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Abstract. Nowadays, connected vehicles equipped with advanced com-
puting and communication capabilities are increasingly viewed as mobile
computing platforms capable of offering various in-vehicle services,
including but not limited to autonomous driving, collision avoidance,
and parking assistance. However, providing these time-sensitive ser-
vices requires the fusion of multi-task processing results from multi-
ple sensors in connected vehicles, which poses a significant challenge to
designing an effective task scheduling strategy that can minimize ser-
vice requests’ completion time and reduce vehicles’ energy consump-
tion. In this paper, a multi-agent reinforcement learning-based collab-
orative multi-task scheduling method is proposed to achieve a joint opti-
mization on completion time and energy consumption. Firstly, the rein-
forcement learning-based scheduling method can allocate multiple tasks
dynamically according to the dynamic-changing environment. Then, a
cloud-edge-end collaboration scheme is designed to complete the tasks
efficiently. Furthermore, the transmission power can be adjusted based
on the position and mobility of vehicles to reduce energy consumption.
The experimental results demonstrate that the designed task schedul-
ing method outperforms benchmark methods in terms of comprehensive
performance.

Keywords: Multi-agent reinforcement learning · Vehicular edge
computing · Multi-task scheduling · Cloud-edge-end collaboration
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1 Introduction

Advancements in computing technologies and the widespread implementation of
communication infrastructure have led to significant progress in the field of con-
nected vehicles [1]. Connected vehicles are equipped with technology that enables
communication with other vehicles, base stations, and the Internet, making them
a rapidly evolving area. In addition to their traditional transportation role, con-
nected vehicles are emerging as a mobile computing platform that offers a broad
range of services to enhance safety, efficiency, and convenience for drivers and
passengers. These services include navigation, entertainment, safety services, and
so on [9].

The integration of task processing results from various onboard sensors is
crucial for many in-vehicle services. Multi-task fusion, which involves combining
data from cameras, Light Detection and Ranging (LiDAR), radar, ultrasonic
sensors, and other sources, can provide a comprehensive understanding of the
environment around the vehicle [7]. For instance, Advanced Driver Assistance
Systems (ADAS) can utilize these sensors to enhance driver safety and offer
additional assistance in driving, including adaptive cruise control, lane departure
warning, and blind spot monitoring.

For these multiple sensors-supported services, completion time and energy
consumption are both critical factors for guaranteeing the Quality of Service
(QoS). Multi-task fusion requires processing large amounts of data from multi-
ple sensors in real-time, and any delays in this process could lead to accidents
or other safety issues. Additionally, energy consumption is an important con-
sideration for autonomous vehicles, as they rely on a variety of sensors and
computing systems that require significant amounts of energy. In this context,
task scheduling is critical for connected vehicles. It involves allocating computing
resources and offloading tasks. Effective task scheduling can help to improve the
performance of connected vehicles by optimizing resource allocation and reduc-
ing latency. By prioritizing critical tasks and allocating computing resources
based on their processing requirements, task scheduling can ensure that the ser-
vices are delivered with minimal delay and maximum efficiency. However, task
scheduling and resource allocation can be challenging due to the dynamic nature
of vehicular environments.

In order to achieve an efficient task scheduling, vehicular edge computing
(VEC) has been proposed and implemented [10]. VEC utilizes edge computing
technology in connected vehicles to perform processing and storage closer to
the data source, reducing latency and improving real-time response. Many task
scheduling methods have been proposed for VEC in existing studies: In [16], a
Genetic Algorithm-based collaborative task offloading model was formulated to
offload the tasks to the base station. In [2], a Particle Swarm Optimization-based
task scheduling method was proposed to address the problem of task offloading
due to vehicle movements and limited edge coverage. These heuristic algorithms
are rule-based and can be used to allocate tasks based on predefined rules, but
they may not be able to handle complex and dynamic allocation problems that
require more flexible and adaptive solutions. Recently, reinforcement learning
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was used to optimize the allocation of tasks by modeling the allocation problem
as a Markov decision process (MDP) and training the agent to make optimal task
scheduling decisions [6]. However, little research has focused on the simultaneous
scheduling of multiple tasks generated from one vehicle and joint optimization
of completion time and energy consumption.

In order to address the aforementioned issues, a collaborative multi-task
scheduling method is proposed that employs a Multi-agent Reinforcement Learn-
ing method and cloud-edge-end collaboration architecture. Multi-agent reinforce-
ment learning algorithms can learn from experience and adapt to changes in the
environment or task requirements, providing a more flexible and adaptive solu-
tion. Among all the existing DRL algorithms, Proximal Policy Optimization
(PPO) [14] is a new innovation known for being stable and scalable. Multi-
Agent Proximal Policy Optimization (MAPPO) is a variant of the PPO algo-
rithm designed for multi-agent reinforcement learning scenarios. In addition,
cloud-edge-end collaboration provides a distributed computing architecture that
leverages the strengths of each tier of computing resources to provide efficient
task offloading and data processing in changing environmental conditions.

Specifically, the proposed multi-agent PPO algorithm-based task schedul-
ing method is utilized to dynamically assign multiple computation tasks gener-
ated from one vehicle to other computing entities in real time. These entities
include edge servers, idle vehicles, and the cloud server, and the allocation takes
into account the tasks’ characteristics, the current environmental state, and the
workload of available computing entities. Additionally, the transmission power
is adjusted according to the distances between vehicles and other computing
entities to reduce the energy consumption for vehicles.

The main contributions are summarised as follows:

(1) A scheme for joint optimization with multiple objectives has been proposed,
aiming to minimize both the completion time of service requests and the
energy consumption of vehicles.

(2) A multi-agent PPO-based task scheduling and resource allocation method
is proposed, which can dynamically allocate multiple tasks based on the
changing environment and adjust transmission power according to the dis-
tance between the current vehicle and the computing entity. In addition, it
allows vehicles to act independently and simultaneously in a decentralized
manner, which reduces the need for centralized coordination and communi-
cation. This improves scalability and reduces the complexity of multi-agent
systems.

(3) A cloud-edge-end collaboration scheme is designed, in which the vehicles
can offload tasks to other vehicles, edge servers, and the cloud server in a
collaborative way.

2 Related Work

In this section, the existing studies related to collaborative task scheduling and
resource allocation in VEC are discussed.
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In [3], a joint task offloading and resource allocation scheme for Multi-access
Edge Computing scenarios was proposed. This scheme employs parked and mov-
ing vehicles as resources to enhance task processing performance and reduce the
workload of edge servers. In [5], a joint secure offloading and resource alloca-
tion scheme was proposed for VEC networks, utilizing physical layer security
and spectrum sharing architecture to improve secrecy performance and resource
efficiency, with the aim of minimizing system processing delay. These studies
commonly focused on transmission and computation resource allocation but lit-
tle research focuses on the adjustment of transmission power. The power con-
sumption of the wireless communication system is directly influenced by the
transmission power, potentially affecting the battery life of connected vehicles
[11].

In [18], a non-orthogonal multiple access based architecture for VEC was
proposed, where various edge nodes cooperate to process tasks in real-time. In [4],
a collaboration scheme between mobile edge computing and cloud computing is
presented to process tasks in Internet of Vehicles (IoV), and a deep reinforcement
learning technique is introduced to jointly optimize computation offloading and
resource allocation for minimizing the system cost of processing tasks subject
to constraints. These studies can effectively offload tasks to the edge server in a
collaborative way. However, little research focuses on cooperative task processing
among vehicles based on vehicle-to-vehicle (V2V) communications.

In [17], a mobile edge computing-enabled vehicular network with aerial-
terrestrial connectivity for computation offloading and network access was
designed, with the objective of minimizing the total computation and communi-
cation overhead, solved through a decentralized value-iteration based reinforce-
ment learning approach. In [8], a collaborative computing framework for VEC
was proposed to optimize task and resource scheduling for distributed resources
in vehicles, edge servers, and the cloud, using an asynchronous deep reinforce-
ment algorithm to maximize the system utility. These studies have focused on
task scheduling in a dynamic environment but did not consider the simultaneous
offloading of multiple tasks from one vehicle, which is a more complex issue that
requires optimization in the current VEC scenario.

In order to address the above-mentioned problem, a multi-agent reinforce-
ment learning-based multi-task simultaneous scheduling method is proposed in
this paper. With the dynamic adjustment of transmission power and collabora-
tion of computing entities, vehicular energy consumption and request completion
time can be optimized jointly.

3 System Model and Problem Definition

In this section, the system model of VEC scenario is illustrated and then the
optimization target is formulated.
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3.1 Network Model

Figure 1 illustrates the VEC system. The three-tier VEC system is a hierarchical
architecture comprising vehicles, edge servers, and a cloud server, each playing a
distinct role in data processing and service delivery. At the bottom tier, vehicles
act as the local computing nodes, equipped with onboard sensors and processing
capabilities for immediate data analysis. The middle tier consists of edge servers
strategically positioned within the vehicular network, serving as intermediate
processing hubs. The top tier involves a central cloud server that acts as a
centralized resource pool, offering extensive computational power and storage
capacity. The cloud server supports complex and resource-intensive applications,
allowing for scalable and efficient computing solutions across the entire vehicular
network. This three-tier structure optimally balances computing resources and
response times, ensuring a seamless and responsive VEC environment.

Cloud 
server

Edge server V2V 
communica�on

V2E 
communica�on

E2C 
communica�on

Task Vehicle

Service Vehicle

Computa�on and 
bandwidth resource

Task scheduling

Resource 
alloca�on

Vehicles

Cloud 

Edge layer

Fig. 1. System architecture

3.2 Mobility Model

Due to the perpetual movement and varying speeds, the positions of vehicles
and the distances between them are in constant flux. This dynamic scenario
affects the connectivity among vehicles and the choice of the computing entities
to which tasks are offloaded [12]. Consequently, mobility emerges as a crucial
factor that necessitates consideration in this investigation. In this study, it is
assumed that vehicles are in motion on a highway, a standard two-way road.

For each vehicle, coordinate (x(τ), y(τ)) is used to denote the location at
time τ on a 2D map. Thus, the distance between two vehicles i and j can be
calculated by (1):

di,j(τ) =
√

(xi(τ) − xj(τ))2 + ((yi(τ) − yj(τ))2 (1)
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Similarly, the distance di,r(τ) between the vehicle i and the edge server r can be
calculated by (2):

di,r(τ) =
√

(xi(τ) − xr(τ))2 + ((yi(τ) − yr(τ))2 (2)

3.3 Communication Model

In this study, we dynamically adjust the transmission power over time, tak-
ing into account the distances between computing entities. This adjustment
directly influences the power consumption of the wireless communication system,
which, in turn, can impact the battery life of the connected vehicles. Increasing
the transmission power extends the communication range, enabling vehicles to
communicate over greater distances. However, this extension comes at a cost -
higher power consumption, leading to faster battery drain and a reduction in
the vehicle’s driving range and overall performance. Consequently, determining
an optimal transmission power becomes crucial to ensure reliable and efficient
communication among connected vehicles.

V2V Data Transmission Rate. The data transmission rate, often measured
in bits per second (bps) or a similar unit, is influenced by the quality of the com-
munication channel. A higher Signal-to-Noise Ratio (SNR) allows for a higher
data transmission rate because the system can reliably transmit more bits with-
out errors. Conversely, a lower SNR may limit the achievable data transmission
rate due to the increased likelihood of errors and the need for error-correction
mechanisms, which can reduce the effective data rate.

Firstly, the SNR between the vehicles i and j can be calculated by (3):

SNRi,j(τ) =
pi,j(τ) · Gi,j(τ)

ξi,j(τ) · di,j(τ) · σ2
(3)

where pi,j(τ) denotes the transmission power when transmitting tasks from vehi-
cle i to vehicle j, Gi,j(τ) denotes the channel gain, ξi,j(τ) denotes the path loss,
σ2 denotes the white Gaussian noise, and di,j(τ) denotes the distance between
two vehicles.

Therefore, the data transmission rate Ri,j between vehicles i and j can be
calculated by (4):

Ri,j(τ) = bi,j(τ) log2 (1 + SNRi,j(τ)) (4)

where bi,j(τ) represents the allocated bandwidth resource between vehicle i and
vehicle j.

V2E Data Transmission Rate. The V2E communication can be significantly
influenced by interference. Interference refers to unwanted signals or noise that
disrupt the intended transmission between communication devices. It can lead
to degraded signal quality, increased error rates, and reduced data transmission
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rates. In wireless communication systems, interference from other devices, envi-
ronmental factors, or overlapping signals can adversely affect the reliability and
performance of the communication link. Managing and mitigating interference is
crucial to maintaining clear and effective communication in vehicular networks.
Thus, the interference noise Ii,r(τ) can be calculated by (5):

Ii,r(τ) = (Nr(τ) − 1) · pi,r(τ) · gr (5)

where (Nr(τ) − 1) denotes the number of vehicles connecting to the edge server
r (except the vehicle i itself), pi,r(τ) denotes the allocated transmission power
to the vehicle i, and gr denotes the channel gain.

Then, according to the calculated interference noise, the V2E data transmis-
sion rate can be calculated by (6):

Ri,r(τ) = ηi · Br · log2 (1 +
pi,r(τ)gr

Ii,r(τ) + σ2
) (6)

where Br denotes the total available bandwidth of edge server r, ηi denotes the
proportion of the bandwidth allocated to vehicle i.

E2C Data Transmission Rate. Similarly, the interference noise Ir,cs(τ) can
be calculated by (7):

Ir,cs(τ) =
∑

s �=r,s∈S

ps(τ) · gr(τ) (7)

Then, according to the calculated interference noise, the E2C data transmis-
sion rate can be calculated by (8):

Rr,cs(τ) = Br,cs · log2 (1 +
pr(τ)gr(τ)

Ir,cs(τ) + σ2
) (8)

3.4 Computation Model

Task Scheduling. Firstly, the computation tasks are generated by various sen-
sors mounted on the vehicle. Then, the tasks are combined into a task process-
ing request and forwarded to the Runtime Optimizer, which can generate task
scheduling decisions based on the proposed scheduling method. Following that,
the tasks are assigned to multiple computing entities according to the scheduling
decision. Finally, the computation results are fused together and then fed back.

In this work, the number of vehicles and edge servers can be denoted by
the set {1, 2, · · · , v} and set {1, 2, · · · , s}, respectively. Each vehicle generates
service requests continuously, with K computation tasks in each request. For
each task, the scheduling direction can be denoted by α, where α ∈ {0, 1, 2, 3},
α = 0 denotes that the task is offloaded to the server, α = 1 denotes that the
task is allocated to another vehicle, α = 2 denotes that the task is executed
locally, α = 3 denotes that the task is processed in the cloud. In addition, the
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property of each task can be donated by a tuple 〈C,S,D〉, where C represents
the required CPU cycles to complete the task, S denotes the data size, and D
represents the maximal processing time of the computing task.

After task scheduling, the tasks in the vehicle v at the moment can be rep-
resented by the set Lv = {l1, l2, . . . , lns}, Lv involves the local tasks gener-
ated by the vehicle v itself and the scheduled tasks offloaded from other vehi-
cles. Similarly, the tasks offloaded to the edge server s can be denoted by set
Gs = {g1, g2, . . . , gms}.

Local Computing. For local computing, The task completion time TL
v,k can

be calculated according to (9):

TL
v,k = Tv,lns

+
Cv,k

fv
(9)

The energy consumption EL
v,k can be calculated according to (10):

EL
v,k = ξ · (fv)γ · Cv,k (10)

where Tv,lns
denotes the expected completion time of the tasks in the processing

queue, lns denotes the nsth task at vehicle v, fv represents the computing power
of the vehicle v, which is defined as the number of CPU cycles executed every
second. ξ = 10−11 and γ = 2 represent the power consumption coefficients, which
are constants.

Edge Computing. Edge computing serves as an extension to local computing,
allowing vehicles to offload and process data at edge servers, enhancing computa-
tional capabilities and enabling real-time, resource-efficient decision-making. For
the offloaded task k, the execution time TO

v,k is comprised of task transmission
time TO,trans

v,k and task execution time TO,exe
v,k :

TO
v,k = TO,trans

v,k + TO,exe
v,k (11)

In (11), the task transmission time TO,trans
v,k can be calculated by:

TO,trans
v,k =

{
TV 2V,trans

j,lns
+ Sv,k

Rv,j
, αv,k = 1

TV 2E,trans
r,gms

+ Sv,k

Rv,s
, αv,k = 0

(12)

where TV 2V,trans
j,lns

and TV 2E,trans
s,gms

represent the transmission completion time of
the preceding task at vehicle j and edge server s, respectively. lns and gms repre-
sent the index of the preceding task at vehicle j and edge server s, respectively.

The task execution time TV 2E,exe
v,k is defined by:

TO,exe
v,k =

{
TV 2V,exe

j,lns
+ Cv,k

fj
, αv,k = 1

TV 2E,exe
s,gms

+ Cv,k

fs
, αv,k = 0

(13)
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where TV 2V,exe
j,lns

and TV 2E,exe
s,gms

represent the completion time of the preceding
task at vehicle j and edge server s, respectively, lns and gms represent the index
of the preceding task.

In addition to the task completion time, the energy consumption of the task
computation can be calculated by:

EO
v,k =

{
pv · Sv,k

Rv,j
+ ξ · (fj)γ · Cv,k, αv,k = 1

pv · Sv,k

Rv,s
, αv,k = 0

(14)

where pv is the transmission power of vehicle v, representing the amount of data
transmitted per second.

Cloud Computing. Cloud computing functions as an extension to edge com-
puting, providing additional computational resources and storage capabilities for
time-tolerant and computation-intensive tasks, enabling scalable processing and
storage solutions for vehicular applications. This hierarchical architecture allows
for a seamless integration of local, edge, and cloud resources to meet the diverse
computing needs in vehicular environments. The total execution time of task k
is expressed by:

TCS
v,k = TV 2E,trans

v,k + TE2C,trans
v,k + TCS,exe

v,k (15)

where TV 2E,trans
v,k and TE2C,trans

v,k represent the task transmission time from vehi-
cle v to the edge server and from the edge server to the cloud server, respectively,
TCS,exe

v,k represents the task processing time on the cloud server.
In (15), the task transmission time TE2C,trans

v,k can be calculated by:

TE2C,trans
v,k = TE2C,trans

cs,hls
+

Sv,k

Rr,cs
(16)

where TE2C,trans
cs,hls

represents the transmission completion time of the preceding
task at cloud server cs.

The task execution time can be calculated by:

TE2C,exe
v,k = TE2C,exe

cs,hls
+

Cv,k

fs
(17)

where TE2C,exe
cs,hls

represents the completion time of the preceding task at the cloud
server cs.

In the designed system model, the following assumptions were made to sim-
plify the model: (1) The moving of vehicles is disregarded during the task offload-
ing and results feedback. (2) The feedback time is neglected due to the small
size of computed results [17].
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3.5 Problem Formulation

The objective function serves as a quantifiable measure of performance for the
proposed solution. The formulation of the objective function is a critical step in
defining the problem and guiding the research towards finding a solution that
aligns with the goals of the study. In this study, the primary objective of the
designed task scheduling method is to jointly minimize the request completion
time T and overall energy consumption E for multi-task allocation. Thus, the
formulation of the objective function is expressed in (18):

obj :min {ω1 · T + ω2 · E}
T = max {TL1 , . . . , TLV

, . . . , TE1 , . . . , TES
, . . . , TCS}

E =
V∑

v=1

K∑
k=1

Ev,k

(18)

where ω1 and ω2 are weight factors, TLV
and TES

denote the completion time of
all tasks within the vehicle V and the edge server S, respectively. TCS denotes
the completion time of the tasks that are allocated to the cloud server. Ev,k

represents the consumed energy required to complete the task k generated by
vehicle v.

Environment

Task_1 Task_K

Runtime
Optimizer

Service request

Fused
results

Scheduling decision

cloud

Computing entities

Policy 
network 

Value 
network

Optimizer

Policy 
network

Value 
network

Optimizer

Policy 
network

Value 
network

Optimizer

Agent 1 Agent 2 Agent V

Fig. 2. Multi-agent reinforcement learning-based task scheduling procedure
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4 System Design

In this section, the proposed PPO-based scheduling method is introduced.

4.1 Multi-agent Reinforcement Learning

Multi-agent reinforcement learning is a sub-field of reinforcement learning that
involves multiple agents interacting with each other in a shared environment
to achieve a common goal. In the context of VEC, multi-agent reinforcement
learning can be used to coordinate the allocation of computing resources and
the scheduling of tasks across multiple edge servers or vehicles.

In this work, as shown in Fig. 2, each vehicle can act as an agent v, which
interacts with the environment and determines its task scheduling decisions,
including offloading or local execution. Firstly, at each step t, the environment
state sv

t provides an observation to the policy (actor) network of each agent v.
Secondly, the policy network generates the scheduling action av

t for v based on the
observation, which is then executed in the environment. Thirdly, the environment
provides reward rv

t+1 and new state sv
t+1 for each agent based on the actions taken

by the agents. The value (critic) network of the agent v estimates the value of
each state, which is used to calculate the advantages for policy updates. The
optimization step updates the policy networks using backpropagation based on
the advantages and the losses. The updated policies are then used to generate
new trajectories, which are used for exploration and further training.

Overall, MAPPO involves multiple agents that interact with each other in a
decentralized manner. The centralized training approach enables efficient learn-
ing from the collective experience of the agents, while the decentralized execution
enables robust and scalable performance in complex multi-agent environments.

4.2 States, Actions, and Reward

States. The states are the present condition of the environment in which the
agents operate. In our study, we depict states as a collection of observations
received by vehicles from the environment. These observations encompass various
aspects, such as the positions P e(t) of vehicles, the task-related information Iv

from each vehicle, the transmission overhead Mv(t) on each vehicle, and the
computation overhead Ce(t) on each computing entity. Consequently, the state
space can be expressed as:

st = {P e(t), Iv,Mv(t), Ce(t)} (19)

Actions. The actions signify the choices made by agents based on the observed
state of the environment. In this study, these actions encompass decisions related
to offloading and the assigned transmission power for each vehicle.
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Av
t =

{
a1
1, . . . , a

K
1 , . . . , ak

i , . . . , aK
V

}
,

ak
i =

{
αk

i , pk
i

}

∀i ∈ {1, . . . , V },∀k ∈ {1, . . . , K}, αi,k ∈ {0, 1, 2, 3}
(20)

where ak
i represents the decisions made for task k generated by vehicle v, includ-

ing the offloading decision αk
i and the allocated transmission power pk

i .

Reward. The rewards denote the responses that agents receive from the envi-
ronment in accordance with their actions. They are generally crafted to incen-
tivize agents toward actions that yield favorable outcomes, such as reducing
request completion time and energy consumption.

According to the proposed objective function, the reward function is designed
as:

r = α × exptime

maxexptime

+ β × expenergy

maxexpenergy

(21)

where exptime and expenergy represent the estimated completion time and energy
consumption of the service request, respectively, maxexptime

and maxexpenergy

represents the maximum exptime and expenergy the agent had reached. α and β
are weight factors.

4.3 Deep Reinforcement Learning Algorithm

In this work, the Proximal Policy Optimisation (PPO) [14] is employed as the
DRL agent training algorithm. It is a policy gradient-based actor-critic algo-
rithm, which uses Stochastic Gradient Ascend (SGA) to update both actor (also
namely policy) network π and critic (also namely value) network ϕ. The actor
network predicts the next action and returns to the environment, while the
critic network evaluates the performance of the actor network. Both networks
are updated by the same loss function L = Lclip +LV +Lentropy, which consists
of three parts: the clipped surrogate loss Lclip, the value loss LV and the entropy
loss Lentropy.

In order to ensure that the policy changes are sufficiently conservative to
maintain stability and avoid large deviations from the current policy, the surro-
gate objective function is utilized to limit the change in policy:

Lclip = E[min(ρ(s, a)Aπθold (s, a), clip(ρ(s, a), 1 − ε, 1 + ε)Aπθold (s, a))] (22)

where the clip function clamps out-of-range values of ρ(s, a) back to the con-
straint (1− ε, 1+ ε) instead of using KL divergence in TRPO, ρ(s, a) = πθ(s,a)

πθold (s,a)

is the importance sampling weight between the old πθold(s, a) and new policy
πθ(s, a). Generalised Advantage Estimation (GAE) [13] is utilized to estimate
the expectation of the advantage function Aπθold (s, a)):

Ât(s, a) = δt + (γλ)δt+1 + ... + (γλ)N−t+1δt+1, (23)
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where δt is represented by rt + γVθv
(st+1) − Vθv

(st), γλ is the discount factor of
future rewards to control the variance of the advantage function.

The prediction of values V indicates the ability to predict accumulated
rewards. Therefore, it should be close to the advantage at a specific pair of
the state s and action a, which formulates the equation of the value loss LV :

LV = Es,a[Aϕ(s, a)] (24)

where we use the Mean Squared Error (MSE) to estimate the expectation and
minimise the loss.

Lastly, the entropy loss Lentropy is introduced to encourage exploration dur-
ing the learning process, which is added as a regularisation term. This is calcu-
lated by the negative entropy of the policy distribution, involving both contin-
uous and discrete actions. As a result, the DRL agent may be less sensitive to
local optimal solutions, which can lead to a more robust policy.

5 Experiment

5.1 Experimental Setting

Training and Test Environments. In the experimental phase, the multi-
agent reinforcement learning-based task scheduling models are trained on a
server equipped with an Intel Xeon W-22555 processor and an NVIDIA RTX
3070 GPU. Subsequently, the experiments are performed on a Windows 11 PC
featuring an Intel i7-13700H processor and 16 GB DRAM. The detailed experi-
mental parameters are outlined in Table 1.

Table 1. Experimental parameter setting

Parameters Value Parameters Value

Number of vehicles 4–10 Data size 2–10 Mb

Number of edge servers 8 Bandwidth of edge server 100 MHz

Number of tasks 3–7 Speed of vehicles ≈ 15 m/s

Required CPU cycles of the tasks 10–20 cpu cycles Transmission power of vehicles 1 dBm

Computation power of the cloud 4 cpu cycles/s Execution power of vehicles 3-4 dBm

Computation power of edge servers 2 cpu cycles/s Computation power of vehicles 1 cpu cycles/s

5.2 Benchmark Methods

In the experiments, the proposed PPO-based scheduling method is compared
with the following methods:

(1) Deep Deterministic Policy Gradient (DDPG) [15] The task
scheduling method based on DDPG designed in [15] primarily focuses on opti-
mizing the request completion time. (2) Random Scheduling (RS) The RS
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method makes task scheduling decisions randomly, by which the tasks are exe-
cuted locally or distributed to edge servers and other vehicles randomly. (3)
Offloading-only Scheduling (OS) The OS method allocates all tasks exclu-
sively to edge servers or other vehicles. (4) Local-only Scheduling (LS) Dif-
ferent from the OS method, the LS method involves the execution of all tasks
locally.

5.3 Performance Evaluation

Convergence. The convergence of the reward in multi-agent reinforcement
learning refers to the process by which the rewards earned by the agents over
time become more stable and consistent. Achieving convergence is an important
goal in multi-agent reinforcement learning as it indicates that the agents have
reached a level of performance that is close to optimal and can be used to make
decisions in the real world. In this work, convergence is essential to ensure that
the learning process terminates and the algorithm can produce a policy that
performs well in making task scheduling decisions in the given environment.

The rewards are shown in Fig. 3a and Fig. 3b, where x coordinate denotes the
current training episode and y coordinate denotes the reward obtained from the
scheduling decision. As can be seen from the figures, the proposed PPO-based
method converges fast under different numbers of vehicles and tasks.

Fig. 3. Convergence property

Request Completion Time. The service request completion time in vehicular
edge computing refers to the time taken to complete a service request from
the time it is generated by the vehicle until the result is feedback to the user.
It is an important performance metric that determines the quality of service
(QoS) in vehicular edge computing. The service request completion time can be
influenced by several factors, mainly including the task processing time and the
transmission delay between the vehicles and edge servers.

Figure 4a shows that the PPO method achieves shorter request completion
times compared to other methods, for different numbers of vehicles. Figure 4b
illustrates that as the number of tasks within a request increases, the completion
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Fig. 4. Comparison of the request completion time

time also increases, however, the PPO-based scheduling method still achieves
the shortest request completion time. In Fig. 4c, the request completion time for
each vehicle is presented, and it can be observed that the PPO-based schedul-
ing method results in similar completion times for requests generated from all
vehicles.

Overall Energy Consumption. Overall energy consumption refers to the
total electrical energy required to complete all the tasks in one request, includ-
ing the energy consumption on task execution and data transmission involved
in delivering service requests. Figure 5 compares the overall energy consumption
under different conditions. As shown in Fig. 5a and Fig. 5b, vehicles have less
energy consumption when all the tasks are offloaded based on the offloading-
only method. The energy consumption based on the PPO method is similar
to the DDPG method but lower than the local-only method and random-based
method. Because all the tasks are executed locally based on a local-only schedul-
ing method can result in significantly higher energy consumption compared to
offloading them rationally.

Fig. 5. Comparison of the overall energy consumption
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Fig. 6. Energy consumption on each vehicle

Energy Consumption on Each Vehicle. Balanced energy consumption can
prevent overloading of a single vehicle. In a multi-vehicle system, if one vehicle
consumes significantly more energy than others, it can become overloaded, caus-
ing delays in service delivery and reduced system performance. Figure 6 compares
the energy consumed by each vehicle when processing tasks that are offloaded
to it and generated by itself. When there are four vehicles, v4 served as the Ser-
vice Vehicle (SeV), which does not generate task processing requests. Similarly,
v3 and v6 are SeVs when there are six and eight vehicles. v4 and v8 are SeVs
when there are ten vehicles. Other vehicles are called Task Vehicles, which can
generate task processing requests. As shown in Fig. 6, the energy consumption
on each vehicle, no matter the SeV or TaV, is almost the same when the tasks
are scheduled based on the PPO method. In contrast, the energy consumption
is not distributed equally among all the vehicles when using the DDPG method
and random scheduling.

Task Completion Time on Each Computing Entity. The task comple-
tion time on each entity refers to the completion time of all the tasks that are
allocated to the computing entity. Figure 7 illustrates a comparison of the task
completion time among all computing entities, including vehicles, edge servers,
and the cloud server. Based on the PPO scheduling method, the tasks allocated
to all the entities are completed at almost the same time. However, based on
the DDPG scheduling method, the completion time of the cloud server is much
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Fig. 7. Task completion time on each computing entity

higher than other computing entities when the number of vehicles is small, ulti-
mately affecting the completion time of the vehicles’ service requests.

Proportion of Task Scheduling. In Fig. 8 and Fig. 9, the proportion of the
tasks that offloaded to vehicles, edge server, and the cloud server are compared.

As shown in Fig. 8a, with the number of vehicles increasing, more tasks are
executed on vehicles and the proportion of tasks offloaded to edge servers or
the cloud server decreases because the increasing number of vehicles can pro-
vide more computing resources, allowing more tasks to be executed on vehicles.
However, in Fig. 8b, there is no clear trend in the change of proportion when
scheduling tasks based on the DDPG method. In addition, the proportion of the
offloaded tasks remains constant when using a random-based scheduling method,
as shown in Fig. 8c.

As shown in Fig. 9a and Fig. 9c, the scheduling proportions of the tasks based
on the PPO-based and random-based methods are not affected by the number
of tasks in one service request. However, the PPO-based scheduling method
offloads fewer tasks to the cloud server, which efficiently alleviates the bandwidth
pressure for vehicles.

Quality of Method. As the goal of this study is to improve both the completion
time and energy consumption of requests, a metric is needed to compare the
overall performance of different methods in achieving these objectives. To this
end, the Quality of Method (QoM) is defined and used to quantify and evaluate
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Fig. 8. Proportion of task scheduling under different numbers of vehicles

Fig. 9. Proportion of task scheduling under different numbers of tasks in a request

the performance of the method in a comprehensive manner. The QoM of each
method can be calculated by:

QoMi = μ1
Tmax − Ti

Tmax − Tmin
+ μ2

Emax − Ei

Emax − Emin
(25)

where μ1 and μ2 represent the weight value of completion time and energy
consumption, respectively. Ti and Ei represent the completion time and energy
consumption of method i, respectively. In this work, we set μ1 = 2 and μ2 = 1.
As shown in Fig. 10, the QoM of the PPO-based scheduling method is much
higher than other methods no matter the number of vehicles and tasks. This
means that the proposed PPO-based scheduling method can always have a better
comprehensive performance in terms of shortening request completion time and
reducing energy consumption.

Fig. 10. Comparison of the Quality of Method
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6 Conclusion

In this work, a collaborative multi-task scheduling strategy is designed utilizing
the multi-agent Proximal Policy Optimization algorithm and cloud-edge-end col-
laboration. The proposed method allows multiple computation tasks in one ser-
vice request to be either executed locally or remotely by offloading to edge servers
and the cloud server simultaneously, which helps to decrease request comple-
tion time. Moreover, the transmission power can be dynamically adjusted based
on the distances between vehicles and other computing entities, which helps
to reduce energy consumption. The experimental results demonstrate that the
PPO-based scheduling method outperforms other methods in terms of reducing
request completion time. Additionally, it achieves balanced energy consumption
and task workload distribution among all computing entities, preventing over-
loading of a single entity. Furthermore, allocating tasks based on the PPO-based
method results in fewer tasks being offloaded to the cloud server, alleviating the
bandwidth pressure for vehicles. Finally, the comprehensive performance evalu-
ation QoM results show that the proposed method outperforms other methods.
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