
FederatedMesh: Collaborative Federated
Learning for Medical Data Sharing

in Mesh Networks

Lamir Shkurti1,2, Mennan Selimi2(B), and Adrian Besimi1

1 Faculty of Contemporary Sciences and Technologies, South East European
University, Tetovo, North Macedonia
{ls29773,a.besimi}@seeu.edu.mk

2 Max van der Stoel Institute, South East European University,
Tetovo, North Macedonia
m.selimi@seeu.edu.mk

Abstract. Edge computing is a paradigm that involves performing local
processing on lightweight devices at the edge of networks to improve
response times and reduce bandwidth consumption. While machine
learning (ML) models can run on smaller computing devices at the edge,
training ML models presents challenges for low-capacity devices. This
paper aimed to evaluate the performance of Federated Learning (FL)
- a distributed ML framework, when training a medical dataset using
Raspberry Pi devices as client nodes. The testing accuracy, CPU usage,
RAM memory usage and network performance were measured for dif-
ferent number of clients and epochs. The results showed that increasing
the number of devices generally improved the testing accuracy, with the
greatest improvement observed in the earlier epochs. However, increasing
the number of devices also increased the CPU usage, with a significant
increase observed in the later epochs. Additionally, the RAM memory
usage increased slightly as the number of clients and epochs increased.
The findings suggest that FL can be an effective way to train medical
models using distributed devices, but careful consideration must be given
to the trade-off between accuracy and computational resources.

Keywords: edge computing · federated learning · mesh networks

1 Introduction

Edge computing complements cloud computing by utilizing local processing on
lightweight computing devices, such as IoT gateways and wearable devices, at the
edge of networks where data is produced. Local processing on these edge devices
can improve response times of cloud services and reduce bandwidth consumption
by transmitting less data to the cloud [1,2]. Edge computing is already opera-
tional in various industrial and consumer-oriented scenarios and some machine
learning (ML) and artificial intelligence tasks can also be moved from the cloud
to the edge.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024

Published by Springer Nature Switzerland AG 2024. All Rights Reserved

H. Gao et al. (Eds.): CollaborateCom 2023, LNICST 563, pp. 154–169, 2024.

https://doi.org/10.1007/978-3-031-54531-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54531-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-54531-3_9


FederatedMesh 155

Fig. 1. Resource-constrained devices: Raspberry Pi, Arduino - tinyML and some wear-
able and IoT devices.

Running ML models on smaller computing devices at the edge is becoming
increasingly popular. Even tiny microcontroller boards are now capable of per-
forming simple tasks with trained models [3]. However, training ML models is
more computationally demanding and presents challenges for devices with low
capacity. While using GPUs (Graphics Processing Units) instead of CPUs (Cen-
tral Processing Units) can provide better performance, GPUs are not always
available on devices like low capacity PCs (mini PCs) or single-board-computers
(SBCs). As a result, CPUs have to handle a high load during training, which
takes significantly more time compared to high-end devices. This means that
training process takes significantly longer on low-capacity devices, making it
unsuitable for applications with time constraints.

With the popularization of wearable and mobile devices, intelligent learn-
ing applications have been prominently used by many consumers. These devices
collect user information about daily activities, providing valuable insights to
enhance user lifestyle. The success of smart health applications largely relies on
the ability to train ML models on large quantities of user data collected from
wearables [4,5]. However, due privacy concerns, security issues, communication
overhead, processing delay etc., traditional ML algorithms face challenges that
work in a centralized fashion where all the available data is accumulated before-
hand. For instance, in the case of wearable systems, privacy remains the key
obstacle to implement data analytics algorithms. Most of the time users are
sceptical in allowing their personal data to be analysed by the ML algorithms
on cloud. Figure 1 depicts several low-constrained devices capable of performing
ML functions including Raspberry Pi’s, Arduino boards, tinyML devices etc.

Federated Learning (FL) is a paradigm for collaboratively training ML mod-
els on computation, storage, energy and bandwidth limited mobile devices in
a distributed manner by addressing privacy concerns and reducing communica-
tion overhead and processing delay [6,7]. In FL, each node has its own training



156 L. Shkurti et al.

data to train a local model, and the subsequent aggregation of the local models
leads to a new global model. Wireless mesh networks can be used to support
FL on these edge devices, but this can be challenging due to several factors [8].
These challenges include limited resources on low-capacity devices, unreliable
network connectivity, device heterogeneity and security and privacy concerns.
These challenges can make it difficult to coordinate and aggregate model updates
from devices in a FL setting, and to maintain consistent communication between
devices [9,9].

The main contributions of the paper is demonstration of FL in a real resource-
constrained wireless mesh environment with dynamic, heterogeneous and inter-
mittent resource availability. To do this, we assess the possibility of implementing
FL on 8 real IoT devices that have limited network and hardware resources and
are connected in a wireless mesh network. Therefore, our goal with this con-
tribution is to offer fresh insights that can help make the process of FL more
doable on everyday devices that have limited resources. Our aim is to make FL
work better on these devices that people commonly use. Further, we present
practical observations on the use of resources (CPU, memory, network) and sug-
gestions on the optimal training configurations that must be employed to ensure
a satisfactory “training experience” on these low-capacity devices.

The rest of the paper is organized as follows. In Sect. 2 we describe the
FL applications used and analyse the state-of-the-art work. Section 3 presents
the FL model used. Section 4 provides details about how we set up our experi-
ments, the specific experiments we conducted and the results we achieved. Mov-
ing on, Sect. 5 wraps up our findings and conclusions, also suggesting directions
for potential future research.

2 Background and Related Work

In this section, initially we provide the background for our work and then present
the related work.

2.1 FL Applications and Dataset

Federated Learning (FL) is predominantly utilized in situations that demand a
significant emphasis on safeguarding privacy and optimizing resource allocation.
The healthcare and medical sector is a major field where FL finds extensive
applications. This section of the paper outlines the medical datasets used in the
study. The dataset is selected from the healthcare applications mentioned below.

Healthcare Industry: Many hospitals, AI companies and regulatory agencies
are responsible for protecting highly sensitive data of the users. In the health
industry, many wearable healthcare devices are used to monitor patient’s health,
identify anomalies and treat health conditions. For instance, in each hospital
a large amount of real electronic health records (EHR) are needed to train a
powerful a medical model. However due to the sensitivity and privacy of medical



FederatedMesh 157

data, the demand for a real dataset is hard to be satisfied. FL can solve this by
maintaining data anonymity, thus removing many barriers to data sharing.

Dataset: For the FL experiments, we are using the Chest-X-Rays dataset pro-
vided in the following link [10]. The Chest-X-Rays dataset consists of 5,863 X-
Ray images in JPEG format and 2 categories (Pneumonia/Normal). Chest-X-ray
images (anterior-posterior) are selected from retrospective cohorts of pediatric
patients of one to five years old from Guangzhou Women and Children’s Medical
Center, Guangzhou. The FL task to be executed in the experiments is to train
a 6-layer Convolutional Neural Network (CNN) model with the Chest-X-Ray
dataset. The CNN model has around 420, 000 parameters.

2.2 Related Work

This section describes a review of specific studies that focus on the implemen-
tation of FL on devices with limited capacity and research that examines tech-
niques to maintain data privacy, a crucial consideration when training confiden-
tial personal health data.

Low-Constrained Devices and Federated Learning: Y. Gao and colleagues
[11] conducted a practical assessment of two advanced ML methods - Federated
Learning (FL) and split neural networks (SplitNN). The authors looked at dif-
ferent sets of data, tried various types of model designs, involved several users’
devices and used different benchmarks to measure how well everything worked.
Their study focused on learning, which depended on two types of data: one
where the data balance was uneven and another where the data wasn’t exactly
the same across devices. The training of the model took place on Raspberry Pi
devices, and they kept track of how much the CPU and memory was used, the
extra communication needed, and how long the training took. Based on their
results, FL outperformed SplitNN overall. This is mainly because FL involves
less extra communication compared to SplitNN.

We have used some findings from the experiments carried out by Y. Goa
on individual Raspberry Pi devices to establish the baseline system in our own
research. In particular, we have employed their configuration of 1 and 5 epochs
as reference epoch values.

FL for edge environments has been suggested in various studies as surveyed
in [12]. Specific types of edge devices are investigated for instance in the Flower
framework, where Raspberry Pi, Android phones and NVIDIA Jetson were used
[13]. The work on Flower proposes a framework that first addresses the hardware
heterogeneity of the clients by providing client-specific software implementations.
For instance, the FL client for Android phones consists of a Java implementation
applying a specific TensorFlow Lite Model Personalization support for Android
Studio. The FL client for the Raspberry Pi and NVIDIA Jetson is implemented
in Python.

After looking into similar research, it’s clear that various methods have been
suggested to make FL use up fewer computer resources. These methods include



158 L. Shkurti et al.

adjusting how ML models are trained and even shifting some tasks to other plat-
forms. However, there’s still a gap in our knowledge when it comes to how well
FL actually works in real wireless mesh setups. Our study focuses on filling this
gap. We’re taking a hands-on approach by running FL on devices with limited
power in mesh networks. This way, we’re gathering important information on
how to set up FL for different types of user situations.

In [14] study performs a multi-chest disease classification from the CXR
images task using the proposed CNN architecture. Also, the authors introduce
a new dataset consisting of 28833 CXR images, a mixture of COVID-19, non-
covid viral or bacterial pneumonia, lung opacity, and normal cases by aggregat-
ing publicly available datasets to apply FL for the proposed models. Through
experiments, they compared the results with central training, federated train-
ing, and communication-efficient federated training. Also, they have shown that
federated training in chest disease classification is achieved with high percent
accuracy and is an effective alternative to central training. This study’s out-
comes can inspire and encourage medical organizations to initiate or adopt their
research and practices within the FL approach for chest disease classification.

The authors in the following paper [15] introduces a conceptual framework
designed to harness edge computing for healthcare analytics, utilizing user-
generated data. The intersection of technologies like cloud computing, edge com-
puting, IoT, wearables, and FL is anticipated to encourage end-users to play
a more participatory role in overseeing their health. The main objective is to
strengthen patient empowerment and accountability in the domains of moni-
toring and preventing diseases. This stands as a crucial factor in ensuring the
sustainability of contemporary healthcare systems. The proposed model offers
the potential for seamless integration of user-generated wellness and behavioral
data in an effective and scalable manner.

Privacy Through Federated Learning: Taking privacy as an important
aspect while training medical data, the authors are proposing Dopamine [16],
a system to train the medical data. This study investigates various ML and
privacy-preserving methods. The approach involves using medical data to train
Deep Neural Networks - DNNs for medical diagnoses. The training of these
DNNs is carried out using distributed datasets through a combination of FL
and Differentially-Private Stochastic Gradient Descent - DPSGD.

In a research study mentioned in [17], the authors of the paper combined
blockchain technology and FL techniques to train ML models without exposing
the actual data. This was particularly relevant for situations where lots of data
comes in quickly from connected devices in a setting called the Industrial Internet
of Things (IIoT). They pointed out that protecting this data from being leaked
in industries is a big deal. To tackle this, they built a secure way of sharing data
using blockchain and added privacy-preserving features to FL. They discovered
that by using blockchain, they could share the model in the FL process while
keeping data private.

Another paper, presented in [18], introduced the BlockFL system, which
mixed blockchain with FL. Instead of having a central place (node) that collects



FederatedMesh 159

updates from devices, the system used a distributed ledger to exchange these
updates between mobile devices. They also studied how quickly learning was
completed using this system. In their case, multiple mobile devices were used in
order to train the model locally making use of the distributed ledger powered
by blockchain technology.

In a different scenario, authors Passerat-Palmbach et al. discussed in [19] how
blockchain could help to orchestrate FL for healthcare groups. They showed how
data could be contributed to improve ML models while still ensuring privacy
and accurate records. They set up a way to track events in the network without
revealing who was involved.

Contrary, the work in [20] took a different approach. They proposed using
IPFS1 instead of a single central server for FL. This lets different nodes partic-
ipate and lead the FL process. They also split the ML models into parts and
shared the responsibility for each part among nodes. This was especially useful
when dealing with devices that aren’t very powerful.

The authors in this work [21] introduce Communication-Efficient Federated
Averaging (CE-FedAvg), an adaptation of the Federated Averaging (FedAvg)
algorithm FL in the context of IoT devices. The work addresses concerns about
data privacy by allowing FL to be performed at the edge servers and gateways
without sending data to a central server. CE-FedAvg uses an adapted form of
the Adam optimization algorithm and novel compression techniques to reduce
the number of communication rounds required for convergence, while also min-
imizing the data uploaded by clients. Extensive experiments with MNIST and
CIFAR-10 datasets, both in IID and non-IID settings, demonstrate that CE-
FedAvg achieves faster convergence and requires less total data uploaded com-
pared to FedAvg. Additionally, experiments on a Raspberry Pi testbed confirm
that CE-FedAvg can reach a target accuracy in less real time. This research
contributes to the field of FL by improving the efficiency and robustness of FL
algorithms in edge-computing scenarios.

In the [22] the authors use FL technology for Medical Image Classification to
address the issues of medical data security. They present their algorithm FedSLD
to utilize knowledge of label distributions to mitigate the challenges posed by
data heterogeneity. FedSLD is designed to enhance the training of ML models
for medical image classification in a FL setting by leveraging shared label dis-
tribution information, ultimately improving the model’s accuracy and stability
in the presence of data heterogeneity. They used datasets of MNIST, CIFAR10,
Organ MNIST, and PathMNIST. This article is important for computer science
researchers as it proposes a new method for training ML models in medicine
using separated and privatized data. Additionally, the study primarily focuses
on model performance without addressing all potential security and privacy chal-
lenges related to medical data, which are crucial in healthcare-based ML.

Looking at the reviewed papers in privacy, it’s clear that there are various
ways to keep data safe in FL. One popular method is called differential pri-
vacy and there are also ways to use external tools like blockchain to help. Also,

1 Interplanetary File System. https://ipfs.io/.

https://ipfs.io/


160 L. Shkurti et al.

Fig. 2. FL architecture involving communication between the server and clients (such
as mobile devices, wearables, etc.)

we noticed that ML applications that use personal information (medical data)
and private data (sensor data from the Internet of Things) can gain significant
advantages from FL.

3 System Model

3.1 Federated Learning

Federated Learning (FL) has gained significant interest in the research commu-
nity as a model training technique that enables clients to train models collabo-
ratively without the need to share their local data. FL has become a key area
of interest in wearable systems and wireless communications, such as 5G, where
edge nodes generate valuable data for applications while still maintaining data
privacy [23,24]. FL is a distributed ML technique where numerous clients or
workers, such as mobile or wearable devices, train a model in a collaborative
manner guided by a central server located in the cloud, as shown in Fig. 2. The
training data is stored directly on the devices.

The FL algorithm operates in the following way: the process starts with the
server initializing a global model (wt) and sending this model to all clients. Each
of the clients k trains the global model on their own local data for several rounds
of training called “epochs”. One the local training is complete, the updated model
is sent back to the server (wk

t ). The server receives the updated models from all
the clients and combines (i.e., merges) them to update the global model (wt+1).



FederatedMesh 161

RP1

RP2

RP3

RP4

RP5

RP8

RP7

RP6

RP9

RP10

RP11

RP12

RP13

RP16

RP15

RP14

Worker 
 Image

AP1 AP2

Server
Image

Worker 
Image

AP1 to AP2 wireless connection

wireless wireless

Fig. 3. Testbed used for the experiments

This process is repeated until the model converges or a maximum number of
rounds (i.e., iteration of this process) is reached. Client k possesses a training
dataset comprising sk samples as depicted in Fig. 2.

In this section, we focus on a system made of Raspberry Pi edge devices
that work together to train ML models using FL. We study how much CPU
and memory the devices use when training FL models based on healthcare data.
Further, we study the accuracy of the model reached with different number of
edge devices and also how long does it take to train the models considering the
impact of a real wireless mesh network.

Model: We use FL to train a 6-layer Convolutional Neural Network (CNN)
model on the client nodes using the Chest X-Ray Images (Pneumonia) dataset
of size 6.7 GB [10,25]. The CNN model has approximately 420,000 parameters.

By sharing our practical experiences, we hope to provide new information
that can help improve ML training on edge devices in wireless mesh network.

4 Empirical Analysis and Findings

4.1 Experimental Setup

The setup used for the experiment has actual devices that are connected to
each other through a wireless network. The setup consists of 8 Raspberry Pi
(RPi) devices that are linked to a pair of wireless access points (4 by 4) as
highlighted in Fig. 3. These access points are connected to each other through a
wireless link using Ubiquiti Nanostation M5 devices2. These devices have a good
performance in creating point-to-point links and can operate at a range of up to
15 km at 2.4 GHz and 5 GHz.

2 https://store.ui.com/collections/operator-airmax-devices/products/nanostation-
m5.

https://store.ui.com/collections/operator-airmax-devices/products/nanostation-m5
https://store.ui.com/collections/operator-airmax-devices/products/nanostation-m5


162 L. Shkurti et al.

Fig. 4. Examples of chest X-rays in patients with pneumonia as highlighted in [25]

Experiments employ Raspberry Pi 4 Model B devices as computational
nodes. The devices feature a robust Quad Core Cortex - A72 processor (1.5GHz),
substantial memory (8 GB RAM, 128 GB storage), and an IEEE 802.11ac wire-
less connection. PyTorch version 1.8.0, OS Raspbian GNU/Linux 10 (buster)
and Python version 3.7.3 are used as the software for the experiments. In total,
8 Raspberry Pi devices (4 connected to a single AP) act as workers (clients), and
a laptop acts as a server. As highlighted in Fig. 3, as the central node (server) we
use a laptop with CPU i5-8250U and 8 GB RAM with Windows 11 Operating
System.

The experimental setup consists of two components: the worker and server
parts. We developed Docker images for both parts, with the client image installed
on Raspberry Pi devices and the server image on the laptop. To train ML models,
we utilized the Keras API. During the model training, the data was divided into
smaller groups called “batches”, each with 10 samples. This allowed the model
to be trained in smaller steps, which can improve memory usage and make the
training process faster. The training was done for 100 rounds or iterations.

Dataset: Four our experiments the dataset obtained contains 5,863 X-Ray
images in jPEG format categorized into two groups (Pneumonia/Normal). The
images in this collection are chosen from past groups of young patients, aged
one to five years old, at Guangzhou Women’s and Children’s Medical Center
in Guangzhou [10]. Figure 4 highlights some of the examples from the dataset -
chest X-rays in patients with different type of pneumonia [25].

4.2 Experimental Results

In the experiments, we aim to measure how accurate the FL model is when it
is used with different numbers of clients in mesh networks. First we characterize
the network used and also test how much stress the edge devices can handle and
measure how much CPU and RAM they use.

Network Characterization. At first, our goal was to assess the performance of
the mesh network we are currently utilizing. By utilizing the bandwidth and RTT
(Round-trip time) ECDF graph, we can effectively visualize the distribution of
our data from the wireless links and identify any irregularities or network issues



FederatedMesh 163

Fig. 5. ECDF - Network Bandwidth Fig. 6. ECDF - Network RTT

that can make the FL impossible on this network. Figure 5 shows the ECDF
(Empirical Cumulative Distribution Function) of the link bandwidth while the
FL training experiments happen. The ECDF graph for bandwidth shows that
the majority of the links (95%) has a bandwidth between 5 Mbps and 30 Mbps.
The bandwidth increases as the ECDF value increases, indicating that higher
percentages of the measured data have higher bandwidths. The results suggest
that the bandwidth of the data varies widely, with some values as low as 5 Mbps
and others as high as 30 Mbps. We can conclude that the network has sufficient
bandwidth to enable the exchange of model updates, thus FL could be feasible on
this network.

Figure 6 shows that the majority of the RTT values are relatively low, with
most values falling between 3 ms and 6 ms. This suggests that the network is
performing well, with relatively low latency. FL involves the exchange of model
updates between client devices and the central server, and lower latency can
help to reduce the time required for these exchanges and improve the overall
efficiency of the process.

Testing Accuracy: Figure 7 depicts the testing accuracy when 2 and 4 edge
devices are used for the training. Figure 7 demonstrates that the testing accuracy
improves as the number of epochs increases for both 2 and 4 devices. However,
the accuracy is generally higher for 4 devices as compared to 2 devices across
all epochs. For the first few epochs (1 and 2, the difference in accuracy between
2 and 4 devices is significant. As the number of epochs increase (4–100), the
difference in accuracy between 2 and 4 devices becomes smaller, but 4 devices
consistently perform better. The results suggest that using more devices in FL
can improve the testing accuracy of the model. However, the improvement may
not be significant after a certain number of epochs, and other factors such as
communication efficiency and device heterogeneity may also impact the perfor-
mance.

CPU Usage: Figure 8 depicts the average CPU usage when training the model
with different number of devices. Figure reveals that the CPU usage varies



164 L. Shkurti et al.

Fig. 7. Testing Accuracy vs Local Epoch (2 and 4 edge devices)

depending on the number of devices used for the training and the number of
epoch completed. Additionally, we can see that the CPU usage increased as the
number of epochs increased, regardless of the number of devices used. It is also
worth noting that the highest CPU usage was observed for the epoch with the
highest number of iterations, but even in that case, the CPU usage did not exceed
90% for any of the devices used. Overall, it seems that training the model with
more devices can lead to higher CPU usage, but using a higher number of devices
can also potentially lead to faster training times. Further, the peak CPU usage
was observed during the model update communication with the client nodes.

Memory Usage: The memory usage during the training of the model with
varying numbers of workers is depicted in Fig. 9. Based on the results, we see
that the memory usage increased slightly as the number of devices increased for
each epoch. However, the difference in memory usage between 2 and 4 devices
was relatively small. Thinking about the memory capacity of the devices used in
FL is crucial. This is because it might affect how well the training process works
and how stable it is overall. In this case, the Raspberry Pi devices with 8 GB of
RAM appeared to handle the memory requirements well, with relatively stable
memory usage across different epochs and number of devices.

The CPU temperatures of the 4 Raspberry Pi devices were measured
while training FL models. As highlighted in Fig. 10, training FL models requires
a lot of computing power, which makes the CPU run at maximum capacity for
long periods, reaching on average 80◦ CPU temperature. Based on the exper-
iments performed, optimizing the training process and reducing the computa-
tional workload may help to prevent overheating. Overheating in Raspberry Pi



FederatedMesh 165

Fig. 8. CPU vs Local Epoch (2 and 4 edge devices)

devices can indeed be a significant concern, as it can lead to the shutdown and
interruption of experiments or tasks being performed on the device.

4.3 Discussion

From the experiments performed, we observed that the using the FL in wireless
mesh networks can effectively improve the accuracy of the model by increasing
the number of devices and epochs. However, this comes at the cost of higher CPU
and RAM usage, which needs to be considered when designing a FL system. In
this particular study, the use of Raspberry Pi devices with 4 cores of CPU and
8 GB of RAM seems to be sufficient for the task.

It is interesting to note that the CPU usage is higher when communicating
with client nodes, which suggests that optimizing the communication protocols
can lead to more efficient FL systems. Optimizing the code, using pre-trained
models, reducing the training data size or lowering the learning rate can improve
the efficiency of the training process. Additionally, the fact that the RAM usage
stabilizes after a certain number of epochs suggests that there may be an optimal
number of epochs beyond which the model is no longer improving significantly.

Overall, the findings suggest that FL is a promising approach for improving
ML models while preserving data privacy, but it requires careful consideration of
hardware resources and communication protocols to ensure efficient and effective
operation.



166 L. Shkurti et al.

Fig. 9. RAM vs Local Epoch (2 and 4 edge devices)

Fig. 10. CPU Temperature (◦C) of Raspberry Pi devices

5 Conclusion

Based on the findings and results presented in this study, it can be concluded
that FL is a promising technique for training ML models using decentralized data
sources. The results showed that increasing the number of devices participating



FederatedMesh 167

in the training process led to higher accuracy, especially after a certain number
of epochs. However, this came at the cost of increased CPU and RAM usage,
which should be considered when designing and implementing FL systems.

One of the major recommendations based on the findings is to carefully
choose the number of devices and epochs for training. Finding the right balance
between accuracy and how much resources are used is crucial, as training for
too long or with too many devices can lead to diminishing returns and increased
resource consumption. Additionally, it is recommended to monitor resource usage
during training and optimize the system accordingly, for example by using more
powerful devices or implementing resource-efficient algorithms.

In conclusion, FL is a powerful technique that can enable training of ML
models on decentralized data sources. The findings from this study provide valu-
able insights into the trade-offs between accuracy and resource usage, and high-
light the importance of careful system design and optimization. With further
research and development, FL has the potential to revolutionize the field of ML
by enabling secure and decentralized training of models on sensitive data. Fur-
ther, the results obtained suggest that in order to achieve better performance in
heterogeneous wireless environments where clients have varying bandwidth and
hardware capabilities, it is recommended to develop FL clients that can dynam-
ically adjust the training parameters. This will enable a context-aware FL app-
roach, which can better accommodate the diversity of the participating clients
and improve the overall efficiency and effectiveness of the training process. Fur-
ther, the findings may hold potential applicability in various resource-limited
edge scenarios. Our goal is to extend these results to embedded IoT devices,
where the examined design could help tackle significant constraints in comput-
ing and communication resources.

Acknowledgment. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 872614
- SMART4ALL. SMART4ALL is a four-year Innovation Action project funded under
call DT-ICT-01-2019: Smart Anything Everywhere - Area 2: Customized low energy
computing powering CPS and the IoT. The authors wish to express their gratitude to
the SMART4All consortium partners for their valuable comments and feedback, which
have contributed to the enhancement of this work.

References

1. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

2. Selimi, M., Lertsinsrubtavee, A., Sathiaseelan, A., Cerdà-Alabern, L., Navarro,
L.: Picasso: enabling information-centric multi-tenancy at the edge of community
mesh networks. Comput. Netw. 164, 106897 (2019)

3. Sakr, F., Bellotti, F., Berta, R., De Gloria, A.: Machine learning on mainstream
microcontrollers. Sensors 20(9), 2638 (2020)

4. Arikumar, K.S., et al.: FL-PMI: federated learning-based person movement identi-
fication through wearable devices in smart healthcare systems. Sensors 22(4), 1377
(2022)



168 L. Shkurti et al.

5. Farhad, A., Woolley, S., Andras, P.: Federated learning for AI to improve patient
care using wearable and IoMT sensors. In: 2021 IEEE 9th International Conference
on Healthcare Informatics (ICHI), p. 434 (2021)

6. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

7. Yang, K., Jiang, T., Shi, Y., Ding, Z.: Federated learning via over-the-air compu-
tation. IEEE Trans. Wireless Commun. 19(3), 2022–2035 (2020)

8. Pinyoanuntapong, P., Janakaraj, P., Wang, P., Lee, M., Chen, C.: Fedair: towards
multi-hop federated learning over-the-air. In: 2020 IEEE 21st International Work-
shop on Signal Processing Advances in Wireless Communications (SPAWC), pp.
1–5 (2020)

9. Freitag, F., Vilchez, P., Wei, L., Liu, C.H., Selimi, M.: Performance evaluation
of federated learning over wireless mesh networks with low-capacity devices. In:
Rocha, Á., Ferrás, C., Méndez Porras, A., Jimenez Delgado, E. (eds.) ICITS 2022,
pp. 635–645. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96293-
7 53

10. Women, G., Center, C.M.: Chest X-ray images (pneumonia). https://www.kaggle.
com/datasets/paultimothymooney/chest-xray-pneumonia. Accessed 28 Apr 2021

11. Gao, Y., et al.: End-to-end evaluation of federated learning and split learning
for internet of things. In: 2020 International Symposium on Reliable Distributed
Systems (SRDS), pp. 91–100 (2020)

12. Abreha, H.G., Hayajneh, M., Serhani, M.A.: Federated learning in edge computing:
a systematic survey. Sensors 22(2), 450 (2022)

13. Mathur, A., et al.: On-device federated learning with flower (2021)
14. Cetinkaya, A.E., Akin, M., Sagiroglu, S.: A communication efficient federated learn-

ing approach to multi chest diseases classification. In: 2021 6th International Con-
ference on Computer Science and Engineering (UBMK), pp. 429–434 (2021)

15. Hakak, S., Ray, S., Khan, W.Z., Scheme, E.: A framework for edge-assisted health-
care data analytics using federated learning. In: 2020 IEEE International Confer-
ence on Big Data (Big Data), pp. 3423–3427 (2020)

16. Malekzadeh, M., Hasircioglu, B., Mital, N., Katarya, K., Ozfatura, M.E., Gun-
duz, D.: Dopamine: differentially private federated learning on medical data. arXiv
abs/2101.11693 (2021)

17. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated
learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Industr.
Inf. 16(6), 4177–4186 (2020)

18. Kim, H., Park, J., Bennis, M., Kim, S.: On-device federated learning via blockchain
and its latency analysis. CoRR abs/1808.03949 (2018)

19. Passerat-Palmbach, J., Farnan, T., Miller, R., Gross, M.S., Flannery, H.L., Gleim,
B.: A blockchain-orchestrated federated learning architecture for healthcare con-
sortia. CoRR abs/1910.12603 (2019)

20. Pappas, C., Chatzopoulos, D., Lalis, S., Vavalis, M.: IPLS: a framework for decen-
tralized federated learning (2021)

21. Mills, J., Hu, J., Min, G.: Communication-efficient federated learning for wireless
edge intelligence in IoT. IEEE Internet Things J. 7(7), 5986–5994 (2020)

22. Luo, J., Wu, S.: FedSLD: federated learning with shared label distribution for med-
ical image classification. In: 2022 IEEE 19th International Symposium on Biomed-
ical Imaging (ISBI), pp. 1–5 (2022)

23. Niknam, S., Dhillon, H.S., Reed, J.H.: Federated learning for wireless communi-
cations: motivation, opportunities, and challenges. IEEE Commun. Mag. 58(6),
46–51 (2020)

https://doi.org/10.1007/978-3-030-96293-7_53
https://doi.org/10.1007/978-3-030-96293-7_53
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia


FederatedMesh 169

24. Ibraimi, L., Selimi, M., Freitag, F.: Bepoch: improving federated learning perfor-
mance in resource-constrained computing devices. In: IEEE Global Communica-
tions Conference (GLOBECOM) (2021)

25. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by
image-based deep learning. Cell 172(5), 1122–1131.e9 (2018)


	FederatedMesh: Collaborative Federated Learning for Medical Data Sharing in Mesh Networks
	1 Introduction
	2 Background and Related Work
	2.1 FL Applications and Dataset
	2.2 Related Work

	3 System Model
	3.1 Federated Learning

	4 Empirical Analysis and Findings
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Discussion

	5 Conclusion
	References


