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About This Book 

This book presents suggestions, based on machine learning approaches, for identi-
fying the most important predictors of crucial variables for dealing with the chal-
lenges of managing production units and designing policies. The book focuses on the 
agricultural sector in the European Union and considers statistical information from 
the Farm Accountancy Data Network (FADN). In other words, nowadays, statistical 
databases present a lot of information for many indicators and, in these contexts, one 
of the main tasks is to identify the most important predictors of certain indicators. 
In this way, the book presents approaches to identifying the most relevant variables 
that best support the design of adjusted farming policies and management plans. 
These subjects are currently important, namely for the students, public institutions 
and farmers. To achieve these objectives, the IBM SPSS Modeler procedures were 
considered, as well as the respective models suggested by this software.
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Chapter 1 
Predictive Machine Learning 
Approaches to Agricultural Output 

Abstract The agricultural sector needs to increase agricultural production to guar-
antee food security worldwide, however, to achieve these objectives agriculture must 
improve the sustainability of its activities and processes, specifically improving the 
efficiency of the sector. In these frameworks, adjusted agricultural planning and 
management is crucial, where the availability of information plays a determinant 
role, as well as the consideration of new technologies and methodologies. In the 
context of the new approaches of analysis, digital methodologies may bring relevant 
added value, namely those associated with predictive machine learning technolo-
gies. From this perspective, this study intends to identify the most adjusted models 
to predict the European Union farming output, taking into account machine learning 
approaches and statistical information from the Farm Accountancy Data Network. 
The results obtained highlight the most important farming variables that must be 
taken into account to predict the total output in the European Union farms. 

Keywords IBM SPSS modeler · Farm accountancy data network · European 
Union farms 

1.1 Introduction 

Agricultural output is influenced by several factors, some of which are related to 
water conditions and soil characteristics [1], specifically salinity [2] and soil organic 
matter [3]. The machine learning approaches may bring relevant contributions to 
the assessment of these variables, particularly those associated with water quality 
[4], for example. The consideration of new technologies in the analysis of water 
dimensions has motivated different research, including on water conservation [5] 
and groundwater [6]. 

Another dimension with a great impact on the farming output is climate change 
and the consequent global warming. The new knowledge related to the digital tran-
sition has been used to assess these frameworks, namely in Africa [7], where the 
consequences of the negative impacts on agriculture may be more severe, in some

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Predictive Machine Learning Approaches to Agricultural Output

circumstances, because of the current problems of food security. These methodolo-
gies enable us to work with Big Data and information collected with alternative and 
modern technologies, such as the Internet of Things (IoT) and sensors [8]. For agri-
cultural income prediction is crucial to deal with the data volatility in the models as 
a consequence of global warming and economic tendencies [9]. In these scenarios 
of climate change, the greenhouse gas emissions mitigation from farming practices, 
through more precise and innovative procedures, is crucial [10]. 

Plant diseases appear also between the factors that may have negative implications 
on agricultural dynamics [11]. The artificial methodologies, biosensors [12] and IoT 
sensors [13] allow for early assessment of problems associated with plant diseases 
and this is fundamental for adjusted farming management that permits maintaining, 
or improving, the expected performance of agriculture. 

Digital methodologies offer similarly new opportunities to estimate and project 
agricultural output during the growing season with important added value for the 
food conditions and sustainability of the farming sector, especially in contexts with 
more difficulties. The predictive models have here a crucial support [14]. These 
approaches may be also taken into account to identify crop types [15] in contexts 
where is more difficult to collect information. 

These digital approaches may bring still useful insights into individual attitudes on 
food understanding, namely on genetically modified products [16]. These products 
may contribute to improve the sustainability of the food sector, however, there is 
still some work to do to better understand the public opinion on genetically modified 
food. 

Considering the context described before, this chapter intends to bring more 
insights into the agricultural output prediction in the European Union farm contexts, 
using data from the Farm Accountancy Data Network (FADN) [17] and taking into 
account machine learning approaches to identify accurate models and important 
indicators, following the procedures proposed by the software IBM SPSS Modeler 
[18]. 

1.2 Data Analysis 

The data considered in this research was obtained from the Farm Accountancy 
Data Network database for European Union countries and the respective agricul-
tural regions. This statistical information is available for the representative farms of 
each country and agricultural region (when the data are available at member-state, 
or region, respectively). These representative microeconomic data are found through 
harmonised bookkeeping principles.
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Table 1.1 shows that the European Union countries with the highest/lowest growth 
rates for the total farming output, over the period 2018–2021, are different, revealing 
the vulnerability of agriculture to external (market conditions and climate) and 
internal circumstances. These results are influenced by the effects of the prices. In 
any case, the intention here is to analyse the changes in the revenues of the farmers 
and to highlight some variability of the agricultural incomes. 

Table 1.1 Growth rate (%) 
results for the agricultural 
output of the European Union 
countries, with data at the 
farm level, over the period 
2018–2021 

Member state Year 

2019 2020 2021 

Austria 1.356 2.896 11.857 

Belgium 5.578 − 0.754 9.007 

Bulgaria 1.104 − 2.281 34.124 

Croatia − 3.618 8.974 16.203 

Cyprus 1.895 2.277 − 2.747 
Czechia 4.651 22.543 10.014 

Denmark 17.248 17.693 − 0.698 
Estonia 20.500 − 2.438 4.772 

Finland 27.861 2.841 8.449 

France 1.777 − 1.749 12.836 

Germany 7.678 − 2.177 16.325 

Greece 1.464 2.164 15.845 

Hungary 4.778 6.744 15.398 

Ireland − 1.536 5.833 15.985 

Italy − 1.656 3.843 4.746 

Latvia 15.438 5.726 2.402 

Lithuania 6.574 13.981 9.614 

Luxembourg 4.769 − 2.165 5.213 

Netherlands 6.040 − 3.298 9.692 

Poland 5.492 − 2.353 18.005 

Portugal 3.363 − 13.644 18.064 

Romania 1.579 − 8.476 27.692 

Slovakia 4.483 8.317 4.060 

Slovenia 8.238 − 3.407 7.369 

Spain 14.096 6.188 2.404 

Sweden 14.490 2.578 24.148 

Average 6.679 2.687 11.568 

Note Bold corresponds to the highest values and italic to the lowest
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For a better assessment, Table 1.2 presents the normalised values (obtained 
through (xi − xminimum)/(xmaximum − xminimum)) for the total output disaggregated 
at the European Union agricultural region level. These results allow identifying 
some leader countries/regions from Belgium, Denmark, Germany, Netherlands and 
Slovakia. Some of the frameworks with the lowest results are from Croatia, Greece, 
Poland and Romania. 

Table 1.2 Normalised values for the agricultural output of the European Union farming regions, 
with data at the farm level, over the period 2018–2021 

Member state Region Year 

2018 2019 2020 2021 

Austria Austria 0.083 0.084 0.086 0.086 

Belgium Vlaanderen 0.344 0.362 0.344 0.341 

Belgium Wallonie 0.167 0.177 0.184 0.175 

Bulgaria Severen tsentralen 0.100 0.099 0.090 0.120 

Bulgaria Severoiztochen 0.120 0.124 0.093 0.145 

Bulgaria Severozapaden 0.102 0.098 0.116 0.129 

Bulgaria Yugoiztochen 0.063 0.068 0.063 0.081 

Bulgaria Yugozapaden 0.016 0.018 0.021 0.013 

Bulgaria Yuzhen tsentralen 0.019 0.019 0.025 0.023 

Croatia Jadranska Hrvatska 0.005 0.006 0.007 0.006 

Croatia Kontinentalna Hrvatska 0.009 0.007 0.012 0.012 

Cyprus Cyprus 0.034 0.035 0.036 0.029 

Czechia Czechia 0.304 0.318 0.384 0.381 

Denmark Denmark 0.490 0.576 0.661 0.592 

Estonia Estonia 0.119 0.147 0.140 0.131 

Finland Etelä-Suomi 0.087 0.109 0.111 0.108 

Finland Pohjanmaa 0.121 0.164 0.171 0.172 

Finland Pohjois-Suomi 0.126 0.172 0.179 0.167 

Finland Sisä-Suomi 0.105 0.156 0.146 0.136 

France Alsace 0.176 0.170 0.166 0.151 

France Aquitaine 0.186 0.176 0.164 0.158 

France Auvergne 0.104 0.106 0.104 0.102 

France Basse-Normandie 0.238 0.234 0.236 0.248 

France Bourgogne 0.212 0.213 0.210 0.232 

France Bretagne 0.307 0.334 0.315 0.304 

France Centre 0.200 0.204 0.193 0.226 

France Champagne-Ardenne 0.241 0.217 0.188 0.203 

France Corse 0.115 0.119 0.121 0.118

(continued)
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Table 1.2 (continued)

Member state Region Year

2018 2019 2020 2021

France Franche-Comté 0.195 0.216 0.207 0.203 

France Guadeloupe 0.035 0.055 0.046 0.033 

France Haute-Normandie 0.326 0.307 0.271 0.277 

France Île-de-France 0.275 0.276 0.257 0.289 

France La Réunion 0.096 0.087 0.091 0.080 

France Languedoc-Roussillon 0.128 0.128 0.136 0.121 

France Limousin 0.093 0.094 0.090 0.085 

France Lorraine 0.203 0.192 0.205 0.215 

France Midi-Pyrénées 0.103 0.109 0.107 0.109 

France Nord-Pas-de-Calais 0.240 0.260 0.262 0.254 

France Pays de la Loire 0.284 0.315 0.280 0.297 

France Picardie 0.274 0.289 0.247 0.270 

France Poitou–Charentes 0.243 0.238 0.248 0.265 

France Provence-Alpes-Côte d’Azur 0.196 0.195 0.196 0.173 

France Rhône-Alpes 0.160 0.163 0.162 0.154 

Germany Baden-Württemberg 0.170 0.174 0.158 0.156 

Germany Bayern 0.158 0.167 0.162 0.174 

Germany Brandenburg 0.756 0.969 0.907 0.954 

Germany Hessen 0.167 0.176 0.164 0.175 

Germany Mecklenburg-Vorpommern 0.700 0.751 0.773 0.928 

Germany Niedersachsen 0.327 0.358 0.328 0.344 

Germany Nordrhein-Westfalen 0.268 0.290 0.268 0.286 

Germany Rheinland-Pfalz 0.193 0.190 0.187 0.191 

Germany Saarland 0.143 0.135 0.141 0.153 

Germany Sachsen 0.744 0.812 0.887 0.772 

Germany Sachsen-Anhalt 0.730 0.763 0.714 0.802 

Germany Schleswig–Holstein/Hamburg 0.311 0.334 0.303 0.343 

Germany Thüringen 1.000 1.000 1.000 1.000 

Greece Ipiros-Peloponissos-Nissi Ioniou 0.003 0.003 0.004 0.004 

Greece Makedonia-Thraki 0.007 0.007 0.009 0.008 

Greece Sterea Ellas-Nissi Egaeou-Kriti 0.002 0.002 0.005 0.005 

Greece Thessalia 0.007 0.008 0.009 0.009 

Hungary Alföld 0.057 0.059 0.069 0.070 

Hungary Dunántúl 0.101 0.107 0.107 0.113 

Hungary Észak-Magyarország 0.049 0.063 0.052 0.055 

Ireland Ireland 0.062 0.060 0.064 0.067 

Italy Abruzzo 0.024 0.024 0.025 0.023

(continued)
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Table 1.2 (continued)

Member state Region Year

2018 2019 2020 2021

Italy Alto Adige 0.081 0.058 0.066 0.056 

Italy Basilicata 0.036 0.036 0.033 0.027 

Italy Calabria 0.007 0.012 0.008 0.014 

Italy Campania 0.038 0.041 0.044 0.038 

Italy Emilia-Romagna 0.099 0.101 0.100 0.095 

Italy Friuli-Venezia Giulia 0.112 0.089 0.079 0.077 

Italy Lazio 0.051 0.057 0.064 0.051 

Italy Liguria 0.040 0.041 0.044 0.046 

Italy Lombardia 0.180 0.166 0.178 0.167 

Italy Marche 0.028 0.026 0.034 0.030 

Italy Molise 0.027 0.026 0.026 0.025 

Italy Piemonte 0.079 0.088 0.095 0.087 

Italy Puglia 0.027 0.030 0.030 0.030 

Italy Sardegna 0.028 0.029 0.035 0.031 

Italy Sicilia 0.023 0.021 0.022 0.020 

Italy Toscana 0.092 0.068 0.067 0.050 

Italy Trentino 0.045 0.039 0.041 0.040 

Italy Umbria 0.034 0.040 0.045 0.037 

Italy Valle d’Aosta 0.066 0.064 0.060 0.054 

Italy Veneto 0.109 0.106 0.114 0.096 

Latvia Latvia 0.050 0.061 0.065 0.057 

Lithuania Lithuania 0.025 0.028 0.036 0.034 

Luxembourg Luxembourg 0.235 0.247 0.235 0.222 

Netherlands The Netherlands 0.578 0.613 0.575 0.570 

Poland Malopolska i Pogórze 0.002 0.003 0.002 0.003 

Poland Mazowsze i Podlasie 0.013 0.015 0.014 0.014 

Poland Pomorze i Mazury 0.039 0.045 0.050 0.053 

Poland Wielkopolska and Slask 0.032 0.033 0.034 0.036 

Portugal Açores e Madeira 0.010 0.011 0.014 0.007 

Portugal Alentejo e Algarve 0.034 0.036 0.019 0.033 

Portugal Norte e Centro 0.010 0.011 0.012 0.009 

Portugal Ribatejo e Oeste 0.027 0.031 0.024 0.026 

Romania Bucuresti-Ilfov 0.054 0.041 0.021 0.014 

Romania Centru 0.006 0.010 0.012 0.012 

Romania Nord-Est 0.007 0.008 0.006 0.011 

Romania Nord-Vest 0.001 0.002 0.003 0.002

(continued)
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Table 1.2 (continued)

Member state Region Year

2018 2019 2020 2021

Romania Sud-Est 0.027 0.027 0.017 0.027 

Romania Sud-Muntenia 0.019 0.019 0.015 0.021 

Romania Sud-Vest-Oltenia 0.000 0.000 0.000 0.000 

Romania Vest 0.016 0.013 0.017 0.016 

Slovakia Slovakia 0.549 0.573 0.604 0.567 

Slovenia Slovenia 0.011 0.014 0.014 0.011 

Spain Andalucía 0.059 0.068 0.061 0.056 

Spain Aragón 0.088 0.087 0.129 0.101 

Spain Asturias 0.039 0.040 0.043 0.040 

Spain Canarias 0.120 0.125 0.128 0.127 

Spain Cantabria 0.043 0.044 0.045 0.046 

Spain Castilla y León 0.092 0.113 0.117 0.106 

Spain Castilla-La Mancha 0.056 0.090 0.097 0.078 

Spain Cataluña 0.104 0.104 0.106 0.101 

Spain Comunidad Valenciana 0.033 0.046 0.061 0.060 

Spain Extremadura 0.065 0.072 0.081 0.071 

Spain Galicia 0.038 0.049 0.052 0.043 

Spain Islas Baleares 0.042 0.037 0.049 0.045 

Spain La Rioja 0.073 0.071 0.110 0.108 

Spain Madrid 0.058 0.055 0.055 0.059 

Spain Murcia 0.078 0.088 0.104 0.096 

Spain Navarra 0.090 0.105 0.103 0.101 

Spain País Vasco 0.072 0.078 0.068 0.066 

Sweden Län i norra Sverige 0.113 0.138 0.119 0.125 

Sweden Skogsoch mellanbygdslän 0.164 0.176 0.166 0.177 

Sweden Slättbyggdslän 0.181 0.214 0.221 0.253 

Note Bold corresponds to the highest values and italic to the lowest
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1.3 Main Results 

For the period 2018–2021 considered, the models with the highest accuracy for the 
training set, to predict the total output of the European Union agricultural framework, 
are presented in Tables 1.3, 1.5, 1.7 and 1.9, respectively, for the years 2018, 2019, 
2020 and 2021. In the four years taken into account in this assessment, there are 
some similarities in the most accurate models. 

The relationships between the observed values and the predicted ones, for each 
year, are those presented in Figs. 1.1, 1.2, 1.3 and 1.4. In general, these figures confirm 
the accuracy of the models considered.

The most important predictors are those revealed in Tables 1.4, 1.6, 1.8 and 1.10. 
The importance presented in these tables ranges among 0 and 1. These findings 
confirm the variability of the farming variables over the years and the difficulty 
of predicting agricultural output based on internal indicators of the farms. In fact, 
some of the most important predictors are different in the years considered. There 
are, however, some predictors that appear in more than one year, bringing relevant 
insights for the several stakeholders.

Table 1.3 Models with the highest accuracy (the lowest relative error) for the agricultural output 
of the European Union farming regions, with data at the farm level, for the year 2018 

Model Build time Correlation No. fields Relative error 

Linear 1 1.000 13 0.000 

Neural net 1 1.000 171 0.001 

C&R tree 1 0.988 31 0.026 

Random forest 1 0.992 178 0.041 

Random trees 1 0.979 178 0.044 
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Fig. 1.1 Relationships between the observed values and the predicted ones for the agricultural 
output of the European Union farming regions, with data at the farm level, for the year 2018
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Fig. 1.2 Relationships between the observed values and the predicted ones for the agricultural 
output of the European Union farming regions, with data at the farm level, for the year 2019
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Fig. 1.3 Relationships between the observed values and the predicted ones for the agricultural 
output of the European Union farming regions, with data at the farm level, for the year 2020
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Fig. 1.4 Relationships between the observed values and the predicted ones for the agricultural 
output of the European Union farming regions, with data at the farm level, for the year 2021
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Table 1.4 Importance of the predictors for the agricultural output of the European Union farming 
regions, with data at the farm level, for the year 2018 

Nodes Importance 

Net worth (e) 0.0072 

Milk yield cattle dairy cows (kg/cow) 0.0073 

Gross farm income (e) 0.0073 

Milk yield (kg/cow) 0.0077 

Yield of maize (q/ha) 0.0078 

Industrial crops (e/farm) 0.0079 

Feed for grazing livestock (e) 0.0087 

Total output livestock and livestock products (e/farm) 0.0090 

Total inputs (e) 0.0120 

Economic size (e’000) 0.0244 

Table 1.5 Models with the highest accuracy (the lowest relative error) for the agricultural output 
of the European Union farming regions, with data at the farm level, for the year 2019 

Model Build time Correlation No. fields Relative error 

Linear 1 1.000 1 0.000 

CHAID 1 1.000 1 0.000 

Neural net 1 1.000 171 0.001 

Random forest 1 0.993 178 0.017 

Random trees 1 0.980 178 0.045 

Table 1.6 Importance of the predictors for the agricultural output of the European Union farming 
regions, with data at the farm level, for the year 2019 

Nodes Importance 

Total assets, opening valuation (e) 0.0074 

Other livestock specific costs (incl. veterinary expenses) (e/farm) 0.0080 

Specific crop costs (e/ha) 0.0083 

Vegetables and flowers (e/farm) 0.0083 

Contract work (e) 0.0087 

Other crop specific costs (e) 0.0095 

Forestry specific costs (e) 0.0097 

Total output livestock and livestock products (e/farm) 0.0116 

Milk yield (kg/cow) 0.0285 

Yield of wheat (q/ha) 0.0456
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Table 1.7 Models with the highest accuracy (the lowest relative error) for the agricultural output 
of the European Union farming regions, with data at the farm level, for the year 2020 

Model Build time Correlation No. fields Relative error 

Linear 1 1.000 11 0.000 

Neural net 1 1.000 169 0.001 

C&R tree 1 0.993 32 0.015 

Random forest 1 0.994 178 0.020 

Random trees 1 0.984 178 0.039 

Table 1.8 Importance of the predictors for the agricultural output of the European Union farming 
regions, with data at the farm level, for the year 2020 

Nodes Importance 

Breeding livestock (e) 0.0070 

Dairy cows (LU) 0.0070 

Total intermediate consumption (e) 0.0070 

Other crop specific costs (e) 0.0071 

Total assets, opening valuation (e) 0.0072 

Other rural development payments (e) 0.0074 

Yield of wheat (q/ha) 0.0074 

Total output crops and crop production (e/farm) 0.0079 

Total output livestock and livestock products (e/farm) 0.0083 

Total inputs (e) 0.0095 

Table 1.9 Models with the highest accuracy (the lowest relative error) for the agricultural output 
of the European Union farming regions, with data at the farm level, for the year 2021 

Model Build time Correlation No. fields Relative error 

CHAID < 1 1.000 3 0.000 

Linear < 1 1.000 12 0.000 

Neural net < 1 1.000 169 0.001 

Random forest < 1 0.994 178 0.012 

Random trees < 1 0.989 178 0.027
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Table 1.10 Importance of 
the predictors for the 
agricultural output of the 
European Union farming 
regions, with data at the farm 
level, for the year 2021 

Nodes Importance 

Forestry and wood processing (e) 0.0077 

Vegetables and flowers (ha) 0.0077 

Seeds and plants home-grown (e) 0.0077 

Intangible assets (e/farm) 0.0078 

Other crop specific costs (e) 0.0083 

Other crop output (e/farm) 0.0083 

Other rural development payments (e) 0.0084 

Vegetables and flowers (e/farm) 0.0091 

Total inputs (e) 0.0104 

Yield of wheat (q/ha) 0.0107 

1.4 Discussion and Conclusions 

Predicting the total output of the European Union farms is fundamental to support 
the decisions of the farmers, the design of policy instruments by the policymakers 
and the implementation of plans adopted by the governments. The new technolo-
gies associated with the digital era may contribute significantly to these frameworks, 
namely the solutions related to the machine learning approaches. From this perspec-
tive, this study aimed to apply the new methodologies from era 4.0 to identify the 
more accurate models and the most important indicators to predict the total output of 
the European Union farms. For that, the procedures proposed by the software IBM 
SPSS Modeler were followed and statistical information from the Farm Accountancy 
Data Network database was considered for the period 2018–2021. The information 
available in this database is microeconomic data for representative farms of each 
country and agricultural region, for example. 

The literature review about these topics highlights the diversity of factors that 
impact agricultural output and the importance of artificial intelligence in dealing 
with these particularities of agriculture, particularly in more vulnerable contexts in 
terms of food security. The new technologies open new opportunities for assessment 
approaches and to collect information through alternative solutions. The current 
challenges of agriculture claim new methodologies that promote a more sustain-
able development, specifically to make compatible the environmental and economic 
dimensions. 

The data analysis shows the difficulties in predicting farming indicators over 
different years, because of the vulnerability of the sector to internal (biological condi-
tions of some crucial production factors, such as plants and animals) and external 
factors (market dynamics and climate, for example) that affect significantly the agri-
cultural output. In any case, the countries with contexts of higher values for the total 
output are, for instance, Belgium, Denmark, Germany, Netherlands and Slovakia. 
Croatia, Greece, Poland and Romania are between the countries with examples of 
lower revenues for the farmers.
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The results, from the application of machine learning approaches to identify the 
most accurate models and the most important predictors, reveal that there are some 
similarities in the findings obtained for the four years considered (2018, 2019, 2020 
and 2021), but there are also, in some circumstances, relevant differences in the 
outcomes identified, claiming for more research in these fields to bring more insights 
for the stakeholders. 

In terms of practical implications, the findings of this study highlight the impor-
tance of the new technologies to predict farming indicators in contexts of some annual 
variability in the variables of the farms. For policy recommendation, it is suggested 
to implement instruments and measures that promote the application of these digital 
approaches in the sector to better support farmers, policymakers and public institu-
tions. For future research, it would be interesting to consider the effect of the time in 
these assessments, with panel data econometric methodologies, for example. 
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Chapter 2 
Applying Artificial Intelligence to Predict 
Crop Output 

Abstract The agricultural output has several parts, and depending on the character-
istics of the farms, one of these parcels is related to crop production. Including in the 
crop output, the sources of these incomes are diverse. In any case, crop production 
has a fundamental role in the sustainability of the farms and society, as a source of 
income for the farmers and food for the population. In this context, it is important 
to understand the main factors that may support the stakeholders in predicting the 
crop output in the European Union farms. The main objective of this research is 
to identify the most adjusted models and the most important variables to predict 
crop income in the European Union context. For that, data from the Farm Accoun-
tancy Data Network were considered, as well as approaches associated with artificial 
intelligence. The main findings provide relevant insights and knowledge, namely for 
farmers and policymakers that may be considered in the processes of agricultural 
planning, management and policy design. 

Keywords Machine learning · European Union databases · Agricultural sector 

2.1 Introduction 

Several studies have considered artificial intelligence for predictions about crop 
output and related dimensions worldwide. Some of them focus on the following 
issues: rainfall prediction in Ethiopian context [1]; organic potato yield estimation 
[2]; predictors of potato yield [3]; increase in agricultural yields [4]; soil proper-
ties analysis in arid regions [5]; greenhouse production with remote control [6]; 
pests classification [7]; diseases identification [8]; environmental impact analysis of 
productions (tomato and cucumber) in greenhouses [9]; plant factory requirements 
[10]; environmental impacts assessment [11]; intelligent greenhouses [12]; decisions 
on water, land and food nexus [13] and energy usage estimation [14]. 

Artificial intelligence allows the implementation of smart farming approaches, 
where the machine and deep learning techniques have their relevance. Machine 
learning methodologies are considered for crop selection and management and deep
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learning technologies are taken into account for crop production prediction [15]. In 
these frameworks of smart farming, the Internet of Things (IoT) systems and Big 
Data are crucial to improve the accuracy of the crop output assessment [16]. Arti-
ficial intelligence and IoT approaches have been used, for instance, to identify fruit 
diseases [17], or fertiliser recommendations [18]. 

The several dimensions associated with artificial intelligence may contribute to a 
more sustainable agricultural sector, following the international deals for greener 
farming production, such as defined by the European Union in the Green Deal 
strategy, for example [19]. The weed management without, or reduced application, of 
herbicides is an illustration of the digital approaches contribute to more sustainable 
agriculture [20]. 

The Climate-Smart Agriculture concept is more a case where the new technologies 
associated with the digital approaches may contribute to improve the efficiency of 
the farms, with possibilities of increasing agricultural production and food security 
in a way compatible with the efforts to preserve the environment [21]. 

The digital transition and other innovative technologies and practices bring new 
potentialities for agriculture [22]. Between these innovations appear, for instance, 
the new approaches related to vertical farming and biotechnology. 

Taking into account these frameworks, this research aims to bring more insights 
into the application of artificial intelligence to predict crop output in the European 
Union farms, considering data from the Farm Accountancy Data Network [23] and 
following the procedures suggested by the software IBM SPSS Modeler [24]. 

2.2 Data Assessment 

If the pandemic had an impact on the farming indicators, the year 2021 was a period 
of some recovery in the dynamics of the European Union farms. This is visible in 
Table 2.1 for the average values, for example, of the crop output [total output crops 
and crop production (e/farm)]. However, the effect of prices on these results should 
be noted. In any case, the aim here is to bring more insights into the dynamics of the 
farms over different years.

The normalised values (considering (xi − xminimum)/(xmaximum − xminimum)) 
presented in Table 2.2 reveal the importance of the output of the crops in the farms 
from Czechia, Denmark, Netherlands, Slovakia and some regions of France and 
Germany. The lowest values for the variable total output crops and crop production 
(e/farm) appear in Ireland and some regions, for example, from Greece, Poland, 
Portugal, Romania and Spain.
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Table 2.1 Growth rate (%) 
results for the crop output of 
the European Union 
countries, with data at the 
farm level, over the period 
2019–2021 

Member state Year 

2020 2021 

Austria 6.233 20.825 

Belgium 8.770 7.098 

Bulgaria − 3.753 45.241 

Croatia 4.228 22.384 

Cyprus − 4.600 6.332 

Czechia 25.992 16.057 

Denmark 16.735 9.338 

Estonia 1.083 5.407 

Finland 2.344 18.294 

France − 4.931 19.622 

Germany 1.175 18.992 

Greece 0.465 17.002 

Hungary 9.093 18.396 

Ireland − 6.250 23.296 

Italy 2.503 7.995 

Latvia 13.057 − 0.229 
Lithuania 20.948 4.772 

Luxembourg 14.343 15.570 

Netherlands 3.282 6.897 

Poland 4.466 28.602 

Portugal − 13.139 16.017 

Romania − 12.824 42.433 

Slovakia 0.428 22.628 

Slovenia − 2.164 − 0.052 
Spain 5.096 7.413 

Sweden 5.151 35.072 

Average 3.759 16.746 

Note Bold corresponds to the highest values and italic to the lowest
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Table 2.2 Normalised values for the crop output of the European Union farming regions, with data 
at the farm level, over the period 2019–2021 

Member state Region Year 

2019 2020 2021 

Austria Austria 0.056 0.056 0.051 

Belgium Vlaanderen 0.295 0.308 0.243 

Belgium Wallonie 0.171 0.174 0.138 

Bulgaria Severen tsentralen 0.198 0.174 0.187 

Bulgaria Severoiztochen 0.217 0.148 0.214 

Bulgaria Severozapaden 0.206 0.235 0.217 

Bulgaria Yugoiztochen 0.112 0.094 0.120 

Bulgaria Yugozapaden 0.043 0.043 0.031 

Bulgaria Yuzhen tsentralen 0.048 0.051 0.042 

Croatia Jadranska Hrvatska 0.028 0.024 0.020 

Croatia Kontinentalna Hrvatska 0.029 0.030 0.029 

Cyprus Cyprus 0.034 0.030 0.023 

Czechia Czechia 0.362 0.434 0.373 

Denmark Denmark 0.437 0.484 0.392 

Estonia Estonia 0.171 0.164 0.127 

Finland Etelä-Suomi 0.142 0.138 0.118 

Finland Pohjanmaa 0.157 0.144 0.139 

Finland Pohjois-Suomi 0.123 0.134 0.109 

Finland Sisä-Suomi 0.105 0.101 0.090 

France Alsace 0.286 0.260 0.196 

France Aquitaine 0.274 0.234 0.192 

France Auvergne 0.049 0.042 0.043 

France Basse-Normandie 0.129 0.112 0.115 

France Bourgogne 0.342 0.327 0.309 

France Bretagne 0.191 0.180 0.155 

France Centre 0.352 0.316 0.325 

France Champagne-Ardenne 0.416 0.339 0.301 

France Corse 0.208 0.183 0.157 

France Franche-Comté 0.132 0.108 0.095 

France Guadeloupe 0.103 0.093 0.062 

France Haute-Normandie 0.452 0.358 0.337 

France Île-de-France 0.566 0.499 0.476 

France La Réunion 0.166 0.159 0.118 

France Languedoc-Roussillon 0.269 0.277 0.201 

France Limousin 0.045 0.033 0.029

(continued)
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Table 2.2 (continued)

Member state Region Year

2019 2020 2021

France Lorraine 0.176 0.164 0.171 

France Midi-Pyrénées 0.147 0.130 0.121 

France Nord-Pas-de-Calais 0.345 0.324 0.271 

France Pays de la Loire 0.237 0.188 0.190 

France Picardie 0.495 0.383 0.365 

France Poitou–Charentes 0.371 0.376 0.348 

France Provence-Alpes-Côte d’Azur 0.405 0.397 0.287 

France Rhône-Alpes 0.190 0.182 0.150 

Germany Baden-Württemberg 0.178 0.147 0.125 

Germany Bayern 0.134 0.128 0.112 

Germany Brandenburg 0.952 0.946 0.815 

Germany Hessen 0.161 0.148 0.129 

Germany Mecklenburg-Vorpommern 1.000 1.000 1.000 

Germany Niedersachsen 0.247 0.238 0.199 

Germany Nordrhein-Westfalen 0.224 0.226 0.217 

Germany Rheinland-Pfalz 0.320 0.304 0.248 

Germany Saarland 0.120 0.118 0.105 

Germany Sachsen 0.674 0.725 0.571 

Germany Sachsen-Anhalt 0.807 0.813 0.782 

Germany Schleswig–Holstein/Hamburg 0.307 0.238 0.225 

Germany Thüringen 0.962 0.991 0.873 

Greece Ipiros-Peloponissos-Nissi Ioniou 0.026 0.022 0.020 

Greece Makedonia-Thraki 0.037 0.034 0.029 

Greece Sterea Ellas-Nissi Egaeou-Kriti 0.022 0.023 0.021 

Greece Thessalia 0.031 0.029 0.025 

Hungary Alföld 0.097 0.108 0.092 

Hungary Dunántúl 0.136 0.132 0.120 

Hungary Észak-Magyarország 0.122 0.097 0.095 

Ireland Ireland 0.022 0.019 0.018 

Italy Abruzzo 0.066 0.062 0.051 

Italy Alto Adige 0.087 0.103 0.072 

Italy Basilicata 0.082 0.071 0.052 

Italy Calabria 0.054 0.040 0.047 

Italy Campania 0.081 0.082 0.062

(continued)
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Table 2.2 (continued)

Member state Region Year

2019 2020 2021

Italy Emilia-Romagna 0.152 0.141 0.114 

Italy Friuli-Venezia Giulia 0.142 0.116 0.105 

Italy Lazio 0.102 0.108 0.072 

Italy Liguria 0.112 0.107 0.094 

Italy Lombardia 0.124 0.134 0.116 

Italy Marche 0.071 0.080 0.061 

Italy Molise 0.054 0.050 0.045 

Italy Piemonte 0.138 0.138 0.111 

Italy Puglia 0.084 0.076 0.063 

Italy Sardegna 0.043 0.048 0.035 

Italy Sicilia 0.065 0.062 0.051 

Italy Toscana 0.131 0.135 0.084 

Italy Trentino 0.093 0.094 0.078 

Italy Umbria 0.079 0.075 0.055 

Italy Valle d’Aosta 0.067 0.059 0.046 

Italy Veneto 0.164 0.153 0.122 

Latvia Latvia 0.085 0.092 0.067 

Lithuania Lithuania 0.061 0.071 0.055 

Luxembourg Luxembourg 0.086 0.094 0.080 

Netherlands The Netherlands 0.603 0.590 0.467 

Poland Malopolska i Pogórze 0.022 0.019 0.021 

Poland Mazowsze i Podlasie 0.021 0.021 0.021 

Poland Pomorze i Mazury 0.062 0.061 0.058 

Poland Wielkopolska and Slask 0.050 0.052 0.049 

Portugal Açores e Madeira 0.012 0.014 0.008 

Portugal Alentejo e Algarve 0.083 0.043 0.054 

Portugal Norte e Centro 0.030 0.030 0.022 

Portugal Ribatejo e Oeste 0.080 0.071 0.060 

Romania Bucuresti-Ilfov 0.114 0.062 0.045 

Romania Centru 0.027 0.025 0.025 

Romania Nord-Est 0.032 0.024 0.032 

Romania Nord-Vest 0.021 0.021 0.017 

Romania Sud-Est 0.068 0.041 0.059 

Romania Sud-Muntenia 0.056 0.040 0.049

(continued)
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Table 2.2 (continued)

Member state Region Year

2019 2020 2021

Romania Sud-Vest-Oltenia 0.021 0.014 0.017 

Romania Vest 0.043 0.047 0.040 

Slovakia Slovakia 0.690 0.657 0.597 

Slovenia Slovenia 0.027 0.024 0.017 

Spain Andalucía 0.159 0.137 0.107 

Spain Aragón 0.125 0.155 0.126 

Spain Asturias 0.021 0.018 0.017 

Spain Canarias 0.241 0.222 0.182 

Spain Cantabria 0.000 0.000 0.000 

Spain Castilla y León 0.091 0.100 0.073 

Spain Castilla-La Mancha 0.103 0.105 0.088 

Spain Cataluña 0.127 0.127 0.102 

Spain Comunidad Valenciana 0.082 0.101 0.085 

Spain Extremadura 0.075 0.077 0.057 

Spain Galicia 0.025 0.020 0.017 

Spain Islas Baleares 0.066 0.080 0.061 

Spain La Rioja 0.161 0.237 0.193 

Spain Madrid 0.054 0.052 0.053 

Spain Murcia 0.191 0.217 0.167 

Spain Navarra 0.123 0.113 0.099 

Spain País Vasco 0.096 0.080 0.067 

Sweden Län i norra Sverige 0.105 0.078 0.089 

Sweden Skogsoch mellanbygdslän 0.120 0.113 0.109 

Sweden Slättbyggdslän 0.270 0.275 0.272 

Note Bold corresponds to the highest values and italic to the lowest
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2.3 Main Findings 

The findings presented in Tables 2.3, 2.5 and 2.7 reveal that the models with the 
highest accuracy for the training set are, with minor differences, the same for the 
three years taken into account (2019, 2020 and 2021). The linear, regression, CHAID, 
random forest, neural net and random trees are the most accurate models. 

Table 2.3 Models with the highest accuracy (the lowest relative error) for the crop output of the 
European Union farming regions, with data at the farm level, for the year 2019 

Model Build time Correlation No. fields Relative error 

Linear 1 1.000 1 0.000 

CHAID 1 1.000 1 0.000 

Neural net 1 0.998 171 0.004 

Random forest 1 0.985 178 0.030 

Random trees 1 0.969 178 0.066 

Table 2.4 Importance of the predictors for the crop output of the European Union farming regions, 
with data at the farm level, for the year 2019 

Nodes Importance 

Farmhouse consumption (e) 0.0072 

Farm net value added (e) 0.0072 

Gross farm income (e) 0.0074 

Vegetables and flowers (ha) 0.0078 

Forestry and wood processing (e) 0.0083 

Specific crop costs (e/ha) 0.0085 

Seeds and plants (e) 0.0092 

Vegetables and flowers (e/farm) 0.0093 

Milk yield cattle dairy cows (kg/cow) 0.0328 

Yield of wheat (q/ha) 0.0555 

Table 2.5 Models with the highest accuracy (the lowest relative error) for the crop output of the 
European Union farming regions, with data at the farm level, for the year 2020 

Model Build time Correlation No. fields Relative error 

CHAID < 1 1.000 3 0.000 

Regression < 1 1.000 60 0.000 

Linear < 1 1.000 14 0.000 

Neural net < 1 1.000 169 0.001 

Random trees < 1 0.981 178 0.047
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Table 2.6 Importance of the predictors for the crop output of the European Union farming regions, 
with data at the farm level, for the year 2020 

Nodes Importance 

Forestry and wood processing (e) 0.0087 

Total crops output (e/ha) 0.0088 

Specific crop costs (e/ha) 0.0092 

Pigs (LU) 0.0099 

Unpaid labour input (hrs) 0.0108 

Forest land including standing timber (e/farm) 0.0115 

LFA subsidies (e) 0.0117 

Vineyards (ha) 0.0137 

Intangible assets (e/farm) 0.0144 

Energy crops (ha) 0.0152 

Table 2.7 Models with the highest accuracy (the lowest relative error) for the crop output of the 
European Union farming regions, with data at the farm level, for the year 2021 

Model Build time Correlation No. fields Relative error 

CHAID < 1 1.000 3 0.000 

Linear < 1 1.000 18 0.000 

Neural net < 1 1.000 169 0.001 

Random forest < 1 0.987 178 0.027 

Random trees < 1 0.985 178 0.034 

Table 2.8 Importance of the 
predictors for the crop output 
of the European Union 
farming regions, with data at 
the farm level, for the year 
2021 

Nodes Importance 

Vegetables and flowers (ha) 0.0064 

Labour input (h) 0.0064 

Poultry (LU) 0.0064 

Other output (e/farm) 0.0065 

Agritourism (e) 0.0068 

Unpaid labour input (AWU) 0.0073 

Cereals (ha) 0.0082 

Yield of wheat (q/ha) 0.0111 

Fertiliser N (q) 0.0156 

Seeds and plants (e) 0.0248
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The accuracy of these models, for the total output crops and crop production (e/ 
farm), is highlighted in the relationships among the observed values and the predicted 
ones shown in Figs. 2.1, 2.2 and 2.3.

In general, the most important predictors are different for the three years consid-
ered (Tables 2.4, 2.6 and 2.8), confirming the challenges of predicting farming indi-
cators with internal variables. Nonetheless, the specific crop costs and variables asso-
ciated with crop productivity may be taken into account to support the stakeholders 
in the total output crops and crop production (e/farm) prediction. 

2.4 Discussion and Conclusions 

Crop production is crucial for the sustainability of the agricultural sector and plays a 
fundamental role in food security worldwide. In this way, the prediction of the crop 
output is important, namely in the current context of increased demand for food, 
because of the growth of the world’s inhabitants. This prediction is also essential to 
support the design and implementation of adjusted practices, namely by the national 
and international decision-makers and, in this perspective, to better deal with the 
environmental problems that challenge presently the farming sector. Considering 
these motivations, this research intended to suggest models with high accuracy and 
important variables to predict the crop output in the European Union countries. 
To achieve these objectives, microeconomic data, at the farm level, were considered 
from the Farm Accountancy Data Network for the period 2019–2021. This statistical 
information was analysed through artificial intelligence approaches, following the 
procedures proposed by the software IBM SPSS Modeler. 

The consideration of artificial intelligence to predict crop output worldwide 
is already highlighted in scientific documents, namely for yield estimations and 
assessments of variables that may affect the crop production, such as soil, water, 
energy, fertilisers, diseases and environmental changes. The Climate-Smart Agricul-
ture concept is an example recognised internationally where the digital approaches 
may, indeed, bring new opportunities for the agricultural sector and the world context 
related to agriculture. 

The data analysis reveals the impacts of the pandemic on the dynamics of the 
European Union farming sector, with some recovery in 2021. In any case, the crop 
productions have importance in countries such as Czechia, Denmark, Netherlands, 
Slovakia, France and Germany and less pertinence in frameworks from Ireland, 
Greece, Poland, Portugal, Romania and Spain, for example. 

The findings obtained with the application of artificial intelligence approaches 
show the importance of models such as linear, regression, CHAID, random forest, 
neural net and random trees to predict the crop output in the European Union contexts. 
These results highlight the relevance of predictors such as specific crop costs and 
variables associated with crop productivity. 

In terms of practical implications, predictive models of the crop output such as 
linear, regression, CHAID, random forest, neural net and random trees may provide
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Fig. 2.1 Relationships between the observed values and the predicted ones for the crop output of 
the European Union farming regions, with data at the farm level, for the year 2019



30 2 Applying Artificial Intelligence to Predict Crop Output

Fig. 2.2 Relationships between the observed values and the predicted ones for the crop output of 
the European Union farming regions, with data at the farm level, for the year 2020
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Fig. 2.3 Relationships between the observed values and the predicted ones for the crop output of 
the European Union farming regions, with data at the farm level, for the year 2021
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relevant insights for the stakeholders related to the European Union contexts. Specif-
ically, when variables associated with specific costs and crop productivity will be 
considered. For policy recommendations, it is suggested to identify practices and 
approaches that allow improvement of the crop output and productivity with fewer 
resources. For future research, it could be interesting to consider other databases and 
other approaches to compare with the findings identified in this research. 

Acknowledgements This work is funded by National Funds through the FCT—Foundation for 
Science and Technology, I.P., within the scope of the project Refª UIDB/00681/2020 (https:// 
doi.org/https://doi.org/10.54499/UIDP/00681/2020). This research is also funded by the Enovo 
company. This study was carried out under the international project “Agriculture 4.0: Current 
reality, potentialities and policy proposals” (CERNAS-IPV/2022/008). Furthermore, we would like 
to thank the CERNAS Research Centre and the Polytechnic Institute of Viseu for their support. This 
work is too co-financed by the PRR—Plano de Recuperação e Resiliência (República Portuguesa) 
and the European Next Generation EU Funds (https://recuperarportugal.gov.pt) through application 
PRR-C05-i03-I-000030—“Carb2Soil—Reforçar a Complementaridade entre agricultura e pecuária 
para aumentar a fertilidade dos solos e a sua capacidade de sequestro de carbono”. 

References 

1. W.T. Abebe, D. Endalie, Artificial intelligence models for prediction of monthly rainfall without 
climatic data for meteorological stations in Ethiopia. J. Big Data 10, 2 (2023) 

2. K. Abrougui, K. Gabsi, B. Mercatoris, C. Khemis, R. Amami, S. Chehaibi, Prediction of organic 
potato yield using tillage systems and soil properties by artificial neural network (ANN) and 
multiple linear regressions (MLR). Soil Tillage Res. 190, 202 (2019) 

3. Y. Lin, S. Li, S. Duan, Y. Ye, B. Li, G. Li, D. Lyv, L. Jin, C. Bian, J. Liu, Methodological 
evolution of potato yield prediction: a comprehensive review. Front. Plant Sci. 14, 1214006 
(2023) 

4. K. Ennouri, S. Smaoui, Y. Gharbi, M. Cheffi, O.B. Braiek, M. Ennouri, M.A. Triki, Usage of 
artificial intelligence and remote sensing as efficient devices to increase agricultural system 
yields. J. Food Qual. 2021, 6242288 (2021) 

5. M.A. El-Sayed, A.H. Abd-Elazem, A.R.A. Moursy, E.S. Mohamed, D.E. Kucher, M.E. Fadl, 
Integration vis-NIR spectroscopy and artificial intelligence to predict some soil parameters in 
arid region: a case study of Wadi Elkobaneyya, South Egypt. Agron. Basel 13, 935 (2023) 

6. S. Hemming, F. de Zwart, A. Elings, I. Righini, A. Petropoulou, Remote control of green-
house vegetable production with artificial intelligence greenhouse climate, irrigation, and crop 
production. Sensors 19, 1807 (2019) 

7. M.E. Karar, F. Alsunaydi, S. Albusaymi, S. Alotaibi, A new mobile application of agricultural 
pests recognition using deep learning in cloud computing system. Alex. Eng. J. 60, 4423 (2021) 

8. D.-E.A. Sanchez, A.A. Rodriguez, I.F.B. Martinez, C.S. Gonzalez, C.B. Garcia, Use of trained 
convolutional neural networks for analysis of symptoms caused by botrytis Fabae Sard. Rev. 
Cienc. Agric. 40, e1198 (2023) 

9. B. Khoshnevisan, S. Rafiee, M. Omid, H. Mousazadeh, S. Clark, Environmental impact assess-
ment of tomato and cucumber cultivation in greenhouses using life cycle assessment and 
adaptive neuro-fuzzy inference system. J. Clean. Prod. 73, 183 (2014) 

10. Y. Liu, S. Mousavi, Z. Pang, Z. Ni, M. Karlsson, S. Gong, Plant factory: a new playground of 
industrial communication and computing. Sensors 22, 147 (2022) 

11. A. Nabavi-Pelesaraei, S. Rafiee, S.S. Mohtasebi, H. Hosseinzadeh-Bandbafha, K. Chau, Inte-
gration of artificial intelligence methods and life cycle assessment to predict energy output and 
environmental impacts of paddy production. Sci. Total. Environ. 631–632, 1279 (2018)

https://doi.org/
https://doi.org/
https://doi.org/10.54499/UIDP/00681/2020
https://recuperarportugal.gov.pt


References 33

12. A.S. Petropoulou, B. van Marrewijk, F. de Zwart, A. Elings, M. Bijlaard, T. van Daalen, G. 
Jansen, S. Hemming, Lettuce production in intelligent greenhouses-3D imaging and computer 
vision for plant spacing decisions. Sensors 23, 2929 (2023) 

13. W. Shao, Y. Ding, J. Wen, P. Zhu, L. Ou, Optimal decision-making in the water, land and food 
nexus using artificial intelligence and extreme machine learning. Water Supply 23, 4166 (2023) 

14. S. Venkatesan, J. Lim, H. Ko, Y. Cho, A machine learning based model for energy usage peak 
prediction in smart farms. Electronics 11, 218 (2022) 

15. Y. Akkem, S.K. Biswas, A. Varanasi, Smart farming using artificial intelligence: a review. Eng. 
Appl. Artif. Intell. 120, 105899 (2023) 

16. T. Alahmad, M. Nemenyi, A. Nyeki, Applying IoT sensors and big data to improve precision 
crop production: a review. Agron. Basel 13, 2603 (2023) 

17. S.K. Kabilesh, D. Mohanapriya, P. Suseendhar, J. Indra, T. Gunasekar, N. Senthilvel, Research 
on artificial intelligence based fruit disease identification system (AI-FDIS) with the internet 
of things (IoT). J. Intell. Fuzzy Syst. 44, 6593 (2023) 

18. B. Swaminathan, S. Palani, S. Vairavasundaram, K. Kotecha, V. Kumar, IoT-driven artificial 
intelligence technique for fertilizer recommendation model. IEEE Consum. Electron. Mag. 12, 
109 (2023) 

19. V. Balaska, Z. Adamidou, Z. Vryzas, A. Gasteratos, Sustainable crop protection via robotics 
and artificial intelligence solutions. Machines 11, 774 (2023) 

20. D.J. Bloomer, K.C. Harrington, H. Ghanizadeh, T.K. James, Robots and shocks: emerging 
non-herbicide weed control options for vegetable and arable cropping. N. Z. J. Agric. Res. 67, 
81–103 (2023) 

21. V.J.P.D. Martinho, R.P.F. Guine, Integrated-smart agriculture: contexts and assumptions for a 
broader concept. Agron. Basel 11, 1568 (2021) 

22. K. Hardy, T. Orridge, X. Heynes, S. Gunasena, S. Grundy, C. Lu, Farming the future: 
contemporary innovations enhancing sustainability in the agri-sector. Ann. Plant Rev. 4, 263 
(2021) 

23. FADN, Several Statistics. https://agriculture.ec.europa.eu/data-and-analysis/farm-structures-
and-economics/fadn_en 

24. IBM SPSS Modeler, SPSS Modeler: Overview. https://www.ibm.com/products/spss-modeler

https://agriculture.ec.europa.eu/data-and-analysis/farm-structures-and-economics/fadn_en
https://agriculture.ec.europa.eu/data-and-analysis/farm-structures-and-economics/fadn_en
https://www.ibm.com/products/spss-modeler


Chapter 3 
Predictive Machine Learning Models 
for Livestock Output 

Abstract Agricultural planning always had an important role in the performance 
of agriculture, but in our days this component of agricultural management seems to 
have an increased responsibility, because of the challenges imposed by the current 
contexts, specifically those related to the sustainability of the associated activities and 
processes. In fact, currently, it is important to reduce the environmental impacts of the 
farming dynamics and raise production to deal with the increased demand for food 
worldwide. The livestock activities are particularly complex and call for adjusted 
plans and management decisions. The new technologies associated with the digital 
transition may bring relevant added value, namely to predict outputs. This chapter 
aims to suggest models and predictors to support the farmers and other stakeholders 
to better design policies and farm plans. Statistical information from the European 
Union databases was considered. The results found are useful tools to improve the 
performance of the European Union farms, particularly those specialised in livestock 
production. 

Keywords Accuracy · Artificial intelligence · Characteristics of farms in the 
European Union 

3.1 Introduction 

In the current contexts of opportunities open by the digital transition, namely to 
deal with Big Data and complex frameworks, the consideration of new approaches 
for agricultural planning and management has spread worldwide with enormous 
potentialities to improve the dynamics and performance of the farms, with benefits 
for the farmers (more income) and the populations (more food security). 

For example, to forecast beef carcass weight, in the Brazilian context, the 
following approaches were considered [1]: generalised linear regression; random 
forests and multilayer neural networks. Of referring, in addition, the use of the 
following methods: multiple linear regression and random forest were used to predict
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the herbage mass [2]; network-based fuzzy inference system and multilayer percep-
tron to estimate food production [3]; artificial neural network model to diagnose the 
incidence of intrauterine growth restriction in sheep [4]; random forest classifier to 
characterise of faecal microbiota in livestock activities [5]; random forest, support 
vector machine and naïve bayes classifier to estimate beef cattle grazing behaviours 
[6]. New methodologies were also considered to analyse the antimicrobial resistance 
in Chinese chicken farms [7]. 

For the application of new techniques, the collection of information is crucial 
and here the data obtained through images obtained with unmanned aerial vehicles 
(UAV) [8], or from other sources (Global Navigation Satellite System [9]; 3D digital 
images [10]; Sentinel-1 and Sentinel-2 [11]), may bring relevant added value for the 
assessments. 

Applications of machine learning methodologies were still considered in other 
contexts related direct, or indirectly, with the livestock activities, such as the 
following: mapping the wooded vegetation in the Australian arid land [12]; iden-
tification of vegetation modifications and environmental impacts on rangeland farms 
[13]; analysing grazing and rumination periods using acoustic information in grazing 
cattle [14, 15]; determination of cattle and poultry manure properties [16]; land use 
estimates for insect meat activities [17]; classification of beef cattle producing munic-
ipalities [18]; prediction of beef cattle production [19]; prediction nitrogen fertili-
sation impacts on plant productivity [20]; classifying variables related to produc-
tivity in a silvopastoral context [21]; forecast temperature and humidity inside venti-
lated duck systems [22]; livestock performance prediction [23]; influenza virus anal-
ysis in domestic pigs [24]; identification of liquid manure use in Carolina [25] and 
sustainable animals characterisation [26]. 

The different perspectives presented before suggest the pertinence of identifying 
models with better accuracy to predict the livestock output in the European Union 
farms, considering statistical information from European databases with data at the 
farm level [27] and approaches related to the new technologies associated with the 
digital transition [28]. 

3.2 Data Evaluation 

The data considered in this study were found on the Farm Accountancy Data 
Network database for the European Union agricultural regions and member states. 
The microeconomic statistical information available in this database is presented for 
the representative farms of these regions/countries. 

Lithuania, Germany, Sweden, Ireland, Slovenia, Greece and Portugal are some of 
the European Union countries with the highest growth rates for livestock output [total 
output livestock and livestock products (e/farm)] between 2020 and 2021 (Fig. 3.1).
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Fig. 3.1 Growth rate (%) results for the livestock output of the European Union countries, with 
data at the farm level, over the period 2020–2021 

Table 3.1, with the normalised values ((xi − xminimum)/(xmaximum − xminimum)), 
confirms the importance of the agricultural sector in countries, such as Denmark, 
Netherlands, Germany and France, for example. Greece, Italy, Poland, Portugal and 
Romania have the agricultural regions where the farms have the lowest values for 
the total output livestock and livestock products (e/farm). 

Table 3.1 Normalised values for the livestock output of the European Union farming regions, with 
data at the farm level, over the period 2020–2021 

Member state Region Year 

2020 2021 

Austria Austria 0.135 0.132 

Belgium Vlaanderen 0.503 0.543 

Belgium Wallonie 0.283 0.290 

Bulgaria Severen tsentralen 0.048 0.070 

Bulgaria Severoiztochen 0.085 0.097 

Bulgaria Severozapaden 0.038 0.044 

Bulgaria Yugoiztochen 0.072 0.065 

Bulgaria Yugozapaden 0.030 0.024 

Bulgaria Yuzhen tsentralen 0.031 0.031 

Croatia Jadranska Hrvatska 0.014 0.013 

Croatia Kontinentalna Hrvatska 0.023 0.023 

Cyprus Cyprus 0.088 0.080

(continued)
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Table 3.1 (continued)

Member state Region Year

2020 2021

Czechia Czechia 0.367 0.376 

Denmark Denmark 0.961 0.916 

Estonia Estonia 0.145 0.146 

Finland Etelä-Suomi 0.112 0.113 

Finland Pohjanmaa 0.257 0.244 

Finland Pohjois-Suomi 0.298 0.296 

Finland Sisä-Suomi 0.253 0.231 

France Alsace 0.120 0.119 

France Aquitaine 0.142 0.140 

France Auvergne 0.243 0.246 

France Basse-Normandie 0.482 0.512 

France Bourgogne 0.146 0.159 

France Bretagne 0.627 0.630 

France Centre 0.109 0.111 

France Champagne-Ardenne 0.077 0.084 

France Corse 0.105 0.093 

France Franche-Comté 0.430 0.442 

France Guadeloupe 0.030 0.025 

France Haute-Normandie 0.230 0.206 

France Île-de-France 0.030 0.030 

France La Réunion 0.067 0.069 

France Languedoc-Roussillon 0.026 0.027 

France Limousin 0.220 0.223 

France Lorraine 0.329 0.319 

France Midi-Pyrénées 0.135 0.134 

France Nord-Pas-de-Calais 0.289 0.283 

France Pays de la Loire 0.514 0.542 

France Picardie 0.148 0.144 

France Poitou–Charentes 0.177 0.185 

France Provence-Alpes-Côte d’Azur 0.021 0.023 

France Rhône-Alpes 0.207 0.206 

Germany Baden-Württemberg 0.224 0.238 

Germany Bayern 0.256 0.288 

Germany Brandenburg 0.872 1.000 

Germany Hessen 0.243 0.285

(continued)
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Table 3.1 (continued)

Member state Region Year

2020 2021

Germany Mecklenburg-Vorpommern 0.631 0.843 

Germany Niedersachsen 0.545 0.624 

Germany Nordrhein-Westfalen 0.405 0.431 

Germany Rheinland-Pfalz 0.109 0.128 

Germany Saarland 0.212 0.254 

Germany Sachsen 1.000 0.960 

Germany Sachsen-Anhalt 0.628 0.726 

Germany Schleswig–Holstein/Hamburg 0.492 0.597 

Germany Thüringen 0.897 0.918 

Greece Ipiros-Peloponissos-Nissi Ioniou 0.012 0.014 

Greece Makedonia-Thraki 0.011 0.012 

Greece Sterea Ellas-Nissi Egaeou-Kriti 0.014 0.016 

Greece Thessalia 0.017 0.022 

Hungary Alföld 0.047 0.046 

Hungary Dunántúl 0.083 0.075 

Hungary Észak-Magyarország 0.038 0.031 

Ireland Ireland 0.174 0.193 

Italy Abruzzo 0.017 0.016 

Italy Alto Adige 0.056 0.054 

Italy Basilicata 0.023 0.021 

Italy Calabria 0.000 0.000 

Italy Campania 0.041 0.041 

Italy Emilia-Romagna 0.108 0.109 

Italy Friuli-Venezia Giulia 0.060 0.058 

Italy Lazio 0.042 0.040 

Italy Liguria 0.005 0.004 

Italy Lombardia 0.305 0.287 

Italy Marche 0.012 0.009 

Italy Molise 0.028 0.027 

Italy Piemonte 0.098 0.088 

Italy Puglia 0.010 0.012 

Italy Sardegna 0.062 0.067 

Italy Sicilia 0.007 0.006 

Italy Toscana 0.014 0.014 

Italy Trentino 0.019 0.020 

Italy Umbria 0.034 0.038 

Italy Valle d’Aosta 0.107 0.106

(continued)
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Table 3.1 (continued)

Member state Region Year

2020 2021

Italy Veneto 0.107 0.075 

Latvia Latvia 0.068 0.072 

Lithuania Lithuania 0.032 0.039 

Luxembourg Luxembourg 0.465 0.470 

Netherlands The Netherlands 0.673 0.714 

Poland Malopolska i Pogórze 0.012 0.011 

Poland Mazowsze i Podlasie 0.040 0.041 

Poland Pomorze i Mazury 0.081 0.089 

Poland Wielkopolska and Slask 0.054 0.058 

Portugal Açores e Madeira 0.047 0.043 

Portugal Alentejo e Algarve 0.020 0.024 

Portugal Norte e Centro 0.020 0.022 

Portugal Ribatejo e Oeste 0.000 0.002 

Romania Bucuresti-Ilfov 0.008 0.003 

Romania Centru 0.032 0.032 

Romania Nord-Est 0.016 0.016 

Romania Nord-Vest 0.013 0.016 

Romania Sud-Est 0.022 0.017 

Romania Sud-Muntenia 0.019 0.016 

Romania Sud-Vest-Oltenia 0.011 0.008 

Romania Vest 0.018 0.019 

Slovakia Slovakia 0.485 0.383 

Slovenia Slovenia 0.023 0.026 

Spain Andalucía 0.019 0.020 

Spain Aragón 0.164 0.108 

Spain Asturias 0.118 0.121 

Spain Canarias 0.091 0.096 

Spain Cantabria 0.150 0.165 

Spain Castilla y León 0.216 0.218 

Spain Castilla-La Mancha 0.157 0.114 

Spain Cataluña 0.141 0.143 

Spain Comunidad Valenciana 0.065 0.069 

Spain Extremadura 0.149 0.144

(continued)
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Table 3.1 (continued)

Member state Region Year

2020 2021

Spain Galicia 0.142 0.132 

Spain Islas Baleares 0.053 0.059 

Spain La Rioja 0.025 0.025 

Spain Madrid 0.112 0.118 

Spain Murcia 0.034 0.036 

Spain Navarra 0.151 0.151 

Spain País Vasco 0.100 0.106 

Sweden Län i norra Sverige 0.170 0.195 

Sweden Skogsoch mellanbygdslän 0.271 0.309 

Sweden Slättbyggdslän 0.204 0.229 

Note Bold corresponds to the highest values and italic to the lowest 

3.3 Results Obtained 

Tables 3.2 and 3.4 reveal that the most accurate models (for the training set) to 
predict the total output livestock and livestock products (e/farm) are the following: 
CHAID, linear, neural net, random trees and C&R tree. Figures 3.2 and 3.3, for  
the relationships between the observed values and the predicted ones, confirm the 
relevant accuracy of these models. 

The number of livestock units and some of the costs associated with the live-
stock activity may be important predictors of the total output livestock and livestock 
products (e/farm). This is highlighted by the results found in Tables 3.3 and 3.5.

Table 3.2 Models with the highest accuracy (the lowest relative error) for the livestock output of 
the European Union farming regions, with data at the farm level, for the year 2020 

Model Build time Correlation No. fields Relative error 

CHAID 1 1.000 2 0.000 

Linear 1 1.000 4 0.000 

Neural net 1 1.000 169 0.001 

Random trees 1 0.979 178 0.043 

C&R tree 1 0.934 39 0.129
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Fig. 3.2 Relationships between the observed values and the predicted ones for the livestock output 
of the European Union farming regions, with data at the farm level, for the year 2020
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Fig. 3.3 Relationships between the observed values and the predicted ones for the livestock output 
of the European Union farming regions, with data at the farm level, for the year 2021
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Table 3.3 Importance of the predictors for the livestock output of the European Union farming 
regions, with data at the farm level, for the year 2020 

Nodes Importance 

Yield of maize (q/ha) 0.0071 

Cattle dairy cows (LU) 0.0075 

Cows’ milk and milk products (e/farm) 0.0076 

Dairy cows (LU) 0.0079 

Veterinary expenses (e/farm) 0.0080 

Breeding livestock (e) 0.0083 

Total specific costs (e) 0.0085 

Total inputs (e) 0.0086 

Total livestock units (LU) 0.0370 

Other livestock specific costs (incl. veterinary expenses) (e/farm) 0.0382 

Table 3.4 Models with the highest accuracy (the lowest relative error) for the livestock output of 
the European Union farming regions, with data at the farm level, for the year 2021 

Model Build time Correlation No. fields Relative error 

CHAID < 1 1.000 4 0.000 

Linear < 1 1.000 3 0.000 

Neural net < 1 1.000 169 0.001 

Random trees < 1 0.989 178 0.027 

C&R trees < 1 0.951 16 0.100 

Table 3.5 Importance of the predictors for the livestock output of the European Union farming 
regions, with data at the farm level, for the year 2021 

Nodes Importance 

Dairy cows (LU) 0.0081 

Specific crop costs (e/ha) 0.0086 

Forestry and wood processing (e) 0.0089 

Other crop output (e/farm) 0.0095 

(Vegetables and flowers (ha) 0.0096 

Non-breeding livestock (e) 0.0110 

Total inputs (e) 0.0117 

Veterinary expenses (e/farm) 0.0143 

Total livestock units (LU) 0.0245 

Other livestock specific costs (incl. veterinary expenses) (e/farm) 0.0271
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3.4 Discussion and Conclusions 

The livestock activities have an economic relevance for farmers specialised in these 
productions and contribute to food security worldwide. Nonetheless, the relevance 
of these activities for world sustainability is not consensual between researchers, 
because of their impacts on the environmental conditions and their implications, in 
certain circumstances, on human health. In any case, the prediction of the livestock 
output may bring relevant contributions for both of these frameworks, in some situ-
ations to support the mitigation of negative impacts and in other contexts to improve 
the revenues of the involved farmers in these specific productions. In this scenario, 
this chapter proposed to bring more insights about accurate models and important 
variables to predict the livestock output in the European Union farms. Considering 
these objectives, machine learning approaches were considered, following the proce-
dures proposed by new solutions. Microeconomic data, at the farm level, were also 
taken into account from European Union databases. 

In the current times, the information is fundamental to support better management 
and planning decisions. The point here is to adopt adjusted approaches to collect 
and assess this information. The new digital solutions may play here a relevant 
role. Several smart methodologies have been considered by the scientific commu-
nity, such as the following: generalised linear regression; random forest; multilayer 
neural networks; multiple linear regression; network-based fuzzy inference system; 
multilayer perceptron and support vector machine. 

The data assessment highlights, for example, Lithuania, Germany, Sweden, 
Ireland, Slovenia, Greece and Portugal as some of the European Union countries 
with the highest growth rates (at current prices) for livestock output among 2020 
and 2021. However, Denmark, Netherlands, Germany and France, for instance, are 
countries with contexts that show the importance of livestock activities for the respec-
tive farmers. On the other hand, Greece, Italy, Poland, Portugal and Romania have 
the agricultural frameworks where the sector has the lowest values for the livestock 
output. 

The results revealed the accuracy of models, such as CHAID, linear, neural net, 
random trees and C&R tree to predict the livestock output and the importance of 
the following predictors: number of livestock units; and some of the costs associated 
with the livestock activity. 

In terms of practical implications, the number of livestock units may be considered 
as important predictors of the livestock output, through machine learning approaches. 
The design of policies, in the framework of the Common Agricultural Policy, for 
example, to promote more sustainable livestock production and meat consumption 
may be relevant as a suggestion in terms of policy recommendation, namely to make 
the output less interconnected with the number of livestock units. For future research, 
it would be relevant to assess the effect of some variables lagged one or more years. 
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Chapter 4 
Predicting the Total Costs of Production 
Factors on Farms in the European Union 

Abstract The dynamics of the agricultural sector depend on the performance of the 
farms and their respective profitability. The cost control in the farms is particularly 
important, considering the reduced profit margins in agriculture. In fact, in some 
contexts, the level of farm costs is very similar to the amounts of income, calling, 
in many cases, for financial support for the farmers, justified by the need to guar-
antee food security and social and environmental sustainability. In this framework, 
contributions that support policymakers and farmers to make decisions that promote 
farm cost reduction are fundamental. Considering this scenario, this study intends to 
consider machine learning approaches and data from the European databases to iden-
tify the most adjusted approaches to predict the total costs in the farms. This study 
brought relevant outputs for the design of adjusted measures, plans and instruments 
for the European Union agriculture and respective processes and activities. 

Keywords Artificial intelligence · Adjusted models and predictors · Agriculture 

4.1 Introduction 

Often, the costs of production in the farms affect significantly the level of profitability 
in the agricultural sector and this justifies, in some circumstances the subsidies given 
to farmers, considering their contributions to economic, social and environmental 
sustainability. In fact, some farming productions achieve high levels of revenue, but 
the profitability is low due to the amount of costs associated. 

In this perspective, the total costs assessment, which includes different items 
[1], assumes particular importance in any activity [2] and socioeconomic sector. Of 
referring, for example, the following contexts, where the costs analysis, based on 
machine learning approaches, was highlighted as relevant: supplier–buyer interac-
tions [3]; medical practices [4]; healthcare systems [5]; medical therapies [6]; hospital 
emergency management [7]; hospital surgeries management [8]; hospital pharmacy 
inventory [9]; postoperative decisions [10, 11]; antibiotic management [12]; urban 
waste management [13]; computation systems [14]; transportation networks [15];

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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Information in the Agricultural Sector, SpringerBriefs in Applied Sciences 
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barge planning systems [16]; equipment inspection needs [17]; greenhouse require-
ments [18]; bridge construction [19]; engineering decisions [20]; victims evacuation 
[21]; inventory planning and management [22]; wind turbine technical problems 
assessment [23]; software defects prediction [24]; credit card fraud prediction [25]; 
human–robot partnership [26]; debris removal [27] and manufacturing decisions 
[28]. 

The machine learning approaches have allowed to improve the efficiency and the 
accuracy of the models used to predict the more diverse dimensions and contexts, 
however, often, lack in these methodologies the capacity to apply the predictive 
scenarios in the real frameworks. Some research claims the need for approaches that 
put together learning and planning, as two issues of artificial intelligence [29]. 

A great part of the studies analysed, related to cost evaluation, taking into account 
machine learning models, focused on medical practices, healthcare systems manage-
ment, urban planning, engineering and manufacturing decisions and computation 
contexts. This indicates that there is still a field to be explored related to the 
agricultural contexts and the potentialities to better manage the farming costs. 

Considering these motivations, this study proposes to predict the total costs asso-
ciated with the use of production factors in the European Union farms, taking into 
account statistical information from European databases with microdata [30] and 
using approaches proposed by solutions [31] that consider machine learning method-
ologies. This research is based on the previous results emphasised by Martinho 
[32]. 

4.2 Data Investigation 

Slovakia, Denmark, Netherlands, Czechia, Germany, Luxembourg, Belgium, 
Sweden and France are some of the European Union countries with the highest 
values for the total costs [total inputs (e)], over the year 2021 (Fig. 4.1). The lowest 
values appear for countries such as the following: Portugal; Croatia; Romania and 
Greece. Of course, we have here the effect of the price levels between the European 
Union member states, nonetheless, the objective is to analyse the different realities 
of the countries.

The normalised values ((xi − xminimum)/(xmaximum − xminimum)) presented in 
Table 4.1 confirm the dimension of the total costs [total inputs (e)] in the farms 
from Czechia, Denmark, Germany, Netherlands and Slovakia, for example. Agricul-
tural regions from Greece, Poland, Portugal and Romania, for instance, are between 
the European Union frameworks where the farms present the lowest values for the 
total inputs (e).
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Fig. 4.1 Values in levels for the total costs of the European Union countries, with data at the farm 
level, for the year 2021

Table 4.1 Normalised values 
for the total costs of the 
European Union farming 
regions, with data at the farm 
level, for the year 2021 

Member state Region Year 

2021 

Austria Austria 0.066 

Belgium Vlaanderen 0.269 

Belgium Wallonie 0.136 

Bulgaria Severen tsentralen 0.090 

Bulgaria Severoiztochen 0.104 

Bulgaria Severozapaden 0.099 

Bulgaria Yugoiztochen 0.063 

Bulgaria Yugozapaden 0.015 

Bulgaria Yuzhen tsentralen 0.025 

Croatia Jadranska Hrvatska 0.003 

Croatia Kontinentalna Hrvatska 0.010 

Cyprus Cyprus 0.023 

Czechia Czechia 0.396 

Denmark Denmark 0.493 

Estonia Estonia 0.133 

Finland Etelä-Suomi 0.122 

Finland Pohjanmaa 0.183 

Finland Pohjois-Suomi 0.199 

Finland Sisä-Suomi 0.159 

France Alsace 0.121

(continued)
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Table 4.1 (continued)
Member state Region Year

2021

France Aquitaine 0.147 

France Auvergne 0.108 

France Basse-Normandie 0.211 

France Bourgogne 0.183 

France Bretagne 0.249 

France Centre 0.166 

France Champagne-Ardenne 0.150 

France Corse 0.100 

France Franche-Comté 0.172 

France Guadeloupe 0.045 

France Haute-Normandie 0.215 

France Île-de-France 0.208 

France La Réunion 0.064 

France Languedoc-Roussillon 0.102 

France Limousin 0.097 

France Lorraine 0.186 

France Midi-Pyrénées 0.104 

France Nord-Pas-de-Calais 0.207 

France Pays de la Loire 0.243 

France Picardie 0.200 

France Poitou–Charentes 0.195 

France Provence-Alpes-Côte d’Azur 0.134 

France Rhône-Alpes 0.134 

Germany Baden-Württemberg 0.135 

Germany Bayern 0.144 

Germany Brandenburg 0.923 

Germany Hessen 0.157 

Germany Mecklenburg-Vorpommern 0.891 

Germany Niedersachsen 0.288 

Germany Nordrhein-Westfalen 0.243 

Germany Rheinland-Pfalz 0.142 

Germany Saarland 0.135 

Germany Sachsen 0.761 

Germany Sachsen-Anhalt 0.755 

Germany Schleswig–Holstein/Hamburg 0.279 

Germany Thüringen 1.000 

Greece Ipiros-Peloponissos-Nissi Ioniou 0.001

(continued)
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Table 4.1 (continued)
Member state Region Year

2021

Greece Makedonia-Thraki 0.007 

Greece Sterea Ellas-Nissi Egaeou-Kriti 0.003 

Greece Thessalia 0.008 

Hungary Alföld 0.053 

Hungary Dunántúl 0.101 

Hungary Észak-Magyarország 0.033 

Ireland Ireland 0.051 

Italy Abruzzo 0.012 

Italy Alto Adige 0.035 

Italy Basilicata 0.014 

Italy Calabria 0.004 

Italy Campania 0.018 

Italy Emilia-Romagna 0.052 

Italy Friuli-Venezia Giulia 0.043 

Italy Lazio 0.031 

Italy Liguria 0.016 

Italy Lombardia 0.099 

Italy Marche 0.014 

Italy Molise 0.011 

Italy Piemonte 0.046 

Italy Puglia 0.017 

Italy Sardegna 0.018 

Italy Sicilia 0.010 

Italy Toscana 0.030 

Italy Trentino 0.017 

Italy Umbria 0.027 

Italy Valle d’Aosta 0.039 

Italy Veneto 0.050 

Latvia Latvia 0.057 

Lithuania Lithuania 0.030 

Luxembourg Luxembourg 0.221 

Netherlands The Netherlands 0.445 

Poland Malopolska i Pogórze 0.002 

Poland Mazowsze i Podlasie 0.010 

Poland Pomorze i Mazury 0.037 

Poland Wielkopolska and Slask 0.026 

Portugal Açores e Madeira 0.008

(continued)
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Table 4.1 (continued)
Member state Region Year

2021

Portugal Alentejo e Algarve 0.019 

Portugal Norte e Centro 0.006 

Portugal Ribatejo e Oeste 0.017 

Romania Bucuresti-Ilfov 0.005 

Romania Centru 0.008 

Romania Nord-Est 0.007 

Romania Nord-Vest 0.001 

Romania Sud-Est 0.015 

Romania Sud-Muntenia 0.012 

Romania Sud-Vest-Oltenia 0.000 

Romania Vest 0.009 

Slovakia Slovakia 0.563 

Slovenia Slovenia 0.014 

Spain Andalucía 0.031 

Spain Aragón 0.061 

Spain Asturias 0.035 

Spain Canarias 0.101 

Spain Cantabria 0.042 

Spain Castilla y León 0.074 

Spain Castilla-La Mancha 0.052 

Spain Cataluña 0.079 

Spain Comunidad Valenciana 0.032 

Spain Extremadura 0.045 

Spain Galicia 0.031 

Spain Islas Baleares 0.034 

Spain La Rioja 0.061 

Spain Madrid 0.042 

Spain Murcia 0.051 

Spain Navarra 0.079 

Spain País Vasco 0.046 

Sweden Län i norra Sverige 0.142 

Sweden Skogsoch mellanbygdslän 0.172 

Sweden Slättbyggdslän 0.220 

Note Bold corresponds to the highest values and italic to the lowest
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4.3 Results Found 

The models with the highest accuracy (for the training set), in the year 2021, are 
the following (Table 4.2): linear (linear regression); CHAID (Chi-squared Auto-
matic Interaction Detection); regression (linear regression); linear-AS (linear regres-
sion); neural net (neural network); random trees (multiple decision trees); random 
forest (considers a tree model as the reference model); C&R tree (Classification and 
Regression tree) and SVM (support vector machine). The pertinence of these models 
is confirmed by Fig. 4.2 for the relationships between the observed values and the 
predicted ones for the total inputs (e). 

The most important predictors of the total inputs (e), in the European Union farms, 
are the following (Table 4.3): unpaid labour input (hrs); subsidies on external factors 
(e); total intermediate consumption (e); forestry specific costs (e); agritourism (e); 
other cattle (LU); other output (e/farm); sugar beet (e/farm); energy crops (ha) and 
yield of wheat (q/ha).

These results show the importance of unpaid labour, subsidies, intermediate 
consumption, livestock units and sugar beet, for example, to predict the total inputs 
in the European Union agricultural regions.

Table 4.2 Models with the highest accuracy (the lowest relative error) for the total costs of the 
European Union farming regions, with data at the farm level, for the year 2021 

Model Build time Correlation No. fields Relative error 

Linear < 1 1.000 6 0.000 

CHAID < 1 1.000 7 0.000 

Regression < 1 1.000 60 0.000 

Linear-AS < 1 1.000 178 0.000 

Neural net < 1 1.000 169 0.001 

Random trees < 1 0.993 178 0.018 

Random forest < 1 0.994 178 0.021 

C&R tree < 1 0.978 30 0.044 

SVM < 1 0.690 169 1.151
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Fig. 4.2 Relationships between the observed values and the predicted ones for the total costs of 
the European Union farming regions, with data at the farm level, for the year 2021
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Table 4.3 Importance of the 
predictors for the total costs 
of the European Union 
farming regions, with data at 
the farm level, for the year 
2021 

Nodes Importance 

Unpaid labour input (h) 0.0070 

Subsidies on external factors (e) 0.0071 

Total intermediate consumption (e) 0.0073 

Forestry specific costs (e) 0.0073 

Agritourism (e) 0.0078 

Other cattle (LU) 0.0078 

Other output (e/farm) 0.0083 

Sugar beet (e/farm) 0.0101 

Energy crops (ha) 0.0115 

Yield of wheat (q/ha) 0.0189

4.4 Discussion and Conclusions 

The level of the costs in the farms impacts significantly the profitability of the agri-
cultural sector. In fact, in some farming productions, the amount of the revenues is 
high, but often, in these cases, the profitability is affected due to the dimension of the 
total costs associated with the different activities developed in the farms. In general, 
some of these costs may be reduced with more efficient practices and processes. 
The new solutions from the digital era offer potentialities to increase agricultural 
outputs with the same, or fewer, resources. This is true for the use of energy and 
water in the farms, for example, but it is also true for the use of other production 
factors, such as fertilisers and crop protection products. Taking into account these 
motivations, this study suggested analysing the accurate models that may support 
the stakeholders to predict total costs in the European Union representative farms, 
considering data for the year 2021 from European databases with microeconomic 
data. These data considered at the farm level were assessed through machine learning 
solutions following the procedures proposed by new approaches. 

The literature review shows that there is still a field to be explored about the 
application of the new digital technologies to predict the total costs in the agricultural 
sector worldwide and its importance in supporting the farmers’ decisions, as well 
as the design process of policies implemented in the farming frameworks. The low 
profitability of agriculture and considering the importance of the agricultural sector 
for sustainability, specifically of less favoured regions, justify, in some circumstances 
the implementation of policies to maintain the farmers in the respective activities and 
regions. 

In the European Union agricultural context, Slovakia, Denmark, Netherlands, 
Czechia, Germany, Luxembourg, Belgium, Sweden and France are the countries with 
the greatest values for the total costs. Portugal, Croatia, Romania and Greece have 
the lowest total costs. These contexts are also verified with the data disaggregated 
for the different European Union agricultural regions.
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Linear, CHAID, regression, linear-AS, neural net, random trees, random forest, 
C&R tree and SVM are the most accurate models identified for the contexts assessed. 
On the other hand, unpaid labour input, subsidies on external factors, total interme-
diate consumption, forestry specific costs, agritourism, other cattle, other output, 
sugar beet, energy crops and yield of wheat are the most important predictors. 

In terms of practical implication, there are here relevant insights for the stake-
holders, namely to support them in predicting the total costs in the European Union 
farming sector. For policy recommendation, it is suggested to rethink the interlinkages 
between the instruments and measures, defined in the framework of the Common 
Agricultural Policy, and the production factors use, considering the relevance of 
subsidies on external factors to predict the farming costs. In future investigations, it 
could be important to assess the real impact of the most important predictors on the 
total costs. On the other hand, it would be interesting to consider the effects of time 
on these assessments, considering these findings and those obtained by Martinho 
[32]. There are some similarities, but also relevant dissimilarities explained by the 
consideration of data from different years. 

Acknowledgements This work is funded by National Funds through the FCT—Foundation for 
Science and Technology, I.P., within the scope of the project Refª UIDB/00681/2020 (https:// 
doi.org/https://doi.org/10.54499/UIDP/00681/2020). This research is also funded by the Enovo 
company. This study was carried out under the international project “Agriculture 4.0: Current 
reality, potentialities and policy proposals” (CERNAS-IPV/2022/008). Furthermore, we would like 
to thank the CERNAS Research Centre and the Polytechnic Institute of Viseu for their support. This 
work is too co-financed by the PRR—Plano de Recuperação e Resiliência (República Portuguesa) 
and the European Next Generation EU Funds (https://recuperarportugal.gov.pt) through application 
PRR-C05-i03-I-000030—“Carb2Soil—Reforçar a Complementaridade entre agricultura e pecuária 
para aumentar a fertilidade dos solos e a sua capacidade de sequestro de carbono”. 

References 

1. C. Cheng, L. Tang, Robust policies for a multi-stage production/inventory problem with 
switching costs an uncertain demand. Int. J. Prod. Res. 56, 4264 (2018) 

2. S.M. Dastjerdi, Z.M. Mosammam, P. Ahmadi, E. Houshfar, Transient analysis and optimization 
of an off-grid hydrogen and electric vehicle charging station with temporary residences. Sust. 
Cities Soc. 97, 104742 (2023) 

3. F. Bodendorf, Q. Xie, P. Merkl, J. Franke, A multi-perspective approach to support collaborative 
cost management in supplier-buyer dyads. Int. J. Prod. Econ. 245, 108380 (2022) 

4. A.K. Chan et al., Does state malpractice environment affect outcomes following spinal fusions? 
A robust statistical and machine learning analysis of 549,775 discharges following spinal fusion 
surgery in the United States. Neurosurg. Focus 49, E18 (2020) 

5. O. Ericson, J. Hjelmgren, F. Sjovall, J. Soderberg, I. Persson, The potential cost and cost-
effectiveness impact of using a machine learning algorithm for early detection of sepsis in 
intensive care units in Sweden. J. Health Econ. Outcome. Res. 9, 101 (2022) 

6. L.S. Fernandes de Carvalho, S. Gioppato, M.D. Fernandez, B.C. Trindade, J.C.Q.E. Silva, R.G. 
Sergio Miranda, J.R. Matos de Souza, W. Nadruz, S.E. Fontes Avila, A.C. Sposito, Machine 
learning improves the identi fication of individuals with higher morbidity and avoidable health 
costs after acute coronary syndromes. Value Health 23, 1570 (2020)

https://doi.org/
https://doi.org/
https://doi.org/10.54499/UIDP/00681/2020
https://recuperarportugal.gov.pt


References 59

7. D.W. Frost, S. Vembu, J. Wang, K. Tu, Q. Morris, H.B. Abrams, Using the electronic medical 
record to identify patients at high risk for frequent emergency department visits and high system 
costs. Am. J. Med. 130, e17 (2017) 

8. D. Goyal, J. Guttag, Z. Syed, R. Mehta, Z. Elahi, M. Saeed, Comparing precision machine 
learning with consumer, quality, and volume metrics for ranking orthopedic surgery hospitals: 
retrospective study. J. Med. Internet Res. 22, e22765 (2020) 

9. F. Rojas, V. Leiva, M. Huerta, C. Martin-Barreiro, Lot-size models with uncertain demand 
considering its skewness/kurtosis and stochastic programming applied to hospital pharmacy 
with sensor-related COVID-19 data. Sensors 21, 5198 (2021) 

10. T.J. Loftus, M.M. Ruppert, T. Ozrazgat-Baslanti, J.A. Balch, P.A. Efron, P.J. Tighe, W.R. 
Hogan, P. Rashidi, G.R. Upchurch, A. Bihorac, Association of postoperative undertriage to 
hospital wards with mortality and morbidity. JAMA Netw. Open 4, e2131669 (2021) 

11. T.M. Loftus et al., Postoperative overtriage to an intensive care unit is associated with low value 
of care. Ann. Surg. 277, 179 (2023) 

12. A.M. Voermans, J.C. Mewes, M.R. Broyles, L.M.G. Steuten, Cost-effectiveness analysis of a 
procalcitonin-guided decision algorithm for antibiotic stewardship using real-world US hospital 
data. OMICS 23, 508 (2019) 

13. J. Ferrer, E. Alba, BIN-CT: urban waste collection based on predicting the container fill level. 
Biosystems 186, 103962 (2019) 

14. S. Ghose, A. Boroumand, J.S. Kim, J. Gomez-Luna, O. Mutlu, Processing-in-memory: a 
workload-driven perspective. IBM J. Res. Dev. 63, 3 (2019) 

15. E. Gocmen, R. Erol, Transportation problems for intermodal networks: mathematical models, 
exact and heuristic algorithms, and machine learning. Exp. Syst. Appl. 135, 374 (2019) 

16. V. Gumuskaya, W. van Jaarsveld, R. Dijkman, P. Grefen, A. Veenstra, Integrating stochastic 
programs and decision trees in capacitated barge planning with uncertain container arrivals. 
Transp. Res. Pt. C-Emerg. Technol. 132, 103383 (2021) 

17. Y. Javid, A Bi-objective mathematical model to determine risk-based inspection programs. 
Process Saf. Environ. Protect. 146, 893 (2021) 

18. N. Khani, M.H.K. Manesh, V.C. Onishi, Optimal 6E design of an integrated solar energy-driven 
polygeneration and CO2 capture system: a machine learning approach. Therm. Sci. Eng. Prog. 
38, 101669 (2023) 

19. M. Kovacevic, F. Antoniou, Machine-learning-based consumption estimation of prestressed 
steel for prestressed concrete bridge construction. Build. Basel 13, 1187 (2023) 

20. C. Liu, Y. Hu, T. Yu, Q. Xu, C. Liu, X. Li, C. Shen, Optimizing the water treatment design and 
management of the artificial lake with water quality modeling and surrogate-based approach. 
Water 11, 391 (2019) 

21. S.M. Nabavi, B. Vahdani, B.A. Nadjafi, M.A. Adibi, Synchronizing victim evacuation and 
debris removal: a data-driven robust prediction approach. Eur. J. Oper. Res. 300, 689 (2022) 

22. P. Raghuram, S. Bhupesh, R. Manivannan, P.S. Anand, V.R. Sreedharan, Modeling and 
analyzing the inventory level for demand uncertainty in the VUCA world: evidence from 
biomedical manufacturer. IEEE Trans. Eng. Manag. 70, 2944 (2023) 

23. A. Santolamazza, D. Dadi, V. Introna, A data-mining approach for wind turbine fault detection 
based on SCADA data analysis using artificial neural networks. Energies 14, 1845 (2021) 

24. V.S. Sheng, B. Gu, W. Fang, J. Wu, Cost-sensitive learning for defect escalation. Knowl. Based 
Syst. 66, 146 (2014) 

25. A. Singh, A. Jain, An efficient credit card fraud detection approach using cost-sensitive weak 
learner with imbalanced dataset. Comput. Intell. 38, 2035 (2022) 

26. T. Smith, P. Benardos, D. Branson, Assessing worker performance using dynamic cost functions 
in human robot collaborative tasks. Proc. Inst. Mech. Eng. C J. Eng. Mech. Eng. Sci. 234, 289 
(2020) 

27. B. Vahdani, A flexible framework to coordinate debris clearance and relief distribution 
operations: a robust machine learning approach. Exp. Syst. Appl. 229, 120512 (2023) 

28. F. Zheng, Z. Wang, Y. Xu, M. Liu, Single machine scheduling with uncertain processing times 
and carbon emission constraint in the shared manufacturing environment. Ann. Oper. Res. 12, 
1–31 (2023)



60 4 Predicting the Total Costs of Production Factors on Farms …

29. Q. Lv, Y. Chen, Z. Li, Z. Cui, L. Chen, X. Zhang, H. Shen, Achieving data-driven actionability 
by combining learning and planning. Front. Comput. Sci. 12, 939 (2018) 

30. FADN, Several Statistics. https://agriculture.ec.europa.eu/data-and-analysis/farm-structures-
and-economics/fadn_en 

31. IBM SPSS Modeler, SPSS Modeler: Overview. https://www.ibm.com/products/spss-modeler 
32. V.J.P.D. Martinho, Economic growth, sustainability assessment and artificial intelligence: 

combinations among these three dimensions, in Economic Growth: Advances in Analysis 
Methodologies and Technologies (Springer, Cham, 2023), pp. 133–144

https://agriculture.ec.europa.eu/data-and-analysis/farm-structures-and-economics/fadn_en
https://agriculture.ec.europa.eu/data-and-analysis/farm-structures-and-economics/fadn_en
https://www.ibm.com/products/spss-modeler


Chapter 5 
The Most Important Predictors 
of Fertiliser Costs 

Abstract The control of the fertiliser costs in the agricultural sector is fundamental 
for the profitability of the farms and to mitigate environmental impacts. Indeed, the 
fertiliser costs have, at least, two components, one related to the fertiliser prices and 
the other associated with the amount of fertiliser applied in the farming processes. 
The fertiliser application in agricultural activities has a relevant impact on soil health 
and water quality. The efficiency of the processes linked with the fertiliser application 
in the farms is crucial to avoid disruptions in the sustainable development required 
for agriculture worldwide. In these frameworks, it is important to bring more insights 
about the predictors of the fertiliser costs in the European Union farms. Taking into 
account these motivations, this chapter considered artificial intelligence approaches 
and data from the European Union databases to identify the most adjusted models. 
The findings of this research contribute to the understanding of the most important 
variables to promote more sustainability in the European Union farming sector. 

Keywords European Union agriculture ·Machine learning models · Farming 
indicators 

5.1 Introduction 

Between the different agricultural costs, those related to fertilisers assume special 
relevance, considering their impacts on the budget of the farms and the environ-
mental consequences, namely in the soil and water characteristics and quality. In 
this way, a continuous assessment of these costs is important and the new tech-
nologies and methodologies associated with the smart transition may bring here 
significant contributions [1] to the automation and digitalisation of agriculture [2]. 
The current challenges claim new approaches in the agricultural sector that ensure 
a more sustainable development in agricultural activities [3] and adjusted fertiliser 
recommendations [4] and manure applications [5]. 

The main contribution, of the digital transformation in the context of Agriculture 
4.0, for more sustainable fertiliser applications, is associated with the possibility of
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improving the efficiency of the related processes in the farms [6]. These approaches 
allow for reducing the respective costs [7], namely in times of higher prices [8], with 
potentialities to increase the respective productions and profitability of the farmers 
[9]. 

The Internet of Things, robotics technology, machine learning, artificial 
approaches and Big Data are among the main technologies to implement smart 
farming to deal with the current challenges [10]. These new realities brought the 
need to make compatible, in the agricultural sector, productivity growth and guaran-
teeing food security without compromising sustainability and environmental quality 
[11], where the losses reduction assume special relevance [12]. The question here 
is the adjustment of the farming processes, with a better organisation [13], specifi-
cally in the fertilisers use [14] and management [15], for better soil quality [16] and 
carbon sequestration, in agreement with the international proposals [17], namely in 
the greenhouses structures [18], for example. 

The soil characteristics indicators analysis, such as phosphorus [19] and nitrogen, 
is particularly important to support the farmers’ decisions and better control the 
respective costs and the implications on sustainability [20]. The application of 
fertilisers is interrelated with other production factors, namely energy, machinery, 
crop protection products [21] and water [22]. Smart farming solutions may bring 
important added value for the fertiliser costs prediction [23], but also for the processes 
of application, using, for instance, unmanned aerial vehicles [24]. 

Considering the context described before, it seems important to identify adjusted 
models and important predictors to estimate the fertiliser costs in the European Union 
farms, using data from the European farming databases [25], taking into account the 
procedures proposed by some solutions for the machine learning approaches [26] 
and following the results obtained by Martinho [27]. 

5.2 Data Exploration 

The growth rates obtained over the period 2019–2020 for the fertiliser costs [fertilisers 
(e)] in the European Union representative farms are presented in Fig. 5.1. The highest 
values with current prices (the idea is to show the differences in the dynamics of the 
European Union member states) were obtained for the following countries: Czechia, 
Denmark, Slovenia, Lithuania, Latvia, Sweden, Spain and Estonia.

Table 5.1, with the normalised values ((xi − xminimum)/(xmaximum − xminimum)), 
reveals that the farms from Czechia and Slovakia are those with the highest values 
for fertiliser costs. The same happens for some regions of France and Germany. Some 
regions from Croatia, Greece, Portugal, Romania and Spain, for example, are where 
the representative farms have the lowest costs with fertilisers.
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Fig. 5.1 Growth rate (%) results for the fertiliser costs of the European Union countries, with data 
at the farm level, over the period 2019–2020

Table 5.1 Normalised values for the fertiliser costs of the European Union farming regions, with 
data at the farm level, over the period 2019–2020 

Member state Region Year 

2019 2020 

Austria Austria 0.033 0.035 

Belgium Vlaanderen 0.127 0.131 

Belgium Wallonie 0.156 0.153 

Bulgaria Severen tsentralen 0.188 0.185 

Bulgaria Severoiztochen 0.186 0.162 

Bulgaria Severozapaden 0.185 0.212 

Bulgaria Yugoiztochen 0.111 0.122 

Bulgaria Yugozapaden 0.032 0.032 

Bulgaria Yuzhen tsentralen 0.042 0.045 

Croatia Jadranska Hrvatska 0.006 0.006 

Croatia Kontinentalna Hrvatska 0.032 0.033 

Cyprus Cyprus 0.021 0.019 

Czechia Czechia 0.302 0.370 

Denmark Denmark 0.249 0.295 

Estonia Estonia 0.190 0.197 

Finland Etelä-Suomi 0.123 0.123 

Finland Pohjanmaa 0.146 0.150 

Finland Pohjois-Suomi 0.154 0.157 

Finland Sisä-Suomi 0.117 0.107 

France Alsace 0.154 0.154

(continued)
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Table 5.1 (continued)

Member state Region Year

2019 2020

France Aquitaine 0.147 0.151 

France Auvergne 0.115 0.109 

France Basse-Normandie 0.182 0.180 

France Bourgogne 0.235 0.235 

France Bretagne 0.119 0.114 

France Centre 0.358 0.369 

France Champagne-Ardenne 0.270 0.272 

France Corse 0.056 0.053 

France Franche-Comté 0.199 0.199 

France Guadeloupe 0.067 0.081 

France Haute-Normandie 0.335 0.337 

France Île-de-France 0.438 0.487 

France La Réunion 0.111 0.154 

France Languedoc-Roussillon 0.064 0.081 

France Limousin 0.107 0.103 

France Lorraine 0.265 0.268 

France Midi-Pyrénées 0.138 0.138 

France Nord-Pas-de-Calais 0.263 0.270 

France Pays de la Loire 0.169 0.173 

France Picardie 0.415 0.420 

France Poitou–Charentes 0.246 0.229 

France Provence-Alpes-Côte d’Azur 0.108 0.109 

France Rhône-Alpes 0.115 0.127 

Germany Baden-Württemberg 0.099 0.101 

Germany Bayern 0.087 0.082 

Germany Brandenburg 0.598 0.599 

Germany Hessen 0.126 0.131 

Germany Mecklenburg-Vorpommern 1.000 1.000 

Germany Niedersachsen 0.182 0.177 

Germany Nordrhein-Westfalen 0.104 0.107 

Germany Rheinland-Pfalz 0.102 0.108 

Germany Saarland 0.151 0.155

(continued)
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Table 5.1 (continued)

Member state Region Year

2019 2020

Germany Sachsen 0.516 0.569 

Germany Sachsen-Anhalt 0.631 0.650 

Germany Schleswig–Holstein/Hamburg 0.248 0.246 

Germany Thüringen 0.671 0.749 

Greece Ipiros-Peloponissos-Nissi Ioniou 0.009 0.009 

Greece Makedonia-Thraki 0.025 0.027 

Greece Sterea Ellas-Nissi Egaeou-Kriti 0.013 0.016 

Greece Thessalia 0.019 0.022 

Hungary Alföld 0.053 0.056 

Hungary Dunántúl 0.124 0.116 

Hungary Észak-Magyarország 0.075 0.069 

Ireland Ireland 0.090 0.087 

Italy Abruzzo 0.033 0.030 

Italy Alto Adige 0.015 0.010 

Italy Basilicata 0.046 0.040 

Italy Calabria 0.019 0.021 

Italy Campania 0.041 0.048 

Italy Emilia-Romagna 0.093 0.091 

Italy Friuli-Venezia Giulia 0.090 0.058 

Italy Lazio 0.039 0.043 

Italy Liguria 0.071 0.072 

Italy Lombardia 0.094 0.079 

Italy Marche 0.044 0.047 

Italy Molise 0.033 0.032 

Italy Piemonte 0.075 0.061 

Italy Puglia 0.040 0.048 

Italy Sardegna 0.031 0.026 

Italy Sicilia 0.031 0.029 

Italy Toscana 0.051 0.057 

Italy Trentino 0.019 0.021 

Italy Umbria 0.027 0.028 

Italy Valle d’Aosta 0.025 0.001 

Italy Veneto 0.058 0.054 

Latvia Latvia 0.101 0.112

(continued)
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Table 5.1 (continued)

Member state Region Year

2019 2020

Lithuania Lithuania 0.091 0.101 

Luxembourg Luxembourg 0.145 0.145 

Netherlands The Netherlands 0.108 0.111 

Poland Malopolska i Pogórze 0.020 0.023 

Poland Mazowsze i Podlasie 0.031 0.032 

Poland Pomorze i Mazury 0.098 0.097 

Poland Wielkopolska and Slask 0.076 0.074 

Portugal Açores e Madeira 0.027 0.032 

Portugal Alentejo e Algarve 0.031 0.029 

Portugal Norte e Centro 0.006 0.008 

Portugal Ribatejo e Oeste 0.034 0.046 

Romania Bucuresti-Ilfov 0.041 0.028 

Romania Centru 0.011 0.014 

Romania Nord-Est 0.024 0.024 

Romania Nord-Vest 0.011 0.015 

Romania Sud-Est 0.049 0.048 

Romania Sud-Muntenia 0.041 0.044 

Romania Sud-Vest-Oltenia 0.014 0.015 

Romania Vest 0.026 0.031 

Slovakia Slovakia 0.600 0.557 

Slovenia Slovenia 0.008 0.010 

Spain Andalucía 0.077 0.075 

Spain Aragón 0.098 0.098 

Spain Asturias 0.003 0.003 

Spain Canarias 0.099 0.101 

Spain Cantabria 0.000 0.000 

Spain Castilla y León 0.102 0.118 

Spain Castilla-La Mancha 0.057 0.057 

Spain Cataluña 0.054 0.059 

Spain Comunidad Valenciana 0.037 0.055 

Spain Extremadura 0.045 0.053

(continued)
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Table 5.1 (continued)

Member state Region Year

2019 2020

Spain Galicia 0.016 0.018 

Spain Islas Baleares 0.035 0.046 

Spain La Rioja 0.084 0.110 

Spain Madrid 0.030 0.033 

Spain Murcia 0.065 0.085 

Spain Navarra 0.109 0.108 

Spain País Vasco 0.046 0.048 

Sweden Län i norra Sverige 0.108 0.070 

Sweden Skogsoch mellanbygdslän 0.107 0.106 

Sweden Slättbyggdslän 0.191 0.217 

Note Bold corresponds to the highest values and italic to the lowest 

5.3 Findings Obtained 

Linear, CHAID, neural network, random trees and C&R tree are the models with 
the highest accuracy for the training set, over the period 2019–2020 (Tables 5.2 and 
5.4). The pertinence of these models to predict the fertiliser costs is also highlighted 
by the relationships among the observed values and the predicted ones presented in 
Figs. 5.2 and 5.3. 

Cereals output and area, as well as seeds and plants costs, appear in the two 
years considered (2019 and 2020) between the most important predictors of the 
fertiliser costs in the representative farms of the European Union agricultural regions 
(Tables 5.3 and 5.5).

Table 5.2 Models with the highest accuracy (the lowest relative error) for the fertiliser costs of the 
European Union farming regions, with data at the farm level, for the year 2019 

Model Build time Correlation No. fields Relative error 

Linear < 1 1.000 1 0.000 

CHAID < 1 1.000 1 0.000 

Neural net < 1 1.000 171 0.001 

Random trees < 1 0.960 178 0.084 

C&R tree < 1 0.952 29 0.101
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Fig. 5.2 Relationships between the observed values and the predicted ones for the fertiliser costs 
of the European Union farming regions, with data at the farm level, for the year 2019
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Fig. 5.3 Relationships between the observed values and the predicted ones for the fertiliser costs 
of the European Union farming regions, with data at the farm level, for the year 2020
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Table 5.3 Importance of the predictors for the fertiliser costs of the European Union farming 
regions, with data at the farm level, for the year 2019 

Nodes Importance 

Fruit (excl. citrus and grapes) (e/farm) 0.0063 

Seeds and plants (e) 0.0064 

Cereals (e/farm) 0.0065 

Total farming overheads (e) 0.0065 

Cereals (ha) 0.0065 

Vegetables and flowers (ha) 0.0068 

Total utilised agricultural area (ha) 0.0073 

Cattle dairy cows (LU) 0.0084 

Milk yield (kg/cow) 0.0322 

Yield of wheat (q/ha) 0.0528 

Table 5.4 Models with the highest accuracy (the lowest relative error) for the fertiliser costs of the 
European Union farming regions, with data at the farm level, for the year 2020 

Model Build time Correlation No. fields Relative error 

CHAID < 1 1.000 4 0.000 

Neural net < 1 1.000 169 0.001 

Linear < 1 0.998 22 0.004 

Random trees < 1 0.959 178 0.086 

C&R tree < 1 0.907 34 0.178 

Table 5.5 Importance of the predictors for the fertiliser costs of the European Union farming 
regions, with data at the farm level, for the year 2020 

Nodes Importance 

Other field crops (ha) 0.0068 

Cereals (ha) 0.0069 

Stock of agricultural products (e) 0.0070 

VAT balance excluding on investments (e) 0.0072 

Seeds and plants (e) 0.0072 

Vegetables and flowers (e/farm) 0.0074 

Subsidies on intermediate consumption (e) 0.0080 

Pigmeat (e/farm) 0.0081 

Cereals (e/farm) 0.0128 

Permanent crops (ha) 0.0364
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5.4 Discussion and Conclusions 

Between the different production factors used in the agricultural sector, fertilisers 
appear among the most critical, considering their impacts on the farming costs and 
their repercussions on the environmental and social conditions. In fact, the applica-
tion of fertilisers in agricultural production has implications on the water quality, soil 
characteristics and consequently on human health. The efficient use of this production 
factor is fundamental to reduce the costs in the farms and to mitigate, particularly, 
the environmental impacts. These aspects are principally important in the current 
contexts of climate change and global warming. The solutions associated with arti-
ficial intelligence may bring relevant contributions to better deal with these chal-
lenges. In this way, this chapter taken into account artificial intelligence approaches to 
predict fertiliser costs in the European Union farming sector, following the procedures 
proposed by innovative solutions. For that, data from European Union databases, with 
microeconomic statistical information, were considered for the period 2019–2020. 

The new methodologies may contribute significantly to improve the sustainability 
of the use of fertilisers and manure application, namely with more efficient practices 
and processes. Improvements in the efficiency of the practices associated with the use 
of fertilisers in the farms are especially important, considering the interrelationships 
among the fertilisers’ application and the use of other production factors, such as 
energy, water, machinery and crop protection products. 

Some European Union countries/regions, such as Czechia, Slovakia and some 
regions from France and Germany are between the contexts with higher values for 
fertiliser costs. Some regions from Croatia, Greece, Portugal, Romania and Spain, 
for example, are among the frameworks with the lowest costs of fertilisers. 

Some of the most accurate models to predict the fertiliser costs in the European 
Union farms are, for example, the following: linear; CHAID; neural network; random 
trees and C&R tree. The most important predictors are the following: cereals output 
and area; seeds and plants costs. 

In terms of practical implications, the findings highlight that the choices of the 
farmers about the agricultural productions to implement in the farms, as well as their 
dimensions, are interrelated with the prediction of the fertiliser costs. For policy 
recommendation, it may be important to improve the interlinkages of the policy 
instruments with the fertiliser costs, because in the research here carried out the 
policy measures designed in the framework of the Common Agricultural Policy do 
not appear among the most important predictors. For future research, it is suggested 
to assess the real impact of the farm dimension on the level of fertiliser costs. 
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Chapter 6 
Important Indicators for Predicting Crop 
Protection Costs 

Abstract The crop protection costs have economic impacts on the profitability of the 
farms and environmental consequences due to, in some circumstances, the residues 
that remain in the soils after the application. The crop protection application may 
have also direct impacts on human health, because of the residues which remain 
in the agricultural products, particularly when applied in a non-efficient way. The 
Common Agricultural Policy in the European Union has already a set of measures 
to encourage farmers to reduce the level of crop protection application in farming 
activities. In any case, it is important to bring more insights into these contexts, 
specifically identifying the most important predictors of crop protection costs in the 
European Union farms. To achieve these objectives, this study takes into account 
approaches from the new technologies associated with the digital transition and data 
from the European Union Farm Accountancy Data Network. The insights obtained 
allowed us to highlight the most adjusted models and the most important variables 
to predict crop protection costs in European agriculture. 

Keywords Digital transition · European Union farm accountancy data network ·
Common agricultural policy 

6.1 Introduction 

Crop protection application in agricultural production is generally a concern for 
farmers, public institutions, associations and policymakers, because of the potential 
impacts of the associated products on the environment and human health [1]. The poli-
cymakers from national, European and International institutions are concerned with 
these products and have designed legislation to control the use of these applications 
in quality and quantity, to mitigate the consequences of these practices. 

The efficient use of crop protection products in farms is one way to reduce the 
impacts of these activities on sustainability [2]. For that, the approaches available 
in the framework of the digital transformation may contribute significantly to allow 
increases in the productivity with lower negative effects, particularly supporting more

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
V. J. P. D. Martinho, Machine Learning Approaches for Evaluating Statistical 
Information in the Agricultural Sector, SpringerBriefs in Applied Sciences 
and Technology, https://doi.org/10.1007/978-3-031-54608-2_6 

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54608-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-54608-2_6


76 6 Important Indicators for Predicting Crop Protection Costs

adjusted disease diagnosis [3] and management [4]. For an effective application of the 
new technologies, information collection is a fundamental phase, including through 
imagery [5]. The same happens with the availability of data [6] and the combination 
of artificial intelligence methodologies with other emergent approaches [7] in the  
diverse dimensions of crop protection [8, 9]. Some of the data considered in the 
analysis based on artificial intelligence techniques are obtained from databases, such 
as Sentinel-2 [10], or through sensors [11], for example. 

The following artificial intelligence techniques have been considered by the scien-
tific community to identify crop biotic stresses [12]: random forest; support vector 
machine; decision tree; Naive Bayes; convolutional neural network; long short-term 
memory; deep convolutional neural network and deep belief network. The focus of 
some research is to reduce the resources and expertise that usually these approaches 
need [13] for pest detection [14]. The detection of the biotic threats for agricul-
tural production, supported by the new technologies, is relevant for adjusted farm 
management [15]. 

The current contexts associated with climate change and the consequent global 
warming create new challenges for crop protection practices and for the efficacy 
of the respective products to mitigate the impacts of the different pathogen agents 
[16]. For an adjusted application of crop protection products, the prediction of plant 
pathogen agents is another crucial step [17] to support the farmers’ decisions [18], 
including in grapevine [19]. Weed identification and mapping are also important for a 
more efficient use of the required applications [20]. Early detection of biotic farming 
threats is fundamental for profitable farm management [21], including resistant weeds 
[22]. 

The aim of this study is to present adjusted models and important predictors to 
assess the crop protection costs in the European Union farms, through data from 
the Farm Accountancy Data Network [23] and taking into account the procedures 
proposed by the software IBM SPSS Modeler [24]. 

6.2 Data Examination 

On average over the period 2018–2021, the crop protection costs [crop protection (e)] 
were higher in the representative farms of the following European Union countries 
(Fig. 6.1): Slovakia; Czechia; Denmark; Netherlands; France; Germany; Belgium; 
Estonia; Luxembourg and Sweden.

With the statistical information disaggregated at the level of the European Union 
agricultural regions, Table 6.1 reveals that the averages for the crop protection costs, 
over the period 2018–2021, were bigger in Czechia, Slovakia and regions from France 
and Germany. The lowest averages appear in agricultural regions from Croatia, 
Greece, Italy, Poland, Portugal, Romania and Spain.
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Fig. 6.1 Average values for the crop protection costs of the European Union countries, with data 
at the farm level, over the period 2018–2021

Table 6.1 Average values for 
the crop protection costs of 
the European Union farming 
regions, with data at the farm 
level, over the period 
2018–2021 

Member state Region Average 

Austria Austria 1870 

Belgium Vlaanderen 10,489 

Belgium Wallonie 7693 

Bulgaria Severen tsentralen 7901 

Bulgaria Severoiztochen 7235 

Bulgaria Severozapaden 8440 

Bulgaria Yugoiztochen 5051 

Bulgaria Yugozapaden 1224 

Bulgaria Yuzhen tsentralen 1958 

Croatia Jadranska Hrvatska 619 

Croatia Kontinentalna Hrvatska 1489 

Cyprus Cyprus 1153 

Czechia Czechia 21,286 

Denmark Denmark 14,503 

Estonia Estonia 5634 

Finland Etelä-Suomi 2923 

Finland Pohjanmaa 2816 

Finland Pohjois-Suomi 1050 

Finland Sisä-Suomi 1077 

France Alsace 6276 

France Aquitaine 8159

(continued)
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Table 6.1 (continued)
Member state Region Average

France Auvergne 2694 

France Basse-Normandie 8542 

France Bourgogne 11,775 

France Bretagne 6976 

France Centre 20,653 

France Champagne-Ardenne 13,005 

France Corse 3126 

France Franche-Comté 6445 

France Guadeloupe 2095 

France Haute-Normandie 24,091 

France Île-de-France 26,576 

France La Réunion 1983 

France Languedoc-Roussillon 9958 

France Limousin 2797 

France Lorraine 11,954 

France Midi-Pyrénées 7476 

France Nord-Pas-de-Calais 17,854 

France Pays de la Loire 8959 

France Picardie 26,645 

France Poitou–Charentes 14,514 

France Provence-Alpes-Côte d’Azur 7577 

France Rhône-Alpes 5408 

Germany Baden-Württemberg 6723 

Germany Bayern 5140 

Germany Brandenburg 29,854 

Germany Hessen 8400 

Germany Mecklenburg-Vorpommern 56,154 

Germany Niedersachsen 10,004 

Germany Nordrhein-Westfalen 8260 

Germany Rheinland-Pfalz 7902 

Germany Saarland 5808 

Germany Sachsen 29,007 

Germany Sachsen-Anhalt 41,741 

Germany Schleswig–Holstein/Hamburg 11,354 

Germany Thüringen 47,158 

Greece Ipiros-Peloponissos-Nissi Ioniou 593 

Greece Makedonia-Thraki 1816

(continued)
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Table 6.1 (continued)
Member state Region Average

Greece Sterea Ellas-Nissi Egaeou-Kriti 691 

Greece Thessalia 1682 

Hungary Alföld 3237 

Hungary Dunántúl 6676 

Hungary Észak-Magyarország 4890 

Ireland Ireland 967 

Italy Abruzzo 1815 

Italy Alto Adige 2071 

Italy Basilicata 1524 

Italy Calabria 520 

Italy Campania 2254 

Italy Emilia-Romagna 5114 

Italy Friuli-Venezia Giulia 3511 

Italy Lazio 1217 

Italy Liguria 1985 

Italy Lombardia 4412 

Italy Marche 1948 

Italy Molise 1144 

Italy Piemonte 4381 

Italy Puglia 2150 

Italy Sardegna 792 

Italy Sicilia 896 

Italy Toscana 1933 

Italy Trentino 2548 

Italy Umbria 1673 

Italy Valle d’Aosta 406 

Italy Veneto 3773 

Latvia Latvia 3728 

Lithuania Lithuania 2854 

Luxembourg Luxembourg 5376 

Netherlands The Netherlands 10,845 

Poland Malopolska i Pogórze 703 

Poland Mazowsze i Podlasie 759 

Poland Pomorze i Mazury 3169 

Poland Wielkopolska and Slask 2391 

Portugal Açores e Madeira 382 

Portugal Alentejo e Algarve 1120

(continued)
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Table 6.1 (continued)
Member state Region Average

Portugal Norte e Centro 811 

Portugal Ribatejo e Oeste 4651 

Romania Bucuresti-Ilfov 2479 

Romania Centru 840 

Romania Nord-Est 1046 

Romania Nord-Vest 750 

Romania Sud-Est 2573 

Romania Sud-Muntenia 2722 

Romania Sud-Vest-Oltenia 1067 

Romania Vest 1218 

Slovakia Slovakia 33,436 

Slovenia Slovenia 660 

Spain Andalucía 4031 

Spain Aragón 4508 

Spain Asturias 260 

Spain Canarias 4994 

Spain Cantabria 105 

Spain Castilla y León 3130 

Spain Castilla-La Mancha 1994 

Spain Cataluña 4694 

Spain Comunidad Valenciana 3687 

Spain Extremadura 2530 

Spain Galicia 847 

Spain Islas Baleares 1465 

Spain La Rioja 4810 

Spain Madrid 1417 

Spain Murcia 6809 

Spain Navarra 4405 

Spain País Vasco 2756 

Sweden Län i norra Sverige 1469 

Sweden Skogsoch mellanbygdslän 2272 

Sweden Slättbyggdslän 6127 

Note Bold corresponds to the highest values and italic to the lowest
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6.3 Findings Identified 

The models with the highest accuracy (for the training set) to predict the crop protec-
tion costs, on average over the period 2018–2021, are the following (Table 6.2): 
CHAID (Chi-squared Automatic Interaction Detection); XGBoost linear (advanced 
application of a gradient boosting algorithm with a linear model as the reference 
model); linear (linear regression); XGBoost tree (advanced application of a gradient 
boosting algorithm with a tree model as the reference model); neural net (neural 
network); random trees (multiple decision trees); C&R tree (Classification and 
Regression tree); random forest (algorithm with a tree model as the reference model); 
linear-AS (linear regression) and SVM (support vector machine). 

The relationships among the observed values of the crop protection costs and 
those predicted presented in Fig. 6.2 show the predictive relevance of these models.

The most important predictors of the crop protection costs in the representative 
farms of the European Union agricultural regions are the following (Table 6.3): 
fertiliser K2O (q); sugar beet (e/farm); energy (e); net investment on fixed assets 
(e); fertiliser N (q); economic size (e’000); seeds and plants (e); paid labour input 
(AWU); total output crops and crop production (e/farm) and fertilisers (e). These 
results show that the net investment on fixed assets, the economic size and the 
paid labour input, for example, may support the stakeholders in predicting the crop 
protection costs.

Table 6.2 Models with the highest accuracy (the lowest relative error) for the crop protection costs 
of the European Union farming regions, with data at the farm level on average over the period 
2018–2021 

Model Build time Correlation No. fields Relative error 

CHAID 3 1.000 15 0.000 

XGBoost linear 3 0.997 177 0.005 

Linear 3 0.996 19 0.007 

XGBoost tree 3 0.998 177 0.014 

Neural net 3 0.989 168 0.025 

Random trees 3 0.978 177 0.053 

C&R tree 3 0.958 34 0.083 

Random forest 3 0.944 177 0.123 

Linear-AS 3 0.871 177 0.252 

SVM 3 0.949 170 1.479 
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Fig. 6.2 Relationships between the observed values and the predicted ones for the crop protection 
costs of the European Union farming regions, with data at the farm level on average over the period 
2018–2021
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Table 6.3 Importance of the 
predictors for the crop 
protection costs of the 
European Union farming 
regions, with data at the farm 
level on average over the 
period 2018–2021 

Nodes Importance 

Fertiliser K2O (q) 0.0073 

Sugar beet (e/farm) 0.0081 

Energy (e) 0.0081 

Net investment on fixed assets (e) 0.0093 

Fertiliser N (q) 0.0098 

Economic size (e’000) 0.0127 

Seeds and plants (e) 0.0139 

Paid labour input (AWU) 0.0235 

Total output crops and crop production (e/farm) 0.0295 

Fertilisers (e) 0.0518 

6.4 Discussion and Conclusions 

Crop protection products, jointly with fertilisers, are between the production factors 
used in the farms that more concerns bring to the national and international institu-
tions related to the agricultural sector and the environmental conditions worldwide. 
In fact, crop protection products brought important contributions to the farming 
dynamics, namely to deal with biotic stresses, but also brought new challenges 
because of their potential impacts on the sustainability of agriculture and human 
health. The machine learning solutions offer new potentialities to improve the plan-
ning and management of the farms and, in this context, mitigate the negative impli-
cations of crop protection products use. Considering this scenario, the study here 
presented aimed to find accurate models to predict the costs with the use of crop 
protection products and identify the most important predictors. To achieve these aims, 
microeconomic statistical information from the Farm Accountancy Data Network 
was considered, on average, for the period 2018–2021. These data were analysed 
considering machine learning solutions, following the procedures proposed by the 
software IBM SPSS Modeler. 

The new approaches available to collect information, namely those associated with 
the Sentinel-2, sensors and unmanned aerial vehicles, for example. This information 
collected through alternative solutions and new methodologies available to assess 
these data are crucial to support early detections of biotic farming stresses and, in 
this way, to better use and apply the crop protection products. 

In the European Union context, the crop protection costs, on average over the 
period 2018–2021, were higher in the representative farms of Slovakia, Czechia, 
Denmark, Netherlands, France, Germany, Belgium, Estonia, Luxembourg and 
Sweden. The lowest averages appear, for example, in agricultural regions from 
Croatia, Greece, Poland, Portugal and Romania. 

CHAID, XGBoost linear, linear, XGBoost tree, neural net, random trees, C&R 
tree, random forest, linear-AS, and SVM are the most accurate models to predict the 
crop protection products in the European Union representative farms. Fertiliser K2O,
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sugar beet, energy, net investment on fixed assets, fertiliser N, economic size, seeds 
and plants, paid labour input, total output crops and crop production, and fertilisers 
are the most important predictors. 

In terms of practical implications, the results obtained in this research suggest a set 
of important predictors that may provide relevant insights for crop protection costs 
prediction. For policy recommendation, it is suggested to improve the interlinkages 
of the European Union policy instruments and measures with the crop protection 
costs. In future investigations, it would be important to quantify the relationships of 
the most important predictors with the crop protection costs. 
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Chapter 7 
The Most Adjusted Predictive Models 
for Energy Costs 

Abstract Energy is one of the most important production factors in farms, consid-
ering its impact on the profitability of the agricultural sector, its relationship with 
sustainability and the need for a green transition in agriculture to deal with the chal-
lenges created by climate change and the consequent global warming. In the green 
transition, it is important to replace fossil fuel sources with renewable energies and, 
in these contexts, the agricultural sector may make a double contribution, producing 
renewable energy and using more sustainable sources for the different processes and 
activities in the farms. Taking into account these motivations, this chapter proposes to 
select the models with better accuracy and the most relevant variables to predict the 
energy costs in the European Union farming sector. For that, machine learning models 
were considered, as well as statistical information from European Union databases. 
This chapter presents useful contributions to better understand the contexts associated 
with energy cost prediction in European farms. 

Keywords Digital Era approaches · Predictors · European Union 

7.1 Introduction 

Energy is between the most critical production factors in the industry [1]. This 
resource assumes also special relevance in the agricultural sector, because of its 
importance for the performance of the farms and its relationships with sustainability. 
In fact, agriculture consumes energy for its different activities, but may be too a 
source of renewable energies in diverse ways, from the production of energy crops 
[2] to the supply of biomass from the by-products of food production. In any case, the 
costs related to energy are usually relevant and influence significantly the profitability 
of the sector. 

In this perspective, the assessment of the energy costs is fundamental and the 
algorithms associated with artificial intelligence may produce important added value 
in these frameworks [3], where improvements in efficiency are crucial [4] to reduce 
these costs [5]. In general, the energy costs management is a concern in any activity,
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including, for example, the following: strategies implemented to deal with the envi-
ronmental challenges [6]; traffic performance [7]; residential buildings [8]; farmer 
behaviours [9]; waste management [10]; digital transformation [11]; smart homes 
[12, 13]; home activities [14, 15]; smart cities [16]; machine learning applications 
[17]; deep learning approaches [18] and tools [19]; manufacturing management [20]; 
industrial organisations [21]; irrigation systems [22]; irrigation networks [23]; sewer 
structures [24]; water supply systems [25] and ship repair firms [26]. 

The framework described before highlights that there is a field to be addressed 
regarding the energy costs assessment in agriculture, namely in the European Union 
context. These analyses will be relevant to produce more insights for the farmers, 
policymakers, public institutions and other organisations related to the sector. Taking 
into account these motivations, this chapter proposes to identify the most important 
variables to predict the energy costs in European farms, considering adjusted models 
based on artificial intelligence methodologies. 

To achieve these objectives, statistical information from European databases [27] 
was considered, as well as techniques proposed by smart solutions [28]. The data 
considered were obtained for variables at the farm level and are related to the farming 
accountancy and characterise the structural and economic dimensions of the sector at 
a micro level. These variables are associated with, for example, the dimension of the 
farms, characteristics, outputs, costs, economic results, labour, investment subsidies 
and income subsidies. 

7.2 Data Study 

Figure 7.1 presents, on average over the period 2019–2021, the energy costs for the 
representative farms of the European Union member states. The highest values appear 
for the following countries: Slovakia; Czechia; Netherlands; Germany; Denmark; 
Sweden; Belgium; Finland; Estonia; Luxembourg and France.

Table 7.1 reveals the results for the energy costs, on average over the period 2019– 
2021, for the representative farms of the European Union agricultural regions. These 
results confirm, in part, the results highlighted before in Fig. 7.1. In fact, Czechia, 
Netherlands, Slovakia and some regions of Germany have the highest averages for 
energy costs. Inversely, regions from Croatia, Greece, Poland, Portugal and Romania, 
for instance, show the lowest values for the energy cost averages.
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Fig. 7.1 Average values for the energy costs of the European Union countries, with data at the farm 
level, over the period 2019–2021

Table 7.1 Average values for 
the energy costs of the 
European Union farming 
regions, with data at the farm 
level, over the period 
2019–2021 

Member state Region Average 

Austria Austria 6190 

Belgium Vlaanderen 22,472 

Belgium Wallonie 8131 

Bulgaria Severen tsentralen 10,446 

Bulgaria Severoiztochen 11,102 

Bulgaria Severozapaden 10,905 

Bulgaria Yugoiztochen 8223 

Bulgaria Yugozapaden 3406 

Bulgaria Yuzhen tsentralen 4121 

Croatia Jadranska Hrvatska 1239 

Croatia Kontinentalna Hrvatska 2017 

Cyprus Cyprus 4289 

Czechia Czechia 36,737 

Denmark Denmark 20,354 

Estonia Estonia 14,474 

Finland Etelä-Suomi 15,760 

Finland Pohjanmaa 21,231 

Finland Pohjois-Suomi 17,697 

Finland Sisä-Suomi 15,077 

France Alsace 9658 

France Aquitaine 10,883

(continued)
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Table 7.1 (continued)
Member state Region Average

France Auvergne 9817 

France Basse-Normandie 14,594 

France Bourgogne 11,545 

France Bretagne 20,889 

France Centre 14,302 

France Champagne-Ardenne 8596 

France Corse 8334 

France Franche-Comté 12,663 

France Guadeloupe 3343 

France Haute-Normandie 15,108 

France Île-de-France 15,220 

France La Réunion 4554 

France Languedoc-Roussillon 6230 

France Limousin 8774 

France Lorraine 15,164 

France Midi-Pyrénées 9708 

France Nord-Pas-de-Calais 14,945 

France Pays de la Loire 16,642 

France Picardie 13,630 

France Poitou–Charentes 11,734 

France Provence-Alpes-Côte d’Azur 8965 

France Rhône-Alpes 10,375 

Germany Baden-Württemberg 13,841 

Germany Bayern 15,216 

Germany Brandenburg 81,994 

Germany Hessen 17,167 

Germany Mecklenburg-Vorpommern 73,406 

Germany Niedersachsen 22,670 

Germany Nordrhein-Westfalen 20,405 

Germany Rheinland-Pfalz 13,173 

Germany Saarland 16,216 

Germany Sachsen 69,192 

Germany Sachsen-Anhalt 65,880 

Germany Schleswig–Holstein/Hamburg 25,824 

Germany Thüringen 83,953 

Greece Ipiros-Peloponissos-Nissi Ioniou 1821 

Greece Makedonia-Thraki 3022

(continued)
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Table 7.1 (continued)
Member state Region Average

Greece Sterea Ellas-Nissi Egaeou-Kriti 2061 

Greece Thessalia 2991 

Hungary Alföld 7715 

Hungary Dunántúl 11,065 

Hungary Észak-Magyarország 8038 

Ireland Ireland 3727 

Italy Abruzzo 4316 

Italy Alto Adige 2473 

Italy Basilicata 4483 

Italy Calabria 2285 

Italy Campania 4391 

Italy Emilia-Romagna 7111 

Italy Friuli-Venezia Giulia 5598 

Italy Lazio 5973 

Italy Liguria 4066 

Italy Lombardia 11,666 

Italy Marche 4457 

Italy Molise 4659 

Italy Piemonte 6328 

Italy Puglia 3894 

Italy Sardegna 3840 

Italy Sicilia 3162 

Italy Toscana 5201 

Italy Trentino 2438 

Italy Umbria 4505 

Italy Valle d’Aosta 3770 

Italy Veneto 6597 

Latvia Latvia 8135 

Lithuania Lithuania 4101 

Luxembourg Luxembourg 13,090 

Netherlands The Netherlands 32,494 

Poland Malopolska i Pogórze 1842 

Poland Mazowsze i Podlasie 2245 

Poland Pomorze i Mazury 5452 

Poland Wielkopolska and Slask 4521 

Portugal Açores e Madeira 1791 

Portugal Alentejo e Algarve 3205

(continued)
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Table 7.1 (continued)
Member state Region Average

Portugal Norte e Centro 1829 

Portugal Ribatejo e Oeste 4011 

Romania Bucuresti-Ilfov 1739 

Romania Centru 1847 

Romania Nord-Est 1475 

Romania Nord-Vest 1519 

Romania Sud-Est 3660 

Romania Sud-Muntenia 3137 

Romania Sud-Vest-Oltenia 1705 

Romania Vest 2790 

Slovakia Slovakia 52,632 

Slovenia Slovenia 2917 

Spain Andalucía 3792 

Spain Aragón 7784 

Spain Asturias 3298 

Spain Canarias 5911 

Spain Cantabria 3578 

Spain Castilla y León 5878 

Spain Castilla-La Mancha 6586 

Spain Cataluña 6296 

Spain Comunidad Valenciana 2053 

Spain Extremadura 5320 

Spain Galicia 3448 

Spain Islas Baleares 5448 

Spain La Rioja 5052 

Spain Madrid 6988 

Spain Murcia 5128 

Spain Navarra 6470 

Spain País Vasco 4455 

Sweden Län i norra Sverige 17,143 

Sweden Skogsoch mellanbygdslän 16,339 

Sweden Slättbyggdslän 20,882 

Note Bold corresponds to the highest values and italic to the lowest
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7.3 Results Identified 

Table 7.2 exhibits the most accurate models (for the training set) to predict the energy 
costs (on average over the period 2019–2021). These models are the following: gener-
alised linear (enlarges the general linear model); Chi-squared Automatic Interaction 
Detection (CHAID); linear (linear regression); XGBoost linear (advanced applica-
tion of a gradient boosting algorithm with a linear model as the reference model); 
XGBoost tree (advanced application of a gradient boosting algorithm with a tree 
model as the reference model); Classification and Regression tree (C&R tree); neural 
network (neural net); random forest (algorithm with a tree model as the reference); 
random trees (multiple decision trees) and linear-AS (linear regression). Figure 7.2 
confirms the accuracy of these models in predicting the energy costs in the farms of 
the European Union agricultural regions. 

The most important predictors of the energy costs, on average over the period 
2019–2021, are the following (Table 7.3): poultry (LU); environmental subsidies 
(e); labour input (h); cereals (e/farm); vegetables and flowers (e/farm); machinery 
and building current costs (e); fertiliser P2O5 (q); total utilised agricultural area (ha); 
total labour input (AWU) and fertiliser N (q). The findings highlighted in Table 7.3 
reveal the importance of the total area and labour input, for example, to predict the 
energy costs.

Table 7.2 Models with the highest accuracy (the lowest relative error) for the energy costs of the 
European Union farming regions, with data at the farm level on average over the period 2019–2021 

Model Build time Correlation No. fields Relative error 

Generalised linear 1 1.000 177 0.000 

CHAID 1 1.000 13 0.000 

Linear 1 0.999 24 0.002 

XGBoost linear 1 0.999 177 0.002 

XGBoost tree 1 0.999 177 0.012 

C&R tree 1 0.985 47 0.033 

Neural net 1 0.972 168 0.074 

Random forest 1 0.968 177 0.111 

Random trees 1 0.915 177 0.179 

Linear-AS 1 0.946 177 7.667
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Fig. 7.2 Relationships between the observed values and the predicted ones for the energy costs 
of the European Union farming regions, with data at the farm level on average over the period 
2019–2021
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Table 7.3 Importance of the 
predictors for the energy costs 
of the European Union 
farming regions, with data at 
the farm level on average over 
the period 2019–2021 

Nodes Importance 

Poultry (LU) 0.0071 

Environmental subsidies (e) 0.0072 

Labour input (h) 0.0074 

Cereals (e/farm) 0.0075 

Vegetables and flowers (e/farm) 0.0082 

Machinery and building current costs (e) 0.0089 

Fertiliser P2O5 (q) 0.0118 

Total utilised agricultural area (ha) 0.0153 

Total labour input (AWU) 0.0172 

Fertiliser N (q) 0.0285 

7.4 Discussion and Conclusions 

The agricultural sector contributes to the energy context through consumption and 
production. The production of energy by farming activities is particularly important 
for sustainable development worldwide, considering the potentialities of the sector 
to have renewable sources. In fact, the agricultural sector may contribute to the 
production of energy through, for instance, energy crops (the sustainability here is 
questionable, due to the competition with food production) and biomass from farming 
waste and residues. In any case, energy use in agriculture is always a motive of 
concern for the farmers (because of the costs), for the policymakers and the decision-
makers (due to the potential impacts on sustainability). In this framework, this chapter 
aimed to assess accurate models to predict the energy costs in the representative 
farms of the European Union countries and agricultural regions. Machine learning 
approaches proposed by the IBM SPSS Modeller were taken into account, as well 
as microeconomic data from European Union databases with data at the farm level 
for several indicators. 

Energy is one of the most important production factors in the economic sectors and 
this is not an exception in agriculture, because of the associated costs, the potential 
impacts on the environment and their implications on the dynamics of economic 
activities. Artificial intelligence may support the farmers to use energy sources more 
efficiently, for example, in the irrigation systems, irrigation networks, water supply 
systems and environmental control in greenhouse production. 

Slovakia, Czechia, Netherlands, Germany, Denmark, Sweden, Belgium, Finland, 
Estonia, Luxembourg and France are among the European Union countries with the 
highest values for energy costs, on average over the period 2019–2021. Contrariwise, 
farms from Croatia, Greece, Poland, Portugal and Romania reveal the lowest values 
for energy costs. 

Generalised linear, CHAID, linear, XGBoost linear, XGBoost tree, C&R tree, 
neural net, random forest, random trees and linear-AS are between the models 
with the most predictive capacity to estimate the energy costs in the European



96 7 The Most Adjusted Predictive Models for Energy Costs

Union frameworks. Poultry, environmental subsidies, labour input, cereals, vegeta-
bles and flowers, machinery and building current costs, fertiliser P2O5, total utilised 
agricultural area, total labour input and fertiliser N. 

In terms of practical implications, the findings here obtained suggest interrelation-
ships between environmental subsidies, labour input, fertiliser use and total utilised 
agricultural area and energy costs. For policy recommendation, it would be important 
to better assess the interlinkages among environmental subsidies and energy costs. 
In future studies, it could be important to quantify the relationships among the most 
important predictors and energy costs. 
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Chapter 8 
Machine Learning Methodologies, Wages 
Paid and the Most Relevant Predictors 

Abstract The agricultural sector worldwide has an economic dimension related to 
the remuneration of the production factors applied in the sector, an environmental 
contribution associated with the sustainability of rural places and a social dimension 
related to the employment creation and the consequent level of remuneration of the 
labour. The question here is about the level of wages paid in the agricultural sector 
across the European Union countries and about the main factors that may be taken into 
account to predict the level of these wages paid to agricultural workers. This research 
intends to select the models with better precision to predict the wages paid in the 
European Union agriculture and to suggest important predictors from the enormous 
number of indicators that may be identified in the farms. The findings obtained may 
be considered relevant support for the design of social and agricultural policies in 
the European framework. 

Keywords Artificial intelligence · Farm accountancy data network · European 
Union 

8.1 Introduction 

Agriculture is expected to absorb a small percentage of the total employment in 
developed countries. This is true, because, in these contexts, the farming sector is 
predictable to apply new agronomic practises (machinery, for example) and new 
technologies which allow to release of workers [1] to the other economic sectors, 
reducing the labour requirements [2]. 

In this way, agriculture is not an economic sector that contributes significantly to 
the levels of employment in economies more developed. Another question is about 
the level of the salaries paid on the farms. A relevant part of the workers who develop 
their activities in the agricultural sector are not qualified and this reality is reflected 
in the remuneration paid to this labour. In any case, there is already a problem of 
workforce scarcity for the diverse farming tasks in many situations [3], due to the 
increasing of old-age population [4].
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It is important to have a real perception of the levels of employment in the agri-
cultural sector and of the labour dynamics in related activities, where artificial intel-
ligence solutions may contribute significantly [5]. Particularly, to allow for accurate 
predictions of diverse variables related to these issues, including yield estimations 
of farming productions [6], to solve the limitations of human labour [7], specifically 
the shortage of young adults in the workforce [8], and to better manage the human 
resources [9]. 

The artificial intelligence techniques were taken into account to address challenges 
related to farming labour in the following contexts, for example: soil moisture predic-
tion [10]; meat characterisation [11]; harvesting in horticultural productions [12]; 
harvest time in tomato farms [13]; fruit identification [14]; rural e-commerce [15]; 
agro-food chains [16]; phenological characterisation of vegetable crops [17]; biotic 
stresses of grape seedlings [18]; aquaculture farm management [19]; plant produc-
tion structures [20]; identification of ginger leaf diseases [21]; picking activities [22] 
and soil hydraulic conductivity [23]. 

The scarcity of workers for agricultural activities is a reality in many contexts and 
smart farming solutions bring interesting alternatives [24], namely in the associated 
labour-intensive practises [25]. Artificial intelligence may contribute to improve the 
levels of farming productivity and solving the problems of labour availability, but 
requires specific skills to manage these new technologies [26]. This may reinforce 
current inequalities in the dynamics of the farming sector [27]. 

The specific conditions of the human capital have implications on the dynamics 
of the sectors, including agriculture [28]. Artificial intelligence solutions may rein-
troduce new concerns about human health and this requires special attention from 
the national and international institutions with decisions on labour legislation [29]. 

The perspectives presented previously seem to show that the studies reviewed are 
more focused on the contributions of the new technologies to address the farming 
labour scarcity and management than on the remuneration of employment. Following 
these highlights, this research intends to bring more insights into the models and the 
variables adjusted to predict the wages paid in the European Union farms. For that, 
data from the Farm Accountancy Data Network [30] were considered, as well as the 
procedures proposed by smart solutions [31] and the results found by Martinho [32]. 

8.2 Data Analysis 

The wages paid, on average over the period 2020–2021, were higher in the represen-
tative farms of European Union member states, such as Slovakia, Czechia, Denmark, 
Netherlands, Germany, Estonia, Sweden, France, Belgium, Spain, Finland, Luxem-
bourg, Hungary, Bulgaria and Latvia. Ireland, Romania, Croatia, Poland, Greece 
and Slovenia frameworks are where the wages paid were lower, on average, over the 
period taken into account.
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The results disaggregated at the agricultural region level and presented in 
Table 8.1, generally, confirm the contexts described before for the data aggregated 
for the European Union member states (Fig. 8.1). 

Table 8.1 Average values for 
the wages paid in the 
European Union farming 
regions, with data at the farm 
level, over the period 
2020–2021 

Member state Region Average 

Austria Austria 3386 

Belgium Vlaanderen 20,867 

Belgium Wallonie 4942 

Bulgaria Severen tsentralen 17,292 

Bulgaria Severoiztochen 19,335 

Bulgaria Severozapaden 15,170 

Bulgaria Yugoiztochen 13,466 

Bulgaria Yugozapaden 4170 

Bulgaria Yuzhen tsentralen 6260 

Croatia Jadranska Hrvatska 2849 

Croatia Kontinentalna Hrvatska 1674 

Cyprus Cyprus 4045 

Czechia Czechia 96,351 

Denmark Denmark 75,968 

Estonia Estonia 23,342 

Finland Etelä-Suomi 11,978 

Finland Pohjanmaa 15,521 

Finland Pohjois-Suomi 14,907 

Finland Sisä-Suomi 11,148 

France Alsace 16,255 

France Aquitaine 21,493 

France Auvergne 3645 

France Basse-Normandie 10,895 

France Bourgogne 22,912 

France Bretagne 22,336 

France Centre 12,059 

France Champagne-Ardenne 18,454 

France Corse 24,515 

France Franche-Comté 7678 

France Guadeloupe 9265 

France Haute-Normandie 16,484 

France Île-de-France 23,302 

France La Réunion 12,896

(continued)
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Table 8.1 (continued)
Member state Region Average

France Languedoc-Roussillon 21,509 

France Limousin 4896 

France Lorraine 7799 

France Midi-Pyrénées 8790 

France Nord-Pas-de-Calais 17,342 

France Pays de la Loire 21,830 

France Picardie 11,104 

France Poitou–Charentes 14,627 

France Provence-Alpes-Côte d’Azur 38,040 

France Rhône-Alpes 17,067 

Germany Baden-Württemberg 13,625 

Germany Bayern 9424 

Germany Brandenburg 208,967 

Germany Hessen 10,865 

Germany Mecklenburg-Vorpommern 171,144 

Germany Niedersachsen 23,138 

Germany Nordrhein-Westfalen 20,319 

Germany Rheinland-Pfalz 20,876 

Germany Saarland 10,139 

Germany Sachsen 192,063 

Germany Sachsen-Anhalt 144,769 

Germany Schleswig–Holstein/Hamburg 22,003 

Germany Thüringen 257,077 

Greece Ipiros-Peloponissos-Nissi Ioniou 1847 

Greece Makedonia-Thraki 1857 

Greece Sterea Ellas-Nissi Egaeou-Kriti 1982 

Greece Thessalia 1633 

Hungary Alföld 11,591 

Hungary Dunántúl 16,605 

Hungary Észak-Magyarország 9476 

Ireland Ireland 2662 

Italy Abruzzo 3708 

Italy Alto Adige 7846 

Italy Basilicata 6523 

Italy Calabria 6689 

Italy Campania 6308 

Italy Emilia-Romagna 10,278

(continued)
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Table 8.1 (continued)
Member state Region Average

Italy Friuli-Venezia Giulia 6125 

Italy Lazio 10,049 

Italy Liguria 5518 

Italy Lombardia 10,451 

Italy Marche 2192 

Italy Molise 4074 

Italy Piemonte 5641 

Italy Puglia 8035 

Italy Sardegna 3228 

Italy Sicilia 7624 

Italy Toscana 9690 

Italy Trentino 3901 

Italy Umbria 6282 

Italy Valle d’Aosta 8110 

Italy Veneto 8550 

Latvia Latvia 10,266 

Lithuania Lithuania 4595 

Luxembourg Luxembourg 12,848 

Netherlands The Netherlands 65,145 

Poland Malopolska i Pogórze 1003 

Poland Mazowsze i Podlasie 1061 

Poland Pomorze i Mazury 3845 

Poland Wielkopolska and Slask 3390 

Portugal Açores e Madeira 2194 

Portugal Alentejo e Algarve 10,139 

Portugal Norte e Centro 2636 

Portugal Ribatejo e Oeste 4114 

Romania Bucuresti-Ilfov 1885 

Romania Centru 2646 

Romania Nord-Est 2541 

Romania Nord-Vest 1935 

Romania Sud-Est 3590 

Romania Sud-Muntenia 2858 

Romania Sud-Vest-Oltenia 1332 

Romania Vest 2287 

Slovakia Slovakia 144,318

(continued)
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Table 8.1 (continued)
Member state Region Average

Slovenia Slovenia 426 

Spain Andalucía 14,918 

Spain Aragón 23,105 

Spain Asturias 2328 

Spain Canarias 48,317 

Spain Cantabria 1806 

Spain Castilla y León 9593 

Spain Castilla-La Mancha 14,059 

Spain Cataluña 18,288 

Spain Comunidad Valenciana 12,331 

Spain Extremadura 14,188 

Spain Galicia 2982 

Spain Islas Baleares 11,224 

Spain La Rioja 26,209 

Spain Madrid 11,963 

Spain Murcia 26,824 

Spain Navarra 8769 

Spain País Vasco 6199 

Sweden Län i norra Sverige 13,313 

Sweden Skogsoch mellanbygdslän 12,836 

Sweden Slättbyggdslän 26,291 

Note Bold corresponds to the highest values and italic to the lowest 
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Fig. 8.1 Average values for the wages paid in the European Union countries, with data at the farm 
level, over the period 2020–2021
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8.3 Core Results 

The most accurate models (for the training set) to predict the wages paid (on average 
over the period 2020–2021) are displayed in Table 8.2. These models are, for example, 
the following: generalised linear (enlarges the general linear model); linear (linear 
regression); Chi-squared Automatic Interaction Detection (CHAID); XGBoost linear 
(advanced application of a gradient boosting algorithm with a linear model as the 
reference model) and XGBoost tree (advanced application of a gradient boosting 
algorithm with a tree model as the reference model). 

The relationships between the observed values of the wage paid in the European 
Union agricultural regions and the predicted values for this variable, presented in 
Fig. 8.2, reveal the predictive pertinence of these models.

The most important predictors of the wage paid (on average over the period 2020– 
2021), in the representative farms of the European Union agricultural regions, are, 
in decreasing order, for example, the following (Table 8.3): forage crops (e/farm); 
economic size (e’000); farm net value added (e); total labour input (AWU); paid 
labour input (AWU) and net Investment on fixed assets (e).

Table 8.2 Models with the highest accuracy (the lowest relative error) for the wages paid in the 
European Union farming regions, with data at the farm level on average over the period 2020–2021 

Model Build time Correlation No. fields Relative error 

Generalised linear 1 1.000 177 0.000 

Linear 1 1.000 32 0.000 

CHAID 1 1.000 12 0.000 

XGBoost linear 1 0.999 177 0.002 

XGBoost tree 1 0.996 177 0.019 

C&R tree 1 0.968 27 0.065 

Random forest 1 0.976 177 0.072 

Random trees 1 0.935 177 0.135 

Linear-AS 1 0.968 177 0.805 

SVM 1 0.891 168 1.024 
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Fig. 8.2 Relationships between the observed values and the predicted ones for the wages paid in the 
European Union farming regions, with data at the farm level on average over the period 2020–2021
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Table 8.3 Importance of the 
predictors for the wages paid 
in the European Union 
farming regions, with data at 
the farm level on average over 
the period 2020–2021 

Nodes Importance 

Oil-seed crops (e/farm) 0.0089 

Rented UAA (ha) 0.0097 

Fertiliser N (q) 0.0103 

Cash flow/farm total capital (e) 0.0108 

Net investment on fixed assets (e) 0.0144 

Paid labour input (AWU) 0.0151 

Total labour input (AWU) 0.0170 

Farm net value added (e) 0.0327 

Economic size (e’000) 0.0334 

Forage crops (e/farm) 0.0458 

8.4 Discussion and Conclusions 

The social dimension of agriculture is unquestionable worldwide, namely as a source 
of employment creation, despite the modernisation of the sector and the consequent 
release of labour to other sectors. The farming sector appears as an alternative source 
of employment, in some circumstances, in times of economic crises and unemploy-
ment increases, especially in the other sectors. The agricultural sector has also an 
important contribution in less favoured regions, where the economic dynamics are 
weaker and the opportunities for employment are scarcer. Nonetheless, the implicit 
question in these frameworks is about the level of wages paid by the farmers to their 
workers. Some of the labour used in the farms is unskilled and in these cases, the 
wages paid are expected to be lower. Considering these perspectives, this research 
intended to identify models with the highest accuracy to predict the wages paid by 
the representative farms from the European Union countries and agricultural regions, 
taking into account microeconomic data from the Farm Accountancy Data Network 
with data at the farm level. This statistical information was assessed through machine 
learning approaches and following the procedures proposed by the new solutions. 

Digital smart approaches are expected to improve the efficiency of agricultural 
practises and processes and in this way increase farming profitability. These new 
contexts may contribute to pay better wages to agricultural workers and attracting 
more qualified labour. On the other hand, these alternative approaches may support 
the farmers to deal with the scarcity of labour for some of the farming tasks, partic-
ularly in cases where the old-age population increased and the young adults prefer 
other jobs. 

On average, over the period 2020–2021, the wages paid were higher in the farms 
of European Union countries such as Slovakia, Czechia, Denmark, Netherlands, 
Germany, Estonia, Sweden, France, Belgium, Spain, Finland, Luxembourg, Hungary, 
Bulgaria and Latvia. The wages paid had the lowest values in the following member 
states: Ireland; Romania; Croatia; Poland; Greece and Slovenia.
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Generalised linear, linear, CHAID, XGBoost linear and XGBoost tree are between 
the most accurate models to predict the wages paid in the European Union represen-
tative farms. Forage crops, economic size, farm net value added, total labour input, 
paid labour input and net Investment on fixed assets are the most important indicators 
to predict the wages paid. 

In terms of practical implications, the economic size of the farms, economic results 
(such as farm net value added) and the level of investment are interrelated with the 
wages paid in the farms of the European Union. For policy recommendation, it would 
be important to better interlink the policy instruments with the agricultural workers’ 
salaries. In future research, it could be important to assess how the sustainability 
indicators are interrelated with the wages paid in the European Union agricultural 
frameworks. 
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Chapter 9 
Predictors of Interest Paid 
in the European Union’s Agricultural 
Sector 

Abstract In general, the interest paid does not assume a relevant dimension in the 
overall costs present in the European Union farms. In fact, considering the agri-
cultural sector characteristics, the Common Agricultural Policy measures and the 
dynamics of the banking sector in the European Union, the interest paid is a small 
part of the costs supported by the farmers. In any case, banking loans are fundamental 
for farming investments and in this way, it is important to understand their respective 
context. Considering these motivations, this research proposes to consider artificial 
intelligence approaches and data from the Farm Accountancy Data Network to iden-
tify the models with higher accuracy and the most important indicators to predict the 
interest paid by the farms of the European Union. The contributions of this research 
bring relevant insights into the dynamics of the bank loans for the European Union 
agricultural sector and the respective measures inside the Common Agricultural 
Policy framework. 

Keywords Machine learning models · European Union statistics · Common 
agricultural policy 

9.1 Introduction 

The conditions of bank credit impact the dynamics and performance of any 
economic sector, particularly in the rural regions [1], and specifically agriculture [2]. 
These scenarios occur because of the requirements associated with the investment 
frameworks and the working capital management. 

In addition, the complements of capital needed to use the financial support 
provided by the national governments and international institutions justify the impor-
tance of credit for the economic agents. Nonetheless, the levels of interest paid by 
the European Union farmers, for example, seem to represent a small part of the total 
farming costs [3]. 

For these contexts and others related to the agricultural sector, the artificial intelli-
gence methodologies represent important solutions [4], namely to predict situations
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of financial stress [5], modelling credit risks [6], assess new credit demand [7] and 
analyse the causes of farming credit demand [8]. However, agriculture 4.0 brings 
also new credit risks [9]. Agricultural cooperatives have a crucial role in supporting 
farmers in their diverse challenges and tasks [10], including the need for credit. The 
same happens with the credit cooperatives for the financial inclusion of the less 
favoured population [11]. 

A relevant part of the studies carried out considering artificial intelligence in 
agriculture is related to sustainability, namely the environmental component and 
the respective needs of carbon sequestration [12] to mitigate the implications of the 
global warming associated with climate change. The new conditions created by these 
changes in the climate create additional risks in agriculture [13] and claim for new 
solutions of credit [14]. 

Other issues addressed by the researchers, based on artificial intelligence 
approaches, are, for example, the following: agricultural risks and the respective 
insurance contexts [15]; agroecosystem research [16] and models [17] and disease 
identification [18]. The credit programmes created, in certain conditions, to support 
the farmers [19] need, in some circumstances, to be complemented with other poli-
cies [20]. The complementarity between programmes and policies is fundamental 
for effective rural development [21]. 

Following the scenario presented previously, this research proposes to identify the 
main predictors and the respective models that support the explanation of the interest 
paid in the European Union agriculture, taking into account data at the farm level [3] 
and following the procedures proposed by the software IBM SPSS Modeller [22]. 

9.2 Data Investigation 

The interest paid (on average over the period 2020–2021) was higher in the represen-
tative farms of the following European Union member states (Fig. 9.1): Denmark; 
Netherlands; Slovakia; Sweden; Czechia; Luxembourg; Germany; Belgium; Finland; 
Estonia; France; Latvia and Austria. These costs are relatively and significantly 
higher in Denmark and the Netherlands.

Table 9.1 with the microeconomic data disaggregated at the regional level confirms 
that Denmark, some German agricultural regions, Netherlands and Slovakia, for 
example, are the European Union frameworks where the representative farms have 
the highest averages (2020–2021) for the interest paid indicator. On the other hand, 
Greece, for instance, is where the representative farms present the lowest averages for 
the interest and financial costs paid on loans obtained for investments, and financial 
costs on debts.
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Fig. 9.1 Average values for the interest paid in the European Union countries, with data at the farm 
level, over the period 2020–2021

Table 9.1 Average values for 
the interest paid in the 
European Union farming 
regions, with data at the farm 
level, over the period 
2020–2021 

Member state Region Average 

Austria Austria 1382 

Belgium Vlaanderen 5327 

Belgium Wallonie 4072 

Bulgaria Severen tsentralen 1155 

Bulgaria Severoiztochen 1381 

Bulgaria Severozapaden 1983 

Bulgaria Yugoiztochen 1458 

Bulgaria Yugozapaden 641 

Bulgaria Yuzhen tsentralen 387 

Croatia Jadranska Hrvatska 60 

Croatia Kontinentalna Hrvatska 172 

Cyprus Cyprus 120 

Czechia Czechia 6072 

Denmark Denmark 39,148 

Estonia Estonia 3601 

Finland Etelä-Suomi 3306 

Finland Pohjanmaa 5178 

Finland Pohjois-Suomi 6611 

Finland Sisä-Suomi 4911 

France Alsace 1966

(continued)
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Table 9.1 (continued)
Member state Region Average

France Aquitaine 2628 

France Auvergne 2253 

France Basse-Normandie 5285 

France Bourgogne 3453 

France Bretagne 5423 

France Centre 3264 

France Champagne-Ardenne 2685 

France Corse 928 

France Franche-Comté 3331 

France Guadeloupe 421 

France Haute-Normandie 4485 

France Île-de-France 2899 

France La Réunion 1254 

France Languedoc-Roussillon 1378 

France Limousin 1955 

France Lorraine 3356 

France Midi-Pyrénées 1886 

France Nord-Pas-de-Calais 3875 

France Pays de la Loire 4868 

France Picardie 3162 

France Poitou–Charentes 3587 

France Provence-Alpes-Côte d’Azur 1107 

France Rhône-Alpes 2040 

Germany Baden-Württemberg 2194 

Germany Bayern 2422 

Germany Brandenburg 24,893 

Germany Hessen 3358 

Germany Mecklenburg-Vorpommern 28,440 

Germany Niedersachsen 6223 

Germany Nordrhein-Westfalen 3737 

Germany Rheinland-Pfalz 2377 

Germany Saarland 2398 

Germany Sachsen 12,544 

Germany Sachsen-Anhalt 16,615 

Germany Schleswig–Holstein/Hamburg 7826 

Germany Thüringen 18,109

(continued)
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Table 9.1 (continued)
Member state Region Average

Greece Ipiros-Peloponissos-Nissi Ioniou 0 

Greece Makedonia-Thraki 3 

Greece Sterea Ellas-Nissi Egaeou-Kriti 2 

Greece Thessalia 0 

Hungary Alföld 420 

Hungary Dunántúl 901 

Hungary Észak-Magyarország 251 

Ireland Ireland 1235 

Italy Abruzzo 8 

Italy Alto Adige 1127 

Italy Basilicata 18 

Italy Calabria 0 

Italy Campania 0 

Italy Emilia-Romagna 83 

Italy Friuli-Venezia Giulia 626 

Italy Lazio 124 

Italy Liguria 7 

Italy Lombardia 3 

Italy Marche 44 

Italy Molise 31 

Italy Piemonte 198 

Italy Puglia 29 

Italy Sardegna 91 

Italy Sicilia 64 

Italy Toscana 351 

Italy Trentino 135 

Italy Umbria 66 

Italy Valle d’Aosta 389 

Italy Veneto 601 

Latvia Latvia 1688 

Lithuania Lithuania 660 

Luxembourg Luxembourg 5767 

Netherlands The Netherlands 19,733 

Poland Malopolska i Pogórze 129 

Poland Mazowsze i Podlasie 250 

Poland Pomorze i Mazury 724 

Poland Wielkopolska and Slask 554

(continued)
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Table 9.1 (continued)
Member state Region Average

Portugal Açores e Madeira 128 

Portugal Alentejo e Algarve 87 

Portugal Norte e Centro 42 

Portugal Ribatejo e Oeste 255 

Romania Bucuresti-Ilfov 0 

Romania Centru 35 

Romania Nord-Est 65 

Romania Nord-Vest 42 

Romania Sud-Est 290 

Romania Sud-Muntenia 201 

Romania Sud-Vest-Oltenia 224 

Romania Vest 114 

Slovakia Slovakia 8776 

Slovenia Slovenia 350 

Spain Andalucía 78 

Spain Aragón 1203 

Spain Asturias 209 

Spain Canarias 235 

Spain Cantabria 79 

Spain Castilla y León 442 

Spain Castilla-La Mancha 274 

Spain Cataluña 840 

Spain Comunidad Valenciana 127 

Spain Extremadura 47 

Spain Galicia 109 

Spain Islas Baleares 172 

Spain La Rioja 477 

Spain Madrid 27 

Spain Murcia 274 

Spain Navarra 978 

Spain País Vasco 427 

Sweden Län i norra Sverige 3361 

Sweden Skogsoch mellanbygdslän 5291 

Sweden Slättbyggdslän 7001 

Note Bold corresponds to the highest values and italic to the lowest
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9.3 Core Findings 

Tables 9.2 and 9.3 present the most accurate models, to predict the interest paid 
averages in the European Union farming regions, considering, respectively, 50/50 
and 70/30 for the training set/testing set. The models displayed in the two figures are 
similar, however, the relative errors are different. The differences in the predictive 
capacity of the frameworks highlighted by these two figures are also exhibited in 
Figs. 9.2 and 9.3. In any case, the results presented in Fig. 9.3 are a consequence of 
the linear support vector machine (LSVM) model, for example, such as highlighting 
the relative error. 

Table 9.2 Models with the highest accuracy (the lowest relative error, considering, respectively, 
50/50 for the training set/testing set) for the interest paid in the European Union farming regions, 
with data at the farm level on average over the period 2020–2021 

Model Build time Correlation No. fields Relative error 

CHAID 1 1.000 14 0.000 

Linear 1 1.000 25 0.001 

XGBoost linear 1 0.997 177 0.006 

XGBoost tree 1 0.995 177 0.028 

C&R tree 1 0.929 30 0.138 

Random forest 1 0.955 177 0.157 

Random trees 1 0.919 177 0.161 

Regression 1 0.697 6 0.549 

SVM 1 0.943 168 1.147 

Linear-AS 1 0.806 177 812.752 

Table 9.3 Models with the highest accuracy (the lowest relative error, considering, respectively, 
70/30 for the training set/testing set) for the interest paid in the European Union farming regions, 
with data at the farm level on average over the period 2020–2021 

Model Build time Correlation No. fields Relative error 

CHAID 3 1.000 22 0.000 

Linear 3 0.998 30 0.003 

XGBoost linear 3 0.997 177 0.007 

XGBoost tree 3 0.995 177 0.020 

Neural net 3 0.978 168 0.048 

C&R tree 3 0.979 22 0.049 

Random trees 3 0.963 177 0.080 

SVM 3 0.901 168 1.123 

Linear-AS 3 0.472 177 2.138 

LSVM 3 − 0.131 177 743,000,000,000.000
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Fig. 9.2 Relationships between the observed values and the predicted ones for the interest paid in 
the European Union farming regions (considering, respectively, 50/50 for the training set/testing 
set), with data at the farm level on average over the period 2020–2021
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Fig. 9.3 Relationships between the observed values and the predicted ones for the interest paid in 
the European Union farming regions (considering, respectively, 70/30 for the training set/testing 
set), with data at the farm level on average over the period 2020–2021
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Table 9.4 Importance of the predictors for the interest paid in the European Union farming regions 
(considering, respectively, 70/30 for the training set/testing set), with data at the farm level on 
average over the period 2020–2021 

Nodes Importance 

Total support for rural development (e) 0.0286 

Total assets (e) 0.0298 

Net investment on fixed assets (e) 0.0307 

Total current assets (e) 0.0364 

Cash flow 2 (e) 0.0478 

Intangible assets (e/farm) 0.0605 

Vegetables and flowers (e/farm) 0.0671 

Land, permanent crops and quotas (e) 0.0883 

Total inputs (e) 0.1050 

Gross investment on fixed assets (e) 0.1074 

Nonetheless, the results presented in Table 9.4 were obtained considering that the 
partition node is set to have 70% train and 30% test, because with a partition node 
of 50/50 for these sets, the models did not identify the most important predictors. 

Gross Investment on fixed assets (e), land, permanent crops & quotas (e), intan-
gible assets (e/farm), net Investment on fixed assets (e) and total assets (e) are  
among the most important predictors of the interest paid in the representative farms 
of the European Union agricultural regions (Table 9.4). 

To better understand the specific reality of the interest paid in the European Union 
countries, Table 9.5 presents the relative importance (for the year 2021) of these costs 
on the total external factors and the relative relevance of the total external factors 
costs on the total input. The interest paid represents, on average, only about 10% of 
the total external factors and these costs represent about 17% of the total inputs. In 
addition, the variability of the interest paid, across the European Union countries, 
is greater than, for example, that of the total external factors, such as revealing the 
results for the coefficient of variation.

9.4 Discussion and Conclusions 

Interest paid is not among the costs that, in general, motivate more concerns for the 
farmers in the European Union contexts, considering their reduced relative impor-
tance in the total farming costs, including in the costs with external factors, and the 
diversity of importance in the diverse European frameworks. This statement does not 
ignore, however, the relevance of these costs in some agricultural contexts and the 
importance of the bank credits to promote farming investments and the performance 
of agriculture worldwide, particularly in the European Union sector. Considering 
these motivations, this research intended to bring more insights into the interest paid
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Table 9.5 Relative importance (%) of the interest paid on the total costs 

Member state Total external factors (e)/total 
inputs (e) 

Interest paid (e)/total external 
factors (e) 

Belgium 11.176 13.902 

Bulgaria 33.945 3.325 

Czechia 25.322 4.683 

Denmark 23.269 24.995 

Germany 18.443 8.072 

Estonia 18.724 10.427 

Ireland 9.175 17.263 

Greece 15.082 0.000 

Spain 23.102 1.531 

France 15.549 8.605 

Croatia 10.822 4.712 

Italy 18.832 1.375 

Cyprus 12.098 2.040 

Latvia 16.154 11.033 

Lithuania 14.512 8.118 

Luxembourg 11.504 16.586 

Hungary 19.091 3.311 

Netherlands 17.579 18.617 

Austria 9.000 15.645 

Poland 8.298 11.236 

Portugal 19.447 1.364 

Romania 18.744 2.574 

Slovenia 3.625 28.654 

Slovakia 24.954 4.291 

Finland 12.443 16.959 

Sweden 17.715 12.384 

Average 16.485 9.681 

Standard deviation 6.486 7.671 

Coefficient of variation 0.393 0.792

by the European Union farmers’ prediction and in this way create conditions that 
may support the different stakeholders to find better solutions for the interest paid 
management, working capital management and banking credit access. For that artifi-
cial intelligence approaches were considered following the procedures suggested by 
the software IBM SPSS Modeller and taking into account microeconomic statistical 
information from the Farm Accountancy Data Network, on average over the period 
2020–2021.
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The bank credit conditions affect the dynamics of the economic activities in the 
rural areas, because of the impacts on the investment initiatives (some of them associ-
ated with the financial supports created in the framework of the Common Agricultural 
Policy) and working capital management. Smart solutions may bring relevant contri-
butions to these contexts, particularly in predicting frameworks of financial needs 
and credit risks. Nonetheless, it is expected that these new approaches bring other 
credit risks and challenges. 

Denmark, Netherlands, Slovakia, Sweden, Czechia, Luxembourg, Germany, and 
Belgium are examples where the farms present the greatest values for the interest 
paid in the European Union context. These costs are particularly higher in the farms 
of Denmark and the Netherlands. On the other hand, Greece is an example where 
the levels of interest paid are lower. 

With the machine learning approaches applied, some difficulties were found in 
identifying accurate models and important predictors of the interest paid in the Euro-
pean Union farming sector. In any case, with these limitations, the most relevant 
variables to predict the interest paid in the European Union farms were the following: 
Gross Investment on fixed assets; land, permanent crops and quotas; intangible assets; 
net Investment on fixed assets and total assets. 

In terms of practical implications, highlighting the importance of variables related 
to the investment and the assets to predict the level of interest paid. In terms of 
policy recommendation, it is suggested to improve the interlink between the policy 
instruments from the Common Agricultural Policy framework with the interest paid, 
because none of the policy measures with statistical information in the database 
used has the importance to predict the costs associated with the banking credit. For 
future studies, it is suggested to identify the real relationships between the important 
predictors and the target (interest paid). 
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Chapter 10 
Predictive Artificial Intelligence 
Approaches of Labour Use 
in the Farming Sector 

Abstract It is not expected that the agricultural sector absorbs a great part of the 
employment in developed economies with a dynamic industry and services sector. 
When the percentage of employment in agriculture is high, this may be a sign of the 
weak performance of the farms. Every country wants to have a developed farming 
sector to not compromise the dynamics and performance of the economy. In any 
case, agricultural employment plays a fundamental role, particularly in rural spaces 
and in contexts of temporary crises in the remaining economy. Taking into account 
these motivations, this chapter aims to highlight the main approaches and variables 
that may be considered to predict labour use in the European Union farms. To achieve 
these aims, European Union agricultural statistics were considered, as well as models 
based on the new technologies associated with the digital transition worldwide. The 
results found may provide pertinent suggestions for a more sustainable farming 
sector, where the social contributions may be improved. 

Keywords Accuracy · European Union farm accountancy data network ·
Agricultural employment 

10.1 Introduction 

Artificial intelligence, economic sectors, including agriculture, and employment are 
combinations with several dimensions [1], associated with the fourth industrial revo-
lution [2], some positive and others undesirable [3]. In fact, the innovative approaches 
open new potentialities for the different domains of society [4, 5] and particularly 
for the agro-food sectors [6], through smart solutions [7]. 

Some of the opportunities shaped are related to the possibility of increasing the 
efficiency of the farms [8], improving productivity [9] and mitigating environmental 
impacts [10]. The smart approaches may bring relevant added value for the sustain-
ability of the economic development [11] and they are the hope to deal with the 
increased demand for food without additional environmental consequences.
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The farming sector has an important social contribution creating employment for 
many people [12] worldwide [13], however, the technological changes may reduce 
the human labour in the farming sector and create new difficulties for the health of 
the agricultural workforce, at physical and psychological level. 

The new technologies require additional competencies and this may create new 
kinds of conflicts and stress. Another consequence may the social conflicts, due to the 
changes in the employment structure [14], and the emergence of questions associated 
with social ethics [15]. In any case, it is expected also that artificial intelligence create 
new jobs [16]. 

The question here is to understand if the net employment will increase, or decrease, 
with the digital transformation. In other words, it will be important in future research 
to assess whether the employment created by the smart solutions is greater, or less, 
than that destroyed in the economic activities. 

There is a long discussion to be carried out about the relationships between human 
labour and digital solutions in agriculture [17], but the complementarity among the 
workforce and robots, for example, is a possibility for the future of crop and livestock 
activities in the farms [18]. 

From this literature survey, it seems pertinent to bring more insights about the 
most important variables and adjusted models to predict the farming labour in the 
European Union farms, using data from the European databases with data at the farm 
level [19], consider the procedures proposed by approaches that take into account 
artificial intelligence methodologies [20] and following the findings of Martinho 
[21]. 

10.2 Data Assessment 

The representative farms with the highest labour use (on average over the period 
2019–2020) belong to European Union countries, such as Slovakia, Czechia, Nether-
lands, Bulgaria, Germany, Belgium, Denmark, Estonia, Latvia, Romania, Hungary, 
Luxembourg, Spain, Poland and France (Fig. 10.1). These results are, in part, 
confirmed, with the results presented in Table 10.1 for the statistical information 
obtained from the Farm Accountancy Data Network for the representative farms of 
the European Union agricultural regions. These microeconomic data were obtained 
considering harmonised bookkeeping principles.
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Fig. 10.1 Average values for labour use in the European Union countries, with data at the farm 
level, over the period 2019–2020

10.3 Results Revealed 

Table 10.2 displays the models with the highest accuracy (for the training set) to 
predict labour use (on average over the period 2019–2020). These accurate models 
are the following: generalised linear (enlarges the general linear model); generalised 
linear engine (GLE); linear-AS (linear regression); linear (linear regression); Chi-
squared Automatic Interaction Detection (CHAID); XGBoost linear (advanced appli-
cation of a gradient boosting algorithm with a linear model as the reference model); 
XGBoost tree (advanced application of a gradient boosting algorithm with a tree 
model as the reference model); random trees (multiple decision trees); random forest 
(algorithm with a tree model as the reference) and support vector machine (SVM).

Figure 10.2, for the relationships among the observed values of the labour use 
(in the farms of the European Union agricultural regions) averages (over the period 
2019–2020) and those predicted, confirms the predictive relevance of these models.

The most relevant predictors of labour use in the European Union agricultural 
regions are, respectively, the following (Table 10.3): total labour input (AWU); paid 
labour Input (h); fertiliser P2O5 (q); oil-seed crops (e/farm); economic size (e’000); 
unpaid labour input (h); other output (e/farm); single area payment (e); machinery 
and building current costs (e) and fertiliser N (q). Economic size, for example, may 
be considered by the stakeholders to predict the labour use in the European Union 
farming sector.
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Table 10.1 Average values for the labour use in the European Union farming regions, with data at 
the farm level, over the period 2019–2020 

Member state Region Average 

Austria Austria 3326 

Belgium Vlaanderen 5495 

Belgium Wallonie 4017 

Bulgaria Severen tsentralen 6643 

Bulgaria Severoiztochen 6638 

Bulgaria Severozapaden 6089 

Bulgaria Yugoiztochen 5892 

Bulgaria Yugozapaden 4367 

Bulgaria Yuzhen tsentralen 4695 

Croatia Jadranska Hrvatska 3390 

Croatia Kontinentalna Hrvatska 2612 

Cyprus Cyprus 3125 

Czechia Czechia 11,885 

Denmark Denmark 4386 

Estonia Estonia 4166 

Finland Etelä-Suomi 2570 

Finland Pohjanmaa 2864 

Finland Pohjois-Suomi 3932 

Finland Sisä-Suomi 3380 

France Alsace 3286 

France Aquitaine 3689 

France Auvergne 2615 

France Basse-Normandie 3181 

France Bourgogne 3835 

France Bretagne 3816 

France Centre 2987 

France Champagne-Ardenne 3026 

France Corse 3835 

France Franche-Comté 3204 

France Guadeloupe 2514 

France Haute-Normandie 3293 

France Île-de-France 3494 

France La Réunion 3056 

France Languedoc-Roussillon 3672 

France Limousin 2713 

France Lorraine 2912

(continued)



10.3 Results Revealed 129

Table 10.1 (continued)

Member state Region Average

France Midi-Pyrénées 2728 

France Nord-Pas-de-Calais 3537 

France Pays de la Loire 4103 

France Picardie 2927 

France Poitou-Charentes 3083 

France Provence-Alpes-Côte d’Azur 5133 

France Rhône-Alpes 3669 

Germany Baden-Württemberg 4446 

Germany Bayern 3827 

Germany Brandenburg 15,065 

Germany Hessen 3814 

Germany Mecklenburg-Vorpommern 9931 

Germany Niedersachsen 4761 

Germany Nordrhein-Westfalen 4361 

Germany Rheinland-Pfalz 5599 

Germany Saarland 3860 

Germany Sachsen 13,650 

Germany Sachsen-Anhalt 11,488 

Germany Schleswig-Holstein/Hamburg 4831 

Germany Thüringen 16,008 

Greece Ipiros-Peloponissos-Nissi Ioniou 2285 

Greece Makedonia-Thraki 2488 

Greece Sterea Ellas-Nissi Egaeou-Kriti 2755 

Greece Thessalia 2595 

Hungary Alföld 3424 

Hungary Dunántúl 4233 

Hungary Észak-Magyarország 3472 

Ireland Ireland 2397 

Italy Abruzzo 2869 

Italy Alto Adige 3465 

Italy Basilicata 3611 

Italy Calabria 2904 

Italy Campania 3034 

Italy Emilia-Romagna 3464 

Italy Friuli-Venezia Giulia 3463

(continued)
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Table 10.1 (continued)

Member state Region Average

Italy Lazio 3400 

Italy Liguria 2958 

Italy Lombardia 3642 

Italy Marche 2783 

Italy Molise 2998 

Italy Piemonte 3704 

Italy Puglia 2623 

Italy Sardegna 2787 

Italy Sicilia 2433 

Italy Toscana 3753 

Italy Trentino 2567 

Italy Umbria 2811 

Italy Valle d’Aosta 4660 

Italy Veneto 3354 

Latvia Latvia 3749 

Lithuania Lithuania 3359 

Luxembourg Luxembourg 3615 

Netherlands The Netherlands 6973 

Poland Malopolska i Pogórze 3224 

Poland Mazowsze i Podlasie 3389 

Poland Pomorze i Mazury 3713 

Poland Wielkopolska and Slask 3571 

Portugal Açores e Madeira 2230 

Portugal Alentejo e Algarve 3409 

Portugal Norte e Centro 2812 

Portugal Ribatejo e Oeste 2985 

Romania Bucuresti-Ilfov 4115 

Romania Centru 3999 

Romania Nord-Est 3339 

Romania Nord-Vest 3651 

Romania Sud-Est 3942 

Romania Sud-Muntenia 3230 

Romania Sud-Vest-Oltenia 4013 

Romania Vest 3630 

Slovakia Slovakia 17,666 

Slovenia Slovenia 2184 

Spain Andalucía 3352

(continued)
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Table 10.1 (continued)

Member state Region Average

Spain Aragón 3548 

Spain Asturias 3924 

Spain Canarias 8220 

Spain Cantabria 3068 

Spain Castilla y León 2902 

Spain Castilla-La Mancha 3930 

Spain Cataluña 3822 

Spain Comunidad Valenciana 2362 

Spain Extremadura 4627 

Spain Galicia 2556 

Spain Islas Baleares 3348 

Spain La Rioja 3568 

Spain Madrid 4822 

Spain Murcia 4793 

Spain Navarra 2369 

Spain País Vasco 3206 

Sweden Län i norra Sverige 3280 

Sweden Skogsoch mellanbygdslän 3098 

Sweden Slättbyggdslän 3141 

Note Bold corresponds to the highest values and italic to the lowest

Table 10.2 Models with the highest accuracy (the lowest relative error) for the labour use in the 
European Union farming regions, with data at the farm level on average over the period 2019–2020 

Model Build time Correlation No. fields Relative error 

Generalised linear 1 1.000 177 0.000 

Generalised linear engine 1 1.000 177 0.000 

Linear-AS 1 1.000 177 0.000 

Linear 1 1.000 26 0.000 

CHAID 1 1.000 12 0.001 

XGBoost linear 1 0.999 177 0.003 

XGBoost tree 1 0.997 177 0.018 

Random trees 1 0.970 177 0.066 

Random forest 1 0.965 177 0.194 

SVM 1 0.954 170 1.046
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Fig. 10.2 Relationships between the observed values and the predicted ones for the labour use 
in the European Union farming regions, with data at the farm level on average over the period 
2019–2020
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Table 10.3 Importance of 
the predictors for the labour 
use in the European Union 
farming regions, with data at 
the farm level on average over 
the period 2019–2020 

Nodes Importance 

Fertiliser N (q) 0.0064 

Machinery and building current costs (e) 0.0065 

Single area payment (e) 0.0067 

Other output (e/farm) 0.0072 

Unpaid labour input (h) 0.0073 

Economic size (e’000) 0.0074 

Oil-seed crops (e/farm) 0.0089 

Fertiliser P2O5 (q) 0.0299 

Paid labour input (h) 0.0361 

Total labour input (AWU) 0.0590 

10.4 Discussion and Conclusions 

The labour use in the agricultural sector, in general, has undergone several changes 
over the last decades, due to the mechanisation of the sector, the use of chemical prod-
ucts for fertilisation and crop protection practises, and the transformation in societies 
and economies. In fact, the economic changes verified worldwide have promoted 
rural exodus, with the desertification of the rural areas, and the consequent agri-
cultural abandonment, and urban congestion (with implications on the social urban 
organisations and environmental pressures, because of the pollution). It is expected 
that the new technologies open new opportunities for labour use management in 
the different economic sectors, including in agriculture, and create new challenges. 
From this perspective, this chapter intended to identify accurate models to predict the 
labour use in the farms of the European Union countries and agricultural regions. To 
achieve these objectives, artificial intelligence approaches were considered based on 
new solutions and statistical information from the Farm Accountancy Data Network 
was taken into account. 

It is expected that the new smart solutions may be complementary to human 
labour in agriculture, supporting several stakeholders to find solutions to deal with the 
scarcity of the workforce. In any case, the discussion about these topics is not unani-
mous, because in some contexts digital technologies may solve some needs of human 
labour in the agricultural sector, but in other frameworks, these new approaches may 
substitute the human workforce and create new problems related to the health of the 
workers. 

On average, over the period 2019–2020, Slovakia, Czechia, Netherlands, Bulgaria, 
Germany, Belgium, Denmark and Estonia are examples where the European Union 
farms present the highest values for human labour use. These contexts are, in 
general, verified for the microeconomic data at the country level and disaggregated 
by agricultural region. 

Generalised linear, GLE, linear-AS, linear, CHAID, XGBoost linear, XGBoost 
tree, random trees, random forest, and SVM are the most accurate models to predict
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labour use in the European Union representative farms. Total labour input, paid labour 
input, fertiliser P2O5, oil-seed crops, economic size, unpaid labour input, other output, 
single area payment, machinery and building current costs, and fertiliser N. 

In terms of practical implications, the findings here obtained highlight the impor-
tance of the economic size of the European Union farms to predict labour use, as well 
as indicators related to some specific productions and the single area payment. For 
policy recommendation, it is suggested to analyse the relationships between labour 
use and the single payment area and why not with other policy instruments. In future 
research, it could be important to assess the effect of the time in these findings, 
namely considering panel data and/or lagged variables one or more years. 
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