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Abstract. Smartphones have found their way into many domains
because they can be used to measure phenomena of common interest.
The Global Overview Report Digital 2022 states that two-thirds of the
world’s population uses a smartphone. This creates a power for measure-
ments that many researchers would like to leverage. However, this in turn
requires standardized approaches to collaborative data collection. Mobile
crowdsensing (MCS) is a paradigm that pursues collaborative measure-
ments with smartphones and the available sensor technology. Although
literature on MCS has existed since 2006, there is still little work that
has systematically studied existing systems. Especially when developing
technical systems based on MCS, design decisions must be made that
affect the subsequent operation. In this paper, we therefore conducted
a PRISMA-based literature review on MCS, considering two aspects:
First, we wanted to be able to better categorize existing systems, and
second, we wanted to derive guidelines for developers that can support
design decisions. Out of a total of 661 identified publications, we were
able to include 117 papers in the analysis. Based on five main criteria
(application area, goals, sensor utilization, time constraints, processing
device), we show which goals the research area is currently pursuing and
which approaches are being used to achieve these goals. Following this,
we derive practical guidelines to support researchers and developers in
making design decisions.

Keywords: Mobile crowdsensing · Mobile sensing · Systematic review

1 Introduction

Mobile crowdsensing (MCS) is a mobile sensing paradigm coined by Ganti
et al. [19] where, on the one hand, the sensory capabilities of smartphones
are exploited and, on the other hand, the crowd is placed in the foreground.
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This concept is promoted by the fact that two-thirds of the world’s population
own a smartphone [29], and is particularly suitable for measuring phenomena of
common interest. MCS applications can be further distinguished between par-
ticipatory [6] and opportunistic sensing [7] applications. Participatory sensing
applications require active user involvement in the sensing process (e.g., the
user has to actively trigger a sound measurement), while opportunistic sensing
applications perform sensor measurements and data transmission automatically
(e.g., the sound measurement happens in the background) [32]. MCS is used, for
example, in the automotive [50] or medical [42] domain to capture large amounts
of real-world data in a rather short time. However, the use of the paradigm is
also accompanied by many challenges [31,34]. For example, data quality of the
measurements must be ensured, incentives for contributing data must be pro-
vided, and the privacy of the users must be protected. The concept has existed
for some time and can look back on more than 20 years of development [30].
However, it is still not widely used, and there are still too few studies [19] that
systematically examine MCS and derive general development recommendations.
In addition, such studies should be regularly updated and there are many pitfalls
to consider. Therefore, this paper conducts a systematic literature review that
addresses the following research questions (RQ):

– RQ1: What are the main goals of MCS applications?
– RQ2: Which sensors are MCS applications using to achieve these goals and

how are they used?
– RQ3: What time constraints do MCS applications have?
– RQ4: On which processing device are MCS applications performing their

computations (i.e., smartphone or server)?

Another goal of this literature review is to derive practical development guide-
lines that incorporate the aforementioned research questions. We conducted the
analysis of the above research questions and the derivation of the guidelines
based on the PRISMA guidelines [38]. 661 papers resulted from our search in
the following databases used: ACM Digital Library, IEEE Xplore, PubMed, and
Google Scholar. In the end, 117 papers could be included in the analysis. Despite
the long history of the field of MCS, this shows that the number of papers pre-
sented should be considered rather small. In the following, we present the results
of the review and show which general statements and practical guidelines can be
derived to support MCS system design and development, for example, how the
selection of the processing device can be systematically addressed.

The paper is organized as follows: In Sect. 2, related work is discussed. Mate-
rial and methods are presented in Sect. 3, and the results are discussed in Sect. 4.
Practical guidelines are derived in Sect. 5. The findings are discussed in 6, and
the paper concludes in Sect. 7.

2 Related Work

Overall, there is an abundance of literature on MCS. As such, several general
reviews and surveys related to MCS have already been conducted over the years.
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In 2010, Lane et al. [32] present a survey on mobile phone sensing by reviewing
existing applications and systems in this context. The authors describe the sen-
sors available on smartphones at the time and discuss their capabilities. Further-
more, different application areas and sensing paradigms—including participatory
and opportunistic sensing—are extracted and a general architectural framework
is proposed. In their initial work on MCS in 2011, Ganti et al. [19] survey existing
crowdsensing applications and classify them—similar to our work—into environ-
mental, infrastructural, and social applications. Moreover, the authors discuss
unique characteristics and respective research challenges of MCS applications.
Similarly, in 2015, Guo et al. [23] review existing MCS applications and tech-
niques along a number of categories. In addition, the authors highlight the unique
characteristics of MCS applications and propose a conceptual framework based
on the reviewed literature. Furthermore, the work considers MCS as human-in-
the-loop systems and discusses the findings in terms of combining human and
machine intelligence. More recently, in 2019, the survey of Liu et al. [34] aims
to provide a comprehensive overview of recent advances in MCS research. The
authors review the literature with respect to incentive mechanisms, security and
privacy, resource optimization, data quality, and data analysis, with a particu-
lar focus on the data flow within MCS systems. Moreover, similar to our work,
the findings and MCS applications are presented along four categories: indoor
localization, urban sensing, environmental monitoring, and social management.
Also, in 2019, Capponi et al. [8] present a comprehensive survey that consid-
ers MCS as a four-layered architecture consisting of an application, a data, a
communication, and a sensing layer. In addition, the authors propose a num-
ber of taxonomies based on this architecture, classify existing MCS publications
and systems according to these taxonomies, and discuss various conceptual and
technical aspects of MCS systems. In addition to these more general and com-
prehensive reviews, there is also related work that focuses on specific aspects
of MCS, such as incentives mechanisms [28,61], task allocation [52], data qual-
ity [25,33,46], resource limitations [53,54], security and privacy [13,25,41], or
software architectures [35,57].

Overall, in the literature, either a rather general overview on MCS is provided
or details on very specific aspects are discussed. However, there is a lack of
practical guidance for researchers and system operators seeking to use MCS to
achieve a specific goal, especially if they are new to this area of research. In
this work, we aim to provide such guidance by reviewing the existing literature
and identifying best practices for operationalizing MCS and the decisions to
be made during system design. Furthermore, none of the above reviews include
a review protocol that would make the review process transparent, traceable,
and reproducible by other researchers. In particular, we were unable to find any
reviews on MCS that use the PRISMA guidelines.
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3 Materials and Methods

To produce transparent and reproducible results, we established a review proto-
col guided by the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement. PRISMA is a collection of items designed to
promote a transparent approach for systematic reviews and meta-analyses [38].
In the following, the defined eligibility criteria (see Sect. 3.1), the search strat-
egy used (see Sect. 3.2), as well as the selection and data collection process (see
Sect. 3.3) are described.

3.1 Eligibility Criteria

We established criteria that we used to decide on the eligibility of publications,
i.e., whether a particular publication should be included or excluded. In this pro-
cess, the following inclusion criteria (IC) were defined: IC1: The paper describes
an MCS application; IC2: The paper describes a system using one or more
mobile devices (e.g., smartphone or wearable) as sensors. In addition, we defined
following exclusion criteria (EC) for the systematic review at hand: EC1: The
system described in the paper does not use any mobile sensors; EC2: The paper
does not describe how the data is sensed; EC3: The publication is older than
2007; EC4: The full text of the paper is not available or not available in English;
EC5: The publication is not peer-reviewed. The search was limited to papers
published from 2007 onwards. This year was chosen because it was the year
Apple Inc. introduced its iPhone [14], which can be considered the beginning of
the smartphone era [21].

3.2 Search Strategy

We used the scientific databases ACM Digital Library, IEEE Xplore, and
PubMed as information sources for the review. In addition, a manual search via
Google Scholar was performed. To identify relevant publications that met the
eligibility criteria, the following search query was issued to the three databases
on August 4, 2022:

Abstract : ( crowdsens ^∗) AND ( A l lF i e l d : ( app l i c a t i o n ) OR
Al lF i e l d : ( app ) )

Listing 1.1. Search query used for the databases.

As shown in Listing 1.1, the abstract or title had to contain a word beginning
with crowdsens and somewhere in the paper the word application or app had
to occur. In addition, a filter was applied limiting the search to only papers
published from 2007 onwards to address exclusion criterion EC3.

3.3 Selection and Data Collection Process

The results of the queries to the chosen scientific database and the manual search
were combined and duplicate records were removed. For the selection process,
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these papers were then screened based on their abstract and title to eliminate
papers that are not relevant for this review. After screening, the full text of the
remaining papers was examined, and further papers were excluded based on the
defined inclusion and exclusion criteria. Furthermore, we extracted the following
data from the included papers and used Microsoft Excel to record the results:

– Application area: Each paper is assigned to one of the four categories based
on its application area (1) urban sensing, (2) indoor localization, (3) environ-
mental monitoring, and (4) social management, public safety, & healthcare.

– Goals: The goals and subgoals pursued by the paper. Subgoals are smaller
goals that the paper pursues (e.g., map matching or location matching), while
goals are used as a broader term that encompasses multiple subgoals (e.g.,
localization). Each paper can be associated with any number of goals and
subgoals.

– Sensor utilization: The sensors that are utilized by the MCS system and in
what way or to achieve which of the identified goals and subgoals they are
used (e.g., GPS used for localization or to measure the electron density in the
atmosphere).

– Time constraint: The time constraints on the processing of the data (i.e., were
the results needed in (near) real-time).

– Processing device: Which parts of the data processing were performed on
which component of the system (e.g., smartphone or server).

4 Results

Records identified from:

  Databases (n = 640)
ACM Digital Library (n = 171)
IEEE Xplore (n = 436)
PubMed (n = 33)

  Manual search (n = 31)

Identification Screening

Records screened
(n = 661)

Records excluded
(n = 489)

Records removed before
screening:

Duplicate records removed (n = 10)

Eligibility

Full-text articles assessed
for eligibility
(n = 172)

Records excluded:
(n = 55)

Duplicate = 6
IC1 = 24
EC1 = 6
EC2 = 18
EC4 = 1

Included

Studies included in
review
(n = 117)

Fig. 1. PRISMA 2020 [38] flow diagram of the publication selection and screening
process.

The publication selection and screening process is illustrated in Fig. 1. The
database search returned a total of 640 publications. After adding 31 additional
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records through manual search and removing all duplicate results, 661 papers
remained. The abstracts and titles of these publications were then screened, of
which 489 papers were excluded. The full texts of the remaining 172 records
were then assessed for eligibility and 55 records were excluded based on the
defined inclusion and exclusion criteria. This process resulted in 117 publica-
tions included for the analysis at hand.

In the following, the results of the extracted data are presented. Note that
for reasons of readability and space limitations, only a limited number of repre-
sentative references are provided in the text for each category and aspect.

4.1 Application Areas

First, we analyzed the publications that were assigned to each category of appli-
cation area. The number of publications per category is shown in Table 1.

Table 1. Number of publications per category (n = 117) and number of publications
in each category that share a specific goal, in descending order by number of total
occurrences. Each publication has been assigned to a single category, but may have
multiple goals.

Category UrbSens IndLoc EnvMon SMPSH All
Total 51 (44%) 16 (14%) 19 (16%) 31 (26%) 117 (100%)

Goal
Localization 49 (96%) 16 (100%) 15 (79%) 22 (71%) 102 (87%)

Activity recognition 16 (31%) 4 (25%) 1 (5%) 6 (19%) 27 (23%)

Map generation 14 (27%) 7 (43%) 4 (21%) 1 (3%) 26 (22%)

Street observation 22 (43%) 0 (0%) 1 (5%) 0 (0%) 23 (20%)

Image analysis 9 (18%) 3 (19%) 6 (32%) 4 (13%) 22 (19%)

Sound analysis 5 (10%) 0 (0%) 3 (16%) 4 (13%) 12 (10%)

Data collection 2 (4%) 0 (0%) 3 (16%) 7 (23%) 11 (9%)

Air pollution 2 (4%) 0 (0%) 7 (37%) 0 (0%) 9 (8%)

Navigation 4 (8%) 2 (13%) 0 (0%) 1 (3%) 7 (6%)

Time estimation 6 (12%) 0 (0%) 0 (0%) 0 (0%) 6 (5%)

Nearby Bluetooth devices detection 0 (0%) 0 (0%) 1 (5%) 3 (10%) 4 (3%)

Crowd density estimation 2 (4%) 0 (0%) 1 (5%) 1 (3%) 4 (3%)

UrbSens: Urban Sensing, IndLoc: Indoor Localization, EnvMon: Environmental Monitoring,
SMPSH: Social Management, Public Safety, and Healthcare.

The first category, urban sensing, is the largest application area (44%) and
comprises technologies for sensing and acquiring data about physical areas and
objects in urban spaces and the way people interact with them. This includes
techniques to analyze the public infrastructure, such as roads [27,55], the WiFi
density of a city [18], the waiting time for specific services [60,62], or other specific
applications such as an online reposting system for fliers [22]. The second appli-
cation area, indoor localization, comprises 14% of the included publications and
focuses on localization techniques for indoor environments. This is a nontrivial
problem, as conventional localization methods have many problems due to sensor
inaccuracies within buildings, resulting in inaccurate data. Indoor localization
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techniques include localization on an indoor map [45,59], the reconstruction of
indoor maps [11,59], or other applications such as generating a map of the WiFi
coverage of a floor [44] and collecting fingerprints of a specific location [58]. The
third application area, environmental monitoring, encompasses 16% of the pub-
lications. Environmental monitoring is conventionally implemented with wireless
sensor networks (WSN). However, the installation and maintenance of WSNs are
expensive, which is why MCS is often used to circumvent these costs. These appli-
cations include analyzing nightlife behavior of participants [48], detecting beau-
tiful places in the city [36], or measuring electron counts in the ionosphere [40].
The last and second largest application area (26%) is social management, public
safety, and healthcare. This category includes all applications that concern the
physical and mental well-being of participants [26,43], as well as applications
for disaster relief [49], disease detection [17], observation of large crowds [9,56],
letting people report events they witness [37], or determining the relationship
between two people [16].

4.2 Goals

Second, we analyzed the included publications in each category in terms of the
goals they pursue and how these goals are achieved. The number of publications
in each category that share a specific goal is shown in Table 1. Note that each
publication may have multiple goals and corresponding subgoals.

For urban sensing, the most common goal is localization. In this context, map
matching [27,39,55] matches the current position to a road on existing maps.
In some cases, the number of possible routes can be restricted in order to have
more options to reach this goal. One specific example case is route matching [62],
where a list of possible routes is known. Another subgoal is simply to determine
the position of the user, which is referred to as location matching [18,60]. This
knowledge can, in turn, be used to extract features at a particular location [27],
or to determine the time spent at a location [60]. Another prevalent goal in
urban sensing is street observation. This goal includes application areas related
to roads, such as inferring new roads [55], classifying intersections [27], detect-
ing traffic anomalies [39], determining parking spaces [15], and monitoring road
surfaces [2]. Activity recognition is another goal that can be used to reduce the
amount of false data (i.e., sensing data at the wrong time) [5,62], sometimes aided
by the use of sound recognition [62]. Activity recognition is often performed to
help achieve other subgoals, such as road surface monitoring [2] or turn detec-
tion [10]. Another common goal is time estimation, which is often used to give an
estimated time to enhance the user experience. This can be achieved in the form
of predicting the arrival time, i.e., arrival time prediction [62], or the waiting
time, i.e., waiting time prediction [5,60], of certain services to improve the user
experience. Furthermore, many urban sensing applications aim to achieve map
generation. These maps to be generated range from WiFi coverage maps [18] to
cellular coverage maps [51], to maps highlighting road surface conditions [2], or
free parking spaces on streets [15]. Other less common subgoals of urban sensing
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include photo quality determination [22], photo tagging [22], and photo group-
ing [22]. A common type of data collected is GPS traces, which are sometimes
split to analyze the data for specific information [27,39].

Inherently, for indoor localization, the most prevalent goal is also localiza-
tion. As the usage of GPS in indoor environments is highly error-prone, this
goal is often achieved through the use of fingerprinting. With fingerprinting, the
user’s current location is determined by comparing the current sensor readings
to previously recorded sensor readings with a corresponding location. This can
be achieved either by WiFi fingerprinting [44,45], where a list of wireless access
points (WAP) and their location is stored, or by magnetic fingerprinting [59],
where the user needs to walk a bit to get the location, since the magnetic fin-
gerprints a 3D vector and thus requires a temporal dimension. Another option
to achieve this goal is tracking [20,44,45], using the accelerometer, gyroscope,
and sometimes magnetometer to track the user’s movement patterns. One of
these tracking techniques is pedestrian dead reckoning (PDR) [44,45]. In PDR,
the user’s movement is tracked by knowing the starting location and estimat-
ing the distance and direction travelled. Since PDR makes estimates continu-
ously, the estimation error accumulates over time, so a combination of PDR and
another indoor localization technique has proven to be very beneficial. Further-
more, simple location matching [11] can also be used to detect the rough location
in indoor environments. Map generation is another common goal of indoor local-
ization. An application example is the reconstruction of a floor plan [11,20,59],
which is implemented by using a PDR-similar approach [59], estimating the
travelled distance and direction, or by letting participants record videos or pho-
tos of the environment [11,20]. These pictures are used for information extrac-
tion [11,20], picture concatenation [20], and connecting adjacent wall segments
on photos to continuous boundaries to obtain hallway connectivity, orientation,
and room sizes. Some MCS-applications also aim to map WiFi coverage of an
indoor floor [44]. Other indoor localization subgoals are the navigation in an
indoor environment [59], activity recognition [44,45], fingerprint collection [58],
and QR code forgery detection [58].

Localization is also the most common goal in environmental monitoring, but
most localization tasks in this area are fairly simple, such as location match-
ing [4], as only the location of the user is needed for these applications, or detect-
ing the location of a physical event (e.g., flowering cherries) [36]. Air pollution
detection is one of the biggest challenges in environmental monitoring with MCS,
as conventional smartphones usually lack the required sensors to address this
problem. Therefore, most applications in this context use an external connected
mobile sensor to measure the required data [4], but some applications attempt
to detect air pollution by analyzing images captured by the mobile phone cam-
era [24]. Image analysis is also used for other purposes, such as analyzing the
brightness level of a video [48], analyzing the loudness level of a video [48], or
simply extracting information from a picture [24,36] to detect a specific feature
in the photos. Other subgoals of environmental monitoring include conducting
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a questionnaire [48], detecting points of interest [36], expanding areas of inter-
est [36], and measuring electron counts in the ionosphere [40].

As in all other areas, localization is the most common goal for applications in
the social management, public safety, and healthcare category. Location match-
ing [16,26,37] is often required to simply determine the participant’s current
location. In some cases, an exact location is not required, but information about
whether the participant is in a certain area is sufficient, which is referred to as
geofencing [9]. Other event detection methods, such as swipe localization [37],
where multiple participants indicate a direction in which an event is occurring,
are also commonly performed. The second most frequent goal in this category
is data collection [43,47]. This goal can be achieved through many different
methods, such as conducting a questionnaire [43,47]. Other subgoals of this
area include activity recognition [9,26], nearby people detection [16], relation-
ship inference [16], determining swipe direction [37], detecting nearby Bluetooth
devices [56], and crowd density estimation [56].

4.3 Sensor Utilization

Furthermore, we analyzed which sensors are used by the included applications
and how they are used to achieve the goals and subgoals identified in Sect. 4.2.

The GPS sensor can be used for map matching [27,55] and location match-
ing [11,60]. However, simply using GPS can lead to errors when the exact loca-
tion is relevant, and therefore [60] proposed a possible solution by using the
center of consecutive GPS readings. To measure electron counts in the iono-
sphere [40], dual-frequency GPS can be used. To do this, GPS signals are sent
to the receiver at two different frequencies, and the delay between the arrival of
these two signals can be used to calculate the electron count. Another option
used for location matching is the usage of WiFi to detect WAP locations or to
directly detect a specific WAP [5]. The WiFi sensor can also be used for WiFi
density detection [18], route matching [62], which fingerprints cell tower IDs, and
WiFi fingerprinting [44,45], where a list of WAPs is associated with a specific
location and used for localization. GPS and WiFi can also be used together for
location matching [16] or geofencing [9] to achieve even more accurate results.
The magnetometer can be used for magnetic fingerprinting [59], which works
much like the WiFi equivalent, with the only exception that a temporal dimen-
sion is required (i.e., the participant must walk the path for a while to determine
the location). WiFi and the magnetometer can also be used in combination to
produce a combined fingerprint for fingerprint collection [58].

Activity recognition is most often implemented by using the accelerome-
ter [5,44,62]. This can be supported by utilizing the microphone for sound recog-
nition [62]. Another way to use the accelerometer is to determine the tilt angle
of the phone. This information can be used together with the magnetometer for
swipe localization [37]. A variety of sensors can be used for movement track-
ing. Using solely the gyroscope, it is possible to detect whether the participant
is making a turn [59]. Accelerometer and gyroscope can be used together to
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measure distances and orientation between start and finish [20]. Accelerometer,
magnetometer and optionally gyroscope can be used together for PDR [44,45].

Other sensors used include the power sensor, the camera, the microphone, the
Bluetooth sensor, and the ambient light sensor. The power sensor can be used,
for example, to detect whether a phone is charging [27]. The camera can be used
to take photos [20,22] and videos [11,36,48]. The microphone can record ambient
sound [43], while Bluetooth can be used to detect nearby Bluetooth devices [56].
Finally, a combination of accelerometer, magnetometer and ambient light sensor
can be used to determine photo quality [22].

4.4 Time Constraints

The time constraints per category of application areas are shown in Table 2. It
can be seen that most applications either have no time constraints at all (51%),
or only some of their components are time-relevant (27%). Only 21% of all
considered publications state that their MCS application is completely real-time
dependent.

Table 2. Number of publications with real-time constraints, without time constraint,
and with a mixed approach. Per category of application areas and in total (n = 117).

Category UrbSens IndLoc EnvMon SMPSH All
Total n = 51 n = 16 n = 19 n = 31 n = 117

Real-time 10 (20%) 1 (6%) 4 (21%) 10 (32%) 25 (21%)

No time constraint 25 (49%) 10 (62%) 10 (53%) 15 (48%) 60 (51%)

Mixed 16 (31%) 5 (31%) 5 (26%) 6 (19%) 32 (27%)

UrbSens: Urban Sensing, IndLoc: Indoor Localization, EnvMon: Environ-
mental Monitoring, SMPSH: Social Management, Public Safety, and Health-
care.

Most MCS applications do not have time constraints [20,27,48] because they
are used to collect information that is not time-sensitive, for example, to update
maps or obtain information only for eventual data analysis. As shown in Table 2,
the highest percentage of application without time constraints can be found in
the category of indoor localization, with many non-time-sensitive applications
such as the reconstruction of indoor floor plans [11,20]. Other MCS applications
aim to relay the gathered information to participants as quickly as possible,
i.e., in real-time [26,36,62]. The highest proportion of applications with a real-
time constraint is found in the area of social management, public safety, and
healthcare. This category includes comparatively many time-sensitive applica-
tions such as healthcare monitoring [1], fall detection [26], disaster management
during earthquakes [49], and crowd-management in mass gatherings [9]. Many
MCS applications use a combination of real-time components and non-time-
sensitive components [39,45,55]. The reason for the time constraints of these
individual components is in most cases the same as mentioned above: a non-time-
sensitive information is needed to further process the time-sensitive information.
For example, the typical routing behavior of drivers is calculated without time
constraint in order to detect traffic anomalies in real time [39].
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4.5 Processing Device

In all the applications studied, data collection is always done via the smartphone
or via external sensors connected to the phone. However, there are differences
in the devices used to process the sensed data. The distribution of processing
devices used per category of application areas is shown in Table 3.

Table 3. Number of publications that use local pre-processing or upload the data
directly to a server where it is then processed. Per category of application areas and
in total (n = 117).

Category UrbSens IndLoc EnvMon SMPSH All
Total n = 51 n = 16 n = 19 n = 31 n = 117

Local pre-processing 28 (55%) 7 (44%) 8 (42%) 15 (48%) 58 (50%)

Direct upload 23 (45%) 9 (56%) 11 (58%) 16 (52%) 59 (50%)

UrbSens: Urban Sensing, IndLoc: Indoor Localization, EnvMon: Environ-
mental Monitoring, SMPSH: Social Management, Public Safety, and Health-
care.

Interestingly, about 50% of the analyzed MCS applications across all cat-
egories did not perform any local pre-processing before uploading the data to
the server. This is often the case when the main purpose of the application is
data collection [3], since no processing is required for this purpose, or when
the application is not intended to interfere with the normal use of the phone
and therefore does not require many computing resources [20,44]. The pro-
cessing and computations performed by the server are usually more expensive
calculations and include, for example, detecting traffic anomalies [39], arrival
time prediction [62], waiting time prediction [5,60], or reconstructing a floor
plan [11,20,59]. Many applications pre-process the data locally on the smart-
phone to reduce the amount of data to be uploaded and the burden on the par-
ticipant devices [43,45,55]. In cases where avoiding data transfer is a higher prior-
ity than avoiding computations, these computations can be performed locally on
the smartphone. These pre-processing and computation subgoals include route
matching [62], splitting GPS traces [27,39], sound recognition [62], conducting
questionnaires [43,48], recording ambient sound [43], determining swipe direc-
tion [37], and detecting nearby Bluetooth devices [56]. Finally, the processing of
various subgoals is often executed either on the phone or the server. These include
map matching [27,39,55], location matching [11,18,36], inferring new roads [55],
extracting features at a given location [27], extracting information from a pic-
ture [11,20,36], intersection classification [27], activity recognition [5,26,45], fin-
gerprinting [45,58,59], PDR [44,45], and geofencing [9]. In particular, activity
recognition [5,44,45] is usually performed to verify the prerequisites for sensing
data (e.g., the user is standing in a queue) and is therefore often performed
locally on the smartphone.
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5 Practical Guidelines

Based on the literature presented in the previous sections, best practices for
operationalizing MCS are identified, including the decisions that must be made
during the design and development of an MCS system. These decisions include
the goals to be achieved by the system as well as the choice of sensors and the
processing device to achieve these goals.

5.1 Goals, Subgoals, and Sensors

The first step in an MCS project is to consider what goals and subgoals the
application should fulfill and how they should be achieved. Many goals require
other goals or subgoals to achieve them. In addition, different sensors are required
to achieve these goals and subgoals. Some common connections between goals,
subgoals, and sensors are illustrated in Fig. 2 and are described in the following.
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Fig. 2. Typical goals, subgoals, and sensors of MCS applications and their connections.
Note that only common connections and not all possible connections are displayed.

If the location of the user is required for the application, localization must be
performed. This goal can be achieved in different ways. The standard approach
in large and open areas (e.g., a city) is location matching using GPS and, in some
cases, WiFi or cell tower signals. If the application is intended to work in indoor
environments, fingerprinting and tracking methods are preferable. In some cases,
the user’s location cannot be identified by coordinates, but by another concept,
for example, if the user is on a train. This is a very application-specific problem,
but the most commonly used techniques to address this problem are activity
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recognition (e.g., detecting the movement patterns of a particular vehicle) and
sound analysis (e.g., detecting the sound of the IC card reader when boarding
a bus [62]). Since street observation attempts to determine different road condi-
tions, the participant’s current location is always relevant for this purpose. Thus,
some form of localization is always required, and depending on the specific sub-
goals (e.g., road surface monitoring), activity recognition is often additionally
required to identify the specific road condition being monitored. Measuring air
pollution with MCS can be performed only with smartphone-internal sensors
using image analysis, but the more accurate solution is to use an external sen-
sor connected to the smartphone (e.g., via Bluetooth). In this way, even more
detailed information about air pollution can be collected, such as what types
of substances pollute the air and to what extent. This measurement is usually
always coupled with the location of the sensed air pollution, so in addition local-
ization is required. Map generation also requires some form of localization to infer
the coordinates of the objects or events being mapped. Typical applications are
WiFi/cellular coverage maps of cities, maps containing information generated
through street observation, air pollution, or reconstructing a floor plan. Activity
recognition, image analysis, and sound analysis are most often used as utility
functions to support another goal or subgoal of the application. Finally, if the
main purpose of the application is data collection, the methods to achieve this
goal depend on the data to be collected. For example, any combination of sensors
can be recorded or a questionnaire can be conducted.

5.2 Processing Device

Another important consideration when designing an MCS application is the
choice of the processing device. In other words, it must be decided whether the
application will perform computations locally (i.e., on the smartphone) or on the
server. This decision can be made for the entire application as a whole, but in
most cases, it makes more sense to make this decision for each component of the
application separately. The reason for this is that some components may have,
for example, less security-relevant data or only some components have to deliver
their results in real time. The most common aspects that are crucial for this
decision are illustrated in Fig. 3 and explained in more detail in the following.

For each component of the MCS application, the first and probably most
important aspect to consider is whether the component is intended to operate in
(near) real time or whether it is not subject to any time constraints. If the results
of the component are not time-sensitive, this aspect can be ignored. However, if
the component is to evaluate and/or present the results to the user in (near) real
time, the data must either be processed locally on the smartphone or a constant
network connection is required (i.e., no opportunistic upload when connected to
hotspots is possible). Most MCS applications are not time-sensitive or have only
some time-sensitive parts, which means that only these parts of the application
need special consideration when specifying the processing device. The second
aspect to consider is whether it is feasible to run the components of the applica-
tion locally at all. Components that only use the local data can easily run locally.
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Fig. 3. Decision diagram for deciding on the processing device of a component of an
MCS application.

However, components that require data from multiple devices/users (e.g., clus-
tering GPS locations of multiple users) would need to download the remaining
data from the server, while still uploading their own data for the other users
to use. In most cases, it makes more sense to let the server perform this type
of processing and download only the processing results from the server. If the
local feasibility is generally given, privacy, resource consumption, and network
requirements of the component should be considered. With respect to privacy,
the more data a user uploads to the servers, the more privacy issues may arise.
By performing as many computations as possible locally on the smartphone, the
amount of potentially sensitive raw data uploaded can be reduced, thus avoid-
ing privacy issues. For example, aggregations of raw data per time period can
be performed directly on the smartphone, and only the aggregated data can be
uploaded. Resource and power consumption are another aspect worth consider-
ing, also in terms of usability. Users will not be content with the application if
the entire computational resources of their mobile device are occupied by the
application and the battery life of their device is noticeably shortened by using
the application. Since time-consuming computations can noticeably affect the
battery life [12], it is preferable for such components to upload the data to the
server and perform these computations there. Another aspect to consider is the
network requirements. Due to the variable network coverage and mobility of
users in MCS, a stable Internet connection cannot be guaranteed. In addition,
most users will not have an unlimited amount of mobile network data. If the
data should be able to be uploaded from anywhere possible, it is preferable to
compress the data locally for further computations. For example, classification
tasks where multiple data types are used as input and the result is only a class
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label can be performed locally to reduce the transferred data. Another option is
to cache the collected data on the mobile device and opportunistically upload it
when the device is connected to a WiFi hotspot. This approach circumvents the
problem of mobile data usage and network connectivity for the participant, but
does not allow real-time results.

6 Discussion

Overall, according to our analysis, urban sensing is the largest (44%) applica-
tion area of MCS. The second largest area is social management, public safety,
and healthcare (26%), followed by environmental monitoring (16%) and indoor
localization (14%). In terms of the goals that MCS application pursue, localiza-
tion is by far the most common (87%) goal. Activity recognition (23%), map
generation (22%), street observation (20%), and image analysis (19%) are other
commonly used goals in MCS. Depending on the specific application scenario,
different sensors are used to achieve these goals. For example, GPS, WiFi, and
cell towers are commonly used for outdoor localization, while WiFi, magne-
tometer, accelerometer, magnetometer, and gyroscope can be used for indoor
localization. We propose that system designers of MCS applications explicitly
define the goals and subgoals that the application should pursue and select the
sensors and approaches that are best suited for these purposes and, in the opti-
mal case, have been proven in the literature. The practical guidelines in Sect. 5.1
can be used to support this process. Only half (50%) of the analyzed MCS
applications perform pre-processing locally on the mobile device (e.g., smart-
phone) before uploading the collected data to a server. We argue that for each
component of the MCS application, separate consideration should be given to
whether local pre-processing is feasible and reasonable, carefully balancing time
constraints and resource consumption on the one hand, and privacy and network
requirements on the other. This should be considered especially in light of the
fact that most MCS applications have no time constraints (51%) or only some
time-sensitive components (21%). However, some application scenarios, such as
health monitoring and disaster management, are time-sensitive and therefore
need to relay the collected information as quickly as possible, avoiding addi-
tional processing steps and prioritizing timeliness over resource consumption or
network requirements. The decision diagram in Sect. 5.2 can be used to support
the decision on the processing device for a particular component of an MCS
application.

7 Conclusion

Mobile crowdsensing is a strategy that capitalizes on the current capabilities and
prevalence of smartphones. From a technical point of view, many challenges have
been identified and solutions presented that are promising so far. For example,
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incentive mechanisms and data quality are identified as challenges in the liter-
ature. Although the research field is not young, there are still too few funda-
mental considerations (e.g., in the form of literature reviews) or guidelines on
how MCS systems can be designed. Therefore, using the existing literature, we
examined what the goals of current approaches are, how these goals are achieved,
and what guidelines for developers and researchers can be derived based on the
widely used PRISMA guidelines. We have shown that localization is the most
important goal of current approaches, followed by activity recognition and map
generation. Nevertheless, we see the opportunities, for example in healthcare,
much broader than MCS is operationalized so far. Despite the very focused
goals currently being pursued with MCS, we were able to gain new insights for
the work at hand based on the defined research questions. On the one hand, we
were able to derive technical results, such as guidelines for decisions on sensors,
processing devices, and time constraints. On the other hand, it should be noted
that this systematic literature review using major academic databases resulted
in only 117 papers that provided enough technical details to be included, despite
the long history since the introduction of the technology. The presumption is,
and the COVID-19 pandemic has made it clear, that we need the wisdom of
the crowd. Technical operationalization certainly lags behind the opportunities,
as the present study shows. With the extracted practical guidelines, we hope to
have taken another step towards dissemination of MCS and its potential.
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