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Abstract. Service caching is an emerging solution to addressing mas-
sive service request in a distributed environment for supporting rapidly
growing services and applications. With the explosive increases in global
mobile data traffic, service caching over the edge computing architec-
ture, Mobile edge computing (MEC), emerges for alleviating traffic con-
gestion as well as for optimizing the efficiency of task processing. In
this manuscript, we propose a novel profit-driven service caching method
based on a federated learning model for service prediction and a deep
reinforcement learning mode for yielding caching decisions (FPDRD) in
an edge environment. The proposed method is temporal service pop-
ularity and user preference-aware. It aims to ensure quality of service
(QoS) of delivery of cached service while maximizing the profits of net-
work service providers. Experimental results clearly demonstrate that the
FPDRD method outperforms traditional methods in multiple aspects.

Keywords: service caching · profit maximization · popularity
prediction · caching decisions · collaborative mechanism

1 Introduction

In recent years, the explosive growth of mobile applications and the growing need
for low-latency and high-bandwidth services have placed significant strain on the
traditional cloud-centric network infrastructure [1,2]. To tackle these challenges,
edge computing has emerged as a promising paradigm that brings computing and
storage capabilities closer to end-users. This proximity allows for Lower latency,
minimized network congestion and enhanced quality of service (QoS) [3–5].

Edge service caching is a critical component of edge computing, which sig-
nificantly contributes to the improvement of mobile application performance 3.
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It involves the strategic storage of frequently accessed data and services on edge
servers, referred to as Fog Access Points (FAPs). The purpose of this caching
strategy is to reduce delay and alleviate the workload on central cloud data cen-
ters. By employing edge service caching, faster access to content and services is
made possible, especially for latency-sensitive applications like augmented real-
ity, video streaming and real-time data processing.

However, various challenges in this direction are yet to be properly addressed.
Firstly, FAPs are with limited computational and storage resources, thus guar-
anteeing only a small amount of services is cachable and making hit rate low.
Secondly, in a highly dynamic and volatile edge environment, static caching
strategies are often inadequate in meeting the changing needs. Nevertheless, how
to yield run-time caching decisions according to time-varying service popularity
and user needs remains a difficulty. Finally, existing methods in this direction
usually aim to optimize caching performance, in terms of hit rate and delivery
latency. How to guarantee profit of service providers is less studied.

In this paper, we propose a novel caching method by leveraging a federated
learning model for popularity prediction and a deep reinforcement learning model
for yielding caching decisions (FPDRD). The FPDRD method takes both global
service popularity and local user preferences as inputs and can achieve reason-
able tradeoffs between caching performance and profit of providers. Extensive
simulations are conducted based on a well-known dataset, Movielens. Numerical
results clearly indicate that our proposed method outperform it peers.

The paper is organized as follows: Section 2 provides a literature review.
Section 3 presents the system model and the problem formulation. Section 4
describes the proposed method. Section 5 presents the empirical analysis.

2 Related Work

Task offloading and caching in MEC have gained significant attention in recent
years as a means to alleviate the resource constraints faced by FAPs. In their
work, Gao et al. [7] presented a method that combines task offloading schedul-
ing and resource allocation to minimize task delay and energy consumption.
Liu et al. [8] proposed an approach that utilizes online computation offloading
and resource scheduling to tackle the challenges arising from user mobility and
network dynamics.

Due to resource and energy constraints, FAPs are usually allowed to cache
limited services [9]. Thus, caching of highly popular services in FAPs has emerged
as an effective solution when FAPs are limited in caching capacity. Zhong et al.
[10] proposed the Cocktail Edge Caching method, which utilizes an ensemble
learning algorithm to predict the popularity of services. However, this approach
only takes into account the overall service popularity while neglecting the pref-
erences of local users. In contrast, Li et al. [11] propose a service caching method
that considers hit actions and user perception preferences. However, this app-
roach raises concerns regarding user privacy and security, as it shares all users’
personal information for prediction purposes.
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Recently, the cooperative service caching mechanism was proposed as well for
exploiting multiple cache nodes through making them working together [12–15].
The problem of cooperative service caching can be formulated as a Mixed-Integer
Nonlinear Programming (MINLP) problem, which is known to be inherently
NP-hard [16,17]. Wu et al. [18] and Xu et al. [19] propose a coalition formation
algorithm that utilizes a hedonic game among cooperative service providers for
optimizing both the overall profit of the coalition and the average profit of each
individual participant. Li et al. [20] propose a DRL algorithm-based profit-driven
cooperative service placement method in MEC.

3 System Models and Problem Formulation

Here, we consider a service caching system in MEC represented as G = (CCS ∪
N ∪U ∪L), as illustrated in Fig. 1. This system consists of a central cloud server
(CCS), multiple fog access points (FAPs) denoted as N = {N1,N2, ...,Nn},
multiple users denoted as U = {U1,U2, ...,Uu} and a set of service types denoted
as L = {L1,L2, ...,Ll}. Network edge service providers operate each FAP, which
is equipped with storage, computing and communication capabilities. Users are
provided services by these FAPs by using a billing mechanism.

3.1 Caching Model

Due to capacity and storage limits, FAPs cache a subset of application ser-
vices. These cached applications require periodic updates and replacement. The
caching decisions is represented by a binary variable xn,l, which can be expressed
as:

xn,l =

{
1, if service Ll is cached in the FAP Nn,

0, otherwise.
(1)

The constraint on the storage space at the FAP Nn is:∑
l∈L

xn,lωl ≤ Ωn (2)

where ωl represents the storage capacity required for service Ll and Ωn the
total cache capacity of FAP Nn.

Users are charged for use of service Ll. Such charge is proportional to use
time:

Fl = tl · pl (3)

where pl represent the price charged by the service provider for the execution
of service Ll per unit of time.
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Fig. 1. System model.

3.2 Computation and Communication Model

According to a collaborative service cache mechanism (CSCM) [21], where FAP
Nn receives a service request from a user. Initially, FAP Nn checks its local
cache to determine if service Ll is cached. If the service is cached locally, FAP
Nn handles the user’s service request directly. Otherwise, FAP Nn seeks cached
services from neighboring FAPs. When multiple FAPs cache service Ll, FAP Nn

turns to FAP Nm with the lowest transmission cost. When none of the FAPs
caches the required service Ll, the user’s service request is forwarded to the
CCS. The cost Cx

n,l represents the charge by FAP Nn when processing service
Ll through server x :

Cx
n,l = β1 · Lx

n,l + β2 · Ex
n,l (4)

where Lx
n,l and Ex

n,l denote the delay and energy consumption when FAP
Nn processes service Ll through server x, respectively. β1 and β2 indicate the
economic factors associated with the delay and energy consumption, respectively.

When FAP Nn receives a service request from a user, it first checks whether
service Ll is cached locally. In this case, FAP Nn directly processes the user’s
service request. In such a scenario, FAP Nn places the service onto the thread
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of the queue with the shortest waiting time for processing. In this context, the
local delay and energy consumption for service Ll are:

Llocal
n,l = (

∑
o∈qn

ζo + ζl) · tc + Lbase (5a)

Elocal
n,l = ζlf

2
nεn + Ebase (5b)

where qn represents the set of tasks in the queue with the shortest waiting
time on FAP Nn, ζl the computational workload, tc the unit processing time for
a task and fn the computing capacity of FAP Nn.

In case that service is not cached locally at FAP Nn, the FAP Nn turns to
other servers. According to Shannon’s formula, the transmission rate between
them is:

ri,j = Bi log2

(
1 +

Pi|hi|2
σ2

)
(6)

where Bi represents the bandwidth rate, Pi the transmission energy consump-
tion, |hi|2 the channel gain and σ2 the variance of the additive white Gaussian
noise (AWGN).

In case that FAP Nn finds one or more servers that cache service Ll among the
neighboring FAPs, it chooses the FAP Nm with the lowest cost for processing
the user’s service request. In this case, the delay and energy consumption for
executing service Ll are:

Lm
n,l = (

∑
o∈qm

ζo + ζl) · tc +
dl

m,n

rm,n
+ Lbase (7a)

Em
n,l = ζlf

2
mεm + Pm

dl
m,n

rm,n
+ Ebase (7b)

Where dl
m,n represents the bit size of the computed result of the service

request l that is processed by FAP Nm and forwarded to FAP Nn.
In case that neither FAP Nn nor its neighboring FAPs cache service Ll,

the service request is offloaded to the CCS. In this case, the delay and energy
consumption for executing service Ll are:

Lccs
n,l = ζl · tc +

dl
ccs,n

rccs,n
+ Lbase (8a)

Eccs
n,l = ζlf

2
ccsεccs + Pccs

dl
ccs,n

rccs,n
+ Ebase (8b)

For each service request, the profit obtained by FAP Nn can be calculated as
the gap between the service request’s fee and the total cost incurred. The overall
cost is comprised of the cost of caching service Cx,l in the server x, the cost of
collaboration Cx

n,l with other servers x and the equipment-related baseline cost
Cbase. Thus, profit of service request is:
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V local
n,l = Fl − Cn,l − CNn

n,l − Cbase (9a)

V m
n,l = Fl − Cm,l − CNm

n,l − Cbase (9b)

V ccs
n,l = Fl − Cccs,l − CCCS

n,l − Cbase (9c)

Consequently, the total profit earned by FAP Nn is:

Vn =
∑
l∈L

(
P local

n,l · V local
n,l + PNm

n,l · V m
n,l + P ccs

n,l · V ccs
n,l

)
(10)

where P local
n,l , PNm

n,l and P ccs
n,l are binary variables represent the execution modes

for FAP Nn to handle service request Ll as local execution, execution with
assistance from FAP Nm and execution via the CCS, respectively.

Additionally, the QoS of users Ul is decided by the average delay Ll and
average fee Fl of executing service Ll:

Ul = ηl
Ll − Lmin

Lmax − Lmin
+ ηf

Fl − Fmin

Fmax − Fmin
(11)

where ηl and ηf represent the impact factors of delay and price on the QoS of
users, respectively. Lmax, Fmax and Lmin, Fmin represent the maximum and
minimum of delay and fee for executing service Ll, respectively.

3.3 Problem Formulation

Based on the system model given above we are interested in maximizing profits of
service provider with the constraints of caching capacities. According to (10), the
profit of FAP Nn is decide by the local cache hit rate P local

n,l and the collaborative
cache hit rate PNm

n,l . The resulting optimization formulation is thus:

P : max
∑
t∈T

∑
Nn∈N

Vn (12)

s.t. C1 :Ul < Umin,∀Ll ∈ L (13a)
C2 :xn,l ∈ {0, 1},∀Nn ∈ N ,∀Ll ∈ I (13b)

C3 :
∑
l∈L

xn,lωl ≤ Ωn,∀Nn ∈ N (13c)

C4 :P local
n,l , PNm

n,l , P ccs
n,l ∈ {0, 1},∀Nn,Nm ∈ N ,∀l ∈ L (13d)

C5 :P local
n,l +, PNm

n,l + P ccs
n,l = 1 (13e)

C6 :Vn ≥ 0,∀Nn ∈ N (13f)
C7 :Numn,l ≤ 1 (13g)

Constraint (13a) ensures that the QoS of Ll is bounded. Constraints (13b)
and (13c) indicate the limit of total storage capacity of cached services on FAP
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Nn. Constraint (13f) guarantees that the profit for each FAP Nn must be non-
negative. Constraint (13g) indicates that each FAP Nn can cache service Ll at
most once. The above optimization problem is clearly a Mixed-Integer Nonlinear
Programming (MINLP) one, which is also NP-hard.

4 The Proposed Method

In this section, we present a detailed description of the FPDRD method. Firstly,
we employ a Federated Learning model for accurate prediction of local popu-
larity by taking the global popularity model and user perception preferences as
inputs. We maintain a popularity priority queue QNn

c of FAP NN and feed the
popularity priority queues Qc for each FAPs as input of into a deep reinforce-
ment learning model. The learning model yields collaborative service caching
decisions according to the optimization objective and constraints.

Fig. 2. Popularity prediction model.

4.1 Federated Learning for Popularity Prediction

As shown in Fig. 2, we implement the prediction of popular services based on
FL algorithm. The popularity prediction includes the following three steps:

Download Global Model. At the start of each time slot t, every FAP retrieves
the global model parameters Wt from the CCS (Lines 3). These model param-
eters facilitate the extraction of latent features to predict popular services. This
enables each FAP to determine the overall popularity for services during the
current time slot.
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Local Model Training. Upon receiving the global model parameters Wt,
each FAP updates its local model through training iterations (Line 4–8). Sub-
sequently, the updated local model HNn

t is uploaded to the CCS (Line 9). This
local model incorporates hidden features related to global service popularity as
well as captures hidden features specific to the local users’ service perception
preferences. By utilizing FAP Nn’s local model HNn

t , the local service popular-
ity priority queue QNn

c can be predicted (Line 10). The loss function employed
is the categorical cross-entropy, a generalized version of binary cross-entropy, to
determine the logarithmic loss for multi-class predictions. This loss function mea-
sures the misclassification between the true service Ll label π and the predicted
service Ll label π̂ defined as cross-entropy:

L(π̂,π) = −
∑

i

πi log(π̂i) (14)

Then, we estimate the loss according to its Mean Squared Error (MSE):

L(φ̂, φ) = E[(φi − φ̂i)2] (15)

where φi is the real service request label and φ̂i the predicted one.

Algorithm 1. Federated Learning for Popularity Prediction
Input: A set of service requests.
Output: The predicted popularity priority queue Qc.
1: for t ∈ T do
2: for Nn ∈ N do
3: Download the global model Wt.
4: for the service requests received by Nn at time t do
5: Calculate the loss of service Ll according to Eq.(14).
6: end for
7: Calculate the loss of FAP Nn according to Eq.(15).
8: Update model parameters HNn

t .
9: Upload HNn

t to the CCS.
10: Calculate the predicted queue QNn

c of the FAP Nn.
11: end for
12: The CCS update Wt+1 according to Eq.(16).
13: end for
14: return The predicted popularity priority queue Qc.

Federated Aggregation. After receiving the uploaded local models Ht from
FAPs, the CCS updates the global model Wt+1 (Line 12). To address the issue
of imbalance in the local models across different FAPs, a weighted federated
aggregation approach is employed by assigning different aggregation weights to
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the local models uploaded by different FAPs. In that case, the updated global
model Wt+1 is:

Wt+1 = Wt +
∑

Nn∈N
∇Nn

t

MNn
t∑

Nn∈N
MNn

t

(Wt − HNn
t ) (16)

where ∇Nn
t represents the gradient step size and MNn

t the number of service
requests received by FAP Nn at time t.

Algorithm 2. Cooperative Service Caching Mechanism
1: for n = 1, 2, . . . , N do
2: for the service requests received by Nn at time t do
3: Calculate the service fee Fl and caching cost Cx

n,l for service l according to
Eq.(3) and Eq.(4) respectively.

4: if service l is cached in FAP Nn then
5: Calculate Llocal

n,l and Elocal
n,l according to Eq.(5).

6: end if
7: if service l is cached in another FAP then
8: Calculate Lm

n,l and Em
n,l according to Eq.(7).

9: end if
10: if service l is not cached in any FAP then
11: Calculate Lccs

n,l and Eccs
n,l according to Eq.(8).

12: end if
13: Calculate Ul of service l according to Eq.(11) and update tl of service l accord-

ing to Eq.(13a).
14: end for
15: Calculate the profit Vn for FAP-N according to Eq.(10).
16: end for
17: return Profits for each FAPs.

4.2 Deep Reinforcement Learning for Caching Decisions

Upon receiving the service popularity priority queue at each FAP for the current
time slot, we utilize a deep Reinforcement learning model to determine the opti-
mal cooperative caching decisions. The objective of this approach is to maximize
the profits of FAPs while maintaining QoS for users.

State. We consider the services cached by FAP Nn as the current state sNn(t),
where the cached services are primarily selected based on the predicted queue
QNn

c obtained from Algorithm 1. Therefore, the current state can be represented
as s(t)Nn = (sNn

1 , sNn
2 , ..., sNn

c ), where sNn
i represents the ith popular service

cached in FAP Nn.
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Algorithm 3. Deep Reinforcement Learning for Caching Decisions
Input: A set of service requests and the predicted popularity priority queue Qc

Output: The caching decisions and profit of FAPs
1: for t = 1, 2, . . . , T do
2: for n = 1, 2, . . . , N do
3: Obtain the state s(t)
4: Obtain the predicted popularity priority queue QNn

c .
5: Calculate the action a(t) according to Eq.(17).
6: Obtain the next state s(t + 1) after executing a(t).
7: Obtain the profit according to Algorithm.(2).
8: Obtain the reward r(t).
9: Store the tuple (s(t), a(t), r(t), s(t + 1)) and randomly sample a minibatch

from it.
10: Calculate the loss function by Eq.(20).
11: Calculate the gradient by Eq.(21).
12: Update θ according to Eq.(22).
13: end for
14: Obtain the caching decisions according to θ.
15: Each FAPs selects the services from the prediction queue QNN

c for replacement.
16: end for
17: return The caching decisions and profit of FAPs.

Action. We define the action a = (aN1 , aN2 , ..., aNn) to represent the set of
actions for all FAPs.where aNn = (aNn

1 , aNn
2 , ..., aNn

c ) represents whether it is
necessary to replace the service in FAP Nn. In this context, aNn

i = 0 indicates
that there is no need to replace the service stored in the ith position of FAP Nn

cache, while aNn
i = 1 indicates that it is necessary to replace the service stored in

the ith position of the FAP Nn. In case that the action function is implemented
using the ε-greedy method:

a(t) = argmax(Q(s(t), a; θ)) (17)

Reward. We define the reward function r(t) to maximize the profit obtained by
FAPs. After taking action a(t), the corresponding reward r(t) is obtained and
the transition from state s(t) to s(t+1) occurs. Consequently, we can construct a
(s (t) , a (t) , r (t) , s (t + 1)) transition, which is stored in the replay buffer. Then,
the action-value function is updated:

Q (si+1, ai+1; θ) = Q (si, ai; θ) + α [yi − Q (si, ai; θ)] (18)

where α represents the learning rate and yi the target Q-value of the target
network of tuple i:

yi = ri + γ max Q̂ (si+1, ai+1; θ) (19)

where γ is the discount factor. The loss function L(θn
i ) of network is:

L(θn
i ) = E

[
(yi − Q (sj , aj ; θ))

2
]

(20)
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The gradient calculation of the loss function ∇θL(θ) for all sampled tuples
is:

∇θL(θ) = E [(yi − Q (si, ai, θ)) ∇θiQ (si, ai, θ)] (21)

At the end of time slot t, the parameters of the network θ are updated as:

θ ← θ − ηθ∇θL(θ) (22)

where ηθ is the learning rate of prediction network.
Firstly, at each time instant t, we take the predicted popularity priority queue

Qc that obtained in Algorithm (1) and the cache state s(t) of the FAPs as input
(Line 3–4). Secondly, we use a deep reinforcement learning model that combines
the profit calculation model in Algorithm (2) as the model indicator for training
to obtain the optimal caching decisions model (Line 5–12). Finally, each FAP NN

selects the services from the prediction queue QNN
c for replacement according to

the caching decisions model (Line 14–15).

5 Performance Evaluation

5.1 Simulation Configuration

In this paper, we developed a simulation environment based on the Movielens
dataset (ml–25 m) [22], which consist of 25,000,095 ratings and 1,093,360 tags
of 62,423 movies created by 162,541 users. The datasets also include the related
information about the involved movies, such as titles and genres, as well as user
attributes including ID number, gender, age and postcode. We assumed that
user preferences are represented by movie ratings and the number of ratings
corresponds to the number of user preferences. The publication time of ratings
is considered as the request initiation time. All the experiments are conducted
on the same computer with an AMD Ryzen7 4800H 2.90 GHz processor, 16.0
GB of RAM and using PyTorch 2.0.

5.2 Baselines

We compare our method against four baselines:

1) DRLVCC: The baseline initially employs a Convolutional Neural Network
(CNN) model to assess the popularity of new requests at different locations.
Subsequently, by a path-responsive vertical cooperative caching approach
based on a deep reinforcement learning model to formulate caching decisions
[23].

2) UPP-CL-CC: The baseline employs an LSTM model to dynamically capture
user activities and preferences, thereby extracting local popularity informa-
tion for FAPs which are subsequently subjected to clustering. Building upon
this foundation, the author proposed a novel greedy approach to address the
cache placement issue [24].
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3) Random: Each FAP replaces unrequested services with a probability of ε. In
our simulation, ε = 0.1.

4) First-In-First-Out Scheme (FIFO): FAPs cache services based on the order of
service requests and discard the oldest cached services when the cache space
runs out.

5.3 Performance Analysis

We perform experiments under three scenarios:

1) We intercept different time spans of the datasets and increased them by one
day at a time to observe how time spans impact service caching performance.

2) We study the impact of the number of service types on algorithm performance
while fixing the time interval at 1 day and setting FAPs’ cache capacity to
100.

3) We compare how FAPs’ cache capacity influences algorithm performance
while keeping the time interval fixed at 1 day and the number of service
types fixed at 1000.

Fig. 3. The performance of algorithms in different time spans.
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As shown in Fig. 3, the FPDRD method exhibits the best overall perfor-
mance. Fig. 3(c) indicates that by considering the temporal variation of over-
all service popularity and the specific preferences of local users, our predic-
tive queue aligns more closely with real-world scenarios, leading to significantly
higher caching hit rates compared to the baseline algorithm. Figure 3(a) and
Fig. 3(b) demonstrate that the FPDRD method achieves the lowest average delay
and highest average profit on various time-span datasets. This achievement is
attributed to the combination of a more accurate predictive model and the train-
ing of the decision-making network using DRL algorithms, resulting in a caching
decisions model that can simultaneously safeguard the QoS of users and enhance
providers’ of network services’ profit.

Fig. 4. The impact of the number of service types on algorithms.

As shown in Fig. 4, it is clear that an increase in service types negatively
impacts the performance of all algorithms. However, different algorithms show
different degrees of performance change. In particular, the FPDRD method
exhibits a slower performance degradation while still maintaining the best over-
all performance. In contrast, the UPP-CL-CC method experiences a more rapid
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performance degradation. The observed trends suggest a trade-off between the
algorithms’ capacity to adapt and optimize caching decisions effectively as the
number of service types rises. The ability of the FPDRD method to respond
quickly to environmental changes enables it to maintain superior overall perfor-
mance even when confronted with a progressively diverse range of service types.

Fig. 5. The impact of the FAPs cache capacity on algorithms.

As shown in Fig. 5, the FPDRD algorithm achieves the highest performance
for different FAPs cache capacities. Additionally, with increasing cache capac-
ity of FAPs, the performance improvement of FPDRD method becomes more
pronounced. The experimental results demonstrate the efficiency of the FPDRD
method in popularity prediction and caching decisions, allowing for the effi-
cient utilization of the available cache resources. As the cache capacity of FAPs
increases, the algorithm can utilize this extra storage capacity to make more
informed and optimized caching decisions. Therefore, the algorithm improves
the cache hit rate and quality of service, ultimately enhancing network services
and benefiting both end users and network service providers.
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6 Conclusion

This paper investigates the service caching problem in MEC and proposes a
novel caching method by leveraging a federated learning model for popularity
prediction and a deep reinforcement learning model for yielding caching decisions
(FPDRD). The experimental results clearly demonstrate that the superiority
of the FPDRD method in achieving improved cache hit rates in MEC. This is
accomplished by effectively considering the temporal variability of overall service
popularity and the specificity of local user preference perception in predictions.
Furthermore, the proposed method maximizes the utilization of limited storage
and computational resources by promoting collaboration among FAPs. In case
that the FPDRD method ensures the QoS of users and maximize the profits
of network service providers. In the future, we aim to address the problem of
resource idleness in FAPs due to the mismatch between storage and comput-
ing resource requirements of service and plan to optimize the fault-tolerance in
collaborative service caching.
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