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1 Université catholique de Louvain ICTEAM - Crypto Group, B-1348,
Louvain-la-Neuve, Belgium

{thi.doan,olivier.pereira,thomas.peters}@uclouvain.be
2 Microsoft Research, Redmond, WA, USA

Abstract. We design new encryption mechanisms that enable the
design of the first universally verifiable voting schemes, supporting both
receipt-freeness and everlasting privacy without assuming the existence
of an anonymous channel.

Our schemes support the two most traditional election tallying meth-
ods: One is additively homomorphic, supporting elections in which votes
simply need to be added, but decryption is only efficient for a message
space of polylogarithmic size. The other is randomizable, is compatible
with traditional mixnet-based tallying methods, and supports efficient
message encoding, which makes it compatible with virtually any election
type.

Our approach builds on the recently proposed traceable receipt-free
encryption (TREnc) primitive to support the design of a perfectly pri-
vate audit trail. In particular, we propose two TREnc that are secure
under SXDH and rely on a public coin CRS (or on the random oracle
model). This improves on previous TREnc mechanisms that required a
structured CRS and is of independent interest. A prototype implementa-
tion of our mechanisms is proposed, which shows that ballot preparation
and verification can be executed in less than a second.

Keywords: Traceable receipt-free encryption · Everlasting privacy ·
Perfectly private audit trail · Pairing-based cryptography

1 Introduction

Verifiable elections enable internal players and external observers to verify the
validity of individual votes and the final election outcome, even in situations
where potentially all participants have malicious intent. Verifiability is typically
obtained through the use of a public bulletin board [1,13,14,18,34].

While being central to support public verifiability at scale, this bulletin board
raises central issues in secret ballot elections. In order to guarantee the secrecy
of the vote, a bulletin board will typically have ballots and/or voter names
hidden by some form of encryption. This is a good solution to guarantee the
computational privacy of the votes [6], but it does not address two other central
concerns:
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1. The bulletin board may support vote selling or voter coercion. For instance, a
voter who keeps track of all the random coins he used to prepare a ballot may
be able to demonstrate how he voted to a third party, who would be able to
recompute the encrypted ballot using the coins and claimed vote intent and
confirm its presence on the bulletin board.

2. The bulletin board may raise long-term privacy concerns: when privacy is
computational, encrypted votes (or encrypted voter identities) will eventually
become public, either through cryptanalytic advances, or through the advent
of new hardware, including quantum computers. This may have a chilling
effect on voters who may not feel that they can vote freely.

As discussed in a recent review by Haines et al. [24], the design of secure and
efficient voting protocols that offer both receipt-freeness (RF) and a perfectly
private audit trail (PPAT) is a long-standing open problem. In particular, the
few existing proposals that support these properties are either designed for in-
person voting [32], or rely on the existence of an anonymous ballot submission
channel [22,30], which seems hardly realistic in a large-scale election context (see
further discussions in the related works section below).

An alternative approach to obtain receipt-freeness relies on the help of a
ballot-box manager, who is trusted for receipt-freeness, but not for verifiability
or for privacy, following a general approach pioneered by Hirt and Sako [25].
This approach led to the recent development of a new Traceable Receipt-Free
Encryption (TREnc) primitive by Devillez et al. [20], which enables receipt-free
ballot submission following the Hirt and Sako paradigm. In a nutshell, using a
TREnc, voters can encrypt their vote intent, which will provide them with a trace
and a ciphertext that can be submitted to the ballot-box manager. The trace
can be kept by the voter for verifiability purpose and is actually independent
of the vote itself, supporting receipt-freeness. The ballot-box manager then re-
randomizes the TREnc ciphertext and posts the result on a public bulletin board.
The security of the TREnc guarantees that the resulting ciphertext is distributed
just like a fresh encryption of a vote with an identical trace (this is the strong
randomization property) and that, if the trace did not change, then it must be
the same vote that is still encrypted (this is the traceability). The voter can
then verify on the bulletin board that a ciphertext with the correct trace is
published, but is unable to explain the vote that is encrypted there to any third
party. Finally, a TREnc guarantees that, even when ballots are computed with
adversarially chosen randomness, no adversary can turn a re-randomized ballot
into a related ballot that would have a different trace and contain a related vote
(this is implied by the TCCA security). The existing TREnc mechanisms however
do not support a PPAT and, as a side constraint, require a structured common
reference string (CRS), which may be an obstacle in any practical deployment.

1.1 Our Contributions

We propose two new encryption mechanisms that make it possible to obtain both
receipt-freeness (RF) and a perfectly private audit trail (PPAT) in a natural way,
following the general structure of a single-pass voting system [7] for instance.
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Our first encryption mechanism is additively homomorphic and suitable for
elections with a homomorphic tally, that is, where the vote for each candidate
can be encrypted as a 0 or a 1 counter, proven correct in zero-knowledge proof
(ZK), and where the tally for each candidate is obtained by verifiably decrypt-
ing the homomorphic sum of all the ciphertexts provided for that candidate –
this is the mechanism used by default in systems like Helios [2], Belenios [15]
or ElectionGuard [4]. However, this encryption mechanism only supports a mes-
sage space of polylogarithmic size, just as the exponential ElGamal encryption
mechanism used in the previously cited systems, which makes it unsuitable to
encrypt complex choice expressions in a single ciphertext.

Our second encryption mechanism addresses this limitation by supporting the
encryption of arbitrary group elements and supporting efficient bijective map-
pings between bit strings and group elements, at the cost of losing the additive
homomorphism. Still, this encryption mechanism is randomizable and compati-
ble with traditional mixnets like Verificatum [36] that operate on arrays of group
elements. Such mixnets have been used in national elections of various countries,
including Norway, Estonia, and Switzerland.

From a technical point of view, our new encryption mechanisms are secure
under symmetric external Diffie-Hellman assumption (SXDH) and provide new
TREnc mechanisms that rely on a public-coin CRS. This is an advance over
previous proposals, that is of independent interest, since the previously known
mechanisms relied on a structured CRS, which may be complicated to generate in
practice and introduces new trust assumptions. Here, a simple way of producing
the CRS in practice would be to sample the outputs of a hash function modeled
as a random oracle, which is already of common use in practical voting systems
when implementing the Fiat-Shamir transform on sigma protocols.

Finally, we evaluate the efficiency of our new mechanisms. Our additively
homomorphic mechanism produces ciphertexts in the two source groups of our
pairing-friendly setting: they lie in G

50×Ĝ
46. Our mixnet-compatible mechanism

produces slightly smaller ciphertexts in G
47 × Ĝ

45. The gains essentially come
from the inclusion, in the first case, of ZK proofs that a bit is encrypted, which
is not needed for a mixnet-based tallying process. We also implemented our
two mechanisms, relying on the MIRACL library for the group operations, and
observed that both encryption operations require less than 0.3 s, and that the
verification of the validity of a ciphertext takes less than a second.

1.2 Our Techniques

Commitment-Consistent Encryption. Our starting point for obtaining a PPAT
is the use of a commitment-consistent encryption (CCE) scheme [19]. The CCE
encryption of a message m provides two components: a perfectly hiding com-
mitment com that comes out of a commitment scheme (com, open) ← Com(m),
and an encryption enc of m and open that is provided together with a proof πcc

ensuring that VerC(com,m, open) = 1, where VerC is the verification algorithm
associated to Com. The proof πcc is provided in order to guarantee that the CCE
ciphertext is valid and that the tally will be computable. It can be augmented
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with a proof πpub that demonstrates that a valid opening of com (e.g., as a bit)
is known.

When a CCE encryption scheme is used in a voting application, the value
D = (com, πpub) is posted on a public bulletin board PB. If πpub is perfect ZK,
then this is perfectly hiding, as desired. Additionally, CT = (enc, πcc) is posted
on a secret bulletin board SB, for use by the talliers. The election tally can then
be computed using various techniques, as outlined in [19] for instance, preserving
the PPAT. This approach however does not offer receipt-freeness, since the voter
could use open as a receipt for his vote, for instance.

A TREnc on Top of CCE Encryption. In order to obtain the RF property, we
then explore how to build a TREnc, whose ciphertexts contain a commitment-
consistent encryption instead of an ElGamal encryption as in existing designs.

To satisfy all the TREnc properties that are needed need to achieve receipt-
freeness in our voting scheme, all the components of C = (D,CT ) must be
rerandomizable up to a trace which will allow voters to check the presence of
their rerandomized commitments and proofs D′ = (com′, π′

pub) on PB. Therefore,
the traceability property must be supported by D and its randomization. For
that purpose, we adapt the linearly homomorphic structure-preserving (LHSP)
signature [28] techniques of [20] used during the computation of the encryption
algorithm of their ad-hoc construction to our “commitment case”. More pre-
cisely, the trace of a TREnc ciphertext C is the one-time LHSP verification key
opk generated by the encryption algorithm. In a nutshell, the corresponding one-
time LHSP secret key osk is used to sign a basis of a sub-vector space, where
the vectors of this basis are derived from an internal CPA-encryption of the
plaintext and its public key. The LHSP properties allow us to derive a signature
on any rerandomization of this CPA part, and all its rerandomizations actually
consist of the sub-vector space that is authenticated. Traceability comes from
the fact that signing a CPA encryption of another plaintext requires authenti-
cating a vector outside the linear spanned sub-space, which is unfeasible thanks
to the unforgeability of the one-time LHSP signature scheme. Unfortunately,
the unforgeability of the LHSP signatures cannot directly be used in our case
to ensure that the rerandomized commitment com′ still contains the same com-
mitted message. After all, there is just no meaning of which message is really
contained in the perfectly hiding com′ since it could be equally opened on any
message. To restore this property and to contradict the security of the LHSP
signatures when the committed message has been successfully modified, we use
a dual-commitment compatible with (Com,VerC). To show traceability, we only
have to turn the commitment public key into an extractable and perfectly bind-
ing mode at the start of the proof. We will thus have LHSP signatures and opk
contained in D.

Finding the Right Tools. Finding most of the compatible building blocks is not
straightforward, but only requires making careful choices and adapting tech-
niques except for the TCCA property, and the simulation soundness in particu-
lar. Since we need rerandomizable proofs, we naturally focus on the SXDH-based
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Groth-Sahai (GS) proof system that is also known to be malleable. Randomiz-
ing our TREnc ciphertexts C also requires adapting the statement under the GS
proofs. Indeed, the witness underlying the commitment-consistent and validity
proofs are subject to adaptation when com and Enc are rerandomized: the ran-
dom coins are refreshed and the witness of the GS proofs may depend on these
coins. In the perfect non-interactive witness indistinguishable (NIWI) setting to
prove pairing-product equations, the common reference string (CRS) consists of
random group elements of the two source groups and is thus public coin. How-
ever, NIWI proofs are not enough for our constructions as we need them to be
zero-knowledge when we have to include an SXDH challenge in enc during the
randomization in the challenge phase of the TCCA game, and for which the
reduction is of course not given the random coin. There exist generic solutions
to turn NIWI GS-proofs into ZK proofs but they are expensive. In spirit, we fol-
low [29] which still partially relies on a generic OR-proof technique that makes
it possible to prove another statement in the security proof than the one in the
real execution of the scheme. The idea is that no adversary can use the second
branch of the OR-proof for a TREnc ciphertext containing a different trace than
the one of the challenge phase. In order to trigger the possibility of proving the
second branch, we rely on the unforgeability of (yet another) one-time LHSP
signature whose public key is generated in the key generation of the TREnc.
Fortunately, this public key is a single uniformly distributed pair of group ele-
ments and is then public coin as well, while no one knows the corresponding
signing key. The branch that is being proved is encoded as a vector of group
elements with the following property: if the real statement is being proved, the
vector only contains neutral elements (i.e., it is the null-vector, but we will use
multiplicative notation); to simulate, we prove the second statement and the
vector is non-trivial and lies in a one-dimensional subspace determined by the
trace. Since, on the one hand, it is easy to compute a degenerated LHSP sig-
nature on the neutral vector from the public key, and, on the other hand, it is
hard to compute an LHSP signature on a different one-dimensional subspace for
another trace, simulation soundness holds for any proof with another trace than
the one of the challenge. This vector as well as the (degenerated) LHSP signature
are only given in a committed form with a GS-proof (with the same CRS) that
the LHSP verification equation holds. Another difficulty in the TCCA proof is
to switch the kind of encoded vector by simulating the randomization of one of
the ciphertexts given in the challenge phase, but surprisingly this task can be
handled only thanks to the perfect WI property of the GS-proof.

Following [20], we also need to commit-and-prove to the one-time LHSP
signature generated during encryption (for the traceability) for technical reasons.
Otherwise, even if it looks hard to embed subliminal information into the LHSP
signatures related to com, we have no ground to prove the TCCA security. This
additional layer of GS-proof solves the issue thanks to the perfect WI property.
However, even when we should extract the witness of the proof of validity and
consistency to figure out which branch the adversary tried to prove in a given
ciphertext in a decryption query, this part of the proof related to the LHSP
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signature for traceability must remain in the perfect WI mode. that is because we
have to avoid leaking the internal bit of the game (i.e., which ciphertext between
C0 and C1 have been rerandomized in the challenge phase) in an information-
theoretic sense to conclude. To circumvent this opposing requirement, we use
another GS CRS for the traceable part that can remain in the perfect WI mode.

1.3 Related Work

Receipt-Free Voting. The study of receipt-free elections was initiated by Benaloh
and Tuinstra [5], who presented the first verifiable secret-ballot election protocols
in which voters cannot prove to others how they voted. In order to achieve
receipt-freeness, they required a physical voting booth to establish completely
untappable channels between the voting authority and the voter. A year later,
Sako and Kilian [35] argued that a one-way untappable channel is sufficient for
this purpose. Additionally, they explained how to implement a receipt-free and
universally verifiable voting system using the first verifiable mixnet. Thereafter,
there has been a flurry of activity in the design and analysis of receipt-free voting
protocols relying on the use of an untappable channel proposed by different
authors. A prominent approach, that we outlined above and follow here, was
proposed by Hirt and Sako [25], then simplified by Blazy et al. [9], refined by
Chaidos et al. [12] and formalized by Devillez et al. [20]. Of course, many other
approaches have been proposed in parallel and are out of scope of this work [21,
26,34].

Voting with a PPAT. A recent and detailed account of the efforts towards voting
with perfectly private ballots is provided by Haines et al. [24]. They identify the
approach of commitment-consistent encryption, which we are using here, as one
of the two strongest proposals, the other one being based on ballots that are
secret-shared between a set of trustees [16]. We did not adopt the secret sharing
approach here as it is more demanding to the voters, requiring a computational
effort that grows linearly with the number of trustees that receive vote shares,
and only offers privacy benefits over CCE if we assume that the voters have direct
communication channels with every trustee, which may be quite demanding.

Voting with RF and PPAT. There are very few proposals that offer both RF
and a PPAT, and they rely on the existence of anonymous channels for ballot
submission, an assumption that we are avoiding here and that is hardly practical
at a large scale.

The first is based on blind signatures [22,33], where voters obtain a blindly
signed voting token from an authority, which is then used to submit a ballot
through an anonymous communication channel. Verifiability is hard to obtain in
such a setting: a malicious authority can for instance produce tokens on behalf
of abstaining voters and cast ballots in their stead.

A second approach was proposed by Locher and Haenni [30] and addresses
the problem of eligibility verifiability by having voters registering a public key
and submitting their ballot together with a proof that they know the secret
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key matching one of these public keys, using a mechanism similar to list sig-
natures [11]. Again, ballots are submitted using an anonymous communication
channel.

Our work aims at developing solutions that offer a PPAT in the sense of Cuve-
lier et al. [19], together with receipt-freeness, following the definitional approach
of Chaidos et al. [12].

1.4 Overview of Paper

We structure our paper as follows. Standard building blocks and the compu-
tational assumptions are introduced in Sect. 2. In Sect. 3, we present the intu-
ition and the full description of our first construction to verifiably encrypt bits,
followed by its theorem statements. The second construction is postponed to
Appendix A due to space limit. Then, Sect. 4 shows the voting application
implied by our combined primitive and describes an election based on homo-
morphic aggregation for the simple ballot case and an election with mixnet for
the complex ballot case. To conclude, Sect. 5 makes some important remarks.
The security analysis is deferred to Appendix B. This choice is compensated by
the thorough overview of our techniques given above.

2 Background

We review some standard building blocks and introduce the corresponding nota-
tions.

2.1 Assumptions and Primitives

We will work in asymmetric bilinear groups and assume the existence of a
bilinear-group generator G which takes the security parameter λ as input and
outputs pp = (G, Ĝ,GT , e, g, h, ĝ, p), where G, Ĝ,GT are groups of prime order

p > 2poly(λ), g, h
$← G, ĝ

$← Ĝ are random generators, and e : G × Ĝ is a
non-degenerate bilinear map. Our setting relies on the SXDH (symmetric exter-
nal Diffie-Hellman) assumption, which states that the decisional Diffie-Hellman
problem (DDH) [10] must be intractable in both G and Ĝ.

Assumption 1 (DDH). Let λ be a security parameter and g be a generator of
a group G of prime order p > 2poly(λ). It is computationally hard to distinguish
the tuple (ga, gb, gab) from the tuple (ga, gb, gc) where a, b, c

$← Zp.

Groth-Sahai Proofs. Groth-Shai (GS) proofs [23] offer an efficient approach to
proving the satisfiability of quadratic equations in bilinear settings. On input pp,
common reference strings (CRS) u ∈ G

4 and v ∈ Ĝ
4 are generated to commit to

groups elements of G and Ĝ. For instance, the commitments to X ∈ G and Ŷ ∈ Ĝ

are denoted by CX and CŶ respectively. In accordance with the GS standard
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notation, we also define the linear maps: ι1 : G → G
2 with ι1 : X �→ (1,X) and

ι2 : Ĝ → Ĝ
2 with ι2 : Ŷ �→ (1, Ŷ ).

Linearly Homomorphic Structure-Preserving Signatures (LHSP Signa-
ture). LHSP signature was introduced by Libert et al. [28] to perform linear
computations on encrypted data. Structure-preserving property allows signing
messages that are vectors of group elements, whereas the linearly homomorphic
feature makes it possible to derive a signature on any linear combination of
already signed vectors. In our context, we rely on a one-time LHSP signature
scheme of [28] in the SXDH setting as in [27], where each voter signs only one
linear subspace using his secret signing key.

Gen(pp, λ, n): given the public parameter pp and the dimension n ∈ N of the

subspace to be signed, pick χi, γi
$← Zp and compute fi = gχihγi , for i = 1 to

n. The private key is sk = {(χi, γi)}n
i=1 and the public key is pk = {fi}n

i=1 ∈
G

n.
Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Ĝ

n, using sk, output
σ = (Ẑ, R̂) = (

∏n
i=1 Mχi

i ,
∏n

i=1 Mγi

i ).
Ver(pk, σ, (M1, . . . ,Mn)): given a signature σ = (Ẑ, R̂) ∈ Ĝ

2 and a vector
(M1, . . . ,Mn), return 1 if and only if (M1, . . . ,Mn) �= (1

Ĝ
, . . . , 1

Ĝ
) and (Ẑ, R̂)

satisfies

e(g, Ẑ) · e(h, R̂) =
n∏

i=1

e(fi,Mi). (1)

In our case, the LHSP signature has three key advantages. Firstly, it allows
ciphertexts to be re-randomized and the adaptation of their signatures, while
guaranteeing the non-malleability of the plaintext. Secondly, it notably ensures
that it is infeasible to publicly compute a signature on a vector outside the
linear span of originally signed vectors, which is essential for our system security.
Thirdly, the verification Eq. (1), which is a pairing product equation, still holds
for (M1, . . . ,Mn) = (1

Ĝ
, . . . , 1

Ĝ
) with a degenerated signature (Ẑ, R̂) = (1, 1).

This feature allows hiding whether we trivially satisfy the equation or if we have
a valid signature thanks to the Groth-Sahai proof system. We use it to implement
an OR-technique useful to simulation soundness.

2.2 Traceable Receipt-Free Encryption (TREnc)

TREnc [20] is a public key encryption scheme (Gen, Enc, Dec), augmented with
a 5-tuple of algorithms: LGen, on input a security parameter λ and a public
encryption key PK, outputs a link key lk; LEnc encrypts a message m using (PK,
lk) and outputs a ciphertext c. Trace outputs the trace t of c. Rand randomizes
c to output a randomized ciphertext c′. Ver checks if a ciphertext is valid and
outputs 1 if true, and 0 otherwise.

Verifiability. A TREnc is verifiable if no PPT adversary can produce, with
non-negligible probability, a ciphertext that satisfies Ver but is not in the range
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of Enc. In other words, Ver guarantees that a valid ciphertext is necessarily in
the range of the honestly generated encryptions. More formally, for any efficient
A, Pr[c /∈ Enc(PK, ·) ∧ Ver(PK, c) = 1 | (PK,SK) ← Gen(1λ), c ←$ A(PK,SK)] is
negligible. We denote the event of A winning this game as ExpverA (λ) = 1.

Strong Randomization. To achieve receipt-freeness, a ballot from a voter must
be re-randomized before being placed on the PB. Strong randomization requires
that the output of the Rand algorithm be indistinguishable from any encryption
of the same message with the same link key. More precisely, A TREnc is strongly
randomizable if for every c ∈ LEnc(PK, lk,m) with PK in the range of Gen and
lk in the range of LGen(PK), the following computational indistinguishability
relation holds: Rand(PK, c) ≈c LEnc(PK, lk,m).

TCCA Security. Security against traceable chosen ciphertexts attacks, also
called TCCA security, is a TREnc’s central security requirement. An adversary
A, who has a public key and is allowed to access a decryption oracle, submits
a pair of valid ciphertexts of its choice that have identical traces. One of the
ciphertexts is randomized and returned to A, who must decide which one it is.
After receiving this challenge ciphertext, A can still query the decryption oracle,
but only on ciphertexts that have a trace different from his challenge cipher-
text. TREnc is said to be TCCA secure if no PPT adversary can decide which
ciphertext was randomized. Achieving TCCA security implies a form of non-
malleability of the trace of ciphertexts. This essentially guarantees the absence
of a vote receipt and is formalized in the ExptccaA (λ) game in Fig. 1.

Traceability. A TREnc is traceable if no efficient adversary A can produce
another ciphertext that traces to the same trace and decrypts to a different
message. The traceability property of the TREnc then guarantees that nobody
(including the rerandomizing server and decryption-key holders) could have
forged another valid ciphertext of another vote linked to the given ballot with
non-negligible probability. This property is fundamental for the verifiability of
an election and is defined in ExptraceA (λ) game of Fig. 1.

Link Traceability. TREnc allows the encryption of any message using a single
link key and all resulting ciphertexts have the same trace. Thanks to this prop-
erty, LEnc makes the TCCA game possible by encrypting different messages that
trace to each other. This non-binding feature is essential for receipt-free voting.

Receipt-Freeness. To be receipt-free, TREnc relies on a semi-trusted entity
called a ballot box manager. This entity checks the validity of the encrypted vote
sent by the voter without requiring a secret key and then re-randomizes every
valid ciphertext before posting it on the PB. Since the randomness contained
in the published ballot is no longer under the control of the voter, he cannot
prove how he voted. On the one hand, link traceability allows voters to vote
for different messages with a single link key, preventing them from proving their
vote. On the other hand, traceability ensures that no corrupted authority should
be able to modify the encrypted vote while keeping the trace unchanged.

In a model where the voting client may be corrupted, strong randomiza-
tion and TCCA security guarantees that the encryption hides the message. In
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contrast, the traceability property plays an important role when the voting client
is honest, and the re-randomization server might be corrupted.

Definition 2.1 (TREnc correctness). A TREnc scheme is required to satisfy
the following correctness requirements.

Encryption compatibility. For every PK in the range of Gen and message m,
the distributions of Enc(PK,m) and LEnc(PK, LGen(PK),m) are identical.

Link traceability. For every PK in the range of Gen, every lk in the range
of LGen(PK), the encryptions of every pair of messages (m0,m1) trace to
the same trace, that is, it always holds that Trace(PK, LEnc(PK, lk,m0)) =
Trace(PK, LEnc(PK, lk,m1)).

Publicly Traceable Randomization. For every PK in the range of Gen, every
message m and every c in the range of Enc(PK,m), we have that Dec(SK, c) =
Dec(SK,Rand(PK, c)) and Trace(PK, c) = Trace(PK,Rand(PK, c)).

Honest verifiability. For every PK in the range of Gen and every message m,
it holds that Ver(PK,Enc(PK,m)) = 1.

Fig. 1. The experiments of TCCA security, and traceability. In the TCCA game, A2 has
access to a decryption oracle Dec∗(.) which, on input c, returns Dec(c) if Trace(PK, c) �=
Trace(PK, c∗) and test otherwise.

2.3 Commitment Consistent Encryption (CCE)

CCE [19] is a cryptographic mechanism providing audit data for public verifi-
cation that will never leak any information about the vote, even if the private
keys are compromised or the cryptographic assumptions are broken.

To cast a ballot, voters are expected to encrypt their vote and produce a
perfectly hiding commitment to the vote. The committed vote and an auxiliary
value used to compute the commitment are called the openings for that commit-
ment. The encryption is computed so that from any encrypted vote, it is possible
to extract a commitment and an encryption of openings for that commitment.
To verify the validity of the ballots, voters also have to provide a non-interactive
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zero-knowledge proof demonstrating the consistency between these components.
The commitment is then cast on PB, whereas the encryption of the openings
and the consistency proof are sent to SB. Since the election audit data in PB is
perfectly hiding, we can ensure the confidentiality of the votes.

However, it is easy to observe that if a voter is willing to sell his vote, he
can store the openings of the commitment and communicate it to an adversary.
Thus, although CCE makes an e-voting system everlastingly private, it is not
designed to protect against the vote-selling/buying threat. In other words, such
a CCE protocol is not receipt-free.

3 The Construction of Our Scheme

Sections 3.1 and 3.2 describe our first construction of a commitment-consistent
TREnc tailored to simple ballot. That is, the message space is bits encoded as
scalars (in the exponents), and ciphertexts contain publicly verifiable proof of
so. Our second construction tailored for complex ballot is deferred to Appendix
A, where the message is a group element. In Sect. 3.3, we give the correctness
and the security theorem statements of the construction. Finally, we provide a
performance evaluation of our encryption algorithm in Sects. 3.4.

3.1 Description

Gen(1λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2poly(λ), pick

g, g1, h1
$← G and ĝ, ĥ, ĝ1, ĥ1, ĝ2, ĥ2

$← Ĝ.

1. Pick random {(αi, βi)}3i=1
$← Zp and set {fi}3i=1 = gαi

1 hβi

1 .
2. To commit to groups elements of G and Ĝ respectively, we generate one Groth-

Sahai CRS u = (
u1, 
u2) in G
4 and two others v = (
v1, 
v2) and v′ = (
v′

1, 
v
′
2) in

Ĝ
4 such that 
u1 = (u11, u12), 
u2 = (u21, u22), 
v1 = (v11, v12), 
v2 = (v21, v22),


v′
1 = (v′

11, v
′
12), and 
v′

2 = (v′
21, v

′
22) are generated in the perfect NIWI mode.

3. Pick random f̂1, f̂2 ← Ĝ that will be used as a verification key for the LHSP
signature but for which no one knows the corresponding secret key.

The private and public keys respectively are SK = {(αi, βi)}3i=1 and PK =
(g, g1, h1, ĝ, ĥ, ĝ1, ĥ1, ĝ2, ĥ2, {fi}3i=1, f̂1, f̂2,u,v,v′).

Enc(PK, m): To encrypt m ∈ Zp, first run LGen(PK): Generate a key pair
(osk, opk) for the one-time linearly homomorphic signature from the public
generators g1, h1 to sign vectors of dimension 3. Let the signing key lk = osk =
{(ηi, ζi)}3i=1, the corresponding public key is opk = {ki}3i=1 = {gηi

1 hζi

1 }3i=1.
Then, conduct the following steps of LEnc(PK, lk,m):
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1. In the ciphertext CT :

(a) Compute M = gm ∈ G. For random r, q
$← Zp, compute the commitments

d̂1 = ĝmĝr
1ĥ

q
1 ∈ Ĝ, d̂2 = ĝr

2ĥ
q
2 ∈ Ĝ and the openings R = gr ∈ G, Q = gq ∈

G. Choose θ
$← Zp, compute the ciphertexts of M , R, and Q respectively

as cm = (c0, c1, c2) = (Mfθ
1 , gθ

1 , h
θ
1), cr = Rfθ

2 , and cq = Qfθ
3 .

(b) Commit to the openings using the Groth-Sahai CRS by computing CM

= ι1(M)
uz1
1 
uz2

2 ∈ G
2, CR = ι1(R)
ur1

1 
ur2
2 ∈ G

2, and CQ = ι1(Q)
ut1
1 
ut2

2

∈ G
2 for random z1, z2, r1, r2, t1, t2

$← Zp, then derive the commitment
Cf1 = ι(c0)/CM , Cf2 = ι(cr)/CR, and Cf3 = ι(cq)/CQ.

(c) To allow simulating the proof, set the bit b̄ = 1 and compute G =
gb̄ ∈ G and Ĥ = ĥb̄ ∈ Ĝ. Commit to G, Ĥ, and Ĥθ respectively
to have CG = ι1(G) 
u1

w1 
u2
w2 ∈ G

2, CĤ = ι2(Ĥ)
v1
x1 
v2

x2 ∈ Ĝ, and

Cθ = ι2(Ĥθ)
v1
x3 
v2

x4 ∈ Ĝ for w1, w2, x1, x2, x3, x4
$← Zp. To make sure

G and Ĥ are well-formed, compute GS proof πb such that

e(g, Ĥ ) = e( G , ĥ) (2)

For the sake of simplicity, we signify that the group element represented
in the box is the one that is committed in the corresponding commitment.
For example, in Eq. 2, Ĥ and G are committed in CĤ and CG respectively.

(d) To make sure CT is well-formed, compute the GS proof πθ to ensure that
(c1, c2, c0/M, cr/R, cq/Q) are in the form of (g1, h1, f1, f2, f3)θ. In other

words, these equations below must be satisfied with Ĥθ , fθ
1 , fθ

2 , and

fθ
3 respectively being committed in Cθ,Cf1 ,Cf2 , and Cf3 .

e(c1, Ĥ ) = e(g1, Ĥθ ) (a)

e(c2, Ĥ ) = e(h1, Ĥθ ) (b)

e( fθ
1 , Ĥ ) = e(f1, Ĥθ ) (c)

e( fθ
2 , Ĥ ) = e(f2, Ĥθ ) (d)

e( fθ
3 , Ĥ ) = e(f3, Ĥθ ) (e)

(3)

(e) Return CT = (cm, cr, cq,CĤ ,Cθ, πb, πθ) ∈ G
25 × Ĝ

20.
2. In the commitment D:

(a) For the proof of the openings for commitments:
– The GS proof of openings πopen needs to make sure that the values

committed in CM ,CR,CQ,CG in CT are the openings of the com-
mitments d̂1, d̂2 in D. To put it differently, πopen must satisfy that

e( M , ĝ) · e( R , ĝ1) · e( Q , ĥ1) = e( G , d̂1) (a)

e( R , ĝ2) · e( Q , ĥ2) = e( G , d̂2) (b)
(4)
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where M , R , Q are values committed in CM ,CR,CQ in their
respective order.
Thus, the proofs πθ computed in the CT and πopen in D constitute
the proof of consistency between d̂1, d̂2 and cm, cr, cq, i.e., the com-
mitments can be opened by encrypted values in the ciphertexts.

(b) For traceability property:
– Sign each row of the matrix T using lk = osk, resulting in signatures

σ̂1, σ̂2, σ̂3, where σ̂i = (Ẑi, R̂i) ∈ Ĝ
2 for i = 1, 2, 3.

T =

⎛

⎝
ĝ d̂1 d̂2
1 ĝ1 ĝ2
1 ĥ1 ĥ2

⎞

⎠ (5)

– To allow strong randomizability, commit to σ̂1 using the GS CRS
v′ by computing CẐ = ι2(Ẑ1)
v′l1

1 
v′l2
2 and CR̂ = ι2(R̂1)
v′l3

1 
v′
2l4 for

random scalars l1, l2, l3, l4
$← Zp.

– To ensure that σ̂1 is a valid one-time LHSP signature on (ĝ, d̂1, d̂2),
compute the proof πsig such that

e(g1, Ẑ1 ) · e(h1, R̂1 ) = e(k1, ĝ) · e(k2, d̂1) · e(k3, d̂2) (6)

where Ẑ1 and R̂1 are committed in CẐ , CR̂ respectively.
(c) For TCCA security:

– Set (A,B) = (1G, 1G) as a degenerated LHSP signature, and X =
g/G = g1−b̄ ∈ G. Since b̄ = 1, X = 1G. The commitment of X is
computed by CX = ι1(g)/CG ∈ G

2. Commit to A and B to have

CA = ι1(A)
ua1
1 
ua2

2 and CB = ι1(B)
ub1
1 
ub2

2 for a1, a2, b1, b2
$← Zp.

– The randomizable simulation-sound proof πss must ensure that

e( A , ĝ) · e( B , ĥ) = e(g/ G , f̂1f̂
τ
2 ) (7)

where τ = Hash(opk). In the honest case, 7 is trivially fulfilled. In the
simulated case, b̄ �= 1 and (A,B) must be a valid LHSP signature on
(X,Xτ ) �= (1, 1) with verification keys being public elements (f̂1, f̂2).

(d) For well-formedness proof of a vote:
The vote m must be 0 or 1. To this end, we commit to M̂ = ĝm to have
CM̂ = ι2(M̂)
vs1

1 
vs2
2 for random scalars s1, s2

$← Zp. The proof π01 is
computed such that

e( M , ĝ) = e(g, M̂ ) (a)

e( M , ĝ/ M̂ ) = 1 (b)
(8)

(e) Return the commitment part D = (d̂1, d̂2,CM̂ ,CM ,CR,CQ,CG,CẐ ,

CR̂,CA,CB , πopen, σ̂2, σ̂3, πsig, πss, π01, opk) ∈ G
25 × Ĝ

26.
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At the end of the encryption, output C = (CT,D) ∈ G
50 × Ĝ

46.

Trace(PK, C): Parse PK and C as above, and output opk in the obvious way.
Rand(PK, C): If PK and C = (CT,D) do not parse as the outputs of Gen and

Enc, abort. Otherwise, conduct the steps as follows:

1. Randomizing CT :

(a) Parse the CPA encryption part cm, cr, cq, pick θ′, r′, q′ $← Zp, set R′ =
gr′

, Q′ = gq′
, and compute c′

m = (c′
0, c

′
1, c

′
2) = cm · (f1, g1, h1)θ′

=
(Mfθ+θ′

1 , gθ+θ′
1 , hθ+θ′

1 ), c′
r = cr · R′fθ′

2 , and c′
q = cq · Q′fθ′

3 .

(b) Adapt the commitments C′
G = CG · 
u1

w′
1 
u2

w′
2 , and C′

Ĥ
= CĤ · 
v1

x′
1 
v2

x′
2

for w′
1, w

′
2, x

′
1, x

′
2

$← Zp. Likewise, randomize the commitments C ′
Ĥ

=

CĤ · 
v1
x′
1 
v2

x′
2 , C′

θ = Cθ ·ι2(1) ·ι2(Ĥθ′
)
v1

x′
3 
v2

x′
4 , C′

M = CM ·
uz′
1

1 
u
z′
2

2 , C′
R =

CR · ι1(R′)
ur′
1

1 
u
r′
2

2 , C′
Q = CQ · ι1(Q′)
ut′

1
1 
u

t′
2
2 for x′

1, x
′
2, x

′
3, x

′
4, z

′
1, z

′
2, r

′
1, r

′
2,

t′1, t
′
2

$← Zp. The derived commitments are then C′
f1

= ι(c′
0)/C

′
M , C′

f2
=

ι(c′
r)/C

′
R; C′

f3
= ι(c′

q)/C
′
Q.

(c) Adapt the proof π′
θ and π′

b accordingly.
(d) Return CT ′ = (c′

m, c′
r, c

′
q,C

′
Ĥ

,C′
θ, π

′
b, π

′
θ).

2. Randomizing D:
(a) For proof of openings πopen:

i. Randomize the commitments d̂′
1 = d̂1 · ĝr′

1 ĥq′
1 = ĝmĝr+r′

1 ĥq+q′
1 , d̂′

2 =
d̂2 · ĝr′

2 ĥq′
2 = ĝr+r′

2 ĥq+q′
2 for the same r′, q′ in CT .

ii. Update the corresponding proof π′
open.

(b) For the proof of signature πsig:
i. Implicitly adapt the committed signature σ̂1 of the tracing part by

computing σ̃1 = (Z̃1, R̃1) = (Ẑr′
2 Ẑq′

3 , R̂r′
2 R̂q′

3 ) which consists of a one-
time LHSP signature on (1, ĝ1, ĝ2)r′ · (1, ĥ1, ĥ2)q′

for opk.
ii. Adapt the commitment C′

Ẑ
= CẐ · ι2(Z̃1)
v

′l′1
1 
v

′l′2
2 and C′

R̂
= CR̂ ·

ι2(R̃1)
v
′l′3
1 
v

′l′4
2 for some random l′1, l

′
2, l

′
3, l

′
4

$← Zp, which should commit
to the valid one-time LHSP signature σ̂′

1 = σ̂1σ̂
r′
2 σ̂q′

3 on (g, d̂′
1, d̂

′
2) for

opk. Then, randomize the proof π′
sig.

(c) For the proof of simulation soundness πss:
i. Adapt the commitment CX corresponding to C′

G by computing C′
X =

ι1(g)/C′
G. Similarly, computing C′

A = CA · 
u
a′
1

1 
u
a′
2

2 and C′
B = CB ·


u
b′
1

1 
u
b′
2

2 for some a′
1, a

′
2, b

′
1, b

′
2

$← Zp.
ii. Adapt the proof πss to have π′

ss.
(d) For well-formedness proof of a vote:

Adapt the commitment C′
M̂

= CM̂ · 
v
s′
1

1 
v
s′
2

2 for s′
1, s

′
2

$← Zp. Similarly,
adapt the proof π01 to have π′

01.
(e) Return D′ = (d̂′

1, d̂
′
2,C

′
M̂

,C′
M ,C′

R,C′
Q,C′

G,C′
A,C′

B ,C′
Ẑ
,C′

R̂
, σ̂2, σ̂3,

π′
sig, π

′
open, π′

ss, π
′
01, opk).
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At the end of the randomization, output C = (CT ′,D′).

Ver (PK, C): Abort and output 0 if either PK or C fails to parse correctly. Else,
check the validity of the LHSP signatures σ̂2, σ̂3 respectively on (1, ĝ1, ĝ2)
and (1, ĥ1, ĥ2) with respect to opk, as well as all the Groth-Sahai proofs with
τ = Hash(opk) and output 0 if at least one of them fails; otherwise, output 1.
(All the verification equations are given in Sect. 3.2.)

Dec(SK, C): If Ver(PK, C) = 0, output ⊥. Otherwise, given SK= {(αi, βi)}3i=1

and (cm = (c0, c1, c2), cr, cq) included in CT , output M = c0 · c−α1
1 · c−β1

2 ,
R = cr · c−α2

1 · c−β2
2 , and Q = cq · c−α3

1 · c−β3
2 .

3.2 Verification Equations

We now turn to the specification of the verification equations of the Groth-Sahai
proofs that must be satisfied by valid ciphertexts produced using this first con-
struction. While they are not necessary to follow the security proofs, we expand
them here in order to have a clear view about the cost of publicly verifying
ciphertexts, which will be evaluated through a prototype implementation below.

Ver (PK, C): Abort and output 0 if either PK or C fails to parse correctly. Then,
privately verify the first verification, which concerns the CPA encryption part,
while the remaining four will be checked publicly on PB.
1. The CPA encryption part is well-formed, i.e., (c1, c2, c0/M, cr/R, cq/Q)

are all in the form of the same exponent; and (G, Ĥ) are also raised to
the same exponent. To hold, the proofs πθ, πb in CT (of Eq. 3, Eq. 2) and
commitments Cf1 ,Cf2 ,Cf3 ,CĤ ,Cθ,CG must satisfy:

E(c1,CĤ) = E(g1,Cθ) · E(πθ,a[0], 
v1) · E(πθ,a[1], 
v2)
E(c2,CĤ) = E(h1,Cθ) · E(πθ,b[0], 
v1) · E(πθ,b[1], 
v2)

and

E(Cfi
,CĤ) =E(ι1(fi),Cθ) · E(
u1, πθ,j [0]) · E(
u2, πθ,j [1])

· E(πθ,j [2], 
v1) · E(πθ,j [3], 
v2)

for (i, j) ∈ {(1, c), (2, d), (3, e)} and

E(ι1(g),CĤ) =E(CG, ι2(ĥ)) · E(
u1, πb[0]) · E(
u2, πb[1])·
E(πb[2], 
v1) · E(πb[3], 
v2)

2. The values committed in CM ,CR,CQ,CG are the openings of the com-
mitments in Eq. 4. That means

E(CM , ĝ) · E(CR, ĝ1) · E(CQ, ĥ1) = E(CG, d̂1) · E(u, πopen,a)

E(CR, ĝ2) · E(CQ, ĥ2) = E(CG, d̂2) · E(u, πopen,b)

where E(u, πopen,i) = E(
u1, πopen,i[0]) · E(
u2, πopen,i[1]) with i ∈ {a, b}.

The verifications 1. and 2. constitute a consistency between d̂1, d̂2 in D
and cm, cr, cq in CT , i.e., the commitments can be opened by encrypted
values in the ciphertexts.
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3. The committed signature of the tracing part is valid, i.e., σ̂1 = (Ẑ1, R̂1)
is a valid one-time LHSP signature on the vector (ĝ, d̂1, d̂2). To this end,
the commitments CẐ , CR̂ and the proof πsig must ensure that

E(g1,CẐ) · E(h1,CR̂) =E(k1, ι2(ĝ)) · E(k2, ι2(d̂1)) · E(k3, ι2(d̂2))·
E(πsig[0], 
v′

1) · E(πsig[1], 
v′
2)

4. The committed values of the simulation part are valid, i.e., (A,B) must
be a valid LHSP signature on (X,Xτ ) by verifying

E(CA, ĝ) · E(CB , ĥ) = E(ι1(g)/CG, f̂1f̂
τ
2 ) · E(
u1, πss[0]) · E(
u2, πss[1])

5. The vote m is 0 or 1 using the proof π01 from Eq. 8

E(CM , ι2(ĝ)) =E(ι1(g),CM̂ ) · E(
u1, π01,a[0]) · E(
u2, π01,a[1])·
E(π01,a[2], 
v1) · E(π01,a[3], 
v2)

E(CM , ι2(ĝ)/CM̂ ) =E(
u1, π01,b[0]) · E(
u2, π01,b[1])·
E(π01,b[2], 
v1) · E(π01,b[3], 
v2)

If at least one of these checks fails, output 0; otherwise, output 1.

3.3 Security Analysis

The above scheme enjoys (perfect) correctness. Moreover, its security solely
relies on the SXDH assumption as claimed below. All the proofs are given in
AppendixB.

Theorem 3.1. The above scheme is perfectly strongly randomizable.

Theorem 3.2. The above scheme is TCCA-secure under the SXDH assump-
tion and the collision resistance of the hash function. We have the advantage
|Pr[ExptccaA (λ) = 1] − 1

2 | ≤ εcr + 6εsxdh + 4
p .

Theorem 3.3. The above scheme is traceable under the SXDH assumption.
More precisely, we have Pr[ExptraceA (λ) = 1] ≤ 5εsxdh + 1

p .

Theorem 3.4. The above scheme is verifiable under the SXDH assumption.
More precisely, for any adversary A, we have Pr[ExpverA (λ) = 1] ≤ 3εsxdh + 1

p .

3.4 Efficiency

Up to constant factors, the encryption scheme we just described and the one we
describe in AppendixA are optimal in the sense of Cramer, Gennaro and Schoen-
makers [17]: the ballot size and the voter computational load do not depend on
the number of voters nor on the number of authorities, the computational work-
load of the tallying authorities grows linearly with the number of voters and
candidates.
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In order to evaluate the constants, we built a C implementation of the bal-
lot preparation (key generation, encryption) and verification algorithms using
the MIRACL Core Cryptographic Library [31]. The implementation, which can
be found on https://github.com/uclcrypto/TREnc-PPAT, is carried out on an
average commodity laptop equipped with an Intel i5-1245U processor running
Ubuntu 22.04. The time unit is seconds and all our results are averaged over
100 runs. The running time of verification includes all verification equations in
Sect. 3.1 for both individual and universal verification. Likewise, the encryption
process timing also includes signature and proof computation. To provide at
least 128-bit security, we use a BN curve [3] on a 462-bit prime field, so-called
BN462. As seen in Table 1, it appears that the cost of computing ballots for

Table 1. Time for key generation, encryption, and verification of one ballot.

Tally type Gen Enc Ver

Homomorphic 0.023 0.228 0.802

Mixnet 0.019 0.214 0.782

both instances is almost similar and largely under a second. However, there is a
slight difference in the verification timing of the two methods. This is because a
mixnet-based tally does not require a well-formedness proof of the vote, whereas
a homomorphic tally does. We note that the computation of multiple ciphertexts
could also largely benefit of fixed-base exponentiation methods: these costs can
then grow much more slowly than linearly with the number of ciphertexts to be
computed.

4 Application to E-Voting

One important application of our scheme is the construction of single-pass voting
systems [8], where voters interact with the system only by submitting their
ballots. The described protocol involves four entities as introduced in TREnc,
consisting of: voters, who have the right to vote; election administrator (EA),
who is in charge of setting up the election and generating PK and SK. A ballot
box manager is responsible for randomizing the ballots of the voters. A tallier is
in charge of correctly tallying the ballot box and providing the correctness proof
of the tally. Also, it provides tallying results on a public view PB for verifiability.

Our proposed voting protocol is defined as a tuple of probabilistic polynomial-
time algorithms based on the two most crucial tallying techniques: homomorphic
aggregation, tailored for elections with a small number of candidates, and mixnet
that is suitable for elections with complex ballots.

SetUp(1λ): On input security parameter 1λ, generates the public and secret keys
(PK,SK) of the election.

https://github.com/uclcrypto/TREnc-PPAT
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Vote(id, v): Upon receiving a voter id and a vote v, outputs a ballot b = (CT,D).
Valid(b): On input ballot b, outputs 0 or 1. The algorithm outputs 1 if and only

if the ballot satisfies all verification equations.
ProcessBallot(b): On the input ballot b, outputs an updated ballot b′, a re-

randomization of b where b′ = (CT ′,D′).
TraceBallot(b): On input a commitment D, outputs a trace t. The trace is the

information that a voter can use to track his ballot, using VerifyBallot.
Append(PB,SB, b) : On input PB, SB, and ballot b, appends D to PB and CT

to SBif Valid(b) = 1.
VerifyBallot(PB, t): On input the public board PB and a trace t, outputs 0 or 1.

This algorithm is used by voters to check if their ballot has been processed
and recorded properly.

Tally(PB, SB, SK): On input PB, SB, and private key SK, outputs the tally
result and a proof of correctness. Depending on the tallying technique, runs
HomoTally or MixnetTally correspondingly.

VerifyResult(PB): On input PB, result of the tally and proof of the tally, out-
puts 0 or 1. Depending on the tallying technique, runs either HomoVerify or
MixnetVerify.

It is implicit that PK is given to all these algorithms except SetUp.
Following [20], we describe our voting scheme based on a TREnc with the

difference that only the perfectly private parts of our ballots are published on
PB. More precisely, EAs first generate the election public and secret keys with
SetUp by running Gen of our TREnc. The public key PK is published and stored
on the PB, and shares of SK are only known by the tallier (SK can be securely
generated in a distributed way in our prime-order groups using standard tech-
niques). Each voter can then prepare a ballot b and submit it to the ballot box
manager using the Vote algorithm that runs the encryption of the vote using
our TREnc. The validity of the ballot is defined as the validity of our D and
CT output by Vote(id, v). Although the ballot will be randomized, a voter can
store TraceBallot(b) that is defined as the trace of the TREnc ciphertext and
confirm if it has been correctly recorded on PB by utilizing VerifyBallot(PB, t).
After receiving a ballot, the ballot box manager checks its validity and that
no ballot with the same trace was recorded before. Invalid ballots are dropped
and valid ones will go through Append(PB,SB, b) after being re-randomized by
ProcessBallot(b) thanks to Rand. As said, Append(PB,SB, b) simply computes
PB ← PB||D and SB ← PB||CT from (previously rerandomized) b = (CT,D).
Once every voter has cast a vote, the tallier checks the validity of each ballot
using Valid(b). A tallying protocol is then carried out based on the ballot type
and the election outcome is published. To verify the election result, anyone can
utilize VerifyResult(PB) by referring to the content of PB, and which can be based
on common techniques.

4.1 Voting Scheme with a Homomorphic Tally

One of the two main approaches for tallying an election is homomorphic aggrega-
tion. The homomorphic property makes it possible to homomorphically combine
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a number of ballots to compute the encrypted sum of the votes. Then only the
sum is decrypted instead of individual votes so that the secrecy of an individ-
ual’s ballot is preserved. Since the vote can be only 0 or 1, it can be encoded
as a group element and subsequently decoded by an exhaustive search of the
plaintext. Thus, the voter needs to add a non-interactive randomizable proof
of vote well-formedness to the public commitment part (see Eq. 8). The tallier
computes tally by HomoTally algorithm as follows.

1. Aggregation: For all l valid CT in SB, the tallier performs element-wise
multiplication of the encryption (cm, cr, cq), obtaining a result vector v =
(
∏

i cm,
∏

i cr,
∏

i cq) for i = 1, . . . l.
2. Decryption: The tallier decrypts v in order to obtain the openings (M,R,Q)

= Dec(SK,v), then finds m and appends (m,R,Q) to PB.

Since both the commitment and the encryption schemes are additively homomor-
phic, the votes are homomorphically combined into a single ciphertext containing
the final result, which is then decrypted by the tallier. To check that the tally
matches the posted votes, anyone can run HomoVerify algorithm as follows.

1. Multiply all the commitments (d̂1, d̂2) element-wise for l valid entries on PB
to obtain a commitment on the election outcome (com1, com2).

2. Verify that (m,R,Q) provided by the tallier are openings of the outcome
commitment by checking if the given equations are satisfied

e(gm, ĝ) · e(R, ĝ1) · e(Q, ĥ1) = e(g, com1)

e(R, ĝ2) · e(Q, ĥ2) = e(g, com2)

Given that the commitment scheme is binding, it makes sure that the only
openings that the authorities are able to provide come from an honest tallying
process. Moreover, its perfectly hiding property can guarantee the perfect ballot
privacy of the whole audit trail.

4.2 Voting Scheme with a Mixnet Tally

Unlike homomorphic tallying, verifiable mixnet-based systems decrypt individ-
ual ballots after anonymization, which disassociates encrypted ballots from their
corresponding voters. This anonymization procedure will be performed by shuf-
fling the votes through several shuffling centers (so-called mixers). Since each
shuffled ballot is decrypted individually, its validity is verified by the fact that
the decrypted vote and auxiliary values are the openings of the correspond-
ing commitment. As a result, the voter is not required to compute the well-
formedness proof of the vote. Due to page limitations, our adapted encryption
scheme of mixnet tallying is presented in the AppendixA, which is not additively
homomorphic anymore, but still randomizable. Thus, there are no specific con-
cerns regarding the necessary randomization properties for mixing. We sketch
the MixnetTally algorithm in the following.
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1. Stripping : On each input of C = (CT,D), the authorities only keep the
encryption (cm, cr, cs) in CT and the commitments (d1, d2) in D, obtaining
an encryption vector v = {(ci

m, ci
r, c

i
s)}l

i=1 and corresponding commitment
vector d = {(di

1, d
i
2)}l

i=1 of l valid ballots.
2. Permutation Selection: A random permutation π is chosen and a validity

proof Pπ for π is computed.
3. Shuffle: The mixers shuffle (v,d), resulting in (v′,d′). While v′ is kept private

on SB, d′ is posted on PB. Additionally, two commitment consistent proofs
are provided with respect to the permutation π: Pv shows that v′ is a shuffle
on v and Pd shows that d′ is a shuffle on d. Pv and Pd are then posted on
SB and PB respectively.

4. Decryption: After verifying the proofs, the encryption in v′ is decrypted to
have the message M and auxiliary values R̂ and Ŝ. The results are published
on PB.

Since the published proofs do not disclose the permutation used in the mixing
process or the decryption key, it would not violate any anonymity. Thus, everyone
can verify if the election outcome is the correct decryption of the shuffled valid
votes using the MixnetVerify algorithm below.
1. Verification of the permutation: One can verify the proof Pπ of the chosen

permutation π and abort if it fails.
2. Verification of the proof of shuffle: One can verify the validity of the proof

Pd and abort if it fails.
3. Verification of the openings: One can verify if decrypted values of v′ pro-

vided on PB are valid openings for the shuffled commitments in d′ and abort
otherwise.

5 Conclusion

Our paper proposes two encryption mechanisms for verifiable elections that sup-
ports both receipt-freeness and a perfectly private audit trail. To the best of our
knowledge, this is the first proposal that can achieve these properties without
relying on the presence of an anonymous channel for submitting the ballots.

On our way, we develop new traceable receipt-free encryption (TREnc) mech-
anisms that are secure under SXDH, assuming a public coin CRS. This last
assumption brings a noticeable benefit over the existing mechanisms, which
required a structured CRS, bringing the question of the practical generation
of this CRS, and of the underlying trust assumptions.

We demonstrate the efficiency of our mechanism through a prototype imple-
mentation. While demanding, they still support encryption and ciphertext veri-
fication under a second of time. It would be appealing to explore solutions that
could reduce the complexity of this encryption process, both in time and in
space.
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Region through the project CyberExcellence (convention number 2110186).
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A Scheme Description for Complex Ballots

Gen(1λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2poly(λ) together

with g, h, g1, h1
$← G and ĝ, ĥ

$← Ĝ.
1. Pick random {(αi, βi)}2i=1

$← Zp and set {f̂i}2i=1 = ĝαi ĥβi . Pick random

α, β
$← Zp and set f = gαhβ .

2. Generate Groth-Sahai CRS u = (
u1, 
u2) ∈ G
4, u′ = (
u′

1, 
u
′
2) ∈ G

4 and
v = (
v1, 
v2) ∈ Ĝ

4 to commit to groups elements of G and Ĝ, where

u′
1 = (u′

11, u
′
12) = (g, h), 
u′

2 = (u′
21, u

′
22) = (g1, h1), 
v1 = (v11, v12), and


v2 = (v21, v22) are generated in the perfect NIWI mode.
3. Pick random k1, k2 ← G that will be used as a verification key for the

LHSP signature.
The private key is SK = (α1, β1, α2, β2, α, β) and the public key PK =
(g, h, g1, h1, ĝ, ĥ, f, f̂1, f̂2, k1, k2,u,v,u′).
Enc(PK, M): To encrypt a message M ∈ G, first run LGen(PK): Generate a
key pair (osk, opk) for the one-time linearly homomorphic signature from the
public generators ĝ, ĥ in order to sign vectors of dimension 3. Let the signing
key lk = osk = {(ηi, ζi)}3i=1, the corresponding public key is opk = {ŷi}3i=1.
Then, conduct the following steps of LEnc(PK, lk,M):
1. In the ciphertext CT :

(a) For random r, s
$← Zp, compute the commitments d1 = Mgrhs ∈

G, d2 = gr
1h

s
1 ∈ G and the openings R̂ = ĝr ∈ Ĝ, Ŝ = ĝs ∈ Ĝ.

Randomly choose θ, γ
$← Zp, compute the ciphertexts of M , R̂, and Ŝ

respectively as cm = (c0m, c1m, c2m) = (Mfθ, gθ, hθ), cr = (c0r, c
1
r, c

2
r) =

(R̂f̂γ
1 , ĝγ , ĥγ), and cs = Ŝf̂γ

2 .
(b) Commit to the openings using the Groth-Sahai CRS by computing

CM = ι1(M)
uz1
1 
uz2

2 , CR̂ = ι1(R̂)
vr1
1 
vr2

2 , and CŜ = ι1(Ŝ)
vt1
1 
vt2

2 for

random z1, z2, r1, r2, t1, t2
$← Zp. For the sake of simplicity, from

now we denote the GS commitments as CM = Com(u,M),CR̂ =
Com(v, R̂), and CŜ = Com(v, Ŝ). Next, derive the commitments
Cf = ι1(c0m)/CM , Cf̂1

= ι2(c0r)/CR̂, and Cf̂2
= ι2(cs)/CŜ .

(c) To allow simulating the proof, set the bit b̄ = 1 and compute G =
gb̄ ∈ G and Ĝ = ĝb̄ ∈ Ĝ. Commit to G, Ĝ to have CG = Com(u, G),
CĜ = Com(v, Ĝ). Compute GS proof πb such that e(g, Ĝ) = e(G, ĝ).

(d) To ensure CT is well-formed, the proof πθ is computed to make
sure that (c1m, c2m, c0m/M) and (c1r, c

2
r, c

0
r/R̂, cs/Ŝ) are in the form of

(g, h, f)θ and (ĝ, ĥ, f̂1, f̂2)γ respectively. To do that, commit also to
Ĝθ and Gγ such that Cθ = Com(v, Ĝθ) and Cγ = Com(u, Gγ), and
compute a GS proof πθ that
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e(c1m, Ĝ) = e(g, Ĝθ),e(c2m, Ĝ) = e(h, Ĝθ), e(G, c1r) = e(Gγ , ĝ),

e(G, c2r) = e(Gγ , ĥ),e(fθ, Ĝ) = e(f, Ĝθ), e(G, f̂γ
1 ) = e(Gγ , f̂1),

e(G, f̂γ
2 ) = e(Gγ , f̂2).

(e) Return CT = (cm, cr, cs,CG,Cθ,Cγ , πb, πθ) ∈ G
27 × Ĝ

26.
2. In the commitment D:

(a) The proof of the openings for commitments: The proof of openings
πopen needs to make sure that the values committed in CM ,CR̂,CŜ ,
CĜ in CT are the openings of the commitments. In other words,
CM ,CR̂,CŜ , and CĜ must ensure that e(M, ĝ) · e(g, R̂) · e(h, Ŝ) =
e(d1, Ĝ) and e(g1, R̂) · e(h1, Ŝ) = e(d2, Ĝ).

(b) Traceability property : Sign each row of the matrix T using lk = osk to
have signatures σ1, σ2, σ3, where σi = (Zi, Ri) ∈ G

2 for i = 1, 2, 3.

T =

⎛

⎝
g d1 d2
1 g g1
1 h h1

⎞

⎠

Next, commit to σ1 using u′ with CZ = Com(u′, Z1) and CR =
Com(u′, R1). To ensure that σ1 is a valid one-time LHSP signature on
(g, d1, d2), compute the proof πsig ∈ Ĝ

2 such that e(Z1, ĝ) ·e(R1, ĥ) =
e(g, ŷ1) · e(d1, ŷ2) · e(d2, ŷ3).

(c) TCCA security : Set Â = 1
Ĝ
, B̂ = 1

Ĝ
, X̂ = ĝ/Ĝ = ĝ1−b̄, and τ =

Hash(opk). Commit to Â and B̂ using CRS v. Compute the proof πss

that e(g, Â) · e(h, B̂) = e(k1kτ
2 , ĝ/Ĝ).

(d) Return D = (d1, d2,CM ,CR̂,CŜ ,CĜ,CZ ,CR,CÂ,CB̂ , πopen, σ2,

σ3, πsig, πss, opk) ∈ G
20 × Ĝ

19.
At the end of the encryption, output C = (CT,D) ∈ G

47 × Ĝ
45.

Trace(PK, C): Parse PK and C as above, and output opk in the obvious way.
Rand(PK, C): If PK and C = (CT,D) do not parse as the outputs of Gen and

Enc, abort. Otherwise, conduct the similar steps as presented in Rand(PK, C)
(Sect. 3.1). At the end of the randomization, output the ciphertext C ′ =
(CT ′,D′).

Ver (PK, C): First, abort and output 0 if either PK or C fails to parse correctly.
Second, verify the validity of the signatures σ2 and σ3 on the 2 last rows of
the matrix T , and output 0 if it does not hold. Third, verify all the provided
GS proofs πb, πθ, πopen, πsig, and πss regarding their the corresponding equa-
tions. The first two proofs will be privately verified, which concerns the CPA
encryption part, while the others will be checked publicly on PB. If at least
one of these checks fails, output 0; otherwise, output 1.

Dec(SK, C): If Ver(PK, C) = 0, output ⊥. Otherwise, given SK =
(α1, β1, α2, β2, α, β) and (cm = (c0m, c1m, c2m), cr = (c0r, c

1
r, c

2
r), cs) included

in CT , output M = c0m · c1m
−α · c2m

−β , R̂ = c0r · c1r
−α1 · c2r

−β1 , and Ŝ =
cs · c1r

−α2 · c2r
−β2 .
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The security analysis of this second scheme directly follows that of our first
construction.

B Deferred Proofs

B.1 Correctness

The construction satisfies TREnc’s correctness as defined in Definition 2.1.

Correctness of encryption compatibility By construction, we define Enc such that
the distributions of Enc(PK,m) and LEnc(PK, LGen(PK),m) are identical.

Correctness of link traceability For every PK in the range of Gen, the scheme
runs LGen(PK) to output a key pair (osk, opk) for the one-time linearly
homomorphic signature, where opk = f(osk) for a deterministic function
f . Then, for every lk = osk in the range of LGen(PK), LEnc(PK, lk,m)
produces a ciphertext C, where Trace(PK, C) = f(osk) = opk. That is,
Trace(PK, LEnc(PK, lk, ·)) is the constant function f(osk) = opk.

Correctness of publicly traceable randomization As described in 3.1, the trace
opk is kept unchanged in randomization step. Thus, we have Trace(PK, C)
= Trace(PK,Rand(PK, C)) by definition. Additionally, in Rand algorithm,
we honestly randomize the CPA part of the ciphertext, where c′

m = cm ·
(f1, g1, h1)θ′

= (Mfθ+θ′
1 , gθ+θ′

1 , hθ+θ′
1 ) with θ′ $← Zp. Obviously, c′

m is dis-
tributed exactly as a fresh CPA encryption of m since θ + θ′ is random
over Zp. There exists no random θ′ that can modify the message, even
the coin might not have been taken from a uniform distribution. Hence,
Dec(SK, C) = Dec(SK,Rand(PK, C)).

Correctness of honest verifiability Given a ciphertext C in an honest range
of Enc(PK,m), there exists random coins that explain how to compute the
ciphertext. This always leads to valid GS proofs and valid LHSP signatures.
Based on that, we have verifiability since all the verification equations are
satisfied. In other words, thanks to the perfect correctness of GS proofs and
LHSP signatures, if C is honestly generated, for all the coins, we have validity
or Ver(PK,Enc(PK,m)) = 1.

B.2 Strong Randomizability

Theorem 3.1. The TREnc is perfectly strongly randomizable. More precisely,
for every c ∈ LEnc(PK, lk,m) with pk in the range of Gen and lk in the range of
LGen(PK), the distributions {Rand(PK, c)} and {LEnc(PK, lk,m)} are identical.

Proof. Given a ciphertext C = (CT,D) in the range of Enc(PK,m), for some
message m and internal link key lk = osk, the perfect correctness of honest veri-
fiability of our TREnc implies that C is valid. It is easy to see that the opening
values R,Q are fully redistributed as uniform group elements during rerandom-
ization. The CPA part is then also fully rerandomized and distributed as a fresh
CPA part. In the WI mode, valid GS-proofs can also be perfectly rerandomized
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and fully redistributed after adaptation. Finally, the LHSP signatures on the last
two rows of the T -matrix are deterministic. The indistinguishability is actually
perfect.

B.3 TCCA Security

Theorem 3.2. The above scheme is TCCA-secure under the SXDH assump-
tion and the collision resistance of the hash function. More precisely, we have∣
∣ Pr[ExptccaA (λ) = 1] − 1

2

∣
∣ ≤ εcr + 6εsxdh + 4

p .

Proof. We consider a sequence of games. In Game i, we denote by Si the event
that an adversary A wins by correctly guessing the internal random bit b of the
game, which makes the game output 1.

Game1(λ): This is the real game as described in the experiment Fig. 1. By defi-
nition, Pr[S1] = Pr[ExptccaA (λ) = 1].

Game2(λ): In this game, we introduce a failure event F2 which causes this game to
abort and output a random bit if the adversary produces two valid ciphertexts
C and C ′ as output of Enc such that Hash(opk) = Hash(opk′) but opk �= opk′.
This even prevents the situation when A can successfully use the same tag
with different signatures in decryption queries after the challenge phase. F2

implies a collision on the hash function, so Pr[F2] = εcr. We thus have, |
Pr[S2] − Pr[S1] |≤ Pr[F2] = εcr.

Game3(λ): This game is as Game 2 except that we introduce a failure event
which occurs during the challenge phase if A can produce the valid ciphertexts
C0, C1 but (σ̂(0)

2 , σ̂
(0)
3 ) �= (σ̂(1)

2 , σ̂
(1)
3 ). The event should be aborted since the

challenge ciphertext C∗ has the same values of (σ̂∗
2 , σ̂

∗
3) as the ones in C0 or C1.

This causes a distinguishability between them. Obviously, | Pr[S0] − Pr[S1] |
is bounded by the probability that (σ̂(0)

2 , σ̂
(0)
3 ) and (σ̂(1)

2 , σ̂
(1)
3 ) are 2 distinct

signatures on the same vector. Thus, | Pr[S3] − Pr[S2] |≤ εsxdh.
Game4(λ): This game is the same as Game 3 except in the way we generate

the challenge ciphertext C∗ from Cb in the randomization step. When we
generate PK, we compute f̂1, f̂2 in such a way that they are corresponding
verification keys for a signing key sklhsp of a one-time linearly homomorphic
signature in order to sign vectors of dimension n = 2, given the common public
parameters ĝ, ĥ. We keep in memory sklhsp and output pklhsp = {f̂1, f̂2}. Since
the distribution of the output is not changed, it is indistinguishable from A’s
view. The simulated randomization is as follows:
1. Randomizing D∗

(a) For the proof of openings π∗
open

– Randomize the commitments d̂∗
1 = d̂

(b)
1 · ĝr∗

1 ĥq∗
1 , d̂∗

2 = d̂
(b)
2 · ĝr∗

2 ĥq∗
2

for r∗, q∗ $← Zp.
– Switch b̄ = 0, then we have G∗ = gb̄ = 1G ∈ G. Re-compute

the commitment of G∗ by C∗
G = Com(u, 1G). Since CRS u is

generated in the perfect NIWI mode, the resulting commitments
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and proofs are distributed among all the possible group elements
that satisfy the verification equation. That means, it is not able
to distinguish between CG = Com(u, g) and C∗

G = Com(u, 1G).
– Similarly, update randomized commitments C∗

M = Com(u, 1G),
C∗

R = Com(u, 1G), and C∗
Q = Com(u, 1G). The Eqs. 4.a and 4.b

are verified as valid since both sides of the equations are equal
to 1. Then, update the simulated proof π∗

open = (π∗
4.a

, π∗
4.b

) with
corresponding randomness. Since GS proof is WI, the simulated
proof cannot be distinguished from a real one.

(b) For the proof of signature π∗
sig, it is done as usual as Rand would do.

(c) For the proof of simulation soundness π∗
ss

– Since b̄ is switched to 0, X∗ = g1−b̄ = g ∈ G. Adapt the commit-
ment of X∗ to be C∗

X = ι1(g)/C∗
G = Com(u, g).

– We simulate the proof π∗
ss by resigning the message (X∗,X∗τ∗

)
from scratch using the secret key sklhsp at step 2c. That is, when we
randomize C(b)

A ,C(b)
B from an adversary, first computing the LHSP

signature (A∗, B∗) on (X∗,X∗τ∗
). In other words, (A∗, B∗) =

Sign(sklhsp, (X∗,X∗τ∗
)), where τ∗ = Hash(opk0) = Hash(opk1) =

τ b. The Eq. 7 is still valid since f̂1, f̂2 was generated as the public
verification keys corresponding to sklhsp. Indeed, since C′

A,C′
B

computed in Rand and C∗
A,C∗

B are indistinguishable under NIWI
CRS, their distributions are exactly the same in the adversary’s
view.

– Commit to (A∗, B∗) by computing C∗
A = Com(u, A∗), C∗

B =
Com(u, B∗), then adapt the correspondingly simulated proof π∗

ss.
As a side effect, π∗

ss is a valid proof of a false statement, where X
is no longer equal to 1G as in Enc.

(d) For the proof π∗
01, since C∗

M = Com(u, 1G), we update CM̂∗ =
Com(v, 1

Ĝ
). The Eq. 8 is valid as both sides of the equations are equal

to 1. Then, compute the simulated proof π∗
01 accordingly.

2. Randomizing CT ∗

– Parse the CPA encryption part and randomize it as Rand at step 1a.
– Since b̄ = 0, recompute Ĥ = ĥb̄ = 1 and Ĥθ = 1. Compute the cor-

responding commitments C∗
Ĥ

= Com(v, 1
Ĝ
) and C∗

θ = Com(v, 1
Ĝ
).

The verification Eqs. 2 and 3 are all valid since both sides are equal
to 1. As a consequence, the encryption part is no more in the range of
the honest CPA encryptions of Dec(SK, Cb) except with probability
1/p. Next, compute the proof π∗

b and π∗
θ as in Enc.

Game 3 and Game 4 abort in the same cases. When both games do not abort,
their views are exactly the same thanks to the perfect witness indistinguisha-
bility of GS proofs. Particularly, the distributions of π∗

ss and randomized π′
ss

are indistinguishable. We thus have Pr[S4] = Pr[S3].
Game5(λ): This game is as the previous game except that the Groth Sahai CRS

u and v of the public key are now generated in the extractable mode. Namely,
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we pick 
u1
$← G

2, γ
$← Zp, and compute 
u2 = 
uγ

1 . The CRS forms a random
DH tuple over G. Thus, | Pr[S5] − Pr[S4] |≤ 2εsxdh.

Game6(λ): We bring the following modification to the previous game. When sam-
pling CRS u = (
u1, 
u

γ
1), we compute 
u1 = (u11, u12), where u12 = uμ

11 with

μ
$← Zp. As per [23], the distribution of the public key is unchanged, but we

keep μ as an ElGamal secret key to extract the committed group elements
of the Groth-Sahai commitments. Moreover, when receiving C(b)

A ,C(b)
B ,C(b)

G

from the adversary, we extract some A(b), B(b), G(b) ∈ G. Here, we introduce
a failure event F6 when A can produce a valid signature satisfying Eq. 7 when
G(b) �= g (and then Ĥ(b) �= ĥ) in at least one of the following situations: in any
pre-challenge decryption query, in the challenge phase with C0 or C1. In other
words, we reject all the valid ciphertexts in the sense of Game 5 for which π

(b)
ss

is a valid proof for a false statement. As a result, we abort and output 0 if the
adversary can successfully create a valid but dishonest signature (A(b), B(b))
on a message different from (1, 1). We have | Pr[S6] − Pr[S5] |≤ Pr[F6].
To compute Pr[F6], let (A†, B†) the honest signature on g/G(b), (A†, B†) =
Sign(sklhsp, (g/G(b), g/G(b)τ ). There are 2 cases that F6 can occur: (1) The
adversary A can correctly guess (A(b), B(b)) = (A†, B†) with a probabil-
ity of 1/p or (2) (A(b), B(b)) �= (A†, B†) is a valid but dishonest signature
on (g/G(b), (g/G(b))τ ). Considering the second case, we have both (A†, B†)
and (A(b), B(b)) satisfying Eq. 7 with the same right-hand side member. This
implies an SXDH distinguisher. We thus have Pr[F6] ≤ 1/p+(1−1/p)εsxdh ≤
1/p + εsxdh, therefore | Pr[S6] − Pr[S5] |≤ 1/p + εsxdh.

Game7(λ): This game is the same as Game 6 except that we introduce a failure
event when A can produce a valid signature when G(i) �= g in post-challenge
decryption query with Trace(PK, C(i)) �= opk∗. Similarly to the previous
game, when receiving C(i)

A ,C(i)
B ,C(i)

G from the adversary for a decryption
query, we extract some A(i), B(i), G(i) ∈ G. Since A has to use a different
tag τ �= τ∗ for post-challenge decryption queries, the message (X(i),X(i)τ

) =
(g/G(i), g/G(i)τ ) is not in span〈(X∗,X∗τ∗

)〉. Thanks to the unforgeability of
the LHSP signature, the validity of Eq. 7 implies trivial, when X(i) = 1 and
G(i) = g. Hence, after observing a simulated proof π∗

ss for a false statement in
Game 6, the adversary is not able to validate another falsely simulated proof
for a false statement. Thus, | Pr[S7] − Pr[S6] |≤ 1/p + εsxdh.

Game8(λ): Up to this point, if the game does not abort, all the ciphertexts
from an adversary can not contain a valid signature of a message different to
(1G, 1G). That means all the ciphertexts that will be decrypted are honest and
do not reveal any information of SK, except those provided in the challenge
phase. In this game, we bring another modification in the way we generate
the CPA encryption part. To make sure the challenge ciphertext C∗ does
not contain any information of which Cb is used in randomization, let us call
G1 = gθ∗

1 ∈ G, H1 = hθ∗
1 ∈ G, since f1 = gα1

1 hβ1
1 we compute F1 = Gα1

1 Hβ1
1

using the secret key SK= (α1, β1). (g1, h1, G1,H1) forms a random DDH
tuple over G. The challenge ciphertext in Game 4 is then c∗

m = (c∗
0, c

∗
1, c

∗
2) =
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c(b)m · (f1, g1, h1)θ∗
= cm · (F1, G1,H1). Now, instead of choosing G1,H1 like

this, we pick random G1,H1
$← G and compute F1 = Gα1

1 Hβ1
1 , the tuple

(g1, h1, G1,H1) is a random quadruple in G. As a result, c∗
m = (c∗

0, c
∗
1, c

∗
2) =

cm · (F1, G1,H1) is no more in the range of the honest CPA encryptions of
Dec(SK, Cb) except with probability 1/p. Consequently, π∗

θ is a proof of a
false statement but valid since Ĥ = Ĥθ∗

= 1 as set in Game 4. Obviously,
| Pr[S8]−Pr[S7] |≤ εsxdh since the distinction between them is the distinction
between a random DDH tuple and a random quadruple in G.

In fact, after observing the simulated proof π∗
θ , the adversary is not able to do

the same, i.e., setting Ĥ = Ĥθ∗
= 1. Since π∗

b has to be valid, the soundness of
GS proof shows that (G, Ĥ) is in the form of (gb̄, ĥb̄). However, G(b) = g because
G(b) �= g is aborted from Game 7. Therefore, b̄ = 1 and Ĥ = ĥ �= 1.

To conclude, we need to compute the Pr[S8]. Firstly, we argue that A’s view
in Game 8 is statistically independent of the hidden bit b. If the game aborts
and outputs a random bit, the probability of returning 1 is 1/2. If there is
no abort, that is, all the ciphertexts C for decryption queries are honest and
Dec(SK, C)= (c0 · c−α1

1 · c−β1
2 ) does not reveal any additional information about

the secret key SK, except what can be inferred from f1 = gα1
1 hβ1

1 and F1 =
Gα1

1 Hβ1
1 , where G1,H1 are kept secret during the computation of the challenge

ciphertext. Suppose that G1 = gy
1 and H1 = hy

1f
z
1 for random y, z

$← Zp, we have
F1 = fy+zβ

1 . As a consequence, the computation of c∗
m = c(b)m · (F1, G1,H1) =

(c(b)0 · fy+zβ
1 , c

(b)
1 · gy

1 , c
(b)
2 · hy

1f
z
1 ). If at least one of the two values (y, z) is 0, the

probability that A wins is P1 ≤ 2/p + 1/p2. If both y, z �= 0, c∗
m is a random

triple over G3, A wins with the probability of P2 = 1/2(1− 2/p− 1/p2). Finally,
the probability that A wins in this game is Pr[S8] ≤ P1 + P2 ≤ 1/2 + 2/p.

In summary, we have
∣
∣ Pr[ExptccaA (λ) = 1] − 1

2

∣
∣ ≤ εcr + 6εsxdh + 4

p .

B.4 Traceability

Theorem 3.3. The above scheme is traceable (Fig. 1) under the SXDH assump-
tion. More precisely, for any adversary A, we have Pr[ExptraceA (λ) = 1] ≤
5εsxdh + 1

p .

Proof. Let A be an efficient adversary against the traceability of our scheme.
We consider a sequence of games. In Game i, we denote by Si the event that A
wins by correctly guessing the internal random bit b of the game, which makes
the game output 1.

Game1(λ): This is the real game as described in the experiment Fig. 1, where (PK,
SK) ← Gen(1λ). Then, (m, st) ← A1(PK, SK), C = (CT,D) ← Enc(PK,m),
and C∗ = (CT ∗,D∗) ← A2(st, C). By definition, S1 occurs if Ver(PK, C∗)
= 1, Dec(SK, C∗) �= m, and opk∗= Trace(PK, C∗)= Trace(PK, C) = opk.
Thus, Pr[S1] = Pr[ExptraceA (λ) = 1].
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Game2(λ): This game is as the real game except that the Groth Sahai CRSes
u = (
u1, 
u2) ∈ G

4 and v = (
v1, 
v2),v′ = (
v′
1, 
v

′
2) ∈ Ĝ

4 of the public key are
now generated in the extractable mode. In particular, instead of picking them
uniformly at random, we pick them as random Diffie-Hellman tuples over the
appropriate groups. Under the DDH assumptions in G and Ĝ, the adversary
does not notice the difference. Thus, any adversary’s behavior to distinguish
between Game 1 and Game 2 leads to a SXDH distinguisher. That means
| Pr[S1] − Pr[S2] |≤ 3εsxdh.

Game3(λ): We introduce one more modification to Game 2 in the way to gener-
ate the commitment key ĝ1, ĥ1, ĝ2, ĥ2 of PK. Instead of picking them all uni-
formly over Ĝ, we pick a random scalar x

$← Zp and set (ĝ2, ĥ2) = (ĝ1, ĥ1)x.
This modification turns the perfectly hiding commitment (d̂1, d̂2) = (ĝm, 1) ·
(ĝ1, ĝ2)r · (ĥ1, ĥ2)q into an extractable commitment (ĝmĝr

1ĥ
q
1, (ĝ

r
1ĥ

q
1)

x). More-
over, the last two lines of the matrix T in Eq. (5) are now linearly dependent,
so that the row space of T is now a 2-dimensional sub-space over Ĝ

3. By the
SXDH assumption, we have | Pr[S2] − Pr[S3] |≤ εsxdh.

Game4(λ): This game is the same as the previous game except that we introduce
a failure event, which causes the game to be aborted and output 0. When we
generate C ← Enc(PK,m) given m from A1, we first compute (opk, osk) ←
LGen(PK) and then C ← LEnc(PK, osk,m) as before, but we keep osk. Then,
as soon as we get C∗ from A2 with the commitment (d̂∗

1, d̂
∗
2), we extract

the necessarily valid σ̂∗
1 = (Ẑ∗, R̂∗) LHSP signature from the (now perfectly

sound) GS proof and compare it to σ̂†
1 = Sign(osk, (ĝ, d̂∗

1, d̂
∗
2)). The failure

event happens if σ̂∗
1 �= σ̂†

1. Due to the property of the LHSP signature [28],
if we have two distinct signatures on a same vector we can solve the DDH
problem. We thus have | Pr[S3] − Pr[S4] |≤ εsxdh.

We conclude by showing that Pr[S4] = 1/p. Indeed, S4 is an event when
A wins by correctly guessing σ̂∗

1 = Sign(osk, (ĝ, d̂∗
1, d̂

∗
2)), but m �= Dec(SK, C∗).

That is, (ĝ, d̂∗
1, d̂

∗
2) is not in the 2-dimensional linear span of the row vectors

of T signed in C. Since osk contains enough entropy after C was given to the
adversary, Z† is still unknown and uniform over G. Therefore the probability to
have Ẑ∗ = Ẑ is 1/p.

In summary, we have Pr[ExptraceA (λ) = 1] ≤ 5εsxdh + 1
p .

B.5 Verifiability

Theorem 3.4. The above TREnc is verifiable under the SXDH assumption.
More precisely, for any adversary A, we have Pr[ExpverA (λ) = 1] ≤ 3εsxdh + 1

p .

Proof. Given (PK, SK) ← Gen(1λ), we have to show that any ciphertext from
A which passes the verification equations is necessarily in the range of the
honestly generated encryptions with overwhelming probability. In other words,
Pr[ExpverA (λ) = 1] is defined that if C ← A(PK, SK) is not in the honest encryp-
tion range, the probability that it is considered as valid is negligible.
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Let C = (CT,D) ← A(PK, SK) satisfying Ver(PK,C) = 1, where CT =
(cm, cr, cq,CĤ ,Cθ, πb, πθ) and D = (d̂1, d̂2,CM̂ ,CM ,CR,CQ,CG,CẐ ,CR̂,CA,
CB , πopen, σ̂2, σ̂3, πsig, πss, π01, opk).

To show that the CPA part of CT is well formed, we rely on the soundness of
the proof related to the CRS u,v. As in the TCCA proof, we switch these CRSes
to the extractable mode, which leads to a security loss of 2εsxdh. Next, we extract
a witness from the valid proofs associated with u,v. If (A,B,X) �= (1, 1, 1), we
abort. That is, the adversary manages to produce a valid LHSP signature for
the public key (f̂1, f̂2). By generating this pair in the key generation so that we
know a corresponding secret key, we can show that this happens with negligible
probability εsxdh + 1/p from the LHSP unforgeability. From now on, we can
thus assume that the extracted G = g, Ĥ = ĥ. Therefore, the soundness of
GS proofs allows extracting non-trivial witness from the satisfiability of Eq. (3),
which shows that cm = (c0, c1, c2), cr and cq have the expected honest structure.

The LHSP signatures and the GS proof associated with the CRS v′ can
always be explained honestly, even if it is not efficient to compute their dis-
crete log representation. The same happens for the perfectly hiding commitment
(d̂1, d̂2) since we can extract the opening in Eq. (4) with respect to u,v, which
must be consistent with decryption of (M,R,Q). Moreover, M = gm must be a
bit thanks to Eq. (8).

To conclude, we have Pr[ExpverA (λ) = 1] ≤ 3εsxdh + 1
p .

References

1. Adida, B.: Helios: web-based open-audit voting. In: Proceedings of the 17th
USENIX Security Symposium, pp. 335–348. USENIX Association (2008)

2. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.: Electing a university
president using open-audit voting: analysis of real-world use of Helios. In: 2009
Electronic Voting Technology Workshop/Workshop on Trustworthy Elections,
EVT/WOTE ’09. USENIX Association (2009)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

4. Benaloh, J., Naehrig, M.: Electionguard design specification version 2.0.0. https://
www.electionguard.vote/spec/. Accessed Aug 2023

5. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: Proceedings of
the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 544–553
(1994)

6. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: a compre-
hensive analysis of game-based ballot privacy definitions. In: 2015 IEEE Sympo-
sium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp.
499–516. IEEE Computer Society (2015). https://doi.org/10.1109/SP.2015.37

7. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios
for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23822-2 19

https://doi.org/10.1007/11693383_22
https://www.electionguard.vote/spec/
https://www.electionguard.vote/spec/
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-642-23822-2_19


286 T. V. T. Doan et al.

8. Bernhard, D., Pereira, O., Warinschi, B.: On necessary and sufficient conditions
for private ballot submission. Cryptology ePrint Archive (2012)

9. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 25

10. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054851

11. Canard, S., Schoenmakers, B., Stam, M., Traoré, J.: List signature schemes. Dis-
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