
Christina Pöpper
Lejla Batina (Eds.)

LN
CS

 1
45

83

22nd International Conference, ACNS 2024
Abu Dhabi, United Arab Emirates, March 5–8, 2024
Proceedings, Part I

Applied Cryptography
and Network Security

Lecture Notes in Computer Science 14583
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Christina Pöpper · Lejla Batina
Editors

Applied Cryptography
and Network Security
22nd International Conference, ACNS 2024
Abu Dhabi, United Arab Emirates, March 5–8, 2024
Proceedings, Part I

Editors
Christina Pöpper
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates

Lejla Batina
Radboud University Nijmegen
Nijmegen, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-54769-0 ISBN 978-3-031-54770-6 (eBook)
https://doi.org/10.1007/978-3-031-54770-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-2814-962X
https://orcid.org/0000-0003-0727-3573
https://doi.org/10.1007/978-3-031-54770-6

Preface

ACNS 2024, the 22nd International Conference on Applied Cryptography and Network
Security, was held in Abu Dhabi, United Arab Emirates, on March 5–8, 2024. The
conference covered all technical aspects of applied cryptography, network and computer
security and privacy, representing both academic research work as well as developments
in industrial and technical frontiers.

The conference had two submission deadlines, in July andOctober 2023.We received
a total of 238 submissions over the two cycles (230 unique submissions incl. eight
major revisions from the first submission cycle that were resubmitted as revisions in the
second submission cycle). From all submissions, the Program Committee (PC) selected
54 papers for publication in the proceedings of the conference, some after minor ormajor
revisions. This led to an acceptance rate of 23.5%.

The two program chairs were supported by a PC consisting of 76 leading experts in
all aspects of applied cryptography and security whose expertise and work were crucial
for the paper selection process. Each submission received around 4 reviews from the
committee. Strong conflict of interest rules ensured that papers were not handled by PC
memberswith a close personal or professional relationshipwith the authors. The program
chairs were not allowed to submit papers and did not handle any submissions they were
in conflict with. There were an additional 55 external reviewers, whose expertise the PC
relied upon in the selection of papers. The review process was conducted as a double-
blind peer review. The authors of 10 submissions rejected from the July deadline, but
considered promising, were encouraged to resubmit to the October deadline after major
revisions of their paper. From these 10 papers invited for a major revision, 8 papers got
resubmitted to the second cycle, 5 of which were finally accepted.

Alongside the presentations of the accepted papers, the program of ACNS 2024
featured three invited talks given by Elisa Bertino, Nadia Heninger, and Gene Tsudik.
The three volumes of the conference proceedings contain the revised versions of the 54
papers that were selected, together with the abstracts of the invited talks.

Following a long tradition, ACNS gives a best student paper award to encourage
promising students to publish their best results at the conference. The award recipients
share a monetary prize of 2,000 EUR generously sponsored by Springer.

Many people contributed to the success of ACNS 2024. We would like to thank the
authors for submitting their research results to the conference.We are very grateful to the
PC members and external reviewers for contributing their knowledge and expertise and
for the tremendous amount of work and time involved in reviewing papers, contributing
to the discussions, and shepherding the revisions. We are greatly indebted to Mihalis
Maniatakos and Ozgur Sinanoglu, the ACNS’24 General Chairs, for their efforts and
overall guidance as well as all the members of the organization committee. We thank
the steering committee, Moti Yung and Jianying Zhou, for their direction and valuable
advice throughout the preparation of the conference. We also thank the team at Springer

vi Preface

for handling the publication of these conference proceedings, as well as Shujaat Mirza
for working on the preparation of the proceedings volumes.

March 2024 Lejla Batina
Christina Pöpper

Organization

General Co-chairs

Michail Maniatakos New York University Abu Dhabi, UAE
Ozgur Sinanoglu New York University Abu Dhabi, UAE

Program Committee Co-chairs

Christina Pöpper New York University Abu Dhabi, UAE
Lejla Batina Radboud University, The Netherlands

Steering Committee

Jianying Zhou SUTD, Singapore
Moti Yung Google, USA

Local Arrangements Chair

Borja García de Soto New York University Abu Dhabi, UAE

Publicity Chair

Elias Athanasopoulos University of Cyprus, Cyprus

Web Chair

Christoforos Vasilatos New York University Abu Dhabi, UAE

Poster Chair

Charalambos Konstantinou KAUST, KSA

viii Organization

Registration Chair

Rafael Song New York University Abu Dhabi, UAE

Workshop Chair

Martin Andreoni Technology Innovation Institute, UAE

Publication Chair

Shujaat Mirza New York University, USA

Student Travel Grants Chair

Lilas Alrahis New York University Abu Dhabi, UAE

Program Committee

Adwait Nadkarni William & Mary, USA
Alexander Koch CNRS and IRIF, Université Paris Cité, France
Alexandra Dmitrienko University of Wuerzburg, Germany
Amr Youssef Concordia University, Canada
An Braeken Vrije Universiteit Brussel, Belgium
Anna Lisa Ferrara University of Molise, Italy
Archita Agarwal MongoDB, USA
Atefeh Mohseni Ejiyeh UCSB, USA
Benjamin Dowling University of Sheffield, UK
Chao Sun Osaka University, Japan
Chiara Marcolla Technology Innovation Institute, UAE
Chitchanok Chuengsatiansup The University of Melbourne, Australia
Christine Utz CISPA Helmholtz Center for Information

Security, Germany
Christoph Egger Université Paris Cité and CNRS and IRIF, France
Claudio Soriente NEC Laboratories Europe, Spain
Colin Boyd NTNU-Norwegian University of Science and

Technology, Norway
Daniel Dinu Intel
Daniel Gardham University of Surrey, UK

Organization ix

Daniel Slamanig Universität der Bundeswehr München, Germany
Dave Singelee KU Leuven, Belgium
Devashish Gosain MPI-INF, Germany
Diego F. Aranha Aarhus University, Denmark
Dimitrios Vasilopoulos IMDEA Software Institute, Spain
Dominique Schröder Friedrich-Alexander Universität

Erlangen-Nürnberg, Germany
Eleftheria Makri Leiden University, The Netherlands
Elena Dubrova Royal Institute of Technology, Sweden
Elena Kirshanova Technology Innovation Institute, UAE
Elif Bilge Kavun University of Passau, Germany
Fatemeh Ganji Worcester Polytechnic Institute, USA
Florian Hahn University of Twente, The Netherlands
Francisco Rodríguez-Henríquez Technology Innovation Institute, UAE
Ghassan Karame Ruhr University Bochum, Germany
Gustavo Banegas Qualcomm, France
Hyungsub Kim Purdue University, USA
Jean Paul Degabriele Technology Innovation Institute, UAE
Jianying Zhou Singapore University of Technology and Design,

Singapore
João S. Resende University of Porto, Portugal
Karim Eldefrawy SRI International, USA
Katerina Mitrokotsa University of St. Gallen, Switzerland
Katharina Krombholz CISPA Helmholtz Center for Information

Security, Germany
Kazuo Sakiyama UEC, Tokyo, Japan
Kehuan Zhang The Chinese University of Hong Kong, China
Khurram Bhatti Information Technology University (ITU),

Pakistan
Lukasz Chmielewski Masaryk University, Czech Republic
Mainack Mondal Indian Institute of Technology, Kharagpur, India
Marc Manzano SandboxAQ, USA
Matthias J. Kannwischer QSMC, Taiwan
Melissa Azouaoui NXP Semiconductors, Germany
Monika Trimoska Eindhoven University of Technology,

The Netherlands
Monowar Hasan Washington State University, USA
Mridula Singh CISPA Helmholtz Center for Information

Security, Germany
Murtuza Jadliwala University of Texas at San Antonio, USA
Nabil Alkeilani Alkadri CISPA Helmholtz Center for Information

Security, Germany

x Organization

Nils Ole Tippenhauer CISPA Helmholtz Center for Information
Security, Germany

Olga Gadyatskaya Leiden University, The Netherlands
Paulo Barreto University of Washington – Tacoma, USA
Pino Caballero-Gil University of La Laguna, Spain
Pooya Farshim IOG & Durham University, UK
Sathvik Prasad North Carolina State University, USA
Sebastian Köhler University of Oxford, UK
Shahram Rasoolzadeh Radboud University, The Netherlands
Sherman S. M. Chow The Chinese University of Hong Kong, China
Silvia Mella Radboud University, The Netherlands
Sinem Sav Bilkent University, Turkey
Sofía Celi Brave Software, Portugal
Sudipta Chattopadhyay Singapore University of Technology and Design,

Singapore
Sushmita Ruj University of New South Wales, Australia
Tako Boris Fouotsa EPFL, Switzerland
Tibor Jager University of Wuppertal, Germany
Tien Tuan Anh Dinh Deakin University, Australia
Tran Quang Duc Hanoi University of Science and Technology,

Vietnam
Valeria Nikolaenko A16Z Crypto Research, USA
Vera Rimmer KU Leuven, Belgium
Willy Susilo University of Wollongong, Australia
Xiapu Luo The Hong Kong Polytechnic University, China
Zheng Yang Southwest University, China

Additional Reviewers

Afonso Vilalonga
Alexander Karenin
Anshu Yadav
Astrid Ottenhues
Beatrice Biasioli
Behzad Abdolmaleki
Benjamin Terner
Callum London
Enrique Argones Rúa
Erkan Tairi
Fabio Campos
Gareth T. Davies
Gora Adj

Gregor Seiler
Jean-Philippe Bossuat
Jelle Vos
Jenit Tomy
Jérôme Govinden
Jiafan Wang
Jodie Knapp
Joel Frisk Gärtner
Jorge Chávez-Saab
Karl Southern
Laltu Sardar
Laurane Marco
Li Duan

Organization xi

Lorenz Panny
Marcus Brinkmann
Nada El Kassem
Nan Cheng
Nusa Zidaric
Octavio Pérez Kempner
Okan Seker
Patrick Harasser
Paul Huynh
Paul Gerhart
Pradeep Mishra
Quan Yuan
Raghav Bhaskar
Ritam Bhaumik
Robert Merget

Sacha Servan-Schreiber
Sebastian Faller
Sebastian Ramacher
Semyon Novoselov
Shahram Rasoolzadeh
Sylvain Chatel
Tianyu Li
Valerio Cini
Victor Miller
Viktoria Ronge
Vir Pathak
Vojtech Suchanek
Vukašin Karadžić
Yangguang Tian

Abstracts of Keynote Talks

Applying Machine Learning to Securing Cellular
Networks

Elisa Bertino

Purdue University, Indiana, USA

Abstract. Cellular network security is more critical than ever, given the
increased complexity of these networks and the numbers of applications
that depend on them, including telehealth, remote education, ubiqui-
tous robotics and autonomous vehicles, smart cities, and Industry 4.0.
In order to devise more effective defenses, a recent trend is to lever-
age machine learning (ML) techniques, which have become applicable
because of today’s advanced capabilities for collecting data as well as
high-performance computing systems for training ML models. Recent
large language models (LLMs) are also opening new interesting direc-
tions for security applications. In this talk, I will first present a compre-
hensive threat analysis in the context of 5G cellular networks to give a
concrete example of the magnitude of the problem of cellular network
security. Then, I will present two specific applications of ML techniques
for the security of cellular networks. The first application focuses on the
use of natural language processing techniques to the problem of detecting
inconsistencies in the “natural specifications” of cellular network proto-
cols. The second application addresses the design of an anomaly detection
system able to detect the presence of malicious base stations and deter-
mine the type of attack. Then I’ll conclude with a discussion on research
directions.

Real-World Cryptanalysis

Nadia Heninger

University of California, San Diego, USA

Abstract. Cryptography has traditionally been considered to be one of the
strong points of computer security. However, a number of the public-key
cryptographic algorithms that we use are fragile in the face of implemen-
tation mistakes or misunderstandings. In this talk, I will survey “weapons
of math destruction” that have been surprisingly effective in finding bro-
ken cryptographic implementations in the wild, and some adventures in
active and passive network measurement of cryptographic protocols.

CAPTCHAs: What Are They Good For?

Gene Tsudik

University of California, Irvine, USA

Abstract. Since about 2003, CAPTCHAs have been widely used as
a barrier against bots, while simultaneously annoying great multitudes
of users worldwide. As their use grew, techniques to defeat or bypass
CAPTCHAs kept improving, while CAPTCHAs themselves evolved in
terms of sophistication and diversity, becoming increasingly difficult
to solve for both bots and humans. Given this long-standing and still-
ongoing arms race, it is important to investigate usability, solving per-
formance, and user perceptions of modern CAPTCHAs. This talk will
discuss two such efforts:

In the first part, we explore CAPTCHAs in the wild by evaluating
users’ solving performance and perceptions of unmodified currently-
deployed CAPTCHAs. We obtain this data through manual inspection
of popular websites and user studies in which 1,400 participants collec-
tively solved 14,000 CAPTCHAs. Results show significant differences
between the most popular types of CAPTCHAs: surprisingly, solving
time and user perception are not always correlated. We performed a com-
parative study to investigate the effect of experimental context – specifi-
cally the difference between solving CAPTCHAs directly versus solving
them as part of a more natural task, such as account creation.Whilst there
were several potential confounding factors, our results show that experi-
mental context could have an impact on this task, and must be taken into
account in future CAPTCHAstudies. Finally, we investigate CAPTCHA-
induced user task abandonment by analyzing participants who start and
do not complete the task.

In the second part of this work, we conduct a large-scale (over 3,600
distinct users) 13-month real-world user study and post-study survey.
The study, performed at a large public university, was based on a live
account creation and password recovery service with currently prevalent
captcha type: reCAPTCHAv2. Results show that, with more attempts,
users improve in solving checkbox challenges. For website developers
and user study designers, results indicate that the website context directly
influences (with statistically significant differences) solving timebetween
password recovery and account creation. We consider the impact of par-
ticipants’ major and education level, showing that certain majors exhibit
better performance, while, in general, education level has a direct impact
on solving time. Unsurprisingly, we discover that participants find image
challenges to be annoying, while checkbox challenges are perceived as

xx CAPTCHAs: What Are They Good For?

easy. We also show that, rated via System Usability Scale (SUS), image
tasks are viewed as “OK”, while checkbox tasks are viewed as “good”.
We explore the cost and security of reCAPTCHAv2 and conclude that
it has an immense cost and no security. Overall, we believe that this
study’s results prompt a natural conclusion: reCAPTCHAv2 and similar
reCAPTCHA technology should be deprecated.

Contents – Part I

Cryptographic Protocols

CryptoZoo: A Viewer for Reduction Proofs . 3
Chris Brzuska, Christoph Egger, and Kirthivaasan Puniamurthy

Element Distinctness and Bounded Input Size in Private Set Intersection
and Related Protocols . 26

Xavier Carpent, Seoyeon Hwang, and Gene Tsudik

A New Approach to Efficient and Secure Fixed-Point Computation 58
Tore Kasper Frederiksen, Jonas Lindstrøm, Mikkel Wienberg Madsen,
and Anne Dorte Spangsberg

Auditable Attribute-Based Credentials Scheme and Its Application
in Contact Tracing . 88

Pengfei Wang, Xiangyu Su, Mario Larangeira, and Keisuke Tanaka

Verification Protocol for Stable Matching from Conditional Disclosure
of Secrets . 119

Kittiphop Phalakarn and Toru Nakamura

Non-malleable Fuzzy Extractors . 135
Danilo Francati and Daniele Venturi

Upgrading Fuzzy Extractors . 156
Chloe Cachet, Ariel Hamlin, Maryam Rezapour, and Benjamin Fuller

X-Lock: A Secure XOR-Based Fuzzy Extractor for Resource Constrained
Devices . 183

Edoardo Liberati, Alessandro Visintin, Riccardo Lazzeretti,
Mauro Conti, and Selcuk Uluagac

Encrypted Data

Efficient Clustering on Encrypted Data . 213
Mengyu Zhang, Long Wang, Xiaoping Zhang, Zhuotao Liu,
Yisong Wang, and Han Bao

xxii Contents – Part I

Generic Construction of Forward Secure Public Key Authenticated
Encryption with Keyword Search . 237

Keita Emura

Encryption Mechanisms for Receipt-Free and Perfectly Private Verifiable
Elections . 257

Thi Van Thao Doan, Olivier Pereira, and Thomas Peters

Two-Party Decision Tree Training from Updatable Order-Revealing
Encryption . 288

Robin Berger, Felix Dörre, and Alexander Koch

KIVR: Committing Authenticated Encryption Using Redundancy
and Application to GCM, CCM, and More . 318

Yusuke Naito, Yu Sasaki, and Takeshi Sugawara

Signatures

Subversion-Resilient Signatures Without Random Oracles 351
Pascal Bemmann, Sebastian Berndt, and Rongmao Chen

Practical Lattice-Based Distributed Signatures for a Small Number
of Signers . 376

Nabil Alkeilani Alkadri, Nico Döttling, and Sihang Pu

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 403
Thibauld Feneuil

Exploring SIDH-Based Signature Parameters . 432
Andrea Basso, Mingjie Chen, Tako Boris Fouotsa, Péter Kutas,
Abel Laval, Laurane Marco, and Gustave Tchoffo Saah

Biscuit: New MPCitH Signature Scheme from Structured Multivariate
Polynomials . 457

Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier Verbel

Author Index . 487

Contents – Part II

Post-quantum

Automated Issuance of Post-Quantum Certificates: A New Challenge 3
Alexandre Augusto Giron, Frederico Schardong, Lucas Pandolfo Perin,
Ricardo Custódio, Victor Valle, and Victor Mateu

Algorithmic Views of Vectorized Polynomial Multipliers – NTRU Prime 24
Vincent Hwang, Chi-Ting Liu, and Bo-Yin Yang

Efficient Quantum-Safe Distributed PRF and Applications: Playing DiSE
in a Quantum World . 47

Sayani Sinha, Sikhar Patranabis, and Debdeep Mukhopadhyay

On the Untapped Potential of the Quantum FLT-Based Inversion 79
Ren Taguchi and Atsushi Takayasu

Breaking DPA-Protected Kyber via the Pair-Pointwise Multiplication 101
Estuardo Alpirez Bock, Gustavo Banegas, Chris Brzuska,
Łukasz Chmielewski, Kirthivaasan Puniamurthy, and Milan Šorf

Cryptographic Protocols II

The Key Lattice Framework for Concurrent Group Messaging 133
Kelong Cong, Karim Eldefrawy, Nigel P. Smart, and Ben Terner

Identity-Based Matchmaking Encryption from Standard Lattice
Assumptions . 163

Roberta Cimorelli Belfiore, Andrea De Cosmo, and Anna Lisa Ferrara

Decentralized Private Stream Aggregation from Lattices . 189
Uddipana Dowerah and Aikaterini Mitrokotsa

Wireless and Networks

A Security Analysis of WPA3-PK: Implementation and Precomputation
Attacks . 217

Mathy Vanhoef and Jeroen Robben

xxiv Contents – Part II

When and How to Aggregate Message Authentication Codes on Lossy
Channels? . 241

Eric Wagner, Martin Serror, Klaus Wehrle, and Martin Henze

DoSat: A DDoS Attack on the Vulnerable Time-Varying Topology of LEO
Satellite Networks . 265

Tianbo Lu, Xia Ding, Jiaze Shang, Pengfei Zhao, and Han Zhang

DDoSMiner: AnAutomated Framework for DDoSAttack Characterization
and Vulnerability Mining . 283

Xi Ling, Jiongchi Yu, Ziming Zhao, Zhihao Zhou, Haitao Xu,
Binbin Chen, and Fan Zhang

Privacy and Homomorphic Encryption

Memory Efficient Privacy-Preserving Machine Learning Based
on Homomorphic Encryption . 313

Robert Podschwadt, Parsa Ghazvinian, Mohammad GhasemiGol,
and Daniel Takabi

SNARKProbe: An Automated Security Analysis Framework
for zkSNARK Implementations . 340

Yongming Fan, Yuquan Xu, and Christina Garman

Privacy-Preserving Verifiable CNNs . 373
Nuttapong Attrapadung, Goichiro Hanaoaka, Ryo Hiromasa,
Yoshihiro Koseki, Takahiro Matsuda, Yutaro Nishida, Yusuke Sakai,
Jacob C. N. Schuldt, and Satoshi Yasuda

A General Framework of Homomorphic Encryption for Multiple Parties
with Non-interactive Key-Aggregation . 403

Hyesun Kwak, Dongwon Lee, Yongsoo Song, and Sameer Wagh

Symmetric Crypto

Masked Iterate-Fork-Iterate: A New Design Paradigm for Tweakable
Expanding Pseudorandom Function . 433

Elena Andreeva, Benoît Cogliati, Virginie Lallemand, Marine Minier,
Antoon Purnal, and Arnab Roy

Generalized Initialization of the Duplex Construction . 460
Christoph Dobraunig and Bart Mennink

Contents – Part II xxv

Alternative Key Schedules for the AES . 485
Christina Boura, Patrick Derbez, and Margot Funk

Author Index . 507

Contents – Part III

Blockchain

Mirrored Commitment: Fixing “Randomized Partial Checking”
and Applications . 3

Paweł Lorek, Moti Yung, and Filip Zagórski

Bitcoin Clique: Channel-Free Off-Chain Payments Using Two-Shot
Adaptor Signatures . 28

Siavash Riahi and Orfeas Stefanos Thyfronitis Litos

Programmable Payment Channels . 51
Ranjit Kumaresan, Duc V. Le, Mohsen Minaei,
Srinivasan Raghuraman, Yibin Yang, and Mahdi Zamani

Fair Private Set Intersection Using Smart Contracts . 74
Sepideh Avizheh and Reihaneh Safavi-Naini

Powers-of-Tau to the People: Decentralizing Setup Ceremonies 105
Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh

Smart Infrastructures, Systems and Software

Self-sovereign Identity for Electric Vehicle Charging . 137
Adrian Kailus, Dustin Kern, and Christoph Krauß

“Hello? Is There Anybody in There?” Leakage Assessment of Differential
Privacy Mechanisms in Smart Metering Infrastructure . 163

Soumyadyuti Ghosh, Manaar Alam, Soumyajit Dey,
and Debdeep Mukhopadhyay

Security Analysis of BigBlueButton and eduMEET . 190
Nico Heitmann, Hendrik Siewert, Sven Moog, and Juraj Somorovsky

An In-Depth Analysis of the Code-Reuse Gadgets Introduced by Software
Obfuscation . 217

Naiqian Zhang, Zheyun Feng, and Dongpeng Xu

xxviii Contents – Part III

ProvIoT : Detecting Stealthy Attacks in IoT through Federated Edge-Cloud
Security . 241

Kunal Mukherjee, Joshua Wiedemeier, Qi Wang, Junpei Kamimura,
John Junghwan Rhee, James Wei, Zhichun Li, Xiao Yu, Lu-An Tang,
Jiaping Gui, and Kangkook Jee

Attacks

A Practical Key-Recovery Attack on LWE-Based Key-Encapsulation
Mechanism Schemes Using Rowhammer . 271

Puja Mondal, Suparna Kundu, Sarani Bhattacharya,
Angshuman Karmakar, and Ingrid Verbauwhede

A Side-Channel Attack on a Higher-Order Masked CRYSTALS-Kyber
Implementation . 301

Ruize Wang, Martin Brisfors, and Elena Dubrova

Time Is Money, Friend! Timing Side-Channel Attack Against Garbled
Circuit Constructions . 325

Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

Related-Tweak and Related-Key Differential Attacks on HALFLOOP-48 355
Yunxue Lin and Ling Sun

Users and Usability

How Users Investigate Phishing Emails that Lack Traditional Phishing Cues . . . 381
Daniel Köhler, Wenzel Pünter, and Christoph Meinel

Usable Authentication in Virtual Reality: Exploring the Usability of PINs
and Gestures . 412

H. T. M. A. Riyadh, Divyanshu Bhardwaj, Adrian Dabrowski,
and Katharina Krombholz

Living a Lie: Security Analysis of Facial Liveness Detection Systems
in Mobile Apps . 432

Xianbo Wang, Kaixuan Luo, and Wing Cheong Lau

Author Index . 461

Cryptographic Protocols

CryptoZoo: A Viewer for Reduction Proofs

Chris Brzuska1, Christoph Egger2, and Kirthivaasan Puniamurthy1(B)

1 Aalto University, Espoo, Finland
kirthivaasan.puniamurthy@aalto.fi

2 Université Paris Cité, CNRS, IRIF, Paris, France

Abstract. Cryptographers rely on visualization to effectively communi-
cate cryptographic constructions with one another. Visual frameworks
such as constructive cryptography (TOSCA 2011), the joy of cryptog-
raphy (online book) and state-separating proofs (SSPs, Asiacrypt 2018)
are useful to communicate not only the construction, but also their proof
visually by representing a cryptographic system as graphs.

One SSP core feature is the re-use of code, e.g., a package of code
might be used in a game and be part of the description of a reduction
as well. Thus, in a proof, the linear structure of a paper either requires
the reader to turn pages to find definitions or writers to re-state them,
thereby interrupting the visual flow of the game hops that are defined
by a sequence of graphs.

We present an interactive proof viewer for state-separating proofs
(SSPs) which addresses the limitations and perform three case studies:
The equivalence between simulation-based and game-based notions for
symmetric encryption, the security proof of the Goldreich-Goldwasser-
Micali construction of a pseudorandom function from a pseudorandom
generator, and Brzuska’s and Oechsner’s SSP formalization of the proof
for Yao’s garbling scheme.

Keywords: state-separation · proof viewer · reduction proofs · tooling

1 Introduction

Reduction proofs are a means to convince oneself and others of the security
properties of a cryptographic design. In addition to communication and verifi-
cation, (reduction) proofs help us gain understanding of the properties that are
conducive to security and properties that are harmful. In order to improve ver-
ification, communication and understanding of proofs of complex systems, the
cryptographic community has different techniques and styles which we briefly
review below.

Black-box Primitives. Black-box primitives are abstractions which support mod-
ular proofs and information-hiding. For example, the concept of a symmetric
encryption scheme (SE) with indistinguishability under chosen plaintext attacks
(IND-CPA) allows one to build a system which uses SE without delving (or
even knowing about) the details of the AES cipher and suitable ciphermodes.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 3–25, 2024.
https://doi.org/10.1007/978-3-031-54770-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_1

4 C. Brzuska et al.

Cryptographic proofs of a complex system typically use multiple such black-box
primitives. Additionally, a modular proof tends to first abstract away a sub-
system, prove its security and then reduce the security of the bigger system
to the sub-system in a black-box way. These neat black-box interfaces are a
rich resource for structuring and understanding constructions and proofs, and
they capture the typical use of primitives so that studying black-box proofs
has become an established method also to understand the limitations of typical
construction approaches [RTV04,BBF13].

Universal Composability. Useful security definitions for primitives which com-
pose well tend to consider adversarially chosen inputs, and Canetti’s universal
composition framework (UC [Can01]) applies this insight to protocols as well,
thereby providing the basis to also prove protocol security by means of useful
intermediate notions. Since UC specifies how the adversary and the (adversar-
ial) environment can interact with the protocol, defining security in UC boils
down to specifying an ideal functionality, without the need to re-invent (and
possibly mis-construct) the adversarial model and enabling information-hiding
since the UC-savvy reader can focus on reading the ideal functionality alone.
Several further frameworks implement a similar approach, notably including
Maurer’s abstract cryptography framework [Mau11] and Rosulek’s Joy of Cryp-
tography [Ros21], which both encourage the use of visual components to follow
proofs.

Game-Hopping. Another important cryptographic technique that serves modu-
lar proofs are game-hops, explained by Shoup in [Sho04]. Game-hopping splits
a large proof of indistinguishability between two games that formalize the secu-
rity of a system into a sequence of smaller indistinguishability steps, each of
which can be proven in isolation and the sequence of lemmas establishing the
indistinguishability of each pairs of subsequent games then implies the indistin-
guishability of the two games in question.

Code-Based Game-Hopping. Bellare and Rogaway [BR06] introduced the use of
code into game-hopping proofs, where pseudo-code allows to put two subsequent
games next to each other and inspect how exactly the code changes between
them. Code-based game-playing has a strong visual component which draws the
attention to the changes in a game-hop while at the same time keeping all the
relevant code at hand for the reader (since it is written above and below the
code which changes). In turn, game-hopping which is not code-based tends to
describe only the changes from one game to another, requiring the reader to
remember or recover the entire context from different parts of the paper (game
definition, construction definition, previous game-hops).

Modular Code-Writing. In the realm of real-world protocols, code-based games
are frequently used (see, e.g., [DDGJ22,DGGP21] for recent works) and/or code-
based game-hopping is widely used (see, e.g., [DHRR22,DHK+23] for recent
works). Interestingly, reductions are often specified in text or omitted—although

CryptoZoo: A Viewer for Reduction Proofs 5

some works diligently provide reductions in pseudo-code, e.g., the proof of Yao’s
garbling scheme by Bellare, Hoang and Rogaway (BHR [BHR12]). BHR employ
careful packaging of code into sub-routines in order to make the large amount
of code in Yao’s garbling scheme manageable and be able to argue that the
reduction is sound. Concretely, reduction R that interacts with a smaller game
Gameb

small is sound if for the larger game Gameb
big that the adversary A interacts

with, it holds that for both b ∈ {0, 1},

R → Gameb
small ≡ Gameb

big, (1)

i.e., the behaviour of the reduction R composed with Gameb
small is equivalent to

the input-output behaviour of Gameb
big.

State-Separating Proofs. Modular code-writing with reductions in mind was sys-
tematically developed further by Brzuska, Delignat-Lavaud, Fournet, Kohbrok
and Kohlweiss (BDFKK [BDF+18]) who structure the pseudo-code of a game
into stateful pieces of code which can call one another, but else not access each
others state whence the term state-separation. If Gameb

big is defined by a call-
graph of code packages and if the reduction R and the game Gameb

small are
defined via call-graphs of code packages as well, then we can compare the graph
R → Gameb

small obtained by “gluing” to the graph of Gameb
big. If the two call

graphs are equal (i.e. they preserve the same edge relation), then Equation (1)
holds trivially. Additionally, the reductions R can simply be defined by drawing
a cut in the graph of Gameb

big, foregoing not only the need to prove the soundness
of the reduction, but also the need to write the code of the reduction.

This code re-use approach is a core feature of SSPs which makes proofs con-
cise and precise at the same time. On the other hand, code re-use also means
that code packages are used many times across an article, while the package
code is specified at a single place—or repeated redundantly at the cost of clut-
tering the paper and interrupting its flow. See [Koh23] for a gentle and thorough
introduction to SSPs as well as a conceptual overview of recent works using and
formalizing SSPs.

An SSP Viewer. We address the limitations of paper-based presentation by
designing the proof viewer CryptoZoo1 for SSPs. CryptoZoo presents the claims
and call-graphs of games in the left pane, and the code-based definitions in the
right pane, the latter of which is available at all times, enabling code-linkage
without code repetition, without breaking the flow and without the need to
scroll away from a proof step in the current context. Additionally, clicking on
individual packages highlights the relevant code in the code pane.

In addition to addressing these SSP-specific challenges, CryptoZoo also
addresses presentational obstacles present for proofs in mathematics and infor-
mation about systems in general and in cryptography specifically. We now briefly
review three key areas where improvement of presentation is necessary and useful
and then describe how CryptoZoo addresses these.
1 Available at https://proofviewer.cryptozoo.eu.

https://proofviewer.cryptozoo.eu

6 C. Brzuska et al.

Information linkage Beyond code, proof steps reference different aspects,
including previous lemmas and definitions. It is important to make this rela-
tionship functional and allow easy retrieval of all related facts.

Information hiding Since human memory is bounded, readers concentrate on
facts and information immediately useful to the current task at hand. It is
useful to hide information that does not contribute to understanding in a
particular moment.

Soundness and structure Proofs are structured into claims and lemmas which
form a proof tree (or DAG). The reader needs to verify that a set of claims
indeed implies the statement of the parent node—and in the end, the reader
can inspect the proofs of the claims at the leaves of the tree. In addition
to the tree structure, the author of an article usually suggests a meaningful
traversal which eases comprehension. A good medium for proofs should both
provide the high-level tree structure and a recommended reading order while
giving the reader freedom to deviate.

To address the latter point, CryptoZoo makes the proof tree visible and
explicit at each point in the proof. In order to address retrieval speed chal-
lenges, CryptoZoo links cryptographic definitions and claims so that they can
be retrieved quickly without losing the current context. Finally, to support user
memory management and focus, CryptoZoo allows the user to hide text, defini-
tions, lemmas, claims and their proofs, e.g., in order to focus on one particular
subtree. The aforementioned approaches can be employed also generically when
working with (cryptographic) proofs. It is, however, especially useful for the SSP
method which inherently relies on a modular and visual approach. Additionally,
SSPs have a quite well-defined set of proof steps which CryptoZoo supports while
proofs in general (or even in cryptography) can be expressed in quite diverse ways
which conflicts with the need of a proof viewing tool which supports more than
the basic tree structure present in all mathematical proofs. For this reason, the
SSP methodology is a useful scope for our proof-viewing tool.

Case Studies. We provide three case studies for the SSP proof viewer. As a
simple example, we show that the standard game-based notion of indistinguisha-
bility under chosen plaintext attacks (IND-CPA) and simulation-based security
for symmetric encryption are equivalent (Sect. 5). A more advanced example is a
state-separating proof of a (constant-depth) version of the Goldreich-Goldwasser-
Micali (GGM) theorem which transforms pseudo-random generators (PRGs) into
pseudorandom functions (PRFs) by using the PRG in a tree-structured con-
struction. This proof is interesting, since it involves a two-dimensional hybrid
argument, i.e., a hybrid argument both over the depth and width of the tree
(Sect. 6). Finally, as an advanced example, we present a proof of Yao’s garbling
scheme in the version by Brzuska and Oechsner [BO23] (Sect. 7) which covers cir-
cuits which are structured in layers. This proof also involves a two-dimensional
hybrid argument, both over the width and depth of the garbled circuit. In both
proofs, SSPs allow to make the reductions explicit and visually accessible. The
(constant-depth) GGM proof becomes visually straightforward using the proof

CryptoZoo: A Viewer for Reduction Proofs 7

viewer, although it is known as a rather complex proof in the foundations of cryp-
tography. The rather involved proof of Yao’s garbling scheme does not become
straightforward, but its structure is significantly simplified—moreover, the proof
viewing tools is useful due to the amount of code which needs to be managed.

Our case study on (constant-depth) GGM is the first formalization of the
GGM proof in SSPs and useful to understand GGM—but it is also useful to
understand SSPs, since it is the first intermediate-size SSP example. While
BDFKK gave several simple examples, most follow-up work (e.g. [BCK22,
BDE+22]) study complex protocols which are too complex to learn the SSP
methodology based on them. The GGM proof is a nice middle-ground between
simple and complex case studies.

Outline. We cover related work on visual tools in Sect. 2. Subsequently, Sect. 3
introduces SSPs and elaborate on the interrelation between useful aspects of
SSPs and proof viewer design. We then discuss the proof viewer design and
further considerations in the implementation (Sect. 4) and then turn to the three
case studies.

2 Related Work

Visual aids are a natural match for teaching and can be found in teaching not only
cryptography, but also computer science at large. For example, Vamonos [CR15]
combines visual and (pseudo-)code aspects to communicate algorithmic correct-
ness, while e.g. ProtoViz [Elm04] and GRACE [CDSP08] focus on the message
flow in protocols. Crucial in these tools is the combination of exploration by
the user together with a visual representation of the results. One can see edi-
tors for proof assistants like Coq [The17] and Lean [dMKA+15] in a similar
spirit. The user provides a further proof step and is presented with the state-
ments which still require a proof. Similarly, Tamarin [SMCB12]—a prover for
protocol security—can display a graph of its internal reasoning and update it
step-by-step.

While exploring a theorem statement in e.g. Coq can give insights and
help students learn to formally reason, once proofs become complex this access
becomes insufficient, in particular if proof search features are used. While explor-
ing intermediate states of the proof remains helpful, the high level structure of
a complex proof is not easily accessible from the linear proof file. Here tools like
the prooftree [Tew] plugin for Coq can help to visually explore the dependencies
between intermediate claims in a structured manner.

Alectryon [Pit20] adds a different dimension by allowing to freely switch
between a textual proof description and the formally verified proof script (which
can also be used to deduce the intermediate proof state). To this end it com-
bines text formatting tools with the Coq prover (and has been extended to
LEAN [Bül22]) to provide an interactive HTML document detailing the com-
plete proof in a manner optimized to be digested by a human reader—while still
guaranteed to be in sync with the mechanically verified version.

8 C. Brzuska et al.

Visual Cryptographic Proofs: The present work is inspired by the rational
underlying SSPs, which bring the necessary rigor needed for formal verification
while exposing similarities with teaching tools in cryptography which existed
before, importantly, Rosulek’s Joy of Cryptography [Ros21]. Rosulek groups
blocks of code into libraries or packages and argues on the call-graph in a simi-
lar (although less formal) way. This, in particular, allows students to draw from
experience e.g. in object oriented programming where internal state of objects
remain hidden and cannot be accessed. Maurer’s dot-calculus in constructive
cryptography [Mau11] facilitates proof communication by giving a visual outline
on the relationship between objects.

3 State-Separating Proofs

The state-separating proofs (SSP) methodology by Brzuska, Delignat-Lavaud,
Fournet, Kohbrok and Kohlweiss (BDFKK [BDF+18]) specifies not only a proof
style for game-hopping proofs, but also a definitional style. Similar to the UC
framework, SSP-style definitions specify security as indistinguishability between
two games, typically a real and an ideal game. Indistinguishability is useful
for composability, because even for (strong) unforgeability under chosen mes-
sage attacks (UNF-CMA)—conceptually a search problem—a game-hop typi-
cally replaces real signature verification by log-based ideal signature verification,
so that reductions between indistinguishability games tend to be more straight-
forward.

Fig. 1. Games Gprg0id and Gprg1id

Both in SSPs and UC, the adversary is the main algorithm which starts the sys-
tem by activating other parts—in UC, the adversary activates the environment,
the simulator or protocol parties (by sending messages to them), while in SSP-
style games, the adversary activates the game by making oracle queries to it. For
a game Game, we write Pr

[
1 = A O1,O2→ Game

]
for the probability that adver-

sary A returns 1 when interacting with the oracles O1 and O2 of Game, where
the oracles O1 and O2 are defined via pseudo-code that operates on the state
of the Game. An SSP-style game typically splits its code into multiple packages
with separate state—a package, like a game, consists of a set of oracles operating
on its state, but in the case of a package, oracles can make queries to the oracles
of other packages as well, giving rise to a call-graph. As an example, consider a
length-doubling pseudorandom generator (PRG) g : {0, 1}λ → {0, 1}2λ such that

CryptoZoo: A Viewer for Reduction Proofs 9

g(x) (for x sampled uniformly at random) is indistinguishable from a uniformly
random string y of length 2λ. We formalize security of PRGs as a game with
two GET oracles, a GET0 oracle which gives the adversary access to the left half
of y and a GET1 oracle which gives the adversary access to the right half of y. In
the real game, the oracles return the left and right half of y = g(x), respectively.
In the ideal game, the oracles both return a uniformly random string of length
n. Modeling a PRG to return the chunks separately is equivalent to returning
them at once, but will be useful in the security proof of the pseudorandom func-
tion (PRF) construction by Goldreich Goldwasser and Micali (GGM [GGM86]),
where each half is post-processed separately.

Keyid
Parameters

λ : sec. param

State

x : string

GETid

if x = ⊥ :

x ←$ {0, 1}λ

return x

Prgid0
Parameters

λ : sec. param
g : PRG

State

no state

GETid0

x ← GETid()

z ← g(x)

y ← z1.. λ
2

return y

Prgid1
Parameters

λ : sec. param
g : PRG

State

no state

GETid1

x ← GETid()

z ← g(x)

y ← z(λ
2 +1)..λ

return y
Fig. 2. Code of Keyid , Prgid0 and Prgid1

We now define the ideal
game as a composition of two
smaller games Key0 and Key1
which we compose in parallel
(cf. Fig. 1 (right)). The GET0

and GET1 oracle of Key0 and
Key1, respectively, each sam-
ple a uniformly random string
and return it to the adversary.
For the real game, we define
two packages Prg0 and Prg1
whose oracles GET0 and GET1

each retrieve a key from the
Key package via a GET ora-
cle, then apply the PRG g to
the value x they receive and
return the left and right half
of x, respectively.

Definition 1 (Pseudorandom Generator). A polynomial-time computable,
deterministic function g : {0, 1}∗ → {0, 1}∗ with ∀x ∈ {0, 1}∗, |g(x)| = 2 |x| is a
PRG if for all indices id ∈ {0, 1}∗ and all probabilistic polynomial-time (PPT)
adversaries A, the following advantage is a negligible function in λ (Fig. 2):

Adv(A,Gprg0id ,Gprg1id) :=
∣∣Pr[1 = A → Gprg0id

] − Pr
[
1 = A → Gprg1id

]∣∣ .

Packages and adversaries receive the security parameter implicitly, i.e., advan-
tage Adv(A,Gprg0id ,Gprg1id) maps a value λ ∈ N to a number in the interval
[0, 1].

Indices. Instead of defining the Key package in three variants, we simply allow
it to carry a bitstring id ∈ {0, 1}∗ as index and modifies oracle and package
names for disambiguation, leading to Key, Key0 and Key1.

PRFs. As a 2nd example, we define a pseudorandom function. Here, we use
the useful convention of defining the game in terms of the construction, i.e., we

10 C. Brzuska et al.

define a pseudorandom function as a stateless package Prf. I.e., a pseudorandom
function Prf is a package which (a) does not remember state between invocations,
(b) makes use of a key from a Key package and (c) is indistinguishable from a
random oracle, see Fig. 4.

Definition 2 (Pseudorandom Function). A pseudorandom function is a
stateless package Prf which provides oracles [→ Prf] = EVAL and calls oracle
[Prf →] = GET such that for all PPT adversaries A, the advantage

Adv(A,Prf → Key,RO) := |Pr[1 = A → Prf → Key] − Pr[1 = A → RO]|
is negligible in λ. Prf and RO are assumed to use the same input length in.

4 A Proof Viewer for SSPs

Prf Package

Parameters

λ : sec. param
in : input length

State

no state

Oracle

[→ Prf] : EVAL

[Prf →] : GET

RO Package

Parameters

λ : sec. param
in : input length

State

T : table

EVAL(x)

assert x ∈ {0, 1}in

if T [x] = ⊥ :

y ←$ {0, 1}n

y ← T [x]

return y

Fig. 3. Code of Prf and RO

In Sect. 4.1, we discuss how we realize
the proof viewing concepts outlined in
Sect. 1 in the SSP proof viewer, and in
Sect. 4.2, we consider further implemen-
tation considerations.

4.1 Proof Viewing Concepts

Linking and Simultaneous Visibility.
CryptoZoo displays code of packages
in a separate pane from games and
lemmas, so that the reader can reach
the code without losing the context of
the games and lemmas they are cur-
rently studying. Additionally, clicking
on a package will highlight the relevant
code in the right pane (and scroll to
it if needed). Additionally, CryptoZoo
has clickable security definitions which
open in a separate window.

It is possible to emulate those features partially in static PDF also via click-
able packages, and opening several instances of the same PDF, which contain
code and definitions, but achieving linking (showing and highlighting code when
clicking) at the same time as simultaneous visibility would require non-standard
links across several PDFs.

Proof Structure and Information Hiding. When security definitions of a state
separating proof are presented as suitable SSP graphs, a state-separating proof
that involves many reductions can sometimes be not only more precise, but also
shorter than a similar traditional proof since defining a reduction and proving
its soundness consists only of drawing two graphs, cf. [BCK22]. In turn, when

CryptoZoo: A Viewer for Reduction Proofs 11

Fig. 4. The games Prf → Key and RO

proving equivalence with standard security definitions in addition, an SSP proof
usually grows by at least two graphs and two inlining proofs for the high-level
security definitions as well as at least two graphs and two inlining proofs for
each of the underlying assumptions, cf. the proof of Yao’s garbling scheme by
Brzuska and Oechsner (BO [BO23]).

The proof viewer allows to hide sub-trees of a proof graph and, per default,
hides code equivalence steps, but allows to display them next to the actual claim
and relevant graphs and, again, with the code pane on the right. Again, one can
emulate this feature partially by opening several instances of the same PDF, but
the interactive hiding of arbitrary proof subtrees does not seem to be emulatable
in PDF. An interesting and useful approach in static PDF has been taken in the
thesis by Egger [Egg23] which presents security reductions for TLS 1.3 and first
shows an overview proof tree and repeats sub-trees later in the relevant sections,
recalling relevant context. Since CryptoZoo is not bound to linear structure, the
user can fold and un-fold subtrees interactively. Additionally, the user can toggle
between showing explanatory text or not, allowing to include comprehensive
explanatory text while at the same allowing for compact representation.

4.2 Implementation Considerations

CryptoZoo is implemented as a web application, to allow user to access it without
a dedicated application. To this end we believe assuming the availability of a web
browser to be generally justified. The viewer is also designed to function offline,
with minimal dependencies. Proofs/definitions are stored in a JSON format,
which is loaded by the viewer when requested by the user.

5 Case Study: IND-CPA Vs. Simulation-Based Security

Simulation-based security notions for symmetric encryption state that the adver-
sary should not learn more than some ideal leakage and that everything the
adversary can do when given a ciphertext can also be done when only given
the ideal leakage, but not the ciphertext. While different views on ideal leakage
are possible, the minimal approach is to leak the length of the message that is
encrypted, since an adversary can infer the length of the message from the length
of the ciphertext2. Simulation-based notions which leak the length of the message
are typically equivalent to their game-based counterparts, see, e.g., [DF18].
2 Length-hiding encryption can mitigate this issue to some extent, but due to

information-theory and correctness of decryption, the length of the ciphertext is
always an upper bound on the length of the message.

12 C. Brzuska et al.

In this case study3, we provide an SSP-style proof showing that indistin-
guishability under chosen plaintext attacks (IND-CPA) security in its Real-or-
Zeroes formulation is equivalent to a simulation-based formulation where the
simulator receives only the length of the message m, encoded in unary as 0|m|.
For completeness, let us state the correctness and security properties before
turning to a discussion of the equivalence proof.

Definition 3 (Symmetric Encryption Syntax). A symmetric encryption
scheme se consists of two probabilistic polynomial-time (PPT) algorithms se.Enc
and se.Dec

c ←$ se.Enc(k,m)
m ←se.Dec(k, c)

which satisfy that for all security parameters n ∈ N, encryption is correct, i.e.,

∀m ∈ {0, 1}∗ Prk ←$ {0,1}n [se.Dec(k, se.Enc(k,m)) = m] = 1.

Definition 4 (IND-CPA security). A symmetric-encryption scheme se is
indistinguishable under chosen plaintext attacks if for all PPT adversaries A,
the advantage

Adv(A,Genc0,Genc1) :=
∣∣Pr[1 = A → Genc0

] − Pr
[
1 = A → Genc1

]∣∣

is a negligible function in the security parameter, where Genc0 := Enc → Key
and Genc1 := Zeroer → Enc → Key, Key is defined in Figure 2, and Zeroer and
Enc are defined in Figure 7.

Definition 5 (Simulation-based security). A symmetric-encryption scheme
se satisfies simulation-based security if there exists a PPT simulator Sim such
that for all PPT adversaries A, the advantage

Adv(A,Genc0,Genc(Sim) :=
∣∣Pr[1 = A → Genc0

] − Pr[1 = A → Genc(Sim)]
∣∣

is a negligible function in the security parameter, where Genc0 := Enc → Key
and Genc(Sim) := Zeroer → Sim are defined in Figure 7.

3 https://proofviewer.cryptozoo.eu/sim-ind-cpa-landing.html.

https://proofviewer.cryptozoo.eu/sim-ind-cpa-landing.html

CryptoZoo: A Viewer for Reduction Proofs 13

Fig. 5. Using the real game as a simulator.

Fig. 6. Using the real game as a simulator.

14 C. Brzuska et al.

Fig. 7. Package definitions for IND-CPA and
simulation-based security of se.

We will see that the ideal
encryption game can act as a simu-
lator, since all the simulator needs
to do is to encrypt zeroes. In
this way, we obtain a straightfor-
ward proof that IND-CPA security
implies the simulation-based secu-
rity notion for symmetric encryp-
tion (See Fig. 5). In the converse
direction, we need to use the
simulation-based security notion
twice in the proof—once to move
away from encrypting real mes-
sages to encrypting simulated mes-
sages, and once to argue that
encrypting simulated messages is
indistinguishable from encrypting
zeroes—since the ideal functional-
ity which gives 0|m| to the simulator yields the same output, regardless of whether
m is an all-zeroes string or not. These arguments become visible in the proof
structure (see Fig. 6) and its associated proof graphs. The game hop from Genc1

to Hybrid-Lemma-1 is a reduction step which can be visualized as a cut in a
graph, depicted in Fig. 8 which hatches the reduction in red. The last game hop
is directly implied by the indistinguishability of the real game Genc0 and the
simulated game Genc(Sim), and the middle game hop follows by observing that
two Zeroer packages are equivalent to a single one.

CryptoZoo: A Viewer for Reduction Proofs 15

Fig. 8. Reduction hatched in red. (Color figure online)

6 Case Study: Constant-Depth GGM Tree

Goldreich, Goldwasser and Micali (GGM [GGM86]) introduced the notion of
pseudorandom functions and provided a construction of a pseudorandom func-
tion based on a length-doubling pseudorandom generator (see Definition 1). The
proof is commonly include in courses on the foundations of cryptography and
contained, e.g., in Chap. 3.6.2 (Theorem 3.6.6) of the Foundations of Cryptogra-
phy I textbook by Goldreich [Gol04]. The construction is naturally amenable to
visualization: It structures PRG instances into a binary tree and the left halves
and right halves of a PRG output become the input to the PRG instances on
the next tree layer, until reaching the leaf layer.

16 C. Brzuska et al.

Fig. 9. Hybrid step in the GGM proof

The construction4 is
indeed often visualized as
a tree. See, e.g., Fig. 3.5
in Chap. 3.6.2 of [Gol04].
As we will see, not only
the construction, but also
the proof can be visualized.
We will see how the secu-
rity of each of the PRG
instances is applied and
how the reduction looks
like. The proof is a hybrid
argument over all of the
PRG instances. For illus-
tration, consider the two
hybrid games in Fig. 9.
Their difference can be
reduced to the PRG secu-
rity by using the boxed
hatched in red as a reduc-
tion (Fig. 10).

The proof which we
have chosen to implement
into the proof viewer is
a variant of the GGM
proof where the tree is
of constant depth. This
is analogous to how the
GGM construction is often
depicted in books, namely
restricted to a constant
level, since the full GGM
construction is an n-level tree with 2n leaves which is harder to represent than
a finite tree.

We depict the hybrid argument for tree depth 3 which requires 23−1 = 7 PRG
instances and thus also 7 game-hops. Each of the hybrid games is represented via
a binary tree. The format of the proof viewer is convenient here since we avoid
page boundaries and can depict the hybrids simply as a long sequence of 8 games.
Note that the full GGM proof does not proceed via a hybrid over the entire tree,
but only visits polynomially many of the PRG instances in the tree. Our constant-
depth representation does not capture this subtlety of the proof, and the SSP
version of the full GGM proof that we are aware of, is visually not as appealing
(see Sect. 7 for a compelling hybrid argument over polynomially many hybrids).
Therefore, we prefer to present a constant-depth version of GGM which captures
the main essence of the construction and, importantly, its security proof.

4 https://proofviewer.cryptozoo.eu/ggm-landing.html.

https://proofviewer.cryptozoo.eu/ggm-landing.html

CryptoZoo: A Viewer for Reduction Proofs 17

Fig. 10. Reduction step in the GGM proof

7 Case Study: Yao’s Garbling Scheme

Secure multi-party computation constructs protocols where several parties
together compute a function on the participants’ input but without revealing
their inputs to other protocol participants (beyond what the output of the

18 C. Brzuska et al.

Fig. 11. Semantic switch step in the proof viewer (Eq. 2 of Yao, proof via inlining).

CryptoZoo: A Viewer for Reduction Proofs 19

Fig. 12. Hybrids code equivalence in the proof viewer (Eq. 7 of Yao, proof via graph
equality).

20 C. Brzuska et al.

function leaks). Yao [Yao86] proposed a protocol for this purpose which we
know today as garbled circuits. For analyzing the security of this construc-
tion, BHR [BHR12] extracted the intermediate notion of a garbling scheme and
proved security of Yao’s garbling scheme. Brzuska and Oechsner [BO23] give a
state-separated proof5 of garbling security for layered circuits where they further
extract a notion of layer garbling which allows sequential composition and there-
fore allows structuring the security proof by composing security layer-by-layer.
This step is inherently visual (Fig. 12). Moreover, to define these reductions for
the viewer, the proof author need not produce separate graphs and code, but
only needs to specify cuts on the same graph, enabling code re-use.

On a gate-by-gate level, Yao’s garbling scheme operates by assigning two SE
keys to each wire in a circuit representing the values 0 and 1. A binary logic
gate can then be implemented by encrypting the key on the output wire under
both input wire keys for all entries of the truth table: for a logic AND gate the
output 1-key is encrypted under the 1-keys for both the left and right input wire
while the output 0-key is encrypted under all other combinations of the input
keys. Consequently, a party can access the output 1-key exactly if it knows both
1-keys for the input wires whereas the 0-key remains hidden in this case.

A central element of the security proof is a semantic switch – instead of
considering 0-keys and 1-keys the security game distinguishes between “active”
keys known to the party and “passive” keys which remain secret which makes the
party’s state independent of the actual input value when evaluating the circuit
(Fig. 11). The formal code equivalence proof of this step is quite tedious, but
the proof viewer keeps components necessary to verify this step close together,
which should help the reader.

8 Comparison

We now review SSP proofs for the Transport Layer Security (TLS [Res18]) proto-
col, the Messaging Layer Security (MLS [BMO+23]) protocol and Yao’s garbling
scheme. In each case, we discuss the presentation of the respective papers and
how CryptoZoo could further contribute to communication, and, in the case of
Yao’s garbling scheme, how CryptoZoo compares to the original presentation
by Brzuska and Oechsner [BO23]. Afterwards, we briefly discuss SSP proofs in
formal verification tools.

8.1 Yao’s Garbling Scheme

Brzuska and Oechsner (BO [BO23]) formalize security and correctness of gar-
bling schemes in SSPs and then revisit Yao’s garbling scheme. While correctness
can also be proven in SSPs, BO focus on security only and provide an SSP-style
reduction for Yao’s garbling scheme to the IND-CPA security of the underly-
ing garbling scheme. The BO paper introduces games for IND-CPA security

5 https://proofviewer.cryptozoo.eu/yao-landing.html.

https://proofviewer.cryptozoo.eu/yao-landing.html

CryptoZoo: A Viewer for Reduction Proofs 21

and garbling security in a natural flow, slowly increasing complexity in order to
familiarize the reader with the novel SSP encoding and, as a first proof, show
an equivalence for different encodings for IND-CPA security. Our CryptoZoo
implementation follows this outline by BO. Concretely, the CryptoZoo landing
page for Yao’s garbling scheme explains the purpose of the different pages and
then recommends to the reader to first visit the IND-CPA security page which
explains the SSP encoding of IND-CPA security and the equivalence proof with
the encoding of IND-CPA security which is useful for the security proof of Yao’s
garbling scheme. Subsequently, BO discuss the SSP encoding of garbling scheme
security and Yao’s garbling scheme construction. Our CryptoZoo implementa-
tion follows this approach and provides a page introducing the garbling scheme
security notion in SSP-style and also explains Yao’s garbling scheme construc-
tion. Thus, up to the main theorem statement, the BO paper and our CryptoZoo
implementation proceed analogously.

The main difference between CryptoZoo and the BO presentation is the proof
of the main theorem which reduces security of Yao’s garbling scheme to IND-CPA
security. BO proceed in a bottom-up fashion, slowly building and explaining sub-
packages needed in the proof and showing equivalence with the top-level security
notion in the end.

In turn, CryptoZoo natively presents the proof in a top-down fashion and
explains the code of the modular packages previously in the context of the Yao
construction. Below the statement of the main theorem, CryptoZoo recommends
to the reader, however, to first read the proof bottom-up and then, once more,
top-down. CryptoZoo allows the reader to proceed through the proof in both
directions, since clicking on a lemma hides all the remaining proof steps, focusing
solely on the lemma and its sub-tree. The reason that we first recommend a
bottom-up reading of the proof is analogous to the presentation rationale of BO:
The reader’s familiarity with all packages grows successively with each proof
step until reaching a statement for the entire garbling construction. In turn,
reading the proof top-down in the first reading iteration either requires reading
and understanding all code at once or treating some of the packages as black-
boxes (since most of the proof steps are purely syntactical). However, after a first
bottom-up read that helps familiarizing with all code and steps, making a top-
down pass through the proof seems useful to gain a conceptual understanding of
how the proof connects the high-level garbling security notion to the low-level
IND-CPA definition. CryptoZoo supports both, the bottom-up and the top-down
reading flow, and the user can, of course, also read the proof in an arbitrary order
based on their preference. The CryptoZoo proof tree and information-hiding
helps the user to engage with the proof conveniently in an order of their choice
while having all information conveniently at hand. In turn, the BO proof has a
fixed order where code has a fixed place in the paper and needs to be manually
connected. As mentioned previously, opening multiple PDFs of BO (and adding
a proof tree to their paper) will reach a similar effect, but at a lower level of
convenience than in CryptoZoo.

22 C. Brzuska et al.

8.2 SSP Proofs of TLS 1.3

Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok and Kohlweiss (BDEFKK
[BDE+22]) analyze the TLS 1.3 key schedule and Egger [Egg23] further con-
nects the TLS 1.3 key schedule security with the TLS 1.3 handshake security.
BDEFKK and Egger both introduce different code, assumptions and games in
a natural flow, starting from a conceptually simple game (collision-resistance of
hash-functions in BDEFKK and PRF security in Egger).

A remarkable property of the TLS 1.3 security analysis is the strongly lay-
ered approach: Each layer comes with a main theorem which builds upon the
result of the previous layer as well as additional lemmata specific to the current
layer. As such each layer in isolation can be an insightful read, e.g. to learn how
to relate key schedule hand handshake security. Highlighting such additional ad-
hoc structure of the proof tree is easy to do in a PDF presentation, and Egger’s
thesis follows this approach with a proof tree with clickable lemma statements
and chapters zooming in (both visually and content wise) into each layer of the
tree. While currently not implemented, adding this layer structure to Crypto-
Zoo would be a reasonable task if it turns out to be applicable to many projects.
Finally, both, for BDEFKK and Egger (as well as in a possible future Crypto-
Zoo implementation), the proof trees are also useful to compute final advantage
statements, see [Egg23, p.48, p.56].

8.3 SSP Proofs of the MLS Key Schedule

Brzuska, Cornelissen and Kohbrok (BCK [BCK22]) analyze the MLS key sched-
ule and its composition with TreeKEM [BBR18]. Again, BCK slowly build up
complexity in their article and a CryptoZoo implementation would proceed analo-
gously. Again, the main advantage of CryptoZoo lies in the availability and easy
accessibility of code, and in this case, also in an additional proof tree—but a
proof tree could also be added to BCK. Again, a proof tree would be useful to
compute final advantage statements, cf. [BCK22, p.18–19].

8.4 Formal Verification Tools for SSPs

SSProve is a Coq-based formal verification tool for SSPs by Abate, Haselwarter,
Rivas, Van Muylder, Winterhalter, Hritcu, Maillard and Spitters [AHR+21],
and Dupressoir, Kohbrok and Oechsner [DKO22] formalized SSPs in Easy-
Crypt [BDG+14,BGHZ11]. Representation of SSPs in both, SSProve and Easy-
Crypt, is code-based and thus, CryptoZoo could help present the obtained proof
visually. Potentially, CryptoZoo code could be generated automatically and thus
not only help in proof communication but perhaps also in proof development,
allowing the proof developer faster visual navigation of the proof draft.

9 Conclusion and Future Work

One useful feature of visual(izable) frameworks such as UC, abstract cryptogra-
phy, the Joy of Cryptography and SSPs is the visualization of proofs. In this

CryptoZoo: A Viewer for Reduction Proofs 23

article, we explored the presentation of SSP proofs in the interactive proof
viewer CryptoZoo which we developed. We would like to claim that CryptoZoo
improves the quality of verification by providing improved navigation of proofs
and by allowing users to conveniently and quickly retrieve relevant information.
However, readers of PDFs can compensate by retrieving information in different
(slower) ways (cf. Sect. 4.1). Therefore, it seems more accurate that CryptoZoo
improves the speed of verification or the quality of verification given a fixed,
limited amount of time.

Future Work. It would be interesting to conduct a user study to compare the
verification of (well-written) PDF proofs with the verification of (well-written)
CryptoZoo proofs. Furthermore, it would be interesting to see whether Crypto-
Zoo is useful for helping a proof developer maintain state in a visual form while
writing an SSP proof. Last, but not least, CryptoZoo might be connected with
formal verification tools for SSPs, such as SSProve [AHR+21] and or a formal-
ization of SSPs in EasyCrypt [BDG+14,BGHZ11]. In this case, reduction steps
and, more importantly, code-equivalence steps could be verified by in the under-
lying tool (rather than by the user/reader), turning CryptoZoo into an interface
which helps a user/reader gain understanding of proof conducted in a formal
verification tool and thus serve to ease a notoriously hard communication task.

Acknowledgment. This project was supported by the Research Council of Finland
and the European Commission under the Horizon2020 research and innovation pro-
gramme, Marie Sklodowska-Curie grant agreement No 101034255.

References

[AHR+21] Abate, C., et al.: SSProve: a foundational framework for modular cryp-
tographic proofs in coq. In: Küsters, R., Naumann, D., (eds.) CSF 2021
Computer Security Foundations Symposium, pp. 1–15. IEEE Computer
Society Press (2021)

[BBF13] Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions,
revisited. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. Part I, volume
8269 of LNCS, pp. 296–315. Springer, Heidelberg (2013)

[BBR18] Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decen-
tralized Key Management for Large Dynamic Groups A protocol proposal
for Messaging Layer Security (MLS). Research report, Inria Paris (2018)

[BCK22] Brzuska, C., Cornelissen, E., Kohbrok, K.: Security analysis of the MLS
key derivation. In: 2022 IEEE Symposium on Security and Privacy, pp.
2535–2553. IEEE Computer Society Press (2022)

[BDE+22] Brzuska, C., Delignat-Lavaud, A., Egger, C., Fournet, C., Kohbrok,
K., Kohlweiss, M.: Key-schedule security for the TLS 1.3 standard. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. Part I, volume 13791
of LNCS, pp. 621–650. Springer, Heidelberg (2022). https://doi.org/10.
1007/978-3-031-22963-3_21

[BDF+18] Brzuska, C., Delignat-Lavaud, A., Fournet, C., Kohbrok, K., Kohlweiss,
M.: State separation for code-based game-playing proofs. In: Peyrin, T.,

https://doi.org/10.1007/978-3-031-22963-3_21
https://doi.org/10.1007/978-3-031-22963-3_21

24 C. Brzuska et al.

Galbraith, S. (eds.) ASIACRYPT 2018. Part III, volume 11274 of LNCS,
pp. 222–249. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
030-03332-3_9

[BDG+14] Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub,
P.-Y.: EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.)
FOSAD 2012-2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10082-1_6

[BGHZ11] Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided secu-
rity proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22792-9_5

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM CCS 2012, pp. 784–796.
ACM Press (2012)

[BMO+23] Barnes, R., Millican, J., Omara, E., Cohn-Gordon, K., Robert, R.: The
Messaging Layer Security (MLS) Protocol. RFC 9420 (2023)

[BO23] Brzuska, C., Oechsner, S.: A state-separating proof for yao’s garbling
scheme. In: 2023 IEEE 36th Computer Security Foundations Symposium
(CSF) (CSF), pp. 127–142. IEEE Computer Society, Los Alamitos, CA,
USA (2023)

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679_25

[Bül22] Bülow, N.: Proof visualization for the lean 4 theorem prover (2022)
[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-

graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press (2001)

[CDSP08] Cattaneo, G., De Santis, A., Petrillo, U.F.: Visualization of cryptographic
protocols with grace. J. Vis. Lang. Comput. 19(2), 258–290 (2008)

[CR15] Carmer, B., Rosulek, M.: Vamonos: embeddable visualizations of
advanced algorithms. In: 2015 IEEE Frontiers in Education Conference
(FIE), pp. 1–8 (2015)

[DDGJ22] Davis, H., Diemert, D., Günther, F., Jager, T.: On the concrete security of
TLS 1.3 PSK mode. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes
in Computer Science, vol. 13276, pp. 876–906. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-07085-3_30

[DF18] Degabriele, J.P., Fischlin, M.: Simulatable Channels: extended security
that is universally composable and easier to prove. In: Peyrin, T., Gal-
braith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 519–550.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_19

[DGGP21] Degabriele, J.P., Govinden, J., Günther, F., Paterson, K.G.: The security
of ChaCha20-Poly1305 in the multi-user setting. In: Vigna, G., Shi, E.,
(eds.) ACM CCS 2021, pp. 1981–2003. ACM Press (2021)

[DHK+23] Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.,
Unruh, D.: A thorough treatment of highly-efficient NTRU instantia-
tions. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023. Part I, volume
13940 of LNCS, pp. 65–94. Springer, Heidelberg (2023). https://doi.org/
10.1007/978-3-031-31368-4_3

https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-031-07085-3_30
https://doi.org/10.1007/978-3-030-03332-3_19
https://doi.org/10.1007/978-3-031-31368-4_3
https://doi.org/10.1007/978-3-031-31368-4_3

CryptoZoo: A Viewer for Reduction Proofs 25

[DHRR22] Dowling, B., Hauck, E., Riepel, D., Rösler, P.: Strongly anonymous ratch-
eted key exchange. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. Part
III, volume 13793 of LNCS, pp. 119–150. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-22969-5_5

[DKO22] Dupressoir, F., Kohbrok, K., Oechsner, S.: Bringing state-separating
proofs to EasyCrypt a security proof for cryptobox. In: CSF 2022 Com-
puter Security Foundations Symposium, pp. 227–242. IEEE Computer
Society Press (2022)

[dMKA+15] de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: the
lean theorem prover (system description). In: Felty, A.P., Middeldorp, A.
(eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_26

[Egg23] Egger, C.: On abstraction and modularization in protocol analysis, Doc-
toral thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
(2023)

[Elm04] Elmqvist, N.: Protoviz: a simple security protocol visualization, Tech.
Rep., University of Gothenburg (2004)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, Cambridge, UK (2004)

[Koh23] Kohbrok, K.: State-separating proofs and their applications, Doctoral the-
sis, Aalto University School of Science (2023)

[Mau11] Maurer, U.: Constructive cryptography – a new paradigm for security
definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA
2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27375-9_3

[Pit20] Pit-Claudel, C.: Untangling mechanized proofs. In: Lämmel, R., Tratt, L.,
de Lara, J., (eds.) Proceedings of the 13th ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2020, Virtual Event,
USA, November 16–17, 2020, pp. 155–174. ACM (2020)

[Res18] Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446 (2018)

[Ros21] Rosulek, M.: The joy of cryptography. Oregon State University (2021)
[RTV04] Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between

cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951,
pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24638-1_1

[Sho04] Shoup, V.: Sequences of games: a tool for taming complexity in secu-
rity proofs. Cryptology ePrint Archive, Report 2004/332 (2004). https://
eprint.iacr.org/2004/332

[SMCB12] Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated anal-
ysis of diffie-hellman protocols and advanced security properties. In:
Zdancewic, S., Cortier, V., (eds.) CSF 2012 Computer Security Foun-
dations Symposium, pp. 78–94. IEEE Computer Society Press (2012)

[Tew] Tews, H.: Prooftrees (2023)
[The17] The Coq Development Team: The coq proof assistant, version 8.7.0 (2017)
[Yao86] Yao, A.C.C.: How to generate and exchange secrets (extended abstract).

In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-031-22969-5_5
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-642-27375-9_3
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332

Element Distinctness and Bounded Input
Size in Private Set Intersection

and Related Protocols

Xavier Carpent1(B), Seoyeon Hwang2, and Gene Tsudik2

1 University of Nottingham, Nottingham, UK
xavier.carpent@nottingham.ac.uk

2 University of California, Irvine, Irvine, USA

Abstract. This paper considers Private Set Intersection (PSI) protocols
where one party (server) imposes a minimum input size (lower bound)
on the other party (client), and the latter wants to keep its input size
private. This entails tackling two types of possible client misbehavior:
(1) using fake/frivolous elements, and (2) duplicating genuine elements.
The former can be addressed by pre-authorizing all client elements by a
mutually trusted party, which translates into so-called Authorized PSI
(APSI). However, the latter is more challenging. To this end, we con-
struct a protocol for Proof of Element-Distinctness (PoED), wherein one
party convinces the other that all of its input elements are distinct, with-
out revealing any information about them. Using this as a building block,
we then construct a PSI variant, called All-Distinct Private Set Inter-
section (AD-PSI), that outputs the intersection only when client input
contains all distinct elements. We also present some AD-PSI variants
where using duplicates can cause unexpected information leakage. Com-
bining the AD-PSI with previous work for upper-bounded-input PSI,
we construct a Bounded-Size-Hiding-PSI (B-SH-PSI) that outputs the
intersection only if client’s input size satisfies server’s requirement on
both lower and upper bounds, while keeping that size private. Finally,
we present a protocol that prevents both types of misbehavior, called
All-Distinct Authorized PSI (AD-APSI).

Keywords: Private Set Intersection · Input Correctness · Element
Distinctness · Bounded Input · Size-Hiding

1 Introduction

Private Set Intersection (PSI) is a cryptographic primitive that allows two par-
ties to compute the intersection of their private input sets, without revealing
any information about the set elements outside the intersection to each other.
It attracted a lot of attention from various privacy-preserving applications, such
as contact tracing [25,75], online targeted advertising [45], genomic testing [51],
botnet detection [59], TV program history matching [47], private contact dis-
covery [23,38], and private matchmaking [79].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 26–57, 2024.
https://doi.org/10.1007/978-3-031-54770-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_2

Element Distinctness and Bounded Input Size in PSI and Related Protocols 27

Due to its functionalities applicable to numerous real-world applications,
there has been a long line of work in PSI and its variants (details in Sect. 2),
starting from the earliest forms in 1980s [56,73]. While most PSI protocols reveal
set (input) sizes as part of the protocol, [3] constructed the first PSI variant –
Size-Hiding PSI (SH-PSI) – that allows one party (Client) to learn the inter-
section while keeping its input set size private against the other party (Server).
Building upon this size-hiding property, Bradley et. al. [6] and Cerulli et. al. [9]
suggested upper-bounding Client’s input set size to prevent it from learning too
much information about Server’s input set.

This paper focuses on a related question: lower-bounding Client’s input set
size while keeping it private. That is, suppose that Server requires Client to have
at least l elements in its input set to run the PSI protocol with Server’s set. This
requirement might be useful in social network settings, such as Facebook and
LinkedIn, where a popular/prominent user would agree to connect to another
user only if the latter has at least l genuine friends/followers to e.g., block the
stalkers who keep creating bogus accounts and requesting to connect.

If we relax the size-hiding property, lower-bounding Client input size is
straightforward: Server simply checks whether the Client set size (revealed as
part of the PSI interaction) is ≥ l, and if not, aborts the protocol. However, this
only works if Client is honest. A dishonest Client can bypass this requirement
by (1) generating and using fake set elements, and/or (2) duplicating its genuine
set elements. Then, since PSI protocols typically obfuscate (often by blinding)
Client set elements, Server cannot distinguish between the genuine and fake
input elements.

One intuitive way to mitigate this misbehavior is via auditing: a trusted third
party (TTP) regularly verifies the Client input by examining the transcripts of
PSI protocol and looking for duplicate or spurious elements. However, this would
be too late since the dishonest Client already obtained the intersection.

To deal with the type-(1) misbehavior, so-called Authorized PSI (APSI) tech-
niques [19,20,77] have been proposed. This is achieved by having an offline TTP
that pre-authorizes Client input by signing each element. Later, during PSI
interaction, Server (implicitly or explicitly) verifies these signatures without
learning Client input. This way, Client cannot obtain signatures of spurious
elements, and thus, cannot learn the intersection using fake elements. However,
APSI protocols cannot cope with the type-(2) misbehavior, i.e., Client can still
bypass the requirement by using duplicated (TTP-authorized) signed elements.
This prompts a natural question:

Can Client prove that each of its private input elements is not duplicated,
i.e., all input elements are distinct while keeping them private?

To answer this question, we first investigate if current PSI protocols can detect
duplicates (see Sect. 2.4). A few prior results [5,49] proposed protocols for Private
Multiset1 Intersection (PMI) which allows multiset inputs. However, we note
that their goal is different because it outputs the intersection multiset, not the

1 Recall that, a multiset allows duplicate elements, while a set does not.

28 X. Carpent et al.

intersection set, which yields more information than PSI, e.g., the number of
occurrences (i.e., multiplicities) of common elements.

Next, we show how to prove element distinctness in two-party settings,
whereby one party convinces the other that its input elements are all distinct,
without revealing any information about them. We use the term element dis-
tinctness (a.k.a. element uniqueness) problem from the computational complex-
ity theory: given n numbers x1, ..., xn, return “Yes” if all xi’s are distinct, and
“No” otherwise. To the best of our knowledge, there is no prior work in the two-
party settings where one party proves element distinctness of its private input
to the other party. We call this Proofs of E lement-Distinctness (PoED).

We propose a concrete PoED construction by generalizing the two billiard
balls problem, which can be an independent interest. Using this PoED con-
struction as a building block, we propose a new PSI variant, called All-Distinct
Private Set Intersection (AD-PSI), and its construction. Informally speaking,
AD-PSI allows Client to learn the intersection only if all of its input elements
are distinct. It additionally guarantees that Client learns no information, not
even Server input size, if it uses any duplicates as input.

Then, we extend AD-PSI to three PSI variants where using duplicates can
be more problematic: (1) AD-PSI-Cardinality (AD-PSI-CA) that outputs the
cardinality of the intersection; (2) Existential AD-PSI (AD-PSI-X) that outputs
whether the intersection is non-empty; and (3) AD-PSI with Data Transfer (AD-
PSI-DT) that transfers associated data along with the intersection; only when
Client inputs all distinct elements. We also show a Bounded-Size-Hiding-PSI
(B-SH-PSI) construction with both upper and lower bound on Client input,
combining our AD-PSI with prior work on upper-bounded size-hiding PSI (U-
SH-PSI) [6,9], which shows the applicability of PoED and AD-PSI.

Note that the protocols above work in the case where Client cannot generate
fake elements, and to expand Client’s capabilities to both type-(1) and type-
(2) misbehavior, including a TTP is unavoidable. To fill this gap, we finally
present an All-Distinct Authorized PSI (AD-APSI) protocol that prevents both
duplicate and spurious elements by ensuring the validity of Client input. We
specify desired security properties for AD-APSI and prove that the proposed
protocol satisfies them.
To summarize, the contributions of this work are:

– A PoED protocol with security analysis;
– Definition of AD-PSI and concrete construction with security proofs;
– Three AD-PSI variants: AD-PSI-CA, AD-PSI-X, AD-PSI-DT;
– Extension of U-SH-PSI to B-SH-PSI with both upper and lower bounds on

Client input set size; and
– Definition of AD-APSI and concrete construction with security proofs;

Organization: After overviewing related work and preliminaries in Sect. 2,
Sect. 3 presents a PoED construction and its analysis. Then, Sect. 4 defines
AD-PSI and proposes a concrete protocol, followed by some variants in Sect. 5.
Section 6 constructs a B-SH-PSI protocol atop U-SH-PSI, and Sect. 7 demon-
strates an AD-APSI protocol and its security proofs.

Element Distinctness and Bounded Input Size in PSI and Related Protocols 29

2 Related Work and Background

2.1 Private Set Intersection (PSI)

Private Set Intersection (PSI) in two-party computation is an interaction
between Client and Server that computes the intersection of their private input
sets. A long line of work on PSI can be classified according to the underlying
cryptographic techniques: (1) Diffie-Hellman key agreement [6,19,44,56,73]; (2)
RSA [18,20,21]; (3) cryptographic accumulators [3,20]; (4) oblivious transfer (or
oblivious pseudorandom function) [10,40,42,46,50,60,63,65–70]; (5) Bloom fil-
ter [22,24,64,69]; (6) oblivious polynomial evaluation [16,30,32,41,49]; and (7)
generic multiparty computation [13,24,43,55,69]. This paper considers the one-
sided PSI where Client learns the result. Most efficient protocols incur O(n)
computation/communication costs, where n is the input set size.

2.2 PSI Variants

Some PSI variants reveal less information than the actual intersection. For exam-
ple, PSI-CA [18,22,25,72,76] outputs only the cardinality of the intersection,
and PSI-X [8] outputs a one-bit value reflecting whether the intersection is non-
empty. On the other hand, some reveal more information, such as associated data
for each intersecting element [20,78] or additional private computation results
(e.g., sum or average) along with the intersection [45,52,55,57]. The latter is
more interesting because of their realistic applications, such as statistical anal-
ysis for, e.g., advertisement conversion rate [45], of intersecting data.

2.3 PSI with Restrictions

Certain PSI variants place conditions for Client to obtain the result. For exam-
ple, threshold PSI (t-PSI) reveals the intersection only if the cardinality of the
intersection meets a Server-set threshold value [32,33,39,68,78,79], and its vari-
ants, such as t-PSI-CA or t-PSI-DT (also called, threshold secret transfer) [78],
reveals the intersection or additional data only when the threshold restriction is
met or reveals only the cardinality, otherwise. Zhao and Chow [78] extend this to
PSI with a generic access structure so that Client can learn the result only when
the intersection satisfies a certain structure. Also, they build the below/over t-
PSI [79] such that Client can reconstruct the secret key used by Server only
when the threshold condition is met, which inspires some steps in our protocols.

On the other hand, Bradley et. al. [6] first suggest the Bounded-Size-Hiding-
PSI which restricts the Client input, i.e., Client learns the intersection only if
the size of its input does not exceed a Server-set upper bound in the random
oracle model, and later Cerulli et. al. [9] improve it to be secure in the standard
model. Compared to the other PSI literature which naturally reveals the input
set sizes during the computation, [6] and [9] additionally hide that cardinality
information from each other. We note that there has been no PSI variant that
places a lower bound (or both lower and upper bounds) on Client input.

30 X. Carpent et al.

2.4 PSI with Multiset Input

We now consider how current PSI protocols handle multisets. Note that adver-
sary models in PSI literature do include malicious input. Loosely speaking,
Honest-but-Curious (HbC) (a.k.a. semi-honest) adversaries try to learn as
much as possible while honestly following the protocol, while malicious adver-
saries arbitrarily deviate from the protocol. However, according to Lindell and
Pinkas [54], such adversaries can not be prevented from refusing to participate
in a protocol, supplying arbitrary input, or prematurely aborting a protocol
instance. Since PSI security is generally based on sets, multisets can be viewed
as malicious inputs. PSI protocols do not offer security against multiset inputs.
i.e., Security against malicious adversaries does not mean that multiset inputs
are “automatically” handled.

It turns out that some PSI protocols are incompatible with multiset inputs
because they assume set input, i.e., distinctness of all elements. For example, [5]
and [43] obliviously sort elements and compare the adjacent elements to compute
the intersection by checking for equality [43] or erasing each element once [5].
Thus, these protocols output incorrect results with multiset inputs. Furthermore,
PSI protocols based on Cuckoo hashing [30,65,68,69] can encounter unexpected
errors with multiset inputs. Cuckoo hashing maps each input element into a hash
table using some hash functions such that each bin contains at most one element.
Since the hash of the same input value is always the same, duplicates can cause
an infinite loop (to find an available bin) or result in a waste of resources, e.g.,
repeating steps until a certain threshold and increasing the stash size.

There exist some PSI protocols that either enforce input element distinct-
ness or are compatible with multiset inputs. For example, the party creates a
polynomial that has roots on its input values in [16,32,49] to perform oblivious
polynomial evaluation, which by nature filters the duplicates. [64] also guarantees
the set input by a new data structure, called PaXoS, which disables encoding
any non-distinct elements. On the other hand, security of [40,46] is unaffected
by duplicates because it uses an oblivious pseudo-random function to obtain
some (random-looking) numbers for its private elements, and then compare the
received messages.

Our work focuses on PSI protocols that are incompatible with multiset inputs
and suggests adding some simple steps to ensure element distinctness of private
input so that they can work properly.

2.5 Zero-Knowledge Proofs

The notion of Zero-Knowledge Proof (ZKP) is first introduced by [35] which
is the zero-knowledge interactive proof system. Informally, an interactive proof
system for a language L is defined between a prover (Prv) and a verifier (V rf)
with a common input string x and unbiased coins, where Prv tries to convince
V rf that x is indeed in L while keeping their coin tosses private. It must be
complete, i.e., for any x ∈ L, V rf accepts, and sound, i.e., for any x /∈ L,

Element Distinctness and Bounded Input Size in PSI and Related Protocols 31

V rf rejects no matter what Prv does. The interactive proof is zero-knowledge if
given only x, V rf could simulate the entire protocol transcript by itself without
interacting with Prv. A proof-of-knowledge [4,29] is an interactive proof where
Prv tries to convince V rf that it has “knowledge” tying the common input x,
which requires the completeness and knowledge extractibility (stronger notion of
soundness) properties. Knowledge extractibility (a.k.a.validity) is that for any
Prv who can make V rf accept its claim with non-negligible probability, there
exists an efficient program K called knowledge extractor, such that K can interact
with Prv and output a witness w of the statement x ∈ L. Zero-Knowledge
Proof of Knowledge (ZKPoK) adds the zero-knowledge property on top of them.
Compared to ZKP, ZKPoK keeps the one-bit information (whether x ∈ L or
not) private from V rf , thus realizing “zero”-knowledge.

2.6 Homomorphic Encryption

Homomorphic encryption (HE) is a special type of encryption that allows
users to perform certain arithmetic operations on encrypted data such that
results are meaningfully reflected in the plaintext. It is called Fully Homo-
morphic Encryption (FHE) when a HE supports both unlimited addition and
multiplication of ciphertexts. Whereas, a scheme that supports a limited num-
ber of operations of either type is called Somewhat Homomorphic Encryption
(SWHE) and a scheme that supports only one operation type is called Par-
tially Homomorphic Encryption (PHE). There are many PHE schemes such as
[14,15,17,26,36,48,58,61,62,71]. For example, ElGamal encryption scheme [26]
is a well-known PHE supporting multiplication, and a variant of ElGamal [15]
having gm instead of m and Paillier [62] are well-known PHE schemes supporting
addition.

3 Proving Element Distinctness

We first define Proofs of E lement-Distinctness (PoED) in the two-party set-
tings where Prv proves element distinctness of its private input elements to
V rf . i.e., PoED is an interactive proof system, where Prv tries to convince V rf
that its input C := [c1, ..., cn] consists of distinct elements, without revealing any
other information about each ci. As a result, V rf accepts or rejects the Prv’s
claim. Following the notation for ZKPoK introduced by [7], PoED is denoted as:

PK{C | ei = f(ci) for each ci ∈ C, and
ci �= cj for ∀ci, cj ∈ C such that i �= j},

where f is a function that “hides” ci so that V rf does not learn any information
about ci from ei, while it “binds” ci to ei so that Prv cannot change ci once ei

is computed, e.g., via randomized encryption or cryptographic commitments.

32 X. Carpent et al.

Fig. 1. The PoED-puzzle Protocol. (Enc, Dec) can be any PHE over G. Pn is a set of
random permutations for n elements. H is a cryptographic hash function that maps the
arbitrary-length messages to κ-bit values. u is the unit element of the message space.

3.1 Puzzle-Based PoED Construction

The main idea starts from the well-known two billiard balls problem where Prv
has two billiard balls and (honest) V rf is color-blind. To convince V rf that two
balls have different colors, the following “puzzle” is repeated k times:

1. Prv puts a ball in each hand of V rf
2. V rf puts both hands behind its back and decides (at random) whether to

switch the balls
3. V rf shows the balls to Prv
4. Prv declares whether a switch occurred
5. If Prv answers incorrectly, V rf concludes that Prv cheated

If Prv answers correctly k times, V rf concludes that, with probability 2−k, the
balls have different colors.

Extending this problem to many balls, we construct a PoED protocol and
call it PoED-puzzle protocol. Instead of the color-blind V rf , Prv encrypts each
element with its public key under an encryption scheme satisfying the ciphertext
indistinguishability (IND) property. Since all IND-secure encryption schemes are
non-deterministic, Prv can hide the information about the input elements.

To form the puzzles such that V rf can generate while Prv can solve only
when all input elements are distinct, PoED-puzzle needs a PHE scheme over a
cyclic group G2 of prime order with a generator g. i.e., Assume that each of Prv

2 We sometimes denote G as a subgroup of Z∗
p whose prime order is known, which will

be explicitly indicated in such case.

Element Distinctness and Bounded Input Size in PSI and Related Protocols 33

input values is a group element in G, or we can assume a deterministic map that
maps each input value ci to a group element in G. Since any PHE allows V rf
to re-randomize received ciphertexts by multiplying the encryption of the unit
element u (under Prv’s public key), this computation gives a new ciphertext of
the same plaintext without learning/requiring anything about the plaintext.

Finally, V rf chooses a random permutation π from Pn, the set of all per-
mutations of length n, and shuffles the re-randomized ciphertexts with π, as if
it “switches or not” in the two billiard balls problem. Once it receives a puzzle,
Prv decrypts each ciphertext with its private key, determines the permutation
π′ that shuffles original elements to received elements, and forwards π′ to V rf .
V rf accepts if π′ = π.

There is a probability that Prv can solve the puzzle without having all dis-
tinct elements. In the worst case when Prv uses only one duplicate, Prv can
correctly solve the puzzle with 50% probability. To make the cheating probability
low, the puzzle should be repeated λ times, such that 1/2λ becomes negligible.

Since each puzzle is independent, V rf can hash the puzzles (using a suitable
cryptographic hash function H) and check this hash value, instead of repeating
this three-message exchange multiple times for each puzzle. This reduces the
number of communication rounds and associated delays. Figure 1 presents the
PoED-puzzle protocol described above.

3.2 Analysis of PoED-Puzzle Protocol

Theorem 1. Assuming an IND-secure PHE scheme (Enc,Dec) over a cyclic
group G, a secure cryptographic hash function H : {0, 1}∗ → {0, 1}κ, and the
statistical security parameter λ, the PoED-puzzle protocol described in Sect. 3.1
is a secure PoED protocol.

(Sketch Proof) Completeness is straightforward because only one correct per-
mutation π exists for distinct elements, and honest Prv can easily determine
π after decrypting the ciphertexts. For the knowledge extractability, the private
key of the underlying encryption scheme can be seen as the witness. Suppose
Prv does not know the private key. Then, by the IND and homomorphic prop-
erty, re-randomized and shuffled ciphertexts from V rf are indistinguishable from
random strings in the ciphertext space. Furthermore, after decryption, the prob-
ability of having duplicates and solving the puzzle correctly is at most 2−λ which
is set to be negligible by the security parameter λ. Lastly, zero-knowledgeness
naturally follows from the IND property, since all V rf can observe are the cipher-
texts encrypted by an IND secure PHE. ��

Table 1 summarizes the computation and communication complexities of the
PoED-puzzle protocol with λ puzzles. C is denoted by the ciphertext space of
Enc and H generates a κ-bit hash result. Overall, both complexities are O(λn),
where n is the Prv input size.

34 X. Carpent et al.

Table 1. Cost Analysis of the PoED-puzzle Protocol

Computation Cost

Operation \ Entity
Prv V rf

Offline Online Online

Encryption n 0 λn

Decryption 0 λn 0

Modular multiplication 0 0 λn

Random permutations (of length n) 0 0 λ

Cryptographic hash (input length) 0 λn λn

Equality check 0 0 1

Group Communication Cost

C (λ + 1)n

{0, 1}κ 1

4 PSI with Element Distinctness Check

Using the PoED as a building block, now we propose a new variant of PSI that
requires all the input elements to be distinct, which we call All-Distinct Private
Set Intersection (AD-PSI).

4.1 Adversary Model

Among the two parties participating in the computation, Client and Server,
we consider Server to be HbC while Client can be malicious. This assumption
is reasonable in real-life scenarios because Server is the one who provides the
service to Client and multiple barriers (e.g., law/regulation, security systems
for their data, and loss of trust deriving loss of customers) exist for them to be
malicious. However, Client typically maintains less secure systems and much less
data than Server so they may be eager to learn more from Server’s large dataset.
Note that we consider a stronger guarantee than normal malicious security in
PSI literature, as now we aim to enforce the input correctness for Client.

4.2 Definition of AD-PSI

We define AD-PSI directly, instead of defining PSI and adding features. We
follow the definitions of client and server privacy in related work [31,32,34,
40]. Let V iewΠ

A∗(C,S, λ) denotes a random variable representing the view of
adversary A∗ (acting as either Client or Server) during an execution of Π on
inputs C and S and the security parameter λ.

Definition 1 (All-Distinct Private Set Intersection (AD-PSI)). consists
of two algorithms: {Setup, Interaction}, where:

Element Distinctness and Bounded Input Size in PSI and Related Protocols 35

– Setup: an algorithm selecting global/public parameters;
– Interaction: a protocol between Client and Server on respective inputs: a mul-

tiset C = [c1, ..., cn] and a set S = {s1, ..., sm}, resulting in Client obtaining
the intersection of the two inputs;

An AD-PSI scheme satisfies the following properties:

– Correctness: At the end of Interaction, Client outputs the exact intersection
of two inputs, only when the elements in C are all distinct. It outputs ⊥, o.w.

– Server Privacy: For every PPT adversary A∗ acting as Client, we say that
a AD-PSI scheme Π guarantees the server privacy if there exists a PPT
algorithm PC such that

{PC(C, C ∩ S, λ)}(C,S,λ)

c≈ {V iewΠ
A∗(C, S, λ)}(C,S,λ)

i.e., on each possible pair of inputs (C,S, λ), Client’s view can be efficiently
simulated by PC on input (C, C ∩ S, λ).

– Client Privacy: For every PPT adversary A∗ acting as Server, we say that
a AD-PSI scheme Π guarantees the client privacy if there exists a PPT algo-
rithm PS such that

{PS(S, λ)}(C,S,λ)

c≈ {V iewΠ
A∗(C, S, λ)}(C,S,λ)

i.e., on each possible pair of inputs (C,S, λ), Server’s view can be efficiently
simulated by PS on input (S, λ).

We note that the security definition above is equivalent to the generic “real-vs-
ideal” world simulation definition in the semi-honest model, as shown in [34],
with the ideal functionality F below (Fig. 2):

Fig. 2. Ideal Functionality F for AD-PSI

According to the definition above, we propose a construction using PoED-
puzzle protocol, so-called AD-PSI-puzzle, in the following section.

4.3 A Construction for AD-PSI Based on PoED-puzzle

AD-PSI-puzzle protocol starts with the PoED-puzzle protocol, i.e., Client
encrypts each input element in G (or the mapped values for each input element
to G with a public map) under a PHE and sends the ciphertexts to Server,

36 X. Carpent et al.

and Server generates a secret key key, derived from multiple puzzles that shuf-
fle re-randomized ciphertexts with random permutations. Note that now the
underlying PHE scheme needs to be multiplicatively homomorphic (instead of
any PHE) for the correct computation below.

Fig. 3. AD-PSI-puzzle Protocol. (Enc, Dec) is a multiplicative PHE over G and
(SEnc, SDec) can be any symmetric encryption scheme over a key space {0, 1}κ. Pn

and H are same as Fig. 1

For computing the intersection without revealing the other elements, Server
hides Client’s ciphertexts and its own input values with the same random
element R ∈ Z

∗
p. i.e., Server first homomorphically exponentiates Client ele-

ments with R by eR
i , which is defined by R homomorphic operations, for each

ei = Enc(ci),∀i (by multiplying ei R times or directly exponentiating R3). For
its own input values, Server computes sR

j for each sj ∈ S so that if some ci and

3 Usually, exponentiation of the underlying plaintext can be done more efficiently
than multiplying the ciphertext R times. For example, in ElGamal, encryption of x
is Enc(x) = (gr, xhr) for some random r, and exponentiating to c can be done either
Enc(x) · ... · Enc(x) = (gR, xchR) = Enc(xc) or Enc(x)c = (gcr, xchcr) = Enc(xc).

Element Distinctness and Bounded Input Size in PSI and Related Protocols 37

sj match, then the randomized cR
i and sR

j can also be matched. Then, it hashes
each sR

j using a cryptographic hash function H ′ and encrypts them under a sym-
metric encryption scheme with a key key, i.e., tj := SEnc(key,H ′(sR

j)). Thus,
unless Client can derive the right key, it cannot decrypt/learn any information
about Server elements.

When receiving the messages from Server, Client first derives the symmetric
key key′ by solving all the puzzles, as in PoED-puzzle. Then using the derived
key, Client decrypt tj ’s, obtains {t′j := H ′(sR

j)}j , and compares them with d′
is,

the hash values of the decryption of re-randomized ciphertexts, i.e., di := H ′(cR
i)

for all i. Finally, Client outputs all ci’s such that di matches for some tj .
The protocol described above is depicted in Fig. 3. Due to the space limit,

we show the full security proofs of the following theorem in Appendix A.

Theorem 2. Assuming the hardness of the decisional Diffie-Hellman problem,
the protocol described in Fig. 3 is a secure AD-PSI scheme, satisfying the Defi-
nition 1 in ROM.

Though we define AD-PSI such that it does not reveal whether C satisfies the
element distinctness or not to Server, this one-bit information may be favored
by Server to save its computing resources. We discuss this alternative definition
and an idea of modifying the AD-PSI-puzzle protocol in the following section.

4.4 Alternative AD-PSI and Modified Construction

Checking the distinctness of C before proceeding to the next steps may be prefer-
able by Server with a large set S because the rest computation cost is linear
to |S|. Whereas, Client may be reluctant as it reveals whether Client used all
distinct elements to Server, i.e., a trade-off between client privacy and server
efficiency. For this alternative design, AD-PSI Correctness can be defined with
Server outputs (|C|, b) in Definition 1 instead, where b is a boolean result of
whether C satisfies the element distinctness. Likewise, F is modified as below
(Fig. 4):

Fig. 4. Ideal Functionality F for Alternative AD-PSI

To meet this definition, the AD-PSI-puzzle protocol (in Fig. 3) can be mod-
ified as in Fig. 5. i.e., Before the intersection computation phase, Server first

38 X. Carpent et al.

sends all the puzzles to Client and proceeds to the next phase only if Client
corrects all puzzles. Although this modification increases the number of commu-
nication rounds, Server can save its computation resources for the clients who
do not cheat and have enough elements (by size checking) and use this one-bit
information in another application (See Sect. 6).

Fig. 5. Alternative AD-PSI Protocol

Table 2 summarizes the computation and communication complexities of the
AD-PSI-puzzle protocols with λ puzzles. We denote the cost of the alternative
protocol in parentheses only when it has a different cost from the original one.
HE denotes the partial homomorphic encryption scheme and SE denotes the sym-
metric encryption scheme used in the protocol(s). CΠ represents the ciphertext
space of a scheme Π and cryptographic hash functions H and H ′ generate a κ-bit
and κ′-bit hash result, respectively. Overall, both complexities are O(λn + m),
where n is the Client input size (including duplicates, if any) and m is the
Server input size.

5 AD-PSI Variants

As mentioned earlier in Sects. 1 and 2.4, duplication can be more problematic in
PSI variants that give additional/restricted information. In this section, we fur-
ther discuss how duplication can leak more information, and propose a solution
for each variant using AD-PSI. Although the solutions are simple, we provide
the figures for each protocol in Appendix B for better presentation.

Element Distinctness and Bounded Input Size in PSI and Related Protocols 39

Table 2. Cost Analysis of AD-PSI-puzzle Protocols. We present the cost of the alter-
native protocol in (·) only when it is different from the original cost.

Computation Cost of AD-PSI-puzzle (and its alternative)

Operation Entity
Client Server

Offline Online Online

HE.Encryption n 0 λn

HE.Decryption 0 (λ + 1)n 0

Modular Multiplication 0 0 (λ + R)n

Random number generation (in Z
∗
p) 0 0 1

Random permutations (of length n) 0 0 λ

Cryptographic hash
of input length λn 0 1 1

of input length |M| 0 n m

Equality check 0 0 0 (1)

Involvement check (i.e., if a ∈ A) 0 n 0

SE.Encryption 0 0 m (0)

SE.Decryption 0 m (0) 0

Group Communication Cost

CHE (λ + 2)n

CSE m

{0, 1}κ 0 (1)

{0, 1}κ′
0 (m)

#(rounds) 1 (2)

Note that we follow the convention in PSI literature and do not consider the
information leakage after multiple executions which will naturally reveal more
than the one they are supposed to reveal in a single execution. For example, when
Client deliberately adjusts its input elements to PSI-X and the protocol outputs
‘No’ in the previous rounds and ‘Yes’ in the next round, then Client learns that
the exact element added in the last round is in the Server set. Though this is
interesting, we consider it as a future work.

5.1 PSI-CA with Element Distinctness (AD-PSI-CA)

Recall that PSI-CA outputs only the cardinality of the intersection set. Suppose
Client uses a single element as input to PSI-CA. In that case, although it is
not malicious behavior, Client can learn if that exact element is in S, which is
more information than it is supposed to learn. Furthermore, by repeating PSI-
CA with different single elements, it can eventually learn the intersection set, or
the entire S if the message space is small enough. To prevent this, Server may
want to restrict the minimum input set size as l and check if |C| > l during the
computation phase.

40 X. Carpent et al.

However, Client still can bypass this simple check by duplicating a single
element n times where n is greater than l. Although Server does not abort as
the Client set size n is larger than l, the PSI-CA result with this input will
be either ‘0’ or ‘1’ which reveals if the single element is in S or not. Thus, the
simple size check is not enough, and Server needs a way to check the element
distinctness of C, which we call AD-PSI-Cardinality (AD-PSI-CA).

The definition of AD-PSI-CA is similar to the one of AD-PSI, except that
(|S|, |S∩C|) is the Client output for correctness, and what the ideal functionality
gives to Client as output. Adding this feature can be simply done by modifying
the AD-PSI-puzzle protocol: Server additionally chooses a random permutation
π and sends the permuted ciphertexts êi := eR

π(i) instead of êi := eR
i . Since the

ciphertexts are randomized with R by Server, and Client does not know π, now
Client cannot match the di’s to the original ci’s. Furthermore, AD-PSI-puzzle
guarantees that Client cannot solve the puzzle correctly with overwhelming
probability when using duplicated inputs. Therefore, Client learns |C ∩ S|, only
when it uses all distinct input elements.

5.2 PSI-X with Element Distinctness (AD-PSI-X)

PSI-X outputs very limited information, only the boolean result of whether the
intersection of two private input sets is non-empty. Likewise, although Server
decides on a lower-bound restriction on the size of C, Client can obtain more
information than the boolean result by using a small input set, because if the
result is ‘1’ (i.e., intersection exists), each element is in S with the probability of
1/|C|. Server, thus, may have more motivation to restrict the size of C to reduce
this probability.

One way to construct a AD-PSI-Existence (AD-PSI-X) protocol is to add
our PoED phase to the FHE-based PSI-X protocol. The basic idea of the FHE-
based PSI-X protocol is to encrypt each element under an FHE, compute the
subtraction of every pair of C and S, and multiply all subtractions (with a
random number) so that the decryption result can be zero if any of the pairs
match. i.e., It computes the encryption of R ·Πi,j(ci −sj) for a random R, which
becomes the encryption of zero if any pair of ci and sj matches. The recent
benchmark [37] on FHE libraries shows that the addition can be done within
100 ms while multiplication requires about 1 s over the integer encoding in many
libraries, such as Lattigo [2], PALISADE [1], SEAL [53], and TFHE [12]. The
PoED phase can be easily added: Server can add the shuffling phase before the
PSI-X steps, and just encrypt the final message with the key derived from the
puzzles as in the PoED-puzzle protocol.

5.3 PSI-DT with Element Distinctness (AD-PSI-DT)

PSI-DT transfers additional data associated with the intersecting elements. Since
this gives more data other than the intersection, when Server restricts the Client
input size, Client without enough elements may have more motivation to cheat

Element Distinctness and Bounded Input Size in PSI and Related Protocols 41

and bypass the restriction to obtain them. AD-PSI with data transfer (AD-PSI-
DT) is defined similarly to AD-PSI, except it outputs (|S|, I := S ∩C, {Dj}sj∈I)
for Client.

An AD-PSI-DT protocol can be constructed as follows: It is the same
as AD-PSI-puzzle protocol until randomizing Client ciphertexts. Then, for
Server input elements, Server computes one more hash (or a one-way func-
tion) H ′′ and encrypts them under the key derived from the puzzles, i.e., tj :=
SEnc(key,H ′′(s′

j)), where s′
j := H ′(sR

j). For the associated data to transfer,
Server encrypts each Dj using the pre-image of H ′′, i.e., D′

j := SEnc(s′
j ,Dj),

and sends them along with the other messages. This prevents Client from trying
all decryption results as key to decrypt the associated data.

Receiving the messages from Server, Client performs the same steps to
learn the intersection as AD-PSI. To obtain the associated data, Client uses
the matching di’s for its own (randomized) values to decrypt and get the data.
Security for the non-intersecting elements follows the security of AD-PSI, and the
one-way property of H ′′ and the security of the underlying symmetric encryption
scheme guarantee the security of the associated data.

6 Completing Bounded-Size-Hiding-PSI

As mentioned in Sect. 2.3, Bounded-Size-Hiding-PSI was introduced in [6],
extending the concept of Size-Hiding-PSI (SH-PSI) from [3] by adding an upper
bound on the size of Client input set C, |C|. For clarification, we denote this
primitive by Upper-bounded-SH-PSI (U-SH-PSI). Now we propose a Bounded-
Size-Hiding-PSI (B-SH-PSI) protocol with complete, both lower and upper,
bounds on |C|.

In B-SH-PSI, Server publishes its restriction rules, L for lower bound and
U for upper bound, for |C|. i.e., Server wants Client to obtain the intersection
only when L ≤ |C| ≤ U . On the other hand, Client wants to hide its input size
as well as any information about its elements from Server. Figure 6 shows the
ideal functionality FB for B-SH-PSI described above.

Fig. 6. Ideal Functionality FB for B-SH-PSI

We construct a B-SH-PSI protocol using U-SH-PSI and the AD-PSI-puzzle
protocols as building blocks, and briefly present it in Fig. 7. To enforce that
Client cannot learn any information about the intersection without satisfying

42 X. Carpent et al.

both upper- and lower-bound requirements, we need the alternative AD-PSI-
puzzle protocol (in Sect. 4.4) that reveals the one-bit information if C satisfies
the lower-bound or not.

Recall that Client cannot obtain the next message from Server with over-
whelming probability if CL includes any duplicates. Also, since Server can see
the size of CL during the AD-PSI phase, it can just abort (or send an error
message to Client) if CL does not satisfy the lower bound L. Otherwise, Server
stores this size |CL| and sends some puzzles for AD-PSI to Client. The honest
Client can enclose the first message (the accumulator for the rest of the elements
in C, i.e., C∗ := C \CL), msg1, along with the key′ derived from the given puzzles.
If key′ is correct, Server proceeds to the steps for U-SH-PSI using msg1 and the
upper bound, U ′ := (U −|CL|), or aborts, otherwise. Client obtains I1 := CL ∩S
from the response for AD-PSI (denoted by msg2 in Fig. 7), and I2 := C∗ ∩S from
the one for U-SH-PSI (denoted by msg3 in Fig. 7), which are combined to the
final result, I := I1 ∪ I2.

Fig. 7. Idea of B-SH-PSI with input bound [L, U]. msg1 and msg3 denote the first
and responding messages for the U-SH-PSI protocol, whereas the others denote the
messages for the alternative AD-PSI-puzzle protocol in Fig. 5

The security and efficiency of the idea above rely on the ones of underlying
AD-PSI and U-SH-PSI protocols. The AD-PSI phase guarantees that C satisfies
the lower bound L. Although there is no duplicate check in the U-SH-PSI phase,
Client does not have the motivation for duplicating the elements because Client
can learn the result only when |C∗| ≤ U ′ (i.e., duplicates limit Client more,
especially when |C| is close to U).

Element Distinctness and Bounded Input Size in PSI and Related Protocols 43

7 Authorized PSI with Element Distinctness

So far, we have seen multiple PSI and its variant protocols that check the duplic-
ity of input values. However, as noted in Sect. 1, malicious Client can still bypass
these duplicity checks by generating random inputs instead of duplicating valid
inputs. And what is the meaning of “valid” inputs? To examine if Client uses
valid inputs, including a trusted third party (TTP) who signs on valid inputs
and later audits and punishes any invalid inputs is inevitable. i.e., Authorized
PSI (APSI) that not only checks the element distinctness but also the validity
of the input values. This section presents two versions of APSI: (v1) stateful
APSI, where TTP tracks Client input values, and (v2) stateless APSI, where
TTP does not save/track any information about Client input values.

7.1 AD-APSI Definition

Adopting the definitions of APSI from the related work [19,20,74,77] and refer-
ring to the definitions of general two-party computation from [28,34], secure
AD-APSI can be defined as below. Let REALΠ

A(z),P (C,S, λ) be the output of
honest party and the adversary A corrupting P (either Client or Server) after
a real execution of an AD-APSI protocol Π, where Client has input (potentially
multi)set C, Server has input set S, A has auxiliary input z, and the security
parameter is λ. Let IDEALF

Sim(z),P (C,S, λ) be the analogous distribution in
an ideal execution with a trusted party who computes the ideal functionality F
defined below.

Definition 2 (All-Distinct Authorized PSI (AD-APSI)). is a tuple of
three algorithms: {Setup, Authorize, Interaction}, where

– Setup: an algorithm selecting global/public parameters;
– Authorize: a protocol between Client and TTP resulting in Client committing

to its input, C = [c1, ..., cn], and TTP issuing authorizations, one for each
element of C; and

– Interaction: a protocol between Client and Server on respective inputs: a
(multi)set C and a set S, resulting in Client obtaining the intersection of two
inputs;

An AD-APSI scheme satisfies the following properties:

– Correctness: At the end of Interaction, Client outputs the exact intersection
of two inputs, only when the elements in C are all distinct and authorized by
TTP. Otherwise, Client outputs ⊥;

– Server Privacy: Client learns no information about the subset of S that is
not in the intersection, except its size. More formally, an AD-APSI scheme
securely realizes the server privacy in the presence of malicious adversaries
corrupting Client if for every real-world adversary A, there exists a simulator
Sim such that, for every C, S, and auxiliary input z,

{REALΠ
A(z),Client(C, S, λ)}λ

c≈ {IDEALF
Sim(z),Client(C, S, λ)}λ

44 X. Carpent et al.

– Client Privacy: Server learns no information about Client input elements,
except its size, authorization status, and element distinctness. More formally,
an AD-APSI scheme securely realizes the client privacy in the presence of
malicious adversaries corrupting Server if for every real-world adversary A,
there exists a simulator Sim such that, for every C, S, and z,

{REALΠ
A(z),Server(C, S, λ)}λ

c≈ {IDEALF
Sim(z),Server(C, S, λ)}λ

where the ideal functionality F is defined as follows:

– Authorize : (F forwards the messages between Client and TTP and remem-
bers the authorized elements for Client)
1. Wait for an authorization request from Client, requesting TTP to autho-

rize an element c
2. Forward the request to TTP who either accepts or rejects it
3. If TTP accepts, it forwards the messages from TTP to Client and remem-

bers that TTP has authorized c for Client. Otherwise, it replies abort to
Client

– Interaction : (F receives input elements from Client and Server and out-
puts the intersection to Client, only when Client inputs are all distinct and
authorized, while giving Client input size and verification result (for autho-
rization and duplication) to Server)
1. Wait for an input (multi)set C = [c1, .., cn] from Client
2. Wait for an input set S = {s1, ..., sm} from Server
3. While sending |C| to Server, send abort to Client if C includes (1) any

unauthorized element, or (2) duplicated elements. Otherwise, compute the
intersection of C and S and send (|S|, C ∩ S) to Client. It also sends b
to Server, where b is the result(s) for verifying the existence of (1) (and
(2) in stateless version) above with their cardinality(ies).

For clear notation, we denote the functionalities above as FAuth and F∩.

7.2 AD-APSI Construction

The main idea is from the double spending detection in [11]. i.e., TTP first
divides each input value into two factors, where these factors are not revealed
to anyone except Client. For the stateful TTP, the factors can be computed by
choosing a random value in Z

∗
p as the first factor and calculating the rest. For the

stateless TTP, the first factor is computed so that it is unique per element value,
e.g., with a pseudo-random function (under TTP’s secret key) for each element
in C, and the second factor is calculated by dividing the element with the first
factor. Then, the TTP signs a message such that it can be easily re-computed
by a third party while not revealing each factor so that anyone with the message
can verify the signature with the TTP’s public key.

In the online phase, Client sends GC , the pre-computed values that effectively
hide two factors for each input value, and Σ, all the signatures given by TTP.
Then, Server first verifies each signature with a newly-computed message with

Element Distinctness and Bounded Input Size in PSI and Related Protocols 45

GC and aborts if any signature verification fails. In the stateless TTP version,
Server additionally checks if there are any same elements in GC and aborts if
so. If all passed, Server now proceeds to the intersection computation phase,
similar to the other PSI protocols. i.e., It first chooses a random number R
to hide its elements, and computes tj , which can be also pre-computed. Then,
Server exponentiates each gei,1 to the same R so that Client can compute
the same form, compare, and obtain the intersection result. Figure 8 shows the
aforementioned offline and online phases with stateful and stateless TTP options,
with an example form of message, mi := H(gei,1 , gei,2) for each ci = ei,1 ∗
ei,2 (mod p) in C. In the offline phase, Client can pre-compute GC once it receives
all the factors from TTP, or TTP can also send GC along with the others, which
is the trade-off between communication cost and Client’s computation cost.

Fig. 8. All-Distinct Authorized PSI (AD-APSI) scheme. PRF is a pseudo-random
function, (Sign, V erf) is a digital signature scheme over {0, 1}κ, and H, H ′ are cryp-
tographic hash functions.

46 X. Carpent et al.

7.3 Security Analysis

Theorem 3. The protocol described in Sect. 7.2 is a secure AD-APSI scheme,
satisfying Definition 2 in ROM.

(Sketch proof) Duplicated elements get caught by either the stateful TTP
or Server (when TTP is stateless) because the GC element is always the same
for an input value. Also, Server detects if any unauthorized elements are used
via signature verification. For the honest C (i.e., with all authorized and distinct
elements), Client outputs the exact intersection of C and S because, for ci = sj ,

di := H(êi
ei,2) = H((gei,1R)ei,2) = H(gciR) = H(gsjR) = tj

Server responds only when all signature verification and duplication checks are
passed, and tj ’s do not reveal any information about sj by randomizing with R
and hashing with a cryptographic hash function. Lastly, client privacy depends
on both computational Diffie-Hellman problem and the secure signature scheme.

��
We provide the full security analysis of Theorem 3 in Appendix C.

8 Conclusion

This paper investigated two malicious behaviors for private input – using dupli-
cated and spurious elements – and suggested checking the input validity in PSI
and its variants. We proposed a PoED construction, PoED-puzzle, using PHE
and a generalized version of the two billiard balls problem, and using it as a
building block, we introduced a new PSI variant, AD-PSI, with a formal defi-
nition. We presented an AD-PSI protocol based on PoED-puzzle and analyzed
its security according to the definition. We also provided ideas of three AD-PSI
variants, AD-PSI-CA, AD-PSI-X, and AD-PSI-DT, where duplicates cause more
information leakage without PoED, and proposed a B-SH-PSI scheme with both
upper and lower bounds on the client input size, using AD-PSI and U-SH-PSI.
Lastly, we formalized the definition of AD-APSI that assesses both misbehaviors
on client input and suggested a construction with its security analysis.

Appendix A Security Proof for AD-PSI-puzzle

Theorem 2. The protocol described in Fig. 3 is a secure AD-PSI scheme, sat-
isfying the Definition 1 in ROM.

Proof. Correctness: For an honest Client with distinct input elements, there
exists only one permutation πk such that πk(C) = Dec(Ek). This is because
the decryption results remain the same after the re-randomization due to the
homomorphic property of the ElGamal scheme on multiplication. Thus, hon-
est Client derives the same permutations as the ones Server used and the
derived key′, the hash of these permutations, is equal to key. Client gets the

Element Distinctness and Bounded Input Size in PSI and Related Protocols 47

Server’s tags, {t′j = H ′(sR
j)}j by symmetric-decrypting each of them. Since

di = H ′(Dec(êi)) = H ′(Dec(eR
i)) = H ′(cR

i), with overwhelming probability
(due to the collision resistance of the cryptographic hash functions), we have
t′j = di ⇔ sR

j = cR
i ⇔ sj = ci. Therefore, Client obtains correct intersection

{ci}i∈I , with I := {i | di ∈ {t′1, ..., t′w}} with distinct input elements.
On the other hand, we show that any clients with duplicated elements in their

input cannot obtain the intersection with overwhelming probability. Let’s look
at the case where a corrupted Client has the highest probability of successfully
cheating, i.e., with C = [c1, ..., cn] with (n − 1) distinct items and one duplicate.
Without loss of generality, let’s say c1 = c2, and the others are all distinct. In
this case, the probability that Client obtains the intersection is the same as the
probability that Client guesses λ correct permutations, so 2−λ, which is negli-
gible with a sufficiently large λ.

Client Privacy: Assume that Server is corrupted. Showing the client privacy
is relatively easy: it only sends to Server the encryption of the element in its
set. Assuming two input sets with the same sizes, if the adversary corrupting
Server can distinguish whether Client used which set as an input, then it can
be used for IND-CPA of the ElGamal encryption system. Since it is well-known
that the ElGamal encryption system is semantically secure [27] assuming the
hardness of the decisional Diffie-Hellman problem which is reduced to DLP, the
adversary cannot distinguish which set is used as well as learn anything about
the Client’s set elements.

Server Privacy: Assume that Client is corrupted, denoted by Client∗. To
claim server privacy, we need to show that the Client’s view can be efficiently
simulated by a PPT algorithm SimC . The simulator SimC can be constructed as
follows:

1. SimC builds two tables T = ((π1, ..., πλ), k) and T ′ = (m,h′) to answer the H
and H ′ queries, respectively.

2. After getting the message (G, p, g, h) and {ei}n
i=1 of a corrupted real-world

client Client∗, SimC picks λ random permutations from Pn and n random
numbers ri,j from Z where i = 1, ..., n for each j = 1, ..., λ. Then, SimC re-
randomizes and shuffles {ei}n

i=1 by multiplying (gri,j , hri,j) to each ei’s for
i = 1, ..., n, say ei,j , and applying the permutation πj to {ei,j}n

i=1, for each j,
say Ej := πj(e1,j , ..., en,j).

3. Also, SimC picks random R ∈ Z, and exponentiates each component of ei’s,
i.e., êi := eR

i = (eR
i,1, e

R
i,2) for i = 1, ..., n. SimC also picks m random elements

from M, say u1, ..., um.
4. SimC encrypts each uj using SymE with the key, key := H(π1, ..., πλ), i.e.,

tj := SymE(key, uj), and replies {Ek}λ
k=1, {êi}n

i=1, {tj}m
j=1 to Client∗.

5. Then, SimC answers the H,H ′ queries as follows:
– For each query (π1, ..., πλ) to H, SimC checks if ∃ ((π1, ..., πλ), key) ∈ T

and returns key if so. Otherwise, SimC picks a random key ∈R K and
checks if ∃((π′

1, ..., π
′
λ), key′) ∈ T such that key′ = key. If so, output

48 X. Carpent et al.

fail1 and aborts. Otherwise, it adds ((π1, ..., πλ), key) to T and returns
key to Client∗ as H(π1, ..., πλ).

– For each query m to H ′, SimC checks if (m,h′) ∈ T ′. If so, SimC returns
h′. Otherwise, SimC picks a random h′ ∈R M, and checks if ∃(m′′, h′′) in
T ′ where h′′ = h′ and m′′ �= m. If so, SimC outputs fail2 and aborts.
Otherwise, SimC adds (m,h′) to T ′ and returns h′ to Client∗ as H ′(m).

This finishes the construction SimC . The ideal-world server Server that inter-
acts with the ideal function f , which answers the queries from SimC as the
ideal-world client Client, gets ⊥ from f , and the real-world server Server which
interacts with Client∗ in the real protocol also outputs ⊥. We now argue that
Client∗’s view in the interaction with Server and with SimC constructed as
above are indistinguishable. The Client∗’s view is different only if one of the
following happens:

– fail1 occurs: This happens if ∃(Q′ := (π′
1, ..., π

′
λ), key′) such that key′ = key

but Q′ �= Q existing in T , for a randomly chosen key from K for the query
Q = (π1, ..., πλ) to H. This means a collision of H is found, i.e., H(Q) =
H(Q′) where Q �= Q′. This occurs with negligible probability by the collision
resistance of H.

– fail2 occurs: This happens if there exists the entry (m′′, h′′) such that
h′′ = h′ but m′′ �= m existing in T ′, for a randomly chosen h′ from M for the
query m to H ′. This means a collision of H ′ is found, i.e., H ′(m′′) = H ′(m)
where m′′ �= m. This happens with negligible probability due to the collision
resistance of H ′.

Since all events above happen with negligible probability, Client∗’s views in
the real protocol with the real-world server Server can be efficiently simulated
by SimC in the ideal world. ��

Appendix B AD-PSI Variants

This section presents the figures of the protocols described in Sect. 5, AD-PSI-CA
in Fig. 9, AD-PSI-X in Fig. 10, and AD-PSI-DT in Fig. 11, respectively.

Element Distinctness and Bounded Input Size in PSI and Related Protocols 49

Fig. 9. AD-PSI-Cardinality (AD-PSI-CA) Protocol with same notation as Fig. 3

Appendix C Security Proof for AD-APSI

Theorem 3. The protocol described in Sect. 7.2 is a secure AD-APSI scheme,
satisfying Definition 2 in ROM.

Proof. Correctness: For an honest Client with all authorized and distinct ele-
ments, the stateful TTP generates authentic signatures for each element so that
Server can verify the signatures correctly. For the stateless TTP, instead of
tracking all the input values of Client, TTP generates unique and determin-
istic factors of the input. Thus, Server can tell when Client uses duplicated
elements as the corresponding elements in GC are the same. When Server
replies, Client outputs the exact intersection of C and S because, for ci = sj ,
di := H ′(êi

ei,2) = H ′((gei,1R)ei,2) = H ′(gciR) = H ′(gsjR) = tj . Therefore,
duplicated elements in C are caught by either the stateful TTP or Server (when
TTP is stateless), unauthorized (i.e., not signed by TTP) elements are caught
by Server, and honest Client obtains the exact intersection of the two input
sets.

50 X. Carpent et al.

Fig. 10. AD-PSI-Existence (AD-PSI-X) Protocol with same notation as Fig. 3 except
that (Enc, Dec) should be a FHE over G satisfying Add(Enc(a), Enc(b)) = Enc(a+ b)
and Mult(Enc(a), Enc(b)) = Enc(a ∗ b).

For server and client privacy, we show that the distribution of protocol execu-
tion in the real world is computationally indistinguishable from the output from
interaction with F in the ideal world, assuming the same corrupted party (either
Client or Server). Since the interaction between Server and Client is during
the online phase for Interaction, it is compared with F∩ (recall Definition 2),
assuming C is authorized with FAuth.

Server Privacy: Assume that Client is corrupted, denoted by Client∗. We
show that the distribution of Client∗ outputs in the real world can be efficiently
simulated by a PPT SimC constructed as below.

1. SimC builds two tables T1 = ((m1,m2), h) and T2 = (m,h′) to answer the H
and H ′ queries, respectively.

2. After getting the messages GC := {gi,1, gi,2}i and Σ of a corrupted real-world
client, Client∗, SimC verifies the received signatures with respect to each
H(gi,1, gi,2) via Verf and TTP’s public key. If any of those fails, it aborts.

Element Distinctness and Bounded Input Size in PSI and Related Protocols 51

Fig. 11. AD-PSI-Data Transfer (AD-PSI-DT) Protocol with same notation as Fig. 3.
Additionally, H ′′ is a one-way function that maps k-bit messages to k-bit messages.

(Likewise, for the stateless version, SimC also checks the duplicates in GC and
aborts if any.

3. Otherwise, SimC picks m random elements, u1, ..., um, in G and computes
tj := H ′(uj) for j = 1, ...,m. It also picks a random R, computes {êi = gR

i,1}i,
and replies {êi}i and {tj}m to Client∗.

4. For each query to H and H ′, SimC answers as follows:
– For each query (m1,m2) to H, SimC checks if exists((m1,m2), h) ∈ T1

and returns h if so. Otherwise, SimC picks a random h (from the same
space as other values) and checks if exists((m̃1, m̃2), h̃) ∈ T1 such that
h = h̃. If so, output fail1 and abort. Otherwise, it adds ((m1,m2), h) to
T1 and returns h to Client∗ as H((m1,m2)).

– For each query m to H ′, SimC checks if exists(m,h′) ∈ T2 and returns
h′ if so. Otherwise, SimC picks a random h′ (from the same space as

52 X. Carpent et al.

other values) and checks if exists(m̃, h̃) ∈ T2 such that h′ = h̃. If so,
output fail2 and abort. Otherwise, it adds (m,h′) to T2 and returns h′

to Client∗ as H ′(m).

This finishes the SimC construction. The Client∗’s view in the interaction
with SimC above is different from the view in the real-world interaction with the
real server, Server, only if fail1 or fail2 happen. However, due to the collision
resistance property of cryptographic hash functions H,H ′, they occur with neg-
ligible probability. Thus, Client∗’s view when interacting with Server can be
efficiently simulated by SimC in the ideal world. For the outputs, the ideal-world
server Server that interacts with F∩, which answers the queries from SimC as
the ideal-world Client, Client, receives (|C, b) from F∩. On the other hand, the
real-world (honest) server Server that interacts with Client∗ in the real proto-
col also outputs (learns) (|C, b). i.e., Server interacting with SimC and Server
interacting with Client∗ yield the identical outputs.

Client Privacy: Similarly, now we assume a corrupted server, Server∗, and
show that Server∗’s view in the real world can be efficiently simulated by a
PPT simulator, SimS , constructed as below. Intuitively, SimS sits between F∩
and Server∗, and interacts with both in such a way that Server∗ is unable to
distinguish protocol runs with SimS from real-world protocol runs with Client.
First, SimS builds tables T1 and T2, and answers similarly to SimC above for
H and H ′ queries. Then for inputs, since Client and TTP communicate in the
offline phase before the online phase, the authorized elements for Client are
made available to SimS . SimS uses a subset of authorized elements during the
simulation to emulate Client’s behavior. If Server∗ does not abort and reply
({tj}j , {êi}i), SimS checks if êi

ei,2 ∈ {tj}j . If so, SimS adds si := ei,1ei,2 (mod p)
in S, and otherwise, adds a dummy element in Z

∗
p in S. Then, SimS plays the

role of the ideal-world server, Server, using S to respond to the queries from
the ideal client (Client). Since SimS uses the authorized inputs, Server∗’s view
in the interaction with SimS is identical to the view in the interaction with hon-
est Client in the real world. Also, the output of the ideal-world client Client
that interacts with F∩, which answers the queries from SimS as the ideal-world
Server, Server, is identical to the output of the real-world Client interact-
ing with Server∗ as (|S, C ∩ S), only when all inputs in C are authorized and
distinct. ��

References

1. Palisade homomorphic encryption software library (2017). https://palisade-crypto.
org/

2. Lattigo v4. https://github.com/tuneinsight/lattigo. August 2022, ePFL-LDS,
Tune Insight SA

3. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding private
set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 10

https://palisade-crypto.org/
https://palisade-crypto.org/
https://github.com/tuneinsight/lattigo
https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/978-3-642-19379-8_10

Element Distinctness and Bounded Input Size in PSI and Related Protocols 53

4. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 28

5. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In:
Proceedings of the 7th ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS) (2012)

6. Bradley, T., Faber, S., Tsudik, G.: Bounded size-hiding private set intersection. In:
Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 449–467. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 24

7. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

8. Carpent, X., Faber, S., Sander, T., Tsudik, G.: Private set projections & variants.
In: Proceedings of the 2017 on Workshop on Privacy in the Electronic Society
(WPES 2017). Association for Computing Machinery (2017)

9. Cerulli, A., De Cristofaro, E., Soriente, C.: Nothing refreshes like a REPSI: reactive
private set intersection. In: Applied Cryptography and Network Security, pp. 280–
300 (2018)

10. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1 2

11. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2 25

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homo-
morphic encryption library over the torus (2017). https://github.com/tfhe/tfhe.
Accessed 31 Jan 2022

13. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: Security and Cryptography for Networks (2018)

14. Clarkson, J.B.: Dense probabilistic encryption. In: Proceedings of the Workshop
on Selected Areas of Cryptography, pp. 120–128 (1994)

15. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 9

16. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9 8

17. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

18. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35404-5 17

19. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,

https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-319-44618-9_24
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/0-387-34799-2_25
https://github.com/tfhe/tfhe
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-35404-5_17

54 X. Carpent et al.

vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 13

20. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

21. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection.
In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang,
X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30921-2 4

22. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality
using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp.
209–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5 12

23. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact
discovery. In: Proceedings on Privacy Enhancing Technologies, pp. 159–178 (2018)

24. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: CCS (2013)

25. Duong, T., Phan, D.H., Trieu, N.: Catalic: delegated PSI cardinality with applica-
tions to contact tracing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 870–899. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4 29

26. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

27. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

28. Evans, D., Kolesnikov, V., Rosulek, M.: A Pragmatic Introduction to Secure Multi-
Party Computation (2018)

29. Fiege, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing. STOC 1987,
pp. 210–217. Association for Computing Machinery (1987)

30. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. J. Cryptol. 29(1), 115–155 (2016)

31. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

32. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

33. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 6

34. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

35. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing. STOC 1985, pp. 291–304 (1985)

36. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker
keeping secret all partial information. In: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing. STOC 1982, pp. 365–377 (1982)

https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-30921-2_4
https://doi.org/10.1007/978-3-319-23318-5_12
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-030-17659-4_6

Element Distinctness and Bounded Input Size in PSI and Related Protocols 55

37. Gouert, C., Mouris, D., Tsoutsos, N.G.: SOK: new insights into fully homomorphic
encryption libraries via standardized benchmarks. Proc. Priv. Enhancing Technol.
2023(3), 154–172 (2023)

38. Hagen, C., Weinert, C., Sendner, C., Dmitrienko, A., Schneider, T.: All the num-
bers are us: large-scale abuse of contact discovery in mobile messengers. IACR
Cryptology ePrint Archive, p. 1119 (2020)

39. Hallgren, P., Orlandi, C., Sabelfeld, A.: Privatepool: privacy-preserving rideshar-
ing. In: IEEE 30th Computer Security Foundations Symposium (CSF) (2017)

40. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8 10

41. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
312–331. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 19

42. Hemenway Falk, B., Noble, D., Ostrovsky, R.: Private set intersection with linear
communication from general assumptions. In: Proceedings of the 18th ACM Work-
shop on Privacy in the Electronic Society, pp. 14–25. WPES 2019. Association for
Computing Machinery (2019)

43. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS. ISOC (2012)

44. Huberman, B., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: ACM Conference on Electronic Commerce (1999)

45. Ion, M., et al.: On deploying secure computing: Private intersection-sum-with-
cardinality. In: 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 370–389 (2020)

46. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 34

47. Kajita, K., Ohtake, G.: Private set intersection for viewing history with efficient
data matching. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCI International
2022 Posters, pp. 498–505. Springer, Cham (2022). https://doi.org/10.1007/978-
3-031-06394-7 63

48. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice
problems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 315–
329. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 21

49. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

50. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 818–
829. CCS, Association for Computing Machinery (2016)

51. Kolesnikov, V., Rosulek, M., Trieu, N.: SWiM: secure wildcard pattern match-
ing from OT extension. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol.
10957, pp. 222–240. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
662-58387-6 12

https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-031-06394-7_63
https://doi.org/10.1007/978-3-031-06394-7_63
https://doi.org/10.1007/978-3-540-71677-8_21
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-662-58387-6_12
https://doi.org/10.1007/978-3-662-58387-6_12

56 X. Carpent et al.

52. Kulshrestha, A., Mayer, J.: Estimating incidental collection in foreign intelligence
surveillance: Large-Scale multiparty private set intersection with union and sum.
In: 31st USENIX Security Symposium, pp. 1705–1722. USENIX Association (2022)

53. Laine, K., Chen, H., Player, R.: Simple encrypted arithmetic library (seal) (2017).
https://github.com/microsoft/SEAL. Accessed 31 Jan 2022

54. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. J. Cryptol. 28(2), 312–350 (2015)

55. Ma, J.P.K., Chow, S.S.M.: Secure-computation-friendly private set intersection
from oblivious compact graph evaluation. In: ASIA CCS 2022 (2022)

56. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. In: 1986 IEEE Symposium on
Security and Privacy, pp. 134–134 (1986)

57. Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security
for private intersection-sum with cardinality. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 3–33. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 1

58. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: Proceedings of the 5th ACM Conference on Computer and Communications
Security. CCS 1998, pp. 59–66 (1998)

59. Nagaraja, S., Mittal, P., Hong, C., Caesar, M., Borisov, N.: BotGrep: finding bots
with structured graph analysis. In: Usenix Security (2010)

60. Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set inter-
section. In: CCS ’21: ACM SIGSAC Conference on Computer and Communications
Security, pp. 1151–1165 (2021)

61. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054135

62. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

63. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 13

64. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 25

65. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on
OT extension. ACM Trans. Privacy Secur. (TOPS) 21, 1–35 (2016)

66. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection
using permutation-based hashing. In: Proceedings of the 24th USENIX Conference
on Security Symposium, pp. 515–530. SEC 2015, USENIX Association (2015)

67. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with Linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 5

68. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7 5

https://github.com/microsoft/SEAL
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/BFb0054135
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5

Element Distinctness and Bounded Input Size in PSI and Related Protocols 57

69. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on
OT extension. In: 23rd USENIX Security Symposium (USENIX Security 14), pp.
797–812. USENIX Association (2014)

70. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-PSI from vector-
OLE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol.
12697, pp. 901–930. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77886-6 31

71. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

72. Sathya Narayanan, G., Aishwarya, T., Agrawal, A., Patra, A., Choudhary, A.,
Pandu Rangan, C.: Multi party distributed private matching, set disjointness and
cardinality of set intersection with information theoretic security. In: Garay, J.A.,
Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 21–40. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6 2

73. Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van
Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–595. Springer, Heidelberg
(1980). https://doi.org/10.1007/3-540-10003-2 100

74. Stefanov, E., Shi, E., Song, D.: Policy-enhanced private set intersection: sharing
information while enforcing privacy policies. In: Fischlin, M., Buchmann, J., Man-
ulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 413–430. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 25

75. Takeshita, J., Karl, R., Mohammed, A., Striegel, A., Jung, T.: Provably secure
contact tracing with conditional private set intersection. In: Garcia-Alfaro, J.,
Li, S., Poovendran, R., Debar, H., Yung, M. (eds.) SecureComm 2021. LNICST,
vol. 398, pp. 352–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90019-9 18

76. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to asso-
ciation rule mining. J. Comput. Secur. 13(4), 593–622 (2005)

77. Wen, Y., Gong, Z., Huang, Z., Qiu, W.: A new efficient authorized private set
intersection protocol from Schnorr signature and its applications. Clust. Comput.
21(1), 287–297 (2018)

78. Zhao, Y., Chow, S.: Are you the one to share? secret transfer with access structure.
In: Proceedings on Privacy Enhancing Technologies - PETS 2017 (2017)

79. Zhao, Y., Chow, S.S.: Can you find the one for me? In: Proceedings of the 2018
Workshop on Privacy in the Electronic Society. WPES 2018, pp. 54–65. Association
for Computing Machinery (2018)

https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-642-10433-6_2
https://doi.org/10.1007/3-540-10003-2_100
https://doi.org/10.1007/978-3-642-30057-8_25
https://doi.org/10.1007/978-3-030-90019-9_18
https://doi.org/10.1007/978-3-030-90019-9_18

A New Approach to Efficient and Secure
Fixed-Point Computation

Tore Kasper Frederiksen1, Jonas Lindstrøm2, Mikkel Wienberg Madsen3(B),
and Anne Dorte Spangsberg3

1 Zama, Paris, France
tore.frederiksen@zama.ai

2 Mysten Labs, Paris, France
jonas@mystenlabs.com

3 The Alexandra Institute, Aarhus, Denmark
{mikkel.wienberg,a.d.spangsberg}@alexandra.dk

Abstract. Secure Multi-Party Computation (MPC) constructions typi-
cally allow computation over a finite field or ring. While useful for many
applications, certain real-world applications require the usage of decimal
numbers. While it is possible to emulate floating-point operations in MPC,
fixed-point computation has gained more traction in the practical space
due to its simplicity and efficient realizations. Even so, current protocols
for fixed-point MPC still require computing a secure truncation after each
multiplication gate. In this paper, we show a new paradigm for realizing
fixed-point MPC. Starting from an existing MPC protocol over arbitrary,
large, finite fields or rings, we show how to realize MPC over a residue num-
ber system (RNS). This allows us to leverage certain mathematical struc-
tures to construct a secure algorithm for efficient approximate truncation
by a static and public value. We then show how this can be used to real-
ize highly efficient secure fixed-point computation. In contrast to previous
approaches, our protocol does not require any multiplications of secret val-
ues in the underlying MPC scheme to realize truncation but instead relies
on preprocessed pairs of correlated random values, which we show can be
constructed very efficiently, when accepting a small amount of leakage and
robustness in the strong, covert model. We proceed to implement our pro-
tocol, with SPDZ [28] as the underlying MPC protocol, and achieve signif-
icantly faster fixed-point multiplication.

Keywords: MPC · fixed-point · malicious security · covert security ·
UC · residue number systems

1 Introduction

Secure multi-party computation (MPC) is the area of cryptography concerned
with the computation of arbitrary functions over private data held by mutually

This work has received funding from the Alexandra Institute’s performance contracts
for 2021-24 with the Danish Ministry of Higher Education and Science and by Inno-
vation Fund Denmark in Grand Solution CRUCIAL 1063-00001B. Tore and Jonas
performed part of their work while at the Alexandra Institute.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 58–87, 2024.
https://doi.org/10.1007/978-3-031-54770-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_3

A New Approach to Efficient and Secure Fixed-Point Computation 59

distrusting parties. Since its inception by Andrew Yao [63], it has received a
large amount of research interest [28,42,46,50,56]. Computation is usually rep-
resented as a Directed Acyclic Graph (DAG) of 2-input, 1-output gates where
each gate operates on the inputs, most commonly over bits [50,56] (boolean
MPC), large fields [28] or rings [22] (arithmetic MPC). Even though operations
in an arithmetic MPC scheme over a large field are typically less efficient than
operations in an MPC scheme over bits, they are significantly more efficient than
a corresponding emulation by an MPC scheme over bits. Furthermore, arith-
metic MPC computations are required in a plethora of different applications, for
example in auctions [13], benchmarks [25], machine learning [26], private smart
contracts [10,11], threshold signatures [24] and RSA key modulus generation
with unknown factorization [20,40]. However, in certain applications, such as
statistics [25,33] and machine learning [18,52,62,64] it is not sufficient to work
over the integers, but instead require decimal numbers. While there are multi-
ple ways of efficiently emulating decimal arithmetic using integers, doing so in
MPC, without impacting efficiency significantly has proven elusive as we will dis-
cuss in the related works section below. Looking ahead, research in the area has
pointed in the direction of fixed-point arithmetic, where integers are interpreted
as decimal numbers with a static amount of digits after the decimal point, being
the most efficient way of realizing secure decimal computation. This has the
advantage that addition is exactly the same as for integer arithmetic, and multi-
plication is almost the same; in the sense that the multiplication operation is the
same, but the result needs to be truncated with a constant. Such a truncation
has proven expensive in MPC [17] and most researchers in that area [30,34,59]
have gone in the direction of trying to combine MPC over bits and integers to
realize bit operations, such as truncation, efficiently. In this paper, we take a
different direction and ask if it is 1) possible to efficiently realize fixed-point
arithmetic in MPC without emulating bit operations and 2) if it is doable only
assuming black-box access to an arithmetic MPC protocol. By representing inte-
gers in a residue number system (RNS) and accepting small additive errors in
the truncation we answer both of these in the affirmative.

An RNS is a method for representing integers by their residues modulo a fixed
set of coprime integers. This allows the representation of large integers using
smaller integers, and it has received some attention in recent years because mul-
tiplication and addition may be done in parallel by the smaller integers, allow-
ing large computations to be parallelized. This again can lead to advantages
in high-performance computation [31,61]. While our proposed scheme enjoys
these advantages when preprocessing multiplication triples, it is the mathemati-
cal structure of an RNS we take advantage of to realize efficient truncation, and
hence, efficient fixed-point computation.

Contributions. In this paper we show how to realize secure computation over a
2-component RNS, resulting in secure computation over a biprime ring. We build
this from two separate MPC instances, using any MPC scheme supporting com-
putation over arbitrary prime fields. An example of such a scheme is SPDZ [28],
which relies on additive secret sharing of values, along with additively shared

60 T. K. Frederiksen et al.

information-theoretic MACs for its underlying security against a statically and
maliciously corrupted dishonest majority.

First, this provides us with an MPC system with more efficient preprocess-
ing over very large domains, compared with the underlying MPC scheme used.
This is advantageous in certain applications such as distributed generation of an
RSA modulus [20,40]. However, the main motivating factor behind our scheme
is a highly efficient realization of secure approximate truncation, with a few bits
of leakage of the least significant bits. Concretely we introduce an algorithm
working over a maliciously UC-secure MPC functionality over arbitrary fields
and show how this can be used to realize approximate truncation in a prepro-
cessing model. Both our main online protocol and the offline preprocessing it
relies on, only require a constant number of rounds of communication and no
secure multiplications or other heavy cryptographic machinery. We prove both
information-theoretically UC-secure based on black-box access to a functionality
for maliciously secure MPC over a large ring. We show the robustness of this
construction secure in the strong covert model [9], while retaining maliciously
privacy, against an adversary corrupting a majority of parties. We highlight that
we are not the first authors considering such a compromise between efficiency
and security for MPC protocols [27]. The cost of this efficient preprocessing is
a small amount of leakage during the online protocol. Either log2(n) bits or a
single bit (if one can accept the addition of O(n2) extra multiplications during
the online phase, where n is the number of parties). Furthermore, we note that
due to an artifact of our simulation proof, we require the simulator to be allowed
to perform O(2n) computations with low, but non-negligible probability. Hence,
O(2n) will be polynomially bounded by any computational security parameter
required to realize the underlying maliciously secure MPC functionality. Still,
we highlight this has no influence on the actual efficiency of our protocols.

Based on this efficient preprocessing protocol and online phase we show how
to construct an efficient fixed-point MPC scheme. Finally, we benchmark our
scheme, based on SPDZ, through micro-benchmarks along with the versatile
application of the Fast Fourier Transform. Depending on the size of the compu-
tation domain and network latency, our results show that the small reduction
in security for approximate truncation allows us to get a 3.2-42x faster online
phase. Suppose preprocessing is included (based on MASCOT [47]) then our
protocol is 36-1,400x faster than the protocol of Catrina and Saxena [17] for
fixed-point computation, which also exclusively requires access to a black box
MPC scheme. We furthermore find our protocol competitive for large domain
computation, when counting the preprocessing time.

1.1 Related Work

Our work is far from the first usage of RNS in cryptography, although, to the
best of our knowledge, this is the first time it is used to achieve efficient MPC
for fixed-point arithmetic.

On the other hand, RNS has been used as a tool for optimizing the imple-
mentation of large field arithmetic, which is highly relevant in many public-key

A New Approach to Efficient and Secure Fixed-Point Computation 61

systems such as RSA [57] or schemes based on general elliptic curves [7] and
isogenies [45]. It has also been shown that such RNS-based implementations can
help in thwarting certain types of fault-injection attacks [36]. The fact that RNS
is an application of the Chinese Remainder Theorem (CRT) has in itself been
used to optimize distributed RSA key generation [19,21,29].

As previously mentioned, working with decimal numbers is crucial in many
MPC applications, such as statistics [25,33] and machine learning [18,52,62,64].
Many early works that require decimal numbers do not consider a formal treat-
ment of how to represent decimal number systems in MPC but are instead
rather pragmatic in how to achieve their specific computation goals. Examples
include MPC computation of the natural logarithm through Taylor series expan-
sion [52], or approximating 1/p through the use of Newton iteration [4]. Du and
Atallah [33] presented a custom two-party protocol for general secure division to
implement linear regression in the two-party setting. However, Kiltz et al. [49]
showed that the protocol of Du and Atallah leaks some information, and demon-
strated a leakage-free protocol for division in the two-party setting. Atallah et
al. [8], presented yet further protocols for realizing floating point division for use
in secure linear regression, this time working with more than two parties. Fouque
et al. [35] showed how to do general computation over rationals, through the use
of Paillier encryption. Although their scheme supports more than two parties,
it only allows a limited number of consecutive operations. Another approach
to floating point representation of values for two-party computation, based on
Paillier encryption and oblivious PRFs (OPRFs), was given by Franz et al. [37],
who thoroughly formalized a system closely related to the IEEE 754 standard [1]
used by regular CPUs for floating point arithmetic. Later a full implementation
of secure evaluation of IEEE 754 was done by Franz and Katzenbeisser based on
garbled circuits [38]. Boyle et al. [14] showed how to achieve efficient fixed-point
computation based on function secret sharing in the two-party model. Catrina
and Saxena [17] showed how to realize secure fixed-point computation using any
secret sharing-based MPC scheme for an arbitrary number of parties. Their app-
roach is to do an efficient approximate truncation after each multiplication to
move the decimal point back down. This approach, however, requires the com-
putation of a bit-decomposed random number, which again requires O(k) mul-
tiplications in MPC, when working over a field of at most 2k elements. Besides
the advantage of working over a generic MPC scheme with general inputs, the
work by Catrina and Saxena also has the advantage of working over both posi-
tive and negative numbers and does not lose accuracy regardless of the number
of computations. Later Catrina and de Hoogh [16] showed how to realize this
without the need for probabilistic computation in the truncation. Their idea is
to compute a bit-comparison circuit in MPC using the bit decomposition of the
random pad, which leads to a constant penalty in complexity. Unfortunately, all
the approaches referenced above for secure computation with decimal numbers
only work in the semi-honest security model. In many real-world situations, pas-
sive security is not sufficient. However, it turns out, that due to the black-box
construction of the solution by Catrina and Saxena, using an MPC scheme that

62 T. K. Frederiksen et al.

is maliciously secure is enough to realize their algorithms maliciously securely, as
shown by Damg̊ard et al. [26]. Damg̊ard et al. also showed that with only minor
modifications, their probabilistic truncation algorithm could be used when the
underlying MPC scheme performs computation over a ring.

Motivated by the need for bit-decomposition for truncation (and more gen-
eral computation over bits) a series of works have been focused on efficiently
combining MPC schemes over bits and fields/rings [30,53,54], Being able to
perform a mix of arithmetic and bit operations can prove essential in certain
applications, e.g. when computing the digest of a hash function in MPC. Ded-
icated schemes with a preprocessing phase generating raw material that works
in both the binary and arithmetic domains have also been constructed [34,59],
yielding significantly more efficient protocols in practice than the approach of
Catrina and Saxena.

Even without the recent protocols for efficient bit-decomposition, researchers
have found secure fixed-point computations to generally be more efficient than
secure floating-point computation [5,48]. This is due to the complex computa-
tions needed for floating-point multiplications, which would be required to be
carried out in MPC, compared to a single truncation in the fixed-point approach.

Finally, it should be mentioned that recently a lot of other authors have
investigated MPC over rings [2,22,23], although their focus has generally been
on arbitrary rings, or rings of the type Z2k , as these afford a computation domain
closer to traditional CPUs, when k = 32 or k = 64.

1.2 Construction Blueprint

The overall idea we present is to use two independent black-box realized MPC
schemes, over Zp and Zq, to realize an MPC scheme over Zm with m = p · q by
interpreting the elements in Zp and Zq as elements in an RNS over m, through
the Chinese Remainder Theorem. Based on this we show that one can efficiently
truncate elements in Zm by p with an additive error of at most 1 without requir-
ing any MPC multiplications, but only using sharings of correlated and uncorre-
lated randomness in both the MPC scheme over Zp and Zq. Specifically, we need
a random value r ∈ Zp to be stored in an MPC scheme both over Zp and Zq.
We call a pair of such correlated random values a noise pair and show how to
efficiently construct such pairs in the semi-honest and strong covert model but
with an additive error in the sharing over Zq. We then use the RNS MPC scheme
over Zm to realize fixed-point computation in MPC with base p. By picking base
p we can use our efficient truncation algorithm to perform the needed trunca-
tion after a fixed-point multiplication. We furthermore show that in this setting,
the error in the noise pairs does not cause problems. Hence we circumvent the
need for a general truncation of a 2-power, requiring a non-constant amount of
multiplications, as is generally seen in fixed-point MPC computations [17,34].

A New Approach to Efficient and Secure Fixed-Point Computation 63

2 Preliminaries

Table 1. The parameters and variables in play
in this paper.

s Statistical security parameter
s̃ s̃ = s + 1
γ The covert deterrence factor
p Primes of at least s̃ bits. p < q.
q
m The RNS domain = p · q
n The number of parties
U The maximum error
Q The maximum usable space modulo q

In all our protocols we assume n
mutually distrusting parties partic-
ipate. We denote the set of all par-
ties by P and use Adv to denote
the adversary corrupting a subset
of P of size at most n − 1. We
let s denote a statistical security
parameter. Hence, the statistical
distance between the real execution
and simulation will be at most 2−s

for any fixed s. Furthermore, we
define s̃ = s+1, which is an artifact
used in the proofs to ensure 2−s for
the entire simulation. We let p and
q be positive integers with q > p ≥ 2s s.t. gcd(p, q) = 1 and m = p · q. We use ∼
in conjunction with standard distributions to denote “approximately distributed
by” for certain variables. E.g. x ∼ IrwinHall(n).

We let a ←R Zp mean that a is uniformly sampled from the ring Zp. Fur-
thermore, in general, we use a ← P to mean that the value a is computed by
the procedure P . For integers y and z > 0, we let y mod z denote the unique
integer x for which 0 ≤ x < z and x ≡ y (mod z). Furthermore, throughout the
paper, we use [a] to denote the set of integers {1, . . . a}.

We highlight that while most of our protocols are secure against a static
adversary corrupting a dishonest majority of parties, our protocols for generating
correlated randomness only achieve robustness in the strong covert [9] model.
We recall that in this model the adversary may cheat but will get caught with a
certain, non-negligible probability γ. Furthermore, if caught, the adversary gets
no influence on the computation, nor learns anything about the honest parties’
input, and all honest parties learn that cheating has occurred, along with the
identification of one of the corrupt parties who cheated. If the adversary does
not get discovered when cheating, then they learn the honest parties’ input and
get to influence the result of the computation. However, we emphasize, that our
concrete protocols achieve even stronger security since the adversary does not
learn the honest party’s input, even if they cheat and don’t get caught.

We use U to denote the maximum additive error that can occur in our pro-
tocol. The error that can occur in our specific noise pair preprocessing will be
at most U − 1, and our main algorithm, Algorithm 5, adds 1 to any error of the
preprocessed material.

We outline the different variables and their meaning in Table 1.

2.1 UC Functionalities

We prove our construction secure in the UC framework [15] and hence no rewind-
ing is used in our proofs and our protocol is secure under arbitrary composition.

64 T. K. Frederiksen et al.

We require standard functionalities for coin-tossing and maliciously secure MPC
with abort (modeled as an arithmetic black box) working over a field or ring,
secure against a dishonest majority. We assume the computation in MPC over
a domain of size at least 2s for a statistical security parameter s.

Fig. 1. Ideal functionality for coin-tossing

Coin-Tossing. In Fig. 1 we introduce the standard coin-tossing functionality,
which allows maliciously secure sampling of uniformly random integers modulo
some m.

Fig. 2. Ideal functionality for a maliciously secure arithmetic black box with abort.

A New Approach to Efficient and Secure Fixed-Point Computation 65

We observe the model fits well with many modern schemes such as SPDZ [28]
and SPDZ2k [22] for any number of parties or OLE schemes [32,43] in the two-
party setting. We describe the ideal functionality in Fig. 2.

As a convenience, we denote a value x within the ABB box working on inte-
gers modulo m as [x]m and assume that (add, . . .), (linear, . . .) and (mult, . . .)
reflect the natural commands on [·]m. I.e. [w]m = (α · [x]m +[y]m) · [z]m implicitly
defines a call to (linear, . . .), (add, . . .) and (mult, . . .) in the natural way s.t.
w = (α · x + y) · z mod m.

We furthermore assume that [x]m in practice consists of an additive sharing
between the parties. That is, we assume party i for i ∈ [n] hold xi s.t. x =∑

i∈[n] xi mod m. We note, that this does not require white-box usage of the
underlying MPC scheme, as the command FABB(n,m).(random, . . .) can be used
to define [xi]m for i ∈ [n−1]. Then FABB(n,m).(add, . . .) can be used to define xn

and FABB(n,m).(random, . . .) to sample a random additive sharing of [xn]m =∑
i∈[n−1][xi]m.
Similarly, we will use Sharem(x) → [x]m from party i to

denote the call FABB(n,m).(input, i, ssidx, x) by party i and the call
FABB(n,m).(input, j, ssidx, ?) by all other parties i 	= j ∈ [n] for a fresh sub-
session ID ssidx associated with x. That is, we use ? to denote a value defined
by another party. Similarly, we will use Openm([x]m) → x from each party
i ∈ [n] to denote the call FABB(n,m).(output, ssidx, [n]) where ssidx denotes
the subsession ID of [x]m. That is, to open a value towards all parties. We use
a similar shorthand for opening values towards a subset of parties or a spe-
cific part i.e., we let Openm([x]m,P) → x from each party i ∈ [n] denote the
call FABB(n,m).(output, ssidx,P) where ssidx denotes the subsession ID of
[x]m, and thus where party j ∈ P learns x and all other parties, learn nothing
besides the fact that parties in P have learned the value associated with ssidx.
We will also assume this convenience when sampling random values, by letting
[r]m ←R Zm denote FABB(n,m).(random, ssidr) for a subsession ID ssidr asso-
ciated with r.

Finally, we highlight that the command FABB(n,m).(random, . . .) can be used
to trivially realize FCT.

3 Truncation

Below we present Theorem 1 which gives an efficient algorithm for truncation
with the smaller moduli in an RNS with two moduli. Then we show how to work
with an RNS in MPC in Sect. 3.1.

Consider an RNS of two components as follows: Let p, q ∈ N be distinct
positive integers with gcd(p, q) = 1 and let m = p · q. The Chinese Remainder
Theorem yields the existence of a ring isomorphism Zm

∼= Zp ×Zq which we will
denote by φ : Zm → Zp × Zq defined by φ(x) = (x mod p, x mod q). To ease the
notation later, we let x(p) denote x ∈ Zp and x(q) denote x ∈ Zq. The inverse of
φ(x) is

φ−1(x(p), x(q)) = (bqx(p) + apx(q)) mod m

66 T. K. Frederiksen et al.

where a, b ∈ N are chosen such that

ap + bq = 1.

Note that this implies that ap = 1 mod q and bq = 1 mod p, so a = p−1

mod q and b = q−1 mod p. Representing integers in Zm as their images under φ
is an example of an RNS with φ being a ring isomorphism that implies addition
and multiplication may simply be done coordinate-wise. An RNS representation
may also be used to efficiently compute truncation by one of the components as
shown in the following theorem:

Theorem 1. Let gcd(p, q) = 1 and x ∈ Z with 0 ≤ x < pq = m and let
(x(p), x(q)) = φ(x). Then

x/p� = a(x(q) − x(p)) mod q

where a = p−1 mod q.

Proof. Let a = p−1 mod q and b = q−1 mod p. Write x = kp + r with k ∈ Z and
0 ≤ r < p. Then r = x(p) and
x/p� = k and since x < m we have 0 ≤ k < q, so
we just need to prove that k ≡ a(x(q) − x(p)) (mod q). Now

kp + x(p) = x ≡ bqx(p) + apx(q) (mod m)

since (x(p), x(q)) = φ(x). This implies

kp ≡ (bq − 1)x(p) + apx(q) (mod m).

Since q | m, we may consider this congruence modulo q, and noting that ap ≡ 1
(mod q) we get

k ≡ a((bq − 1)x(p) + x(q)) ≡ a(x(q) − x(p)) (mod q)

as desired. �

3.1 RNS in MPC

Consider an MPC scheme working over Zm. A value in such a scheme is defined
using two MPC instances, one over Zp and one over Zq such that gcd(p, q) = 1.
We do so using φ as defined above to represent a value in Zm for m = pq by a
pair of values in Zp × Zq.

Concretely, we use two MPC instances, FABB(n, p) and FABB(n, q), which
together with the linear function φ induces another MPC instance FABB(n,m).
We will abuse notation to use [x]m to denote an RNS realized through shares
[x(p)]p in FABB(n, p) and [x(q)]q in FABB(n, q) where m = p · q and hence

x = (q · (q−1x(p) mod p) + p · (p−1 · x(q) mod q)) mod pq .

That is, where φ(x) → (x mod p, x mod q) = (x(p), x(q)). Concretely this
means that [x]m = ([x mod p]p, [x mod q]q) = ([x(p)]p, [x(q)]q).

A New Approach to Efficient and Secure Fixed-Point Computation 67

These values can be defined from the MPC commands:

Sharem(x) = (Sharep(x mod p),Shareq(x mod q))

and

Openm([x(p)]p, [x(q)]q,P) = φ−1(Openp([x(p)]p,P),Openq([x(q)]q,P)).

3.2 Fixed-Point Arithmetic

Observe that fixed-point representation of a real number is given as follows: If
we let b ∈ N with b ≥ 2 be the base, we may represent a real number x ∈ R

by its fixed-point representation with base b given by the integer fb(x) =
b · x�.
The fixed-point representation allows us to approximate arithmetic (see [60]
for an analysis of the error terms) on real numbers by integer arithmetic since
fb(x) + fb(y) ≈ fb(x + y) and
 1

b fb(x)fb(y)� ≈ fb(x · y). The base b is usually a
power of two since this allows the division by b after each multiplication to be
done by bit shifts, but any integer b ≥ 2 will work.

With this in mind, we can do fixed-point computation in MPC over a
domain Zm with base p when m = p · q for numbers p, q with gcd(p, q) = 1,
given a generic MPC construction that works over Zp and Zq through the
RNS mapping in Sect. 3.1. That is, given [x]m with an RNS decomposition
φ([x]m) = ([x(p)]p, [x(q)]q), let [y]q = (p−1 mod q) · [x(q)]q − [x(p)]p. Then com-
pute
[x]m/p� = ([y mod p]q, [y]q) by applying Theorem 1.

However, one problem remains; How do we move a value [y]q to [y]p and vice
versa as these values live in two distinct MPC instances?

4 The Construction

Fig. 3. Illustration of the dependencies between the
different sub algorithms.

To facilitate the transfer of
values between two different
MPC instances we present
two algorithms Liftp→q (Algo-
rithm 3) and Liftq→p (Algo-
rithm 4) which allow exactly
this. Although the first of
these has the side effect of
a small additive error. Both
of these algorithms, however,
require secret correlated ran-
domness in FABB(n, p) and FABB(n, q). Assume q > p, we preprocess a pair of
values ([r]p, [r + ε · p]q) for a uniformly random r ∈ Zp and some small non-
negative integer ε < U . We denote such a correlated randomness pair a noise
pair.

We present a concrete algorithm for generating such noise pairs NoisePairU

(1) for U = n, which is used as a black-box in FABB(n, ·). Using a noise pair it

68 T. K. Frederiksen et al.

is possible to compute and publicly open [x(p)]p + [r]p in FABB(n, p), and input
this into FABB(n, q) since r will hide the secret value x(p). However, to go from
FABB(n, p) and FABB(n, q) is not as easy, since r ∈ Zp it cannot statistically hide
a value [x(q)]q when q > p. Thus to realize Liftq→p we require another random
value, denoted by ρ, which is larger than 2s, and hence can statistically hide the
part of the value x(q) which is larger than p. This is a standard technique known
as noise-drowning. We specify the concrete randomness sampling procedure in
algorithm Pad (Algorithm 2). Using a pad and another noise pair, ([r′]p, [r′ + ε ·
p]q), it is possible to compute and open [x(q)]q + [r′ + ε · p]q + p · [ρ]q and input
this into FABB(n, p) followed by the subtraction of [r′]q in order to transfer a
value from FABB(n, q) to FABB(n, p).

The approach might cause over and underflows. However, we show that to a
large extent, by carefully picking parameters, this can be avoided. Specifically,
we show how to combine Liftp→q and Liftq→p, based on the idea of Theorem
1, in NoisyTruncU , which computes the
[x]m/p� with an additive error of
at most U . Furthermore, we show how to reduce this error to at most 1, with
algorithm NoisyTrunc1, which we present in Sect. 4.4.

In the sequel we formalize these algorithms, but defer the formal UC speci-
fication and UC proof to the full version [41].

4.1 Preprocessing

Noise Pairs. A noise pair consists of correlated randomness ([r]p, [r̄]q), where
r ←R Zp is uniformly random and r̄ = r + εp for an integer ε in the range
0 ≤ ε < U with a constant U > 0. Constructing correlated randomness over
multiple MPC schemes is not a problem unique to us [58]. Still, a small additive
error typically only has minimal impact on fixed-point computations, and our
truncation algorithm might introduce a small error even if r̄ = r. Hence instead
of relying on previous results, we have tried to design a preprocessing protocol to
facilitate transfer between two distinct MPC domains as lightweight as possible,
only assuming black-box access to an arithmetic MPC scheme FABB(n, ·), but
with acceptance of a small additive error.

As a warm-up for our noise pair algorithm, first consider the semi-honest
setting. In this setting, it is sufficient for each party to input random values
r(i) ←R Zp into the MPC computation both over Zp and Zq. MPC can then
be used to compute the values [r]p =

∑
i∈[n][r

(i)]p and [r̂]q = [r + ε · p]q =
∑

i∈[n][r
(i)]q where ε < n depended on the values of r(i). This approach is clearly

correct, but only semi-honestly secure as a malicious party could simply input
inconsistent values in Zp and Zq.

Since the random value r is independent of any secret input, it is straight-
forward to make this covertly secure, through the standard covert paradigm of
committing to multiple candidates, validating all but one, and then keeping the
last one [9]. That is, each party i selects λ random values r

(i)
1 , . . . , r

(i)
λ ←R Zp

for λ = �1/(1 − γ)� with γ being the deterrence factor. Then input this into
FABB(n, p) and FABB(n, q) through Sharep(r

(i)
j) and Shareq(r

(i)
j) for i ∈ [n]

A New Approach to Efficient and Secure Fixed-Point Computation 69

and j ∈ [λ]. Using a coin-tossing protocol, the parties collaboratively select an
index c ←R Zλ to keep and check Openp([r

(i)
j]p = Openq([r

(i)
j]q) for i ∈ [n] and

j ∈ [λ]\{c}. Finally the pair to keep is computed [r]p =
∑

i∈[n][r
(i)
c]p mod p

and [r̂]q = [r + ε · p]q =
∑

i∈[n][r
(i)
c]q. However, one subtlety that occurs with

this approach is that an adversary corrupting n − 1 parties can now decide on
a value ε̃ < n − 1 and cause an error of ε = ε̃ or ε = ε̃ + 1 (depending on the
random choice of the honest party). This is because the adversary can choose
not to pick the values r

(i)
j randomly and hence control the amount of overflows

modulo p that occurs when adding together the values modulo q.
Fortunately, this is easy to handle by having each party contribute part of

each of the other party’s random share modulo p. This ensures that as long
as there is a single honest party, then all shares will be randomly distributed
and thus the overflow cannot be controllable by the adversary, and is hence
guaranteed to be Bernoulli distributed. We formally describe this in Algorithm 1.

Furthermore, observe that since we don’t assume an underlying MPC scheme
with identifiable abort, the adversary could cheat in one of the covertly generated
pairs, and abort in case that pair gets selected for verification. To handle this
problem we can use the folklore approach of commit-and-open wherein parties
commit to the randomness they need to execute Algorithm 1 and are required
to open this for validation by everyone else, in case of an abort in the underlying
MPC scheme. Hence allowing everyone to find out who behaved maliciously.

Algorithm 1. Covert NoisePairn() = ([r]p, [r̄]q) with deterrence factor γ

Require: ⊥
Ensure: ([r]p, [r̄]q = [r + ε · p]q) for 0 ≤ ε < n with ε ∼ IrwinHall(n)
1: Let λ = �1/(1 − γ)�
2: for k ∈ [λ] do
3: Each party j samples (r1,j,k, · · · , rn,j,k) ← Z

n
p

4: Sharep(ri,j,k) → [ri,j,k]p for each i, j ∈ [n].
5: [ri,k]p =

∑
j∈[n][ri,j,k]p for i ∈ [n].

6: Openp([ri,k]p, {i}), so party i learns ri,k, for i ∈ [n].
7: Shareq(ri,k) → [ri,k]q, for i ∈ [n]
8: end for
9: FCT.sample(ssid, λ) → c � From Fig. 1

10: for For each party i ∈ [n] and noise pair k ∈ [λ] \ {c} do

11: r
(p)
i,k ← Open([ri,k]p) and r

(q)
i,k ← Open([ri,k]q)

12: end for
13: if ∃r

(p)
i,k �= r

(q)
i,k for any i ∈ [n] and k ∈ [λ]\{c} then

14: Output (cheat, i) and terminate the algorithm.
15: end if
16: [rc]p =

∑
i∈[n][ri,c]p mod p for i ∈ [n]

17: [rc + ε · p]q = [r̄c]q =
∑

i∈[n][ri,c]q mod q, for i ∈ [n]

18: return ([rc]p, [r̄c]q)

70 T. K. Frederiksen et al.

Observe that we can somewhat accurately estimate the error ε as follows:

Remark 1. The variable ε in the output of Algorithm 1 is approximately Irwin-
Hall1 distributed when executed with at least one honest party,

ε ∼ IrwinHall(n).

The proof of this remark can be found in the full version [41].

Padding. Our protocol also requires bounded randomness, used to hide overflow
modulo p when trying to noise-drown a value from Zp in Zq, without causing
an overflow modulo q. In the semi-honest setting, this is easy to achieve by
having each party sample uniform randomness of sufficient size and summing
the contribution of each party. That is if the bound is A then each party i
samples ρi ←R ZA and the parties compute ρ =

∑
i∈[n] ρi. Clearly ρ mod A

is uniformly random if just a single party has been honest. Furthermore, if all
parties follow the protocol then it will hold that ρ < An.

Because the input of each party (ρi) is independent of the underlying function
we wish to evaluate in MPC, it becomes clear that we can perform this sampling
with covert security following the same paradigm we used for noise pairs above.

As in the case for the noise pairs we use a standard commit-and-open app-
roach to ensure that the adversary cannot abort to avoid detection.

We formalize this in Algorithm 2 in the FCT, FABB-hybrid model.

Algorithm 2. Covert Pad(A) → [ρ]q with deterrence factor γ.
Require: An < q
Ensure: [ρ]q with ρ mod A ←R ZA and ρ < An
1: Let λ = �1/(1 − γ)�
2: Each party i samples ρi,k ← ZA for k ∈ [λ].
3: Each party i does Shareq(ρi,k) → [ρi,k]q.
4: FCT.sample(ssid, λ) → c � From Fig. 1
5: ρi,k ← Openq([ρi,k]q) for i ∈ [n] and k ∈ [λ]\{c}.
6: if ∃i, k : ρi,k ≥ A then
7: Output (cheat, i) and abort
8: end if
9: return [ρ]q =

∑
i∈[n][ρi,c]q.

4.2 Lifting

Based on noise pairs and pads we now introduce the lifting algorithms Liftp→q

and Liftq→p in Algorithm 3 and Algorithm 4 respectively, which we use to move
values from FABB(n, p) to FABB(n, q) and vice versa.
1 Recall that the Irwin-Hall distribution is the distribution of a sum of n independent

random variables each of which are uniformly distributed on [0, 1) and that the
Irwin-Hall(n) → N(n/2, n/12) as n → ∞.

A New Approach to Efficient and Secure Fixed-Point Computation 71

Algorithm 3. Compute Liftp→q([x]p) = [y]q
Require: [x]p
Ensure: [y]q = [x − εp]q with 0 ≤ ε ≤ U � Using Algorithm 1
1: Sample a pair ([r]p, [r̄]q) ← NoisePairU ()
2: x̄ ← Open([x]p + [r]p)
3: [y]q ← x̄ − [r̄]q
4: return [y]q

Lemma 1. Algorithm 3 computes [y]q = [x − ε · p]q where ε is an integer with
0 ≤ ε ≤ U when r̄ = r + ε̃ · p for 0 ≤ ε̃ < U .

Proof. Note that x̄ = x + r − b · p where b ∈ {0, 1} and b = 1 if and only if
x + r ≥ p. Now, since r̄ = r + ε̃ · p for 0 ≤ ε̃ < U we have

x̄ − r̄ = x − b · p − ε̃ · p.

Setting ε = b + ε̃ finishes the proof as this implies ε ≤ U . �

Algorithm 4. Compute Liftq→p([x]q) = [y]p
Require: [x]q with x < Q ≤ q−(U+1)p

n(U+1)(2s̃+1)

Ensure: [y]p = [x mod p]p
1: ([r]p, [r̄]q) ← NoisePairU ()
2: [ρ]q ← Pad((U + 1)2s̃Q/p) � Using Algorithm 2
3: x̄ ← Openq([x]q + [r̄]q + [ρ]q · p)
4: [y]p ← (x̄ mod p) − [r]p
5: return [y]p

Lemma 2. Algorithm 4 computes [x mod p]p when ρ < n(U + 1)2s̃Q/p for p ≤
Q ≤ q−(U+1)p

n(U+1)(2s̃+1)
.

Proof. Since x < Q ≤ q−(U+1)p
n(U+1)(2s̃+1) we have

x + r̄ + ρp < x + Up + p + (n(U + 1)2s̃Q/p)p

= Q + (U + 1)p + n(U + 1)2s̃Q

< (U + 1)p + n((U + 1)2s̃ + 1)Q

≤ (U + 1)p + n((U + 1)2s̃ + 1)
q − (U + 1)p

n(U + 1)(2s̃ + 1)
= (U + 1)p + q − (U + 1)p = q

Hence no overflow modulo q will happen. Thus we can define x̄ = x + r̄ +
ρp as integers which implies that x̄ mod p = x + r mod p, so y = x mod p as
desired. �
For security, we require ρ > 2s to ensure statistically hiding noise-drowning.

72 T. K. Frederiksen et al.

4.3 Probabilistic Truncation

Algorithm 5. Compute NoisyTruncU ([x]m) = [y]m
Require: [x]m = ([x1]p, [x2]q) with 0 ≤ x < pQ − Up
Ensure: [y]m = [�x/p� + ε]m with 0 ≤ ε ≤ U for [y]m = ([y1]p, [y2]q)

[x̄1]q ← Liftp→q([x1]p)
[y2]q ← (p−1 mod q)([x2]q − [x̄1]q)
[y1]p ← Liftq→p([y2]q)
return ([y1]p, [y2]q)

Lemma 3. Algorithm 5 computes [
x/p� + ε]m with 0 ≤ ε ≤ U .

Proof. From Algorithm 3 we get that x̄1 = x1 − εp for some integer ε with
0 ≤ ε ≤ U . Next, from Theorem 1 we get that (p−1 mod q)(x2 −x1) =
x/p�, so

[y2]q = (p−1 mod q)([x2]q−[x̄1]q) = (p−1 mod q)([x2]q−[x1−εp]q) = [
x/p�+ε]q.

Now,

y2 =
x/p� + ε <
pQ − Up

p
� + ε = Q − U + ε ≤ Q,

hence the input size requirement of Algorithm 4 is fulfilled and will thus yield
the correct result. This concludes the proof. �

Error. Observe that the Algorithm 3 may inherently cause a 1-bit additive
error, even if there is no error in the NoisePair used. Specifically, this occurs
if x + r > p as a modulo wrap-around will occur. This error is carried over to
Algorithm 5, hence always resulting in the potential of a 1-bit additive error
in the truncation result. This is unfortunately inevitable with our algorithms.
However, we argue that when our scheme is used for fixed-point computation,
this will rarely cause any issues. The reason is that any error will only be present
in the least significant digits of the result of a multiplication. Fixed-point com-
putation is already an approximation of true values, hence any usage of such
algorithms must already take into account the potential of a rounding error.
Thus, on an intuitive level, we expect any algorithm using fixed-point to not be
highly sensitive to a slight error in the least significant digits, as a half-bit error
can always be expected implicitly as part of inevitable rounding. The sensitivity
can of course be reduced by increasing the precision. Even so, a small error may
still accumulate through repeated multiplications. This would for example be the
case if computing exponentiation through repeated multiplications. Hence, one
should take into account how the multiplicative depth of a given computation
can cause an increase in error, and increase the fixed-point precision (i.e. the
choice of p) accordingly.

A New Approach to Efficient and Secure Fixed-Point Computation 73

This has also been confirmed (for a 1-bit additive error) by Mohassel and
Zhang [55] in the setting of machine learning regression training on standard
datasets such as MNIST. In Sect. 5.1 we confirm that this is indeed also the case
for the Fast Fourier Transform when using our protocol (even when allowing for
an error up to n).

Reduction in computation space. Besides the potential of adding a small error,
Algorithm 5 also requires a reduction of the available computation space. This
is because noise-drowning is required to prevent any leakage when moving a
secret shared value from FABB(n, q) to FABB(n, p). While an RNS over Zq and
Zp should give a ring Zm with m = p · q, Algorithm 5 requires the value x ∈ Zm

to be less than pQ − Up for Q ≤ q−(U+1)p
n(U+1)(2s̃+1) . Assuming we use Algorithm 1

for preprocessing and hence that U = n, then the amount of usable bits in Zq

is approximately log(q) − 2 log(n) − s̃. Hence the largest value we can represent
will have to consist of less than approximately log(p) + log(q) − 2 log(n) − s̃
bits. That is, we lose approximately 2 log(n) + s̃ bits of Zm. Since we require
Q > p (otherwise we could not fully represent values from Zp in Zq when lifting in
Algorithm 3), we can conclude that q > n2p2s̃. Such a domain size is significantly
larger than 2s which is typically the minimally required size by standard MPC
schemes such as SPDZ [28]. However, requiring a gap in computation space when
computing truncation is common. Several previous works [17,34] require at least
the s most significant bits to be 0 to be able to do truncation correctly. It is also
worth stressing that both in our and previous works, the limit in computation
space is only relevant for the value being truncated. Hence general computation
can use the full domain in both cases.

Input Constraints. Reduction in computation space is not the only constraint
we encounter on the magnitude of secret values. Specifically corrupt parties
are always allowed to choose their own input in MPC, and since the underlying
scheme FABB(n, q) supports the full domain Zq, we cannot simply hope that their
input fulfills the constraints required by Lemma 2. However, this can be enforced
by using a comparison operation [16]. Still, depending on the computation, such
a check might be superfluous in the security model. Since the correctness of most
computations will not be fulfilled if corrupt parties give malformed input. This
is inherently something that cannot be prevented in MPC unless the input can
be anchored in some manner. Hence, causing a computation to fail by giving
bad input that yields a bad result, or giving bad input that yields an error in
one of the underlying algorithms, might amount to the same thing.

Negative Numbers. One final problem that occurs when constraining the com-
putation domain is that representing negative numbers using two’s complement
is no longer possible. This is because a negative number with a small absolute
value, will not fulfill the input constraint of Algorithm 4. However, it fortunately
turns out to be easy to still facilitate computation over signed values when q is
odd and p | (q − 1)/2 by applying the following approach: Given unsigned input

74 T. K. Frederiksen et al.

x ∈ Zm, let x > m/2 represent the negative integer x − m, similarly to two’s
complement.

However, before any truncation is computed we increase the unsigned input
x ∈ Zm by p(q − 1)/2 ≈ m/2. Note that this does not affect x(p) of φ(x) →
(x(p), x(q)) and since p | (q −1)/2, we have φ(x+p(q −1)/2) = (x(p), x(q) +p(q −
1)/2). Formally, we define a new operator NoisyTrunc′

U by

NoisyTrunc′
U (x) = NoisyTruncU (x + ap) − a

where a =
q/2� ≈ m/2. Recall that NoisyTruncU (x′) =
x′/p� + ε for 0 ≤
ε ≤ U if x′ satisfied the upper bound in Algorithm 5, hence the following holds:

NoisyTrunc′
U (x) = NoisyTruncU (x + ap) − a

= NoisyTruncU (x +
q/2�p) −
q/2�
=
x/p� + ε + (q − 1)/2 − (q − 1)/2 =
x/p� + ε.

4.4 Error Reduction

Below we show an approach for reducing the error that can occur in the approx-
imate truncation Algorithm 5 above. In the full version [41] we show how to
remove this error this, however, requires evaluating a very large polynomial of
degree ≈ pU2 in MPC, after computing Algorithm 5. Which would completely
remove any advantage of our algorithm. Instead, we propose an algorithm that
reduces the error down to a single additive bit, and involves evaluating Algo-
rithm 5 twice, along with evaluating a polynomial of degree ≈ U2 in MPC; some-
thing that requires the online computation of O(U2) secure multiplications. We
describe this in Algorithm 6, which we prove in the full version.

Intuitively by first doing the truncation with an error up to U , it is possible
to multiply the result with p to isolate the noise and then apply the truncation
again. Hence, the result can be adjusted to have noise that is at most 1.

While a lower error is objectively desirable we believe this algorithm is more
of theoretical interest than practical interest, as it requires running Algorithm
5 twice along with O(n2) multiplications. This is a very significant overhead,
while the payoff is minimal when running with a small number of parties such
as 2 or 3.

Algorithm 6. Compute NoisyTrunc1([x]m) = [
x/p� + ε′]m with 0 ≤ ε′ ≤ 1.
Let P be a polynomial of degree U2 + 3U − 1 such that P (x) =
x/(U + 1)�.
Require: 0 ≤ x < m − (U + 1)(2s̃ + 1)p2 − Up, [x]m = ([x1]p, [x2]q)

[y]m ← NoisyTruncU ([x]m) � y = �x
p
� + ε

[x′]m = (U + 1)([x]m − p[y]m + pU) � x′ = (U + 1)(p(U − ε) + (x mod p))

[w]m ← NoisyTruncU ([x′]m) � w = � (U+1)(x mod p)
p

� + (U + 1)(U − ε) + ε′

[y′]m = [y]m − U − P ([w]m) � y′ = �x/p� + ε′. See the full version [41] for details.
return [y′]m

A New Approach to Efficient and Secure Fixed-Point Computation 75

Remark 2. The variable ε′ in the output of Algorithm 6 is distributed as follows
when executing with at least one honest party:

ε′ ∼ Bernoulli((x mod p)/p) + N
(

1
2
,

1
12U

)

Still, one more detail to consider is that the input to the second application
of truncation has to satisfy the upper bound constraint of Algorithm 5. More
concretely:

Remark 3. Assume U2+2U ≤ 2s and Q > p > 2s then when x′ = (U +1)([x]m−
p[y]m + pU) as per Algorithm 6 then x′ < pQ − Up.

We leave the proofs of Remark 2 and 3 and the full specification of polynomial
P to the full version [41].

5 Efficiency

5.1 Implementation

We developed a proof-of-concept implementation2 of our RNS based MPC
scheme and NoisyTruncU of Algorithm 5 and compare it against SPDZ [28] for
fixed-point computation when using the algorithm of Catrina and Saxena [17]
for probabilistic truncation. We specifically chose to compare with the proba-
bilistic truncation of Catrina and Saxena because, to the best of our knowledge,
it is the most efficient scheme that only requires black-box access to FABB(n, ·),
with a sufficiently large prime modulo, and which is also secure in the dishon-
est majority setting. Furthermore, this scheme is already implemented in our
framework of choice, FRESCO, and hence makes it to make a more fair, apples-
to-apples comparison. Concretely their scheme realizes probabilistic approximate
truncation using a random value, bounded by a certain 2-power, with a known
bit-decomposition, which is used to pad the value to truncate. This value is then
opened and truncated in plain. The public, truncated value is then input to
MPC again and the padding is subtracted and the decomposed random bits are
used to account for any overflow that might happen from the random padding.
We highlight that both their and our construction can be executed in constant
rounds both during the online and preprocessing phases and that both construc-
tions do not require any secure multiplications during the online phase. However,
we also forgo the need for secure multiplications in the preprocessing phase.

Our benchmarks consist of micro-benchmarks in multiple network settings
and with different-sized computation domains, but also through the real-world
application of Fast Fourier Transform (FFT) using the Cooley-Tukey algo-
rithm. All phases of the Catrina and Saxena protocol we benchmark are mali-
ciously secure. While our online and triple preprocessing phases are also mali-
ciously secure (see Damg̊ard et al. [26]), our generation of correlated randomness
2 Our FRESCO fork is freely available at https://github.com/jonas-lj/fresco and our

benchmark setup can be found at https://github.com/jonas-lj/FFTDemo.

https://github.com/jonas-lj/fresco
https://github.com/jonas-lj/FFTDemo

76 T. K. Frederiksen et al.

(NoisePairs and Pads) is only secure in the strong covert security model for
robustness.

We chose to benchmark our protocol with the larger error ε ≤ n, instead of
ε′ ≤ 1 as practically efficient MPC computations are generally only desirable
for a small number of parties, such as 2 or 3. Thus, the improvement in error by
running Algorithm 5 over Algorithm 6 is minimal. Furthermore, for our chosen
real-world application of FFT, we empirically validated that the error in the
accuracy of the result when using NoisyTruncU was at most 5.81 · 10−15 for
any of our benchmarked setups.

Table 2. Domain sizes used in the bench-
marks, assuming 3 parties and at least 39
bits of statistical security. Column “Usable”
expresses the usable amount of bits.

log(m) Ours [17]
log(p) log(q) Usable Usable

136 40 96 91 95
192 56 136 147 151
256 88 168 211 215
512 216 296 467 471
1536 728 808 1491 1495

Since our protocol offers secu-
rity based on a malicious arith-
metic secure MPC protocol and
supports security for a dishonest
majority, we found SPDZ [22,28]
to be the most natural competi-
tor and MPC scheme which we can
base our underlying FABB on. For
this reason, we chose to implement
our scheme in the FRESCO [3]
framework, which is an open-source
Java framework for MPC that
natively has support for SPDZ. It
is designed to allow developers to
implement their own MPC back-end and then take advantage of an extensive
library of functions such as sorting, searching, and statistics, which can be used
to design real-world MPC applications. Furthermore, FRESCO has been used
extensively in other academic works [6,12,25,26].

Code Design. We wrote our code as a new MPC back-end for FRESCO, aggre-
gating two SPDZ instances, of appropriate moduli and using these to implement
the basic arithmetic operations required by an MPC scheme (input, output,
addition, linear operations, and multiplications). We then wrote our efficient,
approximate truncation function and integrated this with the existing FRESCO
code for performing fixed-point arithmetic. Our code uses no multi-threading on
top of what is implicitly done in FRESCO, and we observe that FRESCO only
takes advantage of multi-threading insofar as to allow asynchronous networking
and in certain select locations implicitly through the Java class ParallelStream.

Experimental Setup. We ran all our experiments on AWS EC2 t2.xlarge servers
located in Paris, Frankfurt, and London and observed that the average latency
between any two servers is between 10–15 ms and an average of 0.43 ms when
in the same data center. We observe that each of these machines has 4 virtual
cores on Intel Xeon CPUs and 16 GiB of RAM. All machines were running
Amazon Linux Coretto and OpenJDL 17. Network communication (even on
same-machine tests) is done using a standard TCP/IP socket, without adding
TLS or securing layers on top. Numbers are based on the average of at least

A New Approach to Efficient and Secure Fixed-Point Computation 77

10 iterations and errors are the standard deviation. The only exception is triple
preprocessing for SPDZ for a domain of 1536 bits, which is only done once.

In all the benchmarks, we have used the same overall choice of domain size,
m. However, some slack in the computation space is needed to be able to carry
out the probabilistic truncation correctly, both in our scheme and the one by
Catrina and Saxena. For Catrina and Saxena this reduction is n + s bits, and
for our scheme, it is approximately 2n+ s̃ as discussed in Sect. 4.3. We show the
concrete effect of this for our benchmarks in Table 2. Finally, observe that for
all benchmarks we have ensured that s ≥ 39.

Table 3. Timing in seconds for 1024 regular multiplications and triple preprocessing
for both our scheme and SPDZ for 2 parties with domains with various bits available
for computation. s ≥ 39. The best numbers are marked in bold.

Triple preprocessing Integer multiplication

log(m) Ours (RNS SPDZ) SPDZ Ours (RNS SPDZ) SPDZ

LAN, latency 0.43 ms

136 11.6 ± 0.21 10.7 ± 0.18 0.197 ± 0.014 0.190 ± 0.029

192 14.8 ± 0.29 16.6 ± 0.48 0.205 ± 0.012 0.180 ± 0.008

256 19.1 ± 0.32 20.7 ± 0.18 0.206 ± 0.006 0.184 ± 0.004

512 42.3 ± 0.70 54.9 ± 1.3 0.275 ± 0.015 0.214 ± 0.008

1536 233 ± 1.8 462 0.467 ± 0.017 0.337 ± 0.003

WAN, latency 10 ms

136 12.8 ± 1.1 11.2 ± 0.36 0.392 ± 0.136 0.247 ± 0.046

192 15.8 ± 0.37 17.3 ± 0.43 0.311 ± 0.079 0.248 ± 0.012

256 21.2 ± 1.3 21.2 ± 0.28 0.262 ± 0.028 0.246 ± 0.015

512 44.5 ± 1.4 56.1 ± 1.2 0.326 ± 0.010 0.286 ± 0.012

1536 243 ± 3.7 494 0.535 ± 0.012 0.420 ± 0.008

Micro Benchmarks. We took a micro-benchmark approach to our implementa-
tion, letting it consist of several interchangeable components for different levels
of preprocessing. Concretely we obtain the following micro-benchmarks

Triple preprocessing. Preprocessing of multiplication triples for both Catrina
and Saxena’s and our scheme. This can be done before the input or function
to compute is known. We based it on MASCOT [46], as this is currently the
only multiplication triple preprocessing supported by FRESCO. However,
more efficient approaches have been presented since MASCOT [47], so these
numbers should be considered an upper bound.

Correlated randomness. For our scheme this involves preprocessing of
NoisePairs and Pads; the process of Algorithm 1 and Algorithm 2. For
Catrina and Saxena this involves bit-decomposition of a random number

78 T. K. Frederiksen et al.

Table 4. Timing in seconds for 1024 fixed-point multiplications and preparation of
the correlated randomness required for this (NoisePair and Pad for our scheme with
γ = 2 and random bit decomposition for SPDZ) for 2 parties with domains with var-
ious bits available for computation. Column #Triples express how many preprocessed
multiplication triples are required for 1024 fixed-point multiplications. s ≥ 39 The
best numbers are marked in bold.

#Triples Correlated randomness Fixed-point multiplication

log(m) Ours [17] Ours [17] Ours [17]

LAN, latency 0.43 ms

136 1024 41, 984 0.355± 0.018 0.263± 0.006 0.363± 0.010 1.17± 0.015

192 1024 58, 368 0.368± 0.011 0.264± 0.005 0.365± 0.007 1.42± 0.029

256 1024 91, 136 0.365± 0.014 0.312± 0.007 0.395± 0.007 1.68± 0.027

512 1024 222, 208 0.401± 0.062 0.669± 0.004 0.438± 0.016 2.82± 0.044

1536 1024 746, 496 0.505± 0.023 8.86± 0.077 0.787± 0.010 11.0± 0.042

WAN, latency 10 ms

136 1024 41, 984 0.438± 0.008 0.307± 0.005 0.402± 0.014 4.99± 0.32

192 1024 58, 368 0.453± 0.014 0.314± 0.006 0.413± 0.014 6.37± 0.10

256 1024 91, 136 0.455± 0.014 0.369± 0.016 0.441± 0.013 8.15± 0.12

512 1024 222, 208 0.476± 0.020 0.766± 0.008 0.487± 0.013 15.1± 0.35

1536 1024 746, 496 0.608± 0.024 8.84± 0.042 0.849± 0.021 35.6± 0.42

of �log2(p)� bits, (excluding the preprocessing of �log2(p)� triples which is
needed for the sampling of random bits) needed for the approximate trunca-
tion [17]. This phase can be done offline at the same time as triple prepro-
cessing.

Fixed-point multiplication. Online time of fixed-point multiplication with
base p and hence log(p) bits precision. Thus log(p) + 1 preprocessed multi-
plication triples are required for Catrina and Saxena’s protocol and 1 for our
protocol (along with a correlated randomness element). Both protocols only
require 1 multiplication to be executed during the online phase.

Integer multiplication. Online time of pure integer multiplications in MPC.
This requires a preprocessed multiplication triple for both protocols.

We express these micro-benchmarks in Tables 3 and 4. From Table 3, we can con-
clude that triple preprocessing becomes cheaper for our RNS scheme compared
to SPDZ, the larger m gets. Whereas for the online time for multiplications, our
RNS scheme is slightly worse than SPDZ. While the first observation is expected,
the second is surprising as we intuitively would expect our scheme to perform
comparatively better for larger domains. This is because computation over Zp

and Zq and generally more efficient than computation over Zpq, assuming pq does
not fit within a word. This has been the motivation for several previous usages of
RNSs [7,45,57]. From Table 4, when it comes to the correlated randomness, we
again observe that our scheme is more efficient for larger m, whereas Catrina and
Saxena’s scheme is more efficient for smaller m. Concerning the online fixed-point
multiplication time we see that our scheme is significantly faster than the one

A New Approach to Efficient and Secure Fixed-Point Computation 79

by Catrina and Saxena, and that it scales more gracefully for larger m. It is not
unexpected that our scheme performs better for fixed-point computation (even
excluding triple preprocessing) first; for the reason of more efficient computation
over the smaller Zp and Zq domains, but also since our online truncation compu-
tation does not need to perform O(log(p)) bit-fiddling operations, like Catrina
and Saxena’s scheme. Concerning the generation of correlated randomness, it
is hard to predict how our scheme would fare against the other scheme since
the approaches are so different. Although for similar reasons as above, we did
expect it to scale better relatively, compared to Catrina and Saxena’s scheme,
which the benchmarks confirm. We give more detail about the time it takes
to preprocess our correlated randomness in Fig. 4. This figure shows how the
generation of correlated randomness scales with different choices of deterrence
factors, both on LAN and WAN. More specifically it shows that network latency
has a minimal effect on the time, as expected due to the protocol being con-
stant round. As expected this loosely mimics a cost function λ(γ) = �1/(1−γ)�,
which reflects the number of times the heaviest parts of the preprocessing must
be carried out as γ increases. More surprisingly it also shows that there is barely
any performance penalty for larger computational domains, up to log(m) = 512.

Fig. 4. Computation time in seconds for noise pair and padding preprocessing needed
for 1024 truncations for 2 parties. s ≥ 39. Left-side bars represent a semi-honest
preprocessing (γ = 0), middle bars represent γ = 0.5 and right-side bars represent
γ = 0.875.

Concerning the choice of domain, we picked the smallest possible (with rea-
sonable statistical security, i.e. s ≥ 39) that is supported by our scheme, along
with certain larger sizes and the largest supported by FRESCO (domain size
1536 bits).

80 T. K. Frederiksen et al.

We observe that online time for fixed-point multiplications is between 3.2-42x
faster using our scheme depending on the computation domain (as seen in the
two right-most columns of Table 4). However, if we include the preprocessing
time, our scheme is between 36-1,400x faster3. The reason for such a significant
difference is that our scheme only requires 1 triple per fixed-point multiplication
and Catrina and Saxena’s protocol requires 1 + 	 triples where 2� is the domain
size of the fractional digits, where 	 = �log2(p)� in our benchmarks to allow a
direct comparison (Fig. 5).

Fig. 5. Online performance of computing an FFT of 1024 inputs for different amount
of parties in different network settings. s ≥ 39. Latency for 2 servers is 10 ms and 10–14
ms for 3 servers.

FFT Benchmark. To consider our scheme in a realistic setting, we benchmarked
the Fast Fourier Transform for various input sizes using the Cooley-Tukey Algo-
rithm. This use-case is primarily chosen because of its pervasive appearance in
computation such as signal processing or convolution neural networks, the latter
of which has also been studied in the setting of secure computation [51]. Fur-
thermore, FFT computations are well-suited for residue number systems because
they only use multiplication and addition. The input to the computation is a
vector of complex numbers, each of which is in our implementation represented
by two fixed-point numbers, one for the real part and one for the imaginary part.
We show the online time for evaluating Cooley-Tukey on 1024 inputs using our
scheme in Fig. 5. More specifically the figure shows the increase in time as the
computation domain increases, for 2 and 3 parties. The base for the fixed-point
3 The factors are for γ = 0.5 and depend on the size of the domain and whether

execution is over WAN/LAN. Concretely the factors are computed by taking the
number of triples required for truncation from Table 4 and multiplying with the
preprocessing time from Table 3 and adding the online time (again from Table 4).

A New Approach to Efficient and Secure Fixed-Point Computation 81

computation is p and hence depends on the domain m, as defined in Table 2.
The computation requires O(|input| log(|input|)) multiplications executed over
O(log(|input|)) rounds. We here observe that while each of these multiplications
consists of a secret value and public value, we still require a truncation after
each multiplication since the input is a fixed-point number. Thus, our scheme
does not require multiplication triples whereas the one by Catrina and Saxena
does. From the figure we observe that our scheme is significantly faster for FFT
than the one by Catrina and Saxena as we would expect because of the reasons
and findings from the “Micro benchmark“ section, but exacerbated by the fact
that our scheme does not need to multiply two secret numbers in MPC.

5.2 Comparison with Related Techniques

Several schemes for efficient probabilistic truncation exist that perform better
than the work of Catrina and Saxena [17], but also require access to a functional-
ity FABB(n, 2). While it is possible to emulate operations modulo 2 in large fields,
addition (XOR) requires a multiplication. The same is true for sampling of a ran-
dom bit. Furthermore, schemes working over modulo 2 are typically significantly
more efficient than schemes working over a large modulo p [39,44,50]. Hence
the possibility of sampling random bits using FABB(n, 2) and moving these to
FABB(n, p) could lead to a more efficient version of the Catrina and Saxena pro-
tocol. The line of work trying to achieve this starts with the ABY protocol [30]
which is a semi-honestly secure two-party protocol allowing mixed computation
over bits and large domains when garbled circuits are used for bit computation.
Later Rotaru and Wood [59] showed an efficient protocol for generating and
computing over bits in an MPC scheme working modulo a large p with the help
of garbled circuits. Their protocol works for an arbitrary amount of parties, in
the dishonest majority setting against a malicious adversary. They coined the
term daBits for a pair ([b]2, [b]p) where p is large. Several works improve upon
this construction, culminating in the work by Escudero et al. [34]. They show a
more efficient protocol for daBits which is maliciously secure against a dishon-
est majority that only requires black-box access to FABB(n, 2) and FABB(n, p).
However, they also show how to extend the daBit notion to extended daBits
(edaBits), which is a representation of ({[bi]2}i, [r]p) s.t.

∑
i 2i · [bi]2 = [r]p. That

is, a full bit-decomposition of a random number modulo p, represented by its
binary parts. This allows a more efficient execution of the probabilistic trunca-
tion protocol of Catrina and Saxena. For completeness, we mention that certain
other computations that require bit-decomposition can be realized even faster
using edaBits, than by adapting the existing protocols of Catrina, Saxena and
de Hoogh. This is specifically the case for comparison when using the Rabbit
protocol [53].

It is hard to make an apples-to-apples efficiency comparison between these
schemes and ours (and the one by Catrina and Saxena) due to their need for
FABB(n, 2). This is because FABB(n, 2) can typically not be realized using the
same techniques as for FABB(n, p) with p > 2s. However, in Table 5 we try to

82 T. K. Frederiksen et al.

Table 5. Complexity comparison between our scheme and other approaches for a single
probabilistic truncation in the amortized setting when truncating k bits of values over
Zm. Row Trip. expresses the amount of preprocessed triples needed, whereas Offline
rounds expresses the rounds of communication needed which is independent of the
private inputs, and finally Online F2/Zm expresses the multiplications required to
compute truncation.

[17] daBits [34] edaBits [34] Ours

Trip. F2 0 O(log(n) · (k + s) O(log(n)2 + log(n) · (n + k) 0

Zm k 0 0 0

Offline rounds 1 O(log(k)) O(k) 5

Online F2 0 0 0 0

Zm 0 0 0 0

Rounds 1 1 1 2

compare the different schemes asymptotically, based on the heavy computations
(multiplications in FABB for Zm and F2)4.

Furthermore, we observe that the edaBits authors find a 5-9x improvement
in computing the “comparison” operation, compared to the arithmetic approach
of Catrina and de Hoogh [16] when including preprocessing. While comparison is
not the same as probabilistic truncation, the main bottleneck of both protocols
is the bit-decomposition of a random element in Fm. Hence we believe a similar
improvement would be found for probabilistic truncation. Thus we expect that
our results will still be about a factor 4-280x more efficient than the edaBit app-
roach when including preprocessing and using the “comparison” improvement
factor verbatim.

It is worth emphasizing that both the online and preprocessing approach by
Catrina and Saxena, daBits, and edaBits are maliciously secure against a dis-
honest majority. Our online phase is also maliciously secure, but our concrete
suggestion for realizing the preprocessing phase is done in a strong covert secu-
rity model for robustness. Furthermore, the possible error in the truncation of
Catrina and Saxena is at most 1, whereas our error is at most 1 ≤ U . Finally, we
require working in a domain of o(p3) bits (spread on two different MPC schemes
working modulo p and modulo q > p2), which gives us o(p2) usable bits in the
secret shared value that gets truncated. Catrina and Saxena, daBits, and edaBits
also require a gap in the usable bits of 2s, hence they need a domain of o(p2)
bits when p ≈ 2s.

4 Observe that edaBits require many different components to achieve their efficient
result. This includes faulty multiplications in MPC which are about O(B) times
more efficient than a “normal” multiplication in MPC. Here B ∈ {3, 4, 5} depending
on an amortization parameter. In the table, we have for simplicity only counted real
multiplications and assumed O(B) faulty multiplications are equivalent to a real
one.

A New Approach to Efficient and Secure Fixed-Point Computation 83

We leave as future work the possibility of incorporating daBit and edaBit
techniques to sample random and correlated values in different domains in a
manner that works with our protocols.

References

1. Ieee standard for floating-point arithmetic. IEEE Std 754–2019 (Revision of IEEE
754–2008), pp. 1–84 (2019). https://doi.org/10.1109/IEEESTD.2019.8766229

2. Abspoel, M., Dalskov, A.P.K., Escudero, D., Nof, A.: An efficient passive-to-active
compiler for honest-majority MPC over rings. In: Sako, K., Tippenhauer, N.O.
(eds.) ACNS 21, Part II. LNCS, vol. 12727, pp. 122–152. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-3-030-78375-4 6

3. Alexandra Institute: FRESCO - a FRamework for Efficient Secure COmputation.
https://github.com/aicis/fresco

4. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45708-9 27

5. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: NDSS 2013. The Internet Society, February 2013

6. Almeida, J.B., et al.: A fast and verified software stack for secure function evalu-
ation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 1989–2006. ACM Press, October/November 2017. https://doi.org/10.
1145/3133956.3134017

7. Asif, S., Hossain, M.S., Kong, Y.: High-throughput multi-key elliptic curve cryp-
tosystem based on residue number system. IET Comput. Digit. Tech. 11(5), 165–
172 (2017). https://doi.org/10.1049/iet-cdt.2016.0141

8. Atallah, M.J., Bykova, M., Li, J., Frikken, K.B., Topkara, M.: Private collaborative
forecasting and benchmarking. In: Atluri, V., Syverson, P.F., di Vimercati, S.D.C.
(eds.) Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society,
WPES 2004, Washington, DC, USA, October 28, 2004, pp. 103–114. ACM (2004).
https://doi.org/10.1145/1029179.1029204

9. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptol. 23(2), 281–343 (2010). https://doi.org/10.1007/
s00145-009-9040-7

10. Banerjee, A., Clear, M., Tewari, H.: zkHawk: practical private smart contracts from
MPC-based hawk. Cryptology ePrint Archive, Report 2021/501 (2021). https://
eprint.iacr.org/2021/501

11. Baum, C., Chiang, J.H., David, B., Frederiksen, T.K.: Eagle: Efficient privacy
preserving smart contracts. IACR Cryptol. ePrint Arch., p. 1435 (2022). https://
eprint.iacr.org/2022/1435

12. Baum, C., David, B., Frederiksen, T.K.: P2DEX: privacy-preserving decentral-
ized cryptocurrency exchange. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021.
LNCS, vol. 12726, pp. 163–194. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78372-3 7

13. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/978-3-030-78375-4_6
https://github.com/aicis/fresco
https://doi.org/10.1007/3-540-45708-9_27
https://doi.org/10.1145/3133956.3134017
https://doi.org/10.1145/3133956.3134017
https://doi.org/10.1049/iet-cdt.2016.0141
https://doi.org/10.1145/1029179.1029204
https://doi.org/10.1007/s00145-009-9040-7
https://doi.org/10.1007/s00145-009-9040-7
https://eprint.iacr.org/2021/501
https://eprint.iacr.org/2021/501
https://eprint.iacr.org/2022/1435
https://eprint.iacr.org/2022/1435
https://doi.org/10.1007/978-3-030-78372-3_7
https://doi.org/10.1007/978-3-030-78372-3_7
https://doi.org/10.1007/978-3-642-03549-4_20

84 T. K. Frederiksen et al.

14. Boyle, E., et al.: Function secret sharing for mixed-mode and fixed-point secure
computation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12697, pp. 871–900. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77886-6 30

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA, pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888

16. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 13

17. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14577-3 6

18. Chandran, N., Gupta, D., Obbattu, S.L.B., Shah, A.: SIMC: ML inference secure
against malicious clients at semi-honest cost. Cryptology ePrint Archive, Report
2021/1538 (2021). https://eprint.iacr.org/2021/1538

19. Chen, M., et al.: Multiparty generation of an RSA modulus. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 64–93. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56877-1 3

20. Chen, M., et al.: Multiparty generation of an RSA modulus. J. Cryptol. 35(2), 12
(2022). https://doi.org/10.1007/s00145-021-09395-y

21. Chen, M., et al.: Diogenes: lightweight scalable RSA modulus generation with a
dishonest majority. In: 2021 IEEE Symposium on Security and Privacy, pp. 590–
607. IEEE Computer Society Press, May 2021. https://doi.org/10.1109/SP40001.
2021.00025

22. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 26

23. Dalskov, A.P.K., Escudero, D., Nof, A.: Fast fully secure multi-party computation
over any ring with two-thirds honest majority. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022, pp. 653–666. ACM Press, November 2022.
https://doi.org/10.1145/3548606.3559389

24. Dalskov, A., Orlandi, C., Keller, M., Shrishak, K., Shulman, H.: Securing DNSSEC
keys via threshold ECDSA from generic MPC. In: Chen, L., Li, N., Liang, K.,
Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 654–673. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59013-0 32

25. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential
benchmarking based on multiparty computation. In: Grossklags, J., Preneel, B.
(eds.) FC 2016. LNCS, vol. 9603, pp. 169–187. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54970-4 10

26. Damg̊ard, I., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev,
N.: New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy, pp. 1102–
1120. IEEE Computer Society Press, May 2019. https://doi.org/10.1109/SP.2019.
00078

https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1007/978-3-642-14577-3_6
https://eprint.iacr.org/2021/1538
https://doi.org/10.1007/978-3-030-56877-1_3
https://doi.org/10.1007/s00145-021-09395-y
https://doi.org/10.1109/SP40001.2021.00025
https://doi.org/10.1109/SP40001.2021.00025
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1145/3548606.3559389
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1109/SP.2019.00078
https://doi.org/10.1109/SP.2019.00078

A New Approach to Efficient and Secure Fixed-Point Computation 85

27. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

28. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

29. Delpech de Saint Guilhem, C., Makri, E., Rotaru, D., Tanguy, T.: The return
of eratosthenes: secure generation of RSA moduli using distributed sieving. In:
Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 594–609. ACM Press, November
2021. https://doi.org/10.1145/3460120.3484754

30. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS 2015. The Internet Society,
February 2015

31. Deryabin, M., Chervyakov, N., Tchernykh, A., Babenko, M., Shabalina, M.: High
performance parallel computing in residue number system. Int. J. Comb. Optim.
Problems Inform. 9(1), 62–67 (2018). https://ijcopi.org/ojs/article/view/80

32. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: Effi-
cient actively secure two-party computation from oblivious linear function evalu-
ation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 2263–2276. ACM Press, October/November 2017. https://doi.org/10.
1145/3133956.3134024

33. Du, W., Atallah, M.J.: Privacy-preserving cooperative statistical analysis. In: 17th
Annual Computer Security Applications Conference (ACSAC 2001), 11–14 Decem-
ber 2001, New Orleans, Louisiana, USA, pp. 102–110. IEEE Computer Society
(2001). https://doi.org/10.1109/ACSAC.2001.991526

34. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives
for MPC over mixed arithmetic-binary circuits. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 823–852. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 29

35. Fouque, P.-A., Stern, J., Wackers, G.-J.: CryptoComputing with rationals. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36504-4 10

36. Fournaris, A.P., Papachristodoulou, L., Batina, L., Sklavos, N.: Residue number
system as a side channel and fault injection attack countermeasure in elliptic curve
cryptography. In: 2016 International Conference on Design and Technology of Inte-
grated Systems in Nanoscale Era, DTIS 2016, Istanbul, Turkey, April 12–14, 2016,
pp. 1–4. IEEE (2016). https://doi.org/10.1109/DTIS.2016.7483807

37. Franz, M., Deiseroth, B., Hamacher, K., Jha, S., Katzenbeisser, S., Schröder, H.:
Secure computations on non-integer values. In: 2010 IEEE International Workshop
on Information Forensics and Security, WIFS 2010, Seattle, WA, USA, December
12–15, 2010, pp. 1–6. IEEE (2010). https://doi.org/10.1109/WIFS.2010.5711458

38. Franz, M., Katzenbeisser, S.: Processing encrypted floating point signals. In:
Heitzenrater, C., Craver, S., Dittmann, J. (eds.) Proceedings of the thirteenth
ACM multimedia workshop on Multimedia and security, MM&Sec ’11, Buffalo,
New York, USA, September 29–30, 2011, pp. 103–108. ACM (2011). https://doi.
org/10.1145/2037252.2037271

https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3460120.3484754
https://ijcopi.org/ojs/article/view/80
https://doi.org/10.1145/3133956.3134024
https://doi.org/10.1145/3133956.3134024
https://doi.org/10.1109/ACSAC.2001.991526
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/3-540-36504-4_10
https://doi.org/10.1109/DTIS.2016.7483807
https://doi.org/10.1109/WIFS.2010.5711458
https://doi.org/10.1145/2037252.2037271
https://doi.org/10.1145/2037252.2037271

86 T. K. Frederiksen et al.

39. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 29

40. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key
generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331–361. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 12

41. Frederiksen, T.K., Lindstrøm, J., Madsen, M.W., Spangsberg, A.D.: A new app-
roach to efficient and secure fixed-point computation. IACR Cryptol. ePrint Arch.,
p. 035 (2024). https://eprint.iacr.org/2024/035

42. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, pp. 218–229. ACM Press, May 1987. https://doi.org/10.1145/28395.
28420

43. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: LevioSA:
Lightweight secure arithmetic computation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 327–344. ACM Press, November 2019.
https://doi.org/10.1145/3319535.3354258

44. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

45. Jacquemin, D., Mert, A.C., Roy, S.S.: Exploring RNS for isogeny-based cryptog-
raphy. IACR Cryptol. ePrint Arch., p. 1289 (2022). https://eprint.iacr.org/2022/
1289

46. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, Octo-
ber 2016. https://doi.org/10.1145/2976749.2978357

47. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

48. Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable integer
and floating-point arithmetic. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wal-
lach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 271–287.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 18

49. Kiltz, E., Leander, G., Malone-Lee, J.: Secure computation of the mean and related
statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 283–302. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 16

50. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 28

https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-319-96881-0_12
https://eprint.iacr.org/2024/035
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/3319535.3354258
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://eprint.iacr.org/2022/1289
https://eprint.iacr.org/2022/1289
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-662-53357-4_18
https://doi.org/10.1007/978-3-540-30576-7_16
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-44381-1_28

A New Approach to Efficient and Secure Fixed-Point Computation 87

51. Li, S., Xue, K., Zhu, B., Ding, C., Gao, X., Wei, D.S.L., Wan, T.: FALCON:
A fourier transform based approach for fast and secure convolutional neural
network predictions. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020. pp.
8702–8711. Computer Vision Foundation / IEEE (2020). https://doi.org/10.1109/
CVPR42600.2020.00873. https://openaccess.thecvf.com/content CVPR 2020/
html/Li FALCON A Fourier Transform Based Approach for Fast and Secure
CVPR 2020 paper.html

52. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

53. Makri, E., Rotaru, D., Vercauteren, F., Wagh, S.: Rabbit: efficient comparison for
secure multi-party computation. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS,
Part I, vol. 12674, pp. 249–270. Springer, Heidelberg (2021). https://doi.org/10.
1007/978-3-662-64322-8 12

54. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 35–52.
ACM Press, October 2018. https://doi.org/10.1145/3243734.3243760

55. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy, pp. 19–
38. IEEE Computer Society Press, May 2017. https://doi.org/10.1109/SP.2017.
12

56. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

57. Quisquater, J.J.: Fast decipherment algorithm for rsa public-key cryptosystem.
Electron. Lett. 18, 905–907(2) (1982). https://digital-library.theiet.org/content/
journals/10.1049/el 19820617

58. Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively secure
setup for SPDZ. J. Cryptol. 35(1), 5 (2022). https://doi.org/10.1007/s00145-021-
09416-w

59. Rotaru, D., Wood, T.: MArBled circuits: mixing arithmetic and boolean circuits
with active security. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019.
LNCS, vol. 11898, pp. 227–249. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-35423-7 12

60. Simić, S., Bemporad, A., Inverso, O., Tribastone, M.: Tight error analysis in fixed-
point arithmetic. Form. Asp. Comput. 34(1) (2022). https://doi.org/10.1145/
3524051

61. Szabo, N.S., Tanaka, R.I.: Residue arithmetic and its applications to computer
technology / Nicholas S. Szabo, Richard I. Tanaka. McGraw-Hill series in informa-
tion processing and computers, McGraw-Hill, New York (1967)

62. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for
neural network training. PoPETs 2019(3), 26–49 (2019). https://doi.org/10.2478/
popets-2019-0035

63. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982. https://doi.
org/10.1109/SFCS.1982.38

64. Yuan, S., Shen, M., Mironov, I., Nascimento, A.C.A.: Practical, label private deep
learning training based on secure multiparty computation and differential privacy.
Cryptology ePrint Archive, Report 2021/835 (2021). https://eprint.iacr.org/2021/
835

https://doi.org/10.1109/CVPR42600.2020.00873
https://doi.org/10.1109/CVPR42600.2020.00873
https://openaccess.thecvf.com/content_CVPR_2020/html/Li_FALCON_A_Fourier_Transform_Based_Approach_for_Fast_and_Secure_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Li_FALCON_A_Fourier_Transform_Based_Approach_for_Fast_and_Secure_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Li_FALCON_A_Fourier_Transform_Based_Approach_for_Fast_and_Secure_CVPR_2020_paper.html
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/978-3-662-64322-8_12
https://doi.org/10.1007/978-3-662-64322-8_12
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1007/978-3-642-00457-5_22
https://digital-library.theiet.org/content/journals/10.1049/el_19820617
https://digital-library.theiet.org/content/journals/10.1049/el_19820617
https://doi.org/10.1007/s00145-021-09416-w
https://doi.org/10.1007/s00145-021-09416-w
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1145/3524051
https://doi.org/10.1145/3524051
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://eprint.iacr.org/2021/835
https://eprint.iacr.org/2021/835

Auditable Attribute-Based Credentials
Scheme and Its Application in Contact

Tracing

Pengfei Wang1(B) , Xiangyu Su1(B) , Mario Larangeira1,2 ,
and Keisuke Tanaka1

1 Department of Mathematical and Computing Science, School of Computing,
Tokyo Institute of Technology, W8-55, 2-12-1 Oookayama, Meguro-ku,

Tokyo-to, Japan
pengfei.w@outlook.com, su.x.ab@m.titech.ac.jp, mario@c.titech.ac.jp,

keisuke@is.titech.ac.jp
2 Input Output, Global, Singapore, Singapore

mario.larangeira@iohk.io

Abstract. During the pandemic, the limited functionality of existing
privacy-preserving contact tracing systems highlights the need for new
designs. Wang et al. proposed an environmental-adaptive framework
(CSS ’21) but failed to formalize the security. The similarity between
their framework and attribute-based credentials (ABC) inspires us to
reconsider contact tracing from the perspective of ABC schemes. In such
schemes, users can obtain credentials on attributes from issuers and prove
the credentials anonymously (i.e., hiding sensitive information of both
user and issuer). This work first extends ABC schemes with auditability,
which enables designated auditing authorities to revoke the anonymity
of particular issuers. For this purpose, we propose an “auditable public
key (APK)” mechanism that extends the updatable public key by Fauzi
et al. (AsiaCrypt ’19). We provide formal security definitions regarding
auditability and build our auditable ABC scheme by adding a DDH-
based APK to Connolly et al.’s ABC construction (PKC ’22). Note that
the APK mechanism can be used as a plug-in for other cryptographic
primitives and may be of independent interest. Finally, regarding contact
tracing, we refine Wang et al.’s framework and present a formal treat-
ment that includes security definitions and protocol construction. An
implementation is provided to showcase the practicality of our design.

Keywords: Attribute-Based Credentials · Auditable Public Keys ·
Contact Tracing

1 Introduction

Contact tracing, a method that prevents diseases from spreading, faces new chal-
lenges considering new findings in epidemiology research. Proposed in [37], the
environmental-adaptive contact tracing (EACT) framework took different trans-
mission modes (i.e., droplet and airborne) and virus distribution (e.g., lifespan
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 88–118, 2024.
https://doi.org/10.1007/978-3-031-54770-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_4&domain=pdf
http://orcid.org/0000-0001-6687-469X
http://orcid.org/0000-0002-1319-6394
http://orcid.org/0000-0001-7168-898X
http://orcid.org/0000-0003-1330-4495
https://doi.org/10.1007/978-3-031-54770-6_4

Auditable ABC and Its Application in Contact Tracing 89

and region size, which depends on environmental factors) into consideration
(AppendixA recalls the rationale behind embedding environmental factors in
contact tracing systems). However, their framework are based on an informal
threat model and failed to unify the system syntax for different transmission
modes, hence, leaving a gap between theoretical proofs and implementations.

The similarity between their framework and a self-issuing decentralized cre-
dentials scheme [27] inspires us to turn our eyes to credentials schemes, typ-
ically the attribute-based ones (ABC). Note that we consider ABC schemes,
e.g., [17,25], instead of more general anonymous credentials, e.g., [10–12]. This
is because the capability of embedding attributes in credentials empowers con-
tact tracing systems to manage environmental factors as attributes. To the best
of our knowledge, this approach has seen limited exploration or association with
contact tracing in previous works despite its inherent viability1. We explain the
reason as follows. Recall that an ABC scheme involves issuers, users, and veri-
fiers. In the issuance phase, an issuer grants a credential to a user on the user’s
attributes. The user can then prove possession (showing) of the credential on
their attributes without revealing identities, but they cannot prove attributes
that are not embedded in their credentials. Hence, by building contact trac-
ing systems atop ABC schemes: (1) users can take environmental factors and
local information as attributes; (2) users can issue others credentials on these
attributes as contact records; (3) users can anonymously prove their records
to potentially malicious verifiers (in contact tracing, medical agencies). It is
also convenient to bring the broad spectrum of functionalities in ABC to con-
tact tracing, e.g., selective showing [25], proof of disjoint attributes [17], issuer-
hiding [5,17], delegation [3], traceability [31], etc.

Moreover, the security of ABC, i.e., anonymity and unforgeability, can also
be adapted to contact tracing (as we will show in Sect. 4.2)2. Intuitively, given
any honest user’s showing of contact records, anonymity prevents other users
and medical agencies (even if they collude) from identifying the user or learning
anything except what is intentionally revealed by the user. Whereas, unforgeabil-
ity guarantees that no user can perform a valid showing if she does not possess a
corresponding contact record (i.e., a credential issued by another user according
to some committed attributes, e.g., environmental factors). The two properties
resemble the “(pseudonym and trace) unlinkability” and “integrity” of contact
tracing systems proposed in [18] (more discussion in Sect. 4.2).

However, existing ABC schemes cannot be utilized directly to build contact
tracing systems due to the lack of tracing capability. Note that the traceability
in [31] is similar to group signatures, i.e., to revoke the anonymity of regular
users. In contrast, the traceability of contact systems should enable the issuer of
a contact record to be notified whenever the record is being shown. For example,

1 Silde and Strand [36] proposed a contact tracing system based on anonymous tokens,
i.e., an anonymous credential variant that does not support attributes.

2 Notably, game-based and simulation-based security definitions of contact tracing
systems have been proposed in [4,18], respectively. This work will focus on the
game-based ones because we proceed from the perspective of ABC schemes with
game-based definitions.

90 P. Wang et al.

when two users (A and B) have contact, they first exchange contact records by
issuing each other a credential based on the contact. Then, when one user (say,
user A) is diagnosed and presents her credential issued by her counterparty (user
B) to medical agencies, user B should be able to check if the presented credential
is issued by herself. If so, user B can confirm that she had close contact with
user A. We formalize this functionality as auditability of issuers in the underlying
credentials scheme, which we call an auditable ABC.

Our Approach and Contributions. We show a brief image of our approach.
In order to build an auditable ABC scheme, we first propose a cryptographic
tool called the “auditable public keys (APK)” mechanism, which extends the
updatable public key given in [22]. The APK embeds extra structure in the secret
and public key pair with a new auditing key. The structure will be preserved
even after updating the public key and can be verified (we call it audit) by the
auditing key. That is, a participant who holds the auditing key corresponding to
some key pair can audit if a given public key is updated from the corresponding
public key without knowing the secret randomness in the update algorithm. Like
the updatable public key, our APK can be used as a plug-in for many different
cryptographic primitives, hence, not being limited to credentials schemes (we
show a concrete example in Appendix C).

Next, we adapt APK to the existing ABC scheme [25] and define the for-
mal syntax of our auditable ABC. We show a concrete construction for the
APK mechanism based on the matrix Diffie-Hellman problem over matrix dis-
tributions [21,34]. We prove that our APK construction can be inserted into
the structure-preserving signatures on equivalence classes (SPS-EQ) scheme [17]
without breaking the security of the original SPS-EQ (though incurring a slight
reduction loss). By employing our modified SPS-EQ, a set-commitment scheme
from [25], and a zero-knowledge proofs of knowledge protocol [23], we present a
construction for the auditable ABC scheme.

Finally, we refine the EACT framework [37] and provide a construction based
on our auditable ABC scheme. Hence, we can unify the tracing process of the
conventional Bluetooth Low Energy (BLE)-based setting for droplet mode and
their discrete-location-tracing setting (DLT) for airborne mode. Then, we argue
that the security of the refined EACT can be derived from our auditable ABC
scheme but requires sufficient adaptions, e.g., in contact tracing, the verifier of
credentials may be malicious and approve falsely shown credentials. We explain
these adaptions and finally show an implementation (in Sect. 4.3) of our con-
struction on real-life Android devices to demonstrate practicality.

Our Contributions. Our contributions are threefold: (1) we propose an APK
mechanism that can be used as a plug-in tool for many cryptographic primi-
tives; (2) we propose an auditable ABC scheme that inherits auditability from
APK. Then, we show concrete constructions for APK and the auditable ABC
scheme; (3) we refine and construct the EACT framework [37] based on cre-
dentials schemes. We also provide formal security definitions and implement the

Auditable ABC and Its Application in Contact Tracing 91

construction. Additionally, we add algorithms to jPBC library [14] to support
matrix-based bilinear pairing operations during implementation.

Related Works. Despite the broad functionalities of ABC schemes, no existing
work considers the same traceability (revoking issuer’s anonymity) as in contact
tracing systems. Regarding auditability of ABC schemes, existing works [6,16]
focused on auditing the credentials back to their holders, i.e., regular users.
Instead, our auditability intends to identify issuers. This is because, as shown
in Sect. 3.2, modifications are made into ABC syntax so that verifiers cannot
identify the issuer of shown credentials even if they collude with the original
issuer. However, such a property opens the gate of fabricating issuers. Hence, it
is crucial to let issuers (or designated third parties chosen by the issuer, called
auditors) check if a shown credential originates from the issuer herself.

To compare with existing contact tracing systems, we consider three aspects:
(1) security (i.e., anonymity/unlinkability and tracing-soundness/integrity); (2)
extensibility (e.g., the capability of handling different transmission modes and
environmental factors); (3) efficiency (e.g., requiring BLE handshakes during the
recording phase or not). We notice that these requirements may contradict each
other (in fact, unlinkability and integrity may also have contradictions [18]).
For example, as mentioned above, revealing more data (extensibility) inevitably
incurs breaches in anonymity (security). Then, to fix such breaches, we have to
rely on heavy mechanisms that burden the system’s efficiency. In the following,
we evaluate several cryptographic contact tracing systems to prove our observa-
tion.

A simple paradigm of contact tracing utilizes symmetric primitives (e.g.,
pseudo-random permutations/functions/generators (PRP/PRF/PRG) [1] and
hash functions [13]) to generate period-specific keys and pseudonyms (here, the
period can be several hours or days). As shown in [18], these systems can achieve
unlinkability (i.e., period-specific pseudonyms are unlinkable) due to the pseudo-
randomness of the underlying building blocks; and integrity (i.e., no adversary
can forge recorded pseudonyms to trigger users’ tracing) due to the pre-image
resistance of these primitives; but suffer from the relay (and replay) attacks
(i.e., the adversary can relay or replay previous records to break integrity) [16]
because users cannot tell if a pseudonym has been presented or not (without
checking timestamps). The simplicity of this paradigm allows us to construct
highly efficient systems. However, the simplicity also prevents us from recording
anything but pseudonyms, hence, limiting the extension capability.

One method to enhance the aforementioned systems is to use re-randomizable
primitives (e.g., signature schemes) as in [33,37] and in our work. Concretely, a
user obtains a piece of authorized information (in most cases, a signature) from
her counterparty (in [37], the counterparty can be regarded as the user herself)
during a close contact, and then presents an updated (re-randomized) signature
to medical agencies when she is diagnosed. This approach achieves unlinkability
from the re-randomizability of the building blocks; and integrity from unforge-
ability. Previous works [33,37] consider semi-honest verifiers (medical agencies)

92 P. Wang et al.

who only approve valid signatures to extend the bulletin board, hence, preventing
the relay and replay attacks by requiring additionally the freshness of signatures.

Moreover, Wang et al. [37] demonstrate with the environmental-adaptive
framework that contact tracing systems can handle more useful information to
enhance tracing precision (as explained in AppendixA). Their drawback is that
users must reveal all attributes to verifiers during the tracing phase. We push
forward their idea of utilizing credential schemes and add selective showing capa-
bility to our system. Hence, users in our system only reveal what is necessary for
deciding close contacts without leaking any other information. However, exten-
sions come with associated costs: our system requires handshakes during BLE
scanning (same to [33]) and is built atop pairing-based primitives (same to [37]
and the third construction given in [13]).

Inherently shown in [1,13], where authors present various constructions of
contact tracing systems with varying levels of security and efficiency, the trade-
off among these requirements (security, extensibility, and efficiency) prevents
us from finding the ultimate solution for contact tracing. We argue that our
system is secure despite handling more sensitive data; is extensible to tackle new
epidemiology findings; and is efficient enough to be implemented in real life.

Organization. We organize the content as follows. First, we present the nec-
essary general building blocks and assumptions in Sect. 2. Section 3 formally
introduces our first contribution, i.e., an APK mechanism and an auditable
ABC scheme. We show constructions and give security proofs to these schemes.
Section 4 shows a construction for our refined EACT framework based on
auditable ABC, argues its security, and provides implementation results. Finally,
Sect. 5 concludes this work.

2 Preliminaries

Notation. Throughout this paper, we use λ for the security parameter and negl(·)
for the negligible function. PPT is short for probabilistic polynomial time. For an
integer q, [q] denotes the set {1, . . . , q}. Given a set A, x

$← A denotes that x is
randomly and uniformly sampled from A; whereas, for an algorithm Alg, x ← Alg
denotes that x is assigned the output of an algorithm Alg on fresh randomness.
Let Alg1,Alg2 be two algorithms, 〈Alg1,Alg2〉 denotes a potentially interactive
protocol between the two algorithms. Let H denote a collision-free hash function.
For an additive group G, G

∗ denotes G \ {0G}. For a set A ⊆ Zp, we refer to a

monic polynomial of order |A| defined over Zp[X], ChA(X) Δ= Πx∈A(X − x) =
∑|A|

i=0 ci · Xi as A’s characteristic polynomial.
We denote the asymmetric bilinear group generator as BG ← BGGen(1λ)

where BG
Δ= (p, G1, G2, GT , P1, P2, e). Here, G1, G2, GT are additive cyclic

groups of prime order p with �log2 p� = λ, P1, P2 are generators of G1, G2,
and e : G1 × G2 → GT is a type-3, i.e., efficiently computable non-degenerate
bilinear map with no efficiently computable isomorphism between G1 and G2.

Auditable ABC and Its Application in Contact Tracing 93

For an element a ∈ Zp and i ∈ {1, 2}, [a]i denotes aPi ∈ Gi as the representation
of a in group Gi. As mentioned in [17], for vectors or matrices A,B, the bilinear
map e computes e([A]1, [B]2) = [AB]T ∈ GT .

General Building Blocks and Assumptions. This work takes the black-
box use of three cryptographic primitives: (1) a digital signature scheme SIG

Δ=
(KGen,Sign,Verify) that satisfies correctness and existentially unforgeability
under adaptive chosen-message attacks (EUF-CMA) [28]; (2) a set-commitment
scheme SC

Δ= (Setup,Commit,Open,OpenSubset,VerifySubset) that satisfies cor-
rectness, binding, subset-soundness, and hiding [25]; (3) a zero-knowledge proofs
of knowledge (ZKPoK) protocol Π that satisfies completeness, perfect zero-
knowledge, and knowledge-soundness [23]. Due to page limitations, the formal
definitions of these primitives can be found in the corresponding reference.

Moreover, we assume the following assumptions hold over matrix distribu-
tion: the matrix decisional Diffie-Hellman (MDDH) assumption [21] and the ker-
nel matrix Diffie-Hellman (KerMDH) assumption [34]. We also assume the Diffie-
Hellman (DDH) assumption and the q-co-discrete-logarithm (q-co-DL) assump-
tion holds over bilinear groups.

Definition 1 (Matrix Distribution). Let l, k ∈ N with l > k. Dl,k is a
matrix distribution that outputs matrices in Z

l×k
p of full rank k in polynomial

time. We further denote Dk
Δ= Dk+1,k.

Let BGGen be the bilinear group generator that outputs BG = (p, G1, G2, GT ,
P1, P2, e) and Dl,k be a matrix distribution.

Definition 2 (Dl,k-MDDH Assumption). The Dl,k-MDDH assumption
holds in group Gi ∈ BG where i ∈ {1, 2, T} relative to BGGen, if for all

BG ← BGGen(1λ),A $← Dl,k,w $← Z
k
p,u $← Z

l
p and all PPT adversary A,

the following advantage is negligible of λ:

AdvMDDH
Dl,k,Gi

= |Pr[A(BG, [A]i, [Aw]i) = 1] − Pr[A(BG, [A]i, [u]i) = 1]|.

Definition 3 (Dl,k-KerMDH Assumption). The Dl,k-KerMDH assumption
holds in group Gi ∈ BG where i ∈ {1, 2} relative to BGGen, if for all BG ←
BGGen(1λ),A $← Dl,k and all PPT adversary A, the following advantage is
negligible of λ:

Pr[[x]3−i ← A(BG, [A]i]) : e([x�]3−i, [A]i) = [0]T ∧ x �= 0)].

Definition 4 (DDH Assumption). The DDH assumption holds in Gi ∈ BG

where i ∈ {1, 2} for BGGen, if for all BG ← BGGen(1λ), x, y, z
$← Zp and all

PPT adversary A, the following advantage is negligible of λ:

|Pr[A(BG, xPi, yPi, xyPi) = 1] − Pr[A(BG, xPi, yPi, zPi) = 1]|.

94 P. Wang et al.

Definition 5 (q-co-DL Assumption). The q-co-DL assumption holds for

BGGen, if for all BG ← BGGen(1λ), a $← Zp and all PPT adversary A, the
following advantage is negligible of λ:

Pr[a′ ← A(BG, ([aj]1, [aj]2)j∈[q] : a′ = a].

3 Auditable Attribute-Based Credentials Scheme

This section first presents an auditable public key (APK) mechanism, then an
APK-aided ABC scheme, which will be the main building block of our refined
environmental-adaptive contact tracing framework.

Conventionally, an attribute-based credentials (ABC) scheme involves three
types of participants: Issuer (also called organization), user, and verifier. An
issuer grants credentials to a user on the user’s attributes. The user can then
prove possession of credentials with respect to her attributes to verifiers. The
basic requirements of a secure ABC include correctness, anonymity, and unforge-
ability [25]. On a high level, correctness guarantees that verifiers always accept
the showing of a credential if the credential is issued honestly; Anonymity pre-
vents verifiers and (malicious) issuers (even by colluding) from identifying the
user or exposing information during a showing against the user’s will; Unforge-
ability requires that users (even by colluding) cannot perform a valid showing
of attributes if the users do not possess credentials for the attributes.

The recent specifications of decentralized identifiers and verifiable creden-
tials [32,35] refueled the interest of the community in researching ABC schemes.
New functionalities, as shown in Sect. 1, have been proposed to broaden the
application of ABC schemes. Abstracted from the demands of contact tracing
systems, we propose yet another functionality, i.e., the auditability, that enables
designated users to verify the particular issuer of a shown credential. In order
to present our scheme, we first introduce the notion of the auditable public key
(APK) mechanism that extends the updatable public key [22]. Then, we employ
APK and present our auditable ABC scheme.

3.1 Auditable Public Keys

Proposed in [22], the updatable public key mechanism is a generic tool that can
be integrated into many cryptographic primitives, e.g., digital signature and pub-
lic key encryption schemes. The mechanism enables public keys to be updated
in a public fashion, and updated public keys are indistinguishable from freshly
generated ones. The verification of public keys either requires the correspond-
ing secret key (verifying the key pair) or the randomness used in the updating
algorithm. However, these approaches are insufficient in multi-user cases, e.g., in
credentials schemes and contact tracing systems. The reasons are: (1) secret keys
should only be known to their holders; (2) asking the user who runs the updat-
ing algorithm to store its random value or keep the value secret may require
impractical assumptions (e.g., assuming every user to be honest).

Auditable ABC and Its Application in Contact Tracing 95

Therefore, we propose an APK mechanism to extend the updatable public
key by embedding a structure represented by an auditing key into public keys.
The structure enables designated third parties who hold the auditing key, the
auditors, to decide whether a public key is updated from the corresponding
public key of the auditing key. Moreover, we require that no auditor can learn
the corresponding secret key of its auditing key. Hence, we separate the role of
users, i.e., a user can delegate her capability of auditing to an auditor without
revealing the secret key, and a user who performs the updating algorithm can
discard her randomness without the concern of being asked to provide it.

The formal syntax and security definitions of APK are given in the following.
We recall and extend the definitions from [22].

Definition 6 (Auditable Public Key Mechanism). An auditable public key
(APK) mechanism involves a tuple of algorithms APK

Δ= (Setup,KGen,Update,
VerifyKP,VerifyAK,Audit) that are performed as follows.

– Setup(1λ) takes as input the security parameter λ and outputs the public
parameter pp that includes secret, public and auditing key space SK,PK,AK.
These are given implicitly as input to all other algorithms;

– KGen(pp) takes as input the public parameter pp and outputs a secret and
public key pair (sk, pk) ∈ SK×PK, and an auditing key ak ∈ AK. Later, we
omit pp in algorithm inputs;

– Update(pk; r) takes as input a public key pk and a randomness r. It outputs
a new public key pk′ ∈ PK;

– VerifyKP(sk, pk′, r) is deterministic, and takes as input a secret key sk ∈ SK,
a value r and a public key pk′ ∈ PK. It outputs 1 if pk′ ← Update(pk; r) given
(sk, pk, ·) ← KGen(pp), or 0 otherwise;

– VerifyAK(sk, ak) is deterministic, and takes as input a secret key sk ∈ SK and
an auditing key ak ∈ AK. It outputs 1 if (sk, ·, ak)←KGen(pp), or 0 otherwise;

– Audit(ak, pk′, pk) is deterministic and is performed by a designated auditor
who holds the auditing key ak ∈ AK of a secret and public key pair (sk, pk) ∈
SK×PK. Audit takes as input a public key pk′ ∈ PK, the auditing key ak and
the public key pk. It outputs 1 if pk′ is updated from pk, i.e., there exists r
such that pk′←Update(pk; r), or 0 otherwise.

APK mechanism satisfies correctness, indistinguishability, and unforgeability.

Definition 7 (Correctness). An APK mechanism satisfies perfect correctness
if the following properties hold for any λ > 0, pp ← Setup(1λ), and (sk, pk, ak) ←
KGen(pp): (1) the update process verifies, i.e., VerifyKP(sk,Update(pk; r), r) = 1;
(2) the auditing key verifies, i.e., VerifyAK(sk, ak) = 1; (3) the auditing process
verifies, i.e., Audit(ak, pk′, pk) = 1 for any pk′ ← Update(pk).

The indistinguishability of APK follows [22], i.e., no adversary can distin-
guish between an updated known public key and a freshly generated one. Note
that (also applies in unforgeability) the adversary can query to KGen and Update
since these algorithms are publicly available.

96 P. Wang et al.

Definition 8 (Indistinguishability). An APK mechanism satisfies indistin-
guishability if for any PPT adversary A, the following probability holds for any
λ > 0, pp ← Setup(1λ), and (sk∗, pk∗, ak∗) ← KGen(pp)

∣
∣
∣
∣
∣
∣
Pr

⎡

⎣
b

$← {0, 1}; pk0 ← Update(pk∗);
(sk1, pk1, ak1) ← KGen(pp); : b∗ = b
b∗ ← A(pk∗, pkb)

⎤

⎦ − 1
2

∣
∣
∣
∣
∣
∣
≤ negl(λ).

We formalize two types of unforgeability, i.e., for secret key and auditing key.
Concretely, the former requires that given an auditing key with its corresponding
public key, the adversary cannot produce a secret and public key pair, and a
randomness, such that: (1) the output public key is updated from the secret
key’s corresponding public key with respect to the randomness; (2) the output
secret key and the given auditing key pass the verification given by VerifyAK;
(3) the auditing key, the output public key and the given public key pass the
auditing given by Audit. This property captures adversarial auditors who hold
an auditing key and intend to recover the corresponding secret key. Hence, it
covers the one given in [22], in which the adversary is only given a public key.

Next, the auditing key unforgeability requires that given a public key, the
adversary cannot produce an auditing key such that the corresponding secret
key of the public key verifies the auditing key. This property captures adver-
sarial participants who intend to trigger the auditing algorithm to output 1 for
arbitrary public keys. The formal definitions are as follows.

Definition 9 (Secret Key Unforgeability). An APK mechanism satisfies
secret key unforgeability if for any PPT adversary A, the following probability
holds for any λ > 0, pp ← Setup(1λ), and (sk, pk, ak) ← KGen(pp)

Pr

⎡

⎣
VerifyKP(sk′, pk′, r) = 1∧

(sk′, pk′, r) ← A(ak, pk) : VerifyAK(sk′, ak) = 1∧
Audit(ak, pk′, pk) = 1

⎤

⎦ ≤ negl(λ).

Definition 10 (Auditing Key Unforgeability). An APK mechanism satis-
fies auditing key unforgeability if for any PPT adversary A, the following prob-
ability holds for any λ > 0, pp ← Setup(1λ), and (sk, pk, ak) ← KGen(pp)

Pr
[
ak′ ← A(pk) : VerifyAK(sk, ak′) = 1

] ≤ negl(λ).

For constructions, similar to the updatable public key [22], our APK can
be constructed from the DDH problem and its variants. Section 3.3 will show a
concrete construction based on the MDDH problem, which will further serve as
a building block for our auditable ABC scheme3.

3 We will also give a DDH-based construction in Appendix C. There, we show an
example that utilizes the DDH-based APK to extend the famous B(G)LS signature
scheme [7,8].

Auditable ABC and Its Application in Contact Tracing 97

3.2 Formal Definitions of Auditable ABC

The starting point of our auditable ABC is [25] which supports selective showing
on subsets of attributes. Then, we integrate APK by modifying the key genera-
tion algorithm of issuers and adding the auditing algorithm. Given a credential
showing, the auditing algorithm with an auditing key outputs 1 or 0 to indi-
cate whether the shown credential is issued by a secret key corresponding to the
auditing key. We show the formal syntax of auditable ABC in the following.

Definition 11 (Auditable ABC Scheme). An auditable ABC scheme AABC
consists of PPT algorithms (Setup,OrgKGen,UsrKGen), two potentially interac-
tive protocols 〈Obtain, Issue〉 and 〈Show,Verify〉, and a deterministic algorithm
Audit. The participants in AABC perform as follows.

– Setup(1λ, q) takes as input the security parameter λ and the size upper bound
q of attribute sets. It outputs the public parameter pp;

– OrgKGen(pp) is executed by issuers. OrgKGen takes as input the public param-
eter pp. It outputs an issuer-secret and issuer-public key pair (osk, opk) with
an auditing key ak. The issuer delegates ak to users (auditors) selected by
herself (if there is none, the issuer is the auditor);

– UsrKGen(pp) is executed by users. UsrKGen takes as input the public parameter
pp. It outputs a user-secret and user-public key pair (usk, upk). Later, we omit
pp in algorithm inputs;

– 〈Obtain(usk, opk, A), Issue(upk, osk, A)〉 are PPT algorithms executed between
a user and an issuer, respectively. Obtain takes as input the user-secret key
usk, the issuer-public key opk and an attribute set A of size |A| ≤ q; Issue takes
as input the user-public key upk, the issuer-secret key osk and the attribute
set A. Obtain returns cred on A to the user, and cred =⊥ if protocol execution
fails. The protocol outputs (cred, I) where I denotes the issuer’s transcript;

– 〈Show(opk, A,D, cred),Verify(D)〉 are executed between a user and a verifier,
respectively, where Show is a PPT algorithm, and Verify is deterministic. Show
takes as input an issuer-public key opk, an attribute set A of size |A| ≤ q, a
non-empty set D ⊆ A representing the attributes to be shown, and a credential
cred; Verify takes as input the set of shown attributes D. Verify returns 1
if the credential showing is accepted, or 0 otherwise. The protocol outputs
(S, b) where S denotes the showing (user’s transcript), and b ∈ {0, 1}. For
convenience, we also write b ← 〈Show,Verify〉(S);

– Audit(ak, S, opk) is executed by a designated auditor with an auditing key ak
such that corresponding issuer-key pair is (osk, opk). Audit also takes as input
a showing of credential (S, ·) ← 〈Show,Verify〉 and the issuer-public key opk.
It outputs 1 if the shown credential is issued with osk, or 0 otherwise.

In addition to the auditing process, we make two modifications to the ABC
scheme from [25]. First, we write protocol transcriptions of 〈Obtain, Issue〉 and
〈Show,Verify〉 explicitly in our syntax concerning that the application in con-
tact tracing may involve non-interactive proofs and require some transcripts to
be publicly accessible (Sect. 4.1). In contrast, the previous works [17,25] only
mentioned them in security definitions.

98 P. Wang et al.

Second, our Verify algorithm of 〈Show,Verify〉 takes as input only the attribute
sets to be shown. In contrast, the original scheme also takes the issuer-public key
opk of the Show algorithm. Their purpose is to prevent credentials from being
issued by unidentified issuers. However, as shown in [17], the exposure of the
issuer identity affects the users’ anonymity. Although some previous works [5,17]
proposed the issuer-hiding property so that users can hide their credential issuers’
identities within a list of identified issuers, achieving such security incurs heavy
mechanisms. Here, we rely on the Audit algorithm to provide an extra verification
layer. That is, given an updated issuer-public key in a credential showing, the
auditor who holds an auditing key corresponding to an identified public key must
prove whether the shown credential is issued by the corresponding secret key.

Security Properties. We formally define correctness, anonymity, and unforge-
ability (two types) for our auditable ABC scheme. Concretely, correctness
requires auditors to output 1 on any valid showing of credentials if the credential
was issued by the corresponding secret key of the auditing key. The unforgeabil-
ity game grants its adversary access to auditing keys. In the following, we omit
pp if the algorithm takes as input other variables.

Definition 12 (Correctness). An AABC scheme satisfies perfect correctness,
if the following properties hold for any λ > 0, q > 0, any non-empty sets
A,D such that |A| ≤ q and D ⊆ A, and pp ← Setup(1λ, q), (osk, opk, ak) ←
OrgKGen(pp), (usk, upk) ← UsrKGen(pp), (cred, ·) ← 〈Obtain(usk, opk, A), Issue(
upk, osk, A)〉: (1) the credential showing verifies, i.e., (·, 1) ← 〈Show(opk, A,D,
cred),Verify(D)〉; (2) if the credential showing is accepted, the auditing verifies,
i.e., Audit(ak, S, opk) = 1 for any (S, 1) ← 〈Show,Verify〉.

For anonymity and unforgeability, we follow the approach given by [25], in
which adversaries can corrupt some participants. We first introduce the following
lists and oracles to model the adversary.

Lists and Oracles. At the beginning of each experiment, either the experiment
generates the key tuple (osk, opk, ak), or the adversary outputs opk. The sets
HU,CU track all honest and corrupt users. We use the lists USK,UPK,CRED,
ATTR,OWNER to track user-secret keys, user-public keys, issued credentials with
the corresponding attribute sets, and the users who obtain the credentials. In
the anonymity games, we use JLoR, ILoR to store the issuance indices and the
corresponding users that have been set during the first query to the left-or-right
oracle. The adversary is required to guess a bit b.

Considering a PPT adversary A, the oracles are listed in the following. Note
that we add the OAudit oracle for the unforgeability experiment.

– OHU(i) takes as input a user index i. If i ∈ HU∪CU, the oracle returns ⊥; Oth-
erwise, it creates a new honest user i with (USK[i],UPK[i]) ← UsrKGen(pp)
and adds the user to the honest user list HU. It returns UPK[i] to the adver-
sary.

Auditable ABC and Its Application in Contact Tracing 99

– OCU(i, upk) takes as input i and (optionally) a user public key upk. If i ∈ CU
or i ∈ ILoR, the oracle returns ⊥; If i ∈ HU, it moves i from HU to CU and
returns USK[i] and CRED[j] for all j such that OWNER[j] = i; If i /∈ HU∪CU,
it adds i to CU and sets UPK[i] = upk.

– OObtIss(i, A) takes as input i and a set of attributes A. If i /∈ HU, the
oracle returns ⊥; Otherwise, it generates a credential with (cred,�) ←
〈Obtain(USK[i], opk, A), Issue(UPK[i], osk, A〉). If cred =⊥, the oracle returns
⊥; Otherwise, it adds (i, cred, A) to (OWNER,CRED,ATTR) and returns �.

– OObtain(i, A) takes as input i and A. If i /∈ HU, the oracle returns ⊥; Oth-
erwise, it runs (cred, ·) ← 〈Obtain(USK[i], opk, A), ·〉 by interacting with the
adversary A running Issue. If cred =⊥, the oracle returns ⊥; Otherwise, it
adds (i, cred, A) to (OWNER,CRED,ATTR) and returns �.

– OIssue(i, A) takes as input i and A. If i /∈ CU, the oracle returns ⊥; Otherwise,
it runs (·, I) ← 〈Obtain(USK[i], opk, A), ·〉 by interacting with the adversary
A running Obtain. If I =⊥, the oracle returns ⊥; Otherwise, it adds (i,⊥, A)
to (OWNER,CRED,ATTR) and returns �.

– OShow(j,D) takes in the index j and a set of attributes D. Let i =
OWNER[j], if i /∈ HU, the oracle returns ⊥; Otherwise, it runs (S, ·) ←
〈Show(opk,ATTR[j], D,CRED[j]), ·〉 by interacting with the adversary A run-
ning Verify.

– OAudit(S) is an oracle that holds public and auditing keys for all identi-
fied issuers. Given a showing transcript of a credential S, it runs b ←
〈Show,Verify〉(S). If there exists opk and ak pair such that Audit(ak, S, opk)=1,
the oracle returns (opk, b, 1) to the adversary; Otherwise, it returns ⊥.

– OLoR(j0, j1,D; b) takes as input two issuance indices j0, j1, a set of attributes

D and a challenge bit b
$← {0, 1}. If JLoR �= ∅ and JLoR �= {j0, j1}, the oracle

returns ⊥. Let i0 = OWNER[j0], i1 = OWNER[j1]. If JLoR = ∅, it sets JLoR =
{j0, j1}, ILoR = {i0, i1}. If i0, i1 /∈ HU or D � (ATTR[j0]∩ATTR[j1]), the oracle
returns ⊥; Otherwise, it runs (Sb, ·) ← 〈Show(opkb,ATTR[jb],D,CRED[jb]), ·〉
by interacting with the adversary A running Verify.

Then, the formal definitions are as follows.

Definition 13 (Anonymity). An AABC scheme satisfies anonymity if for
any PPT adversary A that has access to oracles O = {OHU,OCU,OObtIss,
OIssue,OShow,OLoR}, the following probability holds for any λ, q > 0, pp ←
Setup(1λ, q):

∣
∣
∣
∣
∣
∣
Pr

⎡

⎣
(opk0, opk1, st) ← A(pp);

b
$← {0, 1}; : b∗ = b

b∗ ← AO(st)

⎤

⎦ − 1
2

∣
∣
∣
∣
∣
∣
≤ negl(λ).

Note that we modify the Verify in 〈Show,Verify〉 so that it does not take
as input issuer-public keys. Hence, our anonymity also captures the indistin-
guishability of these keys. The definition above is arguably more close to the
unlinkability from [5] because the OLoR oracle runs the Show algorithm with

opkb according to the challenge bit b
$← {0, 1}.

100 P. Wang et al.

Definition 14 (Unforgeability). An AABC scheme satisfies unforgeability,
if for any PPT adversary A that has access to oracles O = {OHU,OCU,
OObtIss,OIssue,OShow,OAudit}, the following probability holds for any λ > 0, q >
0, pp ← Setup(1λ, q), and (osk, opk, ak) ← OrgKGen(pp)

Pr
[

(D, st) ← AO(opk, ak); : b = 1 ∧ If OWNER[j]∈CU,
(S, b) ← 〈A(st),Verify(D)〉 D/∈ATTR[j]

]

≤ negl(λ).

Like APK, unforgeability regarding to auditing keys is needed. A user should
not recover the auditing key of a given public key even after querying the auditing
oracles on other key tuples for polynomial times. Since the adversary can run
key generation on its own in APK, the auditing unforgeability of auditable ABC
is equivalent to the auditing key unforgeability in Definition 10.

3.3 Our Constructions and Analysis

Our auditable ABC construction has the same approach of [17], relying on
a structure-preserving signatures on equivalence classes (SPS-EQ) and a set-
commit schemes. We extend their ABC construction with our APK mechanism.

An MDDH-Based APK Construction. In order to work with the ABC
scheme (precisely, the SPS-EQ) given in [17], the setup algorithm Setup runs

BG ← BGGen(1λ) and samples a matrix A $← D1. It outputs pp
Δ= (BG, [A]2, �)

where BG = (p, G1, G2, GT , P1, P2, e), and � is a parameter for message size in
the SPS-EQ. We present a construction of APK based on group (G2, P2, p) where
the MDDH and KerMDH assumptions are believed to hold.

Construction 1 (MDDH-Based APK APK). The rest of the algorithms
are:

– KGen(pp): Sample matrices K0
$← D�,2 and K1

$← Z
2×2
p of full rank 2. Set

K = K0K1. Then, compute [B]2 = [K1A]2 and [C]2 = [KA]2. Finally, set
sk = (K1,K), pk = ([B]2, [C]2), ak = K0 and output (sk, pk, ak);

– Update(pk; r): Sample r
$← Zp and compute [B′]2 = r · [B]2, [C′]2 = r · [C]2.

Output pk′ = ([B′]2, [C′]2);
– VerifyKP(sk, pk′, r): Parse sk = (sk0, sk1) and pk′ = (pk′

0, pk
′
1). Output 1 if

pk′
0 = r · sk0 · [A]2 ∧ pk′

1 = r · sk1 · [A]2, or 0 otherwise;
– VerifyAK(sk, ak): Parse sk = (sk0, sk1). Output 1 if sk1 = ak · sk0, or 0 other-

wise;
– Audit(ak, pk′, pk): Parse pk′ = (pk′

0, pk
′
1), pk = (pk0, pk1). Output 1 if pk1 =

ak · pk0 ∧ pk′
1 = ak · pk′

0, or 0 otherwise.

Hence, we have the following theorem.

Theorem 1. The APK mechanism APK given by Construction 1 satisfies the
following properties.

Auditable ABC and Its Application in Contact Tracing 101

– Correctness (Definition 7);
– Indistinguishability (Definition 8) if the Dl,1-MDDH assumption where l ∈

{2, �} holds on G2;
– Secret key and auditing key unforgeability (Definition 9 and 10) if the D1-

KerMDH holds on G2.

Proof. On the additive cyclic group G2, APK correctness can be yielded directly
from our construction. To prove indistinguishability, let pp ← Setup(1λ) where
pp = (BG, [A]2, �) are given as above. The reduction receives an MDDH challenge

over G2, chl = (P2, [X]2, [z]2) where X $← Dl,1. According the challenge bit b ∈
{0, 1}, z is set to Xy with y

$← Zp (when b = 0) or z $← Z
l
p (when b = 1). l takes

its value from {2, �} because the two components in a public key, [B]2 and [C]2,
are matrices of size 2×1 and �×1, respectively. Note that the reduction needs
to prepare both components of the public key. That is, it samples a full-ranked
X′ $← Z

l′×l
p such that l′ ∈ {2, �} ∧ l′ �= l, and embeds the MDDH challenge chl

by setting pk∗ Δ= ([X]2,X′[X]2) and pk′ Δ= ([z]2,X′[z]2). The indistinguishability
adversary A takes as input (pk∗, pk′). If the challenge tuple satisfies [z]2 = [Xy]2
(when b = 0), then pk′ is distributed identically to pk0 (pk0 ← Update(pk∗),
the adversary will output b∗ = 0). Otherwise (when b = 1), pk′ is distributed
identically to pk1 (a freshly generated public key, the adversary outputs b∗ = 1).
Therefore, the reduction has the same advantage in the Dl,1-MDDH (l ∈ {2, �})
game as the adversary in the indistinguishability game of Definition 8.

The proofs of two types of unforgeability are similar. For secret key unforge-
ability, the reduction receives a KerMDH challenge over G2, chl = (P2, [A]2)

where A $← D1. The reduction prepares the inputs for the unforgeability adver-
sary A. That is, it samples K0

$← D�,2 and K1
$← Z

2×2
p of full rank 2. Then, let

[X]2 = [K1A]2, the reduction embeds the challenge chl by setting ak
Δ= K0 and

pk
Δ= ([X]2, [K0X]2). Hence, the input to the adversary in the reduction is dis-

tributed identically as in the definition of unforgeability. Suppose the adversary
A breaks secret key unforgeability, which means that VerifyKP,VerifyAK,Audit
verify the output tuple (sk′, pk′, r). More precisely, parse sk′ = (sk′

0, sk
′
1), it holds

that sk′
0[A]2 = [X]2 = [K1A]2 and sk′

1[A]2 = [K0X]2. If the adversary can
find a non-zero vector sk′

0 − K1 in the kernel of A, it can break the secret key
unforgeability. However, finding sk′

0 is equivalent to solving a D1-KerMDH prob-
lem (with sk′

0, the reduction outputs [sk′
0 − K1]1 to the KerMDH challenge and

e([sk′
0 − K1]1, [A]2) = [0]T). Thus, the reduction advantage in the D1-KerMDH

game is the same as the adversary in the secret key unforgeability game.
Similarly, the auditing key unforgeability reduction receives a KerMDH chal-

lenge over G2, chl = (P2, [X]2) where X ∈ D1. The reduction samples K0 ∈ Z
�×2
p

of full rank 2 and relays (P2, [X]2, [K0X]2) to the adversary. Hence, the input

102 P. Wang et al.

of the adversary, i.e., pk = ([X]2, [K0X]2), distributes identically to the defini-
tion. Suppose the adversary A breaks auditing key unforgeability, which means
it finds ak′ such that VerifyAK(sk, ak′) = 1. Note that although the reduction
cannot prepare the corresponding secret key, the structure preserves in the pub-
lic key, i.e., the adversary must output a non-zero ak′ − K0 in the kernel of X.
As explained before, the reduction cannot gain advantages in the D1-KerMDH
game by invoking the auditing key unforgeability adversary.

An Auditable ABC Construction. Before we present the full construction
of our auditable ABC scheme, we first recall briefly the SPS-EQ scheme from [17]
(the construction and security definitions can be found in AppendixB). We will
note that the key generation in their construction differs from our APK.KGen.
Hence, by further proving that the change only incurs slightly more advantage to
the adversary in the original scheme, we show that our modification preserves the
security definitions of the SPS-EQ. Moreover, as proven before, our modification
also satisfies the security of the APK mechanism.

Extending the SPS-EQ [17]. We show the original key generation of the SPS-EQ
in the following. Recall that the Setup algorithm outputs pp = (BG, [A]2, �).

– SPSEQ.KGen(pp): Sample matrices K1
$← Z

2×2
p and K $← D�,2 of full rank

2. Then, compute [B]2 = [K1A]2 and [C]2 = [KA]2. Finally, set sk = (K1,
K), pk = ([B]2, [C]2) and output (sk, pk).

The only difference here is that we further sample K0
$← D�,2 of full rank 2

and compute K by the multiplication of K0 and K1. In the following lemma,
we show that this change only increases the SPS-EQ adversary’s advantage by
at most the advantage of solving a D�,2-MDDH problem over G2.

Lemma 1. Replacing SPSEQ.KGen with APK.KGen in the SPSEQ scheme given
in Construction 4 (AppendixB) preserves the correctness, EUF-CMA and perfect
adaption of signatures with respect to message space of the original scheme.

Proof. Correctness is straightforward as proven in Theorem1. We unify the
proofs of EUF-CMA and perfect adaption of signatures with respect to mes-
sage space by considering a sequence of two games: Game1 is the EUF-CMA
and perfect adaption of signatures with respect to message space games for
the original SPS-EQ scheme with SPSEQ.KGen given in Definition 18 and 19
(in AppendixB); and Game0 substitutes SPSEQ.KGen with our APK mecha-
nism’s APK.KGen. Hence, Game0 is the game for our modified scheme. We fur-
ther denote the adversary A’s advantage with Advi for each game Gamei where
∈ {0, 1}. In the transition of Game0 → Game1, pkGame1 = ([K1A]2, [KGame1A]2)
replaces pkGame0 = ([K1A]2, [K0K1A]2). Note that all matrices are of full rank
2, hence, distinguishing pkGame1 and pkGame0 is equivalent to solve a challenge

Auditable ABC and Its Application in Contact Tracing 103

of D�,2-MDDH problem (because KGame1 is an �×2 matrix of full rank 2). That
is, |Adv0 − Adv1| ≤ AdvMDDH

D�,2,G2
. Moreover, as shown in [17], the original SPS-EQ

scheme satisfies EUF-CMA and perfect adaption of signatures with respect to
message space. We conclude Lemma 1.

Constructing the Auditable ABC. Let BGGen be the bilinear group gen-
eration, SC = (Setup,Commit,Open,OpenSubset,VerifySubset) be the set-
commitment [25] that satisfies correctness, binding, subset-soundness and hid-
ing, and Π be a general ZKPoK protocol that satisfies completeness, perfect
zero-knowledge and knowledge-soundness. With the necessary algorithms from
our APK mechanism and the SPS-EQ [17], i.e., (KGen,Update,Audit)∈APK and
(Setup,Sign,ChgRep,Verify)∈SPSEQ, we show an auditable ABC AABC in the
following. Note that the SPS-EQ scheme [17] utilizes a non-interactive zero-
knowledge argument (which we take as a black-box) under the common reference
string (CRS) model.

Construction 2 (Auditable ABC AABC). The algorithms are as follows.

– Setup(1λ, q): Run BG←BGGen(1λ) where BG = (p, G1, G2, GT , P1, P2, e).

Sample a
$← Z

∗
p and compute ([ai]1, [ai]2)i∈[q]. Sample matrices

[A]2, [A0]1, [A1]1
$← D1, and a common reference string crs for SPSEQ. Out-

put pp = (BG, ([ai]1, [ai]2)i∈[q], ([A]2, [A0]1, [A1]1), crs, � = 3);
– OrgKGen(pp): Output (osk, opk, ak) ← APK.KGen(BG, [A]2, �) and delegate ak

to auditors selected by the issuer;
– UsrKGen(pp): Sample usk

$← Z
∗
p and output (usk, upk = uskP1);

– 〈Obtain, Issue〉 and 〈Show,Verify〉: See Fig. 1. In 〈Obtain, Issue〉, following the
arguments in [17], we consider malicious issuer-keys and user-keys. Hence,
both the issuer and the user should run a ZKPoK protocol to prove their
public keys to each other, i.e., Πosk(opk) and Πusk(upk) in Fig. 1; Whereas, in
〈Show,Verify〉, the ZKPoK protocol, i.e., (π1, π2, π3)←Π(C,rC,P1)(C1, C2, C3),
proves freshness to prevent transcripts of valid showings from being replayed
by someone not in possession of the credential [25];

– Audit(ak, S, opk): Parse S = (opk′, cred′,W ;D). Return
APK.Audit(ak, opk′, opk).

104 P. Wang et al.

Fig. 1. 〈Obtain, Issue〉, 〈Show,Verify〉 in AABC.

Therefore, we have the following result.

Theorem 2. The auditable ABC scheme AABC given by Construction 2 satis-
fies the following properties.

– Correctness (Definition 12);
– Anonymity (Definition 13) if the DDH assumption holds, the ZKPoK protocol

has perfect zero-knowledge, the underlying APK satisfies indistinguishability
and auditing key unforgeability, and the SPS-EQ scheme perfectly adapts sig-
natures with respect to message space;

– Unforgeability (Definition 14) if the q-co-DL assumption holds, the ZKPoK
protocol has perfect zero-knowledge, the set-commitment scheme SC satisfies
subset-soundness, the APK satisfies secret key unforgeability, and SPS-EQ
satisfies EUF-CMA;

Auditable ABC and Its Application in Contact Tracing 105

– Auditing unforgeability (Definition 10) if the D1-KerMDH holds on G2.

Proof. We show a brief proof here. Correctness follows directly from the correct-
ness of building blocks. From now, we describe the proof rationale for anonymity,
unforgeability, and auditing unforgeability properties, respectively. In general, we
rely on [17] (Theorem 6 and 7) for properties of the ABC scheme and Theorem1
for the APK part of our construction.

The proof for anonymity (Definition 13) is an adaptation of the one given
in Theorem 7 of [17]. Note there are two slight modifications to the anonymity
definition in our work: (1) the adversary in the anonymity game generates two
issuer-public keys (opk0, opk1); (2) the challenge oracle OLoR requires the adver-
sary also to distinguish under which issuer-public key is the credential issued.
To adjust the previous proof for these modifications, we first consider the two
issuer-public keys (opk0, opk1) and the updated issuer-public key in the creden-
tial showing, i.e., opk′

b ← APK.Update(opkb) where b ∈ {0, 1} is the challenge bit
in OLoR. The adversary can win our introduced anonymity game if: (1) it can dis-
tinguish opk′

0 from opk′
1, then, the adversary can also win the indistinguishability

game of the APK mechanism given in Definition 8; (2) it can recover the corre-
sponding auditing keys (ak0, ak1) from the issuer-public keys (hence, winning the
anonymity game trivially by running APK.Audit(ak∗

b , opk
′
b, opkb)), which means

the adversary wins the auditing key unforgeability game of the APK mechanism
given in Definition 10. However, since the aforementioned APK properties have
been proven in Theorem 1, our defined anonymity adversary gains no advantage
over the anonymity adversary of [17].

Next, by the proof in [17], the anonymity of ABC requires that the DDH
assumption holds, the ZKPoK protocol has perfect zero-knowledge (which is
taken as a black-box in this work), and the SPS-EQ perfectly adapts signatures
with respect to message space (which has been proven in Lemma 1), thus we
conclude the anonymity part for our auditable ABC scheme.

Similarly, our proof of unforgeability (Definition 14) adapts the one given in
Theorem 6 of [17]. The only modification we make is that the unforgeability
game provides its adversary with auditing keys. With additional auditing keys,
the adversary can win the unforgeability game if it can recover the secret key of
the underlying APK mechanism, which violates the secret key unforgeability of
APK as proven in Theorem1. Then, by the proof in [17], the unforgeability of
ABC requires that the q-co-DL assumption holds, the ZKPoK protocol has per-
fect zero-knowledge, the set-commitment scheme SC satisfies subset-soundness
(which is also taken as a black-box in this work), and SPS-EQ satisfies EUF-
CMA (which has been proven in Lemma 1), thus we conclude unforgeability for
our auditable ABC scheme.

Finally, for the auditing unforgeability property, the adversary in the auditing
unforgeability game aims to recover the issuer-public key’s corresponding audit-
ing key. Hence, the definition is equivalent to the auditing key unforgeability of
APK (we use the same definition), which has been proven in Theorem 1.

106 P. Wang et al.

4 Application: Contact Tracing

From the perspective of credentials, we review the environmental-adaptive con-
tact tracing (EACT) framework proposed in [37]. We provide a construction
based on our auditable ABC scheme and argue that the game-based security
definitions of auditable ABC suffice the requirements in contact tracing systems.
Finally, we implement our construction to showcase its practicality.

Overview. We start by recalling the EACT framework [37]. It utilizes a bulletin
board to store contact records, which can be instantiated by a blockchain pro-
tocol satisfying the robust ledger properties [26], i.e., the capability of achieving
immutable consensus atomically. Concerning different virus transmission modes
(droplet and airborne), EACT considered tracing approaches via Bluetooth Low
Energy (BLE) and self-reported discrete location (DLT). However, the frame-
work cannot unify the tracing approach in both settings because the recorded
data are of different structures. As we will show later, ABC schemes enable us
to circumvent this problem by regarding environmental and location data as
attributes. Here, for completeness, we define a comparison algorithm to decide
close contacts for BLE and DLT, i.e., Compare{BLE,DLT}(envpp,D,A) takes as
input the environmental parameters envpp, an opened attributed set D (from
other users, potentially downloaded from the bulletin board) and an attribute set
A (of the user who runs the algorithm). We say the algorithm is “well-defined” if
it outputs 1 when attributes in D and A are regarded as close contact concerning
the tracing setting in {BLE,DLT}, and 0 otherwise.

The EACT framework involves three phases: key management, recording, and
tracing, with two types of participants: user U and medical agency M. We refine
the algorithms with respect to our auditable ABC scheme. Intuitively, in the key
management phase, users generate key pairs for participating as both issuers and
regular users. The medical agency generates its key pair from a signature scheme.
Users need to register their issuer-public keys, and medical agencies need to
register their public keys. Then, in the recording phase, when users contact (two
users in BLE or one user in DLT), we consider a pairwise executed 〈Obtain, Issue〉,
i.e., each user performs as an ABC issuer to grant its counterparty (itself in DLT)
a credential on the attributes of current environmental data (or location data).
This approach in the DLT setting can be easily adapted to the case in which the
user can communicate to BLE beacons, providing additional evidence for the
user’s location data. Finally, in the tracing phase, whenever a user searches for
medical treatment, she shows her records while the agency performs verification.
The medical agency uploads records to the bulletin board (as we will show in
tracing-soundness (Definition 16), we assume a malicious agency who can upload
invalid records). Hence, users can refer to the bulletin board and audit if any
shown credential is issued by themselves. Then, by comparing the environmental
factors, they can detect close contact. The following section presents the full
construction, including our modifications to the original framework.

Auditable ABC and Its Application in Contact Tracing 107

4.1 An Auditable ABC-Based Construction

Let SIG = (KGen,Sign,Verify) be a signature scheme that satisfies correctness
and EUF-CMA, and let AABC be our auditable ABC construction given in
Construction 2.

Construction 3 (Refined EACT REACT). Our refined EACT frame-
work involves three phases, i.e., Key management: (Setup,OrgKGen,UsrKGen,
MedKGen,KReg); Recording: Exchange; Tracing: (〈Show,Verify〉,Merge,Trace).
The algorithms are performed as follows.

– Setup(1λ, q, envpp) is run by the system where envpp denotes the environ-
mental parameters. It runs AABC.pp ← AABC.Setup(1λ, q) and outputs
pp = (AABC.pp, envpp).

– OrgKGen(pp) is run by a user and outputs (osk, opk, ak) ← AABC.
OrgKGen(pp). Note that in contact tracing, we consider the user auditing
for herself;

– UsrKGen(pp) is run by a user and outputs (usk, upk) ← AABC.UsrKGen(pp);
– MedKGen(pp) is run by a medical agency. It outputs a medical agent key pair

with (msk,mpk) ← SIG.KGen(1λ). Later, we omit pp in algorithm inputs;
– KReg(pk,misc, B) is a DID [35] black-box, which takes as input a public key

pk ∈ {opk,mpk}, auxiliary information misc, and a bulletin board B. KReg
registers pk with the corresponding misc on B.

– Exchange({(oski, opki), (uski, upki), Ai}i∈{0,1}) is an interactive protocol exe-
cuted between two users U0,U1, who may be identical, e.g., in the DLT setting.
For i ∈ {0, 1}, both users perform (credi, ·) ← 〈Obtain(uski, opk1−i, Ai), Issue(
upki, osk1−i, Ai)〉 to grant each other a credential. The protocol outputs cred0
and cred1 for each user, respectively.

– 〈Show,Verify〉 is the showing and verification protocol in our auditable ABC,
which here, is executed between a user U and a medical agency M. The pro-
tocol outputs (S, b) ← AABC.〈Show,Verify〉 where S is a showing of the cre-
dential and b ∈ {0, 1}. Note that we explicitly add revealed attributes to S,
i.e., S

Δ= (opk′, cred′,W,D). Moreover, we enable this protocol to process in
batches, i.e., it can take a list of n credentials and verifies for each entry;

– Merge(msk, (S, b), B) is run by a medical agency M. If b = 1, Merge runs
σ ← SIG.Sign(msk, S) and outputs B||(mpk, S, σ), or aborts otherwise;

– Trace(ak, A, B) is run by a user U with issuer-public and auditing keys opk, ak.
It parses B = {(mpkj , Sj , σj)}j∈[|B|], and for each entry, parses Sj = (opk′

j ,

cred′
j ,Wj ,Dj). Then, for each entry, it runs b ← SIG.Verify(mpkj , Sj , σj),

and b′ ← AABC.Audit(ak, Sj , opk) (which is APK.Audit(ak, opk′
j , opk)). For

all j∈[|B|] such that b = 1∧b′ = 1, it compares according to environmental
parameters and tracing settings, i.e., bj ← Compare{BLE,DLT}(envpp,Dj , A).
If there exists any j that satisfies bj = 1, Trace outputs 1; Otherwise, it
outputs 0.

108 P. Wang et al.

4.2 Security and Analysis

We directly employ the cryptographic game-based security definitions from our
auditable ABC scheme given in Sect. 3.2, including correctness, anonymity, and
unforgeability. Moreover, we consider two separate properties for tracing, i.e.,
traceability and tracing-soundness. At the end of this section, we will compare
our ABC-based security definitions to the ones in [18].

The refined EACT requires signatures from medical agencies in Merge and
on the bulletin board B (satisfying robust ledger properties [26]). Hence, we first
formalize the tracing process correctness to capture these new requirements.

Definition 15 (Traceability). Given the bulletin board B, a REACT system
satisfies traceability, if for any λ > 0, q > 0, any non-empty sets A with |A| ≤ q,

and for any honest user U with a key tuple (osk, opk, ak) $← OrgKGen(pp) where
pp ← Setup(1λ, 1q), if there exists (mpk, S, σ) ∈ B such that 〈Show,Verify〉(S) =
1, SIG.Verify(mpk, S, σ) = 1, D ∈ S such that Compare{BLE,DLT}(envpp,D,A) =
1, then Pr[Trace(ak, A, B) = 1] = 1 where A is the attribute set of U when she
issues the credential being shown in S.

Then, we have the following lemma.

Lemma 2. Let the bulletin board satisfy the robust ledger properties [26]. The
refined EACT REACT given by Construction 3 satisfies traceability if AABC and
SIG satisfy correctness, and the Compare algorithm is well-defined.

The proof follows directly from the correctness of AABC and SIG, and the
well-defined comparing algorithm Compare{BLE,DLT}(envpp, ·, ·). Moreover, we
require the bulletin board to satisfy the robust ledger properties [26] so that any
entry on it cannot be erased or modified after a period of time.

Next, we consider the soundness of tracing, i.e., the situation in which an
honest user’s Trace outputs 1 falsely. The PPT adversary A either: (1) forges
a valid credential on behalf of honest users; or (2) colludes with a malicious
medical agency so that arbitrary showings can be uploaded to the bulletin board.
The first case has been captured by our unforgeability game in the auditable
ABC scheme (Definition 14) with additional assumptions for the bulletin board,
signature scheme, and comparing algorithm (like in Lemma2).

However, the second one is dedicated to contact tracing. The reason lies in
the different use cases, i.e., in auditable ABC, auditors audit credential show-
ings on behalf of the original issuer, hence, triggering the auditing algorithm of
another auditor gains the adversary no benefits; whereas, in contact tracing, it
will cause false positive errors to the original issuer. In order to prevent such
an attack, we require the proof in AABC.〈Show,Verify〉 to be non-interactive.
Concretely, since our bulletin board is instantiated by a blockchain, users can
apply the Fiat-Shamir transformation on the head block of the blockchain, i.e.,
embedding the hash of the blockchain’s head block into their proof. Note that
this approach also guarantees the freshness of the proof that prevents the relay
and replay attacks [16]. This is because the adversary cannot guess the head of
the blockchain priorly due to the security of blockchain protocols.

Auditable ABC and Its Application in Contact Tracing 109

As shown in Theorem 2, the anonymity and unforgeability of AABC (also
for REACT in Theorem 3) requires perfect zero-knowledge of Π. Hence, we must
rely on heavy mechanisms, e.g., [29], to make such a protocol non-interactive. An
alternative way is to prove these theorems with computational zero-knowledge
with a looser security reduction. The transformation to a non-interactive pro-
tocol with computational zero-knowledge can be achieved with the Fiat-Shamir
heuristic [24] to trade security tightness for efficiency. Then, the showing of a
credential becomes publicly verifiable so that even if a malicious medical agency
falsely uploads credential showings to the bulletin board, every user (including
the one who runs Trace) can verify the showing.

Compared to the unforgeability of auditable ABC in Definition 14, due to
the malicious AM setting, tracing-soundness removes the requirement of b = 1
(the credential showing can be invalid) but embeds the proof of freshness (the
showing must be presented at most once). We formally define tracing-soundness
(with respect to malicious AM).

Definition 16 (Tracing-Soundness). Given the bulletin board B, a REACT
system satisfies tracing-soundness (with respect to malicious AM), if for any
PPT adversary A that has access to oracles O = {OHU,OCU,OObtIss,OIssue,
OShow,OAudit}, the following probability holds for any λ > 0, q > 0, pp ←
Setup(1λ, q, envpp), and (osk, opk, ak) ← OrgKGen(pp):

Pr
[

(D, st) ← AO(opk, ak); Trace(ak, ·, (S, π)) = 1∧
((S, π), b) ← 〈A(st),Verify(D)〉 : If OWNER[j]∈CU,D/∈ATTR[j]

]

≤ negl(λ),

where π = (π1, π2, π3) ← Π(C,rC,P1)(C1, C2, C3), and the variables are given in
Fig. 1 of auditable ABC construction.

Finally, we have the following theorem.

Theorem 3. Our refined EACT REACT satisfies correctness, anonymity,
unforgeability, traceability, and tracing-soundness (with respect to malicious
AM).

Proof. The proofs of correctness, anonymity, and unforgeability follow directly
from the underlying auditable ABC scheme, which has been given in Theorem 2.
Traceability has been captured by Lemma 2. Hence, we only show the proof of
tracing-soundness with respect to malicious AM.

Let (mpk, (S, π)σ) ∈ B be an entry stored on the bulletin board that triggers
an honest user’s tracing algorithm, i.e., Trace(ak, A, (mpk, (S, π), σ)) = 1. Here,
ak and A are the user’s auditing key and attribute set when issuing the shown
credential; whereas, mpk and σ are the public key and signature of the malicious
AM. Now, we consider the adversary’s outputs, ((S, π), b) ← 〈A(st),Verify(D)〉.
By traceability (Lemma 2), if b = 1, then the Trace algorithm will output 1. How-
ever, by the unforgeability of the underlying auditable ABC, the probability of
the adversary outputting b = 1 is negligible of λ. In contrast, since we assume the
medical agency AM to be malicious, it may approve invalid showing transcripts,
i.e., b = 0, to be uploaded to the bulletin board. However, as discussed above,

110 P. Wang et al.

the non-interactive proof π enhanced the showing transcript S to be publicly
verifiable (freshness and validity). Hence, the user who runs Trace can reproduce
b′ ← 〈Show,Verify〉(S, π) on herself. Considering the situation where b = 0, we
should have b′ = 0. Therefore, Trace will also output 0, i.e., the adversary fails
to break tracing-soundness even if it colludes with a malicious medical agency.

Comparison with Existing Game-Based Security Definitions in [18].
The authors consider unlinkability and integrity. The former requires the adver-
sary to distinguish two given pseudonyms, and the latter focuses on the false
positive attack, i.e., the adversary tries to trigger an honest user’s tracing algo-
rithm to output 1. Given the differences in syntax (their model [18] only considers
pseudonyms; whereas, our system considers showing of credentials), we compare
our definitions with theirs as follows.

Concretely, the unlinkability in [18] is further separated into pseudonym
unlinkability (during the recording phase in which other users’ pseudonyms
are stored locally) and trace unlinkability (during the tracing phase in which
recorded pseudonyms become publicly available). In comparison, the anonymity
of our auditable ABC schemes (Definition 13) guarantees that no adversary can
distinguish any two credential showings (similar to the revealed pseudonyms
in trace unlinkability), even when the adversary has full control over issuing
the challenge credentials. Note that the adversary can control issuer-public keys
but not the corresponding auditing keys (this is guaranteed by the auditing key
unforgeability of the underlying APK mechanism). Otherwise, it can trivially win
the anonymity game by auditing the updated public keys in credential showings
(as we explained in the proof of Theorem 2). Moreover, user-public keys (sim-
ilar to the pseudonyms in [18]) are generated with AABC.UsrKGen, which are
distributed uniformly on G1 (since usk is sampled uniformly at random from
Z

∗
p). Hence, no adversary, as in the pseudonym unlinkability game, can distin-

guish any two distinct user-public keys in our system. Therefore, our anonymity
captures both of the unlinkability definitions.

Next, the integrity in [18] provides its adversary with oracles to: (1) cre-
ate new users; (2) generate, record, and send pseudonyms (during the recording
phase, similar to credentials in our system); (3) generate and upload pseudonyms
for tracing (during tracing phase, similar to our credential showings); (4) set
time periods. In comparison, our tracing-soundness (Definition 16) provides sim-
ilar oracle accessibility to the adversary, i.e., (1) create new users; (2) issue and
obtain credentials (contact records); (3) show credentials and upload the show-
ing. Hence, it resembles the integrity in [18] except for the oracle that sets time
for the adversary (this is because our system model is not period-specific like
the one in [18]).

4.3 Implementation

We provide a proof-of-concept implementation for the refined EACT construc-
tion to prove its practicality on mobile devices with comparatively limited perfor-
mance. The implementation uses Java/Kotlin for the raw Android environment.

Auditable ABC and Its Application in Contact Tracing 111

However, we also implement necessary functions since the Java Pairing-Based
Cryptography (jPBC) library [14] cannot fully support matrix-based bilinear
pairing operations. The library-level implementation, together with extended
parts for jPBC [14] library, can also be found in our anonymous repository
(https://anonymous.4open.science/r/EAHT MODULE TEST).

Overall, we implement the following algorithms (Setup,OrgKGen,UsrKGen,
Exchange) ∈ REACT. Moreover, in Exchange, we need to measure the perfor-
mance of algorithms and transmission (which is written in the form of Transmit(·)
for simplicity), separately. Hence, we further divide Exchange into (Obtain-1,
Transmit1,AABC.Issue,Transmit2,Obtain-2). The results are shown in Table 1.

Table 1. Experiment Results (Time in milliseconds)

Algorithms Time Algorithms Time Algorithms Time

Setup 168.99 Obtain-1 40.08 Transmit(σ, τ) 75.16

OrgKGen 54.18 Transmit(π, C, R) 38.32 Obtain-2 164.81

UsrKGen 9.05 AABC.Issue 257.50 GenProof 0.26

Experiment device: Samsung SM-S9080 Android 12, Bluetooth 5.0 (Blue-
tooth Low Energy); Time consumption is presented in milliseconds and cal-
culated with the average of 100 attempts.

Setup and OrgKGen are performance-insensitive because they only need to
be executed once. We implement them merely to support other algorithms.
Although we do not require user key pairs to be renewed once per contact,
UsrKGen should be run periodically (e.g., once per hour) to prevent a user’s com-
plete track under its public key from being exposed. We leave the setting of the
renewal interval for real-life users to decide. Finally, for Exchange, we consider the
performance of AABC.Obtain = (Obtain-1,Obtain-2), AABC.Issue and the time
cost of data transmission, i.e., Transmit(π,C,R) and Transmit(σ, τ). A one-sided
round trip, e.g., U0 issuing a credential to U1 is performed with (U0.Obtain-1 −→
U0.Transmit(π,C,R) −→ U1.Issue −→ U1.Transmit(σ, τ) −→ U0.Obtain-2) takes
approximately 575.87 milliseconds in total. Consider the worst case, e.g., when
a crowded train is filled with 101 users. Each of them needs to Exchange with
the other 100, hence, taking approximately 57.6 s to finish the execution and
transmission. We consider this result to be reasonable and plausible.

5 Conclusion

Motivated by the contact tracing new requirements, we adopt a novel approach
from ABC schemes due to their similarity. By abstracting “traceability” in con-
tact tracing systems, we propose an auditable public key (APK) mechanism
that, like its predecessor, the updatable public keys can be applied in many
cryptographic primitives, making it of independent interest.

https://anonymous.4open.science/r/EAHT_MODULE_TEST

112 P. Wang et al.

Next, we extend the ABC schemes in [17,25] with our APK mechanism to
port the auditability to the world of ABC. Such property enables auditors, del-
egated by an issuer, to audit if a shown credential is issued by the issuer. We
argue that it adds an additional layer of accountability to the schemes in which
credential showings can hide issuer identities. The capability of hiding issuer
identities is usually considered an overpowerful anonymity property in real- life.
The auditability for identifying issuers may also help credential revocation, which
has been another long-worried problem of credentials schemes.

Finally, our refined EACT framework fixes the problems in the original
work [37], i.e., (1) distinct tracing approaches for different settings; (2) weak
security guarantee from informal threat models. We achieve so by constructing
it from our auditable ABC and adapting security properties accordingly. More-
over, we clarify that EACT is only one example application for our auditable
primitives (public keys and ABC).

A The Necessity of Enhancing Contact Tracing Systems

This work considers the enhancement of contact tracing systems due to the
following two epidemiology findings: (1) modes of transmission (droplet and
airborne); (2) environmental factors (temperature, humidity, air velocity, etc.).

Droplet transmission refers to the infections caused by viruses ejected with
droplets by sneezes or coughs; whereas, airborne transmission means that infec-
tions are caused by floating liquid drops carrying viruses suspended in the
air [20]. Hence, “close contact” should be defined differently in the two trans-
mission modes, i.e., droplet transmissible viruses require face-to-face contact;
whereas, airborne transmissible viruses only require people to come into the
region of the floating virus during their lifespan. Conventional contact trac-
ing systems utilize Bluetooth Low Energy (BLE) technology to trace face-to-
face contact. In contrast, to the best of our knowledge, only Wang et al. [37]
considered the airborne transmission with their discrete-location-tracing setting
(DLT). Intuitively, the DLT setting records users’ relative and absolute positions
to decide close contact. However, due to the inherent decentralization of their
system (i.e., users are designed to issue their own contact records), they failed
to achieve meaningful integrity guarantees for the DLT setting.

As mentioned above, virus distribution, e.g., lifespan and region size, affects
the infectiousness of viruses. Epidemiology research [15,19,30] concludes that
virus distribution depends on environmental factors, including temperature,
humidity, air velocity, etc. However, in conventional contact tracing systems,
BLE usually scans according to predetermined parameters, e.g., interval and
radius. The mismatch between virus distribution and scan parameters may cause
overwhelmingly false-positive records, burdening the medical system in real-life.
Therefore, we consider that it is necessary to filter records according to environ-
mental factors for practical contact tracing systems.

A problem caused by including more data (i.e., position and environmental
factors) is that revealing these data may result in the identification of users.

Auditable ABC and Its Application in Contact Tracing 113

Therefore, this work embeds them into the attributes of an attribute-based cre-
dentials (ABC) scheme. Anonymity and selective showing capability of ABC
schemes (from [17,25] and our Construction 2) empower users to reveal only
necessary attributes to verifiers while keeping other attributes secret, i.e., medi-
cal agencies and other users (including the issuer) cannot learn more than what
is revealed during the showing of credentials4. Potentially, we can further tweak
the set-commitment scheme [25] (mentioned in Sect. 2) to enable the proof of
knowledge of the commitment content, hence, achieving blind issuance as shown
in [9]. The blind issuance capability can prevent issuers from learning users’
attributes during the issuance of credentials.

B The SPS-EQ Scheme from [17]

We show the SPS-EQ scheme given by [17] with respect to a fully adaptive NIZK
argument NIZK

Δ= (PGen,PPro,PSim,PRVer,PVer,ZKEval). It satisfies correct-
ness, the EUF-CMA, and the property of Perfect Adaption of Signatures with
respect to Message Space.

Construction 4 (SPS-EQ Scheme SPSEQ). The algorithms are as follows.

– Setup(1λ). Run BG ← BGGen(1λ) and sample matrices A,A0,A1
$← D1

from matrix distribution. Generate a common reference string and trapdoor
for the malleable NIZK argument with (crs, td) ← NIZK.PGen(1λ,BG). Return
pp = (BG, [A]2, [A0]1, [A1]1, crs, �);

– KGen(pp). Sample K0
$← Z

2×2
p ,K $← Z

�×2
p . Compute [B]2 = [K0]2[A]2 and

[C]2 = [K]2[A]2. Set sk = (K0,K) and pk = ([B]2, [C]2). Return (sk, pk);

– Sign(pp, sk, [m]1). Sample r1, r2
$← Zp. Compute [t]1 = [A0]1r1 and [w]1 =

[A0]1r2. Compute u1 = K�
0 [t]1 + K�[m]1 and u2 = K�

0 [w]1. Gener-
ate proof with (Ω1, Ω2, [z0]2, [z1]2, Z1) ← NIZK.PPro(crs, [t]1, r1, [w]1, r2). Set
σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and τ = ([u2]1, [u2]1, [w]1, Ω2). Return
(σ, τ);

– ChgRep(pp, [m]1, (σ, τ), μ, ρ, pk). Parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1)
and τ ∈ {([u2]1, [w]1, Ω2),⊥}. Let Ω = (Ω1, Ω2, [z0]2, [z1]2, Z1). Check proof
with NIZK.PVer(crs, [t]1, [w]1, Ω). Check if e([u2]�1 ,A]2) = e([w]�1 ,B]2) and

e([u1]�1 ,A]2) = e([t]�1 ,B]2) + e([m]�1 ,C]2). Sample α, β
$← Z

∗
p. Compute

[u′
1]1 = ρ(μ[u1]1 + β[u2]1) and [t′]1 = μ[t]1 + β[w]1 = [A0]1(μr1 + βr2).

And for i ∈ {0, 1}, compute [z′
i]2 = α[zi]2, [a′

i]1 = αμ[a1i]1 + αβ[a2i]1, [d
′
i]2 =

αμ[d1i]2 + αβ[d2i]2. Set Ω′ = (([a′
i]1, [d′

i]2, [z
′
i]2)i∈{0,1}, αZ1). Set σ′ =

([u′
1]1, [t′]1, Ω′). Return (μ[m]1, σ′);

4 Users are required to report necessary data to decide if they are closed enough to
be considered involved in a contact. The reveal of such data may also have privacy
impacts. However, we found it hard to quantify such impacts and left this problem
for further consideration.

114 P. Wang et al.

– Verify(pp, (ρ, pk), [m]1, (σ, τ)). Parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and
τ ∈ {([u2]1, [w]1, Ω2),⊥}. Check proof Ω1 with NIZK.PRVer(crs, [t]1, Ω1, [z0]2,
[z1]2, Z1) and check if e([u1]�1 ,A]2) = e([t]�1 ,B]2) + e([m]�1 ,C]2). If τ �=⊥,
then check proof Ω2 with NIZK.PRVer(crs, [w]1, Ω2, [z0]2, [z1]2, Z1) and check
if e([u2]�1 ,A]2) = e([w]�1 ,B]2).

Definition 17 (Correctness). An SPS-EQ scheme satisfies correctness, if for
any λ > 0, � > 1, pp ← Setup(1λ), and (sk, pk) ← KGen(pp):

Pr [Verify(pk,Sign(sk, [m]1)] = 1∧
Pr [Verify(ρ · pk,ChgRep([m]1,Sign(sk, [m]1), μ, ρ, pk))] = 1.

Definition 18 (EUF-CMA). An SPS-EQ scheme satisfies EUF-CMA, if for
any adversary that has access to a signing oracle OSign(sk, ·) with queries [m]i ∈
Q, the following probability is negligible of λ for any λ > 0, � > 1 and pp ←
Setup(1λ):

Pr
[

(sk, pk) ← KGen(pp); : ∀[m]i ∈ Q, [m∗]R �= [m]R∧
([m]∗i , σ

∗) ← AOSign(pk) Verify([m]∗i , σ
∗, pk) = 1

]

.

Definition 19 (Perfect Adaption of Signatures with respect to Mes-
sage Space (under Malicious Keys in the Honest Parameters Model)).
An SPS-EQ scheme over a message space Sm ⊆ (G∗

i)
� perfectly adapts signa-

tures with respect to the message space, if for all tuples (pp, [pk]j , [m]i, (σ, τ), μ, ρ)
such that pp ← Setup(1λ), [m]i ∈ Sm, μ, ρ ∈ Z

∗
p, and Verify(pk, [m]i, (σ, τ)) = 1,

we have the output ([μ ·m]i, σ∗) ← ChgRep([m]i, (σ, τ), μ, ρ, [pk]j) where σ∗ is a
random element in the signature space such that Verify([ρ · pk, μ · m]i, σ∗) = 1.

C Extending the BLS Signature [8] with APK

This section shows an example that utilizes a DDH-based APK construction as
a plug-in pool in the BLS signature scheme [8]. Let BGGen(1λ) be the bilinear
group generator that outputs BG = (p, G1, G2, GT , P1, P2, e) as shown in Sect. 2.
The DDH problem (in group G2)-based APK construction is as follows.

Construction 5 (DDH-Based APK APKDDH). Let BG = (p, G1, G2, GT ,
P1, P2, e) be the output of the bilinear group generator BGGen(1λ). The algo-
rithms of APK are as follows.

– KGen(BG): Sample ak, sk0
$← Zp. Set sk1 = ak · sk0. Then, compute pk0 =

sk0 · P2 and pk1 = sk1 · P2. Finally, set sk = (sk0, sk1), pk = (pk0, pk1) and
output (sk, ak, pk);

– Update(pk; r): Parse pk = (pk0, pk1). Sample r
$← Zp and compute pk′

0 =
r · pk0, pk′

1 = r · pk1. Output pk′ = (pk′
0, pk

′
1);

– VerifyKP(sk, pk′, r): Parse sk = (sk0, sk1) and pk′ = (pk′
0, pk

′
1). Output 1 if

pk′
0 = r · sk0 · P2 ∧ pk′

1 = r · sk1 · P2, or 0 otherwise;

Auditable ABC and Its Application in Contact Tracing 115

– VerifyAK(sk, ak): Parse sk = (sk0, sk1). Output 1 if sk1 = ak · sk0, or 0 other-
wise;

– Audit(ak, pk′, pk): Parse pk′ = (pk′
0, pk

′
1), pk = (pk0, pk1). Output 1 if pk1 =

ak · pk0 ∧ pk′
1 = ak · pk′

0, or 0 otherwise.

Recall the BLS signatures [8], let H : Sm → G1 be a cryptographic hash
function where Sm denotes the message space. For simplicity, we omit the algo-
rithms for aggregation to focus on auditability. The integration works as follows.

Construction 6 (BLS with APK). Let BG = (p, G1, G2, GT , P1, P2, e) be
the output of the bilinear group generator BGGen(1λ). Let H : Sm → G1 be a
cryptographic hash function where Sm denotes the message space. Let APKDDH =
(KGen,Update,VerifyKP,VerifyAK,Audit) be a DDH-based APK mechanism. The
algorithms of BLS with APK are as follows.

– KGen,VerifyKP,VerifyAK,Audit are the same as in APKDDH;
– Sign(sk,m): Parse sk = (sk0, sk1) and output σ = sk1 · H(m) ∈ G1;
– Verify(pk,m, σ): Parse pk = (pk0, pk1) and output 1 if e(σ, P2) =

e(H(m), pk1), or 0 otherwise;
– Update(pk, σ; r): Output (pk′, σ′) Δ= (APKDDH.Update(pk; r), r·σ).

Since the EUF-CMA security of the (type-3) BLS signature is proven under
the co-CDH assumption [7], and the APK given in Construction 5 considers the
DDH problem in G2, it is convenient to assume the SXDH assumption [2] to hold
for BGGen to prove the EUF-CMA security of our extended BLS construction
(Construction 6).

References

1. AISEC, F.: Pandemic contact tracing apps: Dp-3t, PEPP-PT ntk, and ROBERT
from a privacy perspective. IACR Cryptology ePrint Archive, p. 489 (2020).
https://eprint.iacr.org/2020/489

2. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group sig-
natures without random oracles. IACR Cryptology ePrint Archive, p. 385 (2005).
http://eprint.iacr.org/2005/385

3. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

4. Beskorovajnov, W., Dörre, F., Hartung, G., Koch, A., Müller-Quade, J., Strufe,
T.: ConTra Corona: contact tracing against the coronavirus by bridging the
centralized–decentralized divide for stronger privacy. In: Tibouchi, M., Wang, H.
(eds.) ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 665–695. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-92075-3 23

5. Bobolz, J., Eidens, F., Krenn, S., Ramacher, S., Samelin, K.: Issuer-hiding
attribute-based credentials. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS
2021. LNCS, vol. 13099, pp. 158–178. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92548-2 9

https://eprint.iacr.org/2020/489
http://eprint.iacr.org/2005/385
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-030-92075-3_23
https://doi.org/10.1007/978-3-030-92548-2_9
https://doi.org/10.1007/978-3-030-92548-2_9

116 P. Wang et al.

6. Bogatov, D., De Caro, A., Elkhiyaoui, K., Tackmann, B.: Anonymous transactions
with revocation and auditing in hyperledger fabric. In: Conti, M., Stevens, M.,
Krenn, S. (eds.) CANS 2021. LNCS, vol. 13099, pp. 435–459. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-92548-2 23

7. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

9. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 1

10. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

11. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

12. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

13. Canetti, R., et al.: Privacy-preserving automated exposure notification. IACR
Cryptology ePrint Archive, p. 863 (2020). https://eprint.iacr.org/2020/863

14. Caro, A.D., Iovino, V.: JPBC: Java pairing based cryptography. In: Proceedings
of the 16th IEEE Symposium on Computers and Communications. ISCC 2011,
Kerkyra, Corfu, Greece, 28 June–1 July 2011, pp. 850–855. IEEE Computer Society
(2011). https://doi.org/10.1109/ISCC.2011.5983948

15. Chen, L.D.: Effects of ambient temperature and humidity on droplet lifetime – a
perspective of exhalation sneeze droplets with COVID-19 virus transmission. Int.
J. Hyg. Environ. Health (2020). https://doi.org/10.1016/j.ijheh.2020.113568

16. Connolly, A., Deschamps, J., Lafourcade, P., Perez-Kempner, O.: Protego: efficient,
revocable and auditable anonymous credentials with applications to hyperledger
fabric. In: Isobe, T., Sarkar, S. (eds.) INDOCRYPT 2022. LNCS, vol. 13774, pp.
249–271. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22912-1 11

17. Connolly, A., Lafourcade, P., Perez-Kempner, O.: Improved constructions of anony-
mous credentials from structure-preserving signatures on equivalence classes. In:
Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part I. LNCS, vol.
13177, pp. 409–438. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
97121-2 15

18. Danz, N., Derwisch, O., Lehmann, A., Pünter, W., Stolle, M., Ziemann, J.: Secu-
rity and privacy of decentralized cryptographic contact tracing. IACR Cryptology
ePrint Archive, p. 1309 (2020). https://eprint.iacr.org/2020/1309

19. Das, S.K., Alam, J.E., Plumari, S., Greco, V.: Transmission of airborne virus
through sneezed and coughed droplets, September 2020. https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC7513825/

https://doi.org/10.1007/978-3-030-92548-2_23
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://eprint.iacr.org/2020/863
https://doi.org/10.1109/ISCC.2011.5983948
https://doi.org/10.1016/j.ijheh.2020.113568
https://doi.org/10.1007/978-3-031-22912-1_11
https://doi.org/10.1007/978-3-030-97121-2_15
https://doi.org/10.1007/978-3-030-97121-2_15
https://eprint.iacr.org/2020/1309
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513825/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513825/

Auditable ABC and Its Application in Contact Tracing 117

20. for Disease Control, C.: Prevention: transmission-based precautions (2016).
https://www.cdc.gov/infectioncontrol/basics/transmission-based-precautions.
html#anchor 1564058235

21. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

22. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: a new design for anony-
mous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019,
Part I. LNCS, vol. 11921, pp. 649–678. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-34578-5 23

23. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 46

24. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

25. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019). https://doi.org/10.1007/s00145-018-9281-4

26. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

27. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: 21st
Annual Network and Distributed System Security Symposium, NDSS 2014, San
Diego, California, USA, 23–26 February 2014. The Internet Society (2014). https://
www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials

28. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017

29. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

30. Han, Z., Weng, W., Huang, Q.: Characterizations of particle size distribution of the
droplets exhaled by sneeze. J. Roy. Soc. Interface/Roy. Soc. 10, 20130560 (2013).
https://doi.org/10.1098/rsif.2013.0560

31. Hébant, C., Pointcheval, D.: Traceable constant-size multi-authority credentials.
In: Galdi, C., Jarecki, S. (eds.) SCN 2022. LNCS, vol. 13409, pp. 411–434. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-14791-3 18

32. Jones, M., Sporny, M., Terbu, O., Cohen, G., Steele, O.: Verifiable credentials data
model v2.0. W3C working draft, W3C, July 2023. https://www.w3.org/TR/2023/
WD-vc-data-model-2.0-20230718/

33. Liu, J.K., et al.: Privacy-preserving COVID-19 contact tracing app: A zero-
knowledge proof approach. IACR Cryptology ePrint Archive, p. 528 (2020).
https://eprint.iacr.org/2020/528

34. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–
758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 27

https://www.cdc.gov/infectioncontrol/basics/transmission-based-precautions.html#anchor_1564058235
https://www.cdc.gov/infectioncontrol/basics/transmission-based-precautions.html#anchor_1564058235
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/0-387-34805-0_46
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials
https://www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials
https://doi.org/10.1137/0217017
https://doi.org/10.1007/11761679_21
https://doi.org/10.1098/rsif.2013.0560
https://doi.org/10.1007/978-3-031-14791-3_18
https://www.w3.org/TR/2023/WD-vc-data-model-2.0-20230718/
https://www.w3.org/TR/2023/WD-vc-data-model-2.0-20230718/
https://eprint.iacr.org/2020/528
https://doi.org/10.1007/978-3-662-53887-6_27

118 P. Wang et al.

35. Reed, D., Sporny, M., Sabadello, M., Guy, A.: Decentralized identifiers (DIDs) v1.0.
W3C recommendation, W3C, July 2022. https://www.w3.org/TR/2022/REC-did-
core-20220719/

36. Silde, T., Strand, M.: Anonymous tokens with public metadata and applications
to private contact tracing. In: Eyal, I., Garay, J.A. (eds.) FC 2022. LNCS, vol.
13411, pp. 179–199. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
18283-9 9

37. Xiao, F., Yang, F., Chen, S., Yang, J.: Encrypted malicious traffic detection based
on ensemble learning. In: Meng, W., Conti, M. (eds.) CSS 2021. LNCS, vol. 13172,
pp. 1–15. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94029-4 1

https://www.w3.org/TR/2022/REC-did-core-20220719/
https://www.w3.org/TR/2022/REC-did-core-20220719/
https://doi.org/10.1007/978-3-031-18283-9_9
https://doi.org/10.1007/978-3-031-18283-9_9
https://doi.org/10.1007/978-3-030-94029-4_1

Verification Protocol for Stable Matching
from Conditional Disclosure of Secrets

Kittiphop Phalakarn(B) and Toru Nakamura

KDDI Research, Inc., Saitama, Japan
{xki-phalakarn,tr-nakamura}@kddi.com

Abstract. Stable matching is an important problem that receives atten-
tion from researchers in several fields. In the problem setting, there are
two sets with the same number of members. Each member has its match-
ing preference. The goal is to find a one-to-one matching between each
member of the two sets such that no pairs want to change the matching
result. Since an instance of the stable matching problem may have more
than one possible stable matching, Nakamura et al. proposed a multi-
stakeholder environment with selectability property, and applied it to
the stable matching problem as an example use case. In their setting,
the computing server could freely choose to return any stable matching
depending on the benefits of the clients and the computing server. Their
protocol also offered verifiability, but only against a semi-honest verify-
ing server. To address this issue, we propose a verification protocol for
stable matching against a malicious server. Our verification protocol is
constructed from CDS schemes for stable matching, which do not require
any asymmetric-key cryptographic primitives. From the implementation
result, our proposed protocol is 4 to 5 orders of magnitude faster than
the previous work.

Keywords: Verification protocol · Stable matching · Conditional
disclosure of secrets

1 Introduction

Stable matching is one of the important problems in mathematics, economics,
and computer science. We consider a setting with two sets A = {a1, . . . , an} and
B = {b1, . . . , bn} with the same number of members (e.g., a set of n men and
a set of n women). Each member in each set has a matching preference for the
members in the other set (e.g., the man a1 prefers to match with the woman b3
as his first choice, and then the woman b2 as his second choice, and so on). The
goal of the stable matching problem is to find a one-to-one matching between the
members in the sets A and B such that no pairs want to change the matching
result (e.g., no man and woman agree to leave their assigned partner).

Gale and Shapley [11] were the first to propose an algorithm to solve the
stable matching problem. The matching result from their algorithm always pro-
vided the best possible matching for the members in the set A and the worst
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 119–134, 2024.
https://doi.org/10.1007/978-3-031-54770-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_5

120 K. Phalakarn and T. Nakamura

possible matching for the members in the set B, or vice versa. However, other
matchings that are also stable may exist.

To address this issue, Nakamura et al. [21] proposed a multi-stakeholder
environment, and applied it to the stable matching problem as an example use
case. In their setting, the clients (the members in the sets A and B) sent their
matching preferences to the computing server. The computing server then per-
formed the computation and returned the matching result back to the clients.
This multi-stakeholder environment offered selectability; the computing server
could freely choose to return any stable matching depending on the benefits of
the clients and the computing server.

If the computing server is dishonest, it may return an unstable matching in
order to maximize its benefit. The multi-stakeholder environment in [21] then
included a verification protocol to address this issue. However, their verification
protocol assumed that the verifying server is semi-honest (the verifying server
is expected to follow the protocol properly). This assumption may be too weak
for real-life applications. If the verifying server is malicious (the verifying server
may deviate from the protocol arbitrarily), it may output a counterfeit verifica-
tion result, and the clients will never know the truth. Moreover, [21] used fully
homomorphic encryption as a building block, which could make their protocol
less efficient.

1.1 Our Contribution

In this paper, we improve the verification protocol for stable matching from [21]
to a setting with a malicious server. To achieve this, we propose conditional
disclosure of secrets (CDS) schemes for stable matching, and then use them to
construct a verification protocol. This follows the framework from [5,22] that
used two CDS schemes with opposite conditions to construct a verification pro-
tocol. However, the technical details of our two proposed CDS schemes are novel,
including the algorithms and the proofs.

Since our CDS schemes and verification protocol are information theoretically
secure, we do not need any asymmetric-key cryptographic primitives. This is
different from all the existing works. Our proposed CDS schemes and verification
protocol can also be considered as constant-round and non-interactive. From
the implementation result, our proposed verification protocol is 4 to 5 orders of
magnitude faster than the protocol from [21].

1.2 Applications

There are several applications for stable matching, for example, matching men
and women (and also other genders), students and colleges, doctors and hospi-
tals, and more. Men and women (and also other genders) provide their matching
preferences to a computing server and receive the matching result. In the same
way, students and colleges provide their admission preferences, and doctors and
hospitals provide their assignment preferences.

Verification Protocol for Stable Matching from CDS 121

As in [21], the computing server can freely choose to return any stable match-
ing depending on the benefits of all stakeholders, including the computing server
itself. However, the computing server may have motivations to output an unsta-
ble matching, for example, to save time and computation cost. This is obviously
a problem to the clients. To address this problem, we need a verifying server to
verify that the matching result is really stable.

With similar motivations, the verifying server in [21] may output an incorrect
verification result. As the contribution of this paper, we propose a new verifica-
tion protocol that fixes this issue. The verifying server in our proposed protocol
can successfully output an incorrect verification result with only negligible prob-
ability.

1.3 Organization

We first review related works in Sect. 2. Then background knowledge and def-
initions are given in Sect. 3. CDS schemes for stable matching are proposed in
Sect. 4, which are then used as building blocks in the verification protocol for sta-
ble matching in Sect. 5. We present the implementation result in Sect. 6. Finally,
Sect. 7 concludes the paper.

2 Related Works

In this section, we review related works on stable matching, conditional disclosure
of secrets, and multi-client verifiable computation.

2.1 Stable Matching

An algorithm for solving the stable matching problem was firstly proposed by
Gale and Shapley [11]. Their algorithm output the stable matching result that is
the best possible matching for the members in the set A and the worst possible
matching for the members in the set B, or vice versa. The paper also showed
that a stable matching always exists, and there may be several possible stable
matchings for a problem instance. In addition to one-to-one matching (e.g., two
sets with the same numbers of men and women), there are also stable matching
problems for more general settings, such as many-to-one matching (e.g., assigning
doctors to hospitals or assigning students to colleges).

From that time, many researchers have been working on this problem. New
settings and conditions were continuously proposed. For example, [9,12] studied
the properties of stable matching regarding optimality, falsification of matching
preferences, and more. Several works [8,10,16,23] proposed secure stable match-
ing computation, using techniques of additively homomorphic encryption and
oblivious RAM (ORAM). However, they all stuck to the algorithm provided by
[11].

Recently, Nakamura et al. [21] proposed a multi-stakeholder environment
with selectability property, and applied it to the stable matching problem as an

122 K. Phalakarn and T. Nakamura

example use case. Their setting consisted of several clients, a computing server,
and a verifying server. Firstly, The clients sent their matching preferences in
the clear to the computing server. The computing server then performed the
computation and returned the matching result back to the clients. Since the
computing server could freely choose to return any stable matching depending
on the benefits of the clients and the computing server, this multi-stakeholder
environment provided selectability.

To make sure that the matching result is stable, the clients sent their match-
ing preferences and the matching result as ciphertexts to the verifying server.
Therefore, privacy is preserved against the verifying server (but not against the
computing server). The verifying server then used fully homomorphic encryption
operations to obliviously verify the matching result and returned the verification
result back to the clients. Similar to the previous works [8,10,16,23], the proto-
col in [21] assumed that the verifying server is semi-honest, which may be too
weak for some applications. Moreover, the use of fully homomorphic encryption
could make their protocol less efficient.

In this work, we consider only the verification part of the protocol. Compar-
ing our work to the setting of [21], we may let the computing server perform the
verification part as well. Thus, an additional verifying server is not needed. (We
then combine the “computing server” and the “verifying server”, and call it as
the “server” in our protocol.) This means there is no difference in the aspect of
privacy. In other words, we assume that the matching preference and the match-
ing result of each client can be known to the server but not to the other clients.
This is acceptable in some men-women matchmaking, students-colleges admis-
sion, and doctors-hospitals assignment applications. For the aspect of security,
our work is proposed against a malicious adversary, which is stronger than the
setting against a semi-honest adversary in [21]. To sum up, we assume that the
server can act dishonestly, but do not assume privacy against the server.

2.2 Conditional Disclosure of Secrets

Conditional disclosure of secrets (CDS) was firstly proposed by Gertner et al.
[15]. At that time, the CDS scheme was used as a building block in symmetrically
private information retrieval (SPIR) system. The CDS scheme was also used as
a building block in priced oblivious transfer (i.e., SPIR with cost for each item)
in [1]. Gay et al. [13] related the CDS scheme to attribute-based encryption
(ABE). Recently, the CDS scheme was used to improve the complexity of secret
sharing schemes [2–4,18,20]. Functionalities of the existing CDS schemes are
summarized in Table 1.

2.3 Multi-client Verifiable Computation

A verifiable computation protocol was firstly defined by Gennaro et al. [14]. The
protocol was only for two parties and was based on Yao’s garbled circuit [25].
Choi et al. [7] then generalized the definition to a multi-client setting. Their work

Verification Protocol for Stable Matching from CDS 123

Table 1. Functionalities of existing CDS schemes

CDS Schemes Functionalities

Gertner et al. [15] Monotone Boolean function, Sum

Gay et al. [13] Equality, Inner product, Index, Prefix, Set disjointness

Liu et al. [19] Index, Polynomial

Bhadauria and Hazay [5] Equality, Inequality, Set intersection cardinality

Phalakarn et al. [22] Deterministic finite automata

Ours (Sect. 4) Stable matching

based on non-interactive key exchange (NIKE) protocol was secure against semi-
honest clients and a malicious server. The security guarantee was then improved
by Gordon et al. [17] to the setting with malicious clients by using homomorphic
encryption and attribute-based encryption.

Recently, two-client verifiable computation protocols were proposed by
Bhadauria and Hazay [5] based on CDS schemes. Their verifiable computation
protocols were quite simple thanks to the property of the CDS schemes. Later,
Phalakarn et al. [22] followed this framework and proposed two-client verifiable
computation protocol for deterministic finite automata.

3 Preliminaries

In this section, we review background knowledge on stable matching, conditional
disclosure of secrets, multi-client verifiable computation, and secret sharing.

3.1 Stable Matching

Let A = {a1, . . . , an} and B = {b1, . . . , bn} be sets of n members. Each member
ai in the set A has a matching preference (bi1 , . . . , bin) which can be considered
as a permutation of the members in the set B. Each member bj in the set
B also has a matching preference (aj1 , . . . , ajn) which can be considered as a
permutation of the members in the set A. A member that appears first in the
matching preference is more preferred to members that come later.

A matching M is a subset of pairs from A×B such that each member in the
sets A and B appears exactly once. In other words, a matching M is a bijection
between the sets A and B. We denote M(ai) = bj and M(bj) = ai if (ai, bj) ∈ M .
The definitions of a blocking pair and a stable matching are stated as follows.

Definition 1 (blocking pair). Given sets A and B, a matching preference of
each member in the sets A and B, and a matching M , a pair (ai, bj) ∈ A × B is
a blocking pair if both conditions are met.

1. ai prefers bj to M(ai).
2. bj prefers ai to M(bj).

124 K. Phalakarn and T. Nakamura

Fig. 1. Communication flows of the CDS scheme (left) and the MVC (right).

Definition 2 (stable matching). Given sets A and B, and a matching pref-
erence of each member in the sets A and B, a matching M is a stable matching
if there is no blocking pair.

3.2 Conditional Disclosure of Secrets

We consider a setting with k clients and a server. Each i-th client has an input
xi from a domain Xi. This input xi is also known to the server, but not the
other clients. In addition, all the clients have a common secret s from a domain
S and a common randomness r from a domain R. The values s and r are not
known to the server. In a conditional disclosure of secrets (CDS) scheme, each
i-th client sends only one message mi to the server. The goal of the CDS scheme
is to let the server learn the secret s if and only if the inputs x1, . . . , xk satisfy
a condition f . The definition of the CDS scheme is stated as Definition 3, and
the communication flow of the scheme is shown in Fig. 1 (left).

Definition 3 (CDS). Let f : X1 × · · · × Xk → {0, 1} be a condition, s ∈ S be
a secret, and r ∈ R be a randomness chosen randomly with uniform distribution.
Let Enci be a probabilistic polynomial time encoding algorithm for all 1 ≤ i ≤ k,
and Dec be a deterministic decoding algorithm. The correctness and secrecy of a
CDS scheme are as follows.

Correctness: For all inputs (x1, . . . , xk) ∈ X1×· · ·×Xk where f(x1, . . . , xk) = 1,

Dec(x1, . . . , xk,Enc1(x1, s, r), . . . ,Enck(xk, s, r)) = s.

Secrecy: There exists a polynomial time algorithm (simulator) Sim such that for
every input (x1, . . . , xk) ∈ X1×· · ·×Xk where f(x1, . . . , xk) = 0, a secret s ∈ S,
and a randomness r ∈ R, the following distributions are indistinguishable.

{Sim(x1, . . . , xk)} = {Enc1(x1, s, r), . . . ,Enck(xk, s, r)}.

Verification Protocol for Stable Matching from CDS 125

3.3 Multi-client Verifiable Computation

We consider a multi-client verifiable computation (MVC) where clients outsource
a computation to a (potentially malicious) server. We focus on a non-interactive
protocol where the clients do not need to interact with each other after the setup
phase. For security, we assume a setting with semi-honest clients and a malicious
server with no collusion. The definition of MVC from [5,7] is stated as follows.

Definition 4 (MVC). Consider a setting with k clients where each i-th client
has an input αi, and the goal is to compute f(α1, . . . , αk) in a verifiable way.
The MVC consists of the following four algorithms.

– δ ← Setup : The algorithm Setup generates a common randomness δ for all
clients.

– (α̃i, τi) ← Input(αi, δ, 1λ) : Using the input αi, the common randomness δ, and
the security parameter 1λ, the algorithm Input generates an encoded input α̃i

and a decoding secret τi.
– (β1, . . . , βk) ← Compute(f, α̃1, . . . , α̃k) : Using the description of the function

f and the encoded inputs α̃1, . . . , α̃k, the algorithm Compute generates encoded
outputs β1, . . . , βk.

– y ← Verify(βi, τi) : Using the encoded output βi and the decoding secret τi,
the algorithm Verify generates the result y, which can be ⊥ in the case that
the protocol is aborted.

The soundness of the protocol is defined as follows.

Soundness: For all inputs (α1, . . . , αk) and a malicious server A, let δ ← Setup,
(α̃i, τi) ← Input(αi, δ, 1λ), (β1, . . . , βk) ← Compute(f, α̃1, . . . , α̃k), and y ←
Verify(βi, τi) for all 1 ≤ i ≤ k. It must hold that

Pr[y �= f(α1, . . . , αk) ∧ y �= ⊥] ≤ negl(λ)

where negl is a negligible function.

To perform the verifiable computation, all of the clients first execute the
algorithm Setup to get the common randomness δ. Next, each i-th client gener-
ates (α̃i, τi) from Input(αi, δ, 1λ), sends the encoded input α̃i to the server, and
keeps the decoding secret τi to itself. After the server receives all the encoded
inputs from the clients, it generates (β1, . . . , βk) from Compute(f, α̃1, . . . , α̃k),
and sends each encoded output βi to the i-th client. Finally, each i-th client
generates the result y from Verify(βi, τi). According to the soundness of the pro-
tocol, y should be equal to f(α1, . . . , αk) with high probability. Communication
flow of the protocol is shown in Fig. 1 (right).

3.4 Secret Sharing

Secret sharing is a technique to split a secret value into several parts called
“shares”. Only specific subsets of shares can reveal the secret value, while the

126 K. Phalakarn and T. Nakamura

other subsets of shares give no information. In this work, we use two secret
sharing techniques: additive secret sharing and Shamir secret sharing [24].

In additive secret sharing, a secret s is divided into k shares as {si}1≤i≤k

where s =
∑k

i=1 si in a specified group. All the k shares are needed for a recon-
struction of the secret value.

In Shamir secret sharing, we need to specify a threshold t. To generate shares,
we first randomly generate a degree t polynomial p(x) in a specified field with a
secret s as the constant term. For each 1 ≤ i ≤ k, the i-th share can be generated
as p(i). Since the reconstruction process is performed as an interpolation of the
degree t polynomial, t + 1 shares are required.

4 Proposed CDS Schemes

Before considering our CDS schemes, we recall the setting of the protocol for
stable matching in [21]. There are 2n clients, each represents a member in the
sets A or B, a computing server, and a verifying server. The clients send their
matching preferences in the clear to the computing server. After that, the com-
puting server computes a stable matching, according to its selectability, and
then returns the matching result to each client. To verify the matching result,
the clients send their matching preferences and the matching result as cipher-
texts to the verifying server. The verifying server then obliviously verifies the
matching result and returns the verification result back to the clients.

In this work, we consider the same setting as above: 2n clients with matching
preferences, but we combine the computing server and the verifying server into
one server. We then propose two CDS schemes in this section: one for unstable
matching and the other for stable matching. These CDS schemes are the main
building blocks of our verification protocol in the next section.

4.1 CDS Scheme for Unstable Matching

We propose the CDS scheme for unstable matching first since it is easier to
understand. To formally describe the setting of the CDS, each client represent-
ing the member ai has the matching preference (ai1 , . . . , ain) and the matching
result M(ai) as inputs. Each client representing the member bj has the matching
preference (bj1 , . . . , bjn) and the matching result M(bj) as inputs. (Note that the
clients know neither the matching preferences nor the matching results of the
other clients.) All the clients have a common secret s and a common random-
ness r. The server knows all the matching preferences and the complete matching
result M , but knows neither the secret s nor the randomness r. The goal of this
CDS scheme is to let the server learn the secret s if and only if the matching
result M is not a stable matching, i.e., there is a blocking pair.

The idea of our CDS scheme for unstable matching is that each client asso-
ciates each of its potential blocking pair with an additive secret share. When the
potential blocking pairs from two clients match, the secret s is disclosed to the
server. The CDS scheme for unstable matching is proposed in Fig. 2. We then
propose Theorem 1 together with the proof.

Verification Protocol for Stable Matching from CDS 127

Fig. 2. CDS scheme for unstable matching

Theorem 1. The CDS scheme for unstable matching in Fig. 2 provides correct-
ness and secrecy according to Definition 3.

Proof. To show the correctness of the CDS scheme for unstable matching in
Fig. 2, assume that the matching result M is not a stable matching. According
to Definition 1, there is a blocking pair (ai, bj) for some i and j. Following
our CDS scheme in Fig. 2, the client representing the member ai sends a tuple
(ai, bj , s − ri,j) to the server, while the client representing the member bj sends
a tuple (ai, bj , ri,j). It is now obvious that the secret s is disclosed to the server.

To show the secrecy of the CDS scheme in Fig. 2, assume that the matching
result M is a stable matching. This means there is no blocking pair, and the
values s − ri,j and ri,j cannot be both sent to the server. According to additive
secret sharing, the server cannot learn any information about the secret s. The
simulator Sim can be constructed by following steps 1 and 2 in Fig. 2 with random
s and r. It is not difficult to see that the output from the simulator Sim and the
real CDS execution have the same distribution. 	

4.2 CDS Scheme for Stable Matching

We now propose the CDS scheme for stable matching. The setting is the same
as in the previous subsection, except that the goal of the CDS scheme in this

128 K. Phalakarn and T. Nakamura

subsection is to let the server learn the secret s if and only if the matching result
M is a stable matching, i.e., there is no blocking pair.

For the idea of our CDS scheme for stable matching, we first generate a degree
2n2 − 1 polynomial, according to Shamir secret sharing scheme, from a common
randomness. Each client then generates n shares from its matching preference.
If there is no blocking pair, the server learns 2n2 different shares, and the secret
s can be disclosed. In the case that the matching result is not stable, shares
generated from the blocking pair then provide the same value. This means the
server fails to perform the interpolation. The CDS scheme for stable matching
is proposed in Fig. 3. We then propose Theorem 2 together with the proof.

Fig. 3. CDS scheme for stable matching

Theorem 2. The CDS scheme for stable matching in Fig. 3 provides correctness
and secrecy according to Definition 3.

Verification Protocol for Stable Matching from CDS 129

Proof. To show the correctness of the CDS scheme for stable matching in Fig. 3,
assume that the matching result M is a stable matching. This means there is no
blocking pair, and all the tuples in the form (i(n + 1)2 + j(n + 1), p(i(n + 1)2 +
j(n + 1))) are unique. The tuples in the form (i(n + 1)2 + j(n + 1) + 1, p(i(n +
1)2 + j(n + 1) + 1)) and (i(n + 1)2 + j(n + 1) + 2, p(i(n + 1)2 + j(n + 1) + 2))
are already unique. Since the server learns n tuples from each of the 2n clients
and all tuples are unique, this results in 2n2 unique tuples. It is sufficient for the
server to perform interpolation, and learn the degree 2n2 − 1 polynomial p(x)
with the secret s.

To show the secrecy of the CDS scheme in Fig. 3, assume that the matching
result M is not a stable matching. According to Definition 1, there is a blocking
pair (ai, bj) for some i and j. Following our CDS scheme in Fig. 3, the server then
receives the same tuple (i(n+1)2+j(n+1), p(i(n+1)2+j(n+1))) from the clients
representing the members ai and bj . Since the server receives 2n2 tuples in total,
but some tuples are duplicated, the server cannot perform an interpolation to
learn the degree 2n2 − 1 polynomial p(x). According to Shamir secret sharing,
the server cannot learn any information about the secret s. The simulator Sim
can be constructed by following steps 2 and 3 in Fig. 3 with random s and r. It
is not difficult to see that the output from the simulator Sim and the real CDS
execution have the same distribution. 	

4.3 Possible Improvements

In this subsection, we suggest some possible improvements on CDS schemes for
unstable and stable matching.

– According to our CDS schemes, the server does not need to know the inputs in
advance. All necessary information is already sent as the CDS messages. This
can be applied to practical use, even though it is different from Definition 3.

– It is not difficult to revise and apply the idea in this section to more general
settings of stable matching problem (e.g., many-to-one matching).

5 Verification Protocol for Stable Matching

In this section, we propose a verification protocol for stable matching from our
CDS schemes for unstable and stable matching. We consider the same setting
as in the CDS schemes, where each of the 2n clients has its matching preference
and its matching result, and the server has the matching preferences of all clients
and the complete matching result. The goal is to let each client learn whether
the matching result is stable or not.

The verification protocol for stable matching is proposed in Fig. 4. Firstly,
the clients get common secrets and common randomnesses. This can be done
by a multi-party protocol or a common source of randomness. Note that these
values are not known to the server. Next, the clients and the server execute
the CDS schemes for unstable and stable matching. The two CDS schemes can

130 K. Phalakarn and T. Nakamura

be executed in parallel. After the clients receive the output values of the CDS
schemes from the server, the clients compare with the common secrets. Finally,
the clients output “not a stable matching” or “stable matching” according to
the comparison. In the case that the server attempts to cheat, the clients output
⊥.

For our proposed verification protocol for stable matching, it is important to
execute two CDS schemes. Assume that the matching result is a stable matching
and we only execute one CDS scheme for stable matching. Even though the
secret of the CDS scheme is disclosed to the server, the malicious server may
choose to output a random value instead. To make sure that the server cannot
change the verification result, two CDS schemes are needed and the server must
output a correct secret from one of the two CDS schemes. In this way, our scheme
guarantees a correct verification result even in the setting with a malicious server.
We then propose Theorem 3 together with the proof.

Fig. 4. Verification protocol for stable matching

Theorem 3. The verification protocol for stable matching in Fig. 4 provides
soundness according to Definition 4.

Verification Protocol for Stable Matching from CDS 131

Proof. Consider the case that the server is honest and follows the protocol prop-
erly. The server should be able to return the correct secret s1 or s2 depending
on the matching result M . If s′

1 = s1, the matching result M is not a stable
matching according to the correctness of our CDS scheme for unstable matching
(Theorem 1). In the same way, if s′

2 = s2, the matching result M is a stable
matching according to the correctness of our CDS scheme for stable matching
(Theorem 2).

Consider the case that the server is malicious and tries to change the verifi-
cation result. According to the secrecy of our CDS scheme for unstable matching
(Theorem 1), the server learns nothing if M is a stable matching. In the same
way, according to the secrecy of our CDS scheme for stable matching (Theorem
2), the server learns nothing if M is not a stable matching. The server may try
to output an incorrect result by trying to guess the secret. Assume that the size
of the secrets s1 and s2 is λ bits, the probability that the server successfully
outputs an incorrect result without being caught is 2−λ, which is negligible in
λ. 	

According to Sect. 4.3, the possible improvements can also be applied to our
verification protocol as well. Note that when applying our proposed verification
protocol for stable matching to the protocol in [21], since the computing server
is expected to return a stable matching, the CDS scheme for unstable matching
may not be required in this case.

6 Implementation

In this section, we implement our proposed verification protocol for stable match-
ing and compare its performance to the protocol from [21]. Since the protocol
in [21] is based on homomorphic encryption, the execution time for any input is
similar. However, the execution time of our protocol is different between the case
of unstable and stable matching. To have a fair comparison, we run the experi-
ment with the inputs that give our protocol the worst case execution time.

For the environment setting, we implement the server side of both protocols
in C++ using the NTL library, and implement BGV homomorphic encryption
[6] using the HElib library. The security parameter λ is set to 190 for both
protocols. The codes are run on Ubuntu 20.04.6 LTS with Intel Core i7-11700K
CPU and 64 GB RAM. The results are shown in Table 2. For each n, we run the
protocols 3 times and calculate the average execution time. Our protocol using
secret sharing techniques is 4 to 5 orders of magnitude faster than the protocol
from [21] using homomorphic encryption.

7 Concluding Remarks

In this paper, we propose the CDS schemes for unstable and stable match-
ing, which are then used as building blocks to construct the verification pro-
tocol for stable matching. Since the proposed CDS schemes do not require any

132 K. Phalakarn and T. Nakamura

Table 2. Execution time of our verification protocol and the protocol from [21]

n Ours (sec) [21] (sec)

3 0.000116 62.1937

4 0.000341 178.674

5 0.000828 279.338

6 0.001726 402.443

7 0.003164 549.403

8 0.005478 1103.80

9 0.008760 1399.70

10 0.012937 1747.26

15 0.065898 4061.04

20 0.204971 8770.92

asymmetric-key cryptographic primitives, our verification protocol is more effi-
cient than the previous work. This claim is proved by the implementation result.
Our proposed CDS schemes and verification protocol can also be considered as
constant-round and non-interactive. Finally, we suggest some research directions
as possible future studies.

– Although the proposed CDS schemes and verification protocol for stable
matching in this work preserve privacy of the inputs against other clients,
the privacy is not preserved against the server. This is the same as [21] for
the case of the computing server. We may try to follow [5,22], and propose pri-
vate or oblivious CDS schemes which preserve privacy of inputs and outputs
against the server.

– The other interesting direction is to propose CDS schemes and verification
protocols for other functionalities. Proposing CDS schemes and verification
protocols that can be used for any functionality is also challenging.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

2. Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-Sharing Schemes
for General and Uniform Access Structures. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11478, pp. 441–471. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17659-4 15

3. Applebaum, B., Beimel, A., Nir, O., Peter, N.: Better secret sharing via robust
conditional disclosure of secrets. In: Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 280–293 (2020)

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-030-17659-4_15
https://doi.org/10.1007/978-3-030-17659-4_15

Verification Protocol for Stable Matching from CDS 133

4. Beimel, A., Peter, N.: Optimal Linear Multiparty Conditional Disclosure of Secrets
Protocols. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11274, pp. 332–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03332-3 13

5. Bhadauria, R., Hazay, C.: Multi-clients Verifiable Computation via Conditional
Disclosure of Secrets. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol.
12238, pp. 150–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57990-6 8

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) Fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3),
1–36 (2014)

7. Sahai, A. (ed.): TCC 2013. LNCS, vol. 7785. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2

8. Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1602–1613 (2016)

9. Dubins, L.E., Freedman, D.A.: Machiavelli and the gale-shapley algorithm. Am.
Math. Mon. 88(7), 485–494 (1981)

10. Franklin, M., Gondree, M., Mohassel, P.: Improved Efficiency for Private Stable
Matching. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 163–177. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 11

11. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

12. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discret.
Appl. Math. 11(3), 223–232 (1985)

13. Gay, R., Kerenidis, I., Wee, H.: Communication Complexity of Conditional Dis-
closure of Secrets and Attribute-Based Encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 24

14. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Out-
sourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 25

15. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pp. 151–160 (1998)

16. Golle, P.: A private stable matching algorithm. In: Di Crescenzo, G., Rubin, A.
(eds.) FC 2006. LNCS, vol. 4107, pp. 65–80. Springer, Heidelberg (2006). https://
doi.org/10.1007/11889663 5

17. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-client verifiable com-
putation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46497-7 6

18. Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting, pp. 699–708 (2018)

19. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-
linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 25

https://doi.org/10.1007/978-3-030-03332-3_13
https://doi.org/10.1007/978-3-030-03332-3_13
https://doi.org/10.1007/978-3-030-57990-6_8
https://doi.org/10.1007/978-3-030-57990-6_8
https://doi.org/10.1007/978-3-642-36594-2
https://doi.org/10.1007/978-3-642-36594-2
https://doi.org/10.1007/11967668_11
https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/11889663_5
https://doi.org/10.1007/11889663_5
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25

134 K. Phalakarn and T. Nakamura

20. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier
for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 567–596. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 21

21. Nakamura., T., Okada., H., Fukushima., K., Isohara., T.: Achieving private veri-
fication in multi-stakeholder environment and application to stable matching. In:
Proceedings of the 25th International Conference on Enterprise Information Sys-
tems - Volume 1: ICEIS, pp. 768–775. INSTICC, SciTePress (2023). https://doi.
org/10.5220/0011995800003467

22. Phalakarn, K., Attrapadung, N., Matsuura, K.: Efficient oblivious evaluation pro-
tocol and conditional disclosure of secrets for DFA. In: Applied Cryptography and
Network Security: 20th International Conference, ACNS 2022, Rome, Italy, June
20–23, 2022, Proceedings, pp. 605–625. Springer (2022)

23. Riazi, M.S., Songhori, E.M., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Toward
practical secure stable matching. Proc. Priv. Enhancing Technol. 2017(1), 62–78
(2017)

24. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
25. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium

on Foundations of Computer Science, pp. 162–167. IEEE (1986)

https://doi.org/10.1007/978-3-319-78381-9_21
https://doi.org/10.1007/978-3-319-78381-9_21
https://doi.org/10.5220/0011995800003467
https://doi.org/10.5220/0011995800003467

Non-malleable Fuzzy Extractors

Danilo Francati1(B) and Daniele Venturi2

1 Aarhus University, Aarhus, Denmark
danilofrancati@gmail.com

2 Sapienza University of Rome, Rome, Italy

Abstract. Fuzzy extractors (Dodis et al. EUROCRYPT’04) allow to
generate close to uniform randomness using correlated distributions out-
putting samples that are close over some metric space. The latter requires
to produce a helper value (along with the extracted key) that can be used
to recover the key using close samples. Robust fuzzy extractors (Dodis et
al., CRYPTO’06) further protect the helper string from arbitrary active
manipulations, by requiring that the reconstructed key using a modified
helper string cannot yield a different extractor output.

It is well known that statistical robustness inherently requires large
min-entropy (in fact, m > n/2 where n is the bit length of the sam-
ples) from the underlying correlated distributions, even assuming trusted
setup. Motivated by this limitation, we start the investigation of secu-
rity properties weaker than robustness, but that can be achieved in the
plain model assuming only minimal min-entropy (in fact, m = ω(log n)),
while still being useful for applications. We identify one such property
and put forward the notion of non-malleable fuzzy extractors. Intuitively,
non-malleability relaxes the robustness property by allowing the recon-
structed key using a modified helper string to be different from the orig-
inal extractor output, as long as it is a completely unrelated value.

We give a black-box construction of non-malleable fuzzy extractors
in the plain model for min-entropy m = ω(log n), against interesting
families of manipulations including split-state tampering, small-depth
circuits tampering, and space-bounded tampering (in the information-
theoretic setting), as well as tampering via partial functions (assuming
one-way functions). We leave it as an open problem to establish whether
non-malleability is possible for arbitrary manipulations of the helper
string. Finally, we show an application of non-malleable fuzzy extrac-
tors to protect stateless cryptographic primitives whose secret keys are
derived using fuzzy correlated distributions.

Keywords: fuzzy extractors · non-malleability · tampering attacks

1 Introduction

Cryptography inherently requires uniform randomness in order to generate secret
keys. A (seeded) randomness extractor [50] allows to obtain a (statistically-
close to) uniform random string y using a sample x from a weak random source
which is only unpredictable—typically measured in terms of min-entropy—along
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 135–155, 2024.
https://doi.org/10.1007/978-3-031-54770-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_6&domain=pdf
http://orcid.org/0000-0002-4639-0636
http://orcid.org/0000-0003-2379-8564
https://doi.org/10.1007/978-3-031-54770-6_6

136 D. Francati and D. Venturi

with a short truly random seed s. Of course, the length k of the seed must be
much smaller than the number � of extracted bits, and we would also like to
require the weak random source to only have a minimum amount of min-entropy
m = ω(log n), where n is the number of bits from the source.

Fuzzy Extractors. Fuzzy extractors [29,30] cover the setting in which the extrac-
tor has access to a weak random source that outputs samples x that are “close”
with respect to a given distance metric (over the space where x is defined). In
particular, given x, we can now produce the output y along with an helper string
α, with the guarantee that the same key y can be recovered given α along with
a sample x′ which is sufficiently close to x. This settings models faithfully the
scenario in which the samples x and x′ are, say, correlated readings of a user’s
biometric trait such as a fingerprint or an iris scan.

Several constructions of fuzzy extractors exist, for different distance metrics
including Hamming distance, set difference and edit distance [30]. These con-
structions achieve information-theoretic security, and only require m = ω(log n)
bits of min-entropy. However, differently from classical randomness extraction,
there is no crisp characterization of when fuzzy extraction is possible. On the pos-
itive side, Fuller, Reyzin, and Smith [41,42], as well as Woodage et al. [59], show
an inefficient algorithm that derives a key from each distribution with so-called
fuzzy min-entropy. On the negative side, Fuller, Reyzin, and Smith [41,42], and
Fuller and Peng [40], show families of distributions where no fuzzy extractor can
simultaneously work for the whole family, despite the fact that a fuzzy extractor
exists for each element of the family. Motivated by these negative results, a line
of work explores constructions of fuzzy extractors with computational (rather
than statistical) security, for distributions for which no information-theoretic
fuzzy extractor is known [16,17,39,60].

Robust Fuzzy Extractors. Fuzzy extractors provide no guarantee in the presence
of an adversary that can tamper with the helper string α. Robust fuzzy extrac-
tors [28] tackle this shortcoming by requiring that, for every possible tampering
function f(·) yielding a mauled helper string α̃ = f(α), the reconstructed key is
either equal to the original key y, or yields an error message. In case the helper
string can be modified after (resp. without) seeing the final key y we speak of
post-application (resp. pre-application) robustness.

Dodis et al. [28], as well as Kanukurthi and Reyzin [46] show how to obtain a
post-application robust fuzzy extractor with information-theoretic security in the
plain model, by requiring weak sources with large min-entropy m > n/2 where n
is the bit-length of x. The lower bound m > n/2 is known to be optimal for statis-
tical post-application robustness in the plain model [31], as well as for statistical
pre-application robustness in the common reference string (CRS) model1 in the
case of CRS-dependent sources [38]. On the other hand, the lower bound can
be circumvented either in the information-theoretic setting in the random oracle

1 The latter means that the construction requires a trusted third party to sample a
public string, according to some distribution.

Non-malleable Fuzzy Extractors 137

model [14] and in the CRS model with CRS-independent sources [25], or in the
computational setting in the CRS model (both with CRS-independent [56–58]
and with CRS-dependent sources [38]), as well as in the plain model [6] (albeit
under a non-standard group-theoretic hardness assumption recently introduced
by Bartusek, Ma, and Zhandry [12]). See Table 1 for an overview of these results.

Given the above state of affairs, the following question arises naturally:

Is there a weaker robustness property that can be achieved in the plain
model for m = ω(log n), while still being interesting for applications?

We remark that the above question makes sense both for the information-
theoretic and for the computational settings.

1.1 Our Results

In this paper, we make further progress towards answering the above question.
In particular, for a family of manipulations F , we introduce the notion of F-non-
malleable fuzzy extractors, which guarantees that the reconstructed key ỹ using
a tampered helper string α̃ = f(α), for any tampering function f ∈ F , is either
equal to the original untampered key y, or completely independent of it. More
precisely, an F-non-malleable fuzzy extractor should satisfy two properties:

– Pseudorandomness. For every sample x from a weak random source with
m bits of min-entropy, the key y generated using x is (computationally or
statistically) close to uniform even given the helper string α.

– Non-malleability. For every tampering function f ∈ F , there exists an
efficient simulator S(f) that outputs a value ỹ that is (computationally or
statistically) close2 to that of the following experiment: (i) Generate (α, y)
using a sample x from a weak random source with m bits of min-entropy; (ii)
Reconstruct the key ỹ using a close sample x′ along with the tampered helper
string α̃ = f(α). Similar to robustness, one can consider both pre-application
and post-application non-malleability.

Black-Box Construction. Next, we give a black-box construction of an F-
non-malleable fuzzy extractor by combining a fuzzy extractor with an F-non-
malleable code [33]. The latter allows to encode a message into a codeword,
in such a way that decoding a tampered codeword via any tampering function
f ∈ F , either yields the original message or a completely unrelated value.

Our construction simply runs the underlying fuzzy extractor using a sample
x from a weak random source, thus obtaining an extracted key y and helper
string α′; hence, it encodes α′ using the non-malleable code and outputs y along
with the encoded helper string α. The reconstruction procedure first decodes α,
and then uses it along with a close sample x′ in order to derive the key y.

2 The actual definition is slightly more complex, as one needs to account for the
possibility that the tampering function does not modify the helper string.

138 D. Francati and D. Venturi

Theorem 1 (Main Theorem, informal). There is a construction of pre-
application F-non-malleable fuzzy extractors for any metric space and weak ran-
dom source admitting a fuzzy extractor, and for any tampering family F admit-
ting an F-non-malleable code.

Importantly, the construction inherits the same security and setup requirements
of the underlying building blocks. Thus, plugging known non-malleable codes
constructions, we obtain non-malleable fuzzy extractors in the plain model for
weak random sources with min-entropy m = ω(log n), and for interesting tam-
pering families F including: bit-wise tampering and permutations [4], split-state
tampering [1–3,19,21,23,24,32,47,49,52], NC0 and AC0 tampering [9,20,43],
space-bounded tampering [7,10,34], and decision tree tampering [11] in the
information-theoretic setting, as well as arbitrary polynomial-size circuits with
bounded polynomial depth [8,26] and tampering via partial3 functions [48] in
the computational setting.4

We remark that the aforementioned lower bounds for robust fuzzy extractors
do not seem to hold for non-malleable fuzzy extractor. Thus, there is hope that
fuzzy non-malleability could be achieved in the plain model for m = ω(log n) and
for arbitrary manipulations. We leave settling this question as an open problem.

Table 1 provides a comparison between our construction and the state of the
art. In particular, our main construction is in the plain model while support-
ing low min-entropy sources (i.e., ω(log n)). In contrast, [14,25,28,38,46,56–58]
either require larger min-entropy sources or are not in the plain model (e.g., CRS
and RO model). On the other hand, [6] is secure in the computational setting
whereas our construction achieves information-theoretic security.

Fuzzy Tamper Simulatability. Finally, we investigate applications of non-
malleable fuzzy extractors to secure cryptographic primitives whose secret keys
are derived using a shared weak random source outputting close samples. Prac-
tical examples of such a source include sampling behavioral data [44] and
reading physical sources such as sunspots [18] and physically unclonable func-
tions [27,53].

More in details, let G be a cryptographic primitive implemented, say, using a
smartcard. Instead of storing the secret key y on the smartcard, we use a sample x
from the weak random source to generate the key y along with helper value α via
an F-non-malleable fuzzy extractor, and store α on the smartcard. This allows to
recover the key y, and run the underlying primitive G(y, ·) on additional inputs,
given any close sample x′. Furthermore, (pre-application) non-malleability guar-
antees that, for any tampering function f ∈ F , the key ỹ that is obtained by
combining x′ with the tampered helper string α̃ = f(α), is independent of y,
which in turn implies a way to protect the smartcard against memory tampering
3 These are functions that read/write on an arbitrary subset of bits with specific

cardinality.
4 The result of [26] requires keyless hash functions and time-lock puzzles (along other

standard computational assumptions), whereas the result of [48] only requires one-
way functions.

Non-malleable Fuzzy Extractors 139

Table 1. Comparing our results with state-of-the-art constructions for robust fuzzy
extractors. † The result in [38] works even for CRS-dependent sources. ‡ Non-
malleability holds for all tampering families for which there is a non-malleable code
(with either statistical or computational security).

Reference Model Security IT Min-entropy

[14] RO Robustness � ω(log n)

[28,46] Plain Robustness � n/2

[25] CRS Robustness � ω(log n)

[38,56–58]† CRS Robustness ✗ ω(log n)

[6] Plain Robustness ✗ ω(log n)

Section 4 Plain Non-malleability‡ � ω(log n)

Section 4 Plain Non-malleability‡ ✗ ω(log n)

attacks. The above application can be extended to deal with multiple tampering
attacks against the memory; however, the latter requires to re-generate both α
and y using a fresh sample x after each invocation.

Dziembowsky, Pietrzak, and Wichs [33] considered a similar application using
non-malleable codes, where the smartcard in their case stores an encoding of the
secret key. Thus, the above can be considered as a generalization of their appli-
cation to the fuzzy setting, in which the secret key for the underlying primitive
G is derived using a shared weak random source.

1.2 Related Work

Fuzzy extractors further exist also for weak random sources modeled as contin-
uous distributions [15,40,51,54]. To the best of our knowledge, none of these
constructions achieve robustness. In contrast, our construction can be instanti-
ated starting with any fuzzy extractor, yielding a non-malleable fuzzy extractor
for continuous sources.

There exist also constructions of non-malleable codes in the CRS model
(e.g., [10,37,45]); however, using those in our construction does not improve
the state of the art for robust fuzzy extractors.

Dodis and Wichs [31] build a two-round (interactive) key agreement protocol
in the fuzzy setting, using a so-called non-malleable extractor. The latter is a
seeded extractor with the following non-malleability property: the adversary gets
the seed and comes up with an arbitrarily related seed; then, it learns the value
extracted from a weak random source under the modified seed. The extracted
value should still look uniformly random even when given the modified seed.

2 Preliminaries

Notation. Capital bold-face letters (such as X) are used to denote probability
distributions, small letters (such as x) to denote concrete values, calligraphic

140 D. Francati and D. Venturi

letters (such as X) to denote sets, sans serif letters (such as A) to denote algo-
rithms. We denote with U� the uniform distribution over {0, 1}�. For a string
x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents the cardinality
of X . When x is chosen uniformly from a set X , we write x ←$ X . Similarly, if
X is a distribution, we denote with x ←$ X the sample x chosen according to
X. All of our algorithms are modeled as Turing machines; if A is a deterministic
algorithm, we write y = A(x) to denote a run of A on input x and output y;
if A is randomized, we write y ←$ A(x) (or y = A(x; r)) to denote a run of A
on input x and (uniform) randomness r, and output y. If X is a distribution,
we write A(X) for the probability distribution obtained by sampling x ←$ X
and executing A(x). An algorithm A is probabilistic polynomial-time (PPT) if
A is randomized and for any input x, r ∈ {0, 1}∗ the computation of A(x; r)
terminates in a polynomial number of steps (in the input size).

Statistical Distance and Min-Entropy. Let X1 and X2 be two probability dis-
tributions over a set S. The statistical distance between X1 and X2 is defined

as follows: Δ(X1,X2)
def= 1

2

∑
x∈S

∣
∣
∣
∣P [X1 = x] − P [X2 = x]

∣
∣
∣
∣, where P [X = x]

denotes the probability that the distribution X takes at value x. We say that
two distributions are ε-close, denoted by X1 ≈ε X2, if their statistically distance
is at most ε, i.e., Δ(X1,X2) ≤ ε.

The min-entropy of a probability distribution X is defined as H∞(X) def=
− log(maxx P[X = x]). The (average) conditional min-entropy of distribution X
given distribution Y is defined as: H̃∞(X|Y) def= − log

(
Ey ←$ Y

(
2−H∞(X|Y=y)

))
.

2.1 (Keyless) Fuzzy Extractors

In this section, we recall different notions of extractors.

Strong Extractors. Let X be a distribution. A strong extractor is an algorithm
Ext that, on input x ←$ X and a random seed s ←$ Uk (where Uk is the uniform
distribution over {0, 1}k), it outputs a string y. For any X with sufficiently
high min-entropy, a strong extractor guarantees that y is close to a uniformly
random string, even if the output is conditioned to the random seed. The formal
definition follows.

Definition 1. (Strong (X ,m, k, �, ε)-extractors). Let Uk be the uniform dis-
tribution over the set {0, 1}k. An algorithm Ext : X ×{0, 1}k → {0, 1}� is a strong
(X ,m, k, �, ε)-extractor if for every distribution X over X such that H∞(X) ≥ m,
we have Δ ((Ext(X, s), s), (U�,Uk)) ≤ ε where s ←$ Uk.

Fuzzy Extractors. Let dist(·, ·) be a distance metric over a set X . We say that
x1, x2 ∈ X are t-close (according to dist(·, ·)) if dist(x1, x2) ≤ t. A stronger
notion of extractors are fuzzy extractors. Informally, a fuzzy extractor allows to
(i) generate an extracted string y from a sample x1 ←$ X1 and (ii) reconstruct
y from any sample x2 that is t-close (w.r.t. to a distance metric dist(·, ·) and

Non-malleable Fuzzy Extractors 141

threshold t) to the original sample x1, i.e., dist(x1, x2) ≤ t. In order to make the
reconstruction possible, an helper string α is generated along with y. The former
will be then combined with x2 to regenerate y. Similarly to (standard) strong
extractors (Definition 1), we require that y is close to an uniformly random string
even if conditioned to the helper string α, when X1 has high enough min-entropy.

Definition 2. ((X ,m, k, �, t, ε)-fuzzy extractors). Let dist(·, ·) be a distance
metric. A scheme Π = (Gen,Rec) is an (X ,m, k, �, t, ε)-fuzzy extractor (for met-
ric dist(·, ·)) with input space X and output space {0, 1}� if Π satisfies the fol-
lowing properties:

– Syntax: The algorithms Gen and Rec have the following syntax:
Gen(x1): The deterministic generation algorithm takes as input a sample x1 ∈

X and outputs a string y ∈ {0, 1}� and a helper string α ∈ {0, 1}∗.
Rec(x2, α) The deterministic reconstruction algorithm takes as input a sam-

ple x2 ∈ X and a string α ∈ {0, 1}∗, and outputs a string y ∈ {0, 1}�.
– Correctness: For every x1, x2 ∈ X such that dist(x1, x2) ≤ t, we have that

P [y = Rec(x2, α)|(y, α) = Gen(x1)] = 1.
– Security: For every distribution X1 over the set X such that H∞(X1) ≥ m,

we have Δ((y, α), (U�, α)) ≤ ε where (y, α) = Gen(X1).

Robust Fuzzy Extractors. As discussed in [28], fuzzy extractors (Definition 2)
offer security only in the case of passive attackers: Given α, an adversary cannot
infer any information about the extracted string y (corresponding to α). For
this reason, the notion of robust fuzzy extractors [14,28] has been proposed. In
a nutshell, a robust fuzzy extractor is able to detect any manipulation of the
helper string α. This is achieved by allowing the reconstruction algorithm Rec
to output either an extracted string y or a special value ⊥. Intuitively, with
reasonably high probability, we want Rec to output ⊥ for any value α̃ 	= α
produced by an adversary after seeing the original helper string α.

Following Dodis et al. [28], we consider two manipulation scenarios:

1. Pre-application: An adversary A produces the manipulated helper string α̃
given the original helper string α, i.e., α̃ ←$ A(α). Observe that the extracted
string y is kept secret from the adversary.

2. Post-application: This notion is a strengthening of the pre-application case.
Here, the adversary produces the manipulated helper string α̃ given both the
helper string α and the corresponding extracted string y, i.e., α̃ ←$ A(y, α).

Definition 3. ((t,m)-pair of distributions). Let two (possibly correlated) dis-
tributions X1,X2 over a set X . We say (X1,X2) is a (t,m)-pair of distributions
for a distance metric dist(·, ·) if P [dist(X1,X2) ≤ t] = 1 and H∞(X1) ≥ m.

Definition 4. (Pre-application and post-application δ-robustness of (X ,
m, k, �, t, ε)-fuzzy extractors). Let dist(·, ·) be distance metric. An (X ,m, k, �,
t, ε)-fuzzy extractor Π = (Gen,Rec) (for metric dist(·, ·)) with input space X and
output space {0, 1}� satisfies pre-application (resp. post-application) δ-robustness
if for every (t,m)-pair of distributions (X1,X2) for the distance metric dist(·, ·),
and for every adversary A, we have:

142 D. Francati and D. Venturi

Fig. 1. Experiments defining (F , ε)-NM coding schemes.

– Pre-application δ-robustness:
[

α̃ 	= α ∧ Rec(x2, α̃) 	= ⊥
∣
∣
∣
(x1, x2) ←$ (X1,X2),
(y, α) = Gen(x1), α̃ ←$ A(α)

]

≤ δ.

– Post-application δ-robustness:
[

α̃ 	= α ∧ Rec(x2, α̃) 	= ⊥
∣
∣
∣
(x1, x2) ←$ (X1,X2),
(y, α) = Gen(x1), α̃ ←$ A(y, α)

]

≤ δ.

2.2 Non-malleable Codes

Non-malleable codes [33] are a relaxation of error-correction and error-detection
codes. Instead of correcting/detecting modified codewords, non-malleable codes
guarantee that the message contained in a modified codeword is either the
original message or a completely unrelated value. The main advantage of non-
malleable codes (w.r.t. error-correcting and error-detecting codes) is that non-
malleability can be obtained for richer classes of tampering/modification func-
tions. We recall the definition of coding schemes below.

Definition 5 (Coding scheme). A scheme Π = (Enc,Dec) is a coding scheme
with message space X and codeword space C if Π satisfies the following proper-
ties:

– Syntax: The algorithms Enc and Dec have the following syntax.
Enc(x): The randomized encoding algorithm takes as input a message x ∈ X

and outputs a codeword c ∈ C.
Dec(c): The deterministic decoding algorithm takes as input a codeword c ∈ C

and outputs either a message x or ⊥.
– Correctness: For every x ∈ X , we have P[x = Dec(Enc(x))] = 1.

Regarding non-malleability, it guarantees that for every tampering function f ∈
F (where F is the tapering family considered) the decoded message x̃ = Dec(c̃) of
the modified codeword c̃ = f(c) (where c = Enc(x) for some x) is either x̃ = x or
completely unrelated from the original message x. The formal definition follows.

Definition 6. ((F , ε)-non-malleability of coding schemes). A coding sche-
me Π = (Enc,Dec) (Definition 5) with message space X and codeword space C is

Non-malleable Fuzzy Extractors 143

Fig. 2. Experiments defining (F , δ)-pre-NM of fuzzy extractors.

(F , ε)-non-malleable ((F , ε)-NM) if there exists a simulator S such that for every
f ∈ F , and for every x ∈ X , we have TamperΠ,f (x) ≈ε SimTamperΠ,f,S(x)
where the experiments TamperΠ,f (x) and SimTamperΠ,f,S(x) are defined
in Fig. 1.

While the above definition is information-theoretic, we note that the same
definition can be adapted to the computational setting where now ε is a bound
on the distinguishing advantage between the two experiments (for every PPT
machine). The reason for considering computational non-malleability is that
there are families of tampering functions for which we do not know coding
schemes satisfying statistical non-malleability (e.g., the family of all tamper-
ing circuits of arbitrary polynomial size and bounded polynomial depth [8,26]
and the family of partial tampering functions [48]).

We also recall that non-malleability is impossible to achieve (even computa-
tionally) against the family of all possible manipulations (because the encoding
and decoding algorithms are keyless and public).

3 Non-malleable Fuzzy Extractors

We introduce the notion of non-malleable fuzzy extractors which guarantees that
the tampered α̃ corresponding to helper string α (and extracted value y) is such
that the value ỹ reconstructed using α̃ is either equal to y or independent of it.

Definition 7. (Pre-application (F , δ)-non-malleability of (X ,m, k, �, t, ε)-
fuzzy extractors). Let dist(·, ·) be a distance metric. An (X ,m, k, �, t, ε)-
fuzzy extractor Π = (Gen,Rec) (for metric dist(·, ·)) with input space
X and output space {0, 1}� satisfies pre-application (F , δ)-non-malleability
((F , δ)-pre-NM) if for every (t,m)-pair of distributions (X1,X2) for the
distance metric dist(·, ·) there exists a simulator S such that for every
f ∈ F , we have TamperΠ,f (X1,X2) ≈δ SimTamperΠ,f,S(X1,X2) where
TamperΠ,f (X1,X2) and SimTamperΠ,f,S(X1,X2) are depicted in Fig. 2.

The above definition covers the pre-application setting which is sufficient for
our application of fuzzy tamper simulatability (Sect. 5). For completeness, we
highlight that the post-application version of Definition 7 is identical except that

144 D. Francati and D. Venturi

the tampering function f ∈ F additionally takes as input the extracted string y,
i.e., the tampered helper string α̃ of TamperΠ,f (X1,X2) (Fig. 2) is computed as
α̃ = f(α, y). This is reminiscent of the definition of post-application robustness
of fuzzy extractors (see Definition 4).

4 Construction

Next, we give our construction of non-malleable fuzzy extractors combining stan-
dard fuzzy extractors with non-malleable codes.

Construction 1. Consider the following ingredients:

1. A (X ,m, k, �, t, ε)-fuzzy extractor ΠfuzzyExt = (GenfuzzyExt,RecfuzzyExt) (Defini-
tion 2) with input space X and output space {0, 1}� for a distance metric
dist(·, ·). Without loss of generality, let H be the helper string space of ΠfuzzyExt.

2. A coding scheme Πcoding = (Enccoding,Deccoding) (Definition 5) with message
space H and codeword space C.

We build a non-malleable (X ,m, k, �, t, ε)-fuzzy extractor Π = (Gen,Rec) (for
dist(·, ·)) with input space X and output space {0, 1}� in the following way:

Gen(x1): Upon input a sample x1 ∈ X , the deterministic generation algorithm
outputs (y, α) = (y′, c) where (y′, α′) = GenfuzzyExt(x1), and c = Enccoding(α′).

Rec(x2, α): Upon input a sample x2 ∈ X and an helper string α = c, the deter-
ministic reconstruction algorithm first runs α′ = Deccoding(c); then, if α′ = ⊥
it returns ⊥ and otherwise it outputs y = RecfuzzyExt(x2, α

′).

The proof of security of the above construction Π (Theorem 2) is divided into
two parts. First, we show that Π is a fuzzy extractor (Lemma 1). Then, we show
that Π satisfies non-malleability (Lemma 2).

Lemma 1. Let ΠfuzzyExt as defined in Construction 1. If ΠfuzzyExt is an (X ,m, k,
�, t, ε)-fuzzy extractor (Definition 2) for the distance metric dist(·, ·), then Π
from Construction 1 is an (X ,m, k, �, t, ε)-fuzzy extractor (Definition 2) for the
same metric dist(·, ·).
Proof. Suppose there exists a distribution X1 over X with min-entropy
H∞(X1) ≥ m such that Δ((y, α), (U�, α)) > ε where (y, α) = Gen(X1), i.e.,
there exists an algorithm D with advantage ε in distinguishing between the dis-
tributions (y, α) and (U�, α). We build a distinguisher D′ that breaks the security
of the (X ,m, k, �, t, ε)-fuzzy extractor ΠfuzzyExt (w.r.t. the distribution X1). D′ is
defined as follows:

1. Receive (y′, α′) from the challenger.
2. Return the output of D(y′,Enccoding(α′)).

Non-malleable Fuzzy Extractors 145

Fig. 3. The intermediate distribution TamperΠ,f (X1,X2) and the final simulator S
of Π. The algorithm Scoding is the simulator of the non-malleable coding scheme Πcoding.

We can observe that if (y′, α′) = GenfuzzyExt(X1), then D is executed over the
input distribution (y, α) = Gen(X1). On the other hand, if (y′, α′) is sampled
as y′ ←$ U� and α′ is the helper string output by GenfuzzyExt(X1), then D is
executed over the input distribution (U�, α) where α is the helper string output
by Gen(X1). Hence, D′ correctly simulates the view of D. This implies that D′

retains the same advantage of D. This concludes the proof. ��

Lemma 2. Let Πcoding as defined in Construction 1. If Πcoding is (F , δ)-NM
(Definition 6), then Π from Construction 1 is (F , δ)-pre-NM (Definition 7).

Proof. Fix (X1,X2) to be any (t,m)-pair of distributions, and consider the sim-
ulator S depicted in Fig. 3. First, we prove that TamperΠ,f (X1,X2) is δ-close to
the intermediate distribution TamperΠ,f (X1,X2) depicted in Fig. 3. Second, we
prove that TamperΠ,f (X1,X2) and SimTamperΠ,f,S(X1,X2) are identically
distributed where S is the simulator depicted in Fig. 3.

Claim. For every (t,m)-pair of distributions (X1,X2), for every f ∈ F , then:
TamperΠ,f (X1,X2) ≈δ TamperΠ,f (X1,X2).

Proof. Suppose there exists an f ∈ F such that the distributions
TamperΠ,f (X1,X2) and TamperΠ,f (X1,X2) are not δ-close, i.e., there exists
an algorithm D with advantage δ in distinguishing between the distributions
TamperΠ,f (X1,X2) and TamperΠ,f (X1,X2). We build a distinguisher D′ that
breaks the (F , δ)-NM of Πcoding. D′ is defined as follows:

1. Sample (x1, x2) ←$ (X1,X2) and compute (y, α′) = GenfuzzyExt(x1).
2. Send α′ to the challenger as the message of the (F , δ)-NM experiment of

Πcoding.
3. Receive α̃′ and return the output of D(RecfuzzyExt(x2, α̃

′)).

It is easy to see that, if α̃′ is computed as described in TamperΠcoding,f
(α′),

then D′ simulates TamperΠ,f (X1,X2). On the other hand, if α̃′ is
computed as described in SimTamperΠcoding,f,Scoding

(α′), then D′ simulates
TamperΠ,f (X1,X2). This concludes the proof of the claim. ��

146 D. Francati and D. Venturi

Claim. Let (X1,X2) and S be, respectively, a (t,m)-pair of distributions
(X1,X2) and the simulator depicted in Fig. 3. For every f ∈ F , we have
TamperΠ,f (X1,X2) ≡ SimTamperΠ,f,S(X1,X2).

Proof. The claim follows by leveraging the following two observations:

1. If Scoding outputs α̃′ = same and ΠfuzzyExt is correct, then the final output y
of both TamperΠ,f (X1,X2) and SimTamperΠ,f,S(X1,X2) is computed in
the same way.

2. If Scoding outputs α̃′ 	= same, then SimTamperΠ,f,S(X1,X2) outputs ỹ =
RecfuzzyExt(x′

2, α̃
′) where x′

2 is sampled (by the simulator S) as (x′
1, x

′
2) ←$ (X1,

X2). On the other hand, TamperΠ,f (X1,X2) outputs ỹ = RecfuzzyExt(x2, α̃
′)

where x2 is the original sample. Still, these distributions are identically dis-
tributed since α̃′ is computed as Scoding(f) and it does not depend on the
original sampled pair (x1, x2) ←$ (X1,X2) (note that (x1, x2) and (x′

1, x
′
2)

comes from the same distribution (X1,X2)). ��
Lemma 2 follows by combining the above two claims. ��
The following theorem states the security of Construction 1.

Theorem 2. Let ΠfuzzyExt and Πcoding be as above.

1. If ΠfuzzyExt is an (X ,m, k, �, t, ε)-fuzzy extractor (Definition 2) for the dis-
tance metric dist(·, ·), then Π from Construction 1 is an (X ,m, k, �, t, ε)-fuzzy
extractor (Definition 2) for the same metric dist(·, ·).

2. If Πcoding is (F , δ)-NM (Definition 6), then Π from Construction 1 is (F , δ)-
pre-NM (Definition 7).

Proof. Theorem 2 follows by simply combining Lemmas 1 and 2. ��
Remark 1 (Statistical vs computational security). We note that the above proof
also works in the computational setting, assuming the underlying non-malleable
code is only computationally secure. This allows to get non-malleable fuzzy
extractors (in the plain model and with sources with minimal min-entropy)
against tampering families for which non-malleable codes are known only in
the computational setting.

5 Fuzzy Tamper-Resilient Security

Dziembowski et al. [33] showed that non-malleable codes are sufficient to compile
a (possibly stateful) system into one that implements the same functionality,
while being resilient to tampering attacks (against its internal state). This is
achieved by simply encoding the internal state using a non-malleable code.

In this section, we show that non-malleable fuzzy extractors can be used to
achieve an analogous result in the fuzzy setting. In more details, starting from a
stateless system G that relies on a random key from {0, 1}� (stored by the system
itself),5 we can compile G into an hardened stateless system GΠ (through a non-
malleable fuzzy extractor Π) in order to obtain the following properties:
5 The term “stateless system” refers to a system which does not store any additional

state (e.g., data structure) except from a uniform secret key required for security.

Non-malleable Fuzzy Extractors 147

1. (Fuzzyness). The hardened system GΠ achieves the same functionality of
G but in the fuzzy setting. In particular, GΠ computes its random key y
by letting (y, α) = Gen(x1) where Π = (Gen,Rec) is a fuzzy extractor and
x1 is sampled from a distribution X1 (with sufficiently high min-entropy).
Then, instead of storing y, the system GΠ stores the helper string α. We
denote the functionality of GΠ w.r.t. α as GΠ

α . Users can issue commands on
an input v to the hardened fuzzy system GΠ

α , by sending an execute com-
mand together with an input v and a sample x2. Then, the system GΠ

α will
use x2 and its internal helper string α to reconstruct y and execute Gy(v)
where Gy is the original stateless system with key y. It is easy to see that
whenever dist(x1, x2) ≤ t (where dist(·, ·) and t are the distance metric and
its corresponding threshold of the underlying non-malleable fuzzy extractor)
then the fuzzy system GΠ

α implements the same functionality of the orig-
inal system GU�

(where U� denotes the uniform distribution over the key
space {0, 1}�). This is because Rec(x2, α) = y′ = y where (y, α) ←$ Gen(x1)
for dist(x1, x2) ≤ t and x1 ←$ X1, and y is indistinguishable from a random
string from U� whenever H∞(X1) ≥ m.

2. (Tamper resiliency). The system GΠ
α described above is also tamper resilient,

i.e., tampering attacks are useless. In other words, a malicious user (i.e.,
adversary) that tampers with the stored helper string α cannot leak any sen-
sitive information regarding the random key y (output by the extractor). This
intuitively follows from the non-malleability property of the fuzzy extractor.

We now formalize the notions of stateless (fuzzy) systems with random keys.

Definition 8 (Interactive stateless system with random keys). For
y ←$ {0, 1}�, an interactive system Gy with input space V and output space W is
a system which accepts the following mode of interaction:

Execute(v): A user can issue to the system a command Execute(v), for v ∈ V.
As a result, the system outputs w ∈ W where w = Gy(v).

The above definition assumes that Gy is untamperable, i.e., a malicious user
cannot tamper with the system’s random key y. We now define the hardened
fuzzy version GΠ of G as described at the beginning of this section. Contrarily
to G, the hardened system GΠ allows for tampering attacks, i.e., its interface
provides a command Tamper(f) where f is a tampering function that modifies
its internal helper string α.

Definition 9 (Hardened fuzzy interactive stateless system GΠ of G).
Let Π = (Gen,Rec) be an (X ,m, k, �, t, ε)-fuzzy extractor (Definition 2) with
input space X and distance metric dist(·, ·), and (X1,X2) be a (t,m)-pair of
distributions over X . Let G be an interactive stateless system with key space
{0, 1}�, input space V, and output space W (Definition 8). For (y, α) = Gen(x1)
where (x1, x2) ←$ (X1,X2), the hardened fuzzy interactive stateless system GΠ

α

of Gy is a fuzzy system which accepts the following mode of interaction:

Execute(v): A user can issue to the system a command Execute(v) to GΠ
α , for

v ∈ V. As a result, the hardened fuzzy system GΠ
α outputs w = GRec(x2,α)(v).

148 D. Francati and D. Venturi

Tamper(f): A malicious user can issue a tampering query f ∈ F , where F is a
class of allowed modifications. As a result, the local helper string α of GΠ

α is
set to α = f(α).

Intuitively, the above system is the fuzzy version of the original stateless sys-
tem. However, Definition 9 allows for tampering queries that may affect the secu-
rity of the system. As an example, a malicious users can tamper with α in order
to leak information about the key y (output by the extractor). Our objective is to
demonstrate that any non-malleable fuzzy extractor is tamper simulatable. Here,
tamper simulatability means that, independently from the original interactive
system Gy, the hardened fuzzy system GΠ

α (where (y, α) ←$ Gen(X)) is tamper-
resilient, meaning that tampering attacks are useless and they do not allow an
attacker to gain any information about the random key y. Following [33], in the
fuzzy setting tamper simulatability is formalized by requiring that the hardened
system GΠ

α can be simulated by a simulator having only oracle access to the
functionality G(·)(·) of the original non-hardened system. Here, the oracle G(·)(·)
allows the simulator to choose both the key y (yielding Gy(·)) and the input v
(execute command Execute(v)). The formal definition follows.

Definition 10 ((F , q, δ)-Tamper simulatability of (X ,m, k, �, t, ε)-fuzzy
extractors). Let dist(·, ·) be a distance metric. We say an (X ,m, k, �, t, ε)-fuzzy
extractor Π = (Gen,Rec) (for metric dist(·, ·)) with input space X and output
space {0, 1}� is (F , q, δ)-tamper-simulatable, if for every (t,m)-pair of distri-
butions (X1,X2), and for every interactive stateless system G with key space
{0, 1}�, input space V, and output space W (Definition 8), there exists a simula-
tor S such that for every valid adversary A, we have that TamperInteractA,Π,G(
X1,X2, q) ≈δ SimTamperInteractA,S,G(q) where TamperInteractA,Π,G(X1,
X2, q) and SimTamperInteractA,S,G(q) are defined as follows:

TamperInteractA,Π,G(X1,X2, q): The hardened fuzzy system GΠ
α1 is initialized

by computing (y1, α1) = Gen(x1
1) where (x1

1, x
1
2) ←$ (X1,X2). The adversary

A executes q rounds of interaction with the hardened fuzzy system. In partic-
ular, for i ∈ [q], the i-th round of interaction between A and GΠ

αi is defined as
follows:
1. A submits the command Tamper(fi) to GΠ

αi , for fi ∈ F , as defined in Def-
inition 9. As a result, αi is updated to αi = α̃i = fi(αi).

2. A submits the command Execute(vi) to GΠ
αi , for vi ∈ V, as defined in Def-

inition 9. As a result, A receives the output wi = GRec(xi
2,αi)(vi).

3. The fuzzy hardened system is refreshed (to handle more tampering
queries) by computing GΠ

αi+1 where (yi+1, αi+1) = Gen(xi+1
1) for (xi+1

1 ,

xi+1
2) ←$ (X1,X2), i.e., in the next round the adversary A will interact

with the system GΠ
αi+1 .

The output of the experiment is composed of the output of the adversary A at
the end of the interaction, together with all the inputs v1, . . . , vq of the execute
queries.

Non-malleable Fuzzy Extractors 149

SimTamperInteractA,S,G(q): The simulator S, with black-box oracle access to
A(·) and the functionality of the non-hardened stateless system G(·)(·), exe-
cutes q rounds of interaction with the system G(·)(·). In particular, for i ∈ [q],
the i-th round of interaction between S and G(·)(·) is defined as follows:
1. S chooses a key yi and send it to the oracle G(·)(·). In turn, the oracle for

this round will be set to Gyi(·).
2. S submits the command Execute(vi) to the oracle Gyi(·), for vi ∈ V, as

defined in Definition 8. As a result, A receives the output wi = Gyi(vi).
The output of the experiment is composed of the output of the adversary S at
the end of the interaction, together with all the inputs v1, . . . , vq of the execute
queries.

An adversary is called valid if for every tamper query fi to the system GΠ
αi

we have fi ∈ F .

Remark 2 (On refreshing the helper string). Note that the above definition
requires to refresh the helper string after each execute command by using a new
sample from the weak random source. This is required because non-malleable
fuzzy extractors are only secure against a single tampering query.

The above limitation is also present in the non-fuzzy setting, and in fact
the transformation of Dziembowski et al. [33] yields a stateful hardened system
even in case the original non-hardened system is stateless. In the fuzzy setting,
however, changing the helper string additionally results in an updated secret
key for the underlying system. Hence, our transformation is mainly thought to
be applied to secret-key primitives, as in the public-key setting the latter would
require to update the public key as well (which is not practical).

We establish the following result.

Theorem 3. Let dist(·, ·) be a distance metric. If Π is is an (X ,m, k, �, t, ε)-
fuzzy extractor (Definition 2), for the distance metric dist(·, ·), and Π is (F , δ)-
pre-NM (Definition 7) then Π is (F , q, q · (δ+ ε))-tamper-simulatable (Definition
10).

Proof. Fix any (t,m)-pair of distributions (X1,X2), and any interactive stateless
system G. Consider the following simulator S:

Simulator S: For every i ∈ [q], the simulator S, with black box access to A(·)
and the functionality of the non-hardened stateless system G(·)(·), simulates
the i-th round of interaction as follows:
1. On input the command Tamper(fi) from A, S executes ỹi ←$ SfuzzyExt(fi)

where SfuzzyExt is the simulator of the (m, ε)-fuzzy extractor with respect
to the (t,m)-pair of distributions (X1,X2).

2. If ỹi = same, S samples yi ←$ U� and sends yi to the oracle G(·)(·).
Otherwise, if ỹi 	= same, S sets yi = ỹi and sends yi to the oracle G(·)(·).
(At the end of this step, in this round, the oracle of the non-hardened
stateless system will be set to Gyi(·).)

150 D. Francati and D. Venturi

3. On input the command Execute(vi), S executes Execute(vi) by sending
vi to the oracle Gyi(·). After receiving wi = Gyi(vi) from the oracle, S
returns wi to the adversary A.

After completing the q rounds of interactions, S returns the output of A.

We now demonstrate that the distributions TamperInteractA,Π,G(X1,X2, q)
and SimTamperInteractA,S,G(q) are (q · (δ + ε))-close.

First, let us consider the i-th round of interaction such that ỹi 	= same. In
such a case, S simulates the subsequent execute command Execute(vi) (submitted
by A) by returning wi = Gỹi(vi). It is easy to see that the adversary A cannot
distinguish between a real wi = GΠ

Rec(x2,fi(αi))(vi) (i.e., computed as defined in
the real experiment TamperInteractA,Π,G(X1,X2, q)) and a wi simulated by
S, except with probability at most δ. Otherwise, A would contradict the (F , δ)-
pre-NM property (Definition 7) of the (X ,m, k, �, t, ε)-fuzzy extractor Π.6

Second, let us consider the i-th round of interaction such that ỹi = same. In
such a case, S simulates the subsequent execute command Execute(vi) (submitted
by the adversary) by returning wi = Gyi(vi) where yi ←$ U�. We observe that the
adversary cannot distinguish between a real wi = GΠ

Rec(x2,αi)(vi) (as defined in
the real experiment TamperInteractA,Π,G(X1,X2, q)) and wi = Gyi(vi) (sim-
ulated by the simulator S), except with probability at most (δ + ε). This can be
demonstrated by leveraging two hybrid arguments:

In the first hybrid, we can show that the real wi = GΠ
Rec(x2,αi)(vi) (as

defined in the real experiment TamperInteractA,Π,G(X1,X2, q)) cannot be
distinguished, with probability greater than δ, from an intermediate simulated
wi = Gyi(vi) where (yi, αi) = Gen(xi) for (xi

1, x
i
2) ←$ (X1,X2). This follows from

the (F , δ)-pre-NM of the (X ,m, k, �, t, ε)-fuzzy extractor, i.e., if SfuzzyExt(fi) cor-
rectly returns same (which happens with probability at least 1 − δ), then these
two scenarios are identically distributed. (see footnote 6)

In the second hybrid, we can show that, the intermediate simulated wi =
Gyi(vi) (for (yi, αi) = Gen(xi) and (xi

1, x
i
2) ←$ (X1,X2)) cannot be distin-

guished, with probability greater than ε, from wi = Gyi(vi) simulated by S (for
yi ←$ U�). This follows from the security of the (X ,m, k, �, t, ε)-fuzzy extractor.
Note that this second hybrid argument holds since H∞(X1) ≥ m (by definition
of (t,m)-pair of distributions) and the fact that x2 (correlated to x1) is not
revealed to A.

Let q1 ≤ q be the number of rounds in which SfuzzyExt (executed by S) outputs
same, for some input fi ∈ F . By leveraging q hybrid arguments, the fact that S
invokes the functionality G(·)(·) on the same inputs v1, . . . , vq issued by the adver-
sary A (trough execute commands), and the two hybrids described above, we
have that TamperInteractA,Π,G(X1,X2, q) and SimTamperInteractA,S,G(q)
are (q1·(δ+ε)+(q−q1)·δ)-close. This implies that TamperInteractA,Π,G(X1,X2,
q) and SimTamperInteractA,S,G(q) are also (q · (δ + ε))-close since q1 ≤ q and,
in turn, (q1 · (δ + ε) + (q − q1) · δ) ≤ q · (δ + ε). This concludes the proof. ��
6 Note that A is a valid adversary for the (F , δ)-pre-NM experiment since A is valid

w.r.t. tamper-simulatability, i.e., fi ∈ F .

Non-malleable Fuzzy Extractors 151

6 Conclusions

We have introduced a flavor of non-malleability for fuzzy extractors, which pro-
vides security guarantees even in case the helper string is subject to manipu-
lations. Being weaker than robustness, there is hope that non-malleable fuzzy
extractors exist in the plain model (even with information-theoretic security) for
weak random sources with min-entropy m = ω(log n). Our construction confirms
this hope to be true for many interesting families of manipulations.

The main open problem left by our paper is to establish whether non-
malleable fuzzy extractors exist against arbitrary manipulations in the plain
model for weak random sources with min-entropy m = ω(log n). Our construc-
tion fails in this setting as non-malleable codes are impossible against tampering
attacks against all polynomial-time computable functions.7 Such an impossibil-
ity may not apply to non-malleable extractors since the latter additionally take
as input an unpredictable min-entropy source.

Another interesting direction for future research is that of combining non-
malleability with additional properties of fuzzy extractors, such as reusabil-
ity [5,13,16,17,22,55]. The latter means that a fuzzy extractor should remain
secure even when the generation algorithm is run on multiple samples that are
correlated in an adversarial manner. Yet another extension would be to consider
continuous non-malleability [35,36], where the attacker can manipulate the same
helper string multiple times. The latter would allow to improve our application
by removing the need to re-generate the secret key after each invocation; how-
ever, even assuming a continuously non-malleable code, it is unclear how to
extend the security proof of our construction.

Acknowledgements. The first author was supported by the Carlsberg Foundation
under the Semper Ardens Research Project CF18-112 (BCM). The second author
was supported by project SERICS (PE00000014) and by project PARTHENON
(B53D23013000006), under the MUR National Recovery and Resilience Plan funded
by the European Union - NextGenerationEU.

References

1. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions
and applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp.
459–468. ACM Press (2015)

2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 774–783. ACM Press

3. Aggarwal, D., Obremski, M.: A constant rate non-malleable code in the split-state
model. In: 61st FOCS, pp. 1285–1294. IEEE Computer Society Press (2020)

4. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47989-6 26

7 The reason is that an attacker in this setting can always decode the message, and
re-encode a related value.

https://doi.org/10.1007/978-3-662-47989-6_26

152 D. Francati and D. Venturi

5. Alamélou, Q., et al.: Pseudoentropic isometries: a new framework for fuzzy extrac-
tor reusability. In: Kim, J., Ahn, G.J., Kim, S., Kim, Y., López, J., Kim, T. (eds.)
ASIACCS 18, pp. 673–684. ACM Press (2018)

6. Apon, D., Cachet, C., Fuller, B., Hall, P., Liu, FH.: Nonmalleable digital lockers
and robust fuzzy extractors in the plain model. In: Agrawal, S., Lin, D. (eds.)
Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. LNCS, vol.
13794. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22972-5 13

7. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes
for small-depth circuits. In: Thorup, M. (ed.) 59th FOCS, pp. 826–837. IEEE
Computer Society Press (2018)

8. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable
codes against bounded polynomial time tampering. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 501–530. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 17

9. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 31

10. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
618–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 20

11. Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 413–434. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 15

12. Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and random
generators in group-based assumptions. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11693, pp. 801–830. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7 27

13. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B.,
McDaniel, P. (eds.) ACM CCS 2004, pp. 82–91. ACM Press (2004)

14. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 9

15. Buhan, I., Doumen, J., Hartel, P.H., Veldhuis, R.N.J.: Fuzzy extractors for contin-
uous distributions. In: Bao, F., Miller, S. (eds.) ASIACCS 07, pp. 353–355. ACM
Press (2007)

16. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 5

17. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.D.: Reusable fuzzy extrac-
tors for low-entropy distributions. J. Cryptol. 34(1), 2 (2021)

18. Canetti, R., Pass, R., shelat, A.: Cryptography from sunspots: how to use an
imperfect reference string. In: 48th FOCS, pp. 249–259. IEEE Computer Society
Press

19. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Wichs, D., Mansour, Y. (eds.) 48th ACM
STOC, pp. 285–298. ACM Press (2016)

https://doi.org/10.1007/978-3-031-22972-5_13
https://doi.org/10.1007/978-3-030-17653-2_17
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/978-3-030-26948-7_15
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-662-49890-3_5

Non-malleable Fuzzy Extractors 153

20. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th
ACM STOC, pp. 1171–1184. ACM Press (2017)

21. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: 55th FOCS, pp. 306–315. IEEE Computer Society Press

22. Cheon, J.H., Jeong, J., Kim, D., Lee, J.: A reusable fuzzy extractor with practical
storage size: modifying Canetti et al.’s construction. In: Susilo, W., Yang, G. (eds.)
ACISP 2018. LNCS, vol. 10946, pp. 28–44. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-93638-3 3

23. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M.
(ed.) ITCS 2014, pp. 155–168. ACM (2014)

24. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

25. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 27

26. Dachman-Soled, D., Komargodski, I., Pass, R.: Non-malleable codes for bounded
parallel-time tampering. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12827, pp. 535–565. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84252-9 18

27. Delvaux, J., Gu, D., Verbauwhede, I., Hiller, M., Yu, M.-D.M.: Efficient fuzzy
extraction of PUF-induced secrets: theory and applications. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 412–431. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53140-2 20

28. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authen-
ticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 14

29. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

30. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

31. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 601–610.
ACM Press (2009)

32. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable Codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

33. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-Malleable Codes. In: Yao, A.C.C.
(ed.) ICS 2010, pp. 434–452. Tsinghua University Press (2010)

34. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63715-0 4

https://doi.org/10.1007/978-3-319-93638-3_3
https://doi.org/10.1007/978-3-319-93638-3_3
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-030-84252-9_18
https://doi.org/10.1007/978-3-030-84252-9_18
https://doi.org/10.1007/978-3-662-53140-2_20
https://doi.org/10.1007/11818175_14
https://doi.org/10.1007/11818175_14
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-319-63715-0_4

154 D. Francati and D. Venturi

35. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

36. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuously non-malleable
codes in the split-state model. J. Cryptol. 33(4), 2034–2077 (2020)

37. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

38. Feng, H., Tang, Q.: Computational robust (Fuzzy) extractors for CRS-dependent
sources with minimal min-entropy. In: Nissim, K., Waters, B. (eds.) TCC 2021.
LNCS, vol. 13043, pp. 689–717. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90453-1 24

39. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-42033-7 10

40. Fuller, B., Peng, L.: Continuous-source fuzzy extractors: source uncertainty and
insecurity. In: IEEE International Symposium on Information Theory, ISIT 2019,
Paris, France, July 7-12, 2019, pp. 2952–2956. IEEE (2019)

41. Fuller, B., Reyzin, L., Smith, A.: When are fuzzy extractors possible? In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 277–306.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 10

42. Fuller, B., Reyzin, L., Smith, A.D.: When are fuzzy extractors possible? IEEE
Trans. Inf. Theory 66(8), 5282–5298 (2020)

43. Gupta, D., Maji, H.K., Wang, M.: Explicit rate-1 non-malleable codes for local
tampering. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 435–466. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 16

44. Islam, M.M., Safavi-Naini, R., Kneppers, M.: Scalable behavioral authentication.
IEEE Access 9, 43458–43473 (2021)

45. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 19

46. Kanukurthi, B., Reyzin, L.: An improved robust fuzzy extractor. In: Ostrovsky,
R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 156–171.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 11

47. Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-more
extractable hash functions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1317–1328. ACM Press (2016)

48. Kiayias, A., Liu, F.-H., Tselekounis, Y.: Non-malleable codes for partial functions
with manipulation detection. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10993, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 20

49. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC,
pp. 1144–1156. ACM Press (2017)

50. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

51. Parente, V.P., van de Graaf, J.: A practical fuzzy extractor for continuous features.
In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 241–
258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49175-2 12

https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-030-90453-1_24
https://doi.org/10.1007/978-3-030-90453-1_24
https://doi.org/10.1007/978-3-642-42033-7_10
https://doi.org/10.1007/978-3-662-53887-6_10
https://doi.org/10.1007/978-3-030-26948-7_16
https://doi.org/10.1007/978-3-030-26948-7_16
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-540-85855-3_11
https://doi.org/10.1007/978-3-319-96878-0_20
https://doi.org/10.1007/978-3-319-96878-0_20
https://doi.org/10.1007/978-3-319-49175-2_12

Non-malleable Fuzzy Extractors 155

52. Rasmussen, P.M.R., Sahai, A.: Expander graphs are non-malleable codes. In: Kalai,
Y.T., Smith, A.D., Wichs, D. (eds.) ITC 2020, pp. 6:1–6:10. Schloss Dagstuhl (Jun.)

53. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and
secret key generation. In: Proceedings of the 44th Design Automation Conference,
DAC 2007, San Diego, CA, USA, June 4–8, 2007, pp. 9–14. IEEE (2007)

54. Verbitskiy, E.A., Tuyls, P., Obi, C., Schoenmakers, B., Skoric, B.: Key extraction
from general non discrete signals. IEEE Trans. Inf. Forensics Secur. 5(2), 269–279

55. Wen, Y., Liu, S.: Reusable fuzzy extractor from LWE. In: Susilo, W., Yang, G.
(eds.) ACISP 2018. LNCS, vol. 10946, pp. 13–27. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93638-3 2

56. Wen, Y., Liu, S.: Robustly reusable fuzzy extractor from standard assumptions. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 459–489.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3 17

57. Wen, Y., Liu, S., Gu, D.: Generic constructions of robustly reusable fuzzy extractor.
In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 349–378. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 12

58. Wen, Y., Liu, S., Hu, Z., Han, S.: Computational robust fuzzy extractor. Comput.
J. 61(12), 1794–1805 (2018)

59. Woodage, J., Chatterjee, R., Dodis, Y., Juels, A., Ristenpart, T.: A new
distribution-sensitive secure sketch and popularity-proportional hashing. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 682–710. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 23

60. Zhou, Y., Liu, S., Cui, N.: Computational fuzzy extractor from LWE. Theor. Com-
put. Sci. 945, 113681 (2023)

https://doi.org/10.1007/978-3-319-93638-3_2
https://doi.org/10.1007/978-3-319-93638-3_2
https://doi.org/10.1007/978-3-030-03332-3_17
https://doi.org/10.1007/978-3-030-17259-6_12
https://doi.org/10.1007/978-3-319-63697-9_23

Upgrading Fuzzy Extractors

Chloe Cachet1(B), Ariel Hamlin2, Maryam Rezapour3, and Benjamin Fuller3

1 Digital Technologies Research Center, National Research Council Canada,
Montreal, QC, Canada

chloe.cachet@nrc-cnrc.gc.ca
2 Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA

a.hamlin@northeastern.edu
3 University of Connecticut, Storrs, CT, USA

{maryam.rezapour,benjamin.fuller}@uconn.edu

Abstract. Fuzzy extractors derive stable keys from noisy sources non-
interactively (Dodis et al., SIAM Journal of Computing 2008). Since their
introduction, research has focused on two tasks: 1) showing security for as
many distributions as possible and 2) providing stronger security guar-
antees including allowing one to enroll the same value multiple times
(reusability), security against an active attacker (robustness), and pre-
venting leakage about the enrolled value (privacy).

Given the need for progress on the basic fuzzy extractor primitive,
it is prudent to seek generic mechanisms to transform a fuzzy extractor
into one that is robust, private, and reusable so that it can inherit further
improvements.

This work asks if one can generically upgrade fuzzy extractors to
achieve robustness, privacy, and reusability. We show positive and nega-
tive results: we show upgrades for robustness and privacy, but we provide
a negative result on reuse.
1. We upgrade (private) fuzzy extractors to be robust under weaker

assumptions than previously known in the common reference string
model.

2. We show a generic upgrade for a private fuzzy extractor using multi-
bit compute and compare (MBCC) obfuscation (Wichs and Zirdelis,
FOCS 2017) that requires less entropy than prior work.

3. We show one cannot arbitrarily compose private fuzzy extractors. In
particular, we show that assuming MBCC obfuscation and collision-
resistant hash functions, there does not exist a private fuzzy extrac-
tor secure against unpredictable auxiliary inputs, strengthening a
negative result of Brzuska et al. (Crypto 2014).

Keywords: Fuzzy extractors · obfuscation · biometrics · key
derivation

1 Introduction

Fuzzy extractors [1–3,7,16,19,23–25,30,31,33–35,40,43,44,46] derive stable
keys from noisy sources. They are used on devices to derive keys from

C. Cachet—Most work done while at the University of Connecticut.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 156–182, 2024.
https://doi.org/10.1007/978-3-031-54770-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_7

Upgrading Fuzzy Extractors 157

biometrics, physical unclonable functions and quantum information. They also
are used in interactive protocols such as distributed key agreement and password-
authenticated key exchange. [6,10,11,14,20,22,23,27,28]. A fuzzy extractor is a
pair of algorithms called generate (Gen) and reproduce (Rep) with two proper-
ties:

Correctness For all w,w′ ∈ M such that dist(w,w′) ≤ t, let (key, pub) ←
Gen(w) where pub is a public helper value used to provide correctness. Then
it should be the case that key ← Rep(w′, pub).

Security Let W be a probability distribution of noisy values. For (key, pub) ←
Gen(W) it should be the case that key is indistinguishable from uniform even
knowing pub.

Security is defined relative to the statistics of the probability distribution. The
most common and useful of which is fuzzy min-entropy [34,35,48] which mea-
sures the adversary’s success when provided with the functionality of reproduce.
For security to be possible, it must be the case that a negligible fraction of the
weight of W lies within any ball of radius t. Fuzzy min-entropy measures the
adversary’s success when providing the fixed “best” point w∗ to the reproduce
functionality. Even after 25 years of research, the design of fuzzy extractors for
distributions with fuzzy min-entropy is an unsettled problem with advancements
yet to be made.

There are constructions for distributions with high entropy, where bits are
independent, or display additional statistical properties (see [19] for an overview
of considered properties). There are two known methods to build a fuzzy extrac-
tor for all such distributions, using virtual grey box obfuscation for NC1 evasive
circuits [9]1 or with a new subset-product assumption [36]. Both of these assump-
tions require additional study before deployment.

Fuzzy extractor security is also insufficient for many applications. There are
three primary augmentations to the definition that exist in the literature:

Reusability [12] One can enroll the noisy source multiple times with differ-
ent devices. Crucially, the multiple enrollments are subject to noise. In prior
work [12,16], this noise is controlled by an adversary.

Robustness [13] If an attacker modifies pub to a related value pub′, this behavior
is detectable. That is, Rep(w′, pub′) should only output the original key or ⊥.

Privacy [26] Privacy ensures no information is leaked about the enrolled value.
More specifically, it ensures that no predicate of the enrollment value can be
guessed better after seeing pub.

Table 1 summarizes prior constructions of fuzzy extractors with at least one
of these additional properties. No previous construction that is reusable or
robust supports all distributions with fuzzy min-entropy. The prior gray-box
obfuscation [9] and subset product constructions [36] are obfuscations of the
1 Virtual gray box obfuscation of all evasive programs implies virtual gray box obfus-

cation for all programs [4]. Virtual gray box and virtual black box obfuscation are
equivalent in the distributional setting for evasive circuit families [9].

158 C. Cachet et al.

Table 1. Previous constructions of fuzzy extractors that are reusable, robust, or pri-
vate. See Demarest, Fuller, and Russell [19] for descriptions of distributional properties.
“High entropy” is used when the construction relies on an information-theoretic error
correction component. Such constructions usually require the input source W to have
entropy of at least h2(t/n), see [16, Proposition 1]. For Boyen’s [12] work, the RO
model is only required for insider security, when keys are seen from other enrollments.

Scheme Model Distribution Reuse Robust Private

[12] RO∗ High entropy Shift � ✗

[26] Plain High entropy ✗ ✗ �
[16] Avg. Subsets Entropy Correlation ✗ ✗

[3] Independent Shift ✗ ✗

[9] Plain All ✗ ✗ �
[46] CRS High entropy Shift ✗ ✗

[44] CRS High entropy Shift � ✗

[45] CRS High entropy Shift � ✗

[36] All ✗ ✗ �
[19] MIPURS Correlation ✗ ✗

fuzzy extractor functionality; they are by definition private. Given the unsettled
nature of constructing fuzzy extractors for distributions with fuzzy min-entropy,
it is prudent to seek generic mechanisms to transform a fuzzy extractor into a
reusable, robust, and private one.

1.1 Our Contribution

We present three contributions, 1) an upgrade for privacy 2) an upgrade for
robustness that preserves privacy, and 3) a negative result for reusability.

Privacy. We show how to construct a private fuzzy extractor from either a secure
sketch or a non-private fuzzy extractor. Our contribution is a strengthening of
the previous upgrade from a secure sketch to a private secure sketch using multi-
bit compute and compare obfuscation (MBCC) [47]. We support a wider family
of distributions with lower entropy than prior work [47]. We first introduce Wichs
and Zirdelis’ [47] construction and then the advantages of our construction.

Both our work and prior work is based on the notion of a secure sketch. A
secure sketch recovers the original value w rather than deriving a random key.
It is a pair of algorithms (Sketch,Rec) such that

Correctness For all w,w′ ∈ M such that dist(w,w′) ≤ t, then
Rec(w′,Sketch(w)) = w.

Security Let W be a probability distribution of noisy values. Given Sketch(W),
W has high min-entropy. (One can also use computational notions of security
using pseudoentropy or unpredictability [32].)

Upgrading Fuzzy Extractors 159

Wichs and Zirdelis use MBCC program obfuscation at the core of their
scheme. MBCC program has three values f, y, z. On input x it computes f(x),
if f(x) = y then it outputs z otherwise it outputs ⊥. In their prior construction
they showed how to obfuscate a family of such programs where y has pseudoen-
tropy [41] conditioned on f and z. They show how to upgrade a secure sketch
into a private one by obfuscating h(Rec(·, ss)) where h is a pairwise independent
hash function. They have to choose the output length of the hash function based
on the entropy of the input, which keeps the construction from working for all
distributions with sufficient entropy for the MBCC obfuscation to be secure.

In our work, we use a secure sketch to construct a private fuzzy extractor to
directly analyze the construction without h, making the same construction work
for any distribution where the secure sketch retains (a super-logarithmic amount
of) min-entropy. By removing the hash function, we also reduce the amount of
entropy required as one doesn’t “leak” the hash value in the security analysis.
We also show a similar upgrade from fuzzy extractors to private fuzzy extractors.
There are stronger negative results on constructing secure sketches [24,30,34],
so direct constructions from fuzzy extractors may yield better parameters.

The privacy definition of Wichs and Zirdelis [47] considers predicting pred-
icates of the source w in contrast to Dodis and Smith [26] who consider func-
tions. We call this weak-privacy to distinguish from Dodis and Smith’s definition.
Restriction to predicates is standard in the obfuscation literature as an obfusca-
tion itself is a function that a simulator cannot hope to reproduce.

Robustness. We provide a simpler construction of robust fuzzy extractors than
prior work. Our result only requires the existence of true simulation extractable
NIZKs [21]. Prior work of Feng and Tang [29] also required the existence of
extremely lossy functions or ELFs [49].2 Additionally, our result shows that this
transform preserves privacy, which was not considered by any prior robustness
upgrade.

Reuse. One cannot expect reuse of arbitrary fuzzy extractors. Each value of
pub can leak a constant fraction of the entropy in the source w while remaining
secure. However, a (weakly) private fuzzy extractor cannot “leak” on input w.
There are multiple private fuzzy extractors (see Table 1) that are not known to
be reusable. The most natural approach for a reusable private fuzzy extractor
is to construct a fuzzy extractor for all sources W that are unpredictable in
the presence of auxiliary input available to the adversary. The security analysis
would follow by including other enrollments of the same source in the auxiliary
input.

We show this proof technique is not possible. Namely, we show that the exis-
tence of MBCC obfuscation and collision-resistant hash functions imply that one
cannot construct private fuzzy extractors for all W that are unpredictable con-
ditioned on auxiliary input. We do this by showing that auxiliary-input secure
2 Feng and Tang’s primary goal was to construct robust extractors, not robust fuzzy

extractors. Unlike Feng and Tang we work in the standard CRS model, they allow
the source W to depend on the CRS.

160 C. Cachet et al.

Table 2. Previous upgrades of fuzzy extractors. If there is an ✗ in the Any FE. column
the construction requires the use of the syndrome secure sketch. As mentioned in
Table 1 this places a lower bound on entropy of the distribution W . CRS∗ is the CRS
model where the distribution W being enrolled can depend on the CRS. Err. column
describes how many errors the underlying primitive is required to correct. Multiple
robust constructions require a secure sketch or fuzzy extractor that corrects 2t errors
to be able to extract a value from the adversary.

Upgrade Scheme Model Any FE Tools Err

Reusability [1] Plain � composable DL [8] t

Robustness [13] RO ✗ RO t

[18] CRS ✗ IT 2t

[22] Plain ✗ IT t

[29] CRS∗ � ELFS [49] + 2t

true sim. extract NIZK [21]

[2] Plain ✗ comp.∗ DL [5, Assumption 3]+ 2t

true sim. extract NIZK [21]

This work CRS � true sim. extract NIZK [21] 2t

Private [47] Plain � LWE + ELFS [49] t

This work Plain � LWE + ELFS [49] t

digital lockers cannot be secure in the presence of MBCC obfuscation. We then
show that a variant of private fuzzy extractors imply digital lockers. Brzuska et
al. [15] proved an analogous result where auxiliary-input secure digital lockers
were incompatible with indistinguishability obfuscation [37,38].3 Since MBCC
obfuscation implies auxiliary-input secure digital lockers, this shows MBCC
obfuscation cannot be safely composed either.

1.2 Related Work

Reusability. Alamelou et al. [1] show how to create reuse for the Hamming
and set difference metrics when the source has symbols that are super polyno-
mial size. However, most natural sources consider small, often binary, alphabets.
Alamelou et al.’s technique cannot work in this setting.4 We note this technique
is applied before the source is input to the fuzzy extractor.

3 Their actual result showed the impossibility of auxiliary input universal computa-
tional extractors. This object implies auxiliary-input secure digital lockers.

4 Alamelou et al. use a pseudoentropic isometry that maps points to a new metric
space while 1) preserving distance and 2) the value in the new metric space doesn’t
reveal the value on the original metric space. For the Hamming metric, the only such
transforms are equivalent to a per-symbol permutation and a permutation of symbol
order. Such a transform can only be one-way if symbols are super-polynomial size.
No pseudoentropic isometric exists for the Hamming metric with polynomial size
symbols.

Upgrading Fuzzy Extractors 161

Robustness. In the random oracle model, for a fuzzy extractor with output
key, pub and random oracle h one can split key = (key1, key2) and include
h(key2||pub) as part of pub. As needed the random oracle can expand the amount
of available keying material.5 Without resorting to random oracles, one can use
algebraic manipulation detection codes [18] and pairwise independent hashes
as one-time MACs. In the CRS model, Feng and Tang [29] codify the security
required from the MAC, and show how to generically lift a secure sketch into
a robust fuzzy extractor using a primitive they call a κ-MAC that is secure
for low-entropy keys that can be manipulated by an adversary. This upgrade
is agnostic in the underlying secure sketch. Apon et al. [2] propose a standard
model upgrade that requires the syndrome secure sketch.

Privacy. For privacy, if one has a secure sketch that retains superlogarithmic
entropy, one can upgrade it to a private secure sketch using multi-bit compute
and compare (MBCC) obfuscation [47]. Roughly, MBCC allows one to compute
a function on some input and compare the result with a target value. If the
output of the function matches the target, the MBCC circuit returns a fixed
value.

1.3 Discussion and Future Work

The privacy upgrade is this work is not yet of practical efficiency. MBCC obfus-
cation has nearly as much overhead as indistinguishability obfuscation. A natural
question is whether an upgrade that preserves privacy must use a type of obfus-
cation and if so, can one use a obfuscation of a weaker class of obfuscation?

Our negative result for reuse does leave open the possibility of upgrading
fuzzy extractors to be reusable. It does not rule out techniques that transform w
to a new metric space [1]. Furthermore, one may able to use a more fine grained
argument for reuse. As a reminder, our negative result only rules out private
fuzzy extractors secure in the presence of unpredictable auxiliary input. One
may be able to sidestep the result by only showing security when the auxiliary
input is a fuzzy extractor enrollment. We tried to extend our negative result to
this setting but were not successful.

Organization. The rest of this work is organized as follows: Sect. 2 covers math-
ematical preliminaries, Sect. 3 shows our privacy upgrade, Sect. 4 covers robust-
ness, and Sect. 5 covers reuse. Appendix A shows that weak-privacy does not
imply fuzzy extractor security and Appendix B shows that a composable MBCC
obfuscation would yield a reusable upgrade (but is ruled out by our negative
result).

2 Preliminaries

Let λ be the security parameter throughout this paper. A function ngl(λ) is
negligible in λ if for all a ∈ Z

+ we have ngl(λ) = o(1
λa). A function poly(λ) is

5 Boyen [13] considers a secure sketch, the same idea works for a fuzzy extractor.

162 C. Cachet et al.

polynomial in λ if there exists some constant a ∈ Z
+ such that poly(λ) = O(λa).

We use poly(λ) and ngl(λ) to denote unspecified functions that are polynomial
and negligible in λ, respectively. The notation id is used to denote the identity
function: ∀x, id(x) = x. For some n ∈ N, [n] denotes the set {1, · · · , n}. Let

x
$←− S denote sampling x uniformly at random from the finite set S. We say

that distributions X and Y are computationally indistinguishable if for all PPT
(in λ) adversaries A, |Pr[A(X) = 1] − Pr[A(Y) = 1]| ≤ ngl(λ).

2.1 Entropy Definitions

Definition 1 (Min-entropy). For a discrete random variable X, the min-
entropy of X is

H∞(X) = − log
(
max

x
Pr[X = x]

)

Definition 2 (Average conditional min-entropy [24]). For a pair of dis-
crete random variables X,Y , the average min-entropy of X|Y is

H̃∞(X | Y) = − log
(
Expy∈Y

(
2−H∞(X|Y)

))
.

Definition 3 (Conditional HILL entropy [41,42]). Let X,Y be ensembles of
jointly distributed random variables. The conditional pseudo-entropy of X con-
ditioned on Y , denoted as HHILL(X | Y), is greater or equal to �(λ) if there exists
some ensemble X ′ such that (X,Y) and (X ′, Y) are computationally indistin-
guishable and H∞(X ′ | Y) ≥ �(λ).

2.2 Obfuscation Definitions

Definition 4 (Distributional Virtual Black Box (dist-VBB) obfusca-
tion). Let P be a family of programs and Obf be a PPT algorithm that takes
as input a program P ∈ P, a security parameter λ ∈ N and outputs a pro-
gram P̃ ← Obf(1λ, P). Let D be a class of distribution ensembles D = {Dλ}λ∈N

which samples (P, aux) ← Dλ with P ∈ P. Then Obf is an obfuscator for the
distribution class D over the program family P if it satisfies the following:

– Functionality preserving: For all P ∈ P and for all inputs x ∈ {0, 1}n,
we have

Pr[P (x) = P̃ (x)] ≥ 1 − ngl(λ)

– Polynomial slowdown: For all sufficiently large λ ∈ N and for all P ∈ Pλ,

|P̃ | ≤ poly(|P |)

– Distributional Virtual Black-Box: For every PPT adversary A there
exists a non-uniform polynomial size simulator Sim, such that for every dis-
tribution ensemble D = {Dλ} ∈ D, and every predicate φ : P → {0, 1}, we
have

Upgrading Fuzzy Extractors 163

∣∣∣ Pr
(P,aux)←Dλ

[A(Obf(1λ, P), aux) = φ(P)]

− Pr
(P,aux)←Dλ

[SimP (1λ, 1|P |, aux) = φ(P)]
∣∣∣ ≤ ngl(λ)

where SimP has black-box access to the program P .

Wichs and Zirdelis [47] build a dist-VBB obfuscator for α-pseudo entropy
distributions (see Definition 6) over multi-bit-compute-and-compare circuits.6

Definition 5 (Multi-bit compute-and-compare circuit). Let n, �, κ ∈ N

and consider a function f : {0, 1}n → {0, 1}�, a target value y ∈ {0, 1}� and
some value z ∈ {0, 1}κ. A multi-bit compute-and-compare circuit is defined for
all inputs x ∈ {0, 1}n as

MBCCf,y,z(x) =

{
z if f(x) = y

⊥ otherwise.

Wichs and Zirdelis [47] also define α-pseudo entropy, a specific case of HILL
entropy:

Definition 6 (α-pseudo entropy). For function α(λ), the class of α-
pseudo-entropy distributions consists of ensembles D = {Dλ} such that
(MBCC[f, y, z], aux) ← Dλ satisfies HHILL(y | f, z, aux) ≥ α(λ).

2.3 Fuzzy Extractors

Fuzzy extractors allow to generate stable cryptographic keys from noisy sources.
We focus on computational fuzzy extractors.

Definition 7 (Computational Fuzzy Extractor [31,32]). An (M,W,
�, t, ε)-fuzzy extractor with error δ is a pair of PPT algorithms (Gen,Rep) where
for all w,w′ ∈ M,

– (key, pub) ← Gen(w), where key ∈ {0, 1}� and pub ∈ {0, 1}∗
– key′ ← Rep(pub, w′)

the following properties are true:

1. Correctness : For all w,w′ ∈ M such that dist(w,w′) ≤ t,

Pr
[
key′ = key

∣∣ (key, pub) ← Gen(w), key′ ← Rep(pub, w′)
] ≥ 1 − δ

2. Security : For any PPT distinguisher A and distribution W ∈ W,

|Pr[A(key, pub) = 1] − Pr[A(U�, pub) = 1]| ≤ ε

where (key, pub) ← Gen(W) and U� is a uniformly distributed random variable
over {0, 1}�.

6 In an independent and concurrent work, Goyal et al. [39] proposed a similar object
they called lockable obfuscation.

164 C. Cachet et al.

3 Weakly-Private Fuzzy Extractors

Fuzzy extractor security does not prevent leaking information about the value
w, called a template. For example, consider a fuzzy extractor where the public
value leaks a random bit of the template. This can be problematic, especially
if the biometric source is used in different contexts. Preventing such leakage,
although not mandatory to achieve fuzzy extractor security, is thus desirable.
Constructions that prevent such leakage are said to be private [26]. We adapt
Wichs and Zirdelis [47] privacy definition for secure sketches to fuzzy extractors,
we call this weak privacy. This definition differs from Dodis and Smith’s [26] in
that the adversary is restricted to predicting predicates about the value W (in
place of general functions). We start by introducing the definition of a weakly
private fuzzy extractor.

Definition 8 (Weakly Private Fuzzy Extractor). Let FE = (Gen,Rep) sat-
isfy the correctness condition of Definition 7 for parameters t and δ. We say
that FE is η-weakly-private if for all adversary A, there exists a simulator Sim
such that for every source W over W and every predicate φ : {0, 1}∗ → {0, 1},
we have

∣∣∣ Pr[A(pub, key) = φ(W) | (key, pub) ← FE.Gen(W)]

− Pr[Sim(1λ, 1|pub|, 1|key|) = φ(W)]
∣∣∣ ≤ η

Fuzzy extractors were originally built following a sketch-then-extract app-
roach. First, a secure sketch [25] is used to recover the enrolled w from a close
value w′, then a randomness extractor is used to derive the secret key. We add
the definition for secure sketches:

Definition 9 (Secure sketch). Let λ be a security parameter. Let W = Wλ

be a family of random variables over the metric space (M, dist) = (Mλ, distλ).
Then (Sketch,Rec) is a (M,W, �, t, δ)-secure sketch if the following hold:

– Correctness: For all w,w′ ∈ M such that dist(w,w′) ≤ t,

Pr[Rec(w′,Sketch(w)) = w] ≥ 1 − δ.

– Security: For all distributions W ∈ W it is true that

H∞(W | Sketch(W)) ≥ �.

We propose two weakly private fuzzy extractors constructions using dist-
VBB obfuscation for multi-bit-compute-and-compare (MBCC) circuits. The first
construction builds on a non-private fuzzy extractor whereas the second builds
on a non-private secure sketch.

Intuitively, we can build weakly private fuzzy extractors as follows: we first
build an MBCC circuit for function fw,y,t that outputs target value y on input w′

Upgrading Fuzzy Extractors 165

only when dist(w,w′) ≤ t and we set the output value z to be sampled uniformly
at random. We then set pub to be the obfuscated MBCC program and key to
be z. Note that in this case, since z is sampled independently from all other
values, the entropy requirement for the MBCC circuit to be obfuscable can be
simplified to

HHILL(y | f, aux) ≥ α.

3.1 Weakly Private FE from FE and MBCC Obfuscation

Our first construction builds weakly-private fuzzy extractors from non-private
fuzzy extractors and MBCC obfuscation.

Construction 1 (Weakly Private FE from MBCC obfuscation and
FE). Let FE be an (M,W, �, t, s, ε)-fuzzy extractor and Obf be an obfuscator
for �-pseudo-entropy distributions over multi-bit compute-and-compare circuits.
We can build an (M,W, κ, t, s, ε)-fuzzy extractor PFE as follows:

– (key′, pub′) ← PFE.Gen(w):
1. Compute (key, pub) ← FE.Gen(w).
2. Sample key′ $←− {0, 1}κ.
3. Define the circuit fpub(·) := FE.Rep(·, pub).
4. Compute pub′ ← Obf

(
1λ,MBCCfpub,key,key′

)
.

5. Output (key′, pub′).
– key′ ← PFE.Rep(pub′, w′): Interpret pub′ as an obfuscated program and return

key′ ← pub′(w′).

Theorem 1. Construction 1 is a secure and weakly-private (M,W, κ, t, s, ε)-
fuzzy extractor.

Proof (Theorem 1).

Correctness: Recall that pub′ is an obfuscated MBCC circuit such that

pub′(w′) = Obf
(
1λ,MBCCfpub,key,key′

)
(w′)

= MBCCfpub,key,key′(w′)

=

{
key′ if fpub(w′) = key

⊥ otherwise.

=

{
key′ if FE.Rep(w′, pub) = key

⊥ otherwise.

Then since FE is a fuzzy extractor, it is true that

Pr
[
PFE.Rep(pub′, w′) = key′ ∣∣ (pub′, key′) ← PFE.Gen(w) and dist(w,w′) ≤ t

]

= Pr [FE.Rep(pub, w′) = key | (pub, key) ← FE.Gen(w) and dist(w,w′) ≤ t]
≥ 1 − δ

and PFE is thus correct.

166 C. Cachet et al.

Security: We proceed by contradiction. Suppose PFE is not a secure fuzzy extrac-
tor, then there exists some PPT adversary A and polynomial p(λ) such that

∣∣Pr[A(key′, pub′) = 1] − Pr[A(Uκ, pub′) = 1]
∣∣ > 1/p(λ)

where (key′, pub′) ← PFE.Gen(W) and Uκ
$←− {0, 1}κ. Now note that pub′ =

Obf(1λ,MBCCfpub,key,key′) is distributional VBB secure. Define r(λ) = 3p(λ) and
let Sim be the simulator of A for polynomial r(λ). Then we have

∣∣∣Pr[A(pub′, key) = 1] − Pr[Simpub′
(1λ, 1|pub′|, key) = 1]

∣∣∣ ≤ 1
3p(λ)

. (1)

Note that the above is also true if key is replaced by Uκ, a uniform random
variable over {0, 1}κ. In other words, we have

∣∣∣Pr[A(pub′, Uκ) = 1] − Pr[Simpub′
(1λ, 1|pub′|, Uκ) = 1]

∣∣∣ ≤ 1
3p(λ)

. (2)

We adapt Canetti et al.’s lemma [16, Lemma 2]:

Lemma 1. Let Uκ denote the uniform distribution over {0, 1}κ, then
∣∣∣ Pr[SimMBCC[Reppub,key,key

′] (1λ,
∣∣MBCC[Reppub, key, key

′]
∣∣ , key′) = 1]

− Pr[SimMBCC[Reppub,key,key
′] (1λ,

∣∣MBCC[Reppub, key, key
′]
∣∣ , Uκ

)
= 1]

∣∣∣

≤ 1
3p(λ)

Proof (Lemma 1). Fix any u ∈ {0, 1}κ, the lemma will follow by averaging over
all u. The information about whether the key value, denoted V , is key or u can
only be obtained by Sim through the query responses. First, we modify Sim to
quit immediately when it gets a response not equal to ⊥. Such Sim is equally
successful at distinguishing between key and u since the first non-⊥ response
tells Sim if its input is equal to key. Subsequent responses add nothing to this
knowledge. Since Sim can make at most q queries, there are q +1 possible values
for the view of Sim on a given input. Of those, q views consist of some number
of non-⊥ responses followed by a ⊥ response, and one view consists of all q
responses equal to ⊥. Then by [25, Lemma 2.2b],

H̃∞(V |V iew(Sim), aux) ≥ H̃∞(V) − log(q + 1)
≥ α − log(q + 1).

where aux =
(|MBCC[Reppub, key, key

′]|).
Thus, at each query, the probability that Sim gets a non-⊥ response and

guesses V is at most (q + 1)/2α. Since there are q queries of Sim, the overall
probability is at most q(q + 1)/2α. Then since 2α is negligible in λ, there exists
some λ0 such that for all λ ≥ λ0, q(q + 1)/2α ≤ 1/(3p(λ)).

Upgrading Fuzzy Extractors 167

We know continue the proof of Theorem 1, from Lemma 1, we have

∣∣ Pr[Simpub′
(1λ, 1|pub′|, key′) = 1] − Pr[Simpub′

(1λ, 1|pub′|, Uκ) = 1]
∣∣ ≤ 1

3p(λ)

Using the triangle inequality on Eqs. 1, 2 and 3 we obtain

∣∣ Pr[A(pub′, key′) = 1] − Pr[A(pub′, Uκ) = 1]
∣∣ ≤ 1

p(λ)

which is a contradiction and ends the proof of security.

Weak Privacy: Let FE be an (M,W, �, t, ε)-computational fuzzy extractor. Con-
sider random variables W, aux, and U�, the uniform distribution over � bit strings,
and (key, pub) ← FE.Gen(W). Then by definition, for any PPT adversary A, we
have

|Pr[A(key, pub) = 1] − Pr[A(U�, pub) = 1]| ≤ ε

which implies
HHILL(key | pub) = �.

Since key′ is sampled independently from key,

HHILL

(
key | (FE.Rep(·, pub), key′, aux)

)
= HHILL

(
key | (FE.Rep(·, pub), aux))

= HHILL

(
key | pub)

≥ �

Let Obf be a distributional VBB secure obfuscator for �-pseudo-entropy distri-
butions. Then

pub′ = Obf
(
1λ,MBCCFE.Rep(·,pub),key,key′

)

can be simulated and for every A, there exists a simulator Sim such that for
every predicate φ we have:

∣
∣
∣Pr[A(pub′, aux) = φ(pub′)] − Pr[Sim

MBCCFE.Rep(·,pub),key,key′ (1λ, param, aux) = φ(pub′)]
∣
∣
∣

≤ ngl(λ).

Note that if we set aux = key′ and since key′ is drawn randomly and inde-
pendently, it is true that

∣∣Pr[A(pub′, key′) = φ(pub′)] − Pr[Sim(1λ, param, key′) = φ(pub′)]
∣∣

=
∣∣Pr[A(pub′, key′) = φ(W)] − Pr[Sim(1λ, param) = φ(W)]

∣∣
≤ ngl(λ)

which concludes the proof that PFE is a weakly private fuzzy extractor.

168 C. Cachet et al.

3.2 Weakly Private FE from Secure Sketch and MBCC Obfuscation

Our second construction builds weakly-private fuzzy extractors from non-private
secure sketches and MBCC obfuscation. Although this construction relies on
a secure sketch, like Wichs and Zirdelis’s private secure sketch scheme, we
show that the pairwise independent hash function they use isn’t necessary. This
reduces the amount of entropy required and allows support of a wider family
of distributions. However, we build a fuzzy extractor not a secure sketch, some
constructions may rely on the functionality of a secure sketch.

Construction 2 (Weakly Private Fuzzy Extractor from SS and
MBCC). Let (Sketch,Rec) be an (M,W, �, t, δ)-secure sketch and Obf be
an obfuscator for �-pseudo-entropy distributions over multi-bit compute-and-
compare circuits. Then we can build an (M,W, κ, t, s, ε)-fuzzy extractor PFE
as follows:

– (key, pub) ← PFE.Gen(w):
1. Compute SS ← Sketch(w).

2. Sample key
$←− {0, 1}κ.

3. Define the circuit fSS(·) := Rec(·,SS).
4. Compute pub ← Obf

(
1λ,MBCCfSS,w,key

)
.

5. Output (key, pub).
– key ← PFE.Rep(pub, w′): Interpret pub as an obfuscated program and return

key ← pub(w′).

Theorem 2. Construction 2 is a secure and weakly private (M,W, κ, t, s, ε)-
fuzzy extractor.

Proof (Theorem 2).

Correctness: Recall that pub′ is an obfuscated MBCC circuit such that

pub(w′) = Obf
(
1λ,MBCCfSS,w,key

)
(w′)

= MBCCfSS,w,key(w′)

=

{
key if fSS(w′) = w

⊥ otherwise.

=

{
key if Rec(w′,SS) = w

⊥ otherwise.

Then since (Sketch,Rec) is a secure sketch, it is true that

Pr [PFE.Rep(pub, w′) = key | (pub, key) ← PFE.Gen(w) and dist(w,w′) ≤ t]
= Pr [Rec(w′,SS) = w | SS ← Sketch(w) and dist(w,w′) ≤ t]
≥ 1 − δ

and PFE is thus correct.

Upgrading Fuzzy Extractors 169

Security: This proof is the same as the security proof of Theorem 1.

Weak Privacy: Let (Sketch,Rec) be an (M,W, �, t, δ)-secure sketch. Then for
random variables W, aux, and SS ← Sketch(W) we have

HHILL(W | SS) ≥ �

Since key is sampled independently from all other values,

HHILL

(
w | Rec(·,SS), key, aux)

)
= HHILL

(
w | Rec(·,SS)

)

= HHILL

(
w | SS) ≥ �

Let Obf be a distributional VBB secure obfuscator for �-pseudo-entropy distri-
butions. Then

pub′ = Obf
(
1λ,MBCCRec(·,SS),w,key

)

can be simulated and for every A, there exists a simulator Sim such that for
every predicate φ we have:

∣
∣
∣Pr[A(pub, aux) = φ(pub)] − Pr[SimMBCCRec(·,SS),w,key(1λ, param, aux) = φ(pub)]

∣
∣
∣ ≤ ngl(λ)

Note that if we set aux = key and since key is drawn randomly and indepen-
dently, it is true that

∣
∣
∣Pr[A(pub, key) = φ(pub)] − Pr[Sim(1λ, param, key) = φ(pub)]

∣
∣
∣

=
∣
∣
∣Pr[A(pub, key′) = φ(W)] − Pr[Sim(1λ, param) = φ(W)]

∣
∣
∣ ≤ ngl(λ)

which concludes the proof that PFE is a weakly private fuzzy extractor.

4 Robustness

We first define robustness of a fuzzy extractor.

Definition 10 (Robust Fuzzy extractor). Let FE be an (M,W, �, t, s, ε)-
fuzzy extractor with error δ as defined above. FE is a robust fuzzy extractor if for
all W,W ′ ∈ W, such that

Pr
(w,w′)←(W,W ′)

[dist(w,w′) ≤ t] = 1,

and for all adversaries A, the advantage of A in the following experiment is at
most ngl(λ):

1. Sample (w,w′) ← (W,W ′).
2. Compute (key, pub) ← FE.Gen(w) and send it to A.
3. A outputs pub′ and wins if pub′ 	= pub and FE.Rep(pub′, w′) 	∈ {⊥, key}.

170 C. Cachet et al.

We propose a generic technique to upgrade a fuzzy extractor and achieve
robustness. This method relies on non-interactive zero-knowledge (NIZK) [21].
We also show that this technique preserves privacy of the underlying fuzzy
extractor. This yields a robust, weakly-private fuzzy extractor construction in
the common reference string (CRS) model.

Definition 11 (True simulation extractable NIZK). Let R be an
NP relation on pairs (x,w) with corresponding language LR = {x :
∃w such that (x,w) ∈ R}. A true-simulation extractable non-interactive zero-
knowledge (NIZK) argument for a relation R consists of three algorithms
(Setup,Prove,Verify) with the following syntax:

– (crs,TK,EK) ← Setup(1λ): creates a common reference string crs, a trap-
door TK, and an extraction key EK.

– π ← Prove(crs, x, w): creates an argument π that R(x,w) = 1.
– 0/1 ← Verify(crs, x, π): verifies whether or not the argument π is correct.

For presentation simplicity, we omit crs in the Prove and Verify. We require
that the following three properties hold:

– Completeness. For any (x,w) ∈ R, if (crs,TK,EK) ← Setup(1λ), π ←
Prove(x,w), then Verify(x, π) = 1.

– Soundness. For any PPT adversary A, the following probability is negligible:
for (crs,TK,EK) ← Setup(1λ), (x∗, π∗) ← A(crs) such that x∗ /∈ LR but
Verify(x∗, π∗) = 1.

– Composable Zero-knowledge. There exists a PPT simulator Sim such that
for any PPT A, the advantage (the probability A wins minus one half) is
negligible in the following game.

• The challenger samples (crs,TK,EK) ← Setup(1λ) and sends (crs,TK)
to A

• A chooses (x,w) ∈ R and sends to the challenger.
• The challenger generates π0 ← Prove(x,w), π1 ← Sim(x,TK), and then

samples a random bit b ← {0, 1}. Then he sends πb to A.
• A outputs a guess bit b′, and wins if b′ = b.

– Extractibility. Additionally, true simulation extractability requires that there
exists a PPT extractor Ext such that for any PPT adversary A, the probability
A wins is negligible in the following game:

• The challenger picks (crs,TK,EK) ← Setup(1λ) and sends crs to A.
• A is allowed to make oracle queries to the simulation algorithm

Sim′((x,w),TK) adaptively. Sim′ first checks if (x,w) ∈ R and returns
Sim(x, TK) if that is the case.

• A outputs a tuple x∗, L∗, π∗.
• The challenger runs the extractor w∗ ← Ext(L∗, (x∗, π∗),EK).
• A wins if 1) the pair (x∗, L∗) was not part of the simulator query, 2) the

proof π∗ verifies, and (3) R(x∗, w∗) = 0.

Upgrading Fuzzy Extractors 171

Construction 3 (Robust, weakly-private fuzzy extractor). Let FE be a
weakly-private fuzzy extractor and (Setup,Prove,Verify) be a NIZK system for
language L = {pub | FE.Gen(w; r) = (pub, key)}. Here, the statement is pub =
FE.Gen(w; r) and the witness is the pair of values (w, r), where w is the original
reading and r the internal randomness of Gen.

– (key, pub∗) ← FE′.Gen(w):
1. Sample (crs,TK,EK) ← Setup(1λ).
2. Compute (key, pub) ← FE.Gen(w; r).
3. Compute π ← Prove(crs, pub, w, r) and set pub∗ = (pub, π).
4. Output (key, pub∗).

– key′ ← FE′.Rep(pub∗, w′):
1. Run b ← Verify(crs, pub, π) and output ⊥ if b = 0.
2. Output key′ ← FE.Rep(pub, w′).

Theorem 3. Let FE be an weakly-private, (M,W, �, 2t, s, ε)-fuzzy extractor and
(Setup,Prove,Verify) be a NIZK system. Then FE′ as described in Construction
3 is a weakly-private, robust, (M,W, �, t, s, ε)-fuzzy extractor.

Note that in this theorem the underlying fuzzy extractor FE corrects 2t errors
while the resulting fuzzy extractor FE′ corrects only t errors. This is important
for the corresponding proof to work. This requirement was present in some prior
robustness upgrades for fuzzy extractors, see Table 2.

Proof (Theorem 3).

Correctness: Correctness is straightforward from the correctness of the underly-
ing fuzzy extractor and the completeness of the NIZK system.

Security: Security is straightforward from the security of the underlying fuzzy
extractor and the zero-knowledge property of the NIZK system.

Privacy: Privacy is straightforward from the privacy of the underlying fuzzy
extractor and the zero-knowledge property of the NIZK system. We provide a
short sketch below.

Let Sim denote a simulator for the underlying weakly private FE. Suppose
FE′ is not weakly private, then there exists an adversary A′, such that for any
simulators Sim′(|pub|, |π|, |key|), we have

∣∣Pr[A′(pub, π, key) = 1] − Pr[Sim′(|pub|, |π|, |key|) = 1]
∣∣ > ngl(λ)

We note that Sim′(|pub|, |π|, |key|) = Sim(|pub|, |key|) is one such valid simu-
lator.
Then we can build an adversary A for FE,

1. Receive inputs pub and key.
2. Run NIZK setup (TK,EK) ← Setup(1λ).
3. Run the NIZK simulator π ← SimNIZK(pub,TK).

172 C. Cachet et al.

4. Run the FE′ adversary b ← A′(pub, π, key).
5. Return b.

Then
|Pr[A(pub, key) = 1] − Pr[Sim(|pub|, |key|) = 1]| > ngl(λ)

which is a contradiction of FE’s weak privacy.

Robustness: We proceed by contradiction. Suppose FE′ is not a robust fuzzy
extractor, that is, for distributions W,W ′ such that dist(W,W ′) ≤ t, there exists
a PPT adversary A′

FE such that

Pr
(w,w′)←(W,W ′)

⎡

⎢
⎣

Verify(crs, pub′, π′) = 1

∧ FE.Rep(pub′, w′) �= {key, ⊥}
∧ (pub′ �= pub ∨ π′ �= π)

∣
∣
∣
∣
∣
∣
∣

(key, pub) ← FE.Gen(w)

π ← Prove(crs, pub, key, w)

(pub′, π′) ← APFE(key, pub, π)

⎤

⎥
⎦ > ngl(λ).

We can then build a PPT distinguisher A for the fuzzy extractor security
game as follows:

1. Receive (pub, keyb) from the challenger, where for w ← W , (pub, key) ←
FE.Gen(w; r) and for b ∈ {0, 1}, key1 = key and key0 = U�.

2. Sample (crs,TK,EK) ← Setup(1λ) from the NIZK proof system.
3. Run the NIZK simulator π ← Sim(pub,TK).
4. Send (keyb, pub, π) to A′

FE and receives back (pub′, π′).
5. Run the NIZK extractor (w∗, r∗) ← Ext(pub′, π′,EK).
6. Run key′ ← FE.Rep(pub, w∗).
7. If key′ = keyb return 1, otherwise return 0.

Recall that a break in robustness requires (pub′, π′) 	= (pub, π) and π′ to be
a valid proof. Suppose pub′ = pub, then dist(w,w∗) ≤ t and FE.Rep(pub, w∗) =
key. So FE′.Rep(pub′||π′, w∗) = key, which does not count as a break of the
robustness property.

So it must be true that pub′ 	= pub. In this situation, A′
FE out-

puts the pair (pub′, π′) such that for some w′, with dist(w,w′) ≤ t,
FE′.Rep(pub′||π′, w′) = key∗ 	= key. Then the NIZK extractor outputs point w∗

such that FE.Gen(w∗; r∗) = (key∗, pub′||π′). So dist(w,w′) ≤ t and dist(w∗, w′) ≤
t, which means that dist(w,w∗) ≤ 2t. Finally, since FE corrects 2t errors, when
b = 1, key′ = FE.Rep(pub, w∗) = key = key1 and

|Pr[A(pub, key) = 1] − Pr[A(pub, U�) = 1]| > ngl(λ)

which concludes our proof.

5 Reuse

In this section, we show that one cannot hope to compose MBCC obfuscation
with an auxiliary input secure digital locker. We then show this implies a impos-
sibility of a variant of private fuzzy extractors that can be constructed from
MBCC obfuscation. This variant never outputs a value outside of the ball of the
enrolled value.

Upgrading Fuzzy Extractors 173

Definition 12. Let (Gen,Rep) be an (M,W, �, t, ε)-fuzzy extractor with error
δ (Definition 7). The pair is perfectly correct if for all w,w′ ∈ M such that
dist(w,w′) > t:

Pr [⊥← Rep(pub, w′) | (key, pub) ← Gen(w)] ≥ 1 − ngl(λ).

We assume that any randomness for Rep is included in the string pub so this
probability statement is only over the randomness of Gen.

We now define digital lockers, which have the same functionality as perfectly
correct fuzzy extractors for t = 0. Digital lockers [17] are also a specific case of
MBCC obfuscation where the function is the identity function, f(x) = id(x) = x.

Definition 13 (Digital Locker). An (W, n)-digital locker is a pair of PPT
algorithms (lock, unlock) where for all val ∈ Dλ and key ∈ {0, 1}n,

– unlock ← lock(val, key)
– key′ ← unlock(val′)

such that the following properties are true:

1. Completeness: For all val ∈ Dλ, key ∈ {0, 1}n it holds that

Pr[unlock(·) ≡ Ival,key(·) | unlock ← lock(val, key)] ≥ 1 − ngl(λ),

where the probability is over the randomness of lock. Here Ival,key is a function
that returns key when provided input val, otherwise Ival,key returns ⊥.

2. Virtual Black Box Security: For all PPT A and p = poly(λ), ∃Sim and
q(λ) = poly(λ) such that for all large enough λ ∈ N, ∀val ∈ Dλ, key ∈
{0, 1}n,P : Dλ × {0, 1}n �→ {0, 1},
∣∣∣Pr[A(lock(val, key)) = P(val, key)] − Pr[SimIval,key(1λ) = P(val, key)]

∣∣∣ ≤ 1
p(λ)

,

where Sim is allowed q(λ) oracle queries to Ival,key and the probabilities are
over the internal randomness of A and lock, and of Sim, respectively.

Construction. One can construct a perfectly correct private fuzzy extractor by
applying Construction 2 on a well-formed secure sketch [13, Definition 4]. A
well-formed secure sketch on input w′ never outputs a value with distance ≥ t
from w′. One can always construct a well-formed secure sketch with no loss in
parameters by adding a distance check before output.

Since the circuit being obfuscated in Construction 2 only has an output when
the output of the secure sketch is equal to w, these two modifications suffice to
form a (private) perfectly correct fuzzy extractor.

Proposition 1. Perfectly correct private fuzzy extractors with auxiliary input
imply digital lockers with auxiliary inputs.

174 C. Cachet et al.

Proof. This proposition easily follows by setting the required distance t equal to
0.

Definition 14 (Collision-resistant Hash function). Consider function h :
{0, 1}n → {0, 1}m, h is a collision-resistant hash function if the following are
true:

1. Compression: m < n.
2. Collision-resistance: For any PPT adversary A,

Pr [(x0, x1) ← A(1n, h) | x0 	= x1 ∧ h(x0) = h(x1)] ≤ ngl(n).

Theorem 4 (Private FE with auxiliary input impossibility). If dist-
VBB obfuscation for MBCC programs with α-pseudo entropy and collision-
resistant hash functions exist, no perfectly-correct private fuzzy extractor can
be secure in the presence of unpredictability auxiliary inputs.

Proof (Theorem 4). This proof is built from a main lemma (see Lemma 2) which
is then combined with Proposition 1. Lemma 2 shows that digital lockers with
auxiliary input for unpredictable sources cannot exist if dist-VBB obfuscation
for MBCC programs with α-pseudo entropy exists.

Lemma 2 (Digital locker with auxiliary input impossibility). If dist-
VBB obfuscation for MBCC programs with α-pseudo entropy and collision-
resistant hash functions exist, then security for digital lockers with auxiliary
inputs for unpredictable sources cannot be achieved.

Proof (Lemma 2). Let Ux denote the universal circuit that takes as input circuit
C and computes Ux(C) = C(x). Define the following MBCC program

MBCC[Ux, key, x](C) =

{

x if C is a well-formed unlock program and C(x) = key.

⊥ otherwise.

Let h : {0, 1}|x| → {0, 1}m, with m < |x|, be a collision-resistant hash func-
tion. Suppose x and key are independent and let aux = h(x), then we have

HHILL(key | Ux, x, aux) ≥ α(λ)

which implies that there exists a dist-VBB obfuscator Obf for this MBCC circuit.
We now need to show that X remains unpredictable given Obf(MBCC
[UX , key, x]), that is

Hunp(X | Obf(MBCC[UX , key, x]) ≥ ω(log λ)

In other words, we want to show that if Obf(MBCC[Ux, key, x]) is dist-VBB
secure, then for all PPT A, we have

Pr [A (Obf(MBCC[Ux, key, x])) = x] ≤ ngl(λ).

Upgrading Fuzzy Extractors 175

We proceed by contradiction. Suppose the above is not true and there exists
a PPT A that can predict x from Obf(MBCC[Ux, key, x]) with non-negligible
probability. Then we can build a distinguisher for the MBCC obfuscation that
breaks dist-IND security (which is equivalent to dist-VBB for evasive functions
such as MBCC [8]). The distinguisher works as follows:

1. Receive P ∗ and aux = h(x) as inputs.
2. Run x∗ ← A(P ∗).
3. If h(x∗) = h(x), return 1, otherwise return 0.

If P ∗ = Obf(1λ, P), then A should be able to extract x∗ = x and h(x∗) =
h(x). However, if P ∗ ← Sim(1λ, P.params), A should not be able to extract
correct x∗. Then the probability that x∗ = x is 1

2n and when x∗ 	= x, h(x∗) =
h(x) with negligible probability. This is a contradiction of dist-IND security of
the MBCC obfuscator so we conclude that X remains unpredictable.

We now need to show that that this construction breaks digital locker secu-
rity. Recall that digital locker security is VBB, that is for any PPT adversary A
and any polynomial p, there exists a simulator Sim such that

Pr [A(unlock, aux) = 1] − Pr
[
Simunlock(·)(1λ, aux) = 1

]
≤ 1

p(λ)

where unlock ← lock(val, key).
It is obvious that this does not hold when we set aux = MBCC[Uval, key, val].

Indeed, A can then run aux(unlock) and retrieve the correct val (and then key
by running unlock(val)), whereas Sim cannot.

By chaining Lemma 2 and the contrapositive of Proposition 1, we obtain
that if dist-VBB MBCC obfuscation exists then private fuzzy extractors with
auxiliary inputs cannot be achieved, which conclude this Theorem’s proof.

Acknowledgements. The authors are grateful to anonymous reviewers for their help
improving the manuscript. The authors thank Giorgos Zirdelis for helpful discussions.
C.C. was supported by NSF grant #2141033. B.F. and M.R. were supported by NSF
grants #2141033 and #2232813.

A Privacy vs FE Security

Showing that fuzzy extractor security does not imply privacy is straightforward.
Let FE′ be a fuzzy extractor for which pub′ = w1||pub, where w1 ∈ {0, 1} denotes
the first bit of w and pub is a valid public value such that key ← FE.Rep(pub, w∗)
when dist(w,w∗) ≤ t. Then it is obvious that even though FE′ is a secure fuzzy
extractor, it is not private.

We will now show that the reverse is also not true.

Theorem 5. Privacy (Definition 8) does not imply fuzzy extractor security
(Definition 7).

176 C. Cachet et al.

Proof (Proof of Theorem 5). We will prove this by presenting a counter example.
Consider the following construction:

– (pub, key) ← Gen(w): key is sampled uniformly at random and pub is an
obfuscation of the program p such that, for inputs x ∈ {0, 1}∗ and b ∈ {0, 1},

p(b, x) =

⎧
⎪⎨
⎪⎩

key if b = 1 and dist(w, x) ≤ t

� if b = 0 and x = key

⊥ otherwise.

– key ← Rep(pub, b, w′): run pub(1, w′) and return its output.

Notice that for w,w′ ∈ W such that dist(w,w′) ≤ t, we have

Pr [key ← Rep(pub, w′) | (pub, key) ← Gen(w)] ≥ 1 − ngl(λ)

which is the expected behavior of a fuzzy extractor. Furthermore, note that this
construction is private since by the obfuscation definition, for any PPT adversary
A, there exists simulator Sim such that for any predicate φ

∣∣∣Pr[A(pub, key) = φ(W)] − Pr[Sim(1λ, 1|pub|, 1|key|) = φ(W)]
∣∣∣ ≤ ngl(λ)

Now let’s check fuzzy extractor security. Consider the following experiment:

1. Run (key, pub) ← Gen(w).
2. Draw b ← {0, 1}.

3. If b = 0, sample U�
$←− {0, 1}� and send (U�, pub) to A. Otherwise, send

(key, pub) to A.
4. A outputs b′ ∈ {0, 1} and wins if b′ = b.

A has a straightforward way of winning this experiment by running pub(0, x),
where x = key or x = U� depending on drawn b. Then A outputs b′ = 1 if
pub(0, x) = � and b′ = 0 if pub(0, x) =⊥. Thus we have

|Pr[A(key, pub) = 1] − Pr[A(U�, pub) = 1]| > ngl

and we can conclude that this construction, although private, is not a secure
fuzzy extractor.

B Reusability from Composable MBCC Obfuscation

Reusability for Constructions 1 and 2 is achievable when the MBCC obfuscator
is composable. We start by defining reuse.

Definition 15 (Reusable Fuzzy extractor [16]). Let FE be an (M,
W, �, t, s, ε)-fuzzy extractor with error δ as defined above. Let (W1, · · · ,Wρ) be
ρ ∈ N correlated variables such that Wi ∈ W. Let adversary A be a PPT adver-
sary, then for all j ∈ [1, ρ]:

Upgrading Fuzzy Extractors 177

1. The challenger samples wj ← Wj and computes (keyj , pubj) ← FE.Gen(w).

2. The challenger samples a uniform u
$←− {0, 1}� and sets K0 = keyi and K1 =

u.
3. The challenger draws b

$←− {0, 1} and sends to A
(key1, · · · , keyi−1,Kb, keyi+1, · · · , keyρ, pub1, · · · , pubρ)

4. A outputs b′ ∈ {0, 1} and wins if b′ = b.

We denote the above experiment as ExpreusableA,b , the advantage of A is

Adv(A) =
∣∣∣Pr[ExpreusableA,0 = 1] − Pr[ExpreusableA,1 = 1]

∣∣∣ .

FE is a (ρ, ε)-reusable fuzzy extractor if for all A, for all i ∈ [1, ρ] the advan-
tage of A is at most ε.

However, as we show in Sect. 5 this is not possible without restricting the
class of circuits being obfuscated.

Definition 16 (�-Composable Obfuscation with auxiliary input). Obf is
a �-composable obfuscator for distribution class D over the family of circuits Pλ

if for any PPT adversary A and polynomial p, there exists a simulator Sim such
that for every distribution ensemble D = {Dλ} ∈ D and (P1, · · · , P�, aux) ← Dλ,
with � = poly(λ),

∣∣∣ Pr[A(
Obf(P1), · · · ,Obf(P�), aux

)
= 1]

− Pr[SimP1,··· ,P�(1|P1|, · · · , 1|P�|, aux) = 1]
∣∣∣ ≤ 1

p(λ)

Theorem 6. Let Obf be a composable dist-VBB obfuscator for MBCC circuits,
then Constructions 1 and 2 are reusable.

Proof (Proof of Theorem 6). Suppose PFE is not a reusable fuzzy extractor,
that is, there exists a PPT adversary A and a polynomial p(λ) such that for all
1 ≤ j ≤ ρ:

∣∣ Pr[A(key1, · · · , keyρ, pub1, · · · , pubρ) = 1]

− Pr[A(key1, · · · , keyi−1, U�, keyi+1, · · · , keyρ, pub1, · · · , pubρ) = 1]
∣∣ >

1
p(λ)

where U� is a uniform random string in {0, 1}�.
Remember that Obf is a composable obfuscator for MBCC[Reppub, k, key]. Let
r(λ) = 3p(λ) and suppose Sim is the simulator for A for r(λ), then we have

∣
∣ Pr[A({Obf(1λ,MBCC[Reppub, k, keyi])}ρ

i=1, aux) = 1]

− Pr[Sim{MBCC[Reppub,k,keyi]}ρ
i=1(1λ, {|MBCC[Reppub, k, keyi]|}ρ

i=1, aux) = 1]
∣
∣ ≤ 1

3p(λ)

178 C. Cachet et al.

Note that in Construction 1, pubi = Obf(1λ,MBCC[Reppub′ , k, keyi]) and set
aux = key1, · · · , keyρ so we have

∣∣ Pr[A({pubi}ρ
i=1, {keyi}ρ

i=1) = 1]

− Pr[Sim{pubi}ρ
i=1(1λ, {|pubi|}ρ

i=1, {keyi}ρ
i=1) = 1]

∣∣ ≤ 1
3p(λ)

(3)

Notice that this also holds if we replace keyj by an independent uniform random
variable U� over {0, 1}�. Then for any j ∈ {1, ρ} we have:
∣
∣ Pr[A({pubi}ρ

i=1, key1, · · · , keyj−1, U�, keyj+1, · · · , keyρ) = 1]

− Pr[Sim{pubi}ρ
i=1(1λ, {|pubi|}ρ

i=1, key1, · · · , keyj−1, U�, keyj+1, · · · , keyρ) = 1]
∣
∣ ≤ 1

3p(λ)
(4)

Again we adapt Canetti et al.’s lemma [16, Lemma 2]:

Lemma 3. Let U� denote the uniform distribution over {0, 1}�, then for 1 ≤
j ≤ ρ,
∣
∣
∣Pr[Sim{MBCC[Reppub,k,keyi]}ρ

i=1
(

1
λ

,
{∣

∣MBCC[Reppub, k, keyi]
∣
∣
}ρ

i=1
, {key}ρ

i=1

)

= 1]

− Pr[Sim{MBCC[Reppub,k,keyi]}ρ
i=1

(

1
λ

,
{∣

∣MBCC[Reppub, k, keyi]
∣
∣
}ρ

i=1
, {keyi}j−1

i=1 , U�, {keyi}ρ
i=j+1

)

= 1]
∣
∣
∣

≤ 1

3p(λ)

Proof. Fix any u ∈ {0, 1}�, the lemma will follow by averaging over all u. The
information about whether the jth key value, denoted Vj , is keyj or u can only be
obtain by Sim through the query responses. First, we modify Sim to quit imme-
diately when it gets a response not equal to ⊥. Such Sim is equally successful
at distinguishing between keyj and u since the first non-⊥ response tells Sim if
its input is equal to keyj . Subsequent responses add nothing to this knowledge.
Since Sim can make at most q queries, there are q + 1 possible values for the
view of Sim on a given input. Of those, q views consist of some number of non-⊥
responses followed by a ⊥ response, and one view consists of all q responses equal
to ⊥.
Then by [25, Lemma 2.2b],

H̃∞(Vj |V iew(Sim), aux) ≥ H̃∞(Vj) − log(q + 1)
≥ α − log(q + 1).

where aux =
({|MBCC[Reppub, k, keyi]|}ρ

i=1, key1, · · · , keyj−1, keyj+1, · · · , keyρ

)
.

Thus, at each query, the probability that Sim gets a non-⊥ response and
guesses Vj is at most (q + 1)/2α. Since there are q queries of Sim, the overall
probability is at most q(q + 1)/2α. Then since 2α is negligible in λ, there exists
some λ0 such that for all λ ≥ λ0, q(q + 1)/2α ≤ 1/(3p(λ)).

Upgrading Fuzzy Extractors 179

Then from Lemma 3, we have
∣
∣ Pr[Sim{pubi}ρ

i=1(1λ, {|pubi|}ρ
i=1, {keyi}ρ

i=1) = 1]

− Pr[Sim{pubi}ρ
i=1(1λ, {|pubi|}ρ

i=1, key1, · · · , keyj−1, U�, keyj+1, · · · , keyρ) = 1]
∣
∣ ≤ 1

3p(λ)
(5)

Using the triangle inequality on Eqs. 3, 4 and 5 we obtain
∣∣ Pr[A(key1, · · · , keyρ, pub1, · · · , pubρ) = 1]

− Pr[A(key1, · · · , keyi−1, U�, keyi+1, · · · , keyρ, pub1, · · · , pubρ) = 1]
∣∣ ≤ 1

p(λ)

which is a contradiction and completes this proof.

Composable MBCC Obfuscation. Wichs and Zirdelis [47] build obfuscation for
multi-bit compute-and-compare circuits from single bit compute-and-compare by
composing the function f with a strongly injective PRG. By doing so they ensure
that the target values (y1, · · · , y�) are indistinguishable from uniform, even when
given f, z and aux. Their proof then relies on the security of the obfuscator for
the ith circuit by passing all remaining circuits as auxiliary information.

Unfortunately this technique cannot be directly applied to build composable
MBCC obfuscation since it requires keeping track of which parts of the PRG
output have already been used. This is reasonable for their MBCC obfuscation
scheme, where all obfuscated compute-and-compare circuits will be generated at
the same time. However this is not practical in the case of composable obfusca-
tion, where the obfuscator will typically be run at different times and without a
shared state. One could use a PRG with exponential stretch and select a random
part of its output, then the probability of reuse should be low. Another issue is
that in Wichs and Zirdelis’s scheme, the function and the input to the PRG are
always the same. For composability, especially with the goal of building reusable
FE, it would need to handle distinct but possibly correlated functions and val-
ues. It then is unclear what the auxiliary information (i.e. the other obfuscated
programs) may leak on the current obfuscated circuit.

References

1. Alamélou, Q., et al.: Pseudoentropic isometries: a new framework for fuzzy extrac-
tor reusability. In: AsiaCCS (2018)

2. Apon, D., Cachet, C., Fuller, B., Hall, P., Liu, F.H.: Nonmalleable digital lock-
ers and robust fuzzy extractors in the plain model. In: Agrawal, S., Lin, D.
(eds.) Advances in Cryptology - ASIACRYPT 2022, pp. 353–383. Springer Nature
Switzerland, Cham (2022)

3. Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, reusable fuzzy extractors
from LWE. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp.
1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60080-2 1

https://doi.org/10.1007/978-3-319-60080-2_1

180 C. Cachet et al.

4. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfus-
cation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
26–51. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 2

5. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for obfuscating
conjunctions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 636–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 22

6. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 29

7. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discus-
sion. SIAM J. Comput. 17(2), 210–229 (1988)

8. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 28

9. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. Algorithmica 79(4), 1014–1051 (2017)

10. Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint iden-
tification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp.
190–209. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-
2 11

11. Blundo, C., De Cristofaro, E., Gasti, P.: EsPRESSo: efficient privacy-preserving
evaluation of sample set similarity. In: Di Pietro, R., Herranz, J., Damiani, E.,
State, R. (eds.) DPM/SETOP -2012. LNCS, vol. 7731, pp. 89–103. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-35890-6 7

12. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Proceedings of the 11th
ACM Conference on Computer and Communications Security, pp. 82–91 (2004)

13. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 9

14. Bringer, J., Chabanne, H., Patey, A.: SHADE: secure HAmming DistancE com-
putation from oblivious transfer. In: Adams, A.A., Brenner, M., Smith, M. (eds.)
FC 2013. LNCS, vol. 7862, pp. 164–176. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41320-9 11

15. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 11

16. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. J. Cryptol. 34(1), 1–33 (2020). https://doi.org/10.
1007/s00145-020-09367-8

17. Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On symmetric encryption
and point obfuscation. In: Micciancio, D. (ed.) Theory Crypt., pp. 52–71. Springer,
Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 4

18. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 27

19. Demarest, L., Fuller, B., Russell, A.: Code offset in the exponent. In: 2nd Confer-
ence on Information-Theoretic Cryptography (ITC 2021) (2021)

https://doi.org/10.1007/978-3-642-54242-8_2
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/3-540-46766-1_29
https://doi.org/10.1007/978-3-642-14623-7_28
https://doi.org/10.1007/978-3-642-23822-2_11
https://doi.org/10.1007/978-3-642-23822-2_11
https://doi.org/10.1007/978-3-642-35890-6_7
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/978-3-642-41320-9_11
https://doi.org/10.1007/978-3-642-41320-9_11
https://doi.org/10.1007/978-3-662-44371-2_11
https://doi.org/10.1007/s00145-020-09367-8
https://doi.org/10.1007/s00145-020-09367-8
https://doi.org/10.1007/978-3-642-11799-2_4
https://doi.org/10.1007/978-3-540-78967-3_27

Upgrading Fuzzy Extractors 181

20. Deshmukh, S., Carter, H., Hernandez, G., Traynor, P., Butler, K.: Efficient and
secure template blinding for biometric authentication. In: Communications and
Network Security (CNS), 2016 IEEE Conference on, pp. 480–488. IEEE (2016)

21. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

22. Dodis, Y., Kanukurthi, B., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extrac-
tors and authenticated key agreement from close secrets. IEEE Trans. Inf. Theory
58(9), 6207–6222 (2012). https://doi.org/10.1109/TIT.2012.2200290

23. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authen-
ticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 14

24. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

25. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
Advances in Cryptology - EUROCRYPT 2004, pp. 523–540. Springer, Berlin Hei-
delberg, Berlin, Heidelberg (2004)

26. Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In:
Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Com-
puting, pp. 654–663 (2005)

27. Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 393–424. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 13

28. Evans, D., Huang, Y., Katz, J., Malka, L.: Efficient privacy-preserving biometric
identification. In: Proceedings of the 17th Conference Network and Distributed
System Security Symposium, NDSS (2011)

29. Feng, H., Tang, Q.: Computational robust (Fuzzy) extractors for CRS-dependent
sources with minimal min-entropy. In: Nissim, K., Waters, B. (eds.) TCC 2021.
LNCS, vol. 13043, pp. 689–717. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90453-1 24

30. Fuller, B.: Impossibility of efficient information-theoretic fuzzy extraction. Cryp-
tology ePrint Archive, Paper 2023/172 (2023). https://eprint.iacr.org/2023/172

31. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-42033-7 10

32. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. Inf. Comput.,
104602 (2020)

33. Fuller, B., Peng, L.: Continuous-source fuzzy extractors: source uncertainty and
insecurity. In: 2019 IEEE International Symposium on Information Theory (ISIT),
pp. 2952–2956. IEEE (2019)

34. Fuller, B., Reyzin, L., Smith, A.: When are fuzzy extractors possible? In: Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, pp. 277–306. Springer (2016). https://doi.org/10.1007/978-3-662-53887-
6 10

35. Fuller, B., Reyzin, L., Smith, A.: When are fuzzy extractors possible? IEEE Trans.
Inf. Theory 66(8), 5282–5298 (2020)

https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1109/TIT.2012.2200290
https://doi.org/10.1007/11818175_14
https://doi.org/10.1007/11818175_14
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-030-90453-1_24
https://doi.org/10.1007/978-3-030-90453-1_24
https://eprint.iacr.org/2023/172
https://doi.org/10.1007/978-3-642-42033-7_10
https://doi.org/10.1007/978-3-662-53887-6_10
https://doi.org/10.1007/978-3-662-53887-6_10

182 C. Cachet et al.

36. Galbraith, S.D., Zobernig, L.: Obfuscated fuzzy hamming distance and conjunc-
tions from subset product problems. In: Theory of Cryptography (2019). https://
eprint.iacr.org/2019/620

37. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

38. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of FOCS (2013)

39. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 612–621.
IEEE Computer Society, Los Alamitos, CA, USA (2017). https://doi.org/10.1109/
FOCS.2017.62, https://doi.ieeecomputersociety.org/10.1109/FOCS.2017.62

40. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively.
Comput. IEEE Trans. 55(9), 1081–1088 (2006)

41. HÅstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). https://
doi.org/10.1137/S0097539793244708

42. Hsiao, C.Y., Lu, C.J., Reyzin, L.: Conditional computational entropy, or toward
separating pseudoentropy from compressibility. In: Naor, M. (ed.) Advances in
Cryptology - EUROCRYPT 2007, pp. 169–186. Springer, Berlin Heidelberg, Berlin,
Heidelberg (2007)

43. Škorić, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable
functions. In: Applied Cryptography and Network Security: Third International
Conference, ACNS 2005, New York, NY, USA, June 7–10, 2005. Proceedings 3.
pp. 407–422. Springer (2005)

44. Wen, Y., Liu, S.: Robustly reusable fuzzy extractor from standard assumptions.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 459–489. Springer (2018)

45. Wen, Y., Liu, S., Gu, D.: Generic constructions of robustly reusable fuzzy extrac-
tor. In: IACR International Workshop on Public Key Cryptography. pp. 349–378.
Springer (2019)

46. Wen, Y., Liu, S., Han, S.: Reusable fuzzy extractor from the decisional Diffie-
Hellman assumption. Designs, Codes and Cryptography (Jan 2018). https://doi.
org/10.1007/s10623-018-0459-4, https://doi.org/10.1007/s10623-018-0459-4

47. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). pp. 600–611 (2017). https://doi.org/10.1109/FOCS.2017.61

48. Woodage, J., Chatterjee, R., Dodis, Y., Juels, A., Ristenpart, T.: A new
distribution-sensitive secure sketch and popularity-proportional hashing. In:
Annual International Cryptology Conference. pp. 682–710. Springer (2017)

49. Zhandry, M.: The magic of ELFs. J. Cryptol. 32, 825–866 (2019)

https://eprint.iacr.org/2019/620
https://eprint.iacr.org/2019/620
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1109/FOCS.2017.62
https://doi.ieeecomputersociety.org/10.1109/FOCS.2017.62
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1007/s10623-018-0459-4
https://doi.org/10.1007/s10623-018-0459-4
https://doi.org/10.1007/s10623-018-0459-4
https://doi.org/10.1109/FOCS.2017.61

X-Lock: A Secure XOR-Based Fuzzy
Extractor for Resource Constrained

Devices

Edoardo Liberati1(B) , Alessandro Visintin2 , Riccardo Lazzeretti1 ,
Mauro Conti2,3 , and Selcuk Uluagac4

1 Sapienza University of Rome, Rome, Italy
e.liberati@diag.uniroma1.it

2 University of Padua, Padua, Italy
3 Delft University of Technology, Delft, Netherlands
4 Florida International University, Miami, FL, USA

Abstract. The Internet of Things rapid growth poses privacy and secu-
rity challenges for the traditional key storage methods. Physical Unclon-
able Functions offer a potential solution but require secure fuzzy extrac-
tors to ensure reliable replication. This paper introduces X-Lock, a novel
and secure computational fuzzy extractor that addresses the limitations
faced by traditional solutions in resource-constrained IoT devices. X-
Lock offers a reusable and robust solution, effectively mitigating the
impacts of bias and correlation through its design. Leveraging the pre-
ferred state of a noisy source, X-Lock encrypts a random string of bits
that can be later used as seed to generate multiple secret keys. To prove
our claims, we provide a comprehensive theoretical analysis, addressing
security considerations, and implement the proposed model. To evaluate
the effectiveness and superiority of our proposal, we also provide practi-
cal experiments and compare the results with existing approaches. The
experimental findings demonstrate the efficacy of our algorithm, showing
comparable memory cost (≈ 2.4 KB for storing 5 keys of 128 bits) while
being 3 orders of magnitude faster with respect to the state-of-the-art
solution (0.086 ms against 15.51 s).

Keywords: Fuzzy extractor · Physical Unclonable Functions · Error
tolerant cryptography

1 Introduction

Within the domain of Internet of Things (IoT), the presence of resource-
constrained devices poses significant obstacles in ensuring the development of
robust privacy and security mechanisms. While numerous cryptographic algo-
rithms can be customized to address these challenges, their effectiveness hinges
on the availability of securely maintained keys. Presently, prevalent practices
involve the storage of digital keys in a Non-Volatile Memory (NVM), typically
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 183–210, 2024.
https://doi.org/10.1007/978-3-031-54770-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_8&domain=pdf
http://orcid.org/0009-0002-1123-9212
http://orcid.org/0000-0002-2747-0737
http://orcid.org/0000-0003-3835-9679
http://orcid.org/0000-0002-3612-1934
http://orcid.org/0000-0002-9823-3464
https://doi.org/10.1007/978-3-031-54770-6_8

184 E. Liberati et al.

situated externally to the computing platform. However, the practical realiza-
tion of secure digital key storage has emerged as a formidable endeavor, primarily
attributed to technical limitations or cost-related considerations [14].

In this context, Physical Unclonable Functions (PUFs) [20] arise as a promis-
ing alternative solution. PUFs represent a viable replacement for NVM-based
keys and offer several notable advantages, including cost-effectiveness, inherent
uniqueness, and heightened resistance against various attacks [18]. PUFs derive
confidential information from inherent process variations, similar to distinctive
device fingerprints [7]. The replication of identical PUF instances becomes then
practically unattainable, even when originating from the same manufacturer.
Nevertheless, PUFs rely on physical circuit properties for generating responses,
making them susceptible to factors such as thermal noise and environmental
conditions. Consequently, achieving reliable replication of PUF responses poses
a significant challenge [14].

The notion of fuzzy extractor [10] emerged as a highly regarded approach
for addressing key management issues associated with error-prone data. A fuzzy
extractor offers the ability to extract an identical random string from a noisy
source without the need to store the string itself, therefore allowing the usage of
noisy sources such as PUFs as cryptographic primitives. The general construc-
tion comprises two algorithms. The generation algorithm Gen takes an initial
string Sread of the noisy source as input and produces a string K along with
a helper data H. Subsequently, the reproduction algorithm Rep leverages the
helper data H to reproduce the string K from a second string S′

read of the same
source, given that the distance between Sread and S′

read is sufficiently small. The
correctness property of a fuzzy extractor ensures that the reproduction process
yields the same string K when the fuzzy data is generated from the same source.
Additionally, the security aspect of a fuzzy extractor guarantees that the helper
data H does not divulge any information about the original fuzzy data.

Previous works employed secure sketches and randomness extractors as core
components for their constructions [2,25,26]. A secure sketch is an information
reconciliation protocol that enables the recovery of the original Sread from a
received S′

read when they are sufficiently close. Subsequently, a random string
is extracted from Sread using a randomness extractor. However, it has been
observed that secure sketches leak information through the helper data, leading
to a loss of security [13]. Consequently, the construction of a fuzzy extractor
based on secure sketches necessitates the utilization of high entropy source data.

Recently, a novel class of solutions introduced an innovative approach to con-
struct fuzzy extractors [5,6,13,28]. These solutions employ Sread to encrypt a
random string in a manner that allows for decryption with knowledge of a closely
related string S′

read. Fuller et al. [13] presented a computational fuzzy extractor
based on the Learning With Errors (LWE) problem. Their approach effectively
mitigates information leakage from the helper data by concealing secret ran-
domness within it. However, this construction exhibits notable inefficiency and
only tolerates sub-linear errors. Additionally, it lacks guarantees of reusability
(see Definition 2) and robustness (see Definition 3). Canetti et al. [5,6] employed

X-Lock: A Secure XOR-Based Fuzzy Extractor 185

digital lockers as their cryptographic primitive. Their solution is applicable even
with low-entropy sources and ensures reusability. However, their sample-then-
lock technique necessitates excessive storage space for the helper values. Woo
et al. [28] proposed a solution based on non-linear LWE, which offers memory
efficiency while simultaneously guaranteeing both reusability and robustness.
Nevertheless, their solution is computationally demanding and may not be suit-
able for restricted environments.

This paper presents X-Lock, a novel design for a secure and cost-effective
computational fuzzy extractor. Similar to [5,6,13,28], X-Lock utilizes the noisy
strings obtained from a fuzzy source to protect a random string of bits. X-Lock
encrypts each bit of the random string by XOR-ing it multiple times with a sub-
set of bits from the noisy string. Through this approach, X-Lock offers reusability
and robustness while inherently addressing bias and correlation issues within the
fuzzy source. Bias quantifies the equilibrium between 0 s and 1 s within the fuzzy
response, whereas correlation evaluates the degree of independence among dis-
tinct bits within the same fuzzy response. To substantiate these assertions, we
conducted a comprehensive theoretical analysis encompassing both the security
and the implementation aspects of our model. Furthermore, we conducted prac-
tical experiments and comparisons with existing state-of-the-art approaches to
demonstrate the superiority of our proposal.

The empirical results demonstrate the optimal performance of our proposed
model. With a key size of 128 bits, our algorithm uses ≈ 2.4 KB to store 5 keys.
Furthermore, the execution time for the Rep procedure amounts to 0.086 ms. In
contrast, Canetti et al. [5,6] necessitates 216.20 MB and ≈ 1 min computational
time, while Woo et al. [28] utilizes ≈ 2.8 KB and operates at a speed of 15.51 s
(see Sect. 6). Overall, our model achieves comparable memory cost with the state-
of-the-art solutions while outperforming them by being 3 orders of magnitude
faster.

Contributions. In summary, this paper offers the following contributions:

– We present X-Lock, a novel design for a secure and cost-effective fuzzy extrac-
tor based on XOR operations;

– We introduce the XOR iteration (XOR-ation) as our cryptographic primitive
that efficiently mitigates source bias and correlation;

– We provision our model with robustness, reusability and insider security
through straightforward and effective strategies;

– We provide a thorough theoretical analysis of our model including storage,
computational and security aspects;

– We implement X-Lock in C language and conduct practical experiments to
compare our results to the current state-of-the-art solutions.

Organization. The rest of the paper is organized as follows. In Sect. 2 we intro-
duce previous works and the state-of-the-art in reusable and robust fuzzy extrac-
tors. In Sect. 3 we provide background information on PUFs, fuzzy extractors,
bias and correlation. In Sect. 4 we describe the algorithm of X-Lock in details. In
Sect. 5 we explain the rationale and conduct a security analysis over our method-
ology. In Sect. 6 we describe our implementation of the algorithm and show the

186 E. Liberati et al.

results of the comparison with both Canetti et al. [5,6] and Woo et al. [28].
Finally, Sect. 7 closes the paper with some final remarks.

2 Related Works

Since the pioneering work of Dodis et al. [10], the concept of fuzzy extractor has
emerged as a prominent solution for managing keys derived from noisy sources.
Most fuzzy extractors adopt the sketch-then-extract paradigm, employing secure
sketches and randomness extractors as fundamental components [2,25,26]. How-
ever, secure sketches entail a minor data leakage from the helper data, leading to
compromised security [13]. Consequently, the utilization of a secure sketch-based
fuzzy extractor necessitates high-entropy source data.

The notion of reusability, as formalized by Boyen [2], pertains to the secu-
rity of multiple pairs of extracted strings and associated helper data, even when
such helper data is exposed to an adversary. The work showcases that achiev-
ing information-theoretic reusability requires a significant reduction in security,
thereby implying an inherent trade-off. Related again to fuzzy extractors secu-
rity, Boyen et al. [3] introduce the notion of a robust fuzzy extractor to safeguard
the helper data against malicious modifications, ensuring the detection of any
such alterations. Both these security criteria must be satisfied to ensure the via-
bility of fuzzy extractors as secure authentication methods in real-life scenarios.

In a departure from secure sketch-based approaches, Fuller et al. [13] propose
a computational fuzzy extractor based on the LWE problem. Their methodol-
ogy employs noisy strings to encrypt a random string in such a way that it
can be decrypted with the knowledge of another closely related string. By con-
cealing secret randomness within the helper data instead of extracting it from
the noisy string, their approach mitigates data leakage concerns. Nonetheless,
their construction exhibits significant inefficiency in terms of memory require-
ments and computational time and can only tolerate sub-linear errors, while
lacking reusability. Apon et al. [1] improve upon Fuller’s construction to fulfill
the reusability requirement by utilizing either a random oracle or a lattice-based
symmetric encryption technique. However, their solution remains unable to over-
come the limitations of the construction by Fuller et al. [13], allowing only a log-
arithmic fraction of error tolerance. Another proposal by Wen et al. [25] presents
a reusable fuzzy extractor based on the LWE problem, resilient to linear fractions
of errors. Nevertheless, their scheme relies on a secure sketch and consequently
results in the leakage of sensitive data.

Addressing the limitations of prior works, Canetti et al. [5,6] introduce a
fuzzy extractor construction employing inputs from low-entropy distributions,
leveraging the concept of digital lockers [4,16] as a symmetric key cryptographic
primitive. Their strategy involves sampling multiple partial strings from a noisy
input string, hashing them independently, and then locking individual secret keys
with each hashed partial string. Correctness ensues if there is a high likelihood
of successfully recovering at least one hashed subset of data upon a second
measurement. To achieve this, the scheme necessitates a large helper data size

X-Lock: A Secure XOR-Based Fuzzy Extractor 187

for storing the hashed values and employs an inefficient reproduction algorithm.
To address this concern, Cheon et al. [8] made adjustments to the first scheme
proposed by Canetti et al. [5], reducing the size of the helper data. However,
this modification results in an increased computational cost for the reproduction
algorithm due to the introduction of a significant amount of hashing operations.

A recent contribution by Woo et al. [28] presents a novel computational
fuzzy extractor that does not rely on a secure sketch or digital lockers. Their
construction offers security under the non-linear LWE problem and encodes the
extracted key using two cryptographic primitives: error correcting codes (ECCs)
and the EMBLEM encoding method [21]. This innovative approach achieves both
robustness and reusability while tolerating linear errors. However, it assumes
that the source data is drawn from a uniform distribution and, although more
efficient than previous works, it still entails a non-negligible computational effort
that may limit its adoption on low-end devices.

In contrast with previous works, X-Lock efficiently satisfies all the security
properties required from a secure fuzzy extractor. The protocol only uses XOR
operations in its procedure, thus cutting the computational complexity. Addi-
tionally, the XOR primitive inherently introduces a mitigation for both source
bias and correlation issues (see Sect. 3). It is noteworthy that none of the pre-
vious works adequately addresses such bias and correlation issues. In real-world
setups, fuzzy sources rarely produce perfectly random outputs and may exhibit
biases towards a specific value, as well as correlations among bits. While the
construction by Canetti et al. [5,6] implicitly addresses the correlation problem,
the bias issue remains unaddressed in the existing literature. Security guarantees
of proposals in the existing literature are summarized in Table 1.

Table 1. Properties comparison.

Construction Correctness Leak Prevention Reusability Robustness Correlation Bias

Canetti et al. [5,6] • • • • •
Fuller et al. [13] • •
Apon et al. [1] • •
Wen et al. [25] • •
Cheon et al. [9] • • • • •
Woo et al. [28] • • • •
Our work • • • • • •

3 Background

General Notation. We use lowercase letters to denote single values. We use
capital letters to denote groups of values that are either organized in sets or
strings. With {·}x we denote a group of cardinality x that contains values from
those described inside the braces. We denote with |X| the cardinality of the
group X. We define ||X|| as the Hamming weight of X, i.e. the number of
its non-zero values. The notation Pr[·] expresses the probability of the event

188 E. Liberati et al.

described inside the square brackets. We denote the XOR logical operation with
⊕. When applied to sequences of bits, ⊕ is intended to perform a bit-wise XOR.
We introduce the XOR-ation operator

⊕I
i=0, performing the XOR operation

iteratively over a sequence of bits denoted by the indexes 0 ≤ i ≤ I. Note that
the order of the indexes does not change the final result. We provide a summary
of the notation used throughout the paper in Table 2. As a final remark, notice
that we adapted definitions coming from the literature according to our notation,
for sake of clarity and coherence.

Table 2. Notation summary.

Symbol Meaning

|X| Cardinality of group X

||X|| Hamming weight of group X
⊕

y∈Y XOR-ation over the set of indexes Y

F Fuzzy source

Sread, Spref Random string and preferred string of a fuzzy source

erel, eabs Relative error and absolute error

Gen, Rep Procedures involved in a fuzzy extractor

K, H Secret key and helper data generated by Gen

pbias Number of 1s in a string over its total number of bits

φ Correlation factor of a fuzzy source

B Poll of random bits

C Bits involved in the XOR-ation

L Bit-locker, group of locks relative to the same bit

Kpre Final values before obtaining K

V Vault

n nonce

R Set of random indices of original bits constituting a key

T Authentication token

⊥ None value

PUFs Characterization. PUFs leverage the inherent random variations intro-
duced during the silicon manufacturing process to generate secret keys on the
fly [20]. These variations, akin to unique fingerprints, serve as a cost-effective
source of randomness. Conceptually, a PUF can be viewed as a function where
a specific binary input (i.e., a challenge) elicits distinct binary outputs (i.e.,
responses) specific to each individual PUF instance. However, outputs obtained
from the same PUF circuit may exhibit variations due to factors such as thermal
noise and environmental conditions.

Consequently, we conceptualize a PUF circuit as a fuzzy source F that pro-
vides a string of bits Sread upon request. When comparing two such sequences

X-Lock: A Secure XOR-Based Fuzzy Extractor 189

from F they can exhibit different values in certain positions. We formalize this
aspect with the relative error erel = ||Sread⊕S′

read||
|Sread| , that is the ratio of bits in

Sread that differ from S′
read. Together with Sread, we introduce the concept of

preferred string Spref , which is obtained by identifying the value appearing most
frequently (i.e., more than 50% of the times) for each bit within the string. We
calculate it by using a statistically significant number of Sread (e.g., more than
100 strings). Figure 1 reports the estimation of the number of bits we expect
to be incorrectly identified with respect to the number of strings read to craft
Spref . The plot shows both the trend of the expected number of errors, which
exponentially decreases as the number of strings increases, and the threshold on
the number of strings that brings such expectation below 1. Similarly to erel,
we define the absolute error eabs as the ratio of bits in Sread that differ from
Spref . Notably, the two errors are linked by the inequality 0 ≤ erel ≤ 2 · eabs.
Indeed, consider two strings Sread and S′

read that have wrong bits in the same
positions, if any. Then their relative error is erel = 0. On the other hand, con-
sider two strings Sread and S′

read that exhibit the maximum possible error eabs

with respect to Spref but have no wrong shared bit. Then their relative error is
erel = 2 · eabs.

Fig. 1. Expected number of wrong bits (logarithmic scale) over number of strings.
(Color figure online)

It is crucial to underscore that when setting up the fuzzy extractor using
the raw Sread instead of Spref , it is likely to introduce additional errors into
the process, ultimately increasing the likelihood of recovering an incorrect key.
Hence, in the context of this paper, we employ Spref as our reference string and,
consequently, we consider eabs to be the error rate associated with F .

Fuzzy Extractors. Fuzzy extractors [10] are cryptographic constructions
designed to derive reliable and uniformly distributed cryptographic keys from

190 E. Liberati et al.

sources prone to noise or errors. This process involves two probabilistic proce-
dures. The Gen procedure takes a string Sread and produces a random string K
along with a public helper string H. If another string S′

read is sufficiently close
to Sread (i.e., ||Sread ⊕ S′

read|| ≤ t for a small t), the Rep procedure can utilize
the helper string H to correctly reproduce the original random string K from
S′

read.
In this work, we focus on computational fuzzy extractors that consider the

scenario where potential attackers possess knowledge about the noise distribution
and have control over the errors. To formalize this concept, we define a metric
space as a finite set M equipped with a distance function dis : M × M →
R+ = [0,∞) that satisfies the identity property (dis(x, y) = 0 if and only if
x = y), the symmetry property (dis(x, y) = dis(y, x)), and the triangle inequality
(dis(x, z) ≤ dis(x, y) + dis(y, z)). The statistical distance [5,6] SD(X,Y) is
defined as 1

2

∑
x(Pr[X = x] − Pr[Y = x]).

Definition 1 (Computational fuzzy extractor, [12] Definition 4). Given
a metric space (M, dis), let F be a family of probability distributions over M.
A pair of randomized procedures (Gen,Rep) is an (M,F , k, t, ε)-computational
fuzzy extractor with error δ if Gen and Rep satisfy the following properties:

– Gen on input Sread ∈ M outputs K ∈ {0, 1}k and a helper string H ∈ {0, 1}∗.
– Rep takes S′

read ∈ M and H ∈ {0, 1}∗ as inputs.
– Correctness. If dis(Sread, S

′
read) ≤ t and (K,H) ← Gen(Sread), then

Pr[Rep(S′
read,H) = K] ≥ 1− δ, where the probability is over the randomness

of (Gen,Rep). If dis(Sread, S
′
read) > t, then no guarantee is provided about

the output of Rep.
– Security. For any F ∈ F , K is pseudo-random conditioned on H, that is if

(K,H) ← Gen(Sread) then SD((K,H), (Uk,H)) ≤ ε.

The correctness property guarantees that the fuzzy extractor can accurately
retrieve the protected data when provided with an input that is sufficiently
close to the original. The security property ensures that the output of the fuzzy
extractor does not reveal any specific information about the underlying noisy
distribution.

To utilize a computational fuzzy extractor as an authentication mechanism,
it must possess both reusability and robustness. Reusability [2] is related to the
case where the helper data associated to several extracted strings is revealed to
an adversary.

Definition 2 (Reusability, [6] Definition 6). Let F be a family of distribu-
tions over M. Let (F 1, F 2, . . . , F ρ) be ρ correlated random variables such that
∀i = 1, . . . , ρ : F i ∈ F . Let (Gen,Rep) be a (M,F , k, t, ε)-computational fuzzy
extractor with error δ. Let D be a distinguisher that outputs 0 when it believes
that the input was randomly produced and 1 when it believes it was produced by
(Gen,Rep). Define the following game ∀j = 1, . . . , ρ:

X-Lock: A Secure XOR-Based Fuzzy Extractor 191

– Sampling. The challenger samples Sj
read ← F j and u ← {0, 1}k.

– Generation. The challenger computes (Kj ,Hj) ← Gen(Sj
read).

– Distinguishing. The advantage of D is quantifiable as
Adv(D) = Pr[D(K1, . . . ,Kj−1,Kj ,Kj+1, . . . ,Kρ,H1, . . . , Hρ) = 1]−
Pr[D(K1, ...,Kj−1, u,Kj+1, ...,Kρ,H1, ..., Hρ) = 1].

(Gen,Rep) is (ρ, σ)-reusable if ∀D ∈ D and ∀j = 1, . . . , ρ, the advantage is at
most σ.

In an intuitive sense, if a fuzzy extractor is reusable, it implies that a specific
key K remains secure even when the adversary possesses knowledge of all asso-
ciated helper data. This includes both the helper data linked to the key K and
the helper data related to all other keys. In other words, this property ensures
the security of keys generated by the fuzzy extractor even when the generation
process is repeated multiple times across different strings, consequently permit-
ting the reuse of the same secret noisy source (e.g., the same iris, the same
fingerprint, the same PUF, etc.) in multiple contexts.

As underlined in Canetti et al. [5,6], the key aspect is that the family of
distributions F is arbitrarily correlated, meaning no assumption is made on the
correlation between the distributions.

Robustness [3] addresses the scenario where an adversary modifies the helper
data H before it is given to the user. A robust fuzzy extractor ensures that any
changes made by an adversary to H will be detected.

Definition 3 (Robustness, [3] Definition 6). Let F be a family of dis-
tributions over M. Let ⊥ denote that Rep detected a tampered output. Let
(Gen,Rep) be a (M,F , k, t, ε)-computational fuzzy extractor with error δ. Let
(K,H) ← Gen(Sread), with Sread output of F . Let A be an adversary, and
H ′ ← A(K,H) with H �= H ′. Then (Gen,Rep) is a τ -robust fuzzy extractor if
Pr[Rep(S′

read,H
′) �=⊥] ≤ τ .

Bias and Correlation in Fuzzy Sources. In real-world scenarios, fuzzy
sources often exhibit non-uniform distributions in their output bit strings. These
deviations from uniformity can arise from two main factors: bias and correlation
among the physical components of the source. When bias is present [17], it means
that either 0-bits or 1-bits occur more frequently than the other. We quantify
bias by the parameter pbias, with pbias · l being the expected number of 1-bits in
a l-bit response. An unbiased source would have pbias = 0.5, indicating an equal
probability for 0-bits and 1-bits. A biased (non-uniform) source, instead, exhibits
unbalanced quantities of 1-bits and 0-bits, offering the adversary an advantage
when trying to compromise the source itself. Correlation, on the other hand [27],
refers to the lack of independence among the values of the bits generated by
the noisy source. This lack of independence arises due to physical dependen-
cies, such as cross-talk noise among Static Random Access Memory (SRAM)
cells [19], where the value of one bit can be influenced by neighboring bits in
the physical medium. Such relationship among bits significantly decreases the
security guarantees of the system since disclosing a bit may compromise several

192 E. Liberati et al.

other bits, reducing the overall search space size. To precisely define the concept
of correlation, we introduce the notion of correlation classes of bits.

Definition 4 (Correlation class of a bit). Let F ∈ F be a fuzzy source
drawn from a family of noisy sources F . Let ∼ denote the equivalence relation
such that, given two bits b and b′, the value of a bit can be inferred by knowing the
value of the other one if b ∼ b′. The equivalence relation exhibits the commutative
property, i.e., b ∼ b′ if and only if b′ ∼ b. Let Spref be the preferred string of F .
Then, the correlation class [b] of bit b is the set {b′ ∈ Spref : b′ ∼ b} of elements
that are equivalent to b.

It is important to note that the correlation classes are disjoint, meaning
that a bit can only belong to a single class. The total number of correlation
classes corresponds to the maximum number of independent values that can be
extracted from a particular source. In this work, we assume that the correlation
classes have approximately the same size, meaning that each independent value
has an equal probability of being selected in a random draw. To quantify the
level of correlation, we introduce the correlation factor φ.

Definition 5 (Correlation factor). Let F ∈ F be a fuzzy source drawn from
a family of noisy sources F . Let Spref be the preferred string of F . Let [Spref]
denote the set of all correlation classes in Spref and |[Spref]| the total number
of correlation classes in Spref . Then, the correlation factor is defined as φ =
1 − |[Spref]|

|Spref | .

The correlation factor provides an immediate measure of dependency between
the source bits.

For example, a correlation factor of φ = 0.75 indicates that we expect three
dependant values for every four bits in the source.

Threat Model. The model involves two parties, a legit user and an attacker.
The user leverages the PUF to extract multiple secure keys out of the noisy
source. The user may be either a human owning a device or the device itself.
Instead, the attacker aims at compromising the extracted keys. In this scenario,
we consider an adversary who has complete control over the communication
channels [11]. The adversary has access to the appliance that executes the algo-
rithm and stores its data. However, we explicitly exclude the possibility of exten-
sive physical attacks or invasive side-channel attacks by the adversary. These
types of attacks would require unrestricted access to the device for extended
periods of time, which would raise suspicion and allow for their detection. Fur-
thermore, we assume that the adversary can read data from standard non-volatile
memory and modify it. However, the PUF in the system possesses a tamper-
evidence property. If the adversary attempts to learn the secret stored in it, the
behavior of the PUF will change significantly or be destroyed, thereby indicating
the tampering. Lastly, we assume that all algorithms related to our protocol are
public, but implemented in a way that prevents modification. This assumption
ensures that the adversary cannot tamper with or modify the algorithms to their

X-Lock: A Secure XOR-Based Fuzzy Extractor 193

advantage. Overall, our focus is to design a theoretically secure protocol which
ensures reliable replication of a key out of a PUF. Other potential vulnerabilities
are then out of the scope of this work.

4 X-Lock: Construction Details

We consider a noisy source F that outputs a bit-string Sread of length |Sread|
upon request. We denote Spref as the preferred state of F and erel, eabs to
be respectively its relative and absolute errors. Section 3 provides a thorough
description of these quantities.

Similarly to existing works [5,6,13,28], our algorithm shares a common
thread in leveraging the outputs generated by F to encrypt a random string
of bits B. However, we significantly differentiate from the previous proposals as
we employ Spref to encrypt a large pool of bits B by means of the XOR-ation
operator. We then decrypt and combine random subsets of B to generate multi-
ple secret keys. The core element of the algorithm is the vault V resulting from
the encryption of B. We provide a reference of the structure of V in Fig. 2. It
consists of a sequence of bit-lockers, which individually guard the encryption of
a single bit b ∈ B. Each bit-locker is a collection of locks L, where each lock is
the XOR of a distinct b with the XOR-ation of a random subset of bits from
Spref . To restore the bit value b is then sufficient to retrieve a Sread from F and
perform the XOR-ation on the lock value with same subset of bits. In Sect. 5 we
show that this construction indeed forms a valid computational fuzzy extractor.

Fig. 2. Composition of the vault V . It is a collection of bit-lockers, each referring to a
specific bit b ∈ B. A bit-locker contains multiple locks that XOR the bit of reference
with the XOR-ation of a random subset of bits from the source F .

To perform the initial encryption of B into V , our algorithm introduces an
Init procedure that needs to be executed only once.

Subsequently, our approach involves the two standard probabilistic proce-
dures Gen and Rep. In the following, we provide a thorough description of the

194 E. Liberati et al.

three procedures, integrated by the pseudo-code of the design presented in Algo-
rithm 1.

Init. The Init procedure (line 1) is responsible for generating the initial vault
V .

The procedure receives in input the preferred string Spref , the random pool
of bits B, the number of locks |L| per bit-locker, and the number of bits |C| to
use in each XOR-ation. We provide details on the generation of Spref in Sect. 3.
We first iterate over all the bits b ∈ B (line 3), and for each b we generate |L|
locks (line 5). For each lock l, we select |C| random indexes (line 6) and use them
to select the bits in Spref for the XOR-ation (line 7). The procedure eventually
returns V (line 10).

The function drawV aultIndexes (line 6) selects |C| indexes spanning from
1 to |Spref | without replacement, i.e., with no index selected more than once.
We provide details of its implementation in Sect. 5.3.

The use of multiple locks adds correctness to our construction. We demon-
strate this aspect in Sect. 5.1. Additionally, the XOR-ation mitigates the effects
of bias and correlation in F . We provide an explanation in Sect. 5.2.

Gen. The Gen procedure (line 11) generates a novel key K, the nonce n, the
set of indexes R and its authentication token T . Notice that H ′ = (n,R, T)
constitutes part of the helper data H = (V,H ′). In particular, H ′ is the portion
of helper data specifically related to each key, whilst V is common and shared
among all keys.

The procedure takes in input the string Sread, the vault V , the number of
bits |B| of the random pool B, and the number of bits |K| of the key K. We first
generate a random nonce n (line 12) and a sequence R of |K| random indexes
in the range [1, |B|] (line 13). The indexes r ∈ R represent the subset of bits
decrypted from the vault V to form the key K. To achieve this, we perform an
operation that is specular to the one executed in the Init procedure. For each
r ∈ R (line 15), we access all the lock values and index lists (l, C) (line 17).
For each (l, C), we XOR l with the XOR-ation of Sread over C and collect the
resulting bit b′ in X. The final bit value specific to r is then obtained as the
most common value in X and stored into Kpre (line 20). To protect the restored
values, the final value of the key K is generated via hashing Kprewith the nonce
n (line 21). We produce a token T as the hash of key K with the list of indexes
R.

The generation of T adds robustness to the methodology. We discuss it in
further detail in Sect. 5.1. The procedure returns the key K, the nonce n, the
list of indexes R, and the token T .

The function drawKeyIndexes (line 13) selects |K| indexes spanning from 1
to |B| without replacement. We provide more details in Section 5.3. Notice that
drawV aultIndexes and drawKeyIndexes could be implemented with the same
procedure since both draw a certain number of indexes spanning in a certain
range without replacement.

Rep. The Rep procedure (line 24) restores the key K from the vault V .

X-Lock: A Secure XOR-Based Fuzzy Extractor 195

The procedure receives in input the string S′
read and the helper data H =

(V,H ′) = (V, (n,R, T)), where V is the vault, n is the nonce, R is the list of
indexes, and T is the authentication token. The procedure first iterates over
r ∈ R and restores the majority values similarly to the Gen procedure (lines 26
- 31). It then generates the key K ′ (line 32) and the token T ′ (line 33). In case T ′

does not coincide with T , the procedure returns a null value (line 35). Otherwise,
it outputs the restored key K ′ as valid (line 36).

5 X-Lock: Algorithm Analysis

5.1 Security Analysis

We first introduce two definitions that are propaedeutic to the security analysis.

Definition 6 (Common elements between combinations). Let X be a
group of elements with cardinality |X|. Consider the process of drawing a random
combination of y elements without replacement out of X. Then the probability
pshare for two combinations to share at most z elements is quantifiable as

pshare =
z∑

i=0

(
y
i

)(|X|−y
y−i

)

(|X|
y

) .

The numerator computes the number of combinations that share exactly i ele-
ments. It selects i elements out of the y available, followed by choosing the
remaining y − i elements out of the remaining |X| − y values. Dividing by the
total number of available combinations yields the partial percentage. The sum-
mation then sums all the contributions up to z common elements.

Definition 7 (Odd binomial distribution). Let consider a Bernoulli trial
with probability p of success and y independent trials. Then the odd binomial
distribution considers the contributions of odd indexes in the summation of trial
probabilities. In formula,

podd =

y
2∑

i=0

(
y

2i + 1

)

· p2i+1 · (1 − p)y−2i−1.

The formula employs Bernoulli trials to assess the probability of having exactly
2i + 1 successes in the elements. The summation from 0 to y/2 and the index
2i + 1 permit to consider all the odd numbers between 0 and y.

We then introduce the Roucé-Capelli theorem that stands at the core of our
security demonstration.

Theorem 1 (Rouché-Capelli). A system of linear equations with n variables
has a solution if and only if the rank of its coefficient matrix A is equal to the
rank of its augmented matrix A|b. If there are solutions, they form an affine
subspace R

n of dimension n − rank(A). In particular:

196 E. Liberati et al.

Algorithm 1. X-Lock algorithm. [] denotes an empty array. X[y] denotes the
value at index y in array X. [x,y] denotes the interval of numbers from x to y.
1: procedure Init(Spref , B, |L|, |C|)
2: V ← []
3: for b ∈ B do
4: L ← []
5: for in [1, |L|] do
6: C ← drawVaultIndexes([1, |Spref |], |C|)
7: l ← (

⊕
c∈C Spref [c]) ⊕ b

8: L.append(l, C)

9: V .append(L)

10: return V
11: procedure Gen(Sread, V, |B|, |K|)
12: n ← getNonce()
13: R ← drawKeyIndexes([1, |B|], |K|)
14: Kpre ← []
15: for r ∈ R do
16: X ← []
17: for (l, C) ∈ V [r] do
18: b′ ← (

⊕
c∈C Sread[c]) ⊕ l

19: X.append(b′)

20: Kpre.append(getMajorityValue(X))

21: K ← hash(Kpre, n)
22: T ← hash(K, R)
23: return K, n, R, T

24: procedure Rep(S′
read, V, n, R, T)

25: K′
pre ← []

26: for r ∈ R do
27: X ← []
28: for (l, C) ∈ V [r] do
29: b′ ← (

⊕
c∈C S′

read[c]) ⊕ l
30: X.append(b′)

31: K′
pre.append(getMajorityValue(X))

32: K′ ← hash(K′
pre, n)

33: T ′ ← hash(K′, R)
34: if T �= T ′ then
35: return ⊥
36: return K′

– if n = rank(A), then the solution is unique;
– otherwise there are infinitely many solutions.

Proof. See introductory level book on linear algebra and geometry [22]. ��
The Rouché-Capelli theorem states that a system of linear equations possesses a
unique solution only if the number of independent equations equals the number
of total variables. If there are more equations than variables, the system may

X-Lock: A Secure XOR-Based Fuzzy Extractor 197

become inconsistent, leading to the absence of a solution. Conversely, if there
are fewer equations, the system becomes under-determined, providing an infinite
number of potential solutions.

We are now ready to provide the proof of the security of the vault V .

Theorem 2 (Solution space of the vault). Let Spref be the preferred string
of F . Let V be a vault with |L| locks per bit-locker and |C| bits per XOR-ation.
Let φ be the correlation factor related to F . Then the solution space of V has at
least dimension (1 − φ) · |Spref | + (1 − |L|) · |B|.
Proof. The pool vault V is a collection of bit-lockers, each composed of |L| locks
that guard an individual bit from B (see Fig. 2). Each lock XORs a distinct bit
from B with a XOR-ation of |C| bits from Spref . It is easy to see that a lock is a
linear equation, thus making the vault V a system of |B| · |L| equations. Given
the correlation factor φ, the independent variables provided by F to the system
are |Spref | − φ · |Spref | = (1 − φ) · |Spref |. B provides exactly |B| variables as its
bits are independent by definition. Thus the number of variables in the system
is (1 − φ) · |Spref | + |B|. We then recall from Theorem 1 that the dimension
of the solution space is calculated as n − rank(A), with n the total number of
involved variables. In our case, rank(V) ≤ |B| · |L| as some of the equations
may not be independent. Hence we end up with the inequality n − rank(V) ≥
((1 − φ) · |Spref | + |B|) − (|B| · |L|), thus proving the statement. ��
The solution space of the vault is directly related to the security of the protocol,
as it determines the number of parameters a potential attacker needs to pro-
vide to solve the linear system. A closer look to Theorem 2 suggests that, for
increasing the security of the vault V , we want high |Spref |, |B| and low φ, |L|.
Definition 8 (Security of the vault). A vault V is (α, β)-secure if the num-
ber of total locks equals α and the probability for two locks to share at most half
of the elements is less than β.

By imposing that at most half of the elements are dependent, we make sure that
combining two equations results in an equation with more variables than the
initial ones. We provide experimental evidence of this in Sect. 6. The definition
permits to manage the security of the vault V . Notice that the dimension of the
random pool B is determined by the two parameters α, β. As per Theorem 2,
φ, |Spref |, |L|, |B| determine the solution space. φ, |Spref | are determined by the
physical parameters of the fuzzy source F . We can then set |L| and require
the vault V to provide a certain probability that mixing locks does not provide
information to the attacker. By doing this, we set the desired solution space and
thus the dimension of |B|.

We can now show that Algorithm 1, described in Sect. 4, satisfies the inter-
pretation of computational fuzzy extractor given in Definition 1.

Theorem 3. X-Lock is a (M,F , k, t, ε)-computational fuzzy extractor with
error δ.

198 E. Liberati et al.

Proof. We first notice that the helper data for a particular key in our construc-
tion is H = (V, (n,R, T)). The vault V is generated once and shared by all
keys, while H ′ = (n,R, T) is specific for each key. Following Definition 1, we
first show that (Gen,Rep) are valid functions for a computational fuzzy extrac-
tor. Procedure Gen takes in input Sread, V, |B|, |K| and outputs K,n,R, T . This
aligns with the definition (K,H) ← Gen(Sread), where V, |B|, |K| are supporting
input parameters and H = H ′ = (n,R, T) for the output. Procedure Rep takes
in input S′

read, V, n,R, T and outputs either K ′ or ⊥. This again conforms to the
general definition K ← Rep(S′

read,H), with H = (V, (n,R, T)) in the input and
K = K ′ for the output.

We now proceed in demonstrating the correctness of the algorithm. Specif-
ically, we show that the procedure correctly retrieves the keys with distance
t between strings measured through eabs and retrieval error δ proportional to
ebitlock. We focus on a single bit-locker, as the generalization is trivial. Recalling
from Sect. 4, a bit-locker is a collection of locks that XOR a bit b ∈ B with a
XOR-ation of bits from Spref . By using multiple incorrect bits the probability of
having an error augments. Considering the absolute error eabs, we can calculate
the probability elock for a lock to return the wrong value by using the odd bino-
mial distribution in Definition 7. In particular, we set the probability of success
p = eabs and the number of trials y = |C|. This formulation captures the idea
that a XOR-ation returns an incorrect value whenever there is an odd number
of errors in its elements. Using elock, we can now estimate the probability ebitlock

for a bit-locker to reconstruct an incorrect bit:

ebitlock =
|L|∑

i=
|L|
2

(|L|
i

)

· elock
i · (1 − elock)|L|−i (1)

The final bit is calculated by majority voting. Therefore, the procedure restores
the wrong bit value whenever the number of errors is greater than half of the
total elements |L|. We use a Bernoulli trial to calculate probability of having
exactly i errors, and use a summation to aggregate all the results from |L|

2 to
|L|. To achieve the desired level of correctness we can tune the number of locks
|L| to meet a given error. The same procedure is valid for all bit-lockers, thus
the final error is proportional to ebitlock, hence satisfying the initial claim.

We eventually provide proof of security of the construction. To satisfy Def-
inition 1, we need to show that the key K appears random even if a potential
attacker possesses knowledge of the helper data (V, (n,R, T)). It is important
to note that both K and T are derived using a cryptographic hash function,
where K ← hash(Kpre, n) and T ← hash(K,R). We assume that the hash
function exhibits the typical secure properties (i.e., pre-image resistance, second
pre-image resistance, and collision resistance). Considering all these properties
together, the hash function generates outputs that appear to be random. There-
fore, the pseudo-randomness of the resulting key K is conditioned solely on the
amount of information leaked by the helper data (V, (n,R, T)). H ′ = (n,R, T)
does not leak any information on the underlying vault V : n is a random nonce,

X-Lock: A Secure XOR-Based Fuzzy Extractor 199

R is a random collection of indexes, and T is computed through a hash func-
tion. Regarding the vault V , we previously showed that it is (α, β)-secure under
Definition 8. The parameters (α, β) can be used to tune ε, thus satisfying the
requirements in Definition 1. ��

We now provide proof that X-Lock is reusable under Definition 2. Reusability
means that the fuzzy extractor can support multiple independent enrollments of
the same value, allowing users to reuse the same source in different contexts.

Theorem 4. X-Lock is (ρ, σ)-reusable.

Proof. The procedure Gen can be run multiple times on correlated strings of
the same source, S1

read, . . . , S
ρ
read. Each time, Gen produces a different pair of

values (K1,H1), . . . , (Kρ,Hρ). The security for each extracted string Ki should
hold even in the presence of all the helper strings H1, . . . , Hρ. In our specific
case, H = (V, (n,R, T)). Having all H values does not compromise the security
of the respective keys, as n,R are randomly determined and T is generated
through hashing, making it pseudo-random by definition. Additionally, the vault
V remains the same for each key, meaning that the overall reusability is only
conditioned on the security of the vault V . We provide definition of the security
of the pool vault in Definition 8. ��
Notably, our model also provides insider security [5,6]. This means that the
algorithm provides reusability even in the case where the attacker is given all
the Kj for j �= i. Each key Kj is the output of a hash function and provides
no information about the input. Hence, a specific key cannot be used to infer
information about another one, even in the presence of correlation in the input
data between the two keys.

According to Definition 3, a fuzzy extractor is deemed robust if a user is able
to detect any tampering with the public data H. We provide proof that X-Lock
is indeed a robust algorithm.

Theorem 5. X-Lock is a τ -robust fuzzy extractor with error δ.

Proof. The attacker may attempt to change one or more in the helper data
H = (V, (n,R, T)). Nevertheless, any alteration would be detected by the authen-
tication token T ← hash(K,R) = hash(hash(Kpre, n), R). Tampering with the
vault V would lead to changes in the recovered values of Kpre, inevitably affecting
the resulting hash. Furthermore, modifying the nonce n or the indexes R directly
impacts the resulting hash. Additionally, changing token T to T ′ would require
to find suitable values n′, R′,K ′

pre such that T ′ ← hash(hash(K ′
pre, n

′), R′). This
is infeasible, given the properties of cryptographic hash functions. Consequently,
the pair (Gen,Rep) strictly adheres to the requirements specified in Definition 3,
as any alterations introduced by an attacker can be effectively detected through
the validation token T . ��

200 E. Liberati et al.

5.2 Bias and Correlation Analysis

The scheme proposed in Algorithm 1 offers perfect secrecy when utilizing a
perfectly random source F and employing uncorrelated bits to XOR with the
bits from B. However, obtaining a perfectly random source using physical medi-
ums poses considerable challenges due to issues related to bias and correla-
tion between bits. Nevertheless, Algorithm 1 helps in mitigating these concerns.
Notice that both bias and correlation are intrinsic properties of fuzzy sources.
Some works in literature [23,24] propose methodologies to reduce or even remove
dependencies between bits, but they either require high computational process-
ing or extensive analysis of the physical medium. For instance, removing cor-
related bits requires a perfect identification of such relationships, which is a
costly and partial procedure. Missing even one correlation could be significantly
harmful. Instead, our protocol implicitly mitigates bias and correlation without
making assumptions about their structure. The XOR-ation adopted in the locks
inherently diminishes the final bias (see Sect. 3). The probability pcbias of an
XOR-ation outputting value 1 can be represented by the equation:

pcbias =

|C|
2∑

i=0

(|C|
2i + 1

)

· p2i+1
bias (1 − pbias)|C|−2i−1 (2)

The XOR-ation outputs 1 whenever there is an odd number of 1s in C. Thus,
the summation between 0 and |C| and the indexes 2i + 1 consider only the
odd numbers. For instance, with pbias = 0.77 and |C| = 3, pcbias ≈ 0.579.
Consequently, an almost random source is derived from a skewed one. However,
it is crucial to note that the same mechanism that reduces bias also amplifies
errors. In Sect. 5.3, we provide an analysis of the cost in memory related to a
particular error tolerance.

The XOR-ation also aids in mitigating the effects of correlations among bits
in the source F . The correlation factor φ (see Sect. 3) only requires an estimate
of the level of correlated bits without any specific assumption on its type. By
employing it, we can evaluate how the correlation impacts the overall security
of the linear system. Figure 3 illustrates the impact of correlation on bit security
with varying numbers of elements in the XOR-ation, considering |Spref | = 216,
|B| = 29, |L| = 33, |C| = 4, and φ = 0.75. We randomly drew the XOR-ation
bits from the source F and measured the number of exposed bits from the
random pool while bits from F were defined. The graph clearly illustrates the
significant improvement achieved with an increasing number of elements in the
XOR-ation. Starting with just a single element in the XOR-ation, the system
fails to provide adequate security, as all the 29 pool bits become exposed after
defining only a couple of bits. This is attributable to the relationships among
locks in different bit-lockers. The setting allows one bit-locker to be entirely
solved by merely defining a single bit from F , which, in turn, sets a value for all
other variables in the bit-locker. This creates a cascading effect that subsequently
unlocks multiple other bit-lockers, thus leading to the compromised security.
However, by augmenting the number of elements in the XOR-ation to three, the

X-Lock: A Secure XOR-Based Fuzzy Extractor 201

Fig. 3. Impact of correlation on bit security with varying number of elements in the
XOR cascade. The x-axis considers the number of defined bits from the source. The
y-axis shows the corresponding number of exposed bits from the random pool. Using a
single element provides virtually no security. From three elements onwards the number
of defined bits is greater than those in the protected pool (vertical, dashed line). (Color
figure online)

number of required source bits becomes closely aligned with the actual number
of protected bits from the pool (as denoted by the vertical dashed line). This
indicates that a potential attacker would not gain any additional advantage
by exploiting the correlation among variables, as the number of variables to
be defined is equivalent to the number of bits in the random pool they are
attempting to set. Furthermore, when employing four elements in the XOR-
ation, the system significantly surpasses the reference line, demonstrating that
the impact of correlation becomes negligible in this context. The higher the
bias, the correlation and the security requirements to achieve adversarial non-
advantageous contexts, the higher the number of bits in the XOR-ation. However,
the higher |C|, the higher the resulting error rate in reconstructing the keys. We
can estimate such value taking into account the absolute error rate eabs of F .

5.3 Costs Analysis

Memory Cost. Procedure Init creates the supporting pool vault. The vault V
contains |B| bit-lockers, one for each bit in the random pool B. Each bit-locker
hosts |L| locks, with each lock being a single bit. To generate the locks, the algo-
rithm has to choose a subset of bits from Spref . If randomly chosen, the subset
of indexes must be stored in order to permit subsequent recovery. However, this
strategy would consume a lot more memory than V itself. The same applies to
the storage of the set of indexes R related to each key. A more effective solution
would be to design an index routine that can generate the corresponding bits
on the fly. We deployed an example of a custom dynamic strategy that works
as follows. To generate the requisite set of indices, we utilize a Pseudo Random

202 E. Liberati et al.

Number Generator (PRNG) and define a seed to ensure reproducibility. The
PRNG generates a dependable sequence of random numbers with a given seed,
though collisions may occur. To address collisions, we increase the colliding num-
ber until a fresh and distinct index is achieved. We apply modular arithmetic
when the value reaches the upper limit. As previously discussed in Sect. 4, this
routine is applicable to both drawV aultIndexes and drawKeyIndexes. The
dynamic generation of the subset of indexes does not entail any security impli-
cations when compared to the naive strategy of random generation and subse-
quent storage. In the latter case, the subset becomes publicly available, whereas
in the former case, the algorithm is open-source as well. The system’s security is
not contingent on maintaining the secrecy of the indexes. The tradeoff between
these two approaches is primarily related to performance. Dynamic index gener-
ation reduces memory costs, albeit with a manageable increase in computational
overhead. Conversely, the naive strategy involves a straightforward lookup but
necessitates storing each index, leading to higher memory expenses. In partic-
ular, to store all the indexes leveraging the static approach requires storing an
index spanning between 1 and |Spref | for |B| bit-lockers, each constituted by |L|
locks implementing a XOR-ation of |C| bits for the vault and an index spanning
between 1 and |B| for |K| bits for each key. Considering the dynamic approach,
the cost for storing the pool vault indexes is rather nothing more than the bits
required to represent the seed for the PRNG. The same holds for the set of
indexes for each key. Let us denote the PRNG seed as seed and its size in bits
as |seed|. Hence, the cost for storing the vault boils down to |B| · |L|+ |seed| bits
using the dynamic approach from |B| · |L| · (1 + |C| · log2(|Spref |)) bits obtained
with the static approach. Procedure Gen generates a novel key K. It requires
storing a nonce n, an authentication token T and the set of indexes R used to
generate the key. The static approach requires |n| + |T | + |K| · log2(|B|) bits,
whilst the dynamic approach just necessitates of |n|+ |T |+ |seed| bits. Procedure
Rep does not require additional elements to be stored. Therefore, let us denote
with K the total number of keys generated. Then, the total cost for the static
strategy is O(|B| · |L| · (1 + |C| · log2(|Spref |)) + K · (|n| + |T | + |K| · log2(|B|)))
bits. Rather, leveraging the dynamic strategy decreases the total cost to
O(|B| · |L| + |seed| + K · (|n| + |T | + |seed|)) bits.

Computational Cost. Procedure Init necessitates the preferred state Spref to
generate the vault V . To determine the correct value, multiple strings from F are
required to obtain a statistically relevant sample, often comprising hundreds of
samples. The time to gather this sample may vary depending on the physical sup-
port used. For instance, SRAMs require a non-negligible amount of time (in the
order of milliseconds) for the chip to discharge after shutdown [15]. As a result,
collecting a sufficient sample might take several seconds. Once the preferred state
is obtained, the procedure employs a series of XOR operations to compute the
locks. Each lock utilizes |C| − 1 XORs for the XOR-ation and an additional
XOR for the final bit. Assuming each XOR operation is O(1), the overall cost of
computing all locks is O(|C| · |B| · |L|). Notably, procedure Init is only computed
once, and if energy is a limited resource, it can be performed before deploying

X-Lock: A Secure XOR-Based Fuzzy Extractor 203

Fig. 4. Number of locks required to achieve a given error tolerance for varying absolute
errors. The x-axis considers the absolute error. The y-axis uses logarithmic scale and
considers the number of lockers. The gray dashed lines provide a linear reference for the
four curves. The curves show an initial linear trend that slowly diverges to exponential
at around value 0.85 for the error. (Color figure online)

the appliance, as the vault V can be made public. Procedure Gen utilizes the
normal state Sread to recover the bits from the vault and generate a new key. It
then draws a random nonce n and |K| random values. Considering these oper-
ations to be O(1), the cost becomes O(|K| + 1). Subsequently, it proceeds to
recover the protected bit from each lock, requiring |C| XORs for each unlocking
operation. This process must be performed |K| · |L| times, resulting in a cost of
O(|K| · |C| · |L|). Finally, it computes two hashes, denoted as O(2 · thash). Thus,
the overall cost is O(|K| · (1 + |C| · |L|) + 1 + 2 · thash). Procedure Rep follows a
similar pattern to Gen. For each lock, it unlocks the protected bit, incurring a
cost of O(|K| · |C| · |L|). Additionally, it computes two hashes, yielding a total
cost of O(|K| · (1 + |C| + |L|) + 1 + 2 · thash). The dynamic index generation
strategy adds extra computational cost to the algorithm. In particular, let us
denote with tPRNG the time required to query the PRNG and with collisions
the number of collisions. Generating and reproducing the indexes for the vault
takes O(tPRNG · |B| · |L| · |C| + collisions), whereas the same routine for the set
of indexes for each key takes O(tPRNG · |K|+ collisions). The decision to utilize
dynamic index generation or static index storage depends on the specific sce-
nario. Dynamic index generation proves advantageous in contexts characterized
by limited memory resources and available energy supply. On the other hand,
static index storage is a more viable option when energy is scarce but memory
resources are more readily available.

Impact of Error Tolerance. In Sect. 5.1, we demonstrated that by adjusting
the number of locks |L| within a bit-locker, it is possible to manage the error

204 E. Liberati et al.

tolerance elock of the system. In this analysis, we examine the impact of elock

on |L| and set four different levels of tolerance as reference points. Utilizing
the formula provided in Sect. 5.1, we computed the number of expected locks
required to achieve a given tolerance for each specified error rate. The results
are plot in Fig. 4.

The four lines in the graph represent distinct error tolerances. We observe
that the trend is approximately linear for lower rates of absolute errors. How-
ever, at around an error rate of 0.85, the trends start to diverge and become
exponential. Notably, the curve corresponding to elock = 1e − 05 presents an
interesting exception. Here, the number of locks exhibits an under-linear trend
that extends until an error rate of 0.8. This graph effectively demonstrates that
our solution experiences linear growth for low to medium error rates, resulting
in linear memory and computational costs within that range.

6 Implementation and Comparison

In order to further validate the correctness and efficiency of our approach, we
implemented the algorithm on a physical test-bed using a 2.3 GHz Intel Core i5
quad-core processor with 8 GB of 2133 MHz LPDDR3 memory. We employed
a SRAM as our PUF, which was easily accessible using a Keystudio MEGA
2560 R3 microcontroller board with an 8 KB SRAM. The selection of an SRAM
PUF was motivated by several factors, including its user-friendly nature, ease
of development, cost-effectiveness, and its widespread availability as a piece of
hardware. To determine the preferred state Spref of the SRAM, we collected 200
strings and computed the majority value for each bit. We found that 88% of
the bits presented a stable value, with the remaining 12% showing an average
absolute error of 0.0223 and a maximum error of 0.0455.

The algorithm was implemented in C language and compared against both
Woo et al. [28], which is the best-performing algorithm in terms of both memory
and computational complexity, and Canetti et al. [5,6], which is the algorithm
providing the highest security guarantees. We evaluated three sets of parameters
based on security levels: 80-bit, 128-bit, and 256-bit. For each level, we performed
two experiments with different setups. Table 3 presents the parameters used for
each security level.

The values for |C| were carefully chosen in order to mitigate the effect of
correlation as shown in Sect. 5.2. We did not consider the bias in this simulation
because also the comparison works did not consider it. We decided to experiment
with two specific values for the correlation factor: φ = 0.75 represents a realistic
correlation factor for SRAMs [19], and φ = 0.00 corresponds to a limit case where
all the PUF bits are independent. In such scenario, no correlation relationship
affects the bits of the PUF meaning that no XOR-ation is mandatory, net of the
bias phenomenon. The correlation factor directly impacts the error tolerance
by determining the number of available equations for the linear system (see
Sect. 5.1). The sixth column (i.e., Exp. key error rate) reports the expected error
rates in recovering the key for each configuration. We kept it at around 1 error

X-Lock: A Secure XOR-Based Fuzzy Extractor 205

Table 3. Parameters for the three security levels.

Chosen params PUF params Resulting params

|K| |L| |C| φ eabs elock ebitlock Exp. key error rate

80 64 2 0.75 0.15 0.255 2.243 · 10−5 0.0018

80 256 2 0.00 0.25 0.375 3.089 · 10−5 0.0025

128 64 2 0.75 0.15 0.255 2.243 · 10−5 0.0029

128 256 2 0.00 0.245 0.370 1.483 · 10−5 0.0019

256 64 3 0.75 0.10 0.244 8.519 · 10−6 0.0022

256 256 3 0.00 0.175 0.363 4.891 · 10−6 0.0013

every 500. We set |Sread| = 216 based on the size of our SRAM and |B| = 28 for
the random pool size. Expected key error rate parameter is resulting from the
choice of the other parameters. In particular, recall Eq. 1 which is the probability
that a bit-locker is wrongly unlocked. Then, the probability that all bit-lockers
of a given key are successfully unlocked is (1 − elock)|K|. Finally, the expected
key error rate is the probability that at least one bit-locker of a given key is
wrongly unlocked and it is given by 1 − (1 − elock)|K|.

We measured the time needed to perform the Rep procedure. We performed
100000 experiments. To perform a fair comparison with the state-of-the-art,
we downloaded the code of Woo et al. [28] from the public repository1, we
implemented by ourselves the algorithm proposed by Canetti et al. [5,6], and
run them on the same appliance in order to obtain results originating from the
same evaluation environment. In fact, differences affecting computational power
among distinct machines could compromise the reliability of our experiments.

Table 4 summarizes the results and compares our work with [28] and [5,6].
Different eabs values are arising from other parameters, such as key length |K|,
correlation factor φ and expected key error rate. In particular, we set each eabs

value as the maximum we could afford in each configuration before performance
degradation and security flaws significantly increased.

We considered two state-of-the-art constructions for the comparison with our
work. Our choice was driven by the guarantees they offer and the performances,
in terms of memory requirements and computational time, they achieve. In par-
ticular we chose the proposal of Canetti et al. [5,6] and the proposal of Woo et
al. [28]. The former one provides optimal security guarantees, offering reusabil-
ity, insider security and robustness, while also addressing source correlation. The
latter one offers reusability and robustness with an easily manageable memory
overhead and linear error tolerance.

The other works either do not provide a sufficient level of security, exhibiting
data leakage or not supplying reusability and/or robustness, or are completely
unfeasible. In particular:

– Secure sketch-based constructions [2,25,26] suffer from data leakage;
1 https://github.com/KU-Cryptographic-Protocol-Lab/Fuzzy Extractor.

https://github.com/KU-Cryptographic-Protocol-Lab/Fuzzy_Extractor

206 E. Liberati et al.

Table 4. Performance comparisons. The time value includes both the generation and
the reproduction procedure.

Solution |K| eabs Memory Time

Canetti et al. [5,6] (φ = 0.00) 80 0.25 K · 143.95 MB 43.50 s

128 0.245 K · 216.20 MB 57.71 s

256 0.175 K · 431.02 MB 104.99 s

Woo et al. [28] (φ = 0.00) 80 0.30 K · 297 B 4.62 s

128 0.20 K · 559 B 15.51 s

256 0.11 K · 1087 B 52.209 s

Our work (φ = 0.75) 80 0.15 2064 B + K · 64 B 0.054 ms

128 0.15 2064 B + K · 64 B 0.086 ms

256 0.10 2064 B + K · 64 B 0.222 ms

Our work (φ = 0.00) 80 0.25 8208 B + K · 64 B 0.205 ms

128 0.245 8208 B + K · 64 B 0.305 ms

256 0.175 8208 B + K · 64 B 0.845 ms

– The construction proposed by Cheon et al. [9] improves the proposal of
Canetti et al. [5,6] by reducing the memory requirements. Nevertheless, the
price to pay for such improvement is the introduction of a significant amount
of hashing operations, which are costly, determining an increase of the already
expensive computational cost;

– Fuller et al. [13] and Apon et al. [1] constructions lack of reusability.

The memory cost of Woo et al. [28] algorithms is comparable with our imple-
mentation incurring an initial overhead for storing the vault V . However, our
memory consumption grows slower with the number of generated keys K. For
instance, the memory cost for a security class of 128-bit and φ = 0.75 would
become equivalent to [28] after generating 5 keys. In terms of computation time,
our algorithm outperforms [28] by at least three orders of magnitude. The sig-
nificant difference is due to the use of more efficient operations, mainly XORs
and a limited number of hashes, in our work. On the other hand, [28] employs
more resource-intensive LWE-based cryptography and error correction codes.

As for the error tolerance, our implementation with φ = 0.75 handles smaller
amounts of error, which is a side effect of the XOR-ation mechanism (see
Sect. 5.1). The correlation factor φ and the resulting number of available bits
in the SRAM PUF significantly affect the overall performances. In fact, by set-
ting φ = 0.00 the error tolerance of our solution becomes superior to [28] in two
security levels, while being almost comparable in the third level. This setting is
equivalent of having a source F with 217 bits and a correlation factor φ = 0.75.

To validate the result from Sect. 5.1, we also measured the number of errors
committed in each security class. We measured 163 errors for class 80-bits, 259
for class 128-bits, and 129 for class 256-bits. These are in line with the expected
errors calculated in Table 3 (respectively 180, 280, and 220) We then checked the

X-Lock: A Secure XOR-Based Fuzzy Extractor 207

claim made in Sect. 5.1 by assessing the capability of an adversary to combine
different locks for gaining additional knowledge. We performed 100000 cycles,
with every cycle randomly shuffling the locks and adding them together. We
monitored the total number of elements forming the XOR-ation. Figure 5 plots
the minimum number of elements observed in a XOR-ation by combining mul-
tiple locks. The graph clearly shows a growing trend that finds its upper bound
at a value that is half of the total dimension of the source. This result validates
the claim made in Sect. 5.1 on the security of the pool vault. The vast major-
ity of locks shares no common elements, hence combining them greatly increase
the XOR-ation dimension. The presence of locks with more than half common
elements has little to no impact on the overall security.

Fig. 5. XOR-ation size while combining multiple locks. The x-axis considers the number
of locks added. The y-axis considers the number of elements forming the XOR-ation.
Both axes are logarithmic. The graph considers the worst case, that is the minimum
number of elements in the resulting cascade. (Color figure online)

7 Conclusion

The proliferation of resource-constrained devices within the IoT domain has
caused considerable challenges concerning privacy and security. Traditional
methods of storing digital keys in non-volatile memory have proven intricate
and costly, prompting the need for alternative solutions. This paper introduces
X-Lock, a novel computational fuzzy extractor specifically designed to address
the limitations faced by traditional solutions in resource-constrained IoT devices.
X-Lock employs a unique approach, utilizing the preferred state of a noisy source
to encrypt a random string of bits, which subsequently serves as a seed to gen-
erate multiple secret keys. This design not only ensures both reusability (even
insider security), and robustness, but also effectively mitigates bias and cor-
relation, enhancing overall security. To substantiate the claims of X-Lock, a

208 E. Liberati et al.

comprehensive theoretical analysis is presented, encompassing security consid-
erations and detailed implementation insights. The rigorous analysis validates
the effectiveness and security of the proposed model. To evaluate the superior-
ity of X-Lock, an extensive set of practical experiments is also conducted, and
the results are compared against existing approaches. The experimental findings
demonstrate the efficacy of our proposed model, showcasing its comparable mem-
ory cost (approximately 2.4 KB for storing 5 keys of 128 bits) and remarkable
speed gains, which outperform the state-of-the-art solution by three orders of
magnitude (0.086 ms compared to 15.51 s). By offering reusability, insider secu-
rity, and robustness, X-Lock presents a compelling solution to the challenges
posed by traditional key storage methods. The comprehensive theoretical analy-
sis and practical experiments affirm the superior performance of X-Lock, making
it a promising advancement for enhancing privacy and security in the rapidly
evolving IoT landscape.

Acknowledgments. This work was partially supported by project SERICS
(PE00000014) under the NRRP MUR program funded by the EU - NGEU.

References

1. Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, Reusable fuzzy extractors
from LWE. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp.
1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60080-2 1

2. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Proceedings of the 11th
ACM Conference on Computer and Communications Security, pp. 82–91. Associ-
ation for Computing Machinery (2004). https://doi.org/10.1145/1030083.1030096

3. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May
22–26, 2005. Proceedings 24, pp. 147–163 (2005)

4. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 28

5. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extrac-
tors for low-entropy distributions. In: Fischlin, M., Coron, J.S. (eds.) Advances
in Cryptology - EUROCRYPT 2016, pp. 117–146. Springer, Berlin Heidelberg,
Berlin, Heidelberg (2016)

6. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. J. Cryptol. 34, 1–33 (2021)

7. Chang, C.H., Zheng, Y., Zhang, L.: A retrospective and a look forward: fifteen years
of physical unclonable function advancement. IEEE Circuits Syst. Mag. 17(3), 32–
62 (2017)

8. Chen, B., Ignatenko, T., Willems, F., Maes, R., van der Sluis, E., Selimis, G.: High-
rate error correction schemes for sram-pufs based on polar codes. arXiv preprint
arXiv:1701.07320 (2017)

9. Cheon, J.H., Jeong, J., Kim, D., Lee, J.: A reusable fuzzy extractor with practical
storage size: Modifying canetti et al’.s construction. In: Information Security and
Privacy: 23rd Australasian Conference, ACISP 2018, Wollongong, NSW, Australia,
July 11–13, 2018, Proceedings 23, pp. 28–44 (2018)

https://doi.org/10.1007/978-3-319-60080-2_1
https://doi.org/10.1145/1030083.1030096
https://doi.org/10.1007/978-3-540-78967-3_28
http://arxiv.org/abs/1701.07320

X-Lock: A Secure XOR-Based Fuzzy Extractor 209

10. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008). https://doi.org/10.1137/060651380

11. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

12. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Advances in
Cryptology-ASIACRYPT 2013: 19th International Conference on the Theory and
Application of Cryptology and Information Security, Bengaluru, India, December
1–5, 2013, Proceedings, Part I 19. pp. 174–193. Springer (2013)

13. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. Inf. Comput.
275, 104602 (2020)

14. Hiller, M.: Key derivation with physical unclonable functions. Ph.D. thesis, Tech-
nische Universität München (2016)

15. Liu, M., Zhou, C., Tang, Q., Parhi, K.K., Kim, C.H.: A data remanence based app-
roach to generate 100% stable keys from an sram physical unclonable function. In:
2017 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), pp. 1–6 (2017)

16. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3 2

17. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation
from biased PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 517–534. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48324-4 26

18. Obermaier, J., Immler, V., Hiller, M., Sigl, G.: A measurement system for capac-
itive puf-based security enclosures. In: Proceedings of the 55th Annual Design
Automation Conference, pp. 1–6 (2018)

19. Rahman, M.T., Hosey, A., Guo, Z., Carroll, J., Forte, D., Tehranipoor, M.: System-
atic correlation and cell neighborhood analysis of sram puf for robust and unique
key generation. J. Hardw. Syst. Secur. 1, 137–155 (2017)

20. Roel, M.: Physically unclonable functions: Constructions, properties and applica-
tions, pp. 148–160. Katholieke Universiteit Leuven, Belgium pp (2012)

21. Seo, M., Kim, S., Lee, D.H., Park, J.H.: Emblem:(r) lwe-based key encapsulation
with a new multi-bit encoding method. Int. J. Inf. Secur. 19, 383–399 (2020)

22. Shafarevich, I.R., Remizov, A.O.: Linear algebra and geometry. Springer Science
& Business Media (2012)

23. Suzuki, M., Ueno, R., Homma, N., Aoki, T.: Efficient fuzzy extractors based on
ternary debiasing method for biased physically unclonable functions. IEEE Trans.
Circuits Syst. I Regul. Pap. 66(2), 616–629 (2018)

24. Ueno, R., Suzuki, M., Homma, N.: Tackling biased pufs through biased masking:
A debiasing method for efficient fuzzy extractor. IEEE Trans. Comput. 68(7),
1091–1104 (2019)

25. Wen, Y., Liu, S.: Reusable fuzzy extractor from lwe. In: Information Security and
Privacy: 23rd Australasian Conference, ACISP 2018, Wollongong, NSW, Australia,
July 11–13, 2018, Proceedings, pp. 13–27 (2018)

26. Wen, Y., Liu, S.: Robustly reusable fuzzy extractor from standard assumptions. In:
Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 459–489.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3 17

https://doi.org/10.1137/060651380
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-662-48324-4_26
https://doi.org/10.1007/978-3-662-48324-4_26
https://doi.org/10.1007/978-3-030-03332-3_17

210 E. Liberati et al.

27. Wilde, F., Gammel, B.M., Pehl, M.: Spatial correlation analysis on physical unclon-
able functions. IEEE Trans. Inf. Forensics Secur. 13(6), 1468–1480 (2018). https://
doi.org/10.1109/TIFS.2018.2791341

28. Woo, J., Kim, J., Park, J.H.: Robust and reusable fuzzy extractors from non-
uniform learning with errors problem. Comput. Mater. Continua 74(1) (2023)

https://doi.org/10.1109/TIFS.2018.2791341
https://doi.org/10.1109/TIFS.2018.2791341

Encrypted Data

Efficient Clustering on Encrypted Data

Mengyu Zhang1, Long Wang1,2, Xiaoping Zhang3(B), Zhuotao Liu1,2,
Yisong Wang3, and Han Bao3

1 Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China
mengyu-z23@mails.tsinghua.edu.cn, {longwang,zhuotaoliu}@tsinghua.edu.cn

2 Zhongguancun Laboratory, Beijing, China
3 Department of Computer Science and Technology, Tsinghua University,

Beijing, China
zhxp@tsinghua.edu.cn, {wys19,baoh17}@mails.tsinghua.edu.cn

Abstract. Clustering is a significant unsupervised machine learning
task widely used for data mining and analysis. Fully homomorphic
encryption allows data owners to outsource privacy-preserving compu-
tations without interaction. In this paper, we propose a fully privacy-
preserving, effective, and efficient clustering scheme based on CKKS,
in which we construct two iterative formulas to solve the challeng-
ing ciphertext comparison and division problems, respectively. Although
our scheme already outperforms existing work, executing it on datasets
MNIST and CIFAR-10 still results in unacceptable run time and mem-
ory consumption. To further address the above issues, we propose a block
privacy-preserving clustering algorithm that splits records into subvec-
tors and clusters these subvectors. Experimental results show that the
clustering accuracy of our original algorithm is almost equivalent to the
classical k-means algorithm. Compared to a state-of-the-art FHE-based
scheme, our original algorithm not only outperforms theirs in accuracy
but is also 4 orders of magnitude faster than theirs. In experiments test-
ing our block algorithm, we conclude that the run time and memory
consumption of this algorithm are greatly reduced.

Keywords: Fully Homomorphic Encryption · clustering ·
privacy-preserving

1 Introduction

Clustering is a significant tool for data mining and data analysis. It reveals
intrinsic patterns in many real-world problems and is widely used in many fields
[4,23]. In many scenarios, different dimensions of the same records are held by
two parties respectively, that is, the dataset is split vertically. For example, a
bank wants to perform cluster analysis on customers, but the customer clustering
based on the customer information held by the bank is not accurate enough. The

This research is partially supported by Zhongguancun Laboratory.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 213–236, 2024.
https://doi.org/10.1007/978-3-031-54770-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_9

214 M. Zhang et al.

government holds private information such as the income status of citizens, which
can help banks obtain more accurate clustering results. Note that government
data is generally stored on specific servers and cannot be transmitted to any
organization or individual in any form. Additionally, these two organizations
typically communicate over a WAN, with no guarantees of latency or bandwidth.
Therefore, to obtain more accurate results, the bank (the data owner) needs to
send the data to the government (the server), and the government (the server)
performs clustering on the joint dataset and returns the result. However, sending
customer information to the government in plaintexts can lead to the disclosure
of private information. Thence, it is necessary to propose a privacy-preserving
and efficient clustering scheme.

Fully Homomorphic Encryption (FHE) is a cryptographic primitive that pro-
tects private information contained in data by performing homomorphic opera-
tions on encrypted data. FHE is more suitable for scenarios with high latency
as the FHE-based algorithms allow non-interactive setting. However, the previ-
ous FHE-based privacy-preserving clustering works [3,11,18] leak partial private
information to servers during the calculation. To avoid the disclosure of private
information during the calculation, Jäschke and Armknecht [13] propose a fully
privacy-preserving clustering scheme based on FHE. However, their approximate
ciphertext division introduces errors, and their expensive bitwise ciphertext com-
parison leads to impractical run times (about 6 days for 400 records).

To solve the above problems, in this paper, we propose a fully privacy-
preserving, effective, and efficient clustering scheme based on FHE. We choose
the approximate homomorphic encryption scheme CKKS [7] as our encryption
algorithm, which performs approximate arithmetic and is able to encode floating
point numbers. It is a challenge that CKKS does not directly support ciphertext
comparison and division used in the clustering algorithm. To achieve ciphertext
comparison, we construct an iterative formula with two fixed points of opposite
signs to approximate the sign function. For ciphertext division, we construct a
function whose root is the reciprocal of the divisor, and apply Newton’s method
to approximate the root of this function. After making minor changes to k-
means clustering algorithm, we propose a fully privacy-preserving and efficient
clustering algorithm that prevents the server from inferring private information.

Although, our fully privacy-preserving clustering algorithm has outperformed
existing schemes, executing it on some well-known large datasets (e.g. MNIST,
CIFAR-10, etc.) leads to unacceptable run time and memory consumption (about
3500 minutes and 1303GB memory on MNIST). Through theoretical analysis, the
number of clusters k is an important factor affecting the run time and memory
consumption, therefore, reducing k can greatly increase the practicability of our
algorithm. To reduce k, we split the input vectors into disjoint subvectors and
cluster these subvectors. We refer to this optimized clustering algorithm as the
block privacy-preserving clustering algorithm. In addition, this optimized scheme
also reduces the number of consecutive multiplications, which is limited by a pre-
determined parameter since CKKS is a leveled homomorphic encryption.

We first test our fully privacy-preserving clustering scheme on several pop-
ular small datasets to assess clustering accuracy and efficiency. In terms of

Efficient Clustering on Encrypted Data 215

accuracy, the results show that our method performs as well as the original
k-means clustering algorithm and significantly outperforms the state-of-the-art
privacy-preserving clustering work [13]. As for efficiency, we adopt two implemen-
tation optimization techniques, one batching, and the other multithreading. The
results show that these two optimizations reduce the run time by three orders of
magnitude in total, making our scheme more efficient. Then, we compare the effi-
ciency of our scheme with state-of-the-art [13]. We use our fully privacy-preserving
clustering algorithm with batching, which achieves nearly identical accuracy as
the original (plaintext) k-means clustering algorithm. Compared with the FHE-
based scheme [13], our method is about 19573x faster. In summary, our fully
privacy-preserving clustering scheme is efficient and effective compared to existing
works.

Afterwards, we test our block privacy-preserving clustering algorithm on two
large datasets (MNIST, CIFAR-10) on which our vanilla fully privacy-preserving
clustering algorithm fails to run using our server due to the long run time and
excessive memory consumption. As can be seen from the results, our block clus-
tering solution can be performed on these datasets with acceptable run time
and memory consumption. In addition, this block clustering algorithm is also
suitable for users who would like to trade a little accuracy for high efficiency.

– We construct two iterative formulas to solve the ciphertext comparison and
division problems respectively, and propose a fully privacy-preserving clus-
tering scheme based on FHE, which can ensure that no private information
is revealed during the calculation.

– To further reduce the run time and memory consumption of our algorithm,
we propose the block privacy-preserving clustering algorithm. This algorithm
divides the input vectors into disjoint subvectors and performs clustering on
these subvectors.

– We conduct a series of experiments on various widely used datasets to evaluate
our scheme. From the results, it can be concluded that our block clustering
solution performs well in terms of both efficiency and memory consumption.

2 Related Works

In recent years, privacy-preserving clustering has been widely discussed in the lit-
erature. Some literature [27,29,30,36] leverage Partially Homomorphic Encryp-
tion (PHE) and two non-colluding clouds and design an interactive protocol
between them. However, these schemes are not suitable for large data scenarios
due to the high communication cost. Some previous works [5,12,26,31,32] apply
differential privacy to protect the private information of individuals. However,
the accuracy drops significantly due to the noise introduced in the clustering
algorithm. Multiparty Computation (MPC) is proposed to implement privacy-
preserving clustering in [24,35], which requires interaction between data owners.

Focusing on FHE, Liu et al. [18] propose an outsourced clustering scheme.
Almutairi et al. [3] create an updatable distance matrix (UDM) and apply it to

216 M. Zhang et al.

improve the efficiency of their clustering algorithm. Gheid et al. [11] present a
clustering protocol that does not use any cryptographic scheme. However, these
works leak intermediate values which contain private information, such as the
sizes of clusters or the distances between records and cluster centers. Wu et al.
[37] propose an efficient and privacy-preserving outsourced k-means clustering
scheme based on Yet Another Somewhat Homomorphic Encryption (YASHE).
There are two non-colluding cloud servers in their model, one of which is used
for addition and multiplication in ciphertexts, and the other is responsible for
comparison in plaintexts. Therefore, the server that computes in plaintexts can
infer partially private information from the data. Different from these works,
our clustering scheme is fully privacy-preserving, which allows data owners to
outsource clustering without revealing any private information.

Jäschke and Armknecht present a completely privacy-preserving clustering
scheme based on FHE in [13]. Due to the impractical run time of their algorithm,
they trade accuracy for efficiency. In other words, they create an approximate
comparison scheme by truncating the few least significant bits in ciphertexts.
However, the run time of the dataset with 400 records is still 25.79 days, which
is far from practical for large datasets. Different from their bitwise approximate
comparison scheme, our ciphertext comparison is more efficient through an iter-
ative approach. Also, their ciphertext division is approximate and introduces
errors into their clustering algorithm, whereas our ciphertext division is exact.

3 Background

3.1 Approximate Homomorphic Encryption CKKS

To achieve privacy-preserving clustering, we choose the approximate homomor-
phic encryption algorithm CKKS [7] as our cryptographic scheme. We use CKKS
instead of other RLWE-based schemes for two main reasons, one is its ability to
encode floating point numbers, and the other is its high efficiency.

Cheon et al. propose the formal definitions of CKKS in [7]. We define that
N is a power of two and R = Z[X]/(XN + 1) is a ring of integers, where Z[X]
is a polynomial ring with integer coefficients. A message m ∈ C

N/2 is firstly
encoded into a polynomial m ∈ R called plaintext. Let L be a level parameter
and ql = 2l for 1 ≤ l ≤ L. We denote Rq = Zq[X]/(XN + 1) as a modulo-q
quotient ring of R. The modulo q operation on each element of Rq is denoted
as [·]q. The distribution Xs = HWT (h) outputs a polynomial with coefficients
{−1, 0, 1}, whose Hamming weight is h. The distributions Xenc and Xe are the
discrete Gaussian distribution.

Set the secret key to be sk ← (1, s) and the public key to be pk ← ([−a · s +
e]qL , a), where s ← Xs, a ← U(RqL), and e ← Xe. To encrypt the plaintext m,
we can compute c = [v · pk + (m + e0, e1)]qL , where v ← Xenc and e0, e1 ← Xe.
The ciphertext c = (c0, c1) is decrypted by calculating m′ = [c0 + c1 · s]ql .

CKKS is a leveled homomorphic encryption, which means that this homo-
morphic encryption scheme limits the number of consecutive multiplications by

Efficient Clustering on Encrypted Data 217

a pre-determined parameter. Cheon et al. [6] extend CKKS to a fully homomor-
phic encryption scheme by proposing a bootstrapping algorithm that can refresh
low-level ciphertexts. The input of the bootstrapping algorithm is a ciphertext
with the lowest modulus c ∈ R2

q1 and the output is a ciphertext with a refreshed
modulus c′ ∈ R2

qL′ , where L′ < L. And the results of decrypting c and c′ are
almost equal.

3.2 Newton’s Method

Newton’s method is an approximate root-finding algorithm. This method can
solve equations of the form f(x) = 0, where f is a real-valued function and the
derivative of f is denoted by f ′.

Suppose x0 ∈ [a, b] is an initial guess for a root of f , denoted as r. We find
the line tangent to f(x) at x = x0 and compute the intersection of the x-axis
with this tangent, denoted by (x1, 0). x1 = x0 − f(x0)

f ′(x0)
, where x1 is a better

approximation of r than x0. Repeat the above steps to continuously refine the
approximation, and xn+1 can be computed as follows [10]:

xn+1 = xn − f(xn)
f ′(xn)

(1)

If Newton’s method converges on [a, b], a sufficiently accurate value can be
reached when the number of iterations is large enough [25]. That is lim

n→+∞ xn = r.

4 System Architecture and Threat Model

4.1 System Architecture

In our system architecture, there are two actors (server and data owner). The
dataset is split vertically, with the server and the data owner holding different
dimensions of the same records. The joint dataset, denoted D, has n records of
m dimensions. We assume that the dataset D1 held by the data owner contains
n records of m1 dimensions, and the dataset D2 owned by the server contains
the same n records of m2 dimensions, where m = m1 + m2. Since the private
set intersection technique has been proposed in previous work, we can suppose
that D1 and D2 are already aligned. Therefore, D = D1||D2.

In the scenario we describe, to get better clustering results, the data owner
has to send D1 to the server, which executes the clustering algorithm on the
joint dataset D. The server is untrusted, which means it tries to infer private
information from the data, thus the data owner needs to outsource the clustering
to the server in ciphertexts (Fig. 1).

Before exploiting the outsourced clustering service, the data owner needs to
generate the secret key sk kept private by itself as well as the public key pk
and the evaluation key evk both shared with the server. Then, the data owner
encodes n records into plaintexts and encrypts these plaintexts into ciphertexts.

218 M. Zhang et al.

Fig. 1. Our System Architecture

After that, the data owner sends these ciphertexts and some parameters to the
server. Among them, the parameters include m1, the number of clusters denoted
by k, and the number of iterations for clustering denoted by T . After receiv-
ing these ciphertexts and parameters, the server executes k-means clustering in
ciphertexts and returns the ciphertext results to the data owner. Finally, the
data owner decrypts the results and obtains the labels of all records through a
simple calculation.

4.2 Threat Model

In this paper, we consider a semi-honest security model, which means that the
server and the user strictly follow the protocol, but they may try to infer private
information about the datasets D1 and D2. We assume that m1, k, T are the pub-
lic system parameters known by both parties: m1 only represents the dimensions
of the records owned by the data owner, and k, and T are the parameters for
clustering. Furthermore, we consider the communication channel to be insecure,
which means that eavesdropping attacks are possible.

In our protocol, D1 is homomorphically encrypted locally and transmitted to
the server as ciphertexts for clustering. Therefore, an adversary eavesdropping
the communication channel or the server cannot deduce private information from
the encrypted D1. In addition, all records in D2 are not sent to the user in any
form, so the user cannot infer any private information from D2.

Baiyu and Micciancio [16] point out that CKKS does not satisfy indistin-
guishability under chosen plaintext attacks with decryption oracles (IND-CPAD)
security. However, chosen plaintext attacks with decryption oracles cannot occur
in our system, since (1) only the data owner can choose the plaintexts to be
encrypted; (2) no ciphertext and the corresponding plaintext are sent to the

Efficient Clustering on Encrypted Data 219

server simultaneously; (3) the data owner never sends the decryption results to
the server.

4.3 Security

In this paper, our goal is to achieve a simulation-based security definition.

Definition. A protocol Π between a data owner having as input a dataset D1

and a server having as input a dataset D2 is a cryptographic clustering protocol
if it satisfies the following guarantees:

– Correctness. On each input dataset D1 of the data owner and each dataset
D2 held by the server, the output of the data owner at the end of the protocol
is the correct clustering result on the joint dataset.

– Security:

• We require that a corrupted, semi-honest data owner does not learn any-
thing about the input D2 of the server. Formally, we require the existence
of an efficient simulator SimC such that ViewΠ

C ≈c SimC(D1, out), where
ViewΠ

C denotes the view of the data owner in the execution of Π and out
denotes the output of the clustering.

• We also require that a corrupted, semi-honest server does not learn any-
thing about the input D1 of the data owner. Formally, we require the
existence of an efficient simulator SimS such that ViewΠ

S ≈c SimS(D2),
where ViewΠ

S denotes the view of the server in the execution of Π.

5 Fully Privacy-Preserving Clustering Scheme Based
on FHE

In this section, we propose a fully privacy-preserving clustering scheme based
on FHE algorithm CKKS. We choose Lloyd’s algorithm to solve the k-means
clustering problem. The reasons for choosing Lloyd’s algorithm are (1) it is simple
to implement; (2) it has effective local fine-tuning capability [9]. However, CKKS
cannot directly support division and comparison in ciphertexts, which are used in
Lloyd’s algorithm. Therefore, we adopt iterative method and Newton’s method
to solve ciphertext comparison and division respectively. After making minor
changes to Lloyd’s algorithm, we implement a fully privacy-preserving clustering
algorithm.

5.1 Preliminaries

The goal of k-means clustering is to partition the dataset into k sets [21]. Lloyd’s
algorithm [19] can solve the k-means clustering problem and is one of the most
extensively used clustering algorithms for statistical data analysis.

The dataset D held by the data owner contains n records denoted t1, . . . , tn.
Each record ti is an m-dimensional real vector, denoted as ti = (ti1, . . . , tim) ∈

220 M. Zhang et al.

Algorithm 1: The Lloyd’s algorithm
1 Input n, m, k, T , D = {t1, . . . , tn}
2 Initialize centroids c1, . . . , ck randomly

repeat T times
3 Calculate distance of each record to each centroid

diffij ← ∑
q(tiq − cjq)

2

(i = 1, . . . , n, j = 1, . . . , k, q = 1, . . . , m)
4 Find the closest centroid to each record

labeli ← j with minimal diffij

(i = 1, . . . , n, j = 1, . . . , k)
5 Count the number of records in each cluster

cntj ← the number of i-s where labeli = j
(i = 1, . . . , n, j = 1, . . . , k)

6 Update centroids

cj ←
∑

i ti
cntj

where labeli = j

(i = 1, . . . , n, j = 1, . . . , k)

7 Output label and c1, . . . , ck

R
m. Lloyd’s algorithm divides the dataset into k clusters u1, . . . , uk, whose cen-

troids are denoted by c1, . . . , ck, where ci = (ci1, . . . , cim) ∈ R
m. The complete

Lloyd’s algorithm is shown in Algorithm 1.
Since we are concerned with the vertical partition scenario, for each record ti,

the data owner holds ti1, . . . , tim1 and the server holds ti(m1+1), . . . , tim. Accord-
ing to our threat model (described in Sect. 4.2), the data owner only provides
encrypted ti1, . . . , tim1 to the server, so the operation between ciphertext and
plaintext is involved in Step 3 because ti(m1+1), . . . , tim is in plaintexts. Since
CKKS supports addition, subtraction, and multiplication between ciphertext
and plaintext, and the results of these operations are in ciphertexts, the dis-
tance array diff is in ciphertexts.

In addition, in Step 3, since CKKS cannot directly support square root and
absolute value operations, we calculate the square of the Euclidean distance
between each record ti and each cluster center cj as diffij . Each element diffij

in diff array is only used to compare with some other elements, so squaring all
elements in diff does not affect the result. Step 4 to 6 must be calculated in
ciphertexts, and the ciphertext comparison in Step 4 and the ciphertext division
in Step 6 are challenging for CKKS.

5.2 Ciphertext Comparison

In Step 4, we compare the distance between each record and each centroid to find
the closest centroid for each record. Since CKKS does not support comparison
in ciphertexts directly, the label array cannot be simply calculated, and we need
to transform it into some HE-friendly representation.

Considering that the result of Step 4 is used to count the number of records
in each cluster and update centroids (Step 5 and 6), it is natural to construct a

Efficient Clustering on Encrypted Data 221

one-hot encoding vector for each record. The one-hot encoding vector of record
ti is denoted as minIndexi (i = 1, . . . , n):

minIndexi = (0, . . . , 0, 1, 0, . . . , 0)

minIndexij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, j = labeli
(min{diffi1, . . . ,diffik} = diffij)

0, j �= labeli
(diffij is not the minimum)

(2)

where only the labeli-th dimension of minIndexi is set to 1 and all other dimen-
sions are 0. In other words, minIndexij equals one only when cj is the closest
centroid to ti. After this transformation, Steps 5 and 6 can be immediately
rewritten as follows:

Step 5: cntj =
n∑

i=1

minIndexij (3)

Step 6: cj =

n∑

i=1

ti · minIndexij

cntj
(4)

Now the challenge is to calculate the minIndex array in ciphertexts. And we
introduce the sign function sgn(x) to facilitate comparison, where sgn(x) = 1 if
x > 0, sgn(x) = 0 if x = 0, and sgn(x) = −1 if x < 0.

During the ciphertext calculation process, the server will not obtain any
intermediate results and related information. Therefore, in order to find the
cluster center closest to the record ti and mark the corresponding dimension of
minIndexi as 1, the server needs to compare the k numbers pairwise. Obviously,
if diffij is the minimum value, then for any q ∈ [1, k] and q �= j, sgn(diffiq−diffij)+1

2
always equals 1. If diffij is not the minimum, then there exists q ∈ [1, k] and
q �= j such that sgn(diffiq−diffij)+1

2 = 0. Therefore, to compute minIndexij , we
compare diffij with the other k − 1 distance differences and multiply all the
results:

minIndexij =
k∏

q=1, q �=j

sgn(diffiq − diffij) + 1
2

(5)

According to Eq. 5, if diffij is the minimum value over {diffi1, . . . ,diffik},
then all k − 1 factors of minIndexij equal to 1, i.e., minIndexij = 1; otherwise,
minIndexij has at least one 0 in its multiplication factors, thus minIndexij = 0.
Therefore, minIndexij in Eq. 5 satisfies the definition in Eq. 2.

However, sgn(x) cannot be computed in CKKS directly since it is not a
polynomial function. Therefore, the goal is to approximate sgn(x) using HE-
friendly operations. We use the iterative method to solve the above problem. We
construct an iterative formula containing two fixed points, requiring that the
signs of these two fixed points be different:

ai+1 = ϕc(ai) = −3
2
ai(ai − 1)(ai + 1) (i ∈ N) (6)

222 M. Zhang et al.

We can determine the convergence of Eq. 6 with a0 ∈ (−1, 1):

lim
n→+∞

√
3an =

⎧
⎪⎨

⎪⎩

1, a0 ∈ (0, 1)
−1, a0 ∈ (−1, 0)
0, a0 = 0

(7)

Therefore, the domain of Eq. 6 is defined as (−1, 1), and the initial value a0 is
chosen as the input to the sign function denoted as xin, where xin ∈ (−1, 1).

Algorithm 2: The sign function in ciphertexts
Input: xin, Rc

Output: the approximate value of sgn(xin)
1 a0 = xin

2 for i ← 0 to Rc − 1 do
3 ai+1 = − 3

2
ai(ai − 1)(ai + 1)

4 return
√

3aRc

We can also handle the case where xin are not in the range (−1, 1). Suppose
x′
in is in (−M,M) for some constant M . In this case, the initial value a0 is

assigned as x′
in/M . Since the above ciphertext sign function only contains HE-

friendly operations, CKKS can directly compute it.

5.3 Ciphertext Division

In Step 6, we need to divide the sum
n∑

i=1

ti · minIndexij by the count cntj to get

the centroid cj . We apply Newton’s method (described in Sect. 3.2) to solve the
ciphertext division. We define the output of the function div(a) as the reciprocal
of a, where a is in (0,M) for some constant M . Construct a function f(x), whose
root is 1

a , such as: f(x) = 1
x −a. And we utilize Newton’s method to approximate

the root of this function. According to Eq. 1, we can obtain the iterative formula:

xi+1 = ϕd(xi) = xi − f(xi)
f ′(xi)

= xi(2 − a · xi) (8)

We need to determine the domain (a neighborhood of 1
a) where the above

iteration converges, and choose an appropriate initial value x0 in the domain.
Equation 8 converges if x0 = 1

a or ∃δ > 0,∀x ∈ (1
a − δ, 1

a + δ) \ { 1
a} satisfy

∣
∣
∣
∣ϕd(x) − 1

a

∣
∣
∣
∣ <

∣
∣
∣
∣x − 1

a

∣
∣
∣
∣ (9)

According to the above criteria, we can calculate that the domain is (0, 2
a). Since

0 < a < M , we choose x0 = 2
M ∈ (0, 2

a) as the initial value. Therefore, we utilize
this iteration to construct our ciphertext division algorithm (Algorithm 3).

Efficient Clustering on Encrypted Data 223

Algorithm 3: The ciphertext division algorithm
Input: a, M , Rd

Output: the approximate value of 1
a

1 x0 = 2
M

2 for i ← 0 to Rd − 1 do
3 xi+1 = xi(2 − a · xi)

4 return xRd

The above complete division algorithm uses only subtractions and multipli-
cations in ciphertexts, which are directly supported by the CKKS homomorphic
encryption. Hence cj =

∑n
i=1 ti · minIndexij · div(cntj), where cntj ∈ (0, n].

5.4 Converting the One-Hot Vectors to Label in Plaintexts

To achieve Step 5 and 6, we convert the label array into the one-hot encoding
array minIndex. After receiving and decrypting the minIndex array, the data
owner needs to extract the label from the minIndex. The data owner finds the
index of the element which equals one in minIndexij for each record i as labeli:

labeli = j s.t. minIndexij = 1 (10)

5.5 The Complete Algorithm for Privacy-Preserving Clustering

We summarize the above steps and describe the complete algorithm for fully
privacy-preserving clustering. Our scheme contains only HE-friendly operations
and is completely secure which means that no private information is revealed to
the server during calculation. In Step 2, the data owner randomly generates k
cluster centers c1, . . . , ck and encrypts them.

In Step 3, the server calculates the distance between each record ti and each
cluster center cj , denoted as diffij . According to our problem setting, the records
in D1 are in ciphertexts, the records in D2 are in plaintexts, and the centroids are
in ciphertexts. CKKS directly supports addition, subtraction, and multiplication
between ciphertext and plaintext, and the results of these operations are in
ciphertexts. Therefore, all terms of sum are in ciphertexts, and diffij is also
in ciphertexts. In Step 4, the server compares diffij with diffiq by computing
sgn(diffiq − diffij) (Algorithm 2), where 1 ≤ q ≤ k, q �= j. Then, the server
multiplies the k − 1 results to get minIndexij , where minIndexij = 1 when diffij

is the minimum value, and minIndexij = 0 otherwise.
In Step 5, the server counts the number of records belonging to each cluster.

In Step 6, the server recalculates each cluster center cj . Afterwards, the server
repeats Step 3 to 6 for T iterations. In Step 7, the server sends the encrypted
minIndex array to the data owner. After decrypting minIndex, the data owner
extracts the label array according to Eq. 10.

224 M. Zhang et al.

Algorithm 4: The fully privacy-preserving clustering algorithm
1 Input n, m = m1 + m2, k, T

D1 = {t11, . . . , t1m1 , . . . , tn1, . . . , tnm1} (in ciphertexts)
D2 = {t1(m1+1), . . . , t1m, . . . , tn(m1+1), . . . , tnm} (in plaintexts)

2 Data owner generates centroids c1, . . . , ck in [0, 1]m randomly and sends them to
the server in ciphertexts
repeat T times

3 Calculate distance of each record to each centroid
for (i, j) in {1, . . . , n} × {1, . . . , k} do

diffij ←
m∑

q=1

(tiq − cjq)
2

4 Calculate the minIndex array
for (i, j) in {1, . . . , n} × {1, . . . , k} do

minIndexij ←
k∏

q=1,q �=j

sgn(diffiq−diffij)+1

2

5 Count the number of records in each cluster
for j ← 1 to k do

cntj ←
n∑

i=1

minIndexij

6 Update centroids
for j ← 1 to k do

cj ←
n∑

i=1

(ti · minIndexij · div(cntj))

7 Output minIndex (in ciphertexts)
Data owner extracts label from minIndex

5.6 Security Proof

The view of the server includes the ciphertext dataset from data owner, the
dimension of the input dataset, the number of clusters, and the number of itera-
tions for clustering. When the data owner is corrupted, Sim receives the plaintext
parameters m1, k, T , the public key and the ciphertext HE.Enc(pk,D1) from the
data owner. In return, it sends HE.Enc(pk, res) for a randomly chosen res from
R

n, and the data owner cannot distinguish between real-world distributions and
simulated distributions.

The view of the data owner includes the input dataset of the data owner,
the dimension of the input dataset, the number of clusters, and the number
of iterations for clustering. When the server is corrupted, Sim sends the plain-
text parameters m1, k, T , a randomly chosen inp from R

n and the public key
HE.Enc(pk, inp) to the server. The server cannot distinguish between real-world
distributions and simulated distributions.

Efficient Clustering on Encrypted Data 225

6 An Optimized Algorithm

In this section, to further reduce the run time and memory consumption, we
propose an optimized clustering algorithm called block privacy-preserving clus-
tering algorithm. We have described a fully privacy-preserving clustering scheme
in Sect. 5.5, however, when we test this algorithm on the popular MNIST dataset
[15], the results show that the run time and memory consumption are unaccept-
able (about 3500 min and 1303 GB memory).

In terms of run time, since ciphertext multiplication is a time-consuming
operation, multiple multiplications dramatically affect the efficiency of our clus-
tering algorithm. On the other hand, CKKS is a leveled homomorphic encryption
and limits the multiplication level by a pre-determined parameter. Multiple con-
secutive multiplications are also unfriendly to CKKS. In our algorithm, comput-
ing the minIndex array (Step 4 in Algorithm 4) requires multiple multiplications
in ciphertexts. This step contains two parts: evaluating the sign function using
the difference of two distances and multiplying the evaluation results. And there
are Θ(nk2) ciphertext multiplications in the second part of this step, where
Θ(k) consecutive multiplications are required to calculate each element in the
minIndex array. That is, reducing k can reduce run time.

In terms of memory consumption, in order to calculate the minIndex array
with multithreading enabled, Θ(nk2) memory is required. That is, when k is
large, calculating the minIndex requires a large amount of memory.

However, with the advent of the big data era, the scale of the dataset to be
clustered is gradually increasing, and the number of clusters k of the dataset
becomes larger. Therefore, it is necessary to propose a new clustering algorithm
that reduces run time and memory consumption by reducing k.

Fig. 2. Schematic Diagram of Splitting the Dataset

226 M. Zhang et al.

6.1 Block Clustering Scheme

To reduce k, we split the input vectors into disjoint subvectors and cluster these
subvectors. As shown in Fig. 2, each record ti in the dataset D is divided into d
subvectors denoted ri1, . . . , rid. Each subvector riq is of m/d dimensions, where
m is a multiple of d and q is in [1, d]. We denote the set of subvectors r1q, . . . , rnq
as the subdataset Dq.

We perform our privacy-preserving clustering scheme on each subdataset Dq

independently, and each subvector riq is identified by a label Liq. The label Li of
the record ti is defined as the Cartesian product of the labels of its corresponding
subvectors:

Li = Li1 × Li2 × . . . × Lid (11)

Since all subdatasets are equally important, they have the same number of
subclusters. In that case, each subdataset is divided into k′ subclusters, where

k′ = d
√

k (12)

We assume that k′ is always a positive integer. The centroid cj is the concate-
nation of the centroids of its corresponding subclusters.

We now summarize our complete scheme for block privacy-preserving cluster-
ing. Before delivering the ciphertexts and the parameters to the server, the data
owner needs to preprocess the dataset D, including dividing ti to generate riq
and calculating k′. Then, the fully privacy-preserving block clustering algorithm
can be described as Algorithm 5.

In Step 7, the data owner needs to extract the label of each subvector from
minIndex′ according to the method described in Sect. 5.4. Afterward, the data
owner obtains the label of each record by calculating the Cartesian product of
its corresponding subvector labels according to Eq. 11.

The above algorithm only contains HE-friendly operations and does not break
our threat model in Sect. 4.2. As shown in Table 1, we compare the number of
multiplications in each calculation step between Algorithm 4 and Algorithm 5.
The efficiency of the block clustering algorithm has been significantly improved,
especially when calculating the minIndex array.

The number of consecutive multiplications also decreases in Algorithm 5.
When calculating each element in minIndex array, the number of consecutive
multiplications decreases from Θ(k) to Θ(d

√
k). Additionally, memory consump-

tion drops from Θ(nk2) to Θ(nk
2
d).

Although Algorithm 5 can greatly reduce the run time and memory con-
sumption, it loses the clustering accuracy compared to Algorithm 4. In addition,
Algorithm 5 is more suitable for datasets whose records are relatively evenly
distributed in m-dimensional space.

6.2 Block Clustering Scheme with Cluster Selection

The fully privacy-preserving block clustering scheme described in Sect. 6.1 is
efficient. However, Algorithm 5 only works on datasets with a certain k. When

Efficient Clustering on Encrypted Data 227

Algorithm 5: The block privacy-preserving clustering algorithm
1 Input n, m, k′, T , d

r11, . . . , r1d, r21, . . . , r2d, . . . , rn1, . . . , rnd (Figure 2)
for q ← 1 to d do

2 Data owner generates centroids c′
1, . . . , c

′
k′ in [0, 1]m/d randomly and sends

them to the server in ciphertexts
repeat T times

3 Calculate distance of each record to each centroid
for (i, j) in {1, . . . , n} × {1, . . . , k′} do

diff ′
ij ←

m/d∑

l=1

(riql − c′
jl)

2

4 Calculate the minIndex′ array
for (i, j) in {1, . . . , n} × {1, . . . , k′} do

minIndex′
ij ←

k′∏

l=1,l�=j

sgn(diff′
il−diff′

ij)+1

2

5 Count the number of records in each cluster
for j ← 1 to k′ do

cnt′
j ←

n∑

i=1

minIndex′
ij

6 Update centroids
for j ← 1 to k′ do

c′
j ←

n∑

i=1

(riq · minIndex′
ij · div(cnt′

j))

7 Send minIndex′ (in ciphertexts), and the data owner extracts label′ from
minIndex′

for any d, there is no positive integer k′ such that k = k′d, this algorithm fails.
Therefore, to make our block clustering algorithm applicable to datasets with
arbitrary k, we add a function called cluster selection to it.

We still split each input vector into d disjoint subvectors, where each subvec-
tor is of m/d dimensions. Then we cluster each subdataset (defined in Sect. 6.1)
separately and compute the Cartesian product of corresponding subvectors’
labels to obtain the label for each vector according to the Eq. 11. Since d

√
k

is not a positive integer, we require each subdataset to be divided into ks sub-
clusters, where ks > d

√
k and ks ∈ N

∗, and the specific value of ks is determined
by the data owner. Thus, the dataset D is partitioned into ks

d clusters, where
ks

d > k.
Since the goal of the data owner is to divide D into k clusters, we now propose

the cluster selection algorithm to remove ks
d − k redundant clusters. We sort

all ks
d clusters according to the number of records in each cluster from most

to least, then keep the top k clusters and record their centroids. The records
that do not belong to these top k clusters are called remaining records and need
to be reassigned to these clusters. We separately calculate the distance between
each remaining record and each centroid, then assign each remaining record to

228 M. Zhang et al.

Table 1. The number of multiplications involved in each step of Algorithm 4 and
Algorithm 5 in each step. Note that no multiplication is needed in Step 5.

Step 3 (distances) Step 4 (minIndex) Step 6 (centroids)

Algorithm 4 Θ(nmk) Θ(nk2) Θ(nk)

Algorithm 5 Θ(nmk
1
d) Θ(dnk

2
d) Θ(dnk

1
d)

the nearest centroid. Afterward, the centroids of these k clusters need to be
recalculated.

We recommend that the data owner implement the cluster selection algo-
rithm. The reason is that this algorithm is time-consuming in ciphertexts, but
requires a small amount of computation resource in plaintexts. In addition, the
communication costs remain almost unchanged.

The data owner needs to own all dimensions of the records and centroids
to guarantee correct clustering of the remaining records. Therefore, our block
clustering scheme with plaintext cluster selection only works if the data owner
possesses the complete dataset. At this time, the data owner outsources cluster-
ing in order to utilize the computation resource of the server. Only Algorithm 4
and Algorithm 5 support the user to simultaneously utilize the server’s dataset
and computation resource.

7 Experiment Results

7.1 Experiment Setup

Server Configuration. We use the Lattigo library [1] (version 4.1.0) to imple-
ment our fully privacy-preserving clustering algorithm. We choose a Ubuntu-
20.04 server with an Intel(R) Xeon(R) CPU E5-2620 v4 (2.1 GHz, 32 threads)
and 100GB RAM to perform all experiments. Our approach is written in Go.

Datasets. We select several datasets from different sources to evaluate our
algorithm. G2 [9] is a series of synthetic datasets, each of which contains 2048
points divided into two Gaussian clusters of equal size. We choose G2-1-20, G2-2-
20, G2-4-20, G2-8-20, and G2-16-20 for experiments, where 1,2,4,8,16 represent
the dimensions of the dataset.

The fundamental clustering problems suite (FCPS) [33] contains nine dif-
ferent datasets, and we choose seven of them which are widely used in
[8,17,20,28,34]. As shown in Table 2, these datasets with known labels are low-
dimensional and simple, and each of them solves a certain problem in clustering.

To demonstrate the effectiveness of the scheme described in Sect. 6, we select
two large datasets to test our block clustering scheme. The MNIST dataset [15]
of handwritten digits contains 60000 training images and 10000 testing images,
where m = 784. We run our algorithm on the testing images with 10 clusters.
The CIFAR-10 dataset [14] consists of 60000 images divided into 10 clusters. We
choose 10000 test images to perform our approach.

Efficient Clustering on Encrypted Data 229

Table 2. The datasets chosen from FCPS [33].

Dataset n m k Main Problems

Chainlink 1000 3 2 Not linearly separable

EngyTime 4096 2 2 Gaussian mixture

Hepta 212 3 7 None

Lsun 400 2 3 Different variances and shapes

Tetra 400 3 4 Almost touching

TwoDiamonds 800 2 2 Touching clusters

WingNut 1016 2 2 Non-uniform density

Parameter Selection. We choose the following parameters for our experi-
ments:

– Parameters of CKKS: We use a default parameter set in the Lattigo library
called PN16QP1761CI. logN is 16, which means that at most 65536 values
can be batched simultaneously. The multiplication level is 34, indicating that
the number of consecutive multiplications cannot exceed 34.

– Number of iterations: 5, 10, 20.

In all experiments, the initial k centroids are uniformly and independently
randomly sampled from [0, 1]m. We run each experiment with five different ran-
dom seeds and average the results.

Since we focus on the vertical partition scenario, the input to Algorithm 4
consists of encrypted dataset D1 and unencrypted dataset D2. The operation
between plaintext and ciphertext is faster than that between ciphertext, there-
fore, in order to make the result more convincing, we encrypt all dimensions of
the records in all experiments.

7.2 Clustering Accuracy

In this section, we conduct experiments on datasets G2 and FCPS to test the
clustering accuracy of the algorithm described in Sect. 5. We then compare the
accuracy of our approach with the state-of-the-art privacy-preserving clustering
algorithm proposed in [13].

We separately run our algorithm and vanilla Lloyd’s algorithm on the
datasets and count the number of records that are correctly clustered. Then
we calculate the clustering accuracy by dividing the number of correctly clus-
tered records by n. In this part, we choose T = 5 for G2 and T = 10 for FCPS.
Since the order of clusters in the experiments may be different from that in the
ground truths, we enumerate full permutations of {1, . . . , k} as the mapping of
labels from the algorithm outputs to the ground truth, and find the one with
most correctly clustered records.

As shown in Table 3, for all datasets, the clustering accuracy of our approach
is almost identical to that of Lloyd’s algorithm. On most datasets, our algorithm

230 M. Zhang et al.

Table 3. Clustering accuracy of our algorithm and Lloyd’s algorithm on G2 and FCPS.

Dataset Our Algorithm Lloyd’s Algorithm Difference

G2-1-20 99.3% 99.4% 0.1%

G2-2-20 100% 100% 0.0%

G2-4-20 100% 100% 0.0%

G2-8-20 100% 100% 0.0%

G2-16-20 100% 100% 0.0%

Chainlink 66.5% 65.9% −0.6%

EngyTime 94.9% 95.1% 0.2%

Hepta 85.8% 85.4% −0.4%

Lsun 77.5% 76.8% −0.7%

Tetra 100% 100% 0.0%

TwoDiamonds 100% 100% 0.0%

WingNut 96.3% 96.4% 0.1%

correctly clusters the same number of records as Lloyd’s algorithm. Therefore,
we conclude that adding privacy protection to the clustering scheme does not
affect accuracy.

We compare the clustering accuracy of our approach with that of the approx-
imate algorithm proposed in [13] and record the results in Table 4. Since the
bitwise ciphertext comparison used in their algorithm would lead to unaccept-
able run time, they propose an approximate version that improves efficiency by
truncating several least significant bits. They compute the difference in clus-
tering accuracy between the exact clustering and their approximate algorithm
to demonstrate the accuracy (exact − approximate). In addition, we calculate
the difference in clustering accuracy between Lloyd’s algorithm and ours, and
compare our results to theirs on the four datasets, as shown in Table 4. There
are two negative numbers in the second line, indicating that the accuracy of our
scheme is higher than that of Lloyd’s algorithm. For these four datasets, our
algorithm obviously outperforms theirs in clustering accuracy.

Table 4. Accuracy difference between exact algorithm and privacy-preserving version

Lsun Hepta Tetra WingNut

Approximate Version in [13] 3.5% 4% 13% 1.25%

This Work −0.8% −0.5% 0% 0.1%

7.3 Run Time

In this section, we test the run time of our fully privacy-preserving clustering
algorithm described in Sect. 5. Then, we compare the efficiency of our algorithm
with that of the state-of-the-art FHE-based clustering scheme [13].

Efficient Clustering on Encrypted Data 231

Due to the inefficiency of direct implementation based on CKKS, we optimize
our method for efficiency by parallelizing ciphertext computation (a.k.a. batching)
and multithreading. First, we leverage the SIMD capability of CKKS to parallelize
operations. Denote N as the ring dimension, which defines the number of coef-
ficients of the plaintext/ciphertext polynomials. Since we choose the conjugate-
invariant variant of CKKS for the ring type, at most N real values of the plain-
text can be packed into one ciphertext. In Algorithm 4, the calculation of the diff
array and the minIndex array can be parallelized min(n,N) times by simply pack-
ing min(n,N) coordinates into a single ciphertext. When counting the number of
records in each cluster, we sum the n values (w.l.o.g. assuming n ≤ N) in the
packed minIndex array, which can be solved by rotations and additions.

Second, we can further improve the efficiency of our algorithm by multi-
threading. All operations in our algorithm are independent of each cluster. When
computing the distances and the minIndex array, the operations are independent
of each record. Therefore, we can achieve multithreading across different batches
and different clusters.

We execute the unoptimized algorithm and the algorithm with batching and
multithreading on G2 and FCPS respectively, then record the results in Table 5.
In this part, we choose T = 5 for G2 and T = 10 for FCPS. As shown in Table 5,
batching and multithreading can significantly reduce the run time of our scheme,
and the total speedup of these two optimizations reaches a maximum value of
about 6426x on G2-16-20. As shown in Table 6, our optimized algorithm is 4∼5
orders of magnitude slower than vanilla Lloyd’s algorithm. It is known that FHE-
based algorithms are generally 9 orders of magnitude slower than corresponding
plaintext algorithms [22]. We conclude that our privacy-preserving clustering
scheme is efficient.

Table 5. Run time of G2 and FCPS with and without batching

Dataset Without Optimization4 With Optimizations Speedup

G2-1-20 271.0 h 222.41 s 4386 x

G2-2-20 305.5 h 221.11 s 4974 x

G2-4-20 374.6 h 250.20 s 5390 x

G2-8-20 512.6 h 311.55 s 5923 x

G2-16-20 788.8 h 441.89 s 6426 x

Chainlink 106.3 h 421.09 s 909 x

EngyTime 488.5 h 394.87 s 4454 x

Hepta 440.2 h 1213.90 s 1305 x

Lsun 129.7 h 442.65 s 1055 x

Tetra 239.6 h 620.42 s 1390 x

TwoDiamonds 95.5 h 397.73 s 864 x

WingNut 121.2 h 395.45 s 1103 x

To avoid the long run time, we run several synthetic datasets with small
sizes and fit the run time in the table using least squares.

232 M. Zhang et al.

Table 6. Plaintext run time of vanilla Lloyd’s algorithm on G2 and FCPS

G2-1-20 G2-2-20 G2-4-20 G2-8-20 G2-16-20 Chainlink

0.042 s 0.048 s 0.060 s 0.084 s 0.130 s 0.050 s

EngyTime Hepta Lsun Tetra TwoDiamonds WingNut

0.177 s 0.025 s 0.023 s 0.031 s 0.036 s 0.045 s

We then compare the efficiency of our algorithm with that of [13] on the Lsun
dataset. The run time reported in [13] is single-threaded. Thus, to achieve a fair
comparison, we test the run time of our algorithm with a single thread. Since our
method does not lose clustering accuracy, we choose the exact version of their
work for comparison. As shown in Table 7, our approach spends 1606.36 s on the
Lsun dataset, which is 19573x faster than [13]. Furthermore, our approach is
still 1258x faster than their approximate algorithm (the fastest version in [13]),
which trades accuracy for efficiency. To sum up, our fully privacy-preserving
clustering scheme significantly outperforms [13] in terms of efficiency.

Table 7. Efficiency comparison with [13] on Lsun.

Work Version Threads Run Time (T = 10)

Jäschke et al. [13] exact one 363.90 days

Jäschke et al. [13] approximate one 154.70 h

This work exact one 1606.36 s

7.4 Performance of Block Clustering Scheme with Cluster Selection

In this section, we evaluate the efficiency, memory consumption, and accuracy
of our block clustering scheme described in Sect. 6. To demonstrate the superior
performance of our block clustering algorithm, we select two large-scale, widely
used datasets (MNIST, CIFAR-10) to test the run time and memory consump-
tion. For CIFAR-10, we use the resnet20 model [2] to extract the feature vectors
with m = 64. We choose T = 20 for all experiments in this section. Since k = 10
for MNIST and CIFAR-10, there is no d greater than 1, making d

√
k a positive

integer. Therefore, we execute our block clustering scheme with cluster selection
described in Sect. 6.2 on them, where d = 4, ks = 2 for MNIST, and d = 2, ks = 4
for CIFAR-10.

As shown in Table 8, we first measure the run time and memory consumption
of our block clustering algorithm, where timeblock and memoryblock represent the
run time and memory consumption of the block clustering algorithm respectively,
and timeoriginal and memoryoriginal represent these two indicators of our vanilla
privacy-preserving clustering algorithm. Since our server configuration does not
support our original algorithm to perform on such large datasets, timeoriginal

Efficient Clustering on Encrypted Data 233

and memoryoriginal in Table 8 are estimated. Notably, our block clustering solu-
tion can be executed on these datasets with acceptable run time. Among them,
only 127 min and 47GB memory are required on CIFAR-10. That is, our block
clustering scheme makes it possible to outsource privacy-preserving clustering
on large datasets.

Table 8. Efficiency of block clustering scheme on MNIST and CIFAR-10

MNIST(d = 4, ks = 2) CIFAR-10(d = 2, ks = 4)

timeoriginal
2 about 3500min about 350min

timeblock 850 min 127 min

memoryoriginal
2 about 1303 GB about 226 GB

memoryblock 75 GB 47 GB

Due to insufficient memory, we run our original algorithm on several
small datasets and fit the memory consumption and run time in the
table by least squares.

We then test the clustering accuracy of our method on MNIST and CIFAR-
10. We count the number of correctly clustered records and divide them by n
to calculate the accuracy. The experimental results show that the accuracy loss
is 10.35% on MNIST and 8.55% on CIFAR-10, which can be acceptable. In
summary, our block privacy-preserving clustering algorithm is suitable for data
owners who would like to trade a little accuracy for high efficiency. Further-
more, this solution enables outsourced clustering of large-scale datasets while
preserving privacy.

8 Conclusions

We achieve ciphertext comparison by constructing an iterative formula with two
fixed points of opposite signs to approximate the sign function. The solution of
ciphertext division is to use Newton’s method to approximate the reciprocal of
the divisor. After solving the challenging ciphertext comparison and division,
we propose a fully privacy-preserving, effective, and efficient clustering algo-
rithm based on CKKS. However, executing our fully privacy-preserving clus-
tering scheme on the large-scale datasets results in unacceptable run time and
memory consumption. To further reduce the run time and memory consumption
of our algorithm, we propose a block privacy-preserving clustering algorithm that
splits records into subvectors and clusters these subvectors. Experiment results
show that our original clustering algorithm has the same accuracy as Lloyd’s
algorithm and has a huge efficiency advantage over the baseline. In experiments
testing our block clustering algorithm, it can be concluded that this algorithm
performs well in terms of both efficiency and memory consumption.

234 M. Zhang et al.

References

1. Lattigo v4, August 2022. https://github.com/tuneinsight/lattigo, ePFL-LDS,
Tune Insight SA

2. Pytorch cifar models, August 2022. https://github.com/chenyaofo/pytorch-cifar-
models

3. Almutairi, N., Coenen, F., Dures, K.: K-means clustering using homomorphic
encryption and an updatable distance matrix: secure third party data clustering
with limited data owner interaction. In: Bellatreche, L., Chakravarthy, S. (eds.)
DaWaK 2017. LNCS, vol. 10440, pp. 274–285. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-64283-3 20

4. Ashari, I., Banjarnahor, R., Farida, D., Aisyah, S., Dewi, A., Humaya, N.: Applica-
tion of data mining with the k-means clustering method and davies bouldin index
for grouping imdb movies. J. Appl. Inform. Comput. 6(1), 07–15 (2022). https://
doi.org/10.30871/jaic.v6i1.3485. https://jurnal.polibatam.ac.id/index.php/JAIC/
article/view/3485

5. Balcan, M.F., Dick, T., Liang, Y., Mou, W., Zhang, H.: Differentially private clus-
tering in high-dimensional Euclidean spaces. In: Precup, D., Teh, Y.W. (eds.) Pro-
ceedings of the 34th International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 70, pp. 322–331. PMLR (06–11 Aug 2017).
https://proceedings.mlr.press/v70/balcan17a.html

6. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

8. Estévez, P.A., Figueroa, C.J.: Online data visualization using the neural gas net-
work. Neural Netw. 19(6), 923–934 (2006). https://doi.org/10.1016/j.neunet.2006.
05.024. advances in Self Organising Maps - WSOM’05

9. Fränti, P., Sieranoja, S.: K-means properties on six clustering benchmark datasets.
Appl. Intell. 48(12), 4743–4759 (2018). https://doi.org/10.1007/s10489-018-1238-
7

10. Galántai, A.: The theory of newton’s method. Journal of Computa-
tional and Applied Mathematics 124(1), 25–44 (2000). https://doi.org/10.
1016/S0377-0427(00)00435-0. https://www.sciencedirect.com/science/article/pii/
S0377042700004350, numerical Analysis 2000. Vol. IV: Optimization and Nonlin-
ear Equations

11. Gheid, Z., Challal, Y.: Efficient and privacy-preserving k-means clustering for
big data mining. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 791–798 (2016).
https://doi.org/10.1109/TrustCom.2016.0140

12. Huang, Z., Liu, J.: Optimal differentially private algorithms for k-means clustering.
In: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, PODS 2018, pp. 395–408. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3196959.3196977, https://
doi.org/10.1145/3196959.3196977

13. Jäschke, A., Armknecht, F.: Unsupervised machine learning on encrypted data. In:
Cid, C., Jacobson, M.J., Jr. (eds.) Selected Areas in Cryptography - SAC 2018, pp.
453–478. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7 21

https://github.com/tuneinsight/lattigo
https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/chenyaofo/pytorch-cifar-models
https://doi.org/10.1007/978-3-319-64283-3_20
https://doi.org/10.1007/978-3-319-64283-3_20
https://doi.org/10.30871/jaic.v6i1.3485
https://doi.org/10.30871/jaic.v6i1.3485
https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/3485
https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/3485
https://proceedings.mlr.press/v70/balcan17a.html
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1016/j.neunet.2006.05.024
https://doi.org/10.1016/j.neunet.2006.05.024
https://doi.org/10.1007/s10489-018-1238-7
https://doi.org/10.1007/s10489-018-1238-7
https://doi.org/10.1016/S0377-0427(00)00435-0
https://doi.org/10.1016/S0377-0427(00)00435-0
https://www.sciencedirect.com/science/article/pii/S0377042700004350
https://www.sciencedirect.com/science/article/pii/S0377042700004350
https://doi.org/10.1109/TrustCom.2016.0140
https://doi.org/10.1145/3196959.3196977
https://doi.org/10.1145/3196959.3196977
https://doi.org/10.1145/3196959.3196977
https://doi.org/10.1007/978-3-030-10970-7_21

Efficient Clustering on Encrypted Data 235

14. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.
(2009)

15. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. (2010). http://yann.lecun.com/exdb/mnist2

16. Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate
numbers. Springer-Verlag (2021). https://doi.org/10.1007/978-3-030-77870-5 23

17. Li, F., Qian, Y., Wang, J., Dang, C., Jing, L.: Clustering ensemble based on sam-
ple’s stability. Artif. Intell. 273, 37–55 (2019). https://doi.org/10.1016/j.artint.
2018.12.007

18. Liu, D., Bertino, E., Yi, X.: Privacy of outsourced k-means clustering. In: Proceed-
ings of the 9th ACM Symposium on Information, Computer and Communications
Security, pp. 123–134. ASIA CCS ’14, Association for Computing Machinery, New
York (2014). https://doi.org/10.1145/2590296.2590332. https://doi.org/10.1145/
2590296.2590332

19. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

20. Lopez, C., Tucker, S., Salameh, T., Tucker, C.: An unsupervised machine learning
method for discovering patient clusters based on genetic signatures. J. Biomed.
Inform. 85, 30–39 (2018). https://doi.org/10.1016/j.jbi.2018.07.004

21. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–297. University of California Press (1967)

22. Matsuoka, K., Banno, R., Matsumoto, N., Sato, T., Bian, S.: Virtual secure plat-
form: A {Five-Stage} pipeline processor over {TFHE}. In: 30th USENIX security
symposium (USENIX Security 21), pp. 4007–4024 (2021)

23. Minh, H.L., Sang-To, T., Abdel Wahab, M., Cuong-Le, T.: A new meta-
heuristic optimization based on k-means clustering algorithm and its appli-
cation to structural damage identification. Knowl.-Based Syst. 251, 109189
(2022). https://doi.org/10.1016/j.knosys.2022.109189. https://www.sciencedirect.
com/science/article/pii/S0950705122005913

24. Mohassel, P., Rosulek, M., Trieu, N.: Practical privacy-preserving k-means cluster-
ing. Cryptology ePrint Archive, Paper 2019/1158 (2019), https://eprint.iacr.org/
2019/1158. https://eprint.iacr.org/2019/1158

25. More, J.J., Sorensen, D.C.: Newton’s method (2 1982). https://doi.org/10.2172/
5326201. https://www.osti.gov/biblio/5326201

26. Ni, L., Li, C., Wang, X., Jiang, H., Yu, J.: Dp-mcdbscan: differential privacy pre-
serving multi-core dbscan clustering for network user data. IEEE Access 6, 21053–
21063 (2018). https://doi.org/10.1109/ACCESS.2018.2824798

27. Rao, F.Y., Samanthula, B.K., Bertino, E., Yi, X., Liu, D.: Privacy-preserving and
outsourced multi-user k-means clustering. In: 2015 IEEE Conference on Collabo-
ration and Internet Computing (CIC), pp. 80–89 (2015). https://doi.org/10.1109/
CIC.2015.20

28. Rodriguez, M.Z., Comin, C.H., Casanova, D., Bruno, O.M., Amancio, D.R.,
Costa, L.d.F., Rodrigues, F.A.: Clustering algorithms: A comparative approach.
PLOS ONE 14(1), 1–34 (01 2019). https://doi.org/10.1371/journal.pone.0210236.
https://doi.org/10.1371/journal.pone.0210236

29. Rong, H., Wang, H.M., Liu, J., Xian, M.: Privacy-preserving k-nearest neighbor
computation in multiple cloud environments. IEEE Access 4, 9589–9603 (2016).
https://doi.org/10.1109/ACCESS.2016.2633544

http://yann.lecun.com/exdb/mnist
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1016/j.artint.2018.12.007
https://doi.org/10.1016/j.artint.2018.12.007
https://doi.org/10.1145/2590296.2590332
https://doi.org/10.1145/2590296.2590332
https://doi.org/10.1145/2590296.2590332
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.jbi.2018.07.004
https://doi.org/10.1016/j.knosys.2022.109189
https://www.sciencedirect.com/science/article/pii/S0950705122005913
https://www.sciencedirect.com/science/article/pii/S0950705122005913
https://eprint.iacr.org/2019/1158
https://eprint.iacr.org/2019/1158
https://eprint.iacr.org/2019/1158
https://doi.org/10.2172/5326201
https://doi.org/10.2172/5326201
https://www.osti.gov/biblio/5326201
https://doi.org/10.1109/ACCESS.2018.2824798
https://doi.org/10.1109/CIC.2015.20
https://doi.org/10.1109/CIC.2015.20
https://doi.org/10.1371/journal.pone.0210236
https://doi.org/10.1371/journal.pone.0210236
https://doi.org/10.1109/ACCESS.2016.2633544

236 M. Zhang et al.

30. Samanthula, B.K., Elmehdwi, Y., Jiang, W.: k-nearest neighbor classification over
semantically secure encrypted relational data. IEEE Trans. Knowl. Data Eng.
27(5), 1261–1273 (2015). https://doi.org/10.1109/TKDE.2014.2364027

31. Stemmer, U.: Locally private k-means clustering. In: Proceedings of the Thirty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pp.
548–559. Society for Industrial and Applied Mathematics, USA (2020)

32. Su, D., Cao, J., Li, N., Bertino, E., Jin, H.: Differentially private k-means clustering.
In: Proceedings of the Sixth ACM Conference on Data and Application Security
and Privacy, CODASPY 2016, pp. 26–37. Association for Computing Machinery,
New York (2016). https://doi.org/10.1145/2857705.2857708. https://doi.org/10.
1145/2857705.2857708

33. Ultsch, A.: Clustering wih som: U* c. Proc. Workshop on Self-Organizing Maps
(01 2005)

34. Ultsch, A.: Emergence in self organizing feature maps. In: The 6th International
Workshop on Self-Organizing Maps (WSOM 2007) (2007). https://doi.org/10.
2390/biecoll-wsom2007-114. https://doi.org/10.2390/biecoll-wsom2007-114

35. Wei, W., ming Tang, C., Chen, Y.: Efficient privacy-preserving k-means clustering
from secret-sharing-based secure three-party computation. Entropy 24 (2022)

36. Wu, W., Liu, J., Rong, H., Wang, H., Xian, M.: Efficient k-nearest neighbor clas-
sification over semantically secure hybrid encrypted cloud database. IEEE Access
6, 41771–41784 (2018). https://doi.org/10.1109/ACCESS.2018.2859758

37. Wu, W., Liu, J., Wang, H., Hao, J., Xian, M.: Secure and efficient outsourced
k-means clustering using fully homomorphic encryption with ciphertext packing
technique. IEEE Trans. Knowl. Data Eng. 33(10), 3424–3437 (2021). https://doi.
org/10.1109/TKDE.2020.2969633

https://doi.org/10.1109/TKDE.2014.2364027
https://doi.org/10.1145/2857705.2857708
https://doi.org/10.1145/2857705.2857708
https://doi.org/10.1145/2857705.2857708
https://doi.org/10.2390/biecoll-wsom2007-114
https://doi.org/10.2390/biecoll-wsom2007-114
https://doi.org/10.2390/biecoll-wsom2007-114
https://doi.org/10.1109/ACCESS.2018.2859758
https://doi.org/10.1109/TKDE.2020.2969633
https://doi.org/10.1109/TKDE.2020.2969633

Generic Construction of Forward Secure
Public Key Authenticated Encryption

with Keyword Search

Keita Emura1,2(B)

1 Kanazawa University, Kanazawa, Ishikawa, Japan
2 National Institute of Information and Communications Technology (NICT),

Koganei, Tokyo, Japan

k-emura@se.kanazawa-u.ac.jp

Abstract. In this paper, we propose a generic construction of forward
secure public key authenticated encryption with keyword search (FS-
PAEKS) from PAEKS. In addition to PAEKS, we employ 0/1 encodings
proposed by Lin et al. (ACNS 2005). Here, forward security means that
a newly generated ciphertext is not allowed to be searched by previously
generated trapdoors. We also show that the Jiang et al. FS-PAEKS
scheme (The Computer Journal 2023) does not provide forward secu-
rity. Our generic construction is quite simple, and it can also be applied
to construct forward secure public key encryption with keyword search
(FS-PEKS). Our generic construction yields a comparably efficient FS-
PEKS scheme compared to the previous scheme. Moreover, it eliminates
the hierarchical structure (Abdalla et al. (JoC 2008)) or attribute-based
feature (Zeng et al. (IEEE Transactions on Cloud Computing 2022)) of
the previous generic constructions which is meaningful from a feasibility
perspective.

1 Introduction

Searchable encryption is a fundamental tool to provide data confidentiality and
data searchability simultaneously, and there are two types, searchable symmetric
encryption (SSE) [53] and public key encryption with keyword search (PEKS) [8].
In the (dynamic) SSE context, forward security, which is also referred to as
forward privacy, has been a default security notion since the seminal work by
Stefanov et al. [54] where a newly generated ciphertext is not allowed to be
searched by previously generated trapdoors. However, forward security is some-
what overlooked in the PEKS context [8]. Currently, six forward secure PEKS
(FS-PEKS) schemes have been proposed [36,58–60], to the best of our knowledge.
Kim et al. [36] constructed FS-PEKS from hierarchical identity-based encryption
(HIBE). In their construction, a fixed message (indi in their paper) is encrypted
by the underlying HIBE scheme. However, this construction does not provide
consistency due to the observation of Abdalla et al. [1]. Zhang et al. [60], Yu et
al. [58], and Islam et al. [28] proposed FS-PEKS schemes from lattices. Their con-
structions employ a secret key update algorithm, and an adversary is allowed to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 237–256, 2024.
https://doi.org/10.1007/978-3-031-54770-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_10&domain=pdf
http://orcid.org/0000-0002-8969-3581
https://doi.org/10.1007/978-3-031-54770-6_10

238 K. Emura

Fig. 1. FS-PAEKS

obtain secret keys under some restrictions, which is reminiscent of forward secure
public key encryption [12] that considers other scenario to the trapdoor leakage.
Tang [55] considered forward security properties for PEKS where forward-secure
trapdoor unlinkability and forward-secure function privacy. In both notions, an
adversary declares two distributions, and the challenge keyword is chosen accord-
ing to one of the distributions. This considers other scenario to ours. Zeng et
al. [59] proposed an FS-PEKS scheme in bilinear groups. They also mentioned
that FS-PEKS can be constructed from attribute-based searchable encryption
supporting OR gates, and FS-PEKS is essentially the same as public key encryp-
tion with temporary keyword search (PETKS) [1], which can be constructed
generically from HIBE with level-1 anonymity.

In PEKS, a keyword is encrypted by a receiver public key. The receiver gen-
erates a trapdoor for a keyword using the receiver secret key. A server runs
the test algorithm that takes a ciphertext and a trapdoor, and outputs 1 if the
encrypted keyword and the keyword associated to the trapdoor is the same. That
is, a trapdoor works as a distinguisher. Since anyone can generate a ciphertext
of a keyword, if one obtains a trapdoor, then information about which keyword
is associated with the trapdoor is leaked by running the test algorithm with self-
made ciphertexts. To prevent this keyword guessing attack, public key authen-
ticated encryption with keyword search (PAEKS) has been proposed [11,16–
21,26,44–46,48,49] where a sender secret key is required for encryption. As in
PEKS, forward secure PAEKS (FS-PAEKS) can be defined where the encryption
algorithm takes a time period t and the trapdoor generation algorithm takes a
time period t′. In addition to the search condition defined in PAEKS, a trapdoor
works if t < t′, that is, a newly generated ciphertext is not allowed to be searched
by previously generated trapdoors. See Fig. 1.

Generic Construction of FS-PAEKS 239

Our Contribution. In this paper, we propose a generic construction of FS-
PAEKS from PAEKS. We employ 0/1 encodings, which were originally proposed
for solving the Millionaires’ problem by Lin et al. [41]. We focus on the fact that
the encodings are effective way to translate an inequality condition t < t′ to an
equality condition, and PAEKS originally supports keyword equality matching.
Our generic construction yields FS-PAEKS schemes under several complexity
assumptions. For example, a lattice-based FS-PAEKS scheme by employing the
Cheng-Meng PAEKS scheme [17] and a pairing-based FS-PAEKS scheme by
employing the Qin et al. PAEKS scheme [49]. These instantiations require ran-
dom oracles because the underlying PAEKS schemes are secure in the random
oracle model. Other FS-PAEKS schemes can be obtained by employing PAEKS
schemes instantiated by a generic construction of PAEKS [21]. Especially, the
generic construction of PAEKS [21] does not require random oracles, and thus
our generic construction yields FS-PAEKS schemes without random oracles. To
date, a concrete FS-PAEKS scheme has been proposed by Jiang et al. [30]. We
remark that Jiang et al. [30] employed symmetric pairings which can be seen
as a DDH solver (where DDH stands for decisional Diffie-Hellman), but they
assumed that the DDH problem is hard. Actually, their FS-PAEKS scheme does
not provide forward security. We give a concrete attack in Sect. 6. As an inde-
pendent work, Xu et al. [56] proposed a generic construction of FS-PAEKS.
They employed the Liu et al. generic construction of PAEKS [44] that requires
random oracles as mentioned in [21].1 Thus, our generic construction yields the
first secure FS-PAEKS schemes without random oracles.

FS-PEKS: Our generic construction is quite simple, and it can also be applied to
construct FS-PEKS. This eliminates the hierarchical structure or attribute-based
feature of the previous generic constructions which is meaningful from a feasi-
bility perspective. In addition, since PEKS can be constructed from anonymous
IBE [1], efficient FS-PEKS constructions can be obtained easily. For example,
if we employ the Boneh-Franklin (BF) IBE scheme [9] as the component of the
underlying PEKS scheme, then an efficient pairing-based FS-PEKS scheme in the
random oracle model can be constructed. If the Gentry-Peikert-Vaikuntanathan
(GPV) IBE scheme [24] is employed, then an efficient lattice-based FS-PEKS
scheme in the quantum random oracle model can be constructed.2 Moreover, FS-
PEKS schemes that are secure in the standard model also can be obtained from
the Gentry IBE scheme [23], the Lewko IBE scheme [40], the Chen-Wei-Ling-
Wang-Wee IBE (CLLWW) scheme [15], the Kurosawa-Phong IBE scheme [37],
the Jutla-Roy (JR) IBE scheme [31], the Katsumata IBE scheme [34], the
Yamada IBE scheme [57], and the Jager-Kurek-Niehues IBE scheme [29]. In
the Zeng et al. FS-PEKS scheme [59], the ciphertext size and the trapdoor size
depend on the bit length of the time period. Thus, our generic construction
yields a comparably efficient FS-PEKS scheme, in terms of ciphertext/trapdoor
size and search complexity. In Table 1, we give comparisons among the Zeng

1 A flaw in the security proof of the generic construction [44] is identified in [21], and
random oracles are introduced to fix the flaw in the ePrint version [43].

2 The GPV-IBE scheme is secure in the quantum random oracle model [35].

240 K. Emura

Table 1. Comparison among the Zeng et al. FS-PEKS scheme, the Abdalla et
al. PETKS scheme, and our two pairing-based instantiations. First we construct PEKS
schemes from the BF-IBE scheme [9] (over symmetric bilinear groups (G,GT)) and
the CLLWW IBE scheme [15] (over asymmetric bilinear groups (G1,G2,GT)) via the
Abdalla et al. transformation [1], and next we construct FS-PEKS schemes from these
PEKS schemes. We denote “Ours + BF-IBE” or “Ours + CLLWW-IBE” as these
FS-PEKS schemes. Let � be the bit length of time period specified in the encryption
and trapdoor generation algorithms, i.e., � = O(log t). We employ the security param-
eter λ to indicate the output size of the hash function (from GT to {0, 1}λ) used in
the BF-IBE scheme. ROM stands for random oracle model, STD stands for standard
model, GGM stands for generic group model, BDH stands for bilinear Diffie-Hellman,
and SXDH stands for symmetric external Diffie-Hellman.

FS-PEKS Scheme Ciphertext Size Trapdoor Size Assump STD /ROM

Zeng et al. [59] (4 + �)|G| (3 + �)|G| GGM ROM

Abdalla et al. [1] (PETKS) �|G| + λ �((� + 1)|G| + |Zp|) BDH ROM

Ours + BF-IBE �(|G| + 2λ) �|G| BDH ROM

Ours + CLLWW-IBE �(2|GT | + 4|G1|) 4�|G2| SXDH STD

et al. FS-PEKS scheme, the Abdalla et al. PETKS scheme instantiated by
the Gentry-Silverberg HIBE scheme [25] with a slight modification to provide
level-1 anonymity, and our two pairing-based instantiations from PEKS schemes
which are instantiations of the Abdalla et al. transformation from the BF-IBE
scheme [9] and the CLLWW IBE scheme [15]. We remark that other PETKS
schemes can be obtained from other HIBE schemes via the Abdalla et al. generic
construction, e.g., anonymous HIBE from pairings [7,38,39,50,51] or from lat-
tices [2,3,10,14]. Especially, these pairing-based instantiations provide PETKS
schemes secure in the standard model. Nevertheless, our construction is more
efficient in terms of the trapdoor size.

2 Preliminaries

Notation. For a positive integer n ∈ N, we write [1, n] = {1, 2, . . . , n}. x
$←− S

denotes choosing an element x from a finite set S uniformly at random. For
a security parameter λ, negl(λ) is a negligible function where for any c > 0,
there exists an integer I such that negl(λ) < 1/λc for all λ > I. PPT stands for
probabilistic polynomial-time.

2.1 PAEKS

Definition 1 (Syntax of PAEKS). A PAEKS scheme PAEKS consists of the
following six algorithms (PAEKS.Setup,PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,
PAEKS.Trapdoor,PAEKS.Test) defined as follows.

PAEKS.Setup: The setup algorithm takes a security parameter λ as input, and
outputs a common parameter pp. We assume that pp implicitly contains the
keyword space KS.

Generic Construction of FS-PAEKS 241

PAEKS.KGR: The receiver key generation algorithm takes pp as input, and out-
puts a public key pkR and secret key skR.

PAEKS.KGS: The sender key generation algorithm takes pp as input, and outputs
a public key pkS and secret key skS.

PAEKS.Enc: The keyword encryption algorithm takes pkR, pkS, skS, and a key-
word kw ∈ KS as input, and outputs a ciphertext ctPAEKS.

PAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, and a keyword
kw′ ∈ KS as input, and outputs a trapdoor tdS,kw′ .

PAEKS.Test: The test algorithm takes ctPAEKS and tdS,kw′ as input, and outputs
1 or 0.

Definition 2 (Correctness). For any security parameter λ, any common
parameter pp ← PAEKS.Setup(1λ), any key pairs (pkR, skR) ← PAEKS.KGR(pp)
and (pkS, skS) ← PAEKS.KGS(pp), and any keyword kw ∈ KS, let ctPAEKS ←
PAEKS.Enc(pkR, pkS, skS, kw) and tdS,kw ← PAEKS.Trapdoor(pkR, pkS, skR, kw).
Then Pr[PAEKS.Test(ctPAEKS, tdS,kw) = 1] = 1 − negl(λ) holds.

Next, we define consistency that defines the condition by which
the PAEKS.Test algorithm outputs 0. As in PEKS, essentially, 0 ←
PAEKS.Test(ctPAEKS, tdS,kw) when ctPAEKS ← PAEKS.Enc(pkR, pkS, skS, kw),
tdS,kw′ ← PAEKS.Trapdoor(pkR, pkS, skR, kw′), and kw �= kw′. However, due to
its authenticity, a trapdoor associated with a sender should not work against
ciphertexts generated by the secret key of another sender, even if the same key-
word is associated. Thus, we introduce the definition given in [21] that considers
consistency in a multi-sender setting.

Definition 3 (Computational Consistency). For all PPT adversaries A,
we define the following experiment.

ExpconsistPAEKS,A(λ) :

pp ← PAEKS.Setup(1λ); (pkR, skR) ← PAEKS.KGR(pp)
(pkS[0], skS[0]) ← PAEKS.KGS(pp); (pkS[1], skS[1]) ← PAEKS.KGS(pp)

(kw, kw′, i, j) ← A(pp, pkR, pkS[0], pkS[1])

s.t. kw, kw′ ∈ KS ∧ i, j ∈ {0, 1} ∧ (kw, i) �= (kw′, j)
ctPAEKS ← PAEKS.Enc(pkR, pkS[i], skS[i], kw)

tdS[j],kw′ ← PAEKS.Trapdoor(pkR, pkS[j], skR, kw′)

If PAEKS.Test(ctPAEKS, tdS[j],kw′) = 1, then output 1, and 0 otherwise.

We say that a PAEKS scheme PAEKS is consistent if the advantage
AdvconsistPAEKS,A(λ) := Pr[ExpconsistPAEKS,A(λ) = 1] is negligible in the security parame-
ter λ.

Next, we define indistinguishability against the chosen keyword attack (IND-
CKA) which guarantees that no information about the keyword is leaked from
ciphertexts.

242 K. Emura

Definition 4 (IND-CKA). For all PPT adversaries A, we define the follow-
ing experiment.

ExpIND-CKA
PAEKS,A(λ, n) :

pp ← PAEKS.Setup(1λ); (pkR, skR) ← PAEKS.KGR(pp)
For i ∈ [1, n], (pkS[i], skS[i]) ← PAEKS.KGS(pp)

(kw∗
0 , kw∗

1 , i
∗, state) ← AO(pp, pkR, {pkS[i]}i∈[1,n])

s.t. kw∗
0 , kw∗

1 ∈ KS ∧ kw∗
0 �= kw∗

1 ∧ i∗ ∈ [1, n]

b
$←− {0, 1}; ct∗PAEKS ← PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw∗

b)

b′ ← AO(state, ct∗PAEKS)
If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(pkR, ·, ·),OT (pkR, ·, skR, ·)}. OC takes kw ∈ KS and i ∈ [1, n] as
input, and returns the result of PAEKS.Enc(pkR, pkS[i], skS[i], kw). Here, there is
no restriction. OT takes kw′ ∈ KS and i ∈ [1, n] as input, and returns the result
of PAEKS.Trapdoor(pkR, pkS[i], skR, kw′). Here (kw′, i) �∈ {(kw∗

0 , i
∗), (kw∗

1 , i
∗)}.

We say that a PAEKS scheme PAEKS is IND-CKA secure if the advantage
AdvIND-CKA

PAEKS,A(λ, n) := |Pr[ExpIND-CKA
PAEKS,A(λ, n) = 1]− 1/2| is negligible in the security

parameter λ.
Qin et al. [48] considered multi-ciphertext indistinguishability (MCI) where in
the IND-CKA experiment A declares two keyword vectors (kw∗

0,1, . . . , kw∗
0,N)

and (kw∗
1,1, . . . , kw∗

1,N) for some N , and the challenger returns the challenge
ciphertexts of kw∗

b,i for i ∈ [1, N]. The concept of MCI is to capture unlinkability
of ciphertexts where it is difficult to distinguish whether two ciphertexts are
encryptions of the same keyword or not. As mentioned in [49], if the encryption
oracle OC has no restriction (i.e., any input is allowed), then IND-CKA implies
MCI. Thus, the above definition provides MCI security.

Next, we define indistinguishability against the inside keyword guessing
attack (IND-IKGA) which guarantees that no information about the keyword is
leaked from trapdoors.
Definition 5 (IND-IKGA). For all PPT adversaries A, we define the fol-
lowing experiment.

ExpIND-IKGA
PAEKS,A (λ, n) :

pp ← PAEKS.Setup(1λ); (pkR, skR) ← PAEKS.KGR(pp)
For i ∈ [1, n], (pkS[i], skS[i]) ← PAEKS.KGS(pp)

(kw∗
0 , kw∗

1 , i
∗, state) ← AO(pp, pkR, {pkS[i]}i∈[1,n])

s.t. kw∗
0 , kw∗

1 ∈ KS ∧ kw∗
0 �= kw∗

1 ∧ i∗ ∈ [1, n]

b
$←− {0, 1}; td∗

S[i∗],kw∗
b

← PAEKS.Trapdoor(pkR, pkS[i∗], skR, kw∗
b)

b′ ← AO(state, td∗
S[i∗],kw∗

b
)

If b = b′ then output 1, and 0 otherwise.

Generic Construction of FS-PAEKS 243

Here, O := {OC(pkR, ·, ·),OT (pkR, ·, skR, ·)}. OC takes kw ∈ KS and i ∈
[1, n] as input, and returns the result of PAEKS.Enc(pkR, pkS[i], skS[i], kw). Here,
(kw, i) �∈ {(kw∗

0 , i
∗), (kw∗

1 , i
∗)}. OT takes kw′ ∈ KS and i ∈ [1, n] as input,

and returns the result of PAEKS.Trapdoor(pkR, pkS[i], skR, kw′). Here (kw′, i) �∈
{(kw∗

0 , i
∗), (kw∗

1 , i
∗)}. We say that a PAEKS scheme PAEKS is IND-IKGA

secure if the advantage AdvIND-IKGA
PAEKS,A (λ, n) := |Pr[ExpIND-IKGA

PAEKS,A (λ, n) = 1] − 1/2|
is negligible in the security parameter λ.

Pan and Li [46] considered multi-trapdoor indistinguishability (MTI) where in
the IND-IKGA experiment A declares two keyword vectors (kw∗

0,1, . . . , kw∗
0,N)

and (kw∗
1,1, . . . , kw∗

1,N) for some N , and the challenger returns the challenge
trapdoors of kw∗

b,i for i ∈ [1, N]. The concept of MTI is to capture unlinkability of
trapdoors where it is difficult to distinguish whether two trapdoors are generated
for the same keyword or not. Although the above definition does not capture
MTI, it can be modified to capture MTI if A is allowed to send either (kw∗

0 , i
∗)

or (kw∗
1 , i

∗) to the trapdoor oracle OT .

2.2 0/1 Encodings

Here, we introduce 0/1 encodings [41]. Let t ∈ N be a �-bit positive integer,
and its binary representation is denoted t = t�t�−1 · · · t1 where ti ∈ {0, 1} for all
i ∈ [1, �]. The 0-encoding algorithm takes � and t as input, and outputs a set of
strings S0

t defined as follows.

S0
t = {t�t�−1 · · · ti+11 | ti = 0, i ∈ [1, �]}

We denote S0
t = {s0t,1, s

0
t,2, . . . , s

0
t,�0t

} where �0t is the number of strings contained
in S0

t and is at most O(log t) = O(�). Similarly, the 1-encoding algorithm takes
� and t′ as input and outputs a set of strings S1

t′ defined as follows.

S1
t′ = {t′�t′�−1 · · · t′i | t′i = 1, i ∈ [1, �]}

We denote S1
t′ = {s1t′,1, s

1
t′,2, . . . , s

1
t′,�1

t′
} where �1t′ is the number of strings con-

tained in S1
t′ and is at most O(log t′) = O(�). As an example, � = 4 and

t, t′ ∈ {7, 12} define S0
7 = {1}, S1

7 = {01, 011, 0111}, S0
12 = {111, 1101}, and

S1
12 = {1, 11}, since 7(10) = (0111)(2) and 12(10) = (1100)(2). We remark that

“1” and “01” are different strings. The encodings are effective to compare two
integer values, t and t′, because the following holds as shown by Lin et al. [41].

S0
t ∩ S1

t′ �= ∅ ⇐⇒ t < t′

In other word, the encodings are effective to translate an inequality condition
t < t′ to an equality condition, i.e., for all s0t,i ∈ S0

t and s1t′,j ∈ S1
t′ , check whether

s0t,i = s1t′,j or not where i ∈ [1, �0t] and j ∈ [1, �1t′]. The number of equality checks
is at most �0t · �1t′ = O(log t · log t′) = O(�2). Previous FS-PAEKS [30] and FS-
PEKS [36,59] also employed the encodings. Moreover, group signatures with
time-bound keys [42] also employed these encodings.

244 K. Emura

3 Definition of FS-PAEKS

In this section, we define FS-PAEKS. The encryption algorithm takes a time
period t and the trapdoor generation algorithm takes a time period t′ (in addition
to other inputs required in the syntax of PAEKS). In addition to the search
condition defined in PAEKS, a trapdoor works if t < t′, that is, a newly generated
ciphertext is not allowed to be searched by previously generated trapdoors.

Definition 6 (Syntax of FS-PAEKS). An FS-PAEKS scheme FS-PAEKS
consists of the following six algorithms (FS-PAEKS.Setup,FS-PAEKS.KGR,
FS-PAEKS.KGS,FS-PAEKS.Enc,FS-PAEKS.Trapdoor,FS-PAEKS.Test) defined as
follows.

FS-PAEKS.Setup: The setup algorithm takes a security parameter λ as input,
and outputs a common parameter pp. We assume that pp implicitly contains
the keyword space KS and the time space T .

FS-PAEKS.KGR: The receiver key generation algorithm takes pp as input, and
outputs a public key pkR and a secret key skR.

FS-PAEKS.KGS: The sender key generation algorithm takes pp as input, and
outputs a public key pkS and a secret key skS.

FS-PAEKS.Enc: The keyword encryption algorithm takes pkR, pkS, skS, a key-
word kw ∈ KS, and a time period t ∈ T as input, and outputs a ciphertext
FS-ctPAEKS.

FS-PAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, a keyword
kw′ ∈ KS, and a time period t′ ∈ T as input, and outputs a trapdoor
tdS,kw′,t′ .

FS-PAEKS.Test: The test algorithm takes ctPAEKS and tdS,kw′,t′ as input, and
outputs 1 or 0.

Definition 7 (Correctness). For any security parameter λ, any common
parameter pp←FS-PAEKS.Setup(1λ), any key pairs (pkR, skR)←FS-PAEKS.KGR

(pp) and (pkS, skS) ← FS-PAEKS.KGS(pp), and any keyword kw ∈ KS and
any time periods t′, t ∈ T where t < t′, let FS-ctPAEKS ← FS-PAEKS.Enc(pkR,
pkS, skS, kw, t) and tdS,kw,t′ ← FS-PAEKS.Trapdoor(pkR, pkS, skR, kw, t′). Then
Pr[FS-PAEKS.Test(FS-ctPAEKS, tdS,kw,t′) = 1] = 1 − negl(λ) holds.

Next, we define consistency. As in PAEKS, due to its authenticity, a trap-
door associated with a sender should not work against ciphertexts generated
by the secret key of another sender, even if the same keyword is associated.
In addition, due to the forward security, a newly generated ciphertext should
not be searchable by previously generated trapdoors, even if the same key-
word and legitimate sender public key are specified. Thus, we add the condition
(kw, i) = (kw′, j) ∧ t > t′ below.

Generic Construction of FS-PAEKS 245

Definition 8 (Computational Consistency). For all PPT adversaries A,
we define the following experiment.

ExpconsistFS-PAEKS,A(λ) :

pp ← FS-PAEKS.Setup(1λ); (pkR, skR) ← FS-PAEKS.KGR(pp)

(pkS[0], skS[0]) ← FS-PAEKS.KGS(pp); (pkS[1], skS[1]) ← FS-PAEKS.KGS(pp)

(kw, kw′, t, t′, i, j) ← A(pp, pkR, pkS[0], pkS[1])

s.t. kw, kw′ ∈ KS ∧ i, j ∈ {0, 1} ∧ t, t′ ∈ T
∧

(
(kw, i) �= (kw′, j) ∨

(
(kw, i) = (kw′, j) ∧ t > t′))

FS-ctPAEKS ← FS-PAEKS.Enc(pkR, pkS[i], skS[i], kw, t)

tdS[j],kw′,t′ ← FS-PAEKS.Trapdoor(pkR, pkS[j], skR, kw′, t′)

If FS-PAEKS.Test(FS-ctPAEKS, tdS[j],kw′,t′) = 1 then output 1, and 0 otherwise.

We say that an FS-PAEKS scheme FS-PAEKS is consistent if the advantage
AdvconsistPAEKS,A(λ) := Pr[ExpconsistFS-PAEKS,A(λ) = 1] is negligible in the security parameter
λ.

Next, we define indistinguishability against the chosen keyword attack with
forward security (IND-FS-CKA) which guarantees that no information about the
keyword is leaked from ciphertexts. Due to the forward security, an adversary A
is allowed to obtain trapdoors for the challenge keyword and the challenge sender
if the trapdoor is generated at t′ < t∗ where the challenge ciphertext is generated
at t∗. Thus, we add the condition (kw′, i) ∈ {(kw∗

0 , i
∗), (kw∗

1 , i
∗)} ∧ t′ < t∗ to

the OT oracle. We also remark that Jiang et al. [30] introduced selective forward
security where an adversary declares t∗ prior to the setup phase. We consider
adaptive security where an adversary declares t∗ in the challenge phase.3

Definition 9 (IND-FS-CKA). For all PPT adversaries A, we define the
following experiment.

ExpIND-FS-CKA
FS-PAEKS,A(λ, n) :

pp ← FS-PAEKS.Setup(1λ); (pkR, skR) ← FS-PAEKS.KGR(pp)
For i ∈ [1, n], (pkS[i], skS[i]) ← FS-PAEKS.KGS(pp)

(kw∗
0 , kw∗

1 , i
∗, t∗, state) ← AO(pp, pkR, {pkS[i]}i∈[1,n])

s.t. kw∗
0 , kw∗

1 ∈ KS ∧ kw∗
0 �= kw∗

1 ∧ i∗ ∈ [1, n] ∧ t∗ ∈ T

b
$←− {0, 1}; ct∗FS-PAEKS ← FS-PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw∗

b , t∗)

b′ ← AO(state, ct∗FS-PAEKS)
If b = b′ then output 1, and 0 otherwise.

3 They are equivalent to |T | reduction and selective forward security is sufficient if |T |
is a polynomial of the security parameter.

246 K. Emura

Here, O := {OC(pkR, ·, ·, ·),OT (pkR, ·, skR, ·, ·)}. OC takes kw ∈ KS, t ∈ T ,
and i ∈ [1, n] as input, and returns the result of FS-PAEKS.Enc(pkR, pkS[i],
skS[i], kw, t). Here, there is no restriction. OT takes kw′ ∈ KS, t′ ∈ T , and
i ∈ [1, n] as input, and returns the result of FS-PAEKS.Trapdoor(pkR, pkS[i],
skR, kw′, t′). Here (kw′, i) �∈ {(kw∗

0 , i
∗), (kw∗

1 , i
∗)} or (kw′, i) ∈ {(kw∗

0 , i
∗), (kw∗

1 ,
i∗)} ∧ t′ < t∗. We say that an FS-PAEKS scheme FS-PAEKS is IND-FS-
CKA secure if the advantage AdvIND-FS-CKA

FS-PAEKS,A(λ, n) := |Pr[ExpIND-FS-CKA
FS-PAEKS,A(λ, n) =

1] − 1/2| is negligible in the security parameter λ.

Next, we define indistinguishability against the inside keyword guessing
attack with forward security (IND-FS-IKGA) which guarantees that no infor-
mation about the keyword is leaked from trapdoors. Due to the forward secu-
rity, an adversary A is allowed to obtain ciphertexts for the challenge keyword
and the challenge sender if the ciphertext is generated at t > t∗ where the
challenge trapdoor is generated at t∗. Thus, we add the condition (kw, i) ∈
{(kw∗

0 , i
∗), (kw∗

1 , i
∗)}∧ t > t∗ to the OC oracle. As in IND-FS-CKA, we consider

adaptive security where an adversary declares t∗ in the challenge phase, although
Jiang et al. [30] introduced selective forward security.

Definition 10 (IND-FS-IKGA). For all PPT adversaries A, we define the
following experiment.

ExpIND-FS-IKGA
FS-PAEKS,A (λ, n) :

pp ← FS-PAEKS.Setup(1λ); (pkR, skR) ← FS-PAEKS.KGR(pp)
For i ∈ [1, n], (pkS[i], skS[i]) ← FS-PAEKS.KGS(pp)

(kw∗
0 , kw∗

1 , i
∗, t∗, state) ← AO(pp, pkR, {pkS[i]}i∈[1,n])

s.t. kw∗
0 , kw∗

1 ∈ KS ∧ kw∗
0 �= kw∗

1 ∧ i∗ ∈ [1, n] ∧ t∗ ∈ T

b
$←− {0, 1}; td∗

S[i∗],kw∗
b ,t∗ ← FS-PAEKS.Trapdoor(pkR, pkS[i∗], skR, kw∗

b , t∗)

b′ ← AO(state, td∗
S[i∗],kw∗

b ,t∗)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(pkR, ·, ·, ·),OT (pkR, ·, skR, ·, ·)}. OC takes kw ∈ KS, t ∈ T ,
and i ∈ [1, n] as input, and returns the result of FS-PAEKS.Enc(pkR, pkS[i], skS[i],
kw, t). Here, (kw, i) �∈ {(kw∗

0 , i
∗), (kw∗

1 , i
∗)} or (kw, i) ∈ {(kw∗

0 , i
∗), (kw∗

1 , i
∗)} ∧

t > t∗. OT takes kw′ ∈ KS, t′ ∈ T , and i ∈ [1, n] as input, and
returns the result of FS-PAEKS.Trapdoor(pkR, pkS[i], skR, kw′, t′). Here (kw′, i) �∈
{(kw∗

0 , i
∗), (kw∗

1 , i
∗)}. We say that an FS-PAEKS scheme FS-PAEKS is IND-FS-

IKGA secure if the advantage AdvIND-FS-IKGA
FS-PAEKS,A (λ, n) := |Pr[ExpIND-FS-IKGA

FS-PAEKS,A (λ, n) =
1] − 1/2| is negligible in the security parameter λ.

4 Our Generic Construction of FS-PAEKS

Trivial and Insecure Construction. One trivial construction of FS-PAEKS is
to employ a double encryption method. That is, a PAEKS ciphertext is encrypted

Generic Construction of FS-PAEKS 247

by a public key encryption scheme supporting time-related functionality, e.g.,
past time-specific encryption (PTSE) [32,33] which is a special case of time-
specific encryption [47]. In PTSE, the encryption and key extraction algorithms
take a time t and t′ as input, respectively, and the decryption key works when
t < t′. Thus, a PAEKS ciphertext of a keyword kw is encrypted by PTSE with
a time period t, and a trapdoor is a PAEKS trapdoor of a keyword kw′ and
a PTSE decryption key associated with time period t′. If t < t′, then a PTSE
ciphertext can be decrypted by the decryption key, and then the test algorithm
of the underlying PAEKS scheme determines whether kw = kw′ or not using
a PAEKS trapdoor. This construction provides correctness and appears to be
secure because no information about the keyword is revealed from ciphertexts
(owing to the IND-CPA security of PTSE) and trapdoors (owing to the IND-
IKGA security of PAEKS). However, this construction does not provide the
IND-FS-CKA security because the keyword-related and time-related parts of a
trapdoor are generated separately. For example, an adversary obtains a trapdoor
for the challenge keyword kw∗

0 and a time period t′ < t∗, and obtains a trapdoor
for any keyword kw �∈ {kw∗

0 , kw∗
1} and a time period t∗. Then, the adversary

can generate a trapdoor for kw∗
0 at t∗ which works to distinguish whether the

challenge ciphertext is an encryption of kw∗
0 or kw∗

1 . This insecure construc-
tion suggests that we connect the keyword-related and time-related parts in an
inseparable manner, and this is the reason behind of our attack works against
the Jiang et al. FS-PAEKS scheme.

High-Level Description. A naive way to connect the keyword-related and
time-related parts in an inseparable manner is to consider kw||t for encryption
and kw′||t′ for trapdoor as keywords. However, this construction only provides
the equality matching as in PAEKS, i.e., it checks whether kw||t = kw′||t′ or
not, and does not check the inequality condition t < t′. Thus, we employ 0/1
encodings to translate the inequality condition t < t′ to an equality condition.
Essentially, a ciphertext of FS-PAEKS for a keyword kw and a time period t is
a set of PAEKS ciphertexts for the keyword kw||s0t,i for all s0t,i ∈ S0

t . Similarly,
a trapdoor of FS-PAEKS for a keyword kw′ and a time period t′ is a set of
PAEKS trapdoors for the keyword kw′||s1t′,j for all s1t′,j ∈ S1

t′ . t < t′ holds if and
only if there exists i and j such that s0t,i = s1t′,j since S0

t ∩ S1
t′ �= ∅. For such i

and j, kw||s0t,i = kw′||s1t′,j holds if kw = kw′. Thus, by using the test algorithm
of the underlying PAEKS scheme, we can check both t < t′ and kw = kw′

simultaneously. Thus, obviously correctness holds. For consistency, let i and
j be selected by the adversary A in ExpconsistFS-PAEKS,A. When (kw, i) �= (kw′, j),
our construction provides consistency since the underlying PAEKS scheme is
consistent. When (kw, i) = (kw′, j) ∧ t > t′, since S0

t ∩ S1
t′ = ∅, this case is

reduced to the case kw||s0t,i �= kw′||s1t′,j ∧ i = j but the test algorithm outputs
1. Since this contradicts the consistency of the underlying PAEKS scheme, our
construction provides consistency. Moreover, intuitively, no information about
the keyword is revealed from ciphertexts and trapdoors due to the IND-CKA
security and IND-IKGA security of the underlying PAEKS scheme. The size

248 K. Emura

of FS-ctPAEKS (resp. tdS,kw′,t′) is �0t -times (resp. �1t′ -times) greater than that of
ctPAEKS (resp. tdS,kw′). Since �0t and �1t′ are at most the bit length of time period,
our construction is scalable. We remark that information of time period could
be leaked unless information of keyword is not leaked. Thus, the FS-PAEKS.Test
algorithm needs to run the PAEKS.Test algorithm only once by finding i and j
such that s0t,i = s1t′,j . This technique is also employed in the FS-PEKS scheme
proposed by Zeng et al. [59].

As a remaining issue, we must consider the following trapdoor/ciphertext
re-use cases. For example, S1

7 = {01, 011, 0111} contains S1
6 = {01, 011}. That

is, A can obtain a trapdoor at t′ = 6 when A obtains a trapdoor at t′ = 7
because a trapdoor at t′ = 7 contains a trapdoor at t′ = 6. However, this
trapdoor derivation for previous time period does not affect the IND-FS-CKA
security because A is allowed to obtain trapdoors for a challenge keyword and
sender (kw′, i) ∈ {(kw∗

0 , i
∗), (kw∗

1 , i
∗)} only when the trapdoors are associated

with a previous time period t′ < t∗. That is, if other trapdoor is derived from the
trapdoors for a challenge keyword and sender, it does not work for distinguishing
which keyword is selected for generating the challenge ciphertext. Towards this
direct trapdoor derivation case, we need to guarantee that any combination of
trapdoors obtained via the trapdoor oracle does not affect the IND-FS-CKA
security. This can be shown by the fact that t > t′ if and only if S0

t ∩ S1
t′ = ∅.

Similarly, A may obtain ciphertexts associated to a future time period. For
example, S0

8 = {11, 101, 1001} contains S0
9 = {11, 101}. That is, A can obtain a

ciphertext at t = 9 when A obtains a ciphertext at t = 8 because a ciphertext
at t = 9 contains a ciphertext at t = 8. However, this situation also does not
affect the IND-FS-IKGA security because A is allowed to obtain ciphertexts for
the challenge keyword and sender (kw, i) ∈ {(kw∗

0 , i
∗), (kw∗

1 , i
∗)} only when the

ciphertexts are associated with a future time period t > t∗. That is, if other
ciphertext is derived from the ciphertexts for a challenge keyword and sender,
it does not work for distinguishing which keyword is selected for generating the
challenge trapdoor. Towards this direct ciphertext derivation case, we need to
guarantee that any combination of ciphertexts obtained via the encryption oracle
does not affect the IND-FS-IKGA security. This can be shown by the fact that
t > t′ if and only if S0

t ∩ S1
t′ = ∅.4

We construct FS-PAEKS = (FS-PAEKS.Setup,FS-PAEKS.KGR,FS-PAEKS.
KGS,FS-PAEKS.Enc,FS-PAEKS.Trapdoor,FS-PAEKS.Test) from PAEKS =
(PAEKS.Setup,PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,PAEKS.Trapdoor,PAEKS.
Test) as follows. We assume that the underlying PAEKS scheme supports the

4 Although the trapdoor/ciphertext derivation does not affect IND-FS-CKA/IND-FS-
IKGA security, it violates unforgeability of the time period where a trapdoor (resp.
ciphertext) associated with a time period is converted to a trapdoor (resp. ciphertext)
associated to a previous (resp. future) time period. Because such unforgeability is
not required as a security of FS-PAEKS, we do not consider the time delegatability
anymore. We remark that, in the group signatures with time-bound keys context,
such unforgeability is considered [22,52]. It might be interesting to consider such
unforgeability in the FS-P(A)EKS context.

Generic Construction of FS-PAEKS 249

keyword space {0, 1}2� where � is a polynomial of λ. Then, our construction sup-
ports KS = T = {0, 1}� because we consider kw||s0t,i or kw′||s1t′,j as keyword.

Generic Construction of FS-PAEKS

FS-PAEKS.Setup(1λ): Run pp ← PAEKS.Setup(1λ) and output pp that contains
KS = {0, 1}� and T = {0, 1}� where � is a polynomial of λ.

FS-PAEKS.KGR(pp): Run (pkR, skR) ← PAEKS.KGR(pp) and output (pkR, skR).
FS-PAEKS.KGS(pp):] Run (pkS, skS) ← PAEKS.KGS(pp) and output (pkS, skS).
FS-PAEKS.Enc(pkR, pkS, skS, kw, t): Define S0

t = {s0t,1, s
0
t,2, . . . , s

0
t,�0t

}. For all
i ∈ [1, �0t], run ctPAEKSi ← PAEKS.Enc(pkR, pkS, skS, kw||s0t,i). Output
FS-ctPAEKS = (t, {ctPAEKSi}i∈[1,�0t]

).

FS-PAEKS.Trapdoor(pkR, pkS, skR, kw′, t′): Define S1
t′ = {s1t′,1, s

1
t′,2, . . . , s

1
t′,�1

t′
}.

For
all j ∈ [1, �1t′], run tdS,kw′||s1

t′,j
← PAEKS.Trapdoor(pkR, pkS, skR, kw′||s1t′,j).

Output tdS,kw′,t′ = (t′, {tdS,kw′||s1
t′,j

}j∈[1,�1
t′]).

FS-PAEKS.Test(FS-ctPAEKS, tdS,kw′,t′): Parse FS-ctPAEKS = (t, {ctPAEKSi}i∈[1,�0t]
)

and tdS,kw,t′ = (t′, {tdS,kw′||s1
t′,j

}j∈[1,�1
t′]). If t > t′, then output 0. Oth-

erwise, if t < t′, then find i and j such that s0t,i = s1t′,j . If 1 =
PAEKS.Test(ctPAEKSi, tdS,kw′||s1

t′,j
), then output 1, and 0 otherwise.

As mentioned in the high-level description paragraph, our generic construction
is correct if the underlying PAEKS scheme is correct, due to 0/1 encodings.

Generic Construction of FS-PEKS. Our technique can also be employed to
construct FS-PEKS. The definition of FS-PEKS can be trivially derived from
those of FS-PAEKS by eliminating sender key related parts. As in our generic
construction of FS-PAEKS, a ciphertext at t is a set of PEKS ciphertexts gener-
ated by kw||s0t,i for all s0t,i ∈ S0

t and a trapdoor at t′ is a set of PEKS trapdoors
generated by kw′||s1t′,i for all s1t′,i ∈ S1

t′ . We remark that anyone can gener-
ate a ciphertext unlike to (FS-)PAEKS, and thus an encryptor may not follow
to employ the 0 encoding and can encrypt any keyword. However, this situa-
tion does not affect the security (i.e., still no information about the keyword is
revealed from ciphertexts due to the security of the underlying PEKS scheme).

5 Security Analysis

Theorem 1. Our generic construction is consistent if the underlying PAEKS
scheme is consistent.

Proof. Let i and j be chosen by the adversary A in ExpconsistFS-PAEKS,A. If
(kw, i) �= (kw′, j), then obviously consistency holds due to the consis-
tency of the underlying PAEKS scheme because the winning conditions of
the both experiments are the same. Thus, we consider the case (kw, i) =

250 K. Emura

(kw′, j) ∧ t > t′ as follows. Let A be the adversary of FS-PAEKS con-
sistency and C be the challenger of PAEKS consistency. We construct an
algorithm B that breaks the consistency of the PAEKS scheme as follows.
First, C sends (pp, pkR, pkS[0], pkS[1]) to B. B forwards (pp, pkR, pkS[0], pkS[1])
to A. A declares (kw, kw′, t, t′, i, j) where (kw, i) = (kw′, j) ∧ t > t′. B
defines S0

t = {s0t,1, s
0
t,2, . . . , s

0
t,�0t

} and S1
t′ = {s1t′,1, s

1
t′,2, . . . , s

1
t′,�1

t′
}. Since

t > t′, S0
t ∩ S1

t′ = ∅. Now, FS-PAEKS.Test(FS-ctPAEKS, tdS[j],kw′,t′) =
1 holds where FS-ctPAEKS ← FS-PAEKS.Enc(pkR, pkS[i], skS[i], kw, t) and
tdS[j],kw′,t′ ← FS-PAEKS.Trapdoor(pkR, pkS[j], skR, kw′, t′) since A breaks the
consistency. Thus, there exist i∗ ∈ [1, �0t] and j∗ ∈ [1, �1t′] such that 1 =
PAEKS.Test(ctPAEKSi∗ , tdS[j],kw′||s1

t′,j∗) and kw||s0t,i∗ �= kw′||s1t′,j∗ hold. B ran-

domly guesses such i∗ and j∗ and sends (kw||s0t,i∗ , kw′||s1t′,j∗ , i, j) to C. If the
guess is correct (with probability of at least 1/(�0t �

1
t′) which is non-negligible),

B breaks the consistency of the underlying PAEKS scheme. This concludes the
proof.
�

Theorem 2. Our generic construction is IND-FS-CKA secure if the underlying
PAEKS scheme is IND-CKA secure.

Proof. Let A be the adversary of IND-FS-CKA and C be the challenger of
IND-CKA. We construct an algorithm B that breaks the IND-CKA security of
the PAEKS scheme as follows. First, C sends (pp, pkR, {pkS[i]}i∈[1,n]) to B. B
forwards (pp, pkR, {pkS[i]}i∈[1,n]) to A.

When A sends kw ∈ KS, t ∈ T , and i ∈ [1, n] to OC , B defines S0
t =

{s0t,1, s
0
t,2, . . . , s

0
t,�0t

}. Then, for all k ∈ [1, �0t], B sends kw||s0t,k and i to C and
obtains ctPAEKSk. B returns FS-ctPAEKS = (t, {ctPAEKSi}i∈[1,�0t]

) to A. Since there
is no restriction, the simulation of OC is perfect.

Similarly, when A sends kw′ ∈ KS, t′ ∈ T , and i ∈ [1, n] to OT , B defines
S1

t′ = {s1t′,1, s
1
t′,2, . . . , s

1
t′,�1

t′
}. Then, for all j ∈ [1, �1t′], B sends kw′||s1t′,j and i to

C and obtains tdS,kw′||s1
t′,j

. B returns tdS,kw′,t′ = (t′, {tdS,kw′||s1
t′,j

}j∈[1,�1
t′]) to A.

Here, we need to guarantee that B’s queries do not violate the condition of the
OT oracle in ExpIND-CKA

PAEKS,A(λ, n). In the case of (kw′, i) �∈ {(kw∗
0 , i

∗), (kw∗
1 , i

∗)}, the
simulation is perfect because it does not violate the condition of the OT oracle
in ExpIND-CKA

PAEKS,A(λ, n). In the case of (kw′, i) ∈ {(kw∗
0 , i

∗), (kw∗
1 , i

∗)}∧ t′ < t∗, S0
t∗ ∩

S1
t′ = ∅. Thus, for all i ∈ [1, �0t∗] and j ∈ [1, �1t′], kw′||s1t′,j �∈ {kw∗

0 ||s0t∗,i, kw∗
1 ||s0t∗,i}

holds. Thus, this case also does not violate the condition of the OT oracle in
ExpIND-CKA

PAEKS,A(λ, n). To sum up, the simulation of OT is perfect.
In the challenge phase, A declares (kw∗

0 , kw∗
1 , i

∗, t∗). B defines S0
t∗ = {s0t∗,1,

s0t∗,2, . . . , s
0
t,�0t

}. We define sequential of games Game0, . . . ,Game�0
t∗ as fol-

lows. In Game0, the challenge ciphertext is generated by PAEKS.Enc(pkR,
pkS[i∗], skS[i∗], kw∗

0 ||s0t∗,i) for all i = 1, . . . , �0t∗ . In Game�0
t∗ , the challenge

ciphertext is generated by PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw∗
1 ||s0t∗,i) for all i =

1, . . . , �0t∗ . In Gamei where i ∈ [1, �0t∗ − 1], the j-th challenge ciphertext is
generated by PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw∗

0 ||s0t∗,j) for all j = i + 1, . . . ,

Generic Construction of FS-PAEKS 251

�0t∗ and the k-th challenge ciphertext is generated by PAEKS.Enc(pkR, pkS[i∗],

skS[i∗], kw∗
1 ||s0t∗,k) for all k = 1, . . . , i. Thus, the difference of the success

probability between two neighbor games Gamei and Gamei+1 are bound by
AdvIND-CKA

PAEKS,A(λ, n). That is, the ciphertext generated by (kw∗
0 , i

∗, t∗) and the
ciphertext generated by (kw∗

1 , i
∗, t∗) are indistinguishable with the advantage

�0t∗ · AdvIND-CKA
PAEKS,A(λ, n). This concludes the proof.
�

Theorem 3. Our generic construction is IND-FS-IKGA secure if the underly-
ing PAEKS scheme is IND-IKGA secure.

The proof of Theorem 3 is very similar to that of Theorem 2. The main difference
is: the challenge trapdoor is generated by the PAEKS.Trapdoor algorithm, and the
trapdoor generated by (kw∗

0 , i
∗, t∗) and the trapdoor generated by (kw∗

1 , i
∗, t∗)

are indistinguishable with the advantage �1t∗ · AdvIND-IKGA
PAEKS,A (λ, n). Thus, we omit

the proof.

Remark. Due to our security proofs above, our construction inherits the security
of the underlying PAEKS scheme because the security is reduced to that of the
underlying PAEKS. For example, several PAEKS schemes do not consider the
case that a trapdoor associated with a sender does not work against ciphertexts
generated by the secret key of another sender, even if the same keyword is
associated. They just consider keywords, i.e., if kw �= kw′ then the test algorithm
outputs 0. Even this weaker notion is employed, our generic construction provides
the same security level that the underlying PAEKS schemes provide. Similarly, if
the underlying PAEKS scheme provides MCI/MTI security, then the FS-PAEKS
scheme obtained via our generic construction also provides MCI/MTI security. In
this sense, our generic construction can be instantiated by any previous PAEKS
scheme.

6 Vulnerability of the Jiang Et Al. FS-PAEKS Scheme

In this section, we show that the Jiang et al. FS-PAEKS scheme [30] does not
provide forward security. As mentioned in the introduction section, the main
problem is their pairing selection where a symmetric pairing is employed but the
DDH problem is assumed to be held (Theorem 4.2 in [30]). Let e : G×G → GT

be a pairing where G and GT have the prime order p, and let g ∈ G be a
generator. For a DDH tuple (g, ga, gb, gc), one can check whether c = ab or not
by checking e(ga, gb) = e(gc, g) holds or not. Thus, e can be seen as a DDH
solver.

Although the Jiang et al. FS-PAEKS scheme provides conjunctive keyword
search, for the sake of simplicity, we consider the single keyword case as follows
(but our attack works for conjunctive keyword search). In their scheme, pkR =
gα, skR = α, pkS = gβ , and skS = β where α, β ∈ Zp. Briefly, a ciphertext
contains X = gr1 and CT = hr1fr2 where r1, r2 ∈ Zp. Here, h and f are
related to the keyword kw to be encrypted and are defined as h = H(kw, pkR

skS)
and f = H ′(kw, pkR

skS) for some hash functions H and H ′. That is, a Diffie-
Hellman key pkR

skS = pkS
skR = gαβ is regarded as a key for deriving h and

252 K. Emura

f . Moreover, the ciphertext contains (R0, . . . , R�) where Ri = pkR
ai and ai

is a coefficient of a Lagrange polynomial for all i ∈ [0, �] (here � is the bit-
length of a time period t) which is defined by points (H ′′(s0t,k, pkR

skS), r2) for

some hash function H ′′ and s0t,k ∈ S0
t . That is,

∏
0≤i≤� R

πi
(k)

i = pkR
r2 holds

where π(k) := H ′′(s0t,k, pkR
skS) for any s0t,k ∈ S0

t . A trapdoor contains π1 = gs,

π2 = h′s, and π3 = f ′s/α. Here, h′ and f ′ are related to the keyword kw′ to
be searched and are defined as h′ = H(kw′, pkSskR) and f ′ = H ′(kw′, pkSskR).
If kw = kw′, then h = h′ and f = f ′. Let a ciphertext be generated at t
and a trapdoor be generated at t′, and assume t < t′. Since S0

t ∩ S1
t′ �= ∅,

there exist i and j such that s0t,i = s1t′,j . Because the Lagrange polynomial is

defined by points (H ′′(s0t,k, pkR
skS), r2), μ :=

∏
0≤i≤� R

πi
(j)

i = pkR
r2 holds where

π(j) = H ′′(s1t′,j , pkR
skS) since (π(j), r2) is a point on the polynomial. The trapdoor

contains π(j).
Our attack is described as follows. We distinguish whether the challenge

trapdoor generated at t∗ is for kw∗
0 or kw∗

1 . One observation here is that the
value CT is related to a keyword, and is independent to a time period, and
the values (R0, . . . , R�) are related to a time period, and are independent to a
keyword. Thus, there is room for combining CT for the challenge keyword and
(R0, . . . , R�) for the challenge time period, and our attack below instantiates this
observation.

1. An adversary A issues an encryption query kw∗
0 and t∗ < t where kw∗

0 is a
challenge keyword. Since a newly generated ciphertext is not allowed to be
searched by previously generated trapdoors, this query is not prohibited in
the security model. The ciphertext contains X = gr1 , CT = h∗

0
r1f∗

0
r2 , and

(R0, . . . , R�) where h∗
0 = H(kw∗

0 , pkR
skS) and f∗

0 = H ′(kw∗
0 , pkR

skS).
2. A issues a trapdoor query kw′ �∈ {kw∗

0 , kw∗
1} and t′ where t < t′. Since

kw′ �∈ {kw∗
0 , kw∗

1}, this query is also not prohibited in the security model. Of
course, the test algorithm with the ciphertext and the trapdoor outputs 0.
However, the trapdoor contains π such that μ :=

∏
0≤i≤� Rπi

i = pkR
r2 holds

since t < t′.

Through the procedure, A can obtain X, CT, and μ which are used later.
When A declares kw∗

0 and kw∗
1 , the challenger generates the challenge trap-

door at t∗ for kw∗
b where b ∈ {0, 1}, and it contains π∗

1 = gs, π∗
2 = h∗

b
s, and

π∗
3 = f∗

b
s/α where h∗

b = H(kw∗
b , pkR

skS) and f∗
b = H ′(kw∗

b , pkR
skS). Now

e(π∗
1 ,CT) = e(gs, h∗

0
r1f∗

0
r2)

= e(gs, h∗
0
r1)e(gs, f∗

0
r2)

= e(gr1 , h∗
0
s)e(gr2 , f∗

0
s)

= e(X,h∗
0
s)e(gαr2 , f∗

0
s/α)

= e(X,h∗
0
s)e(pkRr2 , f∗

0
s/α)

= e(X,h∗
0
s)e(μ, f∗

0
s/α)

Generic Construction of FS-PAEKS 253

holds. Thus, if b = 0, then e(π∗
1 ,CT) = e(X,π∗

2)e(μ, π∗
3) holds, and b = 1,

otherwise. So A can distinguish b correctly. We remark that the equation
e(π1,CT) = e(X,π2)e(μ, π3) is employed in their test algorithm. Thus, it seems
not trivial to fix the vulnerability even if DDH-hard asymmetric pairings, such
as [4,5], are employed.

7 Conclusion

In this paper, we proposed a generic construction of FS-PAEKS from PAEKS
and 0/1 encodings. Our generic construction is quite simple, and it can be used to
construct FS-PEKS. It would be interesting to investigate a generic construction
of FS-P(A)EKS without O(log t)-size ciphertext/trapdoor blowup. Considering
frequency analysis attacks [18], which has recently been considered in the PAEKS
context, is also an interesting future work.

Similar to forward security, leakage-abuse attacks (e.g., [6,13,27]) have been
widely researched in the SSE context, and have been overlooked in the PEKS
context, to the best of our knowledge. It would be interesting to investigate the
attack in the P(A)EKS context.

Acknowledgment. The author would like to thank anonymous reviewers of ACNS
2024 for their invaluable comments and suggestions. This work was supported by JSPS
KAKENHI Grant Number JP21K11897. The main part of study was done when the
author was with the National Institute of Information and Communications Technology
(NICT), Japan.

References

1. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, relation
to anonymous IBE, and extensions. J. Cryptol. 21(3), 350–391 (2008)

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: EUROCRYPT, pp. 553–572 (2010)

3. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: CRYPTO, pp. 98–115 (2010)

4. P.S.L.M., Barreto, Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: SCN, pp. 257–267 (2002). https://doi.org/10.1007/3-540-
36413-7 19

5. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order.
In: Selected Areas in Cryptography, pp. 319–331 (2005). https://doi.org/10.1007/
11693383 2

6. Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. The
Internet Society, in NDSS (2020)

7. Blazy, O., Kiltz, E., Pan, J.: (hierarchical) identity-based encryption from affine
message authentication. In: CRYPTO, pp. 408–425 (2014)

8. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: EUROCRYPT, pp. 506–522 (2004)

9. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
CRYPTO, pp. 213–229 (2001)

https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_2
https://doi.org/10.1007/11693383_2

254 K. Emura

10. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based
encryption. In: ASIACRYPT, pp. 404–434 (2016)

11. Calderini, M., Longo, R., Sala, M., Villa, I.: Searchable encryption with random-
ized ciphertext and randomized keyword search. IACR Cryptol. ePrint Arch., 945
(2022)

12. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptol. 20(3), 265–294 (2007)

13. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Ray, I., Li, N., Kruegel, C., editors, ACM CCS, pp.
668–679 (2015)

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

15. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via
asymmetric pairings. Pairing-Based Crypt. 122–140 (2012)

16. Cheng, L., Meng, F.: Security analysis of Pan et al’.s public-key authenti-
cated encryption with keyword search achieving both multi-ciphertext and multi-
trapdoor indistinguishability. J. Syst. Archit. 119, 102248 (2021)

17. Cheng, L., Meng, F.: Public key authenticated encryption with keyword search
from LWE. In: ESORICS, pp. 303–324 (2022)

18. Cheng, L., Meng, F.: Public key authenticated searchable encryption against fre-
quency analysis attacks. Inf. Sci. 640, 119060 (2023)

19. Cheng, L., Qin, J., Feng, F., Meng, F.: Security-enhanced public-key authenticated
searchable encryption. Inf. Sci. 647, 119454 (2023)

20. Chi, T., Qin, B., Zheng, D.: An efficient searchable public-key authenticated
encryption for cloud-assisted medical internet of things. Wireless Commun. Mobile
Comput. 2020, 8816172:1–8816172:11 (2020)

21. Emura, K.: Generic construction of public-key authenticated encryption with key-
word search revisited: stronger security and efficient construction. In: ACM APKC,
pp. 39–49 (2022)

22. Emura, K., Hayashi, T., Ishida, A.: Group signatures with time-bound keys revis-
ited: a new model, an efficient construction, and its implementation. IEEE Trans.
Dependable Secure Comput. 17(2), 292–305 (2020)

23. Gentry, C.: Practical identity-based encryption without random oracles. In: EURO-
CRYPT, pp. 445–464 (2006)

24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: ACM STOC, pp. 197–206 (2008)

25. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y., edi-
tor, ASIACRYPT, pp. 548–566 (2002)

26. Huang, Q., Li, H.: An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks. Inf. Sci. 403, 1–14 (2017)

27. Saiful Islam, M., Kuzu, M., Kantarcioglu, M.: Ramification, attack and mitiga-
tion. In: NDSS. The Internet Society, Access Pattern Disclosure on Searchable
Encryption (2012)

28. Hafizul Islam, S.K., Mishra, N., Biswas, S., Keswani, B., Zeadally, S.: An efficient
and forward-secure lattice-based searchable encryption scheme for the big-data era.
Comput. Electr. Eng. 96, 107533 (2021)

29. Jager, T., Kurek, R., Niehues, D.: Efficient adaptively-secure IB-KEMs and VRFs
via near-collision resistance. In: Public-Key Cryptography, pp. 596–626 (2021)

30. Jiang, Z., Zhang, K., Wang, L., Ning, J.: Forward secure public-key authenticated
encryption with conjunctive keyword search. Comput. J. 66(9), 2265–2278 (2023)

Generic Construction of FS-PAEKS 255

31. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
ASIACRYPT, pp. 1–20 (2013)

32. Kasamatsu, K., Matsuda, T., Emura, K., Attrapadung, N., Hanaoka, G., Imai, H.:
Time-specific encryption from forward-secure encryption. In: SCN, pp. 184–204
(2012)

33. Kasamatsu, K., Matsuda, T., Emura, K., Attrapadung, N., Hanaoka, G., Imai,
H.: Time-specific encryption from forward-secure encryption: generic and direct
constructions. Int. J. Inf. Secur. 15(5), 549–571 (2016)

34. Katsumata, S.: On the untapped potential of encoding predicates by arithmetic
circuits and their applications. In: ASIACRYPT, pp. 95–125 (2017)

35. Katsumata, S., Yamada, S., Yamakawa, T.: Tighter security proofs for GPV-IBE
in the quantum random oracle model. J. Cryptol. 34(1), 5 (2021)

36. Kim, H., Hahn, C., Hur, J.: Forward secure public key encryption with keyword
search for cloud-assisted IoT. In: IEEE CLOUD, pp. 549–556 (2020)

37. Kurosawa, K., Phong, L.T.: Anonymous and leakage resilient IBE and IPE. Des.
Codes Crypt. 85(2), 273–298 (2017)

38. Langrehr, R., Pan, J.: Hierarchical identity-based encryption with tight multi-
challenge security. In: Public-Key Cryptography, pp.153–183 (2020)

39. Lee, K., Park, J.H., Lee, D.H.: Anonymous HIBE with short ciphertexts: full secu-
rity in prime order groups. Designs, Codes Crypt. 74(2), 395–425 (2015)

40. Lewko, A.B.: Tools for simulating features of composite order bilinear groups in
the prime order setting. In: EUROCRYPT, pp. 318–335 (2012)

41. Lin, H.-Y., Tzeng, W.-G.: An efficient solution to the millionaires’ problem based
on homomorphic encryption. In: ACNS, pp. 456–466 (2005)

42. Liu, J.K., Chu, C.-K., Chow, S.S.M., Huang, X., Ho Au, M., Zhou, J.: Time-bound
anonymous authentication for roaming networks. IEEE Trans. Inf. Forensics Secur.
10(1), 178–189 (2015)

43. Liu, Z.-Y., Tseng, Y.-F., Tso, R., Mambo, M., Chen, y.-C.: Public-key authen-
ticated encryption with keyword search: cryptanalysis, enhanced security, and
quantum-resistant instantiation. In: IACR Cryptology ePrint Archive, p. 1008
(2021)

44. Liu, Z.-Y., Tseng, Y.-F., Tso, R., Mambo, M., Chen, Y.-C.: Public-key authen-
ticated encryption with keyword search: cryptanalysis, enhanced security, and
quantum-resistant instantiation. In: ACM ASIACCS, pp. 423–436 (2022)

45. Noroozi, M., Eslami, Z.: Public key authenticated encryption with keyword search:
revisited. IET Inf. Secur. 13(4), 336–342 (2019)

46. Pan, X., Li, F.: Public-key authenticated encryption with keyword search achieving
both multi-ciphertext and multi-trapdoor indistinguishability. J. Syst. Architect.
115, 102075 (2021)

47. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: SCN, pp. 1–16 (2010)
48. Baodong Qin, Yu., Chen, Q.H., Liu, X., Zheng, D.: Public-key authenticated

encryption with keyword search revisited: security model and constructions. Inf.
Sci. 516, 515–528 (2020)

49. Qin, B., Cui, H., Zheng, X., Zheng, D.: Improved security model for public-key
authenticated encryption with keyword search. In: ProvSec, pp. 19–38 (2021)

50. Ramanna, S.C., Sarkar, P.: Anonymous constant-size ciphertext HIBE from asym-
metric pairings. In: IMACC, pp. 344–363 (2013)

51. Ramanna, S.C., Sarkar, P.: Efficient (anonymous) compact HIBE from standard
assumptions. In: ProvSec, pp. 243–258 (2014)

52. Sanders, O.: Improving revocation for group signature with redactable signature.
In: Public-Key Cryptography, pp. 301–330 (2021)

256 K. Emura

53. Xiaodong Song, D., Wagner, D.A., Perrig, A.: Practical techniques for searches on
encrypted data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

54. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS (2014)

55. Tang, Q.: Towards forward security properties for PEKS and IBE. In: ACISP, pp.
127–144 (2015)

56. Xu, S., Cao, Y., Chen, X., Yiu, S.-M., Zhao, Y.: Post-quantum public-key authen-
ticated searchable encryption with forward security: general construction, imple-
mentation, and applications. In: IACR Cryptology ePrint Archive, p. 591 (2023)

57. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In: CRYPTO, pp. 161–
193 (2017)

58. Yu, X., Xu, L., Huang, X., Xu, C.: An efficient lattice-based encrypted search
scheme with forward security. In: Network and System Security, pp. 712–726 (2022)

59. Zeng, M., Qian, H., Chen, J., Zhang, K.: Forward secure public key encryption
with keyword search for outsourced cloud storage. IEEE Trans. Cloud Comput.
10(1), 426–438 (2022)

60. Zhang, X., Chunxiang, X., Wang, H., Zhang, Y., Wang, S.: FS-PEKS: lattice-based
forward secure public-key encryption with keyword search for cloud-assisted indus-
trial internet of things. IEEE Trans. Dependable Secure Comput. 18(3), 1019–1032
(2021)

Encryption Mechanisms for Receipt-Free
and Perfectly Private Verifiable Elections

Thi Van Thao Doan1(B), Olivier Pereira1,2, and Thomas Peters1

1 Université catholique de Louvain ICTEAM - Crypto Group, B-1348,
Louvain-la-Neuve, Belgium

{thi.doan,olivier.pereira,thomas.peters}@uclouvain.be
2 Microsoft Research, Redmond, WA, USA

Abstract. We design new encryption mechanisms that enable the
design of the first universally verifiable voting schemes, supporting both
receipt-freeness and everlasting privacy without assuming the existence
of an anonymous channel.

Our schemes support the two most traditional election tallying meth-
ods: One is additively homomorphic, supporting elections in which votes
simply need to be added, but decryption is only efficient for a message
space of polylogarithmic size. The other is randomizable, is compatible
with traditional mixnet-based tallying methods, and supports efficient
message encoding, which makes it compatible with virtually any election
type.

Our approach builds on the recently proposed traceable receipt-free
encryption (TREnc) primitive to support the design of a perfectly pri-
vate audit trail. In particular, we propose two TREnc that are secure
under SXDH and rely on a public coin CRS (or on the random oracle
model). This improves on previous TREnc mechanisms that required a
structured CRS and is of independent interest. A prototype implementa-
tion of our mechanisms is proposed, which shows that ballot preparation
and verification can be executed in less than a second.

Keywords: Traceable receipt-free encryption · Everlasting privacy ·
Perfectly private audit trail · Pairing-based cryptography

1 Introduction

Verifiable elections enable internal players and external observers to verify the
validity of individual votes and the final election outcome, even in situations
where potentially all participants have malicious intent. Verifiability is typically
obtained through the use of a public bulletin board [1,13,14,18,34].

While being central to support public verifiability at scale, this bulletin board
raises central issues in secret ballot elections. In order to guarantee the secrecy
of the vote, a bulletin board will typically have ballots and/or voter names
hidden by some form of encryption. This is a good solution to guarantee the
computational privacy of the votes [6], but it does not address two other central
concerns:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 257–287, 2024.
https://doi.org/10.1007/978-3-031-54770-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_11&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_11

258 T. V. T. Doan et al.

1. The bulletin board may support vote selling or voter coercion. For instance, a
voter who keeps track of all the random coins he used to prepare a ballot may
be able to demonstrate how he voted to a third party, who would be able to
recompute the encrypted ballot using the coins and claimed vote intent and
confirm its presence on the bulletin board.

2. The bulletin board may raise long-term privacy concerns: when privacy is
computational, encrypted votes (or encrypted voter identities) will eventually
become public, either through cryptanalytic advances, or through the advent
of new hardware, including quantum computers. This may have a chilling
effect on voters who may not feel that they can vote freely.

As discussed in a recent review by Haines et al. [24], the design of secure and
efficient voting protocols that offer both receipt-freeness (RF) and a perfectly
private audit trail (PPAT) is a long-standing open problem. In particular, the
few existing proposals that support these properties are either designed for in-
person voting [32], or rely on the existence of an anonymous ballot submission
channel [22,30], which seems hardly realistic in a large-scale election context (see
further discussions in the related works section below).

An alternative approach to obtain receipt-freeness relies on the help of a
ballot-box manager, who is trusted for receipt-freeness, but not for verifiability
or for privacy, following a general approach pioneered by Hirt and Sako [25].
This approach led to the recent development of a new Traceable Receipt-Free
Encryption (TREnc) primitive by Devillez et al. [20], which enables receipt-free
ballot submission following the Hirt and Sako paradigm. In a nutshell, using a
TREnc, voters can encrypt their vote intent, which will provide them with a trace
and a ciphertext that can be submitted to the ballot-box manager. The trace
can be kept by the voter for verifiability purpose and is actually independent
of the vote itself, supporting receipt-freeness. The ballot-box manager then re-
randomizes the TREnc ciphertext and posts the result on a public bulletin board.
The security of the TREnc guarantees that the resulting ciphertext is distributed
just like a fresh encryption of a vote with an identical trace (this is the strong
randomization property) and that, if the trace did not change, then it must be
the same vote that is still encrypted (this is the traceability). The voter can
then verify on the bulletin board that a ciphertext with the correct trace is
published, but is unable to explain the vote that is encrypted there to any third
party. Finally, a TREnc guarantees that, even when ballots are computed with
adversarially chosen randomness, no adversary can turn a re-randomized ballot
into a related ballot that would have a different trace and contain a related vote
(this is implied by the TCCA security). The existing TREnc mechanisms however
do not support a PPAT and, as a side constraint, require a structured common
reference string (CRS), which may be an obstacle in any practical deployment.

1.1 Our Contributions

We propose two new encryption mechanisms that make it possible to obtain both
receipt-freeness (RF) and a perfectly private audit trail (PPAT) in a natural way,
following the general structure of a single-pass voting system [7] for instance.

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 259

Our first encryption mechanism is additively homomorphic and suitable for
elections with a homomorphic tally, that is, where the vote for each candidate
can be encrypted as a 0 or a 1 counter, proven correct in zero-knowledge proof
(ZK), and where the tally for each candidate is obtained by verifiably decrypt-
ing the homomorphic sum of all the ciphertexts provided for that candidate –
this is the mechanism used by default in systems like Helios [2], Belenios [15]
or ElectionGuard [4]. However, this encryption mechanism only supports a mes-
sage space of polylogarithmic size, just as the exponential ElGamal encryption
mechanism used in the previously cited systems, which makes it unsuitable to
encrypt complex choice expressions in a single ciphertext.

Our second encryption mechanism addresses this limitation by supporting the
encryption of arbitrary group elements and supporting efficient bijective map-
pings between bit strings and group elements, at the cost of losing the additive
homomorphism. Still, this encryption mechanism is randomizable and compati-
ble with traditional mixnets like Verificatum [36] that operate on arrays of group
elements. Such mixnets have been used in national elections of various countries,
including Norway, Estonia, and Switzerland.

From a technical point of view, our new encryption mechanisms are secure
under symmetric external Diffie-Hellman assumption (SXDH) and provide new
TREnc mechanisms that rely on a public-coin CRS. This is an advance over
previous proposals, that is of independent interest, since the previously known
mechanisms relied on a structured CRS, which may be complicated to generate in
practice and introduces new trust assumptions. Here, a simple way of producing
the CRS in practice would be to sample the outputs of a hash function modeled
as a random oracle, which is already of common use in practical voting systems
when implementing the Fiat-Shamir transform on sigma protocols.

Finally, we evaluate the efficiency of our new mechanisms. Our additively
homomorphic mechanism produces ciphertexts in the two source groups of our
pairing-friendly setting: they lie in G

50×Ĝ
46. Our mixnet-compatible mechanism

produces slightly smaller ciphertexts in G
47 × Ĝ

45. The gains essentially come
from the inclusion, in the first case, of ZK proofs that a bit is encrypted, which
is not needed for a mixnet-based tallying process. We also implemented our
two mechanisms, relying on the MIRACL library for the group operations, and
observed that both encryption operations require less than 0.3 s, and that the
verification of the validity of a ciphertext takes less than a second.

1.2 Our Techniques

Commitment-Consistent Encryption. Our starting point for obtaining a PPAT
is the use of a commitment-consistent encryption (CCE) scheme [19]. The CCE
encryption of a message m provides two components: a perfectly hiding com-
mitment com that comes out of a commitment scheme (com, open) ← Com(m),
and an encryption enc of m and open that is provided together with a proof πcc

ensuring that VerC(com,m, open) = 1, where VerC is the verification algorithm
associated to Com. The proof πcc is provided in order to guarantee that the CCE
ciphertext is valid and that the tally will be computable. It can be augmented

260 T. V. T. Doan et al.

with a proof πpub that demonstrates that a valid opening of com (e.g., as a bit)
is known.

When a CCE encryption scheme is used in a voting application, the value
D = (com, πpub) is posted on a public bulletin board PB. If πpub is perfect ZK,
then this is perfectly hiding, as desired. Additionally, CT = (enc, πcc) is posted
on a secret bulletin board SB, for use by the talliers. The election tally can then
be computed using various techniques, as outlined in [19] for instance, preserving
the PPAT. This approach however does not offer receipt-freeness, since the voter
could use open as a receipt for his vote, for instance.

A TREnc on Top of CCE Encryption. In order to obtain the RF property, we
then explore how to build a TREnc, whose ciphertexts contain a commitment-
consistent encryption instead of an ElGamal encryption as in existing designs.

To satisfy all the TREnc properties that are needed need to achieve receipt-
freeness in our voting scheme, all the components of C = (D,CT) must be
rerandomizable up to a trace which will allow voters to check the presence of
their rerandomized commitments and proofs D′ = (com′, π′

pub) on PB. Therefore,
the traceability property must be supported by D and its randomization. For
that purpose, we adapt the linearly homomorphic structure-preserving (LHSP)
signature [28] techniques of [20] used during the computation of the encryption
algorithm of their ad-hoc construction to our “commitment case”. More pre-
cisely, the trace of a TREnc ciphertext C is the one-time LHSP verification key
opk generated by the encryption algorithm. In a nutshell, the corresponding one-
time LHSP secret key osk is used to sign a basis of a sub-vector space, where
the vectors of this basis are derived from an internal CPA-encryption of the
plaintext and its public key. The LHSP properties allow us to derive a signature
on any rerandomization of this CPA part, and all its rerandomizations actually
consist of the sub-vector space that is authenticated. Traceability comes from
the fact that signing a CPA encryption of another plaintext requires authenti-
cating a vector outside the linear spanned sub-space, which is unfeasible thanks
to the unforgeability of the one-time LHSP signature scheme. Unfortunately,
the unforgeability of the LHSP signatures cannot directly be used in our case
to ensure that the rerandomized commitment com′ still contains the same com-
mitted message. After all, there is just no meaning of which message is really
contained in the perfectly hiding com′ since it could be equally opened on any
message. To restore this property and to contradict the security of the LHSP
signatures when the committed message has been successfully modified, we use
a dual-commitment compatible with (Com,VerC). To show traceability, we only
have to turn the commitment public key into an extractable and perfectly bind-
ing mode at the start of the proof. We will thus have LHSP signatures and opk
contained in D.

Finding the Right Tools. Finding most of the compatible building blocks is not
straightforward, but only requires making careful choices and adapting tech-
niques except for the TCCA property, and the simulation soundness in particu-
lar. Since we need rerandomizable proofs, we naturally focus on the SXDH-based

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 261

Groth-Sahai (GS) proof system that is also known to be malleable. Randomiz-
ing our TREnc ciphertexts C also requires adapting the statement under the GS
proofs. Indeed, the witness underlying the commitment-consistent and validity
proofs are subject to adaptation when com and Enc are rerandomized: the ran-
dom coins are refreshed and the witness of the GS proofs may depend on these
coins. In the perfect non-interactive witness indistinguishable (NIWI) setting to
prove pairing-product equations, the common reference string (CRS) consists of
random group elements of the two source groups and is thus public coin. How-
ever, NIWI proofs are not enough for our constructions as we need them to be
zero-knowledge when we have to include an SXDH challenge in enc during the
randomization in the challenge phase of the TCCA game, and for which the
reduction is of course not given the random coin. There exist generic solutions
to turn NIWI GS-proofs into ZK proofs but they are expensive. In spirit, we fol-
low [29] which still partially relies on a generic OR-proof technique that makes
it possible to prove another statement in the security proof than the one in the
real execution of the scheme. The idea is that no adversary can use the second
branch of the OR-proof for a TREnc ciphertext containing a different trace than
the one of the challenge phase. In order to trigger the possibility of proving the
second branch, we rely on the unforgeability of (yet another) one-time LHSP
signature whose public key is generated in the key generation of the TREnc.
Fortunately, this public key is a single uniformly distributed pair of group ele-
ments and is then public coin as well, while no one knows the corresponding
signing key. The branch that is being proved is encoded as a vector of group
elements with the following property: if the real statement is being proved, the
vector only contains neutral elements (i.e., it is the null-vector, but we will use
multiplicative notation); to simulate, we prove the second statement and the
vector is non-trivial and lies in a one-dimensional subspace determined by the
trace. Since, on the one hand, it is easy to compute a degenerated LHSP sig-
nature on the neutral vector from the public key, and, on the other hand, it is
hard to compute an LHSP signature on a different one-dimensional subspace for
another trace, simulation soundness holds for any proof with another trace than
the one of the challenge. This vector as well as the (degenerated) LHSP signature
are only given in a committed form with a GS-proof (with the same CRS) that
the LHSP verification equation holds. Another difficulty in the TCCA proof is
to switch the kind of encoded vector by simulating the randomization of one of
the ciphertexts given in the challenge phase, but surprisingly this task can be
handled only thanks to the perfect WI property of the GS-proof.

Following [20], we also need to commit-and-prove to the one-time LHSP
signature generated during encryption (for the traceability) for technical reasons.
Otherwise, even if it looks hard to embed subliminal information into the LHSP
signatures related to com, we have no ground to prove the TCCA security. This
additional layer of GS-proof solves the issue thanks to the perfect WI property.
However, even when we should extract the witness of the proof of validity and
consistency to figure out which branch the adversary tried to prove in a given
ciphertext in a decryption query, this part of the proof related to the LHSP

262 T. V. T. Doan et al.

signature for traceability must remain in the perfect WI mode. that is because we
have to avoid leaking the internal bit of the game (i.e., which ciphertext between
C0 and C1 have been rerandomized in the challenge phase) in an information-
theoretic sense to conclude. To circumvent this opposing requirement, we use
another GS CRS for the traceable part that can remain in the perfect WI mode.

1.3 Related Work

Receipt-Free Voting. The study of receipt-free elections was initiated by Benaloh
and Tuinstra [5], who presented the first verifiable secret-ballot election protocols
in which voters cannot prove to others how they voted. In order to achieve
receipt-freeness, they required a physical voting booth to establish completely
untappable channels between the voting authority and the voter. A year later,
Sako and Kilian [35] argued that a one-way untappable channel is sufficient for
this purpose. Additionally, they explained how to implement a receipt-free and
universally verifiable voting system using the first verifiable mixnet. Thereafter,
there has been a flurry of activity in the design and analysis of receipt-free voting
protocols relying on the use of an untappable channel proposed by different
authors. A prominent approach, that we outlined above and follow here, was
proposed by Hirt and Sako [25], then simplified by Blazy et al. [9], refined by
Chaidos et al. [12] and formalized by Devillez et al. [20]. Of course, many other
approaches have been proposed in parallel and are out of scope of this work [21,
26,34].

Voting with a PPAT. A recent and detailed account of the efforts towards voting
with perfectly private ballots is provided by Haines et al. [24]. They identify the
approach of commitment-consistent encryption, which we are using here, as one
of the two strongest proposals, the other one being based on ballots that are
secret-shared between a set of trustees [16]. We did not adopt the secret sharing
approach here as it is more demanding to the voters, requiring a computational
effort that grows linearly with the number of trustees that receive vote shares,
and only offers privacy benefits over CCE if we assume that the voters have direct
communication channels with every trustee, which may be quite demanding.

Voting with RF and PPAT. There are very few proposals that offer both RF
and a PPAT, and they rely on the existence of anonymous channels for ballot
submission, an assumption that we are avoiding here and that is hardly practical
at a large scale.

The first is based on blind signatures [22,33], where voters obtain a blindly
signed voting token from an authority, which is then used to submit a ballot
through an anonymous communication channel. Verifiability is hard to obtain in
such a setting: a malicious authority can for instance produce tokens on behalf
of abstaining voters and cast ballots in their stead.

A second approach was proposed by Locher and Haenni [30] and addresses
the problem of eligibility verifiability by having voters registering a public key
and submitting their ballot together with a proof that they know the secret

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 263

key matching one of these public keys, using a mechanism similar to list sig-
natures [11]. Again, ballots are submitted using an anonymous communication
channel.

Our work aims at developing solutions that offer a PPAT in the sense of Cuve-
lier et al. [19], together with receipt-freeness, following the definitional approach
of Chaidos et al. [12].

1.4 Overview of Paper

We structure our paper as follows. Standard building blocks and the compu-
tational assumptions are introduced in Sect. 2. In Sect. 3, we present the intu-
ition and the full description of our first construction to verifiably encrypt bits,
followed by its theorem statements. The second construction is postponed to
Appendix A due to space limit. Then, Sect. 4 shows the voting application
implied by our combined primitive and describes an election based on homo-
morphic aggregation for the simple ballot case and an election with mixnet for
the complex ballot case. To conclude, Sect. 5 makes some important remarks.
The security analysis is deferred to Appendix B. This choice is compensated by
the thorough overview of our techniques given above.

2 Background

We review some standard building blocks and introduce the corresponding nota-
tions.

2.1 Assumptions and Primitives

We will work in asymmetric bilinear groups and assume the existence of a
bilinear-group generator G which takes the security parameter λ as input and
outputs pp = (G, Ĝ,GT , e, g, h, ĝ, p), where G, Ĝ,GT are groups of prime order

p > 2poly(λ), g, h
$← G, ĝ

$← Ĝ are random generators, and e : G × Ĝ is a
non-degenerate bilinear map. Our setting relies on the SXDH (symmetric exter-
nal Diffie-Hellman) assumption, which states that the decisional Diffie-Hellman
problem (DDH) [10] must be intractable in both G and Ĝ.

Assumption 1 (DDH). Let λ be a security parameter and g be a generator of
a group G of prime order p > 2poly(λ). It is computationally hard to distinguish
the tuple (ga, gb, gab) from the tuple (ga, gb, gc) where a, b, c

$← Zp.

Groth-Sahai Proofs. Groth-Shai (GS) proofs [23] offer an efficient approach to
proving the satisfiability of quadratic equations in bilinear settings. On input pp,
common reference strings (CRS) u ∈ G

4 and v ∈ Ĝ
4 are generated to commit to

groups elements of G and Ĝ. For instance, the commitments to X ∈ G and Ŷ ∈ Ĝ

are denoted by CX and CŶ respectively. In accordance with the GS standard

264 T. V. T. Doan et al.

notation, we also define the linear maps: ι1 : G → G
2 with ι1 : X �→ (1,X) and

ι2 : Ĝ → Ĝ
2 with ι2 : Ŷ �→ (1, Ŷ).

Linearly Homomorphic Structure-Preserving Signatures (LHSP Signa-
ture). LHSP signature was introduced by Libert et al. [28] to perform linear
computations on encrypted data. Structure-preserving property allows signing
messages that are vectors of group elements, whereas the linearly homomorphic
feature makes it possible to derive a signature on any linear combination of
already signed vectors. In our context, we rely on a one-time LHSP signature
scheme of [28] in the SXDH setting as in [27], where each voter signs only one
linear subspace using his secret signing key.

Gen(pp, λ, n): given the public parameter pp and the dimension n ∈ N of the

subspace to be signed, pick χi, γi
$← Zp and compute fi = gχihγi , for i = 1 to

n. The private key is sk = {(χi, γi)}n
i=1 and the public key is pk = {fi}n

i=1 ∈
G

n.
Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Ĝ

n, using sk, output
σ = (Ẑ, R̂) = (

∏n
i=1 Mχi

i ,
∏n

i=1 Mγi

i).
Ver(pk, σ, (M1, . . . ,Mn)): given a signature σ = (Ẑ, R̂) ∈ Ĝ

2 and a vector
(M1, . . . ,Mn), return 1 if and only if (M1, . . . ,Mn) �= (1

Ĝ
, . . . , 1

Ĝ
) and (Ẑ, R̂)

satisfies

e(g, Ẑ) · e(h, R̂) =
n∏

i=1

e(fi,Mi). (1)

In our case, the LHSP signature has three key advantages. Firstly, it allows
ciphertexts to be re-randomized and the adaptation of their signatures, while
guaranteeing the non-malleability of the plaintext. Secondly, it notably ensures
that it is infeasible to publicly compute a signature on a vector outside the
linear span of originally signed vectors, which is essential for our system security.
Thirdly, the verification Eq. (1), which is a pairing product equation, still holds
for (M1, . . . ,Mn) = (1

Ĝ
, . . . , 1

Ĝ
) with a degenerated signature (Ẑ, R̂) = (1, 1).

This feature allows hiding whether we trivially satisfy the equation or if we have
a valid signature thanks to the Groth-Sahai proof system. We use it to implement
an OR-technique useful to simulation soundness.

2.2 Traceable Receipt-Free Encryption (TREnc)

TREnc [20] is a public key encryption scheme (Gen, Enc, Dec), augmented with
a 5-tuple of algorithms: LGen, on input a security parameter λ and a public
encryption key PK, outputs a link key lk; LEnc encrypts a message m using (PK,
lk) and outputs a ciphertext c. Trace outputs the trace t of c. Rand randomizes
c to output a randomized ciphertext c′. Ver checks if a ciphertext is valid and
outputs 1 if true, and 0 otherwise.

Verifiability. A TREnc is verifiable if no PPT adversary can produce, with
non-negligible probability, a ciphertext that satisfies Ver but is not in the range

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 265

of Enc. In other words, Ver guarantees that a valid ciphertext is necessarily in
the range of the honestly generated encryptions. More formally, for any efficient
A, Pr[c /∈ Enc(PK, ·) ∧ Ver(PK, c) = 1 | (PK,SK) ← Gen(1λ), c ←$ A(PK,SK)] is
negligible. We denote the event of A winning this game as ExpverA (λ) = 1.

Strong Randomization. To achieve receipt-freeness, a ballot from a voter must
be re-randomized before being placed on the PB. Strong randomization requires
that the output of the Rand algorithm be indistinguishable from any encryption
of the same message with the same link key. More precisely, A TREnc is strongly
randomizable if for every c ∈ LEnc(PK, lk,m) with PK in the range of Gen and
lk in the range of LGen(PK), the following computational indistinguishability
relation holds: Rand(PK, c) ≈c LEnc(PK, lk,m).

TCCA Security. Security against traceable chosen ciphertexts attacks, also
called TCCA security, is a TREnc’s central security requirement. An adversary
A, who has a public key and is allowed to access a decryption oracle, submits
a pair of valid ciphertexts of its choice that have identical traces. One of the
ciphertexts is randomized and returned to A, who must decide which one it is.
After receiving this challenge ciphertext, A can still query the decryption oracle,
but only on ciphertexts that have a trace different from his challenge cipher-
text. TREnc is said to be TCCA secure if no PPT adversary can decide which
ciphertext was randomized. Achieving TCCA security implies a form of non-
malleability of the trace of ciphertexts. This essentially guarantees the absence
of a vote receipt and is formalized in the ExptccaA (λ) game in Fig. 1.

Traceability. A TREnc is traceable if no efficient adversary A can produce
another ciphertext that traces to the same trace and decrypts to a different
message. The traceability property of the TREnc then guarantees that nobody
(including the rerandomizing server and decryption-key holders) could have
forged another valid ciphertext of another vote linked to the given ballot with
non-negligible probability. This property is fundamental for the verifiability of
an election and is defined in ExptraceA (λ) game of Fig. 1.

Link Traceability. TREnc allows the encryption of any message using a single
link key and all resulting ciphertexts have the same trace. Thanks to this prop-
erty, LEnc makes the TCCA game possible by encrypting different messages that
trace to each other. This non-binding feature is essential for receipt-free voting.

Receipt-Freeness. To be receipt-free, TREnc relies on a semi-trusted entity
called a ballot box manager. This entity checks the validity of the encrypted vote
sent by the voter without requiring a secret key and then re-randomizes every
valid ciphertext before posting it on the PB. Since the randomness contained
in the published ballot is no longer under the control of the voter, he cannot
prove how he voted. On the one hand, link traceability allows voters to vote
for different messages with a single link key, preventing them from proving their
vote. On the other hand, traceability ensures that no corrupted authority should
be able to modify the encrypted vote while keeping the trace unchanged.

In a model where the voting client may be corrupted, strong randomiza-
tion and TCCA security guarantees that the encryption hides the message. In

266 T. V. T. Doan et al.

contrast, the traceability property plays an important role when the voting client
is honest, and the re-randomization server might be corrupted.

Definition 2.1 (TREnc correctness). A TREnc scheme is required to satisfy
the following correctness requirements.

Encryption compatibility. For every PK in the range of Gen and message m,
the distributions of Enc(PK,m) and LEnc(PK, LGen(PK),m) are identical.

Link traceability. For every PK in the range of Gen, every lk in the range
of LGen(PK), the encryptions of every pair of messages (m0,m1) trace to
the same trace, that is, it always holds that Trace(PK, LEnc(PK, lk,m0)) =
Trace(PK, LEnc(PK, lk,m1)).

Publicly Traceable Randomization. For every PK in the range of Gen, every
message m and every c in the range of Enc(PK,m), we have that Dec(SK, c) =
Dec(SK,Rand(PK, c)) and Trace(PK, c) = Trace(PK,Rand(PK, c)).

Honest verifiability. For every PK in the range of Gen and every message m,
it holds that Ver(PK,Enc(PK,m)) = 1.

Fig. 1. The experiments of TCCA security, and traceability. In the TCCA game, A2 has
access to a decryption oracle Dec∗(.) which, on input c, returns Dec(c) if Trace(PK, c) �=
Trace(PK, c∗) and test otherwise.

2.3 Commitment Consistent Encryption (CCE)

CCE [19] is a cryptographic mechanism providing audit data for public verifi-
cation that will never leak any information about the vote, even if the private
keys are compromised or the cryptographic assumptions are broken.

To cast a ballot, voters are expected to encrypt their vote and produce a
perfectly hiding commitment to the vote. The committed vote and an auxiliary
value used to compute the commitment are called the openings for that commit-
ment. The encryption is computed so that from any encrypted vote, it is possible
to extract a commitment and an encryption of openings for that commitment.
To verify the validity of the ballots, voters also have to provide a non-interactive

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 267

zero-knowledge proof demonstrating the consistency between these components.
The commitment is then cast on PB, whereas the encryption of the openings
and the consistency proof are sent to SB. Since the election audit data in PB is
perfectly hiding, we can ensure the confidentiality of the votes.

However, it is easy to observe that if a voter is willing to sell his vote, he
can store the openings of the commitment and communicate it to an adversary.
Thus, although CCE makes an e-voting system everlastingly private, it is not
designed to protect against the vote-selling/buying threat. In other words, such
a CCE protocol is not receipt-free.

3 The Construction of Our Scheme

Sections 3.1 and 3.2 describe our first construction of a commitment-consistent
TREnc tailored to simple ballot. That is, the message space is bits encoded as
scalars (in the exponents), and ciphertexts contain publicly verifiable proof of
so. Our second construction tailored for complex ballot is deferred to Appendix
A, where the message is a group element. In Sect. 3.3, we give the correctness
and the security theorem statements of the construction. Finally, we provide a
performance evaluation of our encryption algorithm in Sects. 3.4.

3.1 Description

Gen(1λ): Choose bilinear groups (G, Ĝ,GT) of prime order p > 2poly(λ), pick

g, g1, h1
$← G and ĝ, ĥ, ĝ1, ĥ1, ĝ2, ĥ2

$← Ĝ.

1. Pick random {(αi, βi)}3i=1
$← Zp and set {fi}3i=1 = gαi

1 hβi

1 .
2. To commit to groups elements of G and Ĝ respectively, we generate one Groth-

Sahai CRS u = (
u1,
u2) in G
4 and two others v = (
v1,
v2) and v′ = (
v′

1,
v
′
2) in

Ĝ
4 such that
u1 = (u11, u12),
u2 = (u21, u22),
v1 = (v11, v12),
v2 = (v21, v22),

v′
1 = (v′

11, v
′
12), and
v′

2 = (v′
21, v

′
22) are generated in the perfect NIWI mode.

3. Pick random f̂1, f̂2 ← Ĝ that will be used as a verification key for the LHSP
signature but for which no one knows the corresponding secret key.

The private and public keys respectively are SK = {(αi, βi)}3i=1 and PK =
(g, g1, h1, ĝ, ĥ, ĝ1, ĥ1, ĝ2, ĥ2, {fi}3i=1, f̂1, f̂2,u,v,v′).

Enc(PK, m): To encrypt m ∈ Zp, first run LGen(PK): Generate a key pair
(osk, opk) for the one-time linearly homomorphic signature from the public
generators g1, h1 to sign vectors of dimension 3. Let the signing key lk = osk =
{(ηi, ζi)}3i=1, the corresponding public key is opk = {ki}3i=1 = {gηi

1 hζi

1 }3i=1.
Then, conduct the following steps of LEnc(PK, lk,m):

268 T. V. T. Doan et al.

1. In the ciphertext CT :

(a) Compute M = gm ∈ G. For random r, q
$← Zp, compute the commitments

d̂1 = ĝmĝr
1ĥ

q
1 ∈ Ĝ, d̂2 = ĝr

2ĥ
q
2 ∈ Ĝ and the openings R = gr ∈ G, Q = gq ∈

G. Choose θ
$← Zp, compute the ciphertexts of M , R, and Q respectively

as cm = (c0, c1, c2) = (Mfθ
1 , gθ

1 , h
θ
1), cr = Rfθ

2 , and cq = Qfθ
3 .

(b) Commit to the openings using the Groth-Sahai CRS by computing CM

= ι1(M)
uz1
1
uz2

2 ∈ G
2, CR = ι1(R)
ur1

1
ur2
2 ∈ G

2, and CQ = ι1(Q)
ut1
1
ut2

2

∈ G
2 for random z1, z2, r1, r2, t1, t2

$← Zp, then derive the commitment
Cf1 = ι(c0)/CM , Cf2 = ι(cr)/CR, and Cf3 = ι(cq)/CQ.

(c) To allow simulating the proof, set the bit b̄ = 1 and compute G =
gb̄ ∈ G and Ĥ = ĥb̄ ∈ Ĝ. Commit to G, Ĥ, and Ĥθ respectively
to have CG = ι1(G)
u1

w1
u2
w2 ∈ G

2, CĤ = ι2(Ĥ)
v1
x1
v2

x2 ∈ Ĝ, and

Cθ = ι2(Ĥθ)
v1
x3
v2

x4 ∈ Ĝ for w1, w2, x1, x2, x3, x4
$← Zp. To make sure

G and Ĥ are well-formed, compute GS proof πb such that

e(g, Ĥ) = e(G , ĥ) (2)

For the sake of simplicity, we signify that the group element represented
in the box is the one that is committed in the corresponding commitment.
For example, in Eq. 2, Ĥ and G are committed in CĤ and CG respectively.

(d) To make sure CT is well-formed, compute the GS proof πθ to ensure that
(c1, c2, c0/M, cr/R, cq/Q) are in the form of (g1, h1, f1, f2, f3)θ. In other

words, these equations below must be satisfied with Ĥθ , fθ
1 , fθ

2 , and

fθ
3 respectively being committed in Cθ,Cf1 ,Cf2 , and Cf3 .

e(c1, Ĥ) = e(g1, Ĥθ) (a)

e(c2, Ĥ) = e(h1, Ĥθ) (b)

e(fθ
1 , Ĥ) = e(f1, Ĥθ) (c)

e(fθ
2 , Ĥ) = e(f2, Ĥθ) (d)

e(fθ
3 , Ĥ) = e(f3, Ĥθ) (e)

(3)

(e) Return CT = (cm, cr, cq,CĤ ,Cθ, πb, πθ) ∈ G
25 × Ĝ

20.
2. In the commitment D:

(a) For the proof of the openings for commitments:
– The GS proof of openings πopen needs to make sure that the values

committed in CM ,CR,CQ,CG in CT are the openings of the com-
mitments d̂1, d̂2 in D. To put it differently, πopen must satisfy that

e(M , ĝ) · e(R , ĝ1) · e(Q , ĥ1) = e(G , d̂1) (a)

e(R , ĝ2) · e(Q , ĥ2) = e(G , d̂2) (b)
(4)

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 269

where M , R , Q are values committed in CM ,CR,CQ in their
respective order.
Thus, the proofs πθ computed in the CT and πopen in D constitute
the proof of consistency between d̂1, d̂2 and cm, cr, cq, i.e., the com-
mitments can be opened by encrypted values in the ciphertexts.

(b) For traceability property:
– Sign each row of the matrix T using lk = osk, resulting in signatures

σ̂1, σ̂2, σ̂3, where σ̂i = (Ẑi, R̂i) ∈ Ĝ
2 for i = 1, 2, 3.

T =

⎛

⎝
ĝ d̂1 d̂2
1 ĝ1 ĝ2
1 ĥ1 ĥ2

⎞

⎠ (5)

– To allow strong randomizability, commit to σ̂1 using the GS CRS
v′ by computing CẐ = ι2(Ẑ1)
v′l1

1
v′l2
2 and CR̂ = ι2(R̂1)
v′l3

1
v′
2l4 for

random scalars l1, l2, l3, l4
$← Zp.

– To ensure that σ̂1 is a valid one-time LHSP signature on (ĝ, d̂1, d̂2),
compute the proof πsig such that

e(g1, Ẑ1) · e(h1, R̂1) = e(k1, ĝ) · e(k2, d̂1) · e(k3, d̂2) (6)

where Ẑ1 and R̂1 are committed in CẐ , CR̂ respectively.
(c) For TCCA security:

– Set (A,B) = (1G, 1G) as a degenerated LHSP signature, and X =
g/G = g1−b̄ ∈ G. Since b̄ = 1, X = 1G. The commitment of X is
computed by CX = ι1(g)/CG ∈ G

2. Commit to A and B to have

CA = ι1(A)
ua1
1
ua2

2 and CB = ι1(B)
ub1
1
ub2

2 for a1, a2, b1, b2
$← Zp.

– The randomizable simulation-sound proof πss must ensure that

e(A , ĝ) · e(B , ĥ) = e(g/ G , f̂1f̂
τ
2) (7)

where τ = Hash(opk). In the honest case, 7 is trivially fulfilled. In the
simulated case, b̄ �= 1 and (A,B) must be a valid LHSP signature on
(X,Xτ) �= (1, 1) with verification keys being public elements (f̂1, f̂2).

(d) For well-formedness proof of a vote:
The vote m must be 0 or 1. To this end, we commit to M̂ = ĝm to have
CM̂ = ι2(M̂)
vs1

1
vs2
2 for random scalars s1, s2

$← Zp. The proof π01 is
computed such that

e(M , ĝ) = e(g, M̂) (a)

e(M , ĝ/ M̂) = 1 (b)
(8)

(e) Return the commitment part D = (d̂1, d̂2,CM̂ ,CM ,CR,CQ,CG,CẐ ,

CR̂,CA,CB , πopen, σ̂2, σ̂3, πsig, πss, π01, opk) ∈ G
25 × Ĝ

26.

270 T. V. T. Doan et al.

At the end of the encryption, output C = (CT,D) ∈ G
50 × Ĝ

46.

Trace(PK, C): Parse PK and C as above, and output opk in the obvious way.
Rand(PK, C): If PK and C = (CT,D) do not parse as the outputs of Gen and

Enc, abort. Otherwise, conduct the steps as follows:

1. Randomizing CT :

(a) Parse the CPA encryption part cm, cr, cq, pick θ′, r′, q′ $← Zp, set R′ =
gr′

, Q′ = gq′
, and compute c′

m = (c′
0, c

′
1, c

′
2) = cm · (f1, g1, h1)θ′

=
(Mfθ+θ′

1 , gθ+θ′
1 , hθ+θ′

1), c′
r = cr · R′fθ′

2 , and c′
q = cq · Q′fθ′

3 .

(b) Adapt the commitments C′
G = CG ·
u1

w′
1
u2

w′
2 , and C′

Ĥ
= CĤ ·
v1

x′
1
v2

x′
2

for w′
1, w

′
2, x

′
1, x

′
2

$← Zp. Likewise, randomize the commitments C ′
Ĥ

=

CĤ ·
v1
x′
1
v2

x′
2 , C′

θ = Cθ ·ι2(1) ·ι2(Ĥθ′
)
v1

x′
3
v2

x′
4 , C′

M = CM ·
uz′
1

1
u
z′
2

2 , C′
R =

CR · ι1(R′)
ur′
1

1
u
r′
2

2 , C′
Q = CQ · ι1(Q′)
ut′

1
1
u

t′
2
2 for x′

1, x
′
2, x

′
3, x

′
4, z

′
1, z

′
2, r

′
1, r

′
2,

t′1, t
′
2

$← Zp. The derived commitments are then C′
f1

= ι(c′
0)/C

′
M , C′

f2
=

ι(c′
r)/C

′
R; C′

f3
= ι(c′

q)/C
′
Q.

(c) Adapt the proof π′
θ and π′

b accordingly.
(d) Return CT ′ = (c′

m, c′
r, c

′
q,C

′
Ĥ

,C′
θ, π

′
b, π

′
θ).

2. Randomizing D:
(a) For proof of openings πopen:

i. Randomize the commitments d̂′
1 = d̂1 · ĝr′

1 ĥq′
1 = ĝmĝr+r′

1 ĥq+q′
1 , d̂′

2 =
d̂2 · ĝr′

2 ĥq′
2 = ĝr+r′

2 ĥq+q′
2 for the same r′, q′ in CT .

ii. Update the corresponding proof π′
open.

(b) For the proof of signature πsig:
i. Implicitly adapt the committed signature σ̂1 of the tracing part by

computing σ̃1 = (Z̃1, R̃1) = (Ẑr′
2 Ẑq′

3 , R̂r′
2 R̂q′

3) which consists of a one-
time LHSP signature on (1, ĝ1, ĝ2)r′ · (1, ĥ1, ĥ2)q′

for opk.
ii. Adapt the commitment C′

Ẑ
= CẐ · ι2(Z̃1)
v

′l′1
1
v

′l′2
2 and C′

R̂
= CR̂ ·

ι2(R̃1)
v
′l′3
1
v

′l′4
2 for some random l′1, l

′
2, l

′
3, l

′
4

$← Zp, which should commit
to the valid one-time LHSP signature σ̂′

1 = σ̂1σ̂
r′
2 σ̂q′

3 on (g, d̂′
1, d̂

′
2) for

opk. Then, randomize the proof π′
sig.

(c) For the proof of simulation soundness πss:
i. Adapt the commitment CX corresponding to C′

G by computing C′
X =

ι1(g)/C′
G. Similarly, computing C′

A = CA ·
u
a′
1

1
u
a′
2

2 and C′
B = CB ·

u
b′
1

1
u
b′
2

2 for some a′
1, a

′
2, b

′
1, b

′
2

$← Zp.
ii. Adapt the proof πss to have π′

ss.
(d) For well-formedness proof of a vote:

Adapt the commitment C′
M̂

= CM̂ ·
v
s′
1

1
v
s′
2

2 for s′
1, s

′
2

$← Zp. Similarly,
adapt the proof π01 to have π′

01.
(e) Return D′ = (d̂′

1, d̂
′
2,C

′
M̂

,C′
M ,C′

R,C′
Q,C′

G,C′
A,C′

B ,C′
Ẑ
,C′

R̂
, σ̂2, σ̂3,

π′
sig, π

′
open, π′

ss, π
′
01, opk).

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 271

At the end of the randomization, output C = (CT ′,D′).

Ver (PK, C): Abort and output 0 if either PK or C fails to parse correctly. Else,
check the validity of the LHSP signatures σ̂2, σ̂3 respectively on (1, ĝ1, ĝ2)
and (1, ĥ1, ĥ2) with respect to opk, as well as all the Groth-Sahai proofs with
τ = Hash(opk) and output 0 if at least one of them fails; otherwise, output 1.
(All the verification equations are given in Sect. 3.2.)

Dec(SK, C): If Ver(PK, C) = 0, output ⊥. Otherwise, given SK= {(αi, βi)}3i=1

and (cm = (c0, c1, c2), cr, cq) included in CT , output M = c0 · c−α1
1 · c−β1

2 ,
R = cr · c−α2

1 · c−β2
2 , and Q = cq · c−α3

1 · c−β3
2 .

3.2 Verification Equations

We now turn to the specification of the verification equations of the Groth-Sahai
proofs that must be satisfied by valid ciphertexts produced using this first con-
struction. While they are not necessary to follow the security proofs, we expand
them here in order to have a clear view about the cost of publicly verifying
ciphertexts, which will be evaluated through a prototype implementation below.

Ver (PK, C): Abort and output 0 if either PK or C fails to parse correctly. Then,
privately verify the first verification, which concerns the CPA encryption part,
while the remaining four will be checked publicly on PB.
1. The CPA encryption part is well-formed, i.e., (c1, c2, c0/M, cr/R, cq/Q)

are all in the form of the same exponent; and (G, Ĥ) are also raised to
the same exponent. To hold, the proofs πθ, πb in CT (of Eq. 3, Eq. 2) and
commitments Cf1 ,Cf2 ,Cf3 ,CĤ ,Cθ,CG must satisfy:

E(c1,CĤ) = E(g1,Cθ) · E(πθ,a[0],
v1) · E(πθ,a[1],
v2)
E(c2,CĤ) = E(h1,Cθ) · E(πθ,b[0],
v1) · E(πθ,b[1],
v2)

and

E(Cfi
,CĤ) =E(ι1(fi),Cθ) · E(
u1, πθ,j [0]) · E(
u2, πθ,j [1])

· E(πθ,j [2],
v1) · E(πθ,j [3],
v2)

for (i, j) ∈ {(1, c), (2, d), (3, e)} and

E(ι1(g),CĤ) =E(CG, ι2(ĥ)) · E(
u1, πb[0]) · E(
u2, πb[1])·
E(πb[2],
v1) · E(πb[3],
v2)

2. The values committed in CM ,CR,CQ,CG are the openings of the com-
mitments in Eq. 4. That means

E(CM , ĝ) · E(CR, ĝ1) · E(CQ, ĥ1) = E(CG, d̂1) · E(u, πopen,a)

E(CR, ĝ2) · E(CQ, ĥ2) = E(CG, d̂2) · E(u, πopen,b)

where E(u, πopen,i) = E(
u1, πopen,i[0]) · E(
u2, πopen,i[1]) with i ∈ {a, b}.

The verifications 1. and 2. constitute a consistency between d̂1, d̂2 in D
and cm, cr, cq in CT , i.e., the commitments can be opened by encrypted
values in the ciphertexts.

272 T. V. T. Doan et al.

3. The committed signature of the tracing part is valid, i.e., σ̂1 = (Ẑ1, R̂1)
is a valid one-time LHSP signature on the vector (ĝ, d̂1, d̂2). To this end,
the commitments CẐ , CR̂ and the proof πsig must ensure that

E(g1,CẐ) · E(h1,CR̂) =E(k1, ι2(ĝ)) · E(k2, ι2(d̂1)) · E(k3, ι2(d̂2))·
E(πsig[0],
v′

1) · E(πsig[1],
v′
2)

4. The committed values of the simulation part are valid, i.e., (A,B) must
be a valid LHSP signature on (X,Xτ) by verifying

E(CA, ĝ) · E(CB , ĥ) = E(ι1(g)/CG, f̂1f̂
τ
2) · E(
u1, πss[0]) · E(
u2, πss[1])

5. The vote m is 0 or 1 using the proof π01 from Eq. 8

E(CM , ι2(ĝ)) =E(ι1(g),CM̂) · E(
u1, π01,a[0]) · E(
u2, π01,a[1])·
E(π01,a[2],
v1) · E(π01,a[3],
v2)

E(CM , ι2(ĝ)/CM̂) =E(
u1, π01,b[0]) · E(
u2, π01,b[1])·
E(π01,b[2],
v1) · E(π01,b[3],
v2)

If at least one of these checks fails, output 0; otherwise, output 1.

3.3 Security Analysis

The above scheme enjoys (perfect) correctness. Moreover, its security solely
relies on the SXDH assumption as claimed below. All the proofs are given in
AppendixB.

Theorem 3.1. The above scheme is perfectly strongly randomizable.

Theorem 3.2. The above scheme is TCCA-secure under the SXDH assump-
tion and the collision resistance of the hash function. We have the advantage
|Pr[ExptccaA (λ) = 1] − 1

2 | ≤ εcr + 6εsxdh + 4
p .

Theorem 3.3. The above scheme is traceable under the SXDH assumption.
More precisely, we have Pr[ExptraceA (λ) = 1] ≤ 5εsxdh + 1

p .

Theorem 3.4. The above scheme is verifiable under the SXDH assumption.
More precisely, for any adversary A, we have Pr[ExpverA (λ) = 1] ≤ 3εsxdh + 1

p .

3.4 Efficiency

Up to constant factors, the encryption scheme we just described and the one we
describe in AppendixA are optimal in the sense of Cramer, Gennaro and Schoen-
makers [17]: the ballot size and the voter computational load do not depend on
the number of voters nor on the number of authorities, the computational work-
load of the tallying authorities grows linearly with the number of voters and
candidates.

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 273

In order to evaluate the constants, we built a C implementation of the bal-
lot preparation (key generation, encryption) and verification algorithms using
the MIRACL Core Cryptographic Library [31]. The implementation, which can
be found on https://github.com/uclcrypto/TREnc-PPAT, is carried out on an
average commodity laptop equipped with an Intel i5-1245U processor running
Ubuntu 22.04. The time unit is seconds and all our results are averaged over
100 runs. The running time of verification includes all verification equations in
Sect. 3.1 for both individual and universal verification. Likewise, the encryption
process timing also includes signature and proof computation. To provide at
least 128-bit security, we use a BN curve [3] on a 462-bit prime field, so-called
BN462. As seen in Table 1, it appears that the cost of computing ballots for

Table 1. Time for key generation, encryption, and verification of one ballot.

Tally type Gen Enc Ver

Homomorphic 0.023 0.228 0.802

Mixnet 0.019 0.214 0.782

both instances is almost similar and largely under a second. However, there is a
slight difference in the verification timing of the two methods. This is because a
mixnet-based tally does not require a well-formedness proof of the vote, whereas
a homomorphic tally does. We note that the computation of multiple ciphertexts
could also largely benefit of fixed-base exponentiation methods: these costs can
then grow much more slowly than linearly with the number of ciphertexts to be
computed.

4 Application to E-Voting

One important application of our scheme is the construction of single-pass voting
systems [8], where voters interact with the system only by submitting their
ballots. The described protocol involves four entities as introduced in TREnc,
consisting of: voters, who have the right to vote; election administrator (EA),
who is in charge of setting up the election and generating PK and SK. A ballot
box manager is responsible for randomizing the ballots of the voters. A tallier is
in charge of correctly tallying the ballot box and providing the correctness proof
of the tally. Also, it provides tallying results on a public view PB for verifiability.

Our proposed voting protocol is defined as a tuple of probabilistic polynomial-
time algorithms based on the two most crucial tallying techniques: homomorphic
aggregation, tailored for elections with a small number of candidates, and mixnet
that is suitable for elections with complex ballots.

SetUp(1λ): On input security parameter 1λ, generates the public and secret keys
(PK,SK) of the election.

https://github.com/uclcrypto/TREnc-PPAT

274 T. V. T. Doan et al.

Vote(id, v): Upon receiving a voter id and a vote v, outputs a ballot b = (CT,D).
Valid(b): On input ballot b, outputs 0 or 1. The algorithm outputs 1 if and only

if the ballot satisfies all verification equations.
ProcessBallot(b): On the input ballot b, outputs an updated ballot b′, a re-

randomization of b where b′ = (CT ′,D′).
TraceBallot(b): On input a commitment D, outputs a trace t. The trace is the

information that a voter can use to track his ballot, using VerifyBallot.
Append(PB,SB, b) : On input PB, SB, and ballot b, appends D to PB and CT

to SBif Valid(b) = 1.
VerifyBallot(PB, t): On input the public board PB and a trace t, outputs 0 or 1.

This algorithm is used by voters to check if their ballot has been processed
and recorded properly.

Tally(PB, SB, SK): On input PB, SB, and private key SK, outputs the tally
result and a proof of correctness. Depending on the tallying technique, runs
HomoTally or MixnetTally correspondingly.

VerifyResult(PB): On input PB, result of the tally and proof of the tally, out-
puts 0 or 1. Depending on the tallying technique, runs either HomoVerify or
MixnetVerify.

It is implicit that PK is given to all these algorithms except SetUp.
Following [20], we describe our voting scheme based on a TREnc with the

difference that only the perfectly private parts of our ballots are published on
PB. More precisely, EAs first generate the election public and secret keys with
SetUp by running Gen of our TREnc. The public key PK is published and stored
on the PB, and shares of SK are only known by the tallier (SK can be securely
generated in a distributed way in our prime-order groups using standard tech-
niques). Each voter can then prepare a ballot b and submit it to the ballot box
manager using the Vote algorithm that runs the encryption of the vote using
our TREnc. The validity of the ballot is defined as the validity of our D and
CT output by Vote(id, v). Although the ballot will be randomized, a voter can
store TraceBallot(b) that is defined as the trace of the TREnc ciphertext and
confirm if it has been correctly recorded on PB by utilizing VerifyBallot(PB, t).
After receiving a ballot, the ballot box manager checks its validity and that
no ballot with the same trace was recorded before. Invalid ballots are dropped
and valid ones will go through Append(PB,SB, b) after being re-randomized by
ProcessBallot(b) thanks to Rand. As said, Append(PB,SB, b) simply computes
PB ← PB||D and SB ← PB||CT from (previously rerandomized) b = (CT,D).
Once every voter has cast a vote, the tallier checks the validity of each ballot
using Valid(b). A tallying protocol is then carried out based on the ballot type
and the election outcome is published. To verify the election result, anyone can
utilize VerifyResult(PB) by referring to the content of PB, and which can be based
on common techniques.

4.1 Voting Scheme with a Homomorphic Tally

One of the two main approaches for tallying an election is homomorphic aggrega-
tion. The homomorphic property makes it possible to homomorphically combine

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 275

a number of ballots to compute the encrypted sum of the votes. Then only the
sum is decrypted instead of individual votes so that the secrecy of an individ-
ual’s ballot is preserved. Since the vote can be only 0 or 1, it can be encoded
as a group element and subsequently decoded by an exhaustive search of the
plaintext. Thus, the voter needs to add a non-interactive randomizable proof
of vote well-formedness to the public commitment part (see Eq. 8). The tallier
computes tally by HomoTally algorithm as follows.

1. Aggregation: For all l valid CT in SB, the tallier performs element-wise
multiplication of the encryption (cm, cr, cq), obtaining a result vector v =
(
∏

i cm,
∏

i cr,
∏

i cq) for i = 1, . . . l.
2. Decryption: The tallier decrypts v in order to obtain the openings (M,R,Q)

= Dec(SK,v), then finds m and appends (m,R,Q) to PB.

Since both the commitment and the encryption schemes are additively homomor-
phic, the votes are homomorphically combined into a single ciphertext containing
the final result, which is then decrypted by the tallier. To check that the tally
matches the posted votes, anyone can run HomoVerify algorithm as follows.

1. Multiply all the commitments (d̂1, d̂2) element-wise for l valid entries on PB
to obtain a commitment on the election outcome (com1, com2).

2. Verify that (m,R,Q) provided by the tallier are openings of the outcome
commitment by checking if the given equations are satisfied

e(gm, ĝ) · e(R, ĝ1) · e(Q, ĥ1) = e(g, com1)

e(R, ĝ2) · e(Q, ĥ2) = e(g, com2)

Given that the commitment scheme is binding, it makes sure that the only
openings that the authorities are able to provide come from an honest tallying
process. Moreover, its perfectly hiding property can guarantee the perfect ballot
privacy of the whole audit trail.

4.2 Voting Scheme with a Mixnet Tally

Unlike homomorphic tallying, verifiable mixnet-based systems decrypt individ-
ual ballots after anonymization, which disassociates encrypted ballots from their
corresponding voters. This anonymization procedure will be performed by shuf-
fling the votes through several shuffling centers (so-called mixers). Since each
shuffled ballot is decrypted individually, its validity is verified by the fact that
the decrypted vote and auxiliary values are the openings of the correspond-
ing commitment. As a result, the voter is not required to compute the well-
formedness proof of the vote. Due to page limitations, our adapted encryption
scheme of mixnet tallying is presented in the AppendixA, which is not additively
homomorphic anymore, but still randomizable. Thus, there are no specific con-
cerns regarding the necessary randomization properties for mixing. We sketch
the MixnetTally algorithm in the following.

276 T. V. T. Doan et al.

1. Stripping : On each input of C = (CT,D), the authorities only keep the
encryption (cm, cr, cs) in CT and the commitments (d1, d2) in D, obtaining
an encryption vector v = {(ci

m, ci
r, c

i
s)}l

i=1 and corresponding commitment
vector d = {(di

1, d
i
2)}l

i=1 of l valid ballots.
2. Permutation Selection: A random permutation π is chosen and a validity

proof Pπ for π is computed.
3. Shuffle: The mixers shuffle (v,d), resulting in (v′,d′). While v′ is kept private

on SB, d′ is posted on PB. Additionally, two commitment consistent proofs
are provided with respect to the permutation π: Pv shows that v′ is a shuffle
on v and Pd shows that d′ is a shuffle on d. Pv and Pd are then posted on
SB and PB respectively.

4. Decryption: After verifying the proofs, the encryption in v′ is decrypted to
have the message M and auxiliary values R̂ and Ŝ. The results are published
on PB.

Since the published proofs do not disclose the permutation used in the mixing
process or the decryption key, it would not violate any anonymity. Thus, everyone
can verify if the election outcome is the correct decryption of the shuffled valid
votes using the MixnetVerify algorithm below.
1. Verification of the permutation: One can verify the proof Pπ of the chosen

permutation π and abort if it fails.
2. Verification of the proof of shuffle: One can verify the validity of the proof

Pd and abort if it fails.
3. Verification of the openings: One can verify if decrypted values of v′ pro-

vided on PB are valid openings for the shuffled commitments in d′ and abort
otherwise.

5 Conclusion

Our paper proposes two encryption mechanisms for verifiable elections that sup-
ports both receipt-freeness and a perfectly private audit trail. To the best of our
knowledge, this is the first proposal that can achieve these properties without
relying on the presence of an anonymous channel for submitting the ballots.

On our way, we develop new traceable receipt-free encryption (TREnc) mech-
anisms that are secure under SXDH, assuming a public coin CRS. This last
assumption brings a noticeable benefit over the existing mechanisms, which
required a structured CRS, bringing the question of the practical generation
of this CRS, and of the underlying trust assumptions.

We demonstrate the efficiency of our mechanism through a prototype imple-
mentation. While demanding, they still support encryption and ciphertext veri-
fication under a second of time. It would be appealing to explore solutions that
could reduce the complexity of this encryption process, both in time and in
space.

Acknowledgments. Thomas Peters is a research associate of the Belgian Fund for
Scientific Research (F.R.S.-FNRS). This work has been funded in part by the Walloon
Region through the project CyberExcellence (convention number 2110186).

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 277

A Scheme Description for Complex Ballots

Gen(1λ): Choose bilinear groups (G, Ĝ,GT) of prime order p > 2poly(λ) together

with g, h, g1, h1
$← G and ĝ, ĥ

$← Ĝ.
1. Pick random {(αi, βi)}2i=1

$← Zp and set {f̂i}2i=1 = ĝαi ĥβi . Pick random

α, β
$← Zp and set f = gαhβ .

2. Generate Groth-Sahai CRS u = (
u1,
u2) ∈ G
4, u′ = (
u′

1,
u
′
2) ∈ G

4 and
v = (
v1,
v2) ∈ Ĝ

4 to commit to groups elements of G and Ĝ, where

u′
1 = (u′

11, u
′
12) = (g, h),
u′

2 = (u′
21, u

′
22) = (g1, h1),
v1 = (v11, v12), and

v2 = (v21, v22) are generated in the perfect NIWI mode.
3. Pick random k1, k2 ← G that will be used as a verification key for the

LHSP signature.
The private key is SK = (α1, β1, α2, β2, α, β) and the public key PK =
(g, h, g1, h1, ĝ, ĥ, f, f̂1, f̂2, k1, k2,u,v,u′).
Enc(PK, M): To encrypt a message M ∈ G, first run LGen(PK): Generate a
key pair (osk, opk) for the one-time linearly homomorphic signature from the
public generators ĝ, ĥ in order to sign vectors of dimension 3. Let the signing
key lk = osk = {(ηi, ζi)}3i=1, the corresponding public key is opk = {ŷi}3i=1.
Then, conduct the following steps of LEnc(PK, lk,M):
1. In the ciphertext CT :

(a) For random r, s
$← Zp, compute the commitments d1 = Mgrhs ∈

G, d2 = gr
1h

s
1 ∈ G and the openings R̂ = ĝr ∈ Ĝ, Ŝ = ĝs ∈ Ĝ.

Randomly choose θ, γ
$← Zp, compute the ciphertexts of M , R̂, and Ŝ

respectively as cm = (c0m, c1m, c2m) = (Mfθ, gθ, hθ), cr = (c0r, c
1
r, c

2
r) =

(R̂f̂γ
1 , ĝγ , ĥγ), and cs = Ŝf̂γ

2 .
(b) Commit to the openings using the Groth-Sahai CRS by computing

CM = ι1(M)
uz1
1
uz2

2 , CR̂ = ι1(R̂)
vr1
1
vr2

2 , and CŜ = ι1(Ŝ)
vt1
1
vt2

2 for

random z1, z2, r1, r2, t1, t2
$← Zp. For the sake of simplicity, from

now we denote the GS commitments as CM = Com(u,M),CR̂ =
Com(v, R̂), and CŜ = Com(v, Ŝ). Next, derive the commitments
Cf = ι1(c0m)/CM , Cf̂1

= ι2(c0r)/CR̂, and Cf̂2
= ι2(cs)/CŜ .

(c) To allow simulating the proof, set the bit b̄ = 1 and compute G =
gb̄ ∈ G and Ĝ = ĝb̄ ∈ Ĝ. Commit to G, Ĝ to have CG = Com(u, G),
CĜ = Com(v, Ĝ). Compute GS proof πb such that e(g, Ĝ) = e(G, ĝ).

(d) To ensure CT is well-formed, the proof πθ is computed to make
sure that (c1m, c2m, c0m/M) and (c1r, c

2
r, c

0
r/R̂, cs/Ŝ) are in the form of

(g, h, f)θ and (ĝ, ĥ, f̂1, f̂2)γ respectively. To do that, commit also to
Ĝθ and Gγ such that Cθ = Com(v, Ĝθ) and Cγ = Com(u, Gγ), and
compute a GS proof πθ that

278 T. V. T. Doan et al.

e(c1m, Ĝ) = e(g, Ĝθ),e(c2m, Ĝ) = e(h, Ĝθ), e(G, c1r) = e(Gγ , ĝ),

e(G, c2r) = e(Gγ , ĥ),e(fθ, Ĝ) = e(f, Ĝθ), e(G, f̂γ
1) = e(Gγ , f̂1),

e(G, f̂γ
2) = e(Gγ , f̂2).

(e) Return CT = (cm, cr, cs,CG,Cθ,Cγ , πb, πθ) ∈ G
27 × Ĝ

26.
2. In the commitment D:

(a) The proof of the openings for commitments: The proof of openings
πopen needs to make sure that the values committed in CM ,CR̂,CŜ ,
CĜ in CT are the openings of the commitments. In other words,
CM ,CR̂,CŜ , and CĜ must ensure that e(M, ĝ) · e(g, R̂) · e(h, Ŝ) =
e(d1, Ĝ) and e(g1, R̂) · e(h1, Ŝ) = e(d2, Ĝ).

(b) Traceability property : Sign each row of the matrix T using lk = osk to
have signatures σ1, σ2, σ3, where σi = (Zi, Ri) ∈ G

2 for i = 1, 2, 3.

T =

⎛

⎝
g d1 d2
1 g g1
1 h h1

⎞

⎠

Next, commit to σ1 using u′ with CZ = Com(u′, Z1) and CR =
Com(u′, R1). To ensure that σ1 is a valid one-time LHSP signature on
(g, d1, d2), compute the proof πsig ∈ Ĝ

2 such that e(Z1, ĝ) ·e(R1, ĥ) =
e(g, ŷ1) · e(d1, ŷ2) · e(d2, ŷ3).

(c) TCCA security : Set Â = 1
Ĝ
, B̂ = 1

Ĝ
, X̂ = ĝ/Ĝ = ĝ1−b̄, and τ =

Hash(opk). Commit to Â and B̂ using CRS v. Compute the proof πss

that e(g, Â) · e(h, B̂) = e(k1kτ
2 , ĝ/Ĝ).

(d) Return D = (d1, d2,CM ,CR̂,CŜ ,CĜ,CZ ,CR,CÂ,CB̂ , πopen, σ2,

σ3, πsig, πss, opk) ∈ G
20 × Ĝ

19.
At the end of the encryption, output C = (CT,D) ∈ G

47 × Ĝ
45.

Trace(PK, C): Parse PK and C as above, and output opk in the obvious way.
Rand(PK, C): If PK and C = (CT,D) do not parse as the outputs of Gen and

Enc, abort. Otherwise, conduct the similar steps as presented in Rand(PK, C)
(Sect. 3.1). At the end of the randomization, output the ciphertext C ′ =
(CT ′,D′).

Ver (PK, C): First, abort and output 0 if either PK or C fails to parse correctly.
Second, verify the validity of the signatures σ2 and σ3 on the 2 last rows of
the matrix T , and output 0 if it does not hold. Third, verify all the provided
GS proofs πb, πθ, πopen, πsig, and πss regarding their the corresponding equa-
tions. The first two proofs will be privately verified, which concerns the CPA
encryption part, while the others will be checked publicly on PB. If at least
one of these checks fails, output 0; otherwise, output 1.

Dec(SK, C): If Ver(PK, C) = 0, output ⊥. Otherwise, given SK =
(α1, β1, α2, β2, α, β) and (cm = (c0m, c1m, c2m), cr = (c0r, c

1
r, c

2
r), cs) included

in CT , output M = c0m · c1m
−α · c2m

−β , R̂ = c0r · c1r
−α1 · c2r

−β1 , and Ŝ =
cs · c1r

−α2 · c2r
−β2 .

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 279

The security analysis of this second scheme directly follows that of our first
construction.

B Deferred Proofs

B.1 Correctness

The construction satisfies TREnc’s correctness as defined in Definition 2.1.

Correctness of encryption compatibility By construction, we define Enc such that
the distributions of Enc(PK,m) and LEnc(PK, LGen(PK),m) are identical.

Correctness of link traceability For every PK in the range of Gen, the scheme
runs LGen(PK) to output a key pair (osk, opk) for the one-time linearly
homomorphic signature, where opk = f(osk) for a deterministic function
f . Then, for every lk = osk in the range of LGen(PK), LEnc(PK, lk,m)
produces a ciphertext C, where Trace(PK, C) = f(osk) = opk. That is,
Trace(PK, LEnc(PK, lk, ·)) is the constant function f(osk) = opk.

Correctness of publicly traceable randomization As described in 3.1, the trace
opk is kept unchanged in randomization step. Thus, we have Trace(PK, C)
= Trace(PK,Rand(PK, C)) by definition. Additionally, in Rand algorithm,
we honestly randomize the CPA part of the ciphertext, where c′

m = cm ·
(f1, g1, h1)θ′

= (Mfθ+θ′
1 , gθ+θ′

1 , hθ+θ′
1) with θ′ $← Zp. Obviously, c′

m is dis-
tributed exactly as a fresh CPA encryption of m since θ + θ′ is random
over Zp. There exists no random θ′ that can modify the message, even
the coin might not have been taken from a uniform distribution. Hence,
Dec(SK, C) = Dec(SK,Rand(PK, C)).

Correctness of honest verifiability Given a ciphertext C in an honest range
of Enc(PK,m), there exists random coins that explain how to compute the
ciphertext. This always leads to valid GS proofs and valid LHSP signatures.
Based on that, we have verifiability since all the verification equations are
satisfied. In other words, thanks to the perfect correctness of GS proofs and
LHSP signatures, if C is honestly generated, for all the coins, we have validity
or Ver(PK,Enc(PK,m)) = 1.

B.2 Strong Randomizability

Theorem 3.1. The TREnc is perfectly strongly randomizable. More precisely,
for every c ∈ LEnc(PK, lk,m) with pk in the range of Gen and lk in the range of
LGen(PK), the distributions {Rand(PK, c)} and {LEnc(PK, lk,m)} are identical.

Proof. Given a ciphertext C = (CT,D) in the range of Enc(PK,m), for some
message m and internal link key lk = osk, the perfect correctness of honest veri-
fiability of our TREnc implies that C is valid. It is easy to see that the opening
values R,Q are fully redistributed as uniform group elements during rerandom-
ization. The CPA part is then also fully rerandomized and distributed as a fresh
CPA part. In the WI mode, valid GS-proofs can also be perfectly rerandomized

280 T. V. T. Doan et al.

and fully redistributed after adaptation. Finally, the LHSP signatures on the last
two rows of the T -matrix are deterministic. The indistinguishability is actually
perfect.

B.3 TCCA Security

Theorem 3.2. The above scheme is TCCA-secure under the SXDH assump-
tion and the collision resistance of the hash function. More precisely, we have∣
∣ Pr[ExptccaA (λ) = 1] − 1

2

∣
∣ ≤ εcr + 6εsxdh + 4

p .

Proof. We consider a sequence of games. In Game i, we denote by Si the event
that an adversary A wins by correctly guessing the internal random bit b of the
game, which makes the game output 1.

Game1(λ): This is the real game as described in the experiment Fig. 1. By defi-
nition, Pr[S1] = Pr[ExptccaA (λ) = 1].

Game2(λ): In this game, we introduce a failure event F2 which causes this game to
abort and output a random bit if the adversary produces two valid ciphertexts
C and C ′ as output of Enc such that Hash(opk) = Hash(opk′) but opk �= opk′.
This even prevents the situation when A can successfully use the same tag
with different signatures in decryption queries after the challenge phase. F2

implies a collision on the hash function, so Pr[F2] = εcr. We thus have, |
Pr[S2] − Pr[S1] |≤ Pr[F2] = εcr.

Game3(λ): This game is as Game 2 except that we introduce a failure event
which occurs during the challenge phase if A can produce the valid ciphertexts
C0, C1 but (σ̂(0)

2 , σ̂
(0)
3) �= (σ̂(1)

2 , σ̂
(1)
3). The event should be aborted since the

challenge ciphertext C∗ has the same values of (σ̂∗
2 , σ̂

∗
3) as the ones in C0 or C1.

This causes a distinguishability between them. Obviously, | Pr[S0] − Pr[S1] |
is bounded by the probability that (σ̂(0)

2 , σ̂
(0)
3) and (σ̂(1)

2 , σ̂
(1)
3) are 2 distinct

signatures on the same vector. Thus, | Pr[S3] − Pr[S2] |≤ εsxdh.
Game4(λ): This game is the same as Game 3 except in the way we generate

the challenge ciphertext C∗ from Cb in the randomization step. When we
generate PK, we compute f̂1, f̂2 in such a way that they are corresponding
verification keys for a signing key sklhsp of a one-time linearly homomorphic
signature in order to sign vectors of dimension n = 2, given the common public
parameters ĝ, ĥ. We keep in memory sklhsp and output pklhsp = {f̂1, f̂2}. Since
the distribution of the output is not changed, it is indistinguishable from A’s
view. The simulated randomization is as follows:
1. Randomizing D∗

(a) For the proof of openings π∗
open

– Randomize the commitments d̂∗
1 = d̂

(b)
1 · ĝr∗

1 ĥq∗
1 , d̂∗

2 = d̂
(b)
2 · ĝr∗

2 ĥq∗
2

for r∗, q∗ $← Zp.
– Switch b̄ = 0, then we have G∗ = gb̄ = 1G ∈ G. Re-compute

the commitment of G∗ by C∗
G = Com(u, 1G). Since CRS u is

generated in the perfect NIWI mode, the resulting commitments

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 281

and proofs are distributed among all the possible group elements
that satisfy the verification equation. That means, it is not able
to distinguish between CG = Com(u, g) and C∗

G = Com(u, 1G).
– Similarly, update randomized commitments C∗

M = Com(u, 1G),
C∗

R = Com(u, 1G), and C∗
Q = Com(u, 1G). The Eqs. 4.a and 4.b

are verified as valid since both sides of the equations are equal
to 1. Then, update the simulated proof π∗

open = (π∗
4.a

, π∗
4.b

) with
corresponding randomness. Since GS proof is WI, the simulated
proof cannot be distinguished from a real one.

(b) For the proof of signature π∗
sig, it is done as usual as Rand would do.

(c) For the proof of simulation soundness π∗
ss

– Since b̄ is switched to 0, X∗ = g1−b̄ = g ∈ G. Adapt the commit-
ment of X∗ to be C∗

X = ι1(g)/C∗
G = Com(u, g).

– We simulate the proof π∗
ss by resigning the message (X∗,X∗τ∗

)
from scratch using the secret key sklhsp at step 2c. That is, when we
randomize C(b)

A ,C(b)
B from an adversary, first computing the LHSP

signature (A∗, B∗) on (X∗,X∗τ∗
). In other words, (A∗, B∗) =

Sign(sklhsp, (X∗,X∗τ∗
)), where τ∗ = Hash(opk0) = Hash(opk1) =

τ b. The Eq. 7 is still valid since f̂1, f̂2 was generated as the public
verification keys corresponding to sklhsp. Indeed, since C′

A,C′
B

computed in Rand and C∗
A,C∗

B are indistinguishable under NIWI
CRS, their distributions are exactly the same in the adversary’s
view.

– Commit to (A∗, B∗) by computing C∗
A = Com(u, A∗), C∗

B =
Com(u, B∗), then adapt the correspondingly simulated proof π∗

ss.
As a side effect, π∗

ss is a valid proof of a false statement, where X
is no longer equal to 1G as in Enc.

(d) For the proof π∗
01, since C∗

M = Com(u, 1G), we update CM̂∗ =
Com(v, 1

Ĝ
). The Eq. 8 is valid as both sides of the equations are equal

to 1. Then, compute the simulated proof π∗
01 accordingly.

2. Randomizing CT ∗

– Parse the CPA encryption part and randomize it as Rand at step 1a.
– Since b̄ = 0, recompute Ĥ = ĥb̄ = 1 and Ĥθ = 1. Compute the cor-

responding commitments C∗
Ĥ

= Com(v, 1
Ĝ
) and C∗

θ = Com(v, 1
Ĝ
).

The verification Eqs. 2 and 3 are all valid since both sides are equal
to 1. As a consequence, the encryption part is no more in the range of
the honest CPA encryptions of Dec(SK, Cb) except with probability
1/p. Next, compute the proof π∗

b and π∗
θ as in Enc.

Game 3 and Game 4 abort in the same cases. When both games do not abort,
their views are exactly the same thanks to the perfect witness indistinguisha-
bility of GS proofs. Particularly, the distributions of π∗

ss and randomized π′
ss

are indistinguishable. We thus have Pr[S4] = Pr[S3].
Game5(λ): This game is as the previous game except that the Groth Sahai CRS

u and v of the public key are now generated in the extractable mode. Namely,

282 T. V. T. Doan et al.

we pick
u1
$← G

2, γ
$← Zp, and compute
u2 =
uγ

1 . The CRS forms a random
DH tuple over G. Thus, | Pr[S5] − Pr[S4] |≤ 2εsxdh.

Game6(λ): We bring the following modification to the previous game. When sam-
pling CRS u = (
u1,
u

γ
1), we compute
u1 = (u11, u12), where u12 = uμ

11 with

μ
$← Zp. As per [23], the distribution of the public key is unchanged, but we

keep μ as an ElGamal secret key to extract the committed group elements
of the Groth-Sahai commitments. Moreover, when receiving C(b)

A ,C(b)
B ,C(b)

G

from the adversary, we extract some A(b), B(b), G(b) ∈ G. Here, we introduce
a failure event F6 when A can produce a valid signature satisfying Eq. 7 when
G(b) �= g (and then Ĥ(b) �= ĥ) in at least one of the following situations: in any
pre-challenge decryption query, in the challenge phase with C0 or C1. In other
words, we reject all the valid ciphertexts in the sense of Game 5 for which π

(b)
ss

is a valid proof for a false statement. As a result, we abort and output 0 if the
adversary can successfully create a valid but dishonest signature (A(b), B(b))
on a message different from (1, 1). We have | Pr[S6] − Pr[S5] |≤ Pr[F6].
To compute Pr[F6], let (A†, B†) the honest signature on g/G(b), (A†, B†) =
Sign(sklhsp, (g/G(b), g/G(b)τ). There are 2 cases that F6 can occur: (1) The
adversary A can correctly guess (A(b), B(b)) = (A†, B†) with a probabil-
ity of 1/p or (2) (A(b), B(b)) �= (A†, B†) is a valid but dishonest signature
on (g/G(b), (g/G(b))τ). Considering the second case, we have both (A†, B†)
and (A(b), B(b)) satisfying Eq. 7 with the same right-hand side member. This
implies an SXDH distinguisher. We thus have Pr[F6] ≤ 1/p+(1−1/p)εsxdh ≤
1/p + εsxdh, therefore | Pr[S6] − Pr[S5] |≤ 1/p + εsxdh.

Game7(λ): This game is the same as Game 6 except that we introduce a failure
event when A can produce a valid signature when G(i) �= g in post-challenge
decryption query with Trace(PK, C(i)) �= opk∗. Similarly to the previous
game, when receiving C(i)

A ,C(i)
B ,C(i)

G from the adversary for a decryption
query, we extract some A(i), B(i), G(i) ∈ G. Since A has to use a different
tag τ �= τ∗ for post-challenge decryption queries, the message (X(i),X(i)τ

) =
(g/G(i), g/G(i)τ) is not in span〈(X∗,X∗τ∗

)〉. Thanks to the unforgeability of
the LHSP signature, the validity of Eq. 7 implies trivial, when X(i) = 1 and
G(i) = g. Hence, after observing a simulated proof π∗

ss for a false statement in
Game 6, the adversary is not able to validate another falsely simulated proof
for a false statement. Thus, | Pr[S7] − Pr[S6] |≤ 1/p + εsxdh.

Game8(λ): Up to this point, if the game does not abort, all the ciphertexts
from an adversary can not contain a valid signature of a message different to
(1G, 1G). That means all the ciphertexts that will be decrypted are honest and
do not reveal any information of SK, except those provided in the challenge
phase. In this game, we bring another modification in the way we generate
the CPA encryption part. To make sure the challenge ciphertext C∗ does
not contain any information of which Cb is used in randomization, let us call
G1 = gθ∗

1 ∈ G, H1 = hθ∗
1 ∈ G, since f1 = gα1

1 hβ1
1 we compute F1 = Gα1

1 Hβ1
1

using the secret key SK= (α1, β1). (g1, h1, G1,H1) forms a random DDH
tuple over G. The challenge ciphertext in Game 4 is then c∗

m = (c∗
0, c

∗
1, c

∗
2) =

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 283

c(b)m · (f1, g1, h1)θ∗
= cm · (F1, G1,H1). Now, instead of choosing G1,H1 like

this, we pick random G1,H1
$← G and compute F1 = Gα1

1 Hβ1
1 , the tuple

(g1, h1, G1,H1) is a random quadruple in G. As a result, c∗
m = (c∗

0, c
∗
1, c

∗
2) =

cm · (F1, G1,H1) is no more in the range of the honest CPA encryptions of
Dec(SK, Cb) except with probability 1/p. Consequently, π∗

θ is a proof of a
false statement but valid since Ĥ = Ĥθ∗

= 1 as set in Game 4. Obviously,
| Pr[S8]−Pr[S7] |≤ εsxdh since the distinction between them is the distinction
between a random DDH tuple and a random quadruple in G.

In fact, after observing the simulated proof π∗
θ , the adversary is not able to do

the same, i.e., setting Ĥ = Ĥθ∗
= 1. Since π∗

b has to be valid, the soundness of
GS proof shows that (G, Ĥ) is in the form of (gb̄, ĥb̄). However, G(b) = g because
G(b) �= g is aborted from Game 7. Therefore, b̄ = 1 and Ĥ = ĥ �= 1.

To conclude, we need to compute the Pr[S8]. Firstly, we argue that A’s view
in Game 8 is statistically independent of the hidden bit b. If the game aborts
and outputs a random bit, the probability of returning 1 is 1/2. If there is
no abort, that is, all the ciphertexts C for decryption queries are honest and
Dec(SK, C)= (c0 · c−α1

1 · c−β1
2) does not reveal any additional information about

the secret key SK, except what can be inferred from f1 = gα1
1 hβ1

1 and F1 =
Gα1

1 Hβ1
1 , where G1,H1 are kept secret during the computation of the challenge

ciphertext. Suppose that G1 = gy
1 and H1 = hy

1f
z
1 for random y, z

$← Zp, we have
F1 = fy+zβ

1 . As a consequence, the computation of c∗
m = c(b)m · (F1, G1,H1) =

(c(b)0 · fy+zβ
1 , c

(b)
1 · gy

1 , c
(b)
2 · hy

1f
z
1). If at least one of the two values (y, z) is 0, the

probability that A wins is P1 ≤ 2/p + 1/p2. If both y, z �= 0, c∗
m is a random

triple over G3, A wins with the probability of P2 = 1/2(1− 2/p− 1/p2). Finally,
the probability that A wins in this game is Pr[S8] ≤ P1 + P2 ≤ 1/2 + 2/p.

In summary, we have
∣
∣ Pr[ExptccaA (λ) = 1] − 1

2

∣
∣ ≤ εcr + 6εsxdh + 4

p .

B.4 Traceability

Theorem 3.3. The above scheme is traceable (Fig. 1) under the SXDH assump-
tion. More precisely, for any adversary A, we have Pr[ExptraceA (λ) = 1] ≤
5εsxdh + 1

p .

Proof. Let A be an efficient adversary against the traceability of our scheme.
We consider a sequence of games. In Game i, we denote by Si the event that A
wins by correctly guessing the internal random bit b of the game, which makes
the game output 1.

Game1(λ): This is the real game as described in the experiment Fig. 1, where (PK,
SK) ← Gen(1λ). Then, (m, st) ← A1(PK, SK), C = (CT,D) ← Enc(PK,m),
and C∗ = (CT ∗,D∗) ← A2(st, C). By definition, S1 occurs if Ver(PK, C∗)
= 1, Dec(SK, C∗) �= m, and opk∗= Trace(PK, C∗)= Trace(PK, C) = opk.
Thus, Pr[S1] = Pr[ExptraceA (λ) = 1].

284 T. V. T. Doan et al.

Game2(λ): This game is as the real game except that the Groth Sahai CRSes
u = (
u1,
u2) ∈ G

4 and v = (
v1,
v2),v′ = (
v′
1,
v

′
2) ∈ Ĝ

4 of the public key are
now generated in the extractable mode. In particular, instead of picking them
uniformly at random, we pick them as random Diffie-Hellman tuples over the
appropriate groups. Under the DDH assumptions in G and Ĝ, the adversary
does not notice the difference. Thus, any adversary’s behavior to distinguish
between Game 1 and Game 2 leads to a SXDH distinguisher. That means
| Pr[S1] − Pr[S2] |≤ 3εsxdh.

Game3(λ): We introduce one more modification to Game 2 in the way to gener-
ate the commitment key ĝ1, ĥ1, ĝ2, ĥ2 of PK. Instead of picking them all uni-
formly over Ĝ, we pick a random scalar x

$← Zp and set (ĝ2, ĥ2) = (ĝ1, ĥ1)x.
This modification turns the perfectly hiding commitment (d̂1, d̂2) = (ĝm, 1) ·
(ĝ1, ĝ2)r · (ĥ1, ĥ2)q into an extractable commitment (ĝmĝr

1ĥ
q
1, (ĝ

r
1ĥ

q
1)

x). More-
over, the last two lines of the matrix T in Eq. (5) are now linearly dependent,
so that the row space of T is now a 2-dimensional sub-space over Ĝ

3. By the
SXDH assumption, we have | Pr[S2] − Pr[S3] |≤ εsxdh.

Game4(λ): This game is the same as the previous game except that we introduce
a failure event, which causes the game to be aborted and output 0. When we
generate C ← Enc(PK,m) given m from A1, we first compute (opk, osk) ←
LGen(PK) and then C ← LEnc(PK, osk,m) as before, but we keep osk. Then,
as soon as we get C∗ from A2 with the commitment (d̂∗

1, d̂
∗
2), we extract

the necessarily valid σ̂∗
1 = (Ẑ∗, R̂∗) LHSP signature from the (now perfectly

sound) GS proof and compare it to σ̂†
1 = Sign(osk, (ĝ, d̂∗

1, d̂
∗
2)). The failure

event happens if σ̂∗
1 �= σ̂†

1. Due to the property of the LHSP signature [28],
if we have two distinct signatures on a same vector we can solve the DDH
problem. We thus have | Pr[S3] − Pr[S4] |≤ εsxdh.

We conclude by showing that Pr[S4] = 1/p. Indeed, S4 is an event when
A wins by correctly guessing σ̂∗

1 = Sign(osk, (ĝ, d̂∗
1, d̂

∗
2)), but m �= Dec(SK, C∗).

That is, (ĝ, d̂∗
1, d̂

∗
2) is not in the 2-dimensional linear span of the row vectors

of T signed in C. Since osk contains enough entropy after C was given to the
adversary, Z† is still unknown and uniform over G. Therefore the probability to
have Ẑ∗ = Ẑ is 1/p.

In summary, we have Pr[ExptraceA (λ) = 1] ≤ 5εsxdh + 1
p .

B.5 Verifiability

Theorem 3.4. The above TREnc is verifiable under the SXDH assumption.
More precisely, for any adversary A, we have Pr[ExpverA (λ) = 1] ≤ 3εsxdh + 1

p .

Proof. Given (PK, SK) ← Gen(1λ), we have to show that any ciphertext from
A which passes the verification equations is necessarily in the range of the
honestly generated encryptions with overwhelming probability. In other words,
Pr[ExpverA (λ) = 1] is defined that if C ← A(PK, SK) is not in the honest encryp-
tion range, the probability that it is considered as valid is negligible.

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 285

Let C = (CT,D) ← A(PK, SK) satisfying Ver(PK,C) = 1, where CT =
(cm, cr, cq,CĤ ,Cθ, πb, πθ) and D = (d̂1, d̂2,CM̂ ,CM ,CR,CQ,CG,CẐ ,CR̂,CA,
CB , πopen, σ̂2, σ̂3, πsig, πss, π01, opk).

To show that the CPA part of CT is well formed, we rely on the soundness of
the proof related to the CRS u,v. As in the TCCA proof, we switch these CRSes
to the extractable mode, which leads to a security loss of 2εsxdh. Next, we extract
a witness from the valid proofs associated with u,v. If (A,B,X) �= (1, 1, 1), we
abort. That is, the adversary manages to produce a valid LHSP signature for
the public key (f̂1, f̂2). By generating this pair in the key generation so that we
know a corresponding secret key, we can show that this happens with negligible
probability εsxdh + 1/p from the LHSP unforgeability. From now on, we can
thus assume that the extracted G = g, Ĥ = ĥ. Therefore, the soundness of
GS proofs allows extracting non-trivial witness from the satisfiability of Eq. (3),
which shows that cm = (c0, c1, c2), cr and cq have the expected honest structure.

The LHSP signatures and the GS proof associated with the CRS v′ can
always be explained honestly, even if it is not efficient to compute their dis-
crete log representation. The same happens for the perfectly hiding commitment
(d̂1, d̂2) since we can extract the opening in Eq. (4) with respect to u,v, which
must be consistent with decryption of (M,R,Q). Moreover, M = gm must be a
bit thanks to Eq. (8).

To conclude, we have Pr[ExpverA (λ) = 1] ≤ 3εsxdh + 1
p .

References

1. Adida, B.: Helios: web-based open-audit voting. In: Proceedings of the 17th
USENIX Security Symposium, pp. 335–348. USENIX Association (2008)

2. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.: Electing a university
president using open-audit voting: analysis of real-world use of Helios. In: 2009
Electronic Voting Technology Workshop/Workshop on Trustworthy Elections,
EVT/WOTE ’09. USENIX Association (2009)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

4. Benaloh, J., Naehrig, M.: Electionguard design specification version 2.0.0. https://
www.electionguard.vote/spec/. Accessed Aug 2023

5. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: Proceedings of
the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 544–553
(1994)

6. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: a compre-
hensive analysis of game-based ballot privacy definitions. In: 2015 IEEE Sympo-
sium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp.
499–516. IEEE Computer Society (2015). https://doi.org/10.1109/SP.2015.37

7. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios
for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23822-2 19

https://doi.org/10.1007/11693383_22
https://www.electionguard.vote/spec/
https://www.electionguard.vote/spec/
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-642-23822-2_19

286 T. V. T. Doan et al.

8. Bernhard, D., Pereira, O., Warinschi, B.: On necessary and sufficient conditions
for private ballot submission. Cryptology ePrint Archive (2012)

9. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 25

10. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054851

11. Canard, S., Schoenmakers, B., Stam, M., Traoré, J.: List signature schemes. Dis-
cret. Appl. Math. 154(2), 189–201 (2006)

12. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: Beleniosrf: a non-interactive
receipt-free electronic voting scheme. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1614–1625 (2016)

13. Chaum, D., et al.: Scantegrity II: end-to-end verifiability by voters of optical scan
elections through confirmation codes. IEEE Trans. Inf. Forensics Secur. 4(4), 611–
627 (2009)

14. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827 8

15. Cortier, V., Gaudry, P., Glondu, S.: Belenios: a simple private and verifiable elec-
tronic voting system. In: Guttman, J.D., Landwehr, C.E., Meseguer, J., Pavlovic,
D. (eds.) Foundations of Security, Protocols, and Equational Reasoning. LNCS,
vol. 11565, pp. 214–238. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-19052-1 14

16. Cramer, R., Franklin, M., Schoenmakers, B., Yung, M.: Multi-authority secret-
ballot elections with linear work. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 72–83. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
68339-9 7

17. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997)

18. Culnane, C., Ryan, P.Y.A., Schneider, S.A., Teague, V.: vvote: A verifiable voting
system. ACM Trans. Inf. Syst. Secur. 18(1), 3:1–3:30 (2015)

19. Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: do we
need to choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013.
LNCS, vol. 8134, pp. 481–498. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40203-6 27

20. Devillez, H., Pereira, O., Peters, T.: Traceable receipt-free encryption. In: Agrawal,
S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp. 273–303.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22969-5 10

21. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.A.: Caveat coercitor: coercion-
evidence in electronic voting. In: 2013 IEEE Symposium on Security and Privacy,
SP 2013, pp. 367–381. IEEE Computer Society (2013)

22. Grontas, P., Pagourtzis, A., Zacharakis, A., Zhang, B.: Towards everlasting pri-
vacy and efficient coercion resistance in remote electronic voting. In: Zohar, A., et
al. (eds.) FC 2018. LNCS, vol. 10958, pp. 210–231. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-662-58820-8 15

23. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/978-3-642-19379-8_25
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/3-540-68339-9_7
https://doi.org/10.1007/3-540-68339-9_7
https://doi.org/10.1007/978-3-642-40203-6_27
https://doi.org/10.1007/978-3-642-40203-6_27
https://doi.org/10.1007/978-3-031-22969-5_10
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-540-78967-3_24

Encryption Mechanisms for Receipt-Free and Perfectly Private Elections 287

24. Haines, T., Mueller, J., Mosaheb, R., Pryvalov, I.: SoK: secure e-voting with ever-
lasting privacy. In: Proceedings on Privacy Enhancing Technologies (PoPETs)
(2023)

25. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 38

26. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp.
61–70 (2005)

27. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

28. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. Des. Codes Crypt. 77, 441–477 (2015)

29. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security
with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 247–276. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54365-8 11

30. Locher, P., Haenni, R.: Receipt-free remote electronic elections with everlasting
privacy. Ann. Telecommun. 71, 323–336 (2016)

31. The miraCL core cryptographic library. https://github.com/miracl/core
32. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-

vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 22

33. Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 25–35. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0028157

34. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D.,
Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 12

35. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme: a practical solution to
the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-49264-X 32

36. Wikström, D.: Verificatum. https://www.verificatum.org/. Accessed May 2022

https://doi.org/10.1007/3-540-45539-6_38
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/978-3-662-54365-8_11
https://github.com/miracl/core
https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/BFb0028157
https://doi.org/10.1007/BFb0028157
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/3-540-49264-X_32
https://www.verificatum.org/

Two-Party Decision Tree Training
from Updatable Order-Revealing

Encryption

Robin Berger1(B) , Felix Dörre1 , and Alexander Koch2

1 KASTEL Security Research Labs, Karlsruhe Institute of Technology,
Karlsruhe, Germany

{robin.berger,felix.doerre}@kit.edu
2 CNRS and IRIF, Université Paris Cité, Paris, France

alexander.koch@irif.fr

Abstract. Running machine learning algorithms on encrypted data is
a way forward to marry functionality needs common in industry with
the important concerns for privacy when working with potentially sen-
sitive data. While there is already a variety of protocols in this setting
based on fully homomorphic encryption or secure multiparty computa-
tion (MPC), we are the first to propose a protocol that makes use of a
specialized Order-Revealing Encryption scheme. This scheme allows to
do secure comparisons on ciphertexts and update these ciphertexts to
be encryptions of the same plaintexts but under a new key. We call this
notion Updatable Order-Revealing Encryption (uORE) and provide a
secure construction using a key-homomorphic pseudorandom function.

In a second step, we use this scheme to construct an efficient three-
round protocol between two parties to compute a decision tree (or for-
est) on labeled data provided by both parties. The protocol is in the
passively-secure setting and has some leakage on the data that arises
from the comparison function on the ciphertexts. We motivate how our
protocol can be compiled into an actively-secure protocol with less leak-
age using secure enclaves, in a graceful degradation manner, e.g. falling
back to the uORE leakage, if the enclave becomes fully transparent.
We also analyze the leakage of this approach, giving an upper bound
on the leaked information. Analyzing the performance of our protocol
shows that this approach allows us to be much more efficient (especially
w.r.t. the number of rounds) than current MPC-based approaches, hence
allowing for an interesting trade-off between security and performance.

Keywords: Secure Computation · Order-Revealing Encryption ·
Decision Tree Learning · Enclaves · Privacy-Preserving Machine
Learning

1 Introduction

Privacy-preserving machine learning has gained a lot of traction in recent years,
due to the tremendous benefits of having automated data-driven decision making,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 288–317, 2024.
https://doi.org/10.1007/978-3-031-54770-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_12&domain=pdf
http://orcid.org/0009-0003-4647-4228
http://orcid.org/0009-0009-7244-7753
http://orcid.org/0000-0002-3510-9669
https://doi.org/10.1007/978-3-031-54770-6_12

Decision Tree Training from Updatable ORE 289

while caring for the legitimate privacy interests of the user, especially in a multi-
party setting. More importantly, due to legal requirements, many uses of machine
learning (ML) algorithms would not even be possible in a setting where access to
sensitive information (such as medical data) is required.

One ML algorithm that is relatively popular, due to its simplicity and inter-
pretability, is decision tree learning. It is usually employed in the more general
decision forest version. Here, we use a training data set of entries with many
attributes and a label, to build a decision tree. This tree branches based on
thresholds w.r.t. the attribute values, and has labels annotated to its leaf nodes.
To classify a new entry, one follows the tree from the root to a leaf node by
comparing the attributes against the thresholds. The classification result is the
label annotated to the reached leaf node.

Training such trees via secure multiparty computation has already been pro-
posed by [2,16]. Because this is in a strong privacy model, these protocols are
relatively expensive regarding computation and round complexity. The overall
round complexity of [16] is O(h(log m+log n)), where h is the a priori fixed depth
of the tree, m is the number of attributes and n is the number of data entries.
Hence, in the setting where they add a realistic 50 ms delay to each message on
the network, the overall running time of the protocols increases by several orders
of magnitude.

This motivates the following research question: Can we greatly improve the
performance and round complexity of the protocol by allowing for some leakage.
(This leakage can later be partly avoided again, with the help of secure enclaves.)
Ideally, we would want a small constant number of rounds.

As comparisons or sorting are the main ingredients to Decision Tree training
algorithms, we propose to use an extended version of Order-Revealing Encryp-
tion (ORE). In ORE schemes, the values are encrypted using a secret key, but
given two ciphertexts, one can evaluate the order of the messages they encrypt
without knowing this key. We extend this by a way to update the ciphertexts to a
new key, in a setting where the key space is a multiplicative group. Hence, given
a ciphertext c = Enc(k,m) and second key k′, one can run Upd(k′, c) to obtain a
new ciphertext c′ that is equal to Enc(k ·k′,m), making use of key-homomorphic
pseudorandom functions (PRFs).

Using this new primitive, which we believe to be of independent interest, we
construct a conceptually simple protocol, using only three rounds, that allows
two parties to jointly compute a decision tree on their data. Here, the two parties
A and B both have a horizontal partition of the data set and B does the main
tree computation. In a nutshell this works as follows:

– To have all data points ORE-encrypted under the same keys (using one key
per attribute), the parties proceed in a Diffie-Helman key exchange-like man-
ner: B encrypts his data under his keys kj . A updates these ciphertexts with
her keys k′

j , obtaining ciphertexts under kj · k′
j . B then updates these cipher-

texts using k−1
j , obtaining ciphertexts under keys k′

j .
– A also sends her own data points encrypted under k′

j to B, together with the
used labels (outcome attributes).

290 R. Berger et al.

– Now, B has all the data points under the same keys k′
j , and can use the

comparison function and the labels to compute a decision tree that uses the
encrypted values as thresholds.

– B sends this encrypted tree to A, who can now decrypt it using her keys k′
j .

This is a three-round protocol in the honest-but-curious setting, and hence much
faster than the MPC protocols of Hamada et al. [16] and Abspoel, Escudero,
and Volgushev [2], if one assumes plausible latency. However, this also comes at
the cost of considerable overall leakage due to what can be inferred from the
comparisons (and the leakage of the ORE scheme), if the scheme is used in the
bare (non-enclave) version. We give a more general analysis on the leakage, as
well as an information-theoretic upper bound thereof in Sect. 5.

1.1 Related Work

Order-Revealing Encryption. Order-Revealing Encryption (ORE) was intro-
duced by Boneh et al. [5] as a more flexible and more secure notion of Order-
Preserving Encryption (OPE). In contrast to OPE, where the natural ordering
of ciphertexts must be identical to the natural ordering of the messages they
encrypt, Order-Revealing Encryption allows to define a dedicated comparison
function on the ciphertexts for evaluating the natural order of the elements
contained within the ciphertexts. The main motivation for this was to enable
efficient search operations in encrypted databases. Following the introduction of
ORE, Chenette et al. [10] formalized security of ORE schemes, as well as giving
a construction of such a scheme. This construction inspired a new scheme by
Lewi and Wu [23], which is in a slightly different setting, namely the left–right
framework, where there are “left” ciphertexts and “right” ciphertexts and a left
ciphertext can be compared only with a right ciphertext. To allow for ORE
schemes to be used in a multi-user setting, Li, Wang, and Zhao [24] introduced
the notion of delegatable ORE schemes, where it is possible to issue comparison
tokens, which allows one to compare ciphertexts of different users. In a similar
way, Lv et al. [27] extend ORE schemes to a multi-user setting. One problem
with this approach, however, is that if one party has a comparison token allowing
another party’s ciphertexts to be compared to her own, it can decrypt the other
party’s ciphertexts again.

As ORE schemes allow comparisons of elements, they inherently leak infor-
mation about the messages encrypted in ciphertexts, as soon as more than one
message is encrypted under the same key. This has led to several investigations
on how severely this leakage affects the data privacy. Grubbs et al. [15] and
Durak, DuBuisson, and Cash [13] have shown that under some circumstances,
ORE schemes provide no meaningful security. Jurado, Palamidessi, and Smith
[18] however show that ORE schemes still provide some security if the message
space is significantly larger than the amount of messages encrypted.

Privacy-Preserving Machine Learning. Since machine learning models have
become more widespread, there has been work towards being able to perform the

Decision Tree Training from Updatable ORE 291

training process thereof in a privacy-preserving manner. Several machine learning
models have been considered in this setting, ranging from simple regression tasks
[8,19] to neural networks. Approaches for the latter include Fully-Homomorphic
Encryption (FHE) [22], and MPC protocols [20]. Multiparty computation has
also been used for training decision trees, where it is the most prevalent approach
since the work by Lindell and Pinkas [25]. In their work, they discuss how MPC
protocols can use the ID3 algorithm for training a decision tree. Since then, there
have been several improvements over this work [12,17].

Since the ID3 algorithm only supports discrete attributes, these approaches
are not applicable to a setting with with continuous attributes. To overcome this
issue, [2] use a variation of the C4.5 algorithm, which also supports continuous
attributes. Their protocol works by computing the training process for each
possible node in the resulting decision tree. However, this results in the runtime
of their protocol being linear in the maximum number of possible nodes in a
decision tree, and therefore exponential in the depth of the tree. Hamada et al.
[16] improve over this with a protocol, which is linear in the depth of the tree,
by partitioning the dataset in an oblivious way and performing the training once
for each layer, considering this partitioning. This comes at the cost of requiring
many network rounds. While these two state-of-the-art-approaches perform well
under ideal circumstances, due to their runtime [2] is not applicable in a setting,
where a high-depth decision tree is to be trained and [16] is not applicable in a
high-latency environment.

Privacy-Preserving protocols based on fully-homomorphic encryption (FHE)
are mostly restricted to decision tree evaluation (e.g. [11,14]) and do not consider
the secure training of decision trees. Most of those papers considering training
a decision tree, consider a different setting. For example [3] consider the setting,
where their goal is to outsource the training to a server, while some of the
computationally intensive steps (for FHE) are still done by the client. Hence,
it is not directly comparable to our work. Vaidya et al. [32] consider a setting,
where the training data is partitioned vertically and FHE is only used to evaluate
a heuristic in the training process, but the remaining computation is done in
plain text. So far, there are no efficient decision tree training protocols, that
perform the entire training using FHE. This is due to the fact that comparisons
are computationally expensive in FHE. Indeed, Liu et al. [26] aim to provide a
FHE-bsed protocol allowing comparisons in a multi-user setting, however a single
plaintext to ciphertext comparison in their case takes a computation time of
100 ms and 1 s for a ciphertext-ciphertext comparison, rendering this approach
infeasable in our setting.

1.2 Our Contribution

Our main contributions are as follows:

– We extend the notion of Order-Revealing Encryption (ORE) to Updatable
ORE and give an instantiation thereof.

292 R. Berger et al.

– Using this Updatable ORE scheme, we construct a three-round two-party
protocol to compute a decision tree on a horizontal partitioning of a dataset
with both parties providing training data. With this approach, we can apply
the same training algorithms as used in plaintext training.

– We describe how this protocol can be combined with enclaves providing differ-
ent security guarantees, in order to eliminate or reduce the introduced ORE
leakage and to make the protocol actively secure. We also use an information-
theoretic approach to quantify and give an upper bound for the ORE leakage.

– We implemented and experimentally verified the efficiency of our protocol,
showing that it is faster than current state-of-the-art protocols, while achiev-
ing this speedup at the cost of some information leakage.

1.3 Outline

We introduce necessary preliminaries including the universal composability (UC)
model, ORE and decision tree learning in Sect. 2. We propose our notion of
Updatable Order-Revealing encryption and also present a construction and a
security proof in Sect. 3. Section 4 contains the decision tree learning protocol,
together with its security proof, and a remark on how to translate it into an
actively-secure version using secure enclaves in a graceful-degradation manner.
In Sect. 5, we discuss the implications of the ORE leakage on the protocol. Finally
in Sect. 6, we evaluate our constructions based on a practical implementation.

2 Preliminaries

In the remainder of this work, PPT refers to a probabilistic Turing Machine
with a polynomial runtime bound. Furthermore, (G, p, [1]) is an additive group
of prime order p > 3. We use the additive implicit notation for group oper-
ations with the group generator [1]. In implicit notation, x · [y] = [x · y].
In this notation, the DDH assumption means that ([1] , [x] , [y] , [x · y]) and
([1] , [x] , [y] , [z]) are computationally indistinguishable for x, y, z ← Z

×
p . A func-

tion PRF : Zp × {0, 1}∗ → G is a pseudorandom function (PRF), if oracle access
to PRF with a random key k ← Zp is computationally indistinguishable to ora-
cle access to a random function. A PRF is key-homomorphic, if for all messages
m ∈ {0, 1}∗ and keys k, k′ ∈ Zp

PRF(k,m) + PRF(k′,m) = PRF(k + k′,m)

and therefore also
a · PRF(k,m) = PRF(a · k,m)

for all a ∈ Zp.
Naor, Pinkas, and Reingold [28] have constructed a key-homomorphic PRF

under the DDH assumption in the random oracle model for RO : {0, 1}∗ → G \
{[0]}:

PRF(k,m) := k · RO(m) (1)

Decision Tree Training from Updatable ORE 293

2.1 The Universal Composability Model

The universal composability (UC) model introduced by Canetti [7] is a well
established security model for cryptographic protocols. It extends from the real-
ideal paradigm, meaning that the security of a protocol is captured by an ideal
functionality, that is secure by definition. If a protocol is then shown to be secure,
relative to an ideal functionality (in which case we say that the protocol realizes
the ideal functionality), all security guarantees present in the ideal functionality
carry over to the protocol. Protocols secure in the universal composition theorem
remain secure under universal composition.

For a more in-depth introduction to the UC framework, see Appendix A or
[7].

2.2 Order-Revealing Encryption

We follow the definition in [10]. An ORE scheme is defined as a 3-tuple of PPT
algorithms ORE = (Gen,Enc,Cmp) over message space M, key space K and
ciphertext space C, where

– Gen(1κ) returns a secret key k ∈ K
– Enc(k,m) takes a key k ∈ K and a message m ∈ M as input and returns a

ciphertext c ∈ C
– Cmp(c0, c1) is a deterministic, takes two ciphertexts ct0, ct1 ∈ C and returns

a bit b or ⊥.

We require correctness for the scheme:

∀m0,m1 ∈ M, k ← Gen(1κ) :
Pr [Cmp(Enc(k,m0),Enc(k,m1)) = 1 ⇔ m0 < m1] ≥ 1 − negl(κ).

In addition, ORE schemes have an implicit Dec(k, c) algorithm, which takes a
secret key k ∈ K and a ciphertext c ∈ C and outputs a message m ∈ M. Dec is
implicitly defined using Enc and Cmp to perform a binary search on the message
space and return the result or ⊥ if the ciphertext is invalid under key k.

Security of ORE Schemes. For the security definition of an ORE schemes w.r.t.
some leakage function L(m1, . . . , mn), we use the security notion defined in [10].
Let ORE = (Gen,Enc,Cmp) be an ORE scheme. For some q = poly(κ), let A be
a stateful adversary and let SORE be a stateful simulator. Then, the experiments
REALORE

A and SIMORE
A,S,L are defined as in Fig. 1. We say an ORE scheme ORE

is secure w.r.t. the leakage function L, if there exists a PPT simulator SORE,
such that for all PPT adversaries A, the games REALORE

A and SIMORE
A,S,L are

computationally indistinguishable.

294 R. Berger et al.

Fig. 1. Definition of experiments REALORE
A and SIMORE

A,S,L for ORE scheme ORE and
stateful TMs A and SORE, cf. [10].

Best-Possible Leakage for ORE Schemes. Naturally, one is interested in an ORE
scheme with the least amount of leakage. Given t ORE ciphertexts c1, . . . , ct ∈ C
of messages m1, . . . , mt ∈ M under the same key, then for each pair (ci, cj), one
can inevitably learn whether mi ≤ mj by using the comparison algorithm. We
call a leakage function Lideal best-possible or ideal, if one learns nothing else, i.e.,
if the leakage is given by

Lideal(m1, . . . , mt) = {(i, j) | mi ≤ mj}.

Note that unfortunately there is no known ORE scheme for superpolynomial
message space with this ideal leakage, except for one that uses very strong
assumptions, such as multilinear maps [5], rendering this scheme unsuitable in
practice.

Assumptions on the Leakage Functions. In the remainder of this work, we make
a few assumptions about the leakage function.

Assumption 1. ∀m : L(m) = ∅.

While one could think of ORE schemes, for which this assumption does not hold,
the assumption holds for established schemes like the ones in [10,23], as well as
our ORE scheme.

Assumption 2. For t messages m1, . . . , mt and index 0 ≤ i ≤ t, it holds that
L≤i := L(m1, . . . , mi) can be efficiently computed from L = L(m1, . . . , mt).

While this assumption does not have to hold for all ORE leakage functions, it
does hold for leakage functions that tightly capture the leakage of the respective
ORE scheme. Again, this assumption holds for the ORE schemes in [10,23], as
well as for our ORE scheme.

Decision Tree Training from Updatable ORE 295

2.3 Decision Tree Training

We consider a domain with data points x with X continuous attributes xj and a
label �(x) from a small discrete set of labels. In this context, a decision tree is a
binary tree, where each leaf node contains a label and each inner node contains
a tuple (j, t), where j is an index of an attribute and t is a value of the j-th
attribute. When performing a classification on a data point x at an inner node
(j, t), we recurse to the left child node, if xj ≤ t, and to the right child node,
otherwise. This is repeated until reaching a leaf node, where the label of the
node is returned.

Decision tree training is the task of building a decision tree given a set of
labeled training data. Established decision tree frameworks like [1,6] use varia-
tions of the recursive C4.5 algorithm by Quinlan [30]. An adaption of this algo-
rithm can be seen in Algorithm 1. One source of variation in this algorithm is
the heuristic H used in Line 11. A common example used here is the Information
Gain heuristic. Following the definition in [21], it is defined as

H ′(S) = −
∑

l∈L

|{x ∈ S : �(x) = l}| log(|{x ∈ S : �(x) = l}|)
|S| ,

H(S,L,R) = H ′(S) − |L|
|S|H

′(L) − |R|
|S| H

′(R),

where L is the set of labels. This heuristic describes the information-theoretic
gain when separating the set S into sets L and R. Another common heuristic
is the GINI Index, which performs nearly identically as the information gain

Algorithm 1. Decision tree training with a heuristic H.
1: function TrainDecisionTree(data)
2: assert ∀x, y ∈ data : ∃j : xj �= yj

3: if ∀x ∈ data : �(x) = �(data0) then
4: return LeafNode(�(data0))
5: end if
6: j∗ := thresh∗ := ⊥, h∗ := −∞
7: for 1 ≤ j ≤ X do
8: L := ∅
9: for thresh ∈ {xj | x ∈ data} in ascending order do

10: L := L ∪ {x ∈ data | xj = thresh}
11: h := H(data, L, data \ L)
12: if h > h∗ then
13: j∗ := j, thresh∗ := thresh, h∗ := h
14: end if
15: end for
16: end for
17: L := {x ∈ data | xj∗ ≤ thresh∗}, R := data \ L
18: return InnerNode(j∗, thresh∗, trainDecisionTree(L), trainDecisionTree(R))
19: end function

296 R. Berger et al.

heuristic [31]. The other common variation is the threshold value used in Line
13, where most frameworks use an intermediate value between the threshold
and the next larger occurring attribute value. While in a classical setting both
the labels as well as the attribute values, are numeric values, we note that the
training algorithm itself only needs to evaluate the order of attribute values.
This is required in Lines 9, 10 and 17. While one could think of a heuristic H
which requires additional operations on the attributes, established heuristics like
Information Gain do not consider the attribute values, but only take the labels
into consideration.

It is possible to use different training algorithms and variations of trees, such
as XBoost [9], which trains gradient-boosted trees. In this approach, the training
process requires performing arithmetic operations on the attributes. Another
variation is the use of decision forests consisting of multiple decision trees. A
classification of a data point in such a decision forest is done by classifying it
with each tree and performing a majority vote on the resulting labels. Bentéjac,
Csörgő, and Mart́ınez-Muñoz [4] have empirically shown that in a real-world
scenario, gradient boosted trees, although requiring arithmetic operations on the
training data, do not perform significantly better than decision forest that can
be trained with Algorithm 1 only comparing elements and performing equality
checks on the labels.

3 Updatable Order-Revealing Encryption

We now augment the definition of ORE to allow for updating a ciphertext from
one key to another, while retaining the messages contained in the ciphertexts.

Definition 1 (Updatable ORE). A 4-tuple of PPT algorithms ORE =
(Gen,Enc,Cmp,Upd) is an Updatable ORE (uORE) scheme over key space
K = Z

×
p , message space M and ciphertext space C, if

– (Gen,Enc,Cmp) is an ORE scheme over key space K, message space M, and
ciphertext space C.

– Upd(k, c) takes a key k ∈ K and a ciphertext c ∈ C as input and outputs a
new ciphertext c′ ∈ C.

– Enc and Upd are deterministic.

ORE is correct, if (Gen,Enc,Cmp) is a correct ORE scheme and satisfies the
updatability property:

∀k, k′ ∈ K : Upd(k′,Enc(k,m)) = Enc(k · k′,m)

Moreover, ORE is a secure uORE scheme w.r.t. a leakage function L iff
(Gen,Enc,Cmp) is a secure ORE scheme w.r.t. L.

Note that in our definition, we require that the key space K := Z
×
p . This means

that any key k is invertible modulo p.
For our construction of an uORE scheme, we adapt the scheme from [10]:

Decision Tree Training from Updatable ORE 297

Construction 1. Let (G, p, [1]) be an additive group with prime order p > 3
and let PRF : Zp × {0, 1}∗ → G be a key-homomorphic PRF with key space
Zp and message space {0, 1}∗. Then, we define the uORE scheme ORE =
(Gen,Enc,Cmp,Upd) with message space M = {0, 1}n for a parameter n, and
ciphertext space C = G

n, as follows:

– Gen(1κ): Return a uniformly random k ← Z
×
p

– Enc(k,m = (m1, . . . , mn)): For i = 1, . . . , n, set

ui = (1 + mi) · PRF(k, (m1, . . . , mi−1)).

Return ct = (u1, . . . , un).
– Cmp(ct = (u1, . . . , un), ct′ = (u′

1, . . . u
′
n)): Find the smallest i, such that ui �=

u′
i. If such an i exists and u′

i = 2 · ui, return 1. Otherwise, return 0.
– Upd(k′, ct = (u1, . . . , un)): Set u′

i = k′ · ui. Return ct′ = (u′
1, . . . , u

′
n).

Our construction is similar to the one by Chenette et al. [10]. In both cases,
the key generation algorithm Gen(1κ) samples a random element from the PRF
key space, and Enc(k, (m1, . . . , mn)) is done bit by bit, by first computing u′

i =
PRF(k, (m1, . . . , mi−1)) and then returning ui = u′

i if mi = 0. If mi = 1, both
schemes return ui = π(u′

i) for an efficiently invertible permutation π. In both
schemes, Cmp((u1, . . . , un), (u′

1, . . . , u
′
n)) works by identifying the smallest i, for

which ui �= u′
i and checking if u′

i = π(ui) with the same permutation.
Comparing these two schemes, the only two differences are the PRF and

the permutation π being used. In our scheme, we require the PRF to be key-
homomorphic, which does not need to be the case in their scheme. This allows
them to use Z3 as output space of the PRF and Z

n
3 as the ciphertext space,

whereas our used ciphertext space is G
n. Moreover, we use π(x) = 2 · x as a

permutation, whereas in their scheme, π(x) = x + 1 mod 3 is used.
Because of this similarity, their security proof and ORE simulator also applies

to our construction, when adjusting the permutation. Hence, both schemes are
secure under the same leakage function:

Theorem 1. Construction 1 is secure with the leakage function

L(m1, . . . , mt) = {(i, j, hsb(mi ⊕ mj)) | 1 ≤ i, j ≤ t},

where hsb(x) returns the position of the highest set bit of x.

Because of the similarity to the proof of [10], we will only give a proof intu-
ition: For (u)ORE security to hold, there needs to be a simulator SORE that,
given only the leakage of messages, needs to be able to generate ciphertexts that
are indistinguishable from encryptions of the messages with a random but (dur-
ing the games) fixed key. In a first step, one replaces the PRF with a random
function via lazy sampling. When asked to generate the first ciphertext, SORE

samples n elements from the output space of the PRF uniformly at random
and outputs them as the first ciphertext. When asked to generate ciphertexts
for any subsequent messages, it learns the position of the leftmost differing bit

298 R. Berger et al.

between this message and previous messages, as well as the message bit at these
positions. This allows it to answer with consistent parts of ciphertexts, where
message prefixes are equal, and with π(x) or π−1(x) where the most significant
difference is. Finally, for all other positions, for which no common prefix with
another message exists, it proceeds as in the case for the first message, sampling
and outputting elements from the output space of the PRF.

Since this proof only requires the security of PRF and the efficient computa-
tion/inversion of π, the proof from [10] directly translates to our setting.

Remark 1. The leakage L of our scheme is actually sufficient to use faster sort-
ing algorithms than plain comparison-based algorithms. For example MSD radix
sort uses exactly the information provided by L to allow sorting in linear time.
Sorting all ciphertexts by the first bit is easy, as there are only two compara-
ble group elements for the first bit. After that, sorting the two partitions after
the second bit is possible with the same approach. This reduces the amount of
group operations required for sorting from O(n log n) to O(n). This is especially
interesting, as a main use-case for ORE are encrypted databases, where sorting
is a major concern. Large databases often use advanced sorting algorithms that
are not comparison-based, so the additional leakage of L over Lideal can be used
to speed up sorting.

Theorem 2. Construction 1 is a correct ORE scheme.

Proof. Fix two messages m,m′ ∈ {0, 1}n with m = (m1, . . . , mn) and m′ =
(m′

1, . . . , m
′
n). Then, we show that the correctness property holds for any k ←

Gen(1κ), (u1, . . . , un) ← Enc(k,m) and (u′
1, . . . , u

′
n) ← Enc(k,m′). We consider

each case separately.

m < m′: In this case, there exists an i, such that mj = m′
j for j < i and mj = 0

and m′
j = 1. In this case, it holds that uj = u′

j for j < i. For PRF output
o = PRF(k, (m1, . . . , mi−1)), and by definition of Enc, it holds that ui = o
and u′

i = 2 · o. If o �= 0G, ui and u′
i are different and Cmp returns 1 in this

case. The probability for the event that o = 0G is negligible (which follows
from the fact that this probability is 1/p for a random function and because
PRF is a PRF). Therefore, Cmp will output 1 with overwhelming probability.

m = m′: In this case ui = u′
i for all i, as Enc is deterministic and Cmp will

output 0.
m > m′: Similarly to the first case, there exists an i, such that mj = m′

j for
j < i and mj = 1 and m′

j = 0. With the same argument as in the case for
m < m′, we know that uj = u′

j for j < i and ui = 2 · u′
i. Since G is of prime

order with p > 3, it also holds that u′
i �= 2 · ui = 2 · 2 · u′

i and therefore Cmp
returns 0 with overwhelming probability. �

Theorem 3. Construction 1 satisfies the updatability property.

Decision Tree Training from Updatable ORE 299

Proof. The updatability follows from the key-homomorphism of PRF. For all
k, k′ ∈ K and m ∈ {0, 1}n, it holds that

Upd(k′,Enc(k,m)) = Upd(k′, ((1 + mi) · PRF(k,m1..i−1))i=1,...,n)
= (k′ · (1 + mi) · PRF(k,m1..i−1))i=1,...,n

= ((1 + mi) · PRF(k′ · k,m1..i−1))i=1,...,n

= Enc(k′ · k,m),

where m1..i−1 := (m1, . . . , mi−1). �

4 Secure Decision Tree Training

In our protocol, we want to train a decision tree without revealing the training
data, using the previously constructed Updatable ORE scheme. The core idea
is to have training data from one party uORE encrypted under a key which the
party itself does not know. To accomplish this, we make use of the updatability
of the created ciphertexts. In the second step, we apply the decision tree training
algorithm in Algorithm 1 to the ORE ciphertexts from the previous step. Here,
we make use of the fact that Algorithm 1 only requires the comparability of
attributes, and is deterministic.

In principle, any decision tree training algorithm with these properties can be
used. While the determinism of the training algorithm is required, de-randomi-
zation can be done by prepending the protocol with a secure coin-toss and using
these coins as input for the decision tree training. If randomness in the training
algorithm does not have a security impact, an alternative and more performant
way of de-randomization is to use a non-cryptographic PRG with a fixed seed.

Let us first formalize an ideal functionality that captures the security of
secure decision tree protocols.

Definition 2 (Ideal functionality FDTTrain). FDTTrain in Fig. 2 models the
security of the decision tree training protocol. A graphical representation thereof
is in Fig. 3. In this setting, there are two parties A and B. The training data has
X attributes and discrete labels.

Fig. 2. Ideal functionality FDTTrain.

300 R. Berger et al.

Fig. 3. Graphical representation of FDTTrain. Some details about the concrete values
being sent to/from the ideal functionality are omitted.

Construction 2 (Protocol πDTTrain) Here, we define the two-party protocol
πDTTrain between parties A and B. As before, let X be the number of attributes of
the training data. Also, let mA

i,j be the j-th attribute of the i-th training data of A
with the labels lAi (respectively for the dataset of B), and let (Gen,Enc,Cmp,Upd)
be an uORE scheme. Then we define the protocol πDTTrain as follows:

B:
– Generate ORE keys kB

i,j for 1 ≤ i ≤ nB, 1 ≤ j ≤ X

– Send cBi,j = Enc(kB
i,j ,m

B
i,j) for 1 ≤ i ≤ nB, 1 ≤ j ≤ X to A

A:
– Generate ORE keys kA

j for 1 ≤ j ≤ X

– Send CA
i,j = Enc(kA

j ,mA
i,j) for 1 ≤ i ≤ nA, 1 ≤ j ≤ X to B

– Send labels lAi for 1 ≤ i ≤ nA to B
– Send c′B

i,j = Upd(kA
j , cBi,j) for 1 ≤ i ≤ nB, 1 ≤ j ≤ X to B

B:
– Compute CB

i,j =Upd(1/kB
i,j , c

′B
i,j) for 1 ≤ i ≤ nB, 1 ≤ j ≤ X

– Train the decision tree on the data points (CA
i , lAi)i=1...,nA

and
(CB

i , lBi)i=1...,nB
, obtaining a trained decision tree.

– Send the tree to A
A:

– Decrypt and output the decision tree: For each inner node in the tree
containing an attribute id j and an encrypted value v, replace v with
Dec(kA

j , v).

Note that this protocol has a constant number of rounds, as only three messages
are exchanged. Here, A learns no additional information beyond what can be
learned from her own training data and the trained decision tree. B receives
only the leakage of the ORE scheme of both parties training data for each
attribute separately and the respective label. Note that because A uses different
keys to encrypt the values of different attributes, B only receives the leakage
L(mA

1,j , . . . m
A
nA,j ,m

B
1,j , . . . m

B
nB,j) for each j. This leakage is much smaller than

the entire leakage L(mA
1,1, . . . m

A
nA,X ,mB

1,1, . . . m
B
nB,X), because attribute values

of different attributes cannot be compared.

Theorem 4. πDTTrain securely realizes FDTTrain for static corruption and semi-
honest adversaries if the uORE scheme is secure with leakage L.

Decision Tree Training from Updatable ORE 301

To show this theorem, we follow the UC framework and construct a simulator,
such that the real world running the protocol and ideal world with FDTTrain are
indistinguishable. Concretely, for any PPT-environment controlling a corrupted
party A or B, we show that the environment cannot distinguish between a real
interaction of the corrupted party with the uncorrupted one and an interaction of
the corrupted party with the ideal functionality through the simulator. Because
we consider semi-honest adversaries, the environment chooses the inputs of the
honest and corrupted parties and learns their output. It also learns sent and
received messages, internal state and randomness of corrupted parties.

We give two different simulators, one for the case where A is corrupted and
one for the case where B is corrupted. (If both parties are corrupted, no mean-
ingful security guarantees are left.)

Fig. 4. Simulator for a corrupted A.

For the case, where A is corrupted, we use the simulator S from Fig. 4. To
show its validity, we define a number of games Gi, each having (implicitly defined)
ideal functionalities Fi and simulators Si, and each being a modified version of
the previous one. The first game is defined, s.t. the corrupted A interacts with
the honest B through the protocol and the last game is the game where the
corrupted A interacts with the ideal functionality through the simulator. We
show that games Gi are indistinguishable from Gi+1.

– G0: The execution of πDTTrain with dummy adversary D.
– G1: The execution with a dummy ideal functionality F1 that lets the adversary

determine all inputs and learn all outputs of the honest party. S1 is the
simulator that executes the protocol πDTTrain honestly on behalf of the honest
party using the inputs from F1 and making outputs through F1.

– G2: The same as G1, except that when sending the encrypted decision tree to
A, instead of sending the tree, S2 extracts the keys kj from A, uses them to
decrypt and reencrypt the tree and sends this reencrypted tree.

– G3: The same as G2, except that now S3 does not perform the training on
the ciphertexts, it now performs the training on the plaintext training data,
where it extracted A’s training data and received B’s training data from F4.

302 R. Berger et al.

– G4: The same as G3, except that instead of sending the values ci,j =
Enc(ki,j ,mi,j) to A, S4 generates c′

i,j = SORE(∅) and sends these values to
A instead.

– G5: The execution of the ideal functionality FDTTrain with the simulator S as
in Fig. 4.

As we can see, the game G0 is the game, in which the corrupted party interacts
with the honest one using the protocol, whereas G5 is the game, where the
corrupted party interacts with the ideal functionality through the simulator.

Claim 1 G0
c≈ G1

Proof. These changes are only syntactic and therefore oblivious to the environ-
ment. The claim follows. �
Claim 2 G1

c≈ G2

Proof. The simulator participates in the protocol as the honest party would.
Therefore, each inner node of the tree contains elements (j, c), where c is either
a ciphertext from A, in which case c = Enc(kA

j ,m) for some m, or a ciphertext
from the simulator, in which case

c = Upd(k′−1,Upd(kA
j ,Enc(k′,m))) = Enc(kA

j ,m)

for some k′ and m. Therefore, decrypting c with kA
j and deterministically reen-

crypting the result again with the same key results in the same ciphertext. Hence,
the games are indistinguishable. �

Claim 3 G2
c≈ G3

Proof. It follows from the uORE correctness that evaluating the order on the
ciphertexts is equivalent to evaluating the order on the plaintexts (with over-
whelming probability), if the ciphertexts to be compared are ciphertexts under
the same key. The decision tree training algorithm only compares ciphertexts
associated with the same attribute and ciphertexts for an attribute j are all
ciphertexts under key kA

j (either directly or by updating and reverse-updating).
Therefore, it follows from the correctness of the ORE scheme that encrypting
the messages, training the decision tree on the ciphertexts and decrypting the
decision tree again (as done in G2) results (with overwhelming probability) in
the same tree as directly training the decision tree on the plaintexts (as done in
G3). �

Claim 4 G3
c≈ G4

Proof. This change is only relevant for the ciphertexts the simulator sends to
A. While it receives these ciphertexts back, updated with A’s keys, they are no
longer used by the simulator in any further computations. Because of Assumption
1 and the fact that the keys ki,j are only ever used for encryption once, it holds

Decision Tree Training from Updatable ORE 303

that for all messages m, including the messages the simulator encrypts in G,
that L(m) = ∅. Therefore, an adversary that can distinguish between G3 and G4

can be used to distinguish between REALORE
A (κ) and SIMORE

A,S,L(κ) using a hybrid
argument. �
Claim 5 G4

c≈ G5

Proof. The only difference between these two games is who performs the train-
ing of the decision tree. In G5, the simulator S5 performs the training of the
decision tree, while in G6, the ideal functionality F6 performs the training. In
both cases, the training is performed on the same training data and as training
is deterministic, it results in the same decision tree in both cases. �

Fig. 5. Simulator for corrupted B.

For the case, where B is corrupted, we use the simulator S from Fig. 5. Again,
we define hybrid games to show its validity:

– G′
0: The execution of πDTTrain with dummy adversary D.

– G′
1: The execution with an ideal functionality F ′

1 that lets the adversary
determine all inputs and learn all outputs. S ′

1 is the simulator that executes
the protocol πDTTrain honestly on behalf of the honest party using the inputs
from F ′

1 and making outputs through F ′
1.

– G′
2: The same as G′

1, except that when S ′
2 would update a ciphertext, which

B computed as ct = Enc(k′,m) to ct∗ = Upd(k, ct), instead it computes
ct∗ = Upd(k′,Enc(k,m)) using the corresponding key k′ and message m it
extracts from B.

– G′
3: The same as G′

2, but instead of decrypting and outputting the tree received
from B, the simulator extracts the training data from B. Then it uses both
parties training data and labels to train the decision tree in plain text and
outputs the tree to A through F ′

3.
– G′

4: The same as G′
3, except that whenever we would perform an encryption

(both in the encrypt- or update-step) as Enc(k,m), we compute it with SORE

using the corresponding leakage, using one instance per k.

304 R. Berger et al.

– G′
5: The ideal functionality FDTTrain with the simulator S.

Now we look at the case, where B is corrupted:

Claim 6 G′
0

c≈ G′
1

Proof. These changes are only syntactic and therefore oblivious to the environ-
ment. The claim follows. �
Claim 7 G′

1

c≈ G′
2

Proof. As the difference between these two games is the order in which Enc and
Upd are applied, this claim follows directly from the updatability property. �

Claim 8 G′
2

c≈ G′
3

Proof. The only difference between these two games is the decision tree that is
oututted to A. In G3, the simulator knows A’s training data, because it received
them from F3 and it knows B’s training data, because it can extract them
from B. From the uORE correctness and the fact that the decision tree training
is deterministic, it follows that the decision tree S ′

3 computes in plaintext is
identical to the one B computes in G′

3 and G′
2 on the ciphertexts. �

Claim 9 G′
3

c≈ G′
4

Proof. In G′
3, the ORE encryption is performed using real keys kj , whereas in

G′
4, the ORE simulator is used to generate ciphertexts. To show this indistin-

guishability, we define additional hybrids Hj , where for the first j attributes, the
ORE simulator is used to generate ciphertexts, and for all other attributes, a
real encryption is performed. It holds that G′

4 = H0 and G′
5 = HX .

The indistinguishability of these games therefore follows from the ORE-
security using a standard hybrid argument. �

Claim 10 G′
4

c≈ G′
5

Proof. The difference between these two games is that in G′
5, the simulator per-

forms the training and sends the trained decision tree to A through the ideal
functionality, while in G′

6 the ideal functionality performs the training and out-
puts it directly. As the decision tree training algorithm is deterministic and the
same input to the training process is used by S ′

5 and F ′
6, the tree is identical

and the games are indistinguishable. �
The security of the protocol πDTTrain (Theorem 4) now follows from Claim

1 – 5 and Claim 6 – 10.

Decision Tree Training from Updatable ORE 305

4.1 Variations of the Training Process

In the protocol from Construction 2, we only considered standard decision tree
training. When using decision trees in practice, additional steps are usually taken
like pruning, limiting the depth of the tree, gradient boosted training or training
a decision forest for better classification accuracy.

Performing gradient boosted training is inherently not compatible with our
approach, as it requires performing arithmetic operations on attribute values,
which ORE schemes do not support.

Pruning and limiting the depth of the tree could be performed by B by
adding a leaf node instead of an inner node to the tree, whenever the number of
datapoints at the current position in the tree is small enough or if a certain depth
of the tree is reached during the training process. Both of these techniques are
compatible with our decision tree training protocol. Indeed any form of pruning
that adheres to the limitation that attributes can only be compared, but no
arithmetic can be performed on the attribute values, is compatible with our
approach.

Additionally, our protocol can be used for training a decision forest. Training
a T -tree decision forest can be done as follows:

1. Each party partitions their training data into T subsets.
2. The parties run πDTTrain once for each subset in parallel to perform the training

on each data.
3. After receiving the T decision trees from B, A outputs the decision forest

containing these trees.

This realizes a forest-variant of the ideal functionality FDTTrain. The security of
the protocol follows from the universal composability theorem in the UC model.

Another variation is to consider training data that is split vertically between
parties, i.e. A has one part of the attributes and B has a different set of the
attributes of the same dataset (and they share some kind of id attribute to
match up the data). In this setting, training is easily possible with the ORE-
based approach by having A encrypt her attribute values using an ORE scheme
with one key per attribute and sending the ciphertexts to B. B can then train a
decision tree using A’s encrypted attributes and his own attributes in plaintext,
as no comparison between his and A’s data is required. Indeed this does not even
require the ORE scheme to be updatable.

4.2 Graceful Degradation Using Enclaves

Hardware enclaves allow other parties to verify the code running in them while
ideally hiding all internal state. While hiding internal state is difficult due to side
channels, either inherent in the enclave program (like timing or memory access
patterns), or due to the used platform (like power consumption, cache timing
or other microarchitecural state side channels), the minimal functionality of an
enclave, namely to attest the correct program execution, is usually well hard-
ened and implemented side-channel free. These side channels have motivated two

306 R. Berger et al.

major security models for the functionality provided by an enclave system: “reg-
ular” enclaves (hiding all internal state) and transparent enclaves (revealing all
internal state, especially the used randomness, but not attestation keys). If addi-
tionally attestation keys are leaked, the enclave provides no meaningful security.
In between transparent and regular, enclave models with varying amount of side
channels can be useful, like explicitly modeling a memory access side channel,
as done in [29].

In the minimal form of a transparent enclave, they can be seen as a generic
passive-to-active compiler. Executing an arbitrary passively secure protocol
inside an enclave allows other involved parties to verify the produced attestation
evidence to ensure that the other parties executed their part of the protocol
correctly.

When applied to the presented decision tree training protocol (Construction
2), we can go one step further: When the protocol for B is executed inside a
non-transparent enclave, the leakage from the ORE scheme to B is hidden. To
implement this, A needs to send her ciphertexts to the enclave of B confidentially,
which can be done by performing a key exchange into the enclave. Additional
care needs to be taken to ensure that the enclave program does not leak more
information about the input than necessary. Also, the enclave needs to hold a sig-
nificant amount of memory to store the ORE-encrypted training data. Requiring
access to this amount of data will result in many memory-management opera-
tions by the enclave system and thus has an impact on the overall performance.

Table 1. Comparison of security under different enclave security assumptions with
radix sort and comparison-based sorting.

ours with radix ours without radix plaintext with radix plaintext without radix

fully secure enclaves � � � �
with memory side channels ORE leakage ideal-ORE leakage ORE-leakage ideal-ORE leakage

transparent enclaves ORE leakage ORE leakage full leakage full leakage

An overview of the provided security in the different scenarios is given in
Table 1. The algorithms that are compared are:

– the proposed algorithm with MSD radix sort inside an enclave
– the proposed algorithm with comparison-based sorting, where all comparisons

are done memory-oblivious (e.g. using the primitives from [29])
– the plaintext decision tree training algorithm executed inside an enclave using

MSD radix sort
– the plaintext decision tree training algorithm executed inside an enclave with

comparison-based sorting using memory-oblivious comparisons

When using a fully secure enclave, all computation happens inside the enclave
and cannot be eavesdropped or tampered with, so all algorithms are secure.
When we assume memory side channels, radix sort exploits the concrete ORE

Decision Tree Training from Updatable ORE 307

leakage and thereby leaks it via the memory access patterns, both in the plaintext
and encrypted variant. The other two algorithms only use the result of pairwise
comparisons and thereby leak at most an ideal-ORE leakage (cf. Sect. 2.2). Using
comparison-based sorting and memory-oblivious comparisons, memory access
patterns can only leak at most the results of those comparisons. When the enclave
becomes fully transparent, all information stored inside the enclave is potentially
leaked, which are ORE ciphertexts for the first two algorithms and the plain
training data for the last two.

As can be seen, our algorithm provides a more graceful degradation of secu-
rity when the enclave fails to provide its security promise (e.g. due to expected
or unexpected side channels in the implementation), at the cost of higher com-
putational overhead. Therefore, if the trust model of the enclave is uncertain,
combining our approach with secure enclaves allows decision tree training with
less leakage than solely relying on either approach exclusively.

Note that the plaintext algorithm needs to employ similar techniques to the
decision tree evaluation algorithm from [29] to avoid additional leakage. However
as the authors only describe an evaluation but no training algorithm, no direct
comparison can be made with the decision tree algorithm they provide.

5 Analysis of the Leakage

Grubbs et al. [15] have shown that in the context of encrypted databases, there
are datasets, such that when encrypting them using ORE schemes, no meaning-
ful security guarantees are left. They have shown that in one of their datasets
containing first and last names, they could recover 98% of all first names and
75% of all last names in a database encrypted using the scheme from [10].

While these results also apply to our scheme and therefore also to our decision
tree training protocol, we want to emphasize that these results are not univer-
sally applicable to all datasets. In their example, the dataset of first names had
relatively low entropy with the most common first name appearing in 5% of all
cases. Jurado, Palamidessi, and Smith [18] have shown for example that attacks
recovering all ORE-encrypted data is possible when the amount of ciphertexts is
large compared to the message space, whereas this is not possible if the amount
of ciphertexts is significantly smaller than the message space.

To give meaningful security guarantees, we analyze the leakage from an
information-theoretic point of view. We consider the uniform distribution of
messages, because for this distribution, each bit of the message space contains
one bit of information. In a first step, we analyze the leakage when both parties
use uniformly random training data. In a second step, we give an upper bound
for the leakage, when an adversary (B in the case of the decision tree training
protocol) selects its training data maliciously. Finally, we argue why considering
only the uniform distribution is sufficient.

308 R. Berger et al.

5.1 Leakage for Random Message Selection

In the case where both parties use uniformly random messages as inputs, we
can experimentally estimate the information leaked on different datasets. We
consider a bit to be leaked, if the leakage function allows to infer the value of
this bit. In our experiments, we sample n data samples uniformly at random from
the bitstrings of length k and count the number of leaked bits. These results are
available in Table 2. As we can see, the experiments show a significant leakage
when the amount of data samples is large compared to the domain, leaking nearly
all bits if there are more data samples than there are possible messages in the
domain. If the message space is significantly larger than the amount of messages
leaking information, the amount of bits leaked is less than 25% (for messages
chosen uniformly at random). This matches the result of Jurado, Palamidessi,
and Smith [18], namely that for ORE to provide a benefit over comparing the
messages in plain text, the message space must be much larger than the amount
of messages encrypted under the same key.

Table 2. Proportion of leaked bits to total bits, for leakage L on n uniformly random
messages of length k bits.

k = 8, n = 8 k = 8, n = 256 k = 8, n = 512 k = 64, n = 1000 k = 64, n = 10000 k = 64, n = 50000

Leaked Bits 39.1% 93.6% 97.7% 16.0% 21.3% 24.9%

This suggests that the leakage from our ORE approach is small enough to
provide some security if the attributes of the training data have sufficiently large
entropy, compared to the amount of training data. An example for attributes
that have naturally high entropy are geopositions with latitude and longitude.

5.2 Additional Leakage for Malicious Message Selection

We also want to give an analytical upper bound of the additionally leaked infor-
mation for independently uniformly distributed training data if one party selects
their inputs maliciously. This is not a classical setting for ORE, but makes sense
in our case, because here, the party receiving the leakage (B in the case of
πDTTrain) contributes data influencing the leakage.

Let L be the leakage function as in Theorem 1. Consider the following exper-
iment with an attacker choosing N = 2k messages:

1. The adversary chooses N messages m∗
i ∈ M = {0, 1}n.

2. The experiment chooses a message m ← M uniformly at random.
3. The adversary learns L(m,m∗

1, . . . , m
∗
N).

Choosing the messages optimally to have the maximum (over the attacker-chosen
m∗

1, . . . , m
∗
N) leaked information on average (over m), the adversary receives no

more than (k + 2)bit of information.

Decision Tree Training from Updatable ORE 309

Consider the first attacker-chosen message m∗
1. The leakage contains the

information whether the first bit of m is equal to the first bit of m∗
1 (the position

of the most significant different bit is hsb(m ⊕ m∗
1) > 1) or if they are unequal

(hsb(m ⊕ m∗
1) = 1). Therefore, the attacker learns the first bit of m containing

1bit of information. The same argument also holds for the second bit, but only
if the first bit is the same in m and m∗

1.
Therefore, he obtains the second bit (and therefore one additional bit of

information) with probability 1/2, as m’s first bit was chosen uniformly at ran-
dom. Generalizing this for more bits, he learns the i-th bit of m with probability
1/2i−1. For the expected information, we get the geometric series:

n∑

i=1

1
2i−1

· 1bit ≤ 2bit.

To generalize the maximum leakage to N = 2k attacker-chosen messages, we
consider the information stored in the first k + 1 bits of m and the remaining
bits separately. (Here, we assume k + 1 < n, as otherwise, the attacker would
choose every second message from M = {0, 1}n and learn the content of all
ciphertexts.) The first k + 1 bits of m contain (k + 1)bit of information, so that
is the maximum amount of information an attacker can infer. For the remaining
message bits, the probability of m having the same k + 1-bit prefix as any of
the m∗

i , and therefore causing a bit to leak, is 1/2k+1. Ignoring possible overlap
between messages gives us an upper bound of

2k · 1
2k+1

· 2bit = 1bit,

where the 2bit is again an upper bound for the geometric series over the expected
leaked information in the remaining bits.

Combining the two leakages, we get (k + 1)bit + 1bit = (k + 2)bit. This
establishes an upper bound for the average leakage.

While we only considered a single message m selected by the experiment,
it can naturally be extended to a setting, where the experiment chooses mul-
tiple messages m1, . . . , mN ′ and the adversary receives L(m1,m

∗
1, . . . , m

∗
N), . . . ,

L(mN ′ ,m∗
1, . . . , m

∗
N) instead. (We are only interested in the additional leakage

by the attacker, the leakage L(m1, . . . , mN ′) is already analyzed in the previous
subsection.) As long as these messages are chosen independently from each other,
the maximum leakage per message mi remains the same. This multi-message sce-
nario captures the leakage B receives about A’s training data in πDTTrain for each
attribute when selecting his messages maliciously.

Note that this analysis extends to the use of multiple uncorrelated attributes,
due to the use of separate ORE keys per attribute. If multiple attributes are
correlated, this correlation can be interpreted as information known in advance
by the adversary. Hence, the upper bound on the average leakage also holds for
the information given what is known to the adversary, due to a union bound.

Overall, for any adversarially selected input data of B in πDTTrain consisting
of N = 2k training data, the expected leaked information consists of (log2(N)+
2)bit per A’s training data per attribute.

310 R. Berger et al.

5.3 Transformation for Non-uniform Distributions

While the distribution of input data is important because changing the encoding
of messages (and therefore also the distribution over the message space) influ-
ences how much and what information is leaked, we want to emphasize that this
is not a restriction, as any input data distribution can be encoded in such a way
that the resulting distribution is uniform. We now sketch one way to do this.

Let μ be the probability measure of the distribution over the message space
M. Assume there exists a l, such that μ(m) · 2l ∈ N holds for all m ∈ M.1

Then we encode the messages into {0, 1}l as follows: The valid encodings of a
message m are the μ(m) · 2l bitstrings starting from the bitstring of the binary
representation of μ({m′ ∈ M | m′ < m}) · 2l. To encode a message, one of its
valid encodings is used uniformly at random. This encoding preserves the order,
but the resulting distribution is uniform over {0, 1}l.

6 Implementation and Evaluation

We implemented the ORE scheme from [10], our updatable ORE scheme from
Construction 1, as well as our decision tree training protocol from Construction
2 in Java/Kotlin2 and used it to evaluate the practical efficiency of our protocol.
For the group G, we used the Ed25519 curve. We used the PRF from Eq. (1),
implemented the random oracle using SHA-256 and mapped its output to points
on the curve G \ {[0]}. We ran our experiments on a machine with two AMD
EPYC-Rome 7282 processors with 16 Cores/32 Threads and 90 GB of RAM.

6.1 Evaluation of the Updatable ORE Scheme

For completeness, we start by comparing our updatable ORE scheme with the
non-updatable scheme from Chenette et al. [10]. The benchmark results can be
seen in Table 3.

Table 3. Operations per second using
ORE with a 32-bit message space. Sort
refers sorting 1000 ciphertexts using
Java’s Arrays.sort() or our own imple-
mentation of MSD radix sort.

Our scheme Scheme from [10]

Encryption 1.6 · 102 7.2 · 104
Update 2.0 · 102 –

Comparison 7.0 · 104 6.9 · 107
Sort 8.0 · 100 3.8 · 105
Radix sort 6.9 · 101 1.0 · 103

Fig. 6. Full results of the benchmarks
from Table 4 where the datasets of A and
B are of the same size.

1 If the assumption does not hold, an approximation of μ with powers of 2−l for some
l results in a distribution, that is computationally indistinguishable from uniform.

2 https://github.com/kastel-security/ORE-Decision-Tree.

https://github.com/kastel-security/ORE-Decision-Tree

Decision Tree Training from Updatable ORE 311

For encryption, our scheme is two orders of magnitude slower, because they
only need to evaluate a PRF, while evaluating the key-homomorphic PRF in
our case requires a scalar multiplication in the group. Updating a ciphertext is
roughly as fast as encryption with the running time of both operations being
dominated by the scalar multiplication.

Comparisons using our updatable scheme are three orders of magnitude
slower than with the non-updatable scheme because the non-updatable scheme
requires no cryptographic operations, while we require one group operation per
comparison. This translates over to comparison-based sorting. Radix sort offers
a running time improvement of one order of magnitude, because – in contrast to
comparison-based sorting, where one group operation is required per comparison
per element – only one group operation is required per element in total. Radix
sort does not offer a performance improvement with the non-updatable scheme,
because the running time is not dominated by comparing the elements (or bits
thereof), but by the sorting algorithm itself.

6.2 Evaluation of the Protocol

For our experiments of the training protocol, we used the unmodified MNIST
dataset using all 784 attributes and datapoints of all 10 labels. We also ran
experiments on the Boston Housing and Titanic dataset3, which we modified to
ignore entries with null-attributes, as well as discrete attributes. As required for
decision tree training, we also discretized the labels. This leaves seven attributes
in the Boston Housing dataset and five attributes in the Titanic dataset.

In the MNIST dataset, attribute values are 8 bit unsigned integers. In the
other datasets, we converted all attributes to integers by taking their 32 bit IEEE
754 representation, reinterpreting it as a 32 bit unsigned integer and dropping

Table 4. Benchmark results of the protocol on the MNIST dataset and modified
versions of the Boston Housing and Titanic datasets, and a custom dataset comparable
to the one used by [16], with and without 50 ms of network latency.

Dataset #Attributes Compute Threads per party Dataset Size Computation time Network traffic

A B A ← B A → B

MNIST 784 1 100 100 243.9 s 21.7 MB 43.4 MB

16 100 100 22.6 s 21.7 MB 43.4 MB

16 500 500 106.3 s 108.6 MB 217.2 MB

16 500 1000 180.6 s 217.2 MB 325.8 MB

16 1000 500 135.1 s 108.6 MB 325.8 MB

16 1000 1000 213.6 s 217.2 MB 434.3 MB

Boston Housing 7 1 253 253 23.2 s 1.9 MB 3.6 MB

16 253 253 3.7 s 1.9 MB 3.6 MB

Titanic 5 1 357 357 23.8 s 2.1 MB 3.6 MB

16 357 357 5.0 s 2.1 MB 3.6 MB

Custom 7 16 4096 4096 20.1 s 8.8 MB 15.9 MB

Custom (with latency) 16 4096 4096 20.2 s 8.8 MB 15.9 MB

3 The datasets are available on https://www.kaggle.com/.

https://www.kaggle.com/

312 R. Berger et al.

the last bit, therefore obtaining an unsigned 31-bit integer, which preserves the
order of all positive floating point numbers, including “+0”. We used the first
nA datapoints as training data for A and the last nB datapoints as training
data for B. We used the training algorithm in Algorithm 1 with the Information
Gain heuristic. As the training algorithm used here is the same as for plaintext
training, the accuracy of the trained model is identical to a model trained on
the same data in plaintext. The results can be seen in Table 4 and Fig. 6.

As we can see, the protocol is viable, both computationally, as well as from
a network traffic perspective. We can also see that the effects of the dataset size
of A are less significant than the effects of the dataset size of B, as B’s data
needs to be processed three times – when encrypting, when updating, when
reverse updating – whereas A’s data only needs to be processed once during
encryption. A similar argument holds for the network traffic. While we did run
the experiments on the same machine, we expect the performance to only differ
insignificantly from our test results when run on separate machines over a LAN
or WAN. This is because we only have three rounds of interaction, so the effects
of network latency are insignificant. Additionally, the total network traffic is well
below the limits of a normal internet uplink.

Running Time Comparison with Hamada et al. [16]. To compare our results
with the results of [16], the current state-of-the-art in MPC-based decision tree
training, we generate a dataset consisting of 213 samples with 11 attributes each,
which results in a trained decision tree of depth 42. On this dataset, our protocol
takes 20.1 s. In [16], they have performed a benchmark on a dataset of the same
size and amount of attributes and a tree depth of 40 on a machine comparable
to ours. In this scenario, their protocol takes 43.61 s, which is slower than our
protocol by a factor of ≈ 2.

When adding 50 ms of artificial network latency, the running time of their
protocol increases to 4821.56 s, which is caused by the many rounds of inter-
action in their protocol. In contrast to this, when adding the same artificial
network latency to our protocol, the running time does not change noticeably,
still only requiring 20.2 s, because our protocol only consists of three rounds. In
this scenario, our protocol is faster by several orders of magnitude.

Running Time Comparison with Abspoel, Escudero, and Volgushev [2]. In [2],
the authors did not measure the running time of the entire decision tree training
algorithm, but only extrapolated its runtime based on benchmarks of its basic
operations. To compare the runtime performance of their approach with ours,
we use their extrapolation formula for their runtime to a setting, for which we
have have benchmark results with our approach. They use

T (N,m,Δ) ≈ m · (S(N) + (2Δ − 1)I(N) + 2ΔL(N))

to estimate their runtime, where N,m and Δ are the number of training data,
the amount of attributes and the maximum depth of the decision tree and
S(N), I(N) and L(N) are the time for sorting, and computing an inner or leaf
node on N training data points.

Decision Tree Training from Updatable ORE 313

We use this formula to estimate the runtime of their approach to the titanic
dataset, where N = 357,m = 5 and the depth of the resulting decision tree is
Δ = 25. Using the optimistic values S(256) = 0.392 s, I(256) = 0.127 s and
L(256) = 0.004 s, we obtain a runtime estimate of ≈ 2.2 · 107 s in the passively
secure setting. This is several orders of magnitude slower than with our approach,
which is mostly caused by their training algorithm having exponential runtime
in the tree depth.

Limiting the depth of the decision tree to Δ = 10 only affects the runtime of
our approach insignificantly, as the majority of the runtime comes from encrypt-
ing and updating the training data. Their approach, however, is significantly
sped up by this change, estimated to only have a runtime of ≈ 672 s, which is
still significantly slower than our approach.

Applicability Comparison with [2,16]. While our protocol solely relies on Order-
Revealing Encryption, both of the protocols from [2,16] are built on top of generic
MPC primitives. Therefore, future advances in (u)ORE or general purpose MPC
respectively, will lead to performance improvements of these protocols.

Due to the asymmetric nature of our protocol, it is fixed for the two-party
setting with one passive corruption. In addition to this setting, Hamada et al. [16]
and Abspoel, Escudero, and Volgushev [2] state that their protocols can fulfill
different trust models, such as two-out-of-three corruptions, if the underlying
protocol for these MPC primitives is chosen accordingly, however this may cause
additional computational/network overhead.

While their protocol can only be applied to the training algorithms they con-
sider, our protocol can generically use any decision tree training algorithm that
adheres to the limitations of being deterministic and only requiring comparisons
on the training data. Indeed this is even covered by our security proof.

7 Conclusion

We have constructed an Updatable Order-Revealing Encryption scheme, which
allows to update ciphertexts from one key to another using a key-homomorphic
PRF. This construction is secure under the same leakage function as established
ORE schemes, leaking the order of the encrypted messages, as well as the position
of the most significant bit in which they differ.

Using such an Updatable ORE scheme, we have constructed a passively
secure protocol that allows for securely training a decision tree on two parties’
inputs without revealing the inputs to the other party. This protocol can either
be used by itself or can be used as a building block to train a decision forest.

We have experimentally verified this decision tree protocol and are able to
compute a decision tree on the Titanic dataset, equally partitioned between
both parties, within 5.0 s. The experiments have also shown that this approach
is faster than the current state-of-the-art approaches [2,16] and orders of mag-
nitude faster when considering network latency or training high-depth decision
trees. However, this speedup comes at the cost of some information leakage.

314 R. Berger et al.

Analyzing the leakage of the ORE scheme, we have found that while it is
significant, it is also hides a large proportion of the training data. This provides
us with an interesting trade-off between security and efficiency: We leak more
information but are faster than relying entirely on MPC to train a decision tree,
but we are more secure, but less efficient than performing training in plain-
text. We have also found that the proportional information leaked is larger on
low-entropy attributes than on high entropy attributes. Whether this leakage is
acceptable needs to be decided for each usecase individually. To further reduce
the leakage, we show how this approach can also be used in a secure enclave,
reducing the leakage even more in a graceful degradation manner, even in the
presence of low-entropy attributes.

This leaves us with a special-purpose protocol for decision tree learning that
is more performant than generic solutions in a scenario that fits its limitations:

– The protocol has some information leakage and can only be used in a scenario,
in which this is acceptable.

– The concrete algorithm for training needs to fulfill some constraints:
• The training algorithm needs to be deterministic.
• The split heuristic needs to be evaluated based on comparisons only.
• As described the protocol allows training between exactly two parties.
• For training forests: The partitioning of each party’s data needs to be

independent of the data of the other party.
– The protocol requires more computation compared to the number of commu-

nication rounds, so its strength shows better in a higher-latency setting.

While some leakage is inherent with this approach, this also leads us to two
interesting open questions:

– How to construct an Updatable ORE scheme with a smaller leakage or in the
left-right framework of [23]?

– How to devise an efficient actively-secure protocol based on Updatable ORE
schemes?

Acknowledgements. We thank the anonymous reviewers for their helpful and con-
structive feedback. This work was supported by funding from the topic Engineer-
ing Secure Systems of the Helmholtz Association (HGF) and by KASTEL Security
Research Labs. Robin Berger: This work was supported by funding from SAP Secu-
rity Research. Felix Dörre: This work was supported by funding by the German Fed-
eral Ministry of Education and Research (BMBF) under the project “VE-ASCOT”
(ID 16ME0275). Alexander Koch: This work was supported by the France 2030 ANR
Project ANR-22-PECY-003 SecureCompute.

Appendix

A A Brief Introduction to the UC Framework

In the following, we give a brief introduction to into the Universal Composability
framework by Canetti [7], tailored to our usecase. As the framework is quite
complex, we omit any details that are not relevant for our work.

Decision Tree Training from Updatable ORE 315

The UC model extends the notion of the real-ideal paradigm, where the
security of a protocol is defined through some ideal functionality, that captures
the computation to be done and is secure by definition.

All parties are modeled as an interactive PPT machines. In addition to parties
existing in the protocol, UC execution is defined with two additional entities,
namely the environment and the adversary, which are modeled in the same way.

The adversary can corrupt any subset of parties. Considering passive security,
the adversary can see the view of parties it corrupts (including all internal state,
randomness, incoming and outgoing messages), but it cannot make corrupted
parties deviate from the protocol. If it accesses variables from the internal state
of a corrupted party, we say it extracts this information.

The environment selects inputs for honest parties and receives their outputs.
Additionally, it can freely interact with the adversary, sending and receiving
arbitrary messages.

To prove the security of a protocol, UC uses the notion of protocol emulation.
We say a protocol π in the real world securely realizes an ideal functionality F
in the ideal world, if for all adversaries A, there exists a simulator S, such that
no environment can distinguish between an interaction with π and A in the real
world and an interaction with F and S in the ideal world. This can be done
by constructing a simulator for each A, which internally runs A and translates
ideal messages from/to the ideal functionality and protocol messages from/to
corrupted parties. Additionally, it is sufficient to only consider the dummy adver-
sary, that sends all protocol messages it receives to the environment and sends
any messages it receives from the environment as protocol messages. In the real
world, the honest parties execute the protocol and the environment can interact
with them using the real adversary. In the ideal world, the input of honest parties
is directly sent to the ideal functionality and the output of the ideal functionality
to the honest parties is directly outputted by them.

If a protocol π is proven to realize an ideal functionality F , all security
properties from F carry over to π, as this could otherwise be used to distinguish
the real and ideal execution.

In UC, the universal composition theorem says that if a protocol is proven
to realize an ideal functionality, it remains secure under universal composition.
Therefore, it can for example be run in parallel, concurrently or as a subprotocol
to other protocols without becoming insecure. If a protocol π′ realizes a func-
tionality F ′ using F as a building block, we say π′ realizes F ′ in the F-hybrid
model. Due to the universal composition theorem, π′ still realizes F ′, even after
F is instantiated with a protocol that securely realizes F .

References

1. Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org (2015). https://www.tensorflow.
org/

https://www.tensorflow.org/
https://www.tensorflow.org/

316 R. Berger et al.

2. Abspoel, M., Escudero, D., Volgushev, N.: Secure training of decision trees with
continuous attributes. Proc. Privacy Enhanc. Technol. 2021(1), 167–187 (2021).
https://doi.org/10.2478/popets-2021-0010

3. Akavia, A., Leibovich, M., Resheff, Y.S., Ron, R., Shahar, M., Vald, M.: Privacy-
preserving decision trees training and prediction. ACM Trans. Priv. Secur. 25(3),
24:1–24:30 (2022). https://doi.org/10.1145/3517197

4. Bentéjac, C., Csörgő, A., Mart́ınez-Muñoz, G.: A comparative analysis of gradient
boosting algorithms. Artif. Intell. Rev. 54(3), 1937–1967 (2021). https://doi.org/
10.1007/s10462-020-09896-5

5. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 19

6. Buitinck, L., et al.: API design for machine learning software: experiences from the
scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pp. 108–122 (2013)

7. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Cryptology ePrint Archive, Report 2000/067 (2000). https://eprint.iacr.
org/2000/067

8. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. Adv. Neural
Inf. Process. Syst. 21 (2008)

9. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016)

10. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: Peyrin, T. (eds) FSE 2016. LNCS, vol. 9783. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 24

11. Cong, K., Das, D., Park, J., Pereira, H.V.L.: SortingHat: Efficient Private Decision
Tree Evaluation via Homomorphic Encryption and Transciphering, pp. 563–577
(2022). https://doi.org/10.1145/3548606.3560702

12. Du, W., Zhan, Z.: Building decision tree classifier on private data (2002)
13. Betül Durak, F., DuBuisson, T.M., Cash, D.: What Else is Revealed by Order-

Revealing Encryption?, pp. 1155–1166 (2016). https://doi.org/10.1145/2976749.
2978379

14. Frery, J., et al.: Privacy-Preserving Tree-Based Inference with Fully Homomorphic
Encryption. Cryptology ePrint Archive, Report 2023/258 (2023). https://eprint.
iacr.org/2023/258

15. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-
abuse attacks against order-revealing encryption. In: 2017 IEEE Symposium on
Security and Privacy (SP), pp. 655–672 (2017). https://doi.org/10.1109/SP.2017.
44

16. Hamada, K., Ikarashi, D., Kikuchi, R., Chida, K.: Efficient decision tree training
with new data structure for secure multi-party computation. Proc. Privacy Enhanc.
Technol. 2023(1), 343–364 (2023). https://doi.org/10.56553/popets-2023-0021

17. de Hoogh, S., Schoenmakers, B., Chen, P., op den Akker, H.: Practical secure
decision tree learning in a teletreatment application. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014, LNCS, vol. 8437, pp. 179–194. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 12

https://doi.org/10.2478/popets-2021-0010
https://doi.org/10.1145/3517197
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://doi.org/10.1007/978-3-662-52993-5_24
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/2976749.2978379
https://doi.org/10.1145/2976749.2978379
https://eprint.iacr.org/2023/258
https://eprint.iacr.org/2023/258
https://doi.org/10.1109/SP.2017.44
https://doi.org/10.1109/SP.2017.44
https://doi.org/10.56553/popets-2023-0021
https://doi.org/10.1007/978-3-662-45472-5_12

Decision Tree Training from Updatable ORE 317

18. Jurado, M., Palamidessi, C., Smith, G.: A Formal Information-Theoretic Leakage
Analysis of Order-Revealing Encryption, pp. 1–16 (2021). https://doi.org/10.1109/
CSF51468.2021.00046

19. Keller, M.: MP-SPDZ: A Versatile Framework for Multi-Party Computation, pp.
1575–1590 (2020). https://doi.org/10.1145/3372297.3417872

20. Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M., van der
Maaten, L.: Crypten: secure multi-party computation meets machine learning.
Adv. Neural. Inf. Process. Syst. 34, 4961–4973 (2021)

21. Kubat, M.: An Introduction to Machine Learning. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63913-0

22. Lee, J.-W., et al.: Privacy-preserving machine learning with fully homomorphic
encryption for deep neural network. IEEE Access 10, 30039–30054 (2022)

23. Lewi, K., Wu, D.J.: Order-Revealing Encryption: New Constructions, Applica-
tions, and Lower Bounds, pp. 1167–1178 (2016). https://doi.org/10.1145/2976749.
2978376

24. Li, Y., Wang, H., Zhao, Y.: Delegatable Order-Revealing Encryption, pp. 134–147
(2019). https://doi.org/10.1145/3321705.3329829

25. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (eds.)
CRYPTO 2000. LNCS, vol. 1880. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44598-6 3

26. Liu, X., Deng, R.H., Raymond, K.-K., Choo, J.: An efficient privacy-preserving
outsourced calculation toolkit with multiple keys. IEEE Trans. Inf. Forens. Secur.
11(11), 2401–2414 (2016). https://doi.org/10.1109/TIFS.2016.2573770

27. Lv, C., Wang, J., Sun, S.-F., Wang, Y., Qi, S., Chen, X.: Towards practical multi-
client order-revealing encryption: improvement and application. In: IEEE Trans-
actions on Dependable and Secure Computing (2023)

28. Naor, M., Pinkas, B., Reingold, O.: Distributed Pseudo-random Functions and
KDCs, pp. 327–346 (1999). https://doi.org/10.1007/3-540-48910-X 23

29. Ohrimenko, O., et al.: Oblivious Multi-party Machine Learning on Trusted Pro-
cessors, pp. 619–636 (2016)

30. Ross Quinlan, J. C4. 5: Programs for Machine Learning. Elsevier (2014)
31. Tangirala, S.: Evaluating the impact of GINI index and information gain on clas-

sification using decision tree classifier algorithm. Int. J. Adv. Comput. Sci. Appl.
11(2), 612–619 (2020)

32. Vaidya, J., Clifton, C., Kantarcioglu, M., Scott Patterson, A.: Privacy-preserving
decision trees over vertically partitioned data. ACM Trans. Knowl. Discov. Data
2(3), 14:1–14:27 (2008). https://doi.org/10.1145/1409620.1409624

https://doi.org/10.1109/CSF51468.2021.00046
https://doi.org/10.1109/CSF51468.2021.00046
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1145/2976749.2978376
https://doi.org/10.1145/2976749.2978376
https://doi.org/10.1145/3321705.3329829
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1109/TIFS.2016.2573770
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1145/1409620.1409624

KIVR: Committing Authenticated
Encryption Using Redundancy

and Application to GCM, CCM, and More

Yusuke Naito1(B), Yu Sasaki2,3, and Takeshi Sugawara4

1 Mitsubishi Electric Corporation, Kanagawa, Japan
Naito.Yusuke@ce.MitsubishiElectric.co.jp

2 NTT Social Informatics Laboratories, Tokyo, Japan
yusk.sasaki@ntt.com

3 Associate of National Institute of Standards and Technology, Gaithersburg, USA
4 The University of Electro-Communications, Tokyo, Japan

sugawara@uec.ac.jp

Abstract. Constructing a committing authenticated encryption (AE)
satisfying theCMT-4 security notion is an ongoing research challenge. We
propose a new mode KIVR, a black-box conversion for adding the CMT-
4 security to existing AEs. KIVR is a generalization of the Hash-then-
Enc (HtE) [Bellare and Hoang, EUROCRYPT 2022] and uses a collision-
resistant hash function to generate an initial value (or nonce) and a mask
for redundant bits, in addition to a temporary key. We obtain a general
bound r/2+ tag-col with r-bit redundancy for a large class of CTR-based
AEs, where tag-col is the security against tag-collision attacks. UnlikeHtE,
the security of KIVR linearly increases with r, achieving beyond-birthday-
bound security. With a t-bit tag, tag-col lies 0 ≤ tag-col ≤ t/2 depend-
ing on the target AE. We set tag-col = 0 for GCM, GCM-SIV, and CCM,
and the corresponding bound r/2 is tight for GCM and GCM-SIV. With
CTR-HMAC, tag-col = t/2, and the bound (r + t)/2 is tight.

Keywords: Key Commitment · Context Commitment · Authenticated
Encryption · Security Proof · CTR · GCM · GCM-SIV · CCM · HMAC

1 Introduction

Authenticated encryption with associated data (AE) schemes that achieve confi-
dentiality and authenticity are essential components in symmetric-key cryptog-
raphy. The security of AE is well-studied, and the schemes usually come with
security proofs based on a formal security notion. However, AE schemes are
sometimes misused in a way beyond their promise, resulting in security prob-
lems. Committing security of AEs falls in this category and has been actively
studied in the last few years [1,5,6,9,11,15,16,21,22].

Farshim et al. initiated the theoretical study of key commitment in 2017 [15],
followed by the real-world attacks, including the multi-recipient integrity
attack that delivers malicious content to a targeted user [1,11,16] and the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 318–347, 2024.
https://doi.org/10.1007/978-3-031-54770-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_13&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_13

KIVR: Committing Authenticated Encryption Using Redundancy 319

partitioning oracle attack that achieves efficient password brute-force
attacks [21]. The absence of the commitment to a secret key is the root cause of
these problems. An AE encryption ΠEnc receives a secret key K, nonce N , asso-
ciated data A, and plaintext M and generates a ciphertext ΠEnc(K,N,A,M).
Without key-committing security, an adversary can efficiently find a cipher-
text decrypted with multiple keys, i.e., ΠEnc(K,N,A,M) = ΠEnc(K ′, N ′, A′,M ′)
with K �= K ′. Unfortunately, the previous AE security notions do not support
key commitment, and there are O(1) attacks on GCM [11,16], GCM-SIV [21],
CCM [22], and ChaCha20-Poly1305 [16].

In the meantime, standardization bodies are starting to support committing
security in AEs. For example, the recent RFC draft on usage limits on AEs
considers key-committing security [19]. Similarly, the recent NIST workshop for
updating the federal standard of block-cipher modes noted explicitly that key
commitment is an additional security feature [25].

Context commitment is the generalization considering a stronger adversary.
Bellare and Hoang [6] (and Chan and Rogaway independently [9]) proposed the
security notions for context commitment. The security notions CMT-1, CMT-3,
and CMT-4 consider K �= K ′, (K,N,A) �= (K ′, N ′, A′), and (K,N,A,M) �=
(K ′, N ′, A′,M ′), respectively [6]. CMT-1 is the previous key-committing secu-
rity. CMT-3 and CMT-4 are equivalent, and they are strictly more secure than
CMT-1, covering a broader range of misuses.

As discussed above, ensuring and building AEs with committing security is an
ongoing research challenge [1,11,16,21]. Before introducing the details about the
concrete methods, we summarize the desired properties regarding this challenge,
which are also our goals in this paper.

1. We want a conversion for adding the committing security to the standard AEs.
In particular, we target a class of the AE schemes based on CTR [12], referred
to as CTRAE, that includes GCM [14], GCM-SIV [17,18], and CCM [13]. We
also target CTR-HMAC, the CTR combined with HMAC [24] comprising par-
ticular hash functions, such as SHA-256.

2. The schemes should satisfy the context-committing security, i.e., CMT-4.
3. A black-box conversion that respects the interface of the existing AEs is

preferred for maintaining compatibility with the specifications of the stan-
dardized AE schemes and the hardware already deployed in the field.

4. The bit-security level for committing security is ideally the key size k, or at
least greater than k

2 , i.e., the beyond-birthday-bound (BBB) security regard-
ing the key size. That is necessary to achieve an offline security level compa-
rable with the standard AE-security, which is basically k bits.

1.1 Research Challenges

Here, we explain that the previous works [1,11,15,16,21] cannot achieve the
above desired properties perfectly.

There is a line of works for designing a dedicated scheme with committing
security [11,15], but they are not blackbox. In particular, Farshim et al. proposed
to use a collision-resistant pseudo-random function (PRF) [15].

320 Y. Naito et al.

Fig. 1. HtE [6] (left) and KIVR (right). The function FKIVR generates a tuple of tem-
porary key, IV, and redundant data. Mixrc is a function representing the positions of
redundant bits.

The padding fix [1] prepends zero bits at the beginning of the message and
enhances security by checking whether the prepended zero bits are successfully
recovered in decryption. This method provides excellent compatibility because
the changes to the original AE scheme are limited to messages. However, the
security of the padding fix is proved for GCM only and is limited to CMT-1.

CTX [9] converts arbitrary AEs to CMT-4 secure ones. After computing
a ciphertext C and tag T ′ using an underlying AE, it generates a new tag
T = H(K,N,A, T ′) by using a collision resistant (CR) hash function H. Unfor-
tunately, CTX’s compatibility with existing AEs is limited. In decryption, CTX
should first regenerate T ′ and then T = H(K,N,A, T ′) for comparison. Here, T ′

is an unverified tag within the original AE and is unavailable when the interface
of the original AEAD is strict, e.g., in cryptographic APIs in a hardware secu-
rity module or when there is a security policy regarding the release of unverified
plaintexts [2]. NC4, a CTX-based scheme with reduced ciphertext expansion [7],
has the same limitation.

HtE [6] shown in Fig. 1-(left) converts a CMT-1-secure AE to a CMT-4-
secure one [6]. It generates a temporary key L ← FHtE(K,N,A) using a CR
hash function FHtE, and then L is used as the key of an underlying AE. Although
HtE requires an additional CR hash function, it only changes the original AE’s
key values, thus maintaining high compatibility. The security of HtE combined
with a non-CMT-1-secure AE, e.g., GCM, GCM-SIV, or CCM, is not guaranteed
and is unknown. In particular, the security of HtE with GCM/CCM is limited
by k

2 , i.e., the birthday bound of the key. This is because the encryption results
will also collide if two temporary keys collide. k

2 bits of security is too short for
common cases, e.g., k = n in AES-GCM, and can be even smaller considering
concrete AEs.

KIVR: Committing Authenticated Encryption Using Redundancy 321

In summary, designing a method to convert CTRAEs to achieve BBB security
for CMT-4 in a black-box manner is a meaningful research challenge.1

1.2 Contributions

We propose a new black-box conversion KIVR that achieves BBB and CMT-4
security. The security bound is proved for CTRAE, including GCM, GCM-SIV,
CCM, and CTR-HMAC.

The considerable difficulty is that the CMT-4 security of CTRAE is limited
by t

2 bits due to a birthday attack on a tag, wherein the tag length t is often
t ≤ k. We approach the problem by adding redundancy to plaintexts, a natural
extension of the padding fix [1]. Let Morigin be an original plaintext and R redun-
dancy. We then define a plaintext with redundancy as M = Mixrc(R‖Morigin)
wherein Mixrc is a function for defining the positions of each bit (or byte) of
redundancy. The CMT security notion is naturally extended considering this
plaintext with redundancy. We can increase the security by adding redundancy
to messages. Besides adding extra redundancy, we can optionally exploit the
redundancy already present in the message, such as constant strings or magic
numbers found in popular file formats [20,28].2

The receiver who decrypts the message can check the decrypted message for
redundancy, which potentially improves the context-committing security. How-
ever, such an improvement turns out to be non-trivial. The previous O(1) attacks
still break GCM, GCM-SIV, and CCM, even with redundancy (see Table 1). Sim-
ilarly, the security of CTR-HMAC with redundancy is limited to t

2 due to a
birthday attack on a tag. Combining HtE with redundancy is a viable option,
but its security is upper-bounded by a simple attack using a collision either in
redundancy or a key.

New Mode. KIVR shown in Fig. 1-(right) is a generalization of HtE. In HtE,
a temporary key L is generated by FHtE(K,N,A). In contrast, KIVR generates
a tuple of temporary values (KT, IVT, RT) using FKIVR(K,N,A), preventing the
output size of the hash function FKIVR from becoming a security bottleneck.
In encryption, we get a masked message M ⊕ Mixrc(RT‖0∗): a modified message
wherein the redundant bits are masked with RT. Finally, the original AE encrypts
the masked message along with KT, IVT, and empty associated data. Decryption
is naturally defined, but we additionally check if the redundancy R is correctly
recovered.

We give a general bound for the CMT-4 security of KIVR with CTRAE
that covers a large class of practical AEs, i.e., CTR combined with any MAC.

1 An alternative approach for CMT-4 security is designing an indifferentiable AE
scheme [4]. It can be used as an ideal AE scheme, where an adversary is allowed to
select AE’s keys, and is CMT-4-secure. An indifferentiable AE claims the security
beyond the committing security notions, and thus its design is harder than that of
a CMT-4-secure AE scheme.

2 PNG and XML files have 64 and 192 bits of redundancy, respectively [20,28].

322 Y. Naito et al.

Table 1. AE schemes with black-box conversions for CMT-4 security using r-bit
redundancy. k and t are the key and tag lengths, respectively.

Conversion AE CMT-4 Security Ref.

Naive GCM, GCM-SIV, CCM 0 [16,21,22]
Naive CTR-HMAC t

2
[15]

HtE [6] GCM, GCM-SIV, CCM min{ r
2
, k
2
} —†

KIVR GCM, GCM-SIV, CCM r
2

Cor. 1
KIVR CTR-HMAC r+t

2
Cor. 2

†The security determined by a collision either in redundancy or a key.

Table 2. Attacks on KIVR-based AE schemes.

Conversion AE Complexity Security Ref.

KIVR GCM, GCM-SIV r
2

CMT-1 Theorem 2
KIVR CCM — — —
KIVR CTR-HMAC r+t

2
CMT-1 Theorem 3

The obtained CMT-4 security bound is r
2 + tag-col, where tag-col is the secu-

rity against tag-collision attacks by changing any of (K,N,A).3 In other words,
KIVR’s security linearly increases with r, unlike HtE upper-bounded by k

2 . We
ensure that KIVR causes no adverse side effects by proving that the conventional
AE security after applying KIVR reduces to the multi-user (mu) security of the
original AE.

Evaluation with Representative AEAD Instantiations. The term tag-col
lies 0 ≤ tag-col ≤ t

2 depending on the target AE, as summarized in Table 1. We
set tag-col = 0 for GCM and GCM-SIV and obtain r

2 as a corresponding bound.
This bound is tight because the attacker achieves full control over GHASH, and
tag-col of GMAC is 0. Analyzing tag-col with CCM is more complicated, and
we conservatively set tag-col = 0 considering the worst case. The corresponding
bound is r

2 , and its tightness is unclear. In the case of CTR-HMAC, on the other
hand, tag-col = t

2 , and the bound is r+t
2 . It achieves tag-col = t

2 because of the
collision-resistant property of HMAC. This bound is proven tight. Table 2 sum-
marizes the attacks. Since CMT-1 is weaker than CMT-4, a CMT-1-security
bound can be better than a CMT-4-security bound. However, in the case of the
KIVR-based AE schemes with GCM,GCM-SIV, and CTR-HMAC, the matching
attacks break the CMT-1 security, and there is no room for further improving
the CMT-1-security bounds. Meanwhile, finding an attack for KIVR with CCM
remains open, and a better CMT-1-security bound is still possible.

3 Specifically, the bound given in Theorem 1 is O(μ
2r) plus the advantage of finding

μ-collisions for tags. By choosing the parameter μ so that these terms are balanced
according to the structure of the tagging function, we have the security r

2
+ tag-col.

KIVR: Committing Authenticated Encryption Using Redundancy 323

With r = 256, KIVR combined with GCM, GCM-SIV, and CCM achieves
128-bit security. KIVR combined with CTR-HMAC, on the other hand, achieves
(r
2 + 64)-bit security with a 128-bit tag. In this case, KIVR achieves 128-bit

CMT-4 security with r = 128.

Comparison with the Padding Fix. KIVR achieves higher security and sup-
ports a wider range of AEs compared with the padding fix. Specifically, KIVR
enables CMT-4 with CTRAE, including GCM, GCM-SIV, CCM, and CTR-HMAC,
in contrast with the padding fix that enables CMT-1 with GCM only. KIVR
achieves those with a reasonable overhead and is still a one-pass scheme with a
one-pass underling AE. The main overhead is processing K and N in the hash
function FKIVR, approximately two more blocks considering the lengths of K and
N . There is no (or minor) overhead for processing AD in FKIVR because instead
we can skip AD processing in the underlying AE.

1.3 Organization

We begin by giving basic definitions in Sect. 2. Then, we formally define a plain-
text with redundancy and an extended CMT security considering redundancy in
Sect. 3. We introduce the KIVR conversion in Sect. 4. Section 5 gives KIVR’s gen-
eral security bound with CTRAE, followed by the proof in Sect. 6. Section 7 dis-
cusses the security and its tightness of KIVR combined with GCM, GCM-SIV, and
CCM. Similarly, Sect. 8 shows the tight security bound of KIVR with CTR-HMAC.
Section 9 is a conclusion.

2 Preliminaries

Notation. For integers 0 ≤ i ≤ j, let [i, j] := {i, i + 1, . . . , j} and [j] := [1, j].
If i > j then [i, j] := ∅. Let ε be an empty string, ∅ an empty set, and {0, 1}∗

be the set of all bit strings. For an integer n ≥ 0, let {0, 1}n be the set of
all n-bit strings, {0, 1}0 := {ε}, {0, 1}≤n := {X ∈ {0, 1}∗ | |X| ≤ n}, and
{0, 1}n∗ := {X ∈ {0, 1}∗ | |X| mod n = 0}. Let 0i be the bit string of i-bit
zeros. For X ∈ {0, 1}j , let |X| := j. The concatenation of two bit strings X
and Y is written as X‖Y or XY when no confusion is possible. For integers
i ≥ 0 and 0 ≤ X ≤ 2i − 1, let stri(X) be the i-bit representation of X. For
integers 0 ≤ j ≤ i and X ∈ {0, 1}i, let msbj(X) (resp. lsbj(X)) be the most
(resp. least) significant j bits of X. For an integer 1 ≤ n and X ∈ {0, 1}∗, let
zpn(X) := X‖0�|X|/n�·n−|X| be a zero-padding function such that the length
of the padded value becomes a multiple of n. For a non-empty set T , T

$←− T
means that an element is chosen uniformly at random from T and assigned to
T . For two sets T and T ′, T ∪←− T ′ means T ← T ∪ T ′. For an integer l ≥ 0
and X ∈ {0, 1}∗, (X1, . . . , X�)

l←− X means parsing of X into fixed-length l-bit
strings, where if X �= ε then X = X1‖ · · · ‖X�, |Xi| = l for i ∈ [� − 1], and
0 < |X�| ≤ l; if X = ε then � = 1 and X1 = ε.

324 Y. Naito et al.

For μ pairs with four values S[i] = {(K ′
i, N

′
i , A

′
i,D

′
i), (K

′′
i , N ′′

i , A′′
i ,D′′

i)} (i ∈
[μ]), Boolean function diffKNA with the input S := (S[1], . . . ,S[μ]) is defined as

– diffKNA(S) = 1 if
(
∀i ∈ [μ] : (K ′

i, N
′
i , A

′
i) �= (K ′′

i , N ′′
i , A′′

i)
)

and
(
∀i ∈ [μ], j ∈

[i − 1] : {(K ′
i, N

′
i , A

′
i), (K

′′
i , N ′′

i , A′′
i)} �= {(K ′

j , N
′
j , A

′
j), (K

′′
j , N ′′

j , A′′
j)}

)
;

– diffKNA(S) = 0 otherwise.

Block Cipher (BC). A BC is a set of permutations indexed by a key. For
positive integers κ and n, let E : {0, 1}k × {0, 1}n → {0, 1}n be an encryption of
a BC with k-bit keys and n-bit blocks that is used in CTR and BC-based MACs
such as GMAC, GMAC+, and CBC. Let E−1 : {0, 1}k × {0, 1}n → {0, 1}n be its
decryption. For positive integers b and v, let F : {0, 1}b × {0, 1}v → {0, 1}v be
an encryption of a BC with b-bit keys and v-bit blocks that is used in Merkle-
Damgård hash function.

Ideal Cipher (IC). Let BC(k, n) be a set of all encryptions of BCs with k-bit
keys and n-bit blocks. An IC is an ideal BC and defined as E

$←− BC. An IC E can
be implemented by lazy sampling. Let TE be a table that is initially empty and
keeps query-response tuples of E and E−1. Let TE,2[W] := {Y | (W,X, Y) ∈
TE} and TE,1[W] := {X | (W,X, Y) ∈ TE} be tables that respectively keep
ciphertext and plaintext blocks defined in TE such that the key elements are W .
For a new forward query (W,X) to E (resp. inverse query (W,Y) to E−1), the
response is defined as Y

$←− {0, 1}n\TE,2[W] (resp. X
$←− {0, 1}n\TE,1[W]), and

TE
∪←− {(W,X, Y)}. For a query stored in the table TE , the same response is

returned.

Hash Function. Let M ⊆ {0, 1}∗ and h be a positive integer. Let H[Ψ] : M →
{0, 1}h be a hash function with a primitive Ψ that on an input message in M
returns an h-bit hash value. In this paper, we assume that Ψ is ideal, and use
the following security notions for hash function.

μ-Collision Resistance. H[Ψ] is μ-collision resistance if it is hard to find μ pairs
of distinct messages such that for each pair the hash values are the same. The
μ-collision-resistant advantage function of A with access to an ideal primitive Ψ
against H[Ψ] is defined as

Advcolls
H,μ(A) := Pr

[
((M (1),M ′(1)), . . . , (M (μ),M ′(μ))) ← AΨ s.t.
(
∀i ∈ [μ] : H[Ψ](M (i)) = H[Ψ](M ′(i)) ∧ M (i) �= M ′(i)

)
∧

(
∀i, j s.t. i �= j : {M (i),M ′(i)} �= {M (j),M ′(j)}

)]
.

The notion with μ = 1 is the standard notion for collision resistance. Let
Advcoll

H (A) := Advcolls
H,1(A) be a collision-resistant advantage function of A.

KIVR: Committing Authenticated Encryption Using Redundancy 325

Random Oracle (RO). An RO is an ideal hash function from M to {0, 1}h.
An RO can be realized by lazy sampling. Let TRO be a table that is initially
empty and keeps query-response pairs of RO. For a new query X to RO, the
response is defined as Y

$←− {0, 1}h, and the query-response pair (X,Y) is added
to TRO: TRO

∪←− {(X,Y)}. For a query stored in the table TRO, the same response
is returned.

Authenticated Encryption (AE). Let Π[Ψ] be a (tag-based) AE scheme
using a primitive (or set of primitives) Ψ . Π[Ψ] is a pair of encryption and decryp-
tion algorithms (ΠEnc[Ψ],ΠDec[Ψ]). K, N , M, C, A, and T are the sets of keys,
nonces, plaintexts, ciphertexts, associated data (AD), and tags, respectively. Let
ν and t be respectively nonce and tag sizes, i.e., N = {0, 1}ν and T = {0, 1}t. The
encryption algorithm ΠEnc[Ψ] : N ×A×M → C×T takes a tuple (N,A,M), and
returns, deterministically, a pair (C, T). The decryption algorithm ΠDec[Ψ] : N ×
A×C ×T → {reject}∪M takes a tuple (N,A,C, T ′) and returns, deterministi-
cally, either the distinguished invalid symbol reject �∈ M or a plaintext M ∈ M.
We require that ∀(K,N,A,M), (K ′, N ′, A′,M ′) ∈ K × N × A × M s.t. |M | =
|M ′| : |ΠEnc[Ψ](K,N,A,M)| = |ΠEnc[Ψ](K ′, N ′, A′,M ′)|. We also require that
∀K ∈ K, N ∈ N , A ∈ A,M ∈ M : ΠDec[Ψ](K,N,A,ΠEnc[Ψ](K,N,A,M)) = M .

3 Committing Security with Plaintext Redundancy

In this section, we define notions for committing security with plaintext redun-
dancy. The notions are defined by extending the original notions [6] such that
plaintext redundancy is incorporated.

3.1 Plaintext with Redundancy

We formalize a plaintext with redundancy that extends the idea of zero padding
in the padding fix [1]. A plaintext consists of redundancy R and original message
Morigin. Let r be the length of redundancy. A plaintext with redundancy is defined
as M = Mixrc(R‖Morigin) wherein Mixrc is a function for defining the positions
of each bit (or byte) of redundancy in a plaintext. If R = 0r and Mixrc is an
identity function, then the plaintexts are equal to those of the padding fix. The
generalization covers not only the padding fix but also other padding schemes
and plaintexts with inherent redundancy discussed later.

In this paper, we assume that Mixrc is length-preserving (i.e., |R‖Morigin| =
|Mixrc(R‖Morigin)|), linear, invertible, and bijective. Then, redundancy in a plain-
text M can be obtained by msbr ◦Mix−1

rc (M). We call Mixrc “(ω, n)-mixing func-
tion” if the number of n-bit blocks with redundant bits is at most ω. Specifically,
let Mixrc(R‖Morigin) := M1‖M2‖ · · · ‖Mm such that |Mi| = n (i ∈ [m − 1]) and
|Mm| ≤ n. Then, for any original message Morigin, and distinct r-bit redun-
dant values R′ and R∗, there exist ω distinct indexes i1, . . . , iω ∈ [m] such that
(M ′

i1
, . . . , M ′

iω
) �= (M∗

i1
, . . . , M∗

iω
) and ∀j ∈ [m]\{i1, . . . , iω} : M ′

j = M∗
j . For

example, if Mixrc(R‖Morigin) = R‖Morigin, then ω = � r
n�.

326 Y. Naito et al.

The above definition covers a case where the original message has inherent
redundancy, such as constant strings in popular file formats. For example, PNG
and XML files have 64 and 192 bits of magic numbers, respectively [20,28]. Such
inherent redundancy that a receiver knows in advance can be counted as a part
of the redundancy R, thus reducing the number of extra redundant bits.

3.2 Definitions for Committing Security with Redundancy

For i ∈ {1, 3, 4}, let WiCi be a function that on input tuple (K,N,A,M) of a key,
a nonce, AD, and a plaintext (with redundancy), returns the first i elements to
which a ciphertext is committed: WiC1(K,N,A,M) = K, WiC3(K,N,A,M) =
(K,N,A), and WiC4(K,N,A,M) = (K,N,A,M).

Let Π[Ψ] be an AE scheme with an ideal primitive(s) Ψ . In the CMT-i-
security game where i ∈ {1, 3, 4}, the goal of an adversary A with access to Ψ is
to return two tuples of a key, a nonce, AD, and a plaintext on which the outputs
of ΠEnc[Ψ] are the same. Since we consider plaintexts with redundancy, the game
is defined so that the plaintexts in the A’s output tuples contain redundancy. For
i ∈ {1, 3, 4}, redundancy R, and a mixing function Mixrc, the CMT-i-security
advantage of an adversary A is defined as

Advcmt-i
Π,Mixrc,R(A) :=Pr

[
(K†, N†, A†,M†), (K‡, N‡, A‡,M‡) ← AΨ s.t.

(
WiCi(K†, N†, A†,M†) �= WiCi(K‡, N‡, A‡,M‡)

)

∧
(
ΠEnc[Ψ](K†, N†, A†,M†) = ΠEnc[Ψ](K‡, N‡, A‡,M‡)

)

∧
(
msbr ◦ Mix−1

rc (M†) = msbr ◦ Mix−1
rc (M‡) = R

)]
.

Π[Ψ] is CMT-i secure if for any R, Mixrc, and A, the advantage function is
upper-bounded by a negligible probability. In other words, Π[Ψ] is not CMT-i
secure if there exist R, Mixrc, and A such that the CMT-i security of Π[Ψ] is
lower-bounded by a non-negligible probability. Note that CMT-3 and CMT-4
security are equivalent [6]. In this paper, we consider computationally unbounded
adversaries.

4 KIVR Transform

In this section, we present KIVR, a generalization of HtE that enhances the
committing security by using plaintext redundancy.

4.1 Specification of KIVR

KIVR, on an input tuple of a key, a nonce, and AD, generates a temporary key,
a temporary nonce, and a mask value that are defined by using a hash function
FKIVR. The mask value is applied to redundancy in a plaintext. FKIVR should be

KIVR: Committing Authenticated Encryption Using Redundancy 327

Algorithm 1. KIVR Transform
Encryption KIVR[ΠEnc][Mixrc, R, Ψ, ΨKIVR](K, N, A, M)
1: (KT, IVT, RT) ← FKIVR[ΨKIVR](K, N, A)
2: (C, T) ← ΠEnc[Ψ](KT, IVT, ε, M ⊕ Mixrc(RT‖0|M|−rT)); return (C, T)

Decryption KIVR[ΠDec][Mixrc, R, Ψ, ΨKIVR](K, N, A, C, T ′)
1: (KT, IVT, RT) ← FKIVR[ΨKIVR](K, N, A)
2: M ′ ← ΠDec[Ψ](KT, IVT, ε, C, T ′) if M ′ = reject then return reject end if
3: M ← M ′ ⊕ Mixrc(RT‖0|M|−rT)
4: if R = msbr ◦ Mix−1

rc (M) then return M else return reject end if

collision resistant for CMT-4 security and be pseudorandom-function secure for
mu-AE security.

The specification of KIVR[Π] (KIVR with an AE scheme Π) is given in Algo-
rithm 1 and Fig. 1. Let Ψ (resp. ΨKIVR) be the underlying primitive(s) of Π
(resp. FKIVR). Let R be redundancy, r = |R|, and Mixrc a mixing function. Let
rT be the length of the mask value defined by FKIVR such that rT ≤ r. Let
FKIVR : K × N × A → K × N × {0, 1}rT be a function of KIVR that on an input
tuple (K,N,A) of a key, a nonce, and AD, derives a tuple (KT, IVT, RT) of a
temporary key, an IV, and a mask value.4

4.2 Security of KIVR

Regarding the mu-AE security of AE schemes KIVR[Π], assuming that FKIVR
is a pseudorandom function secure in the mu-setting, for each tuple of a key,
a nonce, and AD, the temporary key is chosen uniformly at random from K.
Hence, the mu-AE security of KIVR[Π] is reduced to the mu-AE security of
the underlying AE scheme Π. The detail is given in Supplementary material C.

Regarding committing security, in Sects. 5, 7, and 8, we show that KIVR
enhances the committing security of CTR-based AE schemes by the length
of redundancy r. In Sect. 5, we define CTRAE, which is a CTR-based AE
scheme with a general tagging function and covers GCM, GCM-SIV, CCM, and
CTR-HMAC (CTR-based AE with HMAC). We show a general bound of the
CMT-4 security of CTRAE. In Sect. 7, we derive CMT-4-bounds of KIVR[GCM],
KIVR[GCM-SIV], and KIVR[CCM] by using the general bound of CTRAE. In
Sect. 8, we similarly derive a CMT-4-bound of KIVR[CTR-HMAC].

5 Committing Security of KIVR with CTR-Based AE

In this section, we first define CTRAE, a CTR-based AE scheme with a generalized
tagging function. We then show a CMT-4-security bound of KIVR[CTRAE].

4 We exemplify the structure of the masked plaintext M ⊕Mixrc(RT‖0|M|−rT) by using
the padding fix. In the padding fix, RT = 0r and Mixrc is an identity function. Then,
the masked plaintext is (0r‖Morigin) ⊕ (RT‖0|M|−rT) = (RT‖0r−rT)‖Morigin.

328 Y. Naito et al.

Algorithm 2. Counter Mode
Encryption/Decryption CTR[E](Kbc, IV, D)
1: for i = 1, . . . , �|D|/n� do KSi ← E(Kbc, add(IV, i)) end for
2: KS ← msb|D|(KS1‖ · · · ‖KS�|D|/n�); D′ ← D ⊕ KS; return D′

Algorithm 3. CTR-based AE CTRAE

Encryption CTRAEEnc[E, Ψtag]((Kbc, Ktag), N, A, M)
1: T ← TagGen[Ψtag](Ktag, N, A, M); C ← CTR[E](Kbc, GetIV(N, T), M)
2: return (C, T)

Decryption CTRAEDec[E, Ψtag]((Kbc, Ktag), N, A, C, T ′)
1: M ← CTR[E](Kbc, GetIV(N, T ′), C); T ← TagGen[Ψtag](Ktag, N, A, M)
2: if T = T ′ then return M ; else return reject end if

Fig. 2. (1) CTR Mode where � = �|D|/n� and (D, D′) is a pair of plaintext and cipher-
text or of ciphertext and plaintext; (2) CTRAEEnc; (3) CTRAEDec.

5.1 Specification of CTR-Based AE

Counter Mode. The specification of the counter mode CTR is given in Algo-
rithm 2 and Fig. 2(1), where E is the underlying BC. Let c be the counter size
such that c ≤ n. Let D ⊂ {0, 1}∗ be the plaintext/ciphertext space. {0, 1}k

is the key space. CTR[E] : {0, 1}k × {0, 1}n × D → D takes a tuple of a key
Kbc, an initial value IV , and a plaintext/ciphertext D, and returns its cipher-
text/plaintext D′ such that |D| = |D′|. If D is a plaintext (resp. ciphertext),
then D′ is the ciphertext (resp. plaintext). KS is a key stream with which a
ciphertext (resp. plaintext) is defined by XORing a plaintext (resp. ciphertext).
add : {0, 1}n × [0, 2c − 1] → {0, 1}n is a function that on an input pair of an
IV and a counter, returns an input block of E. Regarding add, we consider the
following two types of functions. The type-1 is used in the standard CTR (used
in GCM,CCM, and CTR-HMAC) and the type-2 is used in GCM-SIV.

KIVR: Committing Authenticated Encryption Using Redundancy 329

– The type-1 function is defined as add(IV, i) := (msbν(IV))‖(lsbc(IV) + i +
1 mod 2c), where n = ν + c, for the counter addition lsbc(IV) is considered
as an integer, and the added value is regarded as a c-bit string.

– The type-2 function is defined as add(IV, i) := (1‖(msbn−c−1(IV))‖
(lsbc(IV) + i mod 2c)), where lsbc(IV) is considered as an integer and the
added value is regarded as a c-bit string.

CTRAE. We define CTRAE, a CTR-based AE scheme with primitives E and
Ψtag. CTRAE is a generalization of GCM, GCM-SIV, CCM, and CTR-HMAC. The
specification of CTRAE[E,Ψtag] is given in Algorithm 3 and Fig. 2. Let Ktag be
the key space of the tagging function. Hence, K := {0, 1}k ×Ktag is the key space
of CTRAE. Let TagGen[Ψtag] be the tagging function with the primitive Ψtag that
on an input tuple of a key Ktag, a nonce N , and a plaintext M , returns a t-bit
tag. Note that although the tagging functions of GCM, CCM, and CTR-HMAC
take a ciphertext instead of a plaintext, TagGen[Ψtag] covers these functions by
incorporating the procedure of CTR into the tagging functions. Let GetIV be a
function that on an input tuple of a nonce and a tag, returns an IV of CTR. The
function of GCM, CCM, and CTR-HMAC is defined as GetIV(N,T) := zpn(N).
The function of GCM-SIV is defined as GetIV(N,T) := T .

Let KIVR[CTRAEEnc] and KIVR[TagGen] be the encryption and tagging
functions of KIVR[CTRAE], respectively. Let FKbcIV R be a function that
returns a tuple of a temporary key of CTR, an IV, and a mask value, i.e.,
FKbcIV R[ΨKIVR](K,N,A) := (KbcT, IVT, RT).

5.2 CMT-4-Security of KIVR[CTRAE]

Let Π∗ := KIVR[CTRAE], Π∗
Enc := KIVR[CTRAEEnc] and Π∗

TGen :=
KIVR[TagGen]. The following theorem shows an upper-bound of the CMT-4-
security of Π∗.

Theorem 1. For any redundancy R, (ω, n)-mixing function Mixrc, and CMT-4
adversary A making pic queries to E or E−1, ptag queries to Ψtag, and pkivr queries
to ΨKIVR, there exist adversaries A1 and A2 such that Advcmt-4

Π∗,Mixrc,R(A) ≤
2ω·(μ−1)

2r + Advcolls
Π∗

TGen,μ
(A1) + Advcoll

FKbcIV R
(A2), for the A1’s output S1,

diffKNA(S1) = 1, and for each i ∈ [2], Ai makes pic queries to E or E−1, ptag
queries to Ψtag, and pkivr queries to ΨKIVR.

Note that Advcolls
Π∗

TGen,μ
(A1) is the μ-collision advantage of Π∗

TGen with the condi-
tion of diffKNA, i.e., for each pair of A1, the tuples of a key, a nonce, and AD
are distinct. Although the parameter rT does not appear in the bound, the last
term depends on the parameter. The proof is given in Sect. 6.

6 Proof of Theorem 1

Since CMT-3-security and CMT-4-security are equivalent [6], we evaluate the
CMT-3-security advantage of A for Π∗.

330 Y. Naito et al.

6.1 Tools

Full-Block Query. To ensure the randomnesses of the outputs of an IC E or
E−1, we use the technique given in [3].

– For a key element W of an IC, after A makes 2n−1 queries with W to E or
E−1, we permit an adversary A to obtain the remaining input-output tuples
of E with W , i.e., A obtains all input-output tuples with W . We call the
additional queries “full-block queries.”

The full-block queries ensure that the outputs of E or E−1 are chosen uniformly
at random from 2n−1 elements in {0, 1}n.5 Specifically, fixing Y ∗, for a full-block
query (W,X), the probability that the output Y is equal to Y ∗ is (2n−1−1)!

(2n−1)! =
1

2n−1 . Without loss of generality, full-block queries are forward ones.

Property of CTR with Redundancy. The following lemma shows that a
collision of CTR with redundancy implies that the sum of the key streams meets
the sum of redundancy. The lemma is used in our proofs.

Lemma 1. Let Mixrc be a (ω, n)-mixing linear function. Let R′ and R′′ be r-bit
(masked) redundancy. Let (K ′, IV ′,M ′) and (K ′′, IV ′′,M ′′) be tuples of a key,
an IV, and a plaintext with redundancy such that (K ′, IV ′) �= (K ′′, IV ′′), |M ′| =
|M ′′|, msbr ◦ Mix−1

rc (M ′) = R′, and msbr ◦ Mix−1
rc (M ′′) = R′′. For � ∈ {′, ′′}, let

C� := CTR[E](K�, IV �,M�) and KS� the key stream. Then, we have

C ′ = C ′′ ⇒ msbr ◦ Mix−1
rc (KS′ ⊕ KS′′) = R′ ⊕ R′′.

Proof (Lemma 1). The relation in the lemma is obtained as follows.

C ′ = C ′′ ⇒ KS′ ⊕ KS′′ = M ′ ⊕ M ′′

⇒ msbr ◦ Mix−1
rc (KS′ ⊕ KS′′) = msbr ◦ Mix−1

rc (M ′ ⊕ M ′′)

⇒ msbr ◦ Mix−1
rc (KS′ ⊕ KS′′) = R′ ⊕ R′′.

6.2 Symbol Definitions

Let IKIVR be the set of all possible input tuples of FKIVR[ΨKIVR] derived
from query-response tuples of ΨKIVR. Let ITGen be the set of all possible
input tuples of Π∗

TGen derived from query-response tuples of Ψtag and ΨKIVR.
Let (K†, N†, A†,M†), (K‡, N‡, A‡,M‡) be A’s outputs. For an input tuple
(K�, N�, A�,M�) of a key, a nonce, AD and a plaintext with redundancy,

– (C�, T�) := Π∗
Enc[Mixrc, R,E, Ψtag, ΨKIVR](K�, N�, A�,M�),

– (K�
bcT, IV �

T , R�
T) := FKbcIV R(K�, N�, A�), and

– KS� is the key stream of CTR[E](K�
T , IV �

T ,M�).

In the following proof, the symbol � is replaced with (i), ′, ′′, †, and ‡ where i is
an integer.
5 In [3], the additional queries are called super queries.

KIVR: Committing Authenticated Encryption Using Redundancy 331

6.3 Deriving the CMT-4-Security Bound

We derive the upper-bound of Advcmt-3
Π∗ (A) = Pr[(C†, T †) = (C‡, T ‡)] by using

the following collision event for FKbcIV R.

– coll: ∃X,X ′ ∈ IKIVR s.t. X �= X ′ ∧ FKbcIV R(X) = FKbcIV R(X ′).

Using the events, we have

Advcmt-3
Π∗,Mixrc,R(A) ≤ Pr[coll] + Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll] .

The event coll implies that there exists an adversary A2 finding a collision of
FKbcIV R, i.e., Pr[coll] ≤ Advcoll

FKbcIV R
(A2). The bound of Pr[(C†, T †) = (C‡, T ‡)∧

¬coll] is given in Eq. (1). These bounds provide the bound in Theorem 1.

6.4 Bounding Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll]

We define the following event that considers μ-collisions of Π∗
TGen such that for

each of the μ-collision, the input tuples of a key, a nonce, and AD are distinct.

colls ⇔
∃S :=

{{
(K′(i), N ′(i), A′(i), C′(i)), (K′′(i), N ′′(i), A′′(i), C′′(i))

}
∈ (ITGen)

2 : i ∈ [μ]
}

s.t.
(
∀i ∈ [μ] : Π∗

TGen(K
′(i), N ′(i), A′(i), C′(i)) = Π∗

TGen(K
′′(i), N ′′(i), A′′(i), C′′(i))

)

∧ (diffKNA(S) = 1).

Using the event, we have

Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll]

≤ Pr[colls] + Pr[(C†, T †) = (C‡, T ‡) | ¬(coll ∨ colls)].

These bounds are given below. Using the bounds, we have

Pr[(C†, T †) = (C‡, T ‡) ∧ ¬coll] ≤ 2ω · μ − 1
2r

+Advcolls
Π∗

TGen,μ
(A1) . (1)

Bounding Pr[colls]. The event colls implies that there exists an adversary A1

finding μ-collisions of Π∗
TGen with the condition of diffKNA. We thus have

Pr[colls] ≤ Advcolls
Π∗

TGen,μ
(A1) .

Bounding Pr[(C†, T †) = (C‡, T ‡) | ¬(coll ∨ colls)]. Regarding the ciphertext
collision, by Lemma 1, we have

C† = C‡ ⇒ msbr ◦ Mix−1
rc

(
KS† ⊕ KS‡) = (R ⊕ zpr(R

†
T)) ⊕ (R ⊕ zpr(R

‡
T))

⇒ msbr ◦ Mix−1
rc

(
KS† ⊕ KS‡) = zpr(R

†
T ⊕ R‡

T)

where KS† and KS‡ are respectively determined from (K†, N†, A†) and (K‡, N‡,
A‡). By ¬colls, there are at most μ − 1 pairs with a key, a nonce, and AD with
which tag collision occurs. Fix distinct tuples (K ′, N ′, A′), (K ′′, N ′′, A′′) ∈ IKIVR
and assume that coll does not occur. We then consider the following two cases.

332 Y. Naito et al.

Algorithm 4. GHASH

GHASH GHASH(L, A, D)
1: X1, . . . , Xl

n←− zpn(A)‖zpn(D)‖strn/2(|A|)‖strn/2(|D|)
2: Y ← X1 • Ll ⊕ X2 • Ll−1 ⊕ · · · Xl • L; return Y

– If (K ′
bcT, IV ′

T) = (K ′′
bcT, IV ′′

T), then since KS′ = KS′′, we have C† = C‡ ⇒
R†

T = R‡
T. Hence, a collision of FKbcIV R occurs, which contradicts the condition

¬coll. We thus have Pr[C ′ = C ′′] = 0.
– If (K ′

bcT, IV ′
T) �= (K ′′

bcT, IV ′′
T), then in the processes of CTR, the IC’s input-

output tuples are defined by E or E−1. Due to full-block queries, for Z ∈
{0, 1}n and j ∈ {0, 1}c,

Pr[E(K ′
bcT, add(IV ′

T, j) = Z] ≤ 2
2n

, Pr[E−1(K ′
bcT, Z) = add(IV ′

T, j)] ≤ 2
2n

,

Pr[E(K ′′
bcT, add(IV ′′

T , j) = Z] ≤ 2
2n

, Pr[E−1(K ′′
bcT, Z) = add(IV ′′

T , j)] ≤ 2
2n

.

As there are ω blocks that depend on redundant data, we have

Pr[C ′ = C ′′] ≤ 2ωn−r ·
(

2
2n

)ω

=
2ω

2r
.

By ¬colls, the number of collisions of Π∗
TGen is at most μ−1. In order to have the

collision (C†, T †) = (C‡, T ‡), one of the (at most) μ−1 pairs of key stream must
satisfy the relation msbr ◦Mix−1

rc

(
KS† ⊕ KS‡) = zpr(R

†
T⊕R‡

T). The probability
that the relation is satisfied is at most (μ − 1) · 2ω

2r , and we have

Pr[(C†, T †) = (C‡, T ‡) | ¬(coll ∨ colls)] ≤ 2ω · μ − 1
2r

.

7 Committing Security of KIVR with GCM, GCM-SIV,
and CCM

In this section, we derive the CMT-4-bounds of KIVR with the CTR-based AE
schemes GCM, GCM-SIV, and CCM by using the bound in Theorem 1.

7.1 Specifications of GCM, GCM-SIV, and CCM

GHASH. GHASH used in GCM and GCM-SIV is a polynomial hash function
defined in Algorithm 4. GHASH takes an n-bit hash key L, AD A, and a plain-
text/ciphertext D, and returns an n-bit hash value Y . GHASH is the hash func-
tion used in GCM and GCM-SIV. Let F be a finite field of 2n elements. We can
interpret a string in {0, 1}n as an element in F, and the addition in F is the same
as ⊕ in {0, 1}n. Let • be the finite-field multiplication in F.

KIVR: Committing Authenticated Encryption Using Redundancy 333

Algorithm 5. Tag Generation of GCM

Tag Generation GMAC[E]((Kbc, L), N, A, C)
1: H ← GHASH(L, A, C); X ← N‖0c−11; T ← msbt(H ⊕ E(Kbc, X)); return T

Algorithm 6. Tag Generation GMAC+

Tag Generation ΠTGen[E]((Kbc, L), N, A, M)
1: H ← GHASH(L, A, M); X ← 0‖lsbn−1(H) ⊕ (0c‖N); T ← E(Kbc, X); return T

Fig. 3. Tagging functions GMAC (1) and of GMAC+ (2).

Fig. 4. Encryption of GCM. GCM is a special case of CTRAE: By introducing the
redundant procedure in the dot line, GCM meets the interface of CTRAE.

GCM. GCM is a single-key CTRAE scheme with the tagging function GMAC.
Hence, the key of the tag generation function is equal to that of CTR (i.e., Ktag =
Kbc and Ktag = {0, 1}k). The specification of GMAC is given in Algorithm 5 and
Fig. 3(1). The hash key of GMAC is defined as L ← E(K, 0n). The encryptions
of GCM and of KIVR[GCM] are respectively given in Figs. 4 and 5.

334 Y. Naito et al.

Fig. 5. Encryption of KIVR[GCM]. GCM is a special case of CTRAE: by introducing the
redundant procedure in the dot line, GCM meets the interface of CTRAE.

Fig. 6. Encryption of GCM-SIV.

GCM-SIV. GCM-SIV [8] is CTRAE with the tagging function GMAC+ and the
key derivation KD1. The specification of GMAC+ is given in Algorithm 6 and
Fig. 3(2). (Kbc, L) is a pair of (temporary) keys of GMAC+[E], where Kbc is
equal to the key of CTR. GMAC+[E] : {0, 1}k × {0, 1}n × A × M → {0, 1}n

takes an input tuple (Kbc, L,N,A,M) and returns an n-bit tag T . Note that
(Kbc, L) is derived by using KD1. KD1 is a concatenation of truncated BCs
where each BC call takes input tuple of a key, a nonce, and a counter. For the
sake of simplifying the proof, when considering KIVR with GCM-SIV, KD1 is
incorporated into FKIVR. The encryptions of GCM-SIV and of KIVR[GCM-SIV]
are respectively given in Figs. 6 and 7.

KIVR: Committing Authenticated Encryption Using Redundancy 335

Fig. 7. Encryption of KIVR[GCM-SIV]. KD1 is incorporated into FKIVR.

Fig. 8. Encryption of CTR-HMAC. CTR-HMAC is a special case of CTRAE: by intro-
ducing the redundant procedure in the dot line, the interface of CTR-HMAC meets the
interface of CTRAE.

CCM. CCM is a single-key CTRAE with the CBC MAC as the tagging function.
Hence, the key of the tagging function is equal to that of CTR (i.e., Ktag = Kbc

and Ktag = {0, 1}k). The encryption of CCM, the CBC MAC, and the encryption
of KIVR[CCM] are respectively given in Figs. 10, 11, and 12.

7.2 CMT-4-Security of KIVR[GCM], KIVR[GCM-SIV], and KIVR[CCM]

We derive the CMT-4-security bounds of KIVR[GCM], KIVR[GCM-SIV], and
KIVR[CCM] by using the bound in Theorem 1. For the sake of simplicity, we
assume that FKIVR is a RO. Then, pkivr is the number of queries to the RO, and
we have Advcoll

FKbcIV R
(A2) ≤ 0.5p2

kivr

2k+ν+rT
by the birthdaty analysis. We define the

parameter as μ := 0.5p2kivr + 1. Then, the size of S1 which is A1’s output with

336 Y. Naito et al.

Fig. 9. Encryption of KIVR[CTR-HMAC]. CTR-HMAC is a special case of CTRAE: by
introducing the redundant procedure in the dot line, the interface of CTR-HMAC meets
the interface of CTRAE.

Fig. 10. Encryption of CCM.

Fig. 11. CBC MAC.

KIVR: Committing Authenticated Encryption Using Redundancy 337

Fig. 12. Encryption of KIVR[CCM].

the condition diffKNA(S1) = 1 is upper-bounded by
(
pkivr

2

)
= 0.5pkivr(pkivr−1), and

we have Advcolls
Π∗

TGen,μ
(A1) = 0. Hence, we obtain the following bounds.

Corollary 1. Let Π∗ ∈ {KIVR[GCM],KIVR[GCM-SIV],KIVR[CCM]}. Assume
that FKIVR is a RO. For any redundancy R, (ω, n)-mixing function Mixrc, and
CMT-4 adversary A making pic queries to an IC, and pkivr queries to a RO,
there exists an adversary A2 such that Advcmt-4

Π∗,Mixrc,R(A) ≤ 2ω−1·p2
ic

2r + 0.5p2
kivr

2k+ν+rT

and A2 makes pic queries to an IC and pkivr queries to a RO.

We assume that the term 0.5p2
kivr

2k+ν+rT
is negligible, which can be ensured by choosing

the parameter rT such that r ≤ κ + ν + rT. Then, the above bound shows that
KIVR[GCM], KIVR[GCM-SIV], and KIVR[CCM] achieve r

2 -bit CMT-4-security.

7.3 Tightness of the CMT-4-Security of KIVR[GCM]
and KIVR[GCM-SIV]

We show attacks whose probabilities are the same as Corollary 1, ensuring that
the tightness of the bounds of KIVR[GCM] and of KIVR[GCM-SIV] in Corollary 1.
The attacks are extensions of the CMT-1-attack given in [1] that makes use of
the linearity of GHASH.

Theorem 2. Let Π∗ ∈ {KIVR[GCM],KIVR[GCM-SIV]}. Assume that FKIVR is a
RO. There exist redundancy R, a (ω, n)-mixing function Mixrc, and an adver-
sary A making p queries to an IC or a RO such that Advcmt-1

Π∗,Mixrc,R(A) =

O
(
max

{
p2

2r , p2

2k+ν+rT

})
.

Proof of Theorem 2 for KIVR[GCM]. Fix redundancy R ∈ {0, 1}r. We con-
sider the following mixing function: Mixrc(R‖Morigin) = R‖Morigin for each core
data Morigin. We then define two adversaries A1 and A2 that offer the first and
second terms, respectively.

338 Y. Naito et al.

Algorithm 7. Adversary A1 Breaking the CMT-1-Security of KIVR[GCM]
1: p1 ← � p

ω+2
� − 4

2: Choose p1 distinct keys K(1), . . . , K(p1) ∈ {0, 1}k

3: Choose a pair (N, A) ∈ N × A of a nonce and AD
4: for i = 1, . . . , p1 do
5: (K

(i)
T , IV

(i)
T , R

(i)
T) ← FKIVR(K

(i), N, A); KS(i) ← ε

6: for j = 1, . . . , ω + 1 do KS(i) ← KS(i)‖E(K
(i)
T , add(IV

(i)
T , j)) end for

7: end for
8: if ∃α, β ∈ [p1] s.t.

α �= β ∧ msbr(KS(α) ⊕ KS(β)) = zpr(R
(α)
T ⊕ R

(β)
T) then

9: Z(α) ← E(K
(α)
T , IV

(α)
T ‖0n−ν−11); Z(β) ← E(K

(β)
T , IV

(β)
T ‖0n−ν−11)

10: L(α) ← E(K
(α)
T , 0n); L(β) ← E(K

(β)
T , 0n)

11: Find C s.t. |C| = n(ω + 1), msbr(C) = R ⊕ KS(α) ⊕ zpr(R
(α)
T),

and GHASH(L(α), ε, C) ⊕ GHASH(L(β), ε, C) = Z(α) ⊕ Z(β)

12: M (α) ← C ⊕ KS(α) ⊕ zp|C|(R
(α)
T); M (β) ← C ⊕ KS(β) ⊕ zp|C|(R

(β)
T)

13: return ((K(α), N, A, M (α)), (K(β), N, A, M (β)))
14: end if
15: return ((K(1), N, A, KS(1)), (K(2), N, A, KS(2)))

Adversary A1. A1 breaking the CMT-1-security of KIVR[GCM] is
defined in Algorithm 7. A1 returns tuples ((K(α), N (α), A(α),M (α)),
(K(β), N (β), A(β),M (β))) of a key, a nonce, AD, and a plaintext with redun-
dancy such that (N (α), A(α)) = (N (β), A(β)), K(α) �= K(β), and M (α) �= M (β).
We explain the algorithm below.

– Steps 2 and 3 define p1 tuples of a key, a nonce, and AD, where the keys are
all distinct. Using the tuples, Steps 4–7 calculate key streams.

– Step 8 searches a pair (α, β) with the relation msbr ◦ Mix−1
rc(

KS(α) ⊕ KS(β)
)

= zpr

(
R

(α)
T ⊕ R

(β)
T

)
that is the sufficient condition to

obtain a ciphertext collision from Lemma 1. For each pair (α, β), KS(α) and
KS(β) are (almost) r-bit random values, and thus the probability that the
relation is satisfied is O(1

2r). Summing the bound for each pair, we have the

bound O
(

p2

2r

)
of the probability that the relation is satisfied.

– If such a pair is found, then we can find the collision (C(α), T (α)) =
(C(β), T (α)) by using the freeness of plaintext blocks. In Step 11, by using
the linearity of GHASH, a ciphertext C that yields a tag collision is found by
solving the equation GHASH(L(α), ε, C) ⊕ GHASH(L(β), ε, C) = Z(α) ⊕ Z(β).
In Step 12, we have plaintexts M (α) and M (β) with the redundancy R that
yield the collision.

Hence, the probability that A1 breaks the CMT-1-security of KIVR[GCM] is at
least O

(
p2

2r

)
.

Adversary A2. A2 breaks the CMT-1-security of KIVR[GCM] by using a col-
lision of FKbcIV R. If FKbcIV R(K(α), N (α), A(α)) = FKbcIV R(K(β), N (β), A(β)) such

KIVR: Committing Authenticated Encryption Using Redundancy 339

Algorithm 8. MD Hash Function with DM Compression Function

Hash Function MDDMF

(D)

1: D1, . . . , Dd
b←− sfpad(D); S ← IS; for i = 1, . . . , d do S ← DMF (S, Di) end for

2: return S

Algorithm 9. Tag Generation HMAC

Tag Generation HMAC[MDDMF

](L, D)

1: S ← MDDMF

(ipad ⊕ ozpb (L) ‖D); T ← lsbt

(
MDDMF

(opad ⊕ ozpb (L) ‖S)
)

2: return T

that K(α) �= K(β) and (N (α), A(α)) = (N (β), A(β)), then by choosing the same
plaintexts M (α) = M (β) with the redundancy R, we obtain the output collision
(C(α), T (α)) = (C(β), T (β)). By the birthday analysis, we have the bound of the
collision probability O

(
p2

2k+ν+rT

)
. ��

Outline of Proof for KIVR[GCM-SIV]. The proof is the same as that of Theo-
rem 2. The first bound is obtained by an attack that finds a pair of input to CTR
such that the key streams satisfy the condition in Lemma 1 (i.e., a ciphertext
collision occurs). Note that the tag collision is found with the probability 1 by
using the linearity of GHASH. The second bound is obtained by an attack that
makes use of a collision of FKbcIV R. ��

7.4 On the Tightness of CMT-4-Security of KIVR[CCM]

Since the CBC MAC does not have the linearity as GMAC, the attack of the adver-
sary A1 in the proof of Theorem 2 does not work, and there is a possibility that
the bound 2ω−1·p2

ic

2r is improved. Proving the tightness for the CMT-4-Security
of KIVR[CCM] is an open problem.

8 Committing Security of KIVR with CTR-HMAC

By using the bound in Theorem 1, we derive the CMT-4-bound of KIVR with
the CTR-based AE scheme with HMAC with the Merkle-Damgård (MD) hash
function. Since SHA-2 family has the MD structure, the bound supports the
widely used MAC HMAC-SHA-256.

8.1 Specification of CTR-HMAC

CTR-HMAC is CTRAE that uses HMAC as the underlying MAC. HMAC is a hash-
function-based MAC and we consider the Merkle-Damgård (MD) hash function
with the Davies-Meyer (DM) compression function as the underlying hash func-
tion which is employed in the SHA-2 family.

340 Y. Naito et al.

Fig. 13. DM, MD, and HMAC.

Let F : {0, 1}v × {0, 1}b → {0, 1}v be the underlying primitive (or block
cipher) of DM with v-bit blocks and b-bit key elements. Then, DM with F is
defined as DMF (S,Di) = S ⊕ F (S,Di).

MDDMF

is a hash function that iterates DMF . Let IS be a v-bit constant and
initial value of MDDMF

. Let sfpad : {0, 1}∗ → {0, 1}b∗ be a suffix-free padding
function such that for any distinct inputs D and D′, sfpad(D) is not a prefix of
sfpad(D′).6 MD with DMF is defined in Algorithm 8.

Let L be the HMAC’s key such that |L| ≤ b. Let ipad and opad be distinct
b-bit constants that are used to define the inner key zpb(L)⊕ ipad and the outer
key zpb(L)⊕opad. HMAC processes the underlying hash function twice. The first
hash call takes the inner key and the input D. The second hash call takes the
outer key and the output of the first hash call. The output of the second hash
call (with truncation) is a tag of HMAC. HMAC is defined in Algorithm 9.

DM, MD, and HMAC are given in Fig. 13, and the encryptions of CTR-HMAC
and of KIVR[CTR-HMAC] are respectively given in Figs. 8 and 9. Note that
CTR-HMAC with AES-128 and SHA-256 is a widely used AE scheme and does
not support AD inputs. By using KIVR, one can convert the AE scheme so that
the AD inputs are supported.

8.2 CMT-4-Security Bound of KIVR[CTR-HMAC]

Regarding the collision resistance of HMAC, Damgård [10] and Merkle [26]
showed that an iterated structure of a compression function preserves its col-
lision resistance of the underlying function. Hence, the collision resistance
of HMAC is reduced to the collision resistance of MDDMF

that is further
reduced to the collision resistance of DMF . We use the collision bound in
the IC model proven by Stam [27]: for any adversary A′ making ptag queries

6 SHA-2 uses the following suffix-free padding function: for an input D, a one-zero
value 10i is appended to D, followed by the 64-bit encoding of |D| so that the total
length is a multiple of b and i is minimum.

KIVR: Committing Authenticated Encryption Using Redundancy 341

to F or F−1, Advcoll
HMAC(A

′) ≤ ptag(ptag+1)
2t . By using Markov’s inequality,

Advcolls
KIVR[HMAC],μ(A1) ≤ ptag(ptag+1)

μ2t . Then, we choose μ such that 2ω·(μ−1)
2r �

ptag(ptag+1)
μ2t , i.e., μ = (ptag(ptag+1))1/2

2
t−r+ω

2
. Putting the bound into Theorem 1, we obtain

the following corollary.

Corollary 2. For any redundancy R, (ω, n)-mixing function Mixrc, and CMT-4
adversary A making pic queries to E or E−1, ptag queries to F or
F−1, and pkivr queries to ΨKIVR, there exists an adversary A2 such that

Advcmt-4
KIVR[CTR-HMAC],Mixrc,R(A) ≤

(
2ω+2·ptag(ptag+1)

2r+t

) 1
2
+ Advcoll

FKbcIV R
(A2) and A2

makes pic queries to E or E−1, ptag queries to F or F−1, and pkivr queries to
ΨKIVR.

We assume that the term Advcoll
FKbcIV R

(A2) is negligible, which can be
ensured by using a secure hash function. Then, the above bound shows that
KIVR[CTR-HMAC] achieves r+t

2 -bit CMT-4-security. 2ω+2 is a small constant.

8.3 Tightness of the CMT-4-Security of KIVR[CTR-HMAC]

We show attacks on KIVR[CTR-HMAC] whose bound matches the one in Corol-
lary 1, thereby ensuring the tightness of the bound. In this proof, we assume
that HMAC is a random oracle that is an ideal hash function.

Theorem 3. Let δcoll(p) be the lower-bound of the probability that a collision of
FKbcIV R is found with p queries to ΨKIVR such that the input keys are distinct and
the other inputs are the same. Assume that HMAC is a random oracle RO. There
exist redundancy R, a (ω, n)-mixing function Mixrc, and an adversary breaking
the CMT-1-security of Π∗ making p queries to E, E−1, RO, or ΨKIVR such that
Advcmt-1

KIVR[CTR-HMAC],Mixrc,R(A) = O
(
max{ p2

2r+t , δcoll(p)}
)
.

Proof (Outline). The first bound is obtained by an attack that finds two input
tuples of KIVR[CTR-HMAC] such that the key streams satisfy the condition in
Lemma 1 (i.e., a ciphertext collision occurs) and a collision of the tags occurs. By
the birthday analysis, we obtain the first bound. The second bound is obtained
by an attack that makes use of a collision of FKbcIV R. The formal proof is given
in Appendix E. ��

9 Conclusion

We propose the KIVR conversion for enabling the BBB and CMT-4 security by
exploiting redundancy. KIVR uses a collision-resistant hash function to convert
a tuple of a key, a nonce, and associated data into a temporary key, an initial
value (or nonce), and a masking value applied to redundant data used by an
underlying AE. We give a general bound for the CMT-4 security of KIVR with
CTRAE, CTR combined with any MAC, covering a large class of practical AEs.

342 Y. Naito et al.

The bound is r
2 + tag-col bits wherein r is the number of redundant bits and

tag-col is the tag-collision security of the underlying AE. We set tag-col = 0
for GCM, GCM-SIV, and CCM, and the corresponding bound becomes r

2 , which
is tight for GCM and GCM-SIV. Meanwhile, KIVR with CTR-HMAC achieves a
better tight bound, r+t

2 bits, with a t-bit tag. There are interesting open research
questions. In particular, analyzing/salvaging the other popular AEs, including
ChaCha20-Poly1305 [23], for committing security is open for future research.

Acknowledgement. We thank Dong Hoon Chang, an associate of National Insti-
tute of Standards and Technology, for helpful comments on the formalization of the
redundant plaintext. We also thank anonymous reviewers for constructive feedback.

A Multi-user Security for AE

Multi-user-AE (mu-AE) security is the indistinguishability between the real and
ideal worlds. Let Π = (ΠEnc,ΠDec) be an AE scheme that has encryption and
decryption algorithms. Let u be the number of users. In the mu-AE-security
game, an adversary A has access to either real-world oracles (ΠK1 , . . . , ΠKu

)
or ideal-world ones (($1,⊥), . . . , ($u,⊥)). K1, . . . , Ku are user’s keys defined as
Ki

$←− K where i ∈ [u]. $ξ is a random-bit oracle of the ξ-th user that takes
an input tuple (N,A,M) of nonce, AD, and plaintext, and returns a pair of
random ciphertext and tag defined as (C, T) $←− {0, 1}|ΠEnc[E](K,N,A,M)|. ⊥ is a
reject oracle that returns reject for each query. At the end of this game, A
return a decision bit in {0, 1}. If the underlying primitive is ideal, then A has
access to the ideal primitive. Let AO ∈ {0, 1} be an output of A with access
to a set of oracles O. Then, the mu-AE-security advantage function of A is
defined as Advmu-ae

Π (A) := Pr
[
AΠK1 ,...,ΠKu = 1

]
− Pr

[
A($1,⊥),...,($u,⊥) = 1

]
.

We consider nonce-respecting adversaries where for each user, all nonces in
queries to the encryption oracle are distinct. In this game, making a trivial
query (ξ,N,A,C, T ′) to the decryption oracle is forbidden, which was received
by some previous query to the encryption one.

B Multi-user PRF Security

The mu-AE security of KIVR-based schemes relies on multi-user pseudo-random-
function (mu-PRF) security. Let FK : M → {0, 1}s be a keyed function with a
key K ∈ KF where M ⊆ {0, 1}∗ is the input space, s is the output length, and KF

is the key space. Let u be the number of users. Let Func be the set of all functions
from M to {0, 1}s. In the mu-PRF-security game, an adversary A has access to
either real-world oracles (FK1 , . . . ,FKu

) or ideal-world ones (R1, . . . ,Ru), where
Ki is the i-th user’s key defined as Ki

$←− {0, 1}K and Ri is a random function of
the i-th user defined as Ri

$←− Func. At the end of this game, A return a decision
bit. Let AO1,...,Ou be an output of A with access to oracles (O1, . . . ,Ou). Then,
the mu-PRF-security advantage function of A is defined as Advmu-prf

F (A) :=
Pr

[
AFK1 ,...,FKu = 1

]
− Pr

[
AR1,...,Ru = 1

]
.

KIVR: Committing Authenticated Encryption Using Redundancy 343

C mu-AE Security of AE Schemes with KIVR

The following theorem shows that the mu-AE security of an AE scheme Π with
KIVR is reduced to the mu-AE-security of the underlying AE scheme Π and the
mu-PRF security of FKIVR. Note that in the theorem, FKIVR is a keyed function.

Theorem 4. Let Π be an AE scheme. Let R be redundancy and Mixrc a (ω, n)-
mixing function. For any mu-AE adversary A against KIVR[Π] making at most
q queries and running in time T , there exists an mu-AE adversary A1 against
Π and a mu-PRF adversary A2 against FKIVR such that Advmu-ae

KIVR[Π](A) ≤
Advmu-ae

Π (A1)+Advmu-prf
FKIVR

(A2), where A makes at most q construction queries
and runs in time T , and A1 and A2 respectively make at most q construction
queries and runs in time T + O(q).

Proof. Firstly, the keyed functions FKIVR(K1, ·, ·), . . . ,FKIVR(Ku, ·, ·) are
replaced with random functions R1, . . . ,Ru. Then, the mu-PRF-advantage func-
tion of A2 is introduced in the mu-AE-security bound.

We next consider the mu-AE-security of KIVR[Π] where FKIVR is a random
function Ri. By random functions, for each of tuples of a key, nonce, and AD, the
temporary key is chosen uniformly at random from K, the mu-AE-security of
KIVR[Π] is reduced to the mu-AE-security of Π, i.e., for any adversary breaking
the mu-AE-security of KIVR[Π], there exists an adversary A1 breaking the
mu-AE-security of Π.

Hence, we have Advmu-ae
KIVR[Π](A) ≤ Advmu-ae

Π (A1) +Advmu-prf
FKIVR

(A2). ��

D Proof of Theorem 2 for KIVR[GCM-SIV]

Fix redundancy R ∈ {0, 1}r. We consider the mixing function: Mixrc(R‖Morigin) =
R‖Morigin for each core data Morigin. We then define two adversaries A1 and A2

that offer the terms p2

2r and p2

2k+ν+rT
, respectively.

Adversary A1. A1 breaking the CMT-1-security of KIVR[GCM-SIV] is given
in Algorithm 10. A1 returns a pair ((K(α), N,A,M (α)), (K(β), N,A,M (β))) such
that K(α) �= K(β). We explain the algorithm below.

– Steps 2 and 3 define p1 tuples of a key, a nonce, and AD, where the keys are
all distinct. In Steps 4-7, A calculates key streams for the input tuples.

– Step 8 searches a pair (α, β) with the following conditions: msb1(X(α)) =
msb1(X(β)) = 0 and msbr

(
KS(α) ⊕ KS(β)

)
= zpr(R

(α)
T ⊕ R

(β)
T). The second

condition is a sufficient one to obtain a ciphertext collision due to Lemma 1.
For each pair (α, β), KS(α) and KS(β) are (almost) r-bit random values,
and thus the probability that the relation is satisfied is O(1

2r). Summing the

bound for each pair, we have the bound O
(

p2

2r

)
of the probability that the

relation is satisfied.

344 Y. Naito et al.

Algorithm 10. Adversary A Breaking the CMT-1-Security of KIVR[GCM-SIV]
1: ω ← � r

n
�; p1 ← � p

ω+4
�

2: Choose p1 distinct keys K(1), . . . , K(p1) ∈ K
3: Choose a pair (N, A) ∈ N × A of nonce and AD and a tag T ∈ {0, 1}n

4: for i = 1, . . . , p1 do
5: ((K

(i)
bcT, L

(i)
T), IV

(i)
T , R

(i)
T) ← FKIVR(K

(i), N, A); X(i) ← E−1(K
(i)
bcT, T)

6: for j = 1, . . . , ω + 2 do KS(i) ← KS(i)‖E(K
(i)
bcT, add(T, j)) end for

7: end for
8: if ∃α, β ∈ [p1] s.t. α �= β ∧ msb1(X

(α)) = msb1(X
(β)) = 0∧

msbr

(
KS(α) ⊕ KS(β)

)
= zpr(R

(α)
T ⊕ R

(β)
T) then

9: H(α) ← X(α) ⊕ 0n−ν‖IV
(α)
T ; H(β) ← X(β) ⊕ 0n−ν‖IV

(β)
T

10: Find ω + 2 block plaintexts M (α), M (β) s.t.
msbr(M

(α)) = msbr(M
(β)) = R,

C(α) = C(β),
lsbn−1(GHASH(L

(α)
T , ε, M (α))) = lsbn−1(H

(α)), and
lsbn−1(GHASH(L

(β)
T , ε, M (β))) = lsbn−1(H

(β))
11: return ((K(α), N, A, M (α)), (K(β), N, A, M (β)))
12: end if
13: return ((K(1), N, A, 0), (K(2), N, A, 0))

– If such pair is found, then A can find a pair ((K(α), N,A,M (α)), (K(β), N,A,
M (β))) such that (C(α), T (α)) = (C(β), T (β)) by solving the equations:
msbr(M (α)) = msbr(M (β)) = R, C(α) = C(β) (⇔ M (α) ⊕ M (β) = KS(α) ⊕
KS(β)), GHASH(L(α), ε,M (α)) = H(α), and GHASH(L(β), ε,M (β)) = H(β).
Since Step 8 ensures that the ciphertext collision occurs, this step searches
the pair that yields the tag collision. In the equations, there are 2(ω + 2)
plaintext blocks and there are ω + 4 equations for the blocks. Fixing the
2ω message blocks with redundancy such that msbωn(C(α)) = msbωn(C(β)),
the remaining 4 message blocks are uniquely determined from the equations
lsb2n(C(α)) = lsb2n(C(β)), lsbn−1(GHASH(L(α)

T , A(α),M (α))) = lsbn−1(H(α)),
and lsbn−1(GHASH(L(β)

T , A(β),M (β))) = lsbn−1(H(β)). Then, we have a pair
with the output collision.

Hence, the probability that A win the CMT-1 game is O
(

p2

2r

)
.

Adversary A2. The second adversary A2 that breaks the CMT-1-security of
KIVR[GCM-SIV] by using a collision of FKbcIV R. If FKbcIV R(K(α), N (α), A(α)) =
FKbcIV R(K(β), N (β), A(β)) such that K(α) �= K(β) and (N (α), A(α)) =
(N (β), A(β)), then by choosing the same plaintexts M (α) and M (β) such that
msbr(M (α)) = msbr(M (β)) = R and the tag collision occurs, we obtain the out-
put collision (C(α), T (α)) = (C(β), T (β)). The collision probability is O

(
p2

2k+ν+rT

)
.

Note that the plaintexts with the tag collision can be found by the same pro-
cedure as A1 that finds ciphertexts with the tag collision by making use of the
linearity of GHASH. ��

KIVR: Committing Authenticated Encryption Using Redundancy 345

Algorithm 11. Adversary A1 Breaking the CMT-1-Security of KIVR
[CTR-HMAC]
1: p1 ← 0.5� p

ω+1
�

2: Choose p1 distinct keys K(1), . . . , K(p1) ∈ {0, 1}k

3: Choose a pair (N, A) ∈ N × A of a nonce and AD
4: for i = 1, . . . , p1 do
5: (K

(i)
T , IV

(i)
T , R

(i)
T) ← FKIVR(K

(i), N, A); KS(i) ← ε

6: for j = 1, . . . , ω + 1 do KS(i) ← KS(i)‖E(K
(i)
T , add(IV

(i)
T , j)) end for

7: end for
8: for each (α, β) ∈ [p1]

2 s.t. α �= β ∧ msbr(KS(α) ⊕ KS(β)) = zpr(R
(α)
T ⊕ R

(β)
T) do

9: M (α) ← R‖lsb(ω+1)n−r(KS(α) ⊕ zp(ω+1)n(R
(α)
T))

10: M (β) ← R‖lsb(ω+1)n−r(KS(β) ⊕ zp(ω+1)n(R
(β)
T))

11: C ← M (α) ⊕ (KS(α) ⊕ zp(ω+1)n(R
(α)
T))

12: T (α) ← RO(K
(α)
tagT, IV

(α)
T , C); T β ← RO(K

(β)
tagT, IV

(β)
T , C)

13: if T α = T β then return ((K(α), N, A, M (α)), (K(β), N, A, M (β))) end if
14: end for
15: return ((K(1), N, A, KS(1)), (K(2), N, A, KS(2)))

E Proof of Theorem 3

In this proof, we assume that HMAC is a random oracle RO which is an ideal
hash function. Let R ∈ {0, 1}r be redundancy. We consider the following mixing
function: Mixrc(R‖Morigin) = R‖Morigin for each core data Morigin. We then define
two adversaries A1 and A2 that offer the terms p2

2r+t and δcoll(p), respectively.

Adversary A1. The adversary A1 breaking the CMT-1-security of
KIVR[CTR-HMAC] is defined in Algorithm 11. The adversary returns a pair
((K(α), N (α), A(α),M (α)) (K(β), N (β), A(β),M (β))) such that (N (α), A(α)) =
(N (β), A(β)), K(α) �= K(β), and M (α) �= M (β). We explain the algorithm below.

– Steps 2 and 3 define p1 tuples of a key, a nonce, and AD, where the keys are
all distinct. Steps 4-7 calculates the key streams of these input tuples.

– Step 8 searches a pair (α, β) with the following relations: msb1(X(α)) =
msb1(X(β)) = 0 and msbr

(
KS(α) ⊕ KS(β)

)
= zpr(R

(α)
T ⊕ R

(β)
T), which is

the sufficient condition to obtain a ciphertext collision from Lemma 1. For
each pair (α, β), KS(α) and KS(β) are (almost) r-bit random values, and thus
the probability that the relation is satisfied is O(1

2r).
– For such pair, Steps 10 and 11 calculate a pair of plaintexts (M (α),M (β))

that yield the same ciphertext C, and Step 12 calculates the tags. Step 13
checks the equality of the tags. If the tag collision occurs, A1 breaks the
CMT-1-security of CTR-HMAC. The probability that the tag collision occurs
is at most 1

2t .

346 Y. Naito et al.

– Summing the bound 1
2r · 1

2t for each pair (α, β), we have the bound O
(

p2

2r+t

)
.

Hence, the probability that A1 breaks the CMT-1-security of KIVR[GCM] is at
least O

(
p2

2r+t

)
.

Adversary A2. The second adversary A2 that breaks the CMT-1-security
of KIVR[CTR-HMAC] by using a collision of FKIVR. If the collision is found:
FKIVR(K(α), N (α), A(α)) = FKIVR(K(β), N (β), A(β)) such that K(α) �= K(β) and
(N (α), A(α)) = (N (β), A(β)), then by choosing the same plaintexts M (α) = M (β),
we obtain the output collision (C(α), T (α)) = (C(β), T (β)). The collision proba-
bility is δcoll(p). ��

References

1. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How to
abuse and fix authenticated encryption without key commitment. In: USENIX
Security 2022, pp. 3291–3308 (2022)

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_6

3. Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.:
The preimage security of double-block-length compression functions. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 233–251. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25385-0_13

4. Barbosa, M., Farshim, P.: Indifferentiable authenticated encryption. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 187–220. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_7

5. Bellare, M., et al.: Ask your cryptographer if context-committing AEAD is right
for you. In: Real World Crypto Symposium (RWC), vol. 2023 (2023)

6. Bellare, M., Hoang, V.T.: Efficient schemes for committing authenticated encryp-
tion. In: EUROCRYPT 2022, vol. 13276, pp. 845–875 (2022). https://doi.org/10.
1007/978-3-031-07085-3_29

7. Bellare, M., Hoang, V.T., Wu, C.: The landscape of committing authenticated
encryption. https://csrc.nist.gov/Presentations/2023/landscape-of-committing-
authenticated-encryption (2023), the Third NIST Workshop on Block Cipher
Modes of Operation

8. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user security,
faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78381-9_18

9. Chan, J., Rogaway, P.: On committing authenticated-encryption. In: ESORICS
2022, vol. 13555, pp. 275–294 (2022)

10. Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0_39

11. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1_6

https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-642-25385-0_13
https://doi.org/10.1007/978-3-319-96884-1_7
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/978-3-031-07085-3_29
https://csrc.nist.gov/Presentations/2023/landscape-of-committing-authenticated-encryption
https://csrc.nist.gov/Presentations/2023/landscape-of-committing-authenticated-encryption
https://doi.org/10.1007/978-3-319-78381-9_18
https://doi.org/10.1007/978-3-319-78381-9_18
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6

KIVR: Committing Authenticated Encryption Using Redundancy 347

12. Dworkin, M.: NIST Special Publication 800–38A: Recommendation for block cipher
modes of operation: Methods and techniques (2001). https://csrc.nist.gov/pubs/
sp/800/38/a/final

13. Dworkin, M.: NIST Special Publication 800–38C: Recommendation for block cipher
modes of operation: the CCM mode for authentication and confidentiality (2007).
https://csrc.nist.gov/pubs/sp/800/38/c/upd1/final

14. Dworkin, M.: NIST Special Publication 800–38D: Recommendation for block
cipher modes of operation: Galois/counter mode (GCM) and GMAC (2007).
https://csrc.nist.gov/pubs/sp/800/38/d/final

15. Farshim, P., Orlandi, C., Rosie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symmetric Cryptol. 2017(1), 449–473 (2017)

16. Grubbs, P., Lu, J., Ristenpart, T.: Message Franking via Committing Authen-
ticated Encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9_3

17. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: nonce misuse-resistant
authenticated encryption. RFC 8452, 1–42 (2019)

18. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: CCS 2015. pp. 109–119. ACM (2015)

19. Günther, F., Thomson, M., Wood, C.A.: Usage limits on AEAD algorithms (2023).
https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-limits-06.txt

20. Kessler, G.C.: GCK’s file signatures table (2023). https://www.garykessler.net/
library/file_sigs.html, (Accessed 19 Oct 2023)

21. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: USENIX Secu-
rity 2021, pp. 195–212 (2021)

22. Menda, S., Len, J., Grubbs, P., Ristenpart, T.: Context discovery and commitment
attacks - how to break CCM, EAX, SIV, and more. In: EUROCRYPT 2023. LNCS,
pp. 379–407 (2023). https://doi.org/10.1007/978-3-031-30634-1_13

23. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF protocols. RFC 8439, 1–46
(2018)

24. NIST: FIPS 198–1: The keyed-hash message authentication code (HMAC) (2008).
https://csrc.nist.gov/pubs/fips/198-1/final

25. NIST: The third NIST workshop on block cipher modes of operation
2023 (2023). https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-
modes-of-operation (Acessed 20 Oct 2023)

26. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0_40

27. Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9_5

28. Wikipedia: List of file signatures (2023). https://en.wikipedia.org/wiki/List_of_
file_signatures, (Accessed 19 Oct 2023)

https://csrc.nist.gov/pubs/sp/800/38/a/final
https://csrc.nist.gov/pubs/sp/800/38/a/final
https://csrc.nist.gov/pubs/sp/800/38/c/upd1/final
https://csrc.nist.gov/pubs/sp/800/38/d/final
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-63697-9_3
https://www.ietf.org/archive/id/draft-irtf-cfrg-aead-limits-06.txt
https://www.garykessler.net/library/file_sigs.html
https://www.garykessler.net/library/file_sigs.html
https://doi.org/10.1007/978-3-031-30634-1_13
https://csrc.nist.gov/pubs/fips/198-1/final
https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation
https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-3-642-03317-9_5
https://doi.org/10.1007/978-3-642-03317-9_5
https://en.wikipedia.org/wiki/List_of_file_signatures
https://en.wikipedia.org/wiki/List_of_file_signatures

Signatures

Subversion-Resilient Signatures Without
Random Oracles

Pascal Bemmann1(B), Sebastian Berndt2, and Rongmao Chen3

1 Bergische Universität Wuppertal, Wuppertal, Germany
bemmann@uni-wuppertal.de

2 Universität zu Lübeck, Lübeck, Germany
s.berndt@uni-luebeck.de

3 National University of Defense Technology, Changsha, China

chromao@nudt.edu.cn

Abstract. In the aftermath of the Snowden revelations in 2013, con-
cerns about the integrity and security of cryptographic systems have
grown significantly. As adversaries with substantial resources might
attempt to subvert cryptographic algorithms and undermine their
intended security guarantees, the need for subversion-resilient cryp-
tography has become paramount. Security properties are preserved
in subversion-resilient schemes, even if the adversary implements the
scheme used in the security experiment. This paper addresses this press-
ing concern by introducing novel constructions of subversion-resilient
signatures and hash functions while proving the subversion-resilience of
existing cryptographic primitives. Our main contribution is the first con-
struction of subversion-resilient signatures under complete subversion in
the offline watchdog model (with trusted amalgamation) without relying
on random oracles. We demonstrate that one-way permutations natu-
rally yield subversion-resilient one-way functions, thereby enabling us
to establish the subversion-resilience of Lamport signatures, assuming
a trusted comparison is available. Additionally, we develop subversion-
resilient target-collision-resistant hash functions using a trusted XOR. By
leveraging this approach, we expand the arsenal of cryptographic tools
that can withstand potential subversion attacks. Our research builds
upon previous work in the offline watchdog model with trusted amalga-
mation (Russell et al. ASIACRYPT’16) and subversion-resilient pseudo-
random functions (Bemmann et al. ACNS’23), culminating in the formal
proof of subversion-resilience for the classical Naor-Yung signature con-
struction.

Keywords: Subversion · Digital Signatures · Public-key Cryptography

1 Introduction

Subversion attacks have garnered increasing attention from the cryptography
research community in recent years. In a subversion setting, attackers can tam-
per with or even take control of the implementation of cryptographic algo-
rithms to leak secrets covertly, thereby weakening or breaking the security
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 351–375, 2024.
https://doi.org/10.1007/978-3-031-54770-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_14

352 P. Bemmann et al.

of the cryptosystems. For a long time, subversion attacks, dating back to
the notion of kleptography by Young and Yung in the 1990s [31,32], were
thought to be unrealistic and far-fetched by some cryptographers. However, the
Snowden revelations in 2013 debunked this belief and exposed that subversion
attacks were among the primary approaches certain law enforcement agencies
employed to achieve mass surveillance. Particularly, it is reported that these
agencies could intentionally “insert vulnerabilities into commercial encryption
systems, IT systems, networks, and endpoint communications devices used by
targets” [25]. As a result, numerous researchers have demonstrated the theo-
retical feasibility and potential dangers of subversion attacks against various
cryptographic primitives [1,4,5,8,9,11,14], and as a specific case against digital
signatures [2,3,17,20,30].

Consequently, the research community has devoted extensive efforts exploring
effective countermeasures and designing subversion-resilient cryptographic prim-
itives. In recent discussions on the standardization of post-quantum cryptogra-
phy, specific treatments have been considered to prevent subversion attacks [26],
highlighting the practical significance of this area of research. There is no hope
for security when attackers can arbitrarily tamper with cryptographic imple-
mentations. For instance, a subverted encryption algorithm could always reveal
the secret key, regardless of the input plaintext intended to be encrypted. Also,
a subverted signature verification algorithm might always return valid when it
takes as input a specific signature or message (e.g., a certain hard-coded string).
Thus, as it turned out in the literature, achieving meaningful security in the
subversion setting requires reliance on additional assumptions such as architec-
tural requirements [6,7,13,27–29] or trusted components [2,10,12,15,16,22]. We
remark that all these approaches for subversion resilience have their plausibility
and thus are generally incomparable and may be useful in different application
contexts. The details of these models, with associated commentary about their
relevance to practice, will be provided in Sect. 1.4.
The Watchdog Model. In this work, we mainly consider the model intro-
duced by Russell et al. [27] at ASIACRYPT 2016. Precisely, they formalized
the so-called watchdog model, which has become one of the most prominent
approaches for subversion-resilient cryptography in recent years. The rationale
behind their consideration is that in the subversion setting, it is highly desirable
for the attackers, often referred to as “big brother”, to conceal their attacks. The
watchdog model allows the adversary to supply potentially subverted implemen-
tations of cryptographic algorithms, while an efficient “watchdog” verifies these
implementations against their corresponding specifications. Depending on how
the watchdog performs testing of cryptographic algorithms, there are offline
watchdogs which only perform a one-time check of the supplied implementations
before deployment, and online watchdogs that could fully access the real-time
transcripts of cryptographic algorithms. Note that achieving subversion resilience
only using offline watchdogs is often preferable from a practical perspective, as
only a “one-time” check is required instead of continuous monitoring.

Subversion-Resilient Signatures Without Random Oracles 353

Cryptographic designs in the watchdog model are often based on an archi-
tectural assumption called the split-program methodology and the trusted amal-
gamation assumption that is required to be as simple as possible. In such a
setting, each algorithm is divided into several functional components, which the
watchdog could separately test and then amalgamated into the complete algo-
rithm via the trusted (not subverted) amalgamation function (e.g., trusting the
computing base). A cryptographic scheme is said to be subversion-resilient in
the watchdog model if either a watchdog exists that can effectively detect the
subverted components or the security of the composed cryptographic scheme
still holds even if the underlying components are subverted. By leveraging such
a model, various subversion-resilient primitives have been proposed, including
one-way-permutations [27], pseudorandom generators [27], randomness genera-
tors [7,27], public-key encryption schemes [7,28], authenticated encryption [6],
random oracles [29], and signature schemes [13,27].

1.1 Subversion-Resilient Signatures with Watchdogs

Our work primarily focuses on digital signature schemes and aims to advance
the construction of subversion-resilient signature schemes within the watchdog
model. We provide an overview of the current state-of-the-art and present the
question that motivates our work.
Online Watchdogs. Russell et al. proposed the first subversion-resilient sig-
nature scheme in the online watchdog model with random oracles [27]. In par-
ticular, they consider the complete-subversion setting where all cryptographic
algorithms—including key generation and verification algorithms—are subject to
subversion attacks. At the core of their design is a slight variant of a full domain
hash scheme where the message is hashed together with the public key. Precisely,
such a modification enables provable security by rendering any random oracle
queries made before the implementations provided (by the adversary) useless, as
the public key is generated freshly after the adversary commits to the implemen-
tations. More generally, they pointed out that in their definitional framework,
it is impossible to construct a subversion-resistant signature scheme with just
an offline watchdog, even if only the signing algorithm is subverted. Note that
in the same work [27], Russell et al. also proposed subversion-resilient one-way
permutations. They considered a stronger security setting, where the adversary
can choose the function index (pp in our definition). This, in turn, makes the use
of random oracles necessary. We will see that this stronger notion is not needed
to construct subversion-resilient signatures, and we can thus remove the random
oracle dependency.
Offline Watchdogs. In [13], Chow et al. improved Russell et al.’s construc-
tion by presenting two schemes with offline watchdogs. They bypassed Rus-
sell et al.’s impossibility [27] by using a more fine-grained split-program model
adopted in [28] for a semantically secure encryption scheme. The first construc-
tion is without random oracles and only considers the partial-subversion model
where key generation and signing are subverted while the verification algorithm

354 P. Bemmann et al.

is not. By adopting the domain-separation technique and the one-time random
tag structure, they extended the idea by Russell et al. (originally for an encryp-
tion algorithm) to the context of a signature scheme. They also proposed another
subversion-resilient signature scheme in the complete-subversion model but with
random oracles. Their main idea is inspired by the correction of subverted ran-
dom oracles due to Russell et al. [29].
Motivation. Despite significant progress made in constructing subversion-
resilient signature schemes in the watchdog model, the state-of-the-art construc-
tions (using offline watchdogs) require random oracles for achieving security in
the complete-subversion model, and if without random oracles, only security in
the partial-subversion model (where the verification algorithm is not subverted)
is achieved. This motivates us to ask the following question.

Is it possible to design a subversion-resilient signature without random oracles
in the complete-subversion model with an offline watchdog?

While being attractive for building security, the offline watchdog model has
inherent limitations. For example, an offline watchdog can not defend against
stateful subversions1 such as time bomb attacks, which only become active when
the underlying algorithm is at some specific state. Nevertheless, since it is up
to a practitioner to trade off security and performance constraints, we hope our
improvements in subversion-resilient signature schemes (using watchdogs) could
help practitioners make well-informed decisions regarding their suitability for
specific applications.

1.2 Technical Challenges

The difficulty of designing signature schemes secure against complete subversion
mainly lies in the fact that it is challenging to restore the security of the sub-
verted verification algorithm. The main reason is twofold. The first reason is the
existence of input trigger attacks, where an adversary prepares a special signa-
ture σ̃, which the verification algorithm accepts for all messages. An attacker
can randomly choose σ̃ and hard-code it into the subverted implementation. A
black-box polynomial time watchdog now has only a negligible chance to detect
this, while the attacker can trivially break security. Intuitively, this attack is
possible as the attacker chooses the input distribution to the verification algo-
rithm which is not publicly available to the watchdog (unless we assume some
strategy by the adversary, see subversion under random messages attacks for
comparison [2]). Thus, similar to previous works [6], more fine-grained access to
the verification algorithm seems necessary. However, the situation in a setting
with asymmetric keys is substantially more difficult than in the symmetric set-
ting studied by Bemmann et al. [6], as the attacker sees the public verification

1 Assuming universal watchdogs that do not depend on the adversary, which is the
class of watchdogs we aim for in this work. For a deeper discussion on stateful
subversion consider [27].

Subversion-Resilient Signatures Without Random Oracles 355

key and can thus use this knowledge. A common technique to develop signature
schemes based on symmetric primitives [21] is the use of a collision-resistant
hash function. But, due to the structure of the security experiment of collision-
resistant hash functions, they are also highly vulnerable to input trigger attacks.
Previous constructions thus needed heavy machinery such as the random oracle
model [13,29], sophisticated online watchdogs [2,29], or a trusted initialization
phase [16]. Approaches using a collision-resistant hash function in the standard
model with an offline watchdog thus seem somewhat futile.

Both problems around input triggers described above rely on the fact that the
adversary can prepare its implementation with input triggers as the challenge
goes through the (possibly) subverted implementation. In our constructions, we
will utilize primitives, where the adversary needs to commit to its implementa-
tion before a challenge is chosen. This way, the adversary can freely choose the
inputs to the primitives, but since the implementation is set up before the chal-
lenge, it is hard for the adversary to adapt. As described above, Russell et al. [29]
also used a similar idea but needed the random oracle model. We can circumvent
the need for the random oracle model by choosing our primitives carefully and
revisiting classical results in a subversion setting. As will be shown later, in this
work we use a classic result that target-collision-resistant (TCR) hash functions
are sufficient to build digital signatures. To break target-collision-resistance, the
adversary first commits to an input, then the hash function is specified, and
afterward, the adversary tries to find a collision. The task thus becomes to con-
struct target-collision-resistant hash functions in a subversion-resilient manner.

1.3 Our Contributions

Our work provides an affirmative answer to the above question. The main con-
tributions of this work can be summarized as follows:

– We show that one-way permutations (OWPs) are subversion-resilient one-way
functions in the offline watchdog model, by taking advantage of the order of
events in the security experiment. Russell et al. also showed how to con-
struct subversion-resilient OWPs with random oracles [27]. Our construction
of OWFs does not rely on random oracles; in our case, we only need the
standard version of OWPs.

– Lamport one-time signatures (OTS) are subversion-resilient if built from
subversion-resilient OWFs and a trusted comparison;

– We prove that a classical construction to obtain TCR hash functions from
a rTCR hash function can be used to obtain subversion-resilient TCR hash
function making use of a random blinding value, given the XOR in the con-
struction is part of the trusted amalgamation;

– From subversion-resilient OTS, subversion-resilient target-collision resistant
hash functions, and subversion-resilient PRFs, we build subversion-resilient
signatures via the classical Naor-Yung [24] construction of digital signatures.

Thus, similar to the work of Chow et al. [13], we allow the watchdog more
fine-grained access to the verification algorithm by breaking it down into smaller

356 P. Bemmann et al.

building blocks. This, in turn, allows for a similar approach as Bemmann et al.
[6] for the case of authenticated encryption. We build signatures from symmet-
ric primitives by revisiting classical results and show that we can construct the
necessary building blocks in a subversion-resilient manner. This way, during the
verification of the signatures, we recompute symmetric primitives, which allows
the watchdog to do meaningful testing. A key insight of our work is that the
security of some primitives can be guaranteed if we consider an adversary who
has to commit to its implementation before a random challenge is computed.
We then see that all the ingredients can be combined to prove the classical
Naor-Yung construction for digital signatures to be subversion-resilient. How-
ever, while achieving subversion-resilience without random oracles, this comes
with the price of decreased efficiency (both in signature size and computational
costs) if compared to the state-of-the-art. Nevertheless, as mentioned above, we
hope our work could help practitioners make well-informed decisions regarding
the suitability of different signature schemes for specific applications. See Fig. 1b
for an illustration of our overall approach.

1.4 Alternative Models

Several works in the field of cryptography have explored different angles
of defense against subversion attacks, resulting in the proposal of various
subversion-resilient signature schemes. Although these schemes may be generally
incomparable due to the different models and assumptions they are built upon,
understanding their differences can provide valuable insights into the landscape
of subversion-resilient cryptography. Below we present an overview of current
subversion-resilient signature schemes in other models.
Subversion-Resilient Signatures via Reverse Firewalls. In [2], Ateniese et
al. showed that signature schemes with unique signatures are subversion-resilient
against all subversion attacks that meet the so-called “verifiability condition”.
This condition essentially requires that signatures produced by the subverted sig-
nature algorithm should almost always verify correctly under the target verifica-
tion key2. They adopted the cryptographic reverse firewall (RF) for construct-
ing subversion-resilient signature schemes to relax such a strong requirement.
Mironov and Stephens-Davidowitz originally introduced the notion of RF [22],
which is assumed to be non-subverted and has access to a reliable source of ran-
domness to re-randomize cryptographic transcripts. In the context of signature
schemes, a RF is a (possibly stateful) algorithm that takes a message/signature
pair as input and produces an updated signature. The main goal of a RF is to pre-
vent potential covert leakage of sensitive information from subverted signatures.
As a general result, Ateniese et al. showed that every re-randomizable signature
scheme (including unique signatures as a special case) admits a RF that pre-
serves unforgeability against arbitrary subversion attacks. Such a RF must have
self-destruct capability, which means that the RF can publicly check the validity

2 In [2], only subverted signing algorithms are considered while both key generation
and verification algorithms are assumed to be trusted.

Subversion-Resilient Signatures Without Random Oracles 357

of each outgoing message/signature pair before updating the signature. If the
RF encounters an invalid pair during this process, it stops processing further
queries. The self-destruct capability is essential for the RF to maintain func-
tionality and preserve the unforgeability of the signature scheme simultaneously.
One could note that a RF could be viewed as an “active” online watchdog with
the additional self-destruct capability. Thus, like the online watchdog model, a
RF can defend against stateful subversion, which is inherently not captured by
the offline watchdog model.
Subversion-Resilient Signatures via Self-guarding. In [16], Fischlin
and Mazaheri proposed a novel defense mechanism called “self-guarding”,
which could counter stateless subversion of deterministic unforgeable signature
schemes. The self-guarding signature scheme introduces a trusted initialization
phase during which genuine message-signature pairs are generated for randomly
chosen messages. More precisely, a random message denoted as m$ is signed in
the initialization phase, resulting in a signature sample σ$. Later, when sign-
ing a message m, the (possibly) subverted signing algorithm is executed twice,
once with m$ and once with the bitwise XOR of m and [m$||σ$], where || repre-
sents concatenation. The order of signing these two messages is chosen randomly.
If the signing algorithm deviates for one of the two signatures, the subversion
is detected with a probability of 1/2. This process can be repeated multiple
times with independent key pairs to increase the detection probability to an
overwhelming level. From the above, we know that unlike in the reverse fire-
wall model, where a good source of randomness and the self-destruct capability
are required, self-guarding schemes rely on a temporary trust phase during ini-
tialization. Also, one might think that the initialization phase of self-guarding
schemes could be executed by a watchdog, where a specified program could
immediately provide a detection solution. However, there is a notable difference:
self-guarding schemes involve passing states between the initialization and later
phases, whereas watchdogs typically do not forward data to individual users.
Another significant distinction between self-guarding and the watchdog model is
that self-guarding schemes do not require the subverted algorithm to be available
from the start.

The diversity of subversion-resilient signature schemes reflects the complexity
of defending against subversion attacks. The choice of models and assumptions is
crucial in determining the scheme’s effectiveness and practicality. Understanding
the strengths and limitations of these subversion-resilient signature schemes is
essential for designing secure cryptographic systems in the presence of potential
subversion attacks.

2 Model and Preliminaries

In this section, we define the notion of subversion-resilience, and we will use the
notations and definitions presented by Bemmann, Berndt, Diemert, Eisenbarth,
and Jager [6] which in turn are based on the work of Russell, Tang, Yung,
and Zhou [27].

358 P. Bemmann et al.

2.1 Notation and Model

Notation. In order to distinguish between the specification of a primitive Π
and the implementation of Π provided by the adversary, we will write ̂Π to
denote the honest specification of the primitive and ˜Π to denote the implemen-
tation of that primitive provided by the adversary. In this paper, we focus on
game-based security. Hence, we define security for a cryptographic primitive Π
with security objective GOAL by defining a security experiment Exp. In a usual
experiment, a single party, called the adversary A, tries to break the security
objective against ̂Π, and the game is managed by a challenger. When dealing
with subverted implementation in the watchdog model, we consider a subversion
experiment ExpSR consisting of three phases:

1. First, the adversary A provides a subverted implementation ˜Π.
2. Then, the watchdog WD is run and tries to detect the subversion.
3. Finally, the original security experiment Exp is performed by the adversary,

but the subverted implementation is used therein.

To simplify notation, we always treat A as pair (A0,A1), where A0 provides the
subverted implementation ˜Π and A1 takes part in the security experiment in
the final phase. As usual, we denote the security parameter by λ.
Amalgamation. As discussed earlier, there is no black-box way to prevent
subversion attacks in the watchdog model, as universal undetectable attacks are
known, e.g., by Berndt and Lískiewicz [8]. To still give security guarantees against
subverted implementations, different non-black-box models were presented in
the literature. In this work, we follow Russell, Tang, Yung, and Zhou [27] who
introduced the trusted amalgamation model. Intuitively, this model splits all its
components into subroutines with a more fine-granular resolution than the usual
division into different algorithms. For example, a signature scheme consists of the
three algorithms (KGen, Sign, Ver), but each might again consist of several sub-
routines (which might even be shared among the algorithms). We denote the list
of subroutines by π = (π1, . . . , πn). The idea behind the trusted amalgamation
model is each of these subroutines πi might be subverted by the attacker, but the
composition of them is performed by a trusted amalgamation function Am that
is not subverted. Hence, Am is given the list π, producing all the needed algo-
rithms for the primitive. The security experiment is then played on ˜Π = Am(π̃),
where π̃ denotes the list of subverted subroutines provided by the attacker. To
provide meaningful security guarantees, one thus aims to make the amalgama-
tion functions as simple as possible to allow automatic or manual verification.
Typically, these amalgamation functions only consist of a few XOR operations
and equality checks [6,7,28]. To formalize this scenario, we always represent
the specification ̂Π of a primitive as ̂Π = (Am, π). Sometimes, we consider the
amalgamation function for a single algorithm Πi of a primitive, denoted by Ami.
Split-Program Model. In addition to trusted amalgamation, Russell, Tang,
Yung, and Zhou [27] also used the split-program methodology. Like modern pro-
gramming techniques, randomness generation is assumed to be split from a ran-

Subversion-Resilient Signatures Without Random Oracles 359

Fig. 1. Subversion experiment and construction overview

domized algorithm. The watchdog can then test the randomness generator and
the deterministic algorithm individually. We also use this methodology.

2.2 Subversion-Resilience

Now, we describe the notion of a subversion-resilience experiment more formally.
As described above, such an experiment consists of three phases, illustrated
in Fig. 1a. In this paper, we will use both decision and search experiments and
thus need to associate a naive win probability δ ∈ [0, 1] to each experiment Exp,
which will be 0 for search experiments (such as forgery experiments) and 1/2 for
decision experiments (such as real-or-random experiments). First, A0 provides a
subverted implementation π̃. Then, the watchdog WD can run the implementa-
tion to detect the subversion. Finally, the usual security experiment Exp is run by
the adversary A1 on the subverted implementation ˜Π = Am(π̃). The watchdog
outputs 1 if it detects a subversion. To formalize subversion-resilience, consider
the next definition and the corresponding security experiment shown in Fig. 1a.

Definition 1. A specification of a primitive ̂Π = (Am, π) is GOAL-subversion-
resilient in the offline watchdog model with trusted amalgamation if one can
efficiently construct a ppt watchdog algorithm WD such that for any ppt adver-
sary A = (A0,A1) it holds that AdvSRGOAL, ̂Π

A (1λ, δ) is negligible or DetWD,A(1λ)

is non-negligible where AdvSRGOAL, ̂Π
A (1λ, δ) = |Pr[ExpSRGOAL, ̂Π

WD,A (1λ) = 1] − δ|
and DetWD,A(1λ) = |Pr[WDπ̃(1λ) = 1] − Pr[WDπ(1λ) = 1]| using the experi-
ment shown in Fig. 1a, with δ ∈ {0, 1

2} indicating whether a search or a decision
problem is considered.

Note that GOAL-subversion-resilience implies GOAL security as the above def-
inition also has to hold for the adversary which outputs the specification as

360 P. Bemmann et al.

its implementation. For the sake of readability, we will call primitives simply
subversion-resilient-GOAL with the understanding that they fulfill Definition 1.

2.3 Achieving Subversion-Resilience

A quite simple but instrumental observation was formalized by Russell, Tang,
Yung, and Zhou [27]: If the inputs to a deterministic algorithm made by the
adversary follow a public distribution, the watchdog can make queries also fol-
lowing this distribution. Hence, if the subverted implementation deviates from
the specification with probability δ on such input distributions, a polynomial
time watchdog can detect the presence of the subversion with probability at
least δ. Hence, to have a negligible detection rate by the watchdog, the proba-
bility of deviating from the specification must also be very low.

Lemma 1. Consider an implementation ˜Π := (π̃1, . . . , π̃k) of a specification
̂Π = (π̂1, . . . , π̂k), where π1, . . . , πk are deterministic algorithms. Additionally,
for each security parameter λ, public input distributions X1

λ, . . . , Xk
λ are defined

respectively. If there exists a j ∈ [k] such that Pr[π̃j(x) �= π̂j(x) : x
$← Xj

λ] = δ,
this can be detected by a ppt offline watchdog with probability at least δ.

This lemma will be used to argue for the subversion-resilience of one-way
functions (Sect. 3) and hash functions (Sect. 4).

2.4 Assumptions

We make several assumptions throughout this work which we shortly summarize
here to enable a quick overview. First, we only consider stateless subversion to
rule out the aforementioned time bomb attacks. Second, our results are in the
split-program model with trusted amalgamation [27]. Third, since subversion-
resilient randomness generators have been already shown to be achievable with-
out using random oracles [6,7], we will simply assume uniform random coins are
available in our constructions to simplify notation and point to the mentioned
prior work for more details. In particular, in our constructions, all key gener-
ation algorithms are assumed to be subversion-resilient, as we could decouple
them (in the split-program model) into a randomness generation algorithm and
a deterministic algorithm that takes as input the random coins and outputs the
key. Note that an offline watchdog could effectively detect the later component
as its input is drawn from a public distribution. In addition to these architec-
tural assumptions, our amalgamation will use a trusted XOR and a trusted
comparison.

2.5 Pseudorandom Functions

For our signature scheme to be stateless, we also utilize PRFs. Bemmann et al.
[6] showed how to construct subversion-resilient PRFs from weak PRFs based
on the classical Naor-Reingold construction for PRFs [23]. We thus only state

Subversion-Resilient Signatures Without Random Oracles 361

their definitions and results in a summarized form, point to their work for more
details, and assume subversion-resilient PRFs can be constructed and used.

Intuitively, a PRF is a keyed function F : K × D → R associated with a
key space K, that is indistinguishable from a function sampled uniformly at
random from the set of all functions D → R. More formally, K =

⋃

λ∈N
Kλ,

D =
⋃

λ∈N
Dλ, and R =

⋃

λ∈N
Rλ. Additionally, we use Func(D,R) to denote

the set of all functions mapping elements from D to R. Let us recall the standard
definition of PRFs.

Definition 2 ([6]). Let ExpPR
A,F be defined as shown in Fig. 2. We define

AdvPR
A,F (1λ) := |Pr[ExpPR

A,F (1λ) = 1] − 1/2|.

We say that F is pseudorandom if AdvPRA,F (1λ) is negligible for all ppt adver-
saries A.

Fig. 2. The security experiment for PRFs.

Theorem 1 ([6]). Let F be a weak PRF. Then one can construct subversion-
resilient PRFs in the trusted amalgamation model.

Note that their construction does not need any trusted operation like an XOR,
but rather that the trusted amalgamation parses the input as a bit string and
then forwards one of two possible keys to a weak PRF.

3 Subversion-Resilient One-Way Functions

One of the major observations Bemmann et al. [6] make is that certain primi-
tives are inherently subversion-resilient. One such primitive is weak PRFs, which
do not allow the attacker to input any value during the security game. Thus,
one could hope a similar result also holds for one-way functions. Unfortunately,
it seems that solely relying on one-wayness is insufficient, as we will need the
outputs of the considered function also to be (pseudo-) random and sufficiently
large. By guaranteeing these properties, we can argue that an adversary has a
low chance that a prepared trigger matches a random challenge and thus wins

362 P. Bemmann et al.

the security experiment. Therefore, instead of one-way functions, we consider
one-way permutations, which we will later use to construct one-time signatures,
particularly Lamport signatures [19]. This way, the challenge given to the adver-
sary in the security game is a uniformly random element from the domain of the
permutation. The critical point in our security proof will be that an adversary
cannot access enough entropy to “hit” a random output of the one-way func-
tion/permutation while avoiding detection. In general, we can not assess the
output distribution of a one-way function, even if the input is random. However,
this is different for a one-way permutation, as the uniform input distribution
implies a uniform output distribution. Thus, since the input distribution of the
one-way permutation is public, Lemma 1 implies that there is only a negligible
probability that the one-way permutation deviates from the specification. Then
we can argue that the adversary cannot access enough entropy to develop an
input that matches its challenge after being evaluated.

3.1 One-Way Permutations

We recall the standard definition of one-way functions and permutations.

Definition 3. A (family of) one-way functions Π consists of two ppt algorithms
Gen and Eval. On input 1λ, the randomized algorithm Gen returns the public
parameters pp. The deterministic algorithm Eval takes the public parameters pp
and an element x ∈ {0, 1}λ and returns an element y ∈ {0, 1}λ. If Eval(pp, ·) is
a permutation on {0, 1}λ, we call Π a family of one-way permutations.

Definition 4. We say that Π = (KGen,Eval) is secure, if there is a negligible
function negl such that for all ppt attackers A, the probability Pr[ExpInvA

Π(1λ) =
1] ≤ negl(λ) with ExpInvA

Π(1λ) displayed in Fig. 3.

Fig. 3. Left: One-way function/permutation security experiment. Right: Unforgeability
experiment for digital signatures.

Note that other definitions exist in which x∗ is chosen uniformly at random
from the domain and y∗ = Eval(pp, x∗) is given to the adversary. In the classical,

Subversion-Resilient Signatures Without Random Oracles 363

i.e., non-subversion setting, both definitions are equivalent for permutations. In
our case, there is also little difference in our results. Since all inputs to Eval are
known, i.e., public, an adversary can guarantee that Eval follows the specification
but with negligible probability. Thus, in our proof in the next section, we could
introduce an additional game hop and replace ˜Eval with ̂Eval, but instead, we
will use this more straightforward way of defining security.

3.2 Subversion-Resilient One-Way Functions

We will see that starting from an “ordinary” one-way permutation, we directly
obtain a subversion-resilient one-way function without the need of any further
amalgamation, assuming that we already have a subversion-resilient key genera-
tion algorithm as stated in Sect. 2.4. The idea is that by applying Lemma 1 and
using a permutation, the challenge handed to the adversary is a random element.
Then we can use that the adversary has to provide its implementation before the
execution of the inverting experiment, i.e., the challenge is independent from the
subverted implementation. Since the subversion can only utilize negligible many
triggers to avoid detection by the watchdog, the probability that a trigger can
be used to break security is also negligible. Thus, it needs to find an input that
can then be used to break the one-wayness of the specification without making
use of an input trigger, which contradicts the usual non-subversion security.

Note that it is impossible (with polynomial testing time) to ensure that the
implementation provided by an adversary is still a permutation. Even changing
the output under a single input leads to the function not being a permutation
anymore, which can only be detected with negligible probability by a polynomial
time watchdog. Fortunately, we will only utilize the permutation property of the
specification to guarantee a uniform output distribution of honest evaluations.
Thus, we lose the permutation property in exchange for subversion-resilience.

Theorem 2. Let Π = (Gen,Eval) be a one-way permutation. Then the trivial
specification ̂Π = (Gen,Eval) is a subversion-resilient one-way function in the
split-program model with trusted amalgamation.

Proof. Let ̂Π = (Gen,Eval) be the specification of a permutation, and ˜Π be
the implementation of ̂Π provided by A. First, the watchdog simply runs KGen

for pp, samples x and compares ˜Eval(pp, x) to ̂Eval(pp, x). Whenever a mis-
match between these values is found, the watchdog returns 1. To prove the
subversion-resilience, let T ⊆ PP × {0, 1}λ denote the trigger set such that
(pp, x) ∈ T ⇔ ˜Eval(pp, x) �= ̂Eval(pp, x) where PP denotes the public param-
eter space. Thus, T contains all inputs for which the implementation deviates
from the specification. To avoid the detection by a watchdog, we know that
the density of T needs to be negligible, i.e., we have |T | /(|PP| · 2λ) ∈ negl(λ).
Due to the flow of the subversion experiment, the attacker needs to provide the
implementation ˜Π before the parameters pp and the challenge y∗ are chosen
in the security game. Hence, the set T is independent of pp and y∗ and so is
the image of T , i.e., img(T). Now, whenever the attacker is successful (as in

364 P. Bemmann et al.

’wins the security experiment’) on input y∗, they will output a value x∗ such
that ˜Eval(pp, x∗) = y∗. We now distinguish whether the adversary uses a trigger,
i.e., whether (pp, x∗) ∈ T or (pp, x∗) /∈ T holds. If (pp, x∗) �∈ T , we know that
y∗ = ˜Eval(pp, x∗) = ̂Eval(pp, x∗). Thus, the attacker on the subverted implemen-
tation can be transformed into an attacker on the non-subverted specification,
breaking the one-wayness of Π. If (pp, x∗) ∈ T , we can’t predict ˜Eval(pp, x∗),
however it can only redistribute weight within T , as Eval(pp, ·) is a determinis-
tic mapping on {0, 1}λ \ T . Now, T is independent from y∗ and y∗ is uniformly
drawn from {0, 1}λ. Together, this implies that the expected probability (upon
the random choice of y∗) of a subversion attacker to win when submitting any
trigger x∗ (and setting up its implementation accordingly beforehand) is at most
|T | /(|PP| · 2λ), i.e., negligible. Hence, the probability that a trigger x∗ with
˜Eval(pp, x∗) = y∗ exists is negligible. 	

4 Subversion-Resilient Hash Functions

Another crucial building block we will use is hash functions. Since we build
one-time signatures from one-way functions, we need a way to hash two public
keys (of the one-time signature) down to the size of one public key to make the
signature construction of [24] work. Unfortunately, subversion-resilient collision-
resistant hash functions seem impossible (without any further assumptions), as
discussed in Sect. 6. On the positive side, just like in the case of ordinary signa-
tures, subversion-resilient target collision-resistant hash functions are sufficient
for our case, and we will see that they can be constructed by using a trusted
XOR. So, let us begin by providing the necessary (security) definitions.

Definition 5. A family of hash functions H is a pair of ppt algorithms (Gen,H)
where Gen takes as input the security parameter 1λ and outputs a (non-secret)
key s and H takes as input a key s and a string x ∈ {0, 1}∗ and outputs Hs(x).

Note that we only consider keyed hash functions that take a fixed-length input.
We will assume that inputs have length 2λ. Our approach can also handle inputs
with lengths up to 2λ, but this would imply more encoding and notation overhead
as inputs would need to be interpreted as 2λ long items with leading zeros.

In the following, we consider two different but very related security notions
concerning hash functions.

Definition 6. Let H = (Gen,H) be a family of hash functions. Then we say that
H is target collision resistant (TCR) iff Pr[ExpTCRH

A(1λ) = 1] ≤ negl(λ) where
ExpTCRH

A(1λ) is depicted in Fig. 4.

Definition 7. Let H = (Gen,H) be a family of hash functions. Then we say
that H is random target collision resistant (rTCR) iff Pr[ExpRTCRH

A(1λ) = 1] ≤
negl(λ) where ExpRTCRH

A(1λ) is depicted in Fig. 4.

Subversion-Resilient Signatures Without Random Oracles 365

Fig. 4. (random) Target-collision resistance security experiment for hash functions. In
the left experiment, we use that A = (A1, A2) and use st to denote the state passed
between the subroutines of the adversary.

Big Domains. Before we present our construction, let us quickly illustrate
a powerful subversion attack against hash function families with big domains,
which is inspired by the attack on one-way permutations by Russel et al. in [27].
Let H = (Gen,H) with H : {0, 1}2λ → {0, 1}λ be a family of hash functions,
which hashes inputs to outputs half the input size. Then an adversary could
prepare its implementation such that H̃s(k ‖ y) := y for some randomly sampled
(or simply chosen by the adversary) string k. With this construction, an input
trigger exists for every element in the range of H, enabling the adversary to win
the security experiment trivially. Additionally, detecting this attack is very hard
for an offline watchdog without knowledge of k. Assuming the watchdog samples
random inputs for the hash function, the probability for a random input to match
y is (12)λ, which is negligible in λ. Since the watchdog only has a polynomial
running time, it has a negligible probability of detecting this attack. Thus, we
only use hash functions where the domain and range of the hash functions are
of similar size to rule out this otherwise unpreventable attack. More concretely,
we only consider hash functions where the output is one bit shorter than the
input. Larger input sizes are then handled by constructing hash functions for
different input sizes and hashing the input down through these different hash
functions. To guarantee subversion-resilience, we need to run a watchdog for
each input length individually. However, this seems unavoidable to prevent the
above attack.
Construction. Similar to our construction of subversion-resilient one-way func-
tions, we make use of the fact that rTCR hash functions have a random challenge.
More formally, let H = (Gen,H) be a family of rTCR hash functions. Then we
construct a TCR hash function H′ = (Gen′,H′) as follows: To sample a key s,
the algorithm Gen′ first executes Gen and then additionally samples a uniformly
random element r from the domain of the hash function and finally outputs
s′ = (s, r) as the key. Now, H ′ evaluates inputs as H′

s′(x) := Hs(x ⊕ r). Thus,
this construction has an additional blinding value as part of its key, which is
XORed to the input before evaluating the hash function. In order to sanitize
key generation, our watchdog will test Gen for uniformly random coins. Thus,

366 P. Bemmann et al.

just as in [28] we can guarantee that either s is computed in accordance with
the specification or the watchdog detects subversion. To compute the blinding
value, we can use any construction from [28] or [7] to produce random coins in
a subversion-resilient manner that does not use random oracles.

We note that the ⊕ operation will be part of the trusted amalgamation when
we prove subversion-resilience. This is essential to the construction and prevents
the attacker from feeding adversarially chosen inputs directly into subverted
components, similar to Russell et al. [28]. Just like in the section about one-way
functions, the order of events is critical for our analysis. Our security proof again
uses that the hash function (and especially the random value provided along) is
provided to the adversary after the adversary provides its implementation. Note
that in a non-subverted setting, our construction is the folklore3 construction to
obtain a TCR hash function from a rTCR hash function.

In the proof, we will use that target collision resistant hash functions with
small input domain need to distribute their inputs somewhat ’equally’ into the
range of the hash functions. Otherwise, this would contradict its target collision
resistance property.

Lemma 2. Let H = (Gen,H) with H : {0, 1}λ → {0, 1}λ−1 be a rTCR family of
hash functions. Then, the set {x ∈ {0, 1}λ | Hs(x) = z} is negligible in λ with
probability 1 − negl(λ) upon random choice of z and s.

Theorem 3. Let H = (Gen,H) with H : {0, 1}λ → {0, 1}λ−1 be a rTCR family of
hash functions. Then H′ = (Gen′,H′) with H′ : {0, 1}λ → {0, 1}λ−1 as described
above is a subversion-resilient TCR family of hash functions in the split-program
model with trusted amalgamation where the ⊕ is part of the amalgamation.

Proof. Let H be a rTCR hash function family, and let T be the trigger set
of H, i.e., (s, x) ∈ T ⇔ ˜Hs(x) �= ̂Hs(x). Just as in [28], we can use Lemma
1 to argue that either the keys s′ output by Gen′ are computed according to
the specification or the watchdog detects subversion. Further, due to Lemma
1, we know that |T | ∈ negl(λ). Hence, our watchdog for H will query Gen and
H′ on random inputs. Due to the trusted XOR used in H′, Lemma 1 implies
that with high probability the value Hs(x ⊕ r) is a non-subverted output, as
s′ = (s, r) is chosen after the adversary provides its implementation. Now, let
A be an adversary against the subversion-resilience of H′, i.e., A first outputs
x, is then handed s′ = (s, r) and then outputs a value y �= x and succeeds if
Hs(x ⊕ r) = Hs(y ⊕ r). We now distinguish two cases. In the first case, we have
(s, y) /∈ T . If A can output y �= x such that H′

s′(x) = H′
s′(y) (where both inputs

do not lead to input trigger), we can construct an adversary B which breaks the
rTCR of H as follows. After A outputs some value x, the adversary B obtains
(s, x′) from its challenger. Now, B forwards s′ = (s, r) with r = x⊕x′ to A which
answers with some y. Finally, B forwards y⊕r to its challenger. We observe that
in the case that A finds a collision such that H′

s′(x) = H′
s′(y), it holds that

H′
s′(x) = Hs(x′ ⊕ x ⊕ x) = Hs(x′) and H′

s′(y) = Hs(y ⊕ x ⊕ x′). Since x �= y, it

3 Unfortunately, we were not able to find an explicit reference for this construction.

Subversion-Resilient Signatures Without Random Oracles 367

also holds that x′ �= y ⊕ x′ ⊕ x. Thus, if A finds a collision, so does B, at least if
H does not deviate from its specification with regard to (s, y)4.

The other case is (s, y) ∈ T . But, as we will now argue, this can only happen
with negligible probability. Remember that H maps λ-bit string to (λ − 1)-bit
strings. Now, let H−1

s (z) ⊆ {0, 1}λ denote the set of preimages of an element z ∈
{0, 1}λ−1. By Lemma 2, the size of H−1

s (z) must be negligible for all but negligible
many pairs (s, z). Hence, the probability that there is some y ∈ H−1

s (Hs(x)) with
(s, y) ∈ T is negligible, since A commits to its implementation before H and its
associated blinding value is chosen and A has only negligible many input trigger.
Thus, any adversary which breaks the subversion-resilience of H′ can also be used
to break the security of H. 	

As stated before, the above construction only reduces the input size by a single
bit. Hence, to hash a string of length 2λ down to length λ, we will need a hash
family H� : {0, 1}� → {0, 1}�−1 for each � = 2λ, 2λ − 1, . . . , λ + 1.

5 Subversion-Resilient Signatures

Finally, we have all the ingredients to prove the signature scheme based on
the Naor-Yung construction [24] subversion-resilient. As a necessary stepping
stone, we will see that the classical Lamport signatures are subversion-resilient
if instantiated with a subversion-resilient one-way function. Then, all the pre-
vious sections’ building blocks can be combined to obtain a subversion-resilient
signature, where even the verification algorithm is subject to subversion.

5.1 Digital Signatures

We continue by recalling the standard definition of digital signatures.

Definition 8. A digital signature scheme Σ consists of three ppt algorithms
(KGen,Sign,Vf). On input 1λ the key generation algorithm KGen outputs a pair
of keys (sk, vk). The signing algorithm Sign takes as input the secret signing
key sk and a message m from the message space and outs a signature σ. The
verification algorithm Vf takes as input the public verification key vk, a message
m, and a signature σ. It outputs a bit b where b = 1 indicates a valid signature,
while b = 0 means that the signature cannot be verified. We say a signature
scheme is correct if for every key pair (sk, vk) generated by KGen(1λ) and every
message m ∈ M it holds that Vf(vk, (m,Sign(sk,m)) = 1 but with negligible
probability.

Next, we recall the standard definition of existential unforgeability.

Definition 9. We say that a signature scheme Σ is existentially unforgeable
if for all ppt adversaries A there exists a negligible function negl(1λ) such that
Pr[ExpSigA

Σ(1λ) = 1] ≤ negl(λ) where ExpSigA
Σ(1λ) is displayed in Fig. 3 and A

has access to an oracle returning σi = Sign(sk,mi) on input mi and where Q
denotes the set of all queries that A issued to its signing oracle.
4 This resembles the ‘classical’ security proof of the construction.

368 P. Bemmann et al.

Definition 10. We say a signature is a one-time signature if the above holds
and the attacker can only issue a single query to its signing oracle.

5.2 Lamport Signatures

Using the results of Sect. 3, we have access to subversion-resilient one-way func-
tions and can directly obtain Lamport signatures [19] given a trusted comparison.
So let us quickly recall the definition of the aforementioned Lamport signatures
for messages of length �, which uses a family of one-way functions (Gen,Eval).

The key generation algorithm chooses � many values xi,0, xi,1 ∈ {0, 1}λ uni-
formly at random as well as pp = Gen(1λ). Then compute yi,0 = Eval(pp, xi,0)
and yi,1 = Eval(pp, xi,1). The verification key vk consists of all y values and the
signing key of all x values. On input a message m ∈ {0, 1}� with m = m1 . . . m�,
the signing algorithm simply outputs the signature σ = (x1,m, . . . , x�,m�

). On
input a verification key vk, a message m ∈ {0, 1}� with m = (m1 . . . m�),
and a signature σ = (x1, . . . , x�), the verification algorithm outputs 1 iff
Eval(pp, xi) = yi,mi

for all 1 ≤ i ≤ �.
Then it is not hard to see that the security of the Lamport signatures scheme

follows directly from the security of the used one-way function. Similarly, the
Lamport signature’s subversion-resilience follows from the subversion-resilience
of the used one-way function. However, additionally, we need a trusted compar-
ison for the above construction to be secure. As discussed in [6] for the context
of MACs, a trusted comparison seems unavoidable. Otherwise, the subverted
implementation could ignore the output of Eval and output 1 for a value chosen
by the adversary and embedded into the implementation. Thus, the subversion-
resilience of Lamport signatures directly boils down to the subversion-resilience
of the one-way function.

Theorem 4. Let Π be a subversion-resilient one-way function. Then Lamport
Signatures using Π as the one-way function are subversion-resilient one-time
signatures where the trusted amalgamation makes a trusted comparison.

5.3 The Naor-Yung Construction

Before we dive into the classical Naor-Yung construction, let us provide some
intuition on the approach. The main idea is to follow a tree-based approach and
heavily use one-time signatures, which sign pairs of verification keys to form
an authenticated path in a tree based on the message to be signed. Since the
Lamport signature can not sign messages bigger than its public key, a hash
function is used to allow the signing of two verification keys. Here a target-
collision-resistant hash function is sufficient to guarantee security. While the
original construction is stateful, it is known that it can be extended via PRFs
and deterministically recomputing keys to make the construction stateless. Note
that the PRFs are only needed to sign messages and not for signature verification.
We continue with the construction and are given a one-time signature scheme
(KGenOTS,SignOTS,VfOTS), a target-collision resistant hash function family H =

Subversion-Resilient Signatures Without Random Oracles 369

(Gen,H) with H = {Hs : {0, 1}2λ → {0, 1}λ}, and a pseudorandom function
(KGenPRF, F). Furthermore, for a string w ∈ {0, 1}∗, we define Pre(w) ⊆ {0, 1}∗

as the set of prefixes of w, including the empty string ε and w itself. For technical
reasons, we assume that for w ∈ {0, 1}λ, we have Pre(w) ⊆ {0, 1}λ+�log(λ)� and
|Pre(w)| = |w| + 1 to guarantee that all prefixes have the same length and
to differentiate them uniquely.5 We also assume that the verification key vk
corresponding to a secret key sk can easily be derived from sk. Now, we define
our signature scheme (KGen,Sign,Vf) as follows (Fig. 5):

Fig. 5. Our proposed signature scheme.

Theorem 5. Given subversion-resilient one-time signatures, subversion-resil-
ient target-collision-resistant hash functions, and subversion-resilient PRFs,
then the above construction is a stateless, subversion-resilient digital signature
scheme in the split-program model with trusted amalgamation where all algo-
rithms are subject to subversion.

In the following proof, we follow the proof sketch by Naor and Yung [24],
but need to adapt the proof somewhat. First, Naor and Yung only considered
a stateful signature while our use of the PRF makes the complete construction
stateless. Furthermore, we need to make sure that we reduce the security to the
subversion-resilience of the building blocks rather than their original security

5 This prevents complications and allows us to identify each prefix uniquely.

370 P. Bemmann et al.

properties, as we only work with the (possibly) subverted implementation here
and not with the specification.

Proof. As a first step, the watchdog for the signature scheme simply runs the
watchdog of the one-time signature, the watchdog of the hash function, and the
watchdog of the PRF. If none of these watchdogs detect a subversion, we follow
an adaption of the proof by Naor and Yung [24].

Now, we replace the values generated by the PRF with completely random
strings, i.e., all strings rw, rw,h, and rm are now independent random strings that
are stored by the system for reuse in case that the values are needed again. If this
would be distinguishable from the setting where the PRF is used, we can easily
build an attacker against the subversion-resilience of the PRF by simulating all
other parts of the construction. We will also ignore the cases which some of the
randomly chosen values (random strings or keys) collide, as this will only happen
with negligible probability.

Now, let Asigs be an attacker against the subversion-resilience of the signa-
ture scheme that is successful with non-negligible probability 1/p(λ) for some
non-negligible function p. In the following, we will now show that such an
attacker implies the existence of an attacker AOTS against the one-time signa-
ture and an attacker Ahashs against the hash function such that at least one
of these attackers is also successful with non-negligible probability. As ASIG

wins the subversion-resilience game with non-negligible probability, it outputs
a valid message-signature pair (m∗, σ∗) with m∗ �∈ QM with non-negligible
probability. Here, QM is the set of messages for which A queried its sign-
ing oracle. Let QS be the set of signatures returned by the signing oracles.
By definition, for each m ∈ QM and each corresponding answer σ ∈ QS ,
we have σ = (σm, (σw, sw, vkw‖0, vkw‖1)w∈Pre(m)\{m}). Similarly, we also have
σ∗ = (σ∗

m∗ , (σ∗
w∗ , sw∗ , vkw∗‖0, vkw∗‖1)w∗∈Pre(m∗)\{m∗}). By construction of the

verification algorithm, a successfully forged signature σ∗ must contain a tuple
(σ∗

w∗ , sw∗ , vkw∗‖0, vkw∗‖1) that is not contained in any signature in QS . Now, we
need to distinguish two cases.

If Hsw∗ (vkw∗‖0‖vkw∗‖1) �= Hsw∗ (vkw′‖0‖vkw′‖1) for all vkw′‖0 and vkw′‖1 con-
tained in the signatures in QS , we can construct an attacker AOTS against the
one-time signature. The attacker AOTS is given some verification key vk′ from the
one-time signature and simulates the complete security experiment, but instead
of sampling the key pair (skw∗ , vkw∗), it sets vkw∗ = vk′. To sign a message with
skw∗ , it uses its oracle to the signing algorithm of the one-time signature. Finally,
AOTS outputs the message-signature pair (m′, σ′) = (Hsw∗ (vkw∗‖0‖vkw∗‖1), σ∗

w∗),
which is a valid pair as (m∗, σ∗) was a valid pair for the signature scheme. Fur-
thermore, as Hsw∗ (vkw∗‖0‖vkw∗‖1) �= Hsw∗ (vkw′‖0‖vkw′‖1) holds for all verifica-
tion keys vkw′‖0 and vkw′‖1 contained in QS , the one-time signing oracle was
never queried on the value Hsw∗ (vkw∗‖0‖vkw∗‖1). Hence, (m′, σ′) is a successful
forgery of the one-time signature.

If some signature in QS contains a tuple (σ∗
w∗ , sw∗ , vkw′‖0||vkw′‖1) with

Hsw∗ (vkw∗‖0||vkw∗‖1) = Hsw∗ (vkw′‖0‖vkw′‖1),

Subversion-Resilient Signatures Without Random Oracles 371

which was created by signing a message m′, we can build the attacker Ahashs

against the hash function as follows: The attacker Ahashs simulates the complete
experiment but does not sample a hash function Hsw∗ . Instead, before Hsw∗
is evaluated during a signing operation of m′, the attacker returns the value
vkw′‖0‖vkw′‖1 to the hash function challenge and then obtains a hash function
h, which will be used as Hsw∗ . Finally, the attacker AH outputs vkw∗‖0||vkw∗‖1.
As Hsw∗ (vkw∗‖0||vkw∗‖1) = Hsw∗ (vkw′‖0‖vkw′‖1), this is a valid collision of the
hash function keyed with sw∗ .

If A wins the security experiment with probability p(λ) for some non-
negligible function p(λ), the attacker AOTS wins with probability pOTS(λ), and
the attacker Ahashs wins with probability phashs(λ), we have p(λ) ≤ pOTS(λ) +
phashs(λ). Hence, either AOTS or Ahashs is successful if A is successful. 	

6 Discussion

Efficiency. To better assess our results, in Table 1 we provide an overview of the
available constructions of subversion-resilient signatures found in the literature.
The table shows that while our construction grants the strongest security in the
watchdog model, i.e. no random oracle and complete subversion, it also has the
biggest signature size. Note that for the reverse firewall (RF) model and the self-
guarding (SG) model, additional/other assumptions are applied (verifiability,
honest sample phase).

Table 1. Comparison of different approaches for subversion-resilient signature schemes.
Here σ denotes the size of an underlying signature scheme, m denotes the length of the
messages to be signed, and s is the size of the key of our hash function.

Model RO Complete Subv Signature size Stateful subv

[2] RF ✗ ✗ σ �
[16] SG ✗ ✗ ≈ λ · m + 2λσ ✗

[27] online WD � � m �
[13] offline WD � ✗ m ✗

[13] offline WD ✗ ✗ 2(m + σ) ✗

This work offline WD ✗ � m(σ + |s| + 2 |vk|) + σ ✗

It is well known that digital signatures can be constructed from one-way and
collision-resistant hash functions. Thus, we now focus on constructing collision-
resistant hash functions and explain why this seems impossible if the hash func-
tion is not idealized as a random oracle.

372 P. Bemmann et al.

Subversion-Resilient Collision Resistance via Black-Box Testing. Sim-
ilar to the case of weak PRFs [6] and one-way permutations (see Sect. 3), one
may hope that simply taking any hash function and testing it sufficiently may
already grant positive results. Unfortunately, this seems impossible. Consider an
adversary which provides an implementation H̃ of H, which only differ for two
values m0,m1 from H in the sense that H̃(m0) = 0 = H̃(m1). Any watchdog
that samples messages from the (finite) domain6 of the hash function uniformly
at random only has negligible probability in testing for m0 or m1. Conversely,
the adversary can trivially output a collision by outputting m0,m1. While this
observation is not very involved, to the best of our knowledge, it was not yet
formally written down in previous works.
Implications for Signatures. In some textbooks for modern cryptography,
such as [18], the construction of Naor-Yung is often displayed by utilizing
collision-resistant hash functions instead of target-collision-resistant hash func-
tions. This is useful from a teaching perspective, as collision resistance is intro-
duced in courses, and there is little benefit in introducing target-collision resis-
tance if only the Naor-Yung construction is considered. While the classical setting
makes little difference in which notion is used, the distinction between these two
notions is crucial in the subversion setting. As the stronger notion seems impos-
sible to achieve, the weaker and sufficient property allows for the subversion-
resilient construction.
Correctness. Note that both of our signature construction satisfies our cor-
rectness definition, even under subversion. This is because due to the testing
of the watchdog Lemma 1 can be used to argue that only for negligible many
inputs correctness is violated. Unfortunately, our approach cannot achieve per-
fect correctness (as achieved by the symmetric encryption construction in [6]).
Note that no work achieves perfect correctness other than assuming verifiability
in the reverse firewall model [2], thus assuming correctness.

Acknowledgements. The authors would like to thank all anonymous reviewers for
their valuable comments. The work of Rongmao Chen is supported by the National
Natural Science Foundation of China (Grant No. 62122092, No. 62032005).

References

1. Armour, M., Poettering, B.: Algorithm substitution attacks against receivers. Int.
J. Inf. Secur. 21(5), 1027–1050 (2022)

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd Conference on Computer
and Communications Security, pp. 364–375. ACM Press, October 2015

3. Baek, J., Susilo, W., Kim, J., Chow, Y.W.: Subversion in practice: how to
efficiently undermine signatures. Cryptology ePrint Archive, Report 2018/1201
(2018). https://eprint.iacr.org/2018/1201

6 As is the case for tree-based signatures.

https://eprint.iacr.org/2018/1201

Subversion-Resilient Signatures Without Random Oracles 373

4. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015: 22nd Conference on Computer and Communications Security, pp.
1431–1440. ACM Press, October 2015

5. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology -
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 1

6. Bemmann, P., Berndt, S., Diemert, D., Eisenbarth, T., Jager, T.: Subversion-
resilient authenticated encryption without random oracles. In: Tibouchi, M., Wang,
X. (eds.) ACNS. LNCS, vol. 13906, pp. 460–483. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-33491-7 17

7. Bemmann, P., Chen, R., Jager, T.: Subversion-resilient public key encryption with
practical watchdogs. In: Garay, J. (ed.) PKC 2021: 24th International Conference
on Theory and Practice of Public Key Cryptography, Part I. LNCS, vol. 12710, pp.
627–658. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-75245-
3 23

8. Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a steganographic
perspective. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017: 24th Conference on Computer and Communications Security, pp. 1649–
1660. ACM Press, October/November 2017

9. Berndt, S., Wichelmann, J., Pott, C., Traving, T.H., Eisenbarth, T.: ASAP: algo-
rithm substitution attacks on cryptographic protocols. In: Suga, Y., Sakurai, K.,
Ding, X., Sako, K. (eds.) ASIACCS 2022: 17th ACM Symposium on Information,
Computer and Communications Security, pp. 712–726. ACM Press, May/June 2022

10. Chakraborty, S., Dziembowski, S., Nielsen, J.B.: Reverse firewalls for actively
secure MPCs. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology
- CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 732–762. Springer, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-56880-1 26

11. Chen, R., Huang, X., Yung, M.: Subvert KEM to break DEM: practical algorithm-
substitution attacks on public-key encryption. In: Moriai, S., Wang, H. (eds.)
Advances in Cryptology - ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 98–
128. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64834-3 4

12. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology - ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
844–876. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 31

13. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.S.: Let a non-
barking watchdog bite: cliptographic signatures with an offline watchdog. In: Lin,
D., Sako, K. (eds.) PKC 2019: 22nd International Conference on Theory and Prac-
tice of Public Key Cryptography, Part I. LNCS, vol. 11442, pp. 221–251. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-17253-4 8

14. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) Fast Software Encryption - FSE
2015. LNCS, vol. 9054, pp. 579–598. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48116-5 28

15. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls–secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) Advances in Cryptology - CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341–
372. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 13

https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-031-33491-7_17
https://doi.org/10.1007/978-3-031-33491-7_17
https://doi.org/10.1007/978-3-030-75245-3_23
https://doi.org/10.1007/978-3-030-75245-3_23
https://doi.org/10.1007/978-3-030-56880-1_26
https://doi.org/10.1007/978-3-030-64834-3_4
https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/978-3-030-17253-4_8
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_13

374 P. Bemmann et al.

16. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: Chong, S., Delaune, S. (eds.) CSF 2018: IEEE 31st Com-
puter Security Foundations Symposium, pp. 76–90. IEEE Computer Society Press
(2018)

17. Galteland, H., Gjøsteen, K.: Subliminal channels in post-quantum digital signature
schemes. Cryptology ePrint Archive, Report 2019/574 (2019). https://eprint.iacr.
org/2019/574

18. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
New York (2014)

19. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979

20. Liu, C., Chen, R., Wang, Y., Wang, Y.: Asymmetric subversion attacks on signature
schemes. In: Susilo, W., Yang, G. (eds.) ACISP 2018: 23rd Australasian Conference
on Information Security and Privacy. LNCS, vol. 10946, pp. 376–395. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-319-93638-3 22

21. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in
Cryptology - CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg
(1990). https://doi.org/10.1007/0-387-34805-0 21

22. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 657–686. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 22

23. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

24. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st Annual ACM Symposium on Theory of Computing, pp. 33–
43. ACM Press, May 1989

25. Perlroth, N., Larson, J., Shane, S.: Secret documents reveal NSA campaign against
encryption (2013). https://archive.nytimes.com/www.nytimes.com/interactive/
2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html

26. Discussion about Kyber’s tweaked FO transform (2023). https://groups.google.
com/a/list.nist.gov/g/pqc-forum/c/WFRDl8DqYQ4, Discussion Thread on the
PQC mailing list

27. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology
- ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 2

28. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against
a kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications
Security, pp. 907–922. ACM Press, October/November 2017

29. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 241–271. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-319-96881-0 9

30. Teseleanu, G.: Threshold kleptographic attacks on discrete logarithm based sig-
natures. In: Lange, T., Dunkelman, O. (eds.) Progress in Cryptology - LATIN-
CRYPT 2017: 5th International Conference on Cryptology and Information Secu-
rity in Latin America. LNCS, vol. 11368, pp. 401–414. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-25283-0 21

https://eprint.iacr.org/2019/574
https://eprint.iacr.org/2019/574
https://doi.org/10.1007/978-3-319-93638-3_22
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-46803-6_22
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/WFRDl8DqYQ4
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/WFRDl8DqYQ4
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-3-030-25283-0_21

Subversion-Resilient Signatures Without Random Oracles 375

31. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: should we
trust capstone? In: Koblitz, N. (ed.) Advances in Cryptology – CRYPTO 1996.
LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg (1996). https://doi.org/10.1007/
3-540-68697-5 8

32. Young, A., Yung, M.: Kleptography: using cryptography against cryptography. In:
Fumy, W. (ed.) Advances in Cryptology - EUROCRYPT 1997. LNCS, vol. 1233,
pp. 62–74. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6

Practical Lattice-Based Distributed
Signatures for a Small Number of Signers

Nabil Alkeilani Alkadri(B), Nico Döttling, and Sihang Pu

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{nabil.alkadri,doettling,sihang.pu}@cispa.de

Abstract. n-out-of-n distributed signatures are a special type of thresh-
old t-out-of-n signatures. They are created by a group of n signers, each
holding a share of the secret key, in a collaborative way. This kind of
signatures has been studied intensively in recent years, motivated by
different applications such as reducing the risk of compromising secret
keys in cryptocurrencies. Towards maintaining security in the presence
of quantum adversaries, Damgård et al. (J Cryptol 35(2), 2022) pro-
posed lattice-based constructions of n-out-of-n distributed signatures
and multi-signatures following the Fiat-Shamir with aborts paradigm
(ASIACRYPT 2009). Due to the inherent issue of aborts, the protocols
either require to increase their parameters by a factor of n, or they suffer
from a large number of restarts that grows with n. This has a significant
impact on their efficiency, even if n is small. Moreover, the protocols use
trapdoor homomorphic commitments as a further cryptographic build-
ing block, making their deployment in practice not as easy as standard
lattice-based Fiat-Shamir signatures. In this work, we present a new con-
struction of n-out-of-n distributed signatures. It is designed specifically
for applications with small number of signers. Our construction follows
the Fiat-Shamir with aborts paradigm, but solves the problem of large
number of restarts without increasing the parameters by a factor of n and
utilizing any further cryptographic primitive. To demonstrate the practi-
cality of our protocol, we provide a software implementation and concrete
parameters aiming at 128 bits of security. Furthermore, we select con-
crete parameters for the construction by Damgård et al. and for the most
recent lattice-based multi-signature scheme by Chen (CRYPTO 2023),
and show that our approach provides a significant improvement in terms
of all efficiency metrics. Our results also show that the multi-signature
schemes by Damgård et al. and Chen as well as a multi-signature vari-
ant of our protocol produce signatures that are not smaller than a naive
multi-signature derived from the concatenation of multiple standard sig-
natures.

Keywords: n-out-of-n distributed signatures · threshold n-out-of-n
signatures · Fiat-Shamir with aborts · lattice-based cryptography

1 Introduction

An n-out-of-n distributed signature is a signature on a single message that is
jointly generated by a group of n signers. Before signing this message, the signers
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 376–402, 2024.
https://doi.org/10.1007/978-3-031-54770-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_15

Practical Lattice-Based Distributed Signatures 377

invoke a key generation protocol to create a pair of public and secret key, where
each signer learns the public key and a share of the secret key only. The signa-
ture can be verified by the public key. An n-out-of-n distributed signature is a
special type of threshold t-out-of-n signatures [18], hence also called a threshold
n-out-of-n signature. The required security property of n-out-of-n distributed
signatures is that it should be infeasible to generate a valid signature even if at
most n − 1 signers are corrupted. Distributed signature protocols constitute a
fundamental cryptographic primitive, most notably, in the blockchain domain
when it comes to authorize transactions in the presence of multiple signers. This
minimizes the risk of compromising the secret key. Distributed signatures can
provide institutional and personal account key management by multiple people.

Currently, real-life applications employing distributed signatures rely on con-
structions whose security is based on the hardness of number-theoretic assump-
tions. However, when taking into account recent developments of quantum com-
puters, it is meanwhile known that these assumptions cannot be used long-term.
In an effort to develop new constructions that are conjectured to be secure in
the presence of quantum computers, few works based on lattice assumptions con-
sidered threshold t-out-of-n signatures (see Appendix A). Recently, Damgård et
al. [17] proposed a lattice-based construction of n-out-of-n distributed signa-
tures following the Fiat-Shamir with aborts paradigm [25]. Hence, it relies on
the so-called rejection sampling when generating signatures. In the context of
Fiat-Shamir signatures based on lattices, rejection sampling is a crucial tool that
is used as a security check. Using a so-called masking term, it allows to verify
that a secret (or secret-related) term is concealed and distributed independently
from a public term that is computed using both the masking and secret term.
In particular, it makes sure that signatures are distributed independently from
the secret key. If the check fails, i.e., if rejection sampling rejects, the signing
protocol is restarted in order to sample a fresh masking term. This is because
all computations carried out up to rejection sampling are related to a certain
masking term. In interactive protocols with multiple rejection sampling proce-
dures such as distributed signatures, this has a significant negative impact on
the efficiency. To see this, suppose that n signers would like to generate a signa-
ture, and each one has to restart the protocol M times on average, where M is
determined in accordance to other parameters of the protocol (the smaller M is,
the larger the signature size). Then, the total average number of restarts in such
a protocol is given by Mn, which is large even for a small n. One way to make
this number reasonably small is to increase the parameters by a factor of n [17].
However, this induces larger sizes of keys and signatures, even if n is small. In
addition to the large number of restarts, the construction by Damgård et al. [17]
uses a trapdoor homomorphic commitment scheme as a further cryptographic
building block, which affects its efficiency in a significant way.

Due to the above mentioned drawbacks, we conclude that the protocol of [17]
is not suitable for deployment in practice, even when it comes to applications
with small number of signers, which is our main focus in this work and is apparent
in real-world applications as we argue in the following. Consider the well-known

378 N. A. Alkadri et al.

problem of fraud management (CEO fraud), where a fraudster pretends to be
a senior manager – often the CEO – in order to persuade a staff member to
make an urgent payment to a supplier or business partner. This kind of social
engineering can be easily prevented by employing distributed signatures. By
means of a defined policy, contracts are only authorized by various decision
makers, typically 2 or 3. In cryptocurrencies, distributed signatures add a great
level of security by requiring few devices to authenticate transactions. A so-
called distributed wallet requires all signers involved in the generation of such
a wallet to agree before any transaction can be created. For instance, wallets
developed by Armory allow at most 7 signers to authorize a transaction, while
those developed by BitGo and Coinbase provide up to 3 signers1.

1.1 Contribution

We present a new construction of n-out-of-n distributed signatures based on lat-
tices over modules. It is designed to support applications with a small number
of signers only. Similar to the protocol by Damgård et al. [17], our construction
follows the Fiat-Shamir with aborts approach, but solves its drawbacks that we
mentioned above. More precisely, it solves the problem of the large number of
restarts without increasing the parameters by a factor of n, and it does not
rely on any additional primitives like trapdoor homomorphic commitments. It
also supports the offline-online paradigm. This feature is desirable in practice,
since it allows expensive operations of our signing protocol to be pre-processed.
Using the rewinding technique [7], we prove the security of our construction
in the random oracle model [8] assuming the hardness of the Module Learn-
ing With Errors (MLWE) problem and Module Small Integer Solution (MSIS)
problem. We provide a proof-of-concept implementation of our protocol demon-
strating its practicality, and propose concrete parameters targeting 128 bits of
security. In order to give a fair comparison, we also select concrete parameters for
the distributed signature and multi-signature protocols by Damgård et al. [17]
and for the most recent multi-signature protocol by Chen [13]. The reason of
considering multi-signatures is because a distributed signature protocol can be
derived from [13], and conversely we can derive a multi-signature scheme from
our construction (see Sect. 1.3 for more details). The comparison is summarized
in Table 1, which shows that our approach provides a significant improvement
regarding all efficiency metrics.

1.2 Technical Overview

Similar to [17], our construction follows the Fiat-Shamir with aborts approach
and can be seen as a distributed variant of the standard signature scheme
Dilithium-G [21]. Basically, the key generation protocol generates an instance
of the MLWE problem in a distributed way. Therefore, we give in this overview
a high-level explanation of our signing protocol only. For ease of exposition, we
1 https://coinsutra.com/best-multi-signature-bitcoin-wallets/.

https://coinsutra.com/best-multi-signature-bitcoin-wallets/

Practical Lattice-Based Distributed Signatures 379

Table 1. Comparison between our construction, the constructions of distributed signa-
tures and multi-signatures introduced by Damgård et al. [17], and the multi-signature
scheme by Chen [13]. The corresponding parameters are given in Table 2 and consider
7 signers. Performance measures are only provided for our protocol, since no implemen-
tations are given in [13,17]. Parameter selection is described in Sect. 3.3. All numbers
are rounded to the nearest integer. Sizes and communication costs are provided in
kilobytes, while performance measures in milliseconds.

Protocol Sizes Communication per signer Performance per signer
Public key Distributed

signature
Multi-
signature

Key
generation

Signature
generation

Key
generation

Signature
generation

Signature
verification

This work 7 12 12 7 25 2 41 2

[17] 21 2538 2594 21 2536 - - -
[13] 8 - 25 - 53 - - -

consider a group of just two signers. A generalization to n ≥ 2 signers can be
derived in a straightforward manner and is considered in Sect. 3. Our protocol
operates over the rings R = Z[X]/〈XN + 1〉 and Rq = Zq[X]/〈XN + 1〉. Let
Ā = [Ik|A] be a joint public matrix, where Ik is the identity matrix of dimen-
sion k and A ∈ Rk×�

q is uniformly random. The public and secret key share
of each signer are given by (pk , sk j) = ((Ā,b), sj), where b = Ā · s (mod q),
s = s1 + s2 ∈ Rk+�, and j ∈ {1, 2}. Each share sj is chosen uniformly random
over a small subset of R. In Fig. 1, we present an informal overview of our sign-
ing protocol. We only present the behavior of signer S1, as each signer plays the
same role and performs the same steps. Note that all operations up to computing
g1 can be pre-processed without knowledge of the message. The remaining steps
are carried out online. This reflects the support of offline-online paradigm. In
the following we highlight the major techniques and differences to [17].

Removing Homomorphic Commitments. In lattice-based Fiat-Shamir sig-
natures like Dilithium-G [21], a signer computes a commitment v to some ran-
domness y. In our case, y follows the Gaussian distribution Dk+�

ZN ,σ
with standard

deviation σ. Together with the message m, v is used to generate a challenge c
via a cryptographic hash function Hash. Then, a response z is computed as
z = y + sc. After that, rejection sampling is carried out on z in order to make
sure that z is distributed independently from sc. The signing process is restarted
if rejection sampling does not accept. Otherwise, the signature is given by (z, c).
In n-out-of-n distributed signatures, the challenge is created via the sum of the
commitments of all signers, and the final response is given by aggregating all
individual responses. This means that each signer reveals its own commitment
whether rejection sampling accepts or not. As indicated in [17], security cannot
be proven if commitments of aborted executions are revealed. To circumvent
this issue, [17] employ a lattice-based homomorphic commitment scheme whose
statistical hiding property ensures that no information can be leaked from a
commitment to v, which is only revealed if rejection sampling is successful. Our
approach is to use a specific regularity property [27]. It ensures that aborted
executions do not leak any information so that security can be proven with-

380 N. A. Alkadri et al.

Fig. 1. Overview of our n-out-of-n distributed signature protocol. For simplicity, we
consider in this overview a group of two signers only, where each signer computes and
sends commitments to three Gaussian distributed masking vectors. The choice of three
Gaussian masking vectors is only for presentation purposes.

out utilizing any additional primitive. More concretely, increasing the standard
deviation σ of y according to the regularity property makes the distribution of v
statistically close to uniform over Rk

q . As demonstrated in Table 1, this improves
the performance and complexity of the protocol, and produces much shorter
signatures. We remark that the same regularity property must be satisfied by
the commitment scheme used in [17]. In other words, we directly endow v with
the regularity property, without having to compute an additional homomorphic
commitment to v that is statistically hiding by the regularity property.

Removing Restarts. [17] suggest to increase σ by a factor of n in order to
reduce the large number of protocol restarts inherent in carrying out rejec-
tion sampling. We use the tree of commitments technique by Alkadri et al. [3],
where each signer generates and sends a specified number of commitments to the
remaining signers. For example, in Fig. 1 we let signer S1 generate three com-
mitments v0,v1,v2. Then, each one is added to u0,u1,u2 individually, where
u0,u1,u2 are the commitments of signer S2. After that, each signer computes a

Practical Lattice-Based Distributed Signatures 381

binary hash tree whose leaves are the hash values of the aggregated commitments
w0, . . . ,w8. The root of this hash tree is used to generate the challenge c. Note
that the input of the signing protocol includes a state information st = (1, 〈L〉),
where 〈L〉 is a unique encoding (e.g., lexicographical ordering) of the list of pub-
lic key shares L = (b1,b2). This state is obtained during executing the key
generation protocol. Here, we assume, w.l.o.g., that b1 is the first entry of 〈L〉.
The unique encoding of signers is crucial in our construction, since otherwise
each signer may compute a different hash tree, and hence a different challenge.
In order to obtain the same local ordering by each signer and allow to map them
to the index of their public key shares in 〈L〉, each signer sends the entry of its
public key share in the first round of the protocol. The correctness of the order-
ing is verified when checking the validity of the hash values (see Fig. 1). The
commitments generated by each signer allow to carry out rejection sampling up
to three times without the need to restart the signing protocol. The response
for which rejection sampling accepts is sent out, and the signature is given by
(c, z, auth), where z is the aggregated response, and auth is the authentication
path of the aggregated commitment corresponding to the used masking vectors.
Using this technique not only reduces the number of restarts, or removes it at
all, but also reduces the signature size. This is because an aggregated (homo-
morphic) commitment together with its opening, which are part of the signature
in [17], are replaced with the root of the tree root and an authentication path
auth, where the pair (root , auth) is just a short sequence of hash values. However,
the number of commitment additions is given by ωn, where ω is the number of
commitments created by each of the n signers (in Fig. 1 we have ω = 3 and
n = 2). In other words, the computational complexity is O(ωn). This is why our
construction is only suitable for a limited number of signers, which is sufficient
for several applications as demonstrated in the introduction. We note that in
Fig. 1 we set ω = 3 only for presentation purposes. In practice, ω is selected
such that the protocol is restarted with a probability of choice. In our sample
parameters, ω is selected such that each signer aborts with probability ≈ 0.

Round Complexity. Our signing protocol consists of three rounds (see Fig. 1).
The first round, where the hash value of the commitments is sent, is a standard
technique that is required to prove security. It allows the security reduction to
simulate honest signer by extracting the commitments of corrupt signers from
incoming queries to the hash function Hash (when modeled as random oracle).
It also allows programming Hash accordingly before revealing the commitments.
This standard first round is removed in [17] by adding a trapdoor feature to the
homomorphic commitment scheme, while in [13] a straight-line simulation via
a dual secret key is used. In order to reduce the complexity to two rounds, our
construction can be instantiated with a trapdoor as in [12]. We choose to keep
the first round instead in order to obtain an improved communication cost and
smaller sizes of public keys and signatures.

382 N. A. Alkadri et al.

1.3 Related Work

In Appendix A, we provide related work on lattice-based threshold signatures.

Multi-Signatures. A multi-signature scheme [23] resembles n-out-of-n dis-
tributed signature protocols. The differences are (1) each signer has its own
key pair, i.e., it locally generates its public and secret key, where the public
key is published before signing, (2) the group of signers is not required to be
fixed, and each signer can initiate the signing protocol with a set of signers of
its choice, and (3) unless a so-called key aggregation property is supported, ver-
ification does not use a single public key. Instead, it takes the set of public keys
involved in signing the message. When it comes to the flexibility of choosing the
group of signers, multi-signatures are more suitable than distributed signatures,
but at the cost of more verification time and larger size of joint public key. The
crucial property of a multi-signature is that it is compact, i.e., its size is not
larger than the total size of signatures generated by each signer individually. If
this property is not satisfied, then it is meaningful to use the naive approach,
i.e., by simply concatenating the individual signatures created by each signer to
produce a multi-signature. For instance, the signature scheme Dilithium [20] or
Dilithium-G [21] can be used, which produces signatures of size less than 2.5 KB.

[17] observed that lattice-based multi-signature schemes prior their work have
incomplete proof of security. In particular, their security proof does not consider
simulating aborted executions of the signing protocol, which are inherent in the
lattice setting due to carrying out rejection sampling. To solve this issue, [17] pro-
posed a scheme that utilizes lattice-based trapdoor homomorphic commitments,
while Boschini et al. [12] used trapdoors without homomorphic commitments.
Chen [13] improved the schemes of [12,17] by introducing a so-called dual signing
simulation technique, which allows to prove security without trapdoors.

Our construction can be easily turned into a multi-signature scheme. The
difference is that each signer computes its own challenge and response using its
own key pair. A multi-signature is given by the tuple (root , z, auth). In particu-
lar, the parameters are exactly the same, and the security proof is even simpler,
since there is no dedicated key generation protocol. However, the compactness
property is not satisfied for every small n. It seems that the regularity property
of the commitments is the reason for this, even without using the tree of com-
mitments technique. More concretely, commitments must be statistically hiding,
while in standard signature schemes like Dilithium, they are only computation-
ally hiding, since aborted executions are never revealed. Therefore, we choose
not to present a multi-signature variant of our protocol. In fact, Table 1 shows
that all current multi-signature schemes may be compact only for a large n.

Reducing Restarts. In order to solve the problem of the large number of
restarts inherent in lattice-based interactive protocols following the Fiat-Shamir
with aborts paradigm, Alkadri et al. [3] introduced a technique called tree of
commitments. A tree of commitments is a binary hash tree whose leaves are con-
structed from many masking terms. This allows to reduce the number of restarts
of lattice-based protocols by iteratively applying rejection sampling using differ-

Practical Lattice-Based Distributed Signatures 383

ent masking terms in one execution. By using a large enough number of masking
terms, this even allows to completely eliminate restarts, i.e., with probability
very close to one. However, this technique was used to construct efficient lattice-
based blind signature schemes only [3,4], which involve just two parties (a signer
and a user). The user blinds the signer’s commitments via many random values,
builds a hash tree from the blind commitments, and generates a blind signature
from one of them without the need to abort and request a protocol restart from
the signer. In this work, we use the technique in a multi-user setting, where each
user generates multiple commitments and builds a hash tree to create a partial
signature. Each leave of the tree corresponds to the sum of commitments, and
each summand is created by one user. We show how to ensure that each signer
computes the same hash tree, i.e., adding commitments in exactly the same way
as the remaining signers. Otherwise, each signer would obtain a different root
and signatures would not be verified.

2 Background

Notation. We denote by N,Z, and R the sets of natural numbers, integers,
and real numbers, respectively. If n ∈ N, we let [n] denote the set {1, . . . , n}.
We denote the security parameter by λ ∈ N, and abbreviate probabilistic
polynomial-time by PPT and deterministic polynomial-time by DPT. We write
x ←$ D to denote that x is sampled randomly according to a distribution D. If S
is a finite set, we also write x ←$ S if x is chosen randomly from the uniform dis-
tribution over S. Let q ∈ Z>0. We write Zq to denote the ring of integers modulo q
with representatives in [− q

2 , q
2)∩Z. Let N be a fixed power of two and consider the

polynomial ring Z[X] in a variable X. We define the rings R := Z[X]/〈XN + 1〉
and Rq := Zq[X]/〈XN + 1〉. Elements in R and Rq are denoted by regular font
letters. Column vectors and matrices with coefficients in R or Rq are denoted
by bold lower-case letters and bold upper-case letters, respectively. The iden-
tity matrix of dimension k is denoted by Ik. The �p-norm of any a ∈ R is
defined by ‖a‖p := (

∑N−1
i=0 |ai|p)1/p if p < ∞ and by max{|a0|, . . . , |aN−1|} if

p = ∞. Similarly, the �p-norm of any b = (b1, . . . , bk)� ∈ Rk is defined by
‖b‖p := (

∑k
i=1 ‖bi‖p

p)
1/p if p < ∞ and by max{‖b1‖p, . . . , ‖bk‖p} if p = ∞. We

write ‖ · ‖ instead of ‖ · ‖2. We define the sets Sη := {f ∈ Rq : ‖f‖∞ ≤ η} and
Tκ := {f ∈ Rq : ‖f‖∞ = 1 ∧ ‖f‖1 = κ}. The discrete Gaussian distribution over
Z

m with standard deviation σ > 0 and center c ∈ R
m is the probability dis-

tribution DZm,σ,c, which assigns to every x ∈ Z
m the probability of occurrence

given by DZm,σ,c(x) := ρσ,c(x)/ρσ,c(Zm), where ρσ,c(x) := exp(−‖x−c‖2

2σ2) and
ρσ,c(Zm) :=

∑
x∈Zm ρσ,c(x). The subscript c is omitted when c = 0. Additional

background is provided in Appendix B.

Hardness Assumptions. We define the lattice problems: Module Learning
With Errors (MLWE) and Module Small Integer Solution (MSIS).

Definition 1. Let pp = (N, k, �, q, η), where N, k, �, q, η are positive integers.
We say that MLWE holds w.r.t. pp if for every PPT algorithm A the advantage

384 N. A. Alkadri et al.

AdvMLWE
A (pp) is negligible in λ, where AdvMLWE

A (pp) :=
∣
∣
∣
∣
∣
∣
Pr

⎡

⎣ b = 1:
A ←$ Rk×�

q ; s ←$ Sk+�
η ;

t := [Ik|A] · s ∈ Rk
q ;

b ←$ A(pp,A, t)

⎤

⎦ − Pr

⎡

⎣ b = 1:
A ←$ Rk×�

q ;
t ←$ Rk

q ;
b ←$ A(pp,A, t)

⎤

⎦

∣
∣
∣
∣
∣
∣
.

Definition 2. Let pp = (N, k, �, q, β), where N, k, �, q are positive integers and
β is a positive real. We say that MSIS holds w.r.t. pp if for every algorithm A
the advantage AdvMSIS

A (pp) is negligible in λ, where AdvMSIS
A (pp) :=

Pr[0 < ‖x‖ ≤ β ∧ 0 = [Ik|A] · x (mod q) : A ←$ Rk×�
q ;x ∈ Rk+� ←$ A(pp,A)].

Estimating the hardness of MLWE and MSIS is described in Appendix C.

Distributed Signatures. We follow [17] to recall the syntax and security of
n-out-of-n distributed signatures. We assume that many sessions of the signing
protocol can be invoked concurrently, while key generation can be executed only
once. All signers participating in both key and signature generation play the
same role. Hence, we only present nth signer’s behavior, who is the first one
sending out a message in each round of interaction. Consequently, we assume
that the adversary is rushing, i.e., based on the honest nth signer’s message, the
adversary is allowed to choose messages of the remaining n−1 corrupted signers.

Definition 3. An n-out-of-n distributed signature protocol is a tuple of algo-
rithms DSig = (PGen,KGenj ,Signj ,Verify), where:

PGen is a PPT parameter generation algorithm that, on input 1λ, returns public
parameters pp, which implicitly contains 1λ. We assume that pp is given as
an implicit input to all algorithms.

KGenj, for all j ∈ [n], is a PPT interactive key generation algorithm that is run
by each signer Sj. At the end of the protocol, Sj returns a state st and a pair
(pk , sk j), where pk is a public key and sk j is a secret key share.

Signj, for all j ∈ [n], is a PPT interactive signing algorithm that is run by
each signer Sj. Each Sj runs Signj on input a session identifier sid , a state
information st , a public key pk , a secret key share sk j, and a message m. At
the end of the protocol, Sj returns a signature sig.

Verify is a DPT verification algorithm that, on input a public key pk , a message
m, and a signature sig, returns 1 if sig is valid and 0 otherwise.

Definition 4. We say that DSig is UF-CMA secure (distributed signature
unforgeability against chosen message attacks) w.r.t. pp ∈ PGen(1λ) if for every
adversary A that makes qSign signing queries to an oracle ODSig

n , the following
advantage is negligible in λ:

AdvUF-CMA
DSig,A (pp) = Pr[ExpUF-CMA

DSig,A (pp) = 1],

where the oracle ODSig
n and the experiment ExpUF-CMA

DSig,A are defined in Fig. 2.

Practical Lattice-Based Distributed Signatures 385

Fig. 2. Experiment ExpUF-CMA
DSig,A . We define by Lm the set of all messages m such that

(sid ,m) was queried by A to its oracle as the first query with identifier sid �= 0.

3 Distributed Signature Protocol

3.1 Protocol Description

Let G : {0, 1}∗ → {0, 1}�G , F : {0, 1}∗ → {0, 1}�F , and H : {0, 1}∗ → Tκ be crypto-
graphic hash functions. Define by Expand : {0, 1}∗ → Rk×�

q an extendable output
function (XOF), e.g., SHAKE. Let ω ∈ N>1. Following [3,4], we define the algo-
rithms that build a tree of commitments:

1. HashTree is a DPT algorithm whose input is ω commitments v0, . . . ,vω−1,
where A ∈ Rk×�

q and for all j ∈ {0 . . . , ω − 1} : vj = [Ik|A] · yj (mod q) and
yj ∈ Rk+�. It returns a pair (root , tree), where root is the root of a binary hash
tree of height h = �log(ω)� whose leaves are the hash values F(vj), and tree is
the sequence that consists of all leaves and inner nodes of the tree.

2. BuildAuth is a DPT algorithm whose input is an index t, a sequence of nodes
tree, and a height h. It returns auth = (t,a0, . . . ,ah−1), where ai ∈ {0, 1}�F ,
0 ≤ t < ω, and 0 ≤ i < h. Let z′ be some secret vector. The output auth
represents the authentication path of a vector zt = yt+z′, for which the rejection
sampling procedure accepts, i.e., masking vector yt ensures that zt hides z′.

3. RootCalc is a DPT algorithm whose input is a commitment v and its authen-
tication path auth = (t,a0, . . . ,ah−1). It returns the root of the hash tree that
includes the leaf F(v) at index t and the inner nodes a0, . . . ,ah−1.
We define the following bijective mapping:

IntIndexω,n : {0, . . . , ω − 1}n → {0, . . . , ωn − 1}; (i(1), . . . , i(n)) �→
n−1∑

j=0

i(n−j) · ωj .

IntIndexω,n converts a tuple (i(1), . . . , i(n)) into a unique positive integer. Let L
be a finite set, we define by Encode(L) a unique encoding of L, e.g., lexicograph-
ical ordering. We also write L[j] to denote the jth entry of L. We let Compress

386 N. A. Alkadri et al.

Fig. 3. Key generation of our lattice-based n-out-of-n distributed signature protocol.

and Decompress define algorithms for representing Gaussian elements via Huff-
man encoding. The first algorithm is used in the signing process to reduce the
signature size, while the latter is used in the verification algorithm to reconstruct
the Gaussian vector computed during signature generation. In the following we
give a detailed description of our n-out-of-n distributed signature protocol. Its
respective algorithms are given in Fig. 3,4. Since all signers play the same role,
we only present nth signer’s behavior.

Parameter and Key Generation. PGen generates public parameters as given
in Table 3. We assume that PGen is invoked by a trusted party. KGenn first
generates a uniformly random A ∈ Rk×�

q in a distributed way. That is, it samples
seed (n) ←$ {0, 1}�seed , computes ḡ(n) = G(seed (n), n), and sends out ḡ(n). After
receiving ḡ(j) for all j ∈ [n − 1], it sends out seed (n) and then receives seed (j).
If ḡ(j) �= G(seed (j), j) for any j ∈ [n − 1], it aborts. Otherwise, it computes
seed =

⊕n
j=1 seed

(j), A = Expand(seed), and sets Ā = [Ik|A]. KGenn proceeds
by sampling s(n) ←$ Sk+�

η , computing a public key share b(n) = Ā ·s(n) (mod q),
and then sending out ĝ(n) = G(b(n), n). After receiving ĝ(j) for all j ∈ [n − 1],
it sends out b(n) and then receives b(j). If ĝ(j) �= G(b(j), j) for any j ∈ [n − 1],
it aborts. Otherwise, it computes b =

∑n
j=1 b

(j) (mod q), and encodes the list
of public key shares (b(1), . . . ,b(n)) via Encode to obtain an ordered list L.
The state information is given by st = (int , L), where int is the index of b(n)

in L, i.e., L[int] = b(n). The public key and secret key share are given by
(pk , sk (n)) = ((seed ,b), s(n)). Note that based on the security of Expand and as
long as at least one honest signer samples a seed correctly, the computed matrix

Practical Lattice-Based Distributed Signatures 387

Fig. 4. Signing protocol of our lattice-based n-out-of-n distributed signature protocol.

388 N. A. Alkadri et al.

A is guaranteed to be uniformly random. The same applies to the combined
public key. As explained in [17], this prevents the so-called rogue key attack [28],
i.e., to choose some malicious key share depending on the honest signer’s share.
For the sake of domain separation [6], we also follow [17] by setting the index
of the signer as part of the value to be hashed via G. This prevents a rushing
adversary from forwarding a hash value sent by the honest signer and claiming
knowledge of its preimage after receiving it from the honest signer. To save space,
s(n) can also be generated by expanding a random seed via an XOF.

Signing. Sn first checks that sid has not been used before, i.e., Sn is not executed
if sid ∈ Lsid , where Lsid is the list of already used session identifiers. We assume,
w.l.o.g., that after ordering the list of public key shares in KGenn, the index of
b(n) in the encoded list L is given by int = n, i.e., L[n] = b(n). Then, Sn

reconstructs A using Expand and sets Ā = [Ik|A]. It proceeds by sampling ω
vectors yi from the Gaussian distribution Dk+�

ZN ,σ
and computing commitments

v(n)
i = Ā ·yi (mod q), where i ∈ {0, . . . , ω −1}. Note that σ is chosen according

to Lemma 2 so that each vector v(n)
i is distributed statistically close to uniform

over Rk
q . This prevents learning any information from the commitments in case

of aborts, and hence maintains the security of the secret key share. Afterwards,
signer Sn sets v(n) = (v(n)

0 , . . . ,v(n)
ω−1), computes g(n) = G(v(n),b(n)), and sends

out (n, g(n)) to the remaining signers S1, . . . ,Sn−1 in order to receive (j, g(j)) for
all j ∈ [n − 1]. Sending the index j ∈ [n] together with g(j) allows to map each
signer to the index of its public key share in L. This way, all signers use the
same local ordering of S1, . . . ,Sn, which corresponds to the indices of the public
key shares in L. Then, Sn sends out v(n) and receives a similar vector v(j) from
each Sj . After that, Sn verifies that g(j) = G(v(j),b(j)) for all j ∈ [n − 1], and
aborts if this is not the case. Sn proceeds by computing ωn vectors wt, where
t ∈ {0, . . . , ωn − 1}. These vectors correspond to all possible sums of n different
commitments v(j)

i(j) , i.e., each sum includes one commitment from each signer.
The commitments wt are then used to generate a tree of commitments of height
h = �log(ωn)� via algorithm HashTree, which outputs (root , tree). Note that
due to the unique encoding of L, the indices of the signers are the same by all
signers. Thus, all signers compute the same hash tree. Then, H is called on input
(root ,m,b) to obtain c. After that, Sn runs IterateRej on input (y, z′), where
y = (y0, . . . ,yω−1) and z′ = s(n)c. This algorithm repeatedly keeps applying the
rejection sampling algorithm RejSamp on input (z, z′), where z = yi+z′, until it
accepts for some randomly chosen masking vector yi, where i ∈ {0, . . . , ω − 1}.
IterateRej outputs (z(n), i), where i corresponds to the masking vector for which
RejSamp(z(n), z′) = 1. If RejSamp does not accept for all yi, then IterateRej
returns (⊥,⊥) and the protocol has to be restarted. In this case Sn broadcasts
⊥ and restarts by generating ω fresh masking vectors yi, i.e., from line 6 of Signn.
Otherwise, Sn broadcasts z(n) and receives z(j) from each Sj , where j ∈ [n − 1].
If z(j) = ⊥ for any j ∈ [n − 1], then Sn restarts from line 6. Otherwise, Sn

verifies the correctness of each cosigner’s signature by running Vrf on input
(Ā,b(j),v(j), c, z(j)) for all j ∈ [n − 1]. Vrf outputs a pair (b, i), where b ∈ {0, 1}

Practical Lattice-Based Distributed Signatures 389

indicates accept or reject and i is the index of commitment vi that corresponds
to response zi. If one cosigner’s signature is not valid, then Vrf returns (0,−1),
and Sn aborts. Otherwise, Sn proceeds by computing z =

∑n
j=1 z

(j), compressing
the sum z via Compress, and running BuildAuth to generate the authentication
path auth associated to the index t = IntIndexω,n(i(1), . . . , i(n)) of commitment
wt, where wt is the sum of signer’s commitments v(j)

i(j) that correspond to z.
Finally, Sn returns the signature sig = (c, z, auth).

Verification. Verify first computes A via Expand, sets Ā = [Ik|A], and checks
that ‖z‖ ≤ B after reconstructing z using algorithm Decompress. Then, it
computes w = Ā · z − bc (mod q), and runs RootCalc on input (w, auth)
to compute the root root ′ of the tree of commitments that includes the leaf
F(w) and its authentication path auth. The signature is accepted if and only if
c = H(root ,m,b).

3.2 Security Analysis

In this section we prove the security of our distributed signature protocol.

Theorem 1. Let DSig be the n-out-of-n distributed signature protocol depicted
in Fig. 3,4. For any PPT adversary that initiates a single key generation protocol
of DSig by querying ODSig

n with sid = 0, initiates qSign signature generation pro-
tocols of DSig by querying ODSig

n with sid �= 0, and makes qE , qG, qF, qH queries to
the random oracle Expand,G,F,H, respectively, DSig is UF-CMA secure w.r.t.
pp ∈ PGen(1λ) if MLWE is hard w.r.t. pp′ = (N, k, �, q, η) and MSIS is hard
w.r.t. pp′′ = (N, k, � + 1, q, 2

√
B2 + κ), where

AdvUF-CMA
DSig,A (pp) ≤q2

F + qF
2�F

+
(qG + nqSign + 1)2

2�G+1
+

qE

qk�N
+

qSign ·
(qG + nqSign

|Tκ| +
qH + qSign

|Tκ| +
n

2�G
+

2−Ω(N)−100+1

M

)
+

2 ·
((qG + 1)2

2�G+1
+

n

2�G

)
+

qG
2�seed

+
qG

qkN
+AdvMLWE

D (pp′)+

(qH + qSign) · ωn

|Tκ| +
√

(qH + qSign) · ωn · AdvMSIS
A (pp′′).

Proof. Let A be an adversary that wins the experiment ExpUF-CMA
DSig,A (pp) given

in Fig. 2 with advantage AdvUF-CMA
DSig,A (pp). We assume, w.l.o.g., that Sn is an

honest signer. We construct a reduction R that uses A in a black-box manner
and simulates the behavior of Sn without using honestly generated key pairs.
Then, we use the forking algorithm (see Appendix B.1) to solve MSIS w.r.t.
pp′′. The simulation of key and signature generation is presented in Fig. 5 and
6, respectively. They are derived via the following intermediate hybrids:

390 N. A. Alkadri et al.

Hybrid H0 :
Random oracle simulation. We assume that R is given hi ←$ Tκ as input,
for all i ∈ [qSign + qH]. For each of oracles OExpand,OG,OF, and OH, reduction R
maintains a list LExpand,LG,LF, and LH, respectively. These lists are initialized

Fig. 5. Simulation of key generation.

Practical Lattice-Based Distributed Signatures 391

Fig. 6. Simulation of signature generation. Simulator SimSignn assumes that SimKGenn

has been previously invoked. Algorithm Search is given in Fig. 5, and Vrf in Fig. 4.

with the empty set, and store pairs consisting of queries to the respective oracle
and their answers. Also, R maintains a counter ctr initialized by 0. If an oracle
was previously queried on some input, then R looks up its entry in the respective
list and returns its answer. Otherwise, for queries to OExpand,OG,OF, reduction
R selects a uniformly random answer from the respective range and updates the
respective list. However, for each query to OH, the counter ctr is incremented by
one. Then, the answer hctr ∈ Tκ is returned and the list LH is updated.

392 N. A. Alkadri et al.

Honest Signer Simulation. R invokes Signn exactly as given in Fig. 4.

Forgery. When A returns a forgery (sig∗ = (c∗, z∗, auth∗),m∗), R proceeds as
follows: It returns (0, 0,⊥) if m∗ ∈ Lm or Verify(pk ,m∗, sig∗) �= 1. Otherwise, R
finds an index i∗ ∈ [qSign+qH] such that c∗ = hi∗ , and returns (i∗, t∗, out∗), where
t∗ ∈ {0, . . . , ωn − 1} is included in auth∗ and out∗ = (root∗, c∗, z∗, auth∗,m∗).
root∗ is obtained by running Verify. We let Pr[Hi] denote the probability that R
does not return (0, 0,⊥) at hybrid Hi. Then we have Pr[H0] = AdvUF-CMA

DSig,A (pp).

Hybrid H1 : In this hybrid we modify R from H0 as follows:

Random Oracle Simulation. Oracle OF is simulated as follows:

1. If OF(str) is set, then return OF(str).
2. Select OF(str) ←$ {0, 1}�F .
3. If there exists a pair (str ′,OF(str ′)) ∈ LF : (str �= str ′)∧ (OF(str) = OF(str ′)),

then simulation fails.
4. If there exists (str ′,OF(str ′)) ∈ LF : str ′ = OF(str), then simulation fails.
5. Return OF(str) and update LF.

Note that oracle OF is simulated in a way that excludes collisions and chains. This
ensures that each node output by algorithm HashTree has a unique preimage,
and prevents spanning hash trees with cycles. This simulation is within statistical
distance of at most (q2

F+qF)/2�F from an oracle that allows collisions and chains.

Honest Signer Simulation. R selects c ←$ Tκ and computes signature part
z(n) without interacting with A. After that, R proceeds as in previous hybrid
by sending out (n, g(n)). Upon receiving (j, g(j)) for all j ∈ [n − 1], R finds
corresponding preimages (v(j),b(j)). Then, R proceeds by computing root and
programming OH such that c := OH(root ,m,b). Simulation fails if for any g(j)

more that one preimage were found or no corresponding preimage exists in LG.
Note that H1 is identical to H0 from A’s point of view, except at simulating OF

and the events bad1, bad2, bad3 appeared in Fig. 6, where bad1 is the event that
at least one collision is found during at most qG + nqSign queries to OG, bad3 is
the event that A predicted one of the n − 1 outputs of OG without querying it,
and bad2 is the event that programming OH fails at least once out of qSign queries
to OH due to one of the following cases:

1. OG has been queried by A on (v(n),b(n)) during at most qG + nqSign queries.
This means that A knows (root ,m,b) and could intentionally query OH on
(root ,m,b).

2. OH(root ,m,b) has been set during at most qH + qSign prior queries to OH.

Therefore
∣
∣Pr[H1] − Pr[H0]

∣
∣ ≤ q2

F+qF
2�F

+ Pr[bad1] + Pr[bad2] + Pr[bad3], where

Pr[bad1] ≤ (qG + nqSign)(qG + nqSign + 1)/2
2�G

≤ (qG + nqSign + 1)2

2�G+1
,

Pr[bad2] ≤ qSign

(qG + nqSign
|Tκ| +

qH + qSign
|Tκ|

)
, and Pr[bad3] ≤ nqSign

2�G
.

Practical Lattice-Based Distributed Signatures 393

Hybrid H2 : This hybrid is identical to H1 except at the following points:

Honest Signer Simulation. R does not generate z(n) honestly, and simulates
rejection sampling as follows: With probability δ, sample v(n)

0 , . . . ,v(n)
ω−1 ←$ Rk

q

and set z(n) = ⊥. Otherwise, sample i(n) ←$ {0, . . . , ω − 1} and z(n) ←$ Dk+�
ZN ,σ

.

Then, compute v(n)

i(n) = Ā · z(n) − b(n)c (mod q). The remaining v(n)
i , for all

i ∈ {0, . . . , ω − 1}\{i(n)}, are computed honestly (see Fig. 6). By Lemma 5 in
Appendix D we obtain

∣
∣Pr[H2] − Pr[H1]

∣
∣ ≤ qSign · 2−Ω(N)−100+1

M .

Hybrid H3 : At this point, simulation does not rely on the actual secret key
share s(n) (see SimSignn, Fig. 6). In this hybrid, R samples seed ←$ {0, 1}�seed

and programs OExpand such that A := OExpand(seed). Then, it computes seed (n) a
posteriori, after extracting A’s committed shares seed (1), . . . , seed (n−1) via algo-
rithm Search, i.e., by searching the recorded queries to OG (see SimKGenn,
Fig. 5). Note that H3 is identical to H2 from A’s point of view, except at
programming OExpand and the events bad ′

1, bad
′
2, bad

′
3 appeared in SimKGenn.

Therefore we have
∣
∣Pr[H3] − Pr[H2]

∣
∣ ≤ qE

qk�N + (qG+1)2

2�G+1 + qG
2�seed

+ n
2�G

, where
Pr[bad ′

1] ≤ ((qG + 1)qG/2)/2�G is the probability that at least one collision is
found during at most qG queries to OG, Pr[bad ′

2] is the probability that program-
ming OG fails, which occurs if OG has been previously queried by A on (seed (n), n)
during at most qG queries, and the probability that guessing a uniformly random
seed (n) is at most 1/2�seed for each query, and Pr[bad ′

3] ≤ n/2�G is the probability
that A predicted one of the n − 1 outputs of OG without querying it.

Hybrid H4 : This hybrid is identical to H3 except that R samples public key
share b(n) ←$ Rk

q instead of computing b(n) = Ā·s (mod q), where s(n) ←$ Sk+�
η .

If A can distinguish between H3 and H4, then A can be used to break the MLWE
assumption w.r.t. pp′. Therefore we have

∣
∣Pr[H4] − Pr[H3]

∣
∣ ≤ AdvMLWE

D (pp′).

Hybrid H5 : In this hybrid, R computes its public key share b(n) a posteriori,
after extracting A’s committed shares b(1), . . . ,b(n−1) via Search, i.e., by search-
ing the recorded queries to OG (see SimKGenn, Fig. 5). Note that H5 is identical
to H4 from A’s point of view, except at the events bad ′

4, bad
′
5, bad

′
6 appeared in

SimKGenn. Therefore we have
∣
∣Pr[H5] − Pr[H4]

∣
∣ ≤ (qG+1)2

2�G+1 + qG
qkN + n

2�G
, where

Pr[bad ′
4],Pr[bad

′
5], and Pr[bad ′

6] are calculated as in H3.

Forking: Given A′ ∈ R
k×(�+1)
q as input, the goal is to solve MSIS w.r.t. pp′′. To

this end, R writes A′ = [A|b] ∈ Rk×�
q ×Rk

q and generates the remaining parame-
ters of DSig to obtain pp and run A on input pp. This does not change the view of
A at all. In order to use the forking lemma (Appendix B.1), we define its instance
generator algorithm IGen such that it outputs (A,b). Then, R runs forking algo-
rithm FrkTκ,A on input (A,b). With probability frk , we obtain two forgeries
out , out ′, where out = (root , c, z, auth,m) and out ′ = (root ′, c′, z′, auth ′,m ′).
Thus we obtain Pr[H5] = acc ≤ (qH+qSign)·ωn

|Tκ| +
√

(qH + qSign) · ωn · frk . Simu-
lating OF as given in hybrid H1 ensures that both auth = (t, str0, . . . , strh−1)

394 N. A. Alkadri et al.

and auth ′ = (t′, str ′
0, . . . , str

′
h−1) include the same sequence of hash values, i.e.,

str i = str ′
i for all i ∈ {0, . . . , h − 1} and h = �log(ωn)�. By the forking lemma

we have root = root ′, t = t′, m = m ′, and c �= c′. Moreover, the view of A is
identical in both executions until the forking index i∗. Since auth = auth ′, we
have w = w′, where w = Ā · z − bc and w′ = Ā · z′ − bc′. Thus, we obtain

[Ik|A|b] ·
[
z − z′

c′ − c

]

= 0.

Note that 0 < ‖c′−c‖ ≤ 2
√

κ, and since both forgeries are valid we have ‖z‖ ≤ B
and ‖z′‖ ≤ B. Therefore, ‖z−z′‖ ≤ 2B and the vector [z−z′|c′ −c]� constitutes
a non-trivial solution to MSIS w.r.t. pp′′. Hence, frk ≤ AdvMSIS

A (pp′′).

3.3 Concrete Parameters

In this section we propose sample parameters for our distributed signature pro-
tocol and the protocols introduced by Damgård et al. [17] and Chen [13]. The
parameters are presented in Table 2. The corresponding sizes of public keys and
signatures as well as the communication cost of key and signature generation
are given in Table 1. The hardness of the underlying instances of MLWE and
MSIS are estimated as described in Appendix C. We provide a proof-of-concept
implementation for our protocol in C++2 and evaluate it on a regular laptop
(Macbook Air M1) with 3.2 GHz CPU and 8 GB RAM. The performance results
are shown in Table 1. In the following we highlight some key points regarding
the parameter selection.

The parameters of our protocol are chosen according to the constraints given
in Table 3. In particular, the modulus q together with the standard deviation
σ are selected such that each commitment generated by a signer is distributed
statistically close to uniform over Rk

q , and the underlying instances of MLWE
and MSIS are sufficiently hard. We note that for all schemes we set q > β,
where β is the bound of a solution to MSIS. This prevents the existence of
trivial solutions like (q, 0, . . . , 0). The number of commitments ω is chosen such
that with probability very close to 1, signers compute a response without the
need to restart the signing protocol, i.e., the number of restarts per signer is
S = 1/(1−2−25) ≈ 1. Therefore, the whole signing protocol does not abort at all
with very high probability, i.e., M̄ ≈ 1. Note that this value of S is reasonable in
practice, and there is no need to increase ω to obtain a value of S more closer to 1,
e.g., S = 1/(1−2−50). Increasing ω would reduce the performance of the signing
protocol in a significant way, which is not desired in practice. For a reasonably
small M̄ , [17] suggests to set α = 11n to obtain M̄ = 3, while α = 8.5n is
suggested in [13] so that M̄ ≈ 5. We set α = 11n = 77 to obtain M̄ = 3 for both
schemes. The trapdoor homomorphic commitment scheme used in [17] commits
to a single element from Rq. Therefore, a commitment to each coefficient of a
vector from Rq is computed separately3. Concrete parameters of the commitment
2 Source code: https://anonymous.4open.science/r/distSig-Lattice-2D48.
3 As stated in [17], there is no efficiency gain from extending the construction to

commit to vectors from Rq.

https://anonymous.4open.science/r/distSig-Lattice-2D48

Practical Lattice-Based Distributed Signatures 395

scheme are given by the tuple (N, q, s) = (1024,≈ 245,≈ 225). The remaining
parameters can be easily derived form this tuple. They are selected to support
homomorphic additions of 7 commitments, and such that all security properties
are satisfied (see [17, Section 5.2] for details). The communication cost of each
signing protocol is given by the total amount of data sent per signer, including
the number of restarts, i.e., M̄ · (|R1| + |R2|) + |R3|, where for i ∈ {1, 2, 3}, the
term |Ri| denotes the length of the bit string sent by each signer in the ith round.
Note that |R1| = 0 in [13,17]. The size of any Gaussian element is computed
according to Lemma 1, i.e., the values of t and γ are selected such that the
bounds in Lemma 1 hold with probability at most 2−80. Finally, we would like
to note that the scheme by Chen [13] is the most suitable one for applications
requiring a large number of signers.

Table 2. Concrete parameters for our distributed signature protocol and the protocols
proposed in [13,17]. The parameters consider n = 7 signers and target 128 bits of
security. We fix N = 256 and set κ = 23 for all schemes so that |Tκ| ≥ 2128 and the
challenge space Tκ provides at least 128 bits of entropy. In [13,17], the total number of
restarts M̄ is denoted by Mn. The output length of hash functions is set to 256 bits.

Parameter Our protocol Damgård et al. [17] Chen [13]

k 5 5 6

� 7 4 9

q ≈ 245 ≈ 227 ≈ 243

η 1 3 1

ω 2 - -
α 72090 77 77

σ 91899568 255024 78293860

σ′ - - 37127790

M̄ 1 3 3

Conclusion

In this paper we have presented a new lattice-based construction of n-out-
of-n distributed signatures. Our protocol follows the Fiat-Shamir with aborts
paradigm and supports applications with a small number of signers only. We pro-
posed sample parameters and provided a comparison with similar works show-
ing the significant improvement and practicality of our approach. An interesting
extension to our work is to provide a security proof in the quantum random ora-
cle model [10]. The possibility of both rewinding and programming the random
oracle in the quantum setting have already been shown, e.g., in [19,24,31].

Acknowledgements. This work was funded by the European Union (ERC, LACO-
NIC, 101041207). Views and opinions expressed are however those of the authors only

396 N. A. Alkadri et al.

and do not necessarily reflect those of the European Union or the European Research
Council. Neither the European Union nor the granting authority can be held responsible
for them.

A More Related Work

Threshold Signatures. Few works proposed lattice-based constructions of t-
out-of-n threshold signatures [1,9,11,16]. The first one by Bendlin et al. [9] gives
a threshold variant of standard hash-and-sign signatures by Gentry et al. [22].
The main downside of this protocol is that only a priori bounded number of
online non-interactive signing operations can be performed before an offline inter-
active protocol must be performed. This offline protocol includes a threshold
Gaussian sampling phase, which is carried out using generic multiparty com-
putation (MPC). Cozzo and Smart [16] show that the lattice-based signature
schemes that have been submitted to the NIST post-quantum standardization
process have significant issues when converting them into threshold ones using
relatively generic MPC techniques. The main issue is the need to carry out the
rejection sampling procedure, which requires to keep intermediate values secret
until after performing rejection sampling and comparing them with given con-
stants. Moreover, they require several rounds of communication and a mixture of
linear and non-linear operations that incur costly transformations between both
representations. Boneh et al. [11] propose a generic framework that requires sev-
eral other cryptographic primitives as building blocks, including deterministic
signatures, threshold fully homomorphic encryption, and a homomorphic signa-
ture scheme. Due to the involvement of heavy cryptographic primitives, it is not
clear if their construction can be adapted in practical applications. Agrawal et
al. [1] improve the construction by Boneh et al. [11] bringing it closer to practice.

B Additional Background

The next lemma is for the tail bound of Gaussian vectors.

Lemma 1 ([26, Lemma 4.4]). Let σ, t, γ ∈ R>0 and m ∈ N>0. Then we have:

1. Prx←$DZm,σ
[‖x‖∞ > tσ] ≤ 2m exp(−t2/2).

2. Prx←$DZm,σ
[‖x‖ > γσ

√
m] ≤ γm exp(m

2 (1 − γ2)).

We rely on the following lemma, which is a certain regularity theorem.

Lemma 2 ([27, Corollary 7.5]). Let A ←$ Rk×�
q and Ā = [Ik|A] ∈ R

k×(k+�)
q .

Let σ > 2N ·q
k

k+�
+ 2

N(k+�)√
2π

and x ←$ Dk+�
ZN ,σ

. Then, the distribution of Ā·x (mod q)

is within statistical distance 2−Ω(N) of the uniform distribution over Rk
q .

The next lemma is a variant of the rejection sampling lemma specified for DZm,σ.

Practical Lattice-Based Distributed Signatures 397

Lemma 3 ([26, Theorem 4.6]). Define V := {v ∈ Z
m : ‖v‖ ≤ T}, where

T > 0. Let σ = αT for some α > 0, and h : V → R be a probability distribution.
Then, there exists a constant M > 0 such that exp(12

α + 1
2α2) ≤ M , and the

following two algorithms are within statistical distance of at most 2−100/M :

1. v ←$ h; z ←$ DZm,σ,v; output (z,v) with probability 1−2−100

M .
2. v ←$ h; z ←$ DZm,σ; output (z,v) with probability 1/M .

We let RejSamp denote an algorithm that carries out rejection sampling on z,
where z ←$ DZm,σ,v, ‖v‖ ≤ T , and σ = αT . That is, on input (z,v), RejSamp
returns 1 if z is accepted and 0 if rejected. By Lemma 3, the output 1 indicates
that the distribution of z is within statistical distance of at most 2−100/M from
DZm,σ, where exp(12

α + 1
2α2) ≤ M . RejSamp returns 1 with probability ≈ 1/M ,

and hence the expected number of restarts necessary to return 1 is given by M .

Fig. 7. Definition of experiments ExpAcc
IGen,C,A, ExpFrk

IGen,C,A, and forking algorithm FrkC,A.

B.1 Forking Lemma

Let C be some finite set and R be some randomness space. Let IGen be a PPT
algorithm, and consider an algorithm A that, on input an instance x ∈ IGen and
random values h1, . . . , hq ∈ C, returns a pair (idx , out), where 0 ≤ idx ≤ q and
out is a side output related to hidx . The index idx = 0 indicates that A has
failed to compute a side output out related to any of the values h1, . . . , hq. The
general forking lemma [7] gives a lower bound on the probability of the forking
experiment in which A, if run twice on the same instance x and randomness
r ∈ R, but partially different values from C, will return the same index idx and
two side outputs out and out ′, which are related to the values hidx and h′

idx ,
respectively. The experiment fails if both runs of A return two different indices,
or if hidx = h′

idx . For the security proof of our n-out-of-n distributed signature
protocol we need a minor version of the general forking lemma. This version was

398 N. A. Alkadri et al.

given in [4]. It considers an algorithm A that further returns a second index as
part of the output, i.e., A returns a tuple (idx 1, idx 2, out), where idx 1 and out are
as before, and 0 ≤ idx 2 < ω for ω ∈ N>0. The forking experiment succeeds only
if both runs of A return the same pair of indices (idx 1, idx 2) and hidx1 �= h′

idx1
.

Lemma 4. Let q, ω ∈ N>0, C be a finite set of size |C| ≥ ∈, and R be a ran-
domness space. Let IGen be a PPT algorithm, and A be a PPT algorithm that,
on input x ∈ IGen and h1, . . . , hq ∈ C, outputs a tuple (idx 1, idx 2, out), where
0 ≤ idx 1 ≤ q and 0 ≤ idx 2 < ω. Define the accepting probability and the forking
probability of A by

acc := Pr[ExpAcc
IGen,C,A = 1] and frk := Pr[ExpFrk

IGen,C,A = 1],

where the experiments ExpAcc
IGen,C,A and ExpFrk

IGen,C,A are depicted in Fig. 7. Then,

we have frk ≥ acc ·
(

acc
q·ω − 1

|C|
)
. Alternatively, acc ≤ q·ω

|C| +
√

q · ω · frk .

C Hardness Estimation of MLWE and MSIS

In this section, we explain the methodology that we follow in this work to esti-
mate the hardness of MLWE and MSIS. First, we remark that all known algo-
rithms solving MLWE and MSIS do not exploit their algebraic structure.

Estimating the hardness of MLWE w.r.t. pp = (N, k, �, q, η) is carried out by
using the LWE-Estimator4 presented by Albrecht et al. [2].

Given pp = (N, k, �, q, β) and A = [ai,j]1≤i≤k,1≤j≤� ∈ Rk×�
q , the hardness

of MSIS w.r.t. pp is equivalent to solving the Shortest Vector Problem (SVP),
i.e., finding a non-trivial vector, whose �2-norm is bounded by β, in the lattice
{x ∈ Z

m : 0 = [Id|A′] · x (mod q)}, where d = kN , m = (k + �)N , and A′ is the
matrix obtained by computing the rotation matrix of each entry of A, i.e.,

A′ =

⎡

⎢
⎣

Rot(a1,1) . . . Rot(a1,�)
...

. . .
...

Rot(ak,1) . . . Rot(ak,�)

⎤

⎥
⎦ ∈ Z

kN×�N
q .

We recall that the rotation matrix of any a =
∑N−1

i=0 aiX
i ∈ R is defined by

Rot(a) := (a, rot(a), rot2(a), . . . , rotN−1(a)) ∈ Z
N×N ,

where a = (a0, . . . , aN−1)�, rot(a) := (−aN−1, a0, . . . , aN−2)�, and for all other
k ∈ {2, . . . , N − 1} : rotk(a) := rot(rotk−1(a)) .

The best known algorithm for finding short non-trivial vectors is due to
Schnorr and Euchner [30]. It is called the Block-Korkine-Zolotarev algorithm
(BKZ), and was improved in practice by Chen and Nguyen [15]. As a subroutine,
BKZ uses an SVP solver in lattices of dimension b, where b is called the block
size. The best known classical algorithm for SVP with no memory restrictions is
4 https://github.com/malb/lattice-estimator.

https://github.com/malb/lattice-estimator

Practical Lattice-Based Distributed Signatures 399

due to Becker et al. [5], and it takes time ≈ 20.292 b. The time required by BKZ
to run with block size b on an m-dimensional lattice L is given by (see, e.g. [5])

8m 20.292 b+16.4. (1)

The output of BKZ is a vector of length δm det(L)1/m, where δ is called the
Hermite delta and it is given by (see, e.g. [14,15])

δ =
(
b (πb)

1
b /(2πe)

) 1
2(b−1) , (2)

and det(L) is the determinant of L. Micciancio and Regev [29] showed that
it is better to run algorithm BKZ with a maximum of m =

√
d log(q)/ log(δ)

columns of the matrix [Id|A′]. The coefficients of the solution output by BKZ
and correspond to the dropped columns are then set to zero. This allows to
find a non-zero vector of length min(q, 22

√
d log(q) log(δ)). In other words, when

considering δm det(L)1/m as a function of m, Micciancio and Regev [29] showed
that the minimum of this function is given by the value 22

√
d log(q) log(δ), and

it is obtained when m =
√

d log(q)/ log(δ). Therefore, in order to compute the
time required by BKZ to solve MSIS w.r.t. pp, we first determine δ by setting
β = 22

√
d log(q) log(δ), where d = kN and m = (k + �)N . After that, we compute

the minimum block size b required to achieve δ by using (2). The resulted b is
put in (1) to obtain the desired time.

Fig. 8. The algorithms that show the Indistinguishability of hybrids H2 and H1 defined
in the proof of Theorem 1.

400 N. A. Alkadri et al.

D Indistinguishability of Hybrids H2 and H1

The following lemma establishes the statistical distance between the hybrids H2

and H1 defined in the proof of Theorem 1.

Lemma 5. Let σ be as in Lemma 2, M be as in Lemma 3, and δ > 0 such that
(1 − 1−2−100

M)ω ≤ δ. Let A ←$ Rk×�
q , Ā = [Ik|A] ∈ R

k×(k+�)
q , s ←$ Sk+�

η , and
b = Ā · s (mod q). Then, the output distributions of the algorithms A0 and A1

defined in Fig. 8 are within statistical distance of at most 2−Ω(N)+1 · 2−100/M .

Proof. The proof is similar to the one of [12, Lemma B.8], which is performed
via standard hybrid arguments. The only difference here is that in algorithm
A0 rejection sampling is carried out at most ω times, using Gaussian masking
vectors y0, . . . ,yω−1. The goal is to make sure that the distribution of z = yi+sc
is independent of sc. The random choice of ρ ∈ [0, 1) and doing the test in
line 13 is a standard implementation of the rejection sampling procedure. By
Lemma 3, rejection sampling accepts with probability (1 − 2−100)/M , and z is
within statistical distance of 2−100/M from the Gaussian distribution Dk+�

ZN ,σ
.

When using ω masking vectors y0, . . . ,yω−1, instead of only one, algorithm A0

returns (z, i) �= (⊥,⊥) with probability 1 − (1 − 1−2−100

M)ω ≤ 1 − δ. Lemma 2 is

Table 3. Parameters of our distributed signature protocol.

Parameter Description Bounds

n No. signers ωn small
N Defines the ring R power of two
k, � Dimension of matrix A k, � ∈ N>0

q Modulus prime, q = 1 (mod 2N)

η Bound of ‖s(n)‖∞ η ∈ Z>0

κ Specifies the set Tκ 2κ

(
N

κ

)
≥ 2λ

σ Standard deviation of z(n) σ = α‖sc‖ = ακη
√

(k + �)N ,

α > 0, σ > 2N·q
k

k+�
+ 2

N(k+�)√
2π

ω No. vectors yi ω ∈ N>1, (1 − 1−2−100

M
)ω ≤ δ,

M = exp(12
α

+ 1
2α2), δ > 0

h Tree height h = �log(ωn)	
S No. restarts of Signn S = 1/(1 − δ)

M̄ Total No. restarts M̄ = Sn

Bz Bound of ‖z(n)‖ Bz = γσ
√

(k + �)N , γ > 0

B Bound of ‖z‖ B =
√

nBz

�seed Input length of Expand �seed ≥ λ

�G, �F Output length of G,F �G, �F ≥ 2λ

Practical Lattice-Based Distributed Signatures 401

applied twice in order to obtain a statistical distance of 2−Ω(N) between a vector
Ā · y ∈ Rk

q , for y ←$ Dk+�
ZN ,σ

, and a uniformly random vector from Rk
q . We refer

to [12, Lemma B.8] for more details.

References

1. Agrawal, S., Stehlé, D., Yadav, A.: Round-optimal lattice-based threshold signa-
tures, revisited. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2022.
LIPIcs, vol. 229, pp. 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: On lattice-based inter-
active protocols: An approach with less or no aborts, pp. 41–61 (2020). https://
doi.org/10.1007/978-3-030-55304-3_3

4. Alkeilani Alkadri, N., Harasser, P., Janson, C.: BlindOR: an efficient lattice-based
blind signature scheme from OR-proofs, pp. 95–115 (2021). https://doi.org/10.
1007/978-3-030-92548-2_6

5. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving, pp. 10–24 (2016). https://doi.org/
10.1137/1.9781611974331.ch2

6. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
oracle cloning and read-only indifferentiability, pp. 3–32 (2020). https://doi.org/
10.1007/978-3-030-45724-2_1

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma, pp. 390–399 (2006). https://doi.org/10.1145/1180405.1180453

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols, pp. 62–73 (1993). https://doi.org/10.1145/168588.168596

9. Bendlin, R., Krehbiel, S., Peikert, C.: How to share a lattice trapdoor: threshold
protocols for signatures and (H)IBE, pp. 218–236 (2013). https://doi.org/10.1007/
978-3-642-38980-1_14

10. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world, pp. 41–69 (2011). https://doi.org/10.1007/
978-3-642-25385-0_3

11. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption, pp. 565–596 (2018). https://doi.org/10.1007/978-3-319-96884-1_19

12. Boschini, C., Takahashi, A., Tibouchi, M.: MuSig-L: Lattice-based multi-signature
with single-round online phase, pp. 276–305 (2022). https://doi.org/10.1007/978-
3-031-15979-4_10

13. Chen, Y.: DualMS: Efficient lattice-based two-round multi-signature with trapdoor-
free simulation. In: Advances in Cryptology - CRYPTO 2023, pp. 716–747 (2023).
https://doi.org/10.1007/978-3-031-38554-4_23

14. Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement completement
homomorphe. Ph.D. thesis, ENS-Lyon, France (2013)

15. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates, pp. 1–20 (2011).
https://doi.org/10.1007/978-3-642-25385-0_1

16. Cozzo, D., Smart, N.P.: Sharing the LUOV: threshold post-quantum signatures,
pp. 128–153 (2019). https://doi.org/10.1007/978-3-030-35199-1_7

https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-92548-2_6
https://doi.org/10.1007/978-3-030-92548-2_6
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-642-38980-1_14
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-38554-4_23
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-030-35199-1_7

402 N. A. Alkadri et al.

17. Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n and
multi-signatures and trapdoor commitment from lattices 35(2), 14 (2022). https://
doi.org/10.1007/s00145-022-09425-3

18. Desmedt, Y., Frankel, Y.: Threshold cryptosystem, pp. 307–315 (1990). https://
doi.org/10.1007/0-387-34805-0_28

19. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model, pp. 356–383 (2019). https://doi.org/
10.1007/978-3-030-26951-7_13

20. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature
scheme 2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268,
https://tches.iacr.org/index.php/TCHES/article/view/839

21. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle,
D.: Crystals - dilithium: Digital signatures from module lattices. Cryptology
ePrint Archive, Paper 2017/633 (2017), https://eprint.iacr.org/archive/2017/633/
20170627:201152

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions, pp. 197–206 (2008). https://doi.org/10.1145/
1374376.1374407

23. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisig-
natures. NEC Res. Develop. 71, 1–8 (1983)

24. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir, pp. 326–355 (2019).
https://doi.org/10.1007/978-3-030-26951-7_12

25. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures, pp. 598–616 (2009). https://doi.org/10.1007/978-3-642-10366-
7_35

26. Lyubashevsky, V.: Lattice signatures without trapdoors, pp. 738–755 (2012).
https://doi.org/10.1007/978-3-642-29011-4_43

27. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography,
pp. 35–54 (2013). https://doi.org/10.1007/978-3-642-38348-9_3

28. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract, pp. 245–254 (2001). https://doi.org/10.1145/501983.502017

29. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-
88702-7_5

30. Schnorr, C., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994). https://
doi.org/10.1007/BF01581144

31. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability, pp. 239–268 (2019). https://doi.org/10.1007/978-3-030-26951-7_9

https://doi.org/10.1007/s00145-022-09425-3
https://doi.org/10.1007/s00145-022-09425-3
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://eprint.iacr.org/archive/2017/633/20170627:201152
https://eprint.iacr.org/archive/2017/633/20170627:201152
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1145/501983.502017
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/978-3-030-26951-7_9

Building MPCitH-Based Signatures
from MQ, MinRank, and Rank SD

Thibauld Feneuil1,2(B)

1 CryptoExperts, Paris, France
thibauld.feneuil@cryptoexperts.com

2 Sorbonne Université, CNRS, INRIA, Institut de Mathématiques,

de Jussieu-Paris Rive Gauche, Ouragan, Paris, France

Abstract. The MPC-in-the-Head paradigm is a useful tool to build
practical signature schemes. Many such schemes have been already pro-
posed, relying on different assumptions. Some are relying on standard
symmetric primitives like AES, some are relying on MPC-friendly prim-
itives like LowMC or Rain, and some are relying on well-known hard
problems like the syndrome decoding problem.

This work focuses on the third type of MPCitH-based signatures. Fol-
lowing the same methodology as the work of Feneuil, Joux and Rivain
(CRYPTO’22), we apply the MPC-in-the-Head paradigm to several
problems: the multivariate quadratic problem, the MinRank problem,
and the rank syndrome decoding problem. Our goal is to study how this
paradigm behaves for each of those problems.

For the multivariate quadratic problem, our scheme outperforms
slightly the former schemes when considering large fields (as GF(256)).
Even if the scheme does not always outperform the existing ones accord-
ing to the communication cost, they are compatible with some MPC-in-
the-Head techniques while the former proposals were not.

Moreover, we propose two efficient MPC protocols to check that the
rank of a matrix over a field Fq is upper bounded by a public constant.
The first one relies on the rank decomposition while the second one relies
on q-polynomials. We then use them to build signature schemes relying
on the MinRank problem and the rank syndrome decoding problem.
Those schemes outperform the former schemes, achieving sizes below 6
KB (while using only 256 parties for the MPC protocol).

Keywords: zero-knowledge proofs · post-quantum signatures ·
MPC-in-the-head

1 Introduction

The MPC-in-the-Head paradigm [IKOS07] is a versatile framework to design
zero-knowledge proofs of knowledge, by relying on secure multi-party computa-
tion (MPC) techniques. After sharing the secret witness, the prover emulates “in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 403–431, 2024.
https://doi.org/10.1007/978-3-031-54770-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_16

404 T. Feneuil

her head” an MPC protocol with N parties and commits each party’s view inde-
pendently. The verifier then challenges the prover to reveal the views of a random
subset of parties. By the privacy of the MPC protocol, nothing is revealed about
the witness, which implies the zero-knowledge property. On the other hand, a
malicious prover needs to cheat for at least one party, which shall be discovered
by the verifier with high probability, hence ensuring the soundness property.

Combined with the Fiat-Shamir transform [FS87], the MPCitH paradigm
provides a useful tool for building practical signatures. The security of the result-
ing scheme only depends on the security of commitment/hash functions and the
security of a one-way function. The choice of this one-way function is left to
the signature designers. A first research track [ARS+15,DKR+21] consists in
designing MPC-friendly primitives and in using them with the MPC-in-the-
Head paradigm to get short signatures. This methodology has the disadvantage
of requiring deep cryptanalysis of the introduced primitives. Another strategy
would be to use standard symmetric primitives like AES as security assumptions
for the MPCitH-based signatures, but it tends to produce larger signatures. As a
last option, we can rely on a hard problem that exists for a long time and thus is
well understood. For example, [FJR22] succeeds in designing an efficient signa-
ture scheme using the syndrome decoding problem (over the Hamming weight),
which is one of the oldest problems of code-based cryptography. The case of the
syndrome decoding problem has been covered, but a natural question would be

Which performances can we have when using
the MPC-in-the-Head paradigm with other hard problems?

Some articles [Wan22,FJR21,BG22,FMRV22] already apply this paradigm
to hard problems (multivariate quadratic problem, MinRank problem, sub-
set sum problem, ...). One of the drawbacks of almost all the schemes is
that, when there is no structure to exploit, they need to rely on protocols
with helpers [Beu20]. This technique introduced by [KKW18] and formalized
by [Beu20] is quite powerful, but suffers from a high computational cost. As a
consequence, the number of parties involved in the MPC protocol must stay low
to have a practical scheme (in practice, many works take 32 as a limit for the
number of parties), preventing achieving smaller sizes. Recently, [BG22] succeeds
in leveraging the structure when considering structured hard problems (as the
ideal rank syndrome decoding problem) and thus succeeds in achieving smaller
sizes by removing the helper from [FJR21].

The present work aims to complete the state of the art of the MPC-in-the-
Head applied to hard problems.

Our Contribution. In this article, we consider several hard problems for which
we propose new zero-knowledge proofs using the MPC-in-the-Head paradigm.

First, we propose a new zero-knowledge proof of knowledge for the multi-
variate quadratic problem. The resulting signature scheme outperforms [Wan22]
only when the base field is large enough (e.g. F256).

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 405

Secondly, we propose two efficient MPC protocols which take as input a
matrix M ∈ F

n×m
q and which check that the rank of M is upper bounded by r,

where r is a public positive integer:

– the first one decomposes M as a product TR where T ∈ F
n×r
q and R ∈

F
r×m
q , and uses an MPC protocol that checks the correctness of a matrix

multiplication;
– the second one relies on the fact that the rows of M (represented as elements of
Fqm) are roots of a q-polynomial of degree qr and on the fact that computing a
q-polynomial is efficient in MPC while exploiting the linearity of the Frobenius
endomorphism v �→ vq.

We then use those protocols to build efficient signatures relying on the MinRank
problem or on the rank syndrome decoding problem. Our schemes outperform all
the previous proposals, by achieving sizes below 7 KB. They also outperform the
[BG22]’s proposals which use structured problems (as the ideal rank syndrome
decoding problem) to achieve small sizes.

Related Works. Our work aims to propose efficient conservative signature
schemes using the MPC-in-the-Head paradigm. Other approaches are possible
to design signatures:

– the schemes built from the Fiat-Shamir transformation of an identification
scheme relying on an equivalence problem such as LESS [BMPS20,BBPS21]
and MEDS [CNP+23]. Those schemes tend to have large keys (a few tens of
kilobytes), so the MPCitH-based schemes outperform them for the common
“signature size + public key size” metric.

– the schemes built using the hash-and-sign paradigm such as UOV [KPG99]
and Wave [DST19]. Those schemes have very competitive signature sizes
(less than one kilobyte), but suffer large public keys. Some schemes have
shorter public keys as MAYO [Beu22], but they rely on more recent security
assumptions.

The MPCitH paradigm (applied to non-structured problems) provides interest-
ing alternatives to SPHINCS+ [BHK+19] by being conservative without the
large signing times of SPHINCS+. Other schemes can be considered as less con-
servative (either because relying on a recent assumption or on a structured one)
or have large public keys.

In July 2023, the NIST released the first-round candidates of the new call
for additional post-quantum signatures [NIS22]. Several of those schemes are
related to our work. Ryde [ABB+23a] and Mira [ABB+23b] are schemes based
on our linearized-polynomial MPC protocols respectively for the rank syndrome
decoding problem and the MinRank problem. MiRith [ARZV+23] is a scheme
combining ideas from [ARZV22] with our rank-decomposition MPC protocol
for the MinRank problem. Finally, MQOM [FR23] succeeded in improving our
scheme on the MQ problem, decreasing the obtained signature size by 500−800
bytes.

406 T. Feneuil

Paper Organization. The paper is organized as follows: In Sect. 2, we introduce
some background on the MPC-in-the-Head paradigm and present our method-
ology. Then we apply the latter to the multivariate quadratic problem in Sect. 3,
to the MinRank problem and the rank syndrome decoding problem in Sect. 4.
Finally, we discuss the computational cost of the obtained schemes in Sect. 5.

2 Preliminaries

Throughout the paper, Fq shall denote the finite field with q elements. For any
m ∈ N

∗, the integer set {1, . . . , m} is denoted [m]. For a probability distribution
D, the notation s ← D means that s is sampled from D. For a finite set S, the
notation s ← S means that s is uniformly sampled at random from S.

In this paper, we shall use the standard cryptographic notions of (honest
verifier) zero-knowledge proof of knowledge and secure multiparty computation
protocols (in the semi-honest model). We refer to [FR22] for the formal definition
of those notions.

2.1 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07] offers a way
to build zero-knowledge proofs from secure multi-party computation (MPC) pro-
tocols. Let us assume we have an MPC protocol in which N parties P1, . . . ,PN

securely and correctly evaluate a function f on a secret input x with the following
properties:

– the secret x is encoded as a sharing �x� and each Pi takes a share �x�i as
input;

– the function f outputs Accept or Reject;
– the views of t parties leak no information about the secret x.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of
an x for which f(x) evaluates to Accept. The prover proceeds as follows:

– she builds a random sharing �x� of x;
– she simulates locally (“in her head”) all the parties of the MPC protocol;
– she sends commitments to each party’s view, i.e. party’s input share, secret

random tape and sent and received messages, to the verifier;
– she sends the output shares �f(x)� of the parties, which should correspond

to Accept.

Then the verifier randomly chooses t parties and asks the prover to reveal their
views. After receiving them, the verifier checks that they are consistent with an
honest execution of the MPC protocol and with the commitments. Since only t
parties are opened, revealed views leak no information about the secret x, while
the random choice of the opened parties makes1 the cheating probability upper
bounded by (N −t)/N , thus ensuring the soundness of the zero-knowledge proof.
1 We implicitly assume here that the communication between parties is broadcast.

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 407

All MPC protocols described in this article fit the model described in [FR22],
meaning that the parties take as input an additive sharing �x� of the secret x
(one share per party) and that they compute one or several rounds in which they
perform three types of actions:

Receiving randomness: the parties receive a random value ε from a random-
ness oracle OR. When calling this oracle, all the parties get the same random
value ε.

Receiving hint: the parties can receive a sharing �β� (one share per party)
from a hint oracle OH . The hint β can depend on the witness w and the
previous random values sampled from OR.

Computing & broadcasting: the parties can locally compute �α� := �ϕ(v)�
from a sharing �v� where ϕ is an F-linear function, then broadcast all the
shares �α�1, . . . , �α�N to publicly reconstruct α := ϕ(v). The function ϕ can
depend on the previous random values {εi}i from OR and on the previous
broadcasted values.

We refer to [FR22] for the detailed transformation of such MPC protocols into
zero-knowledge proofs of knowledge and for the resulting performance.

2.2 Methodology

In each of the following sections, we focus on a specific hard problem that is
supposed quantum-resilient. For each of them, we will use the MPC-in-the-Head
paradigm to build a new zero-knowledge protocol. To proceed, we first describe
the MPC protocol we use, then we present the achieved performance when apply-
ing the paradigm. We do not exhibit the obtained proof of knowledge since the
transformation is standard. We refer the reader to [FR22] for a detailed explana-
tion of how to concretely apply the MPC-in-the-Head paradigm. Finally, we use
the Fiat-Shamir transform [FS87] on the obtained protocol to get a signature
scheme. Because of the space constraints, we put a more detailed description of
our methodology in Appendix A.

2.3 Matrix Multiplication Checking Protocol

In our constructions, we need an MPC protocol that checks that three matrices
X,Y,Z satisfy Z = X · Y . We describe in Fig. 1 such a protocol Πη

MM which has
a positive parameter η. This protocol is a matrix variant of the multiplication
checking protocol of [BN20] (optimized in [KZ22]).

Lemma 1. If Z = X · Y and if C are genuinely computed, then Πη
MM always

outputs Accept. If Z �= X · Y , then Πη
MM outputs Accept with probability at

most 1
qη .

Proof. We have

V = X(Y Σ + A) − C − ZΣ = (XY − Z)Σ − (C − XA).

408 T. Feneuil

Fig. 1. The MPC protocol Πη
MM which checks that Z = X · Y (mm stands for Matrix

Multiplication).

If Z = XY and C = XA, V is equal to zero and thus the parties will always
output Accept. In contrast, if Z �= XY , then there exists (i∗, j∗) ∈ [m] × [n]
such that Zi∗,j∗ − (X · Y)i∗,j∗ �= 0. Given k ∈ {1, . . . , η}, Σj∗,k is uniformly
sampled in Fq and then ((Z − X · Y)Σ)i∗,k is uniformly random in Fq (because
one term of the term is uniformly random). Thus, the probability that V is zero
is at most the probability that (Z −X ·Y)Σ is equal to (C −XA) on the row i∗

whereas the row i∗ of (Z−X ·Y)Σ is uniformly random in F
η
q , i.e. the probability

that V is zero (at row i∗) is at most 1
qη . �

3 Proof of Knowledge for MQ
We want to build a zero-knowledge proof of knowledge for the multivariate
quadratic problem:

Definition 1 (Multivariate Quadratic Problem - Matrix Form). Let
(q,m, n) be positive integers. The multivariate quadratic problem with param-
eters (q,m, n) is the following problem:

Let (Ai)i∈[m], (bi)i∈[m], x and y be such that:
1. x is uniformly sampled from F

n
q ,

2. for all i ∈ [m], Ai is uniformly sampled from F
n×n
q ,

3. for all i ∈ [m], bi is uniformly sampled from F
n
q ,

4. for all i ∈ [m], yi is defined as yi := xT Aix + bT
i x.

From ((Ai)i∈[m], (bi)i∈[m], y), find x.

The prover wants to convince the verifier that she knows x ∈ F
n
q such that

∀i ∈ [m], yi = xT Aix + bT
i x

To proceed, she will rely on the MPC-in-the-Head paradigm: she will first share
the secret vector x and then use an MPC protocol which verifies that this vector
satisfies the above relations.

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 409

MPC Protocol. Instead of checking the m relations separately, we batch them
into a linear combination where coefficients γ1, . . . , γm are uniformly sampled in
the field extension Fqη . The MPC protocol will check that

m∑

i=1

γi(yi − xT Aix − bT
i x) = 0. (1)

If one of the relations was not satisfied, then Eq. (1) would be satisfied only
with a probability 1

qη . By defining

z :=
m∑

i=1

γi(yi − bT
i x) and w :=

(
m∑

i=1

γiAi

)
x,

proving Eq. (1) is equivalent to proving that z = 〈x,w〉. And to prove this last
equality, we can rely on the subprotocol ΠMM described in Sect. 2.3 (assuming
that all the scalars live in Fqη). Thus, the MPC protocol proceeds as follows:

1. The parties get random γ1, . . . , γm ∈ Fqη .
2. The parties locally set �z� =

∑m
i=1 γi(yi − bT

i �x�).
3. The parties locally set �w� = (

∑m
i=1 γiAi) �x�.

4. The parties execute the protocol ΠMM to check that z = 〈w, x〉.
Since this sub-protocol ΠMM produces false positive events with a rate of 1

qη ,
if x does not satisfy the m MQ relations, the complete MPC protocol outputs
Accept only with a probability of at most

1
qη

+
(

1 − 1
qη

)
1
qη

=
2
qη

− 1
q2η

.

The complete MPC protocol is described in Fig. 2.

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Sect. 2.1), we
transform the above MPC protocol into an interactive zero-knowledge proof
of knowledge which enables us to convince a verifier that a prover knows the
solution of a MQ problem. The soundness error of the resulting protocol is

ε :=
1
N

+
(

1 − 1
N

)(
2
qη

− 1
q2η

)
.

By repeating the protocol τ times, we get a soundness error of ετ . To obtain
a soundness error of λ bits, we can take τ =

⌈
−λ

log2 ε

⌉
. We can transform the

interactive protocol into a non-interactive argument/signature thanks to the
Fiat-Shamir transform [FS87]. According to [KZ20], the security of the resulting
scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1 − p)τ−i

+ Nτ2

}

where p := 2
qη − 1

q2η .

410 T. Feneuil

Fig. 2. An MPC protocol that verifies that the given input corresponds to a solution
of an MQ problem.

The communication cost of the scheme (in bits) is

4λ + τ ·
⎛

⎝n · log2(q)︸ ︷︷ ︸
x

+n · η · log2(q)︸ ︷︷ ︸
α

+ η · log2(q)︸ ︷︷ ︸
c

+λ · log2 N + 2λ︸ ︷︷ ︸
MPCitH

⎞

⎠

where λ is the security level, η is a scheme parameter and τ is computed such that
the soundness error is of λ bits in the interactive case and such that costforge is of
λ bits in the non-interactive case. The public key corresponds to the coefficients
of the MQ equations (namely (Ai)i∈[m] and (bi)i∈[m]) which can be represented
by a λ-bit seed and the vector y ∈ F

m
q . Its size is thus λ + m log2 q bits.

Performance and Comparison. In what follows, we compare our scheme with
the state of the art on two MQ instances:

Instance 1. Multivariate Quadratic equations over a small field:

(q,m, n) = (4, 88, 88),

Instance 2. Multivariate Quadratic equations over a larger field:

(q,m, n) = (256, 40, 40).

Both of these instances are believed to correspond to a security of 128
bits [BMSV22].

We provide in Table 1 a complete comparison of our scheme with the state
of the art. In the comparison, we put MQ-DSS [CHR+16] which corresponds
to the non-interactive version of the 5-round identification scheme of [SSH11].
For the sake of completeness, we also put how the 3-round identification scheme
of [SSH11] would perform when applying the Fiat-Shamir transform on it.

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 411

Over a small field, the Mesquite [Wan22] scheme has the smallest communica-
tion cost, even if our scheme produces competitive signature sizes. Over a larger
field, we can produce signature sizes close to 7 KB, and thus we outperform all
the former schemes.

Remark 1. In contrast with the former state of the art, the communication cost
of our scheme is independent of the number m of MQ relations.

Table 1. Sizes of the signatures relying on the MQ problem (restricting to the
schemes using the FS heuristics). Numerical comparison. We refer the reader to Table 5
(Appendix B) for the formulae giving the signature sizes for all those schemes.

Instance Protocol Name Variant Parameters Signature Size Public Key Size

N M τ η

q = 4

m = 88

n = 88

[SSH11] (3 rounds) - - 219 - - 28 502 B 38 B

MQ-DSS [CHR+16] - - 316 - - 41 444 B

MudFish [Beu20] - 4 191 68 - 14 640 B

Mesquite [Wan22] Fast 8 187 49 - 9 578 B

Short 32 389 28 - 8 609 B

Our scheme Fast 32 - 40 6 10 764 B

Short 256 - 25 8 9 064 B

q = 256

m = 40

n = 40

[SSH11] (3 rounds) - - 219 - - 40 328 B 56 B

MQ-DSS [CHR+16] - - 156 - - 28 768 B

MudFish [Beu20] Fast 8 176 51 - 15 958 B

Short 16 250 36 - 13 910 B

Mesquite [Wan22] Fast 8 187 49 - 11 339 B

Short 32 389 28 - 9 615 B

Our scheme Fast 32 - 36 2 8 488 B

Short 256 - 25 2 7 114 B

4 Proofs of Knowledge for MinRank and Rank SD

In this section, we propose arguments of knowledge for the MinRank problem
(Sect. 4.2) and the Rank SD problem (Sect. 4.3). But before that, in Sect. 4.1, we
propose two efficient MPC protocols which check that a matrix M has a rank of
at most r.

In what follows, we denote wtR(M) the rank of a matrix M .

4.1 Matrix Rank Checking Protocols

We want to build MPC protocols which check that a matrix has rank at most
r. Such MPC protocols will be used for arguments of knowledge with the MPC-
in-the-Head paradigm. We propose two protocols:

412 T. Feneuil

– the first one relies on the rank decomposition of matrices. It has the advantage
of being quite simple, but its false positive rate is large.

– the second one relies on linearized polynomials. It has the advantage of having
a very small false positive rate, but it sometimes requires to handle field
extensions of large degrees.

Using Rank Decomposition. Let us design an MPC protocol which checks
that a matrix M ∈ F

m×n has a rank of at most r, i.e. wtR(M) ≤ r. To proceed,
we will rely on the rank decomposition:

a matrix M ∈ F
n×m
q has a rank of at most r

if and only if there exists T ∈ F
n×r
q and R ∈ F

r×m
q such that M = TR.

In practice, our MPC protocol that we will denote Πη
textRC−RD takes as input

such matrices T and R (in addition to M) and simply executes the matrix
multiplication checking protocol Πη

MM (see Sect. 2.3), for some positive integer η.

Theorem 1. If wtR(M) ≤ r and if T,R are genuinely computed, then
Πη

textRC−RD always outputs Accept. If wtR(M) > r, then ΠtextRC−RD outputs
Accept with probability at most 1

qη . More precisely, if wtR(M) = w + δ with
δ ≥ 1, then Πη

textRC−RD outputs Accept with probability at most 1
qδ·η .

Proof. The final broadcast matrix V in Πη
MM satisfies

V = (TR − M)Σ − (C − TA)

where matrices A and C have been built before receiving the random Σ. We
have

wtR(M − TR) ≥ wtR(M) − wtR(TR)
≥ (r + δ) − r = δ

It means that TR − M has at least δ non-zero coefficients (i1, j1), . . . , (iδ, jδ)
which are over δ different rows and over δ different columns, i.e.

∀k1, k2 ∈ [δ], (ik1 �= ik2) ∧ (jk1 �= jk2).

Let us consider k ∈ [δ]. The jkth row of Σ is uniformly sampled in F
η
q and thus

the ikth row of (M −TR)Σ is uniformly random in F
η
q (because one term of the

sum is uniformly random). Thus, the probability that the ikth row of V is zero
is the probability that (M − TR)Σ is equal to (C − TA) on the row ik whereas
the row ik of (M − TR)Σ is uniformly random in F

η
q , i.e. the probability that

the ikth row of V is zero is 1
qη . By taking a union bound over all k, we get that

the probability that V is zero is at most 1
qδ·η . �

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 413

Using Linearized Polynomials. In what follows, we represent a matrix of
F

m×n
q as an element of (Fm

q)n. We want to design an MPC protocol which checks
that a matrix M = (x1, . . . , xn) ∈ (Fqm)n has a rank of at most r. Equivalently,
it means that all xi belongs to an Fq-linear subspace U of Fqm of dimension r.
Let us define the polynomial LU (X) as

LU (X) :=
∏

u∈U

(X − u) ∈ Fqm [X].

The degree of LU is qr since U has qr elements. Showing that wt(M) ≤ r can
be done by showing that all xi’s are roots of LU .

According to [LN96, Theorem 3.52], LU is a q-polynomial over Fqm , meaning
that it is of the form

LU (X) = Xqr

+
r−1∑

i=0

βiX
qi

.

Such polynomials are convenient for multi-party computation since the Frobenius
endomorphism X �→ Xq is a linear application in field extensions of Fq and thus
it is communication-free to compute �xq�, �xq2

�, . . . from �x�.
The core idea of the rank checking protocol is to check that LU (x1) =

LU (x2) = . . . = LU (xn) = 0. To proceed, the MPC protocol will batch these
checkings by uniformly sampling γ1, . . . , γn ∈ Fqm and checking that

n∑

j=1

γj · LU (xj) = 0. (2)

If one xi is not a root of the polynomial LU , then Eq. (2) is satisfied only with
probability 1

qm . Let us rewrite the left term of (2):

n∑

j=1

γj · LU (xj) =
n∑

j=1

γj ·
(

xqr

j +
r−1∑

i=0

βix
qi

j

)

=
n∑

j=1

γj · xqr

j

︸ ︷︷ ︸
:=−z

+
r−1∑

i=0

βi ·
n∑

j=1

γjx
qi

j

︸ ︷︷ ︸
:=wi

By defining z := −∑n
j=1 γj · xqr

j and wi :=
∑n

j=1 γjx
qi

j for i ∈ {0, . . . , r − 1},
proving Eq. (2) is equivalent to proving

z = 〈β,w〉.
Our MPC protocol that we will denote Πη

textRC−LP takes as input �x1�, . . . , �xn�

and �LU � := Xqr

+
∑r−1

i=0 �βi�X
qi

proceeds as follows:

1. The parties get random γ1, . . . , γn ∈ Fqm·η .
2. The parties locally set �z� = −∑n

j=1 γj�xj�
qr

.

414 T. Feneuil

3. The parties locally set �wi� =
∑n

j=1 γj�xj�
qi

for all i ∈ {0, . . . , r − 1}.
4. The parties execute the protocol ΠMM to check that z = 〈β,w〉 over Fqm·η .

Theorem 2. If wtR(M) ≤ r and if LU are genuinely computed, then
Πη

textRC−LP always outputs Accept. If wtR(M) > r, then Πη
textRC−LP out-

puts Accept with probability at most 1
qm·η +

(
1 − 1

qm·η

)
1

qm·η .

Proof. �LU � is a q-polynomial over Fqm of degree exactly qr. It means that its
number of roots is at most qr. According to [LN96, Theorem 3.50], the roots
form a Fq-linear subspace V of the field extension Fqs of Fqm . Since Fqm is also
a linear subspace of Fqs , V ∩ Fqm is a linear subspace of Fqs (and of Fqm). Its
dimension is at most r (since it has at most qr elements). If wtR(M) > r, there
exist i∗ such that

LU (xi∗) �= 0.

We then have two options resulting in Πη
textRC−LP outputing Accept:

– Either
∑n

j=1 γj · LU (xj) = 0, which occurs with probability 1
qm·η ;

– Or
∑n

j=1 γj · LU (xj) �= 0, i.e. z �= 〈β,w〉 and ΠMM outputs Accept, which
occurs with probability 1

qm·η since ΠMM has a false positive rate of 1
qm·η . �

4.2 Proof of Knowledge for MinRank

We want to build a zero-knowledge proof of knowledge for the MinRank problem:

Definition 2 (MinRank Problem). Let (q,m, n, k) be positive integers. The
MinRank problem with parameters (q,m, n, k) is the following problem:

Let M0,M1, . . . , Mk, E and x such that:
• x is uniformly sampled from F

k
q ,

• for all i ∈ [k], Mi is uniformly sampled from F
n×m
q ,

• E is uniformly sampled from {E ∈ F
n×m
q : wtR(E) ≤ w},

• M0 is defined as M0 = E − ∑k
i=1 xiMi.

From (M0,M1, . . . , Mk), find x.

The prover wants to convince the verifier that she knows such an x. To proceed,
the prover will first share the secret vector x and then use an MPC protocol
which verifies that this vector satisfies the above property.

MPC Protocol. We want to build an MPC protocol which takes as input (a
sharing of) x and which outputs

{
Accept if wtR (E) ≤ r
Reject otherwise.

where E := M0 +
∑k

i=1 xiMi.

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 415

Given �x�, the parties can locally build �E� as M0 +
∑k

i=1�xi�Mi. It remains
to check that �E� corresponds to the sharing of a matrix of rank at most r. It
can be done using one of the two rank checking protocols described in Sect. 4.1:
Πη

textRC−RD relying on the rank decomposition or Πη
textRC−LP relying on lin-

earized polynomials, for some parameter η.
The complete MPC protocol is described in Fig. 3 when relying on the rank

decomposition and in Fig. 4 when relying on linearized polynomials. In the second
case, the rows of the matrix E are rewritten as elements of Fqm , but when m �= n,
it can be more convenient to work on the columns (depending of the values of
m and n).

Fig. 3. An MPC protocol based on the rank decomposition technique (ΠtextRC−RD)
which verifies that the given input corresponds to a solution of a MinRank problem.

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Sect. 2.1), we
transform the above MPC protocol into an interactive zero-knowledge proof
of knowledge which enables us to convince a verifier that a prover knows the
solution of a MinRank problem. The soundness error of the resulting protocol is

ε :=
1
N

+
(

1 − 1
N

)
pη

where pη := 1
qη when using Πη

textRC−RD and pη := 2
qm·η − 1

q2·m·η when using
Πη

textRC−LP . By repeating the protocol τ times, we get a soundness error of

ετ . To obtain a soundness error of λ bits, we can take τ =
⌈

−λ
log2 ε

⌉
. We can

transform the interactive protocol into a non-interactive proof/signature thanks
to the Fiat-Shamir transform [FS87]. According to [KZ20], the security of the
resulting scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi

η(1 − pη)τ−i
+ Nτ2

}
.

416 T. Feneuil

Fig. 4. An MPC protocol based on the technique using linearized polynomials
(ΠtextRC−LP) which verifies that the given input corresponds to a solution of a Min-
Rank problem. U is a Fq-linear subspace of Fqm of dimension r which contains the
rows (e1, . . . , en) of E := M0 +

∑k
i=1 xiMi ∈ F

n×m
q represented as elements of Fqm .

When using ΠtextRC−RD, the communication cost of the scheme (in bits) is

4λ + τ ·
⎛

⎝(k︸︷︷︸
x

+ r × m︸ ︷︷ ︸
R

+ r × n︸ ︷︷ ︸
T

+ r × η︸ ︷︷ ︸
α

+n × η︸ ︷︷ ︸
c

) · log2 q + λ · log2 N + 2λ︸ ︷︷ ︸
MPCitH

⎞

⎠

where λ is the security level, r is a scheme parameter and τ is computed such
that the soundness error is of λ bits in the interactive case and such that costforge
is of λ bits in the non-interactive case.

And when using ΠtextRC−LP , the communication cost of the scheme (in bits)
is

4λ + τ ·
⎛

⎝(k︸︷︷︸
x

+ r × m︸ ︷︷ ︸
LU

+ r × m × η︸ ︷︷ ︸
α

+m × η︸ ︷︷ ︸
c

) · log2 q + λ · log2 N + 2λ︸ ︷︷ ︸
MPCitH

⎞

⎠ .

The public key corresponds to the k + 1 matrices M0, . . . , Mk. The matrices
M1, . . . , Mk can be represented by a λ-bit seed and [BESV22] showed that we
can generate M0 such that it requires only (mn− k) log2 q bits to send. The size
of the public key is thus λ + (mn − k) log2 q bits.

Performance and Comparison. In what follows, we compare our scheme with
the state of the art on the MinRank instance [BESV22]:

(q,m, n, k, r) = (16, 16, 16, 142, 4),

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 417

which targets the security level that corresponds to the NIST category I. We
provide in Table 2 a complete comparison of our scheme with the state of the
art. To provide a fair comparison, we propose two variants for [Cou01,SINY22]:
the first one corresponds to the scheme as described in the original article and the
second one is a version optimized with several tricks to save communication (see
Appendix B.2 for the description of those tricks). In the comparison, we put how
[BG22, Section 2] would perform if we apply the same technique for MinRank
problem ([BG22] does not consider the MinRank problem in their article).

First, let us remark that [SINY22] presents no advantage compared to
[Cou01]. The soundness error of each iteration is 1/2 instead of 2/3, but each
iteration is more expensive. The achieved communication cost is thus equiva-
lent to [Cou01]. [BESV22] is a protocol with helper [Beu20]. The components
in the proof transcript are the same as for [Cou01] (and [SINY22]), but it suc-
ceeds in achieving a bit smaller signature size just by sending a smaller number
of seeds and digests. The MPC-in-the-Head paradigm enables to obtain much
smaller sizes. Using techniques from [BG22], the resulting size is around 10 KB.
In an independent work, [ARZV22] recently proposes a new scheme using tech-
niques which are similar to our protocol with ΠtextRC−RD: they are working
on another matrix relation2 but use a less efficient matrix multiplication check-
ing protocol. They succeed in producing signatures with sizes below 8 KB. Our
scheme with ΠtextRC−RD achieves similar sizes as [ARZV22], but our scheme
with ΠtextRC−LP outperforms all the previous ones achieving sizes below 6 KB.
For the sake of completeness, we put in the comparison tables how [ARZV22]
would perform if we use ΠMM as a subroutine.

4.3 Proof of Knowledge for Rank SD

We want to build a zero-knowledge proof of knowledge for the rank syndrome
decoding problem:

Definition 3 (Rank Syndrome Decoding Problem - Standard Form).
Let Fqm be the finite field with qm elements. Let (n, k, r) be positive integers such
that k ≤ n. The rank syndrome decoding problem with parameters (q,m, n, k, r)
is the following problem:

Let H, x and y be such that:
1. H is uniformly sampled from {(H ′|In−k),H ′ ∈ F

(n−k)×n
qm },

2. x is uniformly sampled from {x ∈ F
n
qm : wtR(x) ≤ r},

3. y is built as y := Hx.
From (H, y), find x.

The prover wants to convince the verifier that she knows such an x, i.e. a
vector x ∈ F

n
qm such that y = Hx and wtR(x) ≤ r. Previous works propose

proofs of knowledge where the constraint on the weight is an equality, but it
is sometimes easier to just prove an inequality (see [FJR22] for the case of the

2 They express the m − r last columns w.r.t. the r first ones.

418 T. Feneuil

Table 2. Comparison of the signatures relying on the MinRank problem (restricting
to the schemes using the FS heuristics). Numerical comparison. We refer the reader to
Table 6 (Appendix B) for the formulae giving the signature sizes for all those schemes.

Instance Protocol Name Variant Parameters Signature Size Public Key Size

N M τ η

q = 16

m = 16

n = 16

k = 142

r = 4

[Cou01] - - - 219 - 52 430 B 73 B

Optimized - - 219 - 28 575 B

[SINY22] - - - 128 - 50 640 B

Optimized - - 128 - 28 128 B

[BESV22] - - 256 128 - 26 405 B

[BG22] Fast 8 187 49 - 13 644 B

Short 32 389 28 - 10 937 B

[ARZV22] Fast 32 - 28 - 10 116 B

Short 256 - 18 - 7 422 B

[ARZV22]+ΠMM Fast 32 - 33 9 8 155 B

Short 256 - 19 9 6 277 B

Our scheme (RD) Fast 32 - 33 5 9 288 B

Short 256 - 19 9 7 122 B

Our scheme (LP) Fast 32 - 28 1 7 204 B

Short 256 - 18 1 5 518 B

Hamming weight). To proceed, the prover will first share the secret vector x
and then use an MPC protocol that verifies that this vector satisfies the above
property.

MPC Protocol. We want to build an MPC protocol which takes as input (a
sharing of) x and which outputs

{
Accept if y = Hx and wtR(x) ≤ r
Reject otherwise.

Since H is in standard form, the equality y = Hx implies that x can be written
as

x =
(

xA

y − H ′xA

)

for some xA ∈ F
k
q . Therefore, we will build an MPC protocol which takes as

input (a sharing of) xA and which outputs
⎧
⎨

⎩
Accept if wtR(x) ≤ r where x :=

(
xA

y − H ′xA

)

Reject otherwise.

Given �xA�, the parties can locally build �xB� as �xB� := y −H ′�xA�, and so
they can deduce a sharing �x� of x (simply by concatenating the shares of �xA�

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 419

with the shares of �xB�). It remains to check that �x� corresponds to the sharing
of a vector of Fn

qm of rank at most r. The latter can be done using one of the
two rank checking protocols described in Sect. 4.1: Πη

textRC−RD relying on the
rank decomposition or Πη

textRC−LP relying on linearized polynomials, for some
parameter η.

The complete MPC protocol is described in Fig. 5 when relying on the rank
decomposition and in Fig. 6 when relying on linearized polynomials.

Fig. 5. An MPC protocol based on the rank decomposition technique (ΠtextRC−RD)
which verifies that the given input corresponds to a solution of a rank syndrome decod-
ing problem.

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Sect. 2.1), we
transform the above MPC protocol into an interactive zero-knowledge proof of
knowledge which enables us to convince a verifier that a prover knows the solu-
tion of a rank syndrome decoding problem. The soundness error of the resulting
protocol is

ε :=
1
N

+
(

1 − 1
N

)
pη

where pη := 1
qη when using Πη

textRC−RD and pη := 2
qm·η − 1

q2·m·η when using
Πη

textRC−LP . By repeating the protocol τ times, we get a soundness error of

ετ . To obtain a soundness error of λ bits, we can take τ =
⌈

−λ
log2 ε

⌉
. We can

transform the interactive protocol into a non-interactive proof/signature thanks
to the Fiat-Shamir transform [FS87]. According to [KZ20], the security of the
resulting scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi

η(1 − pη)τ−i
+ Nτ2

}
.

420 T. Feneuil

Fig. 6. An MPC protocol based on the technique using linearized polynomials
(ΠtextRC−LP) which verifies that the given input corresponds to a solution of a rank
syndrome decoding problem. U is a Fq-linear subspace U of Fqm of dimension r which
contains x1, . . . , xn.

When using ΠtextRC−RD, the communication cost of the scheme (in bits) is

4λ + τ ·
⎛

⎝(k · m︸ ︷︷ ︸
xA

+ r × m︸ ︷︷ ︸
R

+ r × n︸ ︷︷ ︸
T

+ r × η︸ ︷︷ ︸
α

+n × η︸ ︷︷ ︸
c

) · log2 q + λ · log2 N + 2λ︸ ︷︷ ︸
MPCitH

⎞

⎠

where λ is the security level, η is a scheme parameter and τ is computed such
that the soundness error is of λ bits in the interactive case and such that costforge
is of λ bits in the non-interactive case.

And when using ΠtextRC−LP , the communication cost of the scheme (in bits)
is

4λ + τ ·
⎛

⎝(k · m︸ ︷︷ ︸
xA

+ r × m︸ ︷︷ ︸
LU

+ r × m × η︸ ︷︷ ︸
α

+m × η︸ ︷︷ ︸
c

) · log2 q + λ · log2 N + 2λ︸ ︷︷ ︸
MPCitH

⎞

⎠ .

The public key corresponds to the matrix H which can be represented by a
λ-bit seed and the vector y ∈ F

n−k
qm . Its size is thus λ + m(n − k) log2 q bits.

Performance and Comparison. In what follows, we compare our scheme with
the state of the art on the Rank Syndrome Decoding instance [BG22]:

(q,m, n, k, r) = (2, 32, 30, 14, 9),

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 421

which targets a 128-bit security level. We provide in Table 3 a complete compar-
ison of our scheme with the state of the art. To get a more complete compari-
son, we include the schemes [Ste94,Vér96,FJR21] which can be easily adapted
for the rank metric (by replacing the permutations by rank isometries). More-
over, we put in Table 3 the achieved performance of [BG22] when relying on the
structured rank syndrome decoding problem (the parameters of the structured
problem come from the original article).

The first schemes [Ste94] and [Vér96] can achieve signature sizes of around
30 KB (let us remark that some optimization tricks have been used to achieve
these sizes). Then, using the MPC-in-the-Head technique of the “shared permu-
tation”, [FJR21] and [BG22] divide this size by half, achieving communication
cost around 15 KB (13–19 KB). Finally, our new schemes outperform all these
schemes by achieving sizes around 6–11 KB. The scheme using a q-polynomial
even outperforms the [BG22]’s proposals3 which rely on structured rank syn-
drome decoding problems.

Table 3. Sizes of the signatures relying on the rank syndrome decoding problem
(restricting to the schemes using the FS heuristics). Numerical comparison. We refer
the reader to Table 7 (Appendix B) for the formulae giving the signature sizes for all
those schemes.

Instance Protocol Name Variant Parameters Signature Size Public Key Size

N M τ η

q = 2

m = 31

n = 30

k = 15

r = 9

Stern [Ste94] - - - 219 - 31 358 B 75 B

Véron [Vér96] - - - 219 - 27 115 B

[FJR21] Fast 8 187 49 - 19 328 B

Short 32 389 28 - 14 181 B

[BG22] Fast 8 187 49 - 15 982 B

Short 32 389 28 - 12 274 B

Our scheme (RD) Fast 32 - 33 19 11 000 B

Short 256 - 21 24 8 543 B

Our scheme (LP) Fast 32 - 30 1 7 376 B

Short 256 - 20 1 5 899 B

Ideal RSD [BG22] Fast 32 - 37 - 12 607 B 95 B

Short 256 - 26 - 10 126 B

Ideal RSL [BG22] Fast 32 - 27 - 9 392 B 410 B

Short 256 - 17 - 6 754 B

5 Running Times

To provide a fair comparison of our work with the state of the art, we need to give
an estimation of the computational performances of our proposals. The best way
3 Theses sizes are larger than the ones in [BG22] because they take N = 1024, but

here to have a fair comparison with the other schemes, we take N = 256.

422 T. Feneuil

to proceed would be to have optimized implementations for them, but producing
such implementations requires dedicated work for each of the proposed signature
schemes. Since the code of those schemes would be similar except for the part
about the MPC protocols, we decided to develop a unified MPC-in-the-Head
library4. The idea is to factorize as much as possible the common code of the
MPCitH-based signatures. As long as they respect the expected API, a user just
needs to implement the code that generates an instance of the hard problem
with its solution and the code that corresponds to the computation of a party in
the MPC protocol. Then they can rely on the library to get the desired signature
scheme. Thanks to this library, we were able to estimate the running times of
the schemes proposed in this article.

Until recently, the only way to implement an MPCitH-based proof system
was by emulating all the parties of the underlying MPC protocol, implying
that we would need to emulate N times a party per repetition. The recent
work [AGH+23] changes this drastically. The authors suggest generating the
input shares of the parties in a correlated way using a hypercube approach. This
optimization enables us to emulate only 1 + log2(N) parties per repetition. For
example, in Sect. 3, we propose to take τ = 25 and N = 256 for the “short”
trade-off of our scheme. Without the optimization of [AGH+23], we would need
to emulate τ · N = 6400 times a party per signing. With it, we just need to
emulate τ · (1 + log2 N) = 225 times a party, reducing the computational cost of
the MPC emulation by a factor of 28.

We included the [AGH+23] optimization in the library. The obtained signing
times are given in Table 4. We put the running time of [AGH+23] for SDitH in
the table, but to provide a fairer comparison with the other schemes, we reim-
plement it using our library and give the achieved performances. In our imple-
mentations, the pseudo-randomness is generated using AES in counter mode,
the hash function is instantiated with SHA3, and the MPC challenge (i.e. the
challenge provided by OR, see Sect. 2.1) is sampled using SHAKE. We bench-
marked our schemes on a 3.8 GHz Intel Core i7-10700K CPU with the support
of AVX2 and AES instructions (disabling Intel Turbo Boost).

In our benchmarks, we decompose the running time of our schemes in six
parts: the expansion of the seed trees, the commitments of the input shares, the
expansion of the input shares from seeds, the remaining operations to prepare
input shares (e.g. the computation of the shares of the “main” parties of the
hypercube technique), the emulation of the MPC protocol and the rest of the
computation.

We optimized the factorized code which mainly relies on symmetric primi-
tives. For example, we rely on fourfold calls of Keccak (for SHA3) using AVX
instructions. However, the arithmetic parts used by the MPC protocols have not
been optimized, since it would require dedicated work for each scheme (and is
out of the scope of this article).

In Table 4, we did not give the running times for the key generation and the
signature verification. For all these schemes, the key generation is fast since it

4 This library is available at https://github.com/CryptoExperts/libmpcith.

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 423

Table 4. Benchmark of our implementations of the proposed signature schemes (128
bits of security). All the timings are given in milliseconds, except those in the column “in
Mc” which are given in megacycles. Timings with ✶ correspond to the implementation
of [AGH+23], while timings with ❖ correspond to our own implementation of SDitH
using the library. The verification is around 5 − 10% faster than the signing.

Scheme Tree Commit. Rand. xpans. Share Prep. MPC Emul. Misc Total signing time Size

in ms in ms in Mc in bytes

Variant “Short” – 256 parties (N= 256)

SDitH [FJR22] - - - - - - 3–7✶ - 8 459

0.93 0.97 0.61 0.29 4.57 0.41 7.78❖ 30

MQ over F256 1.37 1.42 0.53 0.40 6.25 0.59 10.56 40 7 114

MQ over F251 1.37 1.42 1.24 1.77 2.17 0.59 8.56 33 7 114

MinRank (with RD) 1.06 1.11 1.52 0.51 3.75 0.44 8.39 32 7 122

MinRank (with LP) 0.99 1.05 1.12 0.45 13.23 0.38 17.22 65 5 518

Rank SD (with RD) 1.16 1.22 0.69 0.27 2.36 0.42 6.12 23 8 543

Rank SD (with LP) 1.10 1.14 0.51 0.24 3.72 0.38 7.09 27 5 899

Variant “Fast” – 32 parties (N = 32)

SDitH [FJR22] - - - - - - 1.3-3.8✶ - 11 835

0.20 0.22 0.12 0.04 5.35 0.17 6.10❖ 23

MQ over F256 0.26 0.28 0.10 0.05 6.9 0.24 7.83 30 8 488

MQ over F251 0.26 0.28 0.22 0.23 2.15 0.28 3.42 13 8 488

MinRank (with RD) 0.24 0.27 0.28 0.07 2.68 0.16 3.70 14 9 288

MinRank (with LP) 0.20 0.23 0.21 0.12 13.63 0.15 14.54 55 7 204

Rank SD (with RD) 0.24 0.27 0.13 0.07 2.30 0.18 3.19 12 11 000

Rank SD (with LP) 0.22 0.24 0.09 0.03 3.71 0.12 4.41 17 7 376

only consists in generating a random instance of the underlying hard problem.
It usually takes less than 0.5 ms. Moreover, for all the MPCitH-based schemes
relying on additive sharings, the verification time is similar (slightly smaller) to
the signing time since the verifier must re-emulate the MPC protocol (as the
prover) except for one party (to keep the zero-knowledge property).

We provide an analysis of the obtained running times in Appendix C. In
this article, we propose two MPC protocols to check that a matrix has a small
rank: one based on rank decomposition (RD), and one based on q-polynomials
(LP). The second protocol leads to smaller signature sizes, but it tends to be
less efficient in running timing since it involves computation in a field extension.
From the benchmark, we can observe that both protocols give similar running
times when applied to the rank syndrome decoding problem. However, when
applied to MinRank, the MPC protocol based on q-polynomials gives a slow
scheme. As explained previously, the arithmetics of the implementations have
not been optimized. The scheme “MinRank (with LP)” suffers from this lack of
optimizations5.

5 Let us also remark that the difference of performance between both implementations
of SDitH mainly comes from that our arithmetic of F256 has not been optimized.

424 T. Feneuil

Appendix

A Methodology

In each section of this article, we focus on a specific hard problem which is
supposed quantum-resilient:

– Sect. 3: Multivariate Quadratic Problem;
– Sect. 4.2: Min Rank Problem;
– Sect. 4.3: Syndrome Decoding in the rank metric;

For each of them, we will use the MPC-in-the-Head paradigm to build a new
zero-knowledge protocol. To proceed, we will first describe the MPC protocol we
use. This MPC protocol will fit the model described in [FR22] and will satisfy
the following properties:

– it takes as input an additive sharing of a candidate solution of the studied
problem, and eventually an additive sharing of auxiliary data;

– the MPC parties get (only once) a common random value from an oracle OR;
– when the tested solution is valid (i.e. a solution of the studied hard prob-

lem) and when the auxiliary data are genuinely computed, the MPC protocol
always outputs Accept; otherwise, it outputs Accept with probability at
most p (over the randomness of OR), where p is called the false positive rate;

– the views of all the parties except one leak no information about the candidate
solution.

By applying the MPC-in-the-Head paradigm to this MPC protocol, we get a
5-round zero-knowledge proof of knowledge of a solution of the studied problem
(see [FR22, Theorem 2] with the privacy threshold := N − 1), with soundness
error

1
N

+
(

1 − 1
N

)
· p

where N is the number of parties involved in the multi-party computation. We do
not exhibit the obtained proof of knowledge since the transformation is standard.
We refer the reader to [FR22] for a detailed explanation of how to concretely
apply the MPC-in-the-Head paradigm.

To obtain a signature scheme, we apply the Fiat-Shamir transform [FS87]
to the previous protocol. Since this protocol has 5 rounds, the security of the
resulting scheme should take into account the attack of [KZ20]. More precisely,
the forgery cost of the signature scheme is given by

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1 − p)τ−i

+ Nτ2

}

where τ is the number of parallel executions.
Finally, we compare the resulting scheme with all the former schemes which

are non-interactive identification schemes based on the same security assump-
tion. We select one or two instances of the studied hard problem and we compare

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 425

all these schemes for these precise instances. To proceed, we need to select the
parameters of the schemes when relevant. The signature schemes based on the
MPC-in-the-Head paradigm have as parameter the number N of parties involved
in the multi-party computation. When taking a small N , we get a faster scheme,
but when taking a large N , we get shorter signature sizes. To have a fair com-
parison between the different schemes, we will always take the same N :

– when the protocol relies on a helper, we take N = 8 to have a fast scheme
and N = 32 to have short sizes.

– otherwise, we take N = 32 to have a fast scheme and N = 256 to have short
sizes.

A.1 MPCitH Optimizations

It is often possible to optimize the communication cost of a scheme relying on the
MPC-in-the-Head paradigm. The common optimization tricks are the following:

– Except for the last party, the input share of a party can be derived from
a seed using a pseudo-random generator. Thus, when we need to reveal the
input share, we just need to reveal a seed. In practice, a prover must reveal
the input shares of N −1 parties, so it would imply revealing N −1 seeds. To
save more communication, we can generate the seeds using a tree structure,
decreasing the number of revealed seeds to log2(N) (see [KKW18, Sect. 2.3]
for details).

– We do not need to reveal shares for shared random values (as A in Fig. 1)
since they can be entirely derived from the seeds of the previous point.

– We do not need to reveal shares for shared publicly-known values (see [KZ22,
Sect. 2.4] for details). For example, we do not need to reveal the share of V
broadcast by the hidden party in Fig. 1. Indeed, this share can be deduced
from the shares of the other parties and knowing that V must be equal to
zero (otherwise the verification fails).

B State of the Art – Performances

In this appendix, we list all the schemes used in the comparisons, with their
formulae of the forgery security and of the communication cost. Since some
quantities occur several times, we define some notations to ease the readability.
For the forgery cost, we introduce the two following notations:

– εhelper(τ,M, ε) is the soundness error of a protocol with helper [Beu20] when
the helper entity is emulated by a cut-and-choose phase. M is the total num-
ber of repetitions in the cut-and-choose phase, ε is the soundness of the uni-
tary protocol relying on the helper, and τ is the number of repetitions of this
unitary protocol. We have

εhelper(τ,M, ε) := max
M−τ≤k≤M

{(
k

M−τ

)
(

M
M−τ

) · εk−(M−τ)

}
.

426 T. Feneuil

– KZ(p1, p2) is the forgery cost of [KZ20] for a 5-round protocol6. We have

KZ(p1, p2) := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi
1(1 − p1)τ−i

+
1

pτ2
2

}

For the communication cost (i.e. the signature size), we introduce the following
notations:

– μseed is the cost of sending a λ-bit seed;
– μdig is the cost of sending a 2λ-bit commitment/hash digest;
– μhelper is the cost (per repetition) of using the helper technique of [Beu20],

this cost satisfies

μhelper ≤ (μseed + μdig) · log2

(
M

τ

)

where M is the number of repetitions involved in the cut-and-choose phase
emulating the helper. It corresponds to the cost of revealing M − τ leaves
among M in a seed tree, with the cost of sending the authentication paths of
τ leaves among M in a Merkle tree.

– μMPCitH is the fixed cost (per repetition) of using the MPC-in-the-Head
paradigm, we have

μMPCitH = μseed · log2 N + μdig.

It corresponds to the cost of revealing all the leaves but one in a seed tree of
N leaves (plus a commitment digest).

B.1 Multivariate Quadratic Problem

We provide in Table 5 the current state of the art about FS-based signature
schemes relying on the multivariate quadratic problem.

B.2 MinRank Problem

We provide in Table 6 the current state of the art about FS-based signature
schemes relying on the MinRank problem. To provide a fair comparison, we
propose two variants for [Cou01,SINY22]: the first one corresponds to the scheme
as described in the original article and the second one is an optimized version.
This optimized version includes the following tricks:

– Instead of revealing all the commitments during the first round, the prover
just sends a hash digest of them. Then, to enable the verifier to recompute
this digest, the prover just needs to send the commitment digests that the
verifier can not compute herself.

6 In the case where the verifier can not perform some checks after receiving the first
response (see [KZ20] for details).

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 427

Table 5. Sizes of the signatures relying on the MQ problem (restricting to the schemes
using the FS heuristics). The used notations are: μvar := n log2 q, μout := m log2 q, plus
all the notations defined in Appendix B.

Scheme Name Security Signature Size

[SSH11] (3 rounds) (3/2)τ μdig + τ
[
2μvar + μout + 2μdig

]

MQ-DSS [CHR+16] KZ(1
q

, 1
2) 2μdig + τ

[
2μvar + μout + 2μdig

]

MudFish [Beu20] εhelper(τ, M, 1
q′)−1 μdig + τ

[
2μvar + μout + 2μseed + μdig · log2(q′) + μhelper

]

Mesquite [Wan22] εhelper(τ, M, 1
N

)−1 μdig + τ
[
μvar + μout + μMPCitH + μhelper

]

Our scheme KZ(2
qη − 1

q2η , 1
N

) 2μdig + τ [(1 + η) · μvar + η · log2 q + μMPCitH]

– The random combination used in the schemes (usually denoted β) is derived
from a seed. Then, instead of sending the coefficients of β, the prover can just
send this seed. Moreover, this seed and the masks involved in the schemes
(usually denoted T , S and X) are also derived from a common seed.

– Instead of revealing two matrices such that the difference is of rank (at most)
r, the prover sends one of the matrices and directly the difference (which is
cheaper to send), and thus the verifier can deduce the non-sent matrix.

Table 6. Sizes of the signatures relying on the MinRank problem (restricting to the
schemes using the FS heuristics). The used notations are: μmat := mn log 2q, μrank :=
r(m + n) log2 q, μcombi := k log2 q, plus all the notations defined in Appendix B.

Scheme Name Security Signature Size

[Cou01] (3/2)τ 3τ · μdig + τ
[
2
3
μmat + 2

3
μcombi + 2

3
μseed

]

[Cou01], opt. (3/2)τ μdig + τ
[
1
3
(μmat + μrank + μcombi + 2μseed) + μdig

]

[SINY22] 2τ 6τ · μdig + τ
[
μmat + 1

2
μcombi + 10

4
μseed

]

[SINY22], opt. 2τ μdig + τ
[
1
2
(μmat + μrank + μcombi + 3μseed) + 2μdig

]

[BESV22] εhelper(τ, M, 1
2
)−1 μdig + τ

[
1
2
(μmat + μrank + μcombi + μseed) + μdig + μhelper

]

[BG22] εhelper(τ, M, 1
N

)−1 μdig + τ [μcombi + μrank + μMPCitH + μhelper]

[ARZV22] KZ(1
qn , 1

N
) 2μdig + τ

[
μcombi + (n2 + 2rn − r2) log2 q + μMPCitH

]

[ARZV22]+ΠMM KZ(1
qη , 1

N
) 2μdig + τ [μcombi + (r(n − r) + η(n − 2r)) log2 q + μMPCitH]

Our scheme (RD) KZ(1
qη , 1

N
) 2μdig + τ [μcombi + μrank + η(n + r) log2 q + μMPCitH]

Our scheme (LP) KZ(2
qmη − 1

q2mη , 1
N

) 2μdig + τ [μcombi + rm log2 q + η(r + 1)m log2 q + μMPCitH]

B.3 Rank Syndrome Decoding Problem

We provide in Table 7 the current state of the art about FS-based signature
schemes relying on the rank syndrome decoding problem.

428 T. Feneuil

Table 7. Sizes of the signatures relying on the rank syndrome decoding prob-
lem (restricting to the schemes using the FS heuristics). The used notations are:
μmat := mn log 2q, μrank := r(m + n) log2 q, μptx := mk log2 q, plus all the notations
defined in Appendix B.

Scheme Name Security Signature Size

[Ste94] (3/2)τ μdig + τ
[
1
3 (2μmat + μrank + 2μseed) + μdig

]

[Vér96] (3/2)τ μdig + τ
[
1
3 (μmat + μptx + μrank + 2μseed) + μdig

]

[FJR21] εhelper(τ, M, 1
N

)−1 μdig + τ
[
μmat + μptx + μrank + μMPCitH + μhelper

]

[BG22] εhelper(τ, M, 1
N

)−1 μdig + τ
[
μmat + μrank + μMPCitH + μhelper

]

Our scheme (RD) KZ(1
qη , 1

N
) 2μdig + τ

[
μptx + μrank + η(n + r) log2 q + μMPCitH

]

Our scheme (LP) KZ(2
qm·η − 1

q2·m·η , 1
N

) 2μdig + τ
[
μptx + rm log2 q + η(r + 1)m log2 q + μMPCitH

]

C Benchmark Analysis

Here is an analysis of the running times obtained in Table 4:

– Tree Expansion: it consists in deriving N seeds from a master seed using
the structure of a binary tree. This operation only depends on the number of
parties N , and it is repeated at each repetition (i.e. τ times). Thus, when we
fix N , the computation contribution is linear in τ . It can be observed from
the benchmark: when N = 32, it takes 0.0073 · τ ms, and when N = 256 it
takes 0.055 · τ ms.

– Commitment: it consists in committing the input shares of N parties. In
practice, it consists in committing a λ-bit seed for all the parties except the
last one. The cost of committing the entire input share of the last party
tends to be negligible compared to the cost of committing N −1 seeds. Thus,
the computation contribution of the commitments is roughly linear in N · τ .
From the benchmark, we get that it takes 0.0575 · τ ms when N = 256 and
0.0082 · τ ms when N = 32 (committing a seed with a salt takes around 220
nanoseconds).

– Randomness Expansion: it consists in expanding seeds to get input shares.
The computational cost depends on the number τ of repetitions, the size of the
input shares, and the field from which elements should be sampled. When the
field is an extension of F2, the sampling can be efficient. However, sampling in
another field is less efficient since we need to deal with rejection. It explains
why the cost of this step is larger for MQ over F251 than for MQ over F256.

– Share Preparation: it consists in getting the input share of the last party
from the other ones and in computing the shares of the “main” parties of the
hypercube technique (see [AGH+23] for details). It depends on τ , the size
of the input shares, and the additive law of the underlying field. This step
is very efficient when working in characteristic two since the addition is the
bitwise XOR. When working in prime fields, we need to deal with reduction.

– MPC Emulation: it consists in emulating the MPC protocols. Thanks to
the hypercube technique, it consists in emulating 1 + log2(N) parties by rep-
etition. The important point to remark here is that the choice of N does

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 429

not impact a lot the emulation cost. It comes from that τ ≈ λ
log2(N) , so the

total computation cost of the emulation corresponds7 to the cost of emulating
τ · (1 + log2(N)) ≈ λ + λ

log2(N) parties.
– Misc: it corresponds to the rest of the signing computation (decompression

of the public key, building the signature, ...).

References

[ABB+23a] Aragon, N., et al.: RYDE specifications, June 2023 (2023). https://
csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-
files/ryde-spec-web.pdf

[ABB+23b] Aragon, N., et al.: MIRA specifications, June 2023 (2023). https://
csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-
files/MIRA-spec-web.pdf

[AGH+23] Aguilar-Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.:
The return of the SDitH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT
2023, Part V. LNCS, vol. 14008, pp. 564–596. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30589-4 20

[ARS+15] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 17

[ARZV22] Adj, G., Rivera-Zamarripa, L., Verbel, J.: MinRank in the head: short
signatures from zero-knowledge proofs. Cryptology ePrint Archive, Report
2022/1501 (2022). https://eprint.iacr.org/2022/1501

[ARZV+23] Adj, G., et al.: MiRith (MinRank in the head), June 2023 (2023). https://
csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-
files/MiRitH spec-web.pdf

[BBPS21] Barenghi, A., Biasse, J.-F., Persichetti, E., Santini, P.: LESS-FM: fine-
tuning signatures from the code equivalence problem. In: Cheon, J.H.,
Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 23–43.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5 2

[BESV22] Bellini, E., Esser, A., Sanna, C., Verbel, J.: MR-DSS - smaller MinRank-
based (ring-)signatures. In: Cheon, J.H., Johansson, T. (eds.) PQCrypto
2022. LNCS, vol. 13512, pp. 144–169. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-17234-2 8

[Beu20] Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature
schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 183–211. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3 7

[Beu22] Beullens, W.: MAYO: practical post-quantum signatures from oil-and-
vinegar maps. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol.
13203, pp. 355–376. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-99277-4 17

7 We omit here that τ is larger than λ
log2(N)

to be secure against the forgery attack

of [KZ20], but the conclusion would be the same.

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/ryde-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/ryde-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/ryde-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/MIRA-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/MIRA-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/MIRA-spec-web.pdf
https://doi.org/10.1007/978-3-031-30589-4_20
https://doi.org/10.1007/978-3-662-46800-5_17
https://eprint.iacr.org/2022/1501
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/MiRitH_spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/MiRitH_spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/MiRitH_spec-web.pdf
https://doi.org/10.1007/978-3-030-81293-5_2
https://doi.org/10.1007/978-3-031-17234-2_8
https://doi.org/10.1007/978-3-031-17234-2_8
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-99277-4_17

430 T. Feneuil

[BG22] Bidoux, L., Gaborit, P.: Compact post-quantum signatures from proofs
of knowledge leveraging structure for the PKP, SD and RSD problems
(2022). https://arxiv.org/abs/2204.02915

[BHK+19] Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J.,
Schwabe, P.: The SPHINCS+ signature framework. In: Cavallaro, L.,
Kinder, J., Wang, X.F., Katz, J. (eds.) ACM CCS 2019, pp. 2129–2146.
ACM Press, November 2019

[BMPS20] Biasse, J.-F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: code-
based signatures without syndromes. In: Nitaj, A., Youssef, A. (eds.)
AFRICACRYPT 2020. LNCS, vol. 12174, pp. 45–65. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51938-4 3

[BMSV22] Bellini, E., Makarim, R.H., Sanna, C., Verbel, J.: An estimator for
the hardness of the MQ problem. In: Batina, L., Daemen, J. (eds.)
AFRICACRYPT 2022. LNCS, vol. 13503, pp. 323–347. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17433-9 14

[BN20] Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography.
In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020,
Part I. LNCS, vol. 12110, pp. 495–526. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45374-9 17

[CHR+16] Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.:
From 5-pass MQ-based identification to MQ-based signatures. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp.
135–165. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53890-6 5

[CNP+23] Chou, T., et al.: Take your MEDS: digital signatures from matrix
code equivalence. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds.)
AFRICACRYPT 2023. LNCS, vol. 14064, pp. 28–52. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-37679-5 2

[Cou01] Courtois, N.T.: Efficient zero-knowledge authentication based on a linear
algebra problem MinRank. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 402–421. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45682-1 24

[DKR+21] Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.:
Shorter signatures based on tailor-made minimalist symmetric-key crypto.
Cryptology ePrint Archive, Report 2021/692 (2021). https://eprint.iacr.
org/2021/692

[DST19] Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of
trapdoor one-way preimage sampleable functions based on codes. In: Gal-
braith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol.
11921, pp. 21–51. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-34578-5 2

[FJR21] Feneuil, T., Joux, A., Rivain, M.: Shared permutation for syndrome decod-
ing: new zero-knowledge protocol and code-based signature. Cryptology
ePrint Archive, Report 2021/1576 (2021). https://eprint.iacr.org/2021/
1576

[FJR22] Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter
signatures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 541–572. Springer, Heidel-
berg (2022). https://doi.org/10.1007/978-3-031-15979-4 19

https://arxiv.org/abs/2204.02915
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-031-17433-9_14
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/3-540-45682-1_24
https://doi.org/10.1007/3-540-45682-1_24
https://eprint.iacr.org/2021/692
https://eprint.iacr.org/2021/692
https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-030-34578-5_2
https://eprint.iacr.org/2021/1576
https://eprint.iacr.org/2021/1576
https://doi.org/10.1007/978-3-031-15979-4_19

Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD 431

[FMRV22] Feneuil, T., Maire, J., Rivain, M., Vergnaud, D.: Zero-knowledge proto-
cols for the subset sum problem from MPC-in-the-head with rejection.
Cryptology ePrint Archive, Report 2022/223 (2022). https://eprint.iacr.
org/2022/223

[FR22] Feneuil, T., Rivain, M.: Threshold linear secret sharing to the rescue of
MPC-in-the-head. Cryptology ePrint Archive, Report 2022/1407 (2022).
https://eprint.iacr.org/2022/1407

[FR23] Feneuil, T., Rivain, M.: MQOM: MQ on my mind - algo-
rithm specifications and supporting documentation. Version 1.0 - 31
May 2023 (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/
documents/round-1/spec-files/MQOM-spec-web.pdf

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U.: (eds.) 39th
ACM STOC, pp. 21–30. ACM Press, June 2007

[KKW18] Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In: Lie, D., Mannan,
M., Backes, M., Wang, X.F. (eds.) ACM CCS 2018, pp. 525–537. ACM
Press, October 2018

[KPG99] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signa-
ture schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 15

[KZ20] Kales, D., Zaverucha, G.: An attack on some signature schemes con-
structed from five-pass identification schemes. In: Krenn, S., Shulman, H.,
Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp. 3–22. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-65411-5 1

[KZ22] Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge
proofs and post-quantum signatures. Cryptology ePrint Archive, Report
2022/588 (2022). https://eprint.iacr.org/2022/588

[LN96] Lidl, R., Niederreiter, H.: Finite fields. In: Encyclopedia of Mathematics
and its Applications, 2 edn. University Press, Cambridge (1996)

[NIS22] NIST: Call for Additional Digital Signature Schemes for the Post-
Quantum Cryptography Standardization Process (2022)

[SINY22] Santoso, B., Ikematsu, Y., Nakamura, S., Yasuda, T.: Three-pass identifi-
cation scheme based on MinRank problem with half cheating probability
(2022). https://arxiv.org/abs/2205.03255

[SSH11] Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes
based on multivariate quadratic polynomials. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22792-9 40

[Ste94] Stern, J.: A new identification scheme based on syndrome decoding. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 2

[Vér96] Véron, P.: Improved identification schemes based on error-correcting
codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)

[Wan22] Wang, W.: Shorter signatures from MQ. Cryptology ePrint Archive,
Report 2022/344 (2022). https://eprint.iacr.org/2022/344

https://eprint.iacr.org/2022/223
https://eprint.iacr.org/2022/223
https://eprint.iacr.org/2022/1407
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/MQOM-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/MQOM-spec-web.pdf
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/978-3-030-65411-5_1
https://eprint.iacr.org/2022/588
https://arxiv.org/abs/2205.03255
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/3-540-48329-2_2
https://eprint.iacr.org/2022/344

Exploring SIDH-Based Signature
Parameters

Andrea Basso1, Mingjie Chen2, Tako Boris Fouotsa3, Péter Kutas2,4,
Abel Laval5, Laurane Marco3(B), and Gustave Tchoffo Saah6

1 University of Bristol, Bristol, UK
andrea.basso@bristol.ac.uk

2 University of Birmingham, Birmingham, UK
m.chen.1@bham.ac.uk

3 EPFL, Lausanne, Switzerland
{tako.fouotsa,laurane.marco}@epfl.ch

4 Eötvös Loránd University, Budapest, Hungary
p.kutas@bham.ac.uk

5 Université Libre de Bruxelles, Brussels, Belgium
abel.laval@ulb.be

6 Université de Yaoundé 1, Yaoundé, Cameroon

Abstract. Isogeny-based cryptography is an instance of post-quantum
cryptography whose fundamental problem consists of finding an isogeny
between two (isogenous) elliptic curves E and E′. This problem is closely
related to that of computing the endomorphism ring of an elliptic curve.
Therefore, many isogeny-based protocols require the endomorphism ring
of at least one of the curves involved to be unknown. In this paper, we
explore the design of isogeny based protocols in a scenario where one
assumes that the endomorphism ring of all the curves are public. In par-
ticular, we identify digital signatures based on proof of isogeny knowledge
from SIDH squares as such a candidate. We explore the design choices
for such constructions and propose two variants with practical instantia-
tions. We analyze their security according to three lines, the first consists
of attacks based on KLPT with both polynomial and superpolynomial
adversary, the second consists of attacks derived from the SIDH attacks
and finally we study the zero-knowledge property of the underlying proof
of knowledge.

1 Introduction

Isogeny-based cryptography is a promising candidate to develop quantum-
secure protocols. At its core, lies the fundamental assumption that it is com-
putationally hard to find an isogeny between two isogenous elliptic curves.
When the curves are supersingular, the setting of nearly all modern construc-
tions [10,16,18,21,25,27,33,38,41], the isogeny problem is strictly linked to the
endomorphism ring problem. The latter asks to find a basis of the ring of all the
endomorphisms of a supersingular elliptic curve, i.e. all the isogenies from the
curve to itself. The problem of finding an isogeny between two elliptic curves
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 432–456, 2024.
https://doi.org/10.1007/978-3-031-54770-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_17

Exploring SIDH-Based Signature Parameters 433

reduces to the endomorphism-ring problem: given two curves and a representa-
tion of their endomorphism rings, it is possible to compute an isogeny connecting
them in polynomial time [42,55].

Due to this connection, the endomorphism ring problem and its relationship
to the security of many isogeny-based protocols have been extensively studied.
The best known algorithm to compute endomorphism rings is due to Eisenträger,
Hallgren, Leonardi, Morrison, and Park [29], and it runs in Õ(p1/2) time, where p
is the characteristic of the underlying finite field (the result relies on some heuris-
tics which were removed in [35]). Given a curve E0 with known endomorphism
ring End(E0), and an isogeny φ : E0 → E, one can push the endomorphism ring
End(E0) of E0 through φ to recover End(E) [42,55]. Thus, finding an isogeny
between a curve E0 with known endomorphism ring, and a given curve E solves
the endomorphism ring problem for the curve E. Since the characteristic p is
exponential in the security parameter in practice, the general endomorphism
ring problem remains hard.

It remains of interest to understand how the security of isogeny-based pro-
tocols is affected when an attacker has knowledge of the endomorphism rings.
In several protocols, such as the GPS signature [37], SÉTA [21], SQISign [25]
and SQISignHD [20], the secret keys are directly linked to a description of
the endomorphism ring. Thus, solving the endomorphism ring problem trivially
breaks such protocols. In other schemes, such as SIDH [41], CSIDH [16] and
SCALLOP [23], CSI-FiSh- [13], SeaSign [24] , the secret isogenies have specific
properties: if the endomorphisms of all curves were known, a direct applica-
tion of [42,55] would prevent obtaining the correct isogeny. Nonetheless, it has
been shown that the additional information that such protocols reveal, such as
short degrees, torsion images or orientations, is sufficient to recover the secret
isogeny [17,32,36,54]. More recently proposed schemes, such as M-SIDH/MD-
SIDH [33], FESTA [10] and binSIDH/terSIDH [8] compute isogenies of degree
roughly √

p or even smaller, hence the attack in [36] trivially extends to those
cases when endomorphism rings of curves are public. Moreover, many other pro-
tocols are insecure when the starting curves have known endomorphism ring.
This is the case, for instance, for the CGL hash function [18,28], the CSIDH-
based oblivious transfer protocols [5,43], the commitment scheme by Sterner [50],
the SIDH-based oblivious pseudorandom functions [6,9,14], and the hash proof
systems and dual-mode PKEs based on group actions [3].

The relevance of endomorphism rings in isogeny-based cryptography and the
consequences of their knowledge on security raises the following natural question:

Can we construct a secure cryptographic protocol where
the endomorphism rings of all curves are public?

One has to remark that one of the most natural algorithmic problems, namely
finding an isogeny of a fixed degree d between supersingular elliptic curves, is not
known to be equivalent to the endomorphism ring problem. An efficient classi-
cal equivalence between finding fixed degree isogenies and computing endomor-
phism rings would have important consequences, e.g., a significant speed-up of
SQIsign. Understanding whether we can build protocols which are secure even

434 A. Basso et al.

if endomorphism rings of all curves is public has both theoretical and practical
consequences. On the theoretical side, a protocol that remains secure when the
endomorphism rings of all curves are known shows that, even if the endomor-
phism ring problem is efficiently solvable, some isogeny-based constructions are
still possible, and retain some security. On the practical side, the complexity of
the endomorphism-recovering attacks generally imposes primes p with p > 22λ;
without requiring endomorphism rings to remain secret, it is possible to design
protocols with smaller primes, leading to more efficient and more compact pro-
tocols.

Contributions. In this paper, we develop two protocols that appear to be
secure, even if the endomorphism rings of all elliptic curves are public. This
suggests an affirmative response to the question set out in the introduction (even
though further cryptanalysis is necessary).

Both protocols are digital signatures, based on a proof of isogeny knowledge
built on top of SIDH squares. In this work, we focus on digital signatures since
it is the primitive that is most likely to be secure when endomorphism rings are
known: the SIDH-based constructions generally reveal little information besides
the degrees and the end curves of secret isogenies. Indeed, it is possible to con-
struct SIDH-based signatures that do not reveal any torsion information [22] or
that are statistically independent from the secret key [7].

In this work, we analyze existing constructions of proofs of isogeny knowledge
and identify three main design choices (Sect. 3). We also propose two practical
instantiations, which are plausibly secure despite the underlying prime field hav-
ing characteristic smaller than 22λ.

To analyze the security of the proposed constructions, we identify and study
three main lines of attacks. The first approach relies on the knowledge of endo-
morphism rings and the KLPT algorithm [42]. We analyze these attacks exten-
sively in Sect. 4. Moreover, the KLPT algorithm has always been considered
for constructive applications, and thus its analysis in the literature is bounded
to polynomial running times. In this work, we study the output of the KLPT
algorithm when running in superpolynomial time, which may be of independent
interest. The method used is a variation of [45, Section 3.4.].

We also consider attacks based on the recent attacks on SIDH (Sect. 5.1) and
based on the lack of zero-knowledge of the underlying sigma protocol (Sect. 5.2).
The results of these analyses shows that it is possible to design signatures based
on proofs of isogeny knowledge with binary challenges, which are more efficient
and compact than those based on proofs with ternary challenges (see Sect. 6
for an estimate of the concrete sizes). Combined with the previous analysis of
KLPT-based attacks, this provides an argument for the security of the proposed
constructions.

Exploring SIDH-Based Signature Parameters 435

2 Preliminaries

2.1 Σ Protocols and Digital Signatures

Definition 1 (Sigma Protocol). A sigma protocol is a three-move proof sys-
tem for a language L consisting of oracle-calling PPT algorithms (P = (P1, P2),
V = (V1, V2)), where V2 is deterministic. We assume P1 and P2 share states
and so do V1 and V2. Let ChallSet denote the challenge set. Then, the protocol
proceeds as follows.

– The prover, on input (st,wt) ∈ L, computes com ←− P1(st,wt) and sends the
commitment com to the verifier.

– The verifier computes chall ←− V1(1λ), drawing a random challenge from
ChallSet, and sends it to the prover.

– The prover, given chall, computes resp ←− P2(st,wt, chall) and returns a
response resp to the verifier.

– The verifier runs V2(st, com, chall, resp) and outputs � (accept) or ⊥ (reject).

A sigma protocol is said to be correct if knowing wt is enough for the prover to
convince the verifier that they indeed know the witness; it is said to be n-special
sound if being able to produce n valid transcripts (st, com, challi, respi), i ∈
{1, 2, . . . , n} for the same statement and commitment but for different chal-
lenges implies being able to compute a witness for this given statement st; it is
zero-knowledge if anyone can simulate it and produce a valid transcript compu-
tationally indistinguishable from one obtained by actually running the protocol.
If the soundness error of the protocol is too high, one can reduce it is using
repetition.

If the statement is a public key and the witness is the corresponding secret
key, we call such a protocol an identification scheme. It is typically used to
give, as its name indicates, a proof of identity. Furthermore, a sigma protocol
can be turned into a digital signature in the Random Oracle Model using the
Fiat-Shamir transform [31].

2.2 Supersingular Isogenies

Let E1 and E2 be two supersingular curves defined over a finite field Fp2 . An
isogeny φ : E1 → E2 is a non-constant rational map which is also a group
morphism with respect to the group structure of the elliptic curves. The degree
of an isogeny is its degree as a rational map. It is always of the form d = prd′,
and when r = 0 (that is d = d′ is coprime to p) we say the isogeny φ is separable
and we have d = #ker φ. The isogenies considered in this work are all separable,
unless stated otherwise. An isogeny of small prime degree can be efficiently
computed (and evaluated on torsion points) from a description of its kernel using
Vélu formulas [52] or the square root Vélu formulas [11]. Isogenies of smooth
degree can also be efficiently computed by writing them as a composition of
isogenies of small prime degrees. For any isogeny φ : E1 → E2, there exists a
unique isogeny ̂φ : E2 → E1 such that ̂φ ◦ φ = [deg φ]E1 and φ ◦ ̂φ = [deg φ]E2 .

436 A. Basso et al.

The isogeny ̂φ is called the dual of φ. An endomorphism of an elliptic curve
E is an isogeny from E to E. The set of all the endomorphisms of E forms a
ring under addition and composition. It is denoted by End(E) and its called the
endomorphism ring of E. Over finite fields, the endomorphism ring of an elliptic
curve is either an order in an imaginary quadratic field or a maximal order in
a quaternion algebra. The earlier case occurs for ordinary curves while the later
occurs for supersingular curves, which are the ones used in this paper.

2.3 Quaternion Algebra

Let p be a prime. We write Bp,∞ for the quaternion algebra ramified only at p
and ∞, which is defined by

Bp,∞ =
(−q,−p

Q

)

= Q + iQ + jQ + kQ

where 0
= q ∈ N, i2 = −q, j2 = −p, and k = ij = −ji.
A p-extremal maximal order is a maximal order containing j. Examples of

p-extremal maximal order are those containing Z〈i, j〉 = Z + iZ + jZ + kZ as
subring. For such a maximal order O, if R = O ∩Q[i] is the ring of integers Z[ω]
of Q[i], then the restriction of the norm to R + Rj is given by

Nrd(x1 + y1ω + (x2 + y2ω)j) = f(x1, y1) + pf(x2, y2)

where f is a principal quadratic form of discriminant disc(R) [42]. We have

f(x, y) = x2 + Trd(ω)xy + Nrd(ω)y2

We give below a few examples of the structure of Bp,∞, together with p-
extremal order O, R and f(x, y) as defined above for different values of p.

Example 2. 1. For p ≡ 3 mod 4: Bp,∞ =
(

−1,−p
Q

)

; O = 〈1, i, 1+k
2 , i+j

2 〉; R = Z[i];
f(x, y) = x2 + y2.

2. For p ≡ 5 mod 8: Bp,∞ =
(

−2,−p
Q

)

; O = 〈1, i, 1+j+k
2 , i+2j+k

4 〉; R = Z[i];
f(x, y) = x2 + 2y2.

3. For p ≡ 3 mod 4: Bp,∞ =
(

−q,−p
Q

)

, where q ≡ 1 mod 4 is a prime such

that
(

−p
q

)

= 1; O = 〈1, 1+i
2 , j, ci+k

q 〉, where c2 ≡ −p mod q; R = Z[1+i
2];

f(x, y) = x2 − xy + 1+q
4 y2.

2.4 SIDH

The Supersingular Isogeny Diffie-Hellman (SIDH) protocol was introduced in
2011 by Jao and De Feo [41]. It is a Diffie-Hellman type key exchange that uses
supersingular isogenies. Supersingular isogenies do not commute in general. In
order to get a commutative diagram that will help compute the shared secret in

Exploring SIDH-Based Signature Parameters 437

SIDH, the images of some torsion points basis through the secret isogenies are
included in the public keys (see Fig. 1). Moreover, in order to achieve the best
possible efficiency, one uses isogenies of degree 2a or 3b between supersingular
elliptic curves defined over Fp2 where the characteristic p is of the form p =
2a3bf − 1, with f being a small co-factor. Primes of the form p = 2a3bf − 1 (or
p = �e1

1 �e2
2 f − 1 more generally) are usually referred to as SIDH primes.

Fig. 1. The SIDH key exchange protocol

The detailed description of SIDH is as follows.

Setup. Let p = 2a3bf −1 be an SIDH prime and let E0 be a supersingular elliptic
curve defined over Fp2 . Let E0[2a] = 〈Pa, Qa〉 and E0[3b] = 〈Pb, Qb〉.
Key Generation. Alice samples a random scalar ka ∈ Z/2a

Z, and computes
the isogeny φa : E0 → EA whose kernel is 〈Pa + [ka]Qa〉. Her secret key is
ka and her public key is (Ea, φa(Pb), φa(Qb)). Similarly, Bob samples a random
scalar kb ∈ Z/3b

Z, and computes the isogeny φb : E0 → EB whose kernel is
〈Pb + [kb]Qb〉. His secret key is kb and his public key is (Eb, φb(Pa), φb(Qa)).

Shared Secret. Given Bob’s public key (Eb, φb(Pa), φb(Qa)), Alice computes the
isogeny φ′

a : Eb → Eba whose kernel is generated by φb(Pa) + [ka]φb(Qa). Given
Alice’s public key (Ea, φa(Pb), φa(Qb)), Bob computes the isogeny φ′

b : Ea → Eab

whose kernel is generated by φa(Pb) + [kb]φa(Qb). The shared secret is j(Eab) =
j(Eba).

In SIDH, the isogenies φA and φ′
A (resp. φB and φ′

B) are said to be parallel
isogenies. In general, two isogenies φ : E0 → E1 and φ′ : E2 → E3 are said to
be parallel if there exists an isogeny ψ : E0 → E2 such that ker φ′ = ψ(ker φ).
Note that if φ : E0 → E1 and φ′ : E2 → E3 are parallel, then ̂φ : E1 → E0 and
̂φ′ : E3 → E2 are also parallel since ker ̂φ′ = ψ′(ker ̂φ) where ψ′ is the isogeny
whose kernel is given by ker ψ′ = φ(ker ψ). We hence obtain a square (Eq. (1))
which is called an SIDH square.

E2

E0

E3

E1

φ

ψ

φ′

ψ′

(1)

438 A. Basso et al.

2.5 Algorithms for Computing Isogenies

We discuss some existing algorithms for computing isogenies that will be of inter-
est in this paper. The main problem, which is that of finding an isogeny con-
necting two isogenous supersingular curves is believed to be hard. Nevertheless,
it may not be the case when more information is provided: the endomorphism
rings of the curves and/or some torsion point information and/or the degree of
the isogeny.

When the endomorphism rings of the curves are public, then a result of [36]
shows that the secret isogeny φ : E1 → E2 can be recovered whenever it is
the shortest isogeny connecting E1 to E2. This result is formally given by the
following theorem.

Theorem 3. Let E1 and E2 be two supersingular curves, and let φ : E1 → E2

be the shortest isogeny connecting E1 and E2. Given a description the endo-
morphism rings O1 � End(E1) and O2 � End(E2), there exists an efficient
algorithm that computes the isogeny φ.

Note that Theorem 3 is a straightforward generalization of [36, Theorem 1] where
the degree of the isogeny φ is a prime power to the case where there is no restric-
tion on the degree of the isogeny. Two uniformly random supersingular curves
are always connected by an isogeny of degree at most O(

√
p). Hence the attack

in Theorem 3 does not help to recover isogenies of degree d � √
p. In [32], it is

shown that if some reasonable amount of torsion point information is provided
beside the endomorphism rings, then the secret isogeny can be efficiently recov-
ered. More precisely, we have the following theorem which can be found in [32,
Theorem 3.8].

Theorem 4. Let E1 and E2 be two supersingular curves, and let d be the degree
of the shortest isogeny connecting E1 and E2. Let φ : E1 → E2 be an isogeny
of degree N1 ≥ d. Let N2 be a smooth integer, set E1[N2] = 〈P,Q〉. Given
φ(P), φ(Q) and a description the endomorphism rings O1 � End(E1) and O2 �
End(E2), there exists an efficient algorithm that computes the isogeny φ provided
that N1 ≤ dN2

16 .

In practice, the endomorphism ring of the co-domain curve of the isogeny is
not provided. In 2017, Petit [47] described an attack that only requires the
knowledge of a special endomorphism on the starting curve, and a large amount
of torsion point information. This attack was later improved in [48] but still
required torsion point images of large order. In 2022, a series of three papers [15,
44,49] consecutively improved the state of art to reach a point where no known
endomorphism is required and the amount of torsion point needed is way smaller
than the degree of the isogeny: a supersingular isogeny of degree N1 can be
efficiently recovered from its action on torsion points of smooth order N2 where
N1 < N2

2 . These results led to a complete break of SIDH and are summarized
in Theorem 5, which is based on [49, Theorem 1].

Exploring SIDH-Based Signature Parameters 439

Theorem 5. Let E1 and E2 be two supersingular curves, let N2 be a smooth
integer and let E1[N2] = 〈P,Q〉. Let φ : E1 → E2 be an isogeny of degree N1.
Given φ(P), φ(Q) there exists an efficient algorithm that computes the isogeny
φ provided that N1 < N2

2 .

It may happen that when attempting to recover the secret isogeny, one does not
directly have access to torsion point images, but to images of some cyclic groups
of the same order N . In [9,34], it is proven that if N has O(log log p) prime
factors, then one can efficiently recover the torsion point information from the
images of three disjoint cyclic groups of order N . This implies that the secret
isogeny can in fact be recovered from the images of three disjoint cyclic groups
of order N .

3 Signatures Based on SIDH Squares

In this section, we recall various constructions of proofs of isogeny knowledge
from the literature and we highlight the main design options. We also introduce
the potential lines of attack against some constructions, which are analyzed in
detail in the following sections. For a comprehensive survey of proofs of isogeny,
we refer the reader to [12,40].

Let us assume that a prover wants to demonstrate knowledge of a cyclic
isogeny φ : E0 → E1 of smooth degree d. The main framework, on which the
following proofs are based on, is a sigma protocol due to De Feo, Jao, and
Plût [30]. The prover generates the SIDH square in Eq. (1) where ψ has degree
�n for some � coprime with d, and they commit to E2 and E3. The verifier sends
a challenge bit c ∈ {0, 1}: if c = 0, the prover responds with the horizontal
isogeny φ′, and if c = 1, the prover reveals the vertical isogenies ψ and ψ′. The
verifier accepts if the response isogenies have the correct domain and codomain.
The protocol has soundness error of 1/2, and thus it needs to be repeated λ
times to obtain a negligible soundness error of 2−λ. As pointed out in [22,39] ,
a malicious prover may not necessarily know φ (such an isogeny might not exist
at all); the proof in [30] is thus sound with respect to the weaker relation

Rweak =
{

((E0, E1), φ)
∣

∣

∣

∣

φ : E0 → E1 is a cyclic �2id-isogeny,
for some integer i and � coprime with d

}

. (2)

In the case of an honest prover, this proof also reveals the action of φ on the tor-
sion E[deg ψ] since the isogenies ψ and ψ′ are parallel. This makes it potentially
vulnerable to the recent attacks on SIDH [15,44,49].

The authors of [22] showed that it is possible to have a proof that is sound
with respect to the strong relation

Rstrg = {((E0, E1), φ) | φ : E0 → E1 is a cyclic d-isogeny} (3)

440 A. Basso et al.

by ensuring that ψ and ψ′ are parallel. However, to avoid the SIDH attacks
and a technical issue with zero-knowledge1, they have to resort to a proof with
ternary challenges. Thus, to prove parallelness, the prover constructs the same
SIDH square as in Eq. (1), but additionally commits to P2, Q2

2, a basis of
E2[d], its image P3 := φ′(P2), Q3 := φ′(Q2) on E3, and the coefficients a, b

such that ker ψ̂ = 〈[a]P2 + [b]Q2〉 and ker ψ̂′ = 〈[a]P3 + [b]Q3〉. The curves E2

and E3 are also committed with a hiding commitment scheme. Then, the chal-
lenges are ternary, i.e. c ∈ {−1, 0, 1}. When c = ±1, the verifier reveals a, b
and either (E2, (P2, Q2)) or (E3, (P3, Q3)); the verifier reconstructs ψ or ψ′ and
ensures they have the correct codomain. In the case of c = 0, the verifier receives
(φ′, (E2, P2, Q2), (E3, P3, Q3)) and checks that the points P3, Q3 are the images
of P2, Q2 under φ′. In all cases, the verifier also ensures the revealed values match
the previously committed ones.

More recently, [7] introduced the concept of an SIDH ladder, which is
obtained by gluing multiple SIDH squares together. This removes the require-
ment on the prime being an SIDH prime. It is thus possible to prove knowledge
of an isogeny φ in any characteristic and even if φ and ψ have kernels that are
not defined over Fp2 .

This historical overview suggests there are three main design choices that
determine how a proof of isogeny knowledge works:

1. The soundness relation: strong vs weak,
2. The challenge space: binary vs ternary,
3. The characteristic p and the degrees of φ and ψ.

Note that not all combinations are possible. For instance, when the kernels of
ψ and ψ′ are not rational over Fp2 , which requires using the SIDH ladder method
proposed by [7], there is no known technique to prove the strong relation.

3.1 Proposed Constructions

We now discuss some promising combinations and study their securities in later
sections. Let E0 be a random supersingular elliptic curve, �1 be a small prime
and e1 be a positive integer. Our goal is to prove the knowledge of a secret
isogeny φ : E0 → E1 of degree �e1

1 in Rstrg.

Variant 1. This variant proves the knowledge of the strong relation, and uses
a binary challenge space. Let public parameters pp = (p, �1, �2, e1, e2, E0) be
such that #E0(Fp2) = (�1�e2

2 f)2, for �e2
2 of roughly the same size as in SIDH

([2]) and d = �e1
1 � �e2

2 , or d = �e1
1 ≈ 2λ(�e2

2)2. Note that in this setting,
p = �1�

e2
2 f − 1 ≈ �e2

2 and thus it is smaller than 22λ. Note also that E0 is not a

1 The Σ protocol with binary challenges does not satisfy the common definitions of
zero-knowledge. This, however, does not constitute a problem when it is transformed
into a signature scheme, as shown in Sect. 5.2.

2 This basis can be generated canonically, which avoids the need of its commitment.

Exploring SIDH-Based Signature Parameters 441

special curve and can in fact be generated by taking a long enough walk from
j = 1728.

Intuitively, the protocol is as described earlier in this section and the rigorous
version is given in [22, Figure 2]. The only difference is, the horizontal isogeny
φ′ is represented by a sequence of isogenies of degree �1 instead of a kernel point
of order �e1

1 . As noted in [22], this sigma protocol has 2-special soundness, but
does not satisfy the zero-knowledge (ZK) property if the distinguisher used in
the ZK definition has access to the witness. We explore in Sect. 5.2 how we can
still retain the security of the derived signature.

Variant 2. This variant also proves the knowledge of the strong relation, but
uses a ternary challenge space. The requirements on the public parameters are
similar to Variant 1, with p ≈ �e1

1 �e2
2 as in SIDH, so p ≈ 2216 for λ = 128.

The description of the protocol is as given in [22, Figure 3]. Note again that we
represent φ′ by a sequence of isogenies of degree �1. This sigma protocol has
3-special soundness and zero-knowledge. Note that in this variant, E0 does not
need to be a random supersingular elliptic curve, and rather can be taken to be
a special curve with an extremal order as endomorphism ring.

4 Analysis of KLPT-Based Attacks

In this section, we analyze KLPT-based attacks that break the security of
SIDH-based signatures and proofs of knowledge. The attacks follow two main
approaches: they can either recover the secret key from the public information,
or they can forge a valid signature even if they fail to recover the secret key.

In the first approach, the attacker recovers a d-isogeny φ : E0 → E1, given
the domain and codomain curves E0, E1 and their endomorphism rings.

This problem is linked to the problem of finding an ideal of norm d, con-
necting the maximal orders O0

∼= End(E0) and O1
∼= End(E1) through the

computational Deuring correspondence [26,37]. In [37,42], the authors propose
polynomial algorithms to find such ideal of smooth norm. A strategy to find a
witness for the above relations could then be as follows:

1. Find an ideal I connecting O0 to O1;
2. Use the KLPT algorithm to compute an ideal J of norm d equivalent to I;
3. Use the computational Deuring correspondence to compute an isogeny corre-

sponding to J .

The KLPT algorithm produces ideals of norm in O(3 log(p)) if either O0 or O1 is
a special extremal order [37,42,46], and O(92 log(p)) in the general case [25,46].
Hence, this strategy potentially fails for some d ≤ p3 or d ≤ p

9
2 , depending on

the curves E0 and E1.
A second attack strategy sidesteps these limitations and can possibly break

the security of the protocol even when the secret isogeny is shorter than p3. When
the underlying sigma protocol is sound with respect to the weak relation Rweak,

442 A. Basso et al.

the prover demonstrates knowledge of an isogeny between E0 and E1 of degree
�2id, for some integer i and � coprime with d. An attacker can thus attempt
to forge a proof, even without knowing the witness, by using the KLPT-based
approach described above to compute an isogeny of degree �2id. Such an isogeny
can then be written as the composition ψ̂′ ◦ φ′ ◦ ψ, where φ′ is a d isogeny and
ψ,ψ′ have degree �i; the attacker can then correctly reply to any challenge. This
attack can be avoided if the composition isogeny is shorter than the shortest
isogeny returned by KLPT, or if the Sigma protocol is sound with respect to
Rstrg: in that case, this approach would fail to produce isogenies ψ̂′ and ψ that
are parallel, because the isogenies φ′ and parallel isogenies ψ̂′ and ψ uniquely
determine φ, which is too short to be determined by a KLPT-based attack.

In this section, we analyze the minimal norm of the ideal that KLPT can
return. We extend the previous results by studying exponential-time algorithms
and showing that there is a trade-off between KLPT’s running time and the
norm of the smallest ideal it can produce.

4.1 The KLPT Algorithm for Extremal Order

We recall the following lemma from [42].

Lemma 6 ([42]). Let I be a left O-ideal and α ∈ I. Then I ᾱ
Nrd(I) is a left

O-ideal of norm Nrd(α)
Nrd(I) .

As consequence of this lemma, finding an equivalent O-ideal of I which has a
norm in a certain set N consists of finding an element in I of norm nNrd(I),
for some n ∈ N . Let O be one of the special extremal maximal orders given
in Example 2; I an O-left ideal and � a small prime. KLPT algorithm can be
summarized as follows:

1. Compute an ideal J of prime norm equivalent to I, such that � is a quadratic
non-residue modulo N ;

2. Find an element γ ∈ O of norm N�e1 for some e1 ∈ N;
3. Find an element α ∈ J such that J = Oα + NO;
4. Compute μ0 ∈ Rj such that γμ0 ≡ α mod NO;
5. Compute λ ∈ Z/NZ

∗ and μ1 ∈ O such that μ = λμ0 + Nμ1 has norm �e2 ,
for some e2 ∈ N

6. Return J β̄
N , where β = γμ.

In Step 1, one computes a reduced basis of I and generates a small set of
short elements until an element of norm N Nrd(I) is found for which N is prime.
Experimentally, this algorithm returns an ideal of prime norm N , where N � √

p.
In Step 2, one solves the norm equation

f(x1, y1) = N�e1 − pf(x2, y2). (4)

In Step 3, it is enough to find an element α ∈ J such that gcd(N2,Nrd(α)) = N .
For such α, we have J = Oα + NO i.e. J/NO = Oα/NO.

Exploring SIDH-Based Signature Parameters 443

The idea of Step 4 is that O/NO is isomorphic to M2(Z/NZ) (an explicit
isomorphism can be computed using [53, Proposition 7.6.2]) and thus every left
ideal only differs by a quaternion whose reduced norm is coprime to N and such
an element can actually be chosen from Rj. Step 5 consists of finding μ ≡ λμ0

mod NO of norm �e2 . One has to look for μ1 = x+ yω +(z + tω)j ∈ R+Rj and
λ ∈ Z/NZ such that Nrd(μ) = �e2 where μ = λμ0 + Nμ1. For such μ, we have

μ = N(x + yω) + [Nz + λC + (Nt + λD)ω]j.

Hence Nrd(μ) = �e2 is equivalent to

N2f(x, y) + pf(Nz + λC,Nt + λD) = �e2 . (5)

Modulo N , the previous equation becomes

λ2pf(C,D) ≡ �e2 mod N.

Since l is a quadratic non-residue modulo N , the parity of e2 should be adjusted
so that

(

pf(C,D)
N

)

=
(

�e2

N

)

. We then have λ =
√

�e2

pf(C,D) mod N .
Furthermore, we also have

f(Nz + λC,Nt + λD) = N2f(z, t) + λ2f(C,D) + NλL((C,D), (z, t)),

where

L((C,D), (z, t)) = 2Cz + Trd(ω)(Dz + Ct) + 2Nrd(ω)Dt = 〈C + Dω, z + tω〉.
Hence, Eq. (5) is equivalent to

λpL((C,D), (z, t)) =
�e2 − λ2pf(C,D)

N
− N(f(x, y) + pf(z, t)). (6)

(We recall that λ is chosen so that N divides �e2 − λ2pf(C,D)). Modulo N , Eq.
(6) yields the linear equation

λpL((C,D), (z, t)) =
�e2 − λ2pf(C,D)

N
mod N. (7)

This linear equation has N solutions (z, t) [42].
To find (x, y), one takes a random solution (z, t) and tries to solve the fol-

lowing equation, which is equivalent to Eq. (5):

f(x, y) =
�e2 − pf(Nz + λC,Nt + λD)

N2
=: r (8)

Remark 7. In this step, there are two ways to proceed:

1. Take e2 large enough so that r is always positive, and randomly take (z, t) so
that r is a norm in R (as done in [42]);

444 A. Basso et al.

2. Adjust e2 for each value of (z, t) so that Eq. (8) has a solution. This method
gives an exponential approach that is studied next.

We summarize our discussion about the KLPT algorithm in the following
lemma. Note that this result is already implied in [46].

Lemma 8. Let O0 be a special extremal maximal order in Bp,∞, where p ≡ 3
mod 4 or p ≡ 5 mod 8. Let I be a O0-left ideal. Using KLPT algorithm, we can
compute an ideal of smooth norm d equivalent to I, where d = �e ≈ p

5
2 .

Proof. In Step 1, the ideal J can be found such that N is split in R. For such N ,
the equation f(x, y) = N has a solution since hΔ = 1, where Δ = disc(R). Hence,
we can take e1 = 0 in Step 2 and Eq. (5) has a solution for x2 = y2 = 0. Using
the strategy in [46] in Step 5, we have e2 ≈ 5

2 log�(p). Thus, e = e2 ≈ 5
2 log�(p),

and the result follows.

Remark 9. For a general value of p, this approach work with probability 1
hΔ

.

Superpolynomial-Time KLPT

We now analyze the second strategy discussed in Remark 7, with a particular
focus on superpolynomial-time algorithms. Note that the ideas of the strategy
we present here first appeared in [45, Section 3.4], and we give a variant of it.

Given C,D ∈ Z, we look for solutions (z, t) ∈ Z
2 such that Eq. (7) holds.

In [46], it was shown that the solutions (z, t) for Eq. (7) can be viewed as a
translated lattice as follows. We let Φ = pλ(2C + tr(ω)D), Ψ = pλ(tr(ω)C +
2n(ω)D), and χ := le2−λ2pf(C,D)

N , then (z, t) satisfies

Ψz + Ψt ≡ χ mod N.

Let (z0, t0) denote one solution of this equation, then all solutions (z, t) ∈ Z
2 are

contained in the translated lattice L = (z0, t0)T + L0, where L0 = Z(Φ,−Ψ)T +
Z(0, N)T . To reduce the output length of KLPT, we aim to reduce pf(Nz +
λC,Nt + λD). In [46], this is reduced to a closest-vector problem where the
involved lattice L is a deformation of L0. For our purpose, we do not recall the
concrete basis of L0 here, but only note that this lattice is determined by C and
D, and it has volume pN3

√

ΔQ(ω). By the Gaussian heuristic, we estimate that

the lattice contains a basis of size √
pN

3
2 Δ

1
4
Q(ω). This gives rise to the estimation

that one can find (z, t) such that pf(Nz +λC,Nt+λD) ≈ pN3
√

ΔQ(ω). Hence,
�e2 ≈ pN3

√

ΔQ(ω) ≈ p
5
2 . Below is a theorem that estimates the expected shortest

vector of n independent random matrices from [4, Section 4.1].

Theorem 10. Let Z1, ...Zn be the length of the shortest vectors in n independent
random matrices of unit volume and Zmin := min{Z1, ..., Zn}, then E(Zmin) ≤
O(1√

n
) for n ≥ 2.

Exploring SIDH-Based Signature Parameters 445

If we can generate n pairs of C,D that gives rise to n independent random
lattices, then according to Theorem 10, the expected shortest vector among these

n lattices has length
√

pN
3
2 Δ

1
4
Q(ω)√

n
. Therefore, pf(Nz + λC,Nt + λD) would be

pN3
√

ΔQ(ω)

n . Let n ≈ Ne3 , then
pN3

√
ΔQ(ω)

n ≈ pN3−e3
√

ΔQ(ω) ≈ p
5
2− e3

2 .
Hence, the length of the path returned using this approach reaches e =

5−e3
2 log(p). The number n is exactly the number of solutions provided by the

modular constrain Step 4 that we want to analyze.

On the Modular Constraint

In a general context, the modular constraint step consists of finding an element
[μ] ∈ (O/NO)∗ ≡ GL2(Z/NZ) such that (Oγ/NO)[μ] = J/NO. The existence
of such element is justified by the transitivity of the action of GL2(Z/NZ) on
P
1(Z/NZ). We recall the following lemma:

Lemma 11 ([42]). Let N be a prime and A = M2(Z/NZ). The set of proper
nontrivial left A-ideals is in bijection with the set

{

P
1(Z/NZ) × {(x : y)}; (x : y) ∈ P

1(Z/NZ)
}

,

and the right action of PGL2((Z/NZ) on left A-ideals is transitive and induced
by the natural action on P

1(Z/NZ).

We recall that the action of PGL2((Z/NZ) on P
1(Z/NZ) is induced by the

action of GL2(Z/NZ) which has kernel (Z/NZ)∗. Using an explicit isomorphism
between O/NO and M2(Z/NZ) we have an action of (O/NO)∗ on the left
O/NO-ideals. In the context of the KLPT algorithm, this action is restricted
to the action of Rj/NO. That is why Step 4 just consists to find a pair (C,D).
Hence, the number n is upper bounded by the number of [μ]. The number of
such [μ] is exactly #Stab([x : y]) (where Stab([x : y]) denotes the stabilizer of
[x : y]) for some [x : y] ∈ P

1(Z/NZ), since the action is transitive. Furthermore,
we have #Stab([x : y]) = #PLG2(Z/NZ)

#P1(Z/NZ) = N(N + 1). Hence, we have n ≈ N2.
We summarize the discussion into the following theorem.

Theorem 12. Let I be a left O-ideal for an extremal order O. Then applying
the KLPT algorithm to I one could find an equivalent left O-ideal J such that
n(J) is an �-power and is of length 5−e

2 log p in time Õ(n) where n is any positive
integer less than p and e is a rational number such that (

√
p)e ≈ n, for p ≡ 3

mod 4 or p ≡ 5 mod 8.

Proof. We set n(J) = �e1+e2 where e1 and e2 are given respectively by Step 2
and Step 5. Following the arguments in the proof of Lemma 8, we have e1 =
0. Let e be such that Ne ≈ (

√
p)e is the number of solutions we generate in

the modular constrain step, then based on the discussions above, we have that
e2 ≈ 5−e

2 log�(p). This approach then has complexity in Õ(
√

pe). The number of
solutions that can be generated in the modular constrain step is bounded above
by N2 ≈ p.

446 A. Basso et al.

The shortest path returned by this approach has length 3
2 log p which takes time

Õ(p). Note that in both our variants p is a slightly smaller than 22λ. The cost
of this attack to generate a path of length 3

2 log p is thus far greater than the
security parameter. On the other hand, if we choose the runtime to be √

p ≈ 2λ,
then the output path length from this approach is 2 log p.

4.2 KLPT Algorithm for Non-extremal Order

Let E and E1 be two supersingular elliptic curve defined over Fp2 , of known
endomorphism rings O and O1. Let I be a connecting ideal of O and O1. Let
O0 be a special extremal order, and I0 = I(O0,O). The problem is to find an
O-left ideal of smooth norm equivalent to I.

Approach from [42]. The idea in [42] is as follows:

1. Compute I1 = I0
γ̄1

Nrd(I0)
where Nrd(γ1) = n1 Nrd(I0);

2. Compute I2 = I0I
γ̄2

Nrd(I0I) where Nrd(γ2) = n2 Nrd(I0I);
3. Return I γ̄

Nrd(I) , where γ = γ̄1γ2.

With this approach, the length of the shortest path is greater than 4 log(p).

The SQISign Approach. The idea in SQISign [25] is to transfer the problem
in the special case using pullback and push forward through I0.

O0

K=[I0]
∗IχK(β′)

I0 O

I [I0]∗χK(β′)

OR(K) O1

Where χK(β′) = K β̄′
Nrd(K) . To obtain this, one must have β′ ∈ K ∩ D, where

D = O0∩O = Z+I0 [25, Corollary 1]. For n = �e, the algorithm can be described
as follows: We suppose that Nrd(I0) = N0 is prime inert in R such that � is a
quadratic non residue modulo N0.

1. Compute K = [I0]∗I;
2. Compute an ideal L of prime norm N equivalent to K, such that � is a

quadratic non-residue modulo N . Let δ such that L = χK(δ);
3. Find an element γ ∈ O of norm N�e1 for some e1 ∈ N;
4. Find an element α ∈ O such that L = Oα + NO;
5. Compute μ0 = (C0 + ωD0)j ∈ Rj such that γμ0 ≡ α mod NO;
6. Compute μ1 = (C1 + ωD1)j ∈ Rj such that γμ0δ ∈ O ∩ O0;
7. Compute C = CRTN0,N (C0, C1) and D = CRTN0,N (D0,D1) and let μ′ =

(C + ωD)j
8. Compute λ ∈ Z/NN0Z

∗ and μ′
1 ∈ O0 such that μ = λμ′ + NN0μ

′
1 has norm

le2 , for some e2 ∈ N.
9. Return χL(β), where β = γμ.

Exploring SIDH-Based Signature Parameters 447

The main difference between this algorithm and the algorithm from [42]
described in Sect. 4.1 is Step 8. Here the approximation is done modulo NN0

and then the computation of λ becomes more delicate than what we have in
Step 5, Sect. 4.1. In the present context, the approximation equation is Eq. (9),
which corresponds to Eq. (5), replacing N by NN0.

N2N2
0 f(x, y) + pf(NN0z + λC,NN0t + λD) = �e2 . (9)

Modulo NN0, this equation becomes

λ2pf(C,D) ≡ �e2 mod NN0.

For this equation to have a solution, we need the following equality:
(

pf(C,D)
N

)

=
(

�e2

N

)

and
(

pf(C,D)
N0

)

=
(

�e2

N0

)

.

Since � is a quadratic non residue modulo N and N0, we always have
(

�e2

N

)

=
(

�e2

N0

)

. Hence, we need
(

pf(C,D)
N

)

=
(

pf(C,D)
N0

)

. (10)

This last equality has a probability 3
4 to fail, for given γ from Step 3 and δ

from Step 2 [25]. To minimize this failure probability, the authors of [25] take
e1 large enough so that there are many possibilities for γ (we recall that γ is
computed by solving Eq. (4)). The advantage of this method is that it only
modifies the parameters (C,D), and N remains fixed. Since we need e1 to be as
small as possible and Eq. (4) has a solution for e1 = 0 when N is split in R, we
would like to take e1 = 0. We summarize the result in the following lemma.

Lemma 13. Let O and O1 be two non extremal maximal orders in Bp,∞ where
p ≡ 3 mod 4 or p ≡ 5 mod 8. Given a connecting ideal I of O and O1, there is
a probabilistic polynomial time algorithm which find an equivalent ideal of norm
�e, for some small prime � and e ≈ 4 log(p).

Proof. Following the idea in Lemma 8, we can obtain e1 = 0 in step 3 in which
case Eq. 4 is solved by setting x1 = x2 = 0. Equation 4 become f(x1, x2) = N ,
which has at most 4 solutions leading to different values of [C : D] ∈ P

1(Z/NZ).
Hence, the success probability is 1 − (

3
4

)4 ≈ 68.4%. In the failure case we can
either go back to Step 2 and compute an other L, or compute an other I0. In
Step 8, we can use the strategy of [46] to obtain e2 ≈ 4 logl p and the result
follows.

Remark 14. The exponential approach of Sect. 4.1 can be applied here. Using
similar analysis, we see that the output length is (4 − e) log p in time Õ(n)
where n is any positive integer less than p and e is a rational number such that
(
√

p)e ≈ n, for p ≡ 3 mod 4 or p ≡ 5 mod 8. And in this case, if we bound the
runtime by √

p, then the shortest path returned is of length 3 log p.

448 A. Basso et al.

4.3 Parameters Secure Against KLPT-Based Attacks

Combining the analysis presented so far, we obtain the following limitations for
an attacker of complexity 2λ. Since O(p) = O(2ε) and λ < ε ≤ 2λ, we use O(

√
p)

as an upper bound for the runtime of exponential KLPT, and we summarize the
output length here.

Takeaway 1 Consider an isogeny φ : E0 → E1 of degree d. Given the
endomorphism rings of E0 and E1, KLPT-based methods cannot recover φ
in time Õ(

√
p) < Õ(2λ) if:

1. E0 is a special curve, p ∈ {3, 5, 7} mod 8, and log d < 2 log p;
2. E0 is a special curve, p
∈ {3, 5, 7} mod 8, and log d < 5

2 log p;
3. E0 is not a special curve, p ∈ {3, 5, 7} mod 8, and log d < 3 log p;
4. E0 is not a special curve, p
∈ {3, 5, 7} mod 8, and log d < 7

2 log p.

Given these results, we obtain that the two protocols proposed in Sect. 3 are
secure against KLPT-based attacks. In both instances, E0 is chosen to not be a
special curve, hence the limits 3 and 4 apply. In the first variant, from Takeaway
2, the isogeny φ has degree d ≈ 2λp2 and ψ has degree ≈ p, Variant 1 is secure
according to the summary above. Similarly, Variant 2 relies on isogenies of
degree ≈ p, and thus KLPT-based attacks do not apply. In both instantiations,
the signatures rely on the stronger relation, and thus the attack that recovers
the composition ψ̂ ◦ φ′ ◦ ψ′ cannot be used.

5 Analysis of Other Attacks

5.1 Attacks Based on the SIDH Attacks

The SIDH attacks [15,44,49] recover an isogeny φ : E0 → E1 of degree d given:

– The curves E0 and E1;
– The degree d;
– The image of a torsion basis of smooth order n with n ≥ √

d.

However, it is possible to brute-force part of an unknown isogeny (which
is always cheaper than brute-forcing torsion point information), thus we need
d ≥ 2λ

√
� to avoid the attacks.

Binary challenges. The proofs of isogeny knowledge with binary challenges are
potentially vulnerable to the SIDH attacks.

Consider the following diagram:

E0 E1

E2 E3

φ

ψ ψ′

φ′

Exploring SIDH-Based Signature Parameters 449

When the proof has binary challenges, the isogenies ψ and ψ′ are revealed
together. If the prover is honest, we have

ker ψ′ = φ(ker ψ),

which allows an attacker to recover the image of the subgroup ker ψ under the
secret isogeny φ. After three such challenges, the attacker has recovered enough
information to apply the SIDH attacks. In fact, as shown in [9,34] this allows the
attacker to recover the image of a torsion basis on E0 under φ, up to the same
scalar. The square of this scalar can be computed through Weil pairing. If the
degrees of ψ and ψ′ are prime powers, as in SIDH, there are only two possible
square roots. It is easy to apply the SIDH attacks each time deg φ < (deg ψ)2,
assuming the degree of ψ is not much smaller than that of φ, and recover φ. In
practice, it is enough to have 2λ(deg ψ)2 ≤ deg φ, so that one needs to first guess
an isogeny of degree at least 2λ before being able to apply the SIDH attacks.

Takeaway 2 Binary challenges require 2λ(deg ψ)2 ≤ deg φ.

Remark 15. An alternative idea could be to use commitment isogenies ψ and
ψ′ with non-rational torsion as the torsion point images are defined over large
extensions fields and thus the SIDH attacks do not apply directly. However,
in our case we know endomorphism rings and can go on a different route. As
described in [19], one has that (End(E)/NEnd(E))∗ acts on the set of degree
N isogenies. In general without any extra information this action is hard to
compute when only the codomain of the isogeny is known. In our case however,
this action is exactly provided by the parallel isogenies. Thus one can compute
the stabilizer of this action as in [19] using a polynomial-time quantum algorithm
which essentially reveals the connecting ideal corresponding to the secret isogeny.
Since the secret isogeny here is smooth, one can recover the isogeny itself step
by step. Note that just knowing the codomain of the parallel isogeny would not
always have been enough (as it does not determine the action precisely as one
might have several degree N isogenies between two supersingular elliptic curves).
However, knowing the second vertical isogeny already is enough information to
evaluate the group action (assuming that the torsion is large enough to ensure
unicity).

5.2 Attacks on the Zero-Knowledge Property

In this section, we explore the zero-knowledge property of the underlying sigma
protocol for the binary challenge variant as described in Sect. 3.

We set ourselves in the setting of Variant 1, from Sect. 3.1, since the
others variants use ternary challenges and are provably (honest-verifier) zero-
knowledge. The question we explore is whether we can address the zero-
knowledge issue that arises in Variant 1 in the context where we only use the
identification protocol for the purpose of turning it into a signature scheme.

450 A. Basso et al.

This turns out to be a key observation: we turn the Sigma protocol into a
signature scheme via the Fiat-Shamir transform [31], and a natural question that
arises is whether we can allow a relaxation of the zero-knowledge property of the
underlying Sigma protocol whilst still retaining the security of the Fiat-Shamir
transform. In other words, what are the minimal assumptions for the security of
the Fiat-Shamir transform and can we achieve them? In [1], they introduce a new
notion of security for sigma-protocols, namely security against impersonation
under passive attacks. They show that this is a minimal assumption for the
Fiat-Shamir transform to be secure. We define this notion formally below:

Definition 16 ([1]). We say that a sigma protocol is secure against imperson-
ation under passive attacks if for any polynomial time adversary A the advantage
AdvImpersonate(A) of A in the Impersonate game is negligible, where

AdvImpersonate(A) = Pr[Impersonate(A) → 1] = negl(λ)

The Impersonate game is described below.

Impersonate(A)
1: Setup(1λ) → pp
2: KeyGen(pp) → (sk, pk)
3: AOTG(pk) → com, st
4: ch

$←− C
5: A(st, ch) → resp
6: return V(pk, com, ch, resp)

OTG

1: Rp
$←− R (generate randomness)

2: com ← P(sk;Rp)

3: ch
$←− C

4: resp ← P(sk, com, ch;Rp)
5: return (com, ch, resp)

Theorem 17 ([1], Theorem 3.3). Let ΠΣ be a non-trivial sigma-protocol, and
DSΣ be the associated digital signature scheme obtained via the Fiat-Shamir
transform, then DSΣ is secure against existential forgery under chosen-message
attacks if and only if ΠΣ is secure against impersonation under passive attacks.

Remark 18. Note that non-triviality here requires the challenge space to be
super-polynomial. Otherwise, a trivial winning strategy would be to replay a
transcript obtained from the oracle and then one gets a probably 1/|C| of win-
ning. So if the size of the challenge space is polynomial, we have a winning
strategy with probability that is not negligible.

We claim that this relaxed security notion is achieved by the parallel repeti-
tion of the binary challenge version under some conditions, and we hence get a
secure signature scheme by applying the Fiat-Shamir transform. Let us formulate
this more formally.

Problem 19. Consider two supersingular elliptic curves E0, E1 and an isogeny
φ : E0 → E1 of degree D = �e1

1 in Rstrg such that #E0(Fp2) = (�1�e2
2 f)2 as

defined in Variant 1. Given access to an oracle that outputs either :

Exploring SIDH-Based Signature Parameters 451

– two isogenies E0 → E2, E1 → E3 and the images of the torsion basis on the
codomain curves;

– an isogeny E2 → E3 of degree D;

then the adversary must recover the secret isogeny φ.

Theorem 20. Under the hardness of Problem 19, the λ parallel repetition of
the sigma protocol is secure against impersonation under passive attacks.

Proof. Problem 19 is the translation of the impersonate game to our setting.

This problem has already been discussed in the previous subsections. Notably
if we ensure that the takeaways from Sects. 4 and 5.1 are respected then we can
reasonably assume its hardness.

Takeaway 3 Under reasonable assumptions, a digital signature derived
from a proof of isogeny knowledge with binary challenges via the Fiat-Shamir
transform is secure.

6 Concrete Instantiations and Parameters Size

In this section, we analyze the size of the signatures derived from the sigma
protocols described in Sect. 3.1 using the Fiat-Shamir transform [31]. We rely on
a hash function H : {0, 1}∗ → {0, 1}2λ, where λ is the security parameter.

Variant 1. We first fix �1 = 2, �2 = 3 for efficiency reasons. Then, we choose
the value e2 such that isogenies of degree 3e2 are hard to recover via meet-in-
the-middle or van Oorschot-Wiener attacks [51] (e.g., we have e2 = 137 for
λ = 128). The exponent e1 is chosen such that the isogenies of degree 2e2

are hard to recover, even when their action on the 3e2 torsion is known, i.e.
e1 = λ + �2e2 log 3�. We define the prime p to be of the form p = 2 · 3e2f − 1,
where f is a small cofactor. The public parameters of the signature are then
pp = (p, e1, e2, E0, T0, P0, Q0), where E0 is a random supersingular elliptic curve
defined over Fp2 . The point T0 ∈ E0 is an auxiliary point of order 2, used in the
CGL hash function computations [18], and and {P0, Q0} is a basis of E0[3e2].

By the definition of p, any point of order 2e1 is defined over a large extension
of Fp2 . We then represent the secret isogeny φ : E0 → E1 (of degree 2e1) by a
sequence of 2-isogenies. To do that, we represent it as a seed s ∈ {0, 1}e1 that has
to be hashed using CGL hash function [18], with the first step chosen between
the 2-torsion points that are not T0. The secret key can then be represented by
e1 ≈ λ + 2 log p ≈ 5λ bits. The public key is (E1, P1, Q1) where P1 = φ(P0) and
Q1 = φ(Q0). This requires 6 log p ≈ 12λ bits.

In this variant, the soundness error is 1
2 : this means the signature needs to

repeat the sigma protocol k = λ times to obtain a negligible soundness error.
Since we are in the binary case, the response to both challenges includes all
the committed values; thus, we rely on hashed commitments only for compres-
sion, but we do not require any hiding property. Using some of the compression

452 A. Basso et al.

techniques from [40], the size of the response for the horizontal challenge is
3 log p + 2λ, while the vertical challenge is log p. Repeating λ times and includ-
ing the hashed commitment sizes of 2 × 2λ, we obtain an asymptotic size of
λ(5λ+2 log p) ≈ 9λ2 bits. Note that this is asymptotic and based on the assump-
tion that e3 ≈ 2λ/ log 3, but we can choose smaller parameters based on the cost
of the van Oorschoot-Wiener attack, as done in SIDH. For λ = 128, this results
in a 218-bit prime and a signature of about 17 kB, which may be reduced even
further by relying on seed trees [40].

Variant 2. The second variant relies on ternary challenges, and thus torsion
images under the secret isogeny is not revealed. The public key hence consists
of a single curve, which then requires 2 log p bits.

In this variant, we need to rely on a computationally binding and statis-
tically hiding commitment scheme C: we construct one from a hash function
H : {0, 1}∗ → {0, 1}2λ by defining C(m) = H(m|r), for some random string r of
λ bits. For each execution of the sigma protocol, we need 6λ bits to represent
the three commitments (following the commitment algorithm in [22, Figure 3]),
λ + log p for the responses to the vertical isogeny challenges, and λ + 3 log p
for the response to the horizontal isogeny challenge. The soundness error of the
underlying sigma protocol is 2

3 , which means the signature needs to repeat the
sigma protocol k = �−λ/ log 2/3� times to obtain a negligible soundness error.
This results in an average signature of asymptotic size 31

3 λ�−λ/ log 2/3� bits.

7 Conclusion

In this paper, we explore the feasibility of SIDH-based signatures when the
endomorphism ring of all curves are public. We identify two variants of the
construction that are secure in this setting, where the difference resides in the
use of binary or ternary challenges and give concrete parameters. We provide a
thorough security analysis of our proposals notably in terms of attacks based on
KLPT, with both a polynomial and superpolynomial adversary, attacks derived
from the recent SIDH-attacks and analyze the zero-knowledge property of the
binary challenge variant. Note that the results we derive from the KLPT attacks
could be affected by improvements on the output size of KLPT but this would
only require to adjust the parameters to retain the security.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7_28

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28

Exploring SIDH-Based Signature Parameters 453

2. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-
Henríquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson Jr: M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp.
322–343. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-
7_15

3. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part
II. LNCS, vol. 12492, pp. 411–439. Springer, Heidelberg (2020). https://doi.org/
10.1007/978-3-030-64834-3_14

4. Aono, Y., Espitau, T., Nguyen, P.Q.: Random lattices: theory and practice (2019).
https://espitau.github.io/bin/random_lattice.pdf

5. Badrinarayanan, S., Masny, D., Mukherjee, P., Patranabis, S., Raghuraman, S.,
Sarkar, P.: Round-optimal oblivious transfer and MPC from computational CSIDH.
In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp.
376–405. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-31368-
4_14

6. Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. Cryptol-
ogy ePrint Archive, Report 2023/225 (2023). https://eprint.iacr.org/2023/225

7. Basso, A., et al.: Supersingular curves you can trust. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 405–437. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-30617-4_14

8. Basso, A., Fouotsa, T.B.: New sidh countermeasures for a more efficient key
exchange. Cryptology ePrint Archive, Paper 2023/791 (2023). https://eprint.iacr.
org/2023/791

9. Basso, A., Kutas, P., Merz, S.P., Petit, C., Sanso, A.: Cryptanalysis of an oblivious
PRF from supersingular isogenies. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT
2021, Part I. LNCS, vol. 13090, pp. 160–184. Springer, Heidelberg (2021). https://
doi.org/10.1007/978-3-030-92062-3_6

10. Basso, A., Maino, L., Pope, G.: FESTA: fast encryption from supersingular torsion
attacks. Cryptology ePrint Archive, Paper 2023/660 (2023). https://eprint.iacr.
org/2023/660

11. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Open Book Series 4(1), 39–55 (2020)

12. Beullens, W., De Feo, L., Galbraith, S.D., Petit, C.: Proving knowledge of isogenies:
a survey. Des. Codes Cryptog. (2023). https://doi.org/10.1007/s10623-023-01243-
3

13. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–247. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-34578-5_9

14. Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions from isogenies.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp.
520–550. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64834-
3_18

15. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay,
C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 423–447.
Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_15

16. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-030-03332-3_15

https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://espitau.github.io/bin/random_lattice.pdf
https://doi.org/10.1007/978-3-031-31368-4_14
https://doi.org/10.1007/978-3-031-31368-4_14
https://eprint.iacr.org/2023/225
https://doi.org/10.1007/978-3-031-30617-4_14
https://eprint.iacr.org/2023/791
https://eprint.iacr.org/2023/791
https://doi.org/10.1007/978-3-030-92062-3_6
https://doi.org/10.1007/978-3-030-92062-3_6
https://eprint.iacr.org/2023/660
https://eprint.iacr.org/2023/660
https://doi.org/10.1007/s10623-023-01243-3
https://doi.org/10.1007/s10623-023-01243-3
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-03332-3_15

454 A. Basso et al.

17. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational endo-
morphisms. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS,
vol. 12106, pp. 523–548. Springer, Heidelberg (2020). https://doi.org/10.1007/978-
3-030-45724-2_18

18. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009). https://doi.org/10.1007/
s00145-007-9002-x

19. Chen, M., Imran, M., Ivanyos, G., Kutas, P., Leroux, A., Petit, C.: Hidden stabi-
lizers, the isogeny to endomorphism ring problem and the cryptanalysis of psidh.
Cryptology ePrint Archive (2023)

20. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: new dimensions in
cryptography. Cryptology ePrint Archive, Paper 2023/436 (2023). https://eprint.
iacr.org/2023/436, https://eprint.iacr.org/2023/436

21. De Feo, L., et al.: Séta: supersingular encryption from torsion attacks. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 249–278.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92068-5_9

22. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp.
310–339. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-
4_11

23. De Feo, L., et al.: SCALLOP: Scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov,
V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp. 345–375. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-31368-4_13

24. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol.
11478, pp. 759–789. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
030-17659-4_26

25. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64–93. Springer, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-64837-4_3

26. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New algorithms for the during
correspondence - towards practical and secure SQISign signatures. In: Hazay, C.,
Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 659–690.
Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_23

27. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019, Part I. LNCS, vol. 11921, pp. 248–277. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-030-34578-5_10

28. Eisenträger, K., Hallgren, S., Lauter, K.E., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: Reductions and solutions. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 329–
368. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-78372-7_11

29. Eisenträger, K., Hallgren, S., Leonardi, C., Morrison, T., Park, J.: Computing
endomorphism rings of supersingular elliptic curves and connections to path-finding
in isogeny graphs. Open Book Series 4(1), 215–232 (2020)

30. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014). https://
doi.org/10.1515/jmc-2012-0015

https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015

Exploring SIDH-Based Signature Parameters 455

31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

32. Fouotsa, T.B., Kutas, P., Merz, S.P., Ti, Y.B.: On the isogeny problem with torsion
point information. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022,
Part I. LNCS, vol. 13177, pp. 142–161. Springer, Heidelberg (2022). https://doi.
org/10.1007/978-3-030-97121-2_6

33. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: countering SIDH
attacks by masking information. In: Hazay, C., Stam, M. (eds.) EUROCRYPT
2023, Part V. LNCS, vol. 14008, pp. 282–309. Springer, Heidelberg (2023). https://
doi.org/10.1007/978-3-031-30589-4_10

34. Fouotsa, T.B., Petit, C.: A new adaptive attack on SIDH. In: Galbraith, S.D.
(ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 322–344. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-030-95312-6_14

35. Fuselier, J., Iezzi, A., Kozek, M., Morrison, T., Namoijam, C.: Computing super-
singular endomorphism rings using inseparable endomorphisms. arXiv preprint
arXiv:2306.03051 (2023)

36. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6_3

37. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part I. LNCS, vol. 10624, pp. 3–33. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-70694-8_1

38. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. J. Cryptol. 33(1), 130–175 (2020).
https://doi.org/10.1007/s00145-019-09316-0

39. Ghantous, W., Katsumata, S., Pintore, F., Veroni, M.: Collisions in supersingu-
lar isogeny graphs and the sidh-based identification protocol. Cryptology ePrint
Archive, Paper 2021/1051 (2021). https://eprint.iacr.org/2021/1051

40. Ghantous, W., Pintore, F., Veroni, M.: Efficiency of sidh-based signatures (yes,
sidh). Cryptology ePrint Archive, Paper 2023/433 (2023). https://eprint.iacr.org/
2023/433

41. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th
International Workshop, PQCrypto 2011. pp. 19–34. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5_2

42. Kohel, D., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion �-isogeny path
problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

43. Lai, Y.F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, efficient
and UC-secure isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.X.
(eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 213–241. Springer, Hei-
delberg (2021). https://doi.org/10.1007/978-3-030-77870-5_8

44. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part
V. LNCS, vol. 14008, pp. 448–471. Springer, Heidelberg (2023). https://doi.org/
10.1007/978-3-031-30589-4_16

45. Merz, S.P.: A Curved Path to Post-Quantum: Cryptanalysis and Design of Isogeny-
based Cryptography. Ph.D. thesis, Royal Holloway, University of London (2023)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-97121-2_6
https://doi.org/10.1007/978-3-030-97121-2_6
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-030-95312-6_14
http://arxiv.org/abs/2306.03051
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/s00145-019-09316-0
https://eprint.iacr.org/2021/1051
https://eprint.iacr.org/2023/433
https://eprint.iacr.org/2023/433
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-77870-5_8
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16

456 A. Basso et al.

46. Petit, C., Smith, S.: An improvement to the quaternion analogue of the ‘-isogeny
problem’ (2018). Full paper received through private communication, slides avail-
able at https://crypto.iacr.org/2018/affevents/mathcrypt/medias/08-50_3.pdf

47. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp.
330–353. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70697-
9_12

48. de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021, Part III, Virtual Event. LNCS, vol. 12827, pp.
432–470. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-84252-
9_15

49. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 472–503. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-30589-4_17

50. Sterner, B.: Commitment schemes from supersingular elliptic curve isogeny graphs.
Math. Cryptol. 1(2), 40–51 (2022). https://journals.flvc.org/mathcryptology/
article/view/130656

51. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

52. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des
Sci. 273, 238–241 (1971)

53. Voight, J.: Quaternion algebra. Graduate Texts in Mathematics, vol. 288, Springer,
Heidelberg (2020). https://doi.org/10.1007/978-3-030-56694-4

54. Wesolowski, B.: Orientations and the supersingular endomorphism ring problem.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 345–371. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-07082-2_13

55. Wesolowski, B.: The supersingular isogeny path and endomorphism ring prob-
lems are equivalent. In: 62nd FOCS, pp. 1100–1111. IEEE Computer Society Press
(2022). https://doi.org/10.1109/FOCS52979.2021.00109

https://crypto.iacr.org/2018/affevents/mathcrypt/medias/08-50_3.pdf
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-031-30589-4_17
https://journals.flvc.org/mathcryptology/article/view/130656
https://journals.flvc.org/mathcryptology/article/view/130656
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/978-3-030-56694-4
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1109/FOCS52979.2021.00109

Biscuit: New MPCitH Signature Scheme
from Structured Multivariate Polynomials

Luk Bettale1, Delaram Kahrobaei2,3,4,5(B), Ludovic Perret6, and Javier Verbel7

1 IDEMIA, Courbevoie, France
2 Department of Computer Science and Mathematics, Queens College,

City University of New York, New York, USA
delaram.kahrobaei@qc.cuny.edu

3 Initiative for the Theoretical Sciences, Graduate Center,
City University of New York, New York, USA

4 Department of Computer Science, University of York, Heslington, UK
5 Department of Computer Science and Engineering, Tandon School of Engineering,

New York University, New York, USA
6 Sorbonne University, CNRS, LIP6, PolSys, Paris, France

7 Technology Innovation Institute, Masdar City, UAE

Abstract. This paper describes Biscuit, a new multivariate-based signa-
ture scheme derived using the MPC-in-the-Head (MPCitH) approach. The
security of Biscuit is related to the problem of solving a set of struc-
tured quadratic algebraic equations. These equations are highly compact
and can be evaluated using very few multiplications (one multiplication
per equation). The core of Biscuit is a rather simple MPC protocol for
secure multiplications using standard optimized multiplicative triples.
This paper also includes several improvements toward the initial version
of Biscuit submitted to the NIST PQC standardization process for addi-
tional signature schemes. Notably, we introduce a new hypercube variant
of Biscuit, refine the security analysis with recent third-party attacks, and
present a new AVX2 implementation of Biscuit.

Keywords: Post-Quantum · Digital Signature · MPC-in-the-Head ·
Multivariate Polynomials

1 Introduction

Biscuit is a new multivariate-based digital signature scheme submitted to the
recent NIST standardization process for additional post-quantum signature
schemes [1]. The security of Biscuit is proven assuming the hardness of the
so-called PowAff2 problem (Definition 1), which is a structured version of the
well-known Multivariate Quadratic (MQ) problem [16].

Biscuit is in the lineage of the Picnic signature scheme [21,36], which was
selected as an alternate candidate in the first NIST post-quantum cryptography
standardization process [6]. The security of Picnic relies on the hardness of a
key-recovery attack for a lightweight block cipher. The design of Picnic builds
over a Multi-Party Computation (MPC) protocol for multiplicative triples and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 457–486, 2024.
https://doi.org/10.1007/978-3-031-54770-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54770-6_18&domain=pdf
https://doi.org/10.1007/978-3-031-54770-6_18

458 L. Bettale et al.

follows the MPC-in-the-Head (MPCitH) paradigm [28] to obtain a Zero-Knowledge
Proof-of-Knowledge (ZKPoK) for the key-recovery problem. Finally, the signature
scheme is obtained by applying the Fiat-Shamir transformation [26] to the ZKPoK
protocol.

As in Picnic, the design of Biscuit follows the MPCitH paradigm and relies
essentially on the same MPC protocol to check multiplicative triples. Biscuit is
build on top of a ZKPoK for the problem of finding a pre-image s ∈ F

n
q of a system

of structured quadratic multivariate polynomial equations f ∈ Fq[x1, . . . , xn]m

over a finite field. The private and public keys in Biscuit are respectively s ∈ F
n
q

and (f , t) ∈ Fq[x1, . . . , xn]m × F
m
q , where t = f(s).

The performance of Picnic is proportional to the number of multiplications
required to evaluate the circuit defining the underlying block-cipher with the
secret-key. This fact motivates the use of a set f = (f1 . . . , fm) ∈ Fq[x1, . . . , xn]m

of polynomial equations that require a small number of multiplications to be
evaluated. Biscuit considers polynomials of the form fi = A0 + A1 · A2, where
each Ai ∈ Fq[x1, . . . , xn] is an affine polynomial. These polynomials can be
evaluated using only one multiplication, while a random quadratic polynomial
would require O(n2) multiplications.

1.1 Overview of MPCitH-Based Signature Schemes

Since Picnic, the use of MPCitH for designing post-quantum signature schemes
has become extremely popular. This is evidenced in the new NIST standardiza-
tion process for post-quantum signature schemes, where eight1 among forty of
the submitted schemes are using the MPCitH framework. These schemes follow
the same design methodology but differ in the hard problems considered.

AIMer is based on the hardness of key-recovery of a MPC-friendly block-cipher
[32], MIRA and MiRitH are based on the MinRank problem [4,9], MQOM is based
on the problem of solving random quadratic equations [24], PERK is based on
the Permuted Kernel Problem [3], RYDE is based on the rank syndrome decoding
problem [8], and SDith relies on the syndrome decoding problem [33]. All these
schemes proposed several parameter sets to optimize either the signature size
(short variant) or the signing and verification times (fast variant).

In Table 1, we overview the performances of these NIST candidates with the
version of Biscuit described in this paper. The table also includes FAEST [13]
whose security is based on AES but uses a new zero-knowledge technique, named
VOLE-in-the head, that improves the MPCitH approach.

For each scheme2, we report on a short variant achieving NIST level-I security
(i.e. equivalent to the security of AES128). The key-generation (keygen), signa-
ture generation (sign), and verification (verify) times are shown in clock-cycles
(cycles). These numbers have been extracted directly from the corresponding

1 https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures.
2 A few days before finalizing this manuscript a new preprint appeared [25] that

seems to significantly improve MQOM as well as many MPCitH-based signature schemes
(including Biscuit).

https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures

Biscuit: New MPCitH Signature Scheme 459

Table 1. Performance of level-I short variants of MPCitH-based candidates submitted
to the first round of the new NIST call for post-quantum signature schemes.

Name Performance (cycles) Size (bytes)

keygen sign verify sk pk σ

AIMer-L1PARAM4 54 435 78 022 625 73 813 256 16 32 3 840

MIRA-128 s 112 000 46 800 000 43 900 000 16 84 5 640

MiRitH-Ias 108 903 41 220 707 40 976 634 16 129 5 673

MQOM-L1-gf31-short 67 000 44 360 000 41 720 000 78 47 6 352

PERK-I-short5 91 000 36 000 000 25 000 000 16 24 6 006

RYDE128s 33 100 23 400 000 20 100 000 32 86 5 956

SDith-L1-hyp 7 083 000 13 400 000 12 500 000 404 120 8 260

Biscuit-128 s (this work) 62 484 27 922 077 28 484 726 16 68 5 748

FAEST-128 s 200 000 25 580 000 25 830 000 32 32 5 006

submissions and we refer to these documents for details. The purpose of these
numbers is to give a rough global perspective as the methodology to derive
clock-cycles, as well as the level of optimization, could differ between submis-
sions. Table 1 also includes secret-key (sk), public-key (pk) and signature (σ)
sizes in bytes.

1.2 Organization of the Paper and Main Results

After this introduction, the paper is organized as follows. Section 2 introduces
basic notations, the new hard problem considered in Biscuit (PowAff2 prob-
lem, Sect. 2.2), as well as the basic cryptography building blocks underlying its
design: Multi-Party Computation (MPC), MPC-in-the-Head approach (MPCitH),
Zero-Knowledge Proof of Knowledge (ZKPoK), proof systems using multiplica-
tive triples and the hypercube technique for MPCitH-based signature schemes.

Section 3 describes the core sub-protocols underlying Biscuit. Due to the
structure of the algebraic systems considered in Biscuit, the evaluation of a
PowAff2 solution requires only one multiplication per equation. This leads to
a rather simple MPC protocol (Sect. 3.1) for PowAff2 that is based on the par-
allel execution of secure multiplication using Beaver multiplicative triples [15]
with some optimizations from [14,30]. Then, we derive a new ZKPoK for PowAff2
(Sect. 3.2) using the MPCitH approach. Note that the protocol presented here
(Fig. 3) differs from the one described in the initial Biscuit submission [19]. In
particular, we use the hypercube technique [34] and also include a security proof
(Theorem 1) of the new ZKPoK.

Section 4 presents the Biscuit signature scheme and details the key generation,
signature generation (Fig. 7) and verification (Fig. 8) algorithms. Biscuit is con-
structed using the traditional Fiat-Shamir transform from the ZKPoK described
in Fig. 3. We conclude this part with Table 2 that summarizes the secret-key,

460 L. Bettale et al.

public-key, and signature sizes for the three security levels of NIST. In partic-
ular, Biscuit achieves a signature of 5.7KB for the first security level. This is
comparable to other recent MPCitH-based signature schemes (Sect. 1.1).

Section 5 analyzes the security of the parameters proposed in Table 2. This
section revisits the security analysis performed in the initial submission of Biscuit
by taking into account new third-party analysis [20]. In Sect. 5.1, we first explain
the connection between the hardness of PowAff2 and the difficulty of solving the
Learning With (bounded) Errors (LWE) problem [35]. In Sect. 5.2, we consider
the key-recovery problem where the best attack against it, is a dedicated hybrid
approach, i.e. that combines exhaustive search and Gröbner bases [12,17,18], for
solving PowAff2 equations described by Bouillaguet on the NIST PQC mailing-list
[20]. In Sect. 5.3, we refine the analysis of Kales and Zaverucha [29] for forgery
attacks against 5-pass Fiat-Shamir based signature schemes. This leads us to
introduce a variant of the PowAff2 problem where the attacker has to solve a
sub-system with fewer equations; leading to the introduction of the PowAff2u

problem (Definition 1).
Finally, Sect. 6 presents an optimized implementation of Biscuit which out-

performs the previous implementation. First, we use a new canonical represen-
tation of the PowAff2 equations (Lemma 1), which allows us to simplify their
evaluation further. Then, we integrate the hypercube framework for even further
improvements.

2 Preliminaries

This section presents preliminary concepts and notations used in this paper.

2.1 Notations

Throughout this paper, we use λ for the security parameter. Also, [n] refers to
the set {1, . . . , n} for an integer n ∈ N, Fq is the finite field of q elements (where
q is prime or a prime power), Fm

q denotes the vector space of dimension m over
Fq and Fq[x1, . . . , xn] is the ring of polynomials in the variables x1, . . . , xn over
the field Fq.

Bold lower-case letters denote vectors, x + y denotes the element-wise addi-
tion. We use a ← A(x) to indicate that a is the output of an algorithm A on

input x, a
$← S means that a is sampled uniformly at random from a set S.

Let R be a ring and a ∈ R. The additive sharing of a, denoted by �a�, is a
tuple �a� := (�a�1 , . . . , �a�N) ∈ RN such that a =

∑N
i=1 �a�i. Each component

�a�i of �a� is called a share of a. Throughout this paper, we only consider additive
sharing and use the word sharing to refer to additive sharing.

A Multi-Party Computation (MPC) protocol is an interactive protocol exe-
cuted by a set of N parties knowing a public function f . Its goal is to compute
the image z = f(x1, . . . , xN), where the value xi is only known by the i-th party.
A MPC protocol is considered secure and correct if, at the end of the protocol,
every party i knows z, and no information about its secret input value xi is
revealed to the other parties.

Biscuit: New MPCitH Signature Scheme 461

2.2 The PowAff2u Problem

The core problem considered in Biscuit is the one of solving a system of multivari-
ate equations defined as the product of two affine forms. Denoted by PowAff2u,
the problem is parameterized by a tuple of positive integers (n,m, u, q), where n
is the number of variables, m the number of equations, u is a parameter related
to forgery (Sect. 5.3), and q is the finite field size.

Definition 1 (The PowAff2u problem).
Let A1,0, A1,1, A1,2, . . . , Am,0, Am,1, Am,2 ∈ Fq[x1, . . . , xn] be affine forms, i.e.:

Ak,j(x1, . . . , xn) = a
(k,j)
0 +

n∑

i=1

a
(k,j)
i xi, with a

(k,j)
0 , . . . , a(k,j)

n ∈ Fq. (1)

Input. A vector t = (t1, . . . , tm) ∈ F
m
q and multivariate polynomials f = (f1, . . . ,

fm) ∈ Fq[x1, . . . , xn]m defined as:

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) +
2∏

j=1

Ak,j(x1, . . . , xn),∀k ∈ [m]. (2)

Question. Find – if any – a vector (s1, . . . , sn) ∈ F
n
q and set J ⊆ [m] of size

m − u such that:
fj(s1, . . . , sn) = tj , ∀j ∈ J.

Definition 2 (The PowAff2 problem). We use PowAff2 to denote the
PowAff20 problem. We call PowAff2 algebraic system the set of non-linear equa-
tions f1, . . . , fm ∈ Fq[x1, . . . , xn] defined as in (2).

PowAff2 is the problem corresponding to key-recovery whilst PowAff2u, with
u > 0, is a relaxation that corresponds to signature forgery whose hardness is
detailed in Sect. 5. The current best attack against Biscuit has been sketched in
[20]. In particular, it was mentioned that the multivariate equations defined as
in Definition 1 can be reduced to a simple, but equivalent, structure.

Lemma 1. Let f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m be a PowAff2 algebraic sys-
tem. Then, with high probability, there exists an invertible matrix L ∈ GLn (Fq)
such that :

f
(
x · L

)
=

(
u1(x) · (x1 + c1) + w1(x), . . . , un(x) · (xn + cn) + wn(x),

A′
n+1,0(x) +

2∏

j=1

A′
n+1,j(x), . . . , A′

m,0(x1, . . . , xn) +
2∏

j=1

A′
m,j(x)

)

where x = (x1, . . . , xn), An+1,0, An+1,1, An+1,2, . . . , Am,0, Am,1, Am,2, u1, . . . , un,
v1, . . . , vn ∈ Fq[x1, . . . , xn] are affine polynomials and c1, . . . , cn ∈ Fq.

462 L. Bettale et al.

Proof. By construction, we have :

fk(x1, . . . , xn) = Ak,0 +
2∏

j=1

Ak,j ,∀k ∈ [m],

with A1,0, A1,1, A1,2, . . . , Am,0, Am,1, Am,2 ∈ Fq[x1, . . . , xn] affine forms as in
(1). Thus, we can write Ak,2(x1, . . . , xn) = (x1, . . . , xn) · bk + ck, where bk =
(a(k,2)

1 , . . . , a
(k,2)
n) ∈ F

n
q and ck = a

(k,2)
0 ∈ Fq. Let C ∈ F

n×n
q be the matrix

whose rows are b1, . . . ,bn. We want to find a non-singular matrix L ∈ GLn (Fq)
such that In = C · L, where In is the identity matrix of size n. This reduces to
compute, if any, the inverse of C. ��

2.3 Digital Signature Scheme

Definition 3. A Digital Signature Scheme (DSS) is a tuple of three probabilistic
polynomial-time algorithms (KeyGen,Sign,Verify) verifying:

1. (pk, sk) ← KeyGen(1λ). The key-generation algorithm KeyGen takes as input
a security parameter 1λ and outputs a pair of public/private keys (pk, sk).

2. σ ← Sign(sk,msg). The signing algorithm Sign takes a private key sk and a
message msg ∈ {0, 1}∗ and outputs a signature σ.

3. b ← Sign(pk, σ,msg). The verification algorithm Verify is deterministic. It
takes as input a message msg ∈ {0, 1}∗, a signature σ, and a public key pk.
It outputs a bit b ∈ {0, 1}, 1 means that it acceptsσ as a valid signature for
msg, otherwise it rejects returning 0.

A signature scheme is correct if for every security parameter λ ∈ N, every
(pk, sk) ← KeyGen(1λ), and every message msg ∈ {0, 1}∗, it holds that

1 ← Verify
(
pk,msg,Sign(sk,msg)

)
.

The standard security notion for a DSS is Existential Unforgeability under Adap-
tive Chosen-Message Attacks (EU-CMA). We say that a signature scheme is EU-
CMA-secure if for all probabilistic polynomial-time adversaries A, the probability

Pr
[

1 ← Verify(pk,msg∗, σ∗)
∣
∣
∣
∣

(pk, sk) ← KeyGen(1λ)
(msg∗, σ∗) ← AOSign(sk,·)(pk)

]

is a negligible function in λ, where A is given access to a signing oracle OSign(sk,·),
and msg∗ has not been queried to OSign(sk,·).

Auxiliary Functions. Biscuit also relies on further basic cryptographic build-
ing blocks that we do not explicitly introduce such as commitments, collision-
resistant hash functions, key-derivation functions, and pseudo-random number
generators. As explained in [19], we can use the SHAKE256 [22] extendable-output
function (XOF) to instantiate these functions.

Biscuit: New MPCitH Signature Scheme 463

During signature, the signer must generate a set of N seeds and reveal N −1
of them to the verifier for each iteration (TreePRG). The verifier then uses
these seeds to check that the MPC protocol was correctly simulated. A binary
tree structure allows generating the seeds using one root seed from a binary
tree. Instead of sending N − 1 seeds in the signature, this allows sending only
�log2 N	 seeds that will be used to reconstruct all N −1 seeds required. We refer
to [19] for the description of TreePRG.

2.4 5-Pass Identification Schemes

An Identification Scheme (IDS) is an interactive protocol between a prover P
and a verifier V, where P wants to prove its knowledge of a secret value sk to V
using a public value pk.

Definition 4 (5-pass identification scheme). A 5-pass IDS is a tuple of three
probabilistic polynomial-time algorithms (KeyGen,P,V) such that

1. (pk, sk) ← KeyGen(1λ). The key-generation algorithm KeyGen takes as input
a security parameter 1λ and outputs a pair of public/private keys (pk, sk).

2. P and V follow the protocol in Fig. 1, and at the end of this, V outputs 1, if
it accepts that P knows sk, otherwise it rejects returning 0.

A transcript of a 5-pass IDS is a tuple (com, ch1, rsp1, ch2, rsp2), as in Fig. 1,
includes all the messages exchanged between P and V in one execution of the
IDS.

We require an IDS to fulfill the following security properties.

– Correctness: if for any security parameter λ ∈ N and (pk, sk) ← KeyGen(1λ)
it holds, Pr [1 ← V(pk, com, ch1, rsp1, ch2, rsp2)] = 1, where (com, ch1, rsp1,
ch2, rsp2) is the transcript of an execution of the protocol between P(pk, sk)
and V(pk).

– Soundness (with soundness error ε): if, given a key pair (pk, sk), for
every polynomial-time adversary A the difference

Pr
[

(pk, sk) ← KeyGen(1λ)
1 ← V (pk, comA, ch1, rsp1,A, ch2, rsp2,A)

]

− ε

is a negligible function in λ, where (comA, ch1, rsp1,A, ch2, rsp2,A) is the tran-
script of one execution of the protocol between A and V both with input
pk.

– Honest-verifier zero-knowledge: if there exists a polynomial-time prob-
abilistic algorithm S(pk), called a simulator, that can produce transcripts
(sequences of the form (com, ch1, rsp1, ch2, rsp2)), that are computationally
indistinguishable from the distribution of transcripts of an honest execution
of the protocol between P(pk, sk) and V(pk).

464 L. Bettale et al.

Fig. 1. Canonical 5-pass IDS.

2.5 MPC-in-the-Head: From MPC to Zero-Knowledge

MPC-in-the-Head (MPCitH) is a generic technique, introduced as “IKOS” [28], that
allows to build a Zero-Knowledge Proof of Knowledge (ZKPoK) from a secure MPC
protocol.

Consider a MPC protocol where N parties P1 . . . , PN collaborate to securely
evaluate a public function f on a secret input x. Assuming that the protocol is
perfectly correct and that the views of t < N parties leak no information on x,
then one can construct a ZKPoK from the MPC protocol as follows:

1. Simulation.
– Prover P generates a random sharing �x� := (�x�1 , . . . , �x�N) of x such

that x =
∑N

i=1 �x�i and assign a share �x�i to each party Pi.
– P emulates “in his/her mind” execution of the MPC protocol with N parties

P1 . . . , PN .
– P commits on the views of each Pi, meaning the messages they

send/receive during the protocol execution and their internal states.
These commitments are sent to the verifier V.

2. Challenges.
– P possibly receives random challenges from V on the MPC, executes local

computations accordingly and sends the results to V. This step can be
repeated several times.

– V challenges P to open a random subset of t parties.
– P returns the requested views.

3. Verification.
– P then checks that the views3 are consistent, and the output of the circuit

corresponds to the result expected.
3 If only one party is opened then there are no pairs to check consistency. In this case,

the prover does not commit to the views, but actually to the point-to-point channels
between the parties.

Biscuit: New MPCitH Signature Scheme 465

Since its introduction, the initial approach for MPCitH from [28] has been
improved in different ways. In particular, Katz, Kolesnikov and Wang (KKW,
[31]) extended the MPCitH paradigm to support the preprocessing model, where
MPC protocols are split into an offline phase that is independent of the sensitive
inputs, and an online phase, with the former being typically the bottleneck in
terms of efficiency. The benefit is that the prover does not need to include the
preprocessing as part of the views of the parties, and instead, the preprocess-
ing can be checked. As an application, KKW allowed to significantly decrease the
signature size of the initial Picnic version.

In [34], the authors described the so-called hypercube variant of MPCitH that
allows improving efficiency for a large number of parties in the MPC protocol.
Indeed, a large number of parties leads to shorter signatures but increases sig-
nature generation and verification times. We detail the approach in the case of
Biscuit in Sect. 3.1. Note that the hypercube technique is generic and could be
then used for most MPCitH-based signature schemes.

2.6 Proof Systems for Arbitrary Circuits

In [27], Giacomelli, Madsen and Orlandi demonstrated the efficiency of the
MPCitH approach for generating ZKPoK. Doing so, the authors also introduced a
new generic proof system, called ZKBoo, which ultimately resulted in the first ver-
sion of the Picnic signature scheme. In such work, the virtual/emulated parties
actually execute some MPC protocols, and the verifier checks this execution. In
[14], Baum and Nof proposed an improved proof system, called BN, for arithmetic
circuits. The authors of [14] observed that the prover knows all the wire values
in the circuit, and instead of computing a protocol, the prover can distribute
sharings for each intermediate wire value, and the virtual parties only need to
execute a protocol that checks the correctness of the multiplication gates. This
allows batching the checks by taking random linear combinations. In [30], Kales
and Zaverucha built on top of BN with several optimizations leading to BN++
with roughly 2.5× communication improvement.

The BN and BN++ proof systems rely on the concept of multiplicative triple
(or Beaver triple [15]). Given x, y, z ∈ Fq, we say that the triple (�x� , �y� , �z�) ∈
F

N
q × F

N
q × F

N
q is a multiplicative triple if it holds that z = x · y. The Biscuit

MPC protocol will rely on a somewhat standard protocol introduced in [14] (along
with the optimization given in [30, Section 2.5]) to check multiplicative triples of
sharing (Sect. 2.6). A multiplicative triple (�x� , �y� , �z�) ∈ F

N
q × F

N
q × F

N
q can

be checked using a helping triple (�a� , �y� , �c�) ∈ F
N
q × F

N
q × F

N
q with a ∈ Fq

and c = a · y ∈ Fq as follows:

1. The parties get a random element ε
$← Fq.

2. The parties locally set �α� ← �x� · ε + �a�.
3. The parties open �α� so that they all obtain α.
4. The party locally compute �v� = �y� · α − �z� · ε − �c�.
5. The parties open �v� to obtain v.
6. The parties output accept if v = 0 and reject otherwise.

466 L. Bettale et al.

The security of this simple protocol has been proven in [30]. In particular, the
false success probability is given by:

Lemma 2. Let x, y, z, a, c ∈ Fq. If the shared multiplicative triple
(�x� , �y� , �z�) ∈ F

N
q × F

N
q × F

N
q is incorrect, i.e. z
= x · y, or the helping mul-

tiplicative triple (�a� , �y� , �c�) ∈ F
N
q × F

N
q × F

N
q is incorrect, i.e. c
= a · y, then

the parties output accept with probability at most 1/q.

3 Interactive Protocols for PowAff2

This section describes the MPC protocol underlying Biscuit (Sect. 3.1) and the
corresponding ZKPoK (Sect. 3.2) obtained using the MPCitH paradigm (Sect. 2.5)
together with the hypercube technique [5].

3.1 Multi-Party Computation Protocol for PowAff2

In Fig. 2, we detail the MPC protocol used in Biscuit to check a solution of a
PowAff2 algebraic system. The protocol is executed by N parties sharing a secret
vector s ∈ F

n
q . Every party knows the target vector t = (t1, . . . , tm) ∈ F

m
q , affine

forms A1,0, A1,1, A1,2, . . . , Am,0, Am,1, Am,2 ∈ Fq[x1, . . . , xn] as in (1) and the
corresponding PowAff2 algebraic equations f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m

defined as:
fk = Ak,0 + Ak,1 · Ak,2,∀k ∈ [m]. (3)

The MPC protocol (Fig. 2) consists of m iterations of the multiplicative checking
protocol described in Sect. 2.6. At the end of the protocol, the parties output
accept indicating they are convinced that the shared vector s satisfies t = f(s).
Otherwise, they output reject.

The following proposition follows easily from Lemma 2.

Proposition 1. Suppose that a set of N parties genuinely follow the MPC pro-
tocol given in Fig. 2 with inputs t ∈ F

m
q , f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]m, and

�s� ∈
(
F

n
q

)N . Suppose s ∈ F
n
q is a solution to PowAff2u(f , t) but not a solution to

the PowAff2u−1(f , t). If u = 0, i.e., t = f(s), then the parties accept. Otherwise,
the parties accept with probability at most 1/qu.

Biscuit: New MPCitH Signature Scheme 467

Fig. 2. MPC protocol Π to check that t = f(s).

3.2 Zero-Knowledge Proof of Knowledge for PowAff2

In Fig. 3, we derive a zero-knowledge proof of knowledge (ZKPoK) for the PowAff2
problem using the MPC protocol Π of Fig. 2. We use the traditional MPCitH app-
roach combined with the recent hypercube technique. To do so, let D be such
that N = 2D.

In Phase 1, for each � ∈ [D]: the prover generates an input set S� =
(
�s�(�,j) ,

�c�(�,j) , �a�
)
j∈[2]

for a two parties instance the MPC protocol Π (Fig. 2). The set
S� is called the �-th set of main shares. The sets of main shares are computed
in two steps. First, the prover generates and commits to inputs (�s�i , �c�i , �a�i)
of one of N = 2D parties instance of Π. Then, for each (�, j) ∈ [D] × [2],
the main share �s�(�,j) is computed as the sum of the shares �s�i for which j

equals the �-th bit of i plus 1. Similarly, the main shares �c�(�,j) and �a�(�,j)
)
. In

Phase 3, the prover executes the protocol Π for every set of main shares using
ε1, . . . , εm ∈ Fq as the random elements for all D executions. This particular
execution of the protocol Π on the set of main shares S� is shown in Fig. 4.
The outputs of �-th execution are the shares

(
�αk�(�,j) , �vk�(�,j)

)
(k,j)∈[m]×[2]

and its corresponding hash H� = H
((

�αk�(�,j) , �vk�(�,j)
)
(k,j)∈[m]×[2]

)
4. In Phase

5, the prover sends
(
(seed(i), ρi)i�=i , com(i),Δs,Δc, �α�i

)
to the verifier, where

�α�i = (�α1�i , . . . , �αm�i), �αk�i = �xk�i · εk + �ak�i and �xk�i = Ak,0(�s�i).
We highlight that the prover does not send explicitly instead of sending N − 1
strings of the form (seed(i), ρi) but it sends instead the log2(N) nodes of the

4 As noted in [10], the security of proof knowledge protocols using the hypercube
technique with additive shares is the same with or without these intermediate hash
values H�. Still, it might help reduce the protocol’s memory demand when the imple-
mentation of the hash H is not incremental.

468 L. Bettale et al.

tree TreePRG(root) so that the verifier can recompute the values (seed(i), ρi)i�=i.
Finally, in the verification phase, the verifier recomputes (seed(i), ρi)i�=i, and uses
them to recompute the sets main shares partially. We say partially recompute
and not just recompute because for each set S� one of the main shares triples
(either the one corresponding to j = 1 or j = 2) is missing the addition of the
shares corresponding to the i-th party. After, for every set of main parties, the
verifier follows the algorithm in Fig. 5 to check the execution of the MPC protocol
Π. Finally, the verifier recomputes h0 and h2 and outputs accept if these two
values match the ones the prover sent. Otherwise, the verifier rejects.

The result below establishes the zero-knowledge property of the protocol
described in Fig. 3.

Theorem 1. The protocol described in Fig. 3 has the following properties:

– Completeness. A Prover with the knowledge of a solution s ∈ F
n
q to an

instance (f , t) ∈ Fq[x1, . . . , xn]m × F
m
q of the PowAff2 is always accepted by

the Verifier.
– Soundness. Let ε = 1

N + 1
qu ·

(
1 − 1

N

)
, where p = 1/qu. Suppose there exists

a prover P̃ who convinces the verifier to accept with probability ε̃ > ε. Then
there is an efficient probabilistic extraction algorithm E, which has rewindable
black-box access to P̃, that, in expectation, with at most

4
ε̃ − ε

·
(

1 + ε̃ · 2 ln(2)
ε̃ − ε

)

,

calls to P̃ outputs either a solution to an instance (f , t) of the PowAff2u−1

problem or a collision to the commitment scheme com or the hash H.
– Honest-verifier zero-knowledge. If the outputs of the pseudo-random gen-

erator PRG and the commitment scheme com are indistinguishable from the
uniform random distribution, then the protocol of Fig. 3 is honest-verifier
zero-knowledge.

Proof. (sketch) The proof is similar to, for instance, [10, Theorem 1]. Here, we
describe the main parts of the proof and will refer [10, Theorem 1] for similar
details.

– Completeness. By following, step by step, the protocol in Fig. 3, it is not
hard to see that a Prover that follows the protocol with inputs (f , t, s) such
that t = f(s) will always be accepted.

– Soundness. The structure of the proof is as follows:
1. We prove that a prover P̃ who does not know any solution for the

PowAff2u−1 problem can cheat with probability at most ε = 1
N + 1

qu ·
(
1 − 1

N

)
.

2. Assuming that
(a) No collisions to com nor H can be found.
(b) There exists a cheater P̃ who has cheating probability ε̃ > ε.

Biscuit: New MPCitH Signature Scheme 469

Fig. 3. Proof of Knowledge protocol for PowAff2.

We show how to extract a solution for the PowAff2u−1 problem whenever
rewindable black-box access to P̃ is given.

470 L. Bettale et al.

Fig. 4. Simulation of the MPC protocol Π for the �-th set of main shares.

For part 1, suppose that at step 7 the vector s = �s�1 + · · · + �s�N is not a
solution of the PowAff2u−1 problem defined by (f , t). With such a vector s
the prover can be accepted by the verifier in only two situations:

• (False-positive case) The prover honestly follows the protocol, and for
each k ∈ [m], the value vk = ykαk − zkεk − ck, which is the value that
would be obtained from a genuine execution of the MPC protocol with
challenges εk (see Fig. 2), equals to zero, or

• (Cheating case) The prover dishonestly deviates from the protocol, yet
the verifier believes that all the honest vk are zero, but in reality, at least
one of them is not.

In the first case, we would have a false positive case of the MPC protocol in
Fig. 2. By Proposition 1, this happens with probability at most 1/qu. In the
second case, the prover cheats during the simulation of at least one party.
Since the verifier checks the correct execution of all the parties but one,
the prover has to cheat on exactly one party. Otherwise, the verifier rejects.
Cheating in one party i′ means that the prover uses a set of different shares
than an honest party, holding the same input seed seed(i

′), would use. Since
every party aggregates to exactly one of the main shares for all of the D
bi-party protocols. For each of these bi-party protocols, one share has been
dishonestly computed, i.e., not following the MPC protocol. Thus, the prover
won’t be detected with probability 1

N . Consequently, a prover without a cor-
rect solution of the PowAff2u−1 problem will be accepted with probability at
most ε = 1

N + 1
qu ·

(
1 − 1

N

)
.

Now, for the second part, we assume that no collisions to com nor H can be
found and there exists a cheater P̃ who has cheating probability ε̃ > ε. First,
we prove that a solution s of the PowAff2u−1 problem can be extracted from
two valid transcripts of the form T1 and T2 produced by P̃ that have the
same initial commitment h0 and different second challenges ī1 (for T1) and

Biscuit: New MPCitH Signature Scheme 471

Fig. 5. Check the simulation of the MPC protocol Π in the �-th set of main shares.

ī1. Finally, we prove that such transcripts T1 and T2 can be extracted from
P̃ (assuming rewindable black-box access to P̃) with an expected number of
calls upper bounded by

4
ε̃ − ε

·
(

1 + ε̃ · 2 ln(2)
ε̃ − ε

)

.

This second part is proven analogously as in [10, Theorem 1].
– Honest-verifier zero-knowledge: Now we sketch the proof of the honest-

verifier zero-knowledge property of the protocol in Fig. 3. The goal here is to
show that the distribution of the transcripts output by the simulator described
in Fig. 6 on input (f , t) are indistinguishable from those coming from a gen-
uine interaction between a prover and an honest verifier, where the prover
input is (f , t, s) and t = f(s).
The idea is to create a sequence of simulators that ends with the simulator
described in Fig. 6. The first simulator of the sequence consists of a legiti-
mate prover, which holds a solution s and simulates the verifier by randomly
sampling the challenges, as an honest verifier would do. These transcripts
are indistinguishable from those coming from a legitimate execution of the
protocol in proof of knowledge protocol.

472 L. Bettale et al.

Fig. 6. Honest-verifier zero-knowledge simulator.

Finally, the proof is completed by showing that the transcripts outputs by
any simulator in the sequence are indistinguishable from those in the previous
simulator. This implies that the transcripts of the simulator in Fig. 6 are
indistinguishable from those produced by the actual protocol. Details of this
part follow similarly as shown in [10, Theorem 1].

��

4 Biscuit Signature Scheme

In this part, we describe the Biscuit signature scheme. It is obtained by applying
the Fiat-Shamir transformation [26] to the zero-knowledge protocol given in
Fig. 3. The corresponding signing, and verification algorithms are described in
Figs. 7 and 8, respectively.

Biscuit: New MPCitH Signature Scheme 473

The secret-key is a random vector s ∈ F
n
q and the public-key is a pair

(
f =

(f1, . . . , fm), t = f(s)
)

∈ Fq[x1, . . . , xn]m × F
m
q such that for all k ∈ [m]:

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) + Ak,1(x1, . . . , xn) · Ak,2(x1, . . . , xn), (4)

where A1,0, . . . , Am,2 ∈ Fq[x1, . . . , xn] are random affine forms as in (1).
We use two seeds seedf , seeds ∈ {0, 1}λ that are extended via PRG to

obtain the public polynomials f ∈ Fq[x1, . . . , xn]m and the secret vector s ∈
Fq[x1, . . . , xn]m. Finally, the vector t ∈ F

m
q is computed as t = f(s).

The signing procedure Biscuit.Sign is given in Fig. 7. It takes as input a key-
pair (sk, pk) and the message msg ∈ {0, 1}∗ to sign. It is obtained by applying the
Fiat-Shamir transformation to the ZKPoK for PowAff2 (Sect. 3.2) with N = 2D

parties.

Remark 1. The notation f ← PRG(seedf) is a shortcut for extending the seed
from a PRG and casting the bit string into a set of algebraic equations as in (4).
Similarly, s ← PRG(seedsk) stands for extending the seed and interpreting the bit
string as a vector in F

n
q .

The verification process (Fig. 8) is very similar to the signature process
(Fig. 7) as the verifier has to replay the MPC protocol for each of the N par-
ticipants except one. The algorithm takes as input a message msg ∈ {0, 1}∗, a
signature sig and a public-key pk. It returns a bit b ∈ {0, 1}.

4.1 Parameters

Table 2 provides the parameter sets Biscuit, along with the corresponding size of
the keys and signatures. Each parameter set aims to provide a security level of
either I, III or V according to the NIST guidelines. A more detailed description
of the claimed security level of each parameter set is given in Sect. 5.

Table 2. Parameters of Biscuit, bit security, public-key (pk), secret-key (sk) and sig-
nature (σ) sizes in bytes.

Level Version λ q n m N τ Bit-Security sk pk σ

I short 128 256 50 52 256 18 143 16 68 5748

fast 32 28 143 7544

III short 192 256 89 92 256 25 207 24 116 12969

fast 32 40 210 17784

V short 256 256 127 130 256 33 272 32 162 23523

fast 32 53 275 32575

474 L. Bettale et al.

Fig. 7. Biscuit signing algorithm.

Biscuit: New MPCitH Signature Scheme 475

Fig. 8. Biscuit verification algorithm.

476 L. Bettale et al.

The size of the public-key is λ + log2(q) · m bits, the size of the secret-key is
λ bits and the bit-size of the signature is:

6λ︸︷︷︸
salt,h1,h2

+ τ

⎛

⎜
⎜
⎝ (n + 2m) log2 q

︸ ︷︷ ︸
Δs(e),Δc(e),�α�

(e)
ie

+ λ · D︸ ︷︷ ︸
(seed(e,i))i�=ie

+ 2λ︸︷︷︸
com(e,ie)

⎞

⎟
⎟
⎠ .

5 Security Analysis

This part is dedicated to the security analysis of Biscuit against key-recovery
(Sect. 5.2) and forgery (Sect. 5.3) attacks. Before that, Sect. 5.1 discusses the
motivations for using structured systems as PowAff and the connection with the
Learning With Errors (LWE, [35]) problem.

From now on, let
(
f = (f1, . . . , fm), t = f(s)

)
∈ Fq[x1, . . . , xn]m × F

m
q be a

Biscuit public-key and s ∈ F
n
q be the corresponding secret-key.

5.1 About the Hardness of PowAff2

A fundamental assumption in the design of Biscuit is that solving algebraic sys-
tems generated essentially from the power of affine forms are not much easier
to solve than a random system of quadratic equations. Whilst the complexity of
solving structured equations can be difficult to assess in general, the hardness
of solving random quadratic equations has been deeply investigated and only
exponential algorithms are known, e.g. [12,16–18].

We emphasize PowAff2 algebraic equations already appeared previously in
the literature. In particular, the authors of [7,11] demonstrated that attack-
ing the Learning With Errors (LWE) problem [35] reduces to solve a structured
algebraic system similar to PowAff2. An instance of LWE is given by a pair
(A = {ai,j}, c = sA + e) ∈ F

n×m
q × F

m
q where s ∈ F

n
q is a secret and e ∈ F

m
q is

an error vector. LWE (search) asks to recover the secret s. Arora and Ge exhibit
in [7,11] a rather natural algebraic modeling of LWE. More precisely, Arora and
Ge show that LWE secrets can be recovered by solving:

f1(x1, . . . , xn) = P (c1 −
n∑

k=1

ak,1xk) = 0, . . . , fm(x1, . . . , xn) = P (c1 −
n∑

k=1

ak,mxk) = 0,

(5)
where P depends on the error distribution. In particular, P (X) = X(X − 1) ∈
Fq[X] for binary errors and [7] introduced the assumption that a system such
as (5) behaves such as a semi-regular sequence. As a consequence, a new fast
algorithm for PowAff2 will lead to a new fast algebraic algorithm for binary LWE.

Biscuit: New MPCitH Signature Scheme 477

5.2 Key Recovery Attacks

A key-recovery attack against Biscuit consists of solving the PowAff2 problem,
i.e. recovering s ∈ F

m
q from the system defined as :

t = f(x), with x = (x1, . . . , xn). (6)

Currently, the best attack against Biscuit is a dedicated hybrid approach for
solving PowAff2 equations described in [20]. The hybrid approach is a classical
technique for solving algebraic systems that combines exhaustive search and a
Gröbner basis-like computations [12,17,18]. The efficiency of such approach is
related to the choice of a trade-off, denoted k ≤ n, between these two methods.

We sketch below the approach described in [20]. Let g =
(
g1(x) = u1(x) ·

(x1 + c1) + w1(x), . . . , gn(x) = un(x) · (xn + cn) + wn(x)
)

∈ Fq[x1, . . . , xn]n,
with x = (x1, . . . , xn), u1, . . . , un, v1, . . . , vn ∈ Fq[x1, . . . , xn] affine polynomials
and c1, . . . , cn ∈ Fq. According to Lemma 1, with high probability, there exists
L ∈ GLn (Fq) such that:

f
(
x · L

)
=

(
g, A′

n+1,0(x) +
2∏

j=1

A′
n+1,j(x), . . . , A′

m,0(x) +
2∏

j=1

A′
m,j(x)

)

where An+1,0, An+1,1, An+1,2, . . . , Am,0, Am,1, Am,2 ∈ Fq[x1, . . . , xn] affine
forms.

Then, for every guess (a1, . . . , ak) ∈ F
k
q of the k first variables (x1, . . . , xk),

we obtain k linear polynomials, namely g1(a1, . . . , ak, xk+1, . . . , xn), . . . ,
gk(a1, . . . , ak, xk+1, . . . , xn). These k linear polynomials are expected to be lin-
early independent with a probability close to 1 − 1/q. Hence we can use them
to substitute k additional variables in the remaining polynomials. The attack is
finalized by solving the resulting quadratic system of m − k equations in n − 2k
variables.

Complexity. The cost of the attack is dominated by

min
0≤k< n

2

qk · MQ(n − 2k,m − k, q), (7)

where MQ(n,m, q) denotes the complexity of solving a random system of m
quadratic equations over n variables over Fq. To compute the exact complexity,
we rely on the MQEstimator software tool, which is part of the more general
CryptographicEstimators5 library [23].

5.3 Forgery Attacks

In the context of forgery, the attacker has to solve the PowAff2u problem (Def-
inition 1), which is a variant of the problem considered before for key-recovery

5 https://github.com/Crypto-TII/CryptographicEstimators.

https://github.com/Crypto-TII/CryptographicEstimators

478 L. Bettale et al.

(Sect. 5.2). In the PowAff2u problem, the goal is to find a vector s′ ∈ F
n
q that

vanishes a subset of size m − u of the system (6). Without loss of generality,
we assume that s′ vanishes the first m − u polynomials and not the remain-
ing equations. That is, fk(s′) = tk, for k ∈ [m − u], and fk(s′)
= tk for
k = m − u + 1, . . . ,m.

By Proposition 1, a set of N parties that follows the MPC protocol in Fig. 2
on inputs �s′� and (f , t) will output accept with false positive rate p1 = 1/qu.
Thanks to Kales and Zaverucha, [30], it is known that MPCitH-based signature
scheme that consists of τ repetitions of a MPC protocol with false positive rate
p1 can be forged by computing on average

KZτ (p1, p2) = min
{τ1,τ2|τ1+τ2=τ}

{
1

∑τ
i=τ1

(
τ
i

)
pi
1(1 − p1)τ−i

+
1

pτ2
2

}

,

calls to some hash functions, where p2 is the probability of guessing some of the
views of parties that remain unopened, e.g., p2 = 1/N for Biscuit.

Let Cu(q, n,m) denote the complexity of finding a preimage to a chosen subset
S of the system t = f(x) of size m − u and s′ ∈ F

n
q be a solution that vanishes

the equations of S. Then, s′ might, by chance, be a solution of any equation in
Sc, i.e., any equation that is not in S. If there remain k ∈ [u] equations in Sc

for which s′ is not a solution, then an attacker can mount a forgery attack with
complexity KZτ (q−k, N−1).

Let (f , t) be a Biscuit public-key selected uniformly at random, and let S be a
subset of the equations t = f(x) of size m−u selected uniformly at random. Then,
a random solution s′ ∈ F

n
q of the equations in S follows a uniform distribution.

Hence, fk(s′) is a uniform element in Fq. Therefore, the probability that s′ is a
solution of exactly j equations in Sc is

(
u
j

)
· (q − 1)u−j/qu. Consequently, if pk

denotes the probability that s′ is not the solution of at most k equations in Sc,
then,

pk =

∑u
j=u−k+1

(
u
j

)
· (q − 1)u−j

qu
.

In order to secure Biscuit against forgery attacks, we must have for every pair
(k, u), where 0 ≤ k ≤ u ≤ m:

1. KZτ (q−k, N−1) > 2λ, or
2. 1

pk
· Cu(q, n,m) > 2λ+Cλ ,

where Cλ = 15 if λ = 128 or 192 and Cλ = 16 otherwise.
Following these analyses, we propose in Table 2 a set of 3 parameters for

128, 192 and 256 bits of classical security.

5.4 Existential Unforgeability

The existential unforgeability of Biscuit is stated in Theorem 2.

Theorem 2 (EU-CMA security). Let PRG be a (t, εPRG)-secure pseudo-random
generator function, and that any adversary running in time t has an advantage

Biscuit: New MPCitH Signature Scheme 479

of at most εPowAff2 against the underlying PowAff2u−1 problem. Suppose that the
hash functions H0, H1, H2 H4 behave as random oracles that output binary strings
of size 2λ. Let A be an adversary who has access to a signing oracle, making qi

queries to Hi and qs queries to the signing oracle. Then, the probability that A
outputs a forgery for the Biscuit signature scheme (Fig. 7) is:

Pr[Forge] ≤ 3(q + τN · qs)2

2 · 22λ
+

qs(qs + 5q)
22λ

+ εPRG + εPowAff2 + Pr[X + Y = τ],

where τ is the number of repetitions of the ZKPoK protocol (Fig. 3), X =
maxi∈[q2]{Xi} with Xi ∼ B(τ, 1

qu), and Y = maxi∈[q4]{Yi} with Yi ∼ B(τ −
X, 1

N).

Proof. Overall the proof works as follows: First, we assume the existence of an
adversary A that can forge Biscuit signatures with probability Pr[Forge] after
interacting with a signing oracle and the random oracles H0, H1, H2, H3 and H4.
Then, we show how to simulate such an interaction so that we can use A to
either:

1. Find collisions on the oracles H0, H1, or H3.
2. query an oracle Hi with an input used to query Hi while replaying signing

query,
3. distinguish between outputs of PRG from random ones,
4. solve an instance of the PowAff2u−1 problem, or
5. obtain an event that happens with probability at most Pr[X + Y = τ].

In Game1, we simulate for A a real interaction with the signature scheme and
the random oracles Hi.

Game1: We generate a pair (sk, pk) ← KeyGen(), give pk to the adversary
A, simulate the random oracles Hi, and any signing query msg from A is replied
with Sign(pk, sk,msg), where Sign is the algorithm shown in Fig. 7. We allow A to
make qi queries to Hi and qs queries to the signing oracle. At the end, A outputs
a pair (msg, σ). We denote by Forge the event where (msg, σ) is a forgery, i.e., σ
is a valid signature for the message msg, and msg was not queried for signing.

For each of the subsequent games, Pri[Forge] denotes the probability that
Forge happens in Gamei. In particular, we are interested in an upper bound for
Pr[Forge] = Pr1[Forge].

Game2: We proceed as in Game1 with the only exception that we abort if,
during the game, a collision of H0, H1, or H3 is found.

Every signing query yields τN queries to H0, τ to H1, and τD to H3, and one
to H2 and H4. Hence, during this game, the total number of queries to H0, H1 or
H3 is at most q + τNqs, where q = max{q0, q1, q3}. Therefore, using the classic
bound for the probability of a collision of a hash function6, we have that

∣
∣Pr1[Forge] − Pr2[Forge]

∣
∣ ≤ 3(q + τNqs)2

22λ+1
.

6 By mathematical induction, we can prove that probability to find at least one colli-
sion of random oracle H : {0, 1}∗ → {0, 1}2λ after n calls is at most n(n − 1)/22λ+1.

480 L. Bettale et al.

Game3: We proceed as in Game2, but we abort if, while replying to a signing
query, the input to any Hi was used to answer a previous query to Hi made either
directly by A or by another signing query.

For each signing query, the probability of aborting in this game is, at most,
the probability that the salt sampled in the signature query is equal to a salt
used in a previous query to any Hi. Therefore, we have that

∣
∣Pr2[Forge] − Pr3[Forge]

∣
∣ ≤ qs(qs + q0 + q1 + q2 + q3 + q4)

22λ
≤ qs(qs + 5 · q)

22λ
.

Game4: This game differs from the previous one in how the signing queries
are replied. In this case, instead of querying H2 and H4 to obtain h1 and h2, respec-
tively. The values h1 and h2 are sampled uniformly at random from {0, 1}2λ.

Notice that Game3 and Game4 differ only in the case of a query to either
H2 or H4 is repeated while answering a signing query. This cannot happen since
we would have already aborted. So,

Pr4[Forge] = Pr3[Forge].

Game5: This game changes how the signing queries are answered. We high-
light that, in this game, the private key is no longer used to answer sign-
ing queries. Here, the values h1, h2, the salt and all the seeds (seed(e,i))
are computed as in Game4. Contrarily, for each e ∈ [τ], the values
(ε(e)1 , . . . , ε

(e)
m), ie , com(e,ie),Δs(e),Δc(e) and �α�

(e)

ie
are sampled uniformly at

random as it is done by the Simulator (see Fig. 6). From the security of the PRG
we obtain that ∣

∣Pr4[Forge] − Pr5[Forge]
∣
∣ ≤ εPRG.

Now we introduce a definition. Let e∗ ∈ [τ] and Q4 be a query to H4 with
input (

salt,msg, pk, h1, (H
(e)
1 , . . . , H

(e)
D)e∈[τ]

)
.

We say that the e∗-th execution of Q4 defines a good witness s if

1. Each H
(e)
� is an output of a query to H3.

2. There is a previous query h1 ← H2
(
salt,msg, h

(1)
0 , . . . , h

(τ)
0

)
.

3. There are previous queries
h
(e)
0 ← H1(salt, e, com(e,1), . . . , com(e,N),Δs(e),Δc(e)), for e ∈ [τ].

4. For each (e, i) ∈ [τ] × [N], there is a query of the form
com(e,i) ← H0

(
salt, e, i, seed(e,i)

)
.

5. A solution s to the PowAff2u−1 instance (f , t) can be extracted from
(seed(e

∗,i))i∈[N] and Δs(e
∗).

At the end of Game5, for each Forge, i.e., whenever A outputs a forgery
(msg, σ), one can check if any execution e ∈ [τ] defines a good witness. We define
by Solve the event in which there exists at least one good execution e∗ ∈ [τ],
where query to H4 is built from σ and following the verification algorithm (see

Biscuit: New MPCitH Signature Scheme 481

Fig. 8), and the (Δs(1), . . . ,Δs(τ)) are the one in σ. Consequently, Pr5[Forge ∩
Solve] = εPowAff2.

We finalize the proof by showing that Pr5[Forge ∩ Solve] ≤ Pr[X + Y = τ],
where X = maxi∈[0,q2]{Xi} Xi ∼ B(τ, 1

qu), and Y = maxi∈[0,q4]{Yi} with Yi ∼
B(τ − X, 1

N).
In the event Forge ∩ Solve, (by the soundness part of Theorem 1) we either

get a false-positive case of the MPC protocol (see Fig. 2), or A have cheated in
exactly one party. We analyze each scenario separately.

(False-positive case) We denote by h1 the output of a given query Q2 to H2
made by A. After the MPC protocol is executed in the main shares as described
in Fig. 4, A can count the number of indexes e ∈ [τ] for which the e-th execution
yields a false-positive, we use F2(h1) to denote that number. Since the first
challenge ε(e) = (ε(e)1 , . . . , ε

(e)
m) is sampled uniformly at random independently

of h1, by Proposition 1, we have that Pr[e ∈ F2(h1) | Solve] ≤ 1
qu for any e ∈ [τ].

Therefore, Xi ∼ B(τ, 1
qu), where Xi denotes #F2(h1) in the i-th query Q2 of A

to H2. Let us define the random variable X = maxi∈[q2] Xi.
(Cheating case) Let us assume X = τ1 = #F2(h1). For any e ∈ [τ] \ F2(h1),

by the soundness part of Theorem 1, we know that A has to cheat in exactly
one party in order to have a nonzero probability (which is 1

N) that the e-th
execution is accepted. Notice, the verification is accepted if and only if the e-th
execution is accepted for each e ∈ [τ] \ F2(h1). Now, let us define the random
variable Y = maxi∈[q4] Yi, where Yi is the random variable returning the number
of indexes e ∈ [τ] \ F2(h1) for which the e-th execution is accepted in the i-
th query to H4. Hence, in the particular case X = τ1, the probability that the
verification is accepted is given by Pr[Y = τ − τ1 | X = τ1]. Therefore, by
summing over all possible values of X, we obtain that

Pr5[Forge ∩ Solve] ≤ Pr[X + Y = τ].

The proof is concluded by the fact that.

Pr[Forge] = Pr1[Forge] ≤
4∑

j=1

∣
∣Prj [Forge] − Prj+1[Forge]

∣
∣ + Pr5[Forge]

=
4∑

j=1

∣
∣Prj [Forge] − Prj+1[Forge]

∣
∣

+ Pr5[Forge ∩ Solve] + Pr5[Forge ∩ Solve].

6 Implementation

6.1 Canonical Representation Optimization

As seen in Lemma 1, an equivalent system where, for the first n equations, one
of the affine forms is only composed of one variable. Without loss of generality,

482 L. Bettale et al.

we can choose to have this variable in Ak,0. In other words, we can choose for
the algorithm a system f1, . . . , fm as

fk(x1, . . . , xn) = (xk + ak) + Ak,1(x1, . . . , xn) · Ak,2(x1, . . . , xn),

for k � n, and

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) + Ak,1(x1, . . . , xn) · Ak,2(x1, . . . , xn),

for n < k � m, where Ak,j are affine forms.
The effect is that the evaluation of the polynomial will be much faster as

only 2 affine form evaluations have to be performed instead of 3 for most of the
equations. In the implementation, we chose to simplify Ak,0 to save some code,
as Ak,1 and Ak,2 can be computed in the same way in a loop.

6.2 Hypercube Optimization

The algorithms described in Figs. 7 and 8 use the hypercube variant. The simu-
lation of the MPC protocol does not need to compute all the values as in Fig. 4.
We first compute αk using directly the opened values s and a. Then, we need
to compute �αk�(�,j) only for j = 1. The value for j = 2 can be derived from
α. Similarly, we can do the same for �vk�(�,j). This can also be applied to the
verification. All in all, we usually require to keep only log2(N) shares.

6.3 Vectorization

The main data structure in the algorithm is a vector of value in Fq. We have:

– The secret value, which is a vector of n elements in Fq.
– The public key, which is a vector of m elements in Fq.
– Intermediate values, which are vectors of m elements in Fq.

For each of these vectors, we need to compute operations component-wise. We
can then pack all elements in the largest possible integer handled by the CPU.
Typically, this could be a 64-bit word that can contain 8 elements in F28 for
instance.

When vectorized instructions are available (SSE, AVX, . . .), even larger integer
types can be used. For instance, with AVX2 a 256-bit integer can be used to pack
a vector of Fq elements. In characteristic 2, the component-wise addition of a
vector of elements can be done in one instruction using the VPXOR instruction.

6.4 Performances and Memory Consumption

In this section, we show the performance and memory consumption of our
instances. Our implementation is optimized to use AVX2 vectorized instructions
on a little-endian 64-bit CPU.

Biscuit: New MPCitH Signature Scheme 483

The code is compiled with GCC version 12.2.0 on Debian GNU/Linux. Num-
ber of cycles was measured by counting PERF HW COUNT CPU CYCLES events on
an 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00 GHz CPU (Tiger Lake).
Even if frequency modification should not affect this metric, we deactivated
Intel’s TurboBoost feature anyway. The number of cycles is taken as the median
over 1000 executions.

Table 3. Time performance and memory consumption of Biscuit on avx2 impl.

Name Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 512 1 654 288 122 480 88 484 69 418 295 68 984 920

biscuit128f 512 329 904 25 712 88 477 13 711 517 13 007 550

biscuit192s 608 3 438 832 194 544 251 806 191 442 370 190 138 451

biscuit192f 608 708 944 49 392 252 106 38 677 691 37 087 201

biscuit256s 800 7 414 000 335 312 504 021 635 749 877 632 271 590

biscuit256f 800 1 537 904 98 768 504 983 128 098 892 124 921 246

In Table 3, we give the figures for the implementation strictly following the
description in the NIST submission but with the new parameters proposed in
Table 2.

In Table 4, we include the canonical representation optimization as described
in Sect. 6.1. This improves the performances by 18 to 28%.

Table 4. Time performance and memory consumption of Biscuit on avx2 impl. using
canonical optimization.

Name Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 512 1 651 088 122 480 61 755 60 785 166 59 198 143

biscuit128f 512 326 704 25 712 61 757 11 507 884 10 695 367

biscuit192s 608 3 430 288 194 544 172 825 151 956 515 152 714 889

biscuit192f 608 700 400 49 392 172 446 30 476 727 29 191 279

biscuit256s 800 7 393 680 335 312 343 001 472 774 277 468 258 145

biscuit256f 800 1 517 584 98 768 341 156 93 221 776 89 507 805

Finally, in Table 5, in addition to the previous optimization, we integrated
the hypercube variant. With this variant, the memory consumption is greatly
improved especially for large values of N . This is because we have to keep track
of only log2(N) shares instead of N . The performances are improved by 50 to
83% for the small variant, and by 41 to 69% for the fast variant. The code is
available in [2].

484 L. Bettale et al.

Table 5. Time performance and memory consumption of Biscuit on avx2 impl. using
canonical and hypercube optimization.

Name Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 576 814 256 40 144 61 697 27 930 795 28 323 314

biscuit128f 576 201 744 14 096 61 682 6 581 004 6 166 694

biscuit192s 704 1 686 416 67 376 173 044 49 890 911 49 914 321

biscuit192f 704 433 008 28 272 172 667 13 594 397 12 916 931

biscuit256s 960 3 556 624 117 424 341 657 77 620 375 77 447 430

biscuit256f 960 928 368 57 648 340 649 28 219 223 27 341 671

Acknowledgement. The authors would like to thank Daniel Escudero for meaningful
insights on an early version of this paper and the referees of ACNS24 that helped to
improve the paper. The third author would like to thank Charles Bouillaguet and Julia
Sauvage for discussions on the hardness of PowAff2, Google which partially supported
this work thanks to a gift for supporting post-quantum research, and the European
Union’s Horizon Europe research and innovation program that partially supported this
research under the project “Quantum Secure Networks Partnership” (QSNP, grant
agreement No 101114043).

References

1. NIST Call for Additional Digital Signature Schemes for the Post-Quantum Cryp-
tography Standardization Process. https://csrc.nist.gov/csrc/media/Projects/
pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

2. Biscuit github repository (2023). https://github.com/BiscuitTeam/Biscuit
3. Aaraj, N., et al.: PERK specification (2023). https://pqc-perk.org/assets/

downloads/PERK specifications.pdf
4. Adj, G., et al.: MiRitH specification (2023). https://pqc-mirith.org/assets/

downloads/mirith specifications v1.0.0.pdf
5. Melchor, C.A., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.: The return

of the SDitH, pp. 564–596 (2023)
6. Alagic, G., et al.: Status report on the second round of the nist post-quantum cryp-

tography standardization process. Technical report NISTIR 8309, NIST (2022).
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

7. Albrecht, M.R., Cid, C., Faugère, J.-C., Perret, L.: Algebraic algorithms for lwe.
Cryptology ePrint Archive, Paper 2014/1018 (2014). https://eprint.iacr.org/2014/
1018

8. Aragon, N., et al.: RYDE specification (2023). https://pqc-ryde.org/assets/
downloads/RYDE Specifications.pdf

9. Aragon, N., et al.: MIRA specification (2023). https://pqc-mira.org/assets/
downloads/mira spec.pdf

10. Aragon, N., et al.: Mira: a digital signature scheme based on the minrank problem
and the MPC-in-the-head paradigm (2023)

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://github.com/BiscuitTeam/Biscuit
https://pqc-perk.org/assets/downloads/PERK_specifications.pdf
https://pqc-perk.org/assets/downloads/PERK_specifications.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://eprint.iacr.org/2014/1018
https://eprint.iacr.org/2014/1018
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf
https://pqc-mira.org/assets/downloads/mira_spec.pdf
https://pqc-mira.org/assets/downloads/mira_spec.pdf

Biscuit: New MPCitH Signature Scheme 485

11. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

12. Bardet, M., Faugère, J.-C., Salvy, B., Spaenlehauer, P.-J.: On the complexity of
solving quadratic Boolean systems. J. Complex. 29(1), 53–75 (2013)

13. Baum, C., et al.: FAEST specification (2023). https://faest.info/faest-spec-v1.1.
pdf

14. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp.
495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 17

15. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

16. Bellini, E., Makarim, R.H., Sanna, C., Verbel, J.A.: An estimator for the hardness
of the MQ problem, pp. 323–347 (2022)

17. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

18. Bettale, L., Faugère, J.-C., Perret, L.: Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In: van der Hoeven, J., van Hoeij, M.
(eds.) International Symposium on Symbolic and Algebraic Computation, ISSAC
2012, Grenoble, France - July 22–25, 2012, pp. 67–74. ACM (2012)

19. Bettale, L., Perret, L., Kahrobaei, D., Verbel, J.: Biscuit: shorter MPC-based Signa-
ture from PoSSo, June 2023. Specification of NIST post-quantum signature (2023)

20. Bouillaguet, C.: Improved security analysis of Biscuit (2023). https://groups.
google.com/a/list.nist.gov/g/pqc-forum/c/sw8NueiNek0/m/2sa emjABQAJ

21. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives, pp. 1825–1842 (2017)

22. NIST Computer Security Division. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. FIPS Publication 202, National Institute of Stan-
dards and Technology, U.S. Department of Commerce, May 2014

23. Esser, A., Verbel, J., Zweydinger, F., Bellini, E.: Cryptographic Estimators: a
software library for cryptographic hardness estimation. Cryptology ePrint Archive,
Paper 2023/589, 2023. https://eprint.iacr.org/2023/589

24. Feneuil, T., Rivain, M.: MQOM specification (2023). https://mqom.org/docs/
mqom-v1.0.pdf

25. Feneuil, T., Rivain, M.: Threshold computation in the head: improved framework
for post-quantum signatures and zero-knowledge arguments. Cryptology ePrint
Archive, Paper 2023/1573 (2023). https://eprint.iacr.org/2023/1573

26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

27. Giacomelli, I., Madsen, J., Orlandi, C.:. ZKBoo: faster zero-knowledge for boolean
circuits. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 1069–
1083 (2016)

28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the Thirty-Ninth Annual ACM Sym-
posium on Theory of Computing, pp. 21–30 (2007)

29. Kales, D., Zaverucha, G.: An attack on some signature schemes constructed from
five-pass identification schemes. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.)

https://doi.org/10.1007/978-3-642-22006-7_34
https://faest.info/faest-spec-v1.1.pdf
https://faest.info/faest-spec-v1.1.pdf
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/3-540-46766-1_34
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sw8NueiNek0/m/2sa_emjABQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sw8NueiNek0/m/2sa_emjABQAJ
https://eprint.iacr.org/2023/589
https://mqom.org/docs/mqom-v1.0.pdf
https://mqom.org/docs/mqom-v1.0.pdf
https://eprint.iacr.org/2023/1573
https://doi.org/10.1007/3-540-47721-7_12

486 L. Bettale et al.

CANS 2020. LNCS, vol. 12579, pp. 3–22. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-65411-5 1

30. Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge proofs and
post-quantum signatures. Cryptology ePrint Archive, Paper 2022/588 (2022).
https://eprint.iacr.org/2022/588

31. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero-knowledge
with applications to post-quantum signatures. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pp. 525–537
(2018)

32. Kim, S., et al.: AIMER specification (2023). https://aimer-signature.org/docs/
AIMer-NIST-Document.pdf

33. Melchor, C.A., et al.: SDITH specification (2023). https://sdith.org/docs/sdith-
v1.0.pdf

34. Melchor, C.A., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.: The return of
the SDitH. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology EUROCRYPT
2023 Part V, LNCS, vol. 14008, pp. 564–596. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-30589-4 20

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1-34:40 (2009)

36. Zaverucha, G., et al.: Picnic: algorithm specification and design document

https://doi.org/10.1007/978-3-030-65411-5_1
https://doi.org/10.1007/978-3-030-65411-5_1
https://eprint.iacr.org/2022/588
https://aimer-signature.org/docs/AIMer-NIST-Document.pdf
https://aimer-signature.org/docs/AIMer-NIST-Document.pdf
https://sdith.org/docs/sdith-v1.0.pdf
https://sdith.org/docs/sdith-v1.0.pdf
https://doi.org/10.1007/978-3-031-30589-4_20
https://doi.org/10.1007/978-3-031-30589-4_20

Author Index

A
Alam, Manaar III-163
Alkadri, Nabil Alkeilani I-376
Andreeva, Elena II-433
Attrapadung, Nuttapong II-373
Avizheh, Sepideh III-74

B
Banegas, Gustavo II-101
Bao, Han I-213
Basso, Andrea I-432
Bemmann, Pascal I-351
Berger, Robin I-288
Berndt, Sebastian I-351
Bettale, Luk I-457
Bhardwaj, Divyanshu III-412
Bhattacharya, Sarani III-271
Bock, Estuardo Alpirez II-101
Boneh, Dan III-105
Bonneau, Joseph III-105
Boura, Christina II-485
Brisfors, Martin III-301
Brzuska, Chris I-3, II-101

C
Cachet, Chloe I-156
Carpent, Xavier I-26
Chen, Binbin II-283
Chen, Mingjie I-432
Chen, Rongmao I-351
Chmielewski, Łukasz II-101
Cimorelli Belfiore, Roberta II-163
Cogliati, Benoît II-433
Cong, Kelong II-133
Conti, Mauro I-183
Custódio, Ricardo II-3

D
Dabrowski, Adrian III-412
De Cosmo, Andrea II-163
Derbez, Patrick II-485

Dey, Soumyajit III-163
Ding, Xia II-265
Doan, Thi Van Thao I-257
Dobraunig, Christoph II-460
Dörre, Felix I-288
Döttling, Nico I-376
Dowerah, Uddipana II-189
Dubrova, Elena III-301

E
Egger, Christoph I-3
Eldefrawy, Karim II-133
Emura, Keita I-237

F
Fan, Yongming II-340
Feneuil, Thibauld I-403
Feng, Zheyun III-217
Ferrara, Anna Lisa II-163
Forte, Domenic III-325
Fouotsa, Tako Boris I-432
Francati, Danilo I-135
Frederiksen, Tore Kasper I-58
Fuller, Benjamin I-156
Funk, Margot II-485

G
Ganji, Fatemeh III-325
Garman, Christina II-340
GhasemiGol, Mohammad II-313
Ghazvinian, Parsa II-313
Ghosh, Soumyadyuti III-163
Giron, Alexandre Augusto II-3
Gui, Jiaping III-241

H
Hamlin, Ariel I-156
Hanaoaka, Goichiro II-373
Hashemi, Mohammad III-325
Heitmann, Nico III-190

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14583, pp. 487–489, 2024.
https://doi.org/10.1007/978-3-031-54770-6

https://doi.org/10.1007/978-3-031-54770-6

488 Author Index

Henze, Martin II-241
Hiromasa, Ryo II-373
Hwang, Seoyeon I-26
Hwang, Vincent II-24

J
Jee, Kangkook III-241

K
Kahrobaei, Delaram I-457
Kailus, Adrian III-137
Kamimura, Junpei III-241
Karmakar, Angshuman III-271
Kern, Dustin III-137
Koch, Alexander I-288
Köhler, Daniel III-381
Koseki, Yoshihiro II-373
Krauß, Christoph III-137
Krombholz, Katharina III-412
Kumaresan, Ranjit III-51
Kundu, Suparna III-271
Kutas, Péter I-432
Kwak, Hyesun II-403

L
Lallemand, Virginie II-433
Larangeira, Mario I-88
Lau, Wing Cheong III-432
Laval, Abel I-432
Lazzeretti, Riccardo I-183
Le, Duc V. III-51
Lee, Dongwon II-403
Li, Zhichun III-241
Liberati, Edoardo I-183
Lin, Yunxue III-355
Lindstrøm, Jonas I-58
Ling, Xi II-283
Litos, Orfeas Stefanos Thyfronitis III-28
Liu, Chi-Ting II-24
Liu, Zhuotao I-213
Lorek, Paweł III-3
Lu, Tianbo II-265
Luo, Kaixuan III-432

M
Madsen, Mikkel Wienberg I-58
Marco, Laurane I-432
Mateu, Victor II-3
Matsuda, Takahiro II-373

Meinel, Christoph III-381
Mennink, Bart II-460
Minaei, Mohsen III-51
Minier, Marine II-433
Mitrokotsa, Aikaterini II-189
Mondal, Puja III-271
Moog, Sven III-190
Mukherjee, Kunal III-241
Mukhopadhyay, Debdeep II-47, III-163

N
Naito, Yusuke I-318
Nakamura, Toru I-119
Nikolaenko, Valeria III-105
Nishida, Yutaro II-373

P
Patranabis, Sikhar II-47
Pereira, Olivier I-257
Perin, Lucas Pandolfo II-3
Perret, Ludovic I-457
Peters, Thomas I-257
Phalakarn, Kittiphop I-119
Podschwadt, Robert II-313
Pu, Sihang I-376
Puniamurthy, Kirthivaasan I-3, II-101
Pünter, Wenzel III-381
Purnal, Antoon II-433

R
Raghuraman, Srinivasan III-51
Ragsdale, Sam III-105
Rezapour, Maryam I-156
Rhee, John Junghwan III-241
Riahi, Siavash III-28
Riyadh, H. T. M. A. III-412
Robben, Jeroen II-217
Roy, Arnab II-433

S
Saah, Gustave Tchoffo I-432
Safavi-Naini, Reihaneh III-74
Sakai, Yusuke II-373
Sasaki, Yu I-318
Schardong, Frederico II-3
Schuldt, Jacob C. N. II-373
Serror, Martin II-241
Shang, Jiaze II-265
Siewert, Hendrik III-190

Author Index 489

Sinha, Sayani II-47
Smart, Nigel P. II-133
Somorovsky, Juraj III-190
Song, Yongsoo II-403
Šorf, Milan II-101
Spangsberg, Anne Dorte I-58
Su, Xiangyu I-88
Sugawara, Takeshi I-318
Sun, Ling III-355

T
Taguchi, Ren II-79
Takabi, Daniel II-313
Takayasu, Atsushi II-79
Tanaka, Keisuke I-88
Tang, Lu-An III-241
Terner, Ben II-133
Tsudik, Gene I-26

U
Uluagac, Selcuk I-183

V
Valle, Victor II-3
Vanhoef, Mathy II-217
Venturi, Daniele I-135
Verbauwhede, Ingrid III-271
Verbel, Javier I-457
Visintin, Alessandro I-183

W
Wagh, Sameer II-403
Wagner, Eric II-241
Wang, Long I-213

Wang, Pengfei I-88
Wang, Qi III-241
Wang, Ruize III-301
Wang, Xianbo III-432
Wang, Yisong I-213
Wehrle, Klaus II-241
Wei, James III-241
Wiedemeier, Joshua III-241

X
Xu, Dongpeng III-217
Xu, Haitao II-283
Xu, Yuquan II-340

Y
Yang, Bo-Yin II-24
Yang, Yibin III-51
Yasuda, Satoshi II-373
Yu, Jiongchi II-283
Yu, Xiao III-241
Yung, Moti III-3

Z
Zagórski, Filip III-3
Zamani, Mahdi III-51
Zhang, Fan II-283
Zhang, Han II-265
Zhang, Mengyu I-213
Zhang, Naiqian III-217
Zhang, Xiaoping I-213
Zhao, Pengfei II-265
Zhao, Ziming II-283
Zhou, Zhihao II-283

	 Preface
	 Organization
	Abstracts of Keynote Talks
	 Applying Machine Learning to Securing Cellular Networks
	 Real-World Cryptanalysis
	 CAPTCHAs: What Are They Good For?
	 Contents – Part I
	 Contents – Part II
	 Contents – Part III

	Cryptographic Protocols
	CryptoZoo: A Viewer for Reduction Proofs
	1 Introduction
	2 Related Work
	3 State-Separating Proofs
	4 A Proof Viewer for SSPs
	4.1 Proof Viewing Concepts
	4.2 Implementation Considerations

	5 Case Study: IND-CPA Vs. Simulation-Based Security
	6 Case Study: Constant-Depth GGM Tree
	7 Case Study: Yao's Garbling Scheme
	8 Comparison
	8.1 Yao's Garbling Scheme
	8.2 SSP Proofs of TLS 1.3
	8.3 SSP Proofs of the MLS Key Schedule
	8.4 Formal Verification Tools for SSPs

	9 Conclusion and Future Work
	References

	Element Distinctness and Bounded Input Size in Private Set Intersection and Related Protocols
	1 Introduction
	2 Related Work and Background
	2.1 Private Set Intersection (PSI)
	2.2 PSI Variants
	2.3 PSI with Restrictions
	2.4 PSI with Multiset Input
	2.5 Zero-Knowledge Proofs
	2.6 Homomorphic Encryption

	3 Proving Element Distinctness
	3.1 Puzzle-Based PoED Construction
	3.2 Analysis of PoED-Puzzle Protocol

	4 PSI with Element Distinctness Check
	4.1 Adversary Model
	4.2 Definition of AD-PSI
	4.3 A Construction for AD-PSI Based on PoED-puzzle
	4.4 Alternative AD-PSI and Modified Construction

	5 AD-PSI Variants
	5.1 PSI-CA with Element Distinctness (AD-PSI-CA)
	5.2 PSI-X with Element Distinctness (AD-PSI-X)
	5.3 PSI-DT with Element Distinctness (AD-PSI-DT)

	6 Completing Bounded-Size-Hiding-PSI
	7 Authorized PSI with Element Distinctness
	7.1 AD-APSI Definition
	7.2 AD-APSI Construction
	7.3 Security Analysis

	8 Conclusion
	A Security Proof for AD-PSI-puzzle
	B AD-PSI Variants
	C Security Proof for AD-APSI
	References

	A New Approach to Efficient and Secure Fixed-Point Computation
	1 Introduction
	1.1 Related Work
	1.2 Construction Blueprint

	2 Preliminaries
	2.1 UC Functionalities

	3 Truncation
	3.1 RNS in MPC
	3.2 Fixed-Point Arithmetic

	4 The Construction
	4.1 Preprocessing
	4.2 Lifting
	4.3 Probabilistic Truncation
	4.4 Error Reduction

	5 Efficiency
	5.1 Implementation
	5.2 Comparison with Related Techniques

	References

	Auditable Attribute-Based Credentials Scheme and Its Application in Contact Tracing
	1 Introduction
	2 Preliminaries
	3 Auditable Attribute-Based Credentials Scheme
	3.1 Auditable Public Keys
	3.2 Formal Definitions of Auditable ABC
	3.3 Our Constructions and Analysis

	4 Application: Contact Tracing
	4.1 An Auditable ABC-Based Construction
	4.2 Security and Analysis
	4.3 Implementation

	5 Conclusion
	A The Necessity of Enhancing Contact Tracing Systems
	B The SPS-EQ Scheme from ch4spseqspspkc2022
	C Extending the BLS Signature ch4bls01 with APK
	References

	Verification Protocol for Stable Matching from Conditional Disclosure of Secrets
	1 Introduction
	1.1 Our Contribution
	1.2 Applications
	1.3 Organization

	2 Related Works
	2.1 Stable Matching
	2.2 Conditional Disclosure of Secrets
	2.3 Multi-client Verifiable Computation

	3 Preliminaries
	3.1 Stable Matching
	3.2 Conditional Disclosure of Secrets
	3.3 Multi-client Verifiable Computation
	3.4 Secret Sharing

	4 Proposed CDS Schemes
	4.1 CDS Scheme for Unstable Matching
	4.2 CDS Scheme for Stable Matching
	4.3 Possible Improvements

	5 Verification Protocol for Stable Matching
	6 Implementation
	7 Concluding Remarks
	References

	Non-malleable Fuzzy Extractors
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 (Keyless) Fuzzy Extractors
	2.2 Non-malleable Codes

	3 Non-malleable Fuzzy Extractors
	4 Construction
	5 Fuzzy Tamper-Resilient Security
	6 Conclusions
	References

	Upgrading Fuzzy Extractors
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Discussion and Future Work

	2 Preliminaries
	2.1 Entropy Definitions
	2.2 Obfuscation Definitions
	2.3 Fuzzy Extractors

	3 Weakly-Private Fuzzy Extractors
	3.1 Weakly Private FE from FE and MBCC Obfuscation
	3.2 Weakly Private FE from Secure Sketch and MBCC Obfuscation

	4 Robustness
	5 Reuse
	A Privacy vs FE Security
	B Reusability from Composable MBCC Obfuscation
	References

	X-Lock: A Secure XOR-Based Fuzzy Extractor for Resource Constrained Devices
	1 Introduction
	2 Related Works
	3 Background
	4 X-Lock: Construction Details
	5 X-Lock: Algorithm Analysis
	5.1 Security Analysis
	5.2 Bias and Correlation Analysis
	5.3 Costs Analysis

	6 Implementation and Comparison
	7 Conclusion
	References

	Encrypted Data
	Efficient Clustering on Encrypted Data
	1 Introduction
	2 Related Works
	3 Background
	3.1 Approximate Homomorphic Encryption CKKS
	3.2 Newton's Method

	4 System Architecture and Threat Model
	4.1 System Architecture
	4.2 Threat Model
	4.3 Security

	5 Fully Privacy-Preserving Clustering Scheme Based on FHE
	5.1 Preliminaries
	5.2 Ciphertext Comparison
	5.3 Ciphertext Division
	5.4 Converting the One-Hot Vectors to Label in Plaintexts
	5.5 The Complete Algorithm for Privacy-Preserving Clustering
	5.6 Security Proof

	6 An Optimized Algorithm
	6.1 Block Clustering Scheme
	6.2 Block Clustering Scheme with Cluster Selection

	7 Experiment Results
	7.1 Experiment Setup
	7.2 Clustering Accuracy
	7.3 Run Time
	7.4 Performance of Block Clustering Scheme with Cluster Selection

	8 Conclusions
	References

	Generic Construction of Forward Secure Public Key Authenticated Encryption with Keyword Search
	1 Introduction
	2 Preliminaries
	2.1 PAEKS
	2.2 0/1 Encodings

	3 Definition of FS-PAEKS
	4 Our Generic Construction of FS-PAEKS
	5 Security Analysis
	6 Vulnerability of the Jiang Et Al. FS-PAEKS Scheme
	7 Conclusion
	References

	Encryption Mechanisms for Receipt-Free and Perfectly Private Verifiable Elections
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Related Work
	1.4 Overview of Paper

	2 Background
	2.1 Assumptions and Primitives
	2.2 Traceable Receipt-Free Encryption (TREnc)
	2.3 Commitment Consistent Encryption (CCE)

	3 The Construction of Our Scheme
	3.1 Description
	3.2 Verification Equations
	3.3 Security Analysis
	3.4 Efficiency

	4 Application to E-Voting
	4.1 Voting Scheme with a Homomorphic Tally
	4.2 Voting Scheme with a Mixnet Tally

	5 Conclusion
	A Scheme Description for Complex Ballots
	B Deferred Proofs
	B.1 Correctness
	B.2 Strong Randomizability
	B.3 TCCA Security
	B.4 Traceability
	B.5 Verifiability

	References

	Two-Party Decision Tree Training from Updatable Order-Revealing Encryption
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Outline

	2 Preliminaries
	2.1 The Universal Composability Model
	2.2 Order-Revealing Encryption
	2.3 Decision Tree Training

	3 Updatable Order-Revealing Encryption
	4 Secure Decision Tree Training
	4.1 Variations of the Training Process
	4.2 Graceful Degradation Using Enclaves

	5 Analysis of the Leakage
	5.1 Leakage for Random Message Selection
	5.2 Additional Leakage for Malicious Message Selection
	5.3 Transformation for Non-uniform Distributions

	6 Implementation and Evaluation
	6.1 Evaluation of the Updatable ORE Scheme
	6.2 Evaluation of the Protocol

	7 Conclusion
	A A Brief Introduction to the UC Framework
	References

	KIVR: Committing Authenticated Encryption Using Redundancy and Application to GCM, CCM, and More
	1 Introduction
	1.1 Research Challenges
	1.2 Contributions
	1.3 Organization

	2 Preliminaries
	3 Committing Security with Plaintext Redundancy
	3.1 Plaintext with Redundancy
	3.2 Definitions for Committing Security with Redundancy

	4 KIVR Transform
	4.1 Specification of KIVR
	4.2 Security of KIVR

	5 Committing Security of KIVR with CTR-Based AE
	5.1 Specification of CTR-Based AE
	5.2 CMT-4-Security of KIVR[CTRAE]

	6 Proof of Theorem 1
	6.1 Tools
	6.2 Symbol Definitions
	6.3 Deriving the CMT-4-Security Bound
	6.4 Bounding Pr[(C,T)=(C,T) coll]

	7 Committing Security of KIVR with GCM, GCM-SIV, and CCM
	7.1 Specifications of GCM, GCM-SIV, and CCM
	7.2 CMT-4-Security of KIVR[GCM], KIVR[GCM-SIV], and KIVR[CCM]
	7.3 Tightness of the CMT-4-Security of KIVR[GCM] and KIVR[GCM-SIV]
	7.4 On the Tightness of CMT-4-Security of KIVR[CCM]

	8 Committing Security of KIVR with CTR-HMAC
	8.1 Specification of CTR-HMAC
	8.2 CMT-4-Security Bound of KIVR[CTR-HMAC]
	8.3 Tightness of the CMT-4-Security of KIVR[CTR-HMAC]

	9 Conclusion
	A Multi-user Security for AE
	B Multi-user PRF Security
	C mu-AE Security of AE Schemes with KIVR
	D Proof of Theorem 2 for KIVR[GCM-SIV]
	E Proof of Theorem 3
	References

	Signatures
	Subversion-Resilient Signatures Without Random Oracles
	1 Introduction
	1.1 Subversion-Resilient Signatures with Watchdogs
	1.2 Technical Challenges
	1.3 Our Contributions
	1.4 Alternative Models

	2 Model and Preliminaries
	2.1 Notation and Model
	2.2 Subversion-Resilience
	2.3 Achieving Subversion-Resilience
	2.4 Assumptions
	2.5 Pseudorandom Functions

	3 Subversion-Resilient One-Way Functions
	3.1 One-Way Permutations
	3.2 Subversion-Resilient One-Way Functions

	4 Subversion-Resilient Hash Functions
	5 Subversion-Resilient Signatures
	5.1 Digital Signatures
	5.2 Lamport Signatures
	5.3 The Naor-Yung Construction

	6 Discussion
	References

	Practical Lattice-Based Distributed Signatures for a Small Number of Signers
	1 Introduction
	1.1 Contribution
	1.2 Technical Overview
	1.3 Related Work

	2 Background
	3 Distributed Signature Protocol
	3.1 Protocol Description
	3.2 Security Analysis
	3.3 Concrete Parameters

	A More Related Work
	B Additional Background
	B.1 Forking Lemma

	C Hardness Estimation of MLWE and MSIS
	D Indistinguishability of Hybrids H2 and H1
	References

	Building MPCitH-Based Signatures from MQ, MinRank, and Rank SD
	1 Introduction
	2 Preliminaries
	2.1 The MPC-in-the-Head Paradigm
	2.2 Methodology
	2.3 Matrix Multiplication Checking Protocol

	3 Proof of Knowledge for MQ
	4 Proofs of Knowledge for MinRank and Rank SD
	4.1 Matrix Rank Checking Protocols
	4.2 Proof of Knowledge for MinRank
	4.3 Proof of Knowledge for Rank SD

	5 Running Times
	A Methodology
	A.1 MPCitH Optimizations

	B State of the Art – Performances
	B.1 Multivariate Quadratic Problem
	B.2 MinRank Problem
	B.3 Rank Syndrome Decoding Problem

	C Benchmark Analysis
	References

	Exploring SIDH-Based Signature Parameters
	1 Introduction
	2 Preliminaries
	2.1 Protocols and Digital Signatures
	2.2 Supersingular Isogenies
	2.3 Quaternion Algebra
	2.4 SIDH
	2.5 Algorithms for Computing Isogenies

	3 Signatures Based on SIDH Squares
	3.1 Proposed Constructions

	4 Analysis of KLPT-Based Attacks
	4.1 The KLPT Algorithm for Extremal Order
	4.2 KLPT Algorithm for Non-extremal Order
	4.3 Parameters Secure Against KLPT-Based Attacks

	5 Analysis of Other Attacks
	5.1 Attacks Based on the SIDH Attacks
	5.2 Attacks on the Zero-Knowledge Property

	6 Concrete Instantiations and Parameters Size
	7 Conclusion
	References

	Biscuit: New MPCitH Signature Scheme from Structured Multivariate Polynomials
	1 Introduction
	1.1 Overview of MPCitH-Based Signature Schemes
	1.2 Organization of the Paper and Main Results

	2 Preliminaries
	2.1 Notations
	2.2 The PowAff2u Problem
	2.3 Digital Signature Scheme
	2.4 5-Pass Identification Schemes
	2.5 MPC-in-the-Head: From MPC to Zero-Knowledge
	2.6 Proof Systems for Arbitrary Circuits

	3 Interactive Protocols for PowAff2
	3.1 Multi-Party Computation Protocol for PowAff2
	3.2 Zero-Knowledge Proof of Knowledge for PowAff2

	4 Biscuit Signature Scheme
	4.1 Parameters

	5 Security Analysis
	5.1 About the Hardness of PowAff2
	5.2 Key Recovery Attacks
	5.3 Forgery Attacks
	5.4 Existential Unforgeability

	6 Implementation
	6.1 Canonical Representation Optimization
	6.2 Hypercube Optimization
	6.3 Vectorization
	6.4 Performances and Memory Consumption

	References

	Author Index

