
CryptoZoo: A Viewer for Reduction Proofs

Chris Brzuska1, Christoph Egger2, and Kirthivaasan Puniamurthy1(B)

1 Aalto University, Espoo, Finland
kirthivaasan.puniamurthy@aalto.fi

2 Université Paris Cité, CNRS, IRIF, Paris, France

Abstract. Cryptographers rely on visualization to effectively communi-
cate cryptographic constructions with one another. Visual frameworks
such as constructive cryptography (TOSCA 2011), the joy of cryptog-
raphy (online book) and state-separating proofs (SSPs, Asiacrypt 2018)
are useful to communicate not only the construction, but also their proof
visually by representing a cryptographic system as graphs.

One SSP core feature is the re-use of code, e.g., a package of code
might be used in a game and be part of the description of a reduction
as well. Thus, in a proof, the linear structure of a paper either requires
the reader to turn pages to find definitions or writers to re-state them,
thereby interrupting the visual flow of the game hops that are defined
by a sequence of graphs.

We present an interactive proof viewer for state-separating proofs
(SSPs) which addresses the limitations and perform three case studies:
The equivalence between simulation-based and game-based notions for
symmetric encryption, the security proof of the Goldreich-Goldwasser-
Micali construction of a pseudorandom function from a pseudorandom
generator, and Brzuska’s and Oechsner’s SSP formalization of the proof
for Yao’s garbling scheme.

Keywords: state-separation · proof viewer · reduction proofs · tooling

1 Introduction

Reduction proofs are a means to convince oneself and others of the security
properties of a cryptographic design. In addition to communication and verifi-
cation, (reduction) proofs help us gain understanding of the properties that are
conducive to security and properties that are harmful. In order to improve ver-
ification, communication and understanding of proofs of complex systems, the
cryptographic community has different techniques and styles which we briefly
review below.

Black-box Primitives. Black-box primitives are abstractions which support mod-
ular proofs and information-hiding. For example, the concept of a symmetric
encryption scheme (SE) with indistinguishability under chosen plaintext attacks
(IND-CPA) allows one to build a system which uses SE without delving (or
even knowing about) the details of the AES cipher and suitable ciphermodes.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 3–25, 2024.
https://doi.org/10.1007/978-3-031-54770-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_1

4 C. Brzuska et al.

Cryptographic proofs of a complex system typically use multiple such black-box
primitives. Additionally, a modular proof tends to first abstract away a sub-
system, prove its security and then reduce the security of the bigger system
to the sub-system in a black-box way. These neat black-box interfaces are a
rich resource for structuring and understanding constructions and proofs, and
they capture the typical use of primitives so that studying black-box proofs
has become an established method also to understand the limitations of typical
construction approaches [RTV04,BBF13].

Universal Composability. Useful security definitions for primitives which com-
pose well tend to consider adversarially chosen inputs, and Canetti’s universal
composition framework (UC [Can01]) applies this insight to protocols as well,
thereby providing the basis to also prove protocol security by means of useful
intermediate notions. Since UC specifies how the adversary and the (adversar-
ial) environment can interact with the protocol, defining security in UC boils
down to specifying an ideal functionality, without the need to re-invent (and
possibly mis-construct) the adversarial model and enabling information-hiding
since the UC-savvy reader can focus on reading the ideal functionality alone.
Several further frameworks implement a similar approach, notably including
Maurer’s abstract cryptography framework [Mau11] and Rosulek’s Joy of Cryp-
tography [Ros21], which both encourage the use of visual components to follow
proofs.

Game-Hopping. Another important cryptographic technique that serves modu-
lar proofs are game-hops, explained by Shoup in [Sho04]. Game-hopping splits
a large proof of indistinguishability between two games that formalize the secu-
rity of a system into a sequence of smaller indistinguishability steps, each of
which can be proven in isolation and the sequence of lemmas establishing the
indistinguishability of each pairs of subsequent games then implies the indistin-
guishability of the two games in question.

Code-Based Game-Hopping. Bellare and Rogaway [BR06] introduced the use of
code into game-hopping proofs, where pseudo-code allows to put two subsequent
games next to each other and inspect how exactly the code changes between
them. Code-based game-playing has a strong visual component which draws the
attention to the changes in a game-hop while at the same time keeping all the
relevant code at hand for the reader (since it is written above and below the
code which changes). In turn, game-hopping which is not code-based tends to
describe only the changes from one game to another, requiring the reader to
remember or recover the entire context from different parts of the paper (game
definition, construction definition, previous game-hops).

Modular Code-Writing. In the realm of real-world protocols, code-based games
are frequently used (see, e.g., [DDGJ22,DGGP21] for recent works) and/or code-
based game-hopping is widely used (see, e.g., [DHRR22,DHK+23] for recent
works). Interestingly, reductions are often specified in text or omitted—although

CryptoZoo: A Viewer for Reduction Proofs 5

some works diligently provide reductions in pseudo-code, e.g., the proof of Yao’s
garbling scheme by Bellare, Hoang and Rogaway (BHR [BHR12]). BHR employ
careful packaging of code into sub-routines in order to make the large amount
of code in Yao’s garbling scheme manageable and be able to argue that the
reduction is sound. Concretely, reduction R that interacts with a smaller game
Gameb

small is sound if for the larger game Gameb
big that the adversary A interacts

with, it holds that for both b ∈ {0, 1},

R → Gameb
small ≡ Gameb

big, (1)

i.e., the behaviour of the reduction R composed with Gameb
small is equivalent to

the input-output behaviour of Gameb
big.

State-Separating Proofs. Modular code-writing with reductions in mind was sys-
tematically developed further by Brzuska, Delignat-Lavaud, Fournet, Kohbrok
and Kohlweiss (BDFKK [BDF+18]) who structure the pseudo-code of a game
into stateful pieces of code which can call one another, but else not access each
others state whence the term state-separation. If Gameb

big is defined by a call-
graph of code packages and if the reduction R and the game Gameb

small are
defined via call-graphs of code packages as well, then we can compare the graph
R → Gameb

small obtained by “gluing” to the graph of Gameb
big. If the two call

graphs are equal (i.e. they preserve the same edge relation), then Equation (1)
holds trivially. Additionally, the reductions R can simply be defined by drawing
a cut in the graph of Gameb

big, foregoing not only the need to prove the soundness
of the reduction, but also the need to write the code of the reduction.

This code re-use approach is a core feature of SSPs which makes proofs con-
cise and precise at the same time. On the other hand, code re-use also means
that code packages are used many times across an article, while the package
code is specified at a single place—or repeated redundantly at the cost of clut-
tering the paper and interrupting its flow. See [Koh23] for a gentle and thorough
introduction to SSPs as well as a conceptual overview of recent works using and
formalizing SSPs.

An SSP Viewer. We address the limitations of paper-based presentation by
designing the proof viewer CryptoZoo1 for SSPs. CryptoZoo presents the claims
and call-graphs of games in the left pane, and the code-based definitions in the
right pane, the latter of which is available at all times, enabling code-linkage
without code repetition, without breaking the flow and without the need to
scroll away from a proof step in the current context. Additionally, clicking on
individual packages highlights the relevant code in the code pane.

In addition to addressing these SSP-specific challenges, CryptoZoo also
addresses presentational obstacles present for proofs in mathematics and infor-
mation about systems in general and in cryptography specifically. We now briefly
review three key areas where improvement of presentation is necessary and useful
and then describe how CryptoZoo addresses these.
1 Available at https://proofviewer.cryptozoo.eu.

https://proofviewer.cryptozoo.eu

6 C. Brzuska et al.

Information linkage Beyond code, proof steps reference different aspects,
including previous lemmas and definitions. It is important to make this rela-
tionship functional and allow easy retrieval of all related facts.

Information hiding Since human memory is bounded, readers concentrate on
facts and information immediately useful to the current task at hand. It is
useful to hide information that does not contribute to understanding in a
particular moment.

Soundness and structure Proofs are structured into claims and lemmas which
form a proof tree (or DAG). The reader needs to verify that a set of claims
indeed implies the statement of the parent node—and in the end, the reader
can inspect the proofs of the claims at the leaves of the tree. In addition
to the tree structure, the author of an article usually suggests a meaningful
traversal which eases comprehension. A good medium for proofs should both
provide the high-level tree structure and a recommended reading order while
giving the reader freedom to deviate.

To address the latter point, CryptoZoo makes the proof tree visible and
explicit at each point in the proof. In order to address retrieval speed chal-
lenges, CryptoZoo links cryptographic definitions and claims so that they can
be retrieved quickly without losing the current context. Finally, to support user
memory management and focus, CryptoZoo allows the user to hide text, defini-
tions, lemmas, claims and their proofs, e.g., in order to focus on one particular
subtree. The aforementioned approaches can be employed also generically when
working with (cryptographic) proofs. It is, however, especially useful for the SSP
method which inherently relies on a modular and visual approach. Additionally,
SSPs have a quite well-defined set of proof steps which CryptoZoo supports while
proofs in general (or even in cryptography) can be expressed in quite diverse ways
which conflicts with the need of a proof viewing tool which supports more than
the basic tree structure present in all mathematical proofs. For this reason, the
SSP methodology is a useful scope for our proof-viewing tool.

Case Studies. We provide three case studies for the SSP proof viewer. As a
simple example, we show that the standard game-based notion of indistinguisha-
bility under chosen plaintext attacks (IND-CPA) and simulation-based security
for symmetric encryption are equivalent (Sect. 5). A more advanced example is a
state-separating proof of a (constant-depth) version of the Goldreich-Goldwasser-
Micali (GGM) theorem which transforms pseudo-random generators (PRGs) into
pseudorandom functions (PRFs) by using the PRG in a tree-structured con-
struction. This proof is interesting, since it involves a two-dimensional hybrid
argument, i.e., a hybrid argument both over the depth and width of the tree
(Sect. 6). Finally, as an advanced example, we present a proof of Yao’s garbling
scheme in the version by Brzuska and Oechsner [BO23] (Sect. 7) which covers cir-
cuits which are structured in layers. This proof also involves a two-dimensional
hybrid argument, both over the width and depth of the garbled circuit. In both
proofs, SSPs allow to make the reductions explicit and visually accessible. The
(constant-depth) GGM proof becomes visually straightforward using the proof

CryptoZoo: A Viewer for Reduction Proofs 7

viewer, although it is known as a rather complex proof in the foundations of cryp-
tography. The rather involved proof of Yao’s garbling scheme does not become
straightforward, but its structure is significantly simplified—moreover, the proof
viewing tools is useful due to the amount of code which needs to be managed.

Our case study on (constant-depth) GGM is the first formalization of the
GGM proof in SSPs and useful to understand GGM—but it is also useful to
understand SSPs, since it is the first intermediate-size SSP example. While
BDFKK gave several simple examples, most follow-up work (e.g. [BCK22,
BDE+22]) study complex protocols which are too complex to learn the SSP
methodology based on them. The GGM proof is a nice middle-ground between
simple and complex case studies.

Outline. We cover related work on visual tools in Sect. 2. Subsequently, Sect. 3
introduces SSPs and elaborate on the interrelation between useful aspects of
SSPs and proof viewer design. We then discuss the proof viewer design and
further considerations in the implementation (Sect. 4) and then turn to the three
case studies.

2 Related Work

Visual aids are a natural match for teaching and can be found in teaching not only
cryptography, but also computer science at large. For example, Vamonos [CR15]
combines visual and (pseudo-)code aspects to communicate algorithmic correct-
ness, while e.g. ProtoViz [Elm04] and GRACE [CDSP08] focus on the message
flow in protocols. Crucial in these tools is the combination of exploration by
the user together with a visual representation of the results. One can see edi-
tors for proof assistants like Coq [The17] and Lean [dMKA+15] in a similar
spirit. The user provides a further proof step and is presented with the state-
ments which still require a proof. Similarly, Tamarin [SMCB12]—a prover for
protocol security—can display a graph of its internal reasoning and update it
step-by-step.

While exploring a theorem statement in e.g. Coq can give insights and
help students learn to formally reason, once proofs become complex this access
becomes insufficient, in particular if proof search features are used. While explor-
ing intermediate states of the proof remains helpful, the high level structure of
a complex proof is not easily accessible from the linear proof file. Here tools like
the prooftree [Tew] plugin for Coq can help to visually explore the dependencies
between intermediate claims in a structured manner.

Alectryon [Pit20] adds a different dimension by allowing to freely switch
between a textual proof description and the formally verified proof script (which
can also be used to deduce the intermediate proof state). To this end it com-
bines text formatting tools with the Coq prover (and has been extended to
LEAN [Bül22]) to provide an interactive HTML document detailing the com-
plete proof in a manner optimized to be digested by a human reader—while still
guaranteed to be in sync with the mechanically verified version.

8 C. Brzuska et al.

Visual Cryptographic Proofs: The present work is inspired by the rational
underlying SSPs, which bring the necessary rigor needed for formal verification
while exposing similarities with teaching tools in cryptography which existed
before, importantly, Rosulek’s Joy of Cryptography [Ros21]. Rosulek groups
blocks of code into libraries or packages and argues on the call-graph in a simi-
lar (although less formal) way. This, in particular, allows students to draw from
experience e.g. in object oriented programming where internal state of objects
remain hidden and cannot be accessed. Maurer’s dot-calculus in constructive
cryptography [Mau11] facilitates proof communication by giving a visual outline
on the relationship between objects.

3 State-Separating Proofs

The state-separating proofs (SSP) methodology by Brzuska, Delignat-Lavaud,
Fournet, Kohbrok and Kohlweiss (BDFKK [BDF+18]) specifies not only a proof
style for game-hopping proofs, but also a definitional style. Similar to the UC
framework, SSP-style definitions specify security as indistinguishability between
two games, typically a real and an ideal game. Indistinguishability is useful
for composability, because even for (strong) unforgeability under chosen mes-
sage attacks (UNF-CMA)—conceptually a search problem—a game-hop typi-
cally replaces real signature verification by log-based ideal signature verification,
so that reductions between indistinguishability games tend to be more straight-
forward.

Fig. 1. Games Gprg0id and Gprg1id

Both in SSPs and UC, the adversary is the main algorithm which starts the sys-
tem by activating other parts—in UC, the adversary activates the environment,
the simulator or protocol parties (by sending messages to them), while in SSP-
style games, the adversary activates the game by making oracle queries to it. For
a game Game, we write Pr

[
1 = A O1,O2→ Game

]
for the probability that adver-

sary A returns 1 when interacting with the oracles O1 and O2 of Game, where
the oracles O1 and O2 are defined via pseudo-code that operates on the state
of the Game. An SSP-style game typically splits its code into multiple packages
with separate state—a package, like a game, consists of a set of oracles operating
on its state, but in the case of a package, oracles can make queries to the oracles
of other packages as well, giving rise to a call-graph. As an example, consider a
length-doubling pseudorandom generator (PRG) g : {0, 1}λ → {0, 1}2λ such that

CryptoZoo: A Viewer for Reduction Proofs 9

g(x) (for x sampled uniformly at random) is indistinguishable from a uniformly
random string y of length 2λ. We formalize security of PRGs as a game with
two GET oracles, a GET0 oracle which gives the adversary access to the left half
of y and a GET1 oracle which gives the adversary access to the right half of y. In
the real game, the oracles return the left and right half of y = g(x), respectively.
In the ideal game, the oracles both return a uniformly random string of length
n. Modeling a PRG to return the chunks separately is equivalent to returning
them at once, but will be useful in the security proof of the pseudorandom func-
tion (PRF) construction by Goldreich Goldwasser and Micali (GGM [GGM86]),
where each half is post-processed separately.

Keyid
Parameters

λ : sec. param

State

x : string

GETid

if x = ⊥ :

x ←$ {0, 1}λ

return x

Prgid0
Parameters

λ : sec. param
g : PRG

State

no state

GETid0

x ← GETid()

z ← g(x)

y ← z1.. λ
2

return y

Prgid1
Parameters

λ : sec. param
g : PRG

State

no state

GETid1

x ← GETid()

z ← g(x)

y ← z(λ
2 +1)..λ

return y
Fig. 2. Code of Keyid , Prgid0 and Prgid1

We now define the ideal
game as a composition of two
smaller games Key0 and Key1
which we compose in parallel
(cf. Fig. 1 (right)). The GET0

and GET1 oracle of Key0 and
Key1, respectively, each sam-
ple a uniformly random string
and return it to the adversary.
For the real game, we define
two packages Prg0 and Prg1
whose oracles GET0 and GET1

each retrieve a key from the
Key package via a GET ora-
cle, then apply the PRG g to
the value x they receive and
return the left and right half
of x, respectively.

Definition 1 (Pseudorandom Generator). A polynomial-time computable,
deterministic function g : {0, 1}∗ → {0, 1}∗ with ∀x ∈ {0, 1}∗, |g(x)| = 2 |x| is a
PRG if for all indices id ∈ {0, 1}∗ and all probabilistic polynomial-time (PPT)
adversaries A, the following advantage is a negligible function in λ (Fig. 2):

Adv(A,Gprg0id ,Gprg1id) :=
∣∣Pr[1 = A → Gprg0id

] − Pr
[
1 = A → Gprg1id

]∣∣ .

Packages and adversaries receive the security parameter implicitly, i.e., advan-
tage Adv(A,Gprg0id ,Gprg1id) maps a value λ ∈ N to a number in the interval
[0, 1].

Indices. Instead of defining the Key package in three variants, we simply allow
it to carry a bitstring id ∈ {0, 1}∗ as index and modifies oracle and package
names for disambiguation, leading to Key, Key0 and Key1.

PRFs. As a 2nd example, we define a pseudorandom function. Here, we use
the useful convention of defining the game in terms of the construction, i.e., we

10 C. Brzuska et al.

define a pseudorandom function as a stateless package Prf. I.e., a pseudorandom
function Prf is a package which (a) does not remember state between invocations,
(b) makes use of a key from a Key package and (c) is indistinguishable from a
random oracle, see Fig. 4.

Definition 2 (Pseudorandom Function). A pseudorandom function is a
stateless package Prf which provides oracles [→ Prf] = EVAL and calls oracle
[Prf →] = GET such that for all PPT adversaries A, the advantage

Adv(A,Prf → Key,RO) := |Pr[1 = A → Prf → Key] − Pr[1 = A → RO]|
is negligible in λ. Prf and RO are assumed to use the same input length in.

4 A Proof Viewer for SSPs

Prf Package

Parameters

λ : sec. param
in : input length

State

no state

Oracle

[→ Prf] : EVAL

[Prf →] : GET

RO Package

Parameters

λ : sec. param
in : input length

State

T : table

EVAL(x)

assert x ∈ {0, 1}in

if T [x] = ⊥ :

y ←$ {0, 1}n

y ← T [x]

return y

Fig. 3. Code of Prf and RO

In Sect. 4.1, we discuss how we realize
the proof viewing concepts outlined in
Sect. 1 in the SSP proof viewer, and in
Sect. 4.2, we consider further implemen-
tation considerations.

4.1 Proof Viewing Concepts

Linking and Simultaneous Visibility.
CryptoZoo displays code of packages
in a separate pane from games and
lemmas, so that the reader can reach
the code without losing the context of
the games and lemmas they are cur-
rently studying. Additionally, clicking
on a package will highlight the relevant
code in the right pane (and scroll to
it if needed). Additionally, CryptoZoo
has clickable security definitions which
open in a separate window.

It is possible to emulate those features partially in static PDF also via click-
able packages, and opening several instances of the same PDF, which contain
code and definitions, but achieving linking (showing and highlighting code when
clicking) at the same time as simultaneous visibility would require non-standard
links across several PDFs.

Proof Structure and Information Hiding. When security definitions of a state
separating proof are presented as suitable SSP graphs, a state-separating proof
that involves many reductions can sometimes be not only more precise, but also
shorter than a similar traditional proof since defining a reduction and proving
its soundness consists only of drawing two graphs, cf. [BCK22]. In turn, when

CryptoZoo: A Viewer for Reduction Proofs 11

Fig. 4. The games Prf → Key and RO

proving equivalence with standard security definitions in addition, an SSP proof
usually grows by at least two graphs and two inlining proofs for the high-level
security definitions as well as at least two graphs and two inlining proofs for
each of the underlying assumptions, cf. the proof of Yao’s garbling scheme by
Brzuska and Oechsner (BO [BO23]).

The proof viewer allows to hide sub-trees of a proof graph and, per default,
hides code equivalence steps, but allows to display them next to the actual claim
and relevant graphs and, again, with the code pane on the right. Again, one can
emulate this feature partially by opening several instances of the same PDF, but
the interactive hiding of arbitrary proof subtrees does not seem to be emulatable
in PDF. An interesting and useful approach in static PDF has been taken in the
thesis by Egger [Egg23] which presents security reductions for TLS 1.3 and first
shows an overview proof tree and repeats sub-trees later in the relevant sections,
recalling relevant context. Since CryptoZoo is not bound to linear structure, the
user can fold and un-fold subtrees interactively. Additionally, the user can toggle
between showing explanatory text or not, allowing to include comprehensive
explanatory text while at the same allowing for compact representation.

4.2 Implementation Considerations

CryptoZoo is implemented as a web application, to allow user to access it without
a dedicated application. To this end we believe assuming the availability of a web
browser to be generally justified. The viewer is also designed to function offline,
with minimal dependencies. Proofs/definitions are stored in a JSON format,
which is loaded by the viewer when requested by the user.

5 Case Study: IND-CPA Vs. Simulation-Based Security

Simulation-based security notions for symmetric encryption state that the adver-
sary should not learn more than some ideal leakage and that everything the
adversary can do when given a ciphertext can also be done when only given
the ideal leakage, but not the ciphertext. While different views on ideal leakage
are possible, the minimal approach is to leak the length of the message that is
encrypted, since an adversary can infer the length of the message from the length
of the ciphertext2. Simulation-based notions which leak the length of the message
are typically equivalent to their game-based counterparts, see, e.g., [DF18].
2 Length-hiding encryption can mitigate this issue to some extent, but due to

information-theory and correctness of decryption, the length of the ciphertext is
always an upper bound on the length of the message.

12 C. Brzuska et al.

In this case study3, we provide an SSP-style proof showing that indistin-
guishability under chosen plaintext attacks (IND-CPA) security in its Real-or-
Zeroes formulation is equivalent to a simulation-based formulation where the
simulator receives only the length of the message m, encoded in unary as 0|m|.
For completeness, let us state the correctness and security properties before
turning to a discussion of the equivalence proof.

Definition 3 (Symmetric Encryption Syntax). A symmetric encryption
scheme se consists of two probabilistic polynomial-time (PPT) algorithms se.Enc
and se.Dec

c ←$ se.Enc(k,m)
m ←se.Dec(k, c)

which satisfy that for all security parameters n ∈ N, encryption is correct, i.e.,

∀m ∈ {0, 1}∗ Prk ←$ {0,1}n [se.Dec(k, se.Enc(k,m)) = m] = 1.

Definition 4 (IND-CPA security). A symmetric-encryption scheme se is
indistinguishable under chosen plaintext attacks if for all PPT adversaries A,
the advantage

Adv(A,Genc0,Genc1) :=
∣∣Pr[1 = A → Genc0

] − Pr
[
1 = A → Genc1

]∣∣

is a negligible function in the security parameter, where Genc0 := Enc → Key
and Genc1 := Zeroer → Enc → Key, Key is defined in Figure 2, and Zeroer and
Enc are defined in Figure 7.

Definition 5 (Simulation-based security). A symmetric-encryption scheme
se satisfies simulation-based security if there exists a PPT simulator Sim such
that for all PPT adversaries A, the advantage

Adv(A,Genc0,Genc(Sim) :=
∣∣Pr[1 = A → Genc0

] − Pr[1 = A → Genc(Sim)]
∣∣

is a negligible function in the security parameter, where Genc0 := Enc → Key
and Genc(Sim) := Zeroer → Sim are defined in Figure 7.

3 https://proofviewer.cryptozoo.eu/sim-ind-cpa-landing.html.

https://proofviewer.cryptozoo.eu/sim-ind-cpa-landing.html

CryptoZoo: A Viewer for Reduction Proofs 13

Fig. 5. Using the real game as a simulator.

Fig. 6. Using the real game as a simulator.

14 C. Brzuska et al.

Fig. 7. Package definitions for IND-CPA and
simulation-based security of se.

We will see that the ideal
encryption game can act as a simu-
lator, since all the simulator needs
to do is to encrypt zeroes. In
this way, we obtain a straightfor-
ward proof that IND-CPA security
implies the simulation-based secu-
rity notion for symmetric encryp-
tion (See Fig. 5). In the converse
direction, we need to use the
simulation-based security notion
twice in the proof—once to move
away from encrypting real mes-
sages to encrypting simulated mes-
sages, and once to argue that
encrypting simulated messages is
indistinguishable from encrypting
zeroes—since the ideal functional-
ity which gives 0|m| to the simulator yields the same output, regardless of whether
m is an all-zeroes string or not. These arguments become visible in the proof
structure (see Fig. 6) and its associated proof graphs. The game hop from Genc1

to Hybrid-Lemma-1 is a reduction step which can be visualized as a cut in a
graph, depicted in Fig. 8 which hatches the reduction in red. The last game hop
is directly implied by the indistinguishability of the real game Genc0 and the
simulated game Genc(Sim), and the middle game hop follows by observing that
two Zeroer packages are equivalent to a single one.

CryptoZoo: A Viewer for Reduction Proofs 15

Fig. 8. Reduction hatched in red. (Color figure online)

6 Case Study: Constant-Depth GGM Tree

Goldreich, Goldwasser and Micali (GGM [GGM86]) introduced the notion of
pseudorandom functions and provided a construction of a pseudorandom func-
tion based on a length-doubling pseudorandom generator (see Definition 1). The
proof is commonly include in courses on the foundations of cryptography and
contained, e.g., in Chap. 3.6.2 (Theorem 3.6.6) of the Foundations of Cryptogra-
phy I textbook by Goldreich [Gol04]. The construction is naturally amenable to
visualization: It structures PRG instances into a binary tree and the left halves
and right halves of a PRG output become the input to the PRG instances on
the next tree layer, until reaching the leaf layer.

16 C. Brzuska et al.

Fig. 9. Hybrid step in the GGM proof

The construction4 is
indeed often visualized as
a tree. See, e.g., Fig. 3.5
in Chap. 3.6.2 of [Gol04].
As we will see, not only
the construction, but also
the proof can be visualized.
We will see how the secu-
rity of each of the PRG
instances is applied and
how the reduction looks
like. The proof is a hybrid
argument over all of the
PRG instances. For illus-
tration, consider the two
hybrid games in Fig. 9.
Their difference can be
reduced to the PRG secu-
rity by using the boxed
hatched in red as a reduc-
tion (Fig. 10).

The proof which we
have chosen to implement
into the proof viewer is
a variant of the GGM
proof where the tree is
of constant depth. This
is analogous to how the
GGM construction is often
depicted in books, namely
restricted to a constant
level, since the full GGM
construction is an n-level tree with 2n leaves which is harder to represent than
a finite tree.

We depict the hybrid argument for tree depth 3 which requires 23−1 = 7 PRG
instances and thus also 7 game-hops. Each of the hybrid games is represented via
a binary tree. The format of the proof viewer is convenient here since we avoid
page boundaries and can depict the hybrids simply as a long sequence of 8 games.
Note that the full GGM proof does not proceed via a hybrid over the entire tree,
but only visits polynomially many of the PRG instances in the tree. Our constant-
depth representation does not capture this subtlety of the proof, and the SSP
version of the full GGM proof that we are aware of, is visually not as appealing
(see Sect. 7 for a compelling hybrid argument over polynomially many hybrids).
Therefore, we prefer to present a constant-depth version of GGM which captures
the main essence of the construction and, importantly, its security proof.

4 https://proofviewer.cryptozoo.eu/ggm-landing.html.

https://proofviewer.cryptozoo.eu/ggm-landing.html

CryptoZoo: A Viewer for Reduction Proofs 17

Fig. 10. Reduction step in the GGM proof

7 Case Study: Yao’s Garbling Scheme

Secure multi-party computation constructs protocols where several parties
together compute a function on the participants’ input but without revealing
their inputs to other protocol participants (beyond what the output of the

18 C. Brzuska et al.

Fig. 11. Semantic switch step in the proof viewer (Eq. 2 of Yao, proof via inlining).

CryptoZoo: A Viewer for Reduction Proofs 19

Fig. 12. Hybrids code equivalence in the proof viewer (Eq. 7 of Yao, proof via graph
equality).

20 C. Brzuska et al.

function leaks). Yao [Yao86] proposed a protocol for this purpose which we
know today as garbled circuits. For analyzing the security of this construc-
tion, BHR [BHR12] extracted the intermediate notion of a garbling scheme and
proved security of Yao’s garbling scheme. Brzuska and Oechsner [BO23] give a
state-separated proof5 of garbling security for layered circuits where they further
extract a notion of layer garbling which allows sequential composition and there-
fore allows structuring the security proof by composing security layer-by-layer.
This step is inherently visual (Fig. 12). Moreover, to define these reductions for
the viewer, the proof author need not produce separate graphs and code, but
only needs to specify cuts on the same graph, enabling code re-use.

On a gate-by-gate level, Yao’s garbling scheme operates by assigning two SE
keys to each wire in a circuit representing the values 0 and 1. A binary logic
gate can then be implemented by encrypting the key on the output wire under
both input wire keys for all entries of the truth table: for a logic AND gate the
output 1-key is encrypted under the 1-keys for both the left and right input wire
while the output 0-key is encrypted under all other combinations of the input
keys. Consequently, a party can access the output 1-key exactly if it knows both
1-keys for the input wires whereas the 0-key remains hidden in this case.

A central element of the security proof is a semantic switch – instead of
considering 0-keys and 1-keys the security game distinguishes between “active”
keys known to the party and “passive” keys which remain secret which makes the
party’s state independent of the actual input value when evaluating the circuit
(Fig. 11). The formal code equivalence proof of this step is quite tedious, but
the proof viewer keeps components necessary to verify this step close together,
which should help the reader.

8 Comparison

We now review SSP proofs for the Transport Layer Security (TLS [Res18]) proto-
col, the Messaging Layer Security (MLS [BMO+23]) protocol and Yao’s garbling
scheme. In each case, we discuss the presentation of the respective papers and
how CryptoZoo could further contribute to communication, and, in the case of
Yao’s garbling scheme, how CryptoZoo compares to the original presentation
by Brzuska and Oechsner [BO23]. Afterwards, we briefly discuss SSP proofs in
formal verification tools.

8.1 Yao’s Garbling Scheme

Brzuska and Oechsner (BO [BO23]) formalize security and correctness of gar-
bling schemes in SSPs and then revisit Yao’s garbling scheme. While correctness
can also be proven in SSPs, BO focus on security only and provide an SSP-style
reduction for Yao’s garbling scheme to the IND-CPA security of the underly-
ing garbling scheme. The BO paper introduces games for IND-CPA security

5 https://proofviewer.cryptozoo.eu/yao-landing.html.

https://proofviewer.cryptozoo.eu/yao-landing.html

CryptoZoo: A Viewer for Reduction Proofs 21

and garbling security in a natural flow, slowly increasing complexity in order to
familiarize the reader with the novel SSP encoding and, as a first proof, show
an equivalence for different encodings for IND-CPA security. Our CryptoZoo
implementation follows this outline by BO. Concretely, the CryptoZoo landing
page for Yao’s garbling scheme explains the purpose of the different pages and
then recommends to the reader to first visit the IND-CPA security page which
explains the SSP encoding of IND-CPA security and the equivalence proof with
the encoding of IND-CPA security which is useful for the security proof of Yao’s
garbling scheme. Subsequently, BO discuss the SSP encoding of garbling scheme
security and Yao’s garbling scheme construction. Our CryptoZoo implementa-
tion follows this approach and provides a page introducing the garbling scheme
security notion in SSP-style and also explains Yao’s garbling scheme construc-
tion. Thus, up to the main theorem statement, the BO paper and our CryptoZoo
implementation proceed analogously.

The main difference between CryptoZoo and the BO presentation is the proof
of the main theorem which reduces security of Yao’s garbling scheme to IND-CPA
security. BO proceed in a bottom-up fashion, slowly building and explaining sub-
packages needed in the proof and showing equivalence with the top-level security
notion in the end.

In turn, CryptoZoo natively presents the proof in a top-down fashion and
explains the code of the modular packages previously in the context of the Yao
construction. Below the statement of the main theorem, CryptoZoo recommends
to the reader, however, to first read the proof bottom-up and then, once more,
top-down. CryptoZoo allows the reader to proceed through the proof in both
directions, since clicking on a lemma hides all the remaining proof steps, focusing
solely on the lemma and its sub-tree. The reason that we first recommend a
bottom-up reading of the proof is analogous to the presentation rationale of BO:
The reader’s familiarity with all packages grows successively with each proof
step until reaching a statement for the entire garbling construction. In turn,
reading the proof top-down in the first reading iteration either requires reading
and understanding all code at once or treating some of the packages as black-
boxes (since most of the proof steps are purely syntactical). However, after a first
bottom-up read that helps familiarizing with all code and steps, making a top-
down pass through the proof seems useful to gain a conceptual understanding of
how the proof connects the high-level garbling security notion to the low-level
IND-CPA definition. CryptoZoo supports both, the bottom-up and the top-down
reading flow, and the user can, of course, also read the proof in an arbitrary order
based on their preference. The CryptoZoo proof tree and information-hiding
helps the user to engage with the proof conveniently in an order of their choice
while having all information conveniently at hand. In turn, the BO proof has a
fixed order where code has a fixed place in the paper and needs to be manually
connected. As mentioned previously, opening multiple PDFs of BO (and adding
a proof tree to their paper) will reach a similar effect, but at a lower level of
convenience than in CryptoZoo.

22 C. Brzuska et al.

8.2 SSP Proofs of TLS 1.3

Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok and Kohlweiss (BDEFKK
[BDE+22]) analyze the TLS 1.3 key schedule and Egger [Egg23] further con-
nects the TLS 1.3 key schedule security with the TLS 1.3 handshake security.
BDEFKK and Egger both introduce different code, assumptions and games in
a natural flow, starting from a conceptually simple game (collision-resistance of
hash-functions in BDEFKK and PRF security in Egger).

A remarkable property of the TLS 1.3 security analysis is the strongly lay-
ered approach: Each layer comes with a main theorem which builds upon the
result of the previous layer as well as additional lemmata specific to the current
layer. As such each layer in isolation can be an insightful read, e.g. to learn how
to relate key schedule hand handshake security. Highlighting such additional ad-
hoc structure of the proof tree is easy to do in a PDF presentation, and Egger’s
thesis follows this approach with a proof tree with clickable lemma statements
and chapters zooming in (both visually and content wise) into each layer of the
tree. While currently not implemented, adding this layer structure to Crypto-
Zoo would be a reasonable task if it turns out to be applicable to many projects.
Finally, both, for BDEFKK and Egger (as well as in a possible future Crypto-
Zoo implementation), the proof trees are also useful to compute final advantage
statements, see [Egg23, p.48, p.56].

8.3 SSP Proofs of the MLS Key Schedule

Brzuska, Cornelissen and Kohbrok (BCK [BCK22]) analyze the MLS key sched-
ule and its composition with TreeKEM [BBR18]. Again, BCK slowly build up
complexity in their article and a CryptoZoo implementation would proceed analo-
gously. Again, the main advantage of CryptoZoo lies in the availability and easy
accessibility of code, and in this case, also in an additional proof tree—but a
proof tree could also be added to BCK. Again, a proof tree would be useful to
compute final advantage statements, cf. [BCK22, p.18–19].

8.4 Formal Verification Tools for SSPs

SSProve is a Coq-based formal verification tool for SSPs by Abate, Haselwarter,
Rivas, Van Muylder, Winterhalter, Hritcu, Maillard and Spitters [AHR+21],
and Dupressoir, Kohbrok and Oechsner [DKO22] formalized SSPs in Easy-
Crypt [BDG+14,BGHZ11]. Representation of SSPs in both, SSProve and Easy-
Crypt, is code-based and thus, CryptoZoo could help present the obtained proof
visually. Potentially, CryptoZoo code could be generated automatically and thus
not only help in proof communication but perhaps also in proof development,
allowing the proof developer faster visual navigation of the proof draft.

9 Conclusion and Future Work

One useful feature of visual(izable) frameworks such as UC, abstract cryptogra-
phy, the Joy of Cryptography and SSPs is the visualization of proofs. In this

CryptoZoo: A Viewer for Reduction Proofs 23

article, we explored the presentation of SSP proofs in the interactive proof
viewer CryptoZoo which we developed. We would like to claim that CryptoZoo
improves the quality of verification by providing improved navigation of proofs
and by allowing users to conveniently and quickly retrieve relevant information.
However, readers of PDFs can compensate by retrieving information in different
(slower) ways (cf. Sect. 4.1). Therefore, it seems more accurate that CryptoZoo
improves the speed of verification or the quality of verification given a fixed,
limited amount of time.

Future Work. It would be interesting to conduct a user study to compare the
verification of (well-written) PDF proofs with the verification of (well-written)
CryptoZoo proofs. Furthermore, it would be interesting to see whether Crypto-
Zoo is useful for helping a proof developer maintain state in a visual form while
writing an SSP proof. Last, but not least, CryptoZoo might be connected with
formal verification tools for SSPs, such as SSProve [AHR+21] and or a formal-
ization of SSPs in EasyCrypt [BDG+14,BGHZ11]. In this case, reduction steps
and, more importantly, code-equivalence steps could be verified by in the under-
lying tool (rather than by the user/reader), turning CryptoZoo into an interface
which helps a user/reader gain understanding of proof conducted in a formal
verification tool and thus serve to ease a notoriously hard communication task.

Acknowledgment. This project was supported by the Research Council of Finland
and the European Commission under the Horizon2020 research and innovation pro-
gramme, Marie Sklodowska-Curie grant agreement No 101034255.

References

[AHR+21] Abate, C., et al.: SSProve: a foundational framework for modular cryp-
tographic proofs in coq. In: Küsters, R., Naumann, D., (eds.) CSF 2021
Computer Security Foundations Symposium, pp. 1–15. IEEE Computer
Society Press (2021)

[BBF13] Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions,
revisited. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. Part I, volume
8269 of LNCS, pp. 296–315. Springer, Heidelberg (2013)

[BBR18] Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decen-
tralized Key Management for Large Dynamic Groups A protocol proposal
for Messaging Layer Security (MLS). Research report, Inria Paris (2018)

[BCK22] Brzuska, C., Cornelissen, E., Kohbrok, K.: Security analysis of the MLS
key derivation. In: 2022 IEEE Symposium on Security and Privacy, pp.
2535–2553. IEEE Computer Society Press (2022)

[BDE+22] Brzuska, C., Delignat-Lavaud, A., Egger, C., Fournet, C., Kohbrok,
K., Kohlweiss, M.: Key-schedule security for the TLS 1.3 standard. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. Part I, volume 13791
of LNCS, pp. 621–650. Springer, Heidelberg (2022). https://doi.org/10.
1007/978-3-031-22963-3_21

[BDF+18] Brzuska, C., Delignat-Lavaud, A., Fournet, C., Kohbrok, K., Kohlweiss,
M.: State separation for code-based game-playing proofs. In: Peyrin, T.,

https://doi.org/10.1007/978-3-031-22963-3_21
https://doi.org/10.1007/978-3-031-22963-3_21

24 C. Brzuska et al.

Galbraith, S. (eds.) ASIACRYPT 2018. Part III, volume 11274 of LNCS,
pp. 222–249. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
030-03332-3_9

[BDG+14] Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub,
P.-Y.: EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.)
FOSAD 2012-2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10082-1_6

[BGHZ11] Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided secu-
rity proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22792-9_5

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM CCS 2012, pp. 784–796.
ACM Press (2012)

[BMO+23] Barnes, R., Millican, J., Omara, E., Cohn-Gordon, K., Robert, R.: The
Messaging Layer Security (MLS) Protocol. RFC 9420 (2023)

[BO23] Brzuska, C., Oechsner, S.: A state-separating proof for yao’s garbling
scheme. In: 2023 IEEE 36th Computer Security Foundations Symposium
(CSF) (CSF), pp. 127–142. IEEE Computer Society, Los Alamitos, CA,
USA (2023)

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679_25

[Bül22] Bülow, N.: Proof visualization for the lean 4 theorem prover (2022)
[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-

graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press (2001)

[CDSP08] Cattaneo, G., De Santis, A., Petrillo, U.F.: Visualization of cryptographic
protocols with grace. J. Vis. Lang. Comput. 19(2), 258–290 (2008)

[CR15] Carmer, B., Rosulek, M.: Vamonos: embeddable visualizations of
advanced algorithms. In: 2015 IEEE Frontiers in Education Conference
(FIE), pp. 1–8 (2015)

[DDGJ22] Davis, H., Diemert, D., Günther, F., Jager, T.: On the concrete security of
TLS 1.3 PSK mode. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes
in Computer Science, vol. 13276, pp. 876–906. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-07085-3_30

[DF18] Degabriele, J.P., Fischlin, M.: Simulatable Channels: extended security
that is universally composable and easier to prove. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 519–550.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_19

[DGGP21] Degabriele, J.P., Govinden, J., Günther, F., Paterson, K.G.: The security
of ChaCha20-Poly1305 in the multi-user setting. In: Vigna, G., Shi, E.,
(eds.) ACM CCS 2021, pp. 1981–2003. ACM Press (2021)

[DHK+23] Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.,
Unruh, D.: A thorough treatment of highly-efficient NTRU instantia-
tions. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023. Part I, volume
13940 of LNCS, pp. 65–94. Springer, Heidelberg (2023). https://doi.org/
10.1007/978-3-031-31368-4_3

https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-031-07085-3_30
https://doi.org/10.1007/978-3-030-03332-3_19
https://doi.org/10.1007/978-3-031-31368-4_3
https://doi.org/10.1007/978-3-031-31368-4_3

CryptoZoo: A Viewer for Reduction Proofs 25

[DHRR22] Dowling, B., Hauck, E., Riepel, D., Rösler, P.: Strongly anonymous ratch-
eted key exchange. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. Part
III, volume 13793 of LNCS, pp. 119–150. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-22969-5_5

[DKO22] Dupressoir, F., Kohbrok, K., Oechsner, S.: Bringing state-separating
proofs to EasyCrypt a security proof for cryptobox. In: CSF 2022 Com-
puter Security Foundations Symposium, pp. 227–242. IEEE Computer
Society Press (2022)

[dMKA+15] de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: the
lean theorem prover (system description). In: Felty, A.P., Middeldorp, A.
(eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_26

[Egg23] Egger, C.: On abstraction and modularization in protocol analysis, Doc-
toral thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
(2023)

[Elm04] Elmqvist, N.: Protoviz: a simple security protocol visualization, Tech.
Rep., University of Gothenburg (2004)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, Cambridge, UK (2004)

[Koh23] Kohbrok, K.: State-separating proofs and their applications, Doctoral the-
sis, Aalto University School of Science (2023)

[Mau11] Maurer, U.: Constructive cryptography – a new paradigm for security
definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA
2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27375-9_3

[Pit20] Pit-Claudel, C.: Untangling mechanized proofs. In: Lämmel, R., Tratt, L.,
de Lara, J., (eds.) Proceedings of the 13th ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2020, Virtual Event,
USA, November 16–17, 2020, pp. 155–174. ACM (2020)

[Res18] Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446 (2018)

[Ros21] Rosulek, M.: The joy of cryptography. Oregon State University (2021)
[RTV04] Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between

cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951,
pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24638-1_1

[Sho04] Shoup, V.: Sequences of games: a tool for taming complexity in secu-
rity proofs. Cryptology ePrint Archive, Report 2004/332 (2004). https://
eprint.iacr.org/2004/332

[SMCB12] Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated anal-
ysis of diffie-hellman protocols and advanced security properties. In:
Zdancewic, S., Cortier, V., (eds.) CSF 2012 Computer Security Foun-
dations Symposium, pp. 78–94. IEEE Computer Society Press (2012)

[Tew] Tews, H.: Prooftrees (2023)
[The17] The Coq Development Team: The coq proof assistant, version 8.7.0 (2017)
[Yao86] Yao, A.C.C.: How to generate and exchange secrets (extended abstract).

In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-031-22969-5_5
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332

	CryptoZoo: A Viewer for Reduction Proofs
	1 Introduction
	2 Related Work
	3 State-Separating Proofs
	4 A Proof Viewer for SSPs
	4.1 Proof Viewing Concepts
	4.2 Implementation Considerations

	5 Case Study: IND-CPA Vs. Simulation-Based Security
	6 Case Study: Constant-Depth GGM Tree
	7 Case Study: Yao's Garbling Scheme
	8 Comparison
	8.1 Yao's Garbling Scheme
	8.2 SSP Proofs of TLS 1.3
	8.3 SSP Proofs of the MLS Key Schedule
	8.4 Formal Verification Tools for SSPs

	9 Conclusion and Future Work
	References

