
AMulti-behavior Recommendation Algorithm
Based on Personalized Federated Learning

Zhongqin Bi1, Yutang Duan1, Weina Zhang1(B), and Meijing Shan2

1 School of Computer Science and Technology, Shanghai University of Electric Power,
Shanghai, People’s Republic of China
mszhangwn@mail.shiep.edu.cn

2 Institute of Information Science and Technology, East China University of Political Science
and Law, Shanghai, People’s Republic of China

Abstract. Multi-behavior recommendation algorithms comprehensively use var-
ious types of interaction behaviors between users and items, such as clicking,
collecting, purchasing, and commenting, to model user preferences and item fea-
tures. It captures high-level interactions between users and items, and effectively
alleviates the data sparsity problem in recommendation algorithms.However,most
existing multi-behavior recommendation algorithms are mainly centralized learn-
ing models. User behavior data is collected and uploaded to the server to train
recommendation model parameters, which poses a risk of data leakage and com-
promises user privacy. To address this problem, a multi-behavior recommendation
algorithm based on the federated learning paradigm (FedMB) is proposed. This
approach uses the federated learning framework to establish a separate model for
each end device and utilizes the data of the end device for user-end model train-
ing, which improves the privacy and security of user data. To enhance privacy and
security during parameters uploaded, all uploaded parameters will be encrypted,
At the same time, the precedence chart is used to optimize the model parameters
distributed by the server, thereby improving the recommendation quality of the
overall model. Compared with that of the latest methods, our federated model
achieves good performance on the three datasets.

Keywords: Multi-behavior recommendation · Privacy security · Federated
learning · Personalized model · Parameter encryption

1 Introduction

The purpose of a recommendation system is to analyze the user’s personalized prefer-
ences and to recommend content to alleviate information overload. Personalized recom-
mendation models acquire users’ explicit or implicit information through the interaction
between users and products. By doing so, they can obtain user preferences and more
accurately learn the embedded expressions of nodes, thus improving the accuracy of
recommendations [1].

This work was supported by Project of Shanghai Science and Technology Committee (No.
23010501500).

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024
Published by Springer Nature Switzerland AG 2024. All Rights Reserved
H. Gao et al. (Eds.): CollaborateCom 2023, LNICST 563, pp. 134–153, 2024.
https://doi.org/10.1007/978-3-031-54531-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54531-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-54531-3_8

A Multi-behavior Recommendation Algorithm 135

However, most traditional recommendation behaviors are based on a single behav-
ior. For instance, in Fig. 1 (a), the recommendation system mainly relies on the user’s
purchase behavior to collect information and provide product recommendations. Users
often generate more than one piece of interactive behavior data during the purchase
process. In addition to purchase behavior, there are also actions such as adding items
to the shopping cart and browsing, which can be considered interactive behaviors, such
as Fig. 1 (b). The recommendation system can better discover user interests and prefer-
ences to assist the target behavior (such as purchasing) by using a variety of behavioral
interactive information.

To fully extract the information from multi-behavior interactions, various multi-
behavior recommendation models have appeared in recent years [2–6]. One approach is
to directly build a variety of behaviors and to apply each behavior to a single line as a
recommended model, without considering the differences between different behaviors.
However, somemodels provide different learning rights to different behaviors to simulate
the importance of various behaviors and to distinguish different behavioral semantics
[3].

buy

Fig. 1. Single behavior examples and multi-behavior examples in e-commerce scenarios.

Currently, effective integration of multiple types of behavior and capturing differ-
ences in multi-behavior are the main research methods recommended in many studies
[7]. Commonalities between target and auxiliary behaviors must be identified to improve
the target behavior and achieve higher recommendation effects. For example, commodi-
ties added to the shopping cart through purchasing behavior must have commonalities,
such as the same style, category, or price. However, sparse supervision signals in tradi-
tional datasets do not guarantee the quality of graph learning, and buying behaviors are
often the target behaviors in most multi-behavior recommendation models. GU S et al.
proposed a method to address this issue by dividing different behaviors into two views
for two or two comparison learning [2], but this method ignores the impact of auxiliary
behavior on the target behavior.

Therefore, the use of user data for separate training models and independent recom-
mendations is proposed to address the issue of personalization of behavior. Traditional

136 Z. Bi et al.

multi-behavior recommendation models often focus on the data from the interaction
of the overall user and ignore the differences between different users. By training the
model continuously to allow it to learn the differences between different behaviors or the
connection between users, the model can effectively improve recommendation accuracy.
However, this paper highlights the need to balance the effect and accuracy of the model,
which requires further study.

In traditional machine learning models, centralized learning is a mainstreammethod
[8], where the provider of the service collects user data and trains the machine learn-
ing model by using interactive information from users and products. However, due to
restrictions on regulations and laws such as the GDPR [9], data security and privacy pro-
tection have become increasingly important. To address this issue, federated learning
(FL) was proposed in 2016 [10], allowing data collection and training to be completed
on end devices without the need for transmission. FL greatly improves user data privacy
protection performance and has much application space for privacy protection and mul-
tiparty computing [11]. Although various privacy protection algorithms and encryption
algorithms have been proposed, such as encryption algorithms based on cryptography
[12], blurred disturbance methods [13], and the differential privacy [14], the balance
between the effect and accuracy of the model must be further studied. FL an effective
way to address this problem.

The main contributions of this article are as follows:

• To reduce the risk of privacy leakage in the process of multi-behavior recommen-
dation, we use the federated framework to improve its security, and propose a
multi-behavior recommendation algorithm based on federated learning.

• To improve the recommendation effect of the federated model, we adopted the prece-
dence chart method [15]. This method optimizes the iterative parameters through the
precedence chart method, and in the experiment, the adoption of the precedence chart
method can further enhance the model recommendation effect.

• For the traditional federated aggregation algorithm, there is a risk of privacy leakage
during the upload of parameters. In this process, noise data are added, position param-
eters are established, and real parameters are identified on the server. In addition, the
security during the upload of the parameters is improved.

• The effectiveness of ourmethod is verified on three real-world datasets, which demon-
strates that our method advances the recommendation performance compared with
other baselines.

Organization. The remainder of this article is structured as follows: Sect. 2 describes
related work, including introductions to multi-behavior recommendation, discussions
on machine learning models of privacy recommendation methods, and introduction
to the basic knowledge of federated learning. Section 3 introduces FedMB, which is
a multi-behavior recommendation adaptation of FL settings. In Sect. 4, we present a
hyperparameter study, an ablation study, and comparative experiments on FedMB. In
Sect. 5, we summarize our work and draw conclusions.

A Multi-behavior Recommendation Algorithm 137

2 Related Work

In the past three years, researchers’ recommendations for multi-behavior have focused
on the optimization of recommendation effects, but few people are paying attention to
privacy protection in the process of multi-behavior recommendation.

2.1 Multi-behavior Recommendation Algorithm

In recent years, graph neural networks have been widely used in multi-behavior recom-
mendation algorithms. For instance, Jin B et al. proposed a user-item communication
layer to capture the behavior semantics and explore the intensity of behavior [3]. In
2021, Xiao L et al. integrated multi-behavior mode into the meta-learning paradigm and
automatically extracted the heterogeneity and interaction of behavior [4], but they did
not consider the impact of time on user behavior. Xiao L et al. proposed a time-coding
strategy to incorporate time perception into the context and developed a multi-behavior
mutual attention encoder to learn different types of behavioral structure dependencies
[5]. However, they overlooked the complexity of user-item interactions. In 2022, Wei W
et al. proposed a new comparison meta learning model that maintains dedicated cross-
type behavior for different users [6]. It effectively learns the characteristics of users and
items by using deep learning frameworks. These papers mainly focused on exploring
behavior information and ignored the personalized perspective of user behavior. Wu Y
et al. addressed this issue by using user personalized sequence information and global
map information in the multi-view comparison learning [16]. However, these models
have not considered the personalized training of the model at the data level.

2.2 Privacy Protection Recommendation Algorithm

In this section, we provide an overview of recommendation methods for privacy protec-
tion in both centralized and decentralized settings. Privacy protection recommendation
systems must prevent the leakage of user personal privacy data, while also defending
against attacks from various sources. Different types of attacks, such as user attribute
attacks [8], reasoning attacks, and attack attacks, require different defense mechanisms.
To effectively address these attacks, privacy protection algorithmswere developed. There
are three main ways to protect user data: cryptography-based privacy protection algo-
rithms, data disturbance-based privacy protection algorithms, and federated learning-
based privacy protection methods. These methods aim to achieve data privacy protec-
tion through algorithmic approaches. In this article, we focus on the use of federated
learning architecture to achieve privacy protection. The data are encrypted during the
transmission process. The privacy of user data can be better protected.

Federated learning is a distributed machine learning framework that is designed for
privacy protection. FL stores the user’s original data locally and uses the intermediate
parameters of the client and server to optimize the system, resulting in improved fore-
casting performance. In this article, we combine the recommendation algorithm with
federated learning, which allows us to shift the centralized learning framework to the
federated learning paradigm. As a result, the federated recommendation algorithm based
on privacy protection has garnered significant attention from researchers.

138 Z. Bi et al.

The traditional federated recommendation algorithms encrypt data based on the fed-
erated architecture, but there is still a risk of privacy leakage. Therefore, researchers
focus on developing federated privacy recommendation algorithms. Early federated rec-
ommendation frameworks required users to upload only gradient information, but this
information can still lead to privacy breaches. In 2020, Di Chai et al. proposed a dis-
tributed matrix decomposition framework by using homomorphic encryption [17], but
this did not guarantee the security of the data source. To address this, Guanyu Lin
et al. proposed a solution based on explicit feedback [19], which involved creating a
collection of noninteracted items to predict user preferences. This approach improved
privacy protection and ensured the security of terminal data processing. In 2021, Chuhan
Wu et al. proposed using pseudo interacting data and anonymous neighbor methods to
enhance privacy protection performance [20]. V Asileios Perifanis et al. proposed the
FedNCFmodel [21], which uses SecAvg to resolve privacy issues in small-scale datasets.
Jingwei Yi et al. developed the Efficient-FedRec model [22], which uses an effective
security aggregation agreement to protect user privacy in training. Wei Yuan et al. pro-
posed the FRU model, which enables the deletion of user contribution data to improve
privacy protection [23]. These approaches aim to improve the privacy protection mech-
anisms of federated recommendation algorithms while ensuring high recommendation
performance.

The use of a centralized learning model is common in multi-behavior recommen-
dations because the use of global user data for training and can lead to more accurate
recommendations. However, this approach has a significant risk of privacy leakage.
Additionally, the recommendations provided are often more general and less personal-
ized due to the use of models for the entire user base. To address these issues, we propose
a personalized federated recommendation framework. This approach uses personalized
models to provide more accurate recommendations for user data while ensuring privacy
protection. The framework includes a privacy protection module during the parameter
upload process, further improving the privacy performance and recommendation quality
of the model.

Table 1. Comparison of different methods in privacy protection

NMTR EHCF RGCN MB-GMN S-MBRec FedMB

User data storge Center Center Center Center Center Local

Rec process protection ✔ ✔ ✔ ✔ ✔ ✔

Rec result protection ✘ ✘ ✘ ✘ ✘ ✔

To better demonstrate the advantage of our approach, we summarize the comparison
between FedMB and existingmethods on exploiting privacy protection in Table 1. “Rec”
means recommendation, “Center” and “Local” represent centralized and decentralized
data storage, respectively.

A Multi-behavior Recommendation Algorithm 139

2.3 Federated Learning

Federated learning is a machine learning technology that enables the training of machine
learning models in a decentralized and distributed manner. The core idea of this learning
approach is that the training data on each device do not need to be sent to a central server
for coordination among different entities. This approach is different from the traditional
machine learning training method and provides a higher level of privacy protection.

Federated Learning Algorithm. The federated learning algorithm follows a specific
process, which includes collecting data at the initial stage, establishing a client model,
and training the client data on the client model. Each client trains its own client model,
and after the training is complete, each client uploads the model parameters or gradient
to the server. The server conducts overall training based on these parameters and does
not collect any private data from the client, thus maintaining the privacy of the data.
Essentially, the server acts as a learning resource for the terminal equipment. Once the
server processes the parameters uploaded by the client, it distributes them back to the
client for further training. The process is summarized as follows:

Step1: The server provides the global model to the clients. This global model can be
either an initial randomized model or a pretrained model.
Step2: The client uses its own data to conduct local training and to update the model.
Step3: The client uploads themodel parameters or intermediate parameters to be updated
to the central server.
Step4: The server aggregates the model parameters or intermediate parameters from the
local client and performs multiple rounds of repeated iteration updates.

The above steps are repeated multiple times until the model converges, and then
local models are used for reasoning and prediction. Throughout the process, users’
privacy data, such as browsing history, likes, and collection history, are preserved locally,
ensuring the safety of user privacy data. This approach greatly improves the privacy
protection level of the learning model, while also providing accurate recommendations
and maintaining the confidentiality of user data. Therefore, it is a more effective and
secure method for machine learning in sensitive environments.

Federated Aggregation Algorithm. The most common approach to general aggrega-
tion is the federated average aggregation algorithm (Fedavg) [10]. In a global iteration,
each participating client completes a small number of local iterations, and then uploads
the parameters or gradient of the training instance to the server.

The server aggregates the uploaded parameter set or gradient set by using an
aggregator, which is updated globally in the following ways:

wt+1 =
∑|c|

i=1

ni
n
wt (1)

where |c| is the number of selected participants in a training round,w is a model parame-
ter, ni is the number of examples participating in this aggregation, n is the sum of the total
number of participating instance training, wt is the model parameter after the training of
this participating instance, and t is the number of iterations.

140 Z. Bi et al.

3 Proposed Method

3.1 Problem Definition

We consider a scenario with multiple users (N > 2), each holding a private dataset. The
goal is to build a federated learning system that can train models without compromis-
ing users’ privacy. The datasets are generated locally by the users without any mutual
transmission or interaction. We assume that the multi-behavior data generated by the
users follow the principle of independence and distribution [21]. For a few users with
less behavioral interaction, a pseudo interactive item is generated. Although this might
have a negative impact on the recommendation results, this approach ensures the quality
of the diagram learning, and the impact on the overall framework is small. This article
is primarily focused on the stability of the overall framework.

The framework generates a list of previous recommendations for users using the local
recommendation model. Training and recommendation are performed on the client side
to ensure user privacy. For multi-behavior, the GCN [24] layer is used to extract user
behavior characteristics.

3.2 FedMB Framework

The FedMB framework is illustrated in Fig. 2 and consists of four main parts: the client’s
training module, the server-side parameter selection module, the server-side parameter
aggregation module, and the parameter encryption module. To enhance security during
parameter transmission, noise data are added. To protect privacy, the model parameters
after user-side model training are used. At the central server-side, the aggregated param-
eters are sent back to the client to complete each round of iteration training. The working
principles of each module are explained in detail below.

Client Training. Weadopt a self-supervised approach formulti-behavior recommenda-
tions, which is partitioned by user IDs in the dataset to allocatemodels for different users.
The GCN layer is used to learn the embeddings of users and items, effectively extracting
their personalized interaction characteristics (different users have different user-item
interaction data, as shown in the Fig. 2). To differentiate between the importance of
different behaviors, we propose a supervised task, and then use automatic learning to
aggregate the embeddings of multi-behavior to distinguish between target behavior and
auxiliary behavior. In each subgraph, the user and behavior embeddings are represented
by Rk , where Rk denotes the k-th behavior graph, and the adjacent matrix Ak can be
obtained from matrix Rk .

Ak =
(

0 Rk

RT
k 0

)
(2)

Then, the GCN multilayer message communication formula is used to obtain the
nodes of different behaviors embedded in the matrix. The formula is as follows:

X (l+1)
k = σ

(
Ak

∧

X (l)
k Wk

)
(3)

A Multi-behavior Recommendation Algorithm 141

Local Model

Parameter

...

Self-superized

Task

Superized task

Item predictor

Local

user data

Item

R
eco

m
m

en
d

atio
n

s u mL

Pseudo

Parameter

AES

Encryption

F
eatu

re
m

atrix

Server

A
g

g
reg

ater

Aggregated

Parameter

P
reced

en
ce

C
h
art

Loss

Optimization

Encrypted

Parameters

Client TrainningUser i Parameter distribute

Parameter distribute

Local Model

Parameter

Self-superized

Task

Superized task

Item predictor

Item

R
eco

m
m

en
d

atio
n

s u mL

Pseudo

Parameter

AES

Encryption

F
eatu

re
m

atrix

Loss

Optimization

Encrypted

Parameters

Client TrainningUser j

Local

user data

...

G
C
N

Upload

G
C
N

Fig. 2. The framework of FedMB

where Ak

∧

= D
− 1

2
k (Ak + Ik)D

− 1
2

k is a self-connected normalized matrix. Dk is a |V |∗|V |
dimension matrix under the k behavior. |V | is the sum of the number of users and the
number of items, |V | = |U | + |I |. Ik is the dimension matrix of |V |∗|V | . X (l)

k ∈ R|V |∗d
is the node embedded matrix in the node of the Ik behavior in the convolution layer.
d is the dimension embedded. Wk and σ are model training parameters and non-linear
activation functions. In order to ensure the embedding of the short connection node, the
function of this article uses the function to merge all layers.

Xk =
∫ (

X (l)
k

)
(4)

where l = [0, 1 . . . ,L]. Xk is composed of the user embedded matrix XUk ∈ R|U |∗d and
the item embedded matrix XIk ∈ R|I |∗d .

∫
is the last layer of the connection operation.

First, auk is the semantic fusion coefficient of the user under the K behavior. Among
them, we consider the proportion of the user’s first behavior in all behaviors, and
recognize the strength of different behaviors, as shown below:

auk = exp(wk ∗ nuk)

exp(wm ∗ num)
(5)

where wk said that under the behavior of the behavior k of all users, nuk is the number
of associations of user u under k.

XUK and XIK denote the embedded matrix of users and items under behavior k,
while xuk and xik denote the embedding of user u and item i under behavior k. Then the
representation of all behaviors is merged. For user u, we merge all representations, as
shown below.

eu = σ

{
W

(∑K

m=1
auk ∗ xuk

)}
(6)

142 Z. Bi et al.

whereW is the different behavior types. The characteristics of the item are static. For this
reason, we combine the item’s representation under different behaviors through series
operations, as shown below.

ei = g{Cat(xik)} (7)

where k = [1, 2, . . . ,K], g is a multi-layer perception machine (MLP) [25], and Cat
denotes the connection operation.

For supervision and training tasks, the loss function used is the BPR [26].

Lst =
∑

(u,i,j)∈O
−log

{
σ
(
eTu ei − eTu ej

)}
(8)

where ei is the embedded item, eu is the embedded item of the user, O =
{(u, i, j)|(u, j) ∈ O+, (u, j) ∈ O−} is the training task, O+ is the observed interaction,
and O− is the unsteady interaction, which is used to generate positive and negative
samples.

For unsupervised training tasks, we adopt a comparative method of learning and
perform comparative learning between target behavior and auxiliary behavior subgraphs.

Lusersstk′ =
∑

u∈U
−log

∑
u+∈U exp

{
(xuK)T xu + k′

τ

}

∑
u−∈U exp

{
(xuK)T xu − k′

τ

} (9)

where (xuK , xu+k′) denotes the positive pair, and (xuK , xu−k′) denotes the negative pair. τ
is a parameter,U is a user set, k′ is auxiliary behavior, andK is target behavior. Similarly,
we obtain a comparison loss Litemsstk′ through the loss function under the combination user
and the item, and then,we addmultiple comparison losses to obtain the total unsupervised
loss, as shown below.

Lsst =
K∑

k ′=2

(
Lusersst

k
′ + Litemsst

)
(10)

Parameter Selection on the Server. The main purpose of parameter aggregation is
to select and weight the model parameters uploaded by clients. To achieve this, each
uploaded parameter set is assigned a score based on the training loss reported by the
client. This score reflects the quality of the client’s model training, with higher scores
indicating better performance. During each round of global iteration in federated Learn-
ing, the server aggregates the parameters of each client and computes a score value for
each parameter. The parameters with high scores are then selected for aggregation to
improve the overall model’s recommendation quality.

To optimize the parameter selection process, we propose a method that uses pairwise
comparison of precedence chart to assign weights to each factor. The use of precedence
chart for weight assignments ensures fairness, avoids extreme score values, and reduces
algorithmic complexity and training overhead compared to traditional machine learning
methods. Applying this method to the federated Learning framework can shorten the

A Multi-behavior Recommendation Algorithm 143

global iteration time and can improve recommendation efficiencywithout compromising
the results.

The weight assignment process involves evaluating the dataset, selecting the initial
normal results, and assigning an initial weight score. Then, pairwise comparisons are
performed to establish the corresponding mapping between the evaluation data and the
weight value. Finally, the weight values are normalized and arranged to obtain different
weights for different data.

Parameter Aggregation on the Server. The core engine of adaptive learning is per-
sonalized learning recommendation, which has greatly improved accuracy and diver-
sity. Federated learning is a powerful data privacy protection machine learning solution
that can safeguard data privacy and security while sharing data value. In this study,
we combine federated learning with multi-behavior recommendation to create a feder-
ated personalized multi-behavior recommendation system and assess its feasibility and
effectiveness.

Federated learning is comprised of two methods: global federated learning model
training and training single models on clients. The global training method uses federated
training plus local adaptation strategies and depends on the generalization performance
of the global model for effective recommendations. The client training method focuses
on personalized models that provide tailored solutions for each user. It modifies the
aggregation process of the FL model to establish a personalized model and is advanta-
geous for solving user preference drift. In this article, we use the client training method
to train client models and to build a multi-behavior recommendation framework with
strong generalization.

The client’s training task is composed of self-supervised and unsupervised tasks. The
total loss of the client’s training is represented by the following formulas. Lst denotes
unsupervised loss, while Lsst denotes the supervision loss.

Lsum = Lst + λLsst + μ‖�‖22 (11)

where � stands for training parameters, λ and μ indicate the control of self-supervision
and L2 regularization proportional parameters, respectively.

Sn = PC(l1, l2 . . . ln−1, ln) (12)

On the server-side, the parameters are selected by the collected client model param-
eters and losses. Using precedence chart (PC) to give scores to different parameters, as
shown in Formula (12), ln denotes the n loss corresponding to the parameter, Pn is the n
score, Sn = (P1,P2 . . .Pn−1,Pn), and the score set. We use the score set to give a native
value to give power.

Wn = γ (P1,P2 . . .Pn−1,Pn)
∑|n|

i=1 Pi

(13)

where γ denotes the judgement function, which is used to remove extreme values. Wn

denotes theweights allocated according to different scores.Wn = (w1,w2 . . .wn−1,wn),

144 Z. Bi et al.

Wn is the weight set corresponding to the n score of Sn. Perform parameter collection
best according to different weights.

Wm = SelectNβ(w1,w2 . . .wn−1,wn) (14)

where SelectNβ is the selection function, β is the proportion of the weight set to remove
weights, m = n ∗ (1 − β), and Wm = (w1,w2 . . .wm−1,wm), which denotes the
selected parameter weight collection. After obtaining the corresponding parameters,
the parameters are averaged, and the aggregation formula is as follows.

pt+1 =
|m|∑

i=1

ni
n
pit (15)

where t is the current number of aggregation rounds, and the parameter pt+1 after the
final aggregation is distributed down from the server-side, and participates in the next
global iteration.

Parameter Encryption.Upon completing the training, the client uploads its param-
eters to the server, but this process is vulnerable to parameter interception and thus, can
result in user privacy leakage.

Distribute

Public key

Client i

Client j

Server

Local Model

Parameter

Pseudo

Parameter

Pseudo

Parameter

Position Encrypt

Local Model

Parameter

Pseudo

Parameter

Pseudo

Parameter

Position encrypt

Decrypt Aggregater

Distribute

Public key

Fig. 3. Parameter encryption

To enhance the security, we increased the difficulty of identifying the real parameters,
thereby reducing the risk of external malicious attacks. In accordance with the Fig. 3, the

A Multi-behavior Recommendation Algorithm 145

structure of the parameter encryption module is illustrated. In this article, noise data are
added to the parameters uploaded from the client to increase the difficulty of identifying
the real parameter. The noise data are derived from the pseudo parameters generated by
the client itself. The formula is as shown below:

MIit+1 = Ipit+1 +
∑

j∈c:j<k

IRj (16)

where IRj denotes randomly generated parameters, Ipit+1 are real user parameters, and
MIit+1 is the mask parameters. k is the number of pseudo ginseng generated by the client.

Adding noise to the parameters makes it more challenging to recognize the real
parameters on the server. To address this issue, position parameters are generated on
the client and uploaded to the server to identify the actual parameters. For position
parameters, AES encryption is used, which is efficient and fast [27], and the server-
distributed key is employed for encryption and decryption on the server. Compared to
direct encryption of parameters, this proposed encryption method significantly reduces
the encryption time overhead. The figure below illustrates the main process.

4 Experiments

In this experiment, we evaluate the recommendation quality of FedMB by using three
datasets and introducing the experimental settings in detail. The evaluations are con-
ducted through an ablation study and hyperparameter study to analyse the model and
compare the effects of different modules and parameters on results. Finally, we compare
the experimental results with other models to provide a comprehensive evaluation of
FedMB.

4.1 Datasets and Evaluation Settings

To evaluate the performance of FedMB, we verify the model effect in 3 real-world
datasets. The details are described as follows:

Table 2. Beibei, Taobao, Yelp dataset statistics

Dataset User Item Interactions Behavior Type

Beibei 21716 7977 3.36 × 106 {View, Cart, Purchase}

Taobao 48749 98249 2.40 × 106 {Click, Add to cart, Purchase}

Yelp 19800 22734 1.40 × 106 {Like, Neutral, Tip, Dislike}

The sparsity of data can be significantly reduced by setting both the target behavior
and auxiliary behavior. Although the target behavior is typically considered the super-
visory signal for training the model, it is often sparse, and sparse supervision cannot
guarantee the training quality of the model. Even in multi-behavior recommendation,

146 Z. Bi et al.

this phenomenon persists. To avoid this situation, we also regard auxiliary behavior as a
supervisory signal formodel training.Whenwe cannotmake recommendations based on
user purchase behavior accurately, we can alternatively make recommendations based
on user browsing or clicking behavior, which has been found to be effective.

To evaluate the model’s recommendation effectiveness, we set up a corresponding
test set for the client and utilize the user’s target behavior as the test set. When the user
has no target behavior interaction, the user’s auxiliary behavior is used as the target
behavior. In this paper, we utilize the NDCG and the Recall to better assess the model’s
recommendation effectiveness. NDCG accounts for the position of the recommendation
ranking, while recall calculates the probability of the model recommending items that
match the user’s true interests. we report the Recall and NDCG values for k = 40 and k
= 80, respectively, and the formulas for calculating NDCG and Recall are as follows:

DCG@k =
k∑

i=1

2reli − 1

log2(i + 1)
(17)

NDCG@k = DCG@k

IDCG@k
(18)

where reli denotes the relevance score of the ith recommended item, k is the length of
the recommendation list, DCG@K represents the discounted cumulative gain of the top
k recommended items, and IDCG@K represents the discounted cumulative gain of the
top k relevant items.

Recall@k = TP@k

TP@k + FN
(19)

where the TP@k metric represents the number of items that the user actually liked
among the top k recommended items, while FN is defined as the difference between the
total number of items that the user actually liked and the number of items that the user
actually liked in the top k recommended items.

Experimental setup.The experiments in this paper are performed in anUbuntu16.04
operating system. The hardware configuration used in the experiment is as follows: CPU:
Intel Core i9-10900K; GPU: NVIDIA RTX 3080 TI. The programming language used
is Python 3.7, and the deep learning development framework is PyTorch 1.7.

4.2 Experimental Settings

In this paper, we present a recommendation method that establishes end models and sets
an aggregator on the server end. To optimize the aggregated parameter set, the federated
weighted average algorithm is employed.

In terms of the setting of the federated framework, we divide users into different
clients based on their IDs. By treating each ID as a different client, user data are read
and the model is trained on the client side. As the number of clients is large, we set
the number of client model trainings to 5, with a small number of iterations to avoid
excessive time and space overhead. Due to the transitive nature of client parameters in
the federated learning architecture, we focus more on the fitting of the overall global

A Multi-behavior Recommendation Algorithm 147

model on the server-side. An aggregate aggregator is established on the server-side,
which aggregates the parameters and distributes them to the clients. To ensure that as
many clients as possible participate in the global training, we set a large number of
random extraction times. For example, on the Beibei dataset, which has a total of 21,716
users, we extract 70 clients each time for 430 global iterations, with a total of 30,100
random extractions, covering as many user IDs as possible.

4.3 Hyperparameter Study

Formula (14) introduces β as the proportion of deleted parameters in the parameter set,
with its size determining the number of aggregated parameters. Notably, the final aggre-
gated parameter set decreases as the β value increases. Nonetheless, both excessively
large and small β values compromise the quality of the final model’s recommendation
results. Furthermore, the size of the aggregated parameter set directly impacts the aggre-
gation time, which subsequently influences the model’s training duration. In this study,
we adopt varying β sizes to measure the model’s training time and efficacy.

TheEffect ofParameterβonRecommendation. During the execution of theweighted
aggregation algorithm, the iterative transfer parameter’s quality is optimized.

0.542

0.553 0.551 0.55 0.552

0.388

0.401
0.393 0.395 0.392

0.342 0.343
0.337

0.343
0.338

0.494

0.506 0.503 0.501
0.506

0.334
0.345

0.334
0.339 0.336

0.322 0.323
0.317

0.322
0.317

0.126

0.129 0.129 0.128 0.129
0.127

0.131

0.128 0.128
0.127

0.147 0.147

0.145

0.146
0.146

0.118

0.121
0.12

0.12
0.121

0.118

0.121

0.117
0.118

0.117

0.143 0.144

0.142

0.143
0.142

0.1 0.2 0.3 0.4
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Beibei

Taobao

Yelp

0.05

Recall@80

0.1 0.2 0.3 0.4
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Beibei

Taobao

Yelp

0.05

Recall@40

0.1 0.2 0.3 0.4
0.10

0.11

0.12

0.13

0.14

0.15

Beibei

Taobao

Yelp

0.05

NDCG@80

0.1 0.2 0.3 0.4
0.10

0.11

0.12

0.13

0.14

0.15

Beibei

Taobao

Yelp

0.05

NDCG@40

Fig. 4. Effects of different values of β on the results of FedMB

148 Z. Bi et al.

However, the final model results differ slightly under different optimal parameter
β sizes. As illustrated in Fig. 4. From observation, a β value of 0.1 is optimal for the
Beibei, Taobao, and Yelp datasets. Setting a larger β may remove too many well-trained
parameters, resulting in a small parameter set that cannot achieve universal aggregation
in training, hence reducing the quality of aggregated parameters and the recommendation
effect. Conversely, a smaller β may select a smaller proportion of parameters, allowing
client parameters with training disadvantages to participate in training, ultimately com-
promising the model training and results. Therefore, the experimental results show that
setting β to less than 0.1 leads to a decrease in the results, validating the appropriateness
of using a β value of 0.1.

TheEffect of Parameter β onTrainingTime. While verifying the impact of parameter
β on the results,we discovered its effect on the fitting time of the federatedmodel training.

0.0 0.1 0.2 0.3 0.4
4.34

4.36

4.38

4.40

4.42

T
ra

in
in

g
ti

m
e

(h
) Beibei

0.0 0.1 0.2 0.3 0.4
11.85

12.00

12.15

12.30

12.45

T
ra

in
in

g
ti

m
e

(h
) Taobao

0.0 0.1 0.2 0.3 0.4
3.70

3.75

3.80

3.85

3.90

T
ra

in
in

g
ti

m
e

(h
) Yelp

Fig. 5. Effect of parameter β on training time

Upon analyzing Fig. 5, we observed that the value of β affects the training time of the
training client. Specifically, not using the precedence chart (β = 0) resulted in a longer
training time compared to using the method. We also evaluated different values of β

and set the total duration of the framework training under the training of 30,000 user
instances to {0.1, 0.2, 0.3, 0.4}. We discovered that increasing the optimal parameter
β led to a reduction in the overall framework’s training time. The training time for
the Taobao dataset decreased from 12.41 h to 11.89 h, the training time for the Beibei
dataset reduced from 4.42 h to 4.35 h, and the training time for the yelp dataset reduced
from 3.89 h to 3.74 h. Therefore, we concluded that when performing weighted optimal
aggregation, a larger optimal parameter results in fewer server-processed parameters,
leading to a shorter overall training time. Additionally, we observed that the training
time for the Taobao dataset was longer compared to the training times for the Beibei
and yelp datasets. The difference in training times was due to different datasets having
varying orders of magnitude of interactive items. Since Taobao had more interactive
items, the model required a larger interaction matrix, causing increased overhead and
longer training times. Therefore, we set β to 0.1 to decrease the training time while
ensuring recommendation quality.

A Multi-behavior Recommendation Algorithm 149

4.4 Ablation Study

In federated aggregation, clients usually upload the gradient or parameters of the user
model. However, this paper also includes the client training loss value to assess user
training quality. The precedence chart plays a vital role in FedMB.

0.1180 0.1180

0.1399

0.1210 0.1209

0.1436

0.4938

0.3339

0.3044

0.5063

0.3446

0.3226

FedMB

FedMB(PC)

FedMB

FedMB(PC)

Beibei

N
D

C
G

@
4
0

Taobao Yelp

R
ec

al
l@

4
0

Fig. 6. Effect of precedence chart on the results of FedMB

In this paper, we conduct an experiment to demonstrate its effectiveness in improv-
ing the model’s results under the influence of the precedence chart. We compare the
results of our federated model, FedMB, with FedMB(PC), and observe an improvement
in our model’s performance. To investigate the impact of the precedence chart on the
experimental results, we conducted an experiment and discussed its effect on the effec-
tiveness of the federated recommendation model with and without PC. We refer to the
“precedence chart” as PC for convenience. The results are shown in Fig. 6. The average
quality of the recommended results on the Beibei dataset increased by 2.5%, while the
improvement on the Taobao and Yelp datasets was 3% and 4.9%, respectively. These
results indicate that using the precedence chart method to filter out the excellent training
end model parameters and aggregate them has significant advantages over traditional
federated aggregation methods. Furthermore, it improves the recommendation effect
of the model. Therefore, we conclude that utilizing the precedence chart to optimize
federated aggregation is crucial for enhancing the performance of the FedMB.

4.5 Comparative Experiments

In this paper, N GCN behavior user interaction views and N user behavior interaction
views are set up, where N is the number of behaviors, N is set to 3. The weights are

150 Z. Bi et al.

learned by optimizing supervised and unsupervised losses using theAdam [28] optimizer
with a learning rate of 0.0001. In each experiment, 30,000 user rounds are trained on
the Beibei and Taobao, Yelp datasets, with the number of client training rounds set to
5 rounds. The number of users participating in each round is set to 70. The difference
in model quality in the global model with different numbers of users can be attributed
to the heterogeneity among participants, which leads to variability in the overall effect.
In each joint training, a random sampling method is adopted to ensure that each client
has the same probability of being sampled in each global iteration. To comprehensively
train the client, a higher sampling number and a larger number of global iteration rounds
must be selected. Based on hyperparameter research, setting β to 0.1 ensures optimal
efficiency with relatively low time consumption. The training batch size on clients is set
to 1024.

We conduct a comparison between FedMB and several classic multi-behavior
recommendation models, including NMTR, EHCF, RGCN, MB-GMN, and S-MBRec.

NMTR [29]: This is a hierarchical multitask recommendation model that effectively
manages complex interconnected behaviors.

EHCF [30]: This model uses heterogeneous collaborative filtering and transferable
predictions for multi-behavior. It transfers information across behaviors to enhance its
precision and personalization.

RGCN [31]: This model improves factorization models with multistep information
propagation in relational graphs, leading to enhanced accuracy in tasks such as link
prediction and entity classification.

MB-GMN [4]: This model efficiently predicts multiple source-target tasks by
combiningmeta learningwith graph neural networks to obtain cross-behavior predictors.

S-MBRec [2]: The model adopts a star comparison strategy to create a comparison
view of target and auxiliary behavior. It uses supervised and unsupervised tasks to
recommend models, improving the accuracy and effectiveness of the recommendations.

Our goal is to emphasize the unique features and advantages of FedMB in comparison
to these traditional models. Through this comparison, we provide a more comprehen-
sive understanding of the strengths and limitations of each model. We also highlight the
potential applications of FedMB in various real-world scenarios. According to Table 2,
the proposed federated multi-behavior recommendation model outperforms the latest
S-MBRec model on the Beibei dataset, with an average index increase of 12.6% points.
While there are decreases in Recall@10 and NDCG@10 due to the larger number of
interactions per user in the Beibei dataset, its performance also decreases in shorter
recommendation lists when unable to obtain preferences from other users. However,
the other two datasets exhibit some mitigation of this effect due to their smaller num-
bers of interaction items per user. Despite this, for other metrics such as Recall@40
and NDCG@40, they are both twice as high as the latest methods, and Recall@80
and NDCG@80 also experience significant improvement. On the Taobao dataset, all
performance indicators show improvement, especially in Recall@40 and NDCG@40,
resulting in an average indicator increase of 13.1%points. Similarly, theYelp dataset also
shows an average increase of 14.5% points. These results demonstrate the excellent rec-
ommendation performance of the proposed model, especially when recommending 40
items (Table 3).

A Multi-behavior Recommendation Algorithm 151

Table 3. FedMB in Beibei,Taobao, and Yelp results comparison

Datatset Metric NMTR EHCF RGCN MB-GMN S-MBRec FedMB

Beibei Recall@10 0.0460 0.0456 0.0483 0.0496 0.0529 0.0443

Recall@40 0.1370 0.1270 0.1262 0.1497 0.1647 0.5063

Recall@80 0.1989 0.1923 0.1912 0.2018 0.2740 0.5525

NDCG@10 0.0124 0.0131 0.0122 0.0134 0.0148 0.0137

NDCG@40 0.0192 0.0217 0.0226 0.0395 0.0429 0.1210

NDCG@80 0.0422 0.0435 0.0440 0.0465 0.0615 0.1290

Taobao Recall@10 0.0367 0.0292 0.0370 0.0423 0.0608 0.1764

Recall@40 0.0485 0.0594 0.0703 0.0873 0.1027 0.3446

Recall@80 0.0982 0.1032 0.1525 0.1553 0.1647 0.4011

NDCG@10 0.0237 0.0285 0.0213 0.0325 0.0391 0.0819

NDCG@40 0.0404 0.0373 0.0314 0.0396 0.0464 0.1209

NDCG@80 0.0329 0.0390 0.0443 0.0475 0.0583 0.1306

Yelp Recall@10 0.0195 0.0172 0.0210 0.0230 0.0259 0.1986

Recall@40 0.0697 0.0704 0.0844 0.0899 0.1135 0.3226

Recall@80 0.0903 0.0873 0.1105 0.1350 0.1548 0.3433

NDCG@10 0.0191 0.0166 0.0199 0.0275 0.0287 0.1145

NDCG@40 0.0305 0.0298 0.0263 0.0220 0.0337 0.1436

NDCG@80 0.0355 0.0330 0.0395 0.0430 0.0438 0.1471

The proposed federated multi-behavior recommendation model is different from the
baseline model in that it trains a personalized model for each user and makes recom-
mendations based on their interactions with personalized items. Unlike the comparative
methods, this model explores the interaction of users’ personalized items and trains a
model for each user, and it does not weaken with the overall user preference. Addition-
ally, a security encryptionmodule is added to the parameter upload process to ensure user
privacy and security while improving recommendation performance. Consequently, the
model effectively explores users’ personalized preferences andmakes recommendations
without revealing their private data.

5 Conclusion

In this paper, we present FedMB, a multi-behavior recommendation model that uti-
lizes federated learning to preserve data privacy during the recommendation process.
FedMB employs a personalized federated learning framework to address the challenge
of user personalization in multi-behavior recommendation. Through personalized user
models, the system can provide high-quality recommendations while still protecting the
privacy of users’ data. The effectiveness and efficiency of FedMB are evaluated in exper-
iments, and we also discuss the impact of using a precedence chart on the performance

152 Z. Bi et al.

of the federated model recommendation. The results show the feasibility of using fed-
erated learning in multi-behavior recommendation systems, with the proposed method
performing well on three datasets.

In future research directions of multi-behavior recommendation under the federated
learning paradigm, improving the security and efficiency of the system remains a top
priority. Despite the higher privacy level provided by the decentralized data location
and encrypted data transmission, there is still a risk of privacy leakage during param-
eter distribution. Additionally, enhancing the efficiency of client model training and
compressing parameters to reduce communication overhead are crucial areas for further
investigation.

References

1. Wang, L., Xiong, Y., Li, Y., Liu, et al.: A collaborative recommendation model based on
enhanced graph convolutional neural network. J. Comput. Res. Dev. 58(09), 1987–1996
(2021). (in Chinese)

2. Gu, S., Wang, X., Shi, C., et al.: Self-supervised graph neural networks for multi-behavior
recommendation. In: International Joint Conference on Artificial Intelligence, Shenzhen
(2022)

3. Jin, B., Gao, C., He, X., et al.: Multi-behavior recommendation with graph convolutional
networks. In: Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, Xian, pp. 659–668 (2020)

4. Xia, L., Xu, Y., Huang, C., et al.: Graphmeta network for multi-behavior recommendation. In:
Proceedings of the 44th International ACMSIGIRConference on Research and Development
in Information Retrieval, Montreal, pp. 757–766 (2021)

5. Xia, L.,Huang,C.,Xu,Y., et al.:Knowledge-enhancedhierarchical graph transformer network
for multi-behavior recommendation. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 5, pp. 4486–4493 (2021)

6. Wei, W., Huang, C., Xia, L., et al.: Contrastive meta learning with behavior multiplicity for
recommendation. In: Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining, New York, pp. 1120–1128 (2022)

7. Wu, J., Wang, X., Feng, F., et al.: Self-supervised graph learning for recommendation. In:
Proceedings of the 44th International ACMSIGIRConference on Research and Development
in Information Retrieval, Montreal, pp. 726–735 (2021)

8. Zhang, H., Li, Y., Wu, J., et al.: A survey on privacy-preserving federated recommender
systems. Acta Automatica Sinica 48(09), 2142–2163. (in Chinese)

9. Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). A
Practical Guide, 1st edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

10. McMahan, B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep
networks from decentralized data. In: Artificial Intelligence and Statistics, Fort Lauderdale,
pp. 1273–1282. PMLR (2017)

11. Shmueli, E., Tassa, T.: Secure multi-party protocols for item-based collaborative filtering. In:
Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, pp. 89–97
(2017)

12. Kim, S., Kim, J., Koo, D., et al.: Efficient privacy-preserving matrix factorization via fully
homomorphic encryption. In: Proceedings of the 11th ACMonAsia Conference on Computer
and Communications Security, New York, pp. 617–628 (2016)

https://doi.org/10.1007/978-3-319-57959-7

A Multi-behavior Recommendation Algorithm 153

13. Berlioz, A., Friedman, A., Kaafar, M.A., et al.: Applying differential privacy to matrix fac-
torization. In: Proceedings of the 9th ACM Conference on Recommender Systems, Vienna,
pp. 107–114 (2015)

14. McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy
into the netflix prize contenders. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, pp. 627–636 (2009)

15. Lu, K.P., Chang, S.T.: Detecting change-points for shifts in mean and variance using fuzzy
classification maximum likelihood change-point algorithms. J. Comput. Appl. Math. 308,
447–463 (2016)

16. Wu, Y., Xie, R., Zhu, Y., et al.: Multi-view multi-behavior contrastive learning in recom-
mendation. In: International Conference on Database Systems for Advanced Applications,
Hyderabad, pp. 166–182 (2022)

17. Chai, D., Wang, L., Chen, K., et al.: Secure federated matrix factorization. IEEE Intell. Syst.
36(5), 11–20 (2020)

18. Zhang, S., Yin, H., Chen, T., et al.: Pipattack: poisoning federated recommender systems for
manipulating item promotion. In: Proceedings of the FifteenthACM International Conference
on Web Search and Data Mining, New York, pp. 1415–1423 (2022)

19. Lin, G., Liang, F., Pan, W., et al.: Fedrec: federated recommendation with explicit feedback.
IEEE Intell. Syst. 36(5), 21–30 (2020)

20. Wu, C., Wu, F., Cao, Y., et al.: Fedgnn: federated graph neural network for privacy-preserving
recommendation. In: Proceedings of the Thirty-Eighth International Conference on Machine
Learning (2021)

21. Perifanis, V., Efraimidis, P.S.: Federated neural collaborative filtering. Knowl.-Based Syst.
242, 108441 (2022)

22. Yi, J., Wu, F., Wu, C., et al.: Efficient-FedRec: efficient federated learning framework
for privacy-preserving news recommendation. In: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, Stroudsburg, pp. 2814–2824 (2021)

23. Yuan, W., Yin, H., Wu, F., et al.: Federated Unlearning for On-Device Recommendation.
arXiv preprint arXiv:2210.10958 (2022)

24. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: Proceedings of the 5th International Conference on Learning Representations. Palais des
Congrès Neptune (2017)

25. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8,
143–195 (1999)

26. Rendle, S., Freudenthaler, C., Gantner, Z., et al.: BPR: Bayesian personalized ranking from
implicit feedback. In: Proceedings of the Twenty-FifthConference onUncertainty inArtificial
Intelligence, Montreal, pp. 452–461 (2009)

27. Lee, B.H., Dewi, E.K., Wajdi, M.F.: Data security in cloud computing using AES under
HEROKU cloud. In: 27th Wireless and Optical Communication Conference (WOCC),
Hualien, pp. 1–5 (2018)

28. KingaD, A.: A method for stochastic optimization. In: Anon. International Conference on
Learning Representations. SanDego (2015)

29. Gao, C., He, X., Gan, D., et al.: Neural multi-task recommendation frommulti-behavior data.
In: 2019 IEEE 35th International Conference on Data Engineering, Macau, pp. 1554–1557
(2019)

30. Chen, C., Zhang, M., Zhang, Y., et al.: Efficient heterogeneous collaborative filtering without
negative sampling for recommendation. In: Proceedings of theAAAIConference onArtificial
Intelligence, New York, vol. 34, no. 01, pp. 19–26 (2020)

31. Schlichtkrull, M., Kipf, T.N., Bloem, P., et al.: Modeling relational data with graph con-
volutional networks. In: European Semantic Web Conference, Heraklion, pp. 593–607
(2018)

http://arxiv.org/abs/2210.10958

	A Multi-behavior Recommendation Algorithm Based on Personalized Federated Learning
	1 Introduction
	2 Related Work
	2.1 Multi-behavior Recommendation Algorithm
	2.2 Privacy Protection Recommendation Algorithm
	2.3 Federated Learning

	3 Proposed Method
	3.1 Problem Definition
	3.2 FedMB Framework

	4 Experiments
	4.1 Datasets and Evaluation Settings
	4.2 Experimental Settings
	4.3 Hyperparameter Study
	4.4 Ablation Study
	4.5 Comparative Experiments

	5 Conclusion
	References

