization considering a stronger adversary.
Bellare and Hoang [6] (and Chan and Rogaway independently [9]) proposed the
security notions for context commitment. The security notions CMT-1, CMT-3,
and CMT-4 consider K �= K ′, (K,N,A) �= (K ′, N ′, A′), and (K,N,A,M) �=
(K ′, N ′, A′,M ′), respectively [6]. CMT-1 is the previous key-committing secu-
rity. CMT-3 and CMT-4 are equivalent, and they are strictly more secure than
CMT-1, covering a broader range of misuses.

As discussed above, ensuring and building AEs with committing security is an
ongoing research challenge [1,11,16,21]. Before introducing the details about the
concrete methods, we summarize the desired properties regarding this challenge,
which are also our goals in this paper.

1. We want a conversion for adding the committing security to the standard AEs.
In particular, we target a class of the AE schemes based on CTR [12], referred
to as CTRAE, that includes GCM [14], GCM-SIV [17,18], and CCM [13]. We
also target CTR-HMAC, the CTR combined with HMAC [24] comprising par-
ticular hash functions, such as SHA-256.

2. The schemes should satisfy the context-committing security, i.e., CMT-4.
3. A black-box conversion that respects the interface of the existing AEs is

preferred for maintaining compatibility with the specifications of the stan-
dardized AE schemes and the hardware already deployed in the field.

4. The bit-security level for committing security is ideally the key size k, or at
least greater than k

2 , i.e., the beyond-birthday-bound (BBB) security regard-
ing the key size. That is necessary to achieve an offline security level compa-
rable with the standard AE-security, which is basically k bits.

1.1 Research Challenges

Here, we explain that the previous works [1,11,15,16,21] cannot achieve the
above desired properties perfectly.

There is a line of works for designing a dedicated scheme with committing
security [11,15], but they are not blackbox. In particular, Farshim et al. proposed
to use a collision-resistant pseudo-random function (PRF) [15].
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Fig. 1. HtE [6] (left) and KIVR (right). The function FKIVR generates a tuple of tem-
porary key, IV, and redundant data. Mixrc is a function representing the positions of
redundant bits.

The padding fix [1] prepends zero bits at the beginning of the message and
enhances security by checking whether the prepended zero bits are successfully
recovered in decryption. This method provides excellent compatibility because
the changes to the original AE scheme are limited to messages. However, the
security of the padding fix is proved for GCM only and is limited to CMT-1.

CTX [9] converts arbitrary AEs to CMT-4 secure ones. After computing
a ciphertext C and tag T ′ using an underlying AE, it generates a new tag
T = H(K,N,A, T ′) by using a collision resistant (CR) hash function H. Unfor-
tunately, CTX’s compatibility with existing AEs is limited. In decryption, CTX
should first regenerate T ′ and then T = H(K,N,A, T ′) for comparison. Here, T ′

is an unverified tag within the original AE and is unavailable when the interface
of the original AEAD is strict, e.g., in cryptographic APIs in a hardware secu-
rity module or when there is a security policy regarding the release of unverified
plaintexts [2]. NC4, a CTX-based scheme with reduced ciphertext expansion [7],
has the same limitation.

HtE [6] shown in Fig. 1-(left) converts a CMT-1-secure AE to a CMT-4-
secure one [6]. It generates a temporary key L ← FHtE(K,N,A) using a CR
hash function FHtE, and then L is used as the key of an underlying AE. Although
HtE requires an additional CR hash function, it only changes the original AE’s
key values, thus maintaining high compatibility. The security of HtE combined
with a non-CMT-1-secure AE, e.g., GCM, GCM-SIV, or CCM, is not guaranteed
and is unknown. In particular, the security of HtE with GCM/CCM is limited
by k

2 , i.e., the birthday bound of the key. This is because the encryption results
will also collide if two temporary keys collide. k

2 bits of security is too short for
common cases, e.g., k = n in AES-GCM, and can be even smaller considering
concrete AEs.
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In summary, designing a method to convert CTRAEs to achieve BBB security
for CMT-4 in a black-box manner is a meaningful research challenge.1

1.2 Contributions

We propose a new black-box conversion KIVR that achieves BBB and CMT-4
security. The security bound is proved for CTRAE, including GCM, GCM-SIV,
CCM, and CTR-HMAC.

The considerable difficulty is that the CMT-4 security of CTRAE is limited
by t

2 bits due to a birthday attack on a tag, wherein the tag length t is often
t ≤ k. We approach the problem by adding redundancy to plaintexts, a natural
extension of the padding fix [1]. Let Morigin be an original plaintext and R redun-
dancy. We then define a plaintext with redundancy as M = Mixrc(R‖Morigin)
wherein Mixrc is a function for defining the positions of each bit (or byte) of
redundancy. The CMT security notion is naturally extended considering this
plaintext with redundancy. We can increase the security by adding redundancy
to messages. Besides adding extra redundancy, we can optionally exploit the
redundancy already present in the message, such as constant strings or magic
numbers found in popular file formats [20,28].2

The receiver who decrypts the message can check the decrypted message for
redundancy, which potentially improves the context-committing security. How-
ever, such an improvement turns out to be non-trivial. The previous O(1) attacks
still break GCM, GCM-SIV, and CCM, even with redundancy (see Table 1). Sim-
ilarly, the security of CTR-HMAC with redundancy is limited to t

2 due to a
birthday attack on a tag. Combining HtE with redundancy is a viable option,
but its security is upper-bounded by a simple attack using a collision either in
redundancy or a key.

New Mode. KIVR shown in Fig. 1-(right) is a generalization of HtE. In HtE,
a temporary key L is generated by FHtE(K,N,A). In contrast, KIVR generates
a tuple of temporary values (KT, IVT, RT) using FKIVR(K,N,A), preventing the
output size of the hash function FKIVR from becoming a security bottleneck.
In encryption, we get a masked message M ⊕ Mixrc(RT‖0∗): a modified message
wherein the redundant bits are masked with RT. Finally, the original AE encrypts
the masked message along with KT, IVT, and empty associated data. Decryption
is naturally defined, but we additionally check if the redundancy R is correctly
recovered.

We give a general bound for the CMT-4 security of KIVR with CTRAE
that covers a large class of practical AEs, i.e., CTR combined with any MAC.

1 An alternative approach for CMT-4 security is designing an indifferentiable AE
scheme [4]. It can be used as an ideal AE scheme, where an adversary is allowed to
select AE’s keys, and is CMT-4-secure. An indifferentiable AE claims the security
beyond the committing security notions, and thus its design is harder than that of
a CMT-4-secure AE scheme.

2 PNG and XML files have 64 and 192 bits of redundancy, respectively [20,28].
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Table 1. AE schemes with black-box conversions for CMT-4 security using r-bit
redundancy. k and t are the key and tag lengths, respectively.

Conversion AE CMT-4 Security Ref.

Naive GCM, GCM-SIV, CCM 0 [16,21,22]
Naive CTR-HMAC t

2
[15]

HtE [6] GCM, GCM-SIV, CCM min{ r
2
, k
2
} —†

KIVR GCM, GCM-SIV, CCM r
2

Cor. 1
KIVR CTR-HMAC r+t

2
Cor. 2

†The security determined by a collision either in redundancy or a key.

Table 2. Attacks on KIVR-based AE schemes.

Conversion AE Complexity Security Ref.

KIVR GCM, GCM-SIV r
2

CMT-1 Theorem 2
KIVR CCM — — —
KIVR CTR-HMAC r+t

2
CMT-1 Theorem 3

The obtained CMT-4 security bound is r
2 + tag-col, where tag-col is the secu-

rity against tag-collision attacks by changing any of (K,N,A).3 In other words,
KIVR’s security linearly increases with r, unlike HtE upper-bounded by k

2 . We
ensure that KIVR causes no adverse side effects by proving that the conventional
AE security after applying KIVR reduces to the multi-user (mu) security of the
original AE.

Evaluation with Representative AEAD Instantiations. The term tag-col
lies 0 ≤ tag-col ≤ t

2 depending on the target AE, as summarized in Table 1. We
set tag-col = 0 for GCM and GCM-SIV and obtain r

2 as a corresponding bound.
This bound is tight because the attacker achieves full control over GHASH, and
tag-col of GMAC is 0. Analyzing tag-col with CCM is more complicated, and
we conservatively set tag-col = 0 considering the worst case. The corresponding
bound is r

2 , and its tightness is unclear. In the case of CTR-HMAC, on the other
hand, tag-col = t

2 , and the bound is r+t
2 . It achieves tag-col = t

2 because of the
collision-resistant property of HMAC. This bound is proven tight. Table 2 sum-
marizes the attacks. Since CMT-1 is weaker than CMT-4, a CMT-1-security
bound can be better than a CMT-4-security bound. However, in the case of the
KIVR-based AE schemes with GCM,GCM-SIV, and CTR-HMAC, the matching
attacks break the CMT-1 security, and there is no room for further improving
the CMT-1-security bounds. Meanwhile, finding an attack for KIVR with CCM
remains open, and a better CMT-1-security bound is still possible.

3 Specifically, the bound given in Theorem 1 is O( μ
2r ) plus the advantage of finding

μ-collisions for tags. By choosing the parameter μ so that these terms are balanced
according to the structure of the tagging function, we have the security r

2
+ tag-col.
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With r = 256, KIVR combined with GCM, GCM-SIV, and CCM achieves
128-bit security. KIVR combined with CTR-HMAC, on the other hand, achieves
( r
2 + 64)-bit security with a 128-bit tag. In this case, KIVR achieves 128-bit

CMT-4 security with r = 128.

Comparison with the Padding Fix. KIVR achieves higher security and sup-
ports a wider range of AEs compared with the padding fix. Specifically, KIVR
enables CMT-4 with CTRAE, including GCM, GCM-SIV, CCM, and CTR-HMAC,
in contrast with the padding fix that enables CMT-1 with GCM only. KIVR
achieves those with a reasonable overhead and is still a one-pass scheme with a
one-pass underling AE. The main overhead is processing K and N in the hash
function FKIVR, approximately two more blocks considering the lengths of K and
N . There is no (or minor) overhead for processing AD in FKIVR because instead
we can skip AD processing in the underlying AE.

1.3 Organization

We begin by giving basic definitions in Sect. 2. Then, we formally define a plain-
text with redundancy and an extended CMT security considering redundancy in
Sect. 3. We introduce the KIVR conversion in Sect. 4. Section 5 gives KIVR’s gen-
eral security bound with CTRAE, followed by the proof in Sect. 6. Section 7 dis-
cusses the security and its tightness of KIVR combined with GCM, GCM-SIV, and
CCM. Similarly, Sect. 8 shows the tight security bound of KIVR with CTR-HMAC.
Section 9 is a conclusion.

2 Preliminaries

Notation. For integers 0 ≤ i ≤ j, let [i, j] := {i, i + 1, . . . , j} and [j] := [1, j].
If i > j then [i, j] := ∅. Let ε be an empty string, ∅ an empty set, and {0, 1}∗

be the set of all bit strings. For an integer n ≥ 0, let {0, 1}n be the set of
all n-bit strings, {0, 1}0 := {ε}, {0, 1}≤n := {X ∈ {0, 1}∗ | |X| ≤ n}, and
{0, 1}n∗ := {X ∈ {0, 1}∗ | |X| mod n = 0}. Let 0i be the bit string of i-bit
zeros. For X ∈ {0, 1}j , let |X| := j. The concatenation of two bit strings X
and Y is written as X‖Y or XY when no confusion is possible. For integers
i ≥ 0 and 0 ≤ X ≤ 2i − 1, let stri(X) be the i-bit representation of X. For
integers 0 ≤ j ≤ i and X ∈ {0, 1}i, let msbj(X) (resp. lsbj(X)) be the most
(resp. least) significant j bits of X. For an integer 1 ≤ n and X ∈ {0, 1}∗, let
zpn(X) := X‖0�|X|/n�·n−|X| be a zero-padding function such that the length
of the padded value becomes a multiple of n. For a non-empty set T , T

$←− T
means that an element is chosen uniformly at random from T and assigned to
T . For two sets T and T ′, T ∪←− T ′ means T ← T ∪ T ′. For an integer l ≥ 0
and X ∈ {0, 1}∗, (X1, . . . , X�)

l←− X means parsing of X into fixed-length l-bit
strings, where if X �= ε then X = X1‖ · · · ‖X�, |Xi| = l for i ∈ [� − 1], and
0 < |X�| ≤ l; if X = ε then � = 1 and X1 = ε.
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For μ pairs with four values S[i] = {(K ′
i, N

′
i , A

′
i,D

′
i), (K

′′
i , N ′′

i , A′′
i ,D′′

i )} (i ∈
[μ]), Boolean function diffKNA with the input S := (S[1], . . . ,S[μ]) is defined as

– diffKNA(S) = 1 if
(
∀i ∈ [μ] : (K ′

i, N
′
i , A

′
i) �= (K ′′

i , N ′′
i , A′′

i )
)

and
(
∀i ∈ [μ], j ∈

[i − 1] : {(K ′
i, N

′
i , A

′
i), (K

′′
i , N ′′

i , A′′
i )} �= {(K ′

j , N
′
j , A

′
j), (K

′′
j , N ′′

j , A′′
j )}

)
;

– diffKNA(S) = 0 otherwise.

Block Cipher (BC). A BC is a set of permutations indexed by a key. For
positive integers κ and n, let E : {0, 1}k × {0, 1}n → {0, 1}n be an encryption of
a BC with k-bit keys and n-bit blocks that is used in CTR and BC-based MACs
such as GMAC, GMAC+, and CBC. Let E−1 : {0, 1}k × {0, 1}n → {0, 1}n be its
decryption. For positive integers b and v, let F : {0, 1}b × {0, 1}v → {0, 1}v be
an encryption of a BC with b-bit keys and v-bit blocks that is used in Merkle-
Damgård hash function.

Ideal Cipher (IC). Let BC(k, n) be a set of all encryptions of BCs with k-bit
keys and n-bit blocks. An IC is an ideal BC and defined as E

$←− BC. An IC E can
be implemented by lazy sampling. Let TE be a table that is initially empty and
keeps query-response tuples of E and E−1. Let TE,2[W ] := {Y | (W,X, Y ) ∈
TE} and TE,1[W ] := {X | (W,X, Y ) ∈ TE} be tables that respectively keep
ciphertext and plaintext blocks defined in TE such that the key elements are W .
For a new forward query (W,X) to E (resp. inverse query (W,Y ) to E−1), the
response is defined as Y

$←− {0, 1}n\TE,2[W ] (resp. X
$←− {0, 1}n\TE,1[W ]), and

TE
∪←− {(W,X, Y )}. For a query stored in the table TE , the same response is

returned.

Hash Function. Let M ⊆ {0, 1}∗ and h be a positive integer. Let H[Ψ ] : M →
{0, 1}h be a hash function with a primitive Ψ that on an input message in M
returns an h-bit hash value. In this paper, we assume that Ψ is ideal, and use
the following security notions for hash function.

μ-Collision Resistance. H[Ψ ] is μ-collision resistance if it is hard to find μ pairs
of distinct messages such that for each pair the hash values are the same. The
μ-collision-resistant advantage function of A with access to an ideal primitive Ψ
against H[Ψ ] is defined as

Advcolls
H,μ(A) := Pr

[
((M (1),M ′(1)), . . . , (M (μ),M ′(μ))) ← AΨ s.t.
(
∀i ∈ [μ] : H[Ψ ](M (i)) = H[Ψ ](M ′(i)) ∧ M (i) �= M ′(i)

)
∧

(
∀i, j s.t. i �= j : {M (i),M ′(i)} �= {M (j),M ′(j)}

) ]
.

The notion with μ = 1 is the standard notion for collision resistance. Let
Advcoll

H (A) := Advcolls
H,1(A) be a collision-resistant advantage function of A.
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Random Oracle (RO). An RO is an ideal hash function from M to {0, 1}h.
An RO can be realized by lazy sampling. Let TRO be a table that is initially
empty and keeps query-response pairs of RO. For a new query X to RO, the
response is defined as Y

$←− {0, 1}h, and the query-response pair (X,Y ) is added
to TRO: TRO

∪←− {(X,Y )}. For a query stored in the table TRO, the same response
is returned.

Authenticated Encryption (AE). Let Π[Ψ ] be a (tag-based) AE scheme
using a primitive (or set of primitives) Ψ . Π[Ψ ] is a pair of encryption and decryp-
tion algorithms (ΠEnc[Ψ ],ΠDec[Ψ ]). K, N , M, C, A, and T are the sets of keys,
nonces, plaintexts, ciphertexts, associated data (AD), and tags, respectively. Let
ν and t be respectively nonce and tag sizes, i.e., N = {0, 1}ν and T = {0, 1}t. The
encryption algorithm ΠEnc[Ψ ] : N ×A×M → C×T takes a tuple (N,A,M), and
returns, deterministically, a pair (C, T ). The decryption algorithm ΠDec[Ψ ] : N ×
A×C ×T → {reject}∪M takes a tuple (N,A,C, T ′) and returns, deterministi-
cally, either the distinguished invalid symbol reject �∈ M or a plaintext M ∈ M.
We require that ∀(K,N,A,M), (K ′, N ′, A′,M ′) ∈ K × N × A × M s.t. |M | =
|M ′| : |ΠEnc[Ψ ](K,N,A,M)| = |ΠEnc[Ψ ](K ′, N ′, A′,M ′)|. We also require that
∀K ∈ K, N ∈ N , A ∈ A,M ∈ M : ΠDec[Ψ ](K,N,A,ΠEnc[Ψ ](K,N,A,M)) = M .

3 Committing Security with Plaintext Redundancy

In this section, we define notions for committing security with plaintext redun-
dancy. The notions are defined by extending the original notions [6] such that
plaintext redundancy is incorporated.

3.1 Plaintext with Redundancy

We formalize a plaintext with redundancy that extends the idea of zero padding
in the padding fix [1]. A plaintext consists of redundancy R and original message
Morigin. Let r be the length of redundancy. A plaintext with redundancy is defined
as M = Mixrc(R‖Morigin) wherein Mixrc is a function for defining the positions
of each bit (or byte) of redundancy in a plaintext. If R = 0r and Mixrc is an
identity function, then the plaintexts are equal to those of the padding fix. The
generalization covers not only the padding fix but also other padding schemes
and plaintexts with inherent redundancy discussed later.

In this paper, we assume that Mixrc is length-preserving (i.e., |R‖Morigin| =
|Mixrc(R‖Morigin)|), linear, invertible, and bijective. Then, redundancy in a plain-
text M can be obtained by msbr ◦Mix−1

rc (M). We call Mixrc “(ω, n)-mixing func-
tion” if the number of n-bit blocks with redundant bits is at most ω. Specifically,
let Mixrc(R‖Morigin) := M1‖M2‖ · · · ‖Mm such that |Mi| = n (i ∈ [m − 1]) and
|Mm| ≤ n. Then, for any original message Morigin, and distinct r-bit redun-
dant values R′ and R∗, there exist ω distinct indexes i1, . . . , iω ∈ [m] such that
(M ′

i1
, . . . , M ′

iω
) �= (M∗

i1
, . . . , M∗

iω
) and ∀j ∈ [m]\{i1, . . . , iω} : M ′

j = M∗
j . For

example, if Mixrc(R‖Morigin) = R‖Morigin, then ω = � r
n�.
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The above definition covers a case where the original message has inherent
redundancy, such as constant strings in popular file formats. For example, PNG
and XML files have 64 and 192 bits of magic numbers, respectively [20,28]. Such
inherent redundancy that a receiver knows in advance can be counted as a part
of the redundancy R, thus reducing the number of extra redundant bits.

3.2 Definitions for Committing Security with Redundancy

For i ∈ {1, 3, 4}, let WiCi be a function that on input tuple (K,N,A,M) of a key,
a nonce, AD, and a plaintext (with redundancy), returns the first i elements to
which a ciphertext is committed: WiC1(K,N,A,M) = K, WiC3(K,N,A,M) =
(K,N,A), and WiC4(K,N,A,M) = (K,N,A,M).

Let Π[Ψ ] be an AE scheme with an ideal primitive(s) Ψ . In the CMT-i-
security game where i ∈ {1, 3, 4}, the goal of an adversary A with access to Ψ is
to return two tuples of a key, a nonce, AD, and a plaintext on which the outputs
of ΠEnc[Ψ ] are the same. Since we consider plaintexts with redundancy, the game
is defined so that the plaintexts in the A’s output tuples contain redundancy. For
i ∈ {1, 3, 4}, redundancy R, and a mixing function Mixrc, the CMT-i-security
advantage of an adversary A is defined as

Advcmt-i
Π,Mixrc,R(A) :=Pr

[
(K†, N†, A†,M†), (K‡, N‡, A‡,M‡) ← AΨ s.t.

(
WiCi(K†, N†, A†,M†) �= WiCi(K‡, N‡, A‡,M‡)

)

∧
(
ΠEnc[Ψ ](K†, N†, A†,M†) = ΠEnc[Ψ ](K‡, N‡, A‡,M‡)

)

∧
(
msbr ◦ Mix−1

rc (M†) = msbr ◦ Mix−1
rc (M‡) = R

)]
.

Π[Ψ ] is CMT-i secure if for any R, Mixrc, and A, the advantage function is
upper-bounded by a negligible probability. In other words, Π[Ψ ] is not CMT-i
secure if there exist R, Mixrc, and A such that the CMT-i security of Π[Ψ ] is
lower-bounded by a non-negligible probability. Note that CMT-3 and CMT-4
security are equivalent [6]. In this paper, we consider computationally unbounded
adversaries.

4 KIVR Transform

In this section, we present KIVR, a generalization of HtE that enhances the
committing security by using plaintext redundancy.

4.1 Specification of KIVR

KIVR, on an input tuple of a key, a nonce, and AD, generates a temporary key,
a temporary nonce, and a mask value that are defined by using a hash function
FKIVR. The mask value is applied to redundancy in a plaintext. FKIVR should be
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Algorithm 1. KIVR Transform
Encryption KIVR[ΠEnc][Mixrc, R, Ψ, ΨKIVR](K, N, A, M)
1: (KT, IVT, RT) ← FKIVR[ΨKIVR](K, N, A)
2: (C, T ) ← ΠEnc[Ψ ](KT, IVT, ε, M ⊕ Mixrc(RT‖0|M|−rT)); return (C, T )

Decryption KIVR[ΠDec][Mixrc, R, Ψ, ΨKIVR](K, N, A, C, T ′)
1: (KT, IVT, RT) ← FKIVR[ΨKIVR](K, N, A)
2: M ′ ← ΠDec[Ψ ](KT, IVT, ε, C, T ′) if M ′ = reject then return reject end if
3: M ← M ′ ⊕ Mixrc(RT‖0|M|−rT)
4: if R = msbr ◦ Mix−1

rc (M) then return M else return reject end if

collision resistant for CMT-4 security and be pseudorandom-function secure for
mu-AE security.

The specification of KIVR[Π] (KIVR with an AE scheme Π) is given in Algo-
rithm 1 and Fig. 1. Let Ψ (resp. ΨKIVR) be the underlying primitive(s) of Π
(resp. FKIVR). Let R be redundancy, r = |R|, and Mixrc a mixing function. Let
rT be the length of the mask value defined by FKIVR such that rT ≤ r. Let
FKIVR : K × N × A → K × N × {0, 1}rT be a function of KIVR that on an input
tuple (K,N,A) of a key, a nonce, and AD, derives a tuple (KT, IVT, RT) of a
temporary key, an IV, and a mask value.4

4.2 Security of KIVR

Regarding the mu-AE security of AE schemes KIVR[Π], assuming that FKIVR
is a pseudorandom function secure in the mu-setting, for each tuple of a key,
a nonce, and AD, the temporary key is chosen uniformly at random from K.
Hence, the mu-AE security of KIVR[Π] is reduced to the mu-AE security of
the underlying AE scheme Π. The detail is given in Supplementary material C.

Regarding committing security, in Sects. 5, 7, and 8, we show that KIVR
enhances the committing security of CTR-based AE schemes by the length
of redundancy r. In Sect. 5, we define CTRAE, which is a CTR-based AE
scheme with a general tagging function and covers GCM, GCM-SIV, CCM, and
CTR-HMAC (CTR-based AE with HMAC). We show a general bound of the
CMT-4 security of CTRAE. In Sect. 7, we derive CMT-4-bounds of KIVR[GCM],
KIVR[GCM-SIV], and KIVR[CCM] by using the general bound of CTRAE. In
Sect. 8, we similarly derive a CMT-4-bound of KIVR[CTR-HMAC].

5 Committing Security of KIVR with CTR-Based AE

In this section, we first define CTRAE, a CTR-based AE scheme with a generalized
tagging function. We then show a CMT-4-security bound of KIVR[CTRAE].

4 We exemplify the structure of the masked plaintext M ⊕Mixrc(RT‖0|M|−rT) by using
the padding fix. In the padding fix, RT = 0r and Mixrc is an identity function. Then,
the masked plaintext is (0r‖Morigin) ⊕ (RT‖0|M|−rT) = (RT‖0r−rT)‖Morigin.
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Algorithm 2. Counter Mode
Encryption/Decryption CTR[E](Kbc, IV, D)
1: for i = 1, . . . , �|D|/n� do KSi ← E(Kbc, add(IV, i)) end for
2: KS ← msb|D|(KS1‖ · · · ‖KS�|D|/n�); D′ ← D ⊕ KS; return D′

Algorithm 3. CTR-based AE CTRAE

Encryption CTRAEEnc[E, Ψtag]((Kbc, Ktag), N, A, M)
1: T ← TagGen[Ψtag](Ktag, N, A, M); C ← CTR[E](Kbc, GetIV(N, T ), M)
2: return (C, T )

Decryption CTRAEDec[E, Ψtag]((Kbc, Ktag), N, A, C, T ′)
1: M ← CTR[E](Kbc, GetIV(N, T ′), C); T ← TagGen[Ψtag](Ktag, N, A, M)
2: if T = T ′ then return M ; else return reject end if

Fig. 2. (1) CTR Mode where � = �|D|/n� and (D, D′) is a pair of plaintext and cipher-
text or of ciphertext and plaintext; (2) CTRAEEnc; (3) CTRAEDec.

5.1 Specification of CTR-Based AE

Counter Mode. The specification of the counter mode CTR is given in Algo-
rithm 2 and Fig. 2(1), where E is the underlying BC. Let c be the counter size
such that c ≤ n. Let D ⊂ {0, 1}∗ be the plaintext/ciphertext space. {0, 1}k

is the key space. CTR[E] : {0, 1}k × {0, 1}n × D → D takes a tuple of a key
Kbc, an initial value IV , and a plaintext/ciphertext D, and returns its cipher-
text/plaintext D′ such that |D| = |D′|. If D is a plaintext (resp. ciphertext),
then D′ is the ciphertext (resp. plaintext). KS is a key stream with which a
ciphertext (resp. plaintext) is defined by XORing a plaintext (resp. ciphertext).
add : {0, 1}n × [0, 2c − 1] → {0, 1}n is a function that on an input pair of an
IV and a counter, returns an input block of E. Regarding add, we consider the
following two types of functions. The type-1 is used in the standard CTR (used
in GCM,CCM, and CTR-HMAC) and the type-2 is used in GCM-SIV.
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– The type-1 function is defined as add(IV, i) := (msbν(IV ))‖(lsbc(IV ) + i +
1 mod 2c), where n = ν + c, for the counter addition lsbc(IV ) is considered
as an integer, and the added value is regarded as a c-bit string.

– The type-2 function is defined as add(IV, i) := (1‖(msbn−c−1(IV ))‖
(lsbc(IV ) + i mod 2c)), where lsbc(IV ) is considered as an integer and the
added value is regarded as a c-bit string.

CTRAE. We define CTRAE, a CTR-based AE scheme with primitives E and
Ψtag. CTRAE is a generalization of GCM, GCM-SIV, CCM, and CTR-HMAC. The
specification of CTRAE[E,Ψtag] is given in Algorithm 3 and Fig. 2. Let Ktag be
the key space of the tagging function. Hence, K := {0, 1}k ×Ktag is the key space
of CTRAE. Let TagGen[Ψtag] be the tagging function with the primitive Ψtag that
on an input tuple of a key Ktag, a nonce N , and a plaintext M , returns a t-bit
tag. Note that although the tagging functions of GCM, CCM, and CTR-HMAC
take a ciphertext instead of a plaintext, TagGen[Ψtag] covers these functions by
incorporating the procedure of CTR into the tagging functions. Let GetIV be a
function that on an input tuple of a nonce and a tag, returns an IV of CTR. The
function of GCM, CCM, and CTR-HMAC is defined as GetIV(N,T ) := zpn(N).
The function of GCM-SIV is defined as GetIV(N,T ) := T .

Let KIVR[CTRAEEnc] and KIVR[TagGen] be the encryption and tagging
functions of KIVR[CTRAE], respectively. Let FKbcIV R be a function that
returns a tuple of a temporary key of CTR, an IV, and a mask value, i.e.,
FKbcIV R[ΨKIVR](K,N,A) := (KbcT, IVT, RT).

5.2 CMT-4-Security of KIVR[CTRAE]

Let Π∗ := KIVR[CTRAE], Π∗
Enc := KIVR[CTRAEEnc] and Π∗

TGen :=
KIVR[TagGen]. The following theorem shows an upper-bound of the CMT-4-
security of Π∗.

Theorem 1. For any redundancy R, (ω, n)-mixing function Mixrc, and CMT-4
adversary A making pic queries to E or E−1, ptag queries to Ψtag, and pkivr queries
to ΨKIVR, there exist adversaries A1 and A2 such that Advcmt-4

Π∗,Mixrc,R(A) ≤
2ω·(μ−1)

2r + Advcolls
Π∗

TGen,μ
(A1) + Advcoll

FKbcIV R
(A2), for the A1’s output S1,

diffKNA(S1) = 1, and for each i ∈ [2], Ai makes pic queries to E or E−1, ptag
queries to Ψtag, and pkivr queries to ΨKIVR.

Note that Advcolls
Π∗

TGen,μ
(A1) is the μ-collision advantage of Π∗

TGen with the condi-
tion of diffKNA, i.e., for each pair of A1, the tuples of a key, a nonce, and AD
are distinct. Although the parameter rT does not appear in the bound, the last
term depends on the parameter. The proof is given in Sect. 6.

6 Proof of Theorem 1

Since CMT-3-security and CMT-4-security are equivalent [6], we evaluate the
CMT-3-security advantage of A for Π∗.
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6.1 Tools

Full-Block Query. To ensure the randomnesses of the outputs of an IC E or
E−1, we use the technique given in [3].

– For a key element W of an IC, after A makes 2n−1 queries with W to E or
E−1, we permit an adversary A to obtain the remaining input-output tuples
of E with W , i.e., A obtains all input-output tuples with W . We call the
additional queries “full-block queries.”

The full-block queries ensure that the outputs of E or E−1 are chosen uniformly
at random from 2n−1 elements in {0, 1}n.5 Specifically, fixing Y ∗, for a full-block
query (W,X), the probability that the output Y is equal to Y ∗ is (2n−1−1)!

(2n−1)! =
1

2n−1 . Without loss of generality, full-block queries are forward ones.

Property of CTR with Redundancy. The following lemma shows that a
collision of CTR with redundancy implies that the sum of the key streams meets
the sum of redundancy. The lemma is used in our proofs.

Lemma 1. Let Mixrc be a (ω, n)-mixing linear function. Let R′ and R′′ be r-bit
(masked) redundancy. Let (K ′, IV ′,M ′) and (K ′′, IV ′′,M ′′) be tuples of a key,
an IV, and a plaintext with redundancy such that (K ′, IV ′) �= (K ′′, IV ′′), |M ′| =
|M ′′|, msbr ◦ Mix−1

rc (M ′) = R′, and msbr ◦ Mix−1
rc (M ′′) = R′′. For � ∈ {′, ′′}, let

C� := CTR[E](K�, IV �,M�) and KS� the key stream. Then, we have

C ′ = C ′′ ⇒ msbr ◦ Mix−1
rc (KS′ ⊕ KS′′) = R′ ⊕ R′′.

Proof (Lemma 1). The relation in the lemma is obtained as follows.

C ′ = C ′′ ⇒ KS′ ⊕ KS′′ = M ′ ⊕ M ′′

⇒ msbr ◦ Mix−1
rc (KS′ ⊕ KS′′) = msbr ◦ Mix−1

rc (M ′ ⊕ M ′′)

⇒ msbr ◦ Mix−1
rc (KS′ ⊕ KS′′) = R′ ⊕ R′′.

6.2 Symbol Definitions

Let IKIVR be the set of all possible input tuples of FKIVR[ΨKIVR] derived
from query-response tuples of ΨKIVR. Let ITGen be the set of all possible
input tuples of Π∗

TGen derived from query-response tuples of Ψtag and ΨKIVR.
Let (K†, N†, A†,M†), (K‡, N‡, A‡,M‡) be A’s outputs. For an input tuple
(K�, N�, A�,M�) of a key, a nonce, AD and a plaintext with redundancy,

– (C�, T�) := Π∗
Enc[Mixrc, R,E, Ψtag, ΨKIVR](K�, N�, A�,M�),

– (K�
bcT, IV �

T , R�
T ) := FKbcIV R(K�, N�, A�), and

– KS� is the key stream of CTR[E](K�
T , IV �

T ,M�).

In the following proof, the symbol � is replaced with (i), ′, ′′, †, and ‡ where i is
an integer.
5 In [3], the additional queries are called super queries.
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6.3 Deriving the CMT-4-Security Bound

We derive the upper-bound of Advcmt-3
Π∗ (A) = Pr[(C†, T †) = (C‡, T ‡)] by using

the following collision event for FKbcIV R.

– coll: ∃X,X ′ ∈ IKIVR s.t. X �= X ′ ∧ FKbcIV R(X) = FKbcIV R(X ′).

Using the events, we have

Advcmt-3
Π∗,Mixrc,R(A) ≤ Pr[coll] + Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll] .

The event coll implies that there exists an adversary A2 finding a collision of
FKbcIV R, i.e., Pr[coll] ≤ Advcoll

FKbcIV R
(A2). The bound of Pr[(C†, T †) = (C‡, T ‡)∧

¬coll] is given in Eq. (1). These bounds provide the bound in Theorem 1.

6.4 Bounding Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll]

We define the following event that considers μ-collisions of Π∗
TGen such that for

each of the μ-collision, the input tuples of a key, a nonce, and AD are distinct.

colls ⇔
∃S :=

{{
(K′(i), N ′(i), A′(i), C′(i)), (K′′(i), N ′′(i), A′′(i), C′′(i))

}
∈ (ITGen)

2 : i ∈ [μ]
}

s.t.
(
∀i ∈ [μ] : Π∗

TGen(K
′(i), N ′(i), A′(i), C′(i)) = Π∗

TGen(K
′′(i), N ′′(i), A′′(i), C′′(i))

)

∧ (diffKNA(S) = 1).

Using the event, we have

Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll]

≤ Pr[colls] + Pr[(C†, T †) = (C‡, T ‡) | ¬(coll ∨ colls)].

These bounds are given below. Using the bounds, we have

Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll] ≤ 2ω · μ − 1
2r

+Advcolls
Π∗

TGen,μ
(A1) . (1)

Bounding Pr[colls]. The event colls implies that there exists an adversary A1

finding μ-collisions of Π∗
TGen with the condition of diffKNA. We thus have

Pr[colls] ≤ Advcolls
Π∗

TGen,μ
(A1) .

Bounding Pr[(C†, T †) = (C‡, T ‡) | ¬(coll ∨ colls)]. Regarding the ciphertext
collision, by Lemma 1, we have

C† = C‡ ⇒ msbr ◦ Mix−1
rc

(
KS† ⊕ KS‡) = (R ⊕ zpr(R

†
T)) ⊕ (R ⊕ zpr(R

‡
T))

⇒ msbr ◦ Mix−1
rc

(
KS† ⊕ KS‡) = zpr(R

†
T ⊕ R‡

T)

where KS† and KS‡ are respectively determined from (K†, N†, A†) and (K‡, N‡,
A‡). By ¬colls, there are at most μ − 1 pairs with a key, a nonce, and AD with
which tag collision occurs. Fix distinct tuples (K ′, N ′, A′), (K ′′, N ′′, A′′) ∈ IKIVR
and assume that coll does not occur. We then consider the following two cases.
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Algorithm 4. GHASH

GHASH GHASH(L, A, D)
1: X1, . . . , Xl

n←− zpn(A)‖zpn(D)‖strn/2(|A|)‖strn/2(|D|)
2: Y ← X1 • Ll ⊕ X2 • Ll−1 ⊕ · · · Xl • L; return Y

– If (K ′
bcT, IV ′

T) = (K ′′
bcT, IV ′′

T ), then since KS′ = KS′′, we have C† = C‡ ⇒
R†

T = R‡
T. Hence, a collision of FKbcIV R occurs, which contradicts the condition

¬coll. We thus have Pr[C ′ = C ′′] = 0.
– If (K ′

bcT, IV ′
T) �= (K ′′

bcT, IV ′′
T ), then in the processes of CTR, the IC’s input-

output tuples are defined by E or E−1. Due to full-block queries, for Z ∈
{0, 1}n and j ∈ {0, 1}c,

Pr[E(K ′
bcT, add(IV ′

T, j) = Z] ≤ 2
2n

, Pr[E−1(K ′
bcT, Z) = add(IV ′

T, j)] ≤ 2
2n

,

Pr[E(K ′′
bcT, add(IV ′′

T , j) = Z] ≤ 2
2n

, Pr[E−1(K ′′
bcT, Z) = add(IV ′′

T , j)] ≤ 2
2n

.

As there are ω blocks that depend on redundant data, we have

Pr[C ′ = C ′′] ≤ 2ωn−r ·
(

2
2n

)ω

=
2ω

2r
.

By ¬colls, the number of collisions of Π∗
TGen is at most μ−1. In order to have the

collision (C†, T †) = (C‡, T ‡), one of the (at most) μ−1 pairs of key stream must
satisfy the relation msbr ◦Mix−1

rc

(
KS† ⊕ KS‡) = zpr(R

†
T⊕R‡

T). The probability
that the relation is satisfied is at most (μ − 1) · 2ω

2r , and we have

Pr[(C†, T †) = (C‡, T ‡) | ¬(coll ∨ colls)] ≤ 2ω · μ − 1
2r

.

7 Committing Security of KIVR with GCM, GCM-SIV,
and CCM

In this section, we derive the CMT-4-bounds of KIVR with the CTR-based AE
schemes GCM, GCM-SIV, and CCM by using the bound in Theorem 1.

7.1 Specifications of GCM, GCM-SIV, and CCM

GHASH. GHASH used in GCM and GCM-SIV is a polynomial hash function
defined in Algorithm 4. GHASH takes an n-bit hash key L, AD A, and a plain-
text/ciphertext D, and returns an n-bit hash value Y . GHASH is the hash func-
tion used in GCM and GCM-SIV. Let F be a finite field of 2n elements. We can
interpret a string in {0, 1}n as an element in F, and the addition in F is the same
as ⊕ in {0, 1}n. Let • be the finite-field multiplication in F.
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Algorithm 5. Tag Generation of GCM

Tag Generation GMAC[E]((Kbc, L), N, A, C)
1: H ← GHASH(L, A, C); X ← N‖0c−11; T ← msbt(H ⊕ E(Kbc, X)); return T

Algorithm 6. Tag Generation GMAC+

Tag Generation ΠTGen[E]((Kbc, L), N, A, M)
1: H ← GHASH(L, A, M); X ← 0‖lsbn−1(H) ⊕ (0c‖N); T ← E(Kbc, X); return T

Fig. 3. Tagging functions GMAC (1) and of GMAC+ (2).

Fig. 4. Encryption of GCM. GCM is a special case of CTRAE: By introducing the
redundant procedure in the dot line, GCM meets the interface of CTRAE.

GCM. GCM is a single-key CTRAE scheme with the tagging function GMAC.
Hence, the key of the tag generation function is equal to that of CTR (i.e., Ktag =
Kbc and Ktag = {0, 1}k). The specification of GMAC is given in Algorithm 5 and
Fig. 3(1). The hash key of GMAC is defined as L ← E(K, 0n). The encryptions
of GCM and of KIVR[GCM] are respectively given in Figs. 4 and 5.
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Fig. 5. Encryption of KIVR[GCM]. GCM is a special case of CTRAE: by introducing the
redundant procedure in the dot line, GCM meets the interface of CTRAE.

Fig. 6. Encryption of GCM-SIV.

GCM-SIV. GCM-SIV [8] is CTRAE with the tagging function GMAC+ and the
key derivation KD1. The specification of GMAC+ is given in Algorithm 6 and
Fig. 3(2). (Kbc, L) is a pair of (temporary) keys of GMAC+[E], where Kbc is
equal to the key of CTR. GMAC+[E] : {0, 1}k × {0, 1}n × A × M → {0, 1}n

takes an input tuple (Kbc, L,N,A,M) and returns an n-bit tag T . Note that
(Kbc, L) is derived by using KD1. KD1 is a concatenation of truncated BCs
where each BC call takes input tuple of a key, a nonce, and a counter. For the
sake of simplifying the proof, when considering KIVR with GCM-SIV, KD1 is
incorporated into FKIVR. The encryptions of GCM-SIV and of KIVR[GCM-SIV]
are respectively given in Figs. 6 and 7.
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Fig. 7. Encryption of KIVR[GCM-SIV]. KD1 is incorporated into FKIVR.

Fig. 8. Encryption of CTR-HMAC. CTR-HMAC is a special case of CTRAE: by intro-
ducing the redundant procedure in the dot line, the interface of CTR-HMAC meets the
interface of CTRAE.

CCM. CCM is a single-key CTRAE with the CBC MAC as the tagging function.
Hence, the key of the tagging function is equal to that of CTR (i.e., Ktag = Kbc

and Ktag = {0, 1}k). The encryption of CCM, the CBC MAC, and the encryption
of KIVR[CCM] are respectively given in Figs. 10, 11, and 12.

7.2 CMT-4-Security of KIVR[GCM], KIVR[GCM-SIV], and KIVR[CCM]

We derive the CMT-4-security bounds of KIVR[GCM], KIVR[GCM-SIV], and
KIVR[CCM] by using the bound in Theorem 1. For the sake of simplicity, we
assume that FKIVR is a RO. Then, pkivr is the number of queries to the RO, and
we have Advcoll

FKbcIV R
(A2) ≤ 0.5p2

kivr

2k+ν+rT
by the birthdaty analysis. We define the

parameter as μ := 0.5p2kivr + 1. Then, the size of S1 which is A1’s output with
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Fig. 9. Encryption of KIVR[CTR-HMAC]. CTR-HMAC is a special case of CTRAE: by
introducing the redundant procedure in the dot line, the interface of CTR-HMAC meets
the interface of CTRAE.

Fig. 10. Encryption of CCM.

Fig. 11. CBC MAC.
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Fig. 12. Encryption of KIVR[CCM].

the condition diffKNA(S1) = 1 is upper-bounded by
(
pkivr

2

)
= 0.5pkivr(pkivr−1), and

we have Advcolls
Π∗

TGen,μ
(A1) = 0. Hence, we obtain the following bounds.

Corollary 1. Let Π∗ ∈ {KIVR[GCM],KIVR[GCM-SIV],KIVR[CCM]}. Assume
that FKIVR is a RO. For any redundancy R, (ω, n)-mixing function Mixrc, and
CMT-4 adversary A making pic queries to an IC, and pkivr queries to a RO,
there exists an adversary A2 such that Advcmt-4

Π∗,Mixrc,R(A) ≤ 2ω−1·p2
ic

2r + 0.5p2
kivr

2k+ν+rT

and A2 makes pic queries to an IC and pkivr queries to a RO.

We assume that the term 0.5p2
kivr

2k+ν+rT
is negligible, which can be ensured by choosing

the parameter rT such that r ≤ κ + ν + rT. Then, the above bound shows that
KIVR[GCM], KIVR[GCM-SIV], and KIVR[CCM] achieve r

2 -bit CMT-4-security.

7.3 Tightness of the CMT-4-Security of KIVR[GCM]
and KIVR[GCM-SIV]

We show attacks whose probabilities are the same as Corollary 1, ensuring that
the tightness of the bounds of KIVR[GCM] and of KIVR[GCM-SIV] in Corollary 1.
The attacks are extensions of the CMT-1-attack given in [1] that makes use of
the linearity of GHASH.

Theorem 2. Let Π∗ ∈ {KIVR[GCM],KIVR[GCM-SIV]}. Assume that FKIVR is a
RO. There exist redundancy R, a (ω, n)-mixing function Mixrc, and an adver-
sary A making p queries to an IC or a RO such that Advcmt-1

Π∗,Mixrc,R(A) =

O
(
max

{
p2

2r , p2

2k+ν+rT

})
.

Proof of Theorem 2 for KIVR[GCM]. Fix redundancy R ∈ {0, 1}r. We con-
sider the following mixing function: Mixrc(R‖Morigin) = R‖Morigin for each core
data Morigin. We then define two adversaries A1 and A2 that offer the first and
second terms, respectively.
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Algorithm 7. Adversary A1 Breaking the CMT-1-Security of KIVR[GCM]
1: p1 ← � p

ω+2
� − 4

2: Choose p1 distinct keys K(1), . . . , K(p1) ∈ {0, 1}k

3: Choose a pair (N, A) ∈ N × A of a nonce and AD
4: for i = 1, . . . , p1 do
5: (K

(i)
T , IV

(i)
T , R

(i)
T ) ← FKIVR(K

(i), N, A); KS(i) ← ε

6: for j = 1, . . . , ω + 1 do KS(i) ← KS(i)‖E(K
(i)
T , add(IV

(i)
T , j)) end for

7: end for
8: if ∃α, β ∈ [p1] s.t.

α �= β ∧ msbr(KS(α) ⊕ KS(β)) = zpr(R
(α)
T ⊕ R

(β)
T ) then

9: Z(α) ← E(K
(α)
T , IV

(α)
T ‖0n−ν−11); Z(β) ← E(K

(β)
T , IV

(β)
T ‖0n−ν−11)

10: L(α) ← E(K
(α)
T , 0n); L(β) ← E(K

(β)
T , 0n)

11: Find C s.t. |C| = n(ω + 1), msbr(C) = R ⊕ KS(α) ⊕ zpr(R
(α)
T ),

and GHASH(L(α), ε, C) ⊕ GHASH(L(β), ε, C) = Z(α) ⊕ Z(β)

12: M (α) ← C ⊕ KS(α) ⊕ zp|C|(R
(α)
T ); M (β) ← C ⊕ KS(β) ⊕ zp|C|(R

(β)
T )

13: return ((K(α), N, A, M (α)), (K(β), N, A, M (β)))
14: end if
15: return ((K(1), N, A, KS(1)), (K(2), N, A, KS(2)))

Adversary A1. A1 breaking the CMT-1-security of KIVR[GCM] is
defined in Algorithm 7. A1 returns tuples ((K(α), N (α), A(α),M (α)),
(K(β), N (β), A(β),M (β))) of a key, a nonce, AD, and a plaintext with redun-
dancy such that (N (α), A(α)) = (N (β), A(β)), K(α) �= K(β), and M (α) �= M (β).
We explain the algorithm below.

– Steps 2 and 3 define p1 tuples of a key, a nonce, and AD, where the keys are
all distinct. Using the tuples, Steps 4–7 calculate key streams.

– Step 8 searches a pair (α, β) with the relation msbr ◦ Mix−1
rc(

KS(α) ⊕ KS(β)
)

= zpr

(
R

(α)
T ⊕ R

(β)
T

)
that is the sufficient condition to

obtain a ciphertext collision from Lemma 1. For each pair (α, β), KS(α) and
KS(β) are (almost) r-bit random values, and thus the probability that the
relation is satisfied is O( 1

2r ). Summing the bound for each pair, we have the

bound O
(

p2

2r

)
of the probability that the relation is satisfied.

– If such a pair is found, then we can find the collision (C(α), T (α)) =
(C(β), T (α)) by using the freeness of plaintext blocks. In Step 11, by using
the linearity of GHASH, a ciphertext C that yields a tag collision is found by
solving the equation GHASH(L(α), ε, C) ⊕ GHASH(L(β), ε, C) = Z(α) ⊕ Z(β).
In Step 12, we have plaintexts M (α) and M (β) with the redundancy R that
yield the collision.

Hence, the probability that A1 breaks the CMT-1-security of KIVR[GCM] is at
least O

(
p2

2r

)
.

Adversary A2. A2 breaks the CMT-1-security of KIVR[GCM] by using a col-
lision of FKbcIV R. If FKbcIV R(K(α), N (α), A(α)) = FKbcIV R(K(β), N (β), A(β)) such
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Algorithm 8. MD Hash Function with DM Compression Function

Hash Function MDDMF

(D)

1: D1, . . . , Dd
b←− sfpad(D); S ← IS; for i = 1, . . . , d do S ← DMF (S, Di) end for

2: return S

Algorithm 9. Tag Generation HMAC

Tag Generation HMAC[MDDMF

](L, D)

1: S ← MDDMF

(ipad ⊕ ozpb (L) ‖D); T ← lsbt

(
MDDMF

(opad ⊕ ozpb (L) ‖S)
)

2: return T

that K(α) �= K(β) and (N (α), A(α)) = (N (β), A(β)), then by choosing the same
plaintexts M (α) = M (β) with the redundancy R, we obtain the output collision
(C(α), T (α)) = (C(β), T (β)). By the birthday analysis, we have the bound of the
collision probability O

(
p2

2k+ν+rT

)
. ��

Outline of Proof for KIVR[GCM-SIV]. The proof is the same as that of Theo-
rem 2. The first bound is obtained by an attack that finds a pair of input to CTR
such that the key streams satisfy the condition in Lemma 1 (i.e., a ciphertext
collision occurs). Note that the tag collision is found with the probability 1 by
using the linearity of GHASH. The second bound is obtained by an attack that
makes use of a collision of FKbcIV R. ��

7.4 On the Tightness of CMT-4-Security of KIVR[CCM]

Since the CBC MAC does not have the linearity as GMAC, the attack of the adver-
sary A1 in the proof of Theorem 2 does not work, and there is a possibility that
the bound 2ω−1·p2

ic

2r is improved. Proving the tightness for the CMT-4-Security
of KIVR[CCM] is an open problem.

8 Committing Security of KIVR with CTR-HMAC

By using the bound in Theorem 1, we derive the CMT-4-bound of KIVR with
the CTR-based AE scheme with HMAC with the Merkle-Damgård (MD) hash
function. Since SHA-2 family has the MD structure, the bound supports the
widely used MAC HMAC-SHA-256.

8.1 Specification of CTR-HMAC

CTR-HMAC is CTRAE that uses HMAC as the underlying MAC. HMAC is a hash-
function-based MAC and we consider the Merkle-Damgård (MD) hash function
with the Davies-Meyer (DM) compression function as the underlying hash func-
tion which is employed in the SHA-2 family.
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Fig. 13. DM, MD, and HMAC.

Let F : {0, 1}v × {0, 1}b → {0, 1}v be the underlying primitive (or block
cipher) of DM with v-bit blocks and b-bit key elements. Then, DM with F is
defined as DMF (S,Di) = S ⊕ F (S,Di).

MDDMF

is a hash function that iterates DMF . Let IS be a v-bit constant and
initial value of MDDMF

. Let sfpad : {0, 1}∗ → {0, 1}b∗ be a suffix-free padding
function such that for any distinct inputs D and D′, sfpad(D) is not a prefix of
sfpad(D′).6 MD with DMF is defined in Algorithm 8.

Let L be the HMAC’s key such that |L| ≤ b. Let ipad and opad be distinct
b-bit constants that are used to define the inner key zpb(L)⊕ ipad and the outer
key zpb(L)⊕opad. HMAC processes the underlying hash function twice. The first
hash call takes the inner key and the input D. The second hash call takes the
outer key and the output of the first hash call. The output of the second hash
call (with truncation) is a tag of HMAC. HMAC is defined in Algorithm 9.

DM, MD, and HMAC are given in Fig. 13, and the encryptions of CTR-HMAC
and of KIVR[CTR-HMAC] are respectively given in Figs. 8 and 9. Note that
CTR-HMAC with AES-128 and SHA-256 is a widely used AE scheme and does
not support AD inputs. By using KIVR, one can convert the AE scheme so that
the AD inputs are supported.

8.2 CMT-4-Security Bound of KIVR[CTR-HMAC]

Regarding the collision resistance of HMAC, Damgård [10] and Merkle [26]
showed that an iterated structure of a compression function preserves its col-
lision resistance of the underlying function. Hence, the collision resistance
of HMAC is reduced to the collision resistance of MDDMF

that is further
reduced to the collision resistance of DMF . We use the collision bound in
the IC model proven by Stam [27]: for any adversary A′ making ptag queries

6 SHA-2 uses the following suffix-free padding function: for an input D, a one-zero
value 10i is appended to D, followed by the 64-bit encoding of |D| so that the total
length is a multiple of b and i is minimum.
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to F or F−1, Advcoll
HMAC(A

′) ≤ ptag(ptag+1)
2t . By using Markov’s inequality,

Advcolls
KIVR[HMAC],μ(A1) ≤ ptag(ptag+1)

μ2t . Then, we choose μ such that 2ω·(μ−1)
2r �

ptag(ptag+1)
μ2t , i.e., μ = (ptag(ptag+1))1/2

2
t−r+ω

2
. Putting the bound into Theorem 1, we obtain

the following corollary.

Corollary 2. For any redundancy R, (ω, n)-mixing function Mixrc, and CMT-4
adversary A making pic queries to E or E−1, ptag queries to F or
F−1, and pkivr queries to ΨKIVR, there exists an adversary A2 such that

Advcmt-4
KIVR[CTR-HMAC],Mixrc,R(A) ≤

(
2ω+2·ptag(ptag+1)

2r+t

) 1
2
+ Advcoll

FKbcIV R
(A2) and A2

makes pic queries to E or E−1, ptag queries to F or F−1, and pkivr queries to
ΨKIVR.

We assume that the term Advcoll
FKbcIV R

(A2) is negligible, which can be
ensured by using a secure hash function. Then, the above bound shows that
KIVR[CTR-HMAC] achieves r+t

2 -bit CMT-4-security. 2ω+2 is a small constant.

8.3 Tightness of the CMT-4-Security of KIVR[CTR-HMAC]

We show attacks on KIVR[CTR-HMAC] whose bound matches the one in Corol-
lary 1, thereby ensuring the tightness of the bound. In this proof, we assume
that HMAC is a random oracle that is an ideal hash function.

Theorem 3. Let δcoll(p) be the lower-bound of the probability that a collision of
FKbcIV R is found with p queries to ΨKIVR such that the input keys are distinct and
the other inputs are the same. Assume that HMAC is a random oracle RO. There
exist redundancy R, a (ω, n)-mixing function Mixrc, and an adversary breaking
the CMT-1-security of Π∗ making p queries to E, E−1, RO, or ΨKIVR such that
Advcmt-1

KIVR[CTR-HMAC],Mixrc,R(A) = O
(
max{ p2

2r+t , δcoll(p)}
)
.

Proof (Outline). The first bound is obtained by an attack that finds two input
tuples of KIVR[CTR-HMAC] such that the key streams satisfy the condition in
Lemma 1 (i.e., a ciphertext collision occurs) and a collision of the tags occurs. By
the birthday analysis, we obtain the first bound. The second bound is obtained
by an attack that makes use of a collision of FKbcIV R. The formal proof is given
in Appendix E. ��

9 Conclusion

We propose the KIVR conversion for enabling the BBB and CMT-4 security by
exploiting redundancy. KIVR uses a collision-resistant hash function to convert
a tuple of a key, a nonce, and associated data into a temporary key, an initial
value (or nonce), and a masking value applied to redundant data used by an
underlying AE. We give a general bound for the CMT-4 security of KIVR with
CTRAE, CTR combined with any MAC, covering a large class of practical AEs.
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The bound is r
2 + tag-col bits wherein r is the number of redundant bits and

tag-col is the tag-collision security of the underlying AE. We set tag-col = 0
for GCM, GCM-SIV, and CCM, and the corresponding bound becomes r

2 , which
is tight for GCM and GCM-SIV. Meanwhile, KIVR with CTR-HMAC achieves a
better tight bound, r+t

2 bits, with a t-bit tag. There are interesting open research
questions. In particular, analyzing/salvaging the other popular AEs, including
ChaCha20-Poly1305 [23], for committing security is open for future research.

Acknowledgement. We thank Dong Hoon Chang, an associate of National Insti-
tute of Standards and Technology, for helpful comments on the formalization of the
redundant plaintext. We also thank anonymous reviewers for constructive feedback.

A Multi-user Security for AE

Multi-user-AE (mu-AE) security is the indistinguishability between the real and
ideal worlds. Let Π = (ΠEnc,ΠDec) be an AE scheme that has encryption and
decryption algorithms. Let u be the number of users. In the mu-AE-security
game, an adversary A has access to either real-world oracles (ΠK1 , . . . , ΠKu

)
or ideal-world ones (($1,⊥), . . . , ($u,⊥)). K1, . . . , Ku are user’s keys defined as
Ki

$←− K where i ∈ [u]. $ξ is a random-bit oracle of the ξ-th user that takes
an input tuple (N,A,M) of nonce, AD, and plaintext, and returns a pair of
random ciphertext and tag defined as (C, T ) $←− {0, 1}|ΠEnc[E](K,N,A,M)|. ⊥ is a
reject oracle that returns reject for each query. At the end of this game, A
return a decision bit in {0, 1}. If the underlying primitive is ideal, then A has
access to the ideal primitive. Let AO ∈ {0, 1} be an output of A with access
to a set of oracles O. Then, the mu-AE-security advantage function of A is
defined as Advmu-ae

Π (A) := Pr
[
AΠK1 ,...,ΠKu = 1

]
− Pr

[
A($1,⊥),...,($u,⊥) = 1

]
.

We consider nonce-respecting adversaries where for each user, all nonces in
queries to the encryption oracle are distinct. In this game, making a trivial
query (ξ,N,A,C, T ′) to the decryption oracle is forbidden, which was received
by some previous query to the encryption one.

B Multi-user PRF Security

The mu-AE security of KIVR-based schemes relies on multi-user pseudo-random-
function (mu-PRF) security. Let FK : M → {0, 1}s be a keyed function with a
key K ∈ KF where M ⊆ {0, 1}∗ is the input space, s is the output length, and KF

is the key space. Let u be the number of users. Let Func be the set of all functions
from M to {0, 1}s. In the mu-PRF-security game, an adversary A has access to
either real-world oracles (FK1 , . . . ,FKu

) or ideal-world ones (R1, . . . ,Ru), where
Ki is the i-th user’s key defined as Ki

$←− {0, 1}K and Ri is a random function of
the i-th user defined as Ri

$←− Func. At the end of this game, A return a decision
bit. Let AO1,...,Ou be an output of A with access to oracles (O1, . . . ,Ou). Then,
the mu-PRF-security advantage function of A is defined as Advmu-prf

F (A) :=
Pr

[
AFK1 ,...,FKu = 1

]
− Pr

[
AR1,...,Ru = 1

]
.
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C mu-AE Security of AE Schemes with KIVR

The following theorem shows that the mu-AE security of an AE scheme Π with
KIVR is reduced to the mu-AE-security of the underlying AE scheme Π and the
mu-PRF security of FKIVR. Note that in the theorem, FKIVR is a keyed function.

Theorem 4. Let Π be an AE scheme. Let R be redundancy and Mixrc a (ω, n)-
mixing function. For any mu-AE adversary A against KIVR[Π] making at most
q queries and running in time T , there exists an mu-AE adversary A1 against
Π and a mu-PRF adversary A2 against FKIVR such that Advmu-ae

KIVR[Π](A) ≤
Advmu-ae

Π (A1)+Advmu-prf
FKIVR

(A2), where A makes at most q construction queries
and runs in time T , and A1 and A2 respectively make at most q construction
queries and runs in time T + O(q).

Proof. Firstly, the keyed functions FKIVR(K1, ·, ·), . . . ,FKIVR(Ku, ·, ·) are
replaced with random functions R1, . . . ,Ru. Then, the mu-PRF-advantage func-
tion of A2 is introduced in the mu-AE-security bound.

We next consider the mu-AE-security of KIVR[Π] where FKIVR is a random
function Ri. By random functions, for each of tuples of a key, nonce, and AD, the
temporary key is chosen uniformly at random from K, the mu-AE-security of
KIVR[Π] is reduced to the mu-AE-security of Π, i.e., for any adversary breaking
the mu-AE-security of KIVR[Π], there exists an adversary A1 breaking the
mu-AE-security of Π.

Hence, we have Advmu-ae
KIVR[Π](A) ≤ Advmu-ae

Π (A1) +Advmu-prf
FKIVR

(A2). ��

D Proof of Theorem 2 for KIVR[GCM-SIV]

Fix redundancy R ∈ {0, 1}r. We consider the mixing function: Mixrc(R‖Morigin) =
R‖Morigin for each core data Morigin. We then define two adversaries A1 and A2

that offer the terms p2

2r and p2

2k+ν+rT
, respectively.

Adversary A1. A1 breaking the CMT-1-security of KIVR[GCM-SIV] is given
in Algorithm 10. A1 returns a pair ((K(α), N,A,M (α)), (K(β), N,A,M (β))) such
that K(α) �= K(β). We explain the algorithm below.

– Steps 2 and 3 define p1 tuples of a key, a nonce, and AD, where the keys are
all distinct. In Steps 4-7, A calculates key streams for the input tuples.

– Step 8 searches a pair (α, β) with the following conditions: msb1(X(α)) =
msb1(X(β)) = 0 and msbr

(
KS(α) ⊕ KS(β)

)
= zpr(R

(α)
T ⊕ R

(β)
T ). The second

condition is a sufficient one to obtain a ciphertext collision due to Lemma 1.
For each pair (α, β), KS(α) and KS(β) are (almost) r-bit random values,
and thus the probability that the relation is satisfied is O( 1

2r ). Summing the

bound for each pair, we have the bound O
(

p2

2r

)
of the probability that the

relation is satisfied.
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Algorithm 10. Adversary A Breaking the CMT-1-Security of KIVR[GCM-SIV]
1: ω ← � r

n
�; p1 ← � p

ω+4
�

2: Choose p1 distinct keys K(1), . . . , K(p1) ∈ K
3: Choose a pair (N, A) ∈ N × A of nonce and AD and a tag T ∈ {0, 1}n

4: for i = 1, . . . , p1 do
5: ((K

(i)
bcT, L

(i)
T ), IV

(i)
T , R

(i)
T ) ← FKIVR(K

(i), N, A); X(i) ← E−1(K
(i)
bcT, T )

6: for j = 1, . . . , ω + 2 do KS(i) ← KS(i)‖E(K
(i)
bcT, add(T, j)) end for

7: end for
8: if ∃α, β ∈ [p1] s.t. α �= β ∧ msb1(X

(α)) = msb1(X
(β)) = 0∧

msbr

(
KS(α) ⊕ KS(β)

)
= zpr(R

(α)
T ⊕ R

(β)
T ) then

9: H(α) ← X(α) ⊕ 0n−ν‖IV
(α)
T ; H(β) ← X(β) ⊕ 0n−ν‖IV

(β)
T

10: Find ω + 2 block plaintexts M (α), M (β) s.t.
msbr(M

(α)) = msbr(M
(β)) = R,

C(α) = C(β),
lsbn−1(GHASH(L

(α)
T , ε, M (α))) = lsbn−1(H

(α)), and
lsbn−1(GHASH(L

(β)
T , ε, M (β))) = lsbn−1(H

(β))
11: return ((K(α), N, A, M (α)), (K(β), N, A, M (β)))
12: end if
13: return ((K(1), N, A, 0), (K(2), N, A, 0))

– If such pair is found, then A can find a pair ((K(α), N,A,M (α)), (K(β), N,A,
M (β))) such that (C(α), T (α)) = (C(β), T (β)) by solving the equations:
msbr(M (α)) = msbr(M (β)) = R, C(α) = C(β) (⇔ M (α) ⊕ M (β) = KS(α) ⊕
KS(β)), GHASH(L(α), ε,M (α)) = H(α), and GHASH(L(β), ε,M (β)) = H(β).
Since Step 8 ensures that the ciphertext collision occurs, this step searches
the pair that yields the tag collision. In the equations, there are 2(ω + 2)
plaintext blocks and there are ω + 4 equations for the blocks. Fixing the
2ω message blocks with redundancy such that msbωn(C(α)) = msbωn(C(β)),
the remaining 4 message blocks are uniquely determined from the equations
lsb2n(C(α)) = lsb2n(C(β)), lsbn−1(GHASH(L(α)

T , A(α),M (α))) = lsbn−1(H(α)),
and lsbn−1(GHASH(L(β)

T , A(β),M (β))) = lsbn−1(H(β)). Then, we have a pair
with the output collision.

Hence, the probability that A win the CMT-1 game is O
(

p2

2r

)
.

Adversary A2. The second adversary A2 that breaks the CMT-1-security of
KIVR[GCM-SIV] by using a collision of FKbcIV R. If FKbcIV R(K(α), N (α), A(α)) =
FKbcIV R(K(β), N (β), A(β)) such that K(α) �= K(β) and (N (α), A(α)) =
(N (β), A(β)), then by choosing the same plaintexts M (α) and M (β) such that
msbr(M (α)) = msbr(M (β)) = R and the tag collision occurs, we obtain the out-
put collision (C(α), T (α)) = (C(β), T (β)). The collision probability is O

(
p2

2k+ν+rT

)
.

Note that the plaintexts with the tag collision can be found by the same pro-
cedure as A1 that finds ciphertexts with the tag collision by making use of the
linearity of GHASH. ��
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Algorithm 11. Adversary A1 Breaking the CMT-1-Security of KIVR
[CTR-HMAC]
1: p1 ← 0.5� p

ω+1
�

2: Choose p1 distinct keys K(1), . . . , K(p1) ∈ {0, 1}k

3: Choose a pair (N, A) ∈ N × A of a nonce and AD
4: for i = 1, . . . , p1 do
5: (K

(i)
T , IV

(i)
T , R

(i)
T ) ← FKIVR(K

(i), N, A); KS(i) ← ε

6: for j = 1, . . . , ω + 1 do KS(i) ← KS(i)‖E(K
(i)
T , add(IV

(i)
T , j)) end for

7: end for
8: for each (α, β) ∈ [p1]

2 s.t. α �= β ∧ msbr(KS(α) ⊕ KS(β)) = zpr(R
(α)
T ⊕ R

(β)
T ) do

9: M (α) ← R‖lsb(ω+1)n−r(KS(α) ⊕ zp(ω+1)n(R
(α)
T ))

10: M (β) ← R‖lsb(ω+1)n−r(KS(β) ⊕ zp(ω+1)n(R
(β)
T ))

11: C ← M (α) ⊕ (KS(α) ⊕ zp(ω+1)n(R
(α)
T ))

12: T (α) ← RO(K
(α)
tagT, IV

(α)
T , C); T β ← RO(K

(β)
tagT, IV

(β)
T , C)

13: if T α = T β then return ((K(α), N, A, M (α)), (K(β), N, A, M (β))) end if
14: end for
15: return ((K(1), N, A, KS(1)), (K(2), N, A, KS(2)))

E Proof of Theorem 3

In this proof, we assume that HMAC is a random oracle RO which is an ideal
hash function. Let R ∈ {0, 1}r be redundancy. We consider the following mixing
function: Mixrc(R‖Morigin) = R‖Morigin for each core data Morigin. We then define
two adversaries A1 and A2 that offer the terms p2

2r+t and δcoll(p), respectively.

Adversary A1. The adversary A1 breaking the CMT-1-security of
KIVR[CTR-HMAC] is defined in Algorithm 11. The adversary returns a pair
((K(α), N (α), A(α),M (α)) (K(β), N (β), A(β),M (β))) such that (N (α), A(α)) =
(N (β), A(β)), K(α) �= K(β), and M (α) �= M (β). We explain the algorithm below.

– Steps 2 and 3 define p1 tuples of a key, a nonce, and AD, where the keys are
all distinct. Steps 4-7 calculates the key streams of these input tuples.

– Step 8 searches a pair (α, β) with the following relations: msb1(X(α)) =
msb1(X(β)) = 0 and msbr

(
KS(α) ⊕ KS(β)

)
= zpr(R

(α)
T ⊕ R

(β)
T ), which is

the sufficient condition to obtain a ciphertext collision from Lemma 1. For
each pair (α, β), KS(α) and KS(β) are (almost) r-bit random values, and thus
the probability that the relation is satisfied is O( 1

2r ).
– For such pair, Steps 10 and 11 calculate a pair of plaintexts (M (α),M (β))

that yield the same ciphertext C, and Step 12 calculates the tags. Step 13
checks the equality of the tags. If the tag collision occurs, A1 breaks the
CMT-1-security of CTR-HMAC. The probability that the tag collision occurs
is at most 1

2t .
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– Summing the bound 1
2r · 1

2t for each pair (α, β), we have the bound O
(

p2

2r+t

)
.

Hence, the probability that A1 breaks the CMT-1-security of KIVR[GCM] is at
least O

(
p2

2r+t

)
.

Adversary A2. The second adversary A2 that breaks the CMT-1-security
of KIVR[CTR-HMAC] by using a collision of FKIVR. If the collision is found:
FKIVR(K(α), N (α), A(α)) = FKIVR(K(β), N (β), A(β)) such that K(α) �= K(β) and
(N (α), A(α)) = (N (β), A(β)), then by choosing the same plaintexts M (α) = M (β),
we obtain the output collision (C(α), T (α)) = (C(β), T (β)). The collision proba-
bility is δcoll(p). ��
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