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Abstract. In Internet of Vehicles (IoV) system, Federated Learning
(FL) is a novel distributed approach to processing real-time vehicle data
that enables training of shared learning models while ensuring data pri-
vacy. However, existing FL still face numerous challenges in IoV. Firstly,
the fast convergence with FL models is difficult to achieve due to the high
mobility of vehicles and the non-independent identical distribution (Non-
IID) among data collected by vehicles. Moreover, the parameter aggre-
gation process of FL incurs significant communication overhead, and the
varying computing power of vehicles results in the straggler. To address
these issues, this paper proposes a Cluster-based Semi-Asynchronous
Federated Learning framework for IoV (CSA FedVeh). Specifically, we
propose a Space-Time and Weight DBSCAN density clustering algorithm
(STW-DBSCAN) that relies on both the space-time location and model
weight similarities of vehicles. Clustering of vehicles can alleviate the
impact of Non-IID data, and the joint training of data vehicles can reduce
resource consumption and mitigate the straggler effect. In addition, we
adopt a semi-asynchronous FL aggregation mechanism to reduce com-
munication time and improve FL efficiency. Experimental results show
that compared with baselines under Non-IID datasets, CSA FedVeh can
reduce the running time by about 24.6% to 60.2%, and reduce commu-
nication consumption by 3.4% to 62.07% on MNIST dataset and 1.01%
to 68.6% on GTSRD dataset.

Keywords: Internet of vehicles · Federated learning · Cluster ·
Semi-asynchronous

1 Introduction

With the rapid development of wireless communication and Artificial Intelli-
gence (AI) technologies, Internet of Vehicles (IoV) has emerged as a significant
application scenario for 5G and beyong. It is playing a crucial role in the fields
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of autonomous driving and Intelligent Transportation Systems (ITS) [1,2]. How-
ever, Intel estimates that each smart car will generate approximately 4000GB
of data per day, which is equivalent to the data produced by nearly 3000 mobile
phone users. The real-time processing of the data collected from the vehicles
poses a thorny issue. Meanwhile, with the development of Mobile Edge Comput-
ing (MEC) and Federated Learning (FL) technologies, on the one hand, as the
vehicle data is generated in IoV, MEC naturally combines with IoV, enabling
data processing to be performed in the vicinity of the vehicles through the com-
puting power and storage resources of edge server (ES) [3]. On the other hand,
in 2016, Google proposed federated learning [4] as a distributed deep learning
paradigm, which allows vehicles to train their local deep learning models inde-
pendently using local data and aggregates them into a global model. Vehicles
do not directly send local data and only share local model parameters, which to
some extent, protects vehicle privacy [5]. As real-time computing services on the
vehicular edge continue to grow, the combination of IoV and FL technology will
become a research focus.

Although the existing FL clustering approaches and aggregation mechanisms
have been effective in some IoV scenarios, several challenges persist in IoV,
including: as a result of differences in sensors and processors of vehicles and
devices, the data collected by vehicles is the non-independent identical distri-
bution (Non-IID). When using such Non-IID data, FL model may significantly
decrease in terms of convergence speed and accuracy [6,7]. Vehicles are typically
in a state of high-speed mobility and their distance to ES varies over time, which
can result in communication congestion and delays when participating vehicles
of FL frequently update model parameters to ES. Additionally, the computa-
tional capabilities of some vehicles differ, resulting in slow-performing stragglers
significantly prolonging the delay of each round FL aggregation and ultimately
impacting the convergence speed of the global model.

To tackle the aforementioned three challenges, we acknowledge the signifi-
cance of cooperation among vehicles and propose a novel vehicle clustering-based
semi-asynchronous federated learning framework for IoV (CSA FedVeh). Our
contributions are summarized as follows:

– We establish a distributed training network for FL, which combines local
training in vehicles and global aggregation in ES. To ensure the quality of
FL model for vehicles and support the faster possible model convergence, we
formulate a minimization problem for the convergence time of global model
aggregation.

– Based on the CSA FedVeh framework, we propose a Space-Time and Weight
DBSCAN density clustering algorithm (STW-DBSCAN) that relies on both
the space-time location similarities and model weight similarities of vehicles.
This algorithm efficiently solves the straggler problem and accelerates local
model training. Meanwhile, a semi-asynchronous federated aggregation mech-
anism is adopted to further reduce resource consumption and communication
costs by adjusting server waiting time.
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– We establish a simulation for vehicle-clustered FL network. Experimen-
tal results demonstrate that, under a fixed system operation time, our
CSA FedVeh framework outperforms four other benchmark frameworks by
shortening the running time by approximately 24.6% to 60.2%, while achiev-
ing similar accuracy. Additionally, on MNIST dataset, the communication
consumption is reduced by 3.4% to 62.07%, and on GTSRD dataset, the
communication consumption is reduced by 1.01% to 68.6%, when compared
to achieving similar accuracy.

2 Related Work

In recent years, an increasing number of scholarly investigations have endeav-
ored to implement FL frameworks within IoV scenario [8–10]. Huang et al. [8]
propose a novel FL framework called ‘FedParking’ that assists parked vehicles in
providing computational offloading services and utilizes LSTM model for parking
space estimation. Liang et al. [9] propose a semi-synchronous FL (Semi-SynFed)
protocol and a dynamic aggregation scheme to asynchronously aggregate model
parameters, in order to enhance the performance of FL in IoV scenario. Huang
et al. [10] propose an asynchronous FL privacy-preserving computation model
(AFLPC) for 5G-V2X, which aims to better utilize the low latency advantage
of 5G networks, while also protecting data privacy in IoV. Similar to the afore-
mentioned framework, we also considered the implementation of FL in IoV for
real-time processing of data collected by vehicles.

Existing FL frameworks have been effective in addressing the impact of Non-
IID data and resource constraints [11–13]. Ma et al. [11] propose a task offload-
ing method based on data and resource heterogeneity in the HFEL environment,
incorporating the statistical features of data through information entropy into
the cost function to reshape the edge data. Briggs et al. [12] improve FL by
introducing a hierarchical clustering step (FL+HC), which separates client clus-
tering based on the similarity between clients’ local updates and the global joint
model. Tan et al. [13] propose a novel federated prototype learning (FedProto)
framework, in which communication between devices and servers is done via class
prototypes rather than gradients. Considering the presence of Non-IID data and
resource constraints in IoV, we propose a clustering algorithm in this paper that
alleviates the problem of Non-IID data and resource constraints in IoV, while
effectively mitigating the impact caused by high vehicle mobility in IoV.

Since global aggregation is required for parameter uploading in FL, exist-
ing FL aggregation mechanisms can be classified into two types based on their
aggregation mechanisms: synchronous [4] and asynchronous [14] mechanisms.
For synchronous FL mechanisms, the ES needs to collect all the parameters
obtained from the participating vehicles before executing the aggregation pro-
cess. However, the impact of stragglers [15], caused by poor network or hardware
resources of some vehicles, can lead to significant delays. As for asynchronous
FL mechanisms, the ES can aggregate the parameters without waiting for all
vehicles in a round FL aggregation, but this can result in gradient divergence,
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further decreasing the performance of the FL model. In this work, we adopt
the semi-asynchronous mechanism [16–18], which further reduces resource con-
sumption and communication costs by adjusting the server’s waiting time. Sun
et al. [17] propose a semi-asynchronous FL framework for extremely heteroge-
neous devices. Ma et al. [18] propose a semi-asynchronous federated learning
mechanism called ‘FedSA’ and theoretically prove the convergence of FedSA. In
contrast to the aforementioned framework, we consider vehicles of high-speed
mobility and combine a semi-asynchronous mechanism with clusters of vehicles.

3 System Model and Problem Formulation

In this section, we firstly introduce the clustered federated learning process in
IoV scenario. Sequentially, we describe the cluster-based semi-asynchronous fed-
erated learning framework (CSA FedVeh). Finally, we propose the problem of
minimizing the global model training time and formalize it for a better address
of the challenges in IoV federated learning.

3.1 Vehicle-Clustered Federated Learning Network

Fig. 1. Illustration of Cluster FL process in IoV.

As shown in the Fig. 1, we consider a vehicle-clustered FL network system,
consisting of vehicular users (VUs) and edge server (ES). Assuming N VUs ran-
domly distributed in IoV system, forming a set of VUs V = {1, ..., n, ...., N} ,
these VUs are clustered into M vehicle clusters using the STW-DBSCAN algo-
rithm that relies on both the space-time location similarities and model weight
similarities of vehicles (introduced in Sect. 4), forming a set of vehicle clusters
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C = {c1, ..., cm, ...., cM} . Assuming convergence of FL model after K rounds of
global aggregation, where k ∈ {1, 2, ...,K}.

In the vehicle-clustered FL network system, due to the close proximity of the
VUs within a vehicle cluster, the collected information and the trained models
also are highly similar, it can be assumed that the data of the VUs in the vehicle
cluster are the same and can be partitioned into shared data blocks (SDBs).
During the training process, VUs in the vehicle cluster only need to train their
own models using their own historical experience data blocks (DBs), without
the need to transmit local data, where DBs are partitioned according to the
computing capabilities of VUs within each vehicle cluster. The main vehicle
cluster head (MCH) is responsible for uploading and downloading and sending
model weight parameters. If the MCH is offline, a vice vehicle cluster head (VCH)
will be activated to take its place (Table 1).

Table 1. Notations and their meanings.

Notation Meaning

V The set of vehicular users

C The set of vehicle clusters

K The global model will converge after K rounds of global aggregation

Ck The vehicular users participating in the global updating in round k

q The number of vehicle clusters participating in each round of global aggregation

T soj
v,n The sojourn time of vehicular user n at the current edge server

T
loc

v,n The computation time of each round of local model training for vehicular user n

T
loc

c,m The computation time of each round of local model training for vehicle cluster cm

T comm
k,m The communication time for vehicle cluster cm in the k-th round of global aggregation

T comp
k,m (sm

k ) The local computation time of vehicle cluster cm between the start time of the k-th
round of global aggregation and the end time of local training

Tk
sort Training time for all clusters sorted in the k-th round of global aggregation

wv,n
k The local model weight parameter derived by local updating on vehicular user n at the

k-th round of global aggregation

wc,m
k The cluster model weight parameter derived by cluster updating on vehicle cluster cm at

the k-th round of global aggregation

wk The global model weight parameter in round k

∇Fv,n(wk) Gradient of vehicular user n at the k-th round of global aggregation

∇Fc,m(wk) Gradient of vehicle cluster cm at the k-th round of global aggregation

∇F(wk) Global gradient of the k-th round of global aggregation

sm
k The number of global aggregation rounds that differ between the k-th round of global

aggregation in which vehicle cluster cm participated and the global aggregation in which
this cm participated last time

δ The model weight parameter of similarity threshold

μ The global aggregation stopping threshold

τ The number of local model update rounds for all vehicle users when participating in a
global aggregation

ε The neighborhood threshold for clustering

Nε(n) The ε neighborhood of vehicular user n

N+
ε (n) The ε+ neighborhood of vehicular user n
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We consider an unidirectional, straight, multi-lane IoV scenario, where VUs
travel along the X-axis in the direction of the arrow. At time t, assuming that VU
n is traveling at a constant speed ῡn, its position can be denoted as {xn(t), yn(t)}.
The associated ES e is located at a fixed position {xe, ye} with a coverage radius
of r. Therefore, the remaining distance of VU n within the coverage area of its
ES can be defined as:

Πi =
√

r2 − (ye − yn(t))2 − (xn(t) − xe). (1)

Only when VU n is within the coverage area of ES, the parameters can be
uploaded to the current ES. Therefore, the sojourn time of VU n at the current
ES is defined as:

T soj
v,n =

Πn

ῡn
, (2)

where ῡn is the speed of VU n.
In order to calculate the distance between arbitrary nodes i and j (including

VUs and ES), the Euclidean distance formula is introduced:

dist(i, j)=
√

(xi − xj)
2 + (yi − yj)

2
. (3)

We resort to the Shannon capacity formula to compute the data rate of nodes
i to j in FL the k-th round of global aggregation and denoted as:

Rk
i,j(dist(i, j)) = Bilog2(1 +

P tx
i · h(dist(i, j))

N0
), (4)

where N0 represents the noise power, h(dist(i, j)) is the channel gain at the
distance between node i and j, P tx

i and Bi represent the transmission power
and the communication bandwidth from node i to node j.

During the k-th round of global aggregation, the uplink transmission time
for a vehicle cluster cm to transmit its cluster model weight parameters to its
corresponding ES can be expressed as:

T tx
k,m =

∣∣wk
m

∣∣
Rk

m,e(dist(m, e))
. (5)

The downlink transmission time for an ES to transmit global model weight
parameters to the MCH of vehicle cluster cm in its coverage area can be expressed
as:

T rx
k,m =

|wk|
Rk

e,m(dist(e,m))
. (6)

As the time for intra-cluster transmission of parameters from cluster mem-
ber VUs to the MCH is short, this transmission time is neglected in this paper.
Therefore, for the k-th round of global aggregation in ES, the communication
time for a vehicle cluster cm consists of the uplink transmission time and down-
link transmission time of its MCH.

T comm
k,m = T tx

k,m + T rx
k,m. (7)
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3.2 Cluster-Based Semi-asynchronous Federated Learning
Framework for IoV (CSA FedVeh)

In the CSA FedVeh, assuming Ck represents the set of vehicle clusters participat-
ing in the k-th round of global aggregation, while semi-asynchronous aggregation
quantity q is the number of vehicle clusters taking part in each round of global
aggregation.

c1

c2

c3

c4

ES

.....

Round 1 Round 2 Round 3

Fig. 2. Illustration of the CSA FedVeh framework when q=2.

The vehicle cluster cm that participate in global aggregation process down-
load the global training model weight parameters wk from the ES and distribute
them to all VUs within the vehicle cluster. Each VU then updates its local model
weight parameters based on its own historical data after uploads their new model
weight parameters to the MCH, which synchronously aggregates vehicle cluster
model weight parameters wc,m

k+1 and sends them back to the ES. The ES col-
lects q sequentially arrived cluster model weight parameters and performs global
aggregation. Meanwhile, the vehicle clusters that did not participate in global
aggregation continue their training. After the ES performs global aggregation,
it generates the next round of global model weight parameters wk+1 and sends
them to the MCHs that uploaded local weight parameters in the previous round,
which then transmit them to the VUs within their respective vehicle clusters for
the next round of training.

For instance, as shown in Fig. 2, The vehicle clusters participating in global
aggregation in the first, second, and third rounds are C1 = {c1, c3}, C2 = {c4, c1},
and C3 = {c2, c3}, respectively.

To formalize the problem, we will introduce the CSA FedVeh framework
from three aspects: vehicle user model training, intra-cluster model aggregation,
and semi-asynchronous global model aggregation, which is formally described in
Algorithm 1.
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Vehicle User Model Training. Local loss function: each VU trains a local
model based on local DBs, where the loss function of the k-th round FL training
model of VU n is defined as:

Fv,n(wv,n
k ) =

1
Dn

∑
(xd,yd)∈Dn

f(wv,n
k , xd, yd), (8)

where f(wv,n
k , xd, yd) is the loss function of the model based on the training set

samples xd and their predicted labels yd under the local weight parameter wv,n
k ,

Dn and Dn
Δ= |Dn| denote the local trained DB and the number of samples of

VU n after partitioning the SDB.
Local model update: after receiving the global model weight parameter wk,

VU n performs τ iterations for local parameter updates:

wv,n
k+1 ← wk−η∇Fv,n(wk), (9)

where η is the learning rate and ∇Fv,n(wk) is the gradient computed by local
model of VU n under the global weight parameter wk.

Local resource cost: the computation time and energy consumption of each
round of local model training for VU n are denoted as:

T
loc

v,n=

Dn∑
dn=1

ψdn

cp
n · fn

, E
loc

v,n=pn · T
loc

v,n, (10)

where ψdn
is the total number of Floating Point Operations per Second (FLOPS)

required for sample dn, VU is characterized by a processing capability equal to
cp
n (FLOPS) per CPU cycle, fn is CPU frequency and pn is the computational

power of VU.

Intra-Cluster Model Aggregation. Cluster model aggregation: The VUs
within vehicle cluster cm pass the trained local model weight parameter wv,n

k

to the MCH for intra-cluster aggregation, obtaining the cluster model weight
parameter:

wc,m
k ←

∑
n∈cm

Dn · wv,n
k , (11)

Cluster gradient aggregation: in order to determine the convergence of the
global model, it is necessary to upload the gradients from each vehicle cluster to
ES. Therefore, the aggregation of gradients from vehicle cluster cm is defined as:

∇Fc,m(wk) ←
∑

n∈cm

∇Fv,n(wk). (12)

Cluster resource cost: the computation time and energy consumption for
training each round of local model in vehicle cluster cm is defined as:

T
loc

c,m = max
c∈cm

{T
loc

v,c}, E
loc

c,m =
∑

c∈cm

E
loc

v,c. (13)
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Algorithm 1. CSA FedVeh
Input: the set of vehicle clusters C, semi - asynchronous aggregation parameters q,

number of vehicle local iterations τ
Output: the final global model weight parameter w∗
1: Initialize the cluster structure;
2: Initialize w0, k = 0, T = 0, E = 0;
3: while k �= K and ‖∇F(wk)‖ > μ ‖∇F(wk−1)‖ and T < Tmax and E < Emax do
4: Global Aggregation at the Edge Server
5: set k ← k + 1, and Ck = ∅;
6: while |Ck| �= q do
7: Receive update cm from C;
8: Compute T total

k,m according to Eq.(18);

9: if T total
k,m ≤ T soj

c,m then

10: update Ck ← Ck + {cm}, E ← E + E
loc

c,m;
11: end if
12: end while
13: Compute wk,∇F(wk), Tk according to Eq.(14),Eq.(15),Eq.(16);
14: Update T ← T+Tk, w∗ ← wk;
15: Send wk back to Ck;
16: Cluster Aggregation at cm

17: Receive local updates from all VUs in vehicle cluster cm;
18: Update T soj

c,m ← min
n∈cm

{T soj
v,n};

19: Compute wc,m
k ,∇Fc,m(wk),T

loc

c,m and E
loc

c,m according to Eq.(11),Eq.(12),Eq.(13);

20: Send wc,m
k ,∇Fc,m(wk), T soj

c,m and resource consumption T
loc

c,m, E
loc

c,m to ES;
21: Receive wk from ES and return it back to all VUs in vehicle cluster cm;
22: Procedure at Vehicle User n in Cluster cm

23: Receive wk from cm;
24: Perform local updates;

25: Compute T
loc

v,n and E
loc

v,n , T soj
v,n according to Eq.(10),Eq.(2);

26: Send wv,n
k+1,∇Fv,n(wk), T soj

v,n and resource consumption T
loc

v,n, E
loc

v,n to MCH;
27: end while
28: return w∗;

Semi-asynchronous Global Model Aggregation. Global model aggrega-
tion: during a round of global aggregation, when ES receives cluster model weight
parameters transmitted by q vehicle clusters, ES performs global aggregation:

wk+1 ← 1
D k

∑
m∈Ck

wc,m
k , (14)

where D k is the total number of samples from all participating vehicle clusters
in the k-th round of global aggregation.

Global Gradient aggregation: in order to determine the stopping criterion for
the convergence of the global model [19], the global gradient is defined as:

∇F(wk+1) ← 1
q

∑
m∈Ck

∇Fc,m(wk). (15)
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For the k-th round of FL aggregation in ES, the time taken for global aggre-
gation is determined by the longest computation time of the participating vehicle
cluster Ck, denoted as:

Tk=Tk
sort[q], (16)

where Tk
sort[q] represents the q-th element in the set Tk

sort(defined in Eq.(20)).
Assuming that all VUs update their local weight parameters τ times during

each cluster weight parameter upload, the local computation time of vehicle
cluster cm is the duration between the start time of the k-th round of global
aggregation and the end time of local training, denoted as:

T comp
k,m (sm

k ) =

⎧
⎪⎨
⎪⎩

T
loc

c,m · τ −
k−1∑

k−sm
k

Tk , sm
k > 0

T
loc

c,m · τ , sm
k = 0

, (17)

where sm
k represents the number of global aggregation rounds that differ between

the k-th round of global aggregation in which vehicle cluster cm participated and
the global aggregation in which this vehicle cluster cm participated last time, for
example in Fig. 2, where s31= 0, T comp

1,3 (s31) = T
loc

3 ·τ ; s12= 0, T comp
2,1 (s12) = T

loc

1 ·τ ;

s23= 2, T comp
3,2 (s23) = T

loc

2 · τ−
3−1∑
3−2

Tk= T
loc

2 · τ−T2−T1.

In the k-th round of ES global aggregation, the total time consumption of
vehicle cluster cm is the sum of local computation time and communication time,
represented as:

T total
k,m = T comp

k,m (sm
k ) + T

comm
k,m . (18)

Assuming that all vehicle clusters participate in the k-th round of global
aggregation, and the set of training times for all vehicle clusters C in the k-th
round of global aggregation is defined as:

Tk =
{
T total

k,1 , ..., T total
k,m , ...., T total

k,M

}
. (19)

We sort the set of training times Tk in ascending order:

Tk
sort = sort(Tk). (20)

We define the matrix of the number of times each vehicle cluster participates
in the global aggregation of ES as:

G =
(
g1 ... gm ... gM

)
, (21)

where gm denotes the number of times that vehicle cluster cm participates in
the global aggregation of ES, 0 ≤ gm ≤ K.

We define the matrix of energy consumption of all vehicle cluster as follows:

E =
(
Eloc

c,1 ... Eloc
c,m ... Eloc

c,M

)
. (22)
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3.3 Problem Formulation

The optimization problem formulated by the vehicle-clustered federated learning
network and the CSA FedVe framework can be described as:

(P1) : min
q,C

K∑
k=1

Tk

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C1 :
∥∥∇F(wk+1)

∥∥ ≤ μ ‖∇F(wk)‖

C2 :
K∑

k=1

Tk ≤ Tmax

C3 : τ · G · ET ≤ Emax

C4 : T total
k,m ≤ min

c∈cm

{T soj
v,c }

C5 : q ∈ {1, 2, ...,M}.

(23)

In problem P1, the objective function is to minimize the FL training time
while satisfying the constraints under the semi-asynchronous aggregation quan-
tity q and the vehicle network clustering strategy C. Constraint C1 corresponds
to the global aggregation stopping condition [19], where μ(0 ≤ μ ≤ 1). When
μ = 0, the global model achieves a precise solution, whereas μ = 1 indicates that
no progress has been made by the global model. Constraint C2 represents the
global training time constraint of FL, and constraint C3 represents the global
training energy constraint of FL. Here, Tmax and Emax refer to the maximum
acceptable global training time and energy consumption of FL, respectively. Con-
straint C4 denotes the total time spent on the k-th round of global aggregation
of vehicle cluster cm must not exceed the minimum sojourn time of VUs in the
vehicle cluster cm.

As many machine learning models have complex intrinsic properties, it is diffi-
cult to find closed-form solutions for the objective function. Therefore, in Sect. 4,
we designe some novel solutions that reduce the training time and resource costs
of FL while maintaining learning accuracy.

4 Methodology

To solve the aforementioned problems, in this section, we propose the STW-
DBSCAN clustering algorithm, which is designed to determine vehicle cluster-
ing strategies in dynamic IoV system. The algorithm decomposes the originally
high-complex intrinsic properties problem into two sub-problems: the vehicle
clustering problem and the semi-asynchronous aggregation mechanism problem,
in order to approximate the solution to the original problem while mitigating
the impact of Non-IID data on the FL process.

4.1 STW-DBSCAN Density Clustering Algorithm

In order to reduce the complexity of solving P1, we propose a density clustering
algorithm (STW-DBSCAN) that relies on both the space-time location similari-
ties and model weight similarities of vehicles to determine the clustering strategy
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Algorithm 2. STW-DBSCAN
Input: the set of all VUs V , neighborhood parameters (ε, MinPts), similarity thresh-

old δ(2% , default)
Output: C = {c1, ..., cm, ...., cM}
1: Initialize the vehicle structure;
2: Initialize candidate set Ω = ∅, number of clusters m = 0, sets of unvisited vehicles

Γ = V, vehicle network clustering strategy C = ∅;
3: for n in V do
4: compute Nε(n) and N+

ε (n) according to Eq.(24) and (26);
5: if

∣
∣N+

ε (n) ∩ Nε(n)
∣
∣ ≥ MinPts then

6: Ω = Ω∪{n};
7: end if
8: end for
9: while Ω = ∅ do

10: Γold = Γ ;
11: random selection of a candidate o ∈ Ω, initializing queue Q =< o >;
12: Γ = Γ\{o};
13: while Q �= ∅ do
14: fetch the first sample q in the queue Q;
15: if

∣
∣N+

ε (q)
∣
∣ ≥ MinPts then

16: Δ = N+
ε (q) ∩ Γ ;

17: add the samples in Δ to the queue Q;
18: Γ = Γ\Δ;
19: end if
20: end while
21: m = m + 1, generate clusters cm = Γold\Γ ;
22: select a random benchmark α ∈ cm;
23: for β in cm do
24: if θ(wv,α

1 , wv,β
1 ) ≤ δ then

25: cm\β;
26: end if
27: end for
28: Ω = Ω\cm, C = C ∪ cm;
29: end while
30: return C = {c1, ..., cm, ...., cM};

in problem P1. The algorithm integrates the space-time location constraints into
the DBSCAN [20] clustering algorithm to guarantee that VUs within the ES
region stay within the range of the vehicle cluster. Additionally, considering the
Non-IID of data collected by vehicles, the cosine similarity between VU model
weight parameters is calculated to ensure that the vehicle data within a cluster
belongs to the same distribution [12]. Lastly, The MCH is chosen based on the
latest sojourn time, while the VCH is chosen based on the second latest sojourn
time. Based on the algorithm, we can acquire the set of vehicle clusters C, and
by combining C with Eq.(2), we can compute MCH and VCH.

The STW-DBSCAN algorithm is mainly determined by the parameters of
neighborhood threshold ε, density threshold MinPts, vehicle sojourn time T soj

n ,
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vehicle speed ῡ, model weight parameter set of VU, and similarity threshold δ,
where ε and MinPts are system-determined hyperparameters. For a VU n ∈ V,
we select the set of VUs in the set V whose distance from VU n does not exceed
ε, as the ε neighborhood of the VU n (Nε(n)), denoted as:

Nε(n) = {p ∈ V|dist(n, p) ≤ ε}. (24)

We determine the sojourn time among the VUs in the set Nε(n) by using
Eq.(2) and compare it to determine the minimum sojourn time in Nε(n):

T soj
N,n = min

p∈Nε(n)+{n}
{T soj

v,p}. (25)

In IoV system, if the distance between the VU n and all other VUs in Nε(n)
still satisfies within ε after the minimum sojourn time T soj

N,n, then it is referred
to as the ε+ neighborhood of the VU n (N+

ε (n)) and denoted as:

N+
ε (n) = {p ∈ Nε(n)|

√

((xn − ῡn · T soj
N,n) − (xp − ῡp · T soj

N,n))
2

+ (yn − yp)2 ≤ ε}.

(26)

If N+
ε (n) has at least MinPts other VUs and denoted as:

∣∣N+
ε (n)

∣∣ ≥ MinPts, (27)

then vehicle cluster cm is created, and VU n and all VUs in N+
ε (n) are added to

the cluster, and all VUs in N+
ε (n) are added to the candidate set Ω. Each VU

o ∈ Ω is checked in turn to see if N+
ε (o) contains at least MinPts other VUs, if

o has not been added to the vehicle cluster yet, it is added to vehicle cluster cm,
and o is removed from the candidate set Ω, and N+

ε (o) is added to the candidate
set Ω. This process continues until Ω=∅. Additionally, if VUs that have not been
clustered what contain at least MinPts other VUs in their ε+ neighborhood, a
new vehicle cluster and candidate set are created.

Randomly select a VU α ∈ cm as a baseline, and calculate the cosine simi-
larity of the model weight parameters between VU α and all other VUs β ∈ cm,

θ(wv,α
1 , wv,β

1 ) =
(wv,α

1 )T
wv,β

1

‖wv,α
1 ‖

∥∥∥wv,β
1

∥∥∥
, α, β ∈ cm, (28)

judge whether the data distribution of VUs in vehicle cluster cm is similar. If
θ(wv,α

1 , wv,β
1 ) ≤ δ, indicating low similarity, remove β from vehicle cluster cm

and re-cluster β, where δ(−1 ≤ δ ≤ 1) is the similarity threshold, and the closer
δ is to 1, the more similar the data distribution is, while the closer it is to -
1, the less similar it is. The STW-DBSCAN algorithm is formally described in
Algorithm 2.
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4.2 Semi-asynchronous

Once the clustering strategy C of STW-DBSCAN algorithm is fixed, P1 is rede-
fined as a problem of solving a single variable q:

(P2) : min
q

K∑
k=1

Tk

s.t.C1,C2,C3,C5.

(29)

We adopt a semi-asynchronous aggregation mechanism [16] to accelerate the
global model training speed. Each time global aggregation selects q cluster model
weight parameters that arrive in order for aggregation.

5 Performance Evaluation

5.1 Simulation Setting

Benchmarks. We utilize three classic FL frameworks and a semi-asynchronous
framework with randomized clustering as benchmarks for performance compar-
ison.

– FedAF: FedAF (FedAvgfull) is a synchronous FL framework, which is a vari-
ant of FedAvg [4]. In FedAF framework, all VUs participate in the global
updating in each round.

– FedASY [14]: FedASY is an asynchronous FL framework, where ES immedi-
ately performs a global updating upon receiving local model weight parame-
ters from any VU.

– SAFA [16]: SAFA is a semi-asynchronous FL framework. For simplicity, the
client selection in SAFA is removed, and we naturally set it to half of the
total number of VUs in our experiment, simulating the framework of semi-
asynchronous aggregation under the condition of no clustering.

– R-SAFA: R-SAFA adopts the SAFA aggregation framework with K-
means [21] random clustering, where K is set to be the same as the number of
clusters in STW-DBSCAN, simulating the framework of semi-asynchronous
aggregation under the condition of general clustering.

Models and Datasets. In order to ascertain the efficacy of CSA FedVeh frame-
work, we conducted experiments using two disparate training models (LR [22]
and CNN [23]), and on two real-world datasets (MNIST [24] and German Traf-
fic Sign Recognition Database (GTSRD) [25]). MNIST dataset comprises 60,000
training samples and 10,000 testing samples, each of which is a grayscale image
of a handwritten digit measuring 28× 28 pixels. GTSRD dataset includes 43
classes of RGB three-channel traffic sign images, divided into 39,209 training
images and 12,630 testing images.
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Performance Metrics. We have utilized four commonly-used performance
metrics to evaluate the training performance, including:
1) Loss Function: used to measure the difference between predicted values and
actual values.
2) Accuracy: indicates the proportion of correctly classified samples by the model
among all samples in the dataset.
3) Runtime: indicates the time taken to complete the training process, used to
measure the training speed of the model.
4) Communication Cost: represents the total communication time spent between
all vehicles and the ES upon completion of the training process.

Data Distribution. Considering the heterogeneity of data distribution and the
similarity of data collected from vehicles within a certain area among VUs in a
real-world IoV scenarios, it is necessary to form a Non-IID dataset among VUs.
To achieve data re-distribution, a mixed distribution based on Dirichlet distri-
bution was applied [26], which highlights the similarity of data within the cluster
and Non-IID among VUs. The parameters for the mixed distribution were set
as a = 1.0 and n = 3.

Simulation Parameters. In the simulation of IoV scenarios for FL, we con-
sider 50 VUs participating, with safe distances randomly scattered along the
lane. The average vehicle speed is approximately 43.6km/h, and the vehicles are
given random speeds. We set the neighborhood threshold ε=25m and the den-
sity threshold MinPts=1, with similarity threshold δ of 2%. We use the same
batchsize = 64 for all VUs. The global learning rate is set to η=0.01 for both
MNIST and GTSRD, and the number of local updates per epoch is set to H=30.

5.2 Simulation Results

In this section, we compared our CSA FedVeh framework with the base-
line by training models for 30000 s and 50000 s on Non-IID MNIST and
GTSRD datasets, respectively. Finally, Table 2 lists more detailed training per-
formance comparisons on MNIST and GTSRD datasets. The results show that
CSA FedVeh framework can work better even when the data distribution is
Non-IID.
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Table 2. Performance comparison of CSA FedVeh with four benchmarks under two
models.

Dataset-Model Performance Metrics FedAF FedASY SAFA R-SAFA CSA FedVeh

MNIST-LR

Accuracy 91.8% 92.5% 92.2% 93.2% 94.5%

Runtime for Loss=0.5 7381s 6060s 6458s 4857s 3348s

Communication time

for accuracy=90%
8.35s 18.352s 13.325s 7.04s 6.96s

Average

communication rounds
305 826.38 549 579 501.76

MNIST-CNN
Accuracy 97% 97.7% 97.6% 97.8% 98.4%

Runtime for Loss=0.5 5412s 3230s 3785s 3276s 2348s

Communication time

for accuracy=90%
4.75s 7.55s 6.075s 3.9424s 3.808s

GTSRD-LR

Accuracy 76.4% 81.8% 79.9% 86% 89.3%

Runtime for Loss=1 48027s 36749s 40852s 25689s 19077s

Communication time

for accuracy=75%
24.05s 49.375s 36.275s 15.76s 15.6s

Average

communication rounds
509 1377.7 916 965.5 838.4

GTSRD-CNN
Accuracy 88% 91.7% 90.3% 95.5% 96.1%

Runtime for Loss=1 28934s 23014s 25318s 15751s 11868s

Communication time

for accuracy=75%
16.2s 33.476s 24.375s 11.352s 10.496s

Convergence Performance. In MNIST dataset, as shown in Fig. 3(e), when
the global model training loss of LR model drops to 0.5, CSA FedVeh reaches
its fastest runtime of 3348 s, which is 44.7% faster than FedASY, 54.6% faster
than FedAF, 48.1% faster than SAFA, and 31% faster than R-SAFA. In Fig. 3(f),
when the global model training loss of CNN model drops to 0.5, CSA FedVeh
reaches its fastest runtime of 2348 s, which is 27.3% faster than FedASY, 56.6%
faster than FedAF, 37.9% faster than SAFA, and 28.3% faster than R-SAFA. In
GTSRD dataset, as shown in Fig. 3(g), when the global model training loss value
reached 1.0, CSA FedVeh reached the fastest running time at 19077 s, which was
48% faster than FedASY, 60.2% faster than FedAF, 53.3% faster than SAFA,
and 25.7% faster than R-SAFA. As shown in Fig. 3(h), when CNN global model
training loss value reached 1.0, CSA FedVeh reached the fastest running time at
11868 s, which was 48.4% faster than FedASY, 58.9% faster than FedAF, 53.1%
faster than SAFA, and 24.6% faster than R-SAFA. Results on different datasets
and models indicate that CSA FedVeh reduces the time required to reach the
same loss value by about 24.6%-60.2%.
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Fig. 3. Accuracy and Loss vs. Runtime with LR and CNN over MNIST and GTSRD.

Not only can CSA FedVeh stabilize the convergence of the global model, but
it also outperforms the four benchmarks in terms of accuracy and convergence
speed. Additionally, when comparing Figs. 3(e) and 3(f), as well as Figs. 3(g)
and 3(h), CSA FedVeh exhibits faster convergence speed on CNN models com-
pared to LR models.

Resource Constraints. In MNIST dataset, as shown in Fig. 3(a), when the
running time constraint under LR model is set at 30,000 s, CSA FedVeh achieved
the highest accuracy of 94.5%. This is 2% higher compared to FedASY, 2.7%
higher compared to FedAF, 2.2% higher compared to SAFA, and 1.3% higher
compared to R-SAFA. As shown in Fig. 3(b), under CNN model with a running
time constraint of 30,000 s, CSA FedVeh achieved the highest accuracy of 98.4%.
This is 0.7% higher compared to FedASY, 1.4% higher compared to FedAF,
0.8% higher compared to SAFA, and 0.6% higher compared to R-SAFA. In
GTSRD dataset, as shown in Fig. 3(c), under a time constraint of 50000 s for
LR model, CSA FedVeh achieved the highest accuracy of 89.3%, which is 7.5%
higher than FedASY, 12.9% higher than FedAF, 9.4% higher than SAFA, and
3.3% higher than R-SAFA. As shown in Fig. 3(d), under a time constraint of
50000 s for CNN model, CSA FedVeh achieved the highest accuracy of 96.1%,
which is 4.4% higher than FedASY, 8.1% higher than FedAF, 5.8% higher than
SAFA, and 0.6% higher than R-SAFA. The results indicate that, under the same
time budget, CSA FedVeh achieved higher accuracy and lower loss than FedAF,
FedASY, SAFA, and R-SAFA. This means that CSA FedVeh can achieve good
performance in terms of the balance between convergence speed and accuracy.
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Fig. 4. The Comparison of Communication Resource Consumption. (a) Average Com-
munication rounds. (b) Communication time cost at 90% accuracy of MNIST. (c)
Communication time cost at 75% accuracy of GTSRD.

According to Fig. 4(a), on both MNIST and GTSRD datasets, CSA FedVeh
has an average number of communication rounds of 501.76 and 838.4, respec-
tively. This is lower than FedASY by 324.62 and 539.3 rounds, lower than SAFA
by 47.24 and 77.6 rounds, lower than R-SAFA by 77.24 and 127.1 rounds,
and higher than FedAF by 196.76 and 329.4 rounds. These results indicate
that CSA FedVeh has a lower average number of communication rounds than
FedASY, SAFA, and R-SAFA, and is second only to FedAF in this respect. More-
over, CSA FedVeh achieves a higher accuracy than FedAF by 1.4%-12.9% and
converges faster. According to Fig. 4(b), when LR and CNN models of MNIST
dataset reach a training accuracy of 90%, the global communication time of
CSA FedVeh is 6.96 s and 3.808 s, respectively. This is a reduction of 16.6% and
19.83% compared to FedAF, a reduction of 62.07% and 49.56% compared to
FedASY, a reduction of 47.76% and 37.31% compared to SAFA, and a reduc-
tion of 11.36% and 3.4% compared to R-SAFA. According to Fig. 4(c), when
LR and CNN models of GTSRD dataset reach a training accuracy of 75%, the
global communication time of CSA FedVeh was 15.6 s and 10.496 s, respectively.
This is a decrease of 35.13% and 35.21% compared to FedAF, a decrease of
68.4% and 68.6% compared to FedASY, a decrease of 56.99% and 56.93% com-
pared to SAFA, and a decrease of 1.01% and 7.54% compared to R-SAFA. The
results demonstrate that CSA FedVeh achieves the optimal global communica-
tion time across all models. This implies that, with the same communication
budget, CSA FedVeh reduces communication costs between VUs and the ES by
executing cluster-based semi-asynchronous aggregation.

In summary, our CSA FedVeh framework has demonstrated superiority over
four benchmarks in the following aspects. Firstly, as seen in Fig. 3, CSA FedVeh
consistently achieves better convergence than the benchmarks during training
and reduces training time by approximately 24.6% to 60.2% to reach the same
loss level. Secondly, as shown in Fig. 4(a), on both MNIST and GTSRD datasets,
the average number of communication rounds for CSA FedVeh is lower than



Cluster-Based Semi-asynchronous Federated Learning framework 97

FedASY, SAFA, and R-SAFA, and only slightly more than FedAF. Additionally,
CSA FedVeh achieve the lowest total communication time, the highest accuracy
and the fastest convergence speed. Finally, Figs. 4(b) and 4(c) demonstrate that,
compared to the baselines, CSA FedVeh reduces communication costs by 3.4%
to 62.07% on MNIST dataset and by 1.01% to 68.6% on GTSRD dataset, while
achieving similar accuracy.

6 Conclusion

In this paper, we propose CSA FedVeh, a novel cluster-based semi-asynchronous
FL framework for IoV. We aspire to enhance the effectiveness of FL in the
dynamic and intricate scenarios of IoV. Under this guidance, We proposed the
STW-DBSCAN clustering algorithm, which takes advantage of Non-IID of data
collected by vehicles to cluster vehicles with similar vehicle space-time loca-
tion and high model weights similarity, efficiently addressing the straggler prob-
lem and accelerating global model training. Meanwhile, we combine the semi-
asynchronous federated aggregation mechanism to accelerate the speed of global
aggregation. The experimental results indicate that our proposed framework can
obtain excellent performance under resource constraints on the datasets of Non-
IID compared with baselines. In the future, we will explore our CSA FedVeh
framework on vehicle tasks that require stable, low-latency, and highly reliable
services in IoV, such as object tracking, high-definition (HD) map generation
and augmented reality (AR) navigation.
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