
Enriching Process Models with Relevant
Process Details for Flexible Human-Robot

Teaming

Myriel Fichtner(B) , Sascha Sucker , Dominik Riedelbauch ,
Stefan Jablonski, and Dominik Henrich

University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
{myriel.fichtner,sascha.sucker,dominik.riedelbauch,stefan.jablonski,

dominik.henrich}@uni-bayreuth.de

Abstract. Human-robot teaming is crucial for future automation in
small and medium enterprises. In that context, domain-specific process
models are used as an intuitive description of work to share between two
agents. Process designers usually introduce a certain degree of abstrac-
tion into the models. This way, models are better to trace for humans, and
a single model can moreover enable flexibility by capturing several pro-
cess variations. However, abstraction can lead to unintentional omission
of information (e.g., experience of skilled workers). This may impair the
quality of process results. To balance the trade-off between model read-
ability and flexibility, we contribute a novel human-robot teaming app-
roach with incremental learning of relevant process details (RPDs). RPDs
are extracted from imagery during process execution and used to enrich
an integrated process model which unifies human worker instruction and
robot programming. Experiments based on two use cases demonstrate
the practical feasibility and scalability of our approach.

Keywords: Process Model Optimization · Task Annotation ·
Explanation Models · Intelligent Robots · Process Variety · Product
Variety

1 Introduction

The demographic change and a trend towards small-batch production of goods
with high variability pose new challenges to the future of manufacturing systems.
Particularly when using domain-specific process models to describe workflows in
manufacturing settings, highly varying processes require the inclusion of many
specific alternatives. This can lead to large and hardly traceable process models,
which can only be created with high effort. Since human-robot collaboration is
considered a key enabler of partial automation in small and medium enterprises,
this issue relates to process models for instructing robots and humans alike [15].
It is usually solved through abstraction: (i) In the context of robotics, we have
proposed a graphical robot programming method based on precedence graphs with

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024
Published by Springer Nature Switzerland AG 2024. All Rights Reserved
H. Gao et al. (Eds.): CollaborateCom 2023, LNICST 563, pp. 249–269, 2024.
https://doi.org/10.1007/978-3-031-54531-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54531-3_14&domain=pdf
http://orcid.org/0000-0003-0412-1881
http://orcid.org/0000-0001-8968-8208
http://orcid.org/0000-0002-7937-4755
http://orcid.org/0000-0003-0250-2728
https://doi.org/10.1007/978-3-031-54531-3_14

250 M. Fichtner et al.

Fig. 1. The robot execution with varieties [28] is susceptible to overly coarse task
modeling (upper left: no restrictions on the goal location (green)). We present an
approach to specify these tasks with RPDs based on image extraction [11] resulting
in increased process quality (upper right: the goal location is restricted, i.e., locations
that lead to reduced process success are excluded (red)). (Color figure online)

generalized skill templates [28]. Contrasting to traditional robot programming,
our precedence graph-based approach enables quick task specification and online
adaptation to concrete situations in the robot workspace rather than requiring
manual re-programming after each change to a new task variant. (ii) For manual
labor tasks to be done by humans, several execution variants of a single pro-
cess step are often aggregated into one abstract sub-task of a business process
model. This abstraction maintains the readability of business process models by
partly discarding information on process details (e.g., [5,22,23]). In both robot
and human task modeling, the success of the process (e.g., in terms of prod-
uct quality) can be degraded if models are designed too coarsely – this happens
whenever relevant process details (RPDs) are omitted or inaccessible to the mod-
eler (e.g., experience and best-practices of skilled workers). RPDs carry hidden
information, significantly affecting the overall success of a process. This process
knowledge must be revealed and incorporated into a model to ensure the accu-
rate execution of a task. Thereby, RPDs can be used as task specifications for a
given process model to further refine existing task instructions. For example, one
RPD may prescribe a concrete position on a workbench where an object has to
be placed for successful task execution. Our approach [11] therefore shows how
RPDs can automatically be extracted from image data to enrich process models
with task annotations, hence balancing the trade-off between model readability
and preservation of necessary details.

In this paper, we bridge the gap between process model-based human-to-
human and precedence graph-based human-to-robot knowledge transfer: We con-
tribute a novel approach to human-robot collaboration with intrinsically legible
task representations enriched by RPDs. This way, humans and robots can rely on
domain expert knowledge encoded in RPDs for increased process quality (Fig. 1).
The practical feasibility of the approach is demonstrated in two use cases.

Enriching Models with Relevant Details for Human-Robot Teaming 251

2 Background and Related Work

Process models give an overview of the work steps to be done during the execu-
tion of a process. They serve as the basis for process execution by human and
robot agents. Hence, process modeling is an essential basis of knowledge transfer
in production contexts with a broad range of established techniques.

In Business Process Management (BPM) [34], process models are pri-
marily intended for human workers. The focus lies on presenting process descrip-
tions in a clear and easy-to-understand manner. To this end, process modeling
languages as the Business Process Model and Notation (BPMN) [6], the Uni-
fied Modeling Language (UML) [30], Event-Driven Process Chains [29], etc.,
have been proposed. They typically define a set of modeling elements to map
different aspects of a process. Modeling guidelines (e.g., [3,16]) are intended to
establish standardized ways for manually composing complex processes from
modeling elements. Despite these efforts to structure the model design process,
mapping concrete tasks to informative but lean process models for human readers
is still challenging. The trade-off between the level of detail and model complex-
ity strongly relies on human intelligence to complete missing information omit-
ted at model design time. Research related to automatic model optimization
and improvement addresses this issue. Established approaches support model
designers from representation-related (e.g., [5,22,23]) and content-related (e.g.,
[1,12,18]) perspectives. Representation-related techniques seek to improve the
readability of process models in various ways. This involves accepting the loss of
information in favor of model traceability, which is a common reason for the lack
of process details. In contrast, content-related techniques refer to the modeled
quantity, accuracy, relevance, and order of information. Analysis of RPDs is part
of the latter category, which has hardly been addressed in research. Therefore,
we have previously introduced a novel approach by employing the Local Inter-
pretable Model-Agnostic Explanations method to extract the RPDs essential for
process success from labeled imagery of correct/erroneous execution results [11].
The RPDs are then used to enrich process models with human-legible hints
without compromising the overall model readability. Thus, process models are
optimized from a content- and representation-related perspective.

In the field of Collaborative Robotics, process models (often also referred
to as task models) enable robots to participate in a task. Similar to the BPM
domain, complex tasks are composed of robot-executable building blocks fol-
lowing a pre-defined structure, e.g., UML/P state charts [33], precedence graphs
[26], or AND/OR trees [8,19]. The work steps are then dispatched to human and
robot agents. This leads to a collaborative process by task-sharing (e.g., [8,25]).
Robot-readable task models are predominantly created manually by domain
experts with visual programming techniques [9] (e.g., [20,26,28,31,32]) based
on robot skills [2]. To keep the task model manageable during programming and
to keep the process flexible concerning product and process variety, recent visual
programming [20,31] and task sharing approaches [8] including our work [28]
mimic the abstraction process as used in business process modeling: work steps
are intentionally left partly under-specified by omitting information in gener-

252 M. Fichtner et al.

Fig. 2. Mapping of terms stemming from the domains of BPM and robotics.

alized skills (e.g., “Put the part into the bin” rather than “Put the part with id
1 to cartesian position (0.4, 0.6, 0.01)”), and the robot system resolves missing
information online by reasoning on the scene perceived with cameras just as
humans would do with a BPMN model. Yet the decision on how to generalize
task models is left to the programmer, thus yielding a potential loss of RPDs.

In conclusion, there is a strong analogy between abstract process models and
related challenges in BPM and Collaborative Robotics. We therefore hypothesize
that human-robot collaboration approaches would benefit from an analogous
enrichment of process models with learnt RPDs as previously enabled by our
method to improve business process models [11]. In this paper, we contribute (i)
a unified terminology of task modeling in the BPM and Collaborative Robotics
domains, (ii) a novel approach to human-robot collaboration based on a single,
hierarchical human-robot process model with RPD annotations, and (iii) an
incremental learning approach which renders RPDs machine-readable for robots.

3 Terms and Definitions

Connecting the fields of robotics and (Business) Process Management requires
the alignment of terminologies and the understanding of how processes and activ-
ities are defined and executed in both domains. In the robotics domain (Fig. 2;
right), tasks describe actions a robot should perform. A task either refers to a
single abstract activity as e.g., “mount the control panel”, or to a more com-
plex job that has to be done (e.g., “X-Ray Scanner Assembly Process”). Tasks
for robots are usually represented by task models as outlined in Sect. 2, with
a clearly defined entry and exit point. Since robots require concrete program
code to accomplish a task, tasks are decomposed into skills, which specify neces-
sary actions on a more fine-grained level [21]. For example, “screw the upper right
bolt” could be a skill that contributes to the task “mount the control panel”. Skills
are further decomposed in hierarchies [2] or net structures [13] until ultimately
reaching primitives. These primitives define the most specific set of actions that
correspond e.g., to a single motion command to the robot. They include the

Enriching Models with Relevant Details for Human-Robot Teaming 253

specification of points in the environment that the robot needs to reach as well
as gripper actions (e.g., “grasp bolt”) [13].

In the BPM domain (Fig. 2; left), process models (PM) describe workflows
or processes (e.g., “X-Ray Scanner Assembly Process”) to achieve a certain goal
[34]. Process models typically consist of an entry point (e.g., a start event in
BPMN) defining the beginning, and an exit point (e.g., an end event in BPMN)
demarcating the end of the process flow. In between, a series of tasks can be
modeled, connected through directional edges to define the control flow. Tasks
can be assigned to process participants such as employees or customers (e.g.,
through pools and swimlanes in BPMN). Furthermore, tasks contain descrip-
tions of activities needed to complete the process. The level of detail in task
descriptions is not predetermined and must be decided by the model designer.
The designer also has the choice of breaking down a task into smaller sub-tasks.
For instance, “mount the control panel” can be modeled as a single task or be
divided into several sub-tasks describing the task at an operational level. An
example high-level operational task is “screw the upper right bolt” – a low-level
operational task is “grasp bolt”. Hence, contrasting to the skill and primitive
notions in robotics, the term “task” is used independently of the level of detail
and type of instruction.

The mapping depicted in Fig. 2 shows that, depending on whether a human
or robot performs an activity, a task must be defined in more or less detail
for proper execution. Humans apply context knowledge and experience subcon-
sciously. Thus, implicitly necessary substeps of a task are automatically done,
and the matching of objects mentioned in the task description with those avail-
able in the environment is done intuitively. In contrast, such reasoning cannot
be assumed when assigning tasks to a robot but must be considered explicitly
during task modeling. This is achieved by the aforementioned division of tasks
into skills and primitives. The second aspect, the anchoring [7] of parts, is con-
tained in the skill definition and deals with the mapping of object specifications
(describing fictitious objects) to physical objects acquired by the sensors of a
robot. In this paper, we call such object specifications part templates and phys-
ical objects part states.

Based on the mapping, we propose a consolidated process model to sup-
port collaborations between humans and robots effectively. To this end, human-
readable process models (HPM) are first created by process experts with accord-
ing process modeling languages from the BPM domain (e.g., BPMN). In this
model, all workers (humans and robots) are considered participants of the pro-
cess. They are each assigned a swimlane with a pool of tasks to work off (Fig. 3),
i.e., task allocation to human or robot resources is achieved by a modeler’s deci-
sion to assign process steps to swimlanes. This decision is supported by struc-
tured criteria from the field of capability-aligned process planning (e.g., [4]). At
this stage of the model, tasks assigned to the robot are presented similarly to
those assigned to humans. Yet, as previously explained, this description level is
insufficient for a robot to perform the task. Therefore, all robot tasks are further
enriched with skill- and primitive-based descriptions using visual programming

254 M. Fichtner et al.

(Sect. 4.1). This leads to a unified process model composed of dedicated human
and robot tasks, each being represented in a manner suitable for the correspond-
ing agent according to Fig. 2 (see PM in Fig. 3 for a visualization). Hereinafter,
we will use the term “process model” to refer to this type of unified process model
which contains task descriptions for humans, skills for execution by a robot, and
the allocation of tasks to humans and robots.

Fig. 3. Adaption of our previous concept [11] to the robotic domain.

4 Extending Unspecified Process Models

Our approach is summarized in Fig. 3. In our previous work [11], the input is
a BPMN diagram designed for human workers. In contrast, our new approach
additionally allows the input of joint human-robot process models according
to Sect. 3. In the Task Selection stage, a single task is selected from the input
process model. This task is the entry point to Model Optimization. Tasks to be
executed by humans (HT) trigger the optimization procedure from our previous
work [11] (top of Fig. 3). Similarly, for robot tasks (RT) that are expressed as
task models, we can utilize our previous procedure by making minor adjustments
to accommodate a robotic agent (bottom of Fig. 3). The input process model is
executed, and after the execution of the selected task, an image of the workspace
is captured. Thereby, in contrast to HTs, RTs are executed as further described
in Sect. 4.2. At the end of the process model execution, the recorded image is
labeled regarding process success. This is repeated several times until sufficient
labeled data is collected. Then, the task is analyzed for relevant process details
in the Task Optimization step (Sect. 4.3). The output is either a human (HT∗) or
robot task (RT∗) enriched with relevant process details, resulting in an optimized
process model (PM∗). The cycle can be repeated for further optimizations by
returning to the Task Selection step.

Enriching Models with Relevant Details for Human-Robot Teaming 255

Fig. 4. Part types and locations contain varying degrees of ambiguity. The part type
taxonomy (a) includes generic inner nodes (’conductor’ and ’resistance’) that comprise
specific types in the leafs (e.g.,’base’ or ’light’). Locations (b) encompass generic area
descriptions (ploc1 - ploc3) or specific poses (p̂loc1).

4.1 Robot Task Modeling

For robot execution, steps in the process model must be mirrored in the robotics
domain. We achieve this by visual robot programming of robot-executable prece-
dence graphs with varieties following our previous work [28]. In this approach,
part states encode physical objects in the workspace, whereas part templates
describe partially ambiguous requirements to objects (cf. Sect. 3). Both part
states and templates have the same features depending on the domain. In
this paper, the features are the part type and its location. A part type is an
entry in a tree-shaped taxonomy with ’is-a’-relations between its set P type of
nodes (Fig. 4a). Leaf nodes denominate specific part types P̂ type ⊂ P type which
parts in the physical world can be classified as. When ascending from a leaf
towards the root node, inner nodes encode generic part types, i.e., fictitious type
concepts, which enable variety in the part description. We use the predicate
is_a(ptypei , ptypej) to state whether ptypei = ptypej or ptypei is a child of ptypej .

Part locations P loc describe the rigid body pose of parts. We distinguish two
cases: (i) A specific location p̂loc ∈ P̂ loc is a rigid body transform wTpart ∈ R

4×4

indicating the part translation and rotation concerning some world frame w
(with P̂ loc ⊂ P loc). (ii) An ambiguous generic location ploc ∈ P loc specifies
the 3D volume in which a part is expected. Similarly to part types, we use the
predicate is_in(ploci , plocj) to state whether ploci is part of the volume plocj . This
predicate can be applied between specific-specific (p̂loci � p̂locj); specific-generic
(p̂loci ∈ plocj); and generic-generic location pairs (ploci ⊆ plocj). For example, ploc2

and p̂loc1 are in ploc1 , whereas ploc3 has no relation to any other location in Fig. 4b.
The world state is represented by a set P̂ = {p̂1, p̂2, ...} of part states. Each

part state p̂i = (p̂typei , p̂loci) is an entity with specific part type p̂typei at specific
location p̂loci . Thus, part states contain only well-defined parameters. By contrast,
part templates pi = (ptypei , ploci) are generic in their type ptypei and location ploci .

A robot task is a precedence graph T = (S,≺S , P) composed of partially
ordered skills S = {s1, s2, ...} to manipulate a set P of part templates. The

256 M. Fichtner et al.

Fig. 5. Our task editor enables icon-based precedence graph modeling (left) with scene
creation in a virtual workspace (right). The modeling outputs precedence graphs with
inherent ambiguities (e.g., the specific p̂ and generic p location).

partial order ≺S defines “earlier-later” relations between skills. Skills represent
any operation to change a part feature (e.g., moving a part to a new location).
Thus, we define generic skills as a tuple s = (p, ψ) of a part template p ∈ P and
a prediction function ψ. The part template p represents the skill’s precondition,
i.e., the required features of a part to be utilized. Given p, the prediction ψ states
the required features of the part after a successful execution. Thus, ψ maps a
precondition p to another part template p∗ – i.e., the postcondition of the skill.
Given the set S of skills, we call the predicted templates

P ∗ = {p∗ ∣
∣ ∀ (p, ψ) ∈ S : p∗ = ψ(p)}. (1)

Our skill definition differs from the traditional approach of fully specific skills
[21] since skills may involve ambiguous part types and locations. A skill s ∈ S
may only be applied to a part p̂j iff p̂j satisfies the part template pi ∈ s, i.e., if
it matches the precondition encoded by the input part template:

satisfies(p̂, p) = is_a(p̂type, ptype) ∧ is_at(p̂loc, ploc). (2)

In practice, precedence graphs, as introduced above, are created by domain
experts using the intuitive graphical editor shown in Fig. 5. Parts can be placed
within a virtual workspace to be used as input parameters to skills, which can
then be connected to precedence graphs. Please refer to our previous publications
for details on this visual programming process [26,28].

Enriching Models with Relevant Details for Human-Robot Teaming 257

Fig. 6. The underspecified part templates are anchored to the part states by solving the
assignment problem utilizing a satisfaction matrix (a). Given an admissible assignment
(green entries), robot skills can be executed (b). (Color figure online)

4.2 Robot Task Execution

For robots to cope with ambiguity, the underspecified skills are anchored using
the approach from our prior work [28]: Initially, the robot detects all parts in
the workspace with object recognition techniques and builds up a world state P̂ .
The anchoring process matches each part template p ∈ P with a part state p̂ ∈ P̂
that satisfies p (Eq. 2). To find an admissible assignment, at least one part state
must be provided per template (|P̂ | ≥ |P |), yielding O(|P̂ |!) possible assign-
ments. Even for few part states (|P̂ | ≤ 10), testing each assignment is infeasible.
However, we can solve this assignment problem with efficient algorithms, e.g.,
the Kuhn-Munkres algorithm [17] with O(|P̂ |3) runtime complexity:

Let A = (ai,j) denote a |P | × |P̂ | cost matrix with a row for each part
template and a column for each part state (Fig. 6a). Any correct assignment of
p̂j to pi has no cost, whereas false assignments have infinite costs, i.e.,

ai,j =

{

0 if satisfies(p̂j , pi)
∞ otherwise

, i ∈ {1, ..., |P |}, j ∈ {1, ..., |P̂ |}. (3)

The Kuhn-Munkres algorithm outputs an injective mapping f : {1, ..., |P |} →
{1, ..., |P̂ |} which minimizes the cost term

∑

i ai,f(i) (i ∈ {1, ..., |P |}). By con-
struction of A, an admissible assignment f has 0 cost, and any solution involving
a wrong assignment has an infinite overall cost. This occurs if necessary parts are
missing in the current world state. In other words, f says that part template pi
must be associated with part state p̂f(i) to incur an overall correct assignment.

Given this assignment, the precedence graph can be scheduled into a skill
sequence. In addition, generic skill parameters must be specified. For example, a
grid-based placement planner determines specific transformations from generic
goal locations. A fully specified skill can then be executed by a typical state-of-
the-art skill architecture (e.g., [2,21]) as shown in Fig. 6b.

258 M. Fichtner et al.

4.3 Task Optimization

This step analyzes labeled image data by applying techniques to extract hidden
process information (Image Analysis). This gives us RPDs attached to the con-
sidered task description and, thus, to the process model. For human tasks, this
is done by creating a Task Annotation resulting in HT∗, whereas, for RTs, the
underlying template is adjusted (Template Refinement) resulting in RT∗.

Image Analysis. Regarding this step, we follow our previous work [11]. The
Image Analysis is described by a function φ mapping labeled images V to RPDs
D, i.e., φ(V) = D. Thereby, V = {(v1, l1), (v2, l2), ...} is a set of images vi
recorded after execution of a task T and labeled as li ∈ {0, 1}. The label indi-
cates whether the process was successful (li = 1) or failed (li = 0). The Image
Analysis step has three phases: (i) A convolutional neural network (CNN) is
trained with the labeled image data to predict whether an image shows a suc-
cessful or failed execution. (ii) We employ Local Interpretable Model-Agnostic
Explanations (LIME) [24] to generate an explanation for each positively labeled
input image {(i, l) ∈ V | l = 1}. LIME highlights image regions relevant for
predicting the positive class, i.e., features decisive for process success. (iii) We
derive D from these local explanations in a generalization step. Thereby, we
focus on image content semantically representing the same object or part across
all images to derive global insights. Initially, we search for parts within the high-
lighted regions of each local explanation. We then analyze each identified part
for further information based on a selected set of features. Thereby, the set of
features is domain-specific and exchangeable. For instance, the color, shape, or
position can be determined of each part identified in a local explanation. Across
all local explanations, we receive a set of features and values for each part, rep-
resenting relevant process details. Formally, the output of this step is a set of
RPDs D. Each d ∈ D refers to exactly one part for which relevant details were
found. Thus, d comprises a set of analyzed features and values for that object.
Given the features of our part templates, we define a RPD d = (dtype, dloc) as a
tuple of a generic type dtype ∈ P type and a generic location dloc ∈ P loc. Further-
more, D always details the task instruction of T . How T is to be adapted varies
depending on the agent, as described in the subsequent sections.

Task Annotation for Human Workers. The discovered RPDs have to be
integrated into the process model while preserving model readability for human
workers. Therefore, intuitive task annotations (e.g., texts, diagrams, images) are
created [10]. The task annotations are then attached to the original process
model as proposed by [35]. This gives us an improved task HT∗, which enriches
the input process model PM by RPDs.

Enriching Models with Relevant Details for Human-Robot Teaming 259

Fig. 7. For a successful execution of tasks with varieties, every part template p ∈ P
must be correctly mapped to one part state p̂ ∈ P̂ (a). If the tasks with varieties are
modeled too coarsely, the part templates must be specified by the RPDs by mapping
every detail d ∈ D to one template p ∈ P .

Template Refinement for Robot Tasks. In contrast to task annotations for
humans, robots require explicit adjustments to the task description. Therefore,
the skills and part templates in the task must be identified and adjusted cor-
responding to the RPDs. This problem is analogous to the mapping from part
templates to part states (Fig. 7): RPDs D and templates P constitute generic fea-
tures of parts and, therefore, are modeled equally (cf. Image Analysis). However,
RPDs D refer to the world state after execution, whereas part templates P spec-
ify requirements of the initial world state before execution. We can bridge this gap
due to our skill modeling, which allows us to predict expected part templates P ∗

after execution (Eq. 1). These predicted templates may be too generic and must,
therefore, be restricted by the RPDs. To this end, a mapping from each detail
d ∈ D to exactly one template p ∈ P ∗ is required. The RPDs can only arise from
the execution of overly coarse skills – in consequence, (i) there are fewer RPDs
than templates, and (ii) the RPDs must be equally or more specific an the part
templates. For that, we define the predicate specifies: D × P → {True,False}
that returns whether a RPD di is at least as specific as the template pj . This
means that dtypei is equal to, or a child of ptypej , and that dloci is equal to or lies in
plocj . Due to the general definitions of our part types and locations, the specifies
function is defined analogously to satisfies:

specifies(d, p) = is_a(dtype, ptype) ∧ is_at(dloc, ploc). (4)

Again, a brute force mapping between RPDs D and templates P is infeasible
due to the number of feasible combinations but can be achieved with the Kuhn-
Munkres algorithm (Sect. 4.2): Let B = (bi,j) denote a |D| × |P | cost matrix
with a row for each RPD and a column for each part template. We model wrong
assignments with the specifies-function:

bi,j =

{

0 if specifies(di, pj)
∞ otherwise

, i ∈ {1, ..., |D|}, j ∈ {1, ..., |P |}. (5)

260 M. Fichtner et al.

Solving the assignment problem gives us the minimum cost assignment g :
{1, ..., |D|} → {1, ..., |P |} stating that RPD di must restrict part template pg(i).

Having identified the part templates belonging to the RPDs, they must be
constrained. Transferring the values of a RPD to the assigned templates is not
sufficient because the templates are already transformed by the prediction of
the task. Thus, it must be differentiated whether the initial templates or the
prediction of the skills must be adjusted. To this end, the prediction of a skill
must be considered: If the skill adjusts the feature to be constrained during
execution, the prediction must be adjusted (e.g., the target location in Pick-
and-Place-Skills). If the skill does not affect the feature, the initial template
(precondition) must be adjusted. For example, this is the case if part types need
to be restricted and only Pick-and-Place-Skills are used.

5 Evaluation

We have evaluated our approach and prototypical implementation in two experi-
ments motivated by possible use cases from the manufacturing sector (Sect. 5.1).
The results and optimization steps to improve the knowledge extraction are
elaborated in Sect. 5.2. In Sect. 5.3, we finally discuss the results from different
perspectives and provide recommendations for similar setups.

5.1 Experimental Validation

We designed two use cases built upon benchmark tasks of [27] and previous
real-world process use cases of [11]. Both use cases address process steps that
involve a robot to place a set of work pieces (conductors) in a given working
environment (Fig. 8). Use Case 1 (UC1) describes an assembly and Use Case 2
(UC2) a kitting task. For our experiments, we assumed that the use cases are
designed as task models with the purpose of being executed by a robot agent
and that they are part of a given process model (Sect. 4). Furthermore, we made
the following assumptions:

1. Labeled images are given. The data stems from executions of the respective
task model, i.e., UC1 or UC2. After execution, an image of the workspace is
captured and labeled according to the success of process outcomes.

2. The task models for both use cases are too generic and lead to deviating
process outcomes.

3. We precisely know the missing process detail causing process failure. This
allows us to validate that our approach succeeds in finding the missing RPD.

In order to have sufficient and qualitatively adequate data we used syntheti-
cally generated images corresponding to the scenes in Fig. 8. We generated and
labeled images for each use case based on known, predefined rules that dis-
tinguish a successful execution from an unsuccessful one. The process domain
remains consistent across both experiments and all task executions, resulting in
an unchanged background image.

Enriching Models with Relevant Details for Human-Robot Teaming 261

Fig. 8. We evaluate our approach with use cases from real-world process environments.
Figures (a) and (b) show the world states before (semi-transparent) and after task
execution for each use case respectively.

Use Cases. The first use case (UC1) is an assembly scenario. The task is to
mount conductors on a circuit board in a specific arrangement. Six conductors
must be placed, each being identified by its color: base conductors are blue,
resistance conductors are green, yellow, or pink, and light conductors are orange.
Different colors of resistance conductors indicate different resistance values (weak
= yellow, medium = green, strong = pink). The board is positioned in the scene
at a fixed location. The conductors are initially located in two areas (Fig. 8a).
Precise positions within the grey regions can vary. As commonly observed in
practice (e.g., [14,18]), we assume that the task model was created by a non-
expert who is familiar with the process flow but who does not know further
details about the process. Consequently, the task model contains information
that the circuit board needs to be populated by three base conductors, two light
conductors, and one resistance conductor at specific positions. However, it is
not specified which resistance conductor (which strength) should be placed. If
a low-value resistance (yellow) is attached, the light conductor will burn out,
thus rendering the process unsuccessful. On the other hand, if the resistance is
too strong (pink), the light conductor glows too weakly. Therefore, placing a
medium resistance (green) at the given position on the circuit board is crucial
for process success. Since the task model has no further specifications, the robot
picks a resistance conductor of any type that is available in the workspace during
task execution. Deviating process outcomes are observed from which labels are
derived for the captured images. We validate if the RPD, i.e., the right type of
resistance, can be extracted from a labeled image data set. This means that the
association of the feature “color” with process success has to be identified.

The second use case (UC2) covers a kitting scenario, i.e., the delivery of all
components required for the assembly of a product. In the initial situation of
UC2, all available conductors are located within the right region of the workspace
(Fig. 8b). The final state requires three conductors (a base, light, and resistance
each) to be positioned in the left region. In this scenario, we assume that a

262 M. Fichtner et al.

Fig. 9. Example input data for Use Case 1.

process expert created a generic task model to move one conductor of each type
from the right to arbitrary, varying positions in the left region. This generic task
model was sufficient as long as the subsequent process of assembling the parts was
performed by human workers who were able to deal with varying part-feeding
locations. Over time, the assembly line was restructured, and the subsequent
assembly process was assigned to a robot that expects parts in a specific order
for grasping: The base conductor must be placed in the top, the light conductor
in the middle, and the resistance conductor in the bottom third of the left region.
The initial kitting task model does not contain these new RPDs regarding more
specific part goal locations. Executing this model yields the observation that the
process occasionally fails. With UC2, we show that the location-related RPDs
can be extracted with our approach. This involves a more complex association
between two features (color and position) and process outcomes.

Implementation. We trained a classification model using TensorFlow1 for both
use cases. Regarding the CNN, we followed a standard model architecture which
comprised three convolution layers followed by corresponding pooling layers.
Subsequently, the output was flattened and fed into a fully-connected dense layer
to derive the final classification outcome. As training data, we generated image
data per use case representing the respective setups. For UC1, we generated 1000
images, of which 500 showed positive (Fig. 9a) and 500 negative states (Fig. 9b)
of the workspace after task execution from a top-down view. The positions of
the six conductors on the circuit board were fixed across all images since they
were defined precisely in the task model. The position and orientation of the two
remaining conductors were determined at random – this reflects the variability
of the process concerning initial part locations. For UC2, we generated 10000
images comprising 5000 positive (cf. Fig. 10a) and 5000 negative samples (cf.
Fig. 10b). The position and orientation of each conductor was again determined
randomly within the respective rectangular regions. The training of the CNN

1 https://www.tensorflow.org/ (Accessed: 02 May 2023).

https://www.tensorflow.org/

Enriching Models with Relevant Details for Human-Robot Teaming 263

Fig. 10. Example input data for Use Case 2.

per use case was performed until a sufficient high accuracy rate (> 0.95) and
low loss (< 0.1) were achieved.

The first experiments were conducted with the basic version of LIME as
provided in the official python package2. We defined important input param-
eters according to the process domain and experimental setup: the parameter
nfeatures describes the maximum number of image segments to be considered in
the explanation. This parameter is crucial for useful and interpretable results
since consideration of too many features would lead to uncertainty in which seg-
ments are of real importance for the classification. In contrast, not all important
segments are highlighted by selecting a too-low value. We know that, in our
domain, the reason for process success or failure is always related to the parts
since the image background is fixed across task executions. The number of parts
is, hence, a good guide in choosing nfeatures. However, since we do not know
which object or object feature is relevant, all possible occurring objects must be
considered. In UC1, a maximum of 8 and UC2, a maximum of 7 conductors may
occur in the scene. Therefore, we set nfeatures accordingly. The number of sample
instances used by LIME to generate a local explanation is defined by nsamples.
Higher values produce more samples and more accurate explanation at the cost
of computation time. Inspired by existing code examples and experience from
prior experiments, the value for both use cases was set to 1000.

We implemented the generalization step using an object recognition proce-
dure based on color. For each local explanation, we extracted the color infor-
mation from all highlighted segments and identified the parts in individual seg-
ments this way. We then identified all regions of the segment that correspond to
an object, i.e., regions that differ in color from the background. We calculated
the centroid of each object region, which is used to determine the object’s posi-
tion. The object information identified in this way is collected across all local
explanations, and a list of positions is output at the end for each object type.

2 https://github.com/marcotcr/lime (Accessed: 30 April 2023).

https://github.com/marcotcr/lime

264 M. Fichtner et al.

Use Case 1 Use Case 2

Type Position Position
Base (390, 382) [(172, 290),...,(258, 341)]
Weak Resistance [(179, 316),...,(247, 471)] -
Medium Resistance (434, 382) [(176, 429),...,(258, 480)]
Strong Resistance [(179, 302),...,(258, 458)] -
Light (410, 463) [(171, 359),...,(259, 409)]

Table 1. Resulting details in the default setup for both use cases.

5.2 Results and Optimizations

The output of the generalization step, i.e., the derived RPDs, for each use case is
summarized in Table 1. For UC2, the default setup provides correct results since
the analyzed RPDs align with the anticipated specifications: for each of the
three conductors (base, light, and medium resistance), a region for the parts to
be placed was extracted. The regions are represented by a bounding box for each
RPD, referring to the top, middle, and bottom third of the left area, as expected
in this use case. In UC1, five RPDs were detected. They indicate that five con-
ductors (base, light, weak resistance, medium resistance, strong resistance) must
be present at the computed positions during the execution of the task for process
success – this does not match our expectations since only a single conductor (a
medium resistance) at a specific position is relevant for success in this case. To
get to the root cause of this result, we examined the partial results of each step
of our analysis process. Examples of the results of the explanation step, i.e., the
local explanations, for each use case are shown in Fig. 11. The images provide evi-
dence that the error occurred during this step. In UC1 (Fig. 11; left), eight image
segments (as determined by nfeatures) are highlighted, meaning that they were
essential for the image to be classified as a successful process execution. Across
all explanations for UC1, the segment containing the base (blue rectangle) and
medium resistance (green rectangle) conductor is always highlighted. While this

Fig. 11. Exemplary local explanations in the default setup.

Enriching Models with Relevant Details for Human-Robot Teaming 265

Fig. 12. Exemplary local explanations in the optimized setup.

partially aligns with the expected outcome, it is inaccurate due to the highlight-
ing of the base conductor. This is the result of the segmentation sub-step of
LIME, where both conductors are assigned to the same segment. Consequently,
either both conductors or none of them can be marked relevant in the expla-
nation. Furthermore, in a few cases (18%), some highlighted segments contain
small parts of the other resistance conductors placed in the left area of the scene.
Since the generalization step considers all highlighted segments in all explana-
tions, these parts are also analyzed, and identified conductors are erroneously
declared as RPDs (Table 1). The inaccurate outcomes can thus be attributed to a
sub-optimal execution of intermediate steps. Therefore, we applied optimizations
to enhance the knowledge extraction:

1. The segmentation process of LIME was adapted to ensure that each object
is assigned to a single segment. Additionally, we replaced the quick shift
algorithm, which is by default used in the LIME implementation, with the
SLIC algorithm. SLIC is better suited for the shape of parts in our domain.3

2. Based on a segmentation that assigns an individual segment to each con-
ductor, the optimal value for the LIME parameter nfeatures = 1 in UC1 (3
in UC2). This value can be obtained by determining a cut-off based on the
weight-ordered sorting of segments for classification purposes. If the distance
between the values exceeds a certain threshold, the segments should not be
merged while we define the cut-off at this point.

These optimizations enable the adaptation of the LIME implementation to our
domain. They result in a tendency to highlight fewer patches and increase the
robustness of the generalization step, in turn reducing requirements for this step.
The local explanations resulting from the optimized setup are shown in Fig. 12.
For UC2, the results of the generalization remain unchanged in the optimized
setup compared to the default version. However, the local explanations are more
precise, thereby rendering them more reliable. For UC1, we are able to achieve

3 https://scikit-image.org/docs/dev/api/skimage.segmentation.html
(Accessed: 08 May 2023).

https://scikit-image.org/docs/dev/api/skimage.segmentation.html

266 M. Fichtner et al.

the expected RPD, resulting in the generalization step exclusively providing the
medium resistance conductor with the specific positional information (434, 382).

5.3 Discussion

The experimental results demonstrate the efficacy of our novel approach for con-
cretizing underspecified task models. The processing pipeline in which steps are
executed sequentially leads to potential issues with error propagation. Regard-
ing this aspect, we have determined that the results of image classification and
explanation generation with LIME are the most crucial. We, therefore, want to
discuss these two steps regarding their scalability to other process environments:

(i) In the initial step of training a CNN predictor for process outcomes, we par-
ticularly encountered the challenge of acquiring a sufficient amount of train-
ing data. In our experiments, we found that a data set with at least 10000
images was indispensable for favorable outcomes in UC2 – insufficient sample
size or imbalanced distribution of positive and negative samples led to inade-
quate outcomes in the explanation step. Small and medium-sized enterprises
may have difficulties with obtaining this amount of data since manufacturing
processes may here not occur sufficiently frequently. Therefore, alternative
strategies for the training process in real-world settings are needed. Data
augmentation approaches that generate additional samples from a smaller
data set might mitigate this issue. Additionally, pre-trained CNNs from sim-
ilar domains in which large-scale data sets are available could be a viable
alternative.

(ii) Our results regarding the local explanation generation step have shown that
LIME requires modifications to ensure efficacy for our objectives. Despite a
well-trained CNN, an appropriate value of the parameter nfeatures had to be
tuned meticulously, and the segmentation approach had to be adapted for
more precise outcomes. However, we do not consider this a major issue. On
the one hand, the results of UC2 demonstrate that satisfactory outcomes can
be obtained in principle with the default settings of LIME in some scenarios.
On the other hand, domain knowledge, such as the number and features of
parts, is usually available for individual process environments. Our experi-
ments show that knowing the number of parts in the process provides guid-
ance for an initial estimate and consecutive improvement of nfeatures. Further-
more, due to other methods employed during the design, engineering, and
production stages of manufacturing environments (e.g., quality control pro-
cesses), appropriate segmentation techniques adapted to the process might
be readily available. Based on the low level of effort required and the sig-
nificant results optimization, we highly recommend adapting the LIME seg-
mentation step to increase the probability of successfully identifying RPDs.

Enriching Models with Relevant Details for Human-Robot Teaming 267

6 Conclusion and Future Work

We presented a novel approach to improve human and robot process models
by deriving specifications from relevant process details. Our approach unlocks
new potentials regarding human-robot collaboration through enriching process
models for both agents. It extends previous work in the context of BPM and
proves its applicability for further domains. We evaluated our work with two use
cases inspired by the manufacturing industry. The experimental results provide
strong evidence of its effectiveness in identifying relevant process details.

Future research should focus on the improvement of the robustness of the
approach. This includes examining data augmentation techniques to enable more
straightforward applicability in real process environments that come with limi-
tations in execution data quantity and quality. Furthermore, we aim to conduct
experiments with more complex parts and settings to explore opportunities for
enhancement and provide recommendations for implementing the approach in
sophisticated process settings.

Acknowledgements. We thank Philipp Jahn and Carsten Scholle for their valuable
work supporting the implementation and evaluation of our approach.

References

1. Ahmadikatouli, A., Aboutalebi, M.: New evolutionary approach to business pro-
cess model optimization. In: Proceedings of the International MultiConference of
Engineers and Computer Scientists, vol. 2 (2011)

2. Andersen, R.H., Solund, T., Hallam, J.: Definition and initial case-based evaluation
of hardware-independent robot skills for industrial robotic co-workers. In: 41st
International Symposium on Robotics (ISR), pp. 1–7. VDE (2014)

3. Becker, J., Rosemann, M., Von Uthmann, C.: Guidelines of business process mod-
eling. In: BPM: Models, Techniques, and Empirical Studies, pp. 30–49 (2002)

4. Beumelburg, K.: Fähigkeitsorientierte Montageablaufplanung in der direkten
Mensch-Roboter-Kooperation (2005)

5. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_7

6. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput.
Stand. Interfaces 34(1), 124–134 (2012)

7. Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robot.
Auton. Syst. 43(2–3), 85–96 (2003)

8. Darvish, K., et al.: A hierarchical architecture for human-robot cooperation pro-
cesses. IEEE Trans. Rob. 37(2), 567–586 (2021)

9. Dietz, T., et al.: Programming system for efficient use of industrial robots for
deburring in SME environments. In: 7th German Conference on Robotics, pp. 1–6
(2012)

10. Fichtner, M., Fichtner, U.A., Jablonski, S.: An experimental study of intuitive
representations of process task annotations. In: Sellami, M., Ceravolo, P., Reijers,
H.A., Gaaloul, W., Panetto, H. (eds.) CoopIS 2022. LNCS, vol. 13591, pp. 311–321.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17834-4_19

https://doi.org/10.1007/978-3-540-75183-0_7
https://doi.org/10.1007/978-3-031-17834-4_19

268 M. Fichtner et al.

11. Fichtner., M., Schönig., S., Jablonski., S.: How lime explanation models can be used
to extend business process models by relevant process details. In: Proceedings of
the 24th International Conference on Enterprise Information Systems. vol. 2, pp.
527–534 (2022)

12. Gounaris, A.: Towards automated performance optimization of BPMN business
processes. In: New Trends in Database and Information Systems (ADBIS), pp.
19–28 (2016)

13. Hasegawa, T., Suehiro, T., Takase, K.: A model-based manipulation system with
skill-based execution. IEEE Trans. Robot. Autom. 8(5), 535–544 (1992)

14. Koschmider, A., et al.: Business process modeling support by depictive and descrip-
tive diagrams. In: Enterprise Modelling and Information Systems Architectures, pp.
31–44 (2015)

15. Matheson, E., Minto, R., Zampieri, E.G., Faccio, M., Rosati, G.: Human-robot
collaboration in manufacturing applications: a review. Robotics 8(4), 100 (2019)

16. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines
(7pmg). Inf. Softw. Technol. 52(2), 127–136 (2010)

17. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5(1), 32–38 (1957)

18. Niedermann, F., Radeschütz, S., Mitschang, B.: Deep business optimization: a
platform for automated process optimization. INFORMATIK - Business Process
and Service Science - Proceedings of ISSS and BPSC (2010)

19. Nottensteiner, K., et al.: A complete automated chain for flexible assembly using
recognition, planning and sensor-based execution. In: Proceedings of 47st Interna-
tional Symposium on Robotics (ISR), pp. 1–8 (2016)

20. Paxton, C., et al.: Costar: instructing collaborative robots with behavior trees and
vision. In: IEEE International Conference on Robotics and Automation (ICRA),
pp. 564–571 (2017)

21. Pedersen, M.R., et al.: Robot skills for manufacturing: from concept to industrial
deployment. Robot. Comput. Integr. Manuf. 37, 282–291 (2016)

22. Polyvyanyy, A., Smirnov, S., Weske, M.: Process model abstraction: a slider app-
roach. In: 12th International IEEE Enterprise Distributed Object Computing Con-
ference (2008)

23. Reichert, M., et al.: Enabling personalized visualization of large business processes
through parameterizable views. In: Proceedings of the 27th Annual ACM Sympo-
sium on Applied Computing, pp. 1653–1660 (2012)

24. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of 22nd ACM SIGKDD, pp. 1135–1144
(2016)

25. Riedelbauch, D.: Dynamic Task Sharing for Flexible Human-Robot Teaming under
Partial Workspace Observability. Ph.D. thesis, University of Bayreuth (2020)

26. Riedelbauch, D., Henrich, D.: Fast graphical task modelling for flexible human-
robot teaming. In: 50th International Symposium on Robotics (ISR), pp. 1–6.
VDE (2018)

27. Riedelbauch, D., Hümmer, J.: A benchmark toolkit for collaborative human-robot
interaction. In: 31st IEEE International Conference on Robot and Human Inter-
active Communication (RO-MAN), pp. 806–813. IEEE (2022)

28. Riedelbauch, D., Sucker., S.: Visual programming of robot tasks with product
and process variety. In: Annals of Scientific Society for Assembly, Handling and
Industrial Robotics (to appear) (2022)

Enriching Models with Relevant Details for Human-Robot Teaming 269

29. Scheer, A.W., Thomas, O., Adam, O.: Process modeling using event-driven pro-
cess chains. In: Process-Aware Information Systems: Bridging People and Software
through Process Technology, pp. 119–145 (2005)

30. Selic, B., et al.: Omg unified modeling language (version 2.5). Technical Report
(2015)

31. Senft, E., et al.: Situated live programming for human-robot collaboration. In:
ACM Symposium on User Interface Software and Technology, pp. 613–625 (2021)

32. Steinmetz, F., Wollschläger, A., Weitschat, R.: Razer - a HRI for visual task-level
programming and intuitive skill parameterization. IEEE Robot. Autom. Lett. 3(3),
1362–1369 (2018)

33. Thomas, U., et al.: A new skill based robot programming language using UML/P
statecharts. In: IEEE International Conference on Robotics and Automation (2013)

34. Van Der Aalst, W.M., Ter Hofstede, A.H., Weske, M.: Business process manage-
ment: a survey. Bus. Process Manage. 2678(1019), 1–12 (2003)

35. Wiedmann, P.C.K.: Agiles Geschäftsprozessmanagement auf Basis gebrauchss-
prachlicher Modellierung. Universitaet Bayreuth (Germany) (2017)

	Enriching Process Models with Relevant Process Details for Flexible Human-Robot Teaming
	1 Introduction
	2 Background and Related Work
	3 Terms and Definitions
	4 Extending Unspecified Process Models
	4.1 Robot Task Modeling
	4.2 Robot Task Execution
	4.3 Task Optimization

	5 Evaluation
	5.1 Experimental Validation
	5.2 Results and Optimizations
	5.3 Discussion

	6 Conclusion and Future Work
	References

