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Preface

We are delighted to introduce the proceedings of the 19th European Alliance for Innova-
tion (EAI) International Conference on Collaborative Computing: Networking, Appli-
cations and Worksharing (CollaborateCom 2023). This conference brought together
researchers, developers and practitioners around the world who are interested in fully
realizing the promises of electronic collaboration from the aspects of networking, tech-
nology and systems, user interfaces and interaction paradigms, and interoperation with
application-specific components and tools.

This year’s conference accepted 72 submissions. Each submission was reviewed by
an average of 3 reviewers. The conference sessions were: Day 1 Session 1 – Collabo-
rative Computing; Session 2 – Edge Computing & Collaborative Working; Session 3 –
Blockchain Application; Session 4 – Code Search and Completion; Session 5 – Edge
Computing Scheduling and Offloading; Session 6 – Deep Learning and Application;
Session 7 – Graph Computing; Session 8 – Security and Privacy Protection; Session
9 – Processing and Recognition; Session 10 – Deep Learning and Application; Ses-
sion 11 – Onsite Session. Day 2 Session 12 – Federated Learning and Application;
Session 13 – Collaborative Working; Session 14 – Edge Computing; Session 15 – Secu-
rity and Privacy Protection; Session 16 – Prediction, Optimization and Applications.
Apart from high-quality technical paper presentations, the technical program also fea-
tured two keynote speeches that were delivered by Christos Masouros from University
College London and Michael Hübner from Brandenburgische Technische Universität
(BTU).

Coordination with the steering chair, Xinheng Wang, and steering members Song
Guo, Bo Li, Xiaofei Liao, Honghao Gao, and Ning Gu was essential for the success of
the conference. We sincerely appreciate their constant support and guidance. It was also
a great pleasure to work with such an excellent organizing committee team for their hard
work in organizing and supporting the conference. In particular, the Technical Program
Committee, led by our General Chairs Nikolaos Voros and General Co-Chairs Tasos
Dagiuklas, Xinheng Wang, and Honghao Gao, TPC Chairs Christos Antonopoulos, and
Eleni Christopoulou, and TPC Co-Chair Dimitrios Ringas completed the peer-review
process of technical papers and made a high-quality technical program. We are also
grateful to the Conference Manager, Karolina Marcinova, for her support and to all the
authors who submitted their papers to the CollaborateCom 2023 conference.

We strongly believe that CollaborateCom provides a good forum for all researchers,
developers andpractitioners to discuss all science and technology aspects that are relevant
to collaborative computing. We also expect that the future CollaborateCom conferences
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will be as successful and stimulating, as indicated by the contributions presented in this
volume.

Honghao Gao
Xinheng Wang
Nikolaos Voros
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Multi-agent Reinforcement Learning
Based Collaborative Multi-task

Scheduling for Vehicular Edge Computing

Peisong Li1 , Ziren Xiao1, Xinheng Wang1(B), Kaizhu Huang2, Yi Huang3,
and Andrei Tchernykh4

1 School of Advanced Technology, Xi’an Jiaotong-Liverpool University,
Suzhou 215123, China

{peisong.li20,ziren.xiao20}@student.xjtlu.edu.cn,
xinheng.wang@xjtlu.edu.cn

2 Data Science Research Center and Division of Natural and Applied Sciences,
Duke Kunshan University, Suzhou 215316, China

kaizhu.huang@dukekunshan.edu.cn
3 Department of Electrical Engineering and Electronics, University of Liverpool,

Liverpool L69 3BX, UK
yi.huang@liverpool.ac.uk

4 CICESE Research Center, carr. Tijuana-Ensenada 3918, 22860 Ensenada,
BC, Mexico

chernykh@cicese.mx

Abstract. Nowadays, connected vehicles equipped with advanced com-
puting and communication capabilities are increasingly viewed as mobile
computing platforms capable of offering various in-vehicle services,
including but not limited to autonomous driving, collision avoidance,
and parking assistance. However, providing these time-sensitive ser-
vices requires the fusion of multi-task processing results from multi-
ple sensors in connected vehicles, which poses a significant challenge to
designing an effective task scheduling strategy that can minimize ser-
vice requests’ completion time and reduce vehicles’ energy consump-
tion. In this paper, a multi-agent reinforcement learning-based collab-
orative multi-task scheduling method is proposed to achieve a joint opti-
mization on completion time and energy consumption. Firstly, the rein-
forcement learning-based scheduling method can allocate multiple tasks
dynamically according to the dynamic-changing environment. Then, a
cloud-edge-end collaboration scheme is designed to complete the tasks
efficiently. Furthermore, the transmission power can be adjusted based
on the position and mobility of vehicles to reduce energy consumption.
The experimental results demonstrate that the designed task schedul-
ing method outperforms benchmark methods in terms of comprehensive
performance.

Keywords: Multi-agent reinforcement learning · Vehicular edge
computing · Multi-task scheduling · Cloud-edge-end collaboration
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1 Introduction

Advancements in computing technologies and the widespread implementation of
communication infrastructure have led to significant progress in the field of con-
nected vehicles [1]. Connected vehicles are equipped with technology that enables
communication with other vehicles, base stations, and the Internet, making them
a rapidly evolving area. In addition to their traditional transportation role, con-
nected vehicles are emerging as a mobile computing platform that offers a broad
range of services to enhance safety, efficiency, and convenience for drivers and
passengers. These services include navigation, entertainment, safety services, and
so on [9].

The integration of task processing results from various onboard sensors is
crucial for many in-vehicle services. Multi-task fusion, which involves combining
data from cameras, Light Detection and Ranging (LiDAR), radar, ultrasonic
sensors, and other sources, can provide a comprehensive understanding of the
environment around the vehicle [7]. For instance, Advanced Driver Assistance
Systems (ADAS) can utilize these sensors to enhance driver safety and offer
additional assistance in driving, including adaptive cruise control, lane departure
warning, and blind spot monitoring.

For these multiple sensors-supported services, completion time and energy
consumption are both critical factors for guaranteeing the Quality of Service
(QoS). Multi-task fusion requires processing large amounts of data from multi-
ple sensors in real-time, and any delays in this process could lead to accidents
or other safety issues. Additionally, energy consumption is an important con-
sideration for autonomous vehicles, as they rely on a variety of sensors and
computing systems that require significant amounts of energy. In this context,
task scheduling is critical for connected vehicles. It involves allocating computing
resources and offloading tasks. Effective task scheduling can help to improve the
performance of connected vehicles by optimizing resource allocation and reduc-
ing latency. By prioritizing critical tasks and allocating computing resources
based on their processing requirements, task scheduling can ensure that the ser-
vices are delivered with minimal delay and maximum efficiency. However, task
scheduling and resource allocation can be challenging due to the dynamic nature
of vehicular environments.

In order to achieve an efficient task scheduling, vehicular edge computing
(VEC) has been proposed and implemented [10]. VEC utilizes edge computing
technology in connected vehicles to perform processing and storage closer to
the data source, reducing latency and improving real-time response. Many task
scheduling methods have been proposed for VEC in existing studies: In [16], a
Genetic Algorithm-based collaborative task offloading model was formulated to
offload the tasks to the base station. In [2], a Particle Swarm Optimization-based
task scheduling method was proposed to address the problem of task offloading
due to vehicle movements and limited edge coverage. These heuristic algorithms
are rule-based and can be used to allocate tasks based on predefined rules, but
they may not be able to handle complex and dynamic allocation problems that
require more flexible and adaptive solutions. Recently, reinforcement learning
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was used to optimize the allocation of tasks by modeling the allocation problem
as a Markov decision process (MDP) and training the agent to make optimal task
scheduling decisions [6]. However, little research has focused on the simultaneous
scheduling of multiple tasks generated from one vehicle and joint optimization
of completion time and energy consumption.

In order to address the aforementioned issues, a collaborative multi-task
scheduling method is proposed that employs a Multi-agent Reinforcement Learn-
ing method and cloud-edge-end collaboration architecture. Multi-agent reinforce-
ment learning algorithms can learn from experience and adapt to changes in the
environment or task requirements, providing a more flexible and adaptive solu-
tion. Among all the existing DRL algorithms, Proximal Policy Optimization
(PPO) [14] is a new innovation known for being stable and scalable. Multi-
Agent Proximal Policy Optimization (MAPPO) is a variant of the PPO algo-
rithm designed for multi-agent reinforcement learning scenarios. In addition,
cloud-edge-end collaboration provides a distributed computing architecture that
leverages the strengths of each tier of computing resources to provide efficient
task offloading and data processing in changing environmental conditions.

Specifically, the proposed multi-agent PPO algorithm-based task schedul-
ing method is utilized to dynamically assign multiple computation tasks gener-
ated from one vehicle to other computing entities in real time. These entities
include edge servers, idle vehicles, and the cloud server, and the allocation takes
into account the tasks’ characteristics, the current environmental state, and the
workload of available computing entities. Additionally, the transmission power
is adjusted according to the distances between vehicles and other computing
entities to reduce the energy consumption for vehicles.

The main contributions are summarised as follows:

(1) A scheme for joint optimization with multiple objectives has been proposed,
aiming to minimize both the completion time of service requests and the
energy consumption of vehicles.

(2) A multi-agent PPO-based task scheduling and resource allocation method
is proposed, which can dynamically allocate multiple tasks based on the
changing environment and adjust transmission power according to the dis-
tance between the current vehicle and the computing entity. In addition, it
allows vehicles to act independently and simultaneously in a decentralized
manner, which reduces the need for centralized coordination and communi-
cation. This improves scalability and reduces the complexity of multi-agent
systems.

(3) A cloud-edge-end collaboration scheme is designed, in which the vehicles
can offload tasks to other vehicles, edge servers, and the cloud server in a
collaborative way.

2 Related Work

In this section, the existing studies related to collaborative task scheduling and
resource allocation in VEC are discussed.
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In [3], a joint task offloading and resource allocation scheme for Multi-access
Edge Computing scenarios was proposed. This scheme employs parked and mov-
ing vehicles as resources to enhance task processing performance and reduce the
workload of edge servers. In [5], a joint secure offloading and resource alloca-
tion scheme was proposed for VEC networks, utilizing physical layer security
and spectrum sharing architecture to improve secrecy performance and resource
efficiency, with the aim of minimizing system processing delay. These studies
commonly focused on transmission and computation resource allocation but lit-
tle research focuses on the adjustment of transmission power. The power con-
sumption of the wireless communication system is directly influenced by the
transmission power, potentially affecting the battery life of connected vehicles
[11].

In [18], a non-orthogonal multiple access based architecture for VEC was
proposed, where various edge nodes cooperate to process tasks in real-time. In [4],
a collaboration scheme between mobile edge computing and cloud computing is
presented to process tasks in Internet of Vehicles (IoV), and a deep reinforcement
learning technique is introduced to jointly optimize computation offloading and
resource allocation for minimizing the system cost of processing tasks subject
to constraints. These studies can effectively offload tasks to the edge server in a
collaborative way. However, little research focuses on cooperative task processing
among vehicles based on vehicle-to-vehicle (V2V) communications.

In [17], a mobile edge computing-enabled vehicular network with aerial-
terrestrial connectivity for computation offloading and network access was
designed, with the objective of minimizing the total computation and communi-
cation overhead, solved through a decentralized value-iteration based reinforce-
ment learning approach. In [8], a collaborative computing framework for VEC
was proposed to optimize task and resource scheduling for distributed resources
in vehicles, edge servers, and the cloud, using an asynchronous deep reinforce-
ment algorithm to maximize the system utility. These studies have focused on
task scheduling in a dynamic environment but did not consider the simultaneous
offloading of multiple tasks from one vehicle, which is a more complex issue that
requires optimization in the current VEC scenario.

In order to address the above-mentioned problem, a multi-agent reinforce-
ment learning-based multi-task simultaneous scheduling method is proposed in
this paper. With the dynamic adjustment of transmission power and collabora-
tion of computing entities, vehicular energy consumption and request completion
time can be optimized jointly.

3 System Model and Problem Definition

In this section, the system model of VEC scenario is illustrated and then the
optimization target is formulated.
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3.1 Network Model

Figure 1 illustrates the VEC system. The three-tier VEC system is a hierarchical
architecture comprising vehicles, edge servers, and a cloud server, each playing a
distinct role in data processing and service delivery. At the bottom tier, vehicles
act as the local computing nodes, equipped with onboard sensors and processing
capabilities for immediate data analysis. The middle tier consists of edge servers
strategically positioned within the vehicular network, serving as intermediate
processing hubs. The top tier involves a central cloud server that acts as a
centralized resource pool, offering extensive computational power and storage
capacity. The cloud server supports complex and resource-intensive applications,
allowing for scalable and efficient computing solutions across the entire vehicular
network. This three-tier structure optimally balances computing resources and
response times, ensuring a seamless and responsive VEC environment.

Cloud 
server

Edge server V2V 
communica�on

V2E 
communica�on

E2C 
communica�on

Task Vehicle

Service Vehicle

Computa�on and 
bandwidth resource

Task scheduling

Resource 
alloca�on

Vehicles

Cloud 

Edge layer

Fig. 1. System architecture

3.2 Mobility Model

Due to the perpetual movement and varying speeds, the positions of vehicles
and the distances between them are in constant flux. This dynamic scenario
affects the connectivity among vehicles and the choice of the computing entities
to which tasks are offloaded [12]. Consequently, mobility emerges as a crucial
factor that necessitates consideration in this investigation. In this study, it is
assumed that vehicles are in motion on a highway, a standard two-way road.

For each vehicle, coordinate (x(τ), y(τ)) is used to denote the location at
time τ on a 2D map. Thus, the distance between two vehicles i and j can be
calculated by (1):

di,j(τ) =
√

(xi(τ) − xj(τ))2 + ((yi(τ) − yj(τ))2 (1)
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Similarly, the distance di,r(τ) between the vehicle i and the edge server r can be
calculated by (2):

di,r(τ) =
√

(xi(τ) − xr(τ))2 + ((yi(τ) − yr(τ))2 (2)

3.3 Communication Model

In this study, we dynamically adjust the transmission power over time, tak-
ing into account the distances between computing entities. This adjustment
directly influences the power consumption of the wireless communication system,
which, in turn, can impact the battery life of the connected vehicles. Increasing
the transmission power extends the communication range, enabling vehicles to
communicate over greater distances. However, this extension comes at a cost -
higher power consumption, leading to faster battery drain and a reduction in
the vehicle’s driving range and overall performance. Consequently, determining
an optimal transmission power becomes crucial to ensure reliable and efficient
communication among connected vehicles.

V2V Data Transmission Rate. The data transmission rate, often measured
in bits per second (bps) or a similar unit, is influenced by the quality of the com-
munication channel. A higher Signal-to-Noise Ratio (SNR) allows for a higher
data transmission rate because the system can reliably transmit more bits with-
out errors. Conversely, a lower SNR may limit the achievable data transmission
rate due to the increased likelihood of errors and the need for error-correction
mechanisms, which can reduce the effective data rate.

Firstly, the SNR between the vehicles i and j can be calculated by (3):

SNRi,j(τ) =
pi,j(τ) · Gi,j(τ)

ξi,j(τ) · di,j(τ) · σ2
(3)

where pi,j(τ) denotes the transmission power when transmitting tasks from vehi-
cle i to vehicle j, Gi,j(τ) denotes the channel gain, ξi,j(τ) denotes the path loss,
σ2 denotes the white Gaussian noise, and di,j(τ) denotes the distance between
two vehicles.

Therefore, the data transmission rate Ri,j between vehicles i and j can be
calculated by (4):

Ri,j(τ) = bi,j(τ) log2 (1 + SNRi,j(τ)) (4)

where bi,j(τ) represents the allocated bandwidth resource between vehicle i and
vehicle j.

V2E Data Transmission Rate. The V2E communication can be significantly
influenced by interference. Interference refers to unwanted signals or noise that
disrupt the intended transmission between communication devices. It can lead
to degraded signal quality, increased error rates, and reduced data transmission
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rates. In wireless communication systems, interference from other devices, envi-
ronmental factors, or overlapping signals can adversely affect the reliability and
performance of the communication link. Managing and mitigating interference is
crucial to maintaining clear and effective communication in vehicular networks.
Thus, the interference noise Ii,r(τ) can be calculated by (5):

Ii,r(τ) = (Nr(τ) − 1) · pi,r(τ) · gr (5)

where (Nr(τ) − 1) denotes the number of vehicles connecting to the edge server
r (except the vehicle i itself), pi,r(τ) denotes the allocated transmission power
to the vehicle i, and gr denotes the channel gain.

Then, according to the calculated interference noise, the V2E data transmis-
sion rate can be calculated by (6):

Ri,r(τ) = ηi · Br · log2 (1 +
pi,r(τ)gr

Ii,r(τ) + σ2
) (6)

where Br denotes the total available bandwidth of edge server r, ηi denotes the
proportion of the bandwidth allocated to vehicle i.

E2C Data Transmission Rate. Similarly, the interference noise Ir,cs(τ) can
be calculated by (7):

Ir,cs(τ) =
∑

s �=r,s∈S

ps(τ) · gr(τ) (7)

Then, according to the calculated interference noise, the E2C data transmis-
sion rate can be calculated by (8):

Rr,cs(τ) = Br,cs · log2 (1 +
pr(τ)gr(τ)

Ir,cs(τ) + σ2
) (8)

3.4 Computation Model

Task Scheduling. Firstly, the computation tasks are generated by various sen-
sors mounted on the vehicle. Then, the tasks are combined into a task process-
ing request and forwarded to the Runtime Optimizer, which can generate task
scheduling decisions based on the proposed scheduling method. Following that,
the tasks are assigned to multiple computing entities according to the scheduling
decision. Finally, the computation results are fused together and then fed back.

In this work, the number of vehicles and edge servers can be denoted by
the set {1, 2, · · · , v} and set {1, 2, · · · , s}, respectively. Each vehicle generates
service requests continuously, with K computation tasks in each request. For
each task, the scheduling direction can be denoted by α, where α ∈ {0, 1, 2, 3},
α = 0 denotes that the task is offloaded to the server, α = 1 denotes that the
task is allocated to another vehicle, α = 2 denotes that the task is executed
locally, α = 3 denotes that the task is processed in the cloud. In addition, the
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property of each task can be donated by a tuple 〈C,S,D〉, where C represents
the required CPU cycles to complete the task, S denotes the data size, and D
represents the maximal processing time of the computing task.

After task scheduling, the tasks in the vehicle v at the moment can be rep-
resented by the set Lv = {l1, l2, . . . , lns}, Lv involves the local tasks gener-
ated by the vehicle v itself and the scheduled tasks offloaded from other vehi-
cles. Similarly, the tasks offloaded to the edge server s can be denoted by set
Gs = {g1, g2, . . . , gms}.

Local Computing. For local computing, The task completion time TL
v,k can

be calculated according to (9):

TL
v,k = Tv,lns

+
Cv,k

fv
(9)

The energy consumption EL
v,k can be calculated according to (10):

EL
v,k = ξ · (fv)γ · Cv,k (10)

where Tv,lns
denotes the expected completion time of the tasks in the processing

queue, lns denotes the nsth task at vehicle v, fv represents the computing power
of the vehicle v, which is defined as the number of CPU cycles executed every
second. ξ = 10−11 and γ = 2 represent the power consumption coefficients, which
are constants.

Edge Computing. Edge computing serves as an extension to local computing,
allowing vehicles to offload and process data at edge servers, enhancing computa-
tional capabilities and enabling real-time, resource-efficient decision-making. For
the offloaded task k, the execution time TO

v,k is comprised of task transmission
time TO,trans

v,k and task execution time TO,exe
v,k :

TO
v,k = TO,trans

v,k + TO,exe
v,k (11)

In (11), the task transmission time TO,trans
v,k can be calculated by:

TO,trans
v,k =

{
TV 2V,trans

j,lns
+ Sv,k

Rv,j
, αv,k = 1

TV 2E,trans
r,gms

+ Sv,k

Rv,s
, αv,k = 0

(12)

where TV 2V,trans
j,lns

and TV 2E,trans
s,gms

represent the transmission completion time of
the preceding task at vehicle j and edge server s, respectively. lns and gms repre-
sent the index of the preceding task at vehicle j and edge server s, respectively.

The task execution time TV 2E,exe
v,k is defined by:

TO,exe
v,k =

{
TV 2V,exe

j,lns
+ Cv,k

fj
, αv,k = 1

TV 2E,exe
s,gms

+ Cv,k

fs
, αv,k = 0

(13)
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where TV 2V,exe
j,lns

and TV 2E,exe
s,gms

represent the completion time of the preceding
task at vehicle j and edge server s, respectively, lns and gms represent the index
of the preceding task.

In addition to the task completion time, the energy consumption of the task
computation can be calculated by:

EO
v,k =

{
pv · Sv,k

Rv,j
+ ξ · (fj)γ · Cv,k, αv,k = 1

pv · Sv,k

Rv,s
, αv,k = 0

(14)

where pv is the transmission power of vehicle v, representing the amount of data
transmitted per second.

Cloud Computing. Cloud computing functions as an extension to edge com-
puting, providing additional computational resources and storage capabilities for
time-tolerant and computation-intensive tasks, enabling scalable processing and
storage solutions for vehicular applications. This hierarchical architecture allows
for a seamless integration of local, edge, and cloud resources to meet the diverse
computing needs in vehicular environments. The total execution time of task k
is expressed by:

TCS
v,k = TV 2E,trans

v,k + TE2C,trans
v,k + TCS,exe

v,k (15)

where TV 2E,trans
v,k and TE2C,trans

v,k represent the task transmission time from vehi-
cle v to the edge server and from the edge server to the cloud server, respectively,
TCS,exe

v,k represents the task processing time on the cloud server.
In (15), the task transmission time TE2C,trans

v,k can be calculated by:

TE2C,trans
v,k = TE2C,trans

cs,hls
+

Sv,k

Rr,cs
(16)

where TE2C,trans
cs,hls

represents the transmission completion time of the preceding
task at cloud server cs.

The task execution time can be calculated by:

TE2C,exe
v,k = TE2C,exe

cs,hls
+

Cv,k

fs
(17)

where TE2C,exe
cs,hls

represents the completion time of the preceding task at the cloud
server cs.

In the designed system model, the following assumptions were made to sim-
plify the model: (1) The moving of vehicles is disregarded during the task offload-
ing and results feedback. (2) The feedback time is neglected due to the small
size of computed results [17].



12 P. Li et al.

3.5 Problem Formulation

The objective function serves as a quantifiable measure of performance for the
proposed solution. The formulation of the objective function is a critical step in
defining the problem and guiding the research towards finding a solution that
aligns with the goals of the study. In this study, the primary objective of the
designed task scheduling method is to jointly minimize the request completion
time T and overall energy consumption E for multi-task allocation. Thus, the
formulation of the objective function is expressed in (18):

obj :min {ω1 · T + ω2 · E}
T = max {TL1 , . . . , TLV

, . . . , TE1 , . . . , TES
, . . . , TCS}

E =
V∑

v=1

K∑
k=1

Ev,k

(18)

where ω1 and ω2 are weight factors, TLV
and TES

denote the completion time of
all tasks within the vehicle V and the edge server S, respectively. TCS denotes
the completion time of the tasks that are allocated to the cloud server. Ev,k

represents the consumed energy required to complete the task k generated by
vehicle v.

Environment

Task_1 Task_K

Runtime
Optimizer

Service request

Fused
results

Scheduling decision

cloud

Computing entities

Policy 
network 

Value 
network

Optimizer

Policy 
network

Value 
network

Optimizer

Policy 
network

Value 
network

Optimizer

Agent 1 Agent 2 Agent V

Fig. 2. Multi-agent reinforcement learning-based task scheduling procedure
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4 System Design

In this section, the proposed PPO-based scheduling method is introduced.

4.1 Multi-agent Reinforcement Learning

Multi-agent reinforcement learning is a sub-field of reinforcement learning that
involves multiple agents interacting with each other in a shared environment
to achieve a common goal. In the context of VEC, multi-agent reinforcement
learning can be used to coordinate the allocation of computing resources and
the scheduling of tasks across multiple edge servers or vehicles.

In this work, as shown in Fig. 2, each vehicle can act as an agent v, which
interacts with the environment and determines its task scheduling decisions,
including offloading or local execution. Firstly, at each step t, the environment
state sv

t provides an observation to the policy (actor) network of each agent v.
Secondly, the policy network generates the scheduling action av

t for v based on the
observation, which is then executed in the environment. Thirdly, the environment
provides reward rv

t+1 and new state sv
t+1 for each agent based on the actions taken

by the agents. The value (critic) network of the agent v estimates the value of
each state, which is used to calculate the advantages for policy updates. The
optimization step updates the policy networks using backpropagation based on
the advantages and the losses. The updated policies are then used to generate
new trajectories, which are used for exploration and further training.

Overall, MAPPO involves multiple agents that interact with each other in a
decentralized manner. The centralized training approach enables efficient learn-
ing from the collective experience of the agents, while the decentralized execution
enables robust and scalable performance in complex multi-agent environments.

4.2 States, Actions, and Reward

States. The states are the present condition of the environment in which the
agents operate. In our study, we depict states as a collection of observations
received by vehicles from the environment. These observations encompass various
aspects, such as the positions P e(t) of vehicles, the task-related information Iv

from each vehicle, the transmission overhead Mv(t) on each vehicle, and the
computation overhead Ce(t) on each computing entity. Consequently, the state
space can be expressed as:

st = {P e(t), Iv,Mv(t), Ce(t)} (19)

Actions. The actions signify the choices made by agents based on the observed
state of the environment. In this study, these actions encompass decisions related
to offloading and the assigned transmission power for each vehicle.
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Av
t =

{
a1
1, . . . , a

K
1 , . . . , ak

i , . . . , aK
V

}
,

ak
i =

{
αk

i , pk
i

}

∀i ∈ {1, . . . , V },∀k ∈ {1, . . . , K}, αi,k ∈ {0, 1, 2, 3}
(20)

where ak
i represents the decisions made for task k generated by vehicle v, includ-

ing the offloading decision αk
i and the allocated transmission power pk

i .

Reward. The rewards denote the responses that agents receive from the envi-
ronment in accordance with their actions. They are generally crafted to incen-
tivize agents toward actions that yield favorable outcomes, such as reducing
request completion time and energy consumption.

According to the proposed objective function, the reward function is designed
as:

r = α × exptime

maxexptime

+ β × expenergy

maxexpenergy

(21)

where exptime and expenergy represent the estimated completion time and energy
consumption of the service request, respectively, maxexptime

and maxexpenergy

represents the maximum exptime and expenergy the agent had reached. α and β
are weight factors.

4.3 Deep Reinforcement Learning Algorithm

In this work, the Proximal Policy Optimisation (PPO) [14] is employed as the
DRL agent training algorithm. It is a policy gradient-based actor-critic algo-
rithm, which uses Stochastic Gradient Ascend (SGA) to update both actor (also
namely policy) network π and critic (also namely value) network ϕ. The actor
network predicts the next action and returns to the environment, while the
critic network evaluates the performance of the actor network. Both networks
are updated by the same loss function L = Lclip +LV +Lentropy, which consists
of three parts: the clipped surrogate loss Lclip, the value loss LV and the entropy
loss Lentropy.

In order to ensure that the policy changes are sufficiently conservative to
maintain stability and avoid large deviations from the current policy, the surro-
gate objective function is utilized to limit the change in policy:

Lclip = E[min(ρ(s, a)Aπθold (s, a), clip(ρ(s, a), 1 − ε, 1 + ε)Aπθold (s, a))] (22)

where the clip function clamps out-of-range values of ρ(s, a) back to the con-
straint (1− ε, 1+ ε) instead of using KL divergence in TRPO, ρ(s, a) = πθ(s,a)

πθold (s,a)

is the importance sampling weight between the old πθold(s, a) and new policy
πθ(s, a). Generalised Advantage Estimation (GAE) [13] is utilized to estimate
the expectation of the advantage function Aπθold (s, a)):

Ât(s, a) = δt + (γλ)δt+1 + ... + (γλ)N−t+1δt+1, (23)
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where δt is represented by rt + γVθv
(st+1) − Vθv

(st), γλ is the discount factor of
future rewards to control the variance of the advantage function.

The prediction of values V indicates the ability to predict accumulated
rewards. Therefore, it should be close to the advantage at a specific pair of
the state s and action a, which formulates the equation of the value loss LV :

LV = Es,a[Aϕ(s, a)] (24)

where we use the Mean Squared Error (MSE) to estimate the expectation and
minimise the loss.

Lastly, the entropy loss Lentropy is introduced to encourage exploration dur-
ing the learning process, which is added as a regularisation term. This is calcu-
lated by the negative entropy of the policy distribution, involving both contin-
uous and discrete actions. As a result, the DRL agent may be less sensitive to
local optimal solutions, which can lead to a more robust policy.

5 Experiment

5.1 Experimental Setting

Training and Test Environments. In the experimental phase, the multi-
agent reinforcement learning-based task scheduling models are trained on a
server equipped with an Intel Xeon W-22555 processor and an NVIDIA RTX
3070 GPU. Subsequently, the experiments are performed on a Windows 11 PC
featuring an Intel i7-13700H processor and 16 GB DRAM. The detailed experi-
mental parameters are outlined in Table 1.

Table 1. Experimental parameter setting

Parameters Value Parameters Value

Number of vehicles 4–10 Data size 2–10 Mb

Number of edge servers 8 Bandwidth of edge server 100 MHz

Number of tasks 3–7 Speed of vehicles ≈ 15 m/s

Required CPU cycles of the tasks 10–20 cpu cycles Transmission power of vehicles 1 dBm

Computation power of the cloud 4 cpu cycles/s Execution power of vehicles 3-4 dBm

Computation power of edge servers 2 cpu cycles/s Computation power of vehicles 1 cpu cycles/s

5.2 Benchmark Methods

In the experiments, the proposed PPO-based scheduling method is compared
with the following methods:

(1) Deep Deterministic Policy Gradient (DDPG) [15] The task
scheduling method based on DDPG designed in [15] primarily focuses on opti-
mizing the request completion time. (2) Random Scheduling (RS) The RS
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method makes task scheduling decisions randomly, by which the tasks are exe-
cuted locally or distributed to edge servers and other vehicles randomly. (3)
Offloading-only Scheduling (OS) The OS method allocates all tasks exclu-
sively to edge servers or other vehicles. (4) Local-only Scheduling (LS) Dif-
ferent from the OS method, the LS method involves the execution of all tasks
locally.

5.3 Performance Evaluation

Convergence. The convergence of the reward in multi-agent reinforcement
learning refers to the process by which the rewards earned by the agents over
time become more stable and consistent. Achieving convergence is an important
goal in multi-agent reinforcement learning as it indicates that the agents have
reached a level of performance that is close to optimal and can be used to make
decisions in the real world. In this work, convergence is essential to ensure that
the learning process terminates and the algorithm can produce a policy that
performs well in making task scheduling decisions in the given environment.

The rewards are shown in Fig. 3a and Fig. 3b, where x coordinate denotes the
current training episode and y coordinate denotes the reward obtained from the
scheduling decision. As can be seen from the figures, the proposed PPO-based
method converges fast under different numbers of vehicles and tasks.

Fig. 3. Convergence property

Request Completion Time. The service request completion time in vehicular
edge computing refers to the time taken to complete a service request from
the time it is generated by the vehicle until the result is feedback to the user.
It is an important performance metric that determines the quality of service
(QoS) in vehicular edge computing. The service request completion time can be
influenced by several factors, mainly including the task processing time and the
transmission delay between the vehicles and edge servers.

Figure 4a shows that the PPO method achieves shorter request completion
times compared to other methods, for different numbers of vehicles. Figure 4b
illustrates that as the number of tasks within a request increases, the completion



Collaborative Multi-task Scheduling 17

Fig. 4. Comparison of the request completion time

time also increases, however, the PPO-based scheduling method still achieves
the shortest request completion time. In Fig. 4c, the request completion time for
each vehicle is presented, and it can be observed that the PPO-based schedul-
ing method results in similar completion times for requests generated from all
vehicles.

Overall Energy Consumption. Overall energy consumption refers to the
total electrical energy required to complete all the tasks in one request, includ-
ing the energy consumption on task execution and data transmission involved
in delivering service requests. Figure 5 compares the overall energy consumption
under different conditions. As shown in Fig. 5a and Fig. 5b, vehicles have less
energy consumption when all the tasks are offloaded based on the offloading-
only method. The energy consumption based on the PPO method is similar
to the DDPG method but lower than the local-only method and random-based
method. Because all the tasks are executed locally based on a local-only schedul-
ing method can result in significantly higher energy consumption compared to
offloading them rationally.

Fig. 5. Comparison of the overall energy consumption
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Fig. 6. Energy consumption on each vehicle

Energy Consumption on Each Vehicle. Balanced energy consumption can
prevent overloading of a single vehicle. In a multi-vehicle system, if one vehicle
consumes significantly more energy than others, it can become overloaded, caus-
ing delays in service delivery and reduced system performance. Figure 6 compares
the energy consumed by each vehicle when processing tasks that are offloaded
to it and generated by itself. When there are four vehicles, v4 served as the Ser-
vice Vehicle (SeV), which does not generate task processing requests. Similarly,
v3 and v6 are SeVs when there are six and eight vehicles. v4 and v8 are SeVs
when there are ten vehicles. Other vehicles are called Task Vehicles, which can
generate task processing requests. As shown in Fig. 6, the energy consumption
on each vehicle, no matter the SeV or TaV, is almost the same when the tasks
are scheduled based on the PPO method. In contrast, the energy consumption
is not distributed equally among all the vehicles when using the DDPG method
and random scheduling.

Task Completion Time on Each Computing Entity. The task comple-
tion time on each entity refers to the completion time of all the tasks that are
allocated to the computing entity. Figure 7 illustrates a comparison of the task
completion time among all computing entities, including vehicles, edge servers,
and the cloud server. Based on the PPO scheduling method, the tasks allocated
to all the entities are completed at almost the same time. However, based on
the DDPG scheduling method, the completion time of the cloud server is much
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Fig. 7. Task completion time on each computing entity

higher than other computing entities when the number of vehicles is small, ulti-
mately affecting the completion time of the vehicles’ service requests.

Proportion of Task Scheduling. In Fig. 8 and Fig. 9, the proportion of the
tasks that offloaded to vehicles, edge server, and the cloud server are compared.

As shown in Fig. 8a, with the number of vehicles increasing, more tasks are
executed on vehicles and the proportion of tasks offloaded to edge servers or
the cloud server decreases because the increasing number of vehicles can pro-
vide more computing resources, allowing more tasks to be executed on vehicles.
However, in Fig. 8b, there is no clear trend in the change of proportion when
scheduling tasks based on the DDPG method. In addition, the proportion of the
offloaded tasks remains constant when using a random-based scheduling method,
as shown in Fig. 8c.

As shown in Fig. 9a and Fig. 9c, the scheduling proportions of the tasks based
on the PPO-based and random-based methods are not affected by the number
of tasks in one service request. However, the PPO-based scheduling method
offloads fewer tasks to the cloud server, which efficiently alleviates the bandwidth
pressure for vehicles.

Quality of Method. As the goal of this study is to improve both the completion
time and energy consumption of requests, a metric is needed to compare the
overall performance of different methods in achieving these objectives. To this
end, the Quality of Method (QoM) is defined and used to quantify and evaluate
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Fig. 8. Proportion of task scheduling under different numbers of vehicles

Fig. 9. Proportion of task scheduling under different numbers of tasks in a request

the performance of the method in a comprehensive manner. The QoM of each
method can be calculated by:

QoMi = μ1
Tmax − Ti

Tmax − Tmin
+ μ2

Emax − Ei

Emax − Emin
(25)

where μ1 and μ2 represent the weight value of completion time and energy
consumption, respectively. Ti and Ei represent the completion time and energy
consumption of method i, respectively. In this work, we set μ1 = 2 and μ2 = 1.
As shown in Fig. 10, the QoM of the PPO-based scheduling method is much
higher than other methods no matter the number of vehicles and tasks. This
means that the proposed PPO-based scheduling method can always have a better
comprehensive performance in terms of shortening request completion time and
reducing energy consumption.

Fig. 10. Comparison of the Quality of Method
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6 Conclusion

In this work, a collaborative multi-task scheduling strategy is designed utilizing
the multi-agent Proximal Policy Optimization algorithm and cloud-edge-end col-
laboration. The proposed method allows multiple computation tasks in one ser-
vice request to be either executed locally or remotely by offloading to edge servers
and the cloud server simultaneously, which helps to decrease request comple-
tion time. Moreover, the transmission power can be dynamically adjusted based
on the distances between vehicles and other computing entities, which helps
to reduce energy consumption. The experimental results demonstrate that the
PPO-based scheduling method outperforms other methods in terms of reducing
request completion time. Additionally, it achieves balanced energy consumption
and task workload distribution among all computing entities, preventing over-
loading of a single entity. Furthermore, allocating tasks based on the PPO-based
method results in fewer tasks being offloaded to the cloud server, alleviating the
bandwidth pressure for vehicles. Finally, the comprehensive performance evalu-
ation QoM results show that the proposed method outperforms other methods.
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Abstract. Accurate self-localization and navigation in complex indoor
environments are essential functions for the intelligent robots. However,
the existing SLAM algorithms rely heavily on differential GPS or addi-
tional measuring devices (such as expensive laser tracker), which not
only increase research costs but also limit the deployment of algorithms
in specific scenarios. In recent years, reference-free pose estimation meth-
ods based on the topological structure of point cloud maps have gained
popularity, especially in indoor artificial scenes where rich planar infor-
mation is available. Some existing algorithms suffer from inaccuracies in
spatial point cloud plane segmentation and normal estimation, leading to
the introduction of evaluation errors. This paper introduces the optimiza-
tion of plane segmentation results by incorporating deep learning-based
point cloud semantic segmentation and proposes measurement indica-
tors based on the Plane Normals Entropy (PNE) and Co-Plane Variance
(CPV) to estimate the rotation and translation components of SLAM
poses. Furthermore, we introduce a ternary correlation measure to ana-
lyze the relationship between noise, relative pose estimation, and the
two proposed measures, building upon the conventional binary correla-
tion measure. Our proposed PNE and CPV metrics were quantitatively
evaluated on two different scenarios of LiDAR point cloud data in Gazebo
simulator, and the results demonstrate that these metrics exhibit supe-
rior binary and triple correlation and computational efficiency, making
them a promising solution for accurate self-localization and navigation
in complex indoor environments.
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1 Introduction

With the development of artificial intelligence technology, sensors, and comput-
ing hardware, intelligent mobile robots have the potential to assist or replace
humans in performing repetitive and simple daily tasks, freeing people from
heavy labor and providing significant commercial and social benefits. Envi-
ronment understanding and autonomous localization are fundamental capabili-
ties for mobile robots, and mainstream solutions often employ GPS [1], Ultra-
Wideband (UWB) [2], or Simultaneous Localization And Mapping (SLAM) [3–5]
techniques. However, GPS signals can be obstructed indoors, and the UWB app-
roach requires modifications to the environment and additional costs. When a
robot moves in a complex environment, it needs to have a global map and its
current pose like a human. Therefore, to improve robot flexibility and autonomy,
existing solutions often utilize environmental sensors (such as stereo cameras or
LiDAR) mounted on the robot with SLAM-based solutions [3,6–8].

For the past two decades, the evaluation of SLAM has heavily relied on
simulation data or expensive equipment such as laser trackers, motion capture
devices, or total stations [9], due to its dependence on relative pose and abso-
lute pose errors (RPE and APE) [10]. This has greatly hindered the develop-
ment of SLAM, as the relative pose estimation and absolute pose estimation
directly calculate the difference between the estimated robot coordinate and
the true displacement, and require temporal and spatial synchronization of the
data. Even with expensive measurement equipment, constructing corresponding
SLAM datasets [11,12] for large-scale, non-line-of-sight covered environments
remains challenging.

In contrast to complex natural environments, artificial indoor environments
generally have relatively stable and regular topological structures. These features
have been utilized to develop SLAM algorithms, and some studies [13–15] have
attempted to indirectly evaluate the accuracy of pose estimation for feature maps
constructed by SLAM based on topological analysis. In addition, as the cost of
LiDAR continues to decrease, mobile robots can efficiently scan the environment
structure, ensuring rich local map features. If there is an error in SLAM pose
estimation, the local feature map overlaid based on the pose estimation will also
become distorted and offset. By analyzing the consistency of the map features
through topological measurements, it is possible to infer the pose estimation
error [16].

The existing topological analysis-based optimization can be divided into the
following two categories. 1) the graph optimization based on loop closure detec-
tion. This kind of method requires the robot to have the ability to discover
revisited places while performing continuous pose estimation, and then construct
a loop closure based on the features of revisited places (such as two frames of
scans or local feature maps), followed by graph optimization. Loop closure can be
detected based on heuristic methods [17], or through human assistance [18,19],
and some solutions utilize neural network models [20] for detection. However,
if the robot’s trajectory cannot form a loop closure, graph optimization correc-
tion cannot be performed. 2) Estimation errors based on topological information
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from feature maps. The Mean Map Entropy (MME) and Mean Plane Variance
(MPV) [13,14] estimate the consistency of the map by respectively estimating
the entropy and planar variance of local point clusters in the map. However, both
MME and MPV require traversing all the feature points of the map, resulting
in low efficiency and an inability to provide specific error locations. Mutually
Orthogonal Metric (MOM) [15] prunes the search space by selecting mutually
orthogonal planar features, which greatly improves computational efficiency and
makes the features more stable on mutually orthogonal planes. However, the
deployment of MOM in real environments is affected by large errors in the plane
detection algorithm as well as the introduction of normal estimation errors.

In order to provide a measure of pose estimation based on local topological
features and overcome the problem of large errors in plane segmentation and
numerous normal estimation errors in SLAM, this paper uses a neural network-
based semantic segmentation method to improve the robustness and efficiency of
plane segmentation. Furthermore, this paper analyzes the effects of rotation and
translation components on different types of topological measurements in pose
estimation and proposes a more comprehensive topological estimation method.
Finally, we conduct a quantitative evaluation of our proposed method in an
isometric simulation environment.

2 Basic Conception

2.1 Euclidean Transformation and RPE

The motion of the robot can be regarded as a coordinate transformation problem
of a rigid body in Euclidean space, which consists of three mutually orthogonal
axes. Rigid body motion can usually be split into two parts, rotation (R) and
translation (t). The collection of three-dimensional rotation matrices based on a
three-dimensional orthogonal basis is typically defined as Eq. 1, where SO(3) is
a special orthogonal group and I is the identity matrix, which is an orthogonal
matrix with a determinant (det(R)) of 1.

SO(3) = {R ∈ R
3∗3|RRT = I, det(R) = 1} (1)

The Euclidean transformation of a robot from α to α′ can be defined as Eq. 2,
where the concepts of homogeneous coordinates and transformation matrices are
introduced. The transformation matrix T forms a special Euclidean group, which
is defined as Eq. 3.

[
α′

1

]
=

[
R t
0T 1

] [
α
1

]
= T

[
α
1

]
(2)

SE(3) =
{

T =
[

R t
0T 1

]
∈ R

4∗4|R ∈ SO(3), t ∈ R
3

}
(3)

Usually, in order to simplify expression and calculation, the R component is
expressed by the Rodrigues’ Formula, which rotates around the unit vector by
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the rotation angle θ. The three-dimensional rotation R in real world is generally
decomposed into the [roll, pitch, yaw] rotation around the X-Y-Z axis with a
fix order. The translation vector t is represented as [x, y, z]T , and translation
components T is called a pose of the robot.

RPEi,j = ||Ei,j − I4∗4||
Ei,j = ΔT gt

i,j(ΔT est
i,j )−1 (4)

RPE compares the relative poses along the estimated T est = {T est
1 , ..., T est

N }
(from SLAM) and the reference T gt = {T gt

1 , ..., T gt
N } (ground truth) trajectories

as Eq. 4. This means that the calculation of RPE relies on GT (ΔT gt
i,j), but this

value is difficult to obtain during actual robot deployment.

2.2 Topology-Based Metrics

During positioning, the robot continuously estimates its pose and integrates sta-
ble observation features into a local map. The topology-based metric algorithm
indirectly evaluates the accuracy of pose estimation by assessing the consistency
and stability of local map features.

MME. Mean map entropy (MME) calculates the mean value over all map
points’ entropy, and is defined as Eq. 5. Here, N represents the scale of the
local map, which consists of a group of points. As point clouds are 3D data,
in calculation, pk represents the value of the determinant of the corresponding
point cloud cluster covariance matrix of the k-th point.

MME = 1
N

∑N
k=1 h(pk)

h(pk) = 1
2 ln|2πe

∑
(pk)| (5)

MPV. The Mean Plane Variance (MPV) assumes that the space is mainly
composed of planes and calculates the variance of points within a range to the
plane. MPV also traverses all global points and fits a plane based on the points
(N) within the KNN search, as Eq. 6. The variance of current plane is equal to
the minimum eigenvalue λmin of the corresponding covariance matrix of current
point set of pk.

MPV =
1
N

N∑
k=1

v(pk) =
1
N

N∑
k=1

λmin (6)

MOM. Both MME and MPV suffer from measurement errors due to the inability
to estimate the drift of plane feature points. Furthermore, these methods have low
traversal efficiency when dealing with the global point cloud, particularly in spaces
with many non-plane points, which can result in further measurement deviation.

Mutually Orthogonal Metric (MOM) improves the accuracy and efficiency
of plane segmentation by introducing orthogonal plane detection and traversing
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the points belonging to the candidate orthogonal planes to compute the mean
plane variance (according to Eq. 6) of the overall features. Orthogonal plane
detection enables stable candidate point selection and filtering of non-planar
features in complex scenes, resulting in a correlation metric with higher relevance
compared to RPE. This, in turn, improves the accuracy and efficiency of plane
segmentation.

2.3 Correlation Coefficient

Based on earlier studies, we introduce three binary correlation measures to ana-
lyze the correlation between different topology-based metrics and RPE. Further-
more, to consider the correlation between the rotation and translation compo-
nents of the pose and the RPE, we introduce a new ternary correlation coefficient
called the Multi-correlation coefficient.

Pearson Correlation Coefficient. Pearson product-moment correlation coef-
ficient is defined as Eq. 7, where the numerator is the covariance of the two groups
of variables X and Y , and the denominator is the power of the variance scores
of the two groups of variables. Here, (̄x) represents the sample mean of the
variable X.

Perason(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(7)

Spearman Correlation Coefficient. The Spearman correlation coefficient is
defined as the Pearson correlation coefficient between the ranked variables X
and Y . The ranking operation affects the covariance, which is the numerator
part of the correlation coefficient calculation.

Kendall Correlation Coefficient. Kendall correlation coefficient first forms
a set (x1, y1), ..., (xn, yn) based on the joint random variable X and Y . Kendall
correlation coefficient evaluates the rank correlation between X and Y and
is insensitive to the specific distribution of the variables. It first forms a set
(x1, y1), ..., (xn, yn) based on the joint random variable X and Y , and deter-
mines whether each pair of points is concordant or discordant based on their
relative ranks. The number of discordant pairs is denoted by DP .

Kendall(x, y) = 1 − 2 ∗ DP(
n
2

) (8)

Multi-relation Coefficient. Multi-relation [21] extends the linear correlation
between two variables to more variables, and defined the new metric based on
orthogonal hyperplane. For k variables Yi, with n observations each, we can
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form a kn matrix Y with kn total observations. Since each variable Yi may be
collected from a different background, we first normalize Y along each row to
obtain a corresponding standardized matrix S. Using the standardized matrix
S, we can calculate the sample correlation matrix R as R = SST . The Multi-
relation coefficient is defined as Eq. 9, where λ(R) represents the least eigenvalue
of R, and MR(Y1, ..., Yk) ∈ [0, 1] represents the strength of the multi-variable
linear correlation.

MR(Y1, ..., Yk) = 1 − λ(R) = 1 − λ(SST ) (9)

3 The Proposed Topology Metric

3.1 Motivation

During our testing of the previous topology-based metrics in local simulation
environments (Floor2 and Garage), we found that although MOM claims to
improve the correlation of metrics with RPE through orthogonal plane detec-
tion, the algorithm’s reliance on agglomerative clustering based on plane finding
estimates suffers from the following drawbacks:

– As shown in the upper part of Fig. 1, agglomerative clustering based on normal
can result in the loss of a significant number of critical plane features, which
can have a significant impact on subsequent calculations.

– As shown in the bottom left of Fig. 1, clustering based on manual parameter
tuning can significantly impact plane detection and generate a large number
of incorrect plane results, which are represented by different colors.

– As shown in the bottom right of Fig. 1, plane detection errors can further
impact normal estimation and result in multiple normal directions (repre-
sented by black lines) for the same plane.

Before After

Clustering Normals

Fig. 1. Example of the drawbacks of orthogonal plane detection using a local point
cloud map of five frames in Floor2.
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We can see from the original point cloud (as shown in the top left of Fig. 1)
that the topological structure of the point cloud map in the current area is
relatively simple, and it does not contain any potential dynamic or semi-dynamic
targets. However, heuristic algorithms that rely on manual parameter tuning
have limited generalization abilities and are unable to understand the semantic
information of the scene. As a result, when the topological information of the
indoor scene is more complex and contains moving or potentially moving targets,
MOM is likely to experience significant degradation.

3.2 The Workflow

We prefer to introduce the deep learning-based point cloud semantic segmenta-
tion to refine the plane detection, the whole workflow is as shown in Fig. 2.
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Fig. 2. The proposed workflow for calculating topology-based metrics involves a seman-
tic segmentation model.

The algorithm first uses a sliding window to sample the continuous point
cloud. In contrast to MOM, which only calculates orthogonal planes for the first
frame of the point cloud, we segment each frame of the point cloud sequentially
using a deep learning semantic segmentation model to obtain all semantic classes.
This allows us to differentiate between static objects (such as walls, floors, and
pillars) and other objects, and retain only the former after segmentation. Next,
we apply robust statistical plane detection [22] to each class of static object
points and estimate the corresponding plane normal. We store all candidate
planes and normals for later topology metric calculation. Finally, we calculate
the Co-Plane Variance (CPV) and Plane Normal Entropy (PNE) metrics based
on all candidate planes and normals in the current window.

The selection of point cloud semantic segmentation models will be discussed
in Sect. 4.2 of the experimental study, where we will comprehensively consider the
segmentation accuracy, computational speed, and overall generalization ability
of the models. Using semantic segmentation results of static targets in point
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clouds allows us to enhance the accuracy and completeness of plane detection,
as demonstrated in the qualitative analysis shown in Fig. 7. As a result, even
though we process all point cloud frames in the sliding window, the number
of planes obtained is comparable to that obtained by MOM. Additionally, we
update the normals of plane points based on the detected plane normal, which
further improves the accuracy of normal estimation for later processes.

3.3 Calculation of CPV and PNE

As presented in Eq. 3, each pose consists of a rotation component and a transla-
tion component, and these components have differing effects on the plane topol-
ogy when there is noise in the related parts. To address these varying effects, we
propose the use of Co-Plane Variance (CPV) and Plane Normal Entropy (PNE)
metrics to detect the two types of noise during SLAM pose estimation with a
local point feature map topology.

P

P’

N N’

P

P’

N’N

Rotational Effect Translation Effect

Fig. 3. Examples of how the rotation and translation of the pose affect plane changes.

Even slight translation noise can cause the same plane in two consecutive
frames of point clouds to shift, as shown in Fig. 3 (right), leading to a larger
variance of points on approximately co-planar planes. To mitigate this effect,
we propose the use of a clique-based parallel plane detection algorithm. This
algorithm identifies near co-planes based on the co-planar condition of Eq. 10
obtained from the parallel planes. This approach can be achieved through graph-
based clique searching, which allows for efficient and accurate identification of
near co-planes. Once the near co-planes have been identified, we calculate the
point variance of all near co-planes as the final result of CPV. By using this
approach, we can more accurately estimate the plane parameters and reduce the
impact of translation noise on the topology of the point cloud.

Ax + By + Cz + D1 = 0
Ax + By + Cz + D2 = 0

d = |D2−D1|√
A2+B2+C2 < ε

(10)

Slight rotation noise can cause the same plane in two consecutive frames
of point clouds to rotate, as shown in Fig. 3 (left). Although it also leads to
an increase in the variance of the plane, the change in the normal direction
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is more significant. To detect the effect of rotation noise, we propose the use of
Plane Normal Entropy (PNE), which is calculated based on clustering candidate
normals and computing the entropy of all normals within each cluster. This
approach is relatively simple and effective, as it allows us to accurately identify
the change in the normal direction of the plane due to rotation noise.

4 Experimental Study

4.1 Data Introduction

To ensure the authenticity and reliability of the evaluation, we constructed a
simulation environment in Gazebo [23] that was based on two local real scenes:
Garage and Floor2. We deployed a Velodyne-32E (VLP-32) LiDAR with the
same parameters as the actual robot configuration in the simulation environ-
ment, as shown in Fig. 4. By creating an equal-scale simulation environment, we
were able to accurately evaluate the performance of our proposed method in a
controlled and repeatable setting. Although both scenes contain a large number
of orthogonal planes, the overall topological structures of the two local scenes
are not highly regular. Moreover, Garage is a huge simulation scenario with a
total area of up to 14,000 square meters. In addition, semi-dynamic objects such
as tables and chairs are randomly added, which will also add certain interference
to the robot’s perception.

Garage

Floor#2Robot & VLP-32

Fig. 4. Two public and real simulation scenes of local office and underground garage,
and the robot equipped with VLP-32 LiDAR.

To collect the data for our evaluation, we controlled the robot to randomly
move through each scene, collecting VLP-32 point cloud and the robot pose
at a frequency of 5 Hz. To ensure comprehensive coverage of each scenario, we
collected two sets of point cloud data with different trajectory sequences. We
manually labeled the semantic information for each point cloud using the Point
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Labeler tool [24], which allowed us to accurately evaluate the performance of
our proposed method in detecting and classifying different objects in the point
cloud data. We divided the labeled point cloud data into two non-overlapping
sets, which were used for training and testing the semantic segmentation model,
as well as for evaluating the topological metrics for SLAM. To illustrate the
labeled point cloud data, we provide an example of the Garage scene in Fig. 5.
The upper image shows the original point cloud, which is colored by height
for the convenience of visualization. The bottom image shows the same point
cloud data, but with colors assigned based on the manually labeled semantic
information. This example illustrates the effectiveness of our labeling process in
accurately identifying different objects and structures in the point cloud data.

Fig. 5. Visualization of Garage point cloud overlapped scene map before and after
semantic annotation (bird’s eye view): coloring by height (top) and coloring by semantic
label (bottom).

Table 1 provides a summary of the point cloud frames that make up the Train
Set and Test Set, which consist of 3779 and 3561 frames, respectively. To ensure
the generalization and augmentation of our data, we combined data collected from
different scenes for training and evaluation of the deep learning-based point cloud
semantic segmentation models. We also added two public scenes (Office1 & 2) col-
lected from the Gazebo community to further enhance the diversity of our dataset.
The total indoor scene semantic targets include five categories, which are ground,
wall, pillar, table, and chair. To ensure the validity of our segmentation model
evaluation, the two datasets are disjoint and do not overlap.

Table 1. Details of the Train set and Test set.

Scenes Train Set (frames) Test Set (frames) Classes

Office1 410 427 4

Office2 375 333 4

Floor2 678 577 3

Garage 2316 2224 3

Total 3779 3561 5
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4.2 Point Cloud Segmentation Performance

We trained and tested all models on a GPU server with the following specifica-
tions: CPU@Intel i9-12900K, 128 GB Memory, NVIDIA RTX 3090@24 GB. The
frame per second (FPS) was calculated based on the mean value of continuous
segmentation processing of 1000 frames of point cloud data. We tested three dif-
ferent models in this study: MinkowskiNet [25], CylinderNet [26], and SPVCNN
[27]. We used the data in Table 1 in Sect. 4.1 to train and test the three deep
learning models, and the results are shown in Table 2. The three models shared
the same training configurations, which included 36 epochs, Stochastic gradient
descent (SGD) optimizer, 0.02 learning rate with 0.0001 weight decay and 0.9
momentum. However, the batch size was different due to the constraints of video
memory and model parameter scale.

Table 2. Performances of the per frame point cloud semantic segmentation results.

Model mIoU Per Class IoU FPS

Floor Wall Pillar Desk Chair

MinkowskiNet [25] 95.84676↑ 98.8446 97.7756 92.656 93.4457 96.5119 347.28 ↑
CylinderNet [26] 89.8108 96.956 95.4882 86.6077 81.4631 88.539 309.47

SPVCNN [27] 91.09102 98.6575 96.4578 87.0115 84.241 89.0873 151.48

We consider both the per class intersection-over-union (IoU), mean Jaccard
(mIoU), and frames per second (FPS) in our evaluation. The mIoU is defined as
shown in Eq. 11, where TPc, FPc, and FNc correspond to the number of True
Positive (TP), False Positive (FP), and False Negative (FN) predictions for the
points of class c in the current frame, and C is the number of classes (which is
5 in our case). A higher mIoU indicates better semantic segmentation accuracy.

mIoU =
1
C

C∑
c=1

TPc

TPc + FPc + FNc
∗ 100% (11)

Table 2 shows that all models converge very well, but MinkowskiNet achieves
the highest mIoU of 95.84, which is also the highest for per class IoU. Addition-
ally, it is the fastest model with 347.28 FPS for point cloud of VLP-32 (∼57,600
points) on the GPU server. SPVCNN achieves the second highest mIoU, but
its FPS is only about half of MinkowskiNet at around 151. CylinderNet has a
slightly lower mIoU than SPVCNN at 89.8, but it achieves the second-fastest
speed at 309 FPS. Figure 6 presents a detailed segmentation result (Confusion
Matrix) of MinkowskiNet on the Test Set. In the confusion matrix, the val-
ues on the main diagonal represent the percentage of correctly segmented point
clouds, while the remaining blocks indicate the specific category and percentage
of wrongly segmented point clouds. The pillar and desk categories cause more
incorrect segmentation, but the segmentation accuracy of the floor and wall cat-
egories, which contain planes, is both higher than 99%. This demonstrates that
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introducing a segmentation model can provide a guarantee for subsequent correct
plane detection. Therefore, we prefer to choose MinkowskiNet as the semantic
segmentation model in our system to obtain semantic labels for each frame of
point cloud.
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Fig. 6. Confusion matrix of the semantic segmentation results of MinkowskiNet on
Test Set.

4.3 Plane Detection

Since the dataset does not include labels for point cloud planes, we can only
evaluate the effectiveness of plane detection and normal estimation qualitatively.
Figure 7 shows the detected planes and estimated normals of the points on each
plane. By comparing these results to those from MOM in Fig. 1 (bottom), it is
evident that almost all planes are correctly detected, and the directions of the
point normals are also consistent.

Fig. 7. The plane detection result based on semantic segmentation and robust statistic
plane detection.

4.4 Binary Correlation Analysis

To analyze the correlation between RPE and different topology-based metrics,
while considering the rotation and translation components of a pose, we added
noise to the collected data’s poses. Specifically, we added three types of noise
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patterns, namely [r, t, rt], and three levels of noise magnitudes, namely [1, 1.5, 2].
Figure 8, Fig. 9, and Fig. 10 illustrate the binary correlations between RPE and
rotation (r), translation (t), and transformation (rt) noise at different scales.

Fig. 8. The binary correlation of Person, Spearman and Kendall between different
topology-based metrics and the RPE under win = 5, noise mode = r, and different
noise scales.

By analyzing the correlation between RPE and different topology-based met-
rics with varying scales of rotation noise as shown in Fig. 8, we found that PNE
exhibits the highest correlation with RPE compared to other topology-based
metrics. This result confirms our hypothesis in Sect. 3.3, which suggests that
noise in the rotation component significantly affects the normals of parallel pla-
nar points.

Fig. 9. The binary correlation of Person, Spearman and Kendall between different
topology-based metrics and the RPE under win = 5, noise mode = t, and different
noise scales.

By analyzing the correlation between RPE and different topology-based met-
rics with varying scales of translation noise as shown in Fig. 9, we found that
CPV exhibits the highest correlation with RPE compared to other topology-
based metrics, except for Pearson when NoiseScale = 1 (which is only slightly
lower than MOM). This result confirms our hypothesis in Sect. 3.3 that noise in
the translation component significantly affects the variance of points on nearby
planes.

Simultaneously adding rotation and translation noise to the data poses
resulted in various topology-based metrics showing no significantly strong corre-
lation with RPE under different noise scales, as shown in Fig. 10. In some cases,
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Fig. 10. The binary correlation of Person, Spearman and Kendall between different
topology-based metrics and the RPE under win = 5, noise mode = rt, and different
noise scales.

MOM showed the highest correlation, while in other cases, CPV showed the
highest correlation. These results suggest that the combined effect of rotation
and translation noise on pose estimation is complex, the current global topology
metrics are difficult to evaluate and requires further investigation.

4.5 Triple Correlation Analysis

To evaluate the correlation between PNE, CPV, and RPE when both rotation
and translation noise are added simultaneously, we used the Multi-relation of
Eq. 9. As shown in Fig. 11, the Multi-relation (PNE, CPV, RPE) exhibited an
extremely high correlation under different noise scales.

Fig. 11. The correlation of Person, Spearman, Kendall and Multi-relation between
different topology-based metrics and the RPE under win = 5, noise mode = rt, and
different noise scales.

Similar results were observed in the Garage scenario, as indicated by the
correlation metrics. Considering redundancy, related results will not be presented
here.

4.6 Time Complexity

Figure 12 presents a comparison of the time consumption of each topology-based
metric under different sampling window sizes, namely 5, 10, and 15 frames. The
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test was conducted on a mobile edge device (AMD R9-5900HX@3.3 GHz) in a
single-threaded manner to assess the algorithm’s feasibility and real-time per-
formance in actual mobile robot deployment. We evaluated the entire sequence
of Floor2 TestSet using a sliding window to sample the collected point clouds
during calculation. The window step was set equal to the window length (e.g.,
winsize = winstep = 5) to avoid repetition of sampling. Gaussian random
noise was added to each frame point cloud to simulate the point cloud distortion
caused by actual robot motion. Each box-plot displays the maximum, minimum,
median, 1st, and 3rd quartiles of all computation time spent for each metric, and
each sub-figure shows an enlarged result.

Fig. 12. Time complexity statistics of each metric calculation under different window
sizes, i.e., 5, 10 and 15 frames are considered in this study.
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The calculation of MME and MPV requires traversing the global point cloud,
and the corresponding calculation time increases proportionally when the win-
dow size of the superimposed local map increases. MOM reduces computation
time by checking candidate orthogonal planes only in the point cloud of the first
frame and performing KNN search on a local map based on a small set of can-
didate points belonging to the orthogonal planes. However, MOM still needs to
perform operations such as KD-Tree construction, search, and clustering based
on large-scale point clouds, and the single calculation time consumption takes
several seconds. By introducing deep learning-based point cloud semantic seg-
mentation, the calculation of PNE and CPV can be greatly accelerated. Although
the neural network model itself also consumes time, it can execute independently
on the GPU, and based on the analysis in Sect. 4.2, the segmentation time is
about 0.0028 s (using MinkowskiNet), which is almost negligible compared to the
5/10 Hz of low-speed indoor robot. PNE and CPV further optimize the follow-up
topology metric calculation, reducing the required calculation time and volatility.
When processing 15 consecutive frames of point clouds, the overall calculation
time does not exceed 1 s (the total time of 15 frames is 3 s under 5 Hz sampling).

5 Conclusions and Future Works

This paper proposes a plane detection algorithm based on neural network point
cloud semantic segmentation optimization, starting from topology-based SLAM
pose estimation, to promote the development of autonomous localization tech-
niques for mobile robots in indoor environments. The algorithm combines robust
statistical plane detection with optimized extraction of point cloud plane features
to ensure comprehensive, complete, and accurate stable spatial topological fea-
tures. We also analyzed the potential impact of rotation and translation noise
in SLAM pose estimation on plane features and proposed two evaluation met-
rics, Co-Plane Variance (CPV) and Plane Normal Entropy (PNE), respectively.
The proposed algorithm was qualitatively and quantitatively evaluated using
point cloud and pose data from different simulation scenarios in Gazebo, which
confirmed the validity of the proposed hypothesis and the rationality of the
corresponding topology-based metrics.

Although we have validated the strong correlation of CPV+PNE with RPE
in the presence of both rotation and translation noise through triple correlation
(Multirelation), a feasible and unified quantitative calculation method for the
two metrics is still lacking. We plan to improve this issue in the future and
conduct experiments on datasets collected from real-world scenarios to further
validate our proposed approach.
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Abstract. Federated Learning is a decentralised network platform
where the edge nodes train their local models and send their updated
weights to the server. The server combines all the various local weights
received and sends the aggregated model back to the edge nodes for fur-
ther training, and this process continues until convergence is achieved.
This study models the Federated Learning (FL) network. The Traf-
fic speed (TS), Round trip time (RTT), and Bandwidth delay-product
(BDP) parameters have been considered for modelling the Federated
Learning network. Through experimentation, it can be inferred that the
TS has a high impact and high correlation on the BDP within the net-
work, and the RTT has a low impact on the BDP. The decentralised and
classical machine learning models’ predictions have been compared. It
has been observed that the decentralised machine learning model’s pre-
diction outperforms the classical machine learning model’s prediction.
The link experiences low latency because only the updated weights are
transmitted within the link and not the raw data.

Keywords: Federated Learning · Bandwidth delay product ·
aggregate model · Round Trip time · Traffic speed

1 Introduction

Federated Learning is a decentralised Machine Learning framework where the
edge nodes train their local models and send their updated weights to the server.
The server combines all the various local updated weights received and sends the
aggregated model back to the edge nodes for further training. This process con-
tinues until convergence is achieved [1]. The authors in [2] used the Network
traffic Federated Learning extreme Learning machine models to analyse local
network traffic data. Their model achieved a higher accuracy when compared
with their benchmark models. The authors in [3] have used stochastic models,
optimisation models and differential equations to model the optimisation of the
federated Learning network. The stochastic models have been used to resolve
uncertainty and variability data issues, while the convergence and stability chal-
lenges have been resolved using the deterministic models. This study discusses
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the modelling of the network of queues of the federated Learning platform while
considering the Bandwidth delay product (BDP) as a performance metric.

The authors in [4] discuss that Federated learning is a method in machine
learning where a model is trained across numerous distributed edge devices or
servers, each containing its own set of local data samples, without disclosing these
data. This approach safeguards data privacy by storing it locally on a server
or edge device during the model training process. Given legal constraints, this
technique holds particular significance for hospitals, as it enables collaborative
machine learning model development without transferring all the training data,
such as patient records, to a centralised location. According to the authors in [5],
Federated learning emerges as a privacy-centric approach to machine learning,
which finds valuable application in intelligent healthcare. It involves orchestrat-
ing multiple hospitals to conduct deep learning training collaboratively without
exchanging data. This federated learning technique standardises the individual
training procedures by globally averaging feature vectors. Throughout the feder-
ated training process, the transmission of model parameters is unnecessary, and
local clients merely upload the average feature vectors of each class. Clients can
opt for distinct local models based on their computational capacities.

The authors in [6] discuss that Federated learning enables deep learning algo-
rithms to gain insights from a wide range of data present in various databases.
This innovative approach allows deep learning models to be trained using local
patient data from different medical centres, with only model parameters shared
among the facilities. The authors in [7] discuss that Federated Learning is the
evaluation of models in a decentralised platform where the communication cost
is reduced because only the updated weights of the local models are sent to the
server. It can be inferred from their research that the Long short-term memory
models considered for the federated Learning network have been five times faster
in achieving prediction values than the centralised network. The authors in [8]
discuss that the FL model has been used to aggregate the updated weights from
health institutions (electronic records and primary & secondary health centres).
The FL evaluation of the dataset has provided data privacy and security for
health institutions.

It can be inferred from [1–8] that the FL technique enables data training
while the dataset is domiciled at the local edge device. This method provides
privacy for the data and reduces the communication cost of the network. Figure 1
and Fig. 2 depict the architecture of the decentralised and centralised network,
respectively. The decentralised network only sends the updated weights to the
server for aggregation, unlike the centralised network, where the raw datasets are
sent to the server in the cloud for analysis. The decentralised network provides
data privacy and security since the server in the cloud does not see the raw
dataset for evaluation.

Our Contribution. Our paper models the FL network as a network of queues
within a federated learning network, considering the network’s Bandwidth delay
product (BDP), Traffic speed and round trip time (RTT) as a performance
metric. The convergence of decentralised and the classical centralised models
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has been compared. The decentralised model converged better than the classical
centralised model. It has been observed that comparing the decentralised and
centralised networks, the Bandwidth delay product of the decentralised network
has been able to match a higher proportion of the predicted BDP with the
original BDP values. Section 2 discusses the related works. Section 3 discusses
the methodology adopted in conducting this research, while Sect. 4 discusses the
results obtained from the experimentation. Section 5 narrates the conclusion and
the Area of further work.

2 Related Work

The authors in [9] discuss that the congestion window within a network link,
where the bandwidth capacity and the round-trip time (RTT) are considered,
requires a maximum transmission rate and minimum delay scenario for optimal
operation within the network. It can be inferred that the higher the transmission
rate, the lower the delay within the network. The authors in [10] discuss the
communication cost of the FL network reduction by introducing the federated
sparse compression (FSC) algorithm. It can be inferred from their research that
better generalisation and prediction have been achieved by using CapsNet to
train data in edge devices. The authors in [11] have investigated bottleneck queue
level (BQL) performance in a high bandwidth-delay product link. It has been
observed that varying the RTT within the network has a very minimal effect
on the link performance. They further iterate that the packet loss experienced
within the network does not affect the congestion control performance.

The authors in [12] used the content popularity prediction of privacy-
preserving (CPPPP) scheme based on federated learning and Wasserstein gen-
erative adversarial network (WGAN) to improve the cache hit ratio and resolve
the data leakage during model training in an FL platform. It can be inferred
that the transmission time using the FL scheme for caching has been reduced.
[13] discuss that using Federated averaging + CNN + MobileNet models for the
classification of breast cancer images has improved the classification accuracy
of breast cancer detection using the federated averaging +CNN model. It can
be inferred that their model classification results outperformed other centralised
network models. According to [14], FL has been used to analyse chest X-ray
images. The federated averaging models have been able to classify the infected
lungs and healthy lungs from the image datasets. It can be inferred that their
proposed model has reduced the bias in the prediction models because it com-
bines all the updated weights and features of the various edge node models.

The authors in [15] discuss the slow convergence of Mobile edge nodes using
Federated Learning for heterogeneous nodes. Their research results outperformed
the existing centralised network in resource usage, accuracy, and convergence.
[16] discuss that they analysed an Augmented Intelligence of Things (AIoT)
network using BDP for a heterogeneous platform, and they affirmed that their
solution improved the network’s transmission rate by a factor of 3.72. The down-
load rate has been boosted by 3.94 fold. Their solution improves the data trans-
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mission rate by reducing the round-trip time’s impact and boosting the conges-
tion window optimisation when data loss is experienced. It can be inferred that
when the solution reduces the impact of the round-trip time within the network,
the bandwidth-delay product is invariably affected positively. According to the
authors in [17], many cache misses are experienced when the network’s latency
increases. Bandwidth and BDP capacities increase, which invariably results in
about a 24% drop in throughput-per-core. [18] discuss that within a centralised
network, when the RTT varies, as soon as the RTT drops below half of the
average RTT, the bottleneck bandwidth round-trip propagation time (BBR)
experiences payload collapse because of the congestion within the network.

3 Modelling of the FL Network

The BDP has been the performance metric for the accuracy of the federated
Learning Network. The modelling has been achieved by making some assump-
tions to obtain the performance metric. The modelling Assumptions are the
following;

The Arrival of the local model from the edge nodes is independent of each
other and discrete events.

The Arrival rate of the local models follows Poisson distribution.
The inter-arrival rate time is independent, and we assume the service rate

is said to be exponentially distributed. The edge nodes of the FL network link
experience delay. This delay and bandwidth are represented as d i and b i, respec-
tively, for the edge node.

Let b i represent the effective bandwidth of the ith node.
Let d i represent the effective delay of the ith node. The effective bandwidth

of the server node of the Federated Learning network is represented as BW eff
and the delay at the server node is represented as DL eff

Let BW eff represent the effective bandwidth at the server.
Let DL eff represent the effective delay at the server.

k∑

j=1

bji = bi|minj(d
j
i )di (1)

(Bi,Di) = (
∑

j

bjiminj(d
j
i )) (2)

Equation 1 represents the summation of the bandwidth for the edge nodes that
experience some delay. Equation 2 depicts the aggregate effective bandwidth and
effective delay at the edge nodes. BWeff = min(Bs, Bi)

DLeff = (Ds,Di)
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Fig. 1. Architecture of the Federated Learning Network

The Bandwidth Delay product can be calculated as

BWeff × DLeff =
n∑

i=1

min (Bs , Bi) × Ds

n∑

i=1

Di

=

⎛

⎝
n∑

i=1

min

⎛

⎝Bs ,

k∑

j=1

bji

⎞

⎠ × Ds

n∑

i=1

min
(
dji

)
⎞

⎠ (3)

Equation 3 shows the product of the effective bandwidth and delay at the server
node and the aggregate bandwidth and delay at the edge nodes. It can be inferred
that the product of the bandwidth, measured in Megabits per second (Mb/s)
and the delay, measured in seconds (s) within the federated learning network,
produces the total packets transmitted within the network.
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Fig. 2. Architecture of the Centralised Network

3.1 Methodology

The network was emulated using the GNS3 network tool, and the network archi-
tecture is shown in Fig. 1. The architecture has 3 tier layers. A Testbed has
been set up, and the network’s Traffic speed (TS) and round trip time (RTT)
have been captured for analysis. The performance of the edge nodes, combined
and classical machine learning models for the bandwidth-delay product has been
investigated, and the predictions of the combined and classical models have been
analysed. The generated data have been sent to the second tier layer contain-
ing the MEC nodes. The captured datasets are numerical. They were collected
for a duration of Ninety days using the Paessler PRTG network monitor soft-
ware installed on The database server within the network. The data has been
pre-processed using the Python sci-kit library to remove Not A Number (NAN)
values. These have been trained, and the local model updates have been sent
to the server. The server aggregated all the various models from the respective
edge nodes, creating a global model. The server sends the combined model to the
edge nodes to train its local model with the new global model until it achieves
convergence.

3.2 Time Complexity

The Big O notation is used to determine the time complexity of the Model
mathematically.
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The iteration

H =
n

2H
(4)

Taking the iteration to equal 100, which has been used for the training of the
model during the training in the testbed,

n ÷ 2H = 100

Therefore,
n = 100 ∗ 2H

taking the logarithm of both sides of the equation and note that 100 is a
constant

logn = log2H

log n = H × log22, where log22 = 1

log n = H

from the model developed the Big O notation for the FedAve algorithm is
O(logn).

It can be inferred that the time complexity for the model is in order of log n,
O(log n). The Federated averaging time complexity from Eq. 4 above evaluation
is time efficient. It can be inferred that the model will be less space-efficient since
time and space complexity are always inversely proportional.

4 Results and Discussion

Figure 3 shows the univariate distribution of the TS, RTT and BDP from the
emulated network. It can be inferred that there is a positive correlation between
TS and the BDP. The RTT shows a bi-modal distribution having two peak
values, and the RTT is skewed to the right, implying the RTT mean values
are more than the median values in the dataset. The bi-modal peaks shown in
Fig. 3 result from the mixture of the samples from the experimentation. Another
reason is the errors within the dataset obtained from the experimentation of the
network. The BDP and TS both show they have a single mode, indicating that a
single sample of the dataset population represents the mean, and the probability
density for the TS and BDP are skewed to the left, indicating the mean for TS
and BDP are less than the median of the dataset.

From Fig. 3, it can be deduced that the correlation between the BDP and
RTT, BDP and TS experience a lot of noise and has a positive correlation. The
chart shows many outliers in the BDP and RTT, unlike the BDP and TS, which
have fewer outliers. This indicates that round-trip time has a low influence on
the BDP. Taking the TS and RTT from Fig. 3 indicates a positive correlation
but a low influence on the BDP due to the high outlier, as shown in Fig. 2. The
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Fig. 3. Pairwise Plot of the Bandwidth Delay Product.

kernel density estimate indicates that the round-trip time is bi-modal while the
traffic speed and BDP are unimodal. Figure 3 shows the pairwise plot to express
the correlation between the variables, and it cannot be conclusive evidence of
the relationship between the TS, RTT and BDP within the dataset. Further
analysis is carried out on the BDP dataset using the federated and classical
machine learning models. The positive correlation between the BDP and TS
indicates a direct relationship. An increase in the TS will invariably increase the
BDP. The outliers observed from the dataset captured from the experimentation
are caused by the emulation tool used for the experiment. The tool inaccuracies
and challenges caused the outliers.

To further substantiate our analysis of the BDP dataset, a heatmap has
been developed, as shown in Fig. 4. The heatmap gives numerical values to the
correlation between the variables in the BDP dataset. It can be inferred from
Fig. 4 that the correlation value between TS and the RTT is 0.042, substantiating
the findings in Fig. 3 that the correlation between the two variables is very weak.
The correlation value between RTT and the BDP is 0.18, higher than that of
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Fig. 4. Heat map correlation of the Bandwidth delay Product.

RTT and TS, but it also shows a weak correlation between the two variables.
The correlation values between the BDP and TS have a correlation value of 0.99,
which is extremely high, indicating the traffic speed within a federated learning
network can influence the BDP values within the network. The diagonal values
show the correlation of each to itself.

It can inferred from Figs. 5 to 28 that the convergence of each edge node
varies for each node indicating the diversity of the traffic within the edge nodes.
Figures 5 to 28 show the different epochs at which each edge node converges
indicating the different patterns of the traffic within each edge node. The aggre-
gate model predictions and the Original BDP values are shown in Fig. 29. It
can be observed that a high portion of the predictions is very accurate with the
original BDP value. This indicates that the aggregate model can combine the
individual node models and produce an acceptable prediction of the BDP. This
is shown in Fig. 29, where a plot of the predictions against the original BDP
values is shown. It can be inferred that the Federated Learning model can pre-
dict a high proportion of the BDP original values. The research investigates the
predictions of the classical machine learning model, as shown in Fig. 30, where a
low proportion of the predicted BDP values accurately match the original BDP
values. It can be observed from Figs. 29 and 30 that the aggregate model of the
Federated Learning platform has been able to predict a high proportion of the
original BDP values.
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Fig. 5. Loss of edge Node 1 Fig. 6. Loss of edge node 2

Fig. 7. Loss of edge Node 3 Fig. 8. Loss of edge node 4

Fig. 9. Loss of edge Node 5 Fig. 10. Loss of edge node 6
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Fig. 11. Loss of edge Node 7 Fig. 12. Loss of edge node 8

Fig. 13. Loss of edge Node 9 Fig. 14. Loss of edge node 10

Fig. 15. Loss of edge Node 11 Fig. 16. Loss of edge node 12



52 G. Idoje et al.

Fig. 17. Loss of edge Node 13 Fig. 18. Loss of edge node 14

Fig. 19. Loss of edge Node 15 Fig. 20. Loss of edge node 16

Fig. 21. Loss of edge Node 17 Fig. 22. Loss of edge node 18
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Fig. 23. Loss of edge Node 20 Fig. 24. Loss of edge node 21

Fig. 25. Loss of edge Node 22 Fig. 26. Loss of edge node 23

Fig. 27. Loss of edge Node 24 Fig. 28. Loss of edge node 25
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Fig. 29. Prediction versus Original
Aggregate model of BDP network

Fig. 30. Prediction versus Original Clas-
sical model of BDP network

The Aggregate model of the decentralised network outperforms the cen-
tralised machine learning model in the accuracy of the predictions produced,
which can be seen in Figs. 29 and 30. The decentralised model outperformed the
centralised model by producing a higher accuracy of the predicted BDP than the
centralised model accuracy of the predicted BDP as shown in Figs. 29 and 30.

5 Conclusion

This research has investigated the modelling of the network of queues of a fed-
erated learning network. Mathematical modelling of the performance metrics,
such as the bandwidth-delay product, has been used to depict the performance
of the FL network within a federated learning network using GNS3 simulation
for experimentation. It has been observed that the bandwidth-delay product is
an important parameter that affects the convergence of the federated Learning
network. The FL network produced a higher accuracy of the predictions when
compared with the centralised machine learning model using the BDP as a per-
formance metric. The predictions of the decentralised machine learning model
outperformed the classical machine learning model. It can be inferred that the
BDP has a high correlation with the TS, while the correlation of the BDP with
the RTT is rather low. Further analysis of the Bandwidth Delay product can be
investigated using parallel learning models and a comparison with the Federated
split learning model and classical machine learning model.
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tions, there is a high degree of data distribution skewness among clients,
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resulting in model bias and reducing the accuracy of the global model.
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mation to correct the optimization direction of the client models, or
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in unclear improvement effects. To address these problems, we propose
a federated optimization algorithm FedECCR based on encoding con-
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an encoder and a classifier. It utilizes prototype contrastive training of
the model encoder and unbiased classification correction of the classi-
fier. This approach notably improves the accuracy of the global model
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1 Introduction

In recent years, 5G technology has experienced rapid development, digital trends
have accelerated, and the significant increase in internet data transmission speed
and massive growth of terminal devices have led to the generation and storage of
vast amounts of data, providing tremendous opportunities for the development
and utilization of big data. Intelligent collaborative computing technology has
begun to combine with artificial intelligence, enabling it to have more extensive
and in-depth application prospects in cross-domain and cross-organizational col-
laboration and innovation in areas such as healthcare, intelligent manufacturing,
and intelligent logistics. This leads to more efficient and accurate decision-making
and improved production efficiency. Intelligent collaborative computing [1] is a
method achieving collaboration and interaction between multiple computer sys-
tems with artificial intelligence technology, to process data efficiently.

Federated Learning [2,3] is a kind of intelligent collaborative technology that
enables training a global model with the cooperation of multiple computer sys-
tems, which can process data efficiently and in privacy. It is a client-server archi-
tecture machine learning technology. Where the server aggregates the local model
updated by clients to generate a global model or update the global model, and
sends the updated global model to clients, and each client trains a local model
with the local dataset and the received global model. Benefiting from its excel-
lent privacy protection capabilities, federated learning has been widely applied,
such as Google’s use of federated learning technology in the GB Board mobile
keyboard [4]. Apple also used federated learning technology in the QuickType
keyboard in iOS13 [5]. Even though federated learning has been widely used
for large-scale user data analysis, it still faces many problems in practical sce-
narios, such as the decrease in the accuracy of global models caused by data
heterogeneity.

In federated learning, the production and storage of user data occur on the
client side, and their data distribution is largely influenced by factors such as
client device type, user preference, and organization. As the client group in prac-
tical scenarios is usually large in size and structurally complex, these factors gen-
erally exhibit significant differences, causing the data distribution between each
local data set to be uneven and deviate from the global data distribution, exhibit-
ing non-independent and identical distribution (Non-IID) characteristics. This
phenomenon is known as data heterogeneity. The heterogeneity of client data
results in significant differences between local models. After aggregating these
different local models, the obtained global model has a considerable discrep-
ancy from the ideal model, and this discrepancy accumulates with an increase in
aggregation rounds, resulting in a reduction in the accuracy of the global model.

Currently, research on solving data heterogeneity mainly focuses on optimiz-
ing local training on the client side, roughly divided into two directions: (1)
data-based optimization methods, such as solving the data heterogeneity prob-
lem of different clients through data enhancement, so as to improve accuracy; (2)
algorithm-based optimization methods, reconstructing the client’s loss function
by adding a regularization term to reduce the difference between the local model
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and global model. However, the former usually leads to training overfitting and
poor prediction of new data samples; the regularization term in the latter is
often an end-to-end limitation on model differences, providing limited precision
improvement effects.

To address the above issues, we have proposed a federated optimization
algorithm, FedECCR, based on encoding contrast and classification correction.
FedECCR targets the optimization process through two stages: prototype con-
trastive training of the encoder and unbiased simulation correction of the classi-
fier, which effectively suppresses the impact of heterogeneous data on the encoder
and classifier. The main contributions of this paper are as follows.

• We classify all hidden layers of the model as encoders and the output layer
as the classifier. By comparing the distribution differences between the global
features extracted by the encoder in a data-heterogeneous environment and
the client features, we found that there are significant differences in the distri-
butions of client features and global features, and their discriminative power
is poor.

• In response to differences in feature distribution, we designed a prototype
comparison loss based on the prototype learning [6] and the feature similarity
comparison of contrastive learning as a regularization term for local training.
Then, we conducted an encoder prototype comparison training to align the
feature mappings of the client encoder and improve the discriminability of
the global encoder feature mappings.

• Based on high discriminability feature mappings, we estimated the statis-
tical information of global features unbiasedly and used the corresponding
Gaussian mixture model [7] to generate class-balanced simulated features for
retraining the global classifier. This corrected the model parameters of the
classifier and improved the classification accuracy of the global model on het-
erogeneous data.

• We conducted extensive experiments on datasets such as CIFAR-10 to eval-
uate the performance of TS-FedPC. The results indicate that compared to
FedAvg, FedProx, and MOON, TS-FedPC can significantly improve the clas-
sification accuracy of the global model in heterogeneous data environments.
Furthermore, it exhibits stability across different scenarios and possesses good
scalability.

The arrangement of this article is as follows: first, we conducted related work
in Sect. 2. Then, in Sect. 3, we introduced the FedECCR method. Experiments
are presented in Sect. 4. Finally, in Sect. 5, we summarize the contents of this
paper.

2 Related Work

There are two mainstream optimization methods for the problem of decreased
overall model accuracy caused by data heterogeneity, including the optimization
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methods based on data and the optimization methods based on the algorithm
of federated learning.

The Optimization Methods Based on Data. This method improves the
model accuracy by resolving the data heterogeneity between different clients,
including data sharing and data augmentation [8].

For the optimization method based on data sharing, Zhao et al. [9] proposed
maintaining a globally shared data set on a central server. Clients would then
randomly sample a portion of the data to mix with their local data set, reducing
Non-IID. Similarly, [10,11] have shared local data with the server to alleviate
non-IID. While this method can improve global model performance, generating
the shared data set is challenging because the server can’t sense the local data
set status. Additionally, downloading a portion of the shared data set violates
privacy protection requirements.

Data augmentation is a technique to increase the diversity of training data
by applying random transformations or knowledge transfer. It has been applied
to federated learning in [12]. This method sends label distribution information of
each client to the server, which calculates the sample number Nc and its mean
value N̄ for each category. If Nc < N̄ , the client needs to enhance the class
data and use the locally augmented data set to train the model. Studies [13–15]
have shown that data augmentation can improve the learning performance of the
global model on non-IID data sets. However, most of these techniques require
sharing label distribution information or some samples, which increases the risk
of data privacy leakage.

The Optimization Methods Based on the Algorithm. The research on
the algorithm level can be divided into three directions: gradient correction,
regularization methods, and personalized federated learning.

The representative method of the optimization method based on the gradi-
ent correction direction is SCAFFOLD [16]. This method uses a control variable
with the same size as the model gradient to predict the update direction of the
global model and then uses this control variable in the local training to cor-
rect the client’s gradient, adjusting the client’s update direction to the update
direction of the global model to alleviate the local model differences caused by
Non-IID. [17,18] also added control variables similar to SCAFFOLD to correct
client gradients during the local training process. Li et al. proposed a method [19]
to estimate the average update direction of the client and server-level classifiers
(i.e., the last few fully connected layers), and use their differences as control
variables to reduce the divergence of classifier update direction. It should be
noted that the gradient correction method will lead to a significant increase in
communication volume because an additional control variable containing multi-
ple high-dimensional matrices needs to be transmitted between the server and
clients in each aggregation round.

Regularization methods are commonly used in federated learning to suppress
the divergence of local models caused by heterogeneous data. FedProx uses the
squared Euclidean distance between the local model and the global model as the
regularization term [20], while FedCurv and FedCL use Elastic Weight Consoli-
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dation (EWC) to prevent catastrophic forgetting [21,22] based on the idea of life-
long learning [23] and using EWC [24] regularization term to penalize significant
updates to important parameters by local training, where important parameters
refer to model parameters that have a greater impact on federated tasks. MOON
applies contrastive learning to federated learning, adding the model contrastive
loss between the global model and the local model as the regularization term [25]
based on the contrastive learning technique [26], which significantly improves
the accuracy of the global model under data heterogeneous environment. How-
ever, regularization methods may bring additional communication overhead or
neglect the targeted handling of the internal structure of the model, resulting in
an insignificant accuracy improvement.

Unlike the above two approaches, personalized federated learning aims to
provide personalized solutions by adjusting the model according to the client’s
local task. Meta-learning and multi-task learning are the main types of person-
alized methods [27,28]. G-FML [29] is a group-based federated meta-learning
framework that adaptively divides clients into groups based on the similarity of
data distribution. SpreadGNN [30] is a federated multi-task learning framework
that uses a novel optimization algorithm with a convergence guarantee. Although
personalized federated learning can solve the problem of data heterogeneity by
building multiple personalized models, it does not consider the performance opti-
mization of the global model, making it unsuitable for scenarios that require a
powerful single global model.

Based on the research mentioned above, data augmentation and sharing
methods pose privacy risks, gradient correction methods increase communication
volume, and personalized federated learning isn’t suitable for scenarios requiring
a single global model. To train a powerful global model for practical applications,
we propose a federated optimization method that uses encoding contrast and
classification correction for non-IID optimization. This method aims to improve
global model accuracy in a data heterogeneous environment by alleviating the
impact of heterogeneous data on model encoders and classifiers without increas-
ing communication costs.

3 Method

In this section, we will introduce the federated optimization algorithm FedECCR,
which is based on encoding contrast and classification correction. First, we intro-
duce the overall process and ideas of FedECCR, and then focus on introducing
the two core steps of the algorithm, including encoder prototype contrastive
training and classifier unbiased simulation correction.

3.1 Method Overview

FedECCR divides a model ω into two parts: the encoder ωe and the classifier ωc.
The encoder is the collection of all hidden layers in the neural network, which is
designed to encode the input data into features. The classifier is the output layer
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of the neural network, which is responsible for making classification decisions
based on the features extracted by the encoder. The working principle of both is
as follows: the encoder encodes data that is originally low-discriminatory to high-
discriminatory features, and the classifier makes accurate classification decisions
based on these high-discriminatory features.

Due to the heterogeneity of the data, both the encoder and classifier of the
model have model biases. The model bias of the encoder can cause different
clients to have different feature encoding methods (also known as feature map-
ping), which reduces the discriminatory power of the global model feature map-
ping and increases the difficulty of the classifier’s decision-making. The model
bias of the classifier can cause significant differences in the classification decisions
of different clients for the same input data and decrease the overall classifica-
tion accuracy. To address this issue, FedECCR first adopts encoder prototype
comparison training to align the feature mapping of different client encoders,
while improving the discriminatory power of the global encoder feature map-
ping. Then, through unbiased simulation correction of the classifier, the decision
accuracy of the global classifier is improved. The overall architecture is shown
in Fig. 1.

Fig. 1. FedECCR algorithm structure
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As shown in Fig. 1, FedECCR mainly consists of the following two core
stages:

(1) Encoder prototype contrast training: In order to align the fea-
ture mappings of different client encoders while improving their discriminability,
FedECCR reconstructed the client loss function by adding the prototype contrast
loss Losspc on the basis of the original classification loss Lossce. The prototype
refers to the center of each feature cluster. Losspc can make the encoder extract
feature vectors that aggregate towards the prototype of the corresponding cat-
egory and away from the prototypes of other categories, thus supervising each
client encoder to learn consistent and highly discriminative feature mappings.
In the local training process, the client first calculates the prototype contrast
loss Losspc using the prototype and the features extracted by the encoder, then
calculates the classification loss Lossce based on the output of the classifier,
and finally combines Losspc and Lossce as the final loss value for local model
parameter optimization.

(2) Classifier unbiased simulation correction: In order to eliminate the
model bias of the classifier and improve classification accuracy, FedECCR gener-
ates class-balanced simulation features based on a Gaussian mixture model and
retrains the global classifier model parameters using the simulation features to
correct classification decisions. Specifically, the client first extracts features on
the local data set and calculates the mean μ(i) = {μ

(i)
1 , μ

(i)
2 , ..., μ

(i)
C } and covari-

ance
∑(i) = {∑(i)

1 ,
∑(i)

2 , ...,
∑(i)

C } of feature F (i). The server then aggregates
the statistical information of the global features, i.e., the mean μ and covariance∑

. Based on the statistical information of the global features, the server uses
a Gaussian distribution generator to generate an equal amount of simulation
features for each data category and retrains the global classifier with these sim-
ulation features. As the classifier is the output layer of the model, the optimized
output layer parameters obtained from the above steps can make more accurate
classification decisions.

3.2 Encoder Prototype Comparison Training

The powerful data-fitting ability of deep learning models relies on the multi-level
model structure and the discriminatory power of the encoder feature mapping
directly affects the classification accuracy of the classifier. However, in federated
learning, model bias caused by data heterogeneity causes different client encoders
to learn inconsistent feature mappings. After model aggregation, the globally
extracted features of the global encoder often do not have high discriminatory
power, which in turn affects the classification accuracy of the model.

To address the above problems, we construct prototype contrast loss based on
the feature similarity comparison of prototype learning and contrastive learning
techniques, in order to supervise the learning of feature mapping for each client-
side feature and enable the encoder of the client-side to learn consistent and
highly separable feature mapping, thus reducing the model bias of the encoder.

According to reference [6], we refer to the prototype calculated based on
client-side features as a local prototype, while the global prototype is obtained
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by averaging the local prototypes of each client side. The design idea of prototype
contrast loss Losspc is to move the features closer to the global prototype of the
corresponding category while moving away from the global prototypes of other
categories. The specific calculation method can be seen in Eq. (1).

Losspc = log
exp(sim(f (i)

j , zk)/τ)
∑

k̃ �=kexp(sim(f (i)
j , zk̃)/τ)

,

where sim(f (i)
j , zk) = (f (i)j

�
zk)/(‖ f

(i)
j ‖2 · ‖ zk ‖2

(1)

Here, f
(i)
j represents the features corresponding to the j input data of client

i with category k, and zk represents the global prototype of the k-th category
features. sim represents the cosine similarity, and τ is the temperature parameter
used to adjust the sensitivity of the Losspc function to difficult-to-distinguish
features. zk can be calculated according to Eq. (2):

zk =
1
N

N∑

i=1

z
(i)
k ,

where z
(i)
k =

1
ni,k

∑
(xj ,yj)∈Di,k

f
(i)
j
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Here, z
(i)
k represents the local prototype of the k-th category features of client

i, Di,k is the collection of the k-th category data in the local data set of client i,
and ni,k represents the amount of data in Di,k.

In order to coordinate the feature mapping learning of the client’s encoder
and the classification learning, based on the research results of Mu et al. [31], we
use a decay factor α to adjust the ratio between the client’s prototype contrast
Losspc and classification Lossce. The final client loss function is represented by
Eq. (3).

Loss = α · Losspc + (1 − α) · Lossce (3)

Here, α = 1 − r/R, r represents the current aggregation round of federated
learning, and R represents the total aggregation rounds.

Based on the loss function, conducting prototype contrast training of the
encoder can obtain a globally high feature-mapping discriminator encoder. The
specific process is shown in Algorithm 1. In each round of aggregation, the server
sends the global model and global prototype to the clients. After completing the
local training, the clients upload the local models and local prototypes to the
server, which aggregates them into new global models and global prototypes.
Iterate this process until the round of aggregation is complete.

After the comparison training of the encoder prototype, the feature maps of
each client encoder are supervised by the global prototype. The feature distribu-
tion shows the characteristics of intra-class cohesion and inter-class separation,
which promotes the significant improvement of the feature mapping distinction
of the global encoder aggregated by the client encoder.
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Observing the algorithm process of the comparison training of the encoder
prototype, it can be found that in each round of communication during the train-
ing process, in addition to transmitting the model, it is also necessary to transmit
the prototype. However, the prototype is usually a collection of low-dimensional
vectors, and its size can be ignored compared to the model parameters. There-
fore, it will not increase too much communication cost.

3.3 Unbiased Simulation Correction of Classifier

The classifier takes the features extracted by the encoder as input, and the
distribution of the features will directly affect the classification accuracy. In a
data-heterogeneous environment, the heterogeneity of the input data is further
amplified after passing through the layers inside the encoder and is ultimately
manifested as a strong non-IID feature distribution. Therefore, heterogeneous
data has a more serious model bias on the classifier than on the encoder.

We propose unbiased simulation correction of classifiers, which uses the gen-
erated simulation features with balanced categories to retrain the global classi-
fier, eliminates the model bias of the classifier, and improves the global model
classification accuracy.

Ideally, aggregating the data features of each client for retraining the global
classifier is the best way to correct the model parameters of the classifier but it
will cause a leakage of user privacy. Therefore, we assume that the values of each
feature follow a Gaussian distribution [32], and simulated features are generated
based on this distribution. Where each cluster of features follows a Gaussian
distribution with corresponding mean and covariance, by aggregating the means
and covariances of each cluster of features from all local data sets, we obtain an
unbiased estimate of the mean and covariance of the global features and thus can
generate simulated features that follow the Gaussian distribution of the global
features.

Specifically, the server sends the globally trained encoder, which has been
compared with the prototype encoder, to each client. Client i uses the global
encoder to extract feature F (i) = {f

(i)
1 , f

(i)
2 , ..., f

(i)
ni } from its local data set,

where ni is the local data set size of client i. After feature extraction, client i

calculates the mean μ
(i)
k and covariance

∑(i)
k of each feature according to Eqs. (4)

and (5).
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Then, clients upload statistical information of their own features, which
includes the means μ(i) = {μ

(i)
1 , μ

(i)
2 , ..., μ

(i)
C } and covariances

∑(i) =
{∑(i)

1 ,
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2 , ...,
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C } of various features, to the server.
Next, the server aggregates the statistical information of all clients’ features

and estimates the mean and covariance of global features without bias. The
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aggregation method for feature mean is shown as Eq. (6), where N represents
the total number of the k-th data class in the global data set.

μk =
N∑

i=1

ni,k

nk
· μ

(i)
k (6)

Where nk represents the total number of the k-th type of data in the global
data set. The aggregation method of feature covariance

∑
k is complex and can

be calculated using the Eq. (7).
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After aggregation, the server obtains the means μ = {μ1, μ2, ..., μC} and
covariances

∑
= {∑

1,
∑

2, ...,
∑

C} of various features. Then, according to the
Gaussian distribution N (μ,

∑
), it generates M simulated features for each cat-

egory.
Finally, after freezing the parameters of the global encoder, the server uses

simulated features to retrain the global classifier, completes the correction of
the classifier model parameters, and improves the classification accuracy of the
global model. And the detail of this method is described as Algorithm 2.

It is worth noting that during the stage of unbiased simulation correction of
classifiers, the client only exposes the statistical information of its own features
to the server instead of the feature source, and, the server generates simulated
features based solely on this statistical information instead of real features, which
ensures the privacy and security of the client in the whole process. In addition,
thanks to the high discriminative feature mapping that aggregates classes and
separates them within the encoder, the simulation features generated by the
server are closer to the real features. Therefore, a small number of simulation
features can achieve a significant effect in correcting the classifier.

3.4 Algorithm Implementation

In this section, we provide detailed descriptions of the overall process of
FedECCR, and the details are as follows:

(1) The server initializes the global model and global prototype, which are sent
to the client during each round of aggregation (lines 1 to 5 of Algorithm 1).

(2) The client optimizes the local model during local training using classification
loss and prototype comparison loss (lines 13 to 22 of Algorithm 1).

(3) After local training, the client uploads the local model and local prototypes
to the server, which aggregates them to generate a new global prototype and
global model (lines 23 to 28 of Algorithm 1).

(4) The client uses the global model to extract features from its local data set
and uploads the mean and covariance of each feature to the server(lines 21
to 24 of Algorithm 2).
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(5) The server aggregates the unbiased estimated values of the global feature
mean and covariance (line 6 of Algorithm 2) and generates class-balanced
simulated features to retrain the classifier of the global model (lines 7 to 17
of Algorithm 2).

Algorithm 1: Encoder prototype contrast training
Input: Total aggregation rounds R, local data set Di, local training

epochs E, number of data categories C, number of clients C,
temperature parameter τ , and learning rate η

Output: Global model wR

1 Server:
2 Initialize global modelw0 and global prototypez0
3 for r = 0, 1, ..., R − 1 do
4 for i = 1, 2, ..., N do
5 Send wr and zrto client i

6 W
(i)
r+1, z

(i)
r+1 = LocalTraining(i, r, wr, zr)

7 end

8 zr+1 = 1
N

∑N
i=1z

(i)
r+1 , wr+1 =

∑N
i=1

ni

n w
(i)
r+1

9 end
10 return wR

11 Client:
12 LocalTraining(i, r, wr, zr) :
13 for epoch = 0, 1, 2..., El-1 do
14 foreach batch{xj , yj} in Di do
15 Extracting Features from wi

e,r to f i
j

16 Losspc = −log
exp(sim(f

(i)
j ,zr,k)/τ)

∑
k′ exp(sim(f (i)

j , zr,k′ )/τ)
17 α = 1 − r/R
18 Loss = α · Losspc + (1 − α) · Lossce

19 w
(i)
r = w

(i)
r − η∇Loss

20 end
21 end

22 w
(i)
r+1 = w

(i)
r

23 Encoder w
(i)
e,r+1 extracts feature f

(i)
j

24 for k = 1, 2, ..., C do
25 z

(i)
r+1,k = 1

ni,k

∑
(xj ,yj)∈Di,k

f
(i)
j

26 end

27 z
(i)
r+1 = {z

(i)
r+1,1, z

(i)
r+1,2, ..., z

(i)
r+1,C}

28 return w
(i)
r+1, z

(i)
r+1
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Algorithm 2: Classifier unbiased simulation correction
Input: Global model wR, number of simulation features for each category

M , epoch number of global classifier training E, learning rateη.
Output: Global model wR+1

1 Server:
2 for i = 1, 2..., N do
3 Send encoder we,R to client i

4 μ(i),
∑(i) = LocalFeatureStatistics(i, we, R)

5 end
6 μ = {μ1, μ2, ..., μC} ,

∑
= {∑

1,
∑

2, ...,
∑

C}
7 for k = 1, 2..., C do
8 F

′
k = {F

′
1,k, F

′
2,k, ..., F

′
M,k} based on Gaussian distribution N (μk,

∑k)
9 end

10 for epoch = 0, 1, 2..., E − 1 do
11 foreach batch{f

′
j , y

′
j} in F

′
= {F

′
1, F

′
2, ..., F

′
C} do

12 Lossce = CrossEntropyLoss(wc,R; f
′
j , y

′
j)

13 wc,R = wc,R − η∇Lossce

14 end
15 end
16 wc,R+1 = wc,R, wR+1 = (we,R, wc,R+1)
17 return wR+1

18 Client:
19 LocalFeatureStatistics(Encoder we,R, Server i):
20 foreach batch{xj , yj} in Di do
21 Extract feature f

(i)
j from we,R

22 end

23 μ(i) = {μ
(i)
1 , μ

(i)
2 , ..., μ

(i)
C } for feature

∑(i) = {∑(i)
1 ,

∑(i)
2 , ...,

∑(i)
C } by

formulas (4) and (5).
24 return μ(i),

∑(i)

4 Experiment

In this section, we experimentally verify the federated optimization algorithm
FedECCR based on encoder contrast and classifier correction. We conduct exper-
iments to verify the accuracy and scalability of FedECCR with Non-IID data,
compared with MOON, FedProx, and FedAvg algorithms. We also analyze the
feature distribution of different algorithms to verify the high distinguishability
of FedECCR features and conduct ablation experiments of classifier correction
to demonstrate the accuracy improvement effect of FedECCR.
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4.1 Experimental Setup

(1) Datasets and models: We used three popular datasets: EMNIST, CIFAR-
10, and CIFAR-100. To introduce data heterogeneity, we partitioned non-IID
datasets using the Dirichlet distribution [33]. We use a simple CNN model for
EMNIST and CIFAR-10, which includes two convolutional layers, two pooling
layers, and five fully connected layers, and a ResNet-50 for CIFAR-100.
(2) Parameter Setting: We used 10 clients, 100 aggregation rounds, 10 local
epochs per client, a learning rate of 0.01, batch size of 64, and a Non-IID data
set divided by 0.5. We adjusted the regularization coefficients for MOON and
FedProx and set the temperature parameter to 0.5 in MOON and 0.5 or 1 in
FedECCR, depending on the dataset. In the EMNIST dataset experiments, all
algorithms converged after 30 rounds of aggregation, so the aggregation rounds
were set to 30. For the unbiased classifier simulation correction phase, we gener-
ated 400 simulated features for each data class and set the number of epochs for
service retraining classifiers to 20 based on multiple rounds of experimentation
and testing.
(3) Environment: All experiments were conducted on Ubuntu using Python
with the PyTorch framework. Data stream processing relied on the torchvision
library, while Matplotlib was used for visualization. Other core libraries used
include NumPy, Scikit-learn, and Wandb.
(4) Baseline: We used FedAvg, FedProx, and MOON as baselines. FedAvg
is a classic and effective federated learning algorithm. FedProx introduces a
regularization term to solve the heterogeneity problem of data, while MOON
addresses the heterogeneity problem of data by introducing prototype features
into federated learning.

4.2 Accuracy

We calculated the test accuracy of FedAvg, FedProx, MOON, and FedECCR
algorithms on the EMNIST, CIFAR-10, and CIFAR-100 data sets respectively,
and calculated the error range of the accuracy through multiple experiments, as
shown in Table 1.

Table 1. Test accuracy of FedAvg, FedProx, MOON, and FedECCR on EMNIST,
CIFAR-10, and CIFAR-100 data sets

EMNIST CIFAR-10 CIFAR-100

FedAvg 84.77%± 0.2% 67.13%± 0.2% 66.85%± 0.4%

FedProx 85.33%± 0.1% 68.12%± 0.3% 67.27%± 0.2%

MOON 84.93%± 0.1% 69.18%± 0.5% 68.83%± 0.4%

FedECCR 85.66%± 0.1% 70.89%± 0.3% 74.32%± 0.3%

From the test accuracy results in Table 1, it can be seen that FedECCR has
the highest test accuracy in different data set experiments, with test accuracies of
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85.66%, 70.89%, and 74.32% on the EMNIST, CIFAR-10, and CIFAR-100 data
sets respectively. The accuracy of FedProx is not significantly improved, com-
pared with FedAvg, as it only uses end-to-end regularization to restrict model
bias, and the regularization coefficient remains unchanged during training. On
the EMNIST data set, it increases by about 0.56%, on CIFAR-10 it increases
by about 0.99%, and on CIFAR-100 the accuracy decreases by 0.55%. MOON
obtains a more significant improvement in accuracy by restricting the targeted
bias of the encoder. Compared to FedAvg, it improves the model accuracy by
about 2.05% and 0.96% on CIFAR-10 and CIFAR-100 respectively. However, in
the experiments on EMNIST, the accuracy improvement of MOON is generally
not significant, and the model accuracy is only about 0.16% higher than that of
FedAvg. We believe this may be due to MOON’s feature comparison technology
being better suited for handling RGB image classification tasks.

The FedECCR algorithm benefits from the separate optimization of the
model encoder and classifier, with the highest accuracy improvement. On
EMNIST, it is approximately 0.89% higher than FedAvg, approximately 0.33%
higher than FedProx, and approximately 0.73% higher than MOON. On CIFAR-
10, it is approximately 3.76% higher than FedAvg, approximately 2.77% higher
than FedProx, and approximately 1.71% higher than MOON. On CIFAR-100, it
is approximately 5.13% higher than FedAvg, approximately 5.68% higher than
FedProx, and approximately 4.17% higher than MOON.

In summary, compared to other algorithms, FedECCR can more effectively
improve the accuracy of global models in federated learning in heterogeneous
data environments.

4.3 Scalability

In order to verify the scalability of the FedECCR algorithm, we conducted exper-
iments on different values of the Non-IID degree of the data set and the number
of clients, and comprehensively compared the model accuracy of FedECCR with
FedAvg, FedProx, and MOON in multiple scenarios.

(1) Degree of Non-IID of the data set:
We use prior distribution hyperparameters of the Dirichlet to control the degree
of Non-IID of the data set. The smaller the value, the higher the degree of Non-
IID of the data set. We set three different values of 0.1, 0.5, and 5, and compared

Table 2. Model accuracy of the algorithm under different degrees of Non-IID

β = 0.1 β = 0.5 β = 5

FedAvg 61.86%± 0.6% 67.13%± 0.2% 73.34%± 0.1%

FedProx 61.65%± 0.4% 68.12%± 0.3% 73.03%± 0.1%

MOON 62.55%± 0.1% 69.18%± 0.5% 73.47%± 0.1%

FedECCR 65.49%± 0.2% 70.89%± 0.3% 73.80%± 0.1%
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the model accuracy under these three values on the CIFAR-10 data set, as shown
in Table 2.

The results show that when β = 0.1, the model accuracy of FedECCR is
approximately 3.63% higher than FedAvg, approximately 3.84% higher than Fed-
Prox, and approximately 2.94% higher than MOON. When β = 0.5, the model
accuracy of FedECCR is approximately 3.76% higher than FedAvg, approx-
imately 2.77% higher than FedProx, and approximately 1.71% higher than
MOON. When β = 5, due to the low degree of Non-IID of the data set, we
reduced the prototype contrastive loss of FedECCR by a factor of 10 to reduce
the impact of feature mapping learning on classification learning, and the final
model accuracy is approximately 0.46% higher than FedAvg, approximately 0.5%
higher than FedProx, and approximately 0.33% higher than MOON.

From the above results, we can see that the FedECCR can maintain stable
performance on data sets with different degrees of Non-IID, and the model accu-
racy is higher than FedAvg, FedProx, and MOON. In addition, it is worth noting
that the model accuracy of FedProx decreases when the degree of Non-IID of the
data set changes, which may be because its regularization term only considers
end-to-end model differences and cannot control the penalty strength of internal
structural differences in the model.

(2) Number of clients:
In order to test the performance of the algorithm under different client capacities,
we expanded the number of clients from the default 10 to 50 and 100 respectively,
and compared the model accuracy of all algorithms. The specific results are
shown in Table 3. It should be noted that we used different client sampling rates
for the setting of 50 clients and 100 clients. In the case of 50 clients, the client
sampling rate is 1, and all clients participate in every round of model aggregation;
in the case of 100 clients, we refer to MOON [27] and set the client sampling rate
to 0.2, with only 20 clients participating in every round of model aggregation.

Table 3. Accuracy under different client numbers and aggregation rounds settings

client = 50 client = 100

FedAvg 66.42%± 0.1% 62.28%± 0.4%

FedProx 66.51%± 0.2% 62.22%± 0.1%

MOON 66.27%± 0.3% 62.99%± 0.1%

FedECCR 67.09%± 0.2%(τ = 0.5) 62.76%±0.2%(τ = 0.5)

The results showed that when Clients = 50, the model accuracy of FedECCR
is higher than other algorithms, with an increase of approximately 0.67% over
FedAvg, approximately 0.58% over FedProx, and approximately 0.82% over
MOON. When Clients = 100, the model accuracy of FedECCR is better than
FedAvg and FedProx, with approximately 0.48% higher than FedAvg and
approximately 0.54% higher than FedProx.
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It should be noted that when Clients = 100, the model accuracy of FedECCR
is slightly lower than MOON, with a decrease of approximately 0.23%. At this
time, we observed that the silhouette coefficient of the encoder feature distri-
bution of FedECCR was highest only at 0.047, while it was highest at 0.092
when Clients = 50. This is because the sampling rate of 0.2 appears low when
Clients = 100. A sampling rate that is too low will reduce the discrimination of
the encoder feature map, resulting in a decrease in the effect of improving model
accuracy.

4.4 Feature Discrimination

In order to verify that the prototype comparison training can promote the model
encoder to learn high-discriminatory feature mapping, we compared the feature
distributions of different algorithms on the EMNIST and CIFAR-10 data sets.
From the result in Fig. 2, we can see that, compared with FedAvg, FedProx,
and MOON, FedECCR has significantly higher cohesion and farther cluster
distances for various feature clusters, and the feature distribution has higher
discriminability.

Fig. 2. Feature distribution of FedECCR, FedProx, MOON, and FedAvg

In order to observe the changes in feature mapping discriminability during
the training process, we calculated the changes in silhouette coefficient of the
feature distribution of each algorithm during the training process, and plotted
the change curves, as shown in Fig. 3.

In Fig. 3, the final silhouette coefficients of FedECCR, FedProx, MOON, and
FedAvg on the EMNIST data set are 0.3159, 0.1638, 0.1803, and 0.1633, respec-
tively; on the CIFAR-10 data set, the final silhouette coefficients are 0.0809,
0.0366, 0.0343, and 0.0466, respectively. It can be seen that on these two data
sets, the silhouette coefficients of FedECCR’s feature distribution after train-
ing are the highest, and significantly higher than those of other algorithms.
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Fig. 3. The change curves of silhouette coefficients of the feature distribution of
FedECCR, FedProx, MOON, and FedAvg.

This indicates that the feature mapping discriminability of the global encoder
of FedECCR is higher than that of other algorithms.

The above results show that the prototype comparison training of
FedECCR’s encoder can indeed promote the characteristics of intra-cluster
aggregation and inter-cluster separation of feature distribution, thus effectively
improving the discrimination of the global encoder’s feature mapping.

4.5 Classifier Correction Ablation Experiment

The higher the discriminability between features of different categories, the
clearer the differences between the corresponding Gaussian distributions. At this
time, the simulated features generated based on the mean and covariance of the
features are closer to the real features, the correction effect on the classifier is
better, and the model accuracy is significantly improved.

In this section, we performed unbiased simulation correction on FedAvg, Fed-
Prox, and MOON, and analyzed the effect of feature mapping discriminability
on classifier correction from the results of accuracy improvement, as shown in
Table 4. We use USCC (Unbiased Simulation Correction of Classifier, the second
stage of the FedECCR algorithm) to identify the classifier unbiased simulation
correction operation, such as FedAvg-USCC, which represents the FedAvg algo-
rithm after being corrected by the classifier unbiased simulation.

On the EMNIST data set, unbiased simulation correction brought about
approximately 0.16%, 0.14%, and 0.21% accuracy improvement to FedAvg, Fed-
Prox, and MOON, respectively; on the CIFAR-10 data set, it brought about
approximately 1.05%, 1.58%, and 0.32% accuracy improvement, respectively; on
the CIFAR-100 data set, it brought about approximately 0.23%, 0.09%, and
0.14% accuracy improvement, respectively.

From the results, even after adding unbiased simulation correction to other
algorithms, FedECCR’s accuracy improvement effect is still the best, which indi-
cates that high-discriminatory feature mapping usually helps the classifier make
more accurate classification decisions. And it mainly consists of two parts of
calculation time for FedECCR. One is the encoder prototype comparison train-
ing phase, an additional 982.6 s of computation time was required to calculate
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Table 4. Comparison of unbiased correction accuracy of classifiers of different algo-
rithms

EMNIST CIFAR-10 CIFAR-100

FedAvg 84.77%± 0.6% 67.13%± 0.2% 73.34%± 0.1%

FedProx 61.65%± 0.4% 68.12%± 0.3% 73.03%± 0.1%

MOON 62.55%± 0.1% 69.18%± 0.5% 73.47%± 0.1%

FedAvg-USCC 62.55%± 0.1% 69.18%± 0.5% 73.47%± 0.1%

FedProx-USCC 62.55%± 0.1% 69.18%± 0.5% 73.47%± 0.1%

MOON-USCC 62.55%± 0.1% 69.18%± 0.5% 73.47%± 0.1%

FedECCR 65.49%± 0.2% 70.89%± 0.3% 73.80%± 0.1%

prototype features for each epoch trained on local clients. The other is classifier
stage, it was executed once at the end of training and only took 27 s. The total
training time is about 25,000, so these two stages account for 4.03% of the overall
computational cost.

5 Conclusion

The federated learning method is a popular distributed machine learning
method, which cooperates with the clients and server to mine the large-scale
data value while keeping data locally, which can protect the privacy of data.
However, in practical applications, there is significant heterogeneity in the data
on the federated learning client, which can cause divergence in the model update
direction during local training, leading to local model bias. So the global model
generated by aggregating biased models has significant differences from the ideal
model, resulting in performance loss. To address the problem of poor accuracy
of the global model due to local model bias in data heterogeneous environments,
we propose a federated optimization algorithm FedECCR based on encoding
contrast and classification correction. It specifically resolves model encoder and
classifier bias, introducing prototype contrast loss as a regularization term in
local training of the encoder, promoting consistent and separable feature maps
to be learned by different clients, and then using simulated features generated
from the statistical information of each client’s features to retrain the classi-
fier and correct its model parameters. Through experiments, we verified that
compared with FedAvg, FedProx, and MOON, FedECCR can improve the accu-
racy of the global model by approximately 1% to 6% on multiple data sets such
as CIFAR-10. In addition, FedECCR has good scalability and can maintain the
high accuracy of the global model in situations where the Non-IID degree and the
number of clients change. Since the classifier stage generates simulation features,
which may cause overfitting during training, we will research the optimization
for this problem in the future.
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Abstract. In Internet of Vehicles (IoV) system, Federated Learning
(FL) is a novel distributed approach to processing real-time vehicle data
that enables training of shared learning models while ensuring data pri-
vacy. However, existing FL still face numerous challenges in IoV. Firstly,
the fast convergence with FL models is difficult to achieve due to the high
mobility of vehicles and the non-independent identical distribution (Non-
IID) among data collected by vehicles. Moreover, the parameter aggre-
gation process of FL incurs significant communication overhead, and the
varying computing power of vehicles results in the straggler. To address
these issues, this paper proposes a Cluster-based Semi-Asynchronous
Federated Learning framework for IoV (CSA FedVeh). Specifically, we
propose a Space-Time and Weight DBSCAN density clustering algorithm
(STW-DBSCAN) that relies on both the space-time location and model
weight similarities of vehicles. Clustering of vehicles can alleviate the
impact of Non-IID data, and the joint training of data vehicles can reduce
resource consumption and mitigate the straggler effect. In addition, we
adopt a semi-asynchronous FL aggregation mechanism to reduce com-
munication time and improve FL efficiency. Experimental results show
that compared with baselines under Non-IID datasets, CSA FedVeh can
reduce the running time by about 24.6% to 60.2%, and reduce commu-
nication consumption by 3.4% to 62.07% on MNIST dataset and 1.01%
to 68.6% on GTSRD dataset.

Keywords: Internet of vehicles · Federated learning · Cluster ·
Semi-asynchronous

1 Introduction

With the rapid development of wireless communication and Artificial Intelli-
gence (AI) technologies, Internet of Vehicles (IoV) has emerged as a significant
application scenario for 5G and beyong. It is playing a crucial role in the fields
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of autonomous driving and Intelligent Transportation Systems (ITS) [1,2]. How-
ever, Intel estimates that each smart car will generate approximately 4000GB
of data per day, which is equivalent to the data produced by nearly 3000 mobile
phone users. The real-time processing of the data collected from the vehicles
poses a thorny issue. Meanwhile, with the development of Mobile Edge Comput-
ing (MEC) and Federated Learning (FL) technologies, on the one hand, as the
vehicle data is generated in IoV, MEC naturally combines with IoV, enabling
data processing to be performed in the vicinity of the vehicles through the com-
puting power and storage resources of edge server (ES) [3]. On the other hand,
in 2016, Google proposed federated learning [4] as a distributed deep learning
paradigm, which allows vehicles to train their local deep learning models inde-
pendently using local data and aggregates them into a global model. Vehicles
do not directly send local data and only share local model parameters, which to
some extent, protects vehicle privacy [5]. As real-time computing services on the
vehicular edge continue to grow, the combination of IoV and FL technology will
become a research focus.

Although the existing FL clustering approaches and aggregation mechanisms
have been effective in some IoV scenarios, several challenges persist in IoV,
including: as a result of differences in sensors and processors of vehicles and
devices, the data collected by vehicles is the non-independent identical distri-
bution (Non-IID). When using such Non-IID data, FL model may significantly
decrease in terms of convergence speed and accuracy [6,7]. Vehicles are typically
in a state of high-speed mobility and their distance to ES varies over time, which
can result in communication congestion and delays when participating vehicles
of FL frequently update model parameters to ES. Additionally, the computa-
tional capabilities of some vehicles differ, resulting in slow-performing stragglers
significantly prolonging the delay of each round FL aggregation and ultimately
impacting the convergence speed of the global model.

To tackle the aforementioned three challenges, we acknowledge the signifi-
cance of cooperation among vehicles and propose a novel vehicle clustering-based
semi-asynchronous federated learning framework for IoV (CSA FedVeh). Our
contributions are summarized as follows:

– We establish a distributed training network for FL, which combines local
training in vehicles and global aggregation in ES. To ensure the quality of
FL model for vehicles and support the faster possible model convergence, we
formulate a minimization problem for the convergence time of global model
aggregation.

– Based on the CSA FedVeh framework, we propose a Space-Time and Weight
DBSCAN density clustering algorithm (STW-DBSCAN) that relies on both
the space-time location similarities and model weight similarities of vehicles.
This algorithm efficiently solves the straggler problem and accelerates local
model training. Meanwhile, a semi-asynchronous federated aggregation mech-
anism is adopted to further reduce resource consumption and communication
costs by adjusting server waiting time.
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– We establish a simulation for vehicle-clustered FL network. Experimen-
tal results demonstrate that, under a fixed system operation time, our
CSA FedVeh framework outperforms four other benchmark frameworks by
shortening the running time by approximately 24.6% to 60.2%, while achiev-
ing similar accuracy. Additionally, on MNIST dataset, the communication
consumption is reduced by 3.4% to 62.07%, and on GTSRD dataset, the
communication consumption is reduced by 1.01% to 68.6%, when compared
to achieving similar accuracy.

2 Related Work

In recent years, an increasing number of scholarly investigations have endeav-
ored to implement FL frameworks within IoV scenario [8–10]. Huang et al. [8]
propose a novel FL framework called ‘FedParking’ that assists parked vehicles in
providing computational offloading services and utilizes LSTM model for parking
space estimation. Liang et al. [9] propose a semi-synchronous FL (Semi-SynFed)
protocol and a dynamic aggregation scheme to asynchronously aggregate model
parameters, in order to enhance the performance of FL in IoV scenario. Huang
et al. [10] propose an asynchronous FL privacy-preserving computation model
(AFLPC) for 5G-V2X, which aims to better utilize the low latency advantage
of 5G networks, while also protecting data privacy in IoV. Similar to the afore-
mentioned framework, we also considered the implementation of FL in IoV for
real-time processing of data collected by vehicles.

Existing FL frameworks have been effective in addressing the impact of Non-
IID data and resource constraints [11–13]. Ma et al. [11] propose a task offload-
ing method based on data and resource heterogeneity in the HFEL environment,
incorporating the statistical features of data through information entropy into
the cost function to reshape the edge data. Briggs et al. [12] improve FL by
introducing a hierarchical clustering step (FL+HC), which separates client clus-
tering based on the similarity between clients’ local updates and the global joint
model. Tan et al. [13] propose a novel federated prototype learning (FedProto)
framework, in which communication between devices and servers is done via class
prototypes rather than gradients. Considering the presence of Non-IID data and
resource constraints in IoV, we propose a clustering algorithm in this paper that
alleviates the problem of Non-IID data and resource constraints in IoV, while
effectively mitigating the impact caused by high vehicle mobility in IoV.

Since global aggregation is required for parameter uploading in FL, exist-
ing FL aggregation mechanisms can be classified into two types based on their
aggregation mechanisms: synchronous [4] and asynchronous [14] mechanisms.
For synchronous FL mechanisms, the ES needs to collect all the parameters
obtained from the participating vehicles before executing the aggregation pro-
cess. However, the impact of stragglers [15], caused by poor network or hardware
resources of some vehicles, can lead to significant delays. As for asynchronous
FL mechanisms, the ES can aggregate the parameters without waiting for all
vehicles in a round FL aggregation, but this can result in gradient divergence,
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further decreasing the performance of the FL model. In this work, we adopt
the semi-asynchronous mechanism [16–18], which further reduces resource con-
sumption and communication costs by adjusting the server’s waiting time. Sun
et al. [17] propose a semi-asynchronous FL framework for extremely heteroge-
neous devices. Ma et al. [18] propose a semi-asynchronous federated learning
mechanism called ‘FedSA’ and theoretically prove the convergence of FedSA. In
contrast to the aforementioned framework, we consider vehicles of high-speed
mobility and combine a semi-asynchronous mechanism with clusters of vehicles.

3 System Model and Problem Formulation

In this section, we firstly introduce the clustered federated learning process in
IoV scenario. Sequentially, we describe the cluster-based semi-asynchronous fed-
erated learning framework (CSA FedVeh). Finally, we propose the problem of
minimizing the global model training time and formalize it for a better address
of the challenges in IoV federated learning.

3.1 Vehicle-Clustered Federated Learning Network

Fig. 1. Illustration of Cluster FL process in IoV.

As shown in the Fig. 1, we consider a vehicle-clustered FL network system,
consisting of vehicular users (VUs) and edge server (ES). Assuming N VUs ran-
domly distributed in IoV system, forming a set of VUs V = {1, ..., n, ...., N} ,
these VUs are clustered into M vehicle clusters using the STW-DBSCAN algo-
rithm that relies on both the space-time location similarities and model weight
similarities of vehicles (introduced in Sect. 4), forming a set of vehicle clusters
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C = {c1, ..., cm, ...., cM} . Assuming convergence of FL model after K rounds of
global aggregation, where k ∈ {1, 2, ...,K}.

In the vehicle-clustered FL network system, due to the close proximity of the
VUs within a vehicle cluster, the collected information and the trained models
also are highly similar, it can be assumed that the data of the VUs in the vehicle
cluster are the same and can be partitioned into shared data blocks (SDBs).
During the training process, VUs in the vehicle cluster only need to train their
own models using their own historical experience data blocks (DBs), without
the need to transmit local data, where DBs are partitioned according to the
computing capabilities of VUs within each vehicle cluster. The main vehicle
cluster head (MCH) is responsible for uploading and downloading and sending
model weight parameters. If the MCH is offline, a vice vehicle cluster head (VCH)
will be activated to take its place (Table 1).

Table 1. Notations and their meanings.

Notation Meaning

V The set of vehicular users

C The set of vehicle clusters

K The global model will converge after K rounds of global aggregation

Ck The vehicular users participating in the global updating in round k

q The number of vehicle clusters participating in each round of global aggregation

T soj
v,n The sojourn time of vehicular user n at the current edge server

T
loc

v,n The computation time of each round of local model training for vehicular user n

T
loc

c,m The computation time of each round of local model training for vehicle cluster cm

T comm
k,m The communication time for vehicle cluster cm in the k-th round of global aggregation

T comp
k,m (sm

k ) The local computation time of vehicle cluster cm between the start time of the k-th
round of global aggregation and the end time of local training

Tk
sort Training time for all clusters sorted in the k-th round of global aggregation

wv,n
k The local model weight parameter derived by local updating on vehicular user n at the

k-th round of global aggregation

wc,m
k The cluster model weight parameter derived by cluster updating on vehicle cluster cm at

the k-th round of global aggregation

wk The global model weight parameter in round k

∇Fv,n(wk) Gradient of vehicular user n at the k-th round of global aggregation

∇Fc,m(wk) Gradient of vehicle cluster cm at the k-th round of global aggregation

∇F(wk) Global gradient of the k-th round of global aggregation

sm
k The number of global aggregation rounds that differ between the k-th round of global

aggregation in which vehicle cluster cm participated and the global aggregation in which
this cm participated last time

δ The model weight parameter of similarity threshold

μ The global aggregation stopping threshold

τ The number of local model update rounds for all vehicle users when participating in a
global aggregation

ε The neighborhood threshold for clustering

Nε(n) The ε neighborhood of vehicular user n

N+
ε (n) The ε+ neighborhood of vehicular user n
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We consider an unidirectional, straight, multi-lane IoV scenario, where VUs
travel along the X-axis in the direction of the arrow. At time t, assuming that VU
n is traveling at a constant speed ῡn, its position can be denoted as {xn(t), yn(t)}.
The associated ES e is located at a fixed position {xe, ye} with a coverage radius
of r. Therefore, the remaining distance of VU n within the coverage area of its
ES can be defined as:

Πi =
√

r2 − (ye − yn(t))2 − (xn(t) − xe). (1)

Only when VU n is within the coverage area of ES, the parameters can be
uploaded to the current ES. Therefore, the sojourn time of VU n at the current
ES is defined as:

T soj
v,n =

Πn

ῡn
, (2)

where ῡn is the speed of VU n.
In order to calculate the distance between arbitrary nodes i and j (including

VUs and ES), the Euclidean distance formula is introduced:

dist(i, j)=
√

(xi − xj)
2 + (yi − yj)

2
. (3)

We resort to the Shannon capacity formula to compute the data rate of nodes
i to j in FL the k-th round of global aggregation and denoted as:

Rk
i,j(dist(i, j)) = Bilog2(1 +

P tx
i · h(dist(i, j))

N0
), (4)

where N0 represents the noise power, h(dist(i, j)) is the channel gain at the
distance between node i and j, P tx

i and Bi represent the transmission power
and the communication bandwidth from node i to node j.

During the k-th round of global aggregation, the uplink transmission time
for a vehicle cluster cm to transmit its cluster model weight parameters to its
corresponding ES can be expressed as:

T tx
k,m =

∣∣wk
m

∣∣
Rk

m,e(dist(m, e))
. (5)

The downlink transmission time for an ES to transmit global model weight
parameters to the MCH of vehicle cluster cm in its coverage area can be expressed
as:

T rx
k,m =

|wk|
Rk

e,m(dist(e,m))
. (6)

As the time for intra-cluster transmission of parameters from cluster mem-
ber VUs to the MCH is short, this transmission time is neglected in this paper.
Therefore, for the k-th round of global aggregation in ES, the communication
time for a vehicle cluster cm consists of the uplink transmission time and down-
link transmission time of its MCH.

T comm
k,m = T tx

k,m + T rx
k,m. (7)
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3.2 Cluster-Based Semi-asynchronous Federated Learning
Framework for IoV (CSA FedVeh)

In the CSA FedVeh, assuming Ck represents the set of vehicle clusters participat-
ing in the k-th round of global aggregation, while semi-asynchronous aggregation
quantity q is the number of vehicle clusters taking part in each round of global
aggregation.

c1

c2

c3

c4

ES

.....

Round 1 Round 2 Round 3

Fig. 2. Illustration of the CSA FedVeh framework when q=2.

The vehicle cluster cm that participate in global aggregation process down-
load the global training model weight parameters wk from the ES and distribute
them to all VUs within the vehicle cluster. Each VU then updates its local model
weight parameters based on its own historical data after uploads their new model
weight parameters to the MCH, which synchronously aggregates vehicle cluster
model weight parameters wc,m

k+1 and sends them back to the ES. The ES col-
lects q sequentially arrived cluster model weight parameters and performs global
aggregation. Meanwhile, the vehicle clusters that did not participate in global
aggregation continue their training. After the ES performs global aggregation,
it generates the next round of global model weight parameters wk+1 and sends
them to the MCHs that uploaded local weight parameters in the previous round,
which then transmit them to the VUs within their respective vehicle clusters for
the next round of training.

For instance, as shown in Fig. 2, The vehicle clusters participating in global
aggregation in the first, second, and third rounds are C1 = {c1, c3}, C2 = {c4, c1},
and C3 = {c2, c3}, respectively.

To formalize the problem, we will introduce the CSA FedVeh framework
from three aspects: vehicle user model training, intra-cluster model aggregation,
and semi-asynchronous global model aggregation, which is formally described in
Algorithm 1.
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Vehicle User Model Training. Local loss function: each VU trains a local
model based on local DBs, where the loss function of the k-th round FL training
model of VU n is defined as:

Fv,n(wv,n
k ) =

1
Dn

∑
(xd,yd)∈Dn

f(wv,n
k , xd, yd), (8)

where f(wv,n
k , xd, yd) is the loss function of the model based on the training set

samples xd and their predicted labels yd under the local weight parameter wv,n
k ,

Dn and Dn
Δ= |Dn| denote the local trained DB and the number of samples of

VU n after partitioning the SDB.
Local model update: after receiving the global model weight parameter wk,

VU n performs τ iterations for local parameter updates:

wv,n
k+1 ← wk−η∇Fv,n(wk), (9)

where η is the learning rate and ∇Fv,n(wk) is the gradient computed by local
model of VU n under the global weight parameter wk.

Local resource cost: the computation time and energy consumption of each
round of local model training for VU n are denoted as:

T
loc

v,n=

Dn∑
dn=1

ψdn

cp
n · fn

, E
loc

v,n=pn · T
loc

v,n, (10)

where ψdn
is the total number of Floating Point Operations per Second (FLOPS)

required for sample dn, VU is characterized by a processing capability equal to
cp
n (FLOPS) per CPU cycle, fn is CPU frequency and pn is the computational

power of VU.

Intra-Cluster Model Aggregation. Cluster model aggregation: The VUs
within vehicle cluster cm pass the trained local model weight parameter wv,n

k

to the MCH for intra-cluster aggregation, obtaining the cluster model weight
parameter:

wc,m
k ←

∑
n∈cm

Dn · wv,n
k , (11)

Cluster gradient aggregation: in order to determine the convergence of the
global model, it is necessary to upload the gradients from each vehicle cluster to
ES. Therefore, the aggregation of gradients from vehicle cluster cm is defined as:

∇Fc,m(wk) ←
∑

n∈cm

∇Fv,n(wk). (12)

Cluster resource cost: the computation time and energy consumption for
training each round of local model in vehicle cluster cm is defined as:

T
loc

c,m = max
c∈cm

{T
loc

v,c}, E
loc

c,m =
∑

c∈cm

E
loc

v,c. (13)
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Algorithm 1. CSA FedVeh
Input: the set of vehicle clusters C, semi - asynchronous aggregation parameters q,

number of vehicle local iterations τ
Output: the final global model weight parameter w∗
1: Initialize the cluster structure;
2: Initialize w0, k = 0, T = 0, E = 0;
3: while k �= K and ‖∇F(wk)‖ > μ ‖∇F(wk−1)‖ and T < Tmax and E < Emax do
4: Global Aggregation at the Edge Server
5: set k ← k + 1, and Ck = ∅;
6: while |Ck| �= q do
7: Receive update cm from C;
8: Compute T total

k,m according to Eq.(18);

9: if T total
k,m ≤ T soj

c,m then

10: update Ck ← Ck + {cm}, E ← E + E
loc

c,m;
11: end if
12: end while
13: Compute wk,∇F(wk), Tk according to Eq.(14),Eq.(15),Eq.(16);
14: Update T ← T+Tk, w∗ ← wk;
15: Send wk back to Ck;
16: Cluster Aggregation at cm

17: Receive local updates from all VUs in vehicle cluster cm;
18: Update T soj

c,m ← min
n∈cm

{T soj
v,n};

19: Compute wc,m
k ,∇Fc,m(wk),T

loc

c,m and E
loc

c,m according to Eq.(11),Eq.(12),Eq.(13);

20: Send wc,m
k ,∇Fc,m(wk), T soj

c,m and resource consumption T
loc

c,m, E
loc

c,m to ES;
21: Receive wk from ES and return it back to all VUs in vehicle cluster cm;
22: Procedure at Vehicle User n in Cluster cm

23: Receive wk from cm;
24: Perform local updates;

25: Compute T
loc

v,n and E
loc

v,n , T soj
v,n according to Eq.(10),Eq.(2);

26: Send wv,n
k+1,∇Fv,n(wk), T soj

v,n and resource consumption T
loc

v,n, E
loc

v,n to MCH;
27: end while
28: return w∗;

Semi-asynchronous Global Model Aggregation. Global model aggrega-
tion: during a round of global aggregation, when ES receives cluster model weight
parameters transmitted by q vehicle clusters, ES performs global aggregation:

wk+1 ← 1
D k

∑
m∈Ck

wc,m
k , (14)

where D k is the total number of samples from all participating vehicle clusters
in the k-th round of global aggregation.

Global Gradient aggregation: in order to determine the stopping criterion for
the convergence of the global model [19], the global gradient is defined as:

∇F(wk+1) ← 1
q

∑
m∈Ck

∇Fc,m(wk). (15)
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For the k-th round of FL aggregation in ES, the time taken for global aggre-
gation is determined by the longest computation time of the participating vehicle
cluster Ck, denoted as:

Tk=Tk
sort[q], (16)

where Tk
sort[q] represents the q-th element in the set Tk

sort(defined in Eq.(20)).
Assuming that all VUs update their local weight parameters τ times during

each cluster weight parameter upload, the local computation time of vehicle
cluster cm is the duration between the start time of the k-th round of global
aggregation and the end time of local training, denoted as:

T comp
k,m (sm

k ) =

⎧
⎪⎨
⎪⎩

T
loc

c,m · τ −
k−1∑

k−sm
k

Tk , sm
k > 0

T
loc

c,m · τ , sm
k = 0

, (17)

where sm
k represents the number of global aggregation rounds that differ between

the k-th round of global aggregation in which vehicle cluster cm participated and
the global aggregation in which this vehicle cluster cm participated last time, for
example in Fig. 2, where s31= 0, T comp

1,3 (s31) = T
loc

3 ·τ ; s12= 0, T comp
2,1 (s12) = T

loc

1 ·τ ;

s23= 2, T comp
3,2 (s23) = T

loc

2 · τ−
3−1∑
3−2

Tk= T
loc

2 · τ−T2−T1.

In the k-th round of ES global aggregation, the total time consumption of
vehicle cluster cm is the sum of local computation time and communication time,
represented as:

T total
k,m = T comp

k,m (sm
k ) + T

comm
k,m . (18)

Assuming that all vehicle clusters participate in the k-th round of global
aggregation, and the set of training times for all vehicle clusters C in the k-th
round of global aggregation is defined as:

Tk =
{
T total

k,1 , ..., T total
k,m , ...., T total

k,M

}
. (19)

We sort the set of training times Tk in ascending order:

Tk
sort = sort(Tk). (20)

We define the matrix of the number of times each vehicle cluster participates
in the global aggregation of ES as:

G =
(
g1 ... gm ... gM

)
, (21)

where gm denotes the number of times that vehicle cluster cm participates in
the global aggregation of ES, 0 ≤ gm ≤ K.

We define the matrix of energy consumption of all vehicle cluster as follows:

E =
(
Eloc

c,1 ... Eloc
c,m ... Eloc

c,M

)
. (22)
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3.3 Problem Formulation

The optimization problem formulated by the vehicle-clustered federated learning
network and the CSA FedVe framework can be described as:

(P1) : min
q,C

K∑
k=1

Tk

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C1 :
∥∥∇F(wk+1)

∥∥ ≤ μ ‖∇F(wk)‖

C2 :
K∑

k=1

Tk ≤ Tmax

C3 : τ · G · ET ≤ Emax

C4 : T total
k,m ≤ min

c∈cm

{T soj
v,c }

C5 : q ∈ {1, 2, ...,M}.

(23)

In problem P1, the objective function is to minimize the FL training time
while satisfying the constraints under the semi-asynchronous aggregation quan-
tity q and the vehicle network clustering strategy C. Constraint C1 corresponds
to the global aggregation stopping condition [19], where μ(0 ≤ μ ≤ 1). When
μ = 0, the global model achieves a precise solution, whereas μ = 1 indicates that
no progress has been made by the global model. Constraint C2 represents the
global training time constraint of FL, and constraint C3 represents the global
training energy constraint of FL. Here, Tmax and Emax refer to the maximum
acceptable global training time and energy consumption of FL, respectively. Con-
straint C4 denotes the total time spent on the k-th round of global aggregation
of vehicle cluster cm must not exceed the minimum sojourn time of VUs in the
vehicle cluster cm.

As many machine learning models have complex intrinsic properties, it is diffi-
cult to find closed-form solutions for the objective function. Therefore, in Sect. 4,
we designe some novel solutions that reduce the training time and resource costs
of FL while maintaining learning accuracy.

4 Methodology

To solve the aforementioned problems, in this section, we propose the STW-
DBSCAN clustering algorithm, which is designed to determine vehicle cluster-
ing strategies in dynamic IoV system. The algorithm decomposes the originally
high-complex intrinsic properties problem into two sub-problems: the vehicle
clustering problem and the semi-asynchronous aggregation mechanism problem,
in order to approximate the solution to the original problem while mitigating
the impact of Non-IID data on the FL process.

4.1 STW-DBSCAN Density Clustering Algorithm

In order to reduce the complexity of solving P1, we propose a density clustering
algorithm (STW-DBSCAN) that relies on both the space-time location similari-
ties and model weight similarities of vehicles to determine the clustering strategy



90 D. Cao et al.

Algorithm 2. STW-DBSCAN
Input: the set of all VUs V , neighborhood parameters (ε, MinPts), similarity thresh-

old δ(2% , default)
Output: C = {c1, ..., cm, ...., cM}
1: Initialize the vehicle structure;
2: Initialize candidate set Ω = ∅, number of clusters m = 0, sets of unvisited vehicles

Γ = V, vehicle network clustering strategy C = ∅;
3: for n in V do
4: compute Nε(n) and N+

ε (n) according to Eq.(24) and (26);
5: if

∣
∣N+

ε (n) ∩ Nε(n)
∣
∣ ≥ MinPts then

6: Ω = Ω∪{n};
7: end if
8: end for
9: while Ω = ∅ do

10: Γold = Γ ;
11: random selection of a candidate o ∈ Ω, initializing queue Q =< o >;
12: Γ = Γ\{o};
13: while Q �= ∅ do
14: fetch the first sample q in the queue Q;
15: if

∣
∣N+

ε (q)
∣
∣ ≥ MinPts then

16: Δ = N+
ε (q) ∩ Γ ;

17: add the samples in Δ to the queue Q;
18: Γ = Γ\Δ;
19: end if
20: end while
21: m = m + 1, generate clusters cm = Γold\Γ ;
22: select a random benchmark α ∈ cm;
23: for β in cm do
24: if θ(wv,α

1 , wv,β
1 ) ≤ δ then

25: cm\β;
26: end if
27: end for
28: Ω = Ω\cm, C = C ∪ cm;
29: end while
30: return C = {c1, ..., cm, ...., cM};

in problem P1. The algorithm integrates the space-time location constraints into
the DBSCAN [20] clustering algorithm to guarantee that VUs within the ES
region stay within the range of the vehicle cluster. Additionally, considering the
Non-IID of data collected by vehicles, the cosine similarity between VU model
weight parameters is calculated to ensure that the vehicle data within a cluster
belongs to the same distribution [12]. Lastly, The MCH is chosen based on the
latest sojourn time, while the VCH is chosen based on the second latest sojourn
time. Based on the algorithm, we can acquire the set of vehicle clusters C, and
by combining C with Eq.(2), we can compute MCH and VCH.

The STW-DBSCAN algorithm is mainly determined by the parameters of
neighborhood threshold ε, density threshold MinPts, vehicle sojourn time T soj

n ,
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vehicle speed ῡ, model weight parameter set of VU, and similarity threshold δ,
where ε and MinPts are system-determined hyperparameters. For a VU n ∈ V,
we select the set of VUs in the set V whose distance from VU n does not exceed
ε, as the ε neighborhood of the VU n (Nε(n)), denoted as:

Nε(n) = {p ∈ V|dist(n, p) ≤ ε}. (24)

We determine the sojourn time among the VUs in the set Nε(n) by using
Eq.(2) and compare it to determine the minimum sojourn time in Nε(n):

T soj
N,n = min

p∈Nε(n)+{n}
{T soj

v,p}. (25)

In IoV system, if the distance between the VU n and all other VUs in Nε(n)
still satisfies within ε after the minimum sojourn time T soj

N,n, then it is referred
to as the ε+ neighborhood of the VU n (N+

ε (n)) and denoted as:

N+
ε (n) = {p ∈ Nε(n)|

√

((xn − ῡn · T soj
N,n) − (xp − ῡp · T soj

N,n))
2

+ (yn − yp)2 ≤ ε}.

(26)

If N+
ε (n) has at least MinPts other VUs and denoted as:

∣∣N+
ε (n)

∣∣ ≥ MinPts, (27)

then vehicle cluster cm is created, and VU n and all VUs in N+
ε (n) are added to

the cluster, and all VUs in N+
ε (n) are added to the candidate set Ω. Each VU

o ∈ Ω is checked in turn to see if N+
ε (o) contains at least MinPts other VUs, if

o has not been added to the vehicle cluster yet, it is added to vehicle cluster cm,
and o is removed from the candidate set Ω, and N+

ε (o) is added to the candidate
set Ω. This process continues until Ω=∅. Additionally, if VUs that have not been
clustered what contain at least MinPts other VUs in their ε+ neighborhood, a
new vehicle cluster and candidate set are created.

Randomly select a VU α ∈ cm as a baseline, and calculate the cosine simi-
larity of the model weight parameters between VU α and all other VUs β ∈ cm,

θ(wv,α
1 , wv,β

1 ) =
(wv,α

1 )T
wv,β

1

‖wv,α
1 ‖

∥∥∥wv,β
1

∥∥∥
, α, β ∈ cm, (28)

judge whether the data distribution of VUs in vehicle cluster cm is similar. If
θ(wv,α

1 , wv,β
1 ) ≤ δ, indicating low similarity, remove β from vehicle cluster cm

and re-cluster β, where δ(−1 ≤ δ ≤ 1) is the similarity threshold, and the closer
δ is to 1, the more similar the data distribution is, while the closer it is to -
1, the less similar it is. The STW-DBSCAN algorithm is formally described in
Algorithm 2.
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4.2 Semi-asynchronous

Once the clustering strategy C of STW-DBSCAN algorithm is fixed, P1 is rede-
fined as a problem of solving a single variable q:

(P2) : min
q

K∑
k=1

Tk

s.t.C1,C2,C3,C5.

(29)

We adopt a semi-asynchronous aggregation mechanism [16] to accelerate the
global model training speed. Each time global aggregation selects q cluster model
weight parameters that arrive in order for aggregation.

5 Performance Evaluation

5.1 Simulation Setting

Benchmarks. We utilize three classic FL frameworks and a semi-asynchronous
framework with randomized clustering as benchmarks for performance compar-
ison.

– FedAF: FedAF (FedAvgfull) is a synchronous FL framework, which is a vari-
ant of FedAvg [4]. In FedAF framework, all VUs participate in the global
updating in each round.

– FedASY [14]: FedASY is an asynchronous FL framework, where ES immedi-
ately performs a global updating upon receiving local model weight parame-
ters from any VU.

– SAFA [16]: SAFA is a semi-asynchronous FL framework. For simplicity, the
client selection in SAFA is removed, and we naturally set it to half of the
total number of VUs in our experiment, simulating the framework of semi-
asynchronous aggregation under the condition of no clustering.

– R-SAFA: R-SAFA adopts the SAFA aggregation framework with K-
means [21] random clustering, where K is set to be the same as the number of
clusters in STW-DBSCAN, simulating the framework of semi-asynchronous
aggregation under the condition of general clustering.

Models and Datasets. In order to ascertain the efficacy of CSA FedVeh frame-
work, we conducted experiments using two disparate training models (LR [22]
and CNN [23]), and on two real-world datasets (MNIST [24] and German Traf-
fic Sign Recognition Database (GTSRD) [25]). MNIST dataset comprises 60,000
training samples and 10,000 testing samples, each of which is a grayscale image
of a handwritten digit measuring 28× 28 pixels. GTSRD dataset includes 43
classes of RGB three-channel traffic sign images, divided into 39,209 training
images and 12,630 testing images.
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Performance Metrics. We have utilized four commonly-used performance
metrics to evaluate the training performance, including:
1) Loss Function: used to measure the difference between predicted values and
actual values.
2) Accuracy: indicates the proportion of correctly classified samples by the model
among all samples in the dataset.
3) Runtime: indicates the time taken to complete the training process, used to
measure the training speed of the model.
4) Communication Cost: represents the total communication time spent between
all vehicles and the ES upon completion of the training process.

Data Distribution. Considering the heterogeneity of data distribution and the
similarity of data collected from vehicles within a certain area among VUs in a
real-world IoV scenarios, it is necessary to form a Non-IID dataset among VUs.
To achieve data re-distribution, a mixed distribution based on Dirichlet distri-
bution was applied [26], which highlights the similarity of data within the cluster
and Non-IID among VUs. The parameters for the mixed distribution were set
as a = 1.0 and n = 3.

Simulation Parameters. In the simulation of IoV scenarios for FL, we con-
sider 50 VUs participating, with safe distances randomly scattered along the
lane. The average vehicle speed is approximately 43.6km/h, and the vehicles are
given random speeds. We set the neighborhood threshold ε=25m and the den-
sity threshold MinPts=1, with similarity threshold δ of 2%. We use the same
batchsize = 64 for all VUs. The global learning rate is set to η=0.01 for both
MNIST and GTSRD, and the number of local updates per epoch is set to H=30.

5.2 Simulation Results

In this section, we compared our CSA FedVeh framework with the base-
line by training models for 30000 s and 50000 s on Non-IID MNIST and
GTSRD datasets, respectively. Finally, Table 2 lists more detailed training per-
formance comparisons on MNIST and GTSRD datasets. The results show that
CSA FedVeh framework can work better even when the data distribution is
Non-IID.
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Table 2. Performance comparison of CSA FedVeh with four benchmarks under two
models.

Dataset-Model Performance Metrics FedAF FedASY SAFA R-SAFA CSA FedVeh

MNIST-LR

Accuracy 91.8% 92.5% 92.2% 93.2% 94.5%

Runtime for Loss=0.5 7381s 6060s 6458s 4857s 3348s

Communication time

for accuracy=90%
8.35s 18.352s 13.325s 7.04s 6.96s

Average

communication rounds
305 826.38 549 579 501.76

MNIST-CNN
Accuracy 97% 97.7% 97.6% 97.8% 98.4%

Runtime for Loss=0.5 5412s 3230s 3785s 3276s 2348s

Communication time

for accuracy=90%
4.75s 7.55s 6.075s 3.9424s 3.808s

GTSRD-LR

Accuracy 76.4% 81.8% 79.9% 86% 89.3%

Runtime for Loss=1 48027s 36749s 40852s 25689s 19077s

Communication time

for accuracy=75%
24.05s 49.375s 36.275s 15.76s 15.6s

Average

communication rounds
509 1377.7 916 965.5 838.4

GTSRD-CNN
Accuracy 88% 91.7% 90.3% 95.5% 96.1%

Runtime for Loss=1 28934s 23014s 25318s 15751s 11868s

Communication time

for accuracy=75%
16.2s 33.476s 24.375s 11.352s 10.496s

Convergence Performance. In MNIST dataset, as shown in Fig. 3(e), when
the global model training loss of LR model drops to 0.5, CSA FedVeh reaches
its fastest runtime of 3348 s, which is 44.7% faster than FedASY, 54.6% faster
than FedAF, 48.1% faster than SAFA, and 31% faster than R-SAFA. In Fig. 3(f),
when the global model training loss of CNN model drops to 0.5, CSA FedVeh
reaches its fastest runtime of 2348 s, which is 27.3% faster than FedASY, 56.6%
faster than FedAF, 37.9% faster than SAFA, and 28.3% faster than R-SAFA. In
GTSRD dataset, as shown in Fig. 3(g), when the global model training loss value
reached 1.0, CSA FedVeh reached the fastest running time at 19077 s, which was
48% faster than FedASY, 60.2% faster than FedAF, 53.3% faster than SAFA,
and 25.7% faster than R-SAFA. As shown in Fig. 3(h), when CNN global model
training loss value reached 1.0, CSA FedVeh reached the fastest running time at
11868 s, which was 48.4% faster than FedASY, 58.9% faster than FedAF, 53.1%
faster than SAFA, and 24.6% faster than R-SAFA. Results on different datasets
and models indicate that CSA FedVeh reduces the time required to reach the
same loss value by about 24.6%-60.2%.
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Fig. 3. Accuracy and Loss vs. Runtime with LR and CNN over MNIST and GTSRD.

Not only can CSA FedVeh stabilize the convergence of the global model, but
it also outperforms the four benchmarks in terms of accuracy and convergence
speed. Additionally, when comparing Figs. 3(e) and 3(f), as well as Figs. 3(g)
and 3(h), CSA FedVeh exhibits faster convergence speed on CNN models com-
pared to LR models.

Resource Constraints. In MNIST dataset, as shown in Fig. 3(a), when the
running time constraint under LR model is set at 30,000 s, CSA FedVeh achieved
the highest accuracy of 94.5%. This is 2% higher compared to FedASY, 2.7%
higher compared to FedAF, 2.2% higher compared to SAFA, and 1.3% higher
compared to R-SAFA. As shown in Fig. 3(b), under CNN model with a running
time constraint of 30,000 s, CSA FedVeh achieved the highest accuracy of 98.4%.
This is 0.7% higher compared to FedASY, 1.4% higher compared to FedAF,
0.8% higher compared to SAFA, and 0.6% higher compared to R-SAFA. In
GTSRD dataset, as shown in Fig. 3(c), under a time constraint of 50000 s for
LR model, CSA FedVeh achieved the highest accuracy of 89.3%, which is 7.5%
higher than FedASY, 12.9% higher than FedAF, 9.4% higher than SAFA, and
3.3% higher than R-SAFA. As shown in Fig. 3(d), under a time constraint of
50000 s for CNN model, CSA FedVeh achieved the highest accuracy of 96.1%,
which is 4.4% higher than FedASY, 8.1% higher than FedAF, 5.8% higher than
SAFA, and 0.6% higher than R-SAFA. The results indicate that, under the same
time budget, CSA FedVeh achieved higher accuracy and lower loss than FedAF,
FedASY, SAFA, and R-SAFA. This means that CSA FedVeh can achieve good
performance in terms of the balance between convergence speed and accuracy.
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Fig. 4. The Comparison of Communication Resource Consumption. (a) Average Com-
munication rounds. (b) Communication time cost at 90% accuracy of MNIST. (c)
Communication time cost at 75% accuracy of GTSRD.

According to Fig. 4(a), on both MNIST and GTSRD datasets, CSA FedVeh
has an average number of communication rounds of 501.76 and 838.4, respec-
tively. This is lower than FedASY by 324.62 and 539.3 rounds, lower than SAFA
by 47.24 and 77.6 rounds, lower than R-SAFA by 77.24 and 127.1 rounds,
and higher than FedAF by 196.76 and 329.4 rounds. These results indicate
that CSA FedVeh has a lower average number of communication rounds than
FedASY, SAFA, and R-SAFA, and is second only to FedAF in this respect. More-
over, CSA FedVeh achieves a higher accuracy than FedAF by 1.4%-12.9% and
converges faster. According to Fig. 4(b), when LR and CNN models of MNIST
dataset reach a training accuracy of 90%, the global communication time of
CSA FedVeh is 6.96 s and 3.808 s, respectively. This is a reduction of 16.6% and
19.83% compared to FedAF, a reduction of 62.07% and 49.56% compared to
FedASY, a reduction of 47.76% and 37.31% compared to SAFA, and a reduc-
tion of 11.36% and 3.4% compared to R-SAFA. According to Fig. 4(c), when
LR and CNN models of GTSRD dataset reach a training accuracy of 75%, the
global communication time of CSA FedVeh was 15.6 s and 10.496 s, respectively.
This is a decrease of 35.13% and 35.21% compared to FedAF, a decrease of
68.4% and 68.6% compared to FedASY, a decrease of 56.99% and 56.93% com-
pared to SAFA, and a decrease of 1.01% and 7.54% compared to R-SAFA. The
results demonstrate that CSA FedVeh achieves the optimal global communica-
tion time across all models. This implies that, with the same communication
budget, CSA FedVeh reduces communication costs between VUs and the ES by
executing cluster-based semi-asynchronous aggregation.

In summary, our CSA FedVeh framework has demonstrated superiority over
four benchmarks in the following aspects. Firstly, as seen in Fig. 3, CSA FedVeh
consistently achieves better convergence than the benchmarks during training
and reduces training time by approximately 24.6% to 60.2% to reach the same
loss level. Secondly, as shown in Fig. 4(a), on both MNIST and GTSRD datasets,
the average number of communication rounds for CSA FedVeh is lower than
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FedASY, SAFA, and R-SAFA, and only slightly more than FedAF. Additionally,
CSA FedVeh achieve the lowest total communication time, the highest accuracy
and the fastest convergence speed. Finally, Figs. 4(b) and 4(c) demonstrate that,
compared to the baselines, CSA FedVeh reduces communication costs by 3.4%
to 62.07% on MNIST dataset and by 1.01% to 68.6% on GTSRD dataset, while
achieving similar accuracy.

6 Conclusion

In this paper, we propose CSA FedVeh, a novel cluster-based semi-asynchronous
FL framework for IoV. We aspire to enhance the effectiveness of FL in the
dynamic and intricate scenarios of IoV. Under this guidance, We proposed the
STW-DBSCAN clustering algorithm, which takes advantage of Non-IID of data
collected by vehicles to cluster vehicles with similar vehicle space-time loca-
tion and high model weights similarity, efficiently addressing the straggler prob-
lem and accelerating global model training. Meanwhile, we combine the semi-
asynchronous federated aggregation mechanism to accelerate the speed of global
aggregation. The experimental results indicate that our proposed framework can
obtain excellent performance under resource constraints on the datasets of Non-
IID compared with baselines. In the future, we will explore our CSA FedVeh
framework on vehicle tasks that require stable, low-latency, and highly reliable
services in IoV, such as object tracking, high-definition (HD) map generation
and augmented reality (AR) navigation.
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Abstract. With the development of IoT technology, a significant
amount of time series data is continuously generated, and anomaly detec-
tion of this data is crucial. However, time series data in IoT is dynamic
and heterogeneous, and most centralized learning also suffers from secu-
rity and privacy issues. To address these issues, we propose a multi-task
anomaly detection approach based on federated learning (MTAD-FL)
to address these problems. First, we propose a distributed framework
based on Multi-Task Federated Learning (MT-FL), which aims to solve
multiple tasks simultaneously while exploiting similarities and differences
between tasks; second, to identify complex anomaly patterns and features
in the IoT environment, we construct a Squeeze Excitation (SE) based
and External Attention (EA) based Enhance Dual Network (SE-EA-
EDN) feature extractor to monitor real-time data features from IoT sys-
tems efficiently; finally, we design a Local-Global Feature-based Parallel
Knowledge Transfer (LGF-PKT) to parallelize the updating of weights of
local and global features. To validate the effectiveness of our approach, we
conducted comparative experiments on three publicly available datasets,
SMD, SWaT, and SKAB, and MTAD-FL improved F1 by 11%, 67.8%,
and 27.5%, respectively, over the other methods.

Keywords: Internet of Things · Multi-Task Federated Learning ·
Anomaly Detection · Feature Extractor · Knowledge Transfer

1 Introduction

With the development of Internet of Things (IoT) technology, an increasing
number of devices and sensors are being deployed, leading to a massive influx
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of heterogeneous time series data, and the urgency for extracting critical infor-
mation from such data has become imperative [1]. Analyzing the quantitative
performance plays an important role in understanding and improving the quality
of cloud computing systems and cloud-based applications [2,7,9,10]. Anomaly
Detection is a data analysis method used to identify behaviors or events that
deviate from the expected pattern within the data. It has wide applications in
many real-world domains, such as industrial manufacturing, network security,
and financial fraud detection. Enhancing Quality of Service (QoS) in IoT cloud
environments through anomaly detection techniques. However, the complexity
and heterogeneity of multi-dimensional time series data pose challenges for tra-
ditional anomaly detection methods.

Federated Learning (FL) [3] effectively utilizes distributed resources to train
machine learning models collaboratively. FL is a distributed machine learning
approach where multiple edge devices co-train a model while keeping the original
data dispersed and not moved to a single server or data center. FL efficiently
trains a machine learning model using distributed resources and promises secure
and privacy-preserving access to dispersed original data. In Federated Learning,
the original data or data generated from the original data after secure handling
is used as the training data. Federated Learning only allows intermediate data to
be transmitted between distributed computing resources, avoiding data trans-
mission of training data. Distributed computing resources refer to the mobile
devices of terminal edge devices or servers of multiple organizations. Federated
Learning brings the code to the data instead of bringing data to the code, resolv-
ing fundamental issues such as data privacy, ownership, and locality [4]. There-
fore, Federated Learning allows multiple edge devices to train a model without
leaking personal data.

Time series anomaly detection in IoT is to detect anomalies in the mas-
sive high-dimensional data collected, ensuring that the monitored objects are
in a normal state and reducing unnecessary expenses in the future. Quantita-
tive performance analysis is not easy because of the complexity of cloud pro-
visioning control flows and the increasing scale and complexity of real-world
cloud infrastructures [5]. There are many challenges in conducting time series
anomaly detection in the IoT, one of which is how to jointly model data from
different devices and locations. This has led to federated learning becoming a
popular research direction to solve this problem [6]. Federated learning enables
model training without exposing the raw data and can propagate updates from
the global model to local models, thereby improving the accuracy and robust-
ness of the model. Each time series dataset has specific characteristics, such
as length and variance, which may be significantly different from other time
series datasets, requiring multi-task anomaly detection methods [6]. Anomalous
data in time series data is usually rare and overwhelmed by a large number of
standard points. Therefore, in multi-task learning, it is generally believed that
knowledge sharing between different tasks is helpful in improving the efficiency
and accuracy of each task [8].
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Therefore, we propose a multi-task anomaly detection method based on fed-
erated learning (MTAD-FL) to solve these problems. The approach consists of
multiple edge nodes, each corresponding to an IoT edge device; the weight aggre-
gation task is also a distributed node whose role is to process and compute the
weights received from each node and then send them back to each edge node
for the model update. Due to the highly heterogeneous nature of IoT time-
series data, this poses a challenge for monitoring and performance modeling,
so we first propose a distributed learning framework based on Multi-task Fed-
erated Learning to build anomaly detection models in different environments
through the massive amount of data in the IoT environment; to identify com-
plex anomaly patterns and features in the IoT environment To identify complex
anomaly patterns and features in the IoT environment, we build a dual network
feature extractor (SE-EA-EDN) based on Squeeze excitation (SE) and external
attention (EA) to efficiently extract anomaly data features; anomalies in the IoT
may have different definitions and diversity, different services may report differ-
ent types of anomalies, and the definition of anomalies may vary depending on
the business logic of the system. Therefore, designing a generic anomaly detec-
tion and diagnosis system becomes complex, and we design a parallel knowledge
migration framework (LGF-PKT) based on local-global features to parallelize
the weight update of local and global features.

Our main contributions are summarized as follows:

– To address the highly heterogeneous nature of time-series data in IoT systems,
we propose a distributed learning framework based on Multi-task Federated
Learning (MFL) to construct anomaly detection models in different environ-
ments through massive data in IoT environments;

– To identify complex anomaly patterns and features under IoT systems, we
construct a dual network feature extractor (SE-EA-EDN) based on Squeeze
Activation (SE) and External Attention (EA) to efficiently extract anomaly
data features;

– To address the diversity of anomalies in the IoT environment. We designed a
Local-Global Feature-based Parallel Knowledge Transfer Framework (LGF-
PKT) parallelizing the implementation of local and global feature weight
updates.

The rest of the paper is organized as follows. Section 2 briefly describes
the algorithms related to time series anomaly detection; Sect. 3 describes our
model architecture and the details of each component. Section 4 provides Sect. 4
provides detailed comparison results and experimental analysis. Section 5 sum-
marises the main Sect. 5 summarises the main work of this paper and provides
an outlook for future work.

2 Related Work

As mentioned earlier, the essence of anomaly detection in the IoT environment
is to use time series anomaly detection techniques to analyze the time series
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data of individual system monitoring performance indicators collected by system
monitoring. In this chapter, we first introduce classical methods for time series
anomaly detection. We then give a brief overview of deep learning-based methods
and models. Finally, we briefly describe federated learning-based methods.

2.1 Classical Methods

The general idea of the statistical-based anomaly detection algorithm is to deter-
mine a reasonable range of fluctuations in the current data from the data dis-
tribution over a historical period. The model assumes that the statistical model
generates ordinary data objects and that data that do not fit the model are
outliers. However, the validity of the statistical method is very dependent on the
validity of the statistical model assumptions for the given data. The most com-
mon methods for detecting time series anomalies using statistical methods are
based on the K-sigma algorithm and the ARIMA [11] moving average autoregres-
sive data prediction model. The basic idea of clustering-based anomaly detection
algorithms determines whether the current data is anomalous by classifying the
data, such as OCSVM [12]. However, there is a significant difference between
clustering and anomaly detection, as the goal of anomaly detection is to find
abnormal data, while the goal of clustering is to determine the class to which
the data belongs. PCA [13], or principal component analysis, is a technique that
aims to use the idea of dimensionality reduction to eliminate redundant features
from high-dimensional data and retain good features. The deviation of each data
point from the rest of the data. In 2014, Twitter also released a seasonal anomaly
detection method using a seasonal mixed extreme research bias test (S-H-ESD)
[14]. This method is also a practical method based on a robust statistical method.

2.2 Deep Learning Methods

Classical methods cannot meet the requirements of complex, dynamic cloud
computing systems, and deep learning approaches benefit from the powerful
learning capabilities of neural networks. VAE [15] is an unsupervised anomaly
detection algorithm where the algorithm determines anomalous data by recon-
structing the error. DeepSVDD [16] learns a spherical boundary by mapping the
data into a spherical hyperspace and using support vector machines to separate
average data from anomalous data. CGNN-MHSA-AR [17] is a new method for
detecting performance anomalies in fluctuating cloud environments that uses an
interpretable approach based on neural graph networks (GNNs) and correlation
analysis. HTA-GAN [18] is a predictive model based on generative adversarial
networks (GANs) that can effectively detect operational anomalies in large-scale
IoT. USAD [19] uses an auto-encoder with two decoders and an adversarial game-
like training framework to classify normal and abnormal data. CausalRCA [20]
enables fine-grained, automated, and real-time root cause localization. TranAD
[21] is an anomaly detection and diagnosis model based on deep Transformer
networks that use an attention-based sequence encoder to quickly infer infor-
mation about temporal trends.GDN [22] combines structural learning methods
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with neural graph networks, using attention weights to explain detected anoma-
lies. MSCRED [23] is a multi-scale convolutional recursive encoder-decoder for
anomaly detection and diagnosis on multivariate time series data. ELBD [24] is a
new framework based on integrated learning for robust and accurate performance
anomaly detection and prediction. The framework combines machine learning
algorithms and models to improve detection and prediction performance.

These detection algorithms implement multivariate anomaly detection
through advanced deep-learning methods to improve detection accuracy. How-
ever, almost all of these algorithms are centralized single-task anomaly detection,
and the training process for single-task centralized methods is bandwidth inten-
sive and has significant privacy implications. The large amount of data generated
in IoT systems at any given time would be catastrophic in the event of a data
breach.

2.3 Federated Learning Methods

Recently, federated learning has emerged as a viable and compelling alternative
to centralized learning methods. Rather than aggregating an increasing amount
and type of data into a central location, federated learning distributes the global
model training process so that the data from each participating distributed node
can be used in situ to train local models [25]. DÏoT [26] is an anomaly detection
system that uses federated learning to detect compromised IoT by aggregat-
ing anomaly detection profiles for intrusion detection devices. A self-encoder-
based anomaly detection method is proposed on the server side [27] for detect-
ing anomalous local weight updates from clients in federated learning systems.
PFNM [28] is a probabilistic federated learning framework with a particular
emphasis on training and aggregating neural network models by decoupling the
learning of local models from their aggregation to global federated models. MT-
DNN-FL [6] is a multi-task federated learning approach for anomaly detection in
computer networks, traffic recognition, and classification tasks. FATHOM [29] is
a federated multi-task hierarchical attention model for activity recognition and
environmental monitoring using multiple sensors. Because detecting anomalies
in centralized systems is often plagued by significant delays in response times,
FSLSTM [25] is a novel privacy design federated learning model using stacked
long short-term memory (LSTM) models, which is more than twice as fast during
training convergence as centralized LSTMs. It is also essential for model updates
in federated learning that FedAvg [30] calculates the average weights of all node
models and shares the weights with each node in the federated learning system.
The convergence of FedAvg on Non-IID Data (non-linear data) was analyzed
by multiple nodes learning a model together [31]. FedTL introduces learning
techniques to facilitate knowledge migration between nodes and improve system
accuracy. Yang et al. [32] developed FedTL [33], a framework FedSteg for secure
image privacy analysis. Unlike FedAvg and FedTL, FedKD takes the average
of all node weights as the weights of all teachers and transfers each teacher’s
knowledge to the corresponding students through Knowledge Distillation (KD)
[34]. A population knowledge migration training algorithm was used to train
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small convolutional neural networks (CNNs) and transfer their knowledge to
a prominent server-side CNN [35]. By finding that existing federated learning
methods typically employ a single global model to capture the shared knowledge
of all users by aggregating their gradients, regardless of the differences between
their data distributions. However, due to the diversity of user behavior, assign-
ing users’ gradients to different global models (i.e., centers) can better capture
the heterogeneity of data distribution among users, and a multi-center federated
learning FeSEM was proposed [36].

The more dynamic and volatile nature of the IoT environment poses chal-
lenges for monitoring and performance modeling; and the fact that anomalies
in the IoT may have different definitions and diversity; as well as the need for
efficient anomaly detection and diagnosis in the IoT environment, and the fact
that rapid detection and response to anomalies is critical for system stability
and reliability. The above federated learning approach brings us new ideas and
directions. Therefore, we propose a Multi-Task Anomaly Detection Based on
Federated Learning (MTAD-FL).

3 Method

This chapter first introduces the overall architecture of Multi-Task Anomaly
Detection Based on Federated Learning (MTAD-FL), followed by a detailed
description of each part.

3.1 Overview

In MTAD-FL, we assume there are t distributed nodes, where t = 1, 2, ...,
Icon(Icon denotes the number of connected distributed nodes), each micro-
distributed node has local system monitoring real-time data Dt, Dt is not shared
with other nodes, the weight distance calculation is also a distributed node, the
detailed system structure is shown in Fig. 1.

First, each running distributed node sends the local system monitoring real-
time data as input to a dual network feature extractor (SE-EA-EDN) composed
of Local and Transfer models based on Squeeze Excitation and External Atten-
tion, where the Local model starts the first round of training. The trained feature
weights are sent to the distributed node for weight distance calculation. After all
the connected nodes have After all connected nodes have uploaded the feature
weights, the weight distance calculation decision is initiated for parallel knowl-
edge migration based on local-global features; after all connected nodes receive
the sent-back feature weights, they are loaded onto the Transfer model for the
model update, local anomaly detection and diagnosis is performed, and then
anomaly categories are output, after which a new round of training is initiated.

3.2 Multi-task Federated Learning Framework(MT-FL)

Suppose we have t tasks, where t = 1, 2, . . . , Icon(Icon denotes the number of
connected distributed nodes), (Xt, yt) denotes the training data for the task,
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Fig. 1. MTAD-FL overall architecture. (a) denotes the Multi-Task Federated Learn-
ing framework; (b) denotes the Double Network Feature Extractor based on Squeeze
Excitation and External Attention; (c) denotes the Local-Global Feature-based Parallel
Knowledge Transfer.

the local system monitoring system generates Xt in real-time, and yt denotes
the truth label or output vector. Multi-task federated learning aims to minimize
the objective function on all nodes to learn the feature weights.

Anomaly detection can be seen as a dichotomous task model where only
“normal” and “abnormal” data are judged. For the anomaly detection task, we
use the minimized cross-entropy as the loss function, which can be defined as:

L
(
yt, ŷt

)
= − 1

m

m∑

i=1

ytlog
(
ŷt

)
(1)

where m is the number of input vectors, where are the truth labels and prediction
probabilities for the t-th task.

3.3 Dual Network Feature Extractor Based on Equeeze Excitation
and External Attention(SE-EA-EDN)

For complex system anomaly patterns and features under IoT, and the fast
discovery and response of anomalies is crucial for the stability and reliability
of the system, we, therefore, propose a dual network feature extractor. The
dual network feature extractor consists of a Local model and a Transfer model
deployed on each node; the model is shown in Fig. 2. Firstly, the Local model
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Fig. 2. Structure of a dual network feature extractor based on Squeeze Activation and
External Attention.

trains the data of the current node, sends the weights with the characteristics of
the node to the weight aggregation node to initiate weight distance calculation
for weight update, and then performs parallel knowledge migration to send the
matched feature weights back to the Transfer model for further training Squeeze
Activation (SE) module and External Attention (EA) module are added to the
Transfer model on top of the Local model.

Local Model. The Local model consists of a convolutional layer, an adaptive
maximum pooling layer, and a fully connected layer. Each convolutional layer
consists of a 1D-CNN module, a batch normalization module, and a ReLU acti-
vation function, defined as:

fconv(x) = frelu (fbn (Wconv ⊗ x + bconv)) (2)

In the formula, Wconv and bconv are the weight and bias matrices of the CNN,
respectively. ⊗ denote the convolution operation. fbn and frelu denote the batch
normalization layer and the ReLU activation function, respectively.

Let Xbn = x1, x2, ..., xm be denoted as the input to the batch normalization
layer, where xi and m denote the i-th instance and batch size, respectively,
defined as :

fbn (Xbn) = fbn (x1, x2, . . . , xm) =
(
αx1−μ

δ−ε + β, αx2−μ
δ−ε + β, . . . , αxm−μ

δ−ε + β
)

(3)

μ =
1
m

m∑

i=1

xi (4)

δ =

√√
√
√

m∑

i=1

(x i − μ)2 (5)

where α ∈ R+ and β ∈ R are the parameters to be learned in training.
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Transfer Model. The Transfer model consists of a convolutional layer, an
adaptive mean pooling layer, a Squeeze Excitation (SE) module, and an External
Attention (EA) module, which enhances the feature extraction capability of
the Transfer model by selectively focusing on the contextual features of other
external nodes.

Hu et al. [37] proposed a Squeeze Excitation module as a computational
unit for arbitrary transformations. Ftr : X → U, where X ∈ RW ′×H′×C′

, U ∈
RW×H×C , and Ftr is represented as U = [u1, u2, · · · , uc], where:

uc = Vc ⊗ X (6)

In the given expression, ⊗ denotes a convolution operation.
The squeezing operation utilizes contextual information beyond the local

receptive field by using global average pooling to generate channel-wise statistical
information. The transformed output U undergoes contraction along the spatial
dimensions ×H to compute the channel-wise statistics z ∈ RC . The c-th element
of z is calculated by computing Fsq(uC), where Fsq(uC) is the channel-wise
global average value over the spatial dimensions W × H, defined as:

ZC = Fsq (uC) =
1

W × H

W∑

i=1

H∑

j=1

uC (i, j) (7)

The excitation operation follows the aggregated information obtained from
the squeeze operation, with the goal of capturing channel dependencies. To
achieve this, a simple gating mechanism is applied with the Sigmoid activation,
as shown below:

s = Fex (z,W) = σ (g (z,W)) = σ (W2δ (W1z)) (8)

where Fex is parameterized as a neural network, σ is the Sigmoid activation
function, δ is the ReLU activation function, W1 ∈ RC

r ×C and W2 ∈ RC
r ×C are

the learnable parameters of Fex, and r is the reduction ratio. W1 and W2 are
used to constrain the complexity of the model and aid in generalization. W1 is
the parameter of the dimensionality reduction layer, while W2 is the parameter
of the dimensionality expansion layer.

Finally, the output of the Squeeze Excitation module is rescaled as follows:

Xc = Fscale (uc, sc) = sc • uc (9)

In the equation, X = [x1, x2, . . . , xc] and Fscale(uc, sc) represents the multipli-
cation operation of feature map uc ∈ RC and scale sc across channels. That is,
each channel in uc is multiplied by the corresponding value in sc to obtain a new
feature map.

External Attention [38] is a mechanism in machine learning models that
improves performance on a given task by selectively focusing on certain parts of
the input data or features. This mechanism allows the model to focus on relevant
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information while ignoring irrelevant or redundant information. The formula for
the external attention mechanism can be expressed as follows:

A = softmax

(
QKT

√
dk

)
V (10)

In the formula, Q, K, and V respectively represent the Query, Key, and Value
matrices, and dk is the dimension size of the Key matrix.

3.4 Local-Global Feature-Based Parallel Knowledge
Transfer(LGF-PKT)

Most existing approaches in federated learning frameworks [25–27,30,32,34] use
average weight decisions to aggregate weights and thus update models without
considering the differences between data distributions on nodes, which is more
evident in the IoT environment, while anomalies in the IoT environment have
different definitions and diversity. Therefore, we propose a parallel knowledge
migration framework based on local-global features to perform local-to-global
model updates using weight distance calculation decisions.

Weighted Distance Calculation Scheme. Let FLiter denote the maximum
number of cycles of federated learning. LetWLocal,k

i and WTransfer,k
i be the k-

th previously trained weight uploaded to the server and the weight sent from
the server after weight matching, k = 1, 2, . . . , FLiter. The weights of their
hidden layers are denoted by WLocalhidden,k

i ⊂ WLocal,k
i ,W

Transferhidden,k
i ⊂

WTransfer,k
i respectively.
Specifically, WLocalhidden,k

i consists of Conv1, Conv2 and Conv3, i.e.
WLocal1,k

i , WLocal2,k
i and WLocal3,k

i . Then we have WLocalhidden,k
i = WLocal1,k

i ,

WLocal2,k
i ,WLocal3,k

i . In the k-th federated learning phase, nodes Ti, i =
1, 2, . . . , Icon upload WLocalhidden,k

i to the weight distance calculation node. The
node then stores the uploaded weights in the set of weights defined in Eq. (11).

W =
[
WLocalhidden,k

1 ,WLocalhidden,k
2 , ...,WLocalhidden,k

Icon

]
(11)

The server then computes the set of weight distances d, d defined by W:

d =

⎡

⎢
⎢
⎣

d1
d2
· · ·

dIcon

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

d1,2 · · · d1,Icon

d2,1 · · · d2,Icon· · ·
dIcon,1

· · ·
· · ·

· · ·
dIcon,Icon−1

⎤

⎥
⎥
⎦ (12)

where di,j (i, j ∈ 1, ..., Icon, i �= j) is the weight distance between WLocalhidden,k
i

and WLocalhidden,k
j obtained by the combination of Euclidean and Cosine dis-

tances, as defined in Eq. (15):

deu
i,j =

√√
√
√

3∑

n=1

∥
∥
∥WLocaln,k

i − WLocaln,k
j

∥
∥
∥
2

(13)
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dcos
i,j =

3∑

n=1
WLocalhidden,k

i • WLocalhidden,k
i

√∑3
n=1 WLocalhidden,k

i

2 •
√∑3

n=1 WLocalhidden,k
i

2
(14)

di,j =
deu

i,j

dcos
i,j

(15)

Euclidean distances focus on the differences between feature vectors in each
dimension. In contrast, Cosine distances focus on the angles between vectors,
and we can better express the similarity between feature vectors by using the
two together.

Parallelization of Knowledge Transfer. Parallelization of Knowledge Trans-
fer aims to solve the problem of abnormal data scarcity. Through paral-
lelized knowledge migration, data and knowledge accumulated can be used and
migrated to other tasks where data is scarce, thus compensating for the lack of
data and improving the model’s learning efficiency and generalization ability.

We obtain the ID list by weight distance calculation. The ID is a ranked list
of the most similar feature weights to the current node; the higher the similarity,
the highest-ranked index is returned each time, and the most similar feature
weights are returned through the index. ID is defined in Eq. (16).

ID = [ID1, ID2, ..., IDIcon ] (16)

where IDi is the index of the Ti distance.
According to the ID, it is easy to obtain the set of weights based on the union

equation WL from W, WL is defined in Eq. (17):

WL =
[
WL,k

1 ,WL,k
2 , ...,WL,k

Icon

]
= [W (ID1) ,W (ID2) , . . . ,W (IDIcon)] (17)

where WL,k
i are the weights matching Ti at the k-th federated learning cycle.

Once Ii has received WL,k
i from the server, Ti loads these weights into

W
Transferhidden,k
i at the beginning of the following federated learning cycle. As

defined in Eq. (18).
W

Transferhidden,k+1
i ← WL,k

i (18)

The feature weights extracted from the Local model are migrated to the
Transfer model to perform a local-global parallel weight update. Specifically, we
first upload the feature weights from the Local model of all connected nodes to
the node where the weight distance is calculated. After uploading the feature
weights of all connected nodes, the Weight Distance Computation Scheme is
launched, and the matching feature weights are passed back to the nodes for the
Local-Global model update, which can be expressed as:

WTransfer
j ← W

Local

i
(19)



Efficiently Detecting Anomalies in IoT: MTAD-FL 111

4 Experiments and Analysis

Here is a description of three open experimental datasets, as shown in Table 1.

4.1 Dataset

Table 1. Settings and anomaly rates for the three datasets.

Dataset SWaT SMD SKAB

Dimension 51 38 8

Train 7000 70843 12712

Test 3000 30361 5448

Abnormality Rate 29.2% 4.21% 35.1%

– SMD (Server Machine Dataset): It is a public data set for monitoring the
performance and operation of servers in the data center. The SMD consists
of data from 28 different machines.

– SWaT (Secure Water Treatment): It is a security testing platform for a sim-
ulated water treatment plant. Developed by the National University of Sin-
gapore, it is used to test and evaluate the network security performance of
water treatment plants.

– SKAB (Skoltech Anomaly Benchmark): It consists of a water circulation
system, its control system, and a data processing and storage system. The
anomalies it generates include a partially closed valve, an unbalanced con-
necting shaft, re-duced motor power, cavitation, and flow disturbance.

4.2 Evaluation Metrics

For the anomaly detection experiments we used Precision(Pre), Recall(Rec),
F1 Score(F1), and Matthews Correlation Coefficient (MCC) as the evaluation
metrics.

Precision (Pre) indicates the proportion of samples that are actually abnor-
mal to those that are detected as abnormal and is calculated as:

Pre =
TP

TP + FP
× 100% (20)

Recall (Rec) represents the proportion of correctly detected anomalies to
anomalous samples and is calculated as:

Rec =
TP

TP + FN
× 100% (21)



112 J. Hao et al.

F1 Score (F1) is the reconciled average of precision and recall, which is used
to evaluate the overall performance of the model:

F1 =
2 × Pre × Rec

Pre + Rec
(22)

Matthews Correlation Coefficient (MCC) [39] is a correlation coefficient that
describes the correlation between the actual classification and the predicted clas-
sification, which can take values ranging from, a value of 1 indicates perfect pre-
diction of the subject, a value of 0 indicates that the predicted result is not as
good as the result of the random prediction, and –1 means that the predicted
classification does not coincide at all with the actual classification:

MCC =
TP × TN − FP × FN

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(23)

Where: TP +FP is the number of abnormal samples; TN +FN is the number
of normal samples; TP is the number of samples correctly detected as abnor-
mal; TN indicates the number of samples correctly detected as normal; FP
indicates the number of samples incorrectly detected as abnormal; FN indicates
the number of samples incorrectly detected as normal.

4.3 Experiment Setup

Dataset Preprocessing: We performed MinMax normalization on each
dataset and compressed it to [0,1].

Parameter Settings: We set the parameters for batch normalization layers
and attention mechanisms to their default values and set the decay value of the
Squeeze Excitation (SE) module to 16. At the same time, we used AdamW with
PyTorch as the optimizer, with an initial learning rate of 0.02, a batch size of
128, and an epoch of 80. The simulation of multi-task learning is implemented
on a virtual edge device based on Python3.9.

Baseline Methods: We modified the following three baseline federated learning
frameworks to some extent for anomaly detection in the IoT environment. FedTL
[33] used a multi-task federated learning framework with the Local model as a
pre-trained model, modified to FedTL-AD for multi-task anomaly detection;
FedAVG [30] used a multi-task federated learning framework with the Local
model as the local model, weight aggregation using weight averaging decisions,
modified to FedAVG-AD for multi-task anomaly detection; FedKD [32] used
the Local model as the Student model and Teacher model, respectively, and
updated the model using weight averaging decisions, modified to FedKD-AD for
multi-task anomaly detection. The classical methods are PCA [13] and OCSVM
[13] used as anomaly detection; the deep learning methods are VAE [15] and
DeepSVDD [16] used as anomaly detection. The specific experimental groupings
are as follows:
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– Single-Task Anomaly Detection: Comparison of Local and Transfer, PCA,
OC-SVM, VAE, DeepSVDD anomaly detection performance on SMD, SWaT,
and SKAB using accuracy, recall, F1 score, and MCC as evaluation metrics.

– Multi-Task Anomaly Detection: Comparison of MTAD-FL and FedTL-AD,
FedKD-AD, and FedAVG-AD methods for anomaly detection performance
on SMD, SWaT, and SKAB using accuracy, recall, F1 score, and MCC as
evaluation metrics.

We extracted 10,000 samples from SWaT; for SMD, we chose the first four
subsets for the experiment; for SKAB, we used all data under the valve1 file. We
took 70% of the samples from the three datasets as the training set and 30% as
the test set. For multi-task, the simulation is based on virtual nodes implemented
in Pytorch 1.13 and Python 3.9. All experiments were conducted on a PC with
an NVIDIA 3070 (8G) graphics card, an Intel(R) Core(TM) i5-12600KF CPU
@ 3.69 GHz, and 16 GB RAM.

4.4 Results

Table 2. SWaT, SMD, and SKAB results

Dataset SWaT SMD SKAB

Metric Pre Rec F1 Pre Rec F1 Pre Rec F1

PCA 0.706 0.747 0.726 0.138 0.829 0.19 0.363 0.986 0.531

OCSVM 0.715 0.766 0.74 0.3 0.401 0.264 0.465 0.713 0.558

VAE 0.706 0.742 0.724 0.04 0.91 0.138 0.363 0.985 0.53

DeepSVDD 0.112 0.115 0.113 0.092 0.615 0.133 0.354 0.974 0.519

Local 0.992 0.59 0.74 0.943 0.73 0.815 0.906 0.787 0.842

Transfer 0.967 0.864 0.913 0.999 0.997 0.998 0.923 0.786 0.849

FedTL-AD 0.985 0.619 0.761 0.706 0.230 0.324 0.556 0.254 0.345

FedKD-AD 0.994 0.554 0.711 0.509 0.291 0.343 0.626 0.417 0.569

FedAVG-AD 0.994 0.554 0.711 0.491 0.191 0.238 0.738 0.39 0.454

MTAD-FL 0.902 0.848 0.871 0.999 0.997 0.998 0.911 0.786 0.844

Two experiments were conducted to demonstrate Single-Task and Multi-Task
Anomaly Detection, respectively. We split the experiments into a Single-Task
and Multi-Task to demonstrate the robustness and generalization of the two
models in SE-AE-EDN for deployment in nodes and a Multi-Task to demonstrate
that MTAD-FL is more suitable for deployment in IoT cloud environments than
other baseline methods. The results of the anomaly detection experiments are
shown in Table 2.
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Single-Task Anomaly Detection. SWaT: The Transfer model is not as good
as the other baseline models regarding the recall, but F1 is 17.3% higher than
the best baseline model. Accuracy is slightly lower than the Local model but
higher than the other baseline models.

SMD: The Transfer model outperformed the other three methods in all met-
rics overall, with an accuracy rate 5.6% higher than the best baseline method,
a recall rate 16.8% higher than the best baseline task, and an F1 18.3% higher
than the best baseline task.

The SKAB: Transfer model was inferior to the other baseline models (except
the Local model) regarding the recall but was 1.7% and 0.7% higher than the
best-performing baseline model in precision and F1, respectively.

Multi-Task Anomaly Detection. In the Multi-Task case, we all trained the
experiments for four federated cycles, and the results were obtained as averages.

SWaT: Our method was inferior to the other three baseline tasks in terms of
accuracy but was 22.9% better than the best baseline method in terms of recall
and 11% better than the best baseline method in terms of F1.

SMD: Our method outperformed the other three methods in all metrics over-
all, with a 29.3% higher recall than the best baseline method, a 70.6% higher
recall than the best baseline task, and a 65.5% higher F1 than the best baseline
task.

SKAB: Our method was more consistent in overall performance than the
best overall performance of all the baseline methods.

4.5 Matthews Correlation Coefficient(MCC)

Fig. 3. The right panel shows the multitasking anomaly detection MCC results; the
left panel shows the single-tasking anomaly detection MCC results. MTAD-FL and
Transfer both outperform all the baseline methods.

When the MCC value is 1, the prediction of the test subject is perfect. When the
MCC value is 0, the prediction is worse than the random prediction. -1 indicates
that the predicted classification is entirely different from the actual classification.
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The MCC values of four Multi-Task Federated Learning methods based on
three different datasets are given in Fig. 3. Compared to the other three bench-
mark methods, our models achieve better performance, further demonstrating
the effectiveness of our proposed models.

The Transfer model also performs optimally in the Single-Task Anomaly
Detection experiments shown in Fig. 3, with PCA, VAE, and DeepSVDD achiev-
ing MCC results of 0 for the SWaT dataset indicating poorer prediction results
than random predictions.

5 Conclusion and Future Work

In this article, we propose a multi-task anomaly detection approach based on
federated learning (MTAD-FL). According to our experimental results, MTAD-
FL outperforms all multi-task federated learning methods in anomaly detection
of IoT cloud systems. In addition, we have also found that the model’s perfor-
mance is affected in the distributed case. The overall performance is better in
the single-tasking case than in the multi-tasking case. The LGF-PKT framework
in the experiments effectively improves specific models that perform poorly in
the average weight updating. The average weight is better in an environment
with fewer distributed nodes. The data variability is not too significant, yet the
performance is still to be improved in the IoT-distributed cloud environment
where the dynamics are high and the data variability is significant.

Future work can also be done in the following two areas. First, optimizing the
performance of LGF-PKT and finding the commonality between edge nodes can
improve the impact on model performance in a distributed environment. Second,
our model can be improved to perform root cause localization when anomalies
are detected, accurately and quickly locate anomalies in distributed IoT cloud
environments, and generate responses immediately. In distributed cloud environ-
ments and generate immediate responses.
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anomaly detection system for IoT. In: 2019 39th ICDCS, pp. 756–767. IEEE (2019)

27. Suyi, L., Yong, C., Yang, L., et al.: Abnormal client behavior detection in federated
learning. arXiv preprint arXiv:1910.09933 (2019)

28. Yurochkin, M., Agarwal, M., Ghosh, S., et al.: Bayesian nonparametric federated
learning of neural networks. In: International Conference on Machine Learning, pp.
7252–7261. PMLR (2019)

29. Yujing, C., Yue, N., Zheng, C., et al.: Federated multi-task hierarchical attention
model for sensor analytics. arXiv preprint arXiv:1905.05142 (2019)

30. Qu, Z., Lin, K., Li, Z., et al.: Federated learning’s blessing: Fedavg has linear
speedup. In: ICLR 2021 (2021)

31. Xiang, L., Kaixuan, H., Wenhao, Y., et al.: On the convergence of fedavg on non-iid
data. arXiv preprint arXiv:1907.02189 (2019)

32. Yang, H., He, H., Zhang, W., et al.: FedSteg: a federated transfer learning frame-
work for secure image steganalysis. IEEE Trans. Netw. Sci. Eng. 8(2), 1084–1094
(2020)

33. Liu, Y., Kang, Y., Xing, C., et al.: A secure federated transfer learning framework.
IEEE Intell. Syst. 35(4), 70–82 (2020)

34. Seo, H., Park, J., Oh, S., et al.: 16 federated knowledge distillation. Mach. Learn.
Wirel. Commun. 457 (2022)

35. He, C., Annavaram, M., Avestimehr, S.: Group knowledge transfer: Federated
learning of large CNNs at the edge. Adv. Neural. Inf. Process. Syst. 33, 14068–
14080 (2020)

36. Guodong, L., Ming, X., Ming, X., et al.: Multi-center federated learning: clients
clustering for better personalization. World Wide Web 26(1), 481–500 (2023)

37. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141
(2018)

38. Guo, M.H., Liu, Z.N., Mu, T.J., et al.: Beyond self-attention: external attention
using two linear layers for visual tasks. IEEE Trans. Pattern Anal. Mach. Intell.
45(5), 5436–5447 (2022)

39. Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation. BMC
Genomics 21(1), 1–13 (2020)

http://arxiv.org/abs/1910.09933
http://arxiv.org/abs/1905.05142
http://arxiv.org/abs/1907.02189


A Novel Deep Federated Learning-Based
and Profit-Driven Service Caching

Method

Zhaobin Ouyang1, Yunni Xia1(B), Qinglan Peng2, Yin Li3, Peng Chen4(B),
and Xu Wang5

1 College of Computer Science, Chongqing University, Chongqing, China
xiayunni@hotmail.com

2 School of Artificial Intelligence, Henan University, Zhengzhou, China
3 Guangzhou Institute of Software Application Technology, Guangzhou, China
4 School of Computer and Software Engineering, Xihua University, Chengdu, China

chenpeng@mail.xhu.edu.cn
5 College of Mechanical and Vehicle Engineering, Chongqing University,

Chongqing, China

Abstract. Service caching is an emerging solution to addressing mas-
sive service request in a distributed environment for supporting rapidly
growing services and applications. With the explosive increases in global
mobile data traffic, service caching over the edge computing architec-
ture, Mobile edge computing (MEC), emerges for alleviating traffic con-
gestion as well as for optimizing the efficiency of task processing. In
this manuscript, we propose a novel profit-driven service caching method
based on a federated learning model for service prediction and a deep
reinforcement learning mode for yielding caching decisions (FPDRD) in
an edge environment. The proposed method is temporal service pop-
ularity and user preference-aware. It aims to ensure quality of service
(QoS) of delivery of cached service while maximizing the profits of net-
work service providers. Experimental results clearly demonstrate that the
FPDRD method outperforms traditional methods in multiple aspects.

Keywords: service caching · profit maximization · popularity
prediction · caching decisions · collaborative mechanism

1 Introduction

In recent years, the explosive growth of mobile applications and the growing need
for low-latency and high-bandwidth services have placed significant strain on the
traditional cloud-centric network infrastructure [1,2]. To tackle these challenges,
edge computing has emerged as a promising paradigm that brings computing and
storage capabilities closer to end-users. This proximity allows for Lower latency,
minimized network congestion and enhanced quality of service (QoS) [3–5].

Edge service caching is a critical component of edge computing, which sig-
nificantly contributes to the improvement of mobile application performance 3.
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It involves the strategic storage of frequently accessed data and services on edge
servers, referred to as Fog Access Points (FAPs). The purpose of this caching
strategy is to reduce delay and alleviate the workload on central cloud data cen-
ters. By employing edge service caching, faster access to content and services is
made possible, especially for latency-sensitive applications like augmented real-
ity, video streaming and real-time data processing.

However, various challenges in this direction are yet to be properly addressed.
Firstly, FAPs are with limited computational and storage resources, thus guar-
anteeing only a small amount of services is cachable and making hit rate low.
Secondly, in a highly dynamic and volatile edge environment, static caching
strategies are often inadequate in meeting the changing needs. Nevertheless, how
to yield run-time caching decisions according to time-varying service popularity
and user needs remains a difficulty. Finally, existing methods in this direction
usually aim to optimize caching performance, in terms of hit rate and delivery
latency. How to guarantee profit of service providers is less studied.

In this paper, we propose a novel caching method by leveraging a federated
learning model for popularity prediction and a deep reinforcement learning model
for yielding caching decisions (FPDRD). The FPDRD method takes both global
service popularity and local user preferences as inputs and can achieve reason-
able tradeoffs between caching performance and profit of providers. Extensive
simulations are conducted based on a well-known dataset, Movielens. Numerical
results clearly indicate that our proposed method outperform it peers.

The paper is organized as follows: Section 2 provides a literature review.
Section 3 presents the system model and the problem formulation. Section 4
describes the proposed method. Section 5 presents the empirical analysis.

2 Related Work

Task offloading and caching in MEC have gained significant attention in recent
years as a means to alleviate the resource constraints faced by FAPs. In their
work, Gao et al. [7] presented a method that combines task offloading schedul-
ing and resource allocation to minimize task delay and energy consumption.
Liu et al. [8] proposed an approach that utilizes online computation offloading
and resource scheduling to tackle the challenges arising from user mobility and
network dynamics.

Due to resource and energy constraints, FAPs are usually allowed to cache
limited services [9]. Thus, caching of highly popular services in FAPs has emerged
as an effective solution when FAPs are limited in caching capacity. Zhong et al.
[10] proposed the Cocktail Edge Caching method, which utilizes an ensemble
learning algorithm to predict the popularity of services. However, this approach
only takes into account the overall service popularity while neglecting the pref-
erences of local users. In contrast, Li et al. [11] propose a service caching method
that considers hit actions and user perception preferences. However, this app-
roach raises concerns regarding user privacy and security, as it shares all users’
personal information for prediction purposes.
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Recently, the cooperative service caching mechanism was proposed as well for
exploiting multiple cache nodes through making them working together [12–15].
The problem of cooperative service caching can be formulated as a Mixed-Integer
Nonlinear Programming (MINLP) problem, which is known to be inherently
NP-hard [16,17]. Wu et al. [18] and Xu et al. [19] propose a coalition formation
algorithm that utilizes a hedonic game among cooperative service providers for
optimizing both the overall profit of the coalition and the average profit of each
individual participant. Li et al. [20] propose a DRL algorithm-based profit-driven
cooperative service placement method in MEC.

3 System Models and Problem Formulation

Here, we consider a service caching system in MEC represented as G = (CCS ∪
N ∪U ∪L), as illustrated in Fig. 1. This system consists of a central cloud server
(CCS), multiple fog access points (FAPs) denoted as N = {N1,N2, ...,Nn},
multiple users denoted as U = {U1,U2, ...,Uu} and a set of service types denoted
as L = {L1,L2, ...,Ll}. Network edge service providers operate each FAP, which
is equipped with storage, computing and communication capabilities. Users are
provided services by these FAPs by using a billing mechanism.

3.1 Caching Model

Due to capacity and storage limits, FAPs cache a subset of application ser-
vices. These cached applications require periodic updates and replacement. The
caching decisions is represented by a binary variable xn,l, which can be expressed
as:

xn,l =

{
1, if service Ll is cached in the FAP Nn,

0, otherwise.
(1)

The constraint on the storage space at the FAP Nn is:∑
l∈L

xn,lωl ≤ Ωn (2)

where ωl represents the storage capacity required for service Ll and Ωn the
total cache capacity of FAP Nn.

Users are charged for use of service Ll. Such charge is proportional to use
time:

Fl = tl · pl (3)

where pl represent the price charged by the service provider for the execution
of service Ll per unit of time.
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Fig. 1. System model.

3.2 Computation and Communication Model

According to a collaborative service cache mechanism (CSCM) [21], where FAP
Nn receives a service request from a user. Initially, FAP Nn checks its local
cache to determine if service Ll is cached. If the service is cached locally, FAP
Nn handles the user’s service request directly. Otherwise, FAP Nn seeks cached
services from neighboring FAPs. When multiple FAPs cache service Ll, FAP Nn

turns to FAP Nm with the lowest transmission cost. When none of the FAPs
caches the required service Ll, the user’s service request is forwarded to the
CCS. The cost Cx

n,l represents the charge by FAP Nn when processing service
Ll through server x :

Cx
n,l = β1 · Lx

n,l + β2 · Ex
n,l (4)

where Lx
n,l and Ex

n,l denote the delay and energy consumption when FAP
Nn processes service Ll through server x, respectively. β1 and β2 indicate the
economic factors associated with the delay and energy consumption, respectively.

When FAP Nn receives a service request from a user, it first checks whether
service Ll is cached locally. In this case, FAP Nn directly processes the user’s
service request. In such a scenario, FAP Nn places the service onto the thread
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of the queue with the shortest waiting time for processing. In this context, the
local delay and energy consumption for service Ll are:

Llocal
n,l = (

∑
o∈qn

ζo + ζl) · tc + Lbase (5a)

Elocal
n,l = ζlf

2
nεn + Ebase (5b)

where qn represents the set of tasks in the queue with the shortest waiting
time on FAP Nn, ζl the computational workload, tc the unit processing time for
a task and fn the computing capacity of FAP Nn.

In case that service is not cached locally at FAP Nn, the FAP Nn turns to
other servers. According to Shannon’s formula, the transmission rate between
them is:

ri,j = Bi log2

(
1 +

Pi|hi|2
σ2

)
(6)

where Bi represents the bandwidth rate, Pi the transmission energy consump-
tion, |hi|2 the channel gain and σ2 the variance of the additive white Gaussian
noise (AWGN).

In case that FAP Nn finds one or more servers that cache service Ll among the
neighboring FAPs, it chooses the FAP Nm with the lowest cost for processing
the user’s service request. In this case, the delay and energy consumption for
executing service Ll are:

Lm
n,l = (

∑
o∈qm

ζo + ζl) · tc +
dl

m,n

rm,n
+ Lbase (7a)

Em
n,l = ζlf

2
mεm + Pm

dl
m,n

rm,n
+ Ebase (7b)

Where dl
m,n represents the bit size of the computed result of the service

request l that is processed by FAP Nm and forwarded to FAP Nn.
In case that neither FAP Nn nor its neighboring FAPs cache service Ll,

the service request is offloaded to the CCS. In this case, the delay and energy
consumption for executing service Ll are:

Lccs
n,l = ζl · tc +

dl
ccs,n

rccs,n
+ Lbase (8a)

Eccs
n,l = ζlf

2
ccsεccs + Pccs

dl
ccs,n

rccs,n
+ Ebase (8b)

For each service request, the profit obtained by FAP Nn can be calculated as
the gap between the service request’s fee and the total cost incurred. The overall
cost is comprised of the cost of caching service Cx,l in the server x, the cost of
collaboration Cx

n,l with other servers x and the equipment-related baseline cost
Cbase. Thus, profit of service request is:
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V local
n,l = Fl − Cn,l − CNn

n,l − Cbase (9a)

V m
n,l = Fl − Cm,l − CNm

n,l − Cbase (9b)

V ccs
n,l = Fl − Cccs,l − CCCS

n,l − Cbase (9c)

Consequently, the total profit earned by FAP Nn is:

Vn =
∑
l∈L

(
P local

n,l · V local
n,l + PNm

n,l · V m
n,l + P ccs

n,l · V ccs
n,l

)
(10)

where P local
n,l , PNm

n,l and P ccs
n,l are binary variables represent the execution modes

for FAP Nn to handle service request Ll as local execution, execution with
assistance from FAP Nm and execution via the CCS, respectively.

Additionally, the QoS of users Ul is decided by the average delay Ll and
average fee Fl of executing service Ll:

Ul = ηl
Ll − Lmin

Lmax − Lmin
+ ηf

Fl − Fmin

Fmax − Fmin
(11)

where ηl and ηf represent the impact factors of delay and price on the QoS of
users, respectively. Lmax, Fmax and Lmin, Fmin represent the maximum and
minimum of delay and fee for executing service Ll, respectively.

3.3 Problem Formulation

Based on the system model given above we are interested in maximizing profits of
service provider with the constraints of caching capacities. According to (10), the
profit of FAP Nn is decide by the local cache hit rate P local

n,l and the collaborative
cache hit rate PNm

n,l . The resulting optimization formulation is thus:

P : max
∑
t∈T

∑
Nn∈N

Vn (12)

s.t. C1 :Ul < Umin,∀Ll ∈ L (13a)
C2 :xn,l ∈ {0, 1},∀Nn ∈ N ,∀Ll ∈ I (13b)

C3 :
∑
l∈L

xn,lωl ≤ Ωn,∀Nn ∈ N (13c)

C4 :P local
n,l , PNm

n,l , P ccs
n,l ∈ {0, 1},∀Nn,Nm ∈ N ,∀l ∈ L (13d)

C5 :P local
n,l +, PNm

n,l + P ccs
n,l = 1 (13e)

C6 :Vn ≥ 0,∀Nn ∈ N (13f)
C7 :Numn,l ≤ 1 (13g)

Constraint (13a) ensures that the QoS of Ll is bounded. Constraints (13b)
and (13c) indicate the limit of total storage capacity of cached services on FAP
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Nn. Constraint (13f) guarantees that the profit for each FAP Nn must be non-
negative. Constraint (13g) indicates that each FAP Nn can cache service Ll at
most once. The above optimization problem is clearly a Mixed-Integer Nonlinear
Programming (MINLP) one, which is also NP-hard.

4 The Proposed Method

In this section, we present a detailed description of the FPDRD method. Firstly,
we employ a Federated Learning model for accurate prediction of local popu-
larity by taking the global popularity model and user perception preferences as
inputs. We maintain a popularity priority queue QNn

c of FAP NN and feed the
popularity priority queues Qc for each FAPs as input of into a deep reinforce-
ment learning model. The learning model yields collaborative service caching
decisions according to the optimization objective and constraints.

Fig. 2. Popularity prediction model.

4.1 Federated Learning for Popularity Prediction

As shown in Fig. 2, we implement the prediction of popular services based on
FL algorithm. The popularity prediction includes the following three steps:

Download Global Model. At the start of each time slot t, every FAP retrieves
the global model parameters Wt from the CCS (Lines 3). These model param-
eters facilitate the extraction of latent features to predict popular services. This
enables each FAP to determine the overall popularity for services during the
current time slot.
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Local Model Training. Upon receiving the global model parameters Wt,
each FAP updates its local model through training iterations (Line 4–8). Sub-
sequently, the updated local model HNn

t is uploaded to the CCS (Line 9). This
local model incorporates hidden features related to global service popularity as
well as captures hidden features specific to the local users’ service perception
preferences. By utilizing FAP Nn’s local model HNn

t , the local service popular-
ity priority queue QNn

c can be predicted (Line 10). The loss function employed
is the categorical cross-entropy, a generalized version of binary cross-entropy, to
determine the logarithmic loss for multi-class predictions. This loss function mea-
sures the misclassification between the true service Ll label π and the predicted
service Ll label π̂ defined as cross-entropy:

L(π̂,π) = −
∑

i

πi log(π̂i) (14)

Then, we estimate the loss according to its Mean Squared Error (MSE):

L(φ̂, φ) = E[(φi − φ̂i)2] (15)

where φi is the real service request label and φ̂i the predicted one.

Algorithm 1. Federated Learning for Popularity Prediction
Input: A set of service requests.
Output: The predicted popularity priority queue Qc.
1: for t ∈ T do
2: for Nn ∈ N do
3: Download the global model Wt.
4: for the service requests received by Nn at time t do
5: Calculate the loss of service Ll according to Eq.(14).
6: end for
7: Calculate the loss of FAP Nn according to Eq.(15).
8: Update model parameters HNn

t .
9: Upload HNn

t to the CCS.
10: Calculate the predicted queue QNn

c of the FAP Nn.
11: end for
12: The CCS update Wt+1 according to Eq.(16).
13: end for
14: return The predicted popularity priority queue Qc.

Federated Aggregation. After receiving the uploaded local models Ht from
FAPs, the CCS updates the global model Wt+1 (Line 12). To address the issue
of imbalance in the local models across different FAPs, a weighted federated
aggregation approach is employed by assigning different aggregation weights to
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the local models uploaded by different FAPs. In that case, the updated global
model Wt+1 is:

Wt+1 = Wt +
∑

Nn∈N
∇Nn

t

MNn
t∑

Nn∈N
MNn

t

(Wt − HNn
t ) (16)

where ∇Nn
t represents the gradient step size and MNn

t the number of service
requests received by FAP Nn at time t.

Algorithm 2. Cooperative Service Caching Mechanism
1: for n = 1, 2, . . . , N do
2: for the service requests received by Nn at time t do
3: Calculate the service fee Fl and caching cost Cx

n,l for service l according to
Eq.(3) and Eq.(4) respectively.

4: if service l is cached in FAP Nn then
5: Calculate Llocal

n,l and Elocal
n,l according to Eq.(5).

6: end if
7: if service l is cached in another FAP then
8: Calculate Lm

n,l and Em
n,l according to Eq.(7).

9: end if
10: if service l is not cached in any FAP then
11: Calculate Lccs

n,l and Eccs
n,l according to Eq.(8).

12: end if
13: Calculate Ul of service l according to Eq.(11) and update tl of service l accord-

ing to Eq.(13a).
14: end for
15: Calculate the profit Vn for FAP-N according to Eq.(10).
16: end for
17: return Profits for each FAPs.

4.2 Deep Reinforcement Learning for Caching Decisions

Upon receiving the service popularity priority queue at each FAP for the current
time slot, we utilize a deep Reinforcement learning model to determine the opti-
mal cooperative caching decisions. The objective of this approach is to maximize
the profits of FAPs while maintaining QoS for users.

State. We consider the services cached by FAP Nn as the current state sNn(t),
where the cached services are primarily selected based on the predicted queue
QNn

c obtained from Algorithm 1. Therefore, the current state can be represented
as s(t)Nn = (sNn

1 , sNn
2 , ..., sNn

c ), where sNn
i represents the ith popular service

cached in FAP Nn.
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Algorithm 3. Deep Reinforcement Learning for Caching Decisions
Input: A set of service requests and the predicted popularity priority queue Qc

Output: The caching decisions and profit of FAPs
1: for t = 1, 2, . . . , T do
2: for n = 1, 2, . . . , N do
3: Obtain the state s(t)
4: Obtain the predicted popularity priority queue QNn

c .
5: Calculate the action a(t) according to Eq.(17).
6: Obtain the next state s(t + 1) after executing a(t).
7: Obtain the profit according to Algorithm.(2).
8: Obtain the reward r(t).
9: Store the tuple (s(t), a(t), r(t), s(t + 1)) and randomly sample a minibatch

from it.
10: Calculate the loss function by Eq.(20).
11: Calculate the gradient by Eq.(21).
12: Update θ according to Eq.(22).
13: end for
14: Obtain the caching decisions according to θ.
15: Each FAPs selects the services from the prediction queue QNN

c for replacement.
16: end for
17: return The caching decisions and profit of FAPs.

Action. We define the action a = (aN1 , aN2 , ..., aNn) to represent the set of
actions for all FAPs.where aNn = (aNn

1 , aNn
2 , ..., aNn

c ) represents whether it is
necessary to replace the service in FAP Nn. In this context, aNn

i = 0 indicates
that there is no need to replace the service stored in the ith position of FAP Nn

cache, while aNn
i = 1 indicates that it is necessary to replace the service stored in

the ith position of the FAP Nn. In case that the action function is implemented
using the ε-greedy method:

a(t) = argmax(Q(s(t), a; θ)) (17)

Reward. We define the reward function r(t) to maximize the profit obtained by
FAPs. After taking action a(t), the corresponding reward r(t) is obtained and
the transition from state s(t) to s(t+1) occurs. Consequently, we can construct a
(s (t) , a (t) , r (t) , s (t + 1)) transition, which is stored in the replay buffer. Then,
the action-value function is updated:

Q (si+1, ai+1; θ) = Q (si, ai; θ) + α [yi − Q (si, ai; θ)] (18)

where α represents the learning rate and yi the target Q-value of the target
network of tuple i:

yi = ri + γ max Q̂ (si+1, ai+1; θ) (19)

where γ is the discount factor. The loss function L(θn
i ) of network is:

L(θn
i ) = E

[
(yi − Q (sj , aj ; θ))

2
]

(20)
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The gradient calculation of the loss function ∇θL(θ) for all sampled tuples
is:

∇θL(θ) = E [(yi − Q (si, ai, θ)) ∇θiQ (si, ai, θ)] (21)

At the end of time slot t, the parameters of the network θ are updated as:

θ ← θ − ηθ∇θL(θ) (22)

where ηθ is the learning rate of prediction network.
Firstly, at each time instant t, we take the predicted popularity priority queue

Qc that obtained in Algorithm (1) and the cache state s(t) of the FAPs as input
(Line 3–4). Secondly, we use a deep reinforcement learning model that combines
the profit calculation model in Algorithm (2) as the model indicator for training
to obtain the optimal caching decisions model (Line 5–12). Finally, each FAP NN

selects the services from the prediction queue QNN
c for replacement according to

the caching decisions model (Line 14–15).

5 Performance Evaluation

5.1 Simulation Configuration

In this paper, we developed a simulation environment based on the Movielens
dataset (ml–25 m) [22], which consist of 25,000,095 ratings and 1,093,360 tags
of 62,423 movies created by 162,541 users. The datasets also include the related
information about the involved movies, such as titles and genres, as well as user
attributes including ID number, gender, age and postcode. We assumed that
user preferences are represented by movie ratings and the number of ratings
corresponds to the number of user preferences. The publication time of ratings
is considered as the request initiation time. All the experiments are conducted
on the same computer with an AMD Ryzen7 4800H 2.90 GHz processor, 16.0
GB of RAM and using PyTorch 2.0.

5.2 Baselines

We compare our method against four baselines:

1) DRLVCC: The baseline initially employs a Convolutional Neural Network
(CNN) model to assess the popularity of new requests at different locations.
Subsequently, by a path-responsive vertical cooperative caching approach
based on a deep reinforcement learning model to formulate caching decisions
[23].

2) UPP-CL-CC: The baseline employs an LSTM model to dynamically capture
user activities and preferences, thereby extracting local popularity informa-
tion for FAPs which are subsequently subjected to clustering. Building upon
this foundation, the author proposed a novel greedy approach to address the
cache placement issue [24].
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3) Random: Each FAP replaces unrequested services with a probability of ε. In
our simulation, ε = 0.1.

4) First-In-First-Out Scheme (FIFO): FAPs cache services based on the order of
service requests and discard the oldest cached services when the cache space
runs out.

5.3 Performance Analysis

We perform experiments under three scenarios:

1) We intercept different time spans of the datasets and increased them by one
day at a time to observe how time spans impact service caching performance.

2) We study the impact of the number of service types on algorithm performance
while fixing the time interval at 1 day and setting FAPs’ cache capacity to
100.

3) We compare how FAPs’ cache capacity influences algorithm performance
while keeping the time interval fixed at 1 day and the number of service
types fixed at 1000.

Fig. 3. The performance of algorithms in different time spans.
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As shown in Fig. 3, the FPDRD method exhibits the best overall perfor-
mance. Fig. 3(c) indicates that by considering the temporal variation of over-
all service popularity and the specific preferences of local users, our predic-
tive queue aligns more closely with real-world scenarios, leading to significantly
higher caching hit rates compared to the baseline algorithm. Figure 3(a) and
Fig. 3(b) demonstrate that the FPDRD method achieves the lowest average delay
and highest average profit on various time-span datasets. This achievement is
attributed to the combination of a more accurate predictive model and the train-
ing of the decision-making network using DRL algorithms, resulting in a caching
decisions model that can simultaneously safeguard the QoS of users and enhance
providers’ of network services’ profit.

Fig. 4. The impact of the number of service types on algorithms.

As shown in Fig. 4, it is clear that an increase in service types negatively
impacts the performance of all algorithms. However, different algorithms show
different degrees of performance change. In particular, the FPDRD method
exhibits a slower performance degradation while still maintaining the best over-
all performance. In contrast, the UPP-CL-CC method experiences a more rapid
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performance degradation. The observed trends suggest a trade-off between the
algorithms’ capacity to adapt and optimize caching decisions effectively as the
number of service types rises. The ability of the FPDRD method to respond
quickly to environmental changes enables it to maintain superior overall perfor-
mance even when confronted with a progressively diverse range of service types.

Fig. 5. The impact of the FAPs cache capacity on algorithms.

As shown in Fig. 5, the FPDRD algorithm achieves the highest performance
for different FAPs cache capacities. Additionally, with increasing cache capac-
ity of FAPs, the performance improvement of FPDRD method becomes more
pronounced. The experimental results demonstrate the efficiency of the FPDRD
method in popularity prediction and caching decisions, allowing for the effi-
cient utilization of the available cache resources. As the cache capacity of FAPs
increases, the algorithm can utilize this extra storage capacity to make more
informed and optimized caching decisions. Therefore, the algorithm improves
the cache hit rate and quality of service, ultimately enhancing network services
and benefiting both end users and network service providers.
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6 Conclusion

This paper investigates the service caching problem in MEC and proposes a
novel caching method by leveraging a federated learning model for popularity
prediction and a deep reinforcement learning model for yielding caching decisions
(FPDRD). The experimental results clearly demonstrate that the superiority
of the FPDRD method in achieving improved cache hit rates in MEC. This is
accomplished by effectively considering the temporal variability of overall service
popularity and the specificity of local user preference perception in predictions.
Furthermore, the proposed method maximizes the utilization of limited storage
and computational resources by promoting collaboration among FAPs. In case
that the FPDRD method ensures the QoS of users and maximize the profits
of network service providers. In the future, we aim to address the problem of
resource idleness in FAPs due to the mismatch between storage and comput-
ing resource requirements of service and plan to optimize the fault-tolerance in
collaborative service caching.
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Abstract. Multi-behavior recommendation algorithms comprehensively use var-
ious types of interaction behaviors between users and items, such as clicking,
collecting, purchasing, and commenting, to model user preferences and item fea-
tures. It captures high-level interactions between users and items, and effectively
alleviates the data sparsity problem in recommendation algorithms.However,most
existing multi-behavior recommendation algorithms are mainly centralized learn-
ing models. User behavior data is collected and uploaded to the server to train
recommendation model parameters, which poses a risk of data leakage and com-
promises user privacy. To address this problem, a multi-behavior recommendation
algorithm based on the federated learning paradigm (FedMB) is proposed. This
approach uses the federated learning framework to establish a separate model for
each end device and utilizes the data of the end device for user-end model train-
ing, which improves the privacy and security of user data. To enhance privacy and
security during parameters uploaded, all uploaded parameters will be encrypted,
At the same time, the precedence chart is used to optimize the model parameters
distributed by the server, thereby improving the recommendation quality of the
overall model. Compared with that of the latest methods, our federated model
achieves good performance on the three datasets.

Keywords: Multi-behavior recommendation · Privacy security · Federated
learning · Personalized model · Parameter encryption

1 Introduction

The purpose of a recommendation system is to analyze the user’s personalized prefer-
ences and to recommend content to alleviate information overload. Personalized recom-
mendation models acquire users’ explicit or implicit information through the interaction
between users and products. By doing so, they can obtain user preferences and more
accurately learn the embedded expressions of nodes, thus improving the accuracy of
recommendations [1].
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However, most traditional recommendation behaviors are based on a single behav-
ior. For instance, in Fig. 1 (a), the recommendation system mainly relies on the user’s
purchase behavior to collect information and provide product recommendations. Users
often generate more than one piece of interactive behavior data during the purchase
process. In addition to purchase behavior, there are also actions such as adding items
to the shopping cart and browsing, which can be considered interactive behaviors, such
as Fig. 1 (b). The recommendation system can better discover user interests and prefer-
ences to assist the target behavior (such as purchasing) by using a variety of behavioral
interactive information.

To fully extract the information from multi-behavior interactions, various multi-
behavior recommendation models have appeared in recent years [2–6]. One approach is
to directly build a variety of behaviors and to apply each behavior to a single line as a
recommended model, without considering the differences between different behaviors.
However, somemodels provide different learning rights to different behaviors to simulate
the importance of various behaviors and to distinguish different behavioral semantics
[3].

buy

Fig. 1. Single behavior examples and multi-behavior examples in e-commerce scenarios.

Currently, effective integration of multiple types of behavior and capturing differ-
ences in multi-behavior are the main research methods recommended in many studies
[7]. Commonalities between target and auxiliary behaviors must be identified to improve
the target behavior and achieve higher recommendation effects. For example, commodi-
ties added to the shopping cart through purchasing behavior must have commonalities,
such as the same style, category, or price. However, sparse supervision signals in tradi-
tional datasets do not guarantee the quality of graph learning, and buying behaviors are
often the target behaviors in most multi-behavior recommendation models. GU S et al.
proposed a method to address this issue by dividing different behaviors into two views
for two or two comparison learning [2], but this method ignores the impact of auxiliary
behavior on the target behavior.

Therefore, the use of user data for separate training models and independent recom-
mendations is proposed to address the issue of personalization of behavior. Traditional
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multi-behavior recommendation models often focus on the data from the interaction
of the overall user and ignore the differences between different users. By training the
model continuously to allow it to learn the differences between different behaviors or the
connection between users, the model can effectively improve recommendation accuracy.
However, this paper highlights the need to balance the effect and accuracy of the model,
which requires further study.

In traditional machine learning models, centralized learning is a mainstreammethod
[8], where the provider of the service collects user data and trains the machine learn-
ing model by using interactive information from users and products. However, due to
restrictions on regulations and laws such as the GDPR [9], data security and privacy pro-
tection have become increasingly important. To address this issue, federated learning
(FL) was proposed in 2016 [10], allowing data collection and training to be completed
on end devices without the need for transmission. FL greatly improves user data privacy
protection performance and has much application space for privacy protection and mul-
tiparty computing [11]. Although various privacy protection algorithms and encryption
algorithms have been proposed, such as encryption algorithms based on cryptography
[12], blurred disturbance methods [13], and the differential privacy [14], the balance
between the effect and accuracy of the model must be further studied. FL an effective
way to address this problem.

The main contributions of this article are as follows:

• To reduce the risk of privacy leakage in the process of multi-behavior recommen-
dation, we use the federated framework to improve its security, and propose a
multi-behavior recommendation algorithm based on federated learning.

• To improve the recommendation effect of the federated model, we adopted the prece-
dence chart method [15]. This method optimizes the iterative parameters through the
precedence chart method, and in the experiment, the adoption of the precedence chart
method can further enhance the model recommendation effect.

• For the traditional federated aggregation algorithm, there is a risk of privacy leakage
during the upload of parameters. In this process, noise data are added, position param-
eters are established, and real parameters are identified on the server. In addition, the
security during the upload of the parameters is improved.

• The effectiveness of ourmethod is verified on three real-world datasets, which demon-
strates that our method advances the recommendation performance compared with
other baselines.

Organization. The remainder of this article is structured as follows: Sect. 2 describes
related work, including introductions to multi-behavior recommendation, discussions
on machine learning models of privacy recommendation methods, and introduction
to the basic knowledge of federated learning. Section 3 introduces FedMB, which is
a multi-behavior recommendation adaptation of FL settings. In Sect. 4, we present a
hyperparameter study, an ablation study, and comparative experiments on FedMB. In
Sect. 5, we summarize our work and draw conclusions.
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2 Related Work

In the past three years, researchers’ recommendations for multi-behavior have focused
on the optimization of recommendation effects, but few people are paying attention to
privacy protection in the process of multi-behavior recommendation.

2.1 Multi-behavior Recommendation Algorithm

In recent years, graph neural networks have been widely used in multi-behavior recom-
mendation algorithms. For instance, Jin B et al. proposed a user-item communication
layer to capture the behavior semantics and explore the intensity of behavior [3]. In
2021, Xiao L et al. integrated multi-behavior mode into the meta-learning paradigm and
automatically extracted the heterogeneity and interaction of behavior [4], but they did
not consider the impact of time on user behavior. Xiao L et al. proposed a time-coding
strategy to incorporate time perception into the context and developed a multi-behavior
mutual attention encoder to learn different types of behavioral structure dependencies
[5]. However, they overlooked the complexity of user-item interactions. In 2022, Wei W
et al. proposed a new comparison meta learning model that maintains dedicated cross-
type behavior for different users [6]. It effectively learns the characteristics of users and
items by using deep learning frameworks. These papers mainly focused on exploring
behavior information and ignored the personalized perspective of user behavior. Wu Y
et al. addressed this issue by using user personalized sequence information and global
map information in the multi-view comparison learning [16]. However, these models
have not considered the personalized training of the model at the data level.

2.2 Privacy Protection Recommendation Algorithm

In this section, we provide an overview of recommendation methods for privacy protec-
tion in both centralized and decentralized settings. Privacy protection recommendation
systems must prevent the leakage of user personal privacy data, while also defending
against attacks from various sources. Different types of attacks, such as user attribute
attacks [8], reasoning attacks, and attack attacks, require different defense mechanisms.
To effectively address these attacks, privacy protection algorithmswere developed. There
are three main ways to protect user data: cryptography-based privacy protection algo-
rithms, data disturbance-based privacy protection algorithms, and federated learning-
based privacy protection methods. These methods aim to achieve data privacy protec-
tion through algorithmic approaches. In this article, we focus on the use of federated
learning architecture to achieve privacy protection. The data are encrypted during the
transmission process. The privacy of user data can be better protected.

Federated learning is a distributed machine learning framework that is designed for
privacy protection. FL stores the user’s original data locally and uses the intermediate
parameters of the client and server to optimize the system, resulting in improved fore-
casting performance. In this article, we combine the recommendation algorithm with
federated learning, which allows us to shift the centralized learning framework to the
federated learning paradigm. As a result, the federated recommendation algorithm based
on privacy protection has garnered significant attention from researchers.
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The traditional federated recommendation algorithms encrypt data based on the fed-
erated architecture, but there is still a risk of privacy leakage. Therefore, researchers
focus on developing federated privacy recommendation algorithms. Early federated rec-
ommendation frameworks required users to upload only gradient information, but this
information can still lead to privacy breaches. In 2020, Di Chai et al. proposed a dis-
tributed matrix decomposition framework by using homomorphic encryption [17], but
this did not guarantee the security of the data source. To address this, Guanyu Lin
et al. proposed a solution based on explicit feedback [19], which involved creating a
collection of noninteracted items to predict user preferences. This approach improved
privacy protection and ensured the security of terminal data processing. In 2021, Chuhan
Wu et al. proposed using pseudo interacting data and anonymous neighbor methods to
enhance privacy protection performance [20]. V Asileios Perifanis et al. proposed the
FedNCFmodel [21], which uses SecAvg to resolve privacy issues in small-scale datasets.
Jingwei Yi et al. developed the Efficient-FedRec model [22], which uses an effective
security aggregation agreement to protect user privacy in training. Wei Yuan et al. pro-
posed the FRU model, which enables the deletion of user contribution data to improve
privacy protection [23]. These approaches aim to improve the privacy protection mech-
anisms of federated recommendation algorithms while ensuring high recommendation
performance.

The use of a centralized learning model is common in multi-behavior recommen-
dations because the use of global user data for training and can lead to more accurate
recommendations. However, this approach has a significant risk of privacy leakage.
Additionally, the recommendations provided are often more general and less personal-
ized due to the use of models for the entire user base. To address these issues, we propose
a personalized federated recommendation framework. This approach uses personalized
models to provide more accurate recommendations for user data while ensuring privacy
protection. The framework includes a privacy protection module during the parameter
upload process, further improving the privacy performance and recommendation quality
of the model.

Table 1. Comparison of different methods in privacy protection

NMTR EHCF RGCN MB-GMN S-MBRec FedMB

User data storge Center Center Center Center Center Local

Rec process protection ✔ ✔ ✔ ✔ ✔ ✔

Rec result protection ✘ ✘ ✘ ✘ ✘ ✔

To better demonstrate the advantage of our approach, we summarize the comparison
between FedMB and existingmethods on exploiting privacy protection in Table 1. “Rec”
means recommendation, “Center” and “Local” represent centralized and decentralized
data storage, respectively.
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2.3 Federated Learning

Federated learning is a machine learning technology that enables the training of machine
learning models in a decentralized and distributed manner. The core idea of this learning
approach is that the training data on each device do not need to be sent to a central server
for coordination among different entities. This approach is different from the traditional
machine learning training method and provides a higher level of privacy protection.

Federated Learning Algorithm. The federated learning algorithm follows a specific
process, which includes collecting data at the initial stage, establishing a client model,
and training the client data on the client model. Each client trains its own client model,
and after the training is complete, each client uploads the model parameters or gradient
to the server. The server conducts overall training based on these parameters and does
not collect any private data from the client, thus maintaining the privacy of the data.
Essentially, the server acts as a learning resource for the terminal equipment. Once the
server processes the parameters uploaded by the client, it distributes them back to the
client for further training. The process is summarized as follows:

Step1: The server provides the global model to the clients. This global model can be
either an initial randomized model or a pretrained model.
Step2: The client uses its own data to conduct local training and to update the model.
Step3: The client uploads themodel parameters or intermediate parameters to be updated
to the central server.
Step4: The server aggregates the model parameters or intermediate parameters from the
local client and performs multiple rounds of repeated iteration updates.

The above steps are repeated multiple times until the model converges, and then
local models are used for reasoning and prediction. Throughout the process, users’
privacy data, such as browsing history, likes, and collection history, are preserved locally,
ensuring the safety of user privacy data. This approach greatly improves the privacy
protection level of the learning model, while also providing accurate recommendations
and maintaining the confidentiality of user data. Therefore, it is a more effective and
secure method for machine learning in sensitive environments.

Federated Aggregation Algorithm. The most common approach to general aggrega-
tion is the federated average aggregation algorithm (Fedavg) [10]. In a global iteration,
each participating client completes a small number of local iterations, and then uploads
the parameters or gradient of the training instance to the server.

The server aggregates the uploaded parameter set or gradient set by using an
aggregator, which is updated globally in the following ways:

wt+1 =
∑|c|

i=1

ni
n
wt (1)

where |c| is the number of selected participants in a training round,w is a model parame-
ter, ni is the number of examples participating in this aggregation, n is the sum of the total
number of participating instance training, wt is the model parameter after the training of
this participating instance, and t is the number of iterations.
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3 Proposed Method

3.1 Problem Definition

We consider a scenario with multiple users (N > 2), each holding a private dataset. The
goal is to build a federated learning system that can train models without compromis-
ing users’ privacy. The datasets are generated locally by the users without any mutual
transmission or interaction. We assume that the multi-behavior data generated by the
users follow the principle of independence and distribution [21]. For a few users with
less behavioral interaction, a pseudo interactive item is generated. Although this might
have a negative impact on the recommendation results, this approach ensures the quality
of the diagram learning, and the impact on the overall framework is small. This article
is primarily focused on the stability of the overall framework.

The framework generates a list of previous recommendations for users using the local
recommendation model. Training and recommendation are performed on the client side
to ensure user privacy. For multi-behavior, the GCN [24] layer is used to extract user
behavior characteristics.

3.2 FedMB Framework

The FedMB framework is illustrated in Fig. 2 and consists of four main parts: the client’s
training module, the server-side parameter selection module, the server-side parameter
aggregation module, and the parameter encryption module. To enhance security during
parameter transmission, noise data are added. To protect privacy, the model parameters
after user-side model training are used. At the central server-side, the aggregated param-
eters are sent back to the client to complete each round of iteration training. The working
principles of each module are explained in detail below.

Client Training. Weadopt a self-supervised approach formulti-behavior recommenda-
tions, which is partitioned by user IDs in the dataset to allocatemodels for different users.
The GCN layer is used to learn the embeddings of users and items, effectively extracting
their personalized interaction characteristics (different users have different user-item
interaction data, as shown in the Fig. 2). To differentiate between the importance of
different behaviors, we propose a supervised task, and then use automatic learning to
aggregate the embeddings of multi-behavior to distinguish between target behavior and
auxiliary behavior. In each subgraph, the user and behavior embeddings are represented
by Rk , where Rk denotes the k-th behavior graph, and the adjacent matrix Ak can be
obtained from matrix Rk .

Ak =
(

0 Rk

RT
k 0

)
(2)

Then, the GCN multilayer message communication formula is used to obtain the
nodes of different behaviors embedded in the matrix. The formula is as follows:

X (l+1)
k = σ

(
Ak

∧

X (l)
k Wk

)
(3)
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Fig. 2. The framework of FedMB

where Ak

∧

= D
− 1

2
k (Ak + Ik)D

− 1
2

k is a self-connected normalized matrix. Dk is a |V |∗|V |
dimension matrix under the k behavior. |V | is the sum of the number of users and the
number of items, |V | = |U | + |I |. Ik is the dimension matrix of |V |∗|V | . X (l)

k ∈ R|V |∗d
is the node embedded matrix in the node of the Ik behavior in the convolution layer.
d is the dimension embedded. Wk and σ are model training parameters and non-linear
activation functions. In order to ensure the embedding of the short connection node, the
function of this article uses the function to merge all layers.

Xk =
∫ (

X (l)
k

)
(4)

where l = [0, 1 . . . ,L]. Xk is composed of the user embedded matrix XUk ∈ R|U |∗d and
the item embedded matrix XIk ∈ R|I |∗d .

∫
is the last layer of the connection operation.

First, auk is the semantic fusion coefficient of the user under the K behavior. Among
them, we consider the proportion of the user’s first behavior in all behaviors, and
recognize the strength of different behaviors, as shown below:

auk = exp(wk ∗ nuk)

exp(wm ∗ num)
(5)

where wk said that under the behavior of the behavior k of all users, nuk is the number
of associations of user u under k.

XUK and XIK denote the embedded matrix of users and items under behavior k,
while xuk and xik denote the embedding of user u and item i under behavior k. Then the
representation of all behaviors is merged. For user u, we merge all representations, as
shown below.

eu = σ

{
W

(∑K

m=1
auk ∗ xuk

)}
(6)
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whereW is the different behavior types. The characteristics of the item are static. For this
reason, we combine the item’s representation under different behaviors through series
operations, as shown below.

ei = g{Cat(xik)} (7)

where k = [1, 2, . . . ,K], g is a multi-layer perception machine (MLP) [25], and Cat
denotes the connection operation.

For supervision and training tasks, the loss function used is the BPR [26].

Lst =
∑

(u,i,j)∈O
−log

{
σ
(
eTu ei − eTu ej

)}
(8)

where ei is the embedded item, eu is the embedded item of the user, O =
{(u, i, j)|(u, j) ∈ O+, (u, j) ∈ O−} is the training task, O+ is the observed interaction,
and O− is the unsteady interaction, which is used to generate positive and negative
samples.

For unsupervised training tasks, we adopt a comparative method of learning and
perform comparative learning between target behavior and auxiliary behavior subgraphs.

Lusersstk′ =
∑

u∈U
−log

∑
u+∈U exp

{
(xuK )T xu + k′

τ

}

∑
u−∈U exp

{
(xuK )T xu − k′

τ

} (9)

where (xuK , xu+k′) denotes the positive pair, and (xuK , xu−k′) denotes the negative pair. τ
is a parameter,U is a user set, k′ is auxiliary behavior, andK is target behavior. Similarly,
we obtain a comparison loss Litemsstk′ through the loss function under the combination user
and the item, and then,we addmultiple comparison losses to obtain the total unsupervised
loss, as shown below.

Lsst =
K∑

k ′=2

(
Lusersst

k
′ + Litemsst

)
(10)

Parameter Selection on the Server. The main purpose of parameter aggregation is
to select and weight the model parameters uploaded by clients. To achieve this, each
uploaded parameter set is assigned a score based on the training loss reported by the
client. This score reflects the quality of the client’s model training, with higher scores
indicating better performance. During each round of global iteration in federated Learn-
ing, the server aggregates the parameters of each client and computes a score value for
each parameter. The parameters with high scores are then selected for aggregation to
improve the overall model’s recommendation quality.

To optimize the parameter selection process, we propose a method that uses pairwise
comparison of precedence chart to assign weights to each factor. The use of precedence
chart for weight assignments ensures fairness, avoids extreme score values, and reduces
algorithmic complexity and training overhead compared to traditional machine learning
methods. Applying this method to the federated Learning framework can shorten the
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global iteration time and can improve recommendation efficiencywithout compromising
the results.

The weight assignment process involves evaluating the dataset, selecting the initial
normal results, and assigning an initial weight score. Then, pairwise comparisons are
performed to establish the corresponding mapping between the evaluation data and the
weight value. Finally, the weight values are normalized and arranged to obtain different
weights for different data.

Parameter Aggregation on the Server. The core engine of adaptive learning is per-
sonalized learning recommendation, which has greatly improved accuracy and diver-
sity. Federated learning is a powerful data privacy protection machine learning solution
that can safeguard data privacy and security while sharing data value. In this study,
we combine federated learning with multi-behavior recommendation to create a feder-
ated personalized multi-behavior recommendation system and assess its feasibility and
effectiveness.

Federated learning is comprised of two methods: global federated learning model
training and training single models on clients. The global training method uses federated
training plus local adaptation strategies and depends on the generalization performance
of the global model for effective recommendations. The client training method focuses
on personalized models that provide tailored solutions for each user. It modifies the
aggregation process of the FL model to establish a personalized model and is advanta-
geous for solving user preference drift. In this article, we use the client training method
to train client models and to build a multi-behavior recommendation framework with
strong generalization.

The client’s training task is composed of self-supervised and unsupervised tasks. The
total loss of the client’s training is represented by the following formulas. Lst denotes
unsupervised loss, while Lsst denotes the supervision loss.

Lsum = Lst + λLsst + μ‖�‖22 (11)

where � stands for training parameters, λ and μ indicate the control of self-supervision
and L2 regularization proportional parameters, respectively.

Sn = PC(l1, l2 . . . ln−1, ln) (12)

On the server-side, the parameters are selected by the collected client model param-
eters and losses. Using precedence chart (PC) to give scores to different parameters, as
shown in Formula (12), ln denotes the n loss corresponding to the parameter, Pn is the n
score, Sn = (P1,P2 . . .Pn−1,Pn), and the score set. We use the score set to give a native
value to give power.

Wn = γ (P1,P2 . . .Pn−1,Pn)
∑|n|

i=1 Pi

(13)

where γ denotes the judgement function, which is used to remove extreme values. Wn

denotes theweights allocated according to different scores.Wn = (w1,w2 . . .wn−1,wn),
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Wn is the weight set corresponding to the n score of Sn. Perform parameter collection
best according to different weights.

Wm = SelectNβ(w1,w2 . . .wn−1,wn) (14)

where SelectNβ is the selection function, β is the proportion of the weight set to remove
weights, m = n ∗ (1 − β), and Wm = (w1,w2 . . .wm−1,wm), which denotes the
selected parameter weight collection. After obtaining the corresponding parameters,
the parameters are averaged, and the aggregation formula is as follows.

pt+1 =
|m|∑

i=1

ni
n
pit (15)

where t is the current number of aggregation rounds, and the parameter pt+1 after the
final aggregation is distributed down from the server-side, and participates in the next
global iteration.

Parameter Encryption.Upon completing the training, the client uploads its param-
eters to the server, but this process is vulnerable to parameter interception and thus, can
result in user privacy leakage.
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Fig. 3. Parameter encryption

To enhance the security, we increased the difficulty of identifying the real parameters,
thereby reducing the risk of external malicious attacks. In accordance with the Fig. 3, the
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structure of the parameter encryption module is illustrated. In this article, noise data are
added to the parameters uploaded from the client to increase the difficulty of identifying
the real parameter. The noise data are derived from the pseudo parameters generated by
the client itself. The formula is as shown below:

MIit+1 = Ipit+1 +
∑

j∈c:j<k

IRj (16)

where IRj denotes randomly generated parameters, Ipit+1 are real user parameters, and
MIit+1 is the mask parameters. k is the number of pseudo ginseng generated by the client.

Adding noise to the parameters makes it more challenging to recognize the real
parameters on the server. To address this issue, position parameters are generated on
the client and uploaded to the server to identify the actual parameters. For position
parameters, AES encryption is used, which is efficient and fast [27], and the server-
distributed key is employed for encryption and decryption on the server. Compared to
direct encryption of parameters, this proposed encryption method significantly reduces
the encryption time overhead. The figure below illustrates the main process.

4 Experiments

In this experiment, we evaluate the recommendation quality of FedMB by using three
datasets and introducing the experimental settings in detail. The evaluations are con-
ducted through an ablation study and hyperparameter study to analyse the model and
compare the effects of different modules and parameters on results. Finally, we compare
the experimental results with other models to provide a comprehensive evaluation of
FedMB.

4.1 Datasets and Evaluation Settings

To evaluate the performance of FedMB, we verify the model effect in 3 real-world
datasets. The details are described as follows:

Table 2. Beibei, Taobao, Yelp dataset statistics

Dataset User Item Interactions Behavior Type

Beibei 21716 7977 3.36 × 106 {View, Cart, Purchase}

Taobao 48749 98249 2.40 × 106 {Click, Add to cart, Purchase}

Yelp 19800 22734 1.40 × 106 {Like, Neutral, Tip, Dislike}

The sparsity of data can be significantly reduced by setting both the target behavior
and auxiliary behavior. Although the target behavior is typically considered the super-
visory signal for training the model, it is often sparse, and sparse supervision cannot
guarantee the training quality of the model. Even in multi-behavior recommendation,
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this phenomenon persists. To avoid this situation, we also regard auxiliary behavior as a
supervisory signal formodel training.Whenwe cannotmake recommendations based on
user purchase behavior accurately, we can alternatively make recommendations based
on user browsing or clicking behavior, which has been found to be effective.

To evaluate the model’s recommendation effectiveness, we set up a corresponding
test set for the client and utilize the user’s target behavior as the test set. When the user
has no target behavior interaction, the user’s auxiliary behavior is used as the target
behavior. In this paper, we utilize the NDCG and the Recall to better assess the model’s
recommendation effectiveness. NDCG accounts for the position of the recommendation
ranking, while recall calculates the probability of the model recommending items that
match the user’s true interests. we report the Recall and NDCG values for k = 40 and k
= 80, respectively, and the formulas for calculating NDCG and Recall are as follows:

DCG@k =
k∑

i=1

2reli − 1

log2(i + 1)
(17)

NDCG@k = DCG@k

IDCG@k
(18)

where reli denotes the relevance score of the ith recommended item, k is the length of
the recommendation list, DCG@K represents the discounted cumulative gain of the top
k recommended items, and IDCG@K represents the discounted cumulative gain of the
top k relevant items.

Recall@k = TP@k

TP@k + FN
(19)

where the TP@k metric represents the number of items that the user actually liked
among the top k recommended items, while FN is defined as the difference between the
total number of items that the user actually liked and the number of items that the user
actually liked in the top k recommended items.

Experimental setup.The experiments in this paper are performed in anUbuntu16.04
operating system. The hardware configuration used in the experiment is as follows: CPU:
Intel Core i9-10900K; GPU: NVIDIA RTX 3080 TI. The programming language used
is Python 3.7, and the deep learning development framework is PyTorch 1.7.

4.2 Experimental Settings

In this paper, we present a recommendation method that establishes end models and sets
an aggregator on the server end. To optimize the aggregated parameter set, the federated
weighted average algorithm is employed.

In terms of the setting of the federated framework, we divide users into different
clients based on their IDs. By treating each ID as a different client, user data are read
and the model is trained on the client side. As the number of clients is large, we set
the number of client model trainings to 5, with a small number of iterations to avoid
excessive time and space overhead. Due to the transitive nature of client parameters in
the federated learning architecture, we focus more on the fitting of the overall global
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model on the server-side. An aggregate aggregator is established on the server-side,
which aggregates the parameters and distributes them to the clients. To ensure that as
many clients as possible participate in the global training, we set a large number of
random extraction times. For example, on the Beibei dataset, which has a total of 21,716
users, we extract 70 clients each time for 430 global iterations, with a total of 30,100
random extractions, covering as many user IDs as possible.

4.3 Hyperparameter Study

Formula (14) introduces β as the proportion of deleted parameters in the parameter set,
with its size determining the number of aggregated parameters. Notably, the final aggre-
gated parameter set decreases as the β value increases. Nonetheless, both excessively
large and small β values compromise the quality of the final model’s recommendation
results. Furthermore, the size of the aggregated parameter set directly impacts the aggre-
gation time, which subsequently influences the model’s training duration. In this study,
we adopt varying β sizes to measure the model’s training time and efficacy.

TheEffect ofParameterβonRecommendation. During the execution of theweighted
aggregation algorithm, the iterative transfer parameter’s quality is optimized.
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Fig. 4. Effects of different values of β on the results of FedMB
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However, the final model results differ slightly under different optimal parameter
β sizes. As illustrated in Fig. 4. From observation, a β value of 0.1 is optimal for the
Beibei, Taobao, and Yelp datasets. Setting a larger β may remove too many well-trained
parameters, resulting in a small parameter set that cannot achieve universal aggregation
in training, hence reducing the quality of aggregated parameters and the recommendation
effect. Conversely, a smaller β may select a smaller proportion of parameters, allowing
client parameters with training disadvantages to participate in training, ultimately com-
promising the model training and results. Therefore, the experimental results show that
setting β to less than 0.1 leads to a decrease in the results, validating the appropriateness
of using a β value of 0.1.

TheEffect of Parameter β onTrainingTime. While verifying the impact of parameter
β on the results,we discovered its effect on the fitting time of the federatedmodel training.
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Fig. 5. Effect of parameter β on training time

Upon analyzing Fig. 5, we observed that the value of β affects the training time of the
training client. Specifically, not using the precedence chart (β = 0) resulted in a longer
training time compared to using the method. We also evaluated different values of β

and set the total duration of the framework training under the training of 30,000 user
instances to {0.1, 0.2, 0.3, 0.4}. We discovered that increasing the optimal parameter
β led to a reduction in the overall framework’s training time. The training time for
the Taobao dataset decreased from 12.41 h to 11.89 h, the training time for the Beibei
dataset reduced from 4.42 h to 4.35 h, and the training time for the yelp dataset reduced
from 3.89 h to 3.74 h. Therefore, we concluded that when performing weighted optimal
aggregation, a larger optimal parameter results in fewer server-processed parameters,
leading to a shorter overall training time. Additionally, we observed that the training
time for the Taobao dataset was longer compared to the training times for the Beibei
and yelp datasets. The difference in training times was due to different datasets having
varying orders of magnitude of interactive items. Since Taobao had more interactive
items, the model required a larger interaction matrix, causing increased overhead and
longer training times. Therefore, we set β to 0.1 to decrease the training time while
ensuring recommendation quality.
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4.4 Ablation Study

In federated aggregation, clients usually upload the gradient or parameters of the user
model. However, this paper also includes the client training loss value to assess user
training quality. The precedence chart plays a vital role in FedMB.
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Fig. 6. Effect of precedence chart on the results of FedMB

In this paper, we conduct an experiment to demonstrate its effectiveness in improv-
ing the model’s results under the influence of the precedence chart. We compare the
results of our federated model, FedMB, with FedMB(PC), and observe an improvement
in our model’s performance. To investigate the impact of the precedence chart on the
experimental results, we conducted an experiment and discussed its effect on the effec-
tiveness of the federated recommendation model with and without PC. We refer to the
“precedence chart” as PC for convenience. The results are shown in Fig. 6. The average
quality of the recommended results on the Beibei dataset increased by 2.5%, while the
improvement on the Taobao and Yelp datasets was 3% and 4.9%, respectively. These
results indicate that using the precedence chart method to filter out the excellent training
end model parameters and aggregate them has significant advantages over traditional
federated aggregation methods. Furthermore, it improves the recommendation effect
of the model. Therefore, we conclude that utilizing the precedence chart to optimize
federated aggregation is crucial for enhancing the performance of the FedMB.

4.5 Comparative Experiments

In this paper, N GCN behavior user interaction views and N user behavior interaction
views are set up, where N is the number of behaviors, N is set to 3. The weights are
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learned by optimizing supervised and unsupervised losses using theAdam [28] optimizer
with a learning rate of 0.0001. In each experiment, 30,000 user rounds are trained on
the Beibei and Taobao, Yelp datasets, with the number of client training rounds set to
5 rounds. The number of users participating in each round is set to 70. The difference
in model quality in the global model with different numbers of users can be attributed
to the heterogeneity among participants, which leads to variability in the overall effect.
In each joint training, a random sampling method is adopted to ensure that each client
has the same probability of being sampled in each global iteration. To comprehensively
train the client, a higher sampling number and a larger number of global iteration rounds
must be selected. Based on hyperparameter research, setting β to 0.1 ensures optimal
efficiency with relatively low time consumption. The training batch size on clients is set
to 1024.

We conduct a comparison between FedMB and several classic multi-behavior
recommendation models, including NMTR, EHCF, RGCN, MB-GMN, and S-MBRec.

NMTR [29]: This is a hierarchical multitask recommendation model that effectively
manages complex interconnected behaviors.

EHCF [30]: This model uses heterogeneous collaborative filtering and transferable
predictions for multi-behavior. It transfers information across behaviors to enhance its
precision and personalization.

RGCN [31]: This model improves factorization models with multistep information
propagation in relational graphs, leading to enhanced accuracy in tasks such as link
prediction and entity classification.

MB-GMN [4]: This model efficiently predicts multiple source-target tasks by
combiningmeta learningwith graph neural networks to obtain cross-behavior predictors.

S-MBRec [2]: The model adopts a star comparison strategy to create a comparison
view of target and auxiliary behavior. It uses supervised and unsupervised tasks to
recommend models, improving the accuracy and effectiveness of the recommendations.

Our goal is to emphasize the unique features and advantages of FedMB in comparison
to these traditional models. Through this comparison, we provide a more comprehen-
sive understanding of the strengths and limitations of each model. We also highlight the
potential applications of FedMB in various real-world scenarios. According to Table 2,
the proposed federated multi-behavior recommendation model outperforms the latest
S-MBRec model on the Beibei dataset, with an average index increase of 12.6% points.
While there are decreases in Recall@10 and NDCG@10 due to the larger number of
interactions per user in the Beibei dataset, its performance also decreases in shorter
recommendation lists when unable to obtain preferences from other users. However,
the other two datasets exhibit some mitigation of this effect due to their smaller num-
bers of interaction items per user. Despite this, for other metrics such as Recall@40
and NDCG@40, they are both twice as high as the latest methods, and Recall@80
and NDCG@80 also experience significant improvement. On the Taobao dataset, all
performance indicators show improvement, especially in Recall@40 and NDCG@40,
resulting in an average indicator increase of 13.1%points. Similarly, theYelp dataset also
shows an average increase of 14.5% points. These results demonstrate the excellent rec-
ommendation performance of the proposed model, especially when recommending 40
items (Table 3).
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Table 3. FedMB in Beibei,Taobao, and Yelp results comparison

Datatset Metric NMTR EHCF RGCN MB-GMN S-MBRec FedMB

Beibei Recall@10 0.0460 0.0456 0.0483 0.0496 0.0529 0.0443

Recall@40 0.1370 0.1270 0.1262 0.1497 0.1647 0.5063

Recall@80 0.1989 0.1923 0.1912 0.2018 0.2740 0.5525

NDCG@10 0.0124 0.0131 0.0122 0.0134 0.0148 0.0137

NDCG@40 0.0192 0.0217 0.0226 0.0395 0.0429 0.1210

NDCG@80 0.0422 0.0435 0.0440 0.0465 0.0615 0.1290

Taobao Recall@10 0.0367 0.0292 0.0370 0.0423 0.0608 0.1764

Recall@40 0.0485 0.0594 0.0703 0.0873 0.1027 0.3446

Recall@80 0.0982 0.1032 0.1525 0.1553 0.1647 0.4011

NDCG@10 0.0237 0.0285 0.0213 0.0325 0.0391 0.0819

NDCG@40 0.0404 0.0373 0.0314 0.0396 0.0464 0.1209

NDCG@80 0.0329 0.0390 0.0443 0.0475 0.0583 0.1306

Yelp Recall@10 0.0195 0.0172 0.0210 0.0230 0.0259 0.1986

Recall@40 0.0697 0.0704 0.0844 0.0899 0.1135 0.3226

Recall@80 0.0903 0.0873 0.1105 0.1350 0.1548 0.3433

NDCG@10 0.0191 0.0166 0.0199 0.0275 0.0287 0.1145

NDCG@40 0.0305 0.0298 0.0263 0.0220 0.0337 0.1436

NDCG@80 0.0355 0.0330 0.0395 0.0430 0.0438 0.1471

The proposed federated multi-behavior recommendation model is different from the
baseline model in that it trains a personalized model for each user and makes recom-
mendations based on their interactions with personalized items. Unlike the comparative
methods, this model explores the interaction of users’ personalized items and trains a
model for each user, and it does not weaken with the overall user preference. Addition-
ally, a security encryptionmodule is added to the parameter upload process to ensure user
privacy and security while improving recommendation performance. Consequently, the
model effectively explores users’ personalized preferences andmakes recommendations
without revealing their private data.

5 Conclusion

In this paper, we present FedMB, a multi-behavior recommendation model that uti-
lizes federated learning to preserve data privacy during the recommendation process.
FedMB employs a personalized federated learning framework to address the challenge
of user personalization in multi-behavior recommendation. Through personalized user
models, the system can provide high-quality recommendations while still protecting the
privacy of users’ data. The effectiveness and efficiency of FedMB are evaluated in exper-
iments, and we also discuss the impact of using a precedence chart on the performance
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of the federated model recommendation. The results show the feasibility of using fed-
erated learning in multi-behavior recommendation systems, with the proposed method
performing well on three datasets.

In future research directions of multi-behavior recommendation under the federated
learning paradigm, improving the security and efficiency of the system remains a top
priority. Despite the higher privacy level provided by the decentralized data location
and encrypted data transmission, there is still a risk of privacy leakage during param-
eter distribution. Additionally, enhancing the efficiency of client model training and
compressing parameters to reduce communication overhead are crucial areas for further
investigation.
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Abstract. Edge computing is a paradigm that involves performing local
processing on lightweight devices at the edge of networks to improve
response times and reduce bandwidth consumption. While machine
learning (ML) models can run on smaller computing devices at the edge,
training ML models presents challenges for low-capacity devices. This
paper aimed to evaluate the performance of Federated Learning (FL)
- a distributed ML framework, when training a medical dataset using
Raspberry Pi devices as client nodes. The testing accuracy, CPU usage,
RAM memory usage and network performance were measured for dif-
ferent number of clients and epochs. The results showed that increasing
the number of devices generally improved the testing accuracy, with the
greatest improvement observed in the earlier epochs. However, increasing
the number of devices also increased the CPU usage, with a significant
increase observed in the later epochs. Additionally, the RAM memory
usage increased slightly as the number of clients and epochs increased.
The findings suggest that FL can be an effective way to train medical
models using distributed devices, but careful consideration must be given
to the trade-off between accuracy and computational resources.

Keywords: edge computing · federated learning · mesh networks

1 Introduction

Edge computing complements cloud computing by utilizing local processing on
lightweight computing devices, such as IoT gateways and wearable devices, at the
edge of networks where data is produced. Local processing on these edge devices
can improve response times of cloud services and reduce bandwidth consumption
by transmitting less data to the cloud [1,2]. Edge computing is already opera-
tional in various industrial and consumer-oriented scenarios and some machine
learning (ML) and artificial intelligence tasks can also be moved from the cloud
to the edge.
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Fig. 1. Resource-constrained devices: Raspberry Pi, Arduino - tinyML and some wear-
able and IoT devices.

Running ML models on smaller computing devices at the edge is becoming
increasingly popular. Even tiny microcontroller boards are now capable of per-
forming simple tasks with trained models [3]. However, training ML models is
more computationally demanding and presents challenges for devices with low
capacity. While using GPUs (Graphics Processing Units) instead of CPUs (Cen-
tral Processing Units) can provide better performance, GPUs are not always
available on devices like low capacity PCs (mini PCs) or single-board-computers
(SBCs). As a result, CPUs have to handle a high load during training, which
takes significantly more time compared to high-end devices. This means that
training process takes significantly longer on low-capacity devices, making it
unsuitable for applications with time constraints.

With the popularization of wearable and mobile devices, intelligent learn-
ing applications have been prominently used by many consumers. These devices
collect user information about daily activities, providing valuable insights to
enhance user lifestyle. The success of smart health applications largely relies on
the ability to train ML models on large quantities of user data collected from
wearables [4,5]. However, due privacy concerns, security issues, communication
overhead, processing delay etc., traditional ML algorithms face challenges that
work in a centralized fashion where all the available data is accumulated before-
hand. For instance, in the case of wearable systems, privacy remains the key
obstacle to implement data analytics algorithms. Most of the time users are
sceptical in allowing their personal data to be analysed by the ML algorithms
on cloud. Figure 1 depicts several low-constrained devices capable of performing
ML functions including Raspberry Pi’s, Arduino boards, tinyML devices etc.

Federated Learning (FL) is a paradigm for collaboratively training ML mod-
els on computation, storage, energy and bandwidth limited mobile devices in
a distributed manner by addressing privacy concerns and reducing communica-
tion overhead and processing delay [6,7]. In FL, each node has its own training
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data to train a local model, and the subsequent aggregation of the local models
leads to a new global model. Wireless mesh networks can be used to support
FL on these edge devices, but this can be challenging due to several factors [8].
These challenges include limited resources on low-capacity devices, unreliable
network connectivity, device heterogeneity and security and privacy concerns.
These challenges can make it difficult to coordinate and aggregate model updates
from devices in a FL setting, and to maintain consistent communication between
devices [9,9].

The main contributions of the paper is demonstration of FL in a real resource-
constrained wireless mesh environment with dynamic, heterogeneous and inter-
mittent resource availability. To do this, we assess the possibility of implementing
FL on 8 real IoT devices that have limited network and hardware resources and
are connected in a wireless mesh network. Therefore, our goal with this con-
tribution is to offer fresh insights that can help make the process of FL more
doable on everyday devices that have limited resources. Our aim is to make FL
work better on these devices that people commonly use. Further, we present
practical observations on the use of resources (CPU, memory, network) and sug-
gestions on the optimal training configurations that must be employed to ensure
a satisfactory “training experience” on these low-capacity devices.

The rest of the paper is organized as follows. In Sect. 2 we describe the
FL applications used and analyse the state-of-the-art work. Section 3 presents
the FL model used. Section 4 provides details about how we set up our experi-
ments, the specific experiments we conducted and the results we achieved. Mov-
ing on, Sect. 5 wraps up our findings and conclusions, also suggesting directions
for potential future research.

2 Background and Related Work

In this section, initially we provide the background for our work and then present
the related work.

2.1 FL Applications and Dataset

Federated Learning (FL) is predominantly utilized in situations that demand a
significant emphasis on safeguarding privacy and optimizing resource allocation.
The healthcare and medical sector is a major field where FL finds extensive
applications. This section of the paper outlines the medical datasets used in the
study. The dataset is selected from the healthcare applications mentioned below.

Healthcare Industry: Many hospitals, AI companies and regulatory agencies
are responsible for protecting highly sensitive data of the users. In the health
industry, many wearable healthcare devices are used to monitor patient’s health,
identify anomalies and treat health conditions. For instance, in each hospital
a large amount of real electronic health records (EHR) are needed to train a
powerful a medical model. However due to the sensitivity and privacy of medical
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data, the demand for a real dataset is hard to be satisfied. FL can solve this by
maintaining data anonymity, thus removing many barriers to data sharing.

Dataset: For the FL experiments, we are using the Chest-X-Rays dataset pro-
vided in the following link [10]. The Chest-X-Rays dataset consists of 5,863 X-
Ray images in JPEG format and 2 categories (Pneumonia/Normal). Chest-X-ray
images (anterior-posterior) are selected from retrospective cohorts of pediatric
patients of one to five years old from Guangzhou Women and Children’s Medical
Center, Guangzhou. The FL task to be executed in the experiments is to train
a 6-layer Convolutional Neural Network (CNN) model with the Chest-X-Ray
dataset. The CNN model has around 420, 000 parameters.

2.2 Related Work

This section describes a review of specific studies that focus on the implemen-
tation of FL on devices with limited capacity and research that examines tech-
niques to maintain data privacy, a crucial consideration when training confiden-
tial personal health data.

Low-Constrained Devices and Federated Learning: Y. Gao and colleagues
[11] conducted a practical assessment of two advanced ML methods - Federated
Learning (FL) and split neural networks (SplitNN). The authors looked at dif-
ferent sets of data, tried various types of model designs, involved several users’
devices and used different benchmarks to measure how well everything worked.
Their study focused on learning, which depended on two types of data: one
where the data balance was uneven and another where the data wasn’t exactly
the same across devices. The training of the model took place on Raspberry Pi
devices, and they kept track of how much the CPU and memory was used, the
extra communication needed, and how long the training took. Based on their
results, FL outperformed SplitNN overall. This is mainly because FL involves
less extra communication compared to SplitNN.

We have used some findings from the experiments carried out by Y. Goa
on individual Raspberry Pi devices to establish the baseline system in our own
research. In particular, we have employed their configuration of 1 and 5 epochs
as reference epoch values.

FL for edge environments has been suggested in various studies as surveyed
in [12]. Specific types of edge devices are investigated for instance in the Flower
framework, where Raspberry Pi, Android phones and NVIDIA Jetson were used
[13]. The work on Flower proposes a framework that first addresses the hardware
heterogeneity of the clients by providing client-specific software implementations.
For instance, the FL client for Android phones consists of a Java implementation
applying a specific TensorFlow Lite Model Personalization support for Android
Studio. The FL client for the Raspberry Pi and NVIDIA Jetson is implemented
in Python.

After looking into similar research, it’s clear that various methods have been
suggested to make FL use up fewer computer resources. These methods include
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adjusting how ML models are trained and even shifting some tasks to other plat-
forms. However, there’s still a gap in our knowledge when it comes to how well
FL actually works in real wireless mesh setups. Our study focuses on filling this
gap. We’re taking a hands-on approach by running FL on devices with limited
power in mesh networks. This way, we’re gathering important information on
how to set up FL for different types of user situations.

In [14] study performs a multi-chest disease classification from the CXR
images task using the proposed CNN architecture. Also, the authors introduce
a new dataset consisting of 28833 CXR images, a mixture of COVID-19, non-
covid viral or bacterial pneumonia, lung opacity, and normal cases by aggregat-
ing publicly available datasets to apply FL for the proposed models. Through
experiments, they compared the results with central training, federated train-
ing, and communication-efficient federated training. Also, they have shown that
federated training in chest disease classification is achieved with high percent
accuracy and is an effective alternative to central training. This study’s out-
comes can inspire and encourage medical organizations to initiate or adopt their
research and practices within the FL approach for chest disease classification.

The authors in the following paper [15] introduces a conceptual framework
designed to harness edge computing for healthcare analytics, utilizing user-
generated data. The intersection of technologies like cloud computing, edge com-
puting, IoT, wearables, and FL is anticipated to encourage end-users to play
a more participatory role in overseeing their health. The main objective is to
strengthen patient empowerment and accountability in the domains of moni-
toring and preventing diseases. This stands as a crucial factor in ensuring the
sustainability of contemporary healthcare systems. The proposed model offers
the potential for seamless integration of user-generated wellness and behavioral
data in an effective and scalable manner.

Privacy Through Federated Learning: Taking privacy as an important
aspect while training medical data, the authors are proposing Dopamine [16],
a system to train the medical data. This study investigates various ML and
privacy-preserving methods. The approach involves using medical data to train
Deep Neural Networks - DNNs for medical diagnoses. The training of these
DNNs is carried out using distributed datasets through a combination of FL
and Differentially-Private Stochastic Gradient Descent - DPSGD.

In a research study mentioned in [17], the authors of the paper combined
blockchain technology and FL techniques to train ML models without exposing
the actual data. This was particularly relevant for situations where lots of data
comes in quickly from connected devices in a setting called the Industrial Internet
of Things (IIoT). They pointed out that protecting this data from being leaked
in industries is a big deal. To tackle this, they built a secure way of sharing data
using blockchain and added privacy-preserving features to FL. They discovered
that by using blockchain, they could share the model in the FL process while
keeping data private.

Another paper, presented in [18], introduced the BlockFL system, which
mixed blockchain with FL. Instead of having a central place (node) that collects
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updates from devices, the system used a distributed ledger to exchange these
updates between mobile devices. They also studied how quickly learning was
completed using this system. In their case, multiple mobile devices were used in
order to train the model locally making use of the distributed ledger powered
by blockchain technology.

In a different scenario, authors Passerat-Palmbach et al. discussed in [19] how
blockchain could help to orchestrate FL for healthcare groups. They showed how
data could be contributed to improve ML models while still ensuring privacy
and accurate records. They set up a way to track events in the network without
revealing who was involved.

Contrary, the work in [20] took a different approach. They proposed using
IPFS1 instead of a single central server for FL. This lets different nodes partic-
ipate and lead the FL process. They also split the ML models into parts and
shared the responsibility for each part among nodes. This was especially useful
when dealing with devices that aren’t very powerful.

The authors in this work [21] introduce Communication-Efficient Federated
Averaging (CE-FedAvg), an adaptation of the Federated Averaging (FedAvg)
algorithm FL in the context of IoT devices. The work addresses concerns about
data privacy by allowing FL to be performed at the edge servers and gateways
without sending data to a central server. CE-FedAvg uses an adapted form of
the Adam optimization algorithm and novel compression techniques to reduce
the number of communication rounds required for convergence, while also min-
imizing the data uploaded by clients. Extensive experiments with MNIST and
CIFAR-10 datasets, both in IID and non-IID settings, demonstrate that CE-
FedAvg achieves faster convergence and requires less total data uploaded com-
pared to FedAvg. Additionally, experiments on a Raspberry Pi testbed confirm
that CE-FedAvg can reach a target accuracy in less real time. This research
contributes to the field of FL by improving the efficiency and robustness of FL
algorithms in edge-computing scenarios.

In the [22] the authors use FL technology for Medical Image Classification to
address the issues of medical data security. They present their algorithm FedSLD
to utilize knowledge of label distributions to mitigate the challenges posed by
data heterogeneity. FedSLD is designed to enhance the training of ML models
for medical image classification in a FL setting by leveraging shared label dis-
tribution information, ultimately improving the model’s accuracy and stability
in the presence of data heterogeneity. They used datasets of MNIST, CIFAR10,
Organ MNIST, and PathMNIST. This article is important for computer science
researchers as it proposes a new method for training ML models in medicine
using separated and privatized data. Additionally, the study primarily focuses
on model performance without addressing all potential security and privacy chal-
lenges related to medical data, which are crucial in healthcare-based ML.

Looking at the reviewed papers in privacy, it’s clear that there are various
ways to keep data safe in FL. One popular method is called differential pri-
vacy and there are also ways to use external tools like blockchain to help. Also,

1 Interplanetary File System. https://ipfs.io/.

https://ipfs.io/
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Fig. 2. FL architecture involving communication between the server and clients (such
as mobile devices, wearables, etc.)

we noticed that ML applications that use personal information (medical data)
and private data (sensor data from the Internet of Things) can gain significant
advantages from FL.

3 System Model

3.1 Federated Learning

Federated Learning (FL) has gained significant interest in the research commu-
nity as a model training technique that enables clients to train models collabo-
ratively without the need to share their local data. FL has become a key area
of interest in wearable systems and wireless communications, such as 5G, where
edge nodes generate valuable data for applications while still maintaining data
privacy [23,24]. FL is a distributed ML technique where numerous clients or
workers, such as mobile or wearable devices, train a model in a collaborative
manner guided by a central server located in the cloud, as shown in Fig. 2. The
training data is stored directly on the devices.

The FL algorithm operates in the following way: the process starts with the
server initializing a global model (wt) and sending this model to all clients. Each
of the clients k trains the global model on their own local data for several rounds
of training called “epochs”. One the local training is complete, the updated model
is sent back to the server (wk

t ). The server receives the updated models from all
the clients and combines (i.e., merges) them to update the global model (wt+1).
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Fig. 3. Testbed used for the experiments

This process is repeated until the model converges or a maximum number of
rounds (i.e., iteration of this process) is reached. Client k possesses a training
dataset comprising sk samples as depicted in Fig. 2.

In this section, we focus on a system made of Raspberry Pi edge devices
that work together to train ML models using FL. We study how much CPU
and memory the devices use when training FL models based on healthcare data.
Further, we study the accuracy of the model reached with different number of
edge devices and also how long does it take to train the models considering the
impact of a real wireless mesh network.

Model: We use FL to train a 6-layer Convolutional Neural Network (CNN)
model on the client nodes using the Chest X-Ray Images (Pneumonia) dataset
of size 6.7 GB [10,25]. The CNN model has approximately 420,000 parameters.

By sharing our practical experiences, we hope to provide new information
that can help improve ML training on edge devices in wireless mesh network.

4 Empirical Analysis and Findings

4.1 Experimental Setup

The setup used for the experiment has actual devices that are connected to
each other through a wireless network. The setup consists of 8 Raspberry Pi
(RPi) devices that are linked to a pair of wireless access points (4 by 4) as
highlighted in Fig. 3. These access points are connected to each other through a
wireless link using Ubiquiti Nanostation M5 devices2. These devices have a good
performance in creating point-to-point links and can operate at a range of up to
15 km at 2.4 GHz and 5 GHz.

2 https://store.ui.com/collections/operator-airmax-devices/products/nanostation-
m5.

https://store.ui.com/collections/operator-airmax-devices/products/nanostation-m5
https://store.ui.com/collections/operator-airmax-devices/products/nanostation-m5
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Fig. 4. Examples of chest X-rays in patients with pneumonia as highlighted in [25]

Experiments employ Raspberry Pi 4 Model B devices as computational
nodes. The devices feature a robust Quad Core Cortex - A72 processor (1.5GHz),
substantial memory (8 GB RAM, 128 GB storage), and an IEEE 802.11ac wire-
less connection. PyTorch version 1.8.0, OS Raspbian GNU/Linux 10 (buster)
and Python version 3.7.3 are used as the software for the experiments. In total,
8 Raspberry Pi devices (4 connected to a single AP) act as workers (clients), and
a laptop acts as a server. As highlighted in Fig. 3, as the central node (server) we
use a laptop with CPU i5-8250U and 8 GB RAM with Windows 11 Operating
System.

The experimental setup consists of two components: the worker and server
parts. We developed Docker images for both parts, with the client image installed
on Raspberry Pi devices and the server image on the laptop. To train ML models,
we utilized the Keras API. During the model training, the data was divided into
smaller groups called “batches”, each with 10 samples. This allowed the model
to be trained in smaller steps, which can improve memory usage and make the
training process faster. The training was done for 100 rounds or iterations.

Dataset: Four our experiments the dataset obtained contains 5,863 X-Ray
images in jPEG format categorized into two groups (Pneumonia/Normal). The
images in this collection are chosen from past groups of young patients, aged
one to five years old, at Guangzhou Women’s and Children’s Medical Center
in Guangzhou [10]. Figure 4 highlights some of the examples from the dataset -
chest X-rays in patients with different type of pneumonia [25].

4.2 Experimental Results

In the experiments, we aim to measure how accurate the FL model is when it
is used with different numbers of clients in mesh networks. First we characterize
the network used and also test how much stress the edge devices can handle and
measure how much CPU and RAM they use.

Network Characterization. At first, our goal was to assess the performance of
the mesh network we are currently utilizing. By utilizing the bandwidth and RTT
(Round-trip time) ECDF graph, we can effectively visualize the distribution of
our data from the wireless links and identify any irregularities or network issues
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Fig. 5. ECDF - Network Bandwidth Fig. 6. ECDF - Network RTT

that can make the FL impossible on this network. Figure 5 shows the ECDF
(Empirical Cumulative Distribution Function) of the link bandwidth while the
FL training experiments happen. The ECDF graph for bandwidth shows that
the majority of the links (95%) has a bandwidth between 5 Mbps and 30 Mbps.
The bandwidth increases as the ECDF value increases, indicating that higher
percentages of the measured data have higher bandwidths. The results suggest
that the bandwidth of the data varies widely, with some values as low as 5 Mbps
and others as high as 30 Mbps. We can conclude that the network has sufficient
bandwidth to enable the exchange of model updates, thus FL could be feasible on
this network.

Figure 6 shows that the majority of the RTT values are relatively low, with
most values falling between 3 ms and 6 ms. This suggests that the network is
performing well, with relatively low latency. FL involves the exchange of model
updates between client devices and the central server, and lower latency can
help to reduce the time required for these exchanges and improve the overall
efficiency of the process.

Testing Accuracy: Figure 7 depicts the testing accuracy when 2 and 4 edge
devices are used for the training. Figure 7 demonstrates that the testing accuracy
improves as the number of epochs increases for both 2 and 4 devices. However,
the accuracy is generally higher for 4 devices as compared to 2 devices across
all epochs. For the first few epochs (1 and 2, the difference in accuracy between
2 and 4 devices is significant. As the number of epochs increase (4–100), the
difference in accuracy between 2 and 4 devices becomes smaller, but 4 devices
consistently perform better. The results suggest that using more devices in FL
can improve the testing accuracy of the model. However, the improvement may
not be significant after a certain number of epochs, and other factors such as
communication efficiency and device heterogeneity may also impact the perfor-
mance.

CPU Usage: Figure 8 depicts the average CPU usage when training the model
with different number of devices. Figure reveals that the CPU usage varies
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Fig. 7. Testing Accuracy vs Local Epoch (2 and 4 edge devices)

depending on the number of devices used for the training and the number of
epoch completed. Additionally, we can see that the CPU usage increased as the
number of epochs increased, regardless of the number of devices used. It is also
worth noting that the highest CPU usage was observed for the epoch with the
highest number of iterations, but even in that case, the CPU usage did not exceed
90% for any of the devices used. Overall, it seems that training the model with
more devices can lead to higher CPU usage, but using a higher number of devices
can also potentially lead to faster training times. Further, the peak CPU usage
was observed during the model update communication with the client nodes.

Memory Usage: The memory usage during the training of the model with
varying numbers of workers is depicted in Fig. 9. Based on the results, we see
that the memory usage increased slightly as the number of devices increased for
each epoch. However, the difference in memory usage between 2 and 4 devices
was relatively small. Thinking about the memory capacity of the devices used in
FL is crucial. This is because it might affect how well the training process works
and how stable it is overall. In this case, the Raspberry Pi devices with 8 GB of
RAM appeared to handle the memory requirements well, with relatively stable
memory usage across different epochs and number of devices.

The CPU temperatures of the 4 Raspberry Pi devices were measured
while training FL models. As highlighted in Fig. 10, training FL models requires
a lot of computing power, which makes the CPU run at maximum capacity for
long periods, reaching on average 80◦ CPU temperature. Based on the exper-
iments performed, optimizing the training process and reducing the computa-
tional workload may help to prevent overheating. Overheating in Raspberry Pi
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Fig. 8. CPU vs Local Epoch (2 and 4 edge devices)

devices can indeed be a significant concern, as it can lead to the shutdown and
interruption of experiments or tasks being performed on the device.

4.3 Discussion

From the experiments performed, we observed that the using the FL in wireless
mesh networks can effectively improve the accuracy of the model by increasing
the number of devices and epochs. However, this comes at the cost of higher CPU
and RAM usage, which needs to be considered when designing a FL system. In
this particular study, the use of Raspberry Pi devices with 4 cores of CPU and
8 GB of RAM seems to be sufficient for the task.

It is interesting to note that the CPU usage is higher when communicating
with client nodes, which suggests that optimizing the communication protocols
can lead to more efficient FL systems. Optimizing the code, using pre-trained
models, reducing the training data size or lowering the learning rate can improve
the efficiency of the training process. Additionally, the fact that the RAM usage
stabilizes after a certain number of epochs suggests that there may be an optimal
number of epochs beyond which the model is no longer improving significantly.

Overall, the findings suggest that FL is a promising approach for improving
ML models while preserving data privacy, but it requires careful consideration of
hardware resources and communication protocols to ensure efficient and effective
operation.
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Fig. 9. RAM vs Local Epoch (2 and 4 edge devices)

Fig. 10. CPU Temperature (◦C) of Raspberry Pi devices

5 Conclusion

Based on the findings and results presented in this study, it can be concluded
that FL is a promising technique for training ML models using decentralized data
sources. The results showed that increasing the number of devices participating
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in the training process led to higher accuracy, especially after a certain number
of epochs. However, this came at the cost of increased CPU and RAM usage,
which should be considered when designing and implementing FL systems.

One of the major recommendations based on the findings is to carefully
choose the number of devices and epochs for training. Finding the right balance
between accuracy and how much resources are used is crucial, as training for
too long or with too many devices can lead to diminishing returns and increased
resource consumption. Additionally, it is recommended to monitor resource usage
during training and optimize the system accordingly, for example by using more
powerful devices or implementing resource-efficient algorithms.

In conclusion, FL is a powerful technique that can enable training of ML
models on decentralized data sources. The findings from this study provide valu-
able insights into the trade-offs between accuracy and resource usage, and high-
light the importance of careful system design and optimization. With further
research and development, FL has the potential to revolutionize the field of ML
by enabling secure and decentralized training of models on sensitive data. Fur-
ther, the results obtained suggest that in order to achieve better performance in
heterogeneous wireless environments where clients have varying bandwidth and
hardware capabilities, it is recommended to develop FL clients that can dynam-
ically adjust the training parameters. This will enable a context-aware FL app-
roach, which can better accommodate the diversity of the participating clients
and improve the overall efficiency and effectiveness of the training process. Fur-
ther, the findings may hold potential applicability in various resource-limited
edge scenarios. Our goal is to extend these results to embedded IoT devices,
where the examined design could help tackle significant constraints in comput-
ing and communication resources.
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Abstract. During emergency scenarios, network access may be dis-
rupted due to damaged Base Stations (BSs), and deploying Unmanned
Aerial Vehicles (UAVs) as communication relays is common in rescue
scenarios due to their convenience in ensuring network access. In such
situations, the dissemination of rescue-related information messages is
crucial, and broadcast messages are often prioritized. Thus, ensuring high
broadcast throughput while guaranteeing accessibility for all victims and
rescue teams is a significant challenge. Moreover, the broadcast burden
is further aggravated by multiple rescue teams broadcasting messages
simultaneously. To address this issue, Network Coding Based Coopera-
tive (NCBC) broadcast scheme is a promising approach for enhancing
broadcast throughput in emergency scenarios. By employing the NCBC
broadcast scheme, we show that the broadcast throughput can be sig-
nificantly improved. We propose a heuristic algorithm for generating
optimal deployment of UAVs using network coding strategy and eval-
uate the broadcast throughput quantitatively. Simulation results show
that our approach can ensure user accessibility and yield at least 26.69%
throughput improvement compared to the traditional copy-and-forward
relay protocol in a typical scenario.

Keywords: UAV deployment · Relay · Network coding based
cooperation · Throughput · Broadcast

1 Introduction

After earthquakes, tsunamis, volcanoes, or other natural disasters, once Base
Stations (BSs) in some disaster-stricken areas are damaged, those areas will
be disconnected from the communication networks, as in Fig. 1. Since rescue
and recovery rely heavily on communication systems nowadays, establishing a
temporary communication network to support emergency communications is
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necessary. Due to their excellent mobility [17], Unmanned Aerial Vehicles (UAVs)
acting as relays is a good way to provide network connections. Furthermore, to
improve rescue efficiency, all kinds of information, such as disaster and aftershock
information, rescue information, etc., have to be broadcast to victims and rescue
teams, which brings a massive burden of broadcast communications. So, how
to reasonably deploy UAVs to improve broadcast throughput with guaranteed
access to all users is naturally a significant problem.

Fig. 1. UAV-assisted emergency network.

It is well-known that network coding can significantly enhance broadcast
throughput. Ahlswede et al. [1] demonstrate how network coding improves
throughput in wired network. In the wireless scenario illustrated in Fig. 2(a),
two source nodes, S1 and S2, broadcast information to two destination nodes
D1 and D2 through relay node R. Due to the long distance from S1 to D2,
as well as S2 to D1, the relay node R needs to receive a from S1 and b from
S2, and then broadcast them to D1 and D2. Traditional copy-and-forward relay
requires four transmissions to accomplish this task. However, as shown in Fig.
2(b), the relay node R broadcasts network coding combined packet a ⊕ b. Thus,
the broadcast task can be accomplished with only three transmissions, resulting
in a 25% reduction in transmissions compared to traditional copy-and-forward
relay.

In emergency scenarios, the damaged BSs can result in communication dis-
ruptions that impede rescue and recovery efforts. To provide accessibility to
every victim, UAVs can serve as relay nodes facilitating communication between
the BSs and users, constituting an economical and effective solution. Addition-
ally, when multiple rescue teams need to broadcast messages to all users, the
primary transmissions become multiple-source broadcast transmissions, creat-
ing an opportunity to leverage the Network Coding Based Cooperative (NCBC)
broadcast scheme for enhancing broadcast throughput. Consequently, a critical
challenge lies in deploying UAV networks to maximize broadcast throughput
using network coding, while simultaneously meeting access requirements.
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Fig. 2. Comparison of conventional cooperation and network coding based cooperation
in broadcast.

To tackle this challenge, we present a three-stage heuristic algorithm. Firstly,
we utilize a Depth-First Search (DFS) algorithm to identify potential areas for
UAV deployment, ensuring uninterrupted user access to BSs. Subsequently, we
introduce a Particle Swarm Optimization (PSO) algorithm to determine the
optimal location for a UAV within each intersecting candidate area, maximizing
the broadcast throughput. Lastly, we select the most favorable locations in the
final step, aiming to achieve the highest cumulative broadcast throughput while
maintaining user access to BSs. The primary contributions of our research are
summarized as follows.

1. We point out the feature of multiple source broadcast transmissions in UAV-
assisted emergency communications and introduce NCBC to deal with it effec-
tively.

2. We present a quantitative formula of broadcast throughput for NCBC broad-
cast scheme, which we believe will serve as a solid theoretical foundation for
future research in this area.

3. We propose a three-stage heuristic algorithm that provides a UAV deployment
strategy that maximizes broadcast throughput while meeting users’ access to
BSs. We believe it can be utilized in practical emergency communication
scenarios.

The structure of this paper is as follows. Section 2 provides a comprehen-
sive review of related works. In Sect. 3, we introduce the network model and
problem formulation. Section 4 presents an expression for the throughput for
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NCBC broadcast scheme, which serves as the theoretical foundation for this
study. Section 5 outlines our proposed algorithm for deploying optimal locations
for UAV relays. In Sect. 6, we conduct performance evaluations to validate the
effectiveness of our approach. Finally, we conclude the paper in the last section.

2 Related Works

Regarding the demand for the recovery of network coverage in emergency com-
munication, UAVs are an efficient way to provide high-quality services for mobile
devices. Erdelj and Natalizio [5] discuss applications and open issues for UAV-
assisted emergency networks where UAV localization is one. To address this issue,
Bupe et al. [2] propose a platform for quickly deploying UAVs and establishing
a UAV backbone communication network based on an algorithm utilizing 7-cell
clusters in a hexagonal pattern using MAVLink (Micro Air Vehicle Link). Mean-
while, Do-Duy et al. [4] propose a K-means clustering algorithm to deploy UAVs
as a relay and an algorithm to optimize resource allocation in establishing a tem-
porary emergency network. Liu et al. [11] propose a distributed SIC-free NOMA
scheme for UAV-assisted emergency communication in heterogeneous Internet of
Things (IoT), which yields a faster sum rate of users than the OFDMA scheme.
The work of Tran et al. [15] proposes a method to maximize the number of
served IoT devices by jointly optimizing bandwidth, power allocation, and the
UAV trajectory while keeping the device’s transmission requirement and the
limited storage capacity of UAVs satisfied. Additionally, Feng et al. [7] consider
power transfer by UAVs for IoT devices in emergency communications and ana-
lyze the problem of UAV trajectory and resource scheduling in three different
scenarios.

To maximize the throughput of a UAV-based network in a territory affected
by a disaster, Chiaraviglio et al. [3] propose an optimization framework called
Maximum Throughput with Unmanned Aerial Vehicles (MT-UAV) to schedule
the UAVs to maximize throughput while ensuring an acceptable UAV battery
level. Similarly, Xu et al. [16] propose a UAVs deployment algorithm to maximize
the sum of the data rates of users served by the UAVs subject to UAV service
capacity and k UAVs connected. Our paper considers a similar problem aiming
to maximize broadcast throughput and solve it using network coding technique.

Since the lack of reliability in broadcast transmissions, the network coding
is naturally suitable for wireless networks. Therefore, many researchers have
devoted themselves to applying network coding to wireless networks more than
20 years after the time Ahlswede et al. [1] proposed it. In 2007, Fragouli et al.
[8] present the opportunities and challenges of wireless network coding research,
highlighting its significant improvements in wireless network throughput, relia-
bility, fairness, and management. Also, Ghaderi et al. [9] quantifies the reliability
gain of network coding for reliable multicasting in a wireless network.

The combination of UAV and network coding is now on the rise [14] due
to the excellent mobility characteristic of UAVs and the performance gained
by network coding. We believe this research topic will have great potential for
practical applications.
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3 Network Models and Problem Formulation

3.1 Network Models

In emergency scenarios, users have no strong mobility in general. Thus, the
location of UAVs is considered to be fixed in this paper. As shown in Fig. 1, there
are n BSs S1, S2, . . . , Sn and m users D1,D2, . . . , Dm in the disaster area. A UAV
relay-assisted emergency network consisting of q UAVs R1, R2, . . . , Rq is build
to set up emergency network communications. The geographical locations of all
users and BSs are known in advance and represented by a location function ψ().

As to the communication model, all devices work in half-duplex mode.
Besides, all channels are assumed to be mutually independent Rayleigh fading
channels. The path loss from source S to destination D is modeled by

PL = 10α log10

(‖ψ(S) − ψ(D)‖
d0

)
+ PL0 (1)

where α is the path loss exponent whose value usually is in the range of 2 to 4,
PL0 is the reference path loss at a reference distance d0, and ‖ψ(S) − ψ(D)‖ is
the Euclidean distance from S to D.

To compute outage probability, we think that only when the transmission
rate is greater than γ the receiver receives one packet correctly. In that case, the
outage probability of transmission [18] is

p = 1 − exp
(

−22γ − 1
σ2

× N0

P

)
(2)

where P is the transmit power, N0 is background background noise, and σ2 =
10−0.1×PL.

Definition 1. Communication range of a BS(UAV) is the maximal distance
from a user to the BS(UAV). In other words, if the distance exceeds the commu-
nication range, the user cannot access the BS(UAV).

Based on Definition 1, we get the communication range

d = d0 × 10
−P L0
10α ×

(
P

N0(22γ − 1)

) 1
α

(3)

3.2 Problem Formulation

In emergency communication, users need to access specific BSs to receive broad-
cast messages. We define a BS-user pair set V to represent the access require-
ments, where each pair consists of a user located beyond the communication
range of a corresponding BS. The problem can be formulated as follows.
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max
ψ(R1),··· ,ψ(Rq)

q∑
j=1

Ω(ψ(Rj))

s.t. ‖ψ(Si) − ψ(Rj)‖ ≤ dS

‖ψ(Rj) − ψ(Dk)‖ ≤ dR

∀(Si,Dk) ∈ V,∃Rj ∈ R1, R2, · · · , Rq

(4)

where Ω(ψ(Rj)) is the broadcast throughput of UAV Rj and expressed as a
mathematical formula in Sect. 4. In this paper, we make the assumption that all
BSs possess an equivalent communication range denoted as dS , and similarly, all
UAVs have an identical communication range denoted as dR, which is derived
from Formula (3). The objective of the problem is to maximize the cumulative
broadcast throughput by strategically deploying UAVs while satisfying the access
requirements.

4 Broadcast Throughput of Network Coding Based
Cooperative Broadcast Scheme

4.1 Broadcast Protocol in Cooperative Broadcast

To present an expression for NCBC broadcast scheme, we take some assumptions
and the throughput definition from [6].

Assumption 1. Time is slotted.

Assumption 2. Average channel gain of each channel is only known to the
receiver of the corresponding channel.

Definition 2. Throughput is defined as the average number of packets received
correctly by all destinations per time slot in a saturated system.

Based on Assumption 1, the time-division channel allocations for conven-
tional cooperation and network coding based cooperation in the case shown in
Fig. 2 is illustrated in Fig. 3.

The broadcast throughput is dependent on the chosen broadcast protocol. In
paper [6], there are three protocols for single-source broadcast communications
including Direct Broadcast (Protocol A), Relay-assisted Broadcast (Protocol
B), and Relaying Broadcast with Network Coding (Protocol C). Our scenario
is most closely related to Protocol C, and we extend it to multiple sources and
destinations broadcast relay communications, which we refer to as Protocol D.
The key differences between these protocols are:

1. Protocol D is designed for multiple sources, while Protocol C is intended for
a single source.

2. Only the relay node can execute network coding in Protocol D, whereas both
the source and relay nodes have network coding capabilities in Protocol C.
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Fig. 3. Time-division channel allocations for conventional cooperation and network
coding based cooperation in broadcast.

Next, we present a comprehensive explanation of how Protocol D achieves
broadcast transmission through the utilization of relaying with network coding,
which follows the same methodology as Protocol C [6]. Similar to Protocol C,
Protocol D aims to enhance spectral efficiency by operating in iterations of X
packets. Within each iteration, X new packets are successively transmitted by
n sources during X transmission slots. It is important to note that these X
packets originate from n sources, and we assume that each source has an equal
probability of sending a packet over an extended period. After X transmission
slots, the retransmission process commences.

During the packet retransmission phase, both n sources and the relay main-
tain a list of lost packets from their intended destinations, which is obtained
through feedback from m destinations. The relay also provides feedback to n
sources. To facilitate a clearer understanding of the retransmission procedure, we
divide it into two distinct parts: relay retransmission and source retransmission.
In relay retransmission, the relay transmits lost packets the lost packets that
it has successfully received. Moreover, through XORing operations, the relay
combines lost packets intended for different destinations, creating new pack-
ets for retransmission. This approach effectively reduces the number of packets
requiring retransmission. Subsequently, any residual lost packets that were not
successfully received by the relay undergo source retransmission, wherein they
are retransmitted by the n sources.

In the relay retransmission, the protocol maximizes relay utilization by trans-
mitting lost packets that the relay has successfully received. To employ network
coding, the relay initially combines lost packets from different destinations that
have been received successfully at the relay. For instance, consider Fig. 4, which
depicts a 2-user broadcast network and the relay’s feedback list (lost packets are
indicated by a cross). The lost packets for destinations D1 and D2 are (3, 5, 6, 10)
and (2, 5, 7, 9) respectively. Since the relay did not receive the 2nd and 6th pack-
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1 2 3 4 5 6 7 8 9 10Relay

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Fig. 4. Combined packets for relay retransmission in Protocol D.

ets, the combined packets for retransmission in this part are 5, 3⊕7, and 9⊕10.
Consequently, only three packets require retransmission, compared to five with-
out network coding. The relay transmits these packets while the source remains
inactive during this part. In relay retransmission, the relay transmits a combined
packet until it is successfully received by each intended destination. Subsequently,
the relay transmits another combined packet or lost packet. Each destination can
recover their lost packets from the combined packet since the destination already
possesses knowledge of another packet included in the combined packet. Once
this part is completed, the relay notifies n sources of the starting moment for
source retransmission, if necessary.

In the source retransmission, the n sources successively retransmit the
remaining lost packets to both the relay and the destinations. To illustrate
this process, let us refer back to Fig. 4 as an example. The relay lost packets
2 and 6, D1 only lost packet 6 and D2 only lost packet 2. The sources transmit
packets 2 and 6 once to both the relay and the destinations with lost packets
record. Following this transmission, the relay retransmission recommences. The
relay retransmission and source retransmission are performed alternately until
X packets have been successfully transmitted.

From the above description, the implementation of this protocol can be
divided into three steps for X-packet-delivery. Here, we just given a brief expla-
nation of this protocol. A detailed flow chart to illustrate in Fig. 5.

Step 1 : n sources transmit X packets in X successive transmission time slots.
In this step, by analyzing immediate feedback from m destinations, both the
sources and the relay will construct a packet-loss table for the destinations.
The table at the sources also includes the indices of the lost packets at the
relay through feedback from the relay.

Step 2 : The relay node analyzes its table of received packets, assessing both
the lost packets from the destinations and the packets it has successfully
received. The relay combines the lost packets using the encoding technique
as described above and successively transmits the combined packets. During
this process, the relay repeatedly transmits a single combined packet until
all intended destinations have successfully received it. At the end of Step
2, the relay node provides information to the source nodes regarding the
successfully transmitted packets.

Step 3 : n sources check for residual packets that have not been successfully trans-
mitted. These packets are retransmitted successively at once. Similar to Step
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Transmit all X packets form n sources in

X successive slots

Relay checks the lost packets of itself and the

lost packets of destinations

Relay transmits the selected packet

whether all destinations

successfully receive it?

whether all packets in the relay have been

successfully received by destinations?

The relay informs all sources about remaining lost packets

whether all destinations successfully

receive X packet?

No

No

Yes

Relay selects combined packet or one lost packet

Yes

Yes

No

Step 2

Step 3

Step 1

Sources retransmit remaining lost packets once

Fig. 5. Flowchart of Protocol D.
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1, the packet-loss tables for m destinations and the relay are constructed.
By alternately repeating Step 2 and Step 3, X packets are successfully
transmitted.

4.2 Broadcast Throughput Analysis: Protocol D

Based on Definition 2, and in contrast to the methodology employed in [6], we do
not consider the contention duration in our analysis. The mathematical formula
for the throughput achieved under Protocol D when UAV Rj is positioned at
ψ(Rj) can be expressed as follows.

Ω(ψ(Rj)) =
1

E[TD (S, Rj ,D)]
(5)

where E[TD (S, Rj ,D)] represents the average number of transmissions required
for a packet to be successfully received by the user set D. Here, D denotes a group
of users located within the communication range of UAV Rj , while S refers to
the set of BSs where UAV Rj is within the communication range of those BSs.

Assume there are n BSs (S = {S1, S2, · · · , Sn}) and m users (D =
{D1,D2, · · · ,Dm}). According to [6,13], we can get the average number of trans-
missions under Protocol D as follows.

E[TD ({S1, S2, · · · , Sn}, Rj , {D1,D2, · · · ,Dm})]

= 1 + ARTN

= 1 +
∑
Δ

{ ∏
i∈[1,n]

∏
k∈[1,m]

(1 − p(Si,Dk))
δikp

(1−δik)
(Si,Dk)

×
[∑

B

( ∏
x∈[1,n]

(1 − p(Sx,Rj))
βxp

(1−βx)
(Sx,Rj)

× (
(

∑
z∈[1,|P|]

(P[z] − P[z − 1])E[TA(Rj ,Dz)])

+ E[TD (S, Rj ,D)]
))]}

(6)

We provide a comprehensive explanation of the aforementioned formula. The
constant 1 represents that any packet will transmit at least one time in Step 1.
ARTN denotes the average number of retransmissions in Step 2 and Step 3.
To facilitate a clear understanding of the derivation of the ARTN formula, we
divide it into 4 distinct parts for explanation purposes.

Part 1 corresponds to the first line of the ARTN formula. In Step 1,
when n BSs broadcast, each BS has an equal probability of transmitting a
new packet. Consequently, after a sufficiently large number of transmissions,
there are 2n×m possible events of packet reception by m users. The set Δ =
{δik|δik ∈ (0, 1), i ∈ [1, n], k ∈ [1,m]} encompasses all possible transmitting-
receiving events, where each δik serves as an indicator function indicating
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whether Dk has successfully received the packet from Si in Step 1. Specifi-
cally, δik = 1 denotes successful reception, while δik = 0 implies unsuccessful
reception. The outage probability of the transmission from BS Si to user Dk,
denoted as p(Si,Dk), can be computed using Formula (2). Notably, the expression∏

i∈[1,n]

∏
k∈[1,m](1 − p(Si,Dk))

δikp
(1−δik)
(Si,Dk)

represents the probability of a packet
reception event by m users after Step 1.

Part 2 corresponds to the second line of the ARTN formula. Similarly,
there are 2n possible packet reception events for UAV Rj in Step 1. The
set B = {βx|βx ∈ (0, 1), x ∈ [1, n]} encompasses all possible transmitting-
receiving events, where each βx serves as an indicator function indicating
whether Rj has successfully received the packet from Sx in Step 1. Specifi-
cally, βx = 1 denotes successful reception, while βx = 0 implies unsuccessful
reception. The outage probability of the transmission from BS Sx to UAV Rj ,
denoted as p(Sx,Rj), can be computed using Formula (2). Notably, the expression∏

x∈[1,n](1 − p(Sx,Rj))
βxp

(1−βx)
(Sx,Rj)

represents the probability of a packet reception
event by UAV Rj after Step 1.

Part 3 corresponds to the third line of the ARTN formula. It represents the
average number of transmissions in Step 2. After Step 1, UAV Rj has received
packets from {Si|βi = 1,∀i ∈ [1, n]}, user Dk has not received packets from
{Si|δik = 0,∀i ∈ [1, n]}. Therefore, the UAV needs to retransmit those lost
packets. In Step 2, UAV Rj transmits a combination of packets or previously
lost packets until all the lost packets that have been successfully received by the
UAV are also successfully received by all the users. The proof of the average
number of transmissions in Step 2 resembles proof of Theorem 2 in [13].

Proof. After a sufficiently large number of transmissions N from {S1, S2, · · · ,
Sn}, where each BS has an equal probability of transmitting a new packet, the
numbers of lost packets at users {D1,D2, · · · ,Dm} are Np(S1,D1), · · · , Np(Sn,D1),
Np(S1,D2), · · · , Np(Sn,D2), · · · , Np(S1,Dm), · · · , Np(Sn,Dm), respectively (note
that there are n×m BS-user paths). These outage probabilities can be sorted in
ascending order, resulting in the set P = {p(Sx1,Dy1), p(Sx2,Dy2), · · · , p(Sxn,Dym)}.
We can conceptually count the number of combinations for XORing the lost
packets and transmit them in different rounds. In the first round, there are
NP[1] = Np(Sx1,Dy1) lost packets of Sx1 to Dy1 path that can be combined with
the lost packets from other paths, except Sx1 to Dy1. After these combinations,
the numbers of remaining lost packets for each path are 0, N(P[2]−P[1]), N(P[3]−
P[1]), · · · , N(P[|P|] − P[1]) where |P| denotes the size of the set P. In the sub-
sequent rounds, the remaining N(P[2] − P[1]) = N(p(Sx2,Dy2) − p(Sx1,Dy1)) lost
packets from Sx2 to Dy2 path are combined with the remaining lost packets from
other paths, except Sx1 to Dy1 and Sx2 to Dy2. Thus, the remaining lost pack-
ets for all paths are now 0, 0, N(P[3] − P[2]), · · · , N(P[|P|] − P[2]). This process
continues until there are no more lost packets. Therefore, the average number
of transmissions that are required to successfully deliver all N packets to all the
receivers is equal to
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N + NP[1]φ1 + N(P[2] − P[1])φ2 + N(P[3] − P[2])φ3

+ · · · + N(P[|P|] − P[|P| − 1])φ|P|
(7)

where φz denotes the average number of transmissions that are required to suc-
cessfully transmit a combined packet in round z.

It is easy to know the average number of transmissions under Protocol A
which is same as the Formula (7) in [6].

φz = E[TA(Rj ,Dz)] =
∑
Δ

(−1)1+
∑

Dk∈Dz
δk

1 − ∏
Dk∈Dz

pδk

(Rj ,Dk)

(8)

where Dz = {Dk|(δik = 0)&(βi = 1)} represents the users where UAV Rj has
successfully received a packet from Si, but the corresponding user Dk has not
received the same packet from Si.

Part 4 corresponds to the fourth line of the ARTN formula, which addresses
the issue of lost packets requiring retransmission from the BSs. The retransmis-
sion method of BSs remains the same as in Step 1 where each lost packet is
transmitted once. Following the source retransmission, UAV Rj will transmit
lost packets according to Step 2. Hence, E[TD (S, Rj ,D)] represents a recursive
formula. Here, S = {Si|∀i ∈ [1, n],∃k ∈ [1,m], (δik = 0)&(βi = 0)} denotes
a set of BSs for which there exists at least one user that has not successfully
received a packet from this set after Step 2. Similarly, D = {Dk|∀k ∈ [1,m],∃i ∈
[1, n], (δik = 0)&(βi = 0)} represents a set of users that have not received a
packet from at least one BS after Step 2.

5 Problem Solving

Our proposed algorithm is a three-stage heuristic approach to satisfy all access
requirements. In the first stage, we determine the candidate areas for UAV
deployment based on the BS-user pair set V. By computing the intersection
of these candidate areas, we obtain a set of basic cells, each of which can accom-
modate a UAV to satisfy a fixed number of BS-user pair access requirements. In
the second stage, we identify the optimal location for the UAV by maximizing
the broadcast throughput in each basic cell. The third stage is designed to ensure
access requirements with a given number of UAVs, and the optimal deployment
positions for the UAVs are selected from the second stage results to achieve the
highest cumulative broadcast throughput.

5.1 Candidate Areas and Basic Cells

To ensure BS-user connection for all BS-user pairs in set V, a UAV must be
deployed in the corresponding candidate area of a BS-user pair. As shown in
Fig. 6(a), the yellow area is the candidate area of pair (Si,Dk).

We can identify the corresponding candidate area for each BS-user pair in
the set V. By computing the intersection of all candidate areas, we obtain a set
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Fig. 6. Candidate area and Basic cells for BS-user pairs (Color figure online)

of basic cells, as illustrated in Fig. 6(b). This figure shows that three basic cells
with different colors are obtained by intersecting the candidate areas of (S1,D2)
and (S2,D1).

To identify all basic cells, we employ a Depth-First Search (DFS) algorithm
with pruning, which is similar to generating all subsets of the set V. For instance,
given a pair list (S1,D2), (S2,D1), we check if the candidate areas of all pairs in
it intersect. If they do, we obtain one basic cell and add a new pair from V to
the pair list. If they don’t intersect, we backtrack to the pair list (S1,D2) and
add a new pair from V to the pair list. Then we check if the candidate area of all
pairs in the updated pair list intersect. Because intersection of candidate areas
must be the intersection of multiple 3D spheres, we utilize the method described
in reference [12] to determine if m 3D spheres intersect.

5.2 Finding the Optimal Location for UAV in Basic Cell

For each basic cell, we aim to find the optimal deployment location for the UAV
Rj to maximize the broadcast throughput. However, since the Formula (6) is
recursive and hard to use, we employ its lower bound instead. Meanwhile, we
obtain the upper bound of the throughput by taking the inverse of this lower
bound. By making the assumption that UAV Rj can successfully receive all
packets transmitted by all BSs in Step 1, we can establish a lower bound for the
average number of transmissions as follows.

E[TD ({S1, S2, · · · , Sn}, Rj , {D1,D2, · · · ,Dm})]∗

= 1 +
∑
Δ

∏
i∈[1,n]

∏
k∈[1,m]

{
(1 − p(Si,Dk))

δikp
(1−δik)
(Si,Dk)

×
∑

z∈[1,|P|]
(P[z] − P[z − 1])E[TA(Rj ,Dz)]

} (9)
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where P = {p(Si,Dk)|δik = 0,∀i ∈ [1, n],∀k ∈ [1,m]} is a set of outage proba-
bilities arranged in ascending order. P[z] means the zth element in set P and
P[0] = 0. Other symbol definitions are the same as Formula (6).

Next, we employ the PSO algorithm to determine the UAV’s optimal loca-
tion, aiming to maximize the broadcast throughput. Since the PSO algorithm is
an unconstrained optimization approach, we introduce a penalty term into the
objective function to ensure that the UAV is located within the basic cell. The
optimization objective function utilized in our algorithm is as follows.

max Ω(ψ(Rj)) + H(ψ(Rj))

H(ψ(Rj)) =
{ 0 if Rj is located in the cell

−1000 otherwise
(10)

5.3 Choose Locations for UAVs

We need to choose UAV locations with the given number q from them to keep
users accessible by BSs while maximizing cumulative broadcast throughput. This
problem can be formulated as a zero-one linear optimization problem as follows.

max
δ1,δ2,··· ,δ|C|

∑
j∈[1,|C|]

δjΩ̃(ψ(Rj))

s.t.
∑

j∈[1,|C|]
δj = q

∑
j∈[1,|C|]

δjvjk = 1,∀k ∈ [1, |V|]

(11)

where C is basic cell set obtained by the algorithm in Sect. 5.1, Ω̃(ψ(Rj)) is
the maximal broadcast throughput when a UAV is deployed at the optimal
location of the jth basic cell, which is the output of the algorithm in Sect. 5.2.
vjk = 1 means the jth basic cell is inside candidate area of the kth BS-user pair,
otherwise vjk = 0. δj = 1 means we choose the location in the jth basic cell to
deploy UAV, otherwise δj = 0.

We utilize the Gurobi Optimizer [10] to solve the zero-one linear optimization
problem.

6 Performance Evaluation

In this section, we evaluate the performance of deploying UAVs using Protocol
D. We consider a downlink relay wireless network. The reference distance in
the path loss formula is 0.1 km. The model of distance-dependent path loss is
86.429+36 log10

d
0.1 , where d is the distance between the transmitter and receiver

in kilometers. Related simulation parameters are listed in Table 1.
In the first experiment, we focus on the throughput performance improve-

ment by network coding technique. Specifically, we compare the performance of
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Table 1. Simulation parameters setting

Parameter Value Meaning

γ 1bit/s minimum transmission rate

PS 500mW transmission power of BS

PR 300mW transmission power of UAV

N0 −65 dBm background noise power

α 3.6 path loss exponent

zS 0.05 km height of BS

Protocol D with extended Protocol B in [6]. For a fair comparison, we extend
Protocol B into n-source m-destination broadcast transmissions by simply aver-
aging the throughput of n BSs under Protocol B.

E[TB ({S1, S2, · · · , Sn}, Rj , {D1,D2, · · · ,Dm})]

=
1
n

n∑
i=1

E[TB (Si, Rj , {D1,D2, · · · ,Dm})]
(12)

where E[TB(Si, Rj , {D1,D2, · · · ,Dm})] is the average number of transmissions
under Protocol B.

The average number of transmissions under Protocol B is

E[TB (Si, Rj , {D1,D2, · · · ,Dm})]

= 1 +
∑
Δ

{ ∏
k∈[1,m]

(1 − p(Si,Dk))
δikp

(1−δik)
(Si,Dk)

×
[
(1 − p(Si,Rj)) × E[TA (Rj ,D)]

+ p(Si,Rj) × E[TB (Si, Rj ,D)]
]}

(13)

Proof. The BS Si broadcast packet, m users have 2m possible packet reception
events. Each δik is an indication function denoting whether Dk has successfully
received the packet from Si or not. δik = 1 indicates that Dk has successfully
received the packet from Si. D = {Dk|δik = 0,∀k ∈ [1,m]} represents a set
of users that have not received the packet from BS Si. E[TB (Si, Rj ,D)] is a
recursive component that represents the number of retransmissions required in
the next iteration of Protocol B.

For a fair comparison, we make the same assumption as Formula (9), assuming
that the UAV can successfully receive all packets transmitted by all BSs. Then
we get its lower bounds of the average number of transmissions under Protocol B.
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E[TB ({S1, S2, · · · , Sn}, Rj , {D1,D2, · · · ,Dm})]∗

= 1 +
1
n

∑
i∈[1,n]

{ ∑
Δ

∏
k∈[1,m]

[
(1 − p(Si,Dk))

δikp
(1−δik)
(Si,Dk)

× E[TA(Rj ,D)]
]}

(14)

We first consider the broadcast throughput in a basic cell, where there are
one UAV, one or two BSs, and at most 20 users, and they are randomly deployed
in the basic cell. 100 experiments are conducted for each parameter setting, and
their average throughputs are illustrated in Fig. 7. It is obvious that the through-
put of a UAV is higher using protocol D than protocol B, and it increases by
at least 26.69% relative to the traditional copy-and-forward relay protocol. This
improvement can be attributed to the fact that protocol D can combine two lost
packets into one retransmitted packet using network coding technique. Addition-
ally, the broadcast throughput exhibits a negative correlation with the number
of users, as the probability of all users receiving packets correctly depends on the
individual probability of each user receiving packets accurately. With the increase
in the number of users, the probability of successful reception decreases, leading
to an increase in transmission times and a decrease in broadcast throughput.

Fig. 7. Throughput performance improvement by network coding.

The second experiment focuses on the UAV deploying problem in a large
area instead of a basic cell. 30 users and 3 BSs are randomly distributed within
a square whose area is 1 km2, as shown in Fig. 8(a), where users are represented
by dots and BSs by triangles. There are 8 BS-user pairs, including (S0,D0),
(S0,D1), (S0,D2), (S1,D3), (S1,D4), (S2,D5), (S2,D6) and (S2,D7), which can
be verified easily in Fig. 8(a) since the communication ranges of the 3 BSs are
intentionally labelled by dashed line circles. The users and their corresponding
BS in the pair set are marked with the same color. We use 3 UAVs R1, R2, R3 as
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Fig. 8. Topology and Result of second experiment. (The dashed line represents the
communication range of the BS, while the dotted line denotes the connection between
the BS and the user established through an UAV.)

relays. Figure 8(b) illustrated the deployment of UAVs. Obviously, the deploy-
ment of the 3 UAVs makes the 8 users accessible by its corresponding BS which
represented by dotted line with different colors in Fig. 8(b).

7 Conclusion

This paper focused on deploying UAVs to enhance information broadcasting
using network coding technique. Initially, we considered a prototype topology
consisting of two BSs, two users, and one UAV and presented an expression for
the throughput of NCBC broadcast scheme. Based on this expression, we design
a heuristic algorithm to generate optimal UAV deployment, achieving maximal
broadcast throughput while ensuring access requirements within a given num-
ber of UAVs. Our experimental results demonstrate that network coding tech-
nique can significantly improve broadcast throughput. It increases the broadcast
throughput by at least 26.69% relative to the traditional copy-and-forward relay
protocol. We anticipate this scheme will gain widespread usage, particularly
as the need for enhanced throughput in emergency communication scenarios
expands.
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Abstract. While recommendation platforms present merchants with a
vast and transparent sales avenue, they have inadvertently favored dom-
inant merchants, often sidelining small-sized businesses. Addressing this
challenge, platforms are deploying multifaceted market promotion strate-
gies both to help merchants identify potential users and to spotlight
emerging items for users. A crucial aspect of these strategies is the effi-
cient selection of target users. By channeling resources towards the most
responsive users, there’s potential for a heightened return on marketing
investments. In light of limited research in this domain, we put forth
a tri-stakeholder considered user selection model with social networks
(TriSUMS). This model recognizes the intertwined interests of three core
stakeholders: merchants (items), platforms, and users. It harmonizes the
objectives of these stakeholders through an integrated reward function
and incorporates social networks to identify the prime target users for
items of merchants adeptly. We validate TriSUMS using an exhaustive
exposure user-item interaction dataset, assessed within a solid offline
reinforcement learning framework.

Keywords: Market Promotion · Recommender System ·
Reinforcement Learning

1 Introduction

With the rapid development of information technology and the widespread appli-
cation of big data technology, the Internet has penetrated into all aspects of
human life. However, while technology enriches human life, it also brings out the
problem of information overload. To solve the above problems, recommendation
systems [2] have emerged. The recommendation systems use historical behavioral
data to extract users’ preferences and provide precise recommendations. It not
only improves the accuracy of information propagation but also optimizes the
user experience. Current mainstream personalized recommendation algorithms
include content-based recommendations [8,14], collaborative filtering-based rec-
ommendations [16,17], and social network-based recommendations [3,21].
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In the current competitive market environment, users are the core of market-
ing activities. Merchants pay special attention to target users to increase item
sales, expand market share and enhance brand awareness. Selecting appropri-
ate target users for market promotion is the key link in the marketing
process. Nathan Fong et al. [4] found that targeted promotional activities based
on personal purchase history can increase sales. Liu et al. [13] mentioned that
the selection of target users in the advertising process usually takes into account
the past behavior, identity, geographical location, and other attributes of con-
sumers. Margaret et al. [1] found that brand familiarity will affect the effect of
advertising repetition, so for brands familiar to users, the number of advertising
repetitions can be higher.

The above research has shown that selecting appropriate target users for
market promotion can benefit multiple stakeholders, i.e., merchants, platforms,
and users. [19]. However, how to select appropriate users for market promotion
is still under exploration. Most of these selection methods are based on heuristic
rules and do not consider all stakeholders. Moreover, incompletely considering
the interest of three stakeholders can lead to the collapse of the platform’s entire
business ecosystem. As the very core of market promotion, the interest of mer-
chants is the exposure rate of their products. However, increasing the exposure
of promoted products may harm the interest of users who require an accurate
recommendation list to overcome the information overload problem. The plat-
form needs to balance the demand of both merchants and users. While for the
platform itself, improving the diversity of recommendation lists can also help
discover potential new merchants and attract corresponding new users to help
the further development of the platform.

To this end, we propose a dynamic target user selection model TriSUMS
(Tri-Stakeholder User selection Model with Social networks), for all these stake-
holders. For merchants, TriSUMS prioritizes the exposure of their products to
ensure they receive the exposure increase they require. For users, the model
emphasizes tailoring recommendations according to their interests, ensuring that
they receive content relevant to their historical preferences, thus assisting them
in navigating through the vast sea of information. As for the platform’s longevity
and growth, it places a strong emphasis on the diversity of the products show-
cased in the recommendation lists. Specifically, TriSUMS quantifies this balance
through metrics like the frequency of an item’s appearance in recommendation
lists, the alignment of user recommendation lists with their historical interests,
and the overall diversity of the recommendation list. In TriSUMS, three reward
functions are designed for every kind of stakeholder. And these reward functions
are combined into an integrated reward function to guild the training process.
TriSUMS learns user-selecting policies in a dynamic environment, which can
select optimal target users for market promotion to maximize the integrated
reward function of multiple stakeholders. The contributions of this paper can be
summarized as follow:

– We propose a target user selection model TriSUMS that considers multi-
ple stakeholders. By comprehensively considering the interests of merchants,
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platforms, and users in marketing scenarios with users’ social relationships,
TriSUMS can increase the reward of the above-mentioned stakeholders.

– We construct a reliable simulation environment using a full exposure dataset
and establish a robust offline reinforcement learning evaluation framework to
assess user satisfaction when the user-selecting policy of TriSUMS is applied.

– We conduct extensive experiments to verify the effectiveness of the proposed
model to validate the effectiveness of the model in improving the rewards of
multiple stakeholders, demonstrating the model’s superior performance in a
reliable evaluation framework.

2 Preliminaries

To learn user-selecting policies in a dynamic environment, reinforcement learn-
ing technology [20] is a good way to achieve this. In this section, we introduce
reinforcement learning and its variants, offline reinforcement learning. We also
give the problem formulation of our work in this section.

2.1 Reinforcement Learning

The problem of reinforcement learning is how agents make decisions in complex
and uncertain environments to maximize cumulative rewards. Different from
supervised learning, agents explore the environment through trial and error and
constantly seek better strategies to obtain the maximum cumulative rewards.
The interaction process between intelligent agents and the environment can be
formalized as a five-tuple < A,S, P,R, μ >, including action space A, state
space S, and state transition probability P : S × S × A → [0, 1], Reward Value
R : S × A → R and the discounted factor μ ∈ [0, 1].

At the time t, the agent observes the environment state st ∈ S and takes
action at ∈ A through the policy π. At the next time t+1, the environment feeds
back a reward rt ∈ R and transports itself to a new state st+1 through the state
transition probability P . The agent constantly adjusts its policy π through the
reward R, and steps into the next decision process. By repeating this process,
the agent can get a trajectory (s0, a0, r0, s1, a1, r1, ..., sn, an, rn). The target of
reinforcement learning is to find out a policy π that can maximize the cumulative
reward Gt:

Gt = r0 + μr1 + μ2r2 + ... + μnrn =
k=n∑

k=0

μkrk, (1)

where μ is the discount factor that is used to weaken the future reward. Espe-
cially, if μ is close to 0, the agent focuses more on short-term reward, and if μ is
close to 1, the agent tends to increase the long-term cumulative reward (Fig. 1).

2.2 Offline Reinforcement Learning

Conducting online reinforcement learning in real-life scenarios is significantly
difficult, often facing high costs and risks. Plenty of application fields [6,9] have
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Fig. 1. The standard reinforcement learning and offline reinforcement learning

demonstrated its risk. In recommendation, users need to constantly interact with
the agent. This process is unrealistic, as users do not have the patience to interact
with an immature system.

To solve the above problems, a variant of reinforcement learning, i.e., offline
reinforcement learning [10,11], came into being. It requires agents to learn from
fixed batches of offline history data without any real-time interaction with the
environment. The problem that offline reinforcement learning focuses on is how
to effectively use the massive offline data to obtain a strategy that maximizes the
cumulative reward. Offline reinforcement learning samples from the experience
playback pool D and updates the strategy πθ. After offline training, the model
is deployed to the online environment to verify its effect. Compare to standard
reinforcement learning, offline reinforcement learning is safer due to the removal
of high-frequency real-time interaction with the environment.

2.3 Problem Formulation

Let U be the set of users and I be the set of items. R ∈ R|U |×|I| is the interaction
where Rui = 1 indicates user u has interacted with item i and Rui = 0 indicates
there is no interaction between u and i. S ∈ R|U |×|U | is the social relationship
where Suv = 1 indicates user u and v are friends and Suv = 0 indicates user u
and v do not know each other.

Our goal is to learn a user-selecting policy π that can maximize the reward
of merchants, users, and the platform. The policy π selects optimal users to
interact with merchants’ promotional items to simulate the market promotion
process. After the establishment of these interactions, the recommendation lists
for users are changed. To ensure the overall reward of the three stakeholders at
the same time, the designed integrated reward function Rs is maximized during
the training process.

3 Methodology

In this section, we consider the interests of three stakeholders and propose a
dynamic target user selection model TriSUMS (Tri-Stackholder User selection
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Model with Social networks). TriSUMS considers not only the reward of mer-
chants but also the reward of the platform and users. The framework introduces
an offline reinforcement learning algorithm to train the interactive recommen-
dation model and builds a reliable simulation environment based on the latest
KuaiRec [5] dataset and the classic LastFM dataset to evaluate the effectiveness
of the model.

Fig. 2. The framework of TriSUMS

3.1 Overall Framework

TriSUMS mainly includes four key modules: a reward supplier, a reinforcement
learning agent (RL Agent), a state tracker, and a simulated environment. As
shown in Fig. 2, TriSUMS first utilizes offline interactive data {(u, i, r, t)}, a set
of quadruples that contain user u interacted with item i at time t and user’s
social relationship r, to train the strategy. Then TriSUMS tests the impact of
the model in a simulated environment. The details of the four modules are as
follows:

The reward supplier is a recommendation model. Its recommendation perfor-
mance can reflect the effect of market promotion. We use the interaction R and
social relationship S to build the adjacent matrix, which is shown as follows:

A =
(

S R
RT 0

)
, (2)

and the LightGCN [7] with the above adjacent matrix is used as the reward
supplier. The reward supplier provides reward signals in the dynamic interactive
marketing process and evaluates the impact of user selection.

The state tracker is based on a GRU model, which can automatically extract
the most relevant information for current market promotion from the vectors
representing item attributes ei and historical target user vectors {ea1 , ..., eat

}.
The RL agent interacts with the reward supplier. During this interaction, the

reward supplier is responsible for providing timely and accurate reward signals to
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the RL Agent. The RL Agent here can be any reinforcement learning algorithm,
such as PPO [15], DDPG [12].

The simulated environment is used to simulate a real business environment,
which is a black box that can return user feedback for model evaluation when
the algorithm selects the target user.

3.2 Construction of Multi-stakeholder Reward Function

Market promotion involves multiple stakeholders, including merchants, users,
and platforms. It is necessary to balance the interests of them. In this section, we
design corresponding reward functions for each stakeholder and then synthesized
them to form a reward function (Fig. 3):

Fig. 3. The three stakeholders in market promotion

Reward Function for Merchants: Merchants are the very core of market pro-
motion since the promotion is always launched by them. Merchants focus on the
exposure of goods and expect to increase the exposure of goods through market
promotion, thus increasing sales revenue. The direct way to measure the effect of
market promotion is how many items of the merchants are recommended by the
recommender system. Therefore, we set the reward function for the merchants
as the change in the number of items displayed on the recommendation page:

Rm(st, at) =
Exp(It

p) − Exp(It−1
p )

Exp(It−1
p )

, (3)

where Exp(It
p) indicates the number of promotional items displayed on the rec-

ommendation page at time t.

Reward Function for Users: Users are the receivers of market promotion.
Moreover, it is evident that promoting appropriate items are acceptable for users,
and users may feel unhappy when promoted improper items to them. Since
recommendation metrics can effectively predict users’ interests. Considering the
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change in recommendation loss can measure how users feel when the market
promotion is adopted, we use the loss as the user reward function:

Ru(st, at) =
Lt − Lt−1

Lt−1
, (4)

where Lt is the loss of the LightGCN integrated with social networks when
selecting the target users for the promotion.

Reward Function for Platform: The recommendation platform is the basis
of online transactions, which connects users and merchants. The platform offers
merchants a place where merchants can display their products to numerous users,
and the platform also uses recommendation algorithms to filter appropriate prod-
ucts for users and reduce the information overload problem. Firstly, the platform
needs to balance the interest of users and merchants, providing them with a
good experience, this part is included in the reward function for merchants and
users. However, traditional recommendation algorithms often focus on popular
products, while long-tail items with relatively low sales but of a wide variety
are ignored, leading to a monotonous recommended list, and finally result in
damaging the overall ecology. Also, the recommendation platform has the fol-
lowing advantages in recommending long tail items: firstly, long tail items can
meet users’ diverse needs for products, thereby improving user stickiness and
satisfaction. Secondly, although the sales of individual products are relatively
low, long-tail items can bring more business opportunities. Finally, recommend-
ing long-tail items can also help the platform optimize product inventory and
reduce warehousing costs. The long-tail item coverage is defined as the propor-
tion of the long-tail items recommended to all items. Therefore, the change in
long-tail item coverage is used as the reward function for the platform:

Diversity =
∪u∈U (Lu)

|V | , (5)

Rp(st, at) =
Diversityt − Diversityt−1

Diversityt−1
. (6)

Integrated Reward Function for Multiple Stakeholders: In practical sce-
narios, there are often contradictions in the interests of these stakeholders. Mer-
chants hope to maximize the exposure of their own products and attract more
users to purchase, but this may lead to a waste of platform resources and user
dissatisfaction; The platform hopes to enhance its uniqueness and diversity by
increasing the exposure rate of long-tail products, but this may affect the expo-
sure rate of mainstream products and the profits of corresponding merchants;
Users hope to purchase their favorite products and enjoy discounts, but this may
lead to waste of platform resources and reduced profits for merchants. To solve
these contradictions, we integrate three rewards with a weighted summation,
achieving balance and measurement of multi-party interests:

Rs(st, at) = αRm(st, at) + βRu(st, at) + γRt(st, at). (7)
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The integrated reward function can balance the interests of merchants, plat-
forms, and users during the optimizing process, improving the exposure of pro-
moted items, coverage of long-tail items, user experience, and other indicators,
thus achieving a win-win situation for multiple stakeholders. In addition, by
adjusting the weight parameters α, β, and γ, the integrated reward function
can also adjust to different market promotion scenarios with different benefit
allocations, further improving promotion effectiveness.

3.3 Offline Reinforcement Learning-Driven Framework

In this section, we propose a dynamic target user selection model TriSUMS that
takes multiple stakeholders into account. Figure 2 shows the process of selecting
target users at different times in the model. The key variables involved in the
model are as follows:

Action: at represents the action taken by the interactive strategy at the moment
t. In this section, the action selects a user u, so the representation vector ea of
an action a and the standard vector of the user eu selected by the action are
equivalent, i.e., ea = eu.

Status: st ∈ Rds indicates the interaction state at t, which provide overall his-
torical information for agent. st includes the representation vector ei of the inter-
active information of the item and the user information that has been selected
for the item in the whole interactive trajectory process {ea1 , ..., eat

}. st.

Reward Signal: rt represents the feedback signal provided by the reward
provider ϕM after the policy selection action at at time t, which is calculated
through the reward function of Eq. 7.

Policy Network: πθ = πθ(at|st) selects actions at based on the current state st.
It takes state st as input and outputs a probability distribution. The probability
of action at being selected is as follows:

πθ(at|st) = ReLu(σ(WT
s st + bt), (8)

where σ represents the nonlinear activation function, WT
s ∈ Rds×da and bt ∈ Rda

represent the weight matrix and bias, which are learned through the training
process.

3.4 Proximal Policy Optimization

We use a variant of the PG algorithm - Proximal Policy Optimization (PPO)
[15] to train the model. The PPO algorithm constrains the update amplitude by
limiting the distance of new and old policies between each update step, solving
the problem of the PG algorithm that may cause significant changes and unstable
training in one step. The objective function of the PPO algorithm contains two
parts, one is to improve the performance of the policy, other is to ensure the
stability of the training process. The objective function of the PPO algorithm is
defined as:
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Et[min(
πθ(at|st)

πθold
(at|st)

Ât, clip(
πθ(at|st)

πθold
(at|st)

, 1 − ε, 1 + ε)Ât], (9)

where the first term in the objective function is to improve policy performance.
The second term uses the pruning function clip(·) to limit the amplitude of policy
updates. ε is a hyperparameter that limits the maximum update amplitude of
the policy parameter θ in a single step. To achieve this, the clip(x, a, b) function
limits the value of x to the interval [a, b]. If x is smaller than a, then the output
of clip(x, a, b) is a, if x is bigger than b the output is b, and if x is between a and
b the output is x. The θold represents the old version of the policy parameter θ.
Thus, the update amplitude of θ is limited in ε. Ât is the function of cumulative
reward:

Ât = Â
GAE(μ,λ)
t =

∞∑

l=0

(μλ)lδV
t+l, (10)

where λ is a hyperparameter that balances bias and variance. δV
t = rt +μV (st +

1) − V (st) represents the residual of the value function V , μ is the discount
factor. The value function V is as follows:

V (st) = V πθ,μ(st) = Est+1:∞,at:∞[
∞∑

l=0

μlrt+l]. (11)

3.5 Evaluation Framework

After the training process, we need to simulate the online evaluation. This pro-
cess aims to analyze the impact on users in real scenarios. Therefore, it is neces-
sary to develop a reliable and robust evaluation framework to accurately evaluate
model performance. Figure 4 shows the evaluation methods of traditional static
recommendation, sequential recommendation, and interactive recommendation.

Fig. 4. Evaluation methods of traditional and interactive recommendation

Figure 4(a) shows the eval methods of traditional static recommendation and
sequential recommendation. Among them, traditional static recommendation
algorithms recommend a list of products that users may be interested in based
on their interaction history. To evaluate the accuracy of recommendations, this
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product is generally compared with the real user interaction set in the test set,
and evaluation indicators such as Recall, normalized discount cumulative gain
(NDCG), and Hit Ratio are used to quantitatively analyze the recommendation
effect. However, these evaluation methods that consider the products in the
test set as standard answers do not conform to real recommendation scenarios.
Because the interaction between users and products in the test set does not
accurately reflect users’ true preferences, it may only stem from curiosity or
herd mentality. Meanwhile, the fact that one user has not interacted with a
certain product does not mean that the user is uninterested in the product,
it may be because the user has not yet discovered such a product. Also, in
sequential recommendation methods, users’ historical interactive products are
typically modeled as sequences or trajectories with temporal characteristics. The
goal is to predict the products that users may interact with at any given time.
This method of using historical data as evaluation criteria is also not in line with
actual recommendation scenarios, since fixed sequences or trajectories ignore the
probability that users may interact with other items.

In actual recommendation scenarios, when users browse products on the rec-
ommendation platform, they may have no idea what they want. Meanwhile,
they will provide feedback based on the platform’s recommendation content and
find the products they truly want to purchase through continuous interaction.
If a good experience is obtained during this interaction process, users will con-
tinue to use the recommendation platform. Compared to static metrics such as
accuracy and recall, recommendation platforms pay more attention to the long-
term improvement of user experience satisfaction. These long-term metrics are
often difficult to be covered and captured by traditional static and sequential
recommendations modeling.

As shown in Fig. 4(b), in interactive recommendation scenarios, the interac-
tions between users and agents are real-time rather than special history trajec-
tories, presenting a divergent trend. Evaluation in interactive scenarios requires
recording the cumulative reward of all these paths. This section uses the KuaiRec
dataset [5] released by Kwai and the team of China University of Science and
Technology to build a reliable evaluation framework and evaluate the impact
of TriSUMS model on user satisfaction in real online recommendation scenarios.
Compared with traditional highly sparse recommendation datasets, the KuaiRec
dataset observation data contains a user-product interaction matrix with a den-
sity up to 99.6%, which can provide feedback for each action taken by the agent
to calculate the cumulative satisfaction of users. The full exposure dataset as a
simulation environment can provide strong support for the evaluation.

4 Experiments

This section introduces experimental design and analysis of experimental results
to verify the effectiveness of the methods proposed in market promotion scenar-
ios, as well as the effectiveness of social networks in improving recommendation
performance. Specifically, we conduct experiments on two public datasets to
analyze the following research questions (RQs):
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– RQ1: How does the TriSUMS model improve the multi-stakeholder rewards
compared with the static and collaborative filtering-based user selection
strategy?

– RQ2: How does the TriSUMS model perform in the evaluation of the sim-
ulation environment compared with the static target user selection strategy
and the user selection strategy based on collaborative filtering?

– RQ3: How do the user social relationships impact Precision, Recall, and
NDCG in market promotion scenarios?

4.1 Datasets

We use two public datasets containing user social relationships, LastFM [18],
and KuaiRec [5], for experiments. As shown in Table 1, the LastFM dataset
is a commonly used dataset for music recommendation, containing interaction
records of 1,892 users and 17,632 items. Since LastFM is highly sparse and cannot
provide data support for the simulation environment in the model evaluation
phase, matrix factorization is used to fill in the missing values.

Table 1. The statistics of the datasets

dataset train/test user item interaction density social relation

LastFM train 1,892 4,489 42,135 0.62% 25,434

test 1,858 3,285 78,286,830 100%

KuaiRec train 7,176 10,728 12,530,806 16.28% 670

test 1,411 3,327 4,676,570 99.6%

As shown in Fig. 5, the KuaiRec dataset consists of a sparse large matrix
and a dense small matrix. The small matrix with red dashed lines contains
almost no missing values for user video interactions, with a density of 99.6%.
The missing 0.4% interactions are due to some users having blocklisted some
video makers, and the platform cannot expose such videos to these users. We
can treat these missing interactions as uninterest. This full exposure matrix can
provide accurate and comprehensive feedback for the model evaluation stage.
The blue dashed part is a large matrix with an interaction density of 16.3%,
used for offline training of the model.

4.2 Baselines

The existing user-selecting policies are mainly based on historical behavior such
as purchase [4] and brand familiarity [1], and there is no user selection algo-
rithm for market promotion. To ensure the effectiveness of the experiment. Five
static selection strategies are used, and two machine learning-based comparison
methods are designed. Seven baselines include Random selection, Active first,
Inactive first, High Rating first, Low Rating first, Item CF, and User CF. The
details of the seven methods are shown as follows:
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Fig. 5. The fully-observed dataset KuaiRec

Random Selection: Randomly select a target user and establish a connection
with the promotional item set. The advantage of this method is that it is simple
and easy to implement, but it may not be optimized for specific user groups,
resulting in unstable promotion results.

Active First: This method sorts the user interaction volume (i.e. historical pur-
chase data) and randomly selects target users from the top 30% of active users.
Active users are more likely to notice promotional items, which may increase
their exposure rate. However, this approach may overly focus on active users,
leading to neglecting the needs of other user groups.

Inactive First: Contrary to the high activity priority selection method, this
method randomly selects target users from the bottom 30% of non-active users.
The purpose of this method is to avoid user churn and expand the audience for
promoting the item. However, this method may result in less effective promotion,
as inactive users may not be interested in new items.

High Rating First: This method calculates the average rating of users on
all interactive items in the recommendation dataset and randomly selects tar-
get users from the top 30% of high-scoring users. High-scoring users may be
more attracted to promotional items, increasing their exposure rate. However,
this method may overlook the needs of low-scoring users and limit the scope of
promotion effectiveness.

Low Rating First: Contrary to the high-scoring priority selection method,
this method randomly selects target users from low-scoring users who rank in
the bottom 30% of the score. This method attempts to expand the audience
range of promotional items but may face the problem of low-rated users lacking
interest in promoting the items.

Item CF: This method targets users who have purchased similar promotional
items by analyzing and evaluating the similarity between items. This method
helps find users interested in promoting the item, thereby increasing exposure.
But this method may fail to identify potential new user groups.

User CF: By analyzing and evaluating the similarity between users, this method
selects users similar to those who have already purchased promotional items as
the target users. This method attempts to identify potentially interested users
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through user similarity, thereby increasing the exposure of promotional items.
However, this method may be limited by the accuracy of calculating the simi-
larity between users and may overlook potential user groups that have not yet
been discovered.

4.3 Evaluation Metrics

Considering that the goal of TriSUMS is to balance the interests and needs of
merchants, users, and platforms, we selected three evaluation metrics: product
exposure, recommendation accuracy, and recommendation coverage.
Product exposure reflects merchants’ demand for product promotion, recom-
mendation accuracy reflects users’ demand for personalized recommendations,
and recommendation coverage reflects the platform’s demand for expanding rec-
ommendation scope.

In addition, we also use three common evaluation metrics for recommenda-
tion systems: Precision@k, Recall@k, and NDCG@k to measure the impact
of social networks on recommendation performance. Precision@k is the ratio of
the number of correctly predicted items in the recommendation results to the
length of the recommendation list. It measures how many items on the recom-
mendation list are truly of interest to users. Recall@k refers to the ratio of the
correct number of recommended items to the number of all items that should be
recommended. It measures how many items that users are interested in are rec-
ommended. NDCG@k considers the ranking of items and evaluates the accuracy
of recommended item ranking.

4.4 Parameters Settings

The weights α, β, and γ of the reward function in Eq. 7 are set to 0.8, 0.1, and
0.1, respectively. Specifically, merchants are the direct beneficiaries and main
supporters of market promotions, with the aim of increasing product exposure.
Therefore, the interests of merchants should receive the greatest attention in
the reward function, with a weight set at 0.8. As the strategy implementer of
market promotions, the platform needs to ensure that the strategy implementa-
tion process does not affect the platform’s own benefits. Therefore, the platform
interests should be included in the weight setting, with a weight of 0.1. Users
are also an essential part of market promotions, as they bring sales and profits
by purchasing products. Therefore, during market promotions, it is necessary to
ensure that users can obtain a diverse recommendation list with a weight of 0.1.

In the experiment, the model selects 100 target users (i.e. round length n)
and establishes interaction with 1% of promotional items (i.e. the promotional
item |Ip|). The length of the recommended list k is 10, and the discount factor
μ is 0.9. The optimizer is Adam, and the initial learning rate is 0.005.

4.5 Overall Performance (RQ1)

Figure 6 shows the experimental results of eight methods on three evaluation
metrics: product exposure, recommendation accuracy, and recommendation cov-
erage. Observations can lead to the following conclusion:
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Fig. 6. Overall Performance

– TriSUMS outperformed the baseline model in all three evaluation metrics on
two datasets, indicating that the TriSUMShas better overall performance in
meeting user needs, improving platform revenue, and promoting the overall
development of recommendation platforms.

– In terms of product exposure, the high activity priority selection method and
the high score priority selection method perform relatively well. The per-
formance of low activity priority selection and low rating priority selection
methods is poor, mainly due to users with lower participation and low rat-
ing tendency, whose interest preferences are often vague and, therefore, not
suitable as the target user group for promotional activities. The random selec-
tion method performs the worst because it does not utilize any information
to optimize the selection strategy.

– In terms of recommendation accuracy, UserCF and ItemCF perform relatively
well, due to the algorithm based on collaborative filtering fully mining the
similarity information between users and products. At the same time, static
strategies such as Active First, Inactive First, High Rating First, Low Rating
First, and Random perform relatively poorly.

– In terms of recommendation coverage, the high activity priority selection
method performs well, mainly due to frequent interaction between active users
and recommendation platforms, as well as rich behavioral data. The interests
and preferences of active users are more accurately captured, making them
suitable target user groups for promotional activities.

In addition, it can be observed that the TriSUMS shows significant fluctua-
tions in the result curves on all three metrics. There are two main reasons for
this phenomenon: 1) Reinforcement learning needs to balance the exploration
of unknown states and behaviors with the use of known information. 2) Rein-
forcement learning usually relies on delayed rewards. However, the TriSUMS
algorithm achieved better performance in all three metrics in the later stage.
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Fig. 7. Comparison of evaluation results in simulation environment

4.6 Online Reward Evaluation (RQ2)

Figure 7 shows the experimental results of the target user selection model
TriSUMS and seven baseline models proposed in this section on the LastFM and
KuaiRec datasets. The online reward (i.e., the values in the dense matrix) can
reflect how satisfied users are. The horizontal axis epoch represents the number of
test rounds, and the vertical axis represents online reward. We can find TriSUMS
performs significantly better than the baseline model on both datasets, which
means that TriSUMS can meet users’ requirements in a dynamic environment.

In the LastFM dataset, the performance of the seven baseline models is rel-
atively close. The online reward fluctuates between 49.98 and 50.01 because
the baseline models cannot fully capture the dynamic interaction relationship
between users and items. The online reward of our proposed TriSUMS fluctu-
ates between 50.03 and 50.46.

In the KuaiRec dataset, Item CF performs well for its ability to effectively
mine the similarity information between users and items. Meanwhile, the effect
of the high rating first method (online reward fluctuates around 100) is signifi-
cantly better than the low rating first method (online reward below 80) because
users who tend to give high ratings to products are more likely to generate
positive feedback. The performance of active first, inactive first, random, and
user CF is similar. Their online reward value fluctuates between 81 and 90. It is
worth noting that after training for a period of time, our TriSUMS model has
an online reward above 140. This can be attributed to the advantages of rein-
forcement learning-based methods in capturing dynamic environmental changes
more effectively and focusing on long-term benefits.

4.7 Ablation Study (RQ3)

To verify the role of user social relationships in improving the effectiveness of
the model, this study designed an ablation experiment. The experiment com-
pared the performance of the TriSUMS model and the model without social
relationships, TriSUMSw/oS , on the metrics of Precision@10, Recall@10, and
NDCG@10.
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Table 2. The comparison of two variants of TriSUMS

Dataset KuaiRec LastFM

Metric Precision@10 Recall@10 NDCG@10 Precision@10 Recall@10 NDCG@10

TriSUMSw/oS 0.2528 0.0132 0.2315 0.0752 0.2679 0.2096

TriSuMS 0.2571 0.0136 0.2378 0.0776 0.2768 0.2141

improve 1.70% 3.03% 2.72% 3.25% 3.28% 2.15%

As shown in Table 2, the TriSUMS model with extra social relationships
achieves 1.70%, 3.03%, and 2.72% improvements in the KuaiRec dataset, as well
as 3.25%, 3.28%, and 2.15% improvements in LastFM dataset, compares to the
TriSUMSw/oS model. This indicates that after adding user social relationships,
the TriSUMS model can better capture user interests.

5 Conclusion

In this work, we introduce the dynamic selection model of TriSUMS. It considers
the social relations of users and three major stakeholders in the market promo-
tion process - merchants, platforms, and users, respectively. While improving
the exposure of items, TriSUMS takes into account the accuracy and diversity
of recommendations to meet the needs of different stakeholders. We utilize a full
exposure dataset to construct a reliable simulation environment for evaluating
the impact of the model on user satisfaction. The experimental results show
that the TriSUMS performs better in improving user experience and other met-
rics compared to other models. This is mainly due to the following reasons: (1)
Reinforcement learning usually focuses more on long-term rewards throughout
the decision-making process. This section designs reward functions for multi-
ple stakeholders to guide strategy updates to maximize cumulative benefits. (2)
Reinforcement learning methods continuously explore the location environment
during the learning process, which is more adaptable to changing new scenarios
and adjust strategies adaptively compared to fixed selection strategies.
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Abstract. With the collaboration of several intelligent services, a crowd intel-
ligence service network has been formed, and a service ecosystem has grad-
ually emerged. As a novel service organization model, the Service Ecosystem
(SE) can provide more sophisticated, precise, and thorough services and has
attracted widespread attention. However, it also brings negative effects such as
involution, and information cocoon room. Thus, how to analyze the collaborative
decision-making mechanism between the SE regulation algorithm and the crowd
intelligence group, exploring the reasons behind the negative effects, and finding
effective intervention strategies have become problems in this field. To solve the
challenges, we propose a Computational Experiments-based method Decision-
making processes Analysis model in SE, namely CEDA. The proposed CEDA
model consists of three modules: the autonomous evolution mechanism module,
the learning evolution mechanism module, and the collaborative decision-making
analysis module. Among them, the computational experiments can provide a cus-
tomized test environment for the analysis of collaborative decision-making pro-
cesses and find out the appropriate intervention strategy. Finally, the validity of
the CEDA model is verified through the case of academic ecosystem involution.
The results show that computational experiments can provide new ideas and paths
for collaborative decision-making processes analysis.

Keywords: Collaborative Decision-making Processes · Case Studies of
Collaborative Application · Performance Evaluation · Service Ecosystem ·
Interaction Mechanism · Computational Experiments

1 Introduction

With the era of the intelligent interconnection of all things, new technologies and prod-
ucts such as big data, cloud computing, and artificial intelligence continue to pour into
the modern service industry, which can be combined and integrated to meet complex
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application scenarios [1, 2]. “Data + computing power + AI algorithm = intelligent
service” is forming a new type of social infrastructure. In this technical architecture, “Ev-
erything as a Service”, the service gradually endows everything in society with a unified
logic, including applications, platforms, data, algorithms, and resources, and the entire
social landscape is redefined under the service logic [3]. By focusing on the structure
of the process and neglecting the exchange of data and resources between collaborators
traditional service systems gradually turn into Service Ecosystems (SE) where many
agents (people, companies, governments, intelligent machines, etc.) work together and
operate together [1], as shown in Fig. 1.

As a complex service system that is influenced by many factors, the efficient oper-
ation of the service ecosystem requires collaboration between the supply and demand
sides. The supply side constantly pursues high efficiency (Efficiency = output/time),
while the demand side continuously provides valuable output (Effectiveness = valuable
output/time). This collaboration is crucial to prevent the whole system from falling into
a loop of ineffective output. In this context, intelligent regulation algorithms play an
increasingly important role in helping individuals, businesses, and governments make
decisions and dealwith everydaymatters. These algorithms provide amore granular, pre-
cise, and thorough model of service operation in a more intelligent way than traditional
service. For example, recommendation algorithms can influence the speed of enhancing
people’s access to information [2] and service platform algorithms can perform route
planning [4]. Intelligent regulation algorithms are playing an increasingly important
role in the collaborative decision-making and processing of everyday affairs, enabling
significant changes in how services are organized and operated. They are also having a
growing impact on shaping the processes of human interaction with politics, economics,
and society [3]. However, the complexity, opacity, and lack of interpretability of intelli-
gent moderation algorithms themselves [3]. Have led to a rise in the risks associated with
their use. For example, algorithms for ranking scientific results have led the academic
ecosystem into a state of involution with diminishing marginal effects [5]. In addition,
problems such as complex networkwind [4], and “information cocoon room” [6]. Caused
by intelligent regulation algorithms pose new challenges to the service efficiency of the
public intelligence service system. To ensure the effective and efficient operation of the
service ecosystem, it is crucial to address the risks and challenges associated with the
use of intelligent regulation algorithms.

Therefore, exploring the reasons for the negative effects and interaction processes
between the regulation algorithm and the crowd intelligence group becomes the key to
research. For example, Shi et al. used a simulation system to simulate the real world
and effectively assess the impact of the interaction between algorithms and people [8,
9]. Kang et al. use quantitative methods to analyze interaction data and conclude that
algorithm-human interaction exacerbates algorithm discrimination [2, 10]. However, the
inherent complexity, opacity, and lack of interpretability of intelligent regulation algo-
rithms have increased the risks of SE. Existing analysis methods ignore the complexity
and dynamics of the interaction between algorithms and agents, making it difficult to
reveal the underlying mechanisms of system evolution and to give effective regulation
strategies. In this context, this paper investigates the mechanism of interaction between
the regulation algorithm and the intelligent behavior of the crowd intelligence group
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in SE and explores the reasons for the negative effects of the interaction between the
regulation algorithm and the crowd intelligence group.
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Fig. 1. The SE consists of several agents such as people, enterprises, intelligent machines, and
regulation algorithms, which are self-learning and capable of self-evolution, as well as interacting
with other agents to accelerate their evolution and facilitate the evolution of SE.

Computational experiments are based on the underlying agents to simulate real-
world microscopic behavior and have the advantage of being accurate, controllable, and
repeatable. This paper combines the characteristics of computational experiments to con-
nect the micro and macro and proposes a Computational Experiments-based Decision-
making processes Analysis model in SE, referred to as the CEBA model. The CEBA
model describes the cyclic mechanism of positive and negative feedback between the
intelligent regulation algorithm and the crowd intelligence group in SE from a macro-
scopic perspective and analyses the state properties, behavior changes, and correlations
between the two from a microscopic perspective. Finally, the case of scientific academic
ecosystem involution using the CEBA model is analyzed to explore the internal mech-
anism of the creation, exacerbation, and mitigation of scientific academic ecosystem
involution.

2 Background and Motivation

The SE is a complex service system that facilitates the service effectiveness of the service
system under limited resources through the centralized provision of infrastructure and
public services. The operation logic of the SE consists of three parts: crowd intelligence
group, service network, and value network [11, 12].
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In recent years, the SE has become the most important organizational form of the
service system [13, 14]. In a SE, agents autonomously adjust their behaviors and deci-
sions according to their value output to improve their effectiveness, while the regulation
algorithm regulates the behavior and habits of the intelligence to improve the service
effectiveness of thewhole service system.With the increasing complexity of the coupling
between intelligent regulation algorithms and crowd intelligence group, it is becoming
more important to analyze the interaction processes between the two [14]. A review of
the literature reveals that current research approaches to algorithm-human interaction
fall into three main categories.

The first category is to evaluate the impact of the interaction between algorithms and
humans based on real systems or simulated systems using A/B tests or combinations of
multiple variables. Miikkulainen et al. [5] proposed to use of an evolutionary algorithm
to select the A/B test feature space; Shi et al. [8] proposed to use reinforcement learn-
ing to establish a virtual Taobao for A/B testing; Koster et al. [10] proposed a virtual
environment to explore the influence of people on algorithm-making policy.

The second category is qualitative analysis from psychology, causality, and influenc-
ing factors. Bucher et al. [15] investigated the emotional dimension and perception of
algorithms and people; Alvarado et al. [16] proposed an algorithmic experience (analyt-
ical framework for analyzing the experience of algorithm-human interaction; Shin et al.
[17] proposed the models to influence users’ perceptions of algorithmic systems in the
context of algorithmic ecology.

The third category is to collect interactive data based on questionnaires, interviews,
and web crawlers for quantitative analysis. Li et al. [19] proposed a psychological per-
spective on the positive impact of anthropomorphism in the interaction of AI assistants;
Kang et al. [2] investigated the impact of AI features embedded in core aspects of social
media;Vlasceanu et al. [9] verified that non-human factors induce lasting social influence
outside the group environment.

Currently, all existing methods of interaction analyses have certain limitations. For
online systems, too much analysis can put pressure on the system and degrade the user
experience. Simulation systems focus on top-downmodeling, and the simulation process
requires human participation,which does not allow for large-scale, long-term simulation.
Qualitative analysis methods cannot quantify the interactions between factors, and can
only provide a rough analysis from a macro perspective, which is insufficient to explain
the decision-making and interaction processes. Quantitative analysis methods cannot
effectively analyze the decision-making and interaction processes since a large number
of assumptions and a large amount of data are required when building the model.

To solve the problems in the interaction analysis methods for the SE regulation algo-
rithm and crowd intelligence groups, this paper proposes a Computational Experiments-
based Decision-making processes Analysis model in SE. The model separates the crowd
intelligence group and the regulation algorithm in the hybrid system and then abstracts
them into an artificial society agent and the SE regulation algorithm respectively. It can
simulate the interaction processes between the SE regulation algorithm and the artificial
society agent, and analyze the circular feedback logic and inner mechanism of the inter-
action between the SE regulation algorithm and the artificial society agent. Finally, the
proposed model is validated by setting up different types of intervention strategies and
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different types of artificial society agents to analyze the generation, exacerbation, and
mitigation of the phenomenon of involution in the academic ecology.

3 Computational Experiments-Based on Collaborative
Decision-Making Processes Model in SE

This section first introduces the proposed CEBA model, followed by a detailed descrip-
tion of the autonomous evolution mechanism of the regulation algorithm and the learn-
ing evolution mechanism of the artificial society agent model, and then describes the
cyclical mechanism and dynamic evolution process between the two. Finally, individual
effectiveness, system effectiveness, and other analysis indicators are given.

3.1 Computational Experimental Analysis Model of SE

The CEBA model uses computational experiments to model the whole process of inter-
action between the SE regulation algorithm and the artificial society agent, focusing on
the analysis of the changes in the artificial society agent. Additionally, exploring the
internal mechanism of the interaction between the SE regulation algorithm and the arti-
ficial society agent can help to mitigate the negative effect of the regulation algorithm
on the artificial society. As shown in Fig. 2, the first is to introduce the SE regula-
tion algorithm, and the agents perceive and make corresponding feedback. Secondly,
the introduction of the SE regulation algorithm will accelerate the evolution process
of artificial society learning, thus affecting the interaction between the SE regulation
algorithm and the artificial society agent. Finally, after a period of operation, the artifi-
cial society produces certain negative phenomena of the algorithm. To mitigate or avoid
the negative phenomenon of the SE regulation algorithm, the SE regulation algorithm
will be modified or replaced. Therefore, the CEDAmodel will analyze the collaborative
decision-making and interaction processes between the SE regulation algorithm and arti-
ficial society from the following three aspects, and explain the internal mechanism of the
generation, exacerbation, and mitigation of social phenomena caused by the interaction
between the two.

(1) The changes in the artificial society agent before and after the regulation

The SE regulation algorithm has changed the organizational norms and management
measures of the service system, which makes the evaluation, allocation, and recommen-
dationmore rational, automatic, and standardized. However, agents need to learn the best
strategy to improve competitiveness and rewards in the process of interaction between
the regulation algorithm and other agents, due to the limitation of resources and the pur-
suit of reward maximization. The agent strategy is gradually homogenized and biased,
forming a negative effect, with a certain social phenomenon emerging, such as ➀, ➁, ➂,
➃, ➄, ➅ processes in Fig. 2. Therefore, we set up an artificial society agent experiment
after regulation, and analyze the performance differences of the crowd intelligence group
after the regulation algorithm is applied, meanwhile explore the impact of the regulation
algorithm on the effectiveness and negative effects of SE.
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(2) Artificial society agent changes, while the regulation algorithm remains
unchanged

2

3

4

6

5

1

Fig. 2. The framework of the proposed CEDAmodel, consists of threemodules: the SE regulation
algorithm module, the collaborative decision-making processes analysis module, and the artificial
society agent module. The left side represents the SE regulation algorithmmodule abstracted from
different SE regulation algorithm instances, the right side represents the artificial society agent
abstracted from different crow intelligence group instances modules, and the middle represents
the abstracted collaborative decision-making processes analyses module.

From the interaction processes in Fig. 2 ➂, ➃, ➄, ➅, ➀, ➁, we can see that: Many
factors affect SE regulation algorithms, different artificial society agents have differ-
ent influences on the SE regulation algorithm, such as the organizational structure of
the agent, the intelligence degree of the agent, and individual differences. We need to
determine and analyze the factors, so we set different values for the influencing factors
of different artificial society agents and then design a group of controlled experiments
to analyze the performance differences between the same regulation algorithm and the
crowd intelligence groups with different settings. Besides, we can explore how the influ-
ence factors of the artificial society agent shape the behavior mode and evolution of the
agent process and also evaluate the impact of negative effects on the regulation algorithm.

(3) The regulation algorithm changes, but the artificial society agent remains
unchanged

The original intention of introducing the management and regulation algorithm into
the SE is further improving service efficiency through refined management. However,
the regulation algorithm affects the job evaluation and income distribution of the agent,
so there could be a negative impact on the direction and speed of the artificial society
learning evolution. It is necessary to update the regulation algorithm, migrate or avoid
the negative impact as much as possible meanwhile ensuring the goal of the regulation
algorithm, as shown in the process of ➅, ➀, ➁, ➂, ➃, ➄ in Fig. 2. Therefore, we set
up controlled experiments to analyze the attributes and state changes of the agent under
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the regulation algorithm of different intervention strategies and explore the mitigation
effect of the regulation algorithm on the negative impact of the algorithm under different
intervention strategies.

3.2 Autonomous Evolution Mechanism of the SE Regulation Algorithm

Control and induction are two ways to regulate SE. However, effective regulation cannot
be achieved due to the complexity of the system. Therefore, induction is usually used for
regulation. As a general algorithm module, the regulation algorithm can be replaced by
other regulation algorithms. The regulation algorithms generally consist of three parts:
input, output, and self-learning capabilities. Self-learning is using a large amount of data
generated by the interaction between regulatory algorithms and artificial society to carry
out self-training and evolution to form a “rule set”. The formulation of the regulation
algorithm is as follows:

RAout,t = RAt � RAin,t t ≥ 0 (1)

where RAt represents the regulation algorithm at time t, which can reflect the learning
ability of the regulation algorithm at time t. RAin,t denotes the input of the regulation
algorithm at time t, and its input is the comprehensive output of factors such as the state of
the regulation algorithm and the emergence of social phenomena from artificial society
agents. RAout,t represents the output of the regulation algorithm at time t after evolution.
� represents the update of the regulation algorithm RAt based on the comprehensive
output of the artificial society at time t.

The characteristic index space
{
qj,t

}
of the SE regulation algorithm RAt is defined

as follows:
{
qj,t

} =
{
q1j,t, q

2
j,t, q

3
j,t . . . , q

N
j,t

}
(2)

where
{
qj,t

}
is the set of all agent index j feature values, and N is the number of all

agents in the artificial society agent model. The average reward index of the agent is
defined as:

IncomeagentT =
∑i=N

i=0
∑t=T

t=0 Rewardt,i
N t ≥ 1 (3)

where Rewardt,i indicates the income of the agent i from t − 1 to t and IncomeagentT
indicates the average income of the agent in the artificial society at time T .

The input of the regulation algorithm RAin,t , that is, the index systemQos(i, t) value
of agent i at time t is defined as follows:

Qos(i, t) = ∑j=M
j=0 wj,tqij,t (4)

whereM represents the number of characteristic indicators of theSE regulation algorithm
RA, qxj,t represents the feature value of the index j of the agent x at time t, andwj represents
the preference weight of the index system at time t.

The index discrimination degree Dj,t of SE regulation algorithm RAt is defined as
follows:

Dj,t = Hj,t−Lj,t
Maxj,t

t ≥ 0 (5)
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Here, the discrimination calculation method adopts the two-end grouping method: first,
the values of

{
qj,t

}
at time t are arranged in descending order, and the first α% entities

are listed as high-scoring entities, and the latter α% entities are listed as low-scoring
entities group, then the discrimination degree of index j is Dj,t . Among them, Hj,t is the
average score of the high group in index j, Lj,t is the average score of the low group in
index j,Maxj,t is the highest score value of index j.

The index system discrimination degreeDt of SE regulation algorithmRAt is defined
as follows:

Dt = max
(
D0,t, . . .Dj,t,Dm,t

)
t ≥ 0 (6)

where Dt represents the maximum value of discrimination in all index systems. m
represents the number of indicators under the indicator system.

The fitness function of the SE regulation algorithm RA at time t is as follows:

FitRA,t = α ∗ Incomeagentt + (1 − α) ∗ Dt 0 ≤ α ≤ 1 (7)

where FitRA,t represents the fitness function of the regulation algorithm at time t, which
is not only related to the interaction of the artificial society but also affected by the
regulation algorithm itself. α is a proportional coefficient, which is used to indicate the
average income of an artificial society occupies the size of the fitness function value.
When α is larger, it means that the average income of the artificial society occupies a
larger fitness function value and vice versa.

3.3 The Learning Evolution Mechanism of the Artificial Society Agent Model

The artificial society agent is a complex systemcomposed of a large number of agents that
follow certain rules, interact with each other, and have certain autonomous capabilities,
which can simulate the structure, function, and evolutionmechanism of SE. The artificial
society agent is regarded as an alternative version of the crowd intelligence group to study
various phenomena in reality. Artificial society is divided into three parts: input, output,
and self-learning ability. The learning evolution process of the artificial society agent
model can be modeled using the SLE framework [19]. SLE is a customized evolution
model that includes three evolution modules: individuals, organizations, and society.
The evolution of the three models can be specifically expressed as:

(1) Individual evolution mechanism

An individual refers to a single agent in different types of artificial societies, a genetic
component. The agent has the characteristics of autonomy, responsiveness, initiative, and
sociality, and it perceives, makes decisions, acts, and optimizes through the propagation
of information flows, forming an evolutionary mechanism with the following behavioral
rules expressed as follows:

∀vt ∈ Vt, ε(α, vt,Et,Yt) ⇒ 〈S,Dt,N ,max(Valuet+1)〉 (8)

ε(α, vt,Et,Yt) represents the evaluation of the result of the agent α completing the
behavior vt in the environment Et and the decision Yt , ⇒ means “satisfied”, N repre-
sents the constraints on the agent, S represents static attributes, Dt represents dynamic
attributes at time t, max(Valuet+1) indicates the task standard.
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In an artificial society, the agent is not unconscious or does not lack initiative, and
its learning process is an important dynamic mechanism for system evolution. During
this operation, the agent updates its rule by interacting with the environment, which
can affect its decision-making mechanism. Generally speaking, the agent will adopt the
feedback learning principle of “increasing rewards” to gradually optimize its decision-
making mechanism, so that it can take actions that are closer to the accomplishment of
the goal. The formula is expressed as follows:

Yt+1 = Yt ⊕ FitAS,t(Et) t ≥ 0 (9)

FitAS,t(.) represents the fitness function at time t, which is used to describe the
survivability of the agent and can be regarded as the mapping relationship between
strategy and fitness. ⊕ indicates that the decision mechanism Yt is based on the update
of the environment state Et .

(2) Organizational learning evolution mechanism

In the real world, the agent can adapt to the external environment through individual
learning, and it also learns to evolve by observing and imitating the corresponding
organization where the organization is composed of agents with the same activity scope
and behavior set.

Organizational learning is to transform different small organizations formed in the
process of neighbor learning into smaller and higher-level organizations. In the same
learning organization, there is not only competition but also a certain degree of collabo-
ration among agents within the organization due to the principle of knowledge sharing
within the learning organization. Different organizations will compete with each other
to obtain favorable positions based on the organization as a unit, and the competitive-
ness is reflected in the income and vision of the leaders within the organization. The
competitiveness of agents can be improved continuously by learning from excellent part-
ners. Whether the agent wants to learn from the organization depends on the following
formula:

O
(
orgj, vi,t, vorgj,t

)
> 1?Evo(yes) : Evo(no) (10)

O
(
orgj, vi,t, vorgj,t

) =
∣∣∣Income(orgj,vorgj ,t)

− Incomevi,t

∣∣∣

Distance

where Income(orgj,vorgj ,t)
represents the income of the agent i in the organization j at the

time t of behavior vorgj,t , Incomevi,t represents the reward of agent i making behavior
vi,t at time t, and Distance represents the cost of learning organization j for agent i.
If O

(
orgj, vi,t, vorgj,t

)
is greater than 1, the agent i will learn the excellent strategy of

the organization to improve its ability. Otherwise, the agent will continue to take action
according to its original strategy.

(3) Social learning evolution mechanism

According to the principle of survival of the fittest, the artificial society selects the
most adaptive agent as the elite, and its excellent knowledge will be passed on to the top.
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It builds a culture through knowledge accumulation and also spreads the culture to other
agents for learning. The specific policy rules of the social learning layer are as follows:

1) The policy of probability principle: the agents can choose different rewards to
achieve strategy selection. For example, some agents will pursue the maximum
income so that they will learn from low-income individuals with a small probability.

2) The principle of income comparison: an agent with a small income will imitate the
behavior and strategy of an agent with a large income, while the agent with a larger
income maintains its original behavior and strategy.

Regulation Algorithm in SE

Macroscopic 
Phenomenal Feedback

Ouput Affects 
Individual Behavior

The Social Emergence of Artificial 
Society Under Self-Organization 

Conditions

Individual Behavior
Individual Behavior

Individual Behavior

Individual Behavior

Imitation
Learning

Interaction

Organizing Groups in 
Artificial Society

System Summary

Artificial Society

Self-learning

Feedback Affects 
Individual Behavior

Fig. 3. The cyclic mechanism and dynamic evolution process, the output of the SE regulation
algorithm acts on artificial society agents, and the artificial society agents learn, imitate and inter-
act with themselves to form a certain organizational group in the artificial society. After a period of
learning and the evolution of different organizational groups, a macroscopic social phenomenon
will emerge. The macro-phenomenon influences the direction of the regulation algorithm’s learn-
ing evolution. The organizational groups and the output of the regulation algorithm in turn change
the cognition of the artificial society agents, resulting in different agents behaving differently, thus
forming a circular process of action.

3.4 The Cyclic Mechanism and Dynamic Evolution Process Between Regulation
Algorithm and Artificial Society

The learning evolution of the SE regulation algorithm and artificial society is the process
of interaction between artificial society and the SE regulation algorithm, as shown in
Fig. 3.
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The SE regulation algorithm acting on the artificial society is expressed as follows:

FitAS,t+1 = FitAS,t ⊗ Rt t ≥ 1 (11)

Rt = {
Rewardt,0,Rewardt,1 . . .Rewardt,N

}

whereRt represents the set of gains for all agents from t−1 to time t, andN is the number
of all agents in the artificial society. ⊗ represents the update of the fitness function
FitAS,t+1 of the artificial society agent at time t + 1 based on the fitness function FitAS,t

of the artificial society agent at time t and Rt .
The expression of the emerging social phenomena ASphenomenal,t in the artificial

society acting on the SE regulation algorithm RAt at time t is as follows:

Wt+1 = RAt �ASphenomenal,t t ≥ 0 (12)

Wt+1 = {
w0,t+1,w1,t+1 . . . ,wM ,t+1

}

whereASphenomenal,t indicates the social phenomenon that emerges in the artificial society
time t. Wt+1 represents the preference weight of the index system at time t + 1, and
M represents the number of characteristic indicators of the regulation algorithm. �
represents the updating of the index systemweights of the regulation algorithmaccording
to the emerging social phenomena at time t.

3.5 Individual Effectiveness, System Effectiveness, and Other Analysis Indicators

The service efficiency of the SE is affected by many factors, and any failure or problem
in any link may lead to negative effects on the entire service system. For the healthy
and orderly development of the crowd intelligent service system, this paper proposes an
Individual Effectiveness IE to evaluate the performance of agents in the service system.
In particular, the IE is a concave function, which is increasing the agent’s income and
linearly decreasing in the cost. The Individual Effectiveness IET ,i is a function of the
change in reward

∑t=T
t=0 Rewardt,i and cost

∑t=T
t=0 Costt,i for agent i from time 0 to T ,

the formula looks like this:

IET ,i = crra
(∑t=T

t=0 Rewardt,i
)

− ∑t=T
t=0 Costt,i (13)

CostagentT =
∑i=N

i=0
∑t=T

t=0 Costt,i
N

t ≥ 0

crra(z) = z1−η − 1

1 − η
η > 0

where Costt,i denotes the cost of agent i from time t − 1 to t and CostagentT denotes
the average cost of all agents in the artificial society at moment T . The crra function
is marginal in effect, and its magnitude may decrease as the reward increases. The
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parameter η controls the degree of non-linearity: higher η indicates more non-linear
behavior.

To balance the healthy development of the SE and the number of output results, the
system effectiveness of the SE is defined below. A new indicator for judging the healthy
development of the SE, namely the System Effectiveness SET at time T , is synthesized
here and defined as follows:

SET =
∑i=N

i=0
∑t=T

t=0 IEt,i
N ∗

∑i=N
i=0

∑t=T
t=0 Taskt,i
N

(14)

where
∑i=N

i=0
∑t=T

t=0 IEt,i
N is the average of the individual effectiveness of all agents at time

T. When this value is less than or equal to 0, it indicates that there is involution in the SE
at this time. Taskt,i denotes the number of tasks completed by agent i from time t − 1 to

t,
∑i=N

i=0
∑t=T

t=0 Taskt,i
N denotes the average number of tasks completed by all agents at time

T .
Here are some other analytical metrics that use the number of agents that occurs

across space to reflect the state of competition within a disciplinary area, with the
following formula:

CrossT =
∑i=P

i=0

∑t=T

t=0
Crossfieldi,t t ≥ 0 (15)

Fig. 4. Design of Computational Experiment System.
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where Crossfieldi,t denotes the number of domains crossed by field i from time t − 1
to t, and P represents the number of fields.

4 A Case Study of the Academic Ecosystem

To verify the validity of the model, this paper uses the CEBAmodel to simulate and ana-
lyze the involution of the academic ecosystem. The involution of the academic ecosystem
is mainly due to the shortcomings of the research regulation algorithm itself. For exam-
ple, ignoring the correlation between the difficulty of a research project and the amount
of funding support for the project leads to more difficult projects and less support fund-
ing for unpopular fields of research. Many researchers in unpopular fields will turn to
research in popular fields, leading to a dramatic increase in the number of researchers
in popular fields. Researchers in popular fields who engage in some low-value research
need to maintain their competitive edge by guaranteeing their number of research out-
puts, which leads to involution. At the same time, the formation process of involution
is influenced by a variety of factors, but the current research on the mechanism of the
trend of involution mainly adopts a qualitative analysis method, and it is difficult to fully
and dynamically reflect the inner operating mechanism of the involution of the academic
ecosystem. Therefore, this paper constructs an experimental system of academic ecology
based on the proposed CEBA model for analysis.

Table 1. Parameter settings of experiments

System variable Experiment setting

Initial Number of Researchers Area 1: Area 2: Area 3 = 6: 6: 6

Fund for a Tick Revenuet = 20

Running Time 1000

Vision Range Bounded random within the range of [1, 4]

Distance Cost Y = k * x (x > 0, x indicates distance moved. k = 1)

Processing Cost Bounded random within the range of [1, 3]

Cross-Domain Cost Bounded random within the range of [9, 14]

Solve Payment Y = kmk

xk+1 , * 3(x is random within [0,1000], k = 4, m = 18)

Task Complexity Bounded random within the range of [1, 3]

Researcher Ability The ability obeys standard normal distribution

Task Type Bounded random within the range of [1, 3]

Task Regeneration probability 0.1

Tolerance Bounded random within the range of [1, 4]

Degree of Nonlinearity η = 0.23

(continued)
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Table 1. (continued)

System variable Experiment setting

Task Generation Rules Y = N + M * sin(T). N represents the task and M represents
the fluctuation range. Area 1, N = 40, M = 5 Area 2, N = 30,
M = 3 Area 3, N = 20, M = 2

Distribution of Task Tasks are distributed randomly in three areas with centers of
(6, 6) (Area 1), (18, 6) (Area 2), and (6, 18) (Area 3)
respectively

This section first proposes the general framework of the experimental system, then
introduces how to design and construct an academic ecology computing experimental
system based on the CEBA model, and finally presents a statistical analysis of the
obtained experimental results.

4.1 The Framework of the Experimental System

The experimental system has two roles: the researcher and the research planner. Dis-
ciplinary tasks are assigned to various disciplinary areas according to certain rules.
Researchers take the initiative to explore and tackle disciplinary tasks, generating some
cost. New disciplinary tasks are automatically generated when they are tackled. The
research planner evaluates the work of the researchers and distributes the incomes
according to a regulation algorithm.

The framework of the CEBA model-based academic ecosystem shown in Fig. 4 is
constructed, where the entire academic ecosystem is divided into four regions.

Different numbers of disciplinary tasks and researchers are scattered across the three
disciplinary regions: i, ii, and iii (emerging, developing, and mature disciplinary nodes).
And various experimentation scenarios can be customized by setting different SE mod-
eration algorithms and parameters of the academic ecosystem. In addition, the involution
pattern of the academic ecosystem is analyzed by observing the evolutionary phenomena
in the experimental system.

4.2 Experimental System Design

The CEBA model proposed in this paper focuses on three aspects of the interaction
processes between the regulation algorithm and the academic ecosystem: before and
after the regulation, changes in the artificial society agent, and changes in the regulation
algorithm. Specifically, this paper sets up two sets of controlled experiments using the
same initialization conditions and a fixed total amount of money for the researcher and
disciplinary tasks, as well as different learning mechanisms and regulation algorithms
for different artificial society agents.

Experiment 1 used the free model regulation algorithm, with funding allocated
according to the ratio of the number of disciplinary tasks tackled by the researcher
to the number of all disciplinary tasks tackled in the system. Then we can reveal the
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process of involution generation and exacerbation by exploring the impact of the aca-
demic ecosystem with different learning mechanisms (individual, organizational, and
social learning) on the individual effectiveness of the system. The different learning
mechanisms represent different capabilities of information dissemination.

Experiment 2 is carried out based on the social learning used in Experiment 1. The
impact of regulation algorithms on system effectiveness is explored by setting up the
regulation algorithm with different intervention strategies (free mode, average mode,
and balanced mode), which in turn enables the mitigation of involution in the academic
ecosystem through adjusting the intervention strategies. The income of researchers under
different intervention strategies is as follows.

Rewardt,i = β∗Revenuet
N +

(1 − β) ∗ Revenuet ∗ Proportiont,i
(16)

where Proportiont,i represents the number of disciplinary tasks that researcher i has
tackled in time t − 1 to t as a proportion of the number of all disciplinary tasks in the
system. N is the number of all agents in the academic ecosystem. Revenuet indicates the
total amount of allocated funds in a cycle. Three different interventionmodelswere set up
based on the ratio of basic income to performance incentives: Free mode parameter: β =
0 (Liberal Distribution); Average mode parameter: (Strict Egalitarian Redistribution);
Balanced mode parameter: β = 0.5 (Liberal Egalitarian Redistribution).

The length of the experimental environment is 25 cells and the width is 25 cells, with
different types of nodes randomly distributed in their respective areas. The experimental
parameters are mainly set at the same scale scaled according to the global scientific com-
munity surveyed inNature [20]. The experimental parameters are set as shown in Table 1.
In this paper, the average income to researchers, average cost consumed, the average
number of disciplinary tasks tackled, individual effectiveness, and system effectiveness
are used to assess the impact of different models of the SE regulation algorithms and
different learning capabilities of the academic ecosystem on the generation, exacerbation
and mitigation of academic ecosystem involution.

4.3 Experimental System Analysis

a) Experiment 1: Classified academic ecosystems into three categories based on
the speed of information dissemination: those with different learning mechanisms.
It helps us explore the impact of academic ecosystems with different learning
mechanisms on individual effectiveness.

Figure 5 compares and analyses the changes in the average income, the average
cost of consumption, the average number of disciplinary tasks tackled, and the mean
individual effectiveness of researchers during the evolution of learning in the academic
ecosystem under three different learning mechanisms. The results of the experiment are
as follows.

(1) By analyzing the income and individual effectiveness under the three types of learn-
ing in Fig. 5(a)–(c), it is concluded that: 1) With individual learning, the gap in
income between researchers is larger, but those with individual effectiveness greater
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Fig. 5. Comparative analysis of the characteristic index of academic ecosystems under three
different learning mechanisms

than zero occupy the majority, and the degree of involution is not serious. 2) With
organizational learning, researchers’ incomes are normally distributed, and the gap
in the overall average level of incomes narrows; those with individual effectiveness
less than zero occupy the majority, and involution deepens. 3) With social learn-
ing, the returns increase, and the gap between the researchers’ incomes is further
reduced; the majority of those with individual effectiveness less than zero are more
severely involuted.

(2) By analyzing the heat maps of the initialized disciplinary task distribution under the
three learning mechanisms in Fig. 5(d)–(g) and the heat maps of the researchers’
trajectory run, it can be summarized that 1) the heat maps of the researchers’ trajec-
tories under individual learning are lighter in except for a few darker squares, which
indicates a certain randomness of movement focusing on free exploration and no
aggregation effect. 2) under organizational learning and social learning, the aggre-
gation effect is obvious in the heat map of the researcher’s trajectory, with social
learning being the most evident. This suggests that the researchers learn through
interaction and follow those with higher gains to explore less randomly. Moreover,
the movement trajectories can appear highly overlapping.

(3) By analyzing the average income, the average cost of consumption, the average num-
ber of disciplinary tasks tackled, the average individual effectiveness, and the system
effectiveness of the researchers under the three learning mechanisms shown in Fig. 5
(h)–(l), it can be obtained that 1) for the average income and cost of consumption,
social learning > organizational learning > individual learning; for the number of
tasks tackled, social learning > organizational learning > individual learning; indi-
cating that the researcher’s learning ability and the ability to disseminate information
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is stronger, meanwhile all indicators increase. For the individual effectiveness indi-
cator, all three learning mechanisms showed involution (the increase in average con-
sumption costs exceeded the increase in average incomes); for system effectiveness,
individual learning > organizational learning > social learning. 2) Social learning
can quickly disseminate information, strong inter-individual imitation, and greatest
involution; organizational learning improves the speed of information dissemina-
tion, where although its output increase is not obvious, its cost is not increased much
and it maintains high performance for the longest time; individual learning has the
slowest information dissemination and the lowest cost with the middle number of
tasks and the best system effectiveness.

Fig. 6. The average value is calculated in the case of 10 groups of random numbers, and the
comparison chart of each index.

The results of a single run in Fig. 5 show that the distribution of incomes according
to the number of tasks completed in the discipline creates an involution as the system
is run. Since individual mechanisms, organizational mechanisms, and social learning
mechanisms are more utilized, the ability of the academic ecosystem to learn and evolve
(the ability to disseminate information) increases, accelerating the rate of learning and
evolution of the academic ecosystem and deepening the degree of involution.

To further verify the validity of the model and also avoid the possible randomness
in a single experiment, 10 random groups are randomly selected for the experiment and
results are averaged to obtain the following experimental results, as shown in Fig. 6(a)–
(f). The analysis shows that individual learning, organizational learning, and social learn-
ing lead to increasing information dissemination among researchers, decreasing mean
individual effectiveness, accelerating the rate of evolution of the academic ecosystem,
and deepening the degree of involution.
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Fig. 7. Comparative analysis of the characteristic index of academic ecosystems under three
different learning mechanisms.

b) Experiment 2: Improving or updating the regulation algorithm through three differ-
ent intervention strategies to observe the mitigation effect of different intervention
strategies of the regulation algorithm on the involution of the academic ecosystems.

Figure 7 compares and analyses the different characteristic indicators of the learning
evolution of the academic ecosystem under the three different intervention modes.

(1) Figure 7 (a)–(c) shows the distribution of researchers’ incomes and individual effec-
tiveness under the free, balanced, and average modes, yielding that: 1) under the free
mode, themajority of effectiveness values are less than 0 and the degree of involution
is severe; there is a large gap in researchers’ incomes; 2) under the balanced mode,
the proportion of effectiveness values greater than 0 increases and the degree of
involution decreases; the gap in researchers’ incomes decreases; 3) under the aver-
age mode, most of the effectiveness values are greater than 0 with the mean value
of effectiveness greater than that of the balanced mode; the incomes of different
researchers are equal, and there is no gap in researchers’ incomes.

(2) Figure 7 (d)–(g) represents the heat map of the disciplinary task distribution and the
heat map of the researcher’s trajectory for the three intervention modes, yielding:
1) the aggregation effect and the overlap between the researcher’s trajectory and the
disciplinary task are both highest in the freemode; 2) the aggregation effect occurs in
the balancedmode and there is a degree of overlap between the researcher’s trajectory
and the location of the disciplinary task distribution; 3) the colors are lighter in the
average mode, and the researcher’s movement is somewhat exploratory and random,
meanwhile, there is no overlap in the movement trajectory.

(3) By analyzing the average income, the average cost of consumption, the average
number of disciplinary tasks tackled, the average individual effectiveness, and system
effectiveness for the researchers in the three intervention modes in Fig. 7 (h)–(l), it
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can be concluded that: 1) For the average income, the average mode > the balanced
mode > the free mode. For the average cost of consumption, the three are close to
each other. For the number of tasks, the free mode > the balanced mode, and the
balanced mode is > the average mode. 2) For mitigating involution, the average
mode is > the balanced mode, and the balanced mode > the free mode; however,
the number of tasks completed by the average mode is severely reduced, making the
academic ecosystem develop slowly. 3) For system effectiveness, the balancedmode
performs best and it can ensure the continued rapid development of the academic
ecosystem while mitigating involution.

Fig. 8. The average value is calculated in the case of 10 groups of random numbers, and the
comparison chart of each.

Figure 7 analyzes the results of a single run of the experiment and shows that the
degree of involution is continually mitigated as the proportion of the researcher’s basic
income to the total income of the researchers rises, but the total number of disciplinary
tasks tackled in the whole academic ecosystem is constantly decreasing. Considering the
specificity of involution and disciplinary areas in the academic ecosystem, we chose a
balanced mode. We cannot choose the average mode that is most effective in mitigating
involution, nor the free mode that is most effective in accelerating the development of
the discipline of studying ecosystems. The advantage of the balanced mode is that it
reduces involution while rapidly developing each disciplinary area.

To verify the validity of the results of a single experiment, 10 random sets of random
numbers are randomly selected for the experiment, and the results are averaged as shown
in Fig. 8 (a)–(f). The analysis shows that: 1) in the average mode, there is randomness
in the researcher’s behavior to get more disciplinary tasks; 2) in the free mode, the
academic ecosystem has the most serious involution, which is mitigated in the balanced
model and the average mode; 3) the balanced mode can mitigate involution based on
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ensuring rapid disciplinary development of the academic ecosystem and the highest
system effectiveness.

5 Conclusion

To better analyze the decision-making processes between the regulation algorithm and
the crowd intelligence group in the SE, the CEBA model is proposed in this paper. The
above work can provide new research ideas and tools for decision-making processes
analysis of SE. For example, in the delivery industry, the delivery time of takeaway
riders is getting shorter and shorter under the intelligent regulation algorithm, while
more and more effort cannot produce any increase in income, showing an overall state
of decreasing marginal effect of involution, etc.

In future work, the CEBA will be further refined and the research will focus
on two aspects: 1) comparing artificial society agents with real crowd intelligence
groups; 2) replacing the algorithms in the analysis model with the current widely used
recommendation algorithms, etc.
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Abstract. Smartphones have found their way into many domains
because they can be used to measure phenomena of common interest.
The Global Overview Report Digital 2022 states that two-thirds of the
world’s population uses a smartphone. This creates a power for measure-
ments that many researchers would like to leverage. However, this in turn
requires standardized approaches to collaborative data collection. Mobile
crowdsensing (MCS) is a paradigm that pursues collaborative measure-
ments with smartphones and the available sensor technology. Although
literature on MCS has existed since 2006, there is still little work that
has systematically studied existing systems. Especially when developing
technical systems based on MCS, design decisions must be made that
affect the subsequent operation. In this paper, we therefore conducted
a PRISMA-based literature review on MCS, considering two aspects:
First, we wanted to be able to better categorize existing systems, and
second, we wanted to derive guidelines for developers that can support
design decisions. Out of a total of 661 identified publications, we were
able to include 117 papers in the analysis. Based on five main criteria
(application area, goals, sensor utilization, time constraints, processing
device), we show which goals the research area is currently pursuing and
which approaches are being used to achieve these goals. Following this,
we derive practical guidelines to support researchers and developers in
making design decisions.

Keywords: Mobile crowdsensing · Mobile sensing · Systematic review

1 Introduction

Mobile crowdsensing (MCS) is a mobile sensing paradigm coined by Ganti
et al. [19] where, on the one hand, the sensory capabilities of smartphones
are exploited and, on the other hand, the crowd is placed in the foreground.
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This concept is promoted by the fact that two-thirds of the world’s population
own a smartphone [29], and is particularly suitable for measuring phenomena of
common interest. MCS applications can be further distinguished between par-
ticipatory [6] and opportunistic sensing [7] applications. Participatory sensing
applications require active user involvement in the sensing process (e.g., the
user has to actively trigger a sound measurement), while opportunistic sensing
applications perform sensor measurements and data transmission automatically
(e.g., the sound measurement happens in the background) [32]. MCS is used, for
example, in the automotive [50] or medical [42] domain to capture large amounts
of real-world data in a rather short time. However, the use of the paradigm is
also accompanied by many challenges [31,34]. For example, data quality of the
measurements must be ensured, incentives for contributing data must be pro-
vided, and the privacy of the users must be protected. The concept has existed
for some time and can look back on more than 20 years of development [30].
However, it is still not widely used, and there are still too few studies [19] that
systematically examine MCS and derive general development recommendations.
In addition, such studies should be regularly updated and there are many pitfalls
to consider. Therefore, this paper conducts a systematic literature review that
addresses the following research questions (RQ):

– RQ1: What are the main goals of MCS applications?
– RQ2: Which sensors are MCS applications using to achieve these goals and

how are they used?
– RQ3: What time constraints do MCS applications have?
– RQ4: On which processing device are MCS applications performing their

computations (i.e., smartphone or server)?

Another goal of this literature review is to derive practical development guide-
lines that incorporate the aforementioned research questions. We conducted the
analysis of the above research questions and the derivation of the guidelines
based on the PRISMA guidelines [38]. 661 papers resulted from our search in
the following databases used: ACM Digital Library, IEEE Xplore, PubMed, and
Google Scholar. In the end, 117 papers could be included in the analysis. Despite
the long history of the field of MCS, this shows that the number of papers pre-
sented should be considered rather small. In the following, we present the results
of the review and show which general statements and practical guidelines can be
derived to support MCS system design and development, for example, how the
selection of the processing device can be systematically addressed.

The paper is organized as follows: In Sect. 2, related work is discussed. Mate-
rial and methods are presented in Sect. 3, and the results are discussed in Sect. 4.
Practical guidelines are derived in Sect. 5. The findings are discussed in 6, and
the paper concludes in Sect. 7.

2 Related Work

Overall, there is an abundance of literature on MCS. As such, several general
reviews and surveys related to MCS have already been conducted over the years.
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In 2010, Lane et al. [32] present a survey on mobile phone sensing by reviewing
existing applications and systems in this context. The authors describe the sen-
sors available on smartphones at the time and discuss their capabilities. Further-
more, different application areas and sensing paradigms—including participatory
and opportunistic sensing—are extracted and a general architectural framework
is proposed. In their initial work on MCS in 2011, Ganti et al. [19] survey existing
crowdsensing applications and classify them—similar to our work—into environ-
mental, infrastructural, and social applications. Moreover, the authors discuss
unique characteristics and respective research challenges of MCS applications.
Similarly, in 2015, Guo et al. [23] review existing MCS applications and tech-
niques along a number of categories. In addition, the authors highlight the unique
characteristics of MCS applications and propose a conceptual framework based
on the reviewed literature. Furthermore, the work considers MCS as human-in-
the-loop systems and discusses the findings in terms of combining human and
machine intelligence. More recently, in 2019, the survey of Liu et al. [34] aims
to provide a comprehensive overview of recent advances in MCS research. The
authors review the literature with respect to incentive mechanisms, security and
privacy, resource optimization, data quality, and data analysis, with a particu-
lar focus on the data flow within MCS systems. Moreover, similar to our work,
the findings and MCS applications are presented along four categories: indoor
localization, urban sensing, environmental monitoring, and social management.
Also, in 2019, Capponi et al. [8] present a comprehensive survey that consid-
ers MCS as a four-layered architecture consisting of an application, a data, a
communication, and a sensing layer. In addition, the authors propose a num-
ber of taxonomies based on this architecture, classify existing MCS publications
and systems according to these taxonomies, and discuss various conceptual and
technical aspects of MCS systems. In addition to these more general and com-
prehensive reviews, there is also related work that focuses on specific aspects
of MCS, such as incentives mechanisms [28,61], task allocation [52], data qual-
ity [25,33,46], resource limitations [53,54], security and privacy [13,25,41], or
software architectures [35,57].

Overall, in the literature, either a rather general overview on MCS is provided
or details on very specific aspects are discussed. However, there is a lack of
practical guidance for researchers and system operators seeking to use MCS to
achieve a specific goal, especially if they are new to this area of research. In
this work, we aim to provide such guidance by reviewing the existing literature
and identifying best practices for operationalizing MCS and the decisions to
be made during system design. Furthermore, none of the above reviews include
a review protocol that would make the review process transparent, traceable,
and reproducible by other researchers. In particular, we were unable to find any
reviews on MCS that use the PRISMA guidelines.
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3 Materials and Methods

To produce transparent and reproducible results, we established a review proto-
col guided by the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement. PRISMA is a collection of items designed to
promote a transparent approach for systematic reviews and meta-analyses [38].
In the following, the defined eligibility criteria (see Sect. 3.1), the search strat-
egy used (see Sect. 3.2), as well as the selection and data collection process (see
Sect. 3.3) are described.

3.1 Eligibility Criteria

We established criteria that we used to decide on the eligibility of publications,
i.e., whether a particular publication should be included or excluded. In this pro-
cess, the following inclusion criteria (IC) were defined: IC1: The paper describes
an MCS application; IC2: The paper describes a system using one or more
mobile devices (e.g., smartphone or wearable) as sensors. In addition, we defined
following exclusion criteria (EC) for the systematic review at hand: EC1: The
system described in the paper does not use any mobile sensors; EC2: The paper
does not describe how the data is sensed; EC3: The publication is older than
2007; EC4: The full text of the paper is not available or not available in English;
EC5: The publication is not peer-reviewed. The search was limited to papers
published from 2007 onwards. This year was chosen because it was the year
Apple Inc. introduced its iPhone [14], which can be considered the beginning of
the smartphone era [21].

3.2 Search Strategy

We used the scientific databases ACM Digital Library, IEEE Xplore, and
PubMed as information sources for the review. In addition, a manual search via
Google Scholar was performed. To identify relevant publications that met the
eligibility criteria, the following search query was issued to the three databases
on August 4, 2022:

Abstract : ( crowdsens ^∗) AND ( A l lF i e l d : ( app l i c a t i o n ) OR
Al lF i e l d : ( app ) )

Listing 1.1. Search query used for the databases.

As shown in Listing 1.1, the abstract or title had to contain a word beginning
with crowdsens and somewhere in the paper the word application or app had
to occur. In addition, a filter was applied limiting the search to only papers
published from 2007 onwards to address exclusion criterion EC3.

3.3 Selection and Data Collection Process

The results of the queries to the chosen scientific database and the manual search
were combined and duplicate records were removed. For the selection process,
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these papers were then screened based on their abstract and title to eliminate
papers that are not relevant for this review. After screening, the full text of the
remaining papers was examined, and further papers were excluded based on the
defined inclusion and exclusion criteria. Furthermore, we extracted the following
data from the included papers and used Microsoft Excel to record the results:

– Application area: Each paper is assigned to one of the four categories based
on its application area (1) urban sensing, (2) indoor localization, (3) environ-
mental monitoring, and (4) social management, public safety, & healthcare.

– Goals: The goals and subgoals pursued by the paper. Subgoals are smaller
goals that the paper pursues (e.g., map matching or location matching), while
goals are used as a broader term that encompasses multiple subgoals (e.g.,
localization). Each paper can be associated with any number of goals and
subgoals.

– Sensor utilization: The sensors that are utilized by the MCS system and in
what way or to achieve which of the identified goals and subgoals they are
used (e.g., GPS used for localization or to measure the electron density in the
atmosphere).

– Time constraint: The time constraints on the processing of the data (i.e., were
the results needed in (near) real-time).

– Processing device: Which parts of the data processing were performed on
which component of the system (e.g., smartphone or server).

4 Results

Records identified from:

  Databases (n = 640)
ACM Digital Library (n = 171)
IEEE Xplore (n = 436)
PubMed (n = 33)

  Manual search (n = 31)

Identification Screening

Records screened
(n = 661)

Records excluded
(n = 489)

Records removed before
screening:

Duplicate records removed (n = 10)

Eligibility

Full-text articles assessed
for eligibility
(n = 172)

Records excluded:
(n = 55)

Duplicate = 6
IC1 = 24
EC1 = 6
EC2 = 18
EC4 = 1

Included

Studies included in
review
(n = 117)

Fig. 1. PRISMA 2020 [38] flow diagram of the publication selection and screening
process.

The publication selection and screening process is illustrated in Fig. 1. The
database search returned a total of 640 publications. After adding 31 additional
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records through manual search and removing all duplicate results, 661 papers
remained. The abstracts and titles of these publications were then screened, of
which 489 papers were excluded. The full texts of the remaining 172 records
were then assessed for eligibility and 55 records were excluded based on the
defined inclusion and exclusion criteria. This process resulted in 117 publica-
tions included for the analysis at hand.

In the following, the results of the extracted data are presented. Note that
for reasons of readability and space limitations, only a limited number of repre-
sentative references are provided in the text for each category and aspect.

4.1 Application Areas

First, we analyzed the publications that were assigned to each category of appli-
cation area. The number of publications per category is shown in Table 1.

Table 1. Number of publications per category (n = 117) and number of publications
in each category that share a specific goal, in descending order by number of total
occurrences. Each publication has been assigned to a single category, but may have
multiple goals.

Category UrbSens IndLoc EnvMon SMPSH All
Total 51 (44%) 16 (14%) 19 (16%) 31 (26%) 117 (100%)

Goal
Localization 49 (96%) 16 (100%) 15 (79%) 22 (71%) 102 (87%)

Activity recognition 16 (31%) 4 (25%) 1 (5%) 6 (19%) 27 (23%)

Map generation 14 (27%) 7 (43%) 4 (21%) 1 (3%) 26 (22%)

Street observation 22 (43%) 0 (0%) 1 (5%) 0 (0%) 23 (20%)

Image analysis 9 (18%) 3 (19%) 6 (32%) 4 (13%) 22 (19%)

Sound analysis 5 (10%) 0 (0%) 3 (16%) 4 (13%) 12 (10%)

Data collection 2 (4%) 0 (0%) 3 (16%) 7 (23%) 11 (9%)

Air pollution 2 (4%) 0 (0%) 7 (37%) 0 (0%) 9 (8%)

Navigation 4 (8%) 2 (13%) 0 (0%) 1 (3%) 7 (6%)

Time estimation 6 (12%) 0 (0%) 0 (0%) 0 (0%) 6 (5%)

Nearby Bluetooth devices detection 0 (0%) 0 (0%) 1 (5%) 3 (10%) 4 (3%)

Crowd density estimation 2 (4%) 0 (0%) 1 (5%) 1 (3%) 4 (3%)

UrbSens: Urban Sensing, IndLoc: Indoor Localization, EnvMon: Environmental Monitoring,
SMPSH: Social Management, Public Safety, and Healthcare.

The first category, urban sensing, is the largest application area (44%) and
comprises technologies for sensing and acquiring data about physical areas and
objects in urban spaces and the way people interact with them. This includes
techniques to analyze the public infrastructure, such as roads [27,55], the WiFi
density of a city [18], the waiting time for specific services [60,62], or other specific
applications such as an online reposting system for fliers [22]. The second appli-
cation area, indoor localization, comprises 14% of the included publications and
focuses on localization techniques for indoor environments. This is a nontrivial
problem, as conventional localization methods have many problems due to sensor
inaccuracies within buildings, resulting in inaccurate data. Indoor localization
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techniques include localization on an indoor map [45,59], the reconstruction of
indoor maps [11,59], or other applications such as generating a map of the WiFi
coverage of a floor [44] and collecting fingerprints of a specific location [58]. The
third application area, environmental monitoring, encompasses 16% of the pub-
lications. Environmental monitoring is conventionally implemented with wireless
sensor networks (WSN). However, the installation and maintenance of WSNs are
expensive, which is why MCS is often used to circumvent these costs. These appli-
cations include analyzing nightlife behavior of participants [48], detecting beau-
tiful places in the city [36], or measuring electron counts in the ionosphere [40].
The last and second largest application area (26%) is social management, public
safety, and healthcare. This category includes all applications that concern the
physical and mental well-being of participants [26,43], as well as applications
for disaster relief [49], disease detection [17], observation of large crowds [9,56],
letting people report events they witness [37], or determining the relationship
between two people [16].

4.2 Goals

Second, we analyzed the included publications in each category in terms of the
goals they pursue and how these goals are achieved. The number of publications
in each category that share a specific goal is shown in Table 1. Note that each
publication may have multiple goals and corresponding subgoals.

For urban sensing, the most common goal is localization. In this context, map
matching [27,39,55] matches the current position to a road on existing maps.
In some cases, the number of possible routes can be restricted in order to have
more options to reach this goal. One specific example case is route matching [62],
where a list of possible routes is known. Another subgoal is simply to determine
the position of the user, which is referred to as location matching [18,60]. This
knowledge can, in turn, be used to extract features at a particular location [27],
or to determine the time spent at a location [60]. Another prevalent goal in
urban sensing is street observation. This goal includes application areas related
to roads, such as inferring new roads [55], classifying intersections [27], detect-
ing traffic anomalies [39], determining parking spaces [15], and monitoring road
surfaces [2]. Activity recognition is another goal that can be used to reduce the
amount of false data (i.e., sensing data at the wrong time) [5,62], sometimes aided
by the use of sound recognition [62]. Activity recognition is often performed to
help achieve other subgoals, such as road surface monitoring [2] or turn detec-
tion [10]. Another common goal is time estimation, which is often used to give an
estimated time to enhance the user experience. This can be achieved in the form
of predicting the arrival time, i.e., arrival time prediction [62], or the waiting
time, i.e., waiting time prediction [5,60], of certain services to improve the user
experience. Furthermore, many urban sensing applications aim to achieve map
generation. These maps to be generated range from WiFi coverage maps [18] to
cellular coverage maps [51], to maps highlighting road surface conditions [2], or
free parking spaces on streets [15]. Other less common subgoals of urban sensing
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include photo quality determination [22], photo tagging [22], and photo group-
ing [22]. A common type of data collected is GPS traces, which are sometimes
split to analyze the data for specific information [27,39].

Inherently, for indoor localization, the most prevalent goal is also localiza-
tion. As the usage of GPS in indoor environments is highly error-prone, this
goal is often achieved through the use of fingerprinting. With fingerprinting, the
user’s current location is determined by comparing the current sensor readings
to previously recorded sensor readings with a corresponding location. This can
be achieved either by WiFi fingerprinting [44,45], where a list of wireless access
points (WAP) and their location is stored, or by magnetic fingerprinting [59],
where the user needs to walk a bit to get the location, since the magnetic fin-
gerprints a 3D vector and thus requires a temporal dimension. Another option
to achieve this goal is tracking [20,44,45], using the accelerometer, gyroscope,
and sometimes magnetometer to track the user’s movement patterns. One of
these tracking techniques is pedestrian dead reckoning (PDR) [44,45]. In PDR,
the user’s movement is tracked by knowing the starting location and estimat-
ing the distance and direction travelled. Since PDR makes estimates continu-
ously, the estimation error accumulates over time, so a combination of PDR and
another indoor localization technique has proven to be very beneficial. Further-
more, simple location matching [11] can also be used to detect the rough location
in indoor environments. Map generation is another common goal of indoor local-
ization. An application example is the reconstruction of a floor plan [11,20,59],
which is implemented by using a PDR-similar approach [59], estimating the
travelled distance and direction, or by letting participants record videos or pho-
tos of the environment [11,20]. These pictures are used for information extrac-
tion [11,20], picture concatenation [20], and connecting adjacent wall segments
on photos to continuous boundaries to obtain hallway connectivity, orientation,
and room sizes. Some MCS-applications also aim to map WiFi coverage of an
indoor floor [44]. Other indoor localization subgoals are the navigation in an
indoor environment [59], activity recognition [44,45], fingerprint collection [58],
and QR code forgery detection [58].

Localization is also the most common goal in environmental monitoring, but
most localization tasks in this area are fairly simple, such as location match-
ing [4], as only the location of the user is needed for these applications, or detect-
ing the location of a physical event (e.g., flowering cherries) [36]. Air pollution
detection is one of the biggest challenges in environmental monitoring with MCS,
as conventional smartphones usually lack the required sensors to address this
problem. Therefore, most applications in this context use an external connected
mobile sensor to measure the required data [4], but some applications attempt
to detect air pollution by analyzing images captured by the mobile phone cam-
era [24]. Image analysis is also used for other purposes, such as analyzing the
brightness level of a video [48], analyzing the loudness level of a video [48], or
simply extracting information from a picture [24,36] to detect a specific feature
in the photos. Other subgoals of environmental monitoring include conducting
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a questionnaire [48], detecting points of interest [36], expanding areas of inter-
est [36], and measuring electron counts in the ionosphere [40].

As in all other areas, localization is the most common goal for applications in
the social management, public safety, and healthcare category. Location match-
ing [16,26,37] is often required to simply determine the participant’s current
location. In some cases, an exact location is not required, but information about
whether the participant is in a certain area is sufficient, which is referred to as
geofencing [9]. Other event detection methods, such as swipe localization [37],
where multiple participants indicate a direction in which an event is occurring,
are also commonly performed. The second most frequent goal in this category
is data collection [43,47]. This goal can be achieved through many different
methods, such as conducting a questionnaire [43,47]. Other subgoals of this
area include activity recognition [9,26], nearby people detection [16], relation-
ship inference [16], determining swipe direction [37], detecting nearby Bluetooth
devices [56], and crowd density estimation [56].

4.3 Sensor Utilization

Furthermore, we analyzed which sensors are used by the included applications
and how they are used to achieve the goals and subgoals identified in Sect. 4.2.

The GPS sensor can be used for map matching [27,55] and location match-
ing [11,60]. However, simply using GPS can lead to errors when the exact loca-
tion is relevant, and therefore [60] proposed a possible solution by using the
center of consecutive GPS readings. To measure electron counts in the iono-
sphere [40], dual-frequency GPS can be used. To do this, GPS signals are sent
to the receiver at two different frequencies, and the delay between the arrival of
these two signals can be used to calculate the electron count. Another option
used for location matching is the usage of WiFi to detect WAP locations or to
directly detect a specific WAP [5]. The WiFi sensor can also be used for WiFi
density detection [18], route matching [62], which fingerprints cell tower IDs, and
WiFi fingerprinting [44,45], where a list of WAPs is associated with a specific
location and used for localization. GPS and WiFi can also be used together for
location matching [16] or geofencing [9] to achieve even more accurate results.
The magnetometer can be used for magnetic fingerprinting [59], which works
much like the WiFi equivalent, with the only exception that a temporal dimen-
sion is required (i.e., the participant must walk the path for a while to determine
the location). WiFi and the magnetometer can also be used in combination to
produce a combined fingerprint for fingerprint collection [58].

Activity recognition is most often implemented by using the accelerome-
ter [5,44,62]. This can be supported by utilizing the microphone for sound recog-
nition [62]. Another way to use the accelerometer is to determine the tilt angle
of the phone. This information can be used together with the magnetometer for
swipe localization [37]. A variety of sensors can be used for movement track-
ing. Using solely the gyroscope, it is possible to detect whether the participant
is making a turn [59]. Accelerometer and gyroscope can be used together to
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measure distances and orientation between start and finish [20]. Accelerometer,
magnetometer and optionally gyroscope can be used together for PDR [44,45].

Other sensors used include the power sensor, the camera, the microphone, the
Bluetooth sensor, and the ambient light sensor. The power sensor can be used,
for example, to detect whether a phone is charging [27]. The camera can be used
to take photos [20,22] and videos [11,36,48]. The microphone can record ambient
sound [43], while Bluetooth can be used to detect nearby Bluetooth devices [56].
Finally, a combination of accelerometer, magnetometer and ambient light sensor
can be used to determine photo quality [22].

4.4 Time Constraints

The time constraints per category of application areas are shown in Table 2. It
can be seen that most applications either have no time constraints at all (51%),
or only some of their components are time-relevant (27%). Only 21% of all
considered publications state that their MCS application is completely real-time
dependent.

Table 2. Number of publications with real-time constraints, without time constraint,
and with a mixed approach. Per category of application areas and in total (n = 117).

Category UrbSens IndLoc EnvMon SMPSH All
Total n = 51 n = 16 n = 19 n = 31 n = 117

Real-time 10 (20%) 1 (6%) 4 (21%) 10 (32%) 25 (21%)

No time constraint 25 (49%) 10 (62%) 10 (53%) 15 (48%) 60 (51%)

Mixed 16 (31%) 5 (31%) 5 (26%) 6 (19%) 32 (27%)

UrbSens: Urban Sensing, IndLoc: Indoor Localization, EnvMon: Environ-
mental Monitoring, SMPSH: Social Management, Public Safety, and Health-
care.

Most MCS applications do not have time constraints [20,27,48] because they
are used to collect information that is not time-sensitive, for example, to update
maps or obtain information only for eventual data analysis. As shown in Table 2,
the highest percentage of application without time constraints can be found in
the category of indoor localization, with many non-time-sensitive applications
such as the reconstruction of indoor floor plans [11,20]. Other MCS applications
aim to relay the gathered information to participants as quickly as possible,
i.e., in real-time [26,36,62]. The highest proportion of applications with a real-
time constraint is found in the area of social management, public safety, and
healthcare. This category includes comparatively many time-sensitive applica-
tions such as healthcare monitoring [1], fall detection [26], disaster management
during earthquakes [49], and crowd-management in mass gatherings [9]. Many
MCS applications use a combination of real-time components and non-time-
sensitive components [39,45,55]. The reason for the time constraints of these
individual components is in most cases the same as mentioned above: a non-time-
sensitive information is needed to further process the time-sensitive information.
For example, the typical routing behavior of drivers is calculated without time
constraint in order to detect traffic anomalies in real time [39].
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4.5 Processing Device

In all the applications studied, data collection is always done via the smartphone
or via external sensors connected to the phone. However, there are differences
in the devices used to process the sensed data. The distribution of processing
devices used per category of application areas is shown in Table 3.

Table 3. Number of publications that use local pre-processing or upload the data
directly to a server where it is then processed. Per category of application areas and
in total (n = 117).

Category UrbSens IndLoc EnvMon SMPSH All
Total n = 51 n = 16 n = 19 n = 31 n = 117

Local pre-processing 28 (55%) 7 (44%) 8 (42%) 15 (48%) 58 (50%)

Direct upload 23 (45%) 9 (56%) 11 (58%) 16 (52%) 59 (50%)

UrbSens: Urban Sensing, IndLoc: Indoor Localization, EnvMon: Environ-
mental Monitoring, SMPSH: Social Management, Public Safety, and Health-
care.

Interestingly, about 50% of the analyzed MCS applications across all cat-
egories did not perform any local pre-processing before uploading the data to
the server. This is often the case when the main purpose of the application is
data collection [3], since no processing is required for this purpose, or when
the application is not intended to interfere with the normal use of the phone
and therefore does not require many computing resources [20,44]. The pro-
cessing and computations performed by the server are usually more expensive
calculations and include, for example, detecting traffic anomalies [39], arrival
time prediction [62], waiting time prediction [5,60], or reconstructing a floor
plan [11,20,59]. Many applications pre-process the data locally on the smart-
phone to reduce the amount of data to be uploaded and the burden on the par-
ticipant devices [43,45,55]. In cases where avoiding data transfer is a higher prior-
ity than avoiding computations, these computations can be performed locally on
the smartphone. These pre-processing and computation subgoals include route
matching [62], splitting GPS traces [27,39], sound recognition [62], conducting
questionnaires [43,48], recording ambient sound [43], determining swipe direc-
tion [37], and detecting nearby Bluetooth devices [56]. Finally, the processing of
various subgoals is often executed either on the phone or the server. These include
map matching [27,39,55], location matching [11,18,36], inferring new roads [55],
extracting features at a given location [27], extracting information from a pic-
ture [11,20,36], intersection classification [27], activity recognition [5,26,45], fin-
gerprinting [45,58,59], PDR [44,45], and geofencing [9]. In particular, activity
recognition [5,44,45] is usually performed to verify the prerequisites for sensing
data (e.g., the user is standing in a queue) and is therefore often performed
locally on the smartphone.
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5 Practical Guidelines

Based on the literature presented in the previous sections, best practices for
operationalizing MCS are identified, including the decisions that must be made
during the design and development of an MCS system. These decisions include
the goals to be achieved by the system as well as the choice of sensors and the
processing device to achieve these goals.

5.1 Goals, Subgoals, and Sensors

The first step in an MCS project is to consider what goals and subgoals the
application should fulfill and how they should be achieved. Many goals require
other goals or subgoals to achieve them. In addition, different sensors are required
to achieve these goals and subgoals. Some common connections between goals,
subgoals, and sensors are illustrated in Fig. 2 and are described in the following.

Localization

Street
Observation Air PollutionMap

Generation
Data

Collection

Outdoor? Indoor? Location-
specific?

Location
Matching Fingerprinting Tracking

GPS,
WiFi,

Cell Towers

WiFi,
Magnetometer

Accelerometer,
Magnetometer,

Gyroscope

Activity
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Image
Analysis

Sound
Analysis

Accelerometer CameraMicrophone

External
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Legend:
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Sensors

Decision

Possible
Connection

Required
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Fig. 2. Typical goals, subgoals, and sensors of MCS applications and their connections.
Note that only common connections and not all possible connections are displayed.

If the location of the user is required for the application, localization must be
performed. This goal can be achieved in different ways. The standard approach
in large and open areas (e.g., a city) is location matching using GPS and, in some
cases, WiFi or cell tower signals. If the application is intended to work in indoor
environments, fingerprinting and tracking methods are preferable. In some cases,
the user’s location cannot be identified by coordinates, but by another concept,
for example, if the user is on a train. This is a very application-specific problem,
but the most commonly used techniques to address this problem are activity
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recognition (e.g., detecting the movement patterns of a particular vehicle) and
sound analysis (e.g., detecting the sound of the IC card reader when boarding
a bus [62]). Since street observation attempts to determine different road condi-
tions, the participant’s current location is always relevant for this purpose. Thus,
some form of localization is always required, and depending on the specific sub-
goals (e.g., road surface monitoring), activity recognition is often additionally
required to identify the specific road condition being monitored. Measuring air
pollution with MCS can be performed only with smartphone-internal sensors
using image analysis, but the more accurate solution is to use an external sen-
sor connected to the smartphone (e.g., via Bluetooth). In this way, even more
detailed information about air pollution can be collected, such as what types
of substances pollute the air and to what extent. This measurement is usually
always coupled with the location of the sensed air pollution, so in addition local-
ization is required. Map generation also requires some form of localization to infer
the coordinates of the objects or events being mapped. Typical applications are
WiFi/cellular coverage maps of cities, maps containing information generated
through street observation, air pollution, or reconstructing a floor plan. Activity
recognition, image analysis, and sound analysis are most often used as utility
functions to support another goal or subgoal of the application. Finally, if the
main purpose of the application is data collection, the methods to achieve this
goal depend on the data to be collected. For example, any combination of sensors
can be recorded or a questionnaire can be conducted.

5.2 Processing Device

Another important consideration when designing an MCS application is the
choice of the processing device. In other words, it must be decided whether the
application will perform computations locally (i.e., on the smartphone) or on the
server. This decision can be made for the entire application as a whole, but in
most cases, it makes more sense to make this decision for each component of the
application separately. The reason for this is that some components may have,
for example, less security-relevant data or only some components have to deliver
their results in real time. The most common aspects that are crucial for this
decision are illustrated in Fig. 3 and explained in more detail in the following.

For each component of the MCS application, the first and probably most
important aspect to consider is whether the component is intended to operate in
(near) real time or whether it is not subject to any time constraints. If the results
of the component are not time-sensitive, this aspect can be ignored. However, if
the component is to evaluate and/or present the results to the user in (near) real
time, the data must either be processed locally on the smartphone or a constant
network connection is required (i.e., no opportunistic upload when connected to
hotspots is possible). Most MCS applications are not time-sensitive or have only
some time-sensitive parts, which means that only these parts of the application
need special consideration when specifying the processing device. The second
aspect to consider is whether it is feasible to run the components of the applica-
tion locally at all. Components that only use the local data can easily run locally.
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Fig. 3. Decision diagram for deciding on the processing device of a component of an
MCS application.

However, components that require data from multiple devices/users (e.g., clus-
tering GPS locations of multiple users) would need to download the remaining
data from the server, while still uploading their own data for the other users
to use. In most cases, it makes more sense to let the server perform this type
of processing and download only the processing results from the server. If the
local feasibility is generally given, privacy, resource consumption, and network
requirements of the component should be considered. With respect to privacy,
the more data a user uploads to the servers, the more privacy issues may arise.
By performing as many computations as possible locally on the smartphone, the
amount of potentially sensitive raw data uploaded can be reduced, thus avoid-
ing privacy issues. For example, aggregations of raw data per time period can
be performed directly on the smartphone, and only the aggregated data can be
uploaded. Resource and power consumption are another aspect worth consider-
ing, also in terms of usability. Users will not be content with the application if
the entire computational resources of their mobile device are occupied by the
application and the battery life of their device is noticeably shortened by using
the application. Since time-consuming computations can noticeably affect the
battery life [12], it is preferable for such components to upload the data to the
server and perform these computations there. Another aspect to consider is the
network requirements. Due to the variable network coverage and mobility of
users in MCS, a stable Internet connection cannot be guaranteed. In addition,
most users will not have an unlimited amount of mobile network data. If the
data should be able to be uploaded from anywhere possible, it is preferable to
compress the data locally for further computations. For example, classification
tasks where multiple data types are used as input and the result is only a class
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label can be performed locally to reduce the transferred data. Another option is
to cache the collected data on the mobile device and opportunistically upload it
when the device is connected to a WiFi hotspot. This approach circumvents the
problem of mobile data usage and network connectivity for the participant, but
does not allow real-time results.

6 Discussion

Overall, according to our analysis, urban sensing is the largest (44%) applica-
tion area of MCS. The second largest area is social management, public safety,
and healthcare (26%), followed by environmental monitoring (16%) and indoor
localization (14%). In terms of the goals that MCS application pursue, localiza-
tion is by far the most common (87%) goal. Activity recognition (23%), map
generation (22%), street observation (20%), and image analysis (19%) are other
commonly used goals in MCS. Depending on the specific application scenario,
different sensors are used to achieve these goals. For example, GPS, WiFi, and
cell towers are commonly used for outdoor localization, while WiFi, magne-
tometer, accelerometer, magnetometer, and gyroscope can be used for indoor
localization. We propose that system designers of MCS applications explicitly
define the goals and subgoals that the application should pursue and select the
sensors and approaches that are best suited for these purposes and, in the opti-
mal case, have been proven in the literature. The practical guidelines in Sect. 5.1
can be used to support this process. Only half (50%) of the analyzed MCS
applications perform pre-processing locally on the mobile device (e.g., smart-
phone) before uploading the collected data to a server. We argue that for each
component of the MCS application, separate consideration should be given to
whether local pre-processing is feasible and reasonable, carefully balancing time
constraints and resource consumption on the one hand, and privacy and network
requirements on the other. This should be considered especially in light of the
fact that most MCS applications have no time constraints (51%) or only some
time-sensitive components (21%). However, some application scenarios, such as
health monitoring and disaster management, are time-sensitive and therefore
need to relay the collected information as quickly as possible, avoiding addi-
tional processing steps and prioritizing timeliness over resource consumption or
network requirements. The decision diagram in Sect. 5.2 can be used to support
the decision on the processing device for a particular component of an MCS
application.

7 Conclusion

Mobile crowdsensing is a strategy that capitalizes on the current capabilities and
prevalence of smartphones. From a technical point of view, many challenges have
been identified and solutions presented that are promising so far. For example,
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incentive mechanisms and data quality are identified as challenges in the liter-
ature. Although the research field is not young, there are still too few funda-
mental considerations (e.g., in the form of literature reviews) or guidelines on
how MCS systems can be designed. Therefore, using the existing literature, we
examined what the goals of current approaches are, how these goals are achieved,
and what guidelines for developers and researchers can be derived based on the
widely used PRISMA guidelines. We have shown that localization is the most
important goal of current approaches, followed by activity recognition and map
generation. Nevertheless, we see the opportunities, for example in healthcare,
much broader than MCS is operationalized so far. Despite the very focused
goals currently being pursued with MCS, we were able to gain new insights for
the work at hand based on the defined research questions. On the one hand, we
were able to derive technical results, such as guidelines for decisions on sensors,
processing devices, and time constraints. On the other hand, it should be noted
that this systematic literature review using major academic databases resulted
in only 117 papers that provided enough technical details to be included, despite
the long history since the introduction of the technology. The presumption is,
and the COVID-19 pandemic has made it clear, that we need the wisdom of
the crowd. Technical operationalization certainly lags behind the opportunities,
as the present study shows. With the extracted practical guidelines, we hope to
have taken another step towards dissemination of MCS and its potential.
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Abstract. Human-robot teaming is crucial for future automation in
small and medium enterprises. In that context, domain-specific process
models are used as an intuitive description of work to share between two
agents. Process designers usually introduce a certain degree of abstrac-
tion into the models. This way, models are better to trace for humans, and
a single model can moreover enable flexibility by capturing several pro-
cess variations. However, abstraction can lead to unintentional omission
of information (e.g., experience of skilled workers). This may impair the
quality of process results. To balance the trade-off between model read-
ability and flexibility, we contribute a novel human-robot teaming app-
roach with incremental learning of relevant process details (RPDs). RPDs
are extracted from imagery during process execution and used to enrich
an integrated process model which unifies human worker instruction and
robot programming. Experiments based on two use cases demonstrate
the practical feasibility and scalability of our approach.

Keywords: Process Model Optimization · Task Annotation ·
Explanation Models · Intelligent Robots · Process Variety · Product
Variety

1 Introduction

The demographic change and a trend towards small-batch production of goods
with high variability pose new challenges to the future of manufacturing systems.
Particularly when using domain-specific process models to describe workflows in
manufacturing settings, highly varying processes require the inclusion of many
specific alternatives. This can lead to large and hardly traceable process models,
which can only be created with high effort. Since human-robot collaboration is
considered a key enabler of partial automation in small and medium enterprises,
this issue relates to process models for instructing robots and humans alike [15].
It is usually solved through abstraction: (i) In the context of robotics, we have
proposed a graphical robot programming method based on precedence graphs with
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Fig. 1. The robot execution with varieties [28] is susceptible to overly coarse task
modeling (upper left: no restrictions on the goal location (green)). We present an
approach to specify these tasks with RPDs based on image extraction [11] resulting
in increased process quality (upper right: the goal location is restricted, i.e., locations
that lead to reduced process success are excluded (red)). (Color figure online)

generalized skill templates [28]. Contrasting to traditional robot programming,
our precedence graph-based approach enables quick task specification and online
adaptation to concrete situations in the robot workspace rather than requiring
manual re-programming after each change to a new task variant. (ii) For manual
labor tasks to be done by humans, several execution variants of a single pro-
cess step are often aggregated into one abstract sub-task of a business process
model. This abstraction maintains the readability of business process models by
partly discarding information on process details (e.g., [5,22,23]). In both robot
and human task modeling, the success of the process (e.g., in terms of prod-
uct quality) can be degraded if models are designed too coarsely – this happens
whenever relevant process details (RPDs) are omitted or inaccessible to the mod-
eler (e.g., experience and best-practices of skilled workers). RPDs carry hidden
information, significantly affecting the overall success of a process. This process
knowledge must be revealed and incorporated into a model to ensure the accu-
rate execution of a task. Thereby, RPDs can be used as task specifications for a
given process model to further refine existing task instructions. For example, one
RPD may prescribe a concrete position on a workbench where an object has to
be placed for successful task execution. Our approach [11] therefore shows how
RPDs can automatically be extracted from image data to enrich process models
with task annotations, hence balancing the trade-off between model readability
and preservation of necessary details.

In this paper, we bridge the gap between process model-based human-to-
human and precedence graph-based human-to-robot knowledge transfer: We con-
tribute a novel approach to human-robot collaboration with intrinsically legible
task representations enriched by RPDs. This way, humans and robots can rely on
domain expert knowledge encoded in RPDs for increased process quality (Fig. 1).
The practical feasibility of the approach is demonstrated in two use cases.
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2 Background and Related Work

Process models give an overview of the work steps to be done during the execu-
tion of a process. They serve as the basis for process execution by human and
robot agents. Hence, process modeling is an essential basis of knowledge transfer
in production contexts with a broad range of established techniques.

In Business Process Management (BPM) [34], process models are pri-
marily intended for human workers. The focus lies on presenting process descrip-
tions in a clear and easy-to-understand manner. To this end, process modeling
languages as the Business Process Model and Notation (BPMN) [6], the Uni-
fied Modeling Language (UML) [30], Event-Driven Process Chains [29], etc.,
have been proposed. They typically define a set of modeling elements to map
different aspects of a process. Modeling guidelines (e.g., [3,16]) are intended to
establish standardized ways for manually composing complex processes from
modeling elements. Despite these efforts to structure the model design process,
mapping concrete tasks to informative but lean process models for human readers
is still challenging. The trade-off between the level of detail and model complex-
ity strongly relies on human intelligence to complete missing information omit-
ted at model design time. Research related to automatic model optimization
and improvement addresses this issue. Established approaches support model
designers from representation-related (e.g., [5,22,23]) and content-related (e.g.,
[1,12,18]) perspectives. Representation-related techniques seek to improve the
readability of process models in various ways. This involves accepting the loss of
information in favor of model traceability, which is a common reason for the lack
of process details. In contrast, content-related techniques refer to the modeled
quantity, accuracy, relevance, and order of information. Analysis of RPDs is part
of the latter category, which has hardly been addressed in research. Therefore,
we have previously introduced a novel approach by employing the Local Inter-
pretable Model-Agnostic Explanations method to extract the RPDs essential for
process success from labeled imagery of correct/erroneous execution results [11].
The RPDs are then used to enrich process models with human-legible hints
without compromising the overall model readability. Thus, process models are
optimized from a content- and representation-related perspective.

In the field of Collaborative Robotics, process models (often also referred
to as task models) enable robots to participate in a task. Similar to the BPM
domain, complex tasks are composed of robot-executable building blocks fol-
lowing a pre-defined structure, e.g., UML/P state charts [33], precedence graphs
[26], or AND/OR trees [8,19]. The work steps are then dispatched to human and
robot agents. This leads to a collaborative process by task-sharing (e.g., [8,25]).
Robot-readable task models are predominantly created manually by domain
experts with visual programming techniques [9] (e.g., [20,26,28,31,32]) based
on robot skills [2]. To keep the task model manageable during programming and
to keep the process flexible concerning product and process variety, recent visual
programming [20,31] and task sharing approaches [8] including our work [28]
mimic the abstraction process as used in business process modeling: work steps
are intentionally left partly under-specified by omitting information in gener-
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Fig. 2. Mapping of terms stemming from the domains of BPM and robotics.

alized skills (e.g., “Put the part into the bin” rather than “Put the part with id
1 to cartesian position (0.4, 0.6, 0.01)”), and the robot system resolves missing
information online by reasoning on the scene perceived with cameras just as
humans would do with a BPMN model. Yet the decision on how to generalize
task models is left to the programmer, thus yielding a potential loss of RPDs.

In conclusion, there is a strong analogy between abstract process models and
related challenges in BPM and Collaborative Robotics. We therefore hypothesize
that human-robot collaboration approaches would benefit from an analogous
enrichment of process models with learnt RPDs as previously enabled by our
method to improve business process models [11]. In this paper, we contribute (i)
a unified terminology of task modeling in the BPM and Collaborative Robotics
domains, (ii) a novel approach to human-robot collaboration based on a single,
hierarchical human-robot process model with RPD annotations, and (iii) an
incremental learning approach which renders RPDs machine-readable for robots.

3 Terms and Definitions

Connecting the fields of robotics and (Business) Process Management requires
the alignment of terminologies and the understanding of how processes and activ-
ities are defined and executed in both domains. In the robotics domain (Fig. 2;
right), tasks describe actions a robot should perform. A task either refers to a
single abstract activity as e.g., “mount the control panel”, or to a more com-
plex job that has to be done (e.g., “X-Ray Scanner Assembly Process”). Tasks
for robots are usually represented by task models as outlined in Sect. 2, with
a clearly defined entry and exit point. Since robots require concrete program
code to accomplish a task, tasks are decomposed into skills, which specify neces-
sary actions on a more fine-grained level [21]. For example, “screw the upper right
bolt” could be a skill that contributes to the task “mount the control panel”. Skills
are further decomposed in hierarchies [2] or net structures [13] until ultimately
reaching primitives. These primitives define the most specific set of actions that
correspond e.g., to a single motion command to the robot. They include the
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specification of points in the environment that the robot needs to reach as well
as gripper actions (e.g., “grasp bolt”) [13].

In the BPM domain (Fig. 2; left), process models (PM) describe workflows
or processes (e.g., “X-Ray Scanner Assembly Process”) to achieve a certain goal
[34]. Process models typically consist of an entry point (e.g., a start event in
BPMN) defining the beginning, and an exit point (e.g., an end event in BPMN)
demarcating the end of the process flow. In between, a series of tasks can be
modeled, connected through directional edges to define the control flow. Tasks
can be assigned to process participants such as employees or customers (e.g.,
through pools and swimlanes in BPMN). Furthermore, tasks contain descrip-
tions of activities needed to complete the process. The level of detail in task
descriptions is not predetermined and must be decided by the model designer.
The designer also has the choice of breaking down a task into smaller sub-tasks.
For instance, “mount the control panel” can be modeled as a single task or be
divided into several sub-tasks describing the task at an operational level. An
example high-level operational task is “screw the upper right bolt” – a low-level
operational task is “grasp bolt”. Hence, contrasting to the skill and primitive
notions in robotics, the term “task” is used independently of the level of detail
and type of instruction.

The mapping depicted in Fig. 2 shows that, depending on whether a human
or robot performs an activity, a task must be defined in more or less detail
for proper execution. Humans apply context knowledge and experience subcon-
sciously. Thus, implicitly necessary substeps of a task are automatically done,
and the matching of objects mentioned in the task description with those avail-
able in the environment is done intuitively. In contrast, such reasoning cannot
be assumed when assigning tasks to a robot but must be considered explicitly
during task modeling. This is achieved by the aforementioned division of tasks
into skills and primitives. The second aspect, the anchoring [7] of parts, is con-
tained in the skill definition and deals with the mapping of object specifications
(describing fictitious objects) to physical objects acquired by the sensors of a
robot. In this paper, we call such object specifications part templates and phys-
ical objects part states.

Based on the mapping, we propose a consolidated process model to sup-
port collaborations between humans and robots effectively. To this end, human-
readable process models (HPM) are first created by process experts with accord-
ing process modeling languages from the BPM domain (e.g., BPMN). In this
model, all workers (humans and robots) are considered participants of the pro-
cess. They are each assigned a swimlane with a pool of tasks to work off (Fig. 3),
i.e., task allocation to human or robot resources is achieved by a modeler’s deci-
sion to assign process steps to swimlanes. This decision is supported by struc-
tured criteria from the field of capability-aligned process planning (e.g., [4]). At
this stage of the model, tasks assigned to the robot are presented similarly to
those assigned to humans. Yet, as previously explained, this description level is
insufficient for a robot to perform the task. Therefore, all robot tasks are further
enriched with skill- and primitive-based descriptions using visual programming
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(Sect. 4.1). This leads to a unified process model composed of dedicated human
and robot tasks, each being represented in a manner suitable for the correspond-
ing agent according to Fig. 2 (see PM in Fig. 3 for a visualization). Hereinafter,
we will use the term “process model” to refer to this type of unified process model
which contains task descriptions for humans, skills for execution by a robot, and
the allocation of tasks to humans and robots.

Fig. 3. Adaption of our previous concept [11] to the robotic domain.

4 Extending Unspecified Process Models

Our approach is summarized in Fig. 3. In our previous work [11], the input is
a BPMN diagram designed for human workers. In contrast, our new approach
additionally allows the input of joint human-robot process models according
to Sect. 3. In the Task Selection stage, a single task is selected from the input
process model. This task is the entry point to Model Optimization. Tasks to be
executed by humans (HT) trigger the optimization procedure from our previous
work [11] (top of Fig. 3). Similarly, for robot tasks (RT) that are expressed as
task models, we can utilize our previous procedure by making minor adjustments
to accommodate a robotic agent (bottom of Fig. 3). The input process model is
executed, and after the execution of the selected task, an image of the workspace
is captured. Thereby, in contrast to HTs, RTs are executed as further described
in Sect. 4.2. At the end of the process model execution, the recorded image is
labeled regarding process success. This is repeated several times until sufficient
labeled data is collected. Then, the task is analyzed for relevant process details
in the Task Optimization step (Sect. 4.3). The output is either a human (HT∗) or
robot task (RT∗) enriched with relevant process details, resulting in an optimized
process model (PM∗). The cycle can be repeated for further optimizations by
returning to the Task Selection step.
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Fig. 4. Part types and locations contain varying degrees of ambiguity. The part type
taxonomy (a) includes generic inner nodes (’conductor’ and ’resistance’) that comprise
specific types in the leafs (e.g.,’base’ or ’light’). Locations (b) encompass generic area
descriptions (ploc1 - ploc3 ) or specific poses (p̂loc1 ).

4.1 Robot Task Modeling

For robot execution, steps in the process model must be mirrored in the robotics
domain. We achieve this by visual robot programming of robot-executable prece-
dence graphs with varieties following our previous work [28]. In this approach,
part states encode physical objects in the workspace, whereas part templates
describe partially ambiguous requirements to objects (cf. Sect. 3). Both part
states and templates have the same features depending on the domain. In
this paper, the features are the part type and its location. A part type is an
entry in a tree-shaped taxonomy with ’is-a’-relations between its set P type of
nodes (Fig. 4a). Leaf nodes denominate specific part types P̂ type ⊂ P type which
parts in the physical world can be classified as. When ascending from a leaf
towards the root node, inner nodes encode generic part types, i.e., fictitious type
concepts, which enable variety in the part description. We use the predicate
is_a(ptypei , ptypej ) to state whether ptypei = ptypej or ptypei is a child of ptypej .

Part locations P loc describe the rigid body pose of parts. We distinguish two
cases: (i) A specific location p̂loc ∈ P̂ loc is a rigid body transform wTpart ∈ R

4×4

indicating the part translation and rotation concerning some world frame w
(with P̂ loc ⊂ P loc). (ii) An ambiguous generic location ploc ∈ P loc specifies
the 3D volume in which a part is expected. Similarly to part types, we use the
predicate is_in(ploci , plocj ) to state whether ploci is part of the volume plocj . This
predicate can be applied between specific-specific (p̂loci � p̂locj ); specific-generic
(p̂loci ∈ plocj ); and generic-generic location pairs (ploci ⊆ plocj ). For example, ploc2

and p̂loc1 are in ploc1 , whereas ploc3 has no relation to any other location in Fig. 4b.
The world state is represented by a set P̂ = {p̂1, p̂2, ...} of part states. Each

part state p̂i = (p̂typei , p̂loci ) is an entity with specific part type p̂typei at specific
location p̂loci . Thus, part states contain only well-defined parameters. By contrast,
part templates pi = (ptypei , ploci ) are generic in their type ptypei and location ploci .

A robot task is a precedence graph T = (S,≺S , P ) composed of partially
ordered skills S = {s1, s2, ...} to manipulate a set P of part templates. The
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Fig. 5. Our task editor enables icon-based precedence graph modeling (left) with scene
creation in a virtual workspace (right). The modeling outputs precedence graphs with
inherent ambiguities (e.g., the specific p̂ and generic p location).

partial order ≺S defines “earlier-later” relations between skills. Skills represent
any operation to change a part feature (e.g., moving a part to a new location).
Thus, we define generic skills as a tuple s = (p, ψ) of a part template p ∈ P and
a prediction function ψ. The part template p represents the skill’s precondition,
i.e., the required features of a part to be utilized. Given p, the prediction ψ states
the required features of the part after a successful execution. Thus, ψ maps a
precondition p to another part template p∗ – i.e., the postcondition of the skill.
Given the set S of skills, we call the predicted templates

P ∗ = {p∗ ∣
∣ ∀ (p, ψ) ∈ S : p∗ = ψ(p)}. (1)

Our skill definition differs from the traditional approach of fully specific skills
[21] since skills may involve ambiguous part types and locations. A skill s ∈ S
may only be applied to a part p̂j iff p̂j satisfies the part template pi ∈ s, i.e., if
it matches the precondition encoded by the input part template:

satisfies(p̂, p) = is_a(p̂type, ptype) ∧ is_at(p̂loc, ploc). (2)

In practice, precedence graphs, as introduced above, are created by domain
experts using the intuitive graphical editor shown in Fig. 5. Parts can be placed
within a virtual workspace to be used as input parameters to skills, which can
then be connected to precedence graphs. Please refer to our previous publications
for details on this visual programming process [26,28].
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Fig. 6. The underspecified part templates are anchored to the part states by solving the
assignment problem utilizing a satisfaction matrix (a). Given an admissible assignment
(green entries), robot skills can be executed (b). (Color figure online)

4.2 Robot Task Execution

For robots to cope with ambiguity, the underspecified skills are anchored using
the approach from our prior work [28]: Initially, the robot detects all parts in
the workspace with object recognition techniques and builds up a world state P̂ .
The anchoring process matches each part template p ∈ P with a part state p̂ ∈ P̂
that satisfies p (Eq. 2). To find an admissible assignment, at least one part state
must be provided per template (|P̂ | ≥ |P |), yielding O(|P̂ |!) possible assign-
ments. Even for few part states (|P̂ | ≤ 10), testing each assignment is infeasible.
However, we can solve this assignment problem with efficient algorithms, e.g.,
the Kuhn-Munkres algorithm [17] with O(|P̂ |3) runtime complexity:

Let A = (ai,j) denote a |P | × |P̂ | cost matrix with a row for each part
template and a column for each part state (Fig. 6a). Any correct assignment of
p̂j to pi has no cost, whereas false assignments have infinite costs, i.e.,

ai,j =

{

0 if satisfies(p̂j , pi)
∞ otherwise

, i ∈ {1, ..., |P |}, j ∈ {1, ..., |P̂ |}. (3)

The Kuhn-Munkres algorithm outputs an injective mapping f : {1, ..., |P |} →
{1, ..., |P̂ |} which minimizes the cost term

∑

i ai,f(i) (i ∈ {1, ..., |P |}). By con-
struction of A, an admissible assignment f has 0 cost, and any solution involving
a wrong assignment has an infinite overall cost. This occurs if necessary parts are
missing in the current world state. In other words, f says that part template pi
must be associated with part state p̂f(i) to incur an overall correct assignment.

Given this assignment, the precedence graph can be scheduled into a skill
sequence. In addition, generic skill parameters must be specified. For example, a
grid-based placement planner determines specific transformations from generic
goal locations. A fully specified skill can then be executed by a typical state-of-
the-art skill architecture (e.g., [2,21]) as shown in Fig. 6b.
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4.3 Task Optimization

This step analyzes labeled image data by applying techniques to extract hidden
process information (Image Analysis). This gives us RPDs attached to the con-
sidered task description and, thus, to the process model. For human tasks, this
is done by creating a Task Annotation resulting in HT∗, whereas, for RTs, the
underlying template is adjusted (Template Refinement) resulting in RT∗.

Image Analysis. Regarding this step, we follow our previous work [11]. The
Image Analysis is described by a function φ mapping labeled images V to RPDs
D, i.e., φ(V ) = D. Thereby, V = {(v1, l1), (v2, l2), ...} is a set of images vi
recorded after execution of a task T and labeled as li ∈ {0, 1}. The label indi-
cates whether the process was successful (li = 1) or failed (li = 0). The Image
Analysis step has three phases: (i) A convolutional neural network (CNN) is
trained with the labeled image data to predict whether an image shows a suc-
cessful or failed execution. (ii) We employ Local Interpretable Model-Agnostic
Explanations (LIME) [24] to generate an explanation for each positively labeled
input image {(i, l) ∈ V | l = 1}. LIME highlights image regions relevant for
predicting the positive class, i.e., features decisive for process success. (iii) We
derive D from these local explanations in a generalization step. Thereby, we
focus on image content semantically representing the same object or part across
all images to derive global insights. Initially, we search for parts within the high-
lighted regions of each local explanation. We then analyze each identified part
for further information based on a selected set of features. Thereby, the set of
features is domain-specific and exchangeable. For instance, the color, shape, or
position can be determined of each part identified in a local explanation. Across
all local explanations, we receive a set of features and values for each part, rep-
resenting relevant process details. Formally, the output of this step is a set of
RPDs D. Each d ∈ D refers to exactly one part for which relevant details were
found. Thus, d comprises a set of analyzed features and values for that object.
Given the features of our part templates, we define a RPD d = (dtype, dloc) as a
tuple of a generic type dtype ∈ P type and a generic location dloc ∈ P loc. Further-
more, D always details the task instruction of T . How T is to be adapted varies
depending on the agent, as described in the subsequent sections.

Task Annotation for Human Workers. The discovered RPDs have to be
integrated into the process model while preserving model readability for human
workers. Therefore, intuitive task annotations (e.g., texts, diagrams, images) are
created [10]. The task annotations are then attached to the original process
model as proposed by [35]. This gives us an improved task HT∗, which enriches
the input process model PM by RPDs.
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Fig. 7. For a successful execution of tasks with varieties, every part template p ∈ P
must be correctly mapped to one part state p̂ ∈ P̂ (a). If the tasks with varieties are
modeled too coarsely, the part templates must be specified by the RPDs by mapping
every detail d ∈ D to one template p ∈ P .

Template Refinement for Robot Tasks. In contrast to task annotations for
humans, robots require explicit adjustments to the task description. Therefore,
the skills and part templates in the task must be identified and adjusted cor-
responding to the RPDs. This problem is analogous to the mapping from part
templates to part states (Fig. 7): RPDs D and templates P constitute generic fea-
tures of parts and, therefore, are modeled equally (cf. Image Analysis). However,
RPDs D refer to the world state after execution, whereas part templates P spec-
ify requirements of the initial world state before execution. We can bridge this gap
due to our skill modeling, which allows us to predict expected part templates P ∗

after execution (Eq. 1). These predicted templates may be too generic and must,
therefore, be restricted by the RPDs. To this end, a mapping from each detail
d ∈ D to exactly one template p ∈ P ∗ is required. The RPDs can only arise from
the execution of overly coarse skills – in consequence, (i) there are fewer RPDs
than templates, and (ii) the RPDs must be equally or more specific an the part
templates. For that, we define the predicate specifies: D × P → {True,False}
that returns whether a RPD di is at least as specific as the template pj . This
means that dtypei is equal to, or a child of ptypej , and that dloci is equal to or lies in
plocj . Due to the general definitions of our part types and locations, the specifies
function is defined analogously to satisfies:

specifies(d, p) = is_a(dtype, ptype) ∧ is_at(dloc, ploc). (4)

Again, a brute force mapping between RPDs D and templates P is infeasible
due to the number of feasible combinations but can be achieved with the Kuhn-
Munkres algorithm (Sect. 4.2): Let B = (bi,j) denote a |D| × |P | cost matrix
with a row for each RPD and a column for each part template. We model wrong
assignments with the specifies-function:

bi,j =

{

0 if specifies(di, pj)
∞ otherwise

, i ∈ {1, ..., |D|}, j ∈ {1, ..., |P |}. (5)
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Solving the assignment problem gives us the minimum cost assignment g :
{1, ..., |D|} → {1, ..., |P |} stating that RPD di must restrict part template pg(i).

Having identified the part templates belonging to the RPDs, they must be
constrained. Transferring the values of a RPD to the assigned templates is not
sufficient because the templates are already transformed by the prediction of
the task. Thus, it must be differentiated whether the initial templates or the
prediction of the skills must be adjusted. To this end, the prediction of a skill
must be considered: If the skill adjusts the feature to be constrained during
execution, the prediction must be adjusted (e.g., the target location in Pick-
and-Place-Skills). If the skill does not affect the feature, the initial template
(precondition) must be adjusted. For example, this is the case if part types need
to be restricted and only Pick-and-Place-Skills are used.

5 Evaluation

We have evaluated our approach and prototypical implementation in two experi-
ments motivated by possible use cases from the manufacturing sector (Sect. 5.1).
The results and optimization steps to improve the knowledge extraction are
elaborated in Sect. 5.2. In Sect. 5.3, we finally discuss the results from different
perspectives and provide recommendations for similar setups.

5.1 Experimental Validation

We designed two use cases built upon benchmark tasks of [27] and previous
real-world process use cases of [11]. Both use cases address process steps that
involve a robot to place a set of work pieces (conductors) in a given working
environment (Fig. 8). Use Case 1 (UC1) describes an assembly and Use Case 2
(UC2) a kitting task. For our experiments, we assumed that the use cases are
designed as task models with the purpose of being executed by a robot agent
and that they are part of a given process model (Sect. 4). Furthermore, we made
the following assumptions:

1. Labeled images are given. The data stems from executions of the respective
task model, i.e., UC1 or UC2. After execution, an image of the workspace is
captured and labeled according to the success of process outcomes.

2. The task models for both use cases are too generic and lead to deviating
process outcomes.

3. We precisely know the missing process detail causing process failure. This
allows us to validate that our approach succeeds in finding the missing RPD.

In order to have sufficient and qualitatively adequate data we used syntheti-
cally generated images corresponding to the scenes in Fig. 8. We generated and
labeled images for each use case based on known, predefined rules that dis-
tinguish a successful execution from an unsuccessful one. The process domain
remains consistent across both experiments and all task executions, resulting in
an unchanged background image.
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Fig. 8. We evaluate our approach with use cases from real-world process environments.
Figures (a) and (b) show the world states before (semi-transparent) and after task
execution for each use case respectively.

Use Cases. The first use case (UC1) is an assembly scenario. The task is to
mount conductors on a circuit board in a specific arrangement. Six conductors
must be placed, each being identified by its color: base conductors are blue,
resistance conductors are green, yellow, or pink, and light conductors are orange.
Different colors of resistance conductors indicate different resistance values (weak
= yellow, medium = green, strong = pink). The board is positioned in the scene
at a fixed location. The conductors are initially located in two areas (Fig. 8a).
Precise positions within the grey regions can vary. As commonly observed in
practice (e.g., [14,18]), we assume that the task model was created by a non-
expert who is familiar with the process flow but who does not know further
details about the process. Consequently, the task model contains information
that the circuit board needs to be populated by three base conductors, two light
conductors, and one resistance conductor at specific positions. However, it is
not specified which resistance conductor (which strength) should be placed. If
a low-value resistance (yellow) is attached, the light conductor will burn out,
thus rendering the process unsuccessful. On the other hand, if the resistance is
too strong (pink), the light conductor glows too weakly. Therefore, placing a
medium resistance (green) at the given position on the circuit board is crucial
for process success. Since the task model has no further specifications, the robot
picks a resistance conductor of any type that is available in the workspace during
task execution. Deviating process outcomes are observed from which labels are
derived for the captured images. We validate if the RPD, i.e., the right type of
resistance, can be extracted from a labeled image data set. This means that the
association of the feature “color” with process success has to be identified.

The second use case (UC2) covers a kitting scenario, i.e., the delivery of all
components required for the assembly of a product. In the initial situation of
UC2, all available conductors are located within the right region of the workspace
(Fig. 8b). The final state requires three conductors (a base, light, and resistance
each) to be positioned in the left region. In this scenario, we assume that a
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Fig. 9. Example input data for Use Case 1.

process expert created a generic task model to move one conductor of each type
from the right to arbitrary, varying positions in the left region. This generic task
model was sufficient as long as the subsequent process of assembling the parts was
performed by human workers who were able to deal with varying part-feeding
locations. Over time, the assembly line was restructured, and the subsequent
assembly process was assigned to a robot that expects parts in a specific order
for grasping: The base conductor must be placed in the top, the light conductor
in the middle, and the resistance conductor in the bottom third of the left region.
The initial kitting task model does not contain these new RPDs regarding more
specific part goal locations. Executing this model yields the observation that the
process occasionally fails. With UC2, we show that the location-related RPDs
can be extracted with our approach. This involves a more complex association
between two features (color and position) and process outcomes.

Implementation. We trained a classification model using TensorFlow1 for both
use cases. Regarding the CNN, we followed a standard model architecture which
comprised three convolution layers followed by corresponding pooling layers.
Subsequently, the output was flattened and fed into a fully-connected dense layer
to derive the final classification outcome. As training data, we generated image
data per use case representing the respective setups. For UC1, we generated 1000
images, of which 500 showed positive (Fig. 9a) and 500 negative states (Fig. 9b)
of the workspace after task execution from a top-down view. The positions of
the six conductors on the circuit board were fixed across all images since they
were defined precisely in the task model. The position and orientation of the two
remaining conductors were determined at random – this reflects the variability
of the process concerning initial part locations. For UC2, we generated 10000
images comprising 5000 positive (cf. Fig. 10a) and 5000 negative samples (cf.
Fig. 10b). The position and orientation of each conductor was again determined
randomly within the respective rectangular regions. The training of the CNN

1 https://www.tensorflow.org/ (Accessed: 02 May 2023).

https://www.tensorflow.org/
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Fig. 10. Example input data for Use Case 2.

per use case was performed until a sufficient high accuracy rate (> 0.95) and
low loss (< 0.1) were achieved.

The first experiments were conducted with the basic version of LIME as
provided in the official python package2. We defined important input param-
eters according to the process domain and experimental setup: the parameter
nfeatures describes the maximum number of image segments to be considered in
the explanation. This parameter is crucial for useful and interpretable results
since consideration of too many features would lead to uncertainty in which seg-
ments are of real importance for the classification. In contrast, not all important
segments are highlighted by selecting a too-low value. We know that, in our
domain, the reason for process success or failure is always related to the parts
since the image background is fixed across task executions. The number of parts
is, hence, a good guide in choosing nfeatures. However, since we do not know
which object or object feature is relevant, all possible occurring objects must be
considered. In UC1, a maximum of 8 and UC2, a maximum of 7 conductors may
occur in the scene. Therefore, we set nfeatures accordingly. The number of sample
instances used by LIME to generate a local explanation is defined by nsamples.
Higher values produce more samples and more accurate explanation at the cost
of computation time. Inspired by existing code examples and experience from
prior experiments, the value for both use cases was set to 1000.

We implemented the generalization step using an object recognition proce-
dure based on color. For each local explanation, we extracted the color infor-
mation from all highlighted segments and identified the parts in individual seg-
ments this way. We then identified all regions of the segment that correspond to
an object, i.e., regions that differ in color from the background. We calculated
the centroid of each object region, which is used to determine the object’s posi-
tion. The object information identified in this way is collected across all local
explanations, and a list of positions is output at the end for each object type.

2 https://github.com/marcotcr/lime (Accessed: 30 April 2023).

https://github.com/marcotcr/lime


264 M. Fichtner et al.

Use Case 1 Use Case 2

Type Position Position
Base (390, 382) [(172, 290),...,(258, 341)]
Weak Resistance [(179, 316),...,(247, 471)] -
Medium Resistance (434, 382) [(176, 429),...,(258, 480)]
Strong Resistance [(179, 302),...,(258, 458)] -
Light (410, 463) [(171, 359),...,(259, 409)]

Table 1. Resulting details in the default setup for both use cases.

5.2 Results and Optimizations

The output of the generalization step, i.e., the derived RPDs, for each use case is
summarized in Table 1. For UC2, the default setup provides correct results since
the analyzed RPDs align with the anticipated specifications: for each of the
three conductors (base, light, and medium resistance), a region for the parts to
be placed was extracted. The regions are represented by a bounding box for each
RPD, referring to the top, middle, and bottom third of the left area, as expected
in this use case. In UC1, five RPDs were detected. They indicate that five con-
ductors (base, light, weak resistance, medium resistance, strong resistance) must
be present at the computed positions during the execution of the task for process
success – this does not match our expectations since only a single conductor (a
medium resistance) at a specific position is relevant for success in this case. To
get to the root cause of this result, we examined the partial results of each step
of our analysis process. Examples of the results of the explanation step, i.e., the
local explanations, for each use case are shown in Fig. 11. The images provide evi-
dence that the error occurred during this step. In UC1 (Fig. 11; left), eight image
segments (as determined by nfeatures) are highlighted, meaning that they were
essential for the image to be classified as a successful process execution. Across
all explanations for UC1, the segment containing the base (blue rectangle) and
medium resistance (green rectangle) conductor is always highlighted. While this

Fig. 11. Exemplary local explanations in the default setup.
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Fig. 12. Exemplary local explanations in the optimized setup.

partially aligns with the expected outcome, it is inaccurate due to the highlight-
ing of the base conductor. This is the result of the segmentation sub-step of
LIME, where both conductors are assigned to the same segment. Consequently,
either both conductors or none of them can be marked relevant in the expla-
nation. Furthermore, in a few cases (18%), some highlighted segments contain
small parts of the other resistance conductors placed in the left area of the scene.
Since the generalization step considers all highlighted segments in all explana-
tions, these parts are also analyzed, and identified conductors are erroneously
declared as RPDs (Table 1). The inaccurate outcomes can thus be attributed to a
sub-optimal execution of intermediate steps. Therefore, we applied optimizations
to enhance the knowledge extraction:

1. The segmentation process of LIME was adapted to ensure that each object
is assigned to a single segment. Additionally, we replaced the quick shift
algorithm, which is by default used in the LIME implementation, with the
SLIC algorithm. SLIC is better suited for the shape of parts in our domain.3

2. Based on a segmentation that assigns an individual segment to each con-
ductor, the optimal value for the LIME parameter nfeatures = 1 in UC1 (3
in UC2). This value can be obtained by determining a cut-off based on the
weight-ordered sorting of segments for classification purposes. If the distance
between the values exceeds a certain threshold, the segments should not be
merged while we define the cut-off at this point.

These optimizations enable the adaptation of the LIME implementation to our
domain. They result in a tendency to highlight fewer patches and increase the
robustness of the generalization step, in turn reducing requirements for this step.
The local explanations resulting from the optimized setup are shown in Fig. 12.
For UC2, the results of the generalization remain unchanged in the optimized
setup compared to the default version. However, the local explanations are more
precise, thereby rendering them more reliable. For UC1, we are able to achieve

3 https://scikit-image.org/docs/dev/api/skimage.segmentation.html
(Accessed: 08 May 2023).

https://scikit-image.org/docs/dev/api/skimage.segmentation.html
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the expected RPD, resulting in the generalization step exclusively providing the
medium resistance conductor with the specific positional information (434, 382).

5.3 Discussion

The experimental results demonstrate the efficacy of our novel approach for con-
cretizing underspecified task models. The processing pipeline in which steps are
executed sequentially leads to potential issues with error propagation. Regard-
ing this aspect, we have determined that the results of image classification and
explanation generation with LIME are the most crucial. We, therefore, want to
discuss these two steps regarding their scalability to other process environments:

(i) In the initial step of training a CNN predictor for process outcomes, we par-
ticularly encountered the challenge of acquiring a sufficient amount of train-
ing data. In our experiments, we found that a data set with at least 10000
images was indispensable for favorable outcomes in UC2 – insufficient sample
size or imbalanced distribution of positive and negative samples led to inade-
quate outcomes in the explanation step. Small and medium-sized enterprises
may have difficulties with obtaining this amount of data since manufacturing
processes may here not occur sufficiently frequently. Therefore, alternative
strategies for the training process in real-world settings are needed. Data
augmentation approaches that generate additional samples from a smaller
data set might mitigate this issue. Additionally, pre-trained CNNs from sim-
ilar domains in which large-scale data sets are available could be a viable
alternative.

(ii) Our results regarding the local explanation generation step have shown that
LIME requires modifications to ensure efficacy for our objectives. Despite a
well-trained CNN, an appropriate value of the parameter nfeatures had to be
tuned meticulously, and the segmentation approach had to be adapted for
more precise outcomes. However, we do not consider this a major issue. On
the one hand, the results of UC2 demonstrate that satisfactory outcomes can
be obtained in principle with the default settings of LIME in some scenarios.
On the other hand, domain knowledge, such as the number and features of
parts, is usually available for individual process environments. Our experi-
ments show that knowing the number of parts in the process provides guid-
ance for an initial estimate and consecutive improvement of nfeatures. Further-
more, due to other methods employed during the design, engineering, and
production stages of manufacturing environments (e.g., quality control pro-
cesses), appropriate segmentation techniques adapted to the process might
be readily available. Based on the low level of effort required and the sig-
nificant results optimization, we highly recommend adapting the LIME seg-
mentation step to increase the probability of successfully identifying RPDs.
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6 Conclusion and Future Work

We presented a novel approach to improve human and robot process models
by deriving specifications from relevant process details. Our approach unlocks
new potentials regarding human-robot collaboration through enriching process
models for both agents. It extends previous work in the context of BPM and
proves its applicability for further domains. We evaluated our work with two use
cases inspired by the manufacturing industry. The experimental results provide
strong evidence of its effectiveness in identifying relevant process details.

Future research should focus on the improvement of the robustness of the
approach. This includes examining data augmentation techniques to enable more
straightforward applicability in real process environments that come with limi-
tations in execution data quantity and quality. Furthermore, we aim to conduct
experiments with more complex parts and settings to explore opportunities for
enhancement and provide recommendations for implementing the approach in
sophisticated process settings.

Acknowledgements. We thank Philipp Jahn and Carsten Scholle for their valuable
work supporting the implementation and evaluation of our approach.
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Abstract. Peak Age of Information(PAoI), as a performance indica-
tor representing the freshness of information, has attracted the atten-
tion of researchers in recent years. The data packet transmission rate in
the LoRa network determines the information freshness level for system
packets. In order to study the optimal scheduling of data packets, we try
to use the PAoI to describe the real-time level of the end devices(EDs)
and reduce it. We use edge servers to process monitoring data packets at
the edge of the network to improve the efficiency of EDs and the informa-
tion freshness level of data. Since packet transmission will be constrained
by EDs battery queue energy and gateway queue backlog, we propose an
optimization problem that aims to minimize the long-term average PAoI
of EDs while ensuring network stability. With the Lyapunov optimiza-
tion framework, the long-term stochastic optimization problem is trans-
formed into a single-slot optimization problem. Furthermore, to avoid
the problem of too large search space, we propose a dynamic strategy
space reduction algorithm (SSDR) to shrink the strategy space. The
simulation experiments show that our SSDR algorithm can optimize the
PAoI index of EDs in various situations and satisfy the constraints of
long-term optimization.

Keywords: PAoI · LoRa · Lyapunov optimization · scheduling
algorithms

1 Introduction

In monitoring scenarios such as outdoor fire warning and dam water level moni-
toring, the traditional wireless communication network deployed by existing base
stations is greatly limited. Moreover, whether the monitoring data can be pro-
cessed by the server in time is also one of the key factors. LoRa is a self-deployed
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wireless network that does not rely on existing base stations. EDs can be self-
charged by solar energy and other means without connecting to the power grid,
which can adapt well to special scenarios where base stations are scarce and
power grid coverage is not comprehensive [1]. LoRa technology modulates the
baseband signal using a Chirp Spreading Spectrum, based on carrier frequency
(CF), spreading factor (SF), bandwidth (BW) and coding rate (CR) [2,3]. Due
to the orthogonality of the transmission sub-bands and quasi-orthogonality of
the spreading factors, gateway can simultaneously receive signals from multiple
end devices.

The Age of Information (AoI) is an emerging data freshness metric in wireless
networks. It is defined as the time elapsed since the last data packet was gen-
erated at the source and received at the destination [4,5]. Another age-related
metric is the Peak Age of Information (PAoI), which characterizes the staleness
of the last received packet at the time of updating the AoI value, i.e., when a
transmitter sends a data packet to the receiver [6]. PAoI focuses more on the
worst-case scenario during the scheduling process, which can be used to mon-
itor scheduling events that occur less frequently but have a severe impact on
the real-time performance of the system [7,8]. With the help of PAoI indicators,
the occurrence of special events can be better monitored and reduced, thereby
improving the response speed of the system.

Deploying edge servers at the network edge allows monitoring devices to
send data to the edge server through a gateway, instead of sending data pack-
ets to the cloud center, which can accelerate the decision-making and process-
ing of monitoring information [9,10]. The generation of data packets from end
devices and battery queue charging process are random. The traditional LoRa
monitoring network has in-depth research on the energy consumption of EDs,
but there is insufficient research on the timeliness of data packet transmission.
Using AoI/PAoI can better evaluate the data freshness level of EDs, and design
an appropriate data packet scheduling strategy based on the backlog of buffer
queues of the gateway and the energy consumption of EDs. Based on the AoI
buffer queue model of EDs, we derive the peak AoI of the EDs and attempt to
minimize the expected long-term PAoI to improve the data freshness level per-
formance of the wireless network system. In summary, the main contributions
are summarized as follows:

1) According to the characteristics of LoRa wireless network, the PAoI perfor-
mance index of end device is derived, and the long-term PAoI optimization
problem of end device is given under the condition of queue backlog constraint
and battery queue energy constraint.

2) Using the Lyapunov optimization framework, we have localized the solution
to stochastic optimization problems, previously evaluated over the long term,
to each time slot. To address the impact of a large search space on algo-
rithm efficiency, we introduce the SSDR algorithm, which dynamically reduces
the strategy space. This enables fast identification of the optimal scheduling
strategy.
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3) The simulation experiments conducted under various parameter settings val-
idated the reliability of the SSDR algorithm and included comparative exper-
iments with three other commonly used scheduling algorithms. The simula-
tion results demonstrate that our SSDR algorithm reduces the PAoI for end
devices while ensuring overall system stability, and outperforms the compared
algorithms in terms of performance.

The rest of the paper is organized as follows: In Sect. 2, we introduce the related
work. In Sect. 3, we introduce the system model of LoRa wireless dispatching
network, and give our optimization problems. In Sect. 4, we use the Lyapunov
optimization framework to transform the problem into a single-time-slot opti-
mization problem. In Sect. 5, we design a strategy space dynamic reduction algo-
rithm to search for the optimal scheduling strategy in the strategy space as soon
as possible. We present the simulation results and analysis in Sect. 6. Finally, in
Sect. 7, we summarize this paper.

2 Related Work

In recent years, many literature has considered the use of AoI and PAoI indicators
to improve data freshness and improve the real-time level of the system when
integrating different scenarios. In [6], the author derived the distribution of PAoI
for systems in series, including M/M/1 and M/D/1 systems, and analyzed the
possible optimization of these two systems, which may be a complex operation
that needs to be performed in real-time. In [11], the author investigated the
age-optimal scheduling in a multiple access channel with stability constraints,
where two heterogeneous source nodes transmit to a common receiver. In [12],
the author utilized a probabilistic scheduling method to minimize the AoI metric
for the entire wireless transmission system.

As an alternative to cloud computing, edge computing has been studied to
improve the real-time level of data by using edge servers deployed at the edge
of the network to provide computing resources. In [13], Tang et al. analyzed
the AoI performance metrics of a multi-user mobile edge computing (MEC)
system, where the base station generates and sends compute-intensive packets
to the user device for computation. The processing of real-time information is
critical for many applications. In [14], Lv et al. used edge computing resources to
reduce AoI levels and devised a pricing mechanism to determine the allocation
decisions of real-time computing tasks. In [15], Liu et al. consider a unicast
network scenario where the sender periodically sends data to the receiver over a
multihop network. AoI/PAoI indicators have also been studied in the Internet of
Things, and in [16], Hu et al. studied the optimal arrival rate of packets under AoI
and PAoI constraints. Based on the violation probability of AoI and PAoI, the
optimal arrival rate of receiver status update is analyzed from the perspective of
asymptotic optimality. In [17], Wang et al. investigated the design of an optimal
strategy to minimize the long-term mean information age in a cognitive radio-
based IoT monitoring system.
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In real-time status update systems, energy consumption is an important fac-
tor that cannot be ignored in packet transmission scheduling. In [18], the authors
performed an analysis of AoI based on queuing theory, in which transmitter nodes
powered by energy harvesting systems frequently send status update packets
to destinations. The SHS method was used to derive MGF closed expressions
for AoI under several queuing rules of transmitters, including non-preemption
(LCFS-NP) and service/waiting preemption (LCFS-PS/LCFS-PW) strategies,
and similar related work was done [19,20]. In order to save energy consumption,
in [21], the authors designed a trade-off between sensor transmission data and
energy consumption, and after the service is completed, the sensor can go into
a sleep state, thus saving energy. In [22], the authors examine the energy-saving
scheduling problem for AoI minimization in opportunistic NOMA/OMA down-
link broadcast wireless networks, where user devices operate with different QoS
requirements. The Lyapunov framework is used to convert the original long-term
time mean into a single-slot multi-objective optimization problem. Zhou et al.
[23] investigated how to optimize the freshness of real-time data from energy-
harvesting (EH)-based networked embedded systems in energy-constrained sit-
uations. The proposed solution can reduce the average AoI by an average of
47.2% and 69.1% with a low harvest rate. In [24], Fang et al. studied the Age
of Peak Information (PAoI) in underwater wireless sensor networks (UWSN),
as well as the energy cost of transmitting packets. Active and idle modes are
designed to reduce energy consumption. The closed expressions of average PAoI
and energy cost under AQM and non-AQM strategies are derived, and the results
are verified by simulation experiments. In general, the work on AoI and PAoI
focuses on ensuring the real-time level of the entire system, while considering
constraints such as throughput, energy consumption, transmit power, etc. or
joint optimization.

As a long-distance low-power radio communication technology, LoRa wireless
network has good anti-interference and sensitivity, and has a wide range of appli-
cation scenarios in wireless monitoring and power supply, and has many related
papers [2,25–27]. In [28], the authors investigated resource management in a
LoRa wireless network based on instantaneous channel coefficient and energy
availability when LDs are powered by energy harvesting sources. They devel-
oped an optimal SF allocation, device scheduling, and power allocation algorithm
that maximizes the number of scheduled LDs. In [29], two offline scheduling algo-
rithms for LoRa-based data transmission were proposed. The algorithms allocate
time slots and assign SF to nodes to minimize the overall data collection time. In
[9], Liu et al. propose a new design of a LoRa system that uses edge computing
on a LoRa gateway. This design enables some of the time-computing tasks of
latency-sensitive applications to be processed in a timely manner. In [30], the
authors assumed that in a house, all smart appliances are connected to a smart
meter with edge devices and LoRa nodes. An energy-efficient smart metering
system using remote edge computing is proposed to solve the problem of latency
and energy consumption.
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3 System Model

In this section, we introduce the system model, as shown in Fig. 1. In the LoRa
network, EDs are deployed in an energy-constrained environment and need to
obtain energy from the environment for self-charging. When EDs transmit data
to the gateway, their AoI decreases. If the gateway receives too much data,
the queue backlog will increase. Therefore, it is necessary to design a suit-
able scheduling algorithm. Our goal is to minimize the information age of EDs
while ensuring energy constraints and gateway backlog constraints. Next, we will
sequentially introduce the network and energy models, the peak information age
formula, and the derivation of the gateway queue backlog model.

3.1 LoRa Network Model and Battery Status

In a single-server monitoring network,consider N = {1, 2, ...,N} as EDs. When
there are no packets on the EDs, it monitor the nearby environmental conditions
and generate packets based on a random process. If the packet already exists on
the EDs, the packet is no longer obtained according to the random process. The
packet is time-stamped to record the current age of information(AoI) changes.
AoI is an indicator for expressing the freshness of information, which will be
explained in detail in Sects. 3.2. We discretize time into intervals of the same
length.

Fig. 1. Lora Network Organization

Suppose that the unit energy consumption for transmitting a data packet is
Etrans. Assuming that the charging process follows the Bernoulli process with
probability λ, the charging probability of each device follows λ ∈ (0, 1). E(t)
represents the battery status of the end device. Battery status can be expressed
as

Ei(t + 1) = min{Ei(t) − μi(t) · (Ec + E trans) + λ(t) · E ,Emax}, (1)
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where Emax indicates the maximum capacity of the battery queue, Ec represents
a fixed energy consumed by the circuit, E represents the unit of energy for
charging, and the greater the probability of charging λi(t), the more energy
the battery charges. μi(t) indicates whether end device i successfully transmits
packets in time slot t, μi(t) = 1 when it is successfully transmitted to the
gateway, otherwise μi(t) = 0. The battery queue status of all EDs at t time
slot is represented by the set E(t) = {E0(t),E1(t), ...,Ei(t), ...,EN (t)}, i ∈ N.

The gateway maintains an AoI cache queue and does not discard any data
packets transmitted by EDs. The gateway can connect to the power grid, so
energy is not a concern. The EDs are guided by a scheduling controller that
considers the current network status. This controller provides a strategy π to
determine if EDs should send data packets in the next time slot. The controller
is deployed in the edge server. After the gateway receives packets from the EDs
at time slot t, these packets are stored in the gateway’s cache queue and pro-
cessed sequentially according to the gateway’s packet service rate. The packet
transmission process is shown in Fig. 2 below.

Fig. 2. EDs rely on AoI and Queue Backlog Level scheduling strategy

The queue backlog for a gateway represents the total number of packets in
the cache queue at a given time. The PAoI of the end device is derived from
the average age of information change of the packet over time, which we will
describe in Sect. 3.3.

3.2 Peak Age of Information

For packets that have been generated and temporarily stored in the end device,
the age of the information will increase when it is not their turn to transmit
the time slot. When it is the turn of the appropriate transmission time slot, the
packet is transmitted to the gateway and the information age drops to 1. Its
packets are cached in the gateway’s AoI cache queue along with packets trans-
mitted by other EDs. When it is the appropriate transmission time slot, packets
are in turn transmitted to the Edge Server for processing, with a service rate μgw

affected by the hardware performance of the gateway. The status update process
of information age is shown in Fig. 3, where the information age corresponds to
the change of the data packets information age of EDi
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Fig. 3. AoI status update process

As we can see from the figure above, the AoI of the data packet decreases
after transmission to the Edge Server. At the time slot t, the AoI of the EDs is
defined as the difference between the current time t and the timestamp �t of
the outgoing packet [4]. Then the AoI of the EDs at the time slot t is defined as

A(t) = t − �t. (2)

Suppose that in each discrete time slot, AoI takes an integer value, i.e.,A(t) ∈
{1, 2, 3, ...}. We suppose that the EDs sending a packet can be completed before
the end of the previous time slot. In this paper, the AoI of all data packets on
all EDs is constructed into a set A(t) = {A0(t),A1(t), ...,Ai(t), ...,AN (t)}, i ∈ N,
and A(t) represents the AoI of all EDs under t time slot. μi(t) indicates whether
to transmit data packets in the current time slot. Then the AoI variation formula
for two consecutive time slots can be updated to

Ai(t + 1) = Ai(t) + 1 − μi(t)Ai(t). (3)

It can be seen from the AoI change plot that when μi(t) = 1, the AoI of the
t time slot is the PAoI. Average PAoI is defined as

Apeak
i = lim

t→+∞
E[

∑t−1
τ=0 μi(τ)Ai(τ)]

E[
∑t−1

τ=0 μi(τ)]
. (4)

Our goal is to optimize the PAoI of the EDs. However, reducing the PAoI may
have a certain impact on the queue backlog of gateway, so we propose a queue
backlog model of gateway below to analyze the impact of packet transmission
on gateway.
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3.3 Gateway Queue Backlog Model

The gateway’s queue backlog depends on data packets arrival rate and gateway
service rate. In time slot t, the service rate of the i-th end device can be expressed
as μi(t), the queue backlog of gateway is represented by the symbol Sgw(t). The
queue backlog model in t + 1 at the next moment, we have

Sgw(t + 1) = max[Sgw(t) − μgw(t), 0] +
N∑

i=0
μi(t), (5)

where μgw(t) is the service rate of the gateway at time t, and
∑N

i=0 μi(t) is the
sum of all packets transmitted to the gateway by all EDs at time slot t.

Since queue models are affected by stochastic processes, we need to consider
the long-term stability of the queue.When the time t tends to infinity, the total
number of packets enqueued should be less than or equal to the total number of
packets out of the queue, i.e., limt→+∞ 1

T

∑t−1
τ=0 E[

∑N
i=0 μi(τ) − μgw(τ)] ≤ 0.We

convert the queue model into an inequality constraint, we have

Sgw(t + 1) ≥ Sgw(t) +
N∑

i=0
μi(t) − μgw(t). (6)

The inequality transformation yields
∑N

i=0 μi(t) − μgw(t) ≤ Sgw(t) −Sgw(t +
1). When Sgw(0) = 0, combining the first EDs time slots to the above equation-
accumulate transformation, we have

t−1∑

τ=0
[

N∑

i=0
μi(τ) − μgw(τ)] ≤ Sgw(t) − Sgw(0) = Sgw(t) − 0 = Sgw(t). (7)

Then we expect both sides of the inequality to be at the same time, we have

1
t

t−1∑

τ=0
E[

N∑

i=0
μi(t) − μgw(t)] ≤ E[Sgw(t)]

t
. (8)

Observing the above equation, in order to meet the stability constraint of the
left equation, we can ensure that the queue achieves long-term stability through
limt→∞

E[Sgw(t)]
t = 0, i.e., the queue can achieve mean rate stable. Based on the

above considerations, the optimization problems of this article are given below.

3.4 Problem Formulation

The optimization goal of this paper is to select a suitable scheduling strategy for
each time slot that helps to keep the gateway’s queue stable while minimizing
the average PAoI.

Firstly, we provide the definition of packet arrival probability. The data
arrival probability refers to the probability that the EDs obtains the monitoring
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data in the random process, and different data arrival probabilities will affect
the data packet generation rate of EDs. We define the data arrival probability
as θ, and θ ∈ (0, 1).

We define the scheduling strategy π as a row vector composed of the
dequeue rates of all EDs at a certain moment. It is expressed as π =
(μ0, μ1, ..., μi, ..., μN ), i ∈ N, where μi represents whether the i-th end device
transmits data packets to the gateway. Define scheduling strategy space: Π =
(πT

0 (t), πT
1 (t), ..., πT

m(t), ...), where πT
m(t) represents the scheduling strategy for

all EDs in the time slot t. Our goal is to find the best scheduling strategy to
minimize average system PAoI. EDs energy and gateway queue backlog serve as
optimization constraints. The optimization problem in this article is defined as

P1 : min
π∈Π

E[Apeak
i ] (9)

s.t. lim
t→∞

E[Sgw(t)]
t

= 0 (9a)

Apeak
i = lim

t→+∞
E[

∑t−1
τ=0 μi(τ)Ai(t)]

E[
∑t−1

τ=0 μi(τ)]
(9b)

μi ∈ (0, 1), ∀i ∈ N, (9c)
Ei ≤ Emax, ∀i ∈ N, (9d)
λ ∈ (0, 1), (9e)
θ ∈ (0, 1). (9f)

This optimization problem is a stochastic optimization problem. A random
number of packets are generated in each time slice. The objective function will
be influenced by random events and the chosen scheduling strategy. Long-term
averaging involving objective functions and constraints cannot be directly solved
by traditional optimization techniques. This paper adopts the Lyapunov opti-
mization framework. It convert a stochastic optimization problem measured from
a long-term perspective into a single time slice.

4 PAoI-Queue-Aware Scheduling Using Lyapunov
Framework

For the above optimization problem, our goal is to transform the long-term opti-
mization problem into single-slot online optimization, and find the appropriate
scheduling strategy from the scheduling strategy space Π. Suppose that the
network state at time t is Ω(t) = [Sgw(t),A(t),E(t)]. We define the quadratic
Lyapunov function L(t) = S2

gw(t)
2 [23,31]. The Lyapunov drift �L(t) is defined

as
� L(t) = L(t + 1) − L(t). (10)

For the objective function, we use a penalty function p = P(Ω(t), πT
m(t)) to

represent the impact of the current AoI and the scheduling decision taken on the
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objective function. We define a non-negative weight coefficient V as the balance
factor between the penalty function and Lyapunov drift. We aim to continuously
solve for the minimum of the Lyapunov drift combined with the penalty function
in each time slot. Then our optimization problem P1 can be rewritten as

P2 : min
π∈Π

E[�L(t) + Vp(t)], (11)

s.t. (9c), (9d), (9e), (9f),
� L(t) = L(t + 1) − L(t), (11a)
p = P(Ω(t), πT

m(t)). (11b)

Optimization problem P2 converts the original long-term optimization func-
tion into the optimization objective function in a single time slot. But the Lya-
punov drift here is by definition known to know L(t + 1) in the next time slice.
It goes against our goal of single-slot online optimization. In order to solve this
problem, �L(t) + Vp(t) can be scaled to a certain extent [32]. �L(t) has an
upper bound, i.e. �L(t) ≤ B + Sgw(t)

∑N
i=0 μi(t), where B is a normal num-

ber. Because both the arrival rate and service rate of the gateway cache queue
are bounded, therefore there must be a bounded constant B > 0 that ensures
E[B(t) | Ω(t)] ≤ B in each time slot, i.e. �L(t) ≤ B + Sgw(t)

∑N
i=0 μi(t).

In a single time slot, observe the cache queue status of the gateway and give
a Drift-Plus-Penalty function about PAoI, we have

� L(t) + Vp(t) ≤ B + Sgw(t)
N∑

i=0
μi(t) + Vp(t), (12)

where p(t) is the penalty function associated with the PAoI state, battery queue
state and action strategy of the EDs. We can solve the optimization problem
P2 by solving the minimum value to the right of the above inequality. At this
point, the optimization problem P2 can be transformed into problem P3

P3 : min
π∈Π

E[B + Sgw(t)
N∑

i=0
μi(t) + Vp(t)] (13)

s.t. (9c), (9d), (9e), (9f), (11a), (11b),
B > 0. (13a)

Based on the optimization problem P3, we can finally give a single-slot opti-
mization algorithm, as shown in Algorithm 1.
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Algorithm 1. DPP Algorithm for PAoI and Queue Backlog
1: Initialization:Sgw(0) ← 0,A(0) ← 0,E(0) ← 0, pi(t) = 14dBm. Select

BW , αi(t),PL,H ,DE ,CR according to the LoRa network architecture. Choose
appropriate V and Emax. Set t = 1.

2: Under the t time slot, observe the network state Ω(t) = [Sgw(t),A(t),E(t)] and
select the appropriate scheduling strategy π ∈ Π so that it satisfies the Lyapunov
drift-plus-penalty function:

min
π∈Π

E[B + Sgw(t)
N∑

i=0

μi(t) + Vp(t)]

where the Lyapunov drift-plus-penalty function satisfies the following constraints:
(9c),(9d),(9e), (9f), (11a),(11b).

3: Update the LoRa network architecture:

Ei(t + 1) = min{Ei(t) − μi(t) · (Ec + Etrans
i (t)) + λi(t) · E ,Emax)},

Ai(t + 1) = Ai(t) + 1 − γi(t)Bi(t)Ai(t),

Sgw(t + 1) = max[Sgw(t) − μgw(t), 0] +
N∑

i=0

μi(t).

4: In the next time slot t + 1, repeat the previous steps.

5 Strategy Space Dynamic Reduction Algorithm

In LoRa network, the LoRa gateway can support a large number of EDs. The
increase in the number of EDs will cause the strategy space to increase expo-
nentially. It is obviously inappropriate to traverse the entire strategy space to
obtain the optimal solution for the Lyapunov drift-plus-penalty function in a
single time slot. In order to solve this problem, this paper proposes a Strategy
Space Dynamic Reduction (SSDR) algorithm. It reduces the dimension of the
action strategy space through further analysis of the LoRa network structure.
It finds an approximate optimal solution that satisfies the constraints of the
optimization problem in the strategy space more quickly.

5.1 Battery Queue State and AoI Constraints

As can be seen from the LoRa network system model, the battery queue status
in the end device will determine whether the packet can be successfully transmit-
ted to the gateway. If at one moment, the end device does not acquire enough
energy to store in the battery queue, the decision to transmit packets at the
next moment will be invalidated. Assuming that there are N end devices in the
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current LoRa network, the action strategy space Π1 is represented as

Π1 =

⎡

⎢
⎢
⎢
⎣

μ0,0 μ0,1 . . . μ0,2N

μ1,0 μ1,1 . . . μ1,2N
...

...
...

μN ,0 μN ,1 . . . μN ,2N

⎤

⎥
⎥
⎥
⎦

. (14)

It can be seen that the size of the current strategy space is N × 2N , and the
increase in the number of EDs represents that the strategy space rises according
to the exponential trend. It is not appropriate to take an exhaustive method to
traverse the entire search space. We base constraints on the battery queue status
of the EDs when the battery status of the device does not meet the constraints,
we have

Ei(t) ≥ Ec + E trans
i (t). (15)

Assuming that the number of EDs that do not meet the above constraints
is β1, remove these EDs from the strategy space and rebuild the strategy space
Π2

Π2 =

⎡

⎢
⎢
⎢
⎣

μ0,0 μ0,1 . . . μ0,2N−β1

μ1,0 μ1,1 . . . μ1,2N−β1

...
...

...
μN−β1 ,0 μN−β1 ,1 . . . μN−β1 ,2N−β1

⎤

⎥
⎥
⎥
⎦

. (16)

At this point, the size of the strategy space Π2 is (N − β1 ) × 2(N−β1 ) and
the dimension drops to N − β1 .

Observing the strategy space, it is not difficult to find that when the packet
AoI of the end device is 1, it means that the packet has been successfully trans-
mitted to the gateway, or no packet is generated or store in the end device at the
current moment. We remove the EDs with an AoI of 1 from the strategy space
because the transmission decision will be meaningless when there is no packet
in the end device. Assuming that the number of EDs with AoI=1 is β2, rebuild
the strategy space Π3

Π3 =

⎡

⎢
⎢
⎢
⎣

μ0,0 μ0,1 . . . μ0,2N−β1−β2

μ1,0 μ1,1 . . . μ1,2N−β1−β2

...
...

...
μN−β1 −β2 ,0 μN−β1 −β2 ,1 . . . μN−β1 −β2 ,2N−β1−β2

⎤

⎥
⎥
⎥
⎦

. (17)

After analyzing the battery status and the AoI state of the EDs, the strat-
egy space size at this time is reduced to (N − β1 − β2 ) × 2(N−β1 −β2 ) and the
dimension is N − β1 − β2.

5.2 Further Analysis of AoI

Through the above analysis, the dimension of the strategy space has been
reduced to a certain extent. We further analyze that the AoI of each end device
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and the queue backlog of the gateway will determine whether to transmit pack-
ets. All EDs with the same AoI are essentially the same in our transmission
decisions. Therefore, the action behavior of these end devices with the same AoI
is somewhat repeated in the strategy space.

Suppose that the number of EDs with the same AoI is η. For example, when
η = 5, we number the five EDs as 1, 2, 3, 4, 5. Through the permutation analysis,
we can obtain a total of 32 possibilities for the transmission decision of 5 end
devices. There are six effective decisions in these decisions. So when η = 5,
the original 32 strategies can be reduced to 6. That is, the original 2N action
decisions now only need η + 1 decisions. We set up a hash table, when there are
η end devices with the same AoI, store η + 1 decisions in this table. When the
decision scheduling of a specific number of EDs is searched, the specific action
decision can be taken out from the hash table.

Based on the above analysis, for a certain time, when there are β1 end devices
with insufficient battery energy and β2 end devices with 0 AoI in the LoRa
network, and the number of end devices with the same AoI (excluding 1) is
η, our SSDR algorithm can reduce the total number of policies from 2N to
(η + 1) × 2(N−β1−β2−η). If more than one AoI indicator is the same, that is,
there are φ = (η0, η1, · · · , ηκ) duplicates, then the total number of strategies
that can be implemented by the SSDR algorithm is (η0 +1)(η1 +1) · · · (ηκ +1)×
2(N−β1−β2−η0−η1−···−ηκ). The specific SSDR algorithm is shown below.

Algorithm 2. SSDR Algorithm
Input: Initialize the parameter environment of the LoRa wireless network: Select

BW , αi(t),PL,H ,DE ,CR according to the LoRa network architecture. Choose
appropriate V , LoopTime and Emax. Set t = 1.

1: Sgw(0) = 0,A(0) = 0,E(0) = 0, pi(t) = 14dBm.
2: for each i ∈ Looptime do
3: Update the AoI of all end devices.
4: Update the battery queue for all end devices.
5: if Ei(t) < Ec + Etrans

i (t) then
6: Remove devices that do not meet energy constraints from the scheduling strat-

egy.
7: else
8: Add end devices to the scheduling strategy space.
9: end if

10: if Traverse to the end device that has duplicate AoI then
11: Store the duplicate AoI end device in a hash table.
12: end if
13: Execute the DPP algorithm, search the dynamically reduced strategy space, and

find the most suitable scheduling strategy π.
14: According to the obtained scheduling strategy, update the AoI index, gateway

backlog level, and battery queue energy level of the end device.
15: end for
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6 Simulation Results

In this section, we evaluated the performance of the SSDR algorithm through
simulation experiments and conducted controlled experiments using other com-
monly used algorithms for comparison to compare the average PAoI perfor-
mance under different algorithm strategies. Our simulation experiment results
are shown below.

6.1 Parametric Analysis Under SSDR Algorithm

The calculation of the preamble and payload duration can be obtained through
the LoRa chip calculation tool officially provided by Semtech [3]. Suppose that
the initial network environment is: data arrival probability is θ = 0.4, the number
of EDs is N = 10, and the spreading factor is SF = 8. By setting different energy
arrival probabilities, the simulation results obtained are shown in Fig. 4. As the
energy arrival probability increases, the energy in the battery queue of EDs is
no longer in a state of shortage. Moreover, due to the long-term scheduling of
SSDR, the overall stability of the system is improved. So the energy state of the
battery will maintain at a steady level after a period of time.

Fig. 4. Trend of Battery Energy with Varying Charging Probabilities.

In order to better observe the trend of queue backlog status and the average
PAoI variation under the SSDR algorithm, we set the energy arrival probability
to λ = 0.4 based on the above parameter environment. The queue backlog status
of the gateway and the average PAoI change trend of the system are shown in
Fig. 5 and Fig. 6.

As shown in Fig. 5, it can be seen that the queue backlog of the gateway
has a significant initial decrease, followed by fluctuations at a lower level. It
indicating that our SSDR algorithm does not fully sacrifice the queue backlog
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Fig. 5. Gateway Backlog. Fig. 6. Average PAoI Level.

Fig. 7. Different Data Arrival Proba-
bilities.

Fig. 8. Different Battery Energy
Arrival Probabilities.

of the gateway to minimize the system average PAoI. Figure 6 shows that the
system’s average PAoI can rapidly decrease at the initial stage under the SSDR
algorithm, and then stabilize at a very low level. It is in line with our expectations
for the LoRa wireless monitoring network.

6.2 Compare with Other Algorithms

We have chosen three common wireless network scheduling algorithms to com-
pare the performance of the SSDR algorithm. The random scheduling algorithm
randomly selects a specific number of EDs for transmission in each time slot
while satisfying the queue backlog constraint. The greedy scheduling algorithm
searches for the EDs with the highest AoI in each time slot and selects a specific
number of EDs for data transmission. The zero-wait scheduling strategy is a
common AoI scheduling strategy that maximizes system resource utilization to
avoid any task waiting or suspension. In each time slot, once a qualifying data
packet is generated, it is immediately transmitted, thereby reducing the PAoI
level of EDs.
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In Fig. 7, we initially set the probability of battery queue energy reaching
λ = 0.4, the number of end devices N = 10, and the spread factor SF = 8. While
the probability of data arrival increases on the EDs, the AoI of the EDs will
gradually increase, and eventually tend to a roughly stable level. This is because
the faster the packet is generated, the efficiency of transmission to the gateway is
affected by the backlog of the gateway queue, the energy consumption constraint
of the battery queue, etc., the transmission efficiency decreases, resulting in the
PAoI level of the end device rising.

In Fig. 8, we set different battery queue energy arrival probabilities, and it
can be seen that the average effect of the random scheduling algorithm is poor,
the greedy scheduling algorithm converges quickly and eventually tends to the
effect of our SSDR algorithm, while the zero-wait strategy decreases moderately.
This is because when the probability of energy reaching increases, the battery
of the end device has a greater possibility to ensure the normal transmission of
packets, thereby reducing the PAoI level of the end device.

7 Conclusion

We have conducted research on the optimal packet scheduling problem in LoRa
wireless networks. By utilizing edge servers at the network edge, we obtained pro-
cessing results for monitoring data and provided network status feedback to end
devices. We formulated optimization problems tailored to specific model scenar-
ios. Using the Lyapunov optimization framework, we transformed the long-term
optimization problem into a single time slot optimization problem for selecting
the best scheduling strategy. To address the challenge of a large search space, we
introduced the SSDR algorithm, which dynamically reduces the strategy space
to quickly identify the optimal scheduling strategy. Through simulation experi-
ments, we analyzed the performance of the SSDR algorithm under varying net-
work conditions and compared it with three other commonly used scheduling
algorithms. The simulation results demonstrate that our SSDR algorithm con-
sistently achieves favorable optimization outcomes across different parameter
settings, significantly reducing the age of information for EDs.

References

1. Liya, M., Aswathy, M.: Lora technology for internet of things(IoT):a brief sur-
vey. In: 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud) (I-SMAC), pp. 8–13 (2020). https://doi.org/10.1109/I-
SMAC49090.2020.9243449

2. Shanmuga Sundaram, J.P., Du, W., Zhao, Z.: A survey on Lora networking:
research problems, current solutions, and open issues. IEEE Commun. Surv. Tutor.
22(1), 371–388 (2020). https://doi.org/10.1109/COMST.2019.2949598

3. Gkotsiopoulos, P., Zorbas, D., Douligeris, C.: Performance determinants in Lora
networks: a literature review. IEEE Commun. Surv. Tutor. 23(3), 1721–1758
(2021). https://doi.org/10.1109/COMST.2021.3090409

https://doi.org/10.1109/I-SMAC49090.2020.9243449
https://doi.org/10.1109/I-SMAC49090.2020.9243449
https://doi.org/10.1109/COMST.2019.2949598
https://doi.org/10.1109/COMST.2021.3090409


Joint PAoI and Queue Backlog of Gateway Optimization 289

4. Kaul, S., Yates, R., Gruteser, M.: Real-time status: how often should one update?
In: 2012 Proceedings IEEE INFOCOM, pp. 2731–2735 (2012). https://doi.org/10.
1109/INFCOM.2012.6195689

5. Yates, R.D., Sun, Y., Brown, D.R., Kaul, S.K., Modiano, E., Ulukus, S.: Age
of information: an introduction and survey. IEEE J. Sel. Areas Commun. 39(5),
1183–1210 (2021). https://doi.org/10.1109/JSAC.2021.3065072

6. Chiariotti, F., Vikhrova, O., Soret, B., Popovski, P.: Peak age of information dis-
tribution for edge computing with wireless links. IEEE Trans. Commun. 69(5),
3176–3191 (2021). https://doi.org/10.1109/TCOMM.2021.3053038

7. Wu, D., Zhan, W., Sun, X., Zhou, B., Liu, J.: Peak age of information optimization
of slotted aloha. In: 2022 IEEE 96th Vehicular Technology Conference (VTC2022-
Fall), pp. 1–7 (2022). https://doi.org/10.1109/VTC2022-Fall57202.2022.10012799

8. Bingöl, E., Yener, A.: Peak age of information with receiver induced service inter-
ruptions. In: MILCOM 2022–2022 IEEE Military Communications Conference
(MILCOM), pp. 229–234 (2022). https://doi.org/10.1109/MILCOM55135.2022.
10017555

9. Liu, Z., Zhou, Q., Hou, L., Xu, R., Zheng, K.: Design and implementation on
a Lora system with edge computing. In: 2020 IEEE Wireless Communications
and Networking Conference (WCNC), pp. 1–6 (2020). https://doi.org/10.1109/
WCNC45663.2020.9120572

10. Sarker, V.K., Queralta, J.P., Gia, T.N., Tenhunen, H., Westerlund, T.: A survey on
Lora for IoT: integrating edge computing. In: 2019 Fourth International Conference
on Fog and Mobile Edge Computing (FMEC), pp. 295–300 (2019). https://doi.org/
10.1109/FMEC.2019.8795313

11. Chen, Z., Pappas, N., Björnson, E., Larsson, E.G.: Optimizing information fresh-
ness in a multiple access channel with heterogeneous devices. IEEE Open J. Com-
mun. Soc. 2, 456–470 (2021). https://doi.org/10.1109/OJCOMS.2021.3062678

12. Wang, Y., Chen, W.: Adaptive power and rate control for real-time status updating
over fading channels. IEEE Trans. Wireless Commun. 20(5), 3095–3106 (2021).
https://doi.org/10.1109/TWC.2020.3047426

13. Tang, Z., Sun, Z., Yang, N., Zhou, X.: Age of information analysis of multi-user
mobile edge computing systems. In: 2021 IEEE Global Communications Confer-
ence (GLOBECOM), pp. 1–6 (2021). https://doi.org/10.1109/GLOBECOM46510.
2021.9685769

14. Lv, H., Zheng, Z., Wu, F., Chen, G.: Strategy-proof online mechanisms for weighted
AoI minimization in edge computing. IEEE J. Sel. Areas Commun. 39(5), 1277–
1292 (2021). https://doi.org/10.1109/JSAC.2021.3065078

15. Liu, Q., Zeng, H., Chen, M.: Minimizing AoI with throughput requirements in
multi-path network communication. IEEE/ACM Trans. Netw. 30(3), 1203–1216
(2022). https://doi.org/10.1109/TNET.2021.3135494

16. Hu, L., Chen, Z., Jia, Y., Wang, M., Quek, T.Q.S.: Asymptotically optimal arrival
rate for IoT networks with AoI and peak AoI constraints. IEEE Commun. Lett.
25(12), 3853–3857 (2021). https://doi.org/10.1109/LCOMM.2021.3119350

17. Wang, Q., Chen, H., Gu, Y., Li, Y., Vucetic, B.: Minimizing the age of informa-
tion of cognitive radio-based iot systems under a collision constraint. IEEE Trans.
Wireless Commun. 19(12), 8054–8067 (2020). https://doi.org/10.1109/TWC.2020.
3019056

18. Abd-Elmagid, M.A., Dhillon, H.S.: Closed-form characterization of the MGF of
AoI in energy harvesting status update systems. IEEE Trans. Inf. Theory 68(6),
3896–3919 (2022). https://doi.org/10.1109/TIT.2022.3149450

https://doi.org/10.1109/INFCOM.2012.6195689
https://doi.org/10.1109/INFCOM.2012.6195689
https://doi.org/10.1109/JSAC.2021.3065072
https://doi.org/10.1109/TCOMM.2021.3053038
https://doi.org/10.1109/VTC2022-Fall57202.2022.10012799
https://doi.org/10.1109/MILCOM55135.2022.10017555
https://doi.org/10.1109/MILCOM55135.2022.10017555
https://doi.org/10.1109/WCNC45663.2020.9120572
https://doi.org/10.1109/WCNC45663.2020.9120572
https://doi.org/10.1109/FMEC.2019.8795313
https://doi.org/10.1109/FMEC.2019.8795313
https://doi.org/10.1109/OJCOMS.2021.3062678
https://doi.org/10.1109/TWC.2020.3047426
https://doi.org/10.1109/GLOBECOM46510.2021.9685769
https://doi.org/10.1109/GLOBECOM46510.2021.9685769
https://doi.org/10.1109/JSAC.2021.3065078
https://doi.org/10.1109/TNET.2021.3135494
https://doi.org/10.1109/LCOMM.2021.3119350
https://doi.org/10.1109/TWC.2020.3019056
https://doi.org/10.1109/TWC.2020.3019056
https://doi.org/10.1109/TIT.2022.3149450


290 L. Shi et al.

19. Abd-Elmagid, M.A., Dhillon, H.S.: Distributional properties of age of information
in energy harvesting status update systems. In: 2021 19th International Symposium
on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt),
pp. 1–8 (2021). https://doi.org/10.23919/WiOpt52861.2021.9589825

20. Abd-Elmagid, M.A., Dhillon, H.S.: Age of information in multi-source updating
systems powered by energy harvesting. IEEE J. Sel. Areas Inf. Theory 3(1), 98–
112 (2022). https://doi.org/10.1109/JSAIT.2022.3158421

21. Yates, R.D.: Lazy is timely: Status updates by an energy harvesting source. In:
2015 IEEE International Symposium on Information Theory (ISIT), pp. 3008–
3012 (2015). https://doi.org/10.1109/ISIT.2015.7283009

22. Sharan, B.A.G.R., Deshmukh, S., B. Pillai, S.R., Beferull-Lozano, B.: Energy effi-
cient AoI minimization in opportunistic NOMA/OMA broadcast wireless networks.
IEEE Trans. Green Commun. Netw. 6(2), 1009–1022 (2022). https://doi.org/10.
1109/TGCN.2021.3135351

23. Zhou, Z., Fu, C., Xue, C.J., Han, S.: Energy-constrained data freshness optimiza-
tion in self-powered networked embedded systems. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 39(10), 2293–2306 (2020). https://doi.org/10.1109/
TCAD.2019.2948905

24. Fang, Z., Wang, J., Jiang, C., Wang, X., Ren, Y.: Average peak age of informa-
tion in underwater information collection with sleep-scheduling. IEEE Trans. Veh.
Technol. 71(9), 10132–10136 (2022). https://doi.org/10.1109/TVT.2022.3176819

25. Lavric, A., Popa, V.: Internet of things and LoraTM low-power wide-area net-
works: a survey. In: 2017 International Symposium on Signals, Circuits and Sys-
tems (ISSCS), pp. 1–5 (2017). https://doi.org/10.1109/ISSCS.2017.8034915

26. Saari, M., bin Baharudin, A.M., Sillberg, P., Hyrynsalmi, S., Yan, W.: Lora - a
survey of recent research trends. In: 2018 41st International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics (MIPRO),
pp. 0872–0877 (2018). https://doi.org/10.23919/MIPRO.2018.8400161

27. Pagano, A., Croce, D., Tinnirello, I., Vitale, G.: A survey on Lora for smart agri-
culture: current trends and future perspectives. IEEE Internet Things J. 10(4),
3664–3679 (2023). https://doi.org/10.1109/JIOT.2022.3230505

28. Hamdi, R., Qaraqe, M.: Resource management in energy harvesting powered Lora
wireless networks. In: ICC 2021 - IEEE International Conference on Communica-
tions, pp. 1–6 (2021). https://doi.org/10.1109/ICC42927.2021.9500638

29. Zorbas, D., Abdelfadeel, K.Q., Cionca, V., Pesch, D., O’Flynn, B.: Offline schedul-
ing algorithms for time-slotted lora-based bulk data transmission. In: 2019 IEEE
5th World Forum on Internet of Things (WF-IoT), pp. 949–954 (2019). https://
doi.org/10.1109/WF-IoT.2019.8767277

30. Kumari, P., Mishra, R., Gupta, H.P., Dutta, T., Das, S.K.: An energy efficient
smart metering system using edge computing in Lora network. IEEE Trans.
Sustain. Comput. 7(4), 786–798 (2022). https://doi.org/10.1109/TSUSC.2021.
3049705

31. Hadi, M., Pakravan, M.R., Agrell, E.: Dynamic resource allocation in metro elastic
optical networks using Lyapunov drift optimization. J. Opt. Commun. Netw. 11(6),
250–259 (2019). https://doi.org/10.1364/JOCN.11.000250

32. Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading for mobile
edge computing in dense networks. In: IEEE INFOCOM 2018 - IEEE Confer-
ence on Computer Communications, pp. 207–215 (2018). https://doi.org/10.1109/
INFOCOM.2018.8485977

https://doi.org/10.23919/WiOpt52861.2021.9589825
https://doi.org/10.1109/JSAIT.2022.3158421
https://doi.org/10.1109/ISIT.2015.7283009
https://doi.org/10.1109/TGCN.2021.3135351
https://doi.org/10.1109/TGCN.2021.3135351
https://doi.org/10.1109/TCAD.2019.2948905
https://doi.org/10.1109/TCAD.2019.2948905
https://doi.org/10.1109/TVT.2022.3176819
https://doi.org/10.1109/ISSCS.2017.8034915
https://doi.org/10.23919/MIPRO.2018.8400161
https://doi.org/10.1109/JIOT.2022.3230505
https://doi.org/10.1109/ICC42927.2021.9500638
https://doi.org/10.1109/WF-IoT.2019.8767277
https://doi.org/10.1109/WF-IoT.2019.8767277
https://doi.org/10.1109/TSUSC.2021.3049705
https://doi.org/10.1109/TSUSC.2021.3049705
https://doi.org/10.1364/JOCN.11.000250
https://doi.org/10.1109/INFOCOM.2018.8485977
https://doi.org/10.1109/INFOCOM.2018.8485977


Enhancing Session-Based
Recommendation with Multi-granularity

User Interest-Aware Graph Neural
Networks

Cairong Yan(B) , Yiwei Zhang, Xiangyang Feng, and Yanglan Gan

School of Computer Science and Technology, Donghua University, Shanghai, China
{cryan,fengxy,ylgan}@dhu.edu.cn, ywzhang@mail.dhu.edu.cn

Abstract. Session-based recommendation aims at predicting the next
interaction based on short-term behaviors within an anonymous session.
Conventional session-based recommendation methods primarily focus on
studying the sequential relationships of items in a session while often fail-
ing to adequately consider the impact of user interest on the next inter-
action item. This paper proposes the Multi-granularity User Interest-
aware Graph Neural Networks (MUI-GNN) model, which leverages
item attributes and global context information to capture users’ multi-
granularity interest. Specifically, in addition to capturing the sequential
information within sessions, our model incorporates individual and group
interest of users at item and global granularity, respectively, enabling
more accurate item representations. In MUI-GNN, a session graph uti-
lizes the sequential relationships between different interactions to infer
the scenario of the session. An item graph explores individual user inter-
est by searching items with similar attributes, while a global graph mines
similar behavior patterns between different sessions to uncover group
interest among users. We apply contrastive learning to reduce noise inter-
ference during the graph construction process and help the model obtain
more contextual information. Extensive experiments conducted on three
real-world datasets have demonstrated that the proposed MUI-GNN out-
performs state-of-the-art session-based recommendation models.

Keywords: Recommender system · Session-based recommendation ·
Graph neural network · Self-supervised learning

1 Introduction

Recommender systems can effectively alleviate the issue of information over-
load encountered in the digital age. They are widely used in domains such as
online shopping, social applications, and news media. Traditional recommenda-
tion methods [1,7,23] predict items or services based on the interaction history
of a specific user over a long period. However, in some real-world scenarios, user
information may be anonymous, while platforms can record only short-term
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interactions of a user within a session. The research on session-based recom-
mendation has consequently emerged, which employs interactions logged in the
session to predict the next item or service, without relying on the user iden-
tity [22].

Early researchers use Markov chains (MCs) to capture short-term transi-
tion relationships between items in a session [6,18], which assume that the next
item is only related to the most recent one or a few preceding items. Recurrent
Neural Networks (RNNs) are then utilized to solve sequence-related problems.
RNN-based approaches [8,19] consider each session as a sequential sequence and
have shown fine results. However, RNNs heavily rely on the temporal order of
items in a session, limiting the accuracy of item predictions. In recent years,
Graph Neural Networks (GNNs) [27] have become popular in session-based rec-
ommendation tasks [16,17,25,26,30]. GNN methods employ graph structures to
transfer information between items in a session. These methods have demon-
strated superior performance compared to previous models.

Despite achieving remarkable results, most previous methods primarily focus
on analyzing the sequential patterns of items in sessions without exploring the
multi-granularity user interest adequately. As a result, the potential wealth of
auxiliary information can be untapped during calculation. While session-based
recommendation mainly addresses short and anonymous sequences, it is possible
to incorporate individual and global user interest by combining item attribute
information and global contextual information, respectively. For instance, Fig. 1
illustrates an example of a session-based recommendation task, demonstrating
the collective utilization of sequential relationships with individual and group
user interest contributes to more comprehensive and enriched recommendation
outcomes.

From the granularity of a session, we can infer the session scenario and user
demands by the sequential relationships among different items within the session.
As in Fig. 1, we recommend items such as a mouse and a USB drive based on the
presence of a keyboard and a computer in the session. At the item granularity,
we explore individual user interest by identifying items with similar attributes
to those already recorded in the session. As can be seen, we may recommend a
black phone (in the same category as iPhone) or an iPad (in the same brand
as iPhone). In terms of global granularity, we measure the similarity between
different sessions by comparing the frequency of occurrences of the same item.
Then we are able to understand the group interest of multiple users with similar
behavior patterns. In the figure, a data cable and Airpods are recommended
based on the contextual information derived from other sessions. Therefore, by
analyzing user interest at different levels of granularity, the comprehensiveness
and diversity of recommendation results can be further improved.

Self-supervised learning(SSL) [9,14] has recently gained significant attention
recommender systems. In our case, we employ self-supervised learning to facili-
tate the model in studying global representation information. Additionally, given
the large number of items with similar attributes, contrastive learning methods
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Fig. 1. An example of session-based recommendation incorporating multi-granularity
user interest. The gray box recommends items by sequential relationships in the session.
The blue and red boxes capture the users’ multi-granularity interest and offer richer
options to enhance recommendation performance. (Color figure online)

can also be used to reduce noise interference during the initial construction pro-
cess of the item graph.

Overall, the main contributions of this paper are summarized as follows:

– We propose a model structure which captures sequential relationships, indi-
vidual interest, and group interest of users from three different levels of gran-
ularity: session, item, and global, respectively. Multi-granularity user interest
is used to enhance the result of the model prediction.

– We apply contrastive learning to fuse global representations and reduce noise
interference during model construction, thereby enabling the model to obtain
more contextual information and improve recommendation effectiveness.

– Extensive experiments on three real-world datasets have shown that our
model achieves greater performance compared to the state-of-the-art methods
in session-based recommendation tasks.

The remainder of this paper is organized as follows. Section 2 briefly discusses
related work. Section 3 presents the methodology. In Sect. 4, we demonstrate the
effectiveness of this method through experiments. Section 5 gives a conclusion.
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2 Related Work

2.1 Session-Based Recommendation

The initial research on session-based recommendation primarily focuses on the
temporal information of items in a session, and Markov chains have been widely
applied [6,18]. FPMC [18] combines MCs with matrix factorization techniques
to capture user sequence behaviors and preferences simultaneously. Fossil [6]
addresses data sparsity issues and the long-tailed distribution problem in the
datasets by fusing similarity-based methods with MCs. The models mentioned
above only consider the most recent few interactions while predicting and fail to
capture the transfer of user interest and higher-order information.

With the rise of deep learning techniques in fields such as computer vision
and natural language processing, researchers started using RNNs for analyzing
session data. Compared to conventional methods, RNN-based models offer supe-
rior learning capabilities and effectively extract data patterns within sequences.
The GRU4REC [8] method is a typical representative, which introduces Gat-
ing Recurrent Units (GRUs) to session-based recommendation and yields good
results. Later, data augmentation techniques [19] are used to further improve
the recommendation performance by RNN-based models. NARM [12] proposes
a hybrid encoder with an attention mechanism, which allows the model to focus
on the most relevant items during the recommendation process. STAMP [13]
employs simple multi-layer perception and attention networks to capture user
interest and explicitly accounts for users’ current behavior on their next action.

GNNs have recently gained significant attention in session-based recommen-
dation tasks. Compared to previous methods, GNNs capture complex item tran-
sition relationships by the graph structure and offer improved accuracy in cal-
culating item and session representations. SR-GNN [26] is a pioneering work
in this area, employing Gated Graph Neural Networks (GGNNs) to learn the
transition relationships of items in the session, and achieves promising results.
GC-SAN [30] obtains local dependencies and long-range dependencies through
GNNs and multi-layer self-attention networks, respectively. FGNN [17] uses a
multi-head attention layer to help aggregate neighbor information by nodes with
different weights. TAGNN [31] takes into account the diverse interest of users
towards target items, thereby personalizing the recommendation task. GCE-
GNN [24] utilizes a subtle approach to exploit the item transition relationships
across all sessions to better infer the user preferences in the current session.
SHARE [21] employs hypergraph attention networks to exploit item correlations
within various contextual windows.

Most existing works analyze sessions primarily based on the sequential infor-
mation of items in the session and do not comprehensively consider user interest
from multi-granularity, which impedes the model performance.
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2.2 Self-supervised Learning

Self-supervised learning is a type of unsupervised learning method where the
label of positive and negative samples is marked through the inherent prop-
erties of the data itself, without manual intervention. Self-supervised learning
can mainly be categorized into contrastive learning [4,9] and generative learn-
ing [3,15]. Generative learning, represented by auto-encoding [10], transforms
the original data into vector representations using an encoder and then recon-
structs it by a decoder. Contrastive learning usually consists of the paradigm
of agent tasks combined with an objective function. Positive and negative sam-
ple pairs are automatically generated by agent tasks, and the Noise Contrastive
Estimation (NCE) is used for the loss function. Notable examples of contrastive
learning methods include SimCLR [2] and MoCo [5].

Self-supervised learning has also been introduced into sequence-related rec-
ommendation tasks. S3-Rec [32] employs Mutual Information Maximization
(MIM) principle to establish correlations among attributes, items, subsequences,
and sequences. S2-DHCN [29] first introduces self-supervised learning to session-
based recommendation and applies contrastive learning on two hypergraph
channels to improve recommendation performance. COTREC [28] explores the
internal and external connectivity of sessions from two different perspectives.
MGS [11] utilizes attribute information in sessions and adopts a contrastive
learning strategy to reduce noise generated by neighboring items with similar
attributes. Self-supervised learning can effectively alleviate the data sparsity
issue that appeared in session-based recommendation.

3 The Proposed Method

In this section, we first formalize the definition of session-based recommendation.
Then we present a detailed introduction to the proposed model. Figure 2 gives a
graphic illustration of the problem definition. Figure 3 demonstrates the overall
structure of the MUI-GNN model.

Fig. 2. A graphic illustration of a session-based recommendation task.
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3.1 Problem Definition

Session-based recommendation tasks aim to predict the next item based on
a user’s limited historical interaction sequence. Here, we use V = {v1, v2,
. . . , v|V |

}
to represent the item set, where |V | is the total number of the

items. Each session is composed of several chronological items, denoted as
s = {vs,1, vs,2, . . . , vs,n}, where vs,i ∈ V (1 ≤ i ≤ n) denotes the i-th item
in session s, and n is the length of the session s. The embedding vector for each
item vi is represented as xi. The ultimate goal of the recommendation model is
to predict the next item vs,n+1 by recommending top-K items under the given
session s.

For each item vi in the session, we label its attribute values as Avi
=

{avi,1, avi,2, . . . , avi,o}, where avi,j (1 ≤ j ≤ o) denotes the value of item vi under
the j-th attribute. The number of attribute types o varies from different datasets.
By utilizing item attributes, we can find k neighbors which share the same
attribute value with vi. We formalize this item set as Nvi

for each attribute,
|Nvi

| = k.

Fig. 3. The overall structure of MUI-GNN.

3.2 Session Graph

Session Graph Construction. Graph neural networks are applied to capture
sequential information about items in a session. Specifically, we represent each
session s as a directed graph Gs = {Vs, Es}, where each node vs,i ∈ Vs denotes
an item in session s and each edge e = (vs,i, vs,i+1) ∈ Es connects two adja-
cent items vs,i and vs,i+1 in the session, representing the transition relationship
between two items. A self-loop is added to each node to prevent information loss
during the iterative process. The middle part in Fig. 3 shows the construction
process of the session graph for session s1.
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Session Graph Convolution. Graph convolution is operated to learn the
transition relationships of adjacent items in the session. We use Graph Attention
Networks(GAT) [20] to help each node learn the representation of the neighbor-
ing nodes. Specifically, for each item vi in the session, the attention coefficients
of each neighboring node are computed:

αij =
exp

(
LeakyReLU

(
eTij

(
x
(l−1)
i � x

(l−1)
j

))

∑
vk∈Nvi

exp
(
LeakyReLU

(
eTij

(
x
(l−1)
i � x

(l−1)
k

)) , (1)

where eij is the embedding of the relation between xi and xj , and l denotes
the layer of graph convolution. x

(l−1)
i is the embedding vector of item vi in the

previous layer. The representation x
(l)
i in the l-th layer is then summed:

x
(l)
i =

∑

xj∈Nxi

αijx
(l−1)
j , (2)

where x
(0)
i = xi in the first layer.

3.3 Item Graph

Item Graph Construction. Collecting items with similar attributes helps us
better explore the individual interest of users at the item granularity. Thus we
construct an item graph. To initialize the representations in the item graph,
an attention mechanism is utilized to aggregate attribute information from the
neighbors of item vi:

αij =
exp

(
LeakyReLU

(
qTj (xi||xj)

)

∑
xk∈Nvi

exp
(
LeakyReLU

(
qTj (xi||xk)

) , (3)

mi =
∑

xj∈Nxi

αijvj , (4)

where mi is the initial representation of the item vi in the item graph. || is the
concatenation operator, and qj is the embedding vector of the j-th attribute.

Item Graph Convolution. We update representations in item and session
graphs together by a dual refinement method. First, we update xi with mi:

βi =

(
W s

1x
(l)
i

)T

W s
2m

(l−1)
i√

d
, (5)

x
(l)
i = x

(l)
i + βi

(
m

(l−1)
i − x

(l)
i

)
, (6)
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where d is the size of the embedding vector, W s
1 ,W s

2 ∈ R
d×d are learnable

parameters, and l denotes the number of layers in the item graph convolution,
m

(0)
i = mi in the first layer.
Then we use the updated x

(l)
i to adjust m

(l)
i by following attention mecha-

nism,

αij =
exp

((
Wm

1 m
(l−1)
i

)T

Wm
2 x

(l)
j

)

n∑

k=1

exp

((
Wm

1 m
(l−1)
i

)T

Wm
2 x

(l)
k

) , (7)

m
(l)
i =

N∑

j=1

αijm
(l−1)
j , (8)

where Wm
1 ,Wm

2 ∈ R
d×d are also learnable parameters. Note that they are dif-

ferent from previous W s
1 and W s

2 . Finally, after the convolution of L layers, we
get the final representation of the session items:

πi = sigmoid
(
Wh

[
x
(0)
i ||x(L)

i

])
, (9)

x
(L)
i = πix

(0)
i + (1 − π)x(L)

i , (10)

where Wh ∈ R
d×2d is a learnable parameter.

3.4 Global Graph

Global Graph Construction. The group interest of users can be captured
by mining similar behavior patterns across sessions. Specifically, we treat each
session as a node in the global graph. Sessions are connected if there is at least
one common item appears.

The weight of the edge is set to Wi,j , whose value is the size of the inter-
section set of items in the two sessions divided by the size of the union set. For
example, in Fig. 3, the edge weight between session s1 and session s2 is 2/5, as
the intersection set is {v2, v3}, and the union set is {v1, v2, v3, v4, v5}.

Global Graph Convolution. The initial embedding θ(0) of each session is the
average of all item embedding xi in the session, and then a convolution process
is operated.

θ(l+1) = D̂−1Âθ(l), (11)

where D̂−1 is the inverse matrix of the degree matrix. At each convolution
layer, θ(l) learns different levels of cross-session information. Thus we average
the embedding of each layer to obtain the final session representation.

θf =
1

L + 1

L∑

l=0

θ(l). (12)
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3.5 Prediction Layers

Session Representation. Intuitively, items at different positions in the session
contain different semantic information, so we impose a positional encoding pi on
each item in the session:

hi = x
(L)
i + pi . (13)

We use a soft attention mechanism to obtain the session representations
fusing the user’s individual interest and the last item.

βi = gT sigmoid
(
W1hi + W2m

(L)
i + W3x

(L)
n + b

)
, (14)

zs =
n∑

i=1

βihi , (15)

where W1,W2,W3 ∈ R
d×d and g, b ∈ R

d are all learnable parameters. m
(L)
i and

x
(L)
n denote the final result in the item graph and session graph convolution,

respectively.
Finally, a gated mechanism is employed to reinforce the last behavior x

(L)
n

to the importance of the session representation explicitly.

θ = sigmoid
(
W4

[
zs||x(L)

n

])
, (16)

sf = (1 − μθ) � zs + μθ � x(L)
n , (17)

where W4 ∈ R
d×2d is the learnable parameter. μ controls the weight of the gating

unit. sf is the session representation we eventually gain.

Prediction. We implement the inner product of the embedding xi of the item
and the final representation sf of the session to get a score ẑi for each item.

ẑi = sTf xi . (18)

A softmax function is used to calculate the probability ŷ that the item will
be recommended.

ŷ = softmax (ẑi) . (19)

The model is optimized by a cross-entropy loss function, which is also com-
monly used in recommender systems.

Lr (ŷ) = −
N∑

i=1

yilog (ŷi) + (1 − yi) log (1 − ŷi) , (20)

where yi is the one-hot representation of the item xi being recommended ground
truth.
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Self-supervised Learning. To further enhance the feature representation, we
also set up self-supervised auxiliary tasks to optimize the model, which is primar-
ily used to learn feature information across sessions. We use InfoNCE [5] with a
standard binary cross-entropy loss function on positive and negative samples.

LSSL = −logσ
(
fD

(
θhi , θli

)) − logσ
(
1 − fD

(
θ̃hi , θli

))
. (21)

The final loss function of the model is:

L = Lr + φLSSL1 + βLSSL2 , (22)

where φ and β are hyper-parameters controlling the weights of LSSL1 and LSSL2 ,
respectively, which are shown as contrastive learning modules in Fig. 3.

4 Experiments

In this section, we first describe the experimental settings. Then a series of evalu-
ations of model performance are conducted by answering the following questions:

RQ1: Does the MUI-GNN model surpass state-of-the-art session-based rec-
ommendation baseline models on several real-world datasets?

RQ2: Does capturing user interest from item and global granularity effectively
enhance the performance of our model?

RQ3: How do key parameters, such as GNN layer number and embedding
size, affect model performance?

4.1 Experimental Settings

Datasets. We conduct experiments on three real-world datasets, namely Digi-
netica, 30music, and Tmall, from different fields and with different data sparsity.
All datasets contain session sequences and attribute information of items. Digi-
netica is a personalized e-commerce search challenge dataset in the CIKM Cup
2016 competition. Here, referring to [17,26,30], we only use its transaction data.
30music is a dataset collected and extracted through the Last. fm API, which
contains user music playback data and divides playback events into different ses-
sions. Tmall records the purchase logs of anonymous users on the Tmall website
during the first six months of “Double Eleven” and the day of “Double Eleven”
from the IJACI-15 competition.

We process the datasets in the same way as [26,29]. We remove sessions of
length 1 and items that appear less than 5 times in the dataset. To enrich the
training and testing data, we subdivide each session into several sub-sessions.
Specifically, on each dataset, from a session s = {v1, v2, v3, . . . , vn}, we gen-
erate new sequences ([v1], v2), ([v1, v2], v3), . . . , ([v1, v2, . . . , vn−1], vn) for
both training and testing sets. Similar to [26,29], sessions with interactions in
the past week are used as the testing data, while other sessions are used as the
training data. Table 1 shows the statistical information of three datasets after
preprocessing.
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Table 1. Statistical details of datasets.

Datasets Diginetica 30music Tmall

train sessions 719,470 1,153,622 351,268

test sessions 60,858 122,517 25,898

clicks 982,961 1,429,251 443,479

items 43,097 132,647 40,727

average length 4.85 9.33 6.69

Baseline Methods. We compare our model with the following classical and
state-of-the-art models:

FPMC [18]: It includes Markov Chains and Matrix Factorization models to
capture user interest and interaction sequence.

GRU4REC [8]: It utilizes session parallel mini-batches and a ranking loss
function to enable GRUs to study sequence behaviors.

NARM [12]: It combines RNNs with an attention mechanism to understand
interactions in a session.

SR-GNN [26]: It is the first model to apply GNNs to session-based recom-
mendation, utilizing GGNNs and a soft attention mechanism to learn the repre-
sentation of items.

GCE-GNN [24]: It uses a subtle approach to combine local and global item
transition relationships.

S2-DHCN [29]: It devises two different hypergraph channels to study
inter-session and cross-session information, applying self-supervised learning to
enhance recommendation.

MGS [11]: It constructs a mirror graph based on item attribute information
and employs an iterative dual refinement mechanism to transfer data.

Evaluation Metrics. Similar to previous works [11,29], we measure model
performance through two widely used metrics in session-based recommendation
tasks: P@K and MRR@K.

P@K (Precision) indicates whether ground truth is at the top-K position of
the prediction list:

P@K =
1

|U |
∑

v∈U

∏
(Rv < K), (23)

where |U | is the size of testing set, Rv represents the position of ground truth
item v in the top K of the prediction list.

MRR@K (Mean Reciprocal Rank) measures the position of ground truth
in the top-K recommendation list. Compared to P@K, MRR@K considers the
impact of the result order.

MRR@K =
1

|U |
∑

v∈U

1
Rv

. (24)
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Hyper-parameters Settings. According to [26,30], the size of each mini-batch
is selected based on the size of the hidden vectors. To ensure a fair comparison, we
quote the experimental results of baseline models reported in the original paper
as possible, which is in their best hyper-parameter settings. All parameters follow
a Gaussian distribution with an average value of 0 and a standard deviation of
1. The L2 norm value of the model is set to 10−5 and uses the Adam optimizer.
The initial learning rate is 0.001, and there is a decay rate of 0.1 after the first
three epochs.

Table 2. Performance Comparison of Different Methods on Diginetica dataset.

Method Diginetica

P@10 MRR@10 P@20 MRR@20

FPMC 15.43 6.20 26.53 6.95

GRU4REC 17.93 7.33 29.45 8.33

NARM 35.44 15.13 49.70 16.17

SR-GNN 36.86 15.52 50.73 17.59

GCE-GNN 41.54 18.29 54.64 19.20

S2-DHCN 41.16 18.15 53.18 18.44

MGS 41.80 18.20 55.05 19.13

Ours 42.17 18.29 55.67 19.23

Table 3. Performance Comparison of Different Methods on 30music dataset.

Method 30music

P@10 MRR@10 P@20 MRR@20

FPMC 1.51 0.55 2.40 0.61

GRU4REC 15.91 10.46 18.28 10.95

NARM 37.81 25.95 39.40 26.55

SR-GNN 36.49 26.71 39.93 26.94

GCE-GNN 39.93 21.21 44.71 21.55

S2-DHCN 40.05 17.58 45.49 17.79

MGS 41.51 27.67 46.46 28.01

Ours 42.04 28.58 47.26 28.89
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Table 4. Performance Comparison of Different Methods on Tmall dataset.

Method Tmall

P@10 MRR@10 P@20 MRR@20

FPMC 13.10 7.12 16.06 7.32

GRU4REC 9.47 5.78 10.93 5.89

NARM 19.17 10.42 23.30 10.70

SR-GNN 23.41 13.45 27.57 13.72

GCE-GNN 29.19 15.55 34.35 15.91

S2-DHCN 26.22 14.60 31.42 15.05

MGS 35.39 18.15 42.12 18.62

Ours 36.33 18.42 42.69 18.85

4.2 Experimental Results (RQ1)

Tables 2 to 4 show the performance of our model and baselines on three real-
world datasets. The best and second-best results are highlighted in boldface
and underlined, respectively. From the above tables, we can obtain the following
observations:

RNN-based models (e.g. GRU4REC, NARM) utilize deep learning meth-
ods to capture item transition relationships in sessions, significantly improving
model performance compared to earlier methods (e.g. FPMC), indicating the
importance of utilizing sequential information in sessions. Among them, NARM
performs better than GRU4REC because it uses an attention mechanism to
model user interaction and purpose distinctively.

GNN-based methods demonstrate superior performance compared to RNN-
based models, reflecting GNNs’ ability to model sequential information and
understand complex item transition relationships. The SR-GNN model, as it
does not use any information out of session sequence, has a relatively lower per-
formance than GCE-GNN, which combines global information to model user
interest. S2-DHCN uses the strategy of self-supervised learning combined with
the hypergraph structure of multiple channels. MGS uses the attributes of items
to build mirror graphs to help learn the representation information of items.
Their improvement in model results supports that the application of auxiliary
information plays an important role in session-based recommendation.

Our proposed MUI-GNN shows superior results on all three datasets com-
pared to these traditional and deep learning approaches mentioned above, sug-
gesting that considering multi-granularity user interest with sequential relation-
ships in sessions can effectively enhance the model performance in session-based
recommendation tasks.
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4.3 Model Analysis and Discussion (RQ2 and RQ3)

Impact of Item/Global Graph. To explore the distinctive influence of multi-
granularity user interest on prediction results, we adjust the MUI-GNN model to
verify the effectiveness of the item graph and global graph respectively. Ablation
experiments are conducted on Diginetica and 30music datasets. Table 5 demon-
strates the results of the experiments, with the best performance highlighted in
boldface.

Table 5. Impact of item/global graph

Method Diginetica 30music

P@20 MRR@20 P@20 MRR@20

MUI-GNN 55.78 19.21 47.26 28.89

MUI-GNN w/o global 54.97 19.06 46.49 28.69

MUI-GNN w/o item 55.32 18.73 44.38 28.89

In the table, MUI-GNN w/o global and MUI-GNN w/o item indicates the
MUI-GNN model without global graph/ item graph, respectively. We find that
model’s performance is optimal when the MUI-GNN model contains both the
item and global graph modules, which captures the individual and group interest
of users simultaneously. In general, the absence of either module will cut down
the performance in recommendation results.

Fig. 4. Impact of depths in GNNs.

Impact of Depths in GNNs. We set the item graph and global graph into the
same layer number and tested the performance of models with different depths
over two datasets. The layer number of the graph neural networks in our model
is set to {1, 2, 3, 4, 5}.

As can be seen from Fig. 4, in the Diginetica dataset, it is reasonable to
set the depth of the graph neural networks to 3 or 4, as an over-smoothing
problem will arise when the networks get too deep. While in the 30music dataset,
increasing layers of graph neural networks can further improve the performance
of the model. A possible reason is the average length of the 30music dataset
is nearly as double as of Diginetica, which shows that the data pattern in the
30music dataset is more complex and requires deeper networks to mine the users’
individual and global interest.
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Fig. 5. Impact of embedding size.

Impact of Embedding Size. We test the embedding size in {50, 100, 150,
200} of the MUI-GNN model. Results are shown in Fig. 5. When the embedding
vectors rise to the size of 100, our model achieves considerable performance.
However, the continuous increase of embedding size will not always lead to better
results, as an overly large embedding size may cause massive computation and
overfitting problems.

5 Conclusion

The short and anonymous nature of sessions brings great challenges to session-
based recommendation tasks. In this paper, we propose the MUI-GNN model,
which not only incorporates the sequential relationships in a session but also
explores users’ interest at the item and global granularity to enhance model
performance. Existing models often fail to capture this valuable auxiliary infor-
mation comprehensively. Contrastive learning methods are used to reduce the
noise during the graph construction and help the model learn the contextual
information of the session better. Extensive experiments conducted on three
real-world datasets exhibit the effectiveness and superiority of our model con-
sidering multi-granularity user interest.
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Abstract. Multi-access Edge Computing presents a compelling solution
for delivering seamless connectivity to computing services. In this study,
we aim to optimize multicast throughput to ensure high-quality experi-
ences for passengers engaged in inter-train interactions within dedicated
MEC networks designed for high-speed railways. Considering the unique
challenges associatedwithhigh-speed railways,wemodelmulticast routing
paths as group Steiner trees. Subsequently, we devise a rapid tree construc-
tionmethodby converting the root search into theGeneralizedAssignment
Problem (GAP).This innovative approach skillfully balances accuracy and
computational efficiency. We demonstrate that this problem can be effec-
tively reduced to the bounded knapsack problem with setups. In addition,
we recognize the presence of precedence constraints between tasks and
their respective outcomes. Consequently, we introduce a new variant of
the knapsack problem, which we refer to as the Precedence-constrained
Bounded Knapsack Problem with Setups. Our approach, termed the GAP-
and knapsack-based Group Steiner Tree (GKGST), offers a relative perfor-
mance guarantee of 1/2. We evaluate the GKGST algorithm against three
baseline algorithms, which are adapted and extended from existing litera-
ture. Simulation results indicate that our proposed algorithm exhibits con-
siderable potential for enhanced performance.

Keywords: Edge Computing · High-Speed Railways · Multicast
Throughput · Generalized Assignment Problem · Knapsack Problem

1 Introduction

Mobile devices are an integral part of our daily life and taking high-speed rail-
ways (HSRs) is a popular mode of transportation for long- and short-distance
commuters. Improving the quality of experience (QoE) for the commuters on
board of HSRs is imperative. Multi-access Edge Computing (MEC) presents
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a compelling approach to delivering seamless connectivity to computing ser-
vices. Figure 1 illustrates a scenario of trains accessing a dedicated MEC net-
work through trackside base stations (BSs). By offloading computation-intensive,
time-sensitive tasks, MEC-based interactions among passengers can be realized.

Fig. 1. A scenario of MEC-based computing services among passengers on trains.

Achieving a high QoE for passengers faces great challenges when taking into
account the speed of HSRs. To facilitate the computing service on HSRs requires
frequent handovers between trackside BSs, which leads to interruptions in data
transmissions. The long distances between HSR trains require multicast solutions
to deliver contents across expansive geographic areas and maintain low latency.
In addition, the limited resources, e.g., computational capacity, storage, and
bandwidth, pose additional constraints to a solution.

Multicast, a communication mode that transmits the same computation
results to a group of nearby destinations, is essential to provide such services,
which has been studied in the context of the Internet of Vehicles (IoV) or Vehic-
ular Ad-hoc Networks(VANETs). Babu et al. [1] proposed a distributed tree-
based multicast routing algorithm to reduce tree fragmentation and rejoining
delay in VANETs. Kadhim et al. [8] proposed a delay-efficient approach that
utilizes parked vehicles, fog computing, and software-defined network (SDN) to
discover the optimal multicast route. Keshavamurthy et al. [10] explored the mul-
ticast group-based vehicle-to-vehicle communications by allocating the sidelink
resources subject to the reliability requirements and half-duplex limitation. How-
ever, these techniques are inapplicable to HSR due to the safe distance of tens of
kilometers between neighboring trains [13], while IoV multicast grouping schemes
rely on clustering adjacent vehicles.

As edge-enabled applications for HSRs constitute crucial use cases for 5G net-
works, extensive research has been conducted to explore edge caching, content
delivery, and data offloading strategies within MEC environments for HSR sce-
narios. Xiong et al. [21] proposed a strategy to facilitate collaboration between
user terminals in HSRs and advocated wireless caching of services on the rout-
ing relay to enhance connectivity and performance. Li et al. [11] addressed task
offloading and scheduling problems in high mobility scenarios and designed a
genetic algorithm-based scheme for offloading and task scheduling of predictive
computations with mobility. Li et al. [12] studied a mmWave-based train-ground
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communication system for HSRs, which minimizes the average task process-
ing latency for all users subject to the local device and onboard mobile relay
energy consumption. However, the multi-user, real-time applications on HSR,
e.g., video conferencing, multimedia pushing, and multiplayer gaming, demand
high throughput communication with minimum delays to support multiple users
concurrently, which requires further study.

In summary, the unique challenges posed by the high-speed rail scenarios and
the inadequacy of existing studies serve as the motivation for this paper. The main
contributions of this article are as follows. (i) To the best of our knowledge,
this study makes the first attempt to explore the throughput maximizing prob-
lem by jointly considering the task computation and result multicasting with delay
requirements in the MEC network designed for HSRs. (ii) We introduce the group
Steiner tree to model the routing paths and propose a GAP-based root fast search
scheme. (iii) We propose an efficient algorithm based on a variant knapsack prob-
lem for one-shot optimization, as long as dividing the time into equal time slots
and periodically invoking the proposed algorithm in each slot.

The rest of the paper is organized as follows. Section 2 introduces system
models and basic concepts. Section 3 gives the definition of various delays and
costs in the MEC network. Section 4 defines our problem and formulates the
defined problem as an integer linear programming (ILP). Section 5 divides the
ILP into independent phases to facilitate a step-by-step algorithm. Section 6
shows the experimental results of the performance of the proposed algorithm.
Section 7 concludes this work.

2 System Model

Let H denote a set of moving trains h at a steady speed. Each train may operate
at a different speed. A MEC network, denoted with an undirected graph G =
(V,E), provides communication and computing services to the trains, where V
is the set of routers and E is the set of wired links. A subset of routers Vc ⊂ V is
connected to cloudlets with a computing capacity of Cv. These cloudlets utilize
container-based virtualization technology, where the computing capacity refers
to the maximum number of containers available within each cloudlet. Let Fv

denote the number of CPU cycles per second in each container of a cloudlet v.
Data transmission through routers and links introduces communication latency:
d(e) and d(v) denote the delay on link e ∈ E and router v ∈ V , respectively, in the
transmission of a unit of data traffic. A centralized controller based on software-
defined networks (SDN) [6,18] is used to facilitate global network management.
A set of BSs with routing capabilities, denoted as B ⊂ V , is uniformly deployed
along the tracks and B ∩ Vc = ∅.

Each train offloads tasks to the MEC network, which processes these tasks
into the computation results. Subsequently, these computation results are trans-
mitted to the designated trains. Specifically, let KH(t) denote the task set and
ki,h ∈ Kh is the ith task from train h, ki,h = 〈Hdes

i,h ; zi,h, oi,h, fi,h, di,h〉, where
Hdes

i,h ⊆ H is the set of destination trains to which the computation results



Delay-Constrained Multicast Throughput Maximization in MEC Networks 311

are sent, zi,h is the task volume, oi,h is the volume of the result, fi,h is the
CPU cycles for computing the task, and di,h is the end-to-end delay requirement
of the task. Task ki,h is processed in a cloudlet vi,h ∈ Vc, called the comput-
ing cloudlet. A cloudlet can compute a task if there is an idle container. Each
task is computed exclusively by a container, consuming one unit of computing
capacity. Otherwise, a new container will be initialized. Let ri,h,h′ be the com-
putation result of ki,h sent to train h′, where h′ ∈ Hdes

i,h . Note that during the
multicasting process, the computation results of task ki,h are sent to different
destinations as identical copies, i.e., ri,h,1 = . . . = ri,h,h′ = . . . = ri,h,|Hdes

i,h |. Let
Ri,h denote the results of task ki,h, such that Ri,h =

⋃
h′∈Hdes

i,h
ri,h,h′ . The set

of computation results associated with task set KH(t) is denoted as RH , where
RH =

⋃|H|
h=1

⋃|Kh|
i=1

⋃
h′∈Hdes

i,h
ri,h,h′ . The network throughput is measured by the

total data volume of the tasks and their computation results that can be routed
in the MEC network.

Given that the data volume of any task ki,h is arbitrary, a train is required
to traverse multiple BSs to upload the task. Similarly, the data volume of the
results of task ki,h can also be arbitrary, necessitating the use of multiple BSs to
transmit the result to trains. The BSs that receive the task data are designated
as the source BS group, while the BSs that receive the results are referred to
as the destination BS groups. These BS groups can be subsequently considered
as multicast groups for multicast routing, with the routing paths of a task and
its results constituting a multicast tree. The construction of the tree requires
ascertaining the minimum number of paths needed to connect each multicast
group with the tree’s root. To tackle the challenge, we model the multicasting
path as a group Steiner tree (GST) [7], defined as follows. Let {gi} be a collection
of vertex subsets in G = (V,E), where each subset gi is designated as a group.
The objective is to identify the minimum-cost tree T , which includes at least
one vertex of each group gi. The tree T is referred to as a Steiner group tree.
In the practical implementation, let Ti,h be a group Steiner tree used to route
task ki,h and its results Ri,h. The tree Ti,h has its root at vertex vi,h, which

Fig. 2. An example of the GSTs, where vi,h and vj,h′ are computing cloudlets, v1, v2
and v3 are regular routers, {b1, ..., b7} are BSs, Bs

i,h(Bd
i,h,h) means that such a group

is both a source group and a destination group for task ki,h and its result copy ri,h,h.
The same applies to Bs

j,h′(Bd
j,h′,h′).
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connects to all BS groups in Bi,h. A simple path πi,h connects the source BS
group Bs

i,h ⊂ Bi,h and the root vertex vi,h. Similarly, let πi,h,h′ represent the
simple path that connects the destination BS group Bd

i,h,h′ ⊂ Bi,h with the root
vertex vi,h. Figure 2 presents a representative example of GSTs. In this instance,
tree Ti,h is used to route task ki,h and its corresponding results, ri,h,h and ri,h,h′ .
Tree Ti,h connects the BS groups Bs

i,h and Bd
i,h,h′ to the root vi,h through paths

πi,h = 〈b1, v1, vi,h〉 and πi,h,h′ = 〈vi,hv2, v3, b7〉, respectively. The BS group Bs
i,h

is comprised of BSs b1 and b2, while Bd
i,h,h′ consists of BSs b6 and b7. Similarly,

tree Tj,h′ functions as the GST for task kj,h′ along with its respective results
rj,h′,h and rj,h′,h′ . A detailed description of tree Tj,h′ is omitted here due to the
limited space.

3 Delays and Costs in MEC Networks

3.1 Experienced Delay

Theoretically, passengers achieve the optimal QoE when the delay of task ki,h and
result set Ri,h on multicast tree Ti,h satisfies the end-to-end delay requirement
di,h. The delay of each task ki,h and its result set Ri,h in G comprises (i) the
computation delay in the cloudlet and (ii) the routing delay.

Computation Delay: Let dcmp
i,h (v) denote the delay of task ki,h when calculated

in cloudlet v ∈ Vc. dcmp
i,h (v) can be expressed as dcmp

i,h (v) = fi,h/Fv. where fi,h

denotes the required CPU cycles for task ki,h and Fv signifies the CPU cycles
per second available in each container within cloudlet v.

Routing Delay: Let drou
i,h be the routing delay of task ki,h and its results in Ti,h,

which includes the delay of routing the task ki,h on path πi,h ⊆ Ti,h and the
delay of routing result ri,h,h′ on each path πi,h,h′ ⊆ Ti,h, where h′ ∈ Hdes

i,h . drou
i,h

can be calculated as drou
i,h =

(∑
e∈πi,h

d(e)+
∑

e∈πi,h
d(v)

)
· zi,h

+ maxh′∈Hdes
i,h

{(∑
e∈πi,h,h′ d(e) +

∑
e∈πi,h,h′ d(v)

)
· oi,h

}
. The total delay dnet

i,h

for task ki,h is dnet
i,h = drou

i,h + dcom
i,h (v), The network delay must not exceed the

delay requirement of task ki,h i.e., dnet
i,h ≤ di,h.

3.2 Admission Cost

For task ki,h, its admission cost in network G is the sum of the following costs on
a feasible multicast tree Ti,h: (i) the computing cost in the computing cloudlet,
which is the root of the tree Ti,h; and (ii) the routing cost of forwarding the
data traffic corresponding to the task and its computation results along links
and routers on the multicast tree. Denote c(v) and c(e) as the costs of one unit
of data traffic consuming resources at router v ∈ V and link e ∈ E, respectively.
Additionally, denote ccmp(v) as the computing cost for using one unit of CPU
frequency to process one unit of data in one container of cloudlet v ∈ Vc.

First, let ccmp
i,h (v) denote the computing cost of task ki,h in cloudlet v ∈ Vc,

which can be calculated as ccmp
i,h (v) = ccmp(v) · zi,h · fi,h. Next, denote crou

i,h as
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the routing cost of transferring task ki,h along path πi,h ⊆ Ti,h to computing

cloudlet v, i.e., crou
i,h =

(∑
v∈πi,h

c(v) +
∑

e∈πi,h
c(e)

)
·zi,h, and let crou

i,h,h′ represent
the cost of routing result ri,h,h′ on multicast tree Ti,h. crou

i,h,h′ can be obtained by

crou
i,h,h′ =

(∑
v∈πi,h,h′ c(v) +

∑
e∈πi,h,h′ c(e)

)
· oi,h,h′ , where πi,h,h′ ⊆ Ti,h.

Let C(Ti,h) be the cost of admitting task ki,h on tree Ti,h, which can
be expressed as C(Ti,h) = cpro

i,h + crou
i,h +

∑
h′∈Hdes

i,h
crou
i,h,h′ . Denote CH as the

total cost of admitting task set KH(t), and CH can be expressed by CH =
∑|H|

h=1

∑|Kh|
i=1 Ci,h. In practice, MEC service providers must establish budgets to

generate profits. Let β be the budget allocated for admitting tasks and multicast-
ing results within the MEC network. The total cost CH must meet the constraint
CH ≤ β.

4 Problem Definition and an ILP Formulation

Given a trackside MEC network G = (V,E), tasks from the trains are offloaded
to the BSs, each task having the same delay requirements. The results are then
multicast to the designated trains. The delay-constrained multicast throughput
maximization problem aims to maximize the total data volume of the admitted
tasks and their results. This is achieved by identifying a group Steiner tree
rooted at a suitable computing cloudlet, meeting the following criteria: (i) task
data traffic is routed from the source BS group to the root for computing, (ii)
the computation result is routed to the destination BS groups, and (iii) the costs,
including routing, transmission, and computing, are minimized and comply with
the delay and resource requirements of each task.

In the following, we formulate the defined problem into an ILP. To simplify
the description, we transform the undirected graph G = (V,E) into a directed
graph Gd = (Vd, Ed). Specifically, for each node v ∈ V , we include node v in
Vd. For each link e ∈ E, we add directed edges 〈u, v〉 and 〈v, u〉 to Ed, where
u, v ∈ V . The weights of edges 〈u, v〉 and 〈v, u〉 are equal to the weight of link
e ∈ E, i.e., Vd = {v| v ∈ V }, Ed = {〈u, v〉 | u, v ∈ V }.

The decision variables of the ILP are as follows. ni,h,v takes a value of 1 if
task ki,h is computed in cloudlet v ∈ Vd and value 0 otherwise. nv is 1 if cloudlet
v is chosen as a computing cloudlet and value 0 otherwise. xi,h is 1 if task ki,h

is admitted or 0 otherwise. yi,h,h′ is 1 if result ri,h,h′ is multicast or 0 otherwise.
mi,h,v takes a value of 1 if node v is used to transport the traffic of task ki,h

or its result set Ri,h; otherwise, the value is 0. Decision variable mu,v
i,h holds the

value of 1 if the edge 〈u, v〉 is used for the transportation of task ki,h or its
corresponding result set Ri,h. Otherwise, the value is 0.

Our objective function is

max
|H|∑

h=1

|Kh|∑

i=1

(

zi,h · xi,h+
∑

h′∈Hdes
i,h

oi,h · yi,h,h′

)

. (1)
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To guarantee the fulfillment of the following requirements: (i) a task is processed
exclusively within a single cloudlet; (ii) the total number of nodes designated as
computing cloudlets does not exceed the aggregate count of incoming tasks; and
(iii) node v is capable of executing a task only if v ∈ Vc, it is necessary to adhere
to the ensuring constraints.

∑

v∈Vc

ni,h,v = xi,h, i ∈ Kh, h ∈ H. (1a)

∑

v∈Vc

nv ≤ |KH(t)|, i ∈ Kh, h ∈ H. (1b)

ni,h,v = nv = 0, ∀v ∈ Vd \ Vc. (1c)

Constraint (1d) enforces the capacity constraint for each cloudlet v ∈ Vc.
|H|∑

h=1

|Kh|∑

i=1

xi,h ≤ Cv, ∀v ∈ Vd, nv ≥ 1. (1d)

The data traffic associated with an accepted task, as well as its resulting
output, will be routed on a GST. A GST can be expressed as the constraint [7],
in which �(V ′) denotes the set of edges that possess exactly one endpoint in V ′.

∑

〈u,v〉∈�(V ′)
mu,v

i,h ≥ 1,∀V ′ ⊆ V, such that
{
ni,h,v ∈ V ′ and ni,h,v = 1,
and V ′ ∩ Bi,h=∅ for some i or h.

(1e)

Constraint (1f) enforces the total cost for routing the tasks and the results on
GST Ti,h will not exceed the budget, where Ti,h needs to satisfy the constraint
(1e).

|H|∑

h=1

|Kh|∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

zi,hxi,h

(
∑

〈u,v〉∈Ti,h

c (〈u, v〉) +
∑

v∈Ti,h

c(v)

)

+xi,h · ccmp
i,h (v′)

+
∑

h′∈Hdes
i,h

(

oi,hyi,h,h′
∑

〈u,v〉∈Ti,h

c (〈u, v〉)
)

⎞

⎟
⎟
⎟
⎟
⎠

≤ β,

∀mu,v
i,h = 1, ∀mi,h,u,mi,h,v= 1, mi,h,v′=ni,h,v′= 1.

(1f)

The total delay of an admitted task and its results on GST Ti,h must meet
the delay requirement of task ki,h, as stipulated by the subsequent constraint.

max
h′∈Hdes

i,h

{(
∑

v �=u

mu,v
i,h d(e) +

∑

v∈Vd

mi,h,vd(e)

)

yi,h,h′

}

+ ni,h,v · dcmp
i,h (v) ≤ di,h

+

(
∑

v �=u

mu,v
i,h d(e) +

∑

v∈Vd

mi,h,vd(e)

)

xi,h, ∀mu,v
i,h = 1, ∀mi,h,u,mi,h,v = 1.

(1g)
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Drawing inspiration from the network flow model [14] for multicasting routing
in the directed Steiner tree, we propose our flow model (Constraints (1h)-(1o)) to
capture the traffic changes in GST Ti,h. We call a node consumes a task/result if
the node removes one task/result from the passing data flow. Such a node can be
a computing cloudlet or a BS in the BS group, while other nodes do not consume
tasks or results. Let Ku,v

i,h and Ru,v
i,h be the aggregate number of tasks and results

going from vertex u to v, respectively. Constraint (1h) enforces that the number
of results routing on the path of GST Ti,h is less than the number of the results
multicast by the root. Constraint (1i) ensures that no result can be returned to
the root. Constraints (1j) and (1k) address four cases of results consumed by BS
groups, where node v will not consume any result if (i) v /∈ Bi,h or (ii) v is in a
specific BS group and v connects to other nodes in the same group. Otherwise,
node v will consume

∑|H|
h=1

∑|Kh|
i=1 yi,h,h′ amount of results if (iii) v is in a specific

BS group, and v connects to a node u /∈ Bi,h or (iv) v is in a specific BS group,
and v connects to a node u ∈ Bi,h belonging to another BS group. Constraint
(1l) ensures that no unprocessed task can leave the root of GST Ti,h. Constraint
(1m) and constraint (1n) ensure that only the root can consume tasks and that
no other nodes will consume tasks. Constraint (1o) ensures that only when an
edge between vertex u and vertex v is included in the GST is it possible that
Ku,v > 0.

∑

u�=v

mv,u
i,h · Rv,u

i,h ≤
|H|∑

h=1

|Kh|∑

i=1

∑

h′∈Hdes
i,h

yi,h,h′ ,∀u, v ∈ Vd, ni,h,v= 1. (1h)

∑

u∈V,u�=v

Ru,v
i,h =0, ni,h,v = 1. (1i)

∑

v �=u

mu,v
i,h · Ru,v −

∑

v �=w

mv,w
i,h · Rv,w = 0,

∀ni,h,v,ni,h,u,ni,h,w �= 1,

{
Case 1:∀v /∈ Bi,h;
Case 2:v ∈ Bi,h,h′ , ∀u,w ∈ Bi,h,h′ .

(1j)

∑

v �=u

mu,v
i,h Ru,v −

∑

v �=w

mv,w
i,h Rv,w =

|H|∑

h=1

|Kh|∑

i=1

yi,h,h′ ,

∀ni,h,v,ni,h,u,ni,h,w �= 1,

{
Case3 :v ∈ Bi,h,h′ , ∃u /∈ Bi,h;
Case4 :v ∈ Bi,h,h′ , ∀u ∈ Bi,h,h′′ .

(1k)

∑

u�=v

Kv,u =0, ∀u, v ∈ Vd, ni,h,v = 1. (1l)
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∑

v �=u

mu,v
i,h Ku,v −

∑

v �=w

mv,w
i,h Kv,w = 0,

{
∀u, v, w ∈ Vd,
∀ni,h,v,ni,h,u,ni,h,w �= 1. (1m)

∑

v �=u

mu,v
i,h Ku,v −

∑

v �=w

mv,w
i,h Kv,w =

|H|∑

h=1

|Kh|∑

i=1

xi,h,

{
∀u, v, w ∈ Vd,
ni,h,v= 1,∀ni,h,u,ni,h,w �= 1.

(1n)

|H|∑

h=1

|Kh|∑

i=1

xi,h ·
∑

〈u,v〉∈Ed

mu,v
i,h ≥ Ku,v, ∀u, v ∈ Vd. (1o)

Constraints (1p), (1q), (1r) are employed to confine the decision variables
within the binary range of 0 and 1. Constraints (1s) and (1t) describe the priority
relationships between tasks and their results. These constraints indicate that the
number of results is greater than that of the corresponding tasks, and a result
can be multicast if and only if its corresponding task has been admitted.

ni,h,v,nv ∈ {0, 1}, ∀v ∈ Vc, ∀i ∈ Kh, ∀h ∈ H. (1p)

mu,v
i,h ,mi,h,v ∈ {0, 1}, ∀u, v ∈ Vd. (1q)

xi,h,yi,h,h′ ∈ {0, 1}, ∀i ∈ Kh, ∀h ∈ H. (1r)

xi,h ≥ yi,h,h′ , ∀i ∈ Kh, ∀h, h′ ∈ H. (1s)

xi,h ≤
∑

h′∈Hdes
h

yi,h,h′ ≤ xi,h · |Ri,h|, ∀i ∈ Kh,∀h, h′ ∈ H. (1t)

Solving the formulated ILP directly can be time-consuming for large problem
instances, due to the substantial number of variables and the potential inter-
dependence between them. Achieving the optimal solution remains a feasible
endeavor in instances where the problem size is comparatively modest. Conse-
quently, we will focus on simplifying certain variables within the ILP and dividing
it into independent phases to facilitate a more manageable step-by-step approach
in the remainder of this paper. This approach skillfully balances accuracy and
computational efficiency.
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5 Proposed Method

5.1 Delay-Constrained Minimum-Cost GST Construction

Taking into account the computational constraints of cloudlets within network
G, and considering a given cloudlet v ∈ Vc, a delay-constrained minimum-cost
group Steiner tree Ti,h(v) rooted at v can be identified in G by employing the
|H|-approximate algorithm [19]. In particular, this optimization is conducted
without considering the delay requirement of task ki,h. Duin et al. [5] proposed a
procedure to transform a GST instance into a Steiner tree. Consequently, an iter-
ative algorithm to find the minimum-cost Steiner tree with delay constraints [17]
can be applied directly to the transformed GST. In the end, Ti,h(v) is derived
from the transformed Steiner tree and Ti,h(v) can satisfy the delay requirement
of task ki,h. The mentioned transformation and application are easily imple-
mented, thus we omit details due to the limited space. To this end, we refer to
the tree Ti,h(v) as a candidate tree for task ki,h. Disregarding the limitations of
the cloud computing capacity of cloudlets in network G, our aim is to identify a
set of candidate GSTs, denoted as T can

i,h , for each task ki,h ∈ KH(t):

T can
i,h =

⋃

v∈Vc

Ti,h(v). (2)

5.2 GST Root Fast Search Scheme

Identifying a suitable computing cloudlet vi,h for each task ki,h ∈ KH(t), to
serve as the root of GST Ti,h, presents a significant challenge. Xu et al. [22] dis-
covered that the most time-consuming aspect of their research is the allocation
of appropriate computing cloudlets to each task. In the worst-case scenario, the
algorithm necessitates traversing all cloudlets within network G. Consequently,
the responsiveness of the algorithm may be adversely affected by potential delays
in execution. The efficacy of this search scheme is mainly attributable to the
identification of a candidate solution that admits a subset of KH(t), dependent
on the residual computing capacities of the cloudlets in network G when KH(t)
arrives at G. Significantly, these residual computing capacities are not subject to
updates when evaluating all tasks within KH(t). The process initiates by deter-
mining a candidate solution, which subsequently undergoes iterative refinement
until all computing capacity violations are resolved, thus ensuring a robust and
efficient approach.

Essentially, selecting an optimal GST Ti,h(v) involves identifying the task ki,h

with the lowest admission cost from the candidate GST set T can
i,h . This process

must also ensure that the constraint of computing capacity in cloudlet v ∈ Vc,
which serves as the root of Ti,h(v), is satisfied. Consequently, this is equivalent to
selecting an appropriate cloudlet v within network G to serve as the computing
resource for task ki,h.

Given that various cloudlets may have different residual computing capac-
ities and CPU cycles per second, this indicates that processing ki,h on differ-
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ent cloudlets will lead to different levels of resource consumption costs. There-
fore, this problem can be reformulated as the Generalized Assignment Problem
(GAP) [16], which aims to optimize the assignment profit associated with each
task. In this context, we treat each cloudlet v ∈ Vc as an agent and the capacity
of agent v is equal to the residual computing capacity Cres

v of v. When assigning
a task ki,h to agent v, the size of ki,h is represented by the demanded CPU cycles,
fi,h. The profit derived from placing task ki,h into agent v is the inverse of the
admission cost of task ki,h on tree Ti,h(v), i.e., 1/C(Ti,h(v)). To this end, we
have reformulated the problem of determining the optimal computing cloudlet
for each task within the set KH(t) as a GAP. Cohen’s (2 - ζ)-approximation
algorithm [3] is adopted to address the GAP, where ζ satisfies 0 < ζ ≤ 1.

5.3 Knapsack-Based Throughput Maximization

In this paper, we establish that problem P can be effectively reduced to the
bounded knapsack problem with setups (BKPS) [2]. This approach incorporates
a setup cost and a nonnegative setup value for each item within the capacity
constraint and the objective function, respectively. Initially, we consider either
the budget β ∈ R

+ or the cloudlet computing capacity Cv ∈ Z
+ as the capac-

ity constraint of the knapsack problem (KP). The items in question consist of
tasks from set KH(t), along with their corresponding result copies in RH . The
weights of the items represent the costs associated with routing data across
the edges and vertices of a GST, while the profit of each item contributes to
the network throughput. Variable xi,h is considered a setup operation for task

ki,h, and zi,h

(∑
〈u,v〉∈Ti,h

c (〈u, v〉) +
∑

v∈Ti,h
c(v)

)
+ ccmp

i,h (vi,h) constitutes the
setup cost. Similarly, yi,h,h′ and oi,h

∑
〈u,v〉∈Ti,h

c (〈u, v〉) serve as the setup oper-
ation and cost for result ri,h,h′ , respectively. Moreover, we identify the existence
of precedence constraints between tasks and their corresponding results, i.e., a
result copy can only be multicast if and only if its associated task has been
admitted. Consequently, we introduce a new variant of the knapsack problem,
which we refer to as the Precedence-constrained Bounded Knapsack Problem
with Setups (PCBKPS). To efficiently address the PCBKPS, we subsequently
propose an efficient algorithm with a relative performance guarantee of 1/2.

Let ck
i,h and cr

i,h,h′ be the values of zi,h

(∑
〈u,v〉∈Ti,h

c (〈u, v〉) +
∑

v∈Ti,h
c(v)

)

+ ccmp
i,h (vi,h) and oi,h

∑
〈u,v〉∈Ti,h

c (〈u, v〉), respectively. Define the routing effi-
ciency as the cost of transmitting or processing one unit of data on a GST.
Consequently, the routing efficiency of task ki,h is denoted by zi,h/ck

i,h, while the
routing efficiency of the result set ri,h,h′ is given by oi,h/cr

i,h,h′ .
We define the task priority set, denoted as Kk, as follows: a task ki,h and its

corresponding results are included in Kk if they satisfy the condition zi,h/ck
i,h >

(
oi,h|Ri,h|/

∑
h′∈Hdes

i,h
cr
i,h,h′

)
. Similarly, we define the result priority set, denoted

as Kr, so that a task ki,h and its corresponding results are included in Kr if they

meet the condition zi,h/ck
i,h ≤

(
oi,h|Ri,h|/

∑
h′∈Hdes

i,h
cr
i,h,h′

)
. It is crucial to note

that the task set KH(t) is partitioned by the sets Kk and Kr.
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Without considering the precedence constraint, we focus only on the BKPS
component of problem P, denoted as problem PBKS . We perform a continuous
relaxation for PBKS , and the continuous linear constraint is

xi,h,yi,h,h′ ∈ [0, 1]. (3)

The fundamental concept is to consolidate the decision variables xi,h and∑
h′∈Hdes

i,h
yi,h,h′ in the objective function of the BKPS into a single decision

variable. If task ki,h ∈ Kr, it implies that transferring the results of ki,h consumes
more resources than transferring task ki,h, i.e., xi,h ←

∑
h′∈Hdes

i,h
yi,h,h′/|Ri, h|.

We evenly distribute the values of zi,h and ck
i,h to each result ri,h,h′ , transforming

the routing efficiency of ri,h,h′ to zi,h/|Ri,h|+oi,h

cki,h/|Ri,h|+cr
i,h,h′

.

If task ki,h ∈ Kk, it indicates that transferring task ki,h consumes more
resources than transferring the results of ki,h. In this situation, two cases arise.

Case 1: If
∑

h′∈Hdes
i,h

yi,h,h′ ≥ 1, then xi,h ← 1, and we distribute the values

of zi,h and ck
i,h to result ri,h,h∗ , where ri,h,h∗ has the smallest routing efficiency

among the result set Ri,h. Consequently, the routing efficiency of ri,h,h∗ becomes

(zi,h + oi,h)
/(

ck
i,h + cr

i,h,h∗

)
.

Case 2: If
∑

h′∈Hdes
i,h

yi,h,h′ < 1, then xi,h ← yi,h,h′ , and the routing efficiency
of each result ri,h,h′ remains unchanged.

Ultimately, the constraint of xi,h is transformed as follows.

xi,h =

⎧
⎪⎪⎨

⎪⎪⎩

1, ki,h ∈ Kk,
∑

h′∈Hdes
i,h

yi,h,h′ ≥ 1,
∑

h′∈Hdes
i,h

yi,h,h′ , ki,h ∈ Kk,
∑

h′∈Hdes
i,h

yi,h,h′ < 1,
∑

h′∈Hdes
i,h

yi,h,h′
/

|Ri,h|, ki,h ∈ Kr.

(4)

The objective function of problem P is as follows.

maximize
∑

ki,h∈Kr

∑

h′∈Hdes
i,h

(
zi,h

|Ri,h| + oi,h

)
yi,h,h′

+
∑

ki,h∈Kk

(zi,h + oi,h)yi,h,h∗ +
∑

ki,h∈Kk

∑

h′∈Hdes
i,h

oi,hyi,h,h′ .
(5)

Additionally, Constraint(1f) of problem P is rewritten accordingly.

∑

ki,h∈Kk

∑

h′∈Hdes
i,h ,h′ �=h∗

cr
i,h,h′yi,h,h′ +

∑

ki,h∈Kk

zi,h+oi,h

cki,h+cr
i,h,h∗

yi,h,h∗

+
∑

ki,h∈Kr

∑

h′∈Hdes
i,h

zi,h+oi,h|Ri,h|
cki,h+cr

i,h,h′ |Ri,h|yi,h,h′ ≤ β.
(6)

By incorporating Constraints (4) and (6), problem PBKS is transformed into
an instance of the classic bounded knapsack problem (BKP) [9] by relaxing the
relevant constraints. Consequently, the variable xi,h is eliminated, leaving only
the variables associated with yi,h,h′ in the equation.
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Let Yj represent item type j in BKP, with pBKP
j and cBKP

j denoting the
profit and cost of item type j in BKP, respectively. The upper bound of the
copies of item type j in BKP is indicated by bBKP

j .
By examining the objective function (5) and constraint (6), we can map the

variables and parameters of problem PBKS to the variables and parameters of
BKP as follows: (i) Map each task ki,h ∈ Kr in problem PBKS to item type
Yj in BKP, where j := {1, ..., |Kr|}. Profit pBKP

j and cost cBKP
j of item type

Yj are zi,h
|Ri,h| + oi,h and zi,h+oi,h|Ri,h|

ck
i,h

+cr
i,h,h′ |Ri,h| ·

∑
h′∈Hdes

i,h
yi,h,h′ , respectively. The bound

bBKP
j is |Ri,h|. (ii) Map each task ki,h ∈ Kk with case 1 in problem PBKS to

item type Yj in BKP, where j := {|Kr| + 1, ..., |Kr| + |Kk|}. Profit pBKP
j and

cost cBKP
j of item type Yj are zi,h +oi,h and zi,h+oi,h

ck
i,h

+cr
i,h,h′

, respectively. The bound

bBKP
j is 1. (iii) Map each task ki,h ∈ Kk with case 2 in problem PBKS to item

type Yj in BKP, where j := {|Kr| + |Kk| + 1, ..., |Kr| + 2|Kk|}. Profit pBKP
j and

cost cBKP
j of item type Yj are oi,h and cr

i,h,h′ , respectively. The bound bBKP
j is

|Ri,h| − 1.
As a result, the total number of item types in BKP is |Kr|+2 |Kk|. The BKP

can be represented as follows.

BKP: maximize
|Kr|+2|Kk|∑

j=1

pBKP
j Yj (7)

s.t.
|Kr|+2|Kk|∑

j=1

cBKP
j Yj ≤ β, (7a)

0 ≤ Yj ≤ bBKP
j , Yj ∈ Z

+, j= 1,..., |Kr| + 2 |Kk| . (7b)

Arrange each item type Yj in BKP according to the following order:

pBKP
1

cBKP
1

≥ pBKP
2

cBKP
2

≥ ... ≥
pBKP

j

cBKP
j

≥ ... ≥
pBKP

|Kr|+2|Kk|
cBKP
|Kr|+2|Kk|

. (8)

Following the order of pBKP
j

/
cBKP
j in Eq. (8), item type Yj is added to the

knapsack until the cumulative cost of the first entry exceeds the capacity of the
knapsack. The first item type that causes the capacity to be exceeded is called
the split item type, denoted as Yl. The expression for Yl is:

Yl = arg min
l

⎧
⎨

⎩

l∑

j=1

cBKP
j bBKP

j > β

⎫
⎬

⎭
, 1 <l ≤ |Kr| + 2 |Kk| . (9)

The split item type, Yl, can be identified in O(|Kr| + 2|Kk|) time with-
out sorting the items in BKP using the well-known linear median algorithm [9,
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Section 3.1]. The optimal solution vector Y = (Y1, ...,Y|Kr|+2|Kk|) is determined
by: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Yj = b
BKP

j for j = 1, ..., l − 1,

Yl = 1
cBKP
l

(

β −
l−1∑

j=1

cBKP
j bBKP

j

)

,

Yj = 0 for j = l, ..., |Kr| + 2|Kk|.

(10)

An integer solution without considering the precedence constraint for prob-
lem P can be constructed from the optimal solution vector of BKP as follows.
In BKP, apart from the split item type, the number of result copies for tasks
belonging to set Kr is either zero or equal to the upper bound. Consequently, the
same number of result copies for tasks within Kr is added to the knapsack in the
PBKS instance. Furthermore, the number of result copies for tasks belonging to
set Kk that can be multicast is either zero, one, or equal to the upper bound.
Therefore, the same number of result copies for tasks within Kk is added to the
knapsack in the PBKS instance. Moreover, as many result copies corresponding
to the split item type are added to the knapsack such that the remaining capac-
ity satisfies β −

∑l−1
j=1 cBKP

j bBKP
j ≥ 0. Finally, the constructed solution must

be scrutinized as follows. For all xi,h and
∑

h′∈Hdes
i,h

yi,h,h′ , if the correspond-
ing xi,h for task ki,h is zero, then the value of

∑
h′∈Hdes

i,h
yi,h,h′ should also be

set to zero. This procedure enforces the precedence constraint between xi,h and∑
h′∈Hdes

i,h
yi,h,h′ , ensuring that a result can only be multicast if its corresponding

task has been admitted.

Theorem 1. The proposed algorithm has a relative performance guarantee of
1/2.

Proof. First, let qmax be a feasible solution of the ILP, where we admit the task
with the largest data volume of zi,h +

∑
h′∈Hdes

i,h
oi,h and the results are also

multicast, i.e. qmax = max
i,h

{
zi,hxi,h +

∑
h′∈Hdes

i,h
oi,hyi,h,h′

}
. Then, denote pLP

as the optimal solution of linear relaxation of P, where pLP is an upper bound
of the optimal solution. Furthermore, denote by pG the objective function value
obtained by the proposed algorithm. pG takes the best solution among pLP and
qmax, and pG can be expressed as follows pG = max

{
pLP , qmax

}
. Considering the

optimal solution of P, which is denoted as p∗, it can be seen that the following
inequality for p∗ holds: p∗ < pLP + qmax. Let ρ = pG

p∗ be the approximation

ratio and we can get with ρ = pG

p∗ =
max{pLP ,qmax}

p∗ >
max{pLP ,qmax}

pLP+qmax
. Clearly,

pLP + qmax ≤ 2 · max
{
pLP , qmax

}
, thus ρ >

max{pLP ,qmax}
2·max{pLP ,qmax} = 1

2 .

6 Results and Discussion

6.1 Simulation Settings

The track length is set at 80 km, with four trains initially located at 1, 20, 40,
and 60 km. The velocity of each train is set at 90 m/s. GT-ITM tool [20] is used
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to generate the network topologies. We set the number of BSs in network G as 40.
The parameter settings follow the descriptions in [11,12,21,22]. Each cloudlet’s
computing capacity varies from 100 to 500, and the CPU cycles in a cloudlet are
1.5 GHz. The cost of routing per task/result on a link is randomly set between
0.01 and 0.1, while the cost for a router to route a task/result varies from 0.05
to 0.1. The processing cost of a cloudlet to compute a task is randomly drawn
from 0.5 to 2. The delay on a link or at a router ranges from 1 to 10 ms. Each
multicast group size is selected from a range of 1 to 5. Each task ki,h, and its
result set, Ri,h, are generated as follows: a task randomly chooses its destination
set, Hdes

i,h , from train set H. Volumes zi,h and oi,h are uniformly distributed
within the range of [0.01MB, 30MB]. The demanded CPU cycles, fi,h, vary from
500 to 2000 MHz, and the delay requirement, di,h, is randomly chosen from 100
to 1000 ms. The network size |V | is set to 100. The computational performance
was evaluated using a system equipped with a 3.2 GHz AMD Ryzen-7 8-core
processor and 32 GB of RAM. Each value displayed in the figures was derived
by averaging the results of 50 trials.

To our knowledge, this study represents the first attempt to maximize multi-
cast throughput in MEC networks for HSRs. We have developed an innovative
method, which we refer to as the GAP- and knapsack-based group Steiner tree
(GKGST). Our approach is compared with three baseline algorithms, namely
TradeoffSPT, MinDelaySteiner, and MinCostSteiner, which have been adapted
and extended from [15,23].

To compare the performance of these algorithms within the same network,
we introduce a tuning parameter, λ, and normalize the weights of the edge and
nodes in the network accordingly. The normalized weight wλ(e) of edge e ∈ E
is determined by: wλ(e) = λ · c(e) + (1 − λ) · d(e), and the normalized weight
wλ(v) of node v ∈ V is calculated by wλ(v) = λ · c(v) + (1 − λ) · d(v). All
baseline algorithms consistently select the cloudlet with adequate capacity and
minimum cost, wherein the aforementioned formula computes the cost with the
adjusted turning parameter. The routing trees generated by the baseline algo-
rithms include the source BSs and all destination BSs within the given multicast
groups for each task and its corresponding results. These trees are rooted at
the cloudlet with the lowest computing normalized weight. To organize the task
and result sets KH(t) and RH , the baseline algorithms sort them in ascending
order according to the data volume of each task and result. Subsequently, the
task-result pair with the smallest data volume from sets KH(t) and RH is chosen
until both sets have been completely traversed. We specifically classify GKGST,
MinDelaySteiner, and MinCostSteiner as multicast algorithms, while Tradeoff-
SPT is considered a unicast algorithm. The baseline algorithms are described
below.

• TradeoffSPT: The value of λ for TradeoffSPT is set to 0.5, which means
that the TradeoffSPT pathfinding strategy makes a trade-off between costs and
delays. It is a greedy-based algorithm for unicast paths that requires finding the
shortest path trees (SPTs) using Dijkstra’s algorithm [4].
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• MinDelayStenier: The value of λ is set to 0, which means that the Min-
DelayStenier algorithm always routes tasks and results along the path with the
minimum delay. In a multicast group, it is possible for multiple multicast trees
to co-exist. To maximize network resource utilization and prevent link conges-
tion, these multicast trees are coordinated through a global operation known as
packing. MinDelayStenier serves as an extension of the method described in [23],
adapted to the specific context of this study.

• MinCostSteiner: We set the value of λ to 1 in the MinCostSteiner algorithm.
As a result, the algorithm aims to identify the optimal routing path for each task,
minimizing the aggregate weight of both edges and nodes. This approach does
not account for delay requirements and focuses solely on cost efficiency. The
MinCostSteiner algorithm is an extension of the work presented in [15].

6.2 Performance Evaluation of Different Algorithms

Fig. 3. Throughput and admission cost with respect to the total data volume.

We evaluate the performance of the GKGST algorithm compared to the Min-
CostSPT, MinDelaySPT, and TradeoffSteiner algorithms, focusing on through-
put and admission cost. The total data volume of KH(t) and RH ranges from 250
MB to 1000 MB, while maintaining a constant cloudlet-to-router ratio |Vc|/|V |
of 1/5, and the average size of the multicast group is 5. The results are illus-
trated in Fig. 3. As depicted in Fig. 3(a), the GKGST algorithm outperforms
all baseline algorithms, consistently achieving the highest throughput among
the evaluated methods. When the data volume is small (less than 250MB), the
performance disparities between GKGST, MinDelayStenier, and MinCostSteiner
are relatively insignificant. This occurs because, with a limited data volume of
KH(t) and RH , the network resources are sufficient and the required resources
are minimal. Consequently, the impact of computing capacity is less pronounced
when there are fewer tasks, enabling the baseline algorithms to efficiently plan
paths that satisfy delay requirements. Nevertheless, as the total data volume
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increases, the performance gap between the multicast algorithms and the uni-
cast becomes more pronounced. In particular, the unicast algorithm shows a
drop in throughput when the data volume exceeds 750MB. Eventually, when
the total data volume reaches 1000 MB, GKGST’s throughput exceeds that of
the MinCostStenier, MinDelayStenier, and TradeoffSPT algorithms by 26.5%,
59.3% and 214.9%, respectively. Figure 3(b) demonstrates that the total cost of
task admission increases as the total data volume expands, while GKGST consis-
tently achieves a lower admission cost compared to the three baseline algorithms.
This can be attributed to GKGST’s construction of GAP instances to effectively
search computing cloudlets, thereby the computing costs of various task admis-
sion options can be captured, and the network resources can be efficiently utilized.
Moreover, GKGST plans GSTs to route tasks and results concurrently. A GST
connects at least one BS within a multicast group, resulting in fewer edges and
vertices compared to SPTs and Steiner trees, significantly reducing routing costs.
Furthermore, we observed that as the throughput of TradeoffSPT decreases, the
cost of this algorithm also shows a decrease when the data volume exceeds 750
MB. However, this trend was not evident for multicast algorithms. This discrep-
ancy can be explained by the differing throughputs of the algorithms, suggesting
that Steiner tree-based algorithms are better suited for multicast scenarios.

6.3 Parameter Analysis

Fig. 4. Throughput and admission cost with respect to the ratio |Vc|/|V |.

We assess the performance of the GKGST algorithm by comparing it with
the MinDelaySteiner, MinCostSteiner, and TradeoffSPT algorithms. The eval-
uation metrics used are throughput and total admission cost. To perform this
analysis, we varied the ratio of the number of cloudlets (|Vc|) to the number
of routers (|V |) in the range of 0.1 to 0.5. Additionally, the data volume for
KH(t) and RH was set at 1000 MB. The average size of the multicast group is
5. The outcomes of this comparison are illustrated in Fig. 4. The ratio |Vc|/|V |
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represents the difficulty in identifying suitable computational cloudlets within a
network for a specific task. A higher ratio indicates a larger number of poten-
tially suitable computational cloudlets, thus increasing the likelihood that the
algorithm converges to an improved result within a limited time period.

Figure 4(a) clearly illustrates that the GKGST algorithm consistently outper-
forms all baseline algorithms in terms of throughput. Moreover, the throughput
of all algorithms generally increases as the ratio |Vc|/|V | increases. The through-
put of the unicast algorithm, TradeoffSPT, is less influenced by the ratio |Vc|/|V |
than that of the Steiner-based algorithm. Specifically, when the ratio |Vc|/|V |
increases from 0.1 to 0.5, the throughput of TradeoffSPT merely increases by
19.9%, while the performance of MinDelaySteiner, MinCostSteiner, and GKGST
increase by 36.2%, 37.4%, and 49.1%, respectively. This phenomenon can be
attributed to GKGST’s utilization of a rapid search scheme based on the GAP
problem for locating computing cloudlets, whereas all other baseline algorithms
employ a greedy strategy to select the lowest turning cost cloudlets after sort-
ing them in ascending order of reconciliation cost. As shown in Fig. 4 (b), the
total admission cost tends to decrease with increasing ratio |Vc|/|V |. Compared
to the three baseline algorithms, GKGST consistently achieves a lower admis-
sion cost. This can be explained by the fact that, given a constant number of
nodes within the network, the number of cloudlets possessing idle computing
power increases as the cloudlet ratio increases. When the ratio |Vc|/|V | is low,
tasks either fail to find available computational cloudlets or are forced to utilize
cloudlets near their compute the capacity limit. For example, at a ratio |Vc|/|V |
of 0.1, the availability of cloudlets is limited, resulting in GKGST saving 36.2%,
39.7%, and 48.5% of admission costs compared to the MinCostSteiner, MinDe-
laySteiner, and TradeoffSPT algorithms, respectively. As GKGST consistently
demonstrates the ability to identify cloudlets with lower computational costs, it
can significantly reduce network operating expenses.

Fig. 5. Throughput and admission cost with respect to the size of the multicast group.

We examine the influence of the multicast group size by systematically alter-
ing its average size within a range of 2 to 5. The data volume for both KH(t) and
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RH was set at 1000 MB, while the ratio of |Vc|/|V | was set at 0.2. We compared
the performance of the proposed GKGST algorithm with MinDelaySteiner, Min-
CostSteiner, and TradeoffSPT. The evaluation metrics employed were through-
put and admission cost. The comparative analysis of these algorithms is depicted
in Fig. 5. The average group size is indicative of the data volume for tasks and
results that need to be transmitted; a larger data volume requires more BSs,
resulting in a larger average group size. As illustrated in Fig. 5(a), the through-
put of GKGST remains relatively unaffected by the average group size, while
the three baseline algorithms exhibit a greater degree of sensitivity. Specifically,
both MinCostSteiner and MinDelaySteiner demonstrate a decreasing trend as
the average group size increases. TradeoffSPT experiences a significant drop in
throughput when the group size exceeds three, maintaining a low value even as
the group size continues to increase. Figure 5(b) presents the admission cost of
GKGST compared to the three baseline algorithms, influenced by the average
group size. Reflecting the findings in Fig. 5(a), the admission cost of GKGST is
largely unimpacted by the average group size. In contrast, the admission cost for
the three baseline algorithms shows an increasing trend along with the growth
in the average group size. The observations in Fig. 5 can be attributed to the
inherent properties of the GKGST, which is a GST characterized by at least one
path between its root node and each member of the group. Consequently, GST
can be constructed as long as there is a feasible path, irrespective of group size
variations. On the other hand, all three baseline algorithms essentially construct
a separate routing tree for each BS in the group. As the group size expands, more
leaf nodes must be constructed for the routing tree, leading to an increase in the
admission cost. This elevated admission cost consequently results in a decrease
in throughput when operating costs are constrained.

Fig. 6. Admission ratio with respect to delay.

Figure 6 presents the admission ratio of tasks with varying delay requirements.
It is evident that all algorithms predominantly favor admitting tasks with larger
delay requirements (≥ 500 ms). In particular, we first examine two extreme delay
requirement categories: greater than 700 ms and less than 300 ms. We observe
that the proportions of tasks with delay requirements exceeding 700 ms among
those admitted by GKGST, MinCostSteiner, MinDelaySteiner, and Tradeoff-
SPT are 33.4%, 49.2%, 37.3% and 55.6% of the total number of admitted tasks,
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respectively. On the contrary, the ratios of tasks with delay requirements between
100–300 ms to the total number of admitted tasks are 19.5%, 14.3%, 13.4% and
6.8%, respectively. To assess the preferences of GKGST and the three base-
line algorithms (MinCostSteiner, MinDelaySteiner, and TradeoffSPT) in terms
of task admission with distinct delay requirements, we use the standard devi-
ation as an evaluation metric. Standard deviations of the percentage of total
admitted tasks for the four groups with different delay requirements were calcu-
lated for GKGST, MinCostSteiner, MinDelaySteiner, and TradeoffSPT, yielding
6.7%, 14.3%, 13.8%, and 19.4%, respectively. These results indicate that GKGST
tends to admit tasks with diverse latency requirements in a more balanced man-
ner. This can potentially be attributed to the fact that GKGST’s ranking of
item importance is based on the routing efficiency defined in this study, which
enables the algorithm to minimize the preference for a single dimension when
considering the delay demands and resource consumption of tasks during the
routing tree planning process. On the contrary, the three baseline algorithms
employ a greed-based selection approach, which may inadvertently amplify the
influence of delay on path planning.

7 Conclusion

This paper examines the multicast throughput maximization problem in a track-
side MEC network within a snapshot scenario. The original problem is formu-
lated into an ILP formulation. Subsequently, we introduce a GAP-based cloudlet
search strategy, along with a 1/2-approximate multicast throughput maximiza-
tion algorithm based on a novel variant knapsack problem, achieved by sim-
plifying and partitioning the ILP into independent stages. Simulation results
demonstrate that the proposed algorithm effectively achieves high throughput
by accommodating tasks and multicasting results with diverse data volumes and
varying delay requirements for passengers aboard trains.
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Abstract. Decision making based on predictive traffic flow is one of
effective solutions to relieve road congestion. Capturing and modeling
the dynamic temporal relationships in global data is an important part of
the traffic flow prediction problem. Transformer network has been proven
to have powerful capabilities in capturing long-range dependencies and
interactions in sequences, making it widely used in traffic flow prediction
tasks. However, existing transformer-based models still have limitations.
On the one hand, they ignore the dynamism and local relevance of traffic
flow time series due to static embedding of input data. On the other
hand, they do not take into account the inheritance of attention patterns
due to the attention scores of each layer’s are learned separately. To
address these two issues, we propose an evolving transformer network
based on hybrid dilated convolution, namely HDCformer. First, a novel
sequence embedding layer based on dilated convolution can dynamically
learn the local relevance of traffic flow time series. Secondly, we add
residual connections between attention modules of adjacent layers to
fully capture the evolution trend of attention patterns between layers.
Our HDCformer is evaluated on two real-world datasets and the results
show that our model outperforms state-of-the-art baselines in terms of
MAE, RMSE, and MAPE.

Keywords: Traffic flow prediction · Transformer · Hybrid dilated
convolution · Time series · Attention mechanism

1 Introduction

Traffic congestion on highways has always been a major issue in large cities. With
the rapid growth of urbanization and car ownership, the volume and complexity
of traffic travel data have become increasingly large [14]. Accurate predictive
traffic flow guides cost-effective traffic decisions to alleviate road congestion and
enhance the efficiency of highway operations [25].
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The traffic flow prediction task refers to extracting useful information from
historical data through technical means and then outputting the most likely
future traffic flow. Capturing and modeling the dynamic temporal relationships
in traffic flow data is an important part of this task. The current traffic flow pre-
diction task has the following characteristics. First, the complexity of the rela-
tionships between data increases due to the massive amount of traffic data, so it is
difficult to efficiently extract the relevance between key data. Second, in addition
to being influenced by historical traffic flow, the traffic flow data on roads is also
closely related to the surrounding context of the data points. Third, traffic flow
data time series usually exhibit obvious periodicity (hourly, daily, weekly), which
is also a problem that researchers need to consider. In recent years, the vanilla
transformer networks [26] has demonstrated powerful capabilities in capturing
long-range dependencies and interactions in sequences. Compared with tradi-
tional deep learning networks such as convolutional neural networks (CNNs) or
recurrent neural networks (RNNs), the original transformer (i.e., vanilla trans-
former) replaces the most commonly used recurrent layer in the encoder-decoder
architecture with multi-head self-attention and models sequences entirely based
on attention mechanisms, allowing the network to process all input data in paral-
lel to ensure that the model learns the global relevance of time series. In addition,
it also proposes a position encoding mechanism to preserve the order of elements
in a sequence. Traffic transformer [5] captures the continuity and periodicity of
traffic flow time series using a transformer framework. RPConvformer [29] uses
one-dimensional convolution to embed traffic flow time series data as a replace-
ment for the word embedding method of the original transformer.

However, existing transformer network-based traffic flow prediction models
still have limitations. On the one hand, the static data embedding method cannot
enable the model to learn the dynamic relevance of time series well. The increase
in convolution operations that can learn the local correlation of sequences is
limited by the size of the convolution kernel. On the other hand, most existing
attention-based models do not take into account the inheritance of attention
patterns between layers. They simply stack encoding modules repeatedly and
learn the attention scores of each layer separately.

To address the aforementioned issues, we propose an Evolving Transformer
Network based on Hybrid Dilation Convolution, called HDCformer, for traffic
flow prediction. First, in order to capture the dynamic relevance of time series
while paying attention to the relevance of local areas, we use a hybrid dilated
convolution layer to embed the original time series data. Dilated convolution can
increase the receptive field on the basis of standard one-dimensional convolution
while also solving the problem of reduced accuracy caused by max pooling opera-
tions. Second, in order to capture the dependency relationship between attention
scores of different layers, we directly connect attention modules from adjacent
layers so that attention calculation can depend on the results of the previous
layer and promote information sharing between different layers. In summary,
the main contributions of this paper are as follows.
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• We propose an Evolving Transformer Network based on Hybrid Dilation
Convolution. Our approach adopts the vanilla transformer’s encoder-decoder
architecture, which is based on scaled dot-product attention. We develop a
novel convolutional embedding layer that learns the dynamism and local cor-
relations of traffic flow time series data by stacking dilation convolutions with
different dilation rates.

• We conduct residual connections to the original transformer structure, con-
necting the attention scores of adjacent layers to fully capture the transfer-
ability of attention values between different layers, thereby better learning
the evolution trend of attention patterns.

• We evaluate our model on two public datasets. The experimental results
demonstrate that our model outperforms state-of-the-art baselines on three
metrics: MAE, RMSE, and MAPE.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
related work of this article, including traditional traffic flow prediction methods
and traffic flow prediction methods based on transformer networks. In Sect. 3, we
introduce some basic symbols and problem definitions. In Sect. 4, we describe the
specific implementation details of the traffic flow prediction method proposed in
this paper. In Sect. 5, we evaluate the performance of the proposed method on
two real datasets through experiments and ablation studies. Finally, we summa-
rize the work of this paper and discuss future research directions.

2 Related Work

2.1 Traffic Flow Prediction

The traffic flow prediction can be seen as a mapping from historical time series
traffic data to future time series traffic conditions. Early methods for traffic
flow prediction were based on statistical theory, such as the Historical Aver-
age (HA) [15], which uses weighted calculations of traffic flow between adjacent
time periods and historical periods as the prediction result. The ARIMA [12]
captures linear relationships in time series data for traffic flow prediction. Sta-
tistical models are simple in algorithm and rely on statistical assumptions, but
cannot capture the temporal characteristics and deeper feature information of
traffic flow data.

The emergence of machine learning methods has enabled models to begin
capturing non-linear relationships in data. The most representative of these is
the traffic flow prediction model based on the KNN [8], which selects K nearest
vectors from the historical database for statistical analysis to obtain prediction
results. The SVR [6] requires the selection of an appropriate kernel function to
train the support vector machine and predict traffic flow in the next period.
However, machine learning methods are still unable to cope with increasingly
large and complex data.

To support the prediction of today’s large amounts of traffic flow data,
researchers have begun to use deep learning methods to explore and mine deep
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temporal features and dynamic dependencies between data [16]. Most traffic flow
prediction models are based on CNNs [13] and RNNs [19]. On one hand, due to
the architectural characteristics of RNNs, their network depth can be the length
of a time series. Many researchers use RNNs to construct dynamic time relation-
ships. LSTM [30] solves the gradient vanishing problem brought by deep RNNs
by adding forget gates, input gates, and output gates. SBU-LSTM [10] devel-
oped a bidirectional LSTM layer to capture forward and backward dependencies
in time series data. LSTM-BILSTM [21] further improves prediction accuracy
by combining the advantages of sequential data with the long-term dependen-
cies of bidirectional LSTMs. GRU [9] simplifies the neural network structure
by omitting gates with small contributions in LSTM, improving model learning
efficiency. However, due to its recursive nature, RNNs models are always limited
in solving global parallelization problems in sequences. On the other hand, early
on, CNNs were applied to capture spatial dependencies in traffic flow data in
grid road networks. Recent work has also applied CNNs to time series prediction.
G-CNN [34] explored a feature extractor for high-dimensional multivariate time
series. Some researchers have proposed stacking dilated convolutions, or com-
bining them with causal convolutions, such as [3,4,11], they all demonstrate
the applicability of convolutional networks to time series prediction problems.
Inspired by their works, we developed a hybrid dilated convolution layer to
extract dynamic relevance in time series.

2.2 Transformer Networks for Traffic Flow Prediction

The work [2] first used the attention mechanism in the encoder-decoder, applying
it to the task of neural machine translation. Subsequently, the attention mecha-
nism was widely used in time series prediction tasks [18,22,24]. The vanilla trans-
former [26] is a network architecture completely based on self-attention mecha-
nisms. Due to the outstanding performance of transformers in the field of natural
language processing, more and more researchers have begun to explore the fea-
sibility of transformers in traffic flow prediction tasks. Traffic transformer [5]
captures the continuity and periodicity of time series using the transformer
framework. TERMCast [33] proposes a transformer-based urban traffic predic-
tion architecture that extracts proximity, periodicity, and trend components from
urban traffic sequences.

In addition, researchers have improved the original transformer from two
aspects to achieve optimal prediction performance.The first is to improve several
important modules in the transformer framework. For example, LogSparse [17]
Transformer proposes a convolutional self-attention mechanism that better incor-
porates local environments into the attention mechanism. Informer [36] selects
major queries based on query and key similarity to participate in attention score
calculation, reducing computational complexity. Pyraformer [20] introduces a
pyramid attention module to capture a wide range of time dependencies. Cross-
former [35] captures cross-dimensional dependencies to achieve multivariate time
series prediction.The second is to design a new transformer architecture. For
example, an article [28] proposes a convolution-enhanced attention network that
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promotes information flow between tokens across layers. Autoformer [31] designs
an autocorrelation mechanism that progressively decomposes complex time series
to reduce complexity. Scaleformer [23] designs a new iterative scaling scheme
that iteratively improves predicted time series at multiple scales. We design
convolutional network modules and residual connections to improve the vanilla
transformer architecture.

3 Preliminary

Relevant formal definitions are listed here.

• Definition 1: Traffic Flow Tensor. We define the traffic flow tensor of all
nodes over the total T time slices as {X1, · · · ,Xn, · · · ,XN} ∈ R

N×T , where
Xn = {x1, · · · , xt, · · · , xT } ∈ R

T represents the historical time series of node
n at the last T time steps, N represents the number of nodes in the road
network.

• Definition 2: Traffic Flow Prediction Problem. The objective of traffic
flow forecasting is to accurately predict future traffic flow values utilizing
historical data obtained from N nodes. By fitting a complex function f̃ , traffic
values for the coming P time steps can be forecasted based on traffic data from
N nodes over the previous T time steps. The function is defined as shown in
Formula 1, where θ represents the learnable parameter that is shared among
the time series of all N nodes within the model.

[xT+1, · · · , xT+p, · · · , xT+P ] = f̃([x1, · · · , xt, · · · , xT ; θ]). (1)

4 Methodology

Figure 1 illustrates the framework of HDCformer, which consists of a data embed-
ding layer, a positional encoding layer, a stack of M identical encoder-decoder
layers, and an output layer. HDCformer is an improved model based on the trans-
former network, where the modification specifically includes two aspects. On the
one hand, hybrid dilated convolution is used to construct the data embedding
layer, which captures the correlation of local time series. On the other hand, a
residual connection is added between adjacent encoding layers. That enables the
encoding layer to generate attention based on inherited information and learn
the evolving trend of attention patterns.

4.1 Hybrid Dilated Convolution for Data Embedding

In addition to being influenced by historical ones, traffic flow is also heavily
related to the temporal characteristics [17]. The trend brought by these temporal
characteristics are reflected in the surrounding context. As shown in Fig. 2(a),
points A and B have the same value which is just the median within a one-
hour, but they have completely different fluctuation trends in subsequent time
steps. In other words, the two points have different local temporal characteristics.
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Fig. 1. The framework of HDCformer

For our model, it is necessary to capture such local relevance of time series. In
the vanilla transformer network, the attention score is calculated on a point-by-
point basis, which may lead to time steps with similar traffic flow data capturing
more incorrect matching information. To address this issue, we propose a data
embedding layer based on hybrid dilated convolution, which obtains richer local
information with different dilation rates.

Dilated convolution, as the name suggests, involves injecting holes into stan-
dard convolution to increase the receptive field of the convolutional kernel [32].
The number of holes injected, i.e., the interval between kernels, is referred to as
the dilation rate (denoted as r). In standard convolution, the dilation rate r is
equal to 1. As can be seen from Fig. 2(b), for a 3 × 3 convolutional kernel, the
setting r = 2 significantly increases the receptive field. However, when we stack
multiple 3×3 kernels with r = 2, we find that our kernel is not continuous. This
stacking method results in a loss of information continuity, which contradicts
our original intention of learning time series correlations. A feasible solution [27]
adopts different dilation rates are set for dilated convolutions at different layers
to cover all holes, and achieves better prediction performance than traditional
standard convolution.

The implementation of the data embedding layer is shown in Fig. 1. We com-
bine hybrid dilated convolution with one-dimensional standard convolution. The
one-dimensional standard convolution unit processes the input time series and
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Fig. 2. (a) shows time series on PeMSD4 dataset, where two curves represent the traffic
flow of a node on a weekday and a weekend respectively. Each row in (b) shows the
pixels involved in the convolutional kernel calculation when the convolutional kernel
size is 3×3 for standard convolution (dilation rate = 1), dilated convolution (all dilation
rates = 2), and hybrid dilated convolution (dilation rates of 1, 2, and 3), respectively.

sequentially captures local context. By stacking one-dimensional convolution,
the sequence features are expanded without altering the sequence length. Then,
three layers of hybrid dilated convolution with different dilation rates are used to
improve the local correlation of the time series. Assuming that the input traffic
flow data is Xinput, the mathematical expression of the convolution module is
shown in Formula 2, where B represents the batch size, Tin represents the length
of the input sequence, Din represents the input feature dimension, HDC(·) rep-
resents the hybrid dilated convolution and Demb represents the expanded feature
dimension.

Xinput ∈ R
B×Tin×Din

HDC(·)−−−−−→ Xemb ∈ R
B×Tin×Demb . (2)

Furthermore, to prevent the front position from accessing future information,
padding is adopted with a one-sided complement that has the same output
sequence.

4.2 Positional Encoding

Due to the parallel nature of the framework, sine and cosine functions were
introduced as position encoding in the vanilla transformer framework to mark
the order of the input sequence. In text data, position encoding records the
position information of words in sentences. Compared to text data, traffic flow
data has obvious periodic trend [5]. Therefore, we need to set an appropriate
period value in the positional encoding for time series data. The mathematical
expression of position encoding is shown in Formula 3, where t represents the
time step in the sequence and period is the pre-defined parameter.{

Xpos(2t) = sin( 2πt
period )

Xpos(2t + 1) = cos( 2πt
period )

. (3)
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We concatenate the above positional encoding vector Xpos ∈ R
B×Tin×Dpe

with the data embedding vector Xemb ∈ R
B×Tin×Demb to obtain the input data

X ∈ R
B×Tin×(Dpe+Demb) for the model, where Dpe represents the dimension of

positional encoding.

X = Concat(Xpos,Xemb). (4)

The period helps to more accurately describe the periodic characteristics
of traffic flow data. According to experience, shorter periods can obtain more
effective positional encoding values.

4.3 Evolving Transformer

In the vanilla transformer network, the attention scores of each layer are learned
separately and no interaction exists between layers. That makes it impossible to
learn the evolution trend of attention patterns. Based on the encoder-decoder
architecture using Scaled Dot-Product Attention [26] in the traditional trans-
former, we propose an evolution mechanism that enables stacked blocks to cap-
ture the dependency relationship between attention scores at different layers.
Accordingly, predictive accuracy can be further improved.

The Evolving Mechanism. Inspired by the work [28], our Evolving Trans-
former adds residual connections between adjacent encoder blocks. Specifically,
the attention score of the previous layer is combined with the output result of the
previous block as the input of the current layer’s attention mechanism. Then, the
calculated attention score of the current layer is combined with the input of the
current block and sent to the feedforward network. After layer normalization [1],
the output of the current block is obtained. We use X i−1

res to represent the com-
puted result of the previous block after residual connection (before Feed Forward
Layer), X i−1

out to represent the output of the previous block, X i
in to represent the

input to the attention mechanism of the current block, and X i
out to represent

the output of the current block. Further, Attention(·) is used to represent the
attention operation on X i

in in the current block. In addition, symbols α and β
are pre-defined hyperparameters ranging from 0 to 1 based on empirical values.
The mathematical representation is as follows:

X i
in = α · X i−1

res + (1 − α) · X i−1
out ,

X i
res = β · X i

in + (1 − β) · Attention(X i
in),

X i
out = LayerNorm(FeedForward(X i

res)).

(5)



An Evolving Transformer Network Based on Hybrid Dilated Convolution 337

Multi-head Attention. We use the Scaled Dot-Product Attention model to
calculate attention scores, which is a core part of the transformer architecture.
First, the input data X i

in is linearly transformed to obtain the initial represen-
tations of the three vectors Q = WqX i

in, K = WkX i
in, and V = WvX i

in, which
are then input into the model. Next, the dot product is calculated between Q
and K to determine their relevance, and then the attention scores are calculated
through softmax.

Attention(Q,K, V ) = softmax(
QKT√

Dpe + Demb

)V. (6)

By using multi-head attention, the model can simultaneously focus on infor-
mation from different representation subspaces at various positions. This is not
possible with a single attention head, as averaging would inhibit it. We assume
the multi-headed attention mechanism of the H-heads is defined as follows.

headh = Attention(Qh,Kh, Vh),

Qh = QWh
q ,Kh = KWh

k , Vh = V Wh
v , h = 1, · · · ,H.

(7)

Finally, the outputs of the H-heads are merged and then subjected to layer
normalization to obtain the output of the attention layer, where Wq,Wk,Wv,WO

represent the weight matrices.

Attention(Xin) = LayerNorm(Concat(head1, · · · , headH)WO). (8)

Feed Forward Networks. In our encoder and decoder, each block contains not
only an attention sublayer but also a fully connected feed forward network. Such
network is applied after the attention layer and consists of two linear trans-
formations and an activation function. We define ar, Wr and br as learnable
parameters, the activation function uses the LeakyReLU function, as follows:

FeedForward(Xres) = max(arXres,Xres)Wr + br. (9)

5 Evaluation

5.1 Dataset

The performance of HDCformer was validated on two real-world traffic flow
datasets, PeMSD4 and PeMSD8. The datasets were collected from the California
highway traffic flow data by the Caltrans Performance Measurement System
(PeMS) [7], with data aggregated at 5-min intervals, i.e., 12 sample points per
hour. Details of the two public datasets are given in Table 1.
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Table 1. Details of the two public datasets.

Datasets Nodes Time Interval Timesteps Time Range

PeMSD4 307 5 min 16992 1/1/2018-2/28/2018

PeMSD8 170 5 min 17856 7/1/2016-8/31/2016

5.2 Baseline

We compared HDCformer with the following 7 representative and advanced base-
lines:

• HA [15]: History Average Model, which uses the average historical traffic
flow of a road section within a certain time interval as the predicted value.

• ARIMA [12]: Autoregressive Integrated Moving Average Model, which
treats the sequence as a random time series and approximates it using a
mathematical model.

• KNN [8]: K-Nearest Neighbor Model, which finds neighbors in the histori-
cal database that match the current real-time observation data and uses a
prediction algorithm to obtain the traffic prediction for the next moment.

• SVR [6]: Support Vector Regression Model, which is an application of sup-
port vector machine to regression problems.

• LSTM [30]: Long Short-Term Memory Model, which is a special type of RNN
designed to solve the problem of gradient vanishing and gradient explosion
during training of long sequences.

• GRU [9]: Gate Recurrent Unit Model, which is also a type of RNN that more
efficiently solves the problem of long-term memory and gradient in backprop-
agation.

• RPConvformer [29]: A novel Transformer-based deep neural network for
traffic flow prediction, which developed a fully convolutional embedding
layer and used relative position encoding for linear mapping in multi-head
attention.

5.3 Setting

Our HDCformer is implemented using Ubuntu 20.10, Python 3.7 and the deep
learning framework TensorFlow 2.2.0. We conduct and evaluate all of our exper-
iments on a server equipped with an 8-core Intel(R) Xeon(R) Platinum 8163
2.50GHz CPU and an NVIDIA Tesla T4 16GB GPU.

We split two datasets into training set, validation set, and test set in a ratio
6:2:2. We use the past day’s historical data (288 timesteps) to predict the traffic
flow data for the next hour. Further, the hyperparameters in the model are set
as follows: the initial learning rate is set to 0.001 with Adam as the optimizer,
the batchsize B is set to 32, the maximum epoch is 100, the hybrid dilated
convolution layer has a convolution kernel of 7×7 with dilation rates of [1,2,5],
and the number of encoders and decoders is set to 3 with 8 attention heads.
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We use three commonly used metrics to assess the performance of HDCformer
model: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Mean Absolute Percentage Error (MAPE). The mathematical representations
are as follows,

MAE =
1
N

n∑
i=1

|yi − ŷi| ,

RMSE =

√√√√ 1
N

n∑
i=1

(yi − ŷi)
2
,

MAPE =
1
N

n∑
i=1

|yi − ŷi|
yi

× 100%

(10)

where ŷi represents the the predicted value, yi represents the ground truth, N
represents the number of samples in the test set.

5.4 Performance Comparison

Table 2 shows the comparison results of HDCformer and 7 baseline methods for
traffic flow prediction on two public datasets. The results in bold indicate the
best, and the results underlined are the second best. As can be seen, our pro-
posed method outperforms all other baselines on all three indicators, especially
compared to the most important baseline RPConvformer, HDCformer improves
the prediction accuracy on PEMSD4 and PEMSD8 datasets by an average of
8.12% and 3.00%, respectively. Based on the experimental results, we can draw
the following conclusions:

(1) Classical machine learning methods such as KNN and SVR models do not
fully utilize sequence information, ignore the relevance of local trends in
traffic flow sequences, and are easily affected by local outliers, resulting in
poor generalization ability of the model.

(2) The serial attribute of deep learning-based methods such as LSTM and GRU
models leads to the continuous transmission and amplification of errors in
the recursive process.

(3) The RPConvformer model, based on one-dimensional convolution for
sequence embedding, has a receptive field limited by the size of the convo-
lution kernel, and the local sequence features learned cannot well represent
trend relevance.

In summary, HDCformer combines improved strategies of hybrid dilated con-
volutional networks and evolutionary mechanisms of residual connections with
the transformer framework for traffic flow prediction. Experimental results vali-
date the superiority of the model.
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5.5 Ablation Experiments

In order to further study the effectiveness of the HDCformer model in traffic
flow prediction tasks, we designed the following variants for the data embed-
ding module based on hybrid dilated convolution and the evolved transformer
network.

Table 2. Predictive performance on the PEMSD4 and PEMSD8 datasets.

Model PeMSD4 PeMSD8

MAE RMSE MAPE(%) MAE RMSE MAPE(%)

HA 47.17 70.14 22.98 28.46 36.3 25.92

ARIMA 64.34 84.20 36.93 30.00 38.22 27.76

KNN 52.86 72.25 26.10 22.49 29.85 18.65

SVR 53.81 71.48 29.02 21.54 27.55 19.50

LSTM 38.50 52.06 19.23 19.75 25.96 16.96

GRU 39.78 52.25 22.52 20.19 26.68 17.01

RPConvformer 35.8 47.5 17.51 16.15 21.08 11.02

HDCformer(ours) 32.80 43.60 16.15 15.71 20.54 10.61

• HDCformer(no-dilated-conv): This variant removes the dilated convolution
in the data embedding layer.

• HDCformer(same-dilated-rate): This variant sets the dilation rate of the three
layers of dilated convolution to r=2 uniformly to evaluate the impact of grid-
ding effects on the model.

• HDCformer(no-skip-connection): This variant removes the residual connec-
tions added between adjacent encoder layers, i.e., it degrades to the original
transformer’s encoder stacking method.

The predictive performance of HDCformer and the above three variant mod-
els on the PEMSD4 and PEMSD8 datasets were compared, and the ablation
study results are shown in Fig. 3. By analyzing the experimental results, we can
draw the following conclusions:

(1) HDCformer has a significant improvement in predictive performance com-
pared to HDCformer(no-dilated-conv), which indicates that using dilated
convolution for data embedding is effective in capturing local correlations in
sequences.

(2) The performance of HDCformer(same-dilated-rate) is worse than that of
HDCformer, which indicates that the gridding effect of dilated convolution
causes the model to learn incomplete local sequence features and obtain
defective trend information.
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(3) The performance of HDCformer(no-skip-connection) is worse than that of
HDCformer because this variant ignores the inheritance of attention pat-
terns between layers and the attention scores of each layer are calculated
independently.

Fig. 3. Ablation study on the PEMSD4 and PEMSD8 datasets

6 Conclusion

In this paper, we propose An Evolving Transformer Network based on Hybrid
Dilated Convolution for Traffic Flow Prediction. Specifically, we developed a data
embedding layer based on hybrid dilated convolution by stacking dilated convo-
lutions with different dilation rates to capture the local correlations in traffic flow
time series and enable the model to learn the local trend of the sequence. We fur-
ther connected the attention scores of adjacent layers in the original transformer
to capture the evolution trend of attention patterns between different layers.
Compared to the best baseline, our model improved by 8.12% and 3.00% on the
two datasets respectively, demonstrating the superior performance of the HDC-
former model. Ablation experiment results show that using a data embedding
layer constructed with dilated convolution significantly improves the prediction
accuracy of the model. Adding residual connections between adjacent attention
modules also achieves the purpose of improving performance. As future work,
we will further study the spatio-temporal correlation of traffic flow in road net-
work structures, building on HDCformer and capturing the spatial dependence
of traffic flows using, for example, spatial self-attention mechanisms and spatial
graph modelling.
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Abstract. With the rapid development of IPv6 network applications,
the transition to IPv6 dns has accelerated. In this process, dual-stack
resolvers take on the crucial role that ensures the resolution of domains
under hybrid network conditions. However, the lagging deployment of
IPv6 defence measures may undermine the overall security of resolvers,
making the discovery of dual-stack resolvers vital for DNS security anal-
ysis. Previous methods for discovering dual-stack resolvers are built on
strong but impractical assumptions, ignoring resolvers with multiple alias
IP addresses. In this article, we propose a new dual-stack resolvers dis-
covery model based on alias resolution - DualDNSMiner. DualDNSMiner
involves address alias resolution technology in order to recognize hosts
with multiple alias addresses and identify dual-stack resolvers. Large-
scale measurement experiments show that, DualDNSMiner can reliably
discover over 80% more new dual-stack resolvers compared to previous
judgment rules. In addition, we put forth a novel approach to validate
the accuracy of our findings. The results demonstrate that the precision
of DualDNSMiner can exceed over 90%. Finally, the results of DualDNS-
Miner provide the first proof of the widespread use of alias addresses in
DNS resolvers, which is crucial for analyzing the process of DNS’s IPv6
evolution.

Keywords: DNS · IPv6 · dual-stack resolver · alias resolution

1 Introduction

With the rapid development of IPv6 networks, the adoption rate of IPv6 appli-
cations has been increasing year by year [2,3]. More and more users are now
choosing to access websites and applications through IPv6 networks [14]. This
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has resulted in a significant increase in the demand for IPv6 domain name res-
olution. This implies that, for a foreseeable amount of time, with the continued
existence of IPv4 network applications, both IPv4 and IPv6 will have strong
domain name resolution demands.

As the actual executor of domain name resolution, the Domain Name Sys-
tem (DNS) plays an important role in the transition from IPv4 to IPv6. DNS
mainly consists of three components [23], namely: the client that sends requests,
the authoritative name server that holds domain name records, and the resolver,
which is the most important component in DNS resolution. The resolver can
be divided into the forwarder, which forwards DNS requests, and the recur-
sive resolver, which asks authoritative name servers directly. Due to the vital
role played by recursive resolvers, various modifications have been proposed for
recursive resolvers to handle the IPv4/IPv6 transition [4,5]. One of the proposed
solutions is to modify existing IPv4 resolvers, so that they can also perform IPv6
resolution, which is referred to as dual-stack resolvers [12].

However, the interdependence between IPv4 and IPv6 is prone to unknown
security issues. The lagging deployment of firewall, filtering, and intrusion detec-
tion systems for IPv6 provides an alternative path for application layer attacks
[17]. Dual-stack resolvers could be at serious security risk from DDoS attacks
because IPv6 protocol requires larger packets than IPv4 [16]. Whether an attack
against the IPv6 address of a DNS server impacts an organization’s correspond-
ing service for IPv4 depends on whether it is dual-stacked. Therefore, discovering
the deployment of dual-stack resolvers is a highly meaningful task for both net-
work operators and researchers. By having a comprehensive understanding of
the status of dual-stack resolver deployments, network security professionals can
recognize potential risks.

To discover dual-stack resolvers, some previous work [1,7] based on the
assumption that dual-stack resolvers have a pair of {IPv4, IPv6} addresses
to discover dual-stack resolvers from the relationship between IPv4 and IPv6
resolvers. Obviously, this assumption holds true if there is only one IPv4 or IPv6
address pointing to the host. However, because some hosts have multiple network
interfaces, there can be multiple different IPv4 or IPv6 addresses pointing to the
same host. These addresses are called alias addresses. Some work has shown that
alias addresses are abundant in networks, especially IPv6 addresses [20,24]. This
means that some resolvers could have multiple pairs of {IPv4, IPv6} addresses
at the same time, but will never be discovered by previous methods. This creates
a challenge for the discovery of dual-stack resolvers.

In this paper, we focus on recursive resolvers and propose a new dual-stack
resolver discovery algorithm, DualDNSMiner. Unlike previous work, DualDNS-
Miner will map multiple IPv4 (IPv6) alias addresses to the same IPv4 (IPv6)
host by means of alias resolution. This makes the address relationship will be
transformed into a host relationship. Thus, the criterion for a dual-stack resolver
in DualDNSMiner is that the resolver with a pair of {IPv4, IPv6} hosts
is dual-stacked. Our work makes three main contributions:

1 This is the first application of alias resolution method to solve the prob-
lem of dual-stack resolver discovery. The proposed discovery algorithm can
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increase the resolver discovery rate by more than 80% compared to previ-
ous methods with relatively low cost. It helps to advance the analysis of DNS
deployments during the IPv6 transition process.

2 We present a novel method for verifying whether a resolver is dual-stacked.
In comparison to previous works that relied on verifying through IPv4&IPv6
addresses pattern similarity, our method offers a more reliable and data-
supported approach for verification. This will facilitate the validation of the
effectiveness of future works for the dual-stack resolver discovery.

3 Through our global measurements from two vantage points in different coun-
tries, our data suggests that close to 50% of known dual-stack resolvers have
alias addresses. Owning more addresses indicates that dual-stack resolvers
have more selectable data paths than previously thought, which increases the
risk of being vulnerable to application layer attacks.

In Sect. 2, we will introduce some related works on the dual-stack resolver and
alias address. In Sect. 3, we will present our innovative method, and in Sect. 4,
we will compare the performance of our method and previous methods in prac-
tical detection. Section 5 & 6 provide our future work outlook and conclusion,
respectively.

2 Related Work

2.1 Dual-Stack Resolver Discovery

To our knowledge, we are first one to achieve targeted discovery for dual-stack
resolvers by leveraging their characteristics. However, some studies have observed
the existence of associations between IPv4-IPv6 addresses of resolvers through
CNAME redirection [7]. Al-Dalky et al. [1] referred to these addresses that have
mutual association as a resolver collaborative pool and regarded pools that have
only one IPv4 and one IPv6 address as dual-stack resolvers. They named this
pool behavior as multi-port behavior and interpreted it as either a single multi-
port machine or load balancing across resolver fields.

Some works have also made their own contributions to the discovery of dual-
stack machines. Geoff et al. have tested 45 million clients by deploying dual-stack
authoritative name servers [19]. The results show that 18% of clients use resolvers
that can handle both IPv4 and IPv6 requests. Beverly et al. [8] focus on using
TCP options and timestamps to identify IPv4 and IPv6 dual-stack machines, but
this method have limitations when applied to DNS recursive resolvers. This tech-
niques require TCP, which is a backup transmission protocol for DNS and not
all TCP implementations support TCP timestamp options. Notably, our tech-
nique requires minimal support from the target resolver. Moreover, this method
is primarily designed to determine whether a pair of IPv4 and IPv6 addresses
are pointing to the same host. For situations that involve a larger number of
addresses, the required probing cost for this method will increase exponentially.
Our new algorithm, on the other hand, will complete the discrimination task in
a more lightweight manner.
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2.2 Alias Address

Alias addresses refer to a group of different addresses that point to the same
host. Generally, an IP address represents an interface, and a machine may have
multiple interfaces configured, and thus multiple addresses for the same host
can be derived based on the interface. There has been a considerable amount
of previous works on identifying IPv4 alias addresses [6,20], and the work by
Murdock et al. [24] is the first to demonstrate the widespread existence of IPv6
alias addresses. Their data indicates that alias addresses are distributed across a
considerable number of ASs. Some of these ASs belong to large network service
providers such as Google, Cloudflare, and Akamai which are also major public
DNS service providers.

3 Methodology

Taking into consideration the widespread existence of alias addresses, we confi-
dently posit that a dual-stack resolver does not necessarily have only one IPv6
and one IPv4 address. In other words, the address relationship of a dual-stack
resolver may be 1-N or even M-N. Based on this assumption, we have designed a
novel dual-stack resolver discovery model called DualDNSMiner. The model’s
structure is illustrated as Fig. 1.

DualDNSMinner principally comprises of two steps. The first stage involves
identifying the relationship between IPv4&IPv6 resolvers, and extracting address
clusters that fulfill the requirements for determining the dual-stack resolvers, as
well as their inter-relationships. The second step involves performing alias reso-
lution on IPv4 and IPv6 addresses separately. Consequently, the address-address
relationships can be converted into host-host relationships. Finally, the 1-1 host-
host relationship will be identified, which represents the dual-stack resolvers
recognized by DualDNSMiner.

3.1 Active DNS Measurements

It is essential to know the IPv4/IPv6 addresses owned by the dual-stack resolver
first and confirm their correlation, so as to further confirm the possibility that
they belong to the same host. We thus speculate on the relationship between
IPv4 and IPv6 resolvers through active DNS measurement [7].

In DualDNSMiner, a prober actively probes the resolvers issuing specially
crafted queries for DNS records for which we are authoritative. In this way, we
control both the DNS probes and the authority of the DNS records being probed,
thereby permitting testing of open DNS recursive resolvers in our dataset. Our
authoritative domains are served by a custom DNS server that is standards com-
pliant [13]. Our authoritative server listens on both IPv4 and IPv6, but returns
different results depending upon the incoming request. The server handles mul-
tiple domains that support either IPv4 or IPv6 requests, where the choice of
domain impacts the IP protocol used by a recursive resolver. We initiate queries
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Fig. 1. The workflow of DualDNSMiner. The circle represents an address, and the
rounded rectangle represents a machine with corresponding addresses.
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to the open and forwarding resolvers. The results from our DNS server for the
queried object induce the resolver under test to issue a series of queries that alter-
nate between IPv4 and IPv6 for network transport. We maintain state between
requests by specially encoding the returned results such that the final response to
the recursive query is a “chain” of IPv4 and IPv6 addresses used by the resolver
under test. Figure 2 provides an example timing diagram of the interaction of our
prober and an authoritative DNS server with an open resolver whose addresses
we wish to infer.

Fig. 2. Example of discovering the association between IPv4 and IPv6 resolvers through
active probing. We probe the resolver for our particular domain name, including a
nonce N. The participating IPs(IP2-4 ) are encoded in the CNAME response. The
AAAA response (IPv6 addr) from resolver helps us determine whether the request has
been resolved correctly. The final result is the sequence of IPv4, IPv6 addresses used
by the resolver (here IP2,IP3,IP4,IP5 ). Note that we discard IP1, as it may be a
forwarder rather than the recursive resolver we are looking for.

Note that our methodology includes several techniques to ensure accuracy.
First, each query from the prober includes a nonce that prevents effects due to
DNS caching. Second, all state is maintained in the queries themselves, thereby
removing the potential for miscorrelation of IPv4 and IPv6 addresses. The prober
queries the open resolver or forwarder for a single AAAA record. The resolver can
only fetch this name using IPv4, but instead of returning the record’s value,
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our server returns a canonical name (CNAME) alias. This CNAME encodes the
IPv4 address which contacted our server; for example an IPv4 address 1.2.3.4 is
encoded into the CNAME:

1-2-3-4.v6.domain.
This returned CNAME exists within the IPv6-only domain. The next CNAME

redirects back to IPv4, encoding both IPs. After following another CNAME back
to the IPv6 domain, our server finally returns a preset AAAA record. Note that
while DNS authority servers may typically include multiple records in a single
returned result, our server only returns one result at a time in order to force
multiple lookups and infer the chain. The CNAME encoding scheme ensures that,
even in the worst case ASCII IPv4 and IPv6 encoding expansion, the chains
of length 4 are less than 512 bytes. As 512B is the limit for DNS over UDP,
we ensure that the chains rely on neither truncation nor EDNS0 [26]. At the
end of the domain name resolution, the authoritative DNS, notes the addresses
contained in the requested domain (IP2-IP4 ), and notes the source address of
the incoming query (IP5 ). The authoritative DNS then records this chain and
returns the AAAA record that we set up in advance to allow the prober to check
whether domain name resolution was successful or not.

As we will show in Sect. 4.2, many large-scale resolvers are actually clus-
ters, not individual systems. A cluster might be behind a single publicly facing
IP address with load distributed among multiple backend machines, or might
encompass multiple publicly visible IP addresses. Thus, one can repeat the active
DNS probes multiple times in order to gain a more complete picture of cluster
structure when present. Since the DNS specification [13] requires that the recur-
sive resolver process the entire CNAME chain, these four IP addresses should
represent the same “system” responsible for completing the DNS resolution.
The replies themselves have a 0 s TTL and the request contains a counter, thus
a resolver should never cache the result.

Subsequently, DualDNSMiner merges the probing results (i.e. associations
between addresses) to form a relational graph by merging same-IP nodes, as
shown in Fig. 1. Strongly connected subgraphs are discovered from the rela-
tional graph in order to transform all the results into address clusters composed
of different addresses. Since our objective is to discover dual-stack resolvers,
DualDNSMiner will extracts address clusters satisfying specific conditions: 1) all
addresses in the cluster belong to the same country; 2) all addresses
in the cluster are managed by the same ISP. Next, DualDNSMiner will
perform alias resolution on these address clusters.

The active measurement forces the resolver to use IPv6 (instead of rely-
ing on a resolver’s preference for IPv6 over IPv4). Since the measurements all
occur within a short time window, this measurement is not affected by network
changes. It also produces a set of up to four associations, allowing it to more
effectively and precisely map the structure of a cluster resolver.
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3.2 Dual-Stack Resolver Identification

This step is the core part of DualDNSMiner. Prior studies [1,7] regarded the
addresses assigned to the same organization or company with 1-1 relationships
as potential dual-stack resolvers, and attempted to evaluate their existence by
assessing the similarity of address patterns between IPv4 and IPv6 addresses.
Although this standard is simple, it has a flaw. As mentioned before, the rela-
tionships between v4-v6 resolvers discovered through active probing are address-
address (or interface-interface) relationships that do not represent the host-host
relationships. Due to the existence of alias addresses, different addresses can
actually point to the same host, as Fig. 3 shows.

Fig. 3. The circle represents an address (interface), and the rounded rectangle repre-
sents a machine with corresponding interfaces. Active probing can reveal the relation-
ship between dispersed address interfaces(left), but in reality, they may belong to the
same dual-stack resolver(right).

Therefore, in order to determine whether a dual-stack resolver has these
addresses, the addresses need to be took alias resolution. This will enable
DualDNSMiner to convert the address-address relationships into host-host rela-
tionships. For any address cluster obtained in the first stage, DualDNSMiner
employs different discrimination methods for the corresponding IPv4 and IPv6
addresses.

Alias Resolution for IPv4. The primary idea for alias resolution of IPv4
addresses utilizes IP identification (ID) values information within IPv4. Many
routers generate IP ID values using a simple counter that is shared across inter-
faces on the router. If probe packets are simultaneously sent to two interface
addresses of the same machine, it is possible to determine if they are generated
by the same machine by inspecting the IP ID values in the response packets.
This information can be used to confirm whether these IPv4 addresses are alias.
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Ally [15], RadarGun [6], and MIDAR [20] all use this basic idea to detect aliases,
but differ in how they detect shared counters. Since MIDAR is the first among
the three to develop viable tools for conducting large-scale network topological
analysis, we utilized MIDAR to perform alias resolution of IPv4 addresses within
the address cluster.

Alias Resolution for IPv6. The protocol structure of IPv6 and IPv4 data
packets is entirely dissimilar. The IPv6 protocol neither allows in-network packet
fragmentation, nor the IPv6 header contains an identifier field similar to the
IPv4. Thus, the method that relies on IP ID values cannot be applied to IPv6.
Fortunately, the IPv6 protocol provides support for end-host fragmentation, and
the end-host has the responsibility to maintain the PMTU status. If a prober
tricks fragmentation for one address of a host, when the prober sends ICMPv6
Echo Requests of the same size to other addresses under the same host within a
short time, those addresses will also respond to the fragmented packets. Building
upon this concept, Beverly [9] et al. proposed to obtain the fragment identifica-
tion of the interface by sending the ICMPv6 Packet Too Big message. Similarly,
we have optimized the original probe steps to enable DualDNSMiner to handle
large-scale IPv6 alias resolution tasks. Algorithm 1 represents our IPv6 alias
resolution process.

Algorithm 1 . isv6aliases(C): Determine whether the IPv6 addresses in the
cluster C corresponds to the same machine
Require: Active IPv6 addresses in the cluster C
Ensure: Collection of addresses for the same machine M
1: while C is not null do
2: M+=1
3: sendTooBig(C0)
4: if IsFrag(C0) then
5: for i = 1 to length(C) do
6: sendEcho(Ci)
7: if IsFrag(Ci) then
8: {IPM}← Ci

9: DELETE(C,Ci)
10: end if
11: end for
12: end if
13: DELETE(C,C0)
14: end while
15: return {{IPM},{IPM+1},. . .}

Specifically, the IPv6 addresses in an address cluster will be treated as a single
set. First, DualDNSMiner collects the status of all addresses in the set (whether
they respond, whether they are fragmented, and the size of their PMTU) by
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sending ICMPv6 echo requests. Then it performs alias resolution in a loop.
During each iteration, we send a Packet Too Big packet to the first address in
the set and check if its response characteristics change (whether it responds,
is fragmented, and the size of fragmentation). It sends echo request packets to
other addresses and checks if their responses also change simultaneously. All IPv6
addresses that change simultaneously will be extracted as addresses of the same
host and removed from the set. This process continues until the set is empty,
completing the IPv6 alias resolution of the address cluster.

Identification. The host-to-host relationship is a crucial criterion for DualDNS-
Miner to determine whether a set of addresses belongs to the same dual-stack
resolver. After conducting alias resolution of the IPv4 and IPv6 addresses in
different address clusters, DualDNSMiner will be able to group one or more
addresses into a single host. This allows us to convert one or more IP nodes
into a single host node in the original association graph obtained from active
measurement. As a result, DualDNSMiner can obtain cooperative relationships
between IPv4 and IPv6 hosts, yielding a cooperative association graph at the
host level.

We believe that for a dual-stack resolver, it can only be abstracted as a
{IPv4, IPv6} host pair at the IP protocol level, and it cannot form multiple
pairs (which means there are at least two different machines in it). Based on
this concept, a dual-stack resolver’s feature in the graph should exhibit a stable
association between an IPv4 host and an IPv6 host without a third
one. Therefore, DualDNSMiner searches for such host relationships to identify
dual-stack resolvers and complete the discovery task. The addresses correspond-
ing to the IPv4 and IPv6 hosts included in the relationship are the ones that
point to the same dual-stack resolver.

4 Result

4.1 Data Sets

We first need to discover and collect the relationship between IPv4/IPv6
resolvers as our dataset by actively sending DNS query requests. In order to
ensure the accuracy of the experiment, we rent two virtual private servers (VPS)
in the America and China as our vantage points. All IPv4 open resolvers are
tested by sending DNS query request packets to all globally reachable IPv4
addresses through these points. The observation time and collection results of
each vantage point are shown in the Table 1.

Through active measurement experiments conducted across the entire IPv4
address space, we discover 77,709 unique recursive resolvers (addresses that send
DNS requests to our authoritative servers) based on 895,702 open resolvers
(addresses that could return DNS responses). Of these resolvers, 12,602 are
IPv6 addresses and 65,107 are IPv4 addresses. After conducting strong con-
nected subgraph detection, we identify 6,987 address clusters. By filtering the
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Table 1. Configuration of the measurement and the result of the collected IPv4&IPv6
resolver address from name server’s log. Note that the collected addresses all belong to
recursive resolvers.

Vantage Point Collection Period IPv4 IPv6 Notes

Hong Kong,
China

Apr. 19 to May. 27, 2023 64,421 12,059 10 repeated tests to global
IPv4 open resolvers.

California,
USA

Apr. 1 to 5, 2023 64,839 12,206 5 repeated tests to global
IPv4 open resolvers.

Sum 65,107 12,602 Removing duplicate values
from the results obtained at
different vantage points

clusters according to the rule that all addresses in the cluster are located in
the same country and managed by the same ISP, we narrow down the clusters
to 2,184. All subsequent data analysis and DualDNSMiner’s dual-stack resolver
discovery results are based on these address clusters.

Based on the exploration results, we conduct comparative experiments to
demonstrate the highlights of DualDNSMiner. In this section, we will introduce
the experimental results and explain some of our findings.

4.2 Relationship Between IPv4-IPv6 Resolvers

1-1. The 1-1 IPv4-IPv6 relationship has always been considered as the primary
feature of dual-stack resolvers. Our data reveals 741 address clusters that con-
sisted of an IPv4 and IPv6 address. By comparing IPv4 and IPv6 address strings,
we found that 279 address clusters had IPv6 addresses with the IPv4 address
directly embedded in (e.g., 1.2.3.4 & abcd::1:2:3:4), while 84 IPv6 addresses
with IPv4 hex encoded and embedded (e.g., 1.2.3.4 & abcd::0102:0304). This
discovery led us to a conclusion similar to that of Al-Dalky’s work [1], which is
that there is a certain similarity between IPv4 and IPv6 addresses in the 1-1
relationship. This similarity may be due to special customization by network or
resolver administrators to facilitate addressing.

1-N. The 1-N relationship is the primary focus of our DualDNSMiner. This
relationship only requires alias resolution of N addresses to determine whether
it is a dual-stack resolver. This is simpler than determining the M-N relationship
(which is more likely to be caused by load balance) and is therefore more likely
to discover new dual-stack resolvers. Our data reveals 938 address clusters that
consisted of multiple addresses and are divided according to the IP protocol at
a ratio of 1:N.

In addition, we also compare the distribution of addresses in each cluster. Out
of the 938 address clusters, 644 are of the 1[IPv6]-N[IPv4] type, while 294 are
of the 1[IPv4]-N[IPv6] type. Furthermore, the maximum N value in the former
type is larger than that in the latter type (195 vs. 13). Obviously, compared
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with IPv6 resolvers, IPv4 resolvers are more concentrated and tend to choose
the same IPv6 resolvers to complete domain name resolution tasks. It is more
likely due to forwarding upstream by the resolver. For example, RFC3901 [11]
provides a solution in which IPv4-only resolvers forward requests for IPv6-only
domain names to dual-stack resolvers to complete the domain name resolution.
Fortunately, only 47 address clusters had an N value greater than 10, which did
not significantly affect the effectiveness of DualDNSMiner.

M-N. The association between IPv4 and IPv6 resolvers is extremely complex in
some address clusters. Our data has revealed that 505 address clusters are com-
posed of no less than one IPv4 and one IPv6 address, with the most common M-N
combination being 2-2, as shown in the Table 2. The IPv4 and IPv6 addresses
in these combinations exhibit similarity in address string patterns similar to the
1-1 relationship.

Table 2. The top 5 most numerous association and clusters with the most address in
M-N

No. M − N Count ISP M − N

1 2-2 203 Chunghwa Telecom 317-623

2 3-2 47 Telmex Colombia 559-2

3 4-2 46 CAT Telecom 537-5

4 2-3 39 BIZNET NETWORKS 527-10

5 5-2 37 Chunghwa Telecom 109-398

Furthermore, we also have observed that there are some large address clus-
ters, although they are highly unlikely to be dual-stack resolvers (as it is unusual
to configure hundreds of IP addresses on a single machine). In these clusters, the
proportion of IPv4 and IPv6 addresses is highly uneven. In the top five large
clusters, three ones have over 50 IPv4 addresses for every IPv6 address. Such a
large difference demonstrates the imbalance in DNS resolution. On the one hand,
this may be due to IPv6 addresses pointing to resolver clusters much larger than
those for IPv4. Thereby, the two are balanced in terms of hardware resources. On
the other hand, it may be caused by defective IPv6 adaptation configurations.

4.3 Dual-Stack Resolver

Due to the current lack of publicly available datasets for dual-stack DNS
resolvers, it is essential to employ appropriate verification methods to ascer-
tain the accuracy of the results. Previous work [1,7] cannot prove whether the
resolvers are dual-stacked by using the IPv4&IPv6 addresses pattern similar-
ity method. To accurately discover dual-stack resolvers, we propose an active
verification method by using the TCP options and cache sharing situations.
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On one hand, the efficacy of TCP option-based techniques in detecting dual-
stack servers has been demonstrated [8]. We believe that it can also accurately
validate DualDNSMiner’s dual-stack resolver discovery results. However, this
method is only applicable to TCP, not to UDP, which is mainly used by DNS.
This makes it impossible for us to accurately verify that resolvers are really
dual-stack if they don’t support the TCP protocol.

On the other hand, since dual-stack resolvers typically use a single component
to simultaneously listen for requests on IPv4/IPv6 addresses, they could use the
same cache to speed up resolution unless there is special customization [10].
Therefore, we can also verify whether it is a dual-stack resolver by whether the
cache is shared between IPv4/IPv6 resolvers. For each pair of IPv4 and IPv6
addresses, both addresses are queried for the same qname, based on a hash of
both addresses and the measurement timestamp:

h($ipv4$ipv6$timestamp).cachecheck.ourdomain.
This query is performed twice over IPv4, and twice over IPv6. All the four

queries are 5 s apart. Based on the TTL values in the answers, we can determine
whether the resolver is actually caching on any or both of the protocols, and
whether that cache is shared. However, it should be pointed out that some works
have shown that about 10% to 20% of resolvers will share the same cache server
[21]. This means that this method has a certain percentage of false positives, so
it cannot completely replace the TCP option-based method. Therefore, we only
verify whether the parser that does not support TCP is dual-stack by judging
whether IPv4/IPv6 share the cache.

Fig. 4. The process of verifying whether the recognition result of DualDNSMiner is
correct.

In summary, our verification method is as follows: First, we will check whether
the resolvers (IPv4&IPv6) in a cluster support TCP consistently (all support
or none). For clusters that all resolvers support TCP, verify whether they are
dual-stack based on TCP options; and for clusters that none of the resolvers
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support TCP, verify whether they are dual-stack by checking whether resolvers
in the cluster use the same cache; and for clusters that support inconsistent (
Some resolvers are supported while others are not), which is obviously caused by
different operating systems or different configurations of DNS services, so they
can be considered as non-dual-stack. The entire verification process is shown in
the Fig. 4.

Ground Truth Validation. Before verifying whether the result of DualDNS-
Miner is correct, we need to test whether our verification method is reliable.
We build 12 different resolvers as the ground truth in the docker environment
using bind9 [25] and unbound [22]. The specifics of each resolver (use bind9) are
shown in the Table 3. There are also 6 resolvers deployed with unbound using
similar configurations. All resolvers enable caching and are built through the
docker image of ubuntu [18].

Table 3. Configuration of our resolvers in docker.

ID TCP Support Type Note

R1 dual-stack 2 IPv4 & 2 IPv6 addresses

R2 IPv4-only Configure R1 as the upstream resolver

R3 IPv6-only Configure R1 as the upstream resolver

R4 dual-stack 2 IPv4 & 2 IPv6 addresses

R5 IPv4-only Configure R4 as the upstream resolver

R6 IPv6-only Configure R4 as the upstream resolver

In particular, R1 and R4 are the dual-stack resolvers we are actually looking
for. They both have two IPv4 addresses and two IPv6 addresses, thus simulating
the actual alias address situation. The main difference between the two lies in
whether they support TCP. Other resolvers only support IPv4 or IPv6, and these
two dual-stack resolvers are configured as their upstreams to achieve cross-stack
resolution [11].

We perform 10 replicate tests on these resolvers. According to the evaluation
process shown in Fig. 4, R1, R2 and R3 will be tested by the TCP option-based
method, while R4, R5 and R6 will evaluate by judging whether all addresses
in cluster share the same cache due to the lack of TCP support. The results
show that our verification method can successfully identify the address cluster
(2 IPv4 + 2 IPv6) of R1 or R3 as the dual-stack resolver every time, while other
resolvers be judged that their address cluster do not belong to one machine. This
shows that the addresses of these resolvers do not belong to a dual-stack resolver,
which also shows that our verification method is reliable.

However, it needs to be pointed out that although our verification method
can accurately identify the dual-stack resolver, the TCP option-based method
itself needs to send a large number of probe packets to confirm whether a pair
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of IPv4 and IPv6 addresses belong to the same host. As we will show later, this
method is much less efficient for large-scale dual-stack resolver discovery than our
DualDNSMiner. Therefore, we only use this method as the result verification. In
fact, our results also show that DualDNSMiner can also quite accurately discover
dual-stack resolvers.

Real-World Results. We compare the practical effectiveness of DualDNS-
Miner with the 1-1 address relationship judgment rule used in previous works,
and verify the results, which are shown in Table 5 in the Appendix A.

As shown in Table 5, DualDNSMiner further improves the discovery efficiency
of dual-stack resolvers. Compared to previous methods, it can discover over
80% more possible dual-stack resolvers from 1-N and M-N address relationships.
Moreover, the validation experiments indicate that DualDNSMiner also achieves
a high accuracy rate (over 90%) for dual-stack resolver determination results.
However, it is worth noting that DualDNSMiner and the new validation method
are still unable to confirm some address clusters whether they are dual-stack
resolvers. This is caused by the response or deployment characteristics of hosts
in these clusters, such as the lack of TCP timestamp options or the lack of
expected responses or changes after sending ICMPv6 Too Big packets.

We also analyze the distribution of IPv4 and IPv6 addresses in the 1,237
address clusters that are verified as dual-stack resolvers(TCP option & share
cache), as shown in Table 4. A significant number of dual-stack resolvers with
multiple IPv4/IPv6 addresses have been overlooked in previous work. Quite a
few dual-stack resolvers have the same number of IPv4 and IPv6 addresses or
more IPv4 addresses. We believe this is caused by all or some of the interfaces
owned by the IPv4 resolver being assigned corresponding IPv6 addresses.

Table 4. Statistics on the address associations in different dual-stack resolvers.

No. M − N Count No. M − N Count

1 1-1 735 6 1-3 39

2 2-1 134 7 3-2 30

3 1-2 127 8 3-1 24

4 2-2 49 9 2-3 23

5 3-3 47 10 4-2 19

Furthermore, in terms of discovery efficiency, the TCP option requires send-
ing TCP packets to judge the 63,907 pairs of IPv4 and IPv6 address relation-
ships in all address clusters. In comparison, in our experiments, DNSMiner only
sent 49,823 packets to complete the alias resolution of the same address clus-
ters. The discrimination process is based on the results of alias resolution, no
request packets need to be sent. Therefore, DualDNSMiner can discover dual-
stack resolvers from large-scale address relationships at a lower cost, improving
actual discovery efficiency.
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5 Future Work

DualDNSMiner has successfully excavated more dual-stack resolvers in DNS
with traditional methods based on 1-1 addresses relationship, thereby advancing
IPv6 DNS measurement efforts. However, due to a few addresses retaining their
original response packet characteristics even after receiving a Too Big packet,
DualDNSMiner cannot perform alias resolution on them. These addresses can-
not be determined as a separate address or a host shared with other addresses.
Consequently, a considerable portion of the address clusters in our experimen-
tal results remain Unknown (Table 5). We will endeavor to explore alternative
methods to address this issue in our future work.

6 Conclusion

In this paper, our focus is on the recognition task of dual-stack DNS resolvers.
Unlike previous works, we aim to discover dual-stack resolvers from the more
complex relationship of IPv4-IPv6 name servers. We introduce a novel technol-
ogy named DualDNSMiner, and apply it to practical measurements. This tech-
nique primarily utilizes alias resolution to transform address-address relation-
ships obtained through active probing into host-host relationships, thus allowing
the detection of dual-stack resolvers. We have also proposed a validation method
to examine the accuracy of DualDNSMiner’s results through data-driven means.
The results indicate that compared with traditional dual-stack resolver discov-
ery algorithms, DualDNSMiner can improve the discovery rate by over 80%, and
the accuracy of DualDNSMiner’s detection results exceeds 90%. Furthermore,
DualDNSMiner’s recognition results reveal that a considerable number of dual-
stack resolvers have multiple IPv4 and IPv6 addresses. In the future, we will
continue our research to find a more effective dual-stack DNS resolver discovery
method.
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Research and Development Program of China with No. 2021YFB3101001 and No.
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A Discovery and Verification Results

Table 5. Comparison of DualDNSMiner with previous methods, and verification of
results.

Experiment Method 1-1 1-1
Unknown

1-N 1-N
Unknown

M-N M-N
Unknown

Not Dual

Comparison Previous method [1,7] 741 0 1443

DualDNSMiner 741 0 411 227 218 106 481

Verification TCP Option [8] 646/741 89/741 332/411 19/411 141/218 12/218 131

Share Cache(Not
Support TCP)

89/89 0 18/19 0 11/12 0 2

TCP Option & Share
Cache

735/741 0 350/411 0 152/218 0 133
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Abstract. Reverse logistics (RL) return prediction for Waste Electri-
cal and Electronic Equipment (WEEE) has gained attention due to its
potential to improve operational efficiency in the recycling industry. How-
ever, in data-scarce regions, commonly used deep learning models per-
form poorly. Existing multi-source cross-domain transfer learning models
can partially overcome data scarcity by using historical data from multi-
ple sources. However, these models aggregate multi-source domain data
into a single-source domain in transfer, ignoring the differences in time
series features among source domains. Additionally, the lack of histor-
ical data in the target domain makes fine-tuning the prediction model
inoperative. To address these issues, we propose Dual Transfer Driven
Multi-Source domain Adaptation (DT-MUSA) for WEEE RL return pre-
diction. DT-MUSA includes a dual transfer model that combines sam-
ple transfer and model transfer and a basic prediction model MUCAN
(Multi-time Scale CNN-Attention Network). It employs a multi-task
learning to aggregate predictors from multiple regions and avoids nega-
tive transfer learning. The dual transfer model enables fine-tuning of the
base model MUCAN by generating long-term time series data through
sample transfer. We applied DT-MUSA to real cases of an RL recycling
company and conducted extensive experiments. The results show that
DT-MUSA outperforms baseline prediction models significantly.
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1 Introduction

As reported by the United Nations University, only about 20% of the 44.7 mil-
lion tons of WEEE generated worldwide each year undergo proper recycling and
treatment [13,29]. If not properly treated promptly, the leaching of hazardous
substances from a large volume of WEEE can pose significant risks to the envi-
ronment and human health [7,30,32]. The use of RL return data prediction can
enhance the efficiency of WEEE RL by supporting transportation scheduling,
labor and material scheduling, and production planning for reverse recycling
efforts [4,14,25]. Therefore, the RL return prediction of WEEE has received
widespread attention [11,16].

[15,38] earlier investigated RL return prediction based on regression equa-
tions. A Bayesian-based prediction model developed by [34] assumed that RL
flows obey a binomial probability distribution. [23] modeled RL return predic-
tion by analytical moving averages, exponential smoothing, and causal anal-
ysis. These studies considered the time-series relationship of the data and
achieved good results under certain applicable conditions. However, the models
are extremely dependent on feature selection, and different modeling is required
for different application scenarios, leading to difficulties in applying to complex
scenarios. To be able to build an RL prediction model with generalization ability,
[40] recently proposed a deep learning-based multi-time scale attention network
(MULAN). By dividing the closeness window, period window, and trend window
in the historical data as model inputs, this approach is able to capture various
features at different time scales of the series. As a result, there is a significant
improvement in the accuracy of the prediction. However, the prediction accuracy
of MULAN is severely degraded in some scenarios lacking long-term history data
(see Sect. 5.1), because historical data are scarce and trend window inputs are
not available.

To improve model performance in historical data lacking scenarios,
researchers proposed transfer learning that learns knowledge from selected suffi-
cient data related to the target domain with sparse samples [5,12,26]. However,
in RL prediction scenarios, the distribution of source and target domain data
may differ significantly due to geographical and temporal differences, leading
to severe negative transfer [28,39]. Many recent studies have tried to employ
multi-source data adaptive transfer learning in the expectation that pre-trained
networks can extract richer sets of common features in multiple source domains
and overcome the differences in data distribution from source to target domains
[6,10]. These methods can be used to predict RL return data in the data-lacking
scenario, but there are still two challenges.

The first challenge is how to utilize multi-source data effectively to mitigate
negative transfer. In a multi-source knowledge transfer learning task, the distri-
bution of data in each source domain varies, and therefore, their contributions
to the target domain task should be adjusted accordingly, so a key issue is how
to adaptively aggregate the source domain predictors [3,33]. Traditional studies
generally assign weights to source domains or select source domains subjectively
and directly by domain similarity [1,9,17]. However, existing two-stage learning
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methods (involving domain selection and model transfer) lack adaptive algo-
rithms capable of accurately quantifying the similarity between the source and
target domains in relation to the assigned weights.

The second challenge is the lack of long-term time series data leading to
suboptimal fine-tuning of model transfer, especially when the base prediction
model for transfer needs to extract the features from multi-time scale windows.
That is because trend data cannot be used in this case, and the multi-time
window input structure does not have sufficient windows of data, leading to
suboptimal fine-tuning of the model transfer eg. MULAN [40].

To this end, we propose Dual Transfer Driven Multi-source Domain Adap-
tation (DT-MUSA). In DT-MUSA, (1) we first propose a multi-source domain
adaptation scheme based on multi-task learning to avoid the possible negative
transfer effects caused by subjective source domain predictors aggregation. We
compute the similarity between the data in the source and target domains and
prioritize the source domains for labeling. After that, we use a multi-task learn-
ing strategy to perform association learning on the data from source domains
and dynamically integrate the prediction loss of each source domain during pre-
training. The model can adaptively aggregate the source domain predictors dur-
ing multi-task association learning to minimize negative transfer by learning the
mutual base model parameters in the shared layer of all tasks. (2) We propose
a dual transfer model (model and sample transfer) and a base prediction model
MUCAN (Multi-time Scale CNN-Attention Network) to tackle the suboptimal
fine-tuning of the model transfer due to long-term time series data scarcity.
First, we employ a sample transfer strategy to generate long-term time series
data. Then, we build a specialized multi-scale time-series feature extraction net-
work, referred to as MUCAN, which is built upon the convolutional attention
module and utilizes a multi-time scale input window structure. This serves as
the foundation for our dual transfer prediction model. Finally, we use the pre-
trained network of the source domain set for model transfer, initialize the shared
layer parameters of MUCAN in the target domain, and then fine-tune the shared
layer parameters of the model to better adapt to the data distribution present
in the target domain.

In summary, our main contributions are as follows:

– We propose a novel approach to multi-source domain adaptation that uti-
lizes multi-task learning to acquire mutual knowledge from various source
domains. As far as we know, this is the first study to employ multi-task
learning to mitigate possible negative transfer effects in the field of RL time
series prediction.

– We propose a dual transfer model, where sample transfer is used to generate
long-term time series of the target domain, and model transfer is utilized to
effectively transfer mutual knowledge obtained from multiple source domains
in multi-source domain adaptation. In addition, we propose a base prediction
model MUCAN for model transfer, which relies on the convolutional attention
module to obtain the degree of influence of different time-scale encodings on
prediction and has better results than other network structures in encoding
fusion.
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– To evaluate the effectiveness of our model DT-MUSA, we apply it to a real-
world case involving an enterprise specializing in RL returns. Through exten-
sive experiments and ablation experiments, we analyze the benefits of utilizing
multi-task learning for multi-source knowledge fusion and utilizing the dual
transfer model.

2 Related Works

To overcome the distributional disparity between source and target domain data
in transfer learning, and enhance the transfer effect. In the last decade, many
research results on domain adaptation in transfer learning have been published.
Shallow domain adaptation methods are typically used to establish a connection
between the source and target domains by either learning invariant features or
estimating the importance of instances from the source domain [20]. For example,
[22] used a modified Transfer Naive Bayes (TNB) as a prediction model. They
employed a similarity measure based on ranges to allocate weights to source
domain instances, and subsequently trained the prediction model using these
weighted instances. [24] proposed TCA+ to reduce the differences in the distri-
bution of features that make the source and target domains.

With the rising prevalence of deep neural networks, there has been an increas-
ing interest in investigating deep domain adaptation techniques. This type of
method utilizes an adaptive module embedded in the deep architecture to min-
imize differences between the source and target domains. [19,35] proposed the
DDC (Deep Domain Confusion) method and DAN (Deep Adaptation Network),
respectively, which diminish the dissimilarity between source and target domains
by introducing an adaptive adaptation layer or an additional domain confusion
loss. Later, [21] extended DAN by proposing Joint Adaptation Network (JAN),
which further considers the joint probability distribution of features and labels.
[28] introduce a novel deep Transfer Learning based on Transformer (TLT) model
that utilizes a recurrent fine-tuning transfer learning approach during the pre-
training phase of knowledge transfer. The purpose is to prevent deep learning
models from overfitting the source data and reduce domain gap between the
source and target domains in transfer learning tasks.

Multi-source Domain Adaptation (MDA) is a powerful extension to Domain
Adaptation (DA) that can collect labeled data from multiple sources with dif-
ferent distributions. With the success of DA methods and the widespread use
of multi-source data, MDA has gained growing attention from both academia
and industry. [17] proposed TPTL based on TCA+ to automatically select the
two source items that have the closest match with the target domain distri-
bution. After that, the two prediction models are constructed separately, and
their predictions are combined to improve the prediction performance further. A
Multi-Source Adaptive Network (MSAN) based on multiple GAN architectures
[2] can effectively learn the bidirectional transfer between the source and tar-
get domains, thus reducing the distribution differences. A joint feature space is
also introduced to guide the multi-level consistency constraint of all transforma-
tions to maintain consistent domain patterns during the adaptive process and
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simultaneously empower the recognition of unlabeled target samples. To address
the cross-project defect prediction task, [1] proposed 3SW-MSTL, which did
exploratory work in three directions, namely, the number of source domains,
source domain instance weights, and multi-source data utilization scheme using
conditional distribution information.

These ideas still have room for improvement in the RL return prediction
task. When the data of the target domain is sparse, the data sparsity problem
can be alleviated by using data from multiple source domains. However, the
above model ignores mutual time series features among source domains in the
design of multi-source domain predictors aggregation, which can be affected by
negative transfer resulting in suboptimal performance. To this end, we propose
DT-MUSA to solve the RL return prediction task. The model DT-MUSA will
be introduced in the following section.

3 Methodology

3.1 Overview

Faced with the task of predicting RL return in the target domain, we are faced
with the following challenges: (1) Difficulty in the aggregation of multi-source
domain predictors leads to a negative transfer effect. Leveraging knowledge from
multiple sources can improve prediction accuracy. However, minimizing knowl-
edge conflicts and distribution differences between multiple source domains and
the target domain presents a significant challenge in domain adaptation, which
can adversely affect the transfer effect. What kind of source domain aggrega-
tion strategy can we adopt to avoid negative transfer effectively? (2) Long-term
data scarcity leads to suboptimal fine-tuning of model transfer. The multi-time-
window input structure is crucial to fully extract the regular features of the
RL return time series. However, the data scarcity in the target domain leads to
the lack of trend data input to the model, which makes the transfer ineffective.
How can we improve the neural network structure or refine the model inputs to
improve the model transfer effect?

To address the above challenges, we propose DT-MUSA as shown in Fig. 1,
which consists of a multi-source domain adaptation module multi-task learn-
ing based, and a dual transfer module based on the feature extraction network
MUCAN.

– Multi-source domain adaptation algorithm based on multi-task learning.
• Possible ways to select the appropriate source domain for domain adap-

tation: The source domains are given priority by estimating the similarity
between the data distribution of each source domain and that of the target
domain. After that, the model is pre-trained on the source domains within
the priority threshold to overcome the distribution differences between
source and target domains.

• Multi-task learning based multi-source predictor aggregation: Pre-
training is performed in the source domain set using multi-task learn-
ing, with knowledge shared among source domains. The model adaptively
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Fig. 1. Overall architecture of the DT-MUSA. Given m source domains with abundant
historical data and current target domain historical data for prediction of future RL in
the target domain, the DT-MUSA consists of a multi-source domain adaptation module
based on multi-task learning and a dual transfer module based on feature extraction
network MUCAN.

adjusts the weight distribution among the tasks to continuously learn the
public knowledge, which is updated and retained within the shared layer
to increase the amount of positive transfer knowledge.

– Dual transfer model based on feature extraction network MUCAN.
• The base model MUCAN for transfer learning: A multi-scale time-series

feature extraction network MUCAN is built specifically for RL regres-
sion prediction by combining a convolutional attention module and a
multi-time scale window structure. MUCAN can accommodate the effi-
cient transfer of source domain knowledge and the complete extraction of
target domain features in model transfer.

• Dual transfer algorithm combining sample transfer and model transfer:
The data in the target domain are set as the direction of sample transfer,
and the mapper is trained to fill the missing trend window data in the
target domain. Model transfer with fine-tuned parameters is subsequently
employed to complete the transfer of public knowledge and enhance the
model’s generalization ability.

3.2 Possible Ways to Select the Appropriate Source Domain
for Domain Adaptation

The data features learned in the source domain can be effectively transferred
to the target domain when the sufficient distributional similarity between the
source and target domain data is satisfied. Otherwise, the source domain will
transfer more knowledge carrying negative effects to the target domain, which
will bring some adverse effects on transfer learning. Therefore, we introduce the
domain similarity estimation algorithm to initially screen the source domains
with high similarity to the target to avoid negative transfer.
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We introduced the Jensen-Shannon (JS) divergence based on the Kullback-
Leibler (KL) divergence as a measure of domain similarity estimation. The
smaller the JS divergence of the source and target domains, the greater the
similarity. The similarity is expressed as

KL (p||q) =
∑

p log
p

q
, (1)

JS(Px||Py) =
1
2
KL(Px||Px + Py

2
) +

1
2
KL(Py||Px + Py

2
). (2)

After calculating the similarity between the distribution of the target domain
Py and that of the source domain Px, we assign all source domains within the
source domain set X priority rank fxi

(fxi
≤ |X| , fxi

∈ Z+). The higher the
similarity between the source and the target domains, the smaller the value of
the corresponding source domain priority rank, when fxi

= 1 indicates that xi is
the source domain with the highest similarity. A reasonable parameter priority
threshold β is also determined, i.e., the subsequent pre-training of the model is
performed on the source domain xi(fxi

≤ β, xi ∈ X) only. We consider the data
distribution of source domains with priority rank below the threshold to be highly
similar to the target domain and use them as alternate source domains, thus
enhancing the proportion of positive transfer in the transfer learning process.

3.3 Multi-task Learning Based Multi-source Predictor Aggregation

To make the model fully extract and aggregate the public knowledge of each
source domain when pre-training in the source domain set, we define pre-training
on different source domains as different tasks and use hard parameter sharing
to associate these tasks. By sharing knowledge, model components complement
each other and enhance the effectiveness of mining time series public features.

Figure 2 illustrates the architecture of the pre-training model utilizing multi-
task learning. Based on MUCAN (we will cover this in detail in Sect. 3.4), we
will slightly change the model structure by using multiple decoders in parallel
to replace the original MLP network used for single-task decoding to obtain
Muti-MUCAN. Each decoder acts as a private module for different pre-training
tasks to independently decode the fusion codes extracted from the shared layer.
In the face of multiple decoding outputs of multiple tasks, the output results of
different tasks are calculated to obtain different loss magnitudes, and the task
with larger loss may dominate the model optimization direction. To overcome
this problem, we constitute the total loss by calculating the weighted loss of
different tasks as follows:

L(t) =
∑β

i=1
wi(t)Li(t) (3)

where t denotes the current training step number, and wi denotes the weight of
different task losses. For wi, we are not sure that we can manually set the weights
quite appropriately, so it is wiser to choose a method that can dynamically adjust
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Fig. 2. A pre-trained model utilizing multi-task learning.

the weights according to the learning effect of different tasks. Dynamic Weight
Average [18] reflects the learning difficulty by considering the rate of change of
each task’s loss and thus dynamically calculates the weights of the tasks.

wi(t) :=
S exp(ri(t − 1)/T )

∑β
i=1 exp(ri(t − 1)/T )

, ri(t − 1) =
Li(t − 1)
Li(t − 2)

(4)

ri(·) denotes the relative rate of decline of loss, S is used to limit the range
of variation of weights to satisfy

∑
i wi(t) = S, and T denotes the degree of

relaxation between individual tasks, if the larger the value, the more the weights
of each task tend to be equal.

3.4 The Base Model MUCAN for Transfer Learning

To solve the prediction task for regions with sparse samples, we introduced a con-
volutional attention module based on the structure of multi-time scale window
inputs [40] and built a feature extraction network MUCAN for the subsequent
transfer task. The extraction of features at different time scales of the series is
achieved to capture the dependence of WEEE at multiple time scales.

First, we label the closeness data window, period data window, and trend
data window in the historical data as cw, pw, and tw, respectively, and the size
of each window is clen, plen, and tlen. Based on the current time step s, the size
of each window in the historical data is defined as follows.

– Closeness window: cw = [s − clen, s)
– Period window: pw = [s − 30 − plen

2 , s − 30 + plen

2 )
– Trend window: tw = [s − 365 − tlen

2 , s − 365 + tlen
2 )

We extract cw, pw, and tw from the historical data as inputs to capture
the temporal dependence of sequences at multiple time scales. Then the three
input features are encoded by the corresponding LSTM modules to mine the
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correlation between the sequence adjacent data within each window to generate
three coded sequences with the same dimension cenc, penc, and tenc. We use the
convolutional attention module to weigh the three coded sequences for fusion
to obtain the fusion coding menc. Finally, the fusion coding is decoded by a
multilayer neural network as a regression layer to obtain the final prediction.
The structure of our designed network model is shown in Fig. 3.

Fig. 3. Structure of feature extraction network MUCAN for model transfer.

The characteristics and design motivation of the MUCAN extraction layer
are described as follows:

First is the LSTM-based coding module. Due to the unique gating unit and
memory unit of LSTM, it avoids the gradient disappearance problem of RNN in
the training process of long sequences and is good at extracting long-term time
series features. We adopt LSTM as the encoding module for the input window
to extract the characteristic laws of sequences in trend, period, and closeness,
respectively. Our model encodes the window input data x at different time scales
by LSTM to obtain dimensionally consistent encoding sequence xenc.

xenc = LSTM(x) (5)

We generate 3 coding sequences: cenc, penc, and tenc, after inputting the window
data cw, pw, and tw into their respective LSTM modules.

Second is the convolutional attention module. In exploring the three depen-
dencies of sequences, we consider the mining of sequence trendiness and periodic
regularity features to act as a supporting role. To focus the model’s attention
more on the closeness window encoding sequences cenc, we use an additive atten-
tion mechanism [36] as part of the fusion encoding. Based on the prediction task
of the time series, we define the encoding of the closeness window cenc as a query
vector q and set the key values K = {cenc, penc, tenc}. The scoring function for
the additive attention mechanism is as follows:

si = s(ki, q) = εT tanh(Wkki + Wqq) (6)

where Wk, Wq, and ε are all learnable parameters. The attentional scoring si is
obtained by this formula, which is subsequently softmax to obtain the attention
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distribution αi. At this point we weight the coded input V = [cenc, penc, tenc]
with the attention distribution coefficients αi to obtain the output matt:

αi = softmax(si) =
exp(si)∑len(K)
j=1 sj

(7)

matt =
∑3

i=1
αivi , vi ∈ V (8)

The annual trend, monthly period, and closeness law features on which the
WEEE data depend do not change easily. Considering the effectiveness of the
convolution operation in extracting spatio-temporal features, we use the con-
volution module as another part of the fusion coding, where the convolutional
kernel size of conv1 and conv2 is 3, the padding of conv1 is 1, and the padding
of conv2 is 0. The convolutional coding mconv is obtained as follows:

mconv = conv1(conv2(stack(v1, v2, v3)) (9)

After deriving the attentional and convolutional encoding, the two are concate-
nated together to obtain the fusion encoding menc.

menc = concat(matt,mconv) (10)

Finally, the decoding module. We use a multilayer neural network (MLP) to
decode the fusion code menc and output the predicted values for the next t days.
In addition, a dropout layer is added to the multilayer neural network to avoid
the overfitting phenomenon.

3.5 Dual Transfer Algorithm Combining Sample Transfer
and Model Transfer

Since the target domain with missing historical data generally only provides
order data within the last three months, applying the model will result in missing
trend window input tw for the feature extraction network MUCAN. This means
that it will be difficult for MUCAN to model the trend, and the dependence of
the series on the trend time scale will not be explored.

To solve this problem, we first select the source domain x1(fx1 = 1) with the
highest priority in the source domain set and define the trending data domains
used in the source domain x and the target domain y as xtre and ytre, respec-
tively. We learn the mapping rules from the sample data in the source domain
x1 to the sample data in the target domain y by training a mapper (see Fig. 4),
and subsequently use xtre as the input to the mapper to generate the missing
trend data in the target domain ytre. To simplify the complexity of the overall
model, we use LSTM-MLP to learn the mapping rules for sample transfer.

After completing the trend window of the target domain, to minimize the
loss of public knowledge in the transfer learning process between the source
and target domains as much as possible, we set a lower learning rate for the
part of the convolutional attention layer and the part of the LSTM layer in the
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Fig. 4. Mapper structure for sample transfer.

network structure to achieve the effect of parameter fine-tuning while adapting
the parameters of the regression layer to the distribution of the target domain
data by retraining.

4 Experiment Setup

To assess the model performance, we conducted several experiments, including
overall performance comparison, ablation experiments, and sensitivity analysis.
In this section, we will provide details on the datasets utilized in the experi-
ments, the selection of baseline methods, evaluation metrics, and other relevant
experimental details.

4.1 Dataset

The commercial company Able Green provided the dataset used to test the
model’s predictive performance. From the company’s WEEE recycling service
order data for the last two years, two types of time-series data are available
from 28 Chinese provinces: air conditioners (AC) and washing machines (WM).
Some provinces are late to start recycling services and are missing long-term
data, and our experiments will focus on predicting two types of data for AC
and WM in such provinces. Detailed statistical data is shown in Table 1, where
we distinguish the provinces with scarce data from those with sufficient data
according to the earliest correct order time in each province and divide them
into the training, validation, and test sets according to 7:1.5:1.5.

4.2 Baselines

– ARIMA [31]: A method combines an autoregressive (AR) model with a mov-
ing average (MA) model and a differential preprocessing step of the series to
smooth the series.
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Table 1. The statistics of datasets

Domain Types Provinces covered Period begin Period end

Source AC 25 1/1/2018 12/31/2019

WM 25 1/1/2018 12/31/2019

Target AC 3 8/30/2019 12/31/2019

WM 3 8/30/2019 12/31/2019

– LSTM [8]: A special type of RNN with special gated memory units that are
good at extracting long-term time series features.

– Autoformer [37]: Based on Transformer, a model that enables efficient con-
nection at the sequence level for better information aggregation.

– Informer [41]: Based on Transformer, a sparse attention mechanism is incor-
porated to reduce the network complexity.

– MULAN [40]: The model introduces multi-time scale windows and attention-
based alignment fusion, which can capture the temporal dependence of
sequences at multiple timescales.

4.3 Evaluation Metrics

To evaluate the performance of DT-MUSA and other models, we need to use
appropriate evaluation metrics to measure the prediction accuracy of the corre-
sponding algorithms. MAE and RMSE are the evaluation metrics employed in
this study to assess the model’s prediction performance. Lower values of these
metrics indicate better performance by the model. The MAE and RMSE can be
calculated as follows:

MAE =
1
t

t∑

i=1

|prei − trui|, (11)

RMSE =

√√√√1
t

t∑

i=1

(prei − trui)
2 (12)

where t denotes the step size that the model will predict, and prei and trui

denote the predicted and true values of the day, respectively.

4.4 Experimental Details

By grid search, we set the three input window lengths clen, plen, and tlen of the
feature extraction network MUCAN to 15, 10, and 20, respectively, and deter-
mined β = 3, lr = 0.001 and epoch = 50 rounds in the source domain and
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lr = 0.01 and epoch = 100 rounds in the target domain. The best-performing
model on the validation set was retained, and all RMSEs and MAEs were calcu-
lated on the test set. All experiments were performed in the PyTorch framework
[27].

5 Results and Analyses

5.1 Predictive Performance Comparison

To demonstrate the superiority of DT-MUSA in solving the task of predicting
RL return data in regions with sparse samples, we compare the results with
other commonly used prediction models as shown in Table 2 and 3.

Table 2. Overal performance comparison (MAE) on the AC and WM datasets.

MAE Jiangsu Province Chongqing City Peking City

AC WM AC WM AC WM

ARIMA 25.659 16.888 1.360 4.103 0.652 1.032

LSTM 30.344 25.231 4.311 6.364 1.366 3.215

Informer 27.926 18.480 3.379 7.099 1.182 1.863

Autoformer 24.264 19.826 2.852 3.976 1.366 3.215

MULAN 20.386 8.854 1.838 3.637 1.508 1.505

MUCAN 9.373 12.586 0.736 1.675 0.307 0.719

MUCAN-sbs∗ 5.432 8.268 0.589 1.826 0.238 0.682

MUCAN-rt∗ 17.283 15.383 1.116 2.926 0.422 0.823

DT-MUSA∗ 2.775 3.471 0.233 1.436 0.098 0.310

Notes: The models with ∗ in Tables 2 and 3 indicate the transfer learning
models, while the rest indicate the non-transfer models. Bold in Table 2
indicates the minimum value of MAE obtained for all models involved
in the comparison in the corresponding data set; the sliding line repre-
sents the minimum value of MAE obtained for the non-transfer learning
models involved in the comparison.

Under the condition of no transfer, the models are highly susceptible to
underfitting because the short-term data are difficult to meet the training
requirements of most deep learning models. The comparison of the transfer-free
methods in Tables 2 and 3 shows that various classical prediction models per-
form unsatisfactorily and are poorly adapted to the prediction task in regions
with sparse samples. One of the statistical methods, ARIMA, achieves a rela-
tively good result but is still objectively less than ideal. The feature extraction
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Table 3. Overal performance comparison (RMSE) on the AC and WM datasets.

RMSE Jiangsu Province Chongqing City Peking City

AC WM AC WM AC WM

ARIMA 26.939 17.307 1.445 4.232 0.782 1.155

LSTM 27.753 21.755 3.571 2.939 1.573 3.879

Informer 30.278 20.288 2.962 3.092 1.279 2.379

Autoformer 28.738 20.896 3.725 5.527 0.942 2.072

MULAN 25.393 11.665 2.476 7.379 0.805 0.644

MUCAN 10.981 15.869 0.861 2.333 0.356 0.929

MUCAN-sbs∗ 8.327 9.236 0.627 1.923 0.188 0.572

MUCAN-rt∗ 20.238 13.378 1.630 4.132 0.283 0.592

DT-MUSA∗ 4.801 4.610 0.327 1.553 0.112 0.418

NotesNotes: Bold in Table 3 indicates the lowest RMSE value achieved
across all models involved in the comparison in the corresponding data
set; the sliding line represents the lowest value of RMSE obtained for
the non-transfer learning models involved in the comparison.

network MUCAN achieves excellent results in the target domain by capturing
the correlation patterns of the series on various time scales. However, due to the
lack of sample data, the dependencies of sequences on various time scales cannot
be explored more fully, resulting in the inability to predict some inflection points
in the prediction task accurately.

When a large amount of source domain data is available for transfer, we com-
pare DT-MUSA with some simple source domain selection strategies. As shown
in Tables 2 and 3 for the comparison of transfer methods, DT-MUSA performs
significantly better than single source domain transfer as well as random source
domain transfer for the target domain prediction task. This demonstrates that a
simple source domain selection strategy may introduce unsuitable source domain
data, leading to negative transfer. Compared with MUCAN without transfer,
DT-MUSA also has significant performance improvement. This proves that DT-
MUSA not only overcomes the distribution difference between the source domain
data and the target domain data to a certain extent but also solves the nega-
tive impact due to the missing data of the target domain. Overall, DT-MUSA
performs adaptive aggregation of predictors from multiple source domains, effec-
tively reducing negative transfer.

5.2 Strength and Weakness

Comparing the baselines in the table, our advantages are as follows:

– Pre-training in the source domain set by multi-task learning aggregates the
common knowledge of multiple source domains to transfer to the target
domain, which avoids negative transfer to a certain extent.
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– For WEEE return data, we build a feature extraction network MUCAN based
on the convolutional attention module, which fully explores the dependencies
of sequences at multiple time scales and helps to obtain more accurate pre-
diction results in transfer learning.

– Sample transfer is used to complement the trend window data input of
MUCAN on the target domain to expand the range of explorable time-scale
categories and enhance the effect of model transfer.

In terms of model shortcomings: our model initially screens the source
domains by estimating the similarity between the data of each source domain
as a whole and the data of the target domain and thus divides the priorities
to initially screen the source domains in the expectation of reducing the data
distribution differences from the source to the target domains. However, the
instance adaptive approach has its limitations in the end, and the distribution
differences between the source and target domains will not be completely elimi-
nated. Suppose the deep feature adaptive approach is further explored, and the
embedding of an adaptive module to encode the mapping of source domain data
is considered. In that case, reducing the negative transfer phenomenon leads to
an improvement in model prediction accuracy.

5.3 Ablation Experiments

In our experiments, (1) we introduced a model transfer approach to pre-train
the model with shared parameters in the multi-source domain, followed by fine-
tuning in the target domain; (2) we transferred data from the rich data domain to
the poor data domain by mapping the model, which complements the trend win-
dow data input of MUCAN; (3) we built a feature extraction network MUCAN
based on the Convolutional Attention Module for weighted fusing data from
different time scales for decoding output. We designed the following ablation
experiments to demonstrate the usefulness of each of the above three compo-
nents.

– Validate the effect of fine-tuning.
• DT-MUSA-ft: Remove the fine-tuning in the target domain, and apply

the pre-trained model directly to the target domain.
– Validate the effect of sample transfer.

• DT-MUSA-st: The closeness window data of the target domain is used to
fill the trend window data of the target domain.

– Verify the effect of Convolutional Attention Module on data fusion at different
time scales

• DT-MUSA-at: Remove the Attention Module and use CNN-LSTM for
training.

• DT-MUSA-ac: Remove the Attention and CNN Modules, and use LSTM
for training.
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Fig. 5. The effect of each part on model performance.

From the experimental results in Fig. 5, it can be seen that these three com-
ponents play an extremely important role in the excellent overall model results.
(1) The model transfer based on the pre-training fine-tuning approach con-
tributes significantly to the overall model performance. While the pre-training
model is effective at extracting complex temporal feature information in data-
rich domains, it can only provide a rough reflection of the trend characteristics of
the data when carrying the public knowledge from the source domain. Without
fine-tuning, it cannot make accurate predictions due to its neglect of the dis-
tributional differences between the target and source domain data. (2) Sample
transfer based on a mapper trained on a rich set of samples is essential in this
model. Previously, MULAN [40] has demonstrated that the window design based
on trending scales can effectively improve prediction accuracy. Due to the lack
of trend window data in the target domain, we complemented the trend window
data input in the poor data domain by the LSTM-MLP based mapping model
and achieved good results. (3) The embedding of the convolutional attention
module is also shown to effectively improve the model’s prediction performance,
especially in scenarios with transfer learning, allowing the model to gain more
room for improvement.

5.4 Model Sensitivity Analysis

The priority rank associated with the domain similarity size is introduced in
the source domain set used for the model transfer. The model is pre-trained
for multi-task association learning using only multiple source domains within
the priority threshold β. Our model should be robust to moderate changes in β
of the source domain set. To this end, we conducted sensitivity experiments to
verify that the model performs consistently over various variations in the source
domain set priority threshold parameter. When β = 1, the model degenerates to
single source domain transfer, so we make β vary in the integer interval [2 : 7] and
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compare the model predictions with the results of the transfer models (β = 3)
in Sect. 5.1.

Fig. 6. The effect of changes in the source domain priority threshold β on model
performance.

The comparison results are shown in Fig. 6, where (AC/WM)-sbs indicates
the experimental results of the best single-source domain transfer on the air
conditioner or washing machine dataset; (AC/WM)-rt indicates the random
source domain transfer results; (AC/WM)-mt indicates the prediction results of
MUCAN without transfer, and the bubble size of (AC/WM) type corresponds
to the number of source domains used by DT-MUSA. It is easy to see that
DT-MUSA effectively improves the accuracy of the RL prediction task, and the
model’s prediction performance fluctuates within an acceptable range. And the
model generally outperforms other source domain adaptation strategies overall
within a certain variation of the priority threshold β. This demonstrates that
our model’s performance is stable and less affected by variations in the priority
threshold parameter.

6 Discussion and Conclusion

In this paper, we have extensively investigated the predictive effectiveness of
various excellent models in the presence of sparse RL return data for WEEE.
For multi-source domain adaptive models, we point out the challenges of their
current application in practical scenarios: inefficient use of multi-source data
in multi-source knowledge transfer learning tasks; lack of long-term time-series
data leading to suboptimal fine-tuning of model transfer.

We thus propose DT-MUSA to address the above challenges. We first try
to use multi-task learning in the pre-training of multiple source domains, which
effectively resolves the knowledge conflicts among source domains and dramat-
ically helps the fusion of source domain public knowledge. To overcome the
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adverse effects of long-term data scarcity, DT-MUSA performs model transfer
from multiple source domains to target domains based on MUCAN neural net-
works and complements the input data of trend windows by training mappers.

DT-MUSA focuses on the WEEE prediction task for certain provinces with
late start-up recycling services, where order information is typically only col-
lected for the past three months. We applied the model to a real Able Green
recycling business case and conducted a full experiment. The results show that
the model significantly improves the prediction accuracy on prediction tasks in
the target domain and is robust to critical parameters, showing that our model
is practical and feasible in real-world applications.

In this study, the method of similarity estimation to screen the source domain
cannot completely overcome the difference in the distribution of source and tar-
get domains. Adding an adaptive layer to the network model structure of the
source and target domains may improve the transfer effect. Besides, there may
be connections between the recycling data of different kinds of WEEE, and using
these connections to build a multi-task learning model may achieve better pre-
diction results.
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Abstract. With the development of machine learning technology in var-
ious fields, such as medical care, smart manufacturing, etc., the data has
exploded. It is a challenge to train a deep learning model for different
application domains with large-scale data and limited resources of a sin-
gle device. The distributed machine-learning technology, which uses a
parameter server and multiple clients to train a model collaboratively,
is an excellent method to solve this problem. However, it needs much
communication between different devices with limited communication
resources. The stale synchronous parallel method is a mainstream com-
munication method to solve this problem, but it always leads to high
synchronization delay and low computing efficiency as the inappropriate
delay threshold value set by the user based on experience. This paper
proposes a synchronous parallel method with parameters communica-
tion prediction for distributed machine learning. It predicts the optimal
timing for synchronization, which can solve the problem of long synchro-
nization waiting time caused by the inappropriate threshold settings in
the stale synchronous parallel method. Moreover, it allows fast nodes to
continue local training while performing global synchronization, which
can improve the resource utilization of work nodes. Experimental results
show that compared with the delayed synchronous parallel method, the
training time and quality, and resource usage of our method are both
significantly improved.
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1 Introduction

With the development of 5G, AI (artificial intelligence) technology, informa-
tion technology, etc., intelligent collaborative computing is a good way to cope
with the changing world. As AI technology is widely used in all walks of life,
such as natural language processing [1], image classification [2], network traf-
fic control [3], speech recognition [4], and other fields [5,6], the data has grown
explosively, from the PB level to the EB level. It is a challenge to deal with
such a huge amount of data with AI technology in a single device, as the limited
resources of the single device. So, distributed machine learning technology, deal-
ing with large-scale data with multiple devices, has become an inevitable trend
and research hotspot.

The parameter server system is one popular distributed machine learning
method to deal with large-scale data with AI technology. It trains a global model
with the corporation of parameter server and worker nodes. Where the worker
nodes use the subset of the data set to train the local models and update the
local models to the parameter server, and the parameter server trains a global
model by aggregating local models [7,8]. As deep learning models require mul-
tiple rounds of iterations to converge, they need to transport large-scale data,
such as the parameters of the local model and global model, between servers
and workers to complete the gradient descent method [9,10]. There is extensive
communication between servers and workers. How to train a global model effi-
ciently with low communication cost is an important problem for the parameter
server system.

The bulk synchronous parallel method [11] is one of the mainstream paramet-
ric synchronization methods in the parameter server system. When the param-
eter server computes the global model by aggregating the local models, it needs
to wait for all work nodes to upload the current version of the local models.
The convergence time of model training depends on the slowest working node,
which leads to low resource utilization and long training time [12]. In order to
solve this problem, Dean et al. proposed the asynchronous parallel method [13],
where each worker node is trained asynchronously and communicates with the
parameter server to exchange models after completing a round of training with-
out waiting for other worker nodes, which significantly utilizes the computation
resources of worker nodes.

However, the uncontrollability of each node in the cluster in this method
often leads to a significant difference in the number of iterations between fast
and slow nodes, which finally makes the machine learning model converge poorly
or even fail to converge. Combining the characteristics of the above two methods,
Ho [14] et al. proposed the stale synchronous parallel method. It defines a delay
parameter representing the maximum iteration difference between the working
nodes to control the synchronization time of the work nodes. If the iteration
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difference between the work nodes is less than the delay parameter, the work
nodes will use the asynchronous communication method. Otherwise, the work
nodes will use the synchronous communication method, waiting until all work-
ing nodes have completed the current round of training and performing a global
synchronization. That is, the setting of the delay parameter affects the perfor-
mance of this method. However, the value of the delay parameter is hard to set,
as it relies on expert experience. The synchronization delay with unreasonable
delay parameters still leads to low computing performance.

In summary, the existing parameter communication methods of distributed
machine learning still have some shortcomings: (1) the bulk synchronous par-
allel method cannot fully utilize the computational performance; (2) The asyn-
chronous parallel method over-exploits the fault tolerance of machine learning,
which may eventually lead to the non-convergence of the model; (3) The stale
synchronous parallel model, in which most delay thresholds are set based on
expert experience, needs to be better adapted to the cluster environment and
wastes computational resources.

In order to solve these problems, this paper proposes a synchronous paral-
lel method with parameters communication prediction for distributed machine
learning, and we call this method the Prediction Synchronous Parallel (PSP)
method in this paper. This method controls the synchronous time of work nodes
by analyzing the last iteration of cluster training to predict the future clus-
ter performance and set the optimal synchronization timing to reduce the syn-
chronization delay. Furthermore, to further improve the utilization of cluster
computing resources, the fast node still keeps training if it enters the synchro-
nization barrier, and when it receives the latest global model parameters, it
aggregates the incremental local model training at the synchronization barrier
and uses the global model parameters as the initial model for a new round of
training. The experiment results show that our method can effectively improve
the computation performance and convergence performance and also improve
the resource utilization compared with the bulk synchronous parallel method
and asynchronous parallel method.

The rest of this paper is organized as follows. Firstly, related work is reviewed
in Sect. 2. Then, this paper describes the prediction synchronous parallel method
for distributed machine learning in Sect. 3. Experiments follow in Sect. 4. Finally,
the conclusion is in Sect. 5.

2 Related Work

Many distributed machine learning systems have been proposed to deal with
large-scale data with AI technology, such as Spark and Hadoop, which are imple-
mented based on MapReduce schema. For these systems, the server must wait
for all work nodes to update the local models before proceeding to global model
aggregation in each iteration, which causes a significant delay. In order to solve
these problems, the parameter server system has been proposed, such as Mul-
tiverso, Ray [15], etc., which can support bulk synchronous parallel method,
asynchronous parallel method, and stale synchronous parallel method.
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The bulk synchronous parallel method is one of the dominant communica-
tion methods for distributed machine learning, such as the spark-5 [16] and
MLIB16 [17]. It requires that the performance of worker nodes is similar. Oth-
erwise, the end-to-end training time of the deep learning model will be dragged
down by the worst-performing worker node. Haozhao Wang [18,19] et al. have
proved that the performance loss due to synchronous communication is vast,
even in clusters with similar computational performance.

To solve the synchronization delay problem in the bulk synchronous parallel
method, Dean [13] et al. proposed an asynchronous parallel method that can fully
utilize the computational resources of the working nodes. For the asynchronous
parallel method, the local model is sent to the server as long as the work node
calculates it, and the server updates the global model according to the local
model parameters rather than waiting for all other work nodes. Therefore, the
cluster’s performance can be fully utilized as the slow nodes do not slow down the
fast nodes. Furthermore, the asynchronous parallel method has been widely used
in Tensorflow [20]. The advantage of this method is that it can be much faster
than the bulk synchronous parallel method in the clusters with heterogeneous
computing performance of work nodes. However, as the server doesn’t need to
wait for the slowest work nodes if the parameters of the local model uploaded
by the slowest work node lag far behind the local models of other work nodes,
the accuracy of the global model will be reduced, or even not convergent [5].

In order to solve the above problems, the stale synchronous parallel
method [14] has been proposed. It combines the advantages of the bulk syn-
chronous parallel method and the asynchronous parallel method by introduc-
ing a delay threshold to limit the iteration difference between the fastest and
slowest work node. Similar to the asynchronous parallel method, the delayed
synchronous parallel method allows the work nodes not to be globally synchro-
nized until the iteration interval between the fasted work node and the slow-
est work node reaches an obsolescence threshold. There are some distributed
machine learning systems supporting the stale synchronous parallel method,
such as Petuum [21] and Bosen [22].

The stale synchronous parallel method alleviates the delay problem of the
bulk synchronous parallel method and the low accuracy caused by the slowest
work node in the asynchronous parallel method. However, it still needs to solve
the problem of low calculated performance or low convergence performance due
to an unreasonable delay threshold. Where the value of the delay threshold is set
by users, and it requires users to have knowledge of machine learning, distributed
computing, architecture, etc. So it is hard to set a reasonable value for the delay
threshold. In this paper, we propose a prediction synchronous parallel method
for distributed machine learning to improve the calculated performance and
convergence performance of model training.

3 Method

In this section, we first analyze the synchronization lag problem in detail in the
stale synchronous parallel model and then propose the synchronous prediction by
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leveraging the continuity of cluster performance and parallelizing computation
and synchronization. Finally, we prove that our proposed method is feasible from
algorithm and theory.

3.1 Features of Synchronization

The main advantage of the stale synchronous parallel model is that it com-
bines the characteristics of the global synchronous parallel method and the asyn-
chronous parallel method, accelerating the computation of distributed machine
learning models while ensuring convergence. However, there are still some prob-
lems in the previous section, not just the lag problem. This section discusses the
design philosophy and algorithm implementation of the stale synchronous par-
allel model and points out the issues it faces when running on a real distributed
machine learning cluster.

The utilization of computing resources in the stale synchronous parallel
method is:

resource usage =
∑p

i=1 ti
p ∗ max(ti)

, (1)

where p represents the number of worker nodes and ti represents the time spent
on local computation in this round of synchronization. In the case of the global
synchronous parallel model, max(ti) represents the time spent on local model
training by the worst-performing node. If the performance of all worker nodes is
similar, higher utilization of computing resources can be achieved. In the case of
the stale synchronous parallel model, max(ti) represents the time taken by the
last worker node to enter global synchronization. If a suitable stale threshold is
set to make all worker nodes enter global synchronization at the same time, the
stale synchronous parallel method can achieve higher utilization of computing
resources. However, in practice, users often do not have a complete understanding
of the performance of the cluster, so the stale threshold they set may not be
able to achieve optimal utilization of computing resources. Additionally, the
performance of each worker node in the cluster may change in real-time, so a
fixed stale threshold may not be suitable for a real-world cluster environment.

We assume the ratio of the time required for one round of model training
on these three worker nodes is 1 : 2 : 3, and then there are three worker nodes
performing machine learning model training in a parameter server system.

As shown in Fig. 1, worker node 1 and worker node 2 have to wait for worker
node 3 to complete local model training, as it has not yet finished, resulting in the
stale synchronous parallel model degrading into the synchronous parallel model.
In Fig. 2, worker node 1 enters the synchronization barrier after completing 6
local model training iterations when the stale threshold is reached. At this point,
worker node 2 and 3 have also completed their local model training, and different
from Fig. 1, worker nodes 1 and 2 do not have to stop local training and wait for
worker node 3. Under ideal conditions, there is no synchronization stale, thus
fully utilizing the cluster computing performance.
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Fig. 1. The delayed synchronous parallel method communication process with a delay
threshold of 1.

Fig. 2. The delayed synchronous parallel method communication process with a delay
threshold of 5.

As shown in Figs. 1 and 2, the first problem is that the setting of the stale
threshold in the stale synchronous parallel model will directly affect the efficiency
of distributed machine learning model training. However, users often cannot set
the appropriate stale threshold based on the performance of each worker node
because they do not understand the cluster’s performance.

The second problem is that external factors that may interfere with dis-
tributed machine learning model training were not taken into consideration. In
real cluster environments, worker nodes typically perform tasks other than dis-
tributed machine learning model training. Therefore, the performance of each
worker node is constantly changing, and a fixed stale threshold cannot adapt to
the real distributed cluster environment.

As shown in Fig. 3, the initial time ratio required for one round of model
iteration among worker node 1, worker node 2, and worker node 3 is 1:1:2. At
this time, setting the stale threshold to 2 results in the minimum synchronization
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Fig. 3. The delayed synchronous parallel method under dynamic changes in the per-
formance of the worker nodes.

delay. However, after two global synchronizations, other tasks on worker node 3
preempt computing resources, resulting in a performance decline. The originally
designed stale threshold is no longer suitable for the new cluster environment.

In addition, when using the stale synchronization parallel model for dis-
tributed machine learning training in a real cluster environment, global synchro-
nization of the worker nodes is unavoidable. When a fast node enters global
synchronization, it will stop local training until every worker node in the cluster
completes local model training before proceeding to the next round of train-
ing. Therefore, nodes that complete model training earlier are still held back by
slower nodes, which affects the cluster’s computational performance. To address
this issue, this paper proposes a synchronous parallel method with parameters
communication prediction, which uses the optimal synchronization time instead
of a fixed stale threshold to solve the design problem of the stale synchronous
parallel model. This method allows for simultaneous global synchronization and
local computation, further improving the cluster’s computing efficiency.

3.2 Synchronization Prediction

In the stale synchronous parallel method, setting the stale threshold to 0 trans-
forms the stale synchronous parallel method into a synchronous parallel method,
and setting the stale threshold to infinity transforms the stale synchronous paral-
lel method into an asynchronous parallel method. The design of the stale thresh-
old in the stale synchronous parallel model directly determines the global syn-
chronization timing of nodes and directly determines the efficiency of the com-
puting cluster. The following will use a typical scenario of distributed machine
learning model training as an example to illustrate.

As shown in Fig. 1, if the time ratios required for one local model training for
three worker nodes are 1:2:3, then setting the stale threshold to 1, in an ideal situ-
ation, worker node 1 has a computational resource utilization rate of only 33.3%,
and worker node 2 has a utilization rate of only 66.7%. The overall computational
resource utilization rate of the computing cluster is 66.7%. As shown in Fig. 2, if
the stale threshold is set to 5, that is, worker node 1 enters the synchronization
barrier after completing 6 local model training, then in an ideal situation, the
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resource utilization rate of the computing cluster is 100%. Similarly, if the time
ratio for one model iteration training for three worker nodes is 1:1:3, setting the
stale threshold to 1 results in a computational resource utilization rate of 55.5%
for the computing cluster, while if the global synchronization is performed after
worker node 1 completes 3 local model iteration training, the ideal computational
resource utilization rate of the cluster can reach 100%. Therefore, selecting differ-
ent synchronization times based on different cluster performances directly affects
the computational efficiency of the computing cluster. In this paper, the defini-
tion of the optimal synchronization time is when all worker nodes perform global
synchronization at that moment, achieving the highest computational resource
utilization rate.

However, in a real computing cluster environment, users often do not have
knowledge about the performance of each working node in the cluster, making
it difficult to design a stale threshold that can achieve the optimal utilization
of computing resources. Moreover, the computing performance of each working
node may change unpredictably, and a fixed stale threshold may no longer be
suitable for the real-time changes in the performance of each working node.

Most distributed computing clusters have performance that varies in real-
time but also has continuity, meaning that the computing performance of various
working nodes in the computing cluster will not change significantly in a short
period of time. To address the above issues, the synchronous parallel method
with parameters communication prediction replaces the stale threshold with the
optimal synchronization time. Since the cluster’s computing performance has
continuity, the computing performance of each working node in the next syn-
chronization can be predicted using the performance of each working node in
the previous round of synchronization. If the time ratio of model training for
the three working nodes in the previous round of synchronization was 1:2:3, the
time ratio of model training for the three working nodes in the next round of
synchronization is also approximately 1:2:3.

According to above analysis, assuming there are P working nodes in a cluster,
and the parameter server obtains the training time {t1, t2, t3, . . . , tP } of each
working node from the previous iteration, then the optimal synchronization time
can be represented as the least common multiple of {t1, t2, t3, . . . , tP }, show in
Eq. (2), i.e., working node i enters global synchronization after T/ti iterations,

gbc(t1, t2, t3, . . . , tP ). (2)

As shown in Fig. 4, during the first global synchronization, the parameter server
obtains the local model training time ratios of the three worker nodes, which are
1:2:3. Then, the parameter server calculates the optimal time for worker node 1
to perform global synchronization is after completing six iterations.
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Fig. 4. The predictive synchronous parallel model communication process.

3.3 Implement

This section presents the implementation of the synchronous parallel method
with parameters communication prediction. It is implemented under the param-
eter server system, where nodes are divided into working nodes and parameter
servers. The algorithmic details of the working nodes and parameter servers are
described in Algorithm 1 and Algorithm 2.

The specific execution process of Algorithm 1 is as follows:
(1) Load the sub-dataset on this worker node in line 1; (2) Line 2 - Line 9,

the work node receives the iteration number of the current round of training
from the parameter server and checks if the current iteration number is −1. If
it is V1, end the model training. Otherwise, go to (3); (3) Receive the optimal
synchronization time of this worker node. If the current iteration number has not
reached the optimal synchronization time, continue to use the local dataset to
compute the local model in line 10 - line 15. Otherwise, go to (4); (4) Calculate
the average time consumption of one local model training on this worker node,
and send the local model parameters and the average time consumption to the
parameter server in line 16- line 19; (5) Use the local dataset to train the local
model until receiving the new global model pushed by the parameter server in
line 19 -line 26.

The specific execution process of Algorithm 2 is as follows:
(1) Initialize the iteration number and optimal synchronization time for the

corresponding computing process in line 1 - line 2; (2) Receives the local model
of the corresponding computing process through MPI communication and incre-
ment the iteration number of the corresponding computing process in line 3
- line 4; (3) If the optimal synchronization time is reached, enter global syn-
chronization, wait for all work nodes to upload local models to the parameter
server, calculate the optimal synchronization time based on the time required
for each work node to perform one local model training, and wait for the param-
eter thread to aggregate the new global model parameters. Lastly, sends the
new global model parameters and the optimal synchronization time to the cor-
responding computing process through MPI communication.
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Algorithm 1: Prediction synchronous parallel method on worker node
Input : dataset subdata,iterations iteration,steps η,communication threshold

τ ,synchronization iterations i
output:

1 load subdata// load local dataset

2 while ture do
/* Receiving the iteration number and the optimal synchronization

opportunity iteration of the worker node from the parameter

server. */

3 iternumber ← MPI RECV (ITER)
4 i ← MPI RECV (i)

/* If the iteration number of this iteration is -1, the model

training is finished. */

5 if iternumber == −1 then
6 break
7 end
8 start time = now
9 end iternumber = iternumber + i

/* The local model is used for model training before reaching the

optimal synchronization opportunity. */

10 while iternumber < end iternumber do
/* Calculating the parameter gradient of local model by back

propagation method */

11 gradient ← ForwardBackward(parameters, subdata)
/* Updating local model parameters with gradient */

12 parameters ← Update(gradient, η, parameters)
13 iternumber + +

14 end
15 end time = now

/* Calculating the average time consumption of each round of

model training. */

16 average time = (end time − start time)/i
17 MPI ISED(parameters) // Send local model

18 MPI ISED(average time) // Send average time

19 next flag = false
/* Continue to train the local model while waiting synchronously.

*/

20 while !next flag do
21 next flag ← MPI RECV (next flag)
22 gradient ← ForwardBackward(parameters, subdata)
23 parameters ← Update(gradient, η, parameters)

24 end
/* Receiving a new global model from the parameter server */

25 parameters ← MPI RECV (global parameters)

26 end
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Algorithm 2: Prediction synchronous parallel method on the server
Input : Calculation process number pid stale threshold s worker nodes p
output:
/* Initialize the iteration number and optimal synchronization

opportunity of the corresponding calculation process. */

1 iters pid ← 0
2 iters end pid ← iters pid + i pid

/* Receiving a local model sent by a corresponding computing process

*/

3 parameters pid ← MPI RECV (pid, parameters)
4 iters pid = isters pid + 1

/* Judge whether the optimal synchronization opportunity is reached,

and if so, perform global synchronization. */

5 if iters pid = iters end pid then
/* Global synchronization waiting for all working nodes to upload

local models and average time consumption */

6 for i = 1 to p do
7 wait(&send)
8 end
9 next flag pid = true

/* Calculate that corresponding optimal synchronization

opportunity */

10 i pid ← Compute(time pid)
/* Sending the global synchronization end signal and the optimal

synchronization opportunity to the corresponding computing

thread. */

11 MPI ISEND(pid, nex flag pid)
12 MPI ISEND(pid, i pid)

13 end

3.4 Theoretical Analysis

To ensure the correctness of using the implementation of the synchronous paral-
lel method with parameters communication prediction for distributed machine
learning, the following will theoretically prove that this method has the same
correctness as the stale synchronous parallel model. We adopt the convergence
of the method as the criterion for judging the correctness of distributed machine
learning.

For the convenience of this chapter’s proof, the following assumptions are
made:

Assumption 1. The objective function F is continuously differentiable, and the
gradient of the objective function is Lipschitz continuous [23], with a Lipschitz
constant L> 0 as given in Eq. (3):

‖∇F (ω) − ∇F (ω̃)‖2 ≤ L‖ω − ω̃‖2, (3)

where ω represents the model parameters.
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Assumption 2. The loss function has an upper bound, which means:

‖∇F (ω)‖ ≤ K, (4)

where K is a constant.

Assumption 3. The gradient in stochastic gradient descent is bounded, that
is:

D(ω‖ω′) =
1
2
‖ω − ω′‖2 ≤ F 2. (5)

Most machine learning algorithms follow an iterative training pattern that
involves an optimization process. The optimization function is represented by
Eq. (6):

L = f(ω) = f(IN
i=1{xi, yi}, ω). (6)

Here, f is the loss function, xi, yi is a sample in the dataset, ω is the machine
learning model parameter, and yi is the expected output of the input data xi.
The loss function represents the difference between the actual output xi and the
expected output of the input. The machine learning program iterates using the
dataset to minimize the loss function. We will now demonstrate that the efficient
synchronous parallel model can ensure the final convergence of the model, using
an optimization function shown in Eq. (7):

L = f(ω) =
T∑

t=1

ft(ωi). (7)

where ft is the loss function at the t − th iteration and f is a convex function.
The goal is to find the optimal solution ω∗ of the machine learning model to
minimize the loss function.

We introduce a regret value to represent the deviation between the cur-
rently trained model and the optimal solution, and its mathematical expression
is shown in Eq. (8).

R[ω] =
1
T

T∑

t=1

ft(ω) − f(ω∗). (8)

If T tends to infinity, R[ω] tends to 0, it can be proven that the efficient syn-
chronous parallel model can ultimately make the machine learning model con-
verge. Based on Eq. (8), we can obtain Eq. (9):
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R[ω] =
1
T

T∑

t=1

ft(ω) − f(ω∗) ≤ 1
T

T∑

t=1

(∇ft(ω̃), ω̃ − ω∗). (9)

According to Ho [14], we can get the Eq. (10):

1
T

T∑

t=1

(∇ft(ω̃t)ω̃t − ω∗) ≤ σK2 1√
T

+
F 2

σ

1√
T

+
1
T

(ωt − ω̃t, g̃t), (10)

where σ = F

K
√

2(τs+1)P
. When T tends to positive infinity, both σK2 1√

T
and

F 2

σ
1√
T

tend to 0. Therefore, if we want to prove that the regret value R[ω] tends
to 0 when T tends to positive infinity, we only need to prove that 1

T (ωt − ω̃t, g̃t)
tends to 0 when T tends to positive infinity.

1
T

(ωt − ω̃t, g̃t) =
1
T

T∑

t=1

([
∑

i⊆At

ui −
∑

i⊆Bt

ui], g̃t)

≤ 1
T

T∑

t=1

[
∑

i⊆At

ηi(g̃i, g̃t) −
∑

i⊆Bt

ηi(g̃i, g̃t)]

≤ 1
T

T∑

t=1

[|At| + |Bt|]ηtK
2

(11)

Let the iteration difference between the fast node and the slow node be s, from
which we can get |At| + |Bt| ≤ s. Let the learning rate ηt of the t iteration be

σ√
T

. Therefore, Eq. (12) can be obtained based on Eq. (11):

1
T

T∑

t=1

[|At| + |Bt]ηtK
2 ≤ 1

T

T∑

t=1

sηtK
2

≤ 1
T

sK2
√

T

= sK2 1√
T

(12)

Therefore, we can get the Eq. (13):

R[ω] ≤ sK2 + σK2 + K2

σ√
T

(13)

where, as sK2 + σK2 + K2

σ is a fixed value, when T tends to infinity,
√

T tends

to infinity and sK2+σK2+K2
σ√

T
tends to infinitesimal, that is, the regret value R[ω]

tends to infinitesimal.
The Eq. (13) shows that when the number of training iterations of the dis-

tributed machine learning model tends to infinity, the gap between the model
obtained by training calculation and the optimal model tends to zero. Overall,
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we prove that the efficient synchronous parallel model can ensure the final con-
vergence of the model; that is, it proves the correctness of using this model for
distributed machine learning training.

4 Experiments

4.1 Experimental Setup

Dataset. We use two widely used and publicly available datasets to validate the
effectiveness of our approach: CIFAR-10 [24] and MNIST [25]. 1) The CIFAR-10
consists of 60,000 samples, each of which is a 32 × 32 pixel colour image divided
into three channels: R, G, and B. Among these 60,000 samples, five sets are
reserved for training and one for testing. It is used for supervised learning. Each
sample contains a label indicating the category of the object, with ten categories
of images, including airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. 2) The MNIST dataset is specifically designed for handwritten digit
recognition. It consists of a training set with 60,000 samples and a separate test
set containing 10,000 samples. Each sample in the MNIST dataset is a grayscale
image of a handwritten digit, with a size of 28× 28 pixels. The dataset is widely
used as a benchmark for various machine learning algorithms and models.

Baselines. The baselines used in this study are the parameter communication
methods currently mainstream in distributed machine learning, including the
bulk synchronous parallel method [11], the asynchronous parallel method [13],
and the stale synchronous parallel method [14]. The bulk synchronous paral-
lel method, in which the server needs to wait for all work nodes to upload the
current local models, performs global synchronization after each local model
training iteration. For the asynchronous parallel method, each worker node is
trained asynchronously and communicates with the parameter server. The stale
synchronous parallel method only performs global synchronization when the iter-
ation difference between fast and slow nodes reaches a delay threshold.

Metrics. We use three metrics to evaluate the models over the above-mentioned
benchmarks: training time, training quality, and resource usage. The training
time will be measured by the time spent per epoch, the training quality will
be measured by the decrease of the loss function over time, and the computa-
tional resource utilization will be defined as the time spent on computation as a
percentage of the total execution time, as shown in Eq. (14),

resourceusage =
∑

i⊂workers computetimei∑
i⊂workers totalltimei

. (14)
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Environments. The hardware environment used in this paper is a cluster of
four servers, with one server as the parameter server and the other three servers
as worker nodes. It has the following key components: 1) Parameter server:
the CPU is an Intel Xeon processor (E7-4807) with 1.87 GHz, containing 12
physical cores in total; 2) Hyper-Threading: it has 24 logical cores, 32 GB of
memory, and 256 GB of hard disk capacity; 3) Worker node: the CPU is AMD
processor (Processor 6136) with 2.4 GHz. The nodes in the cluster are connected
to each other via Gigabit Ethernet. In addition, a scenario with 3 and 6 clients
is developed by using threads to simulate clients.

4.2 Experimental Results

Training Time
Tables 1 and 2 show the time required for different methods to achieve a given
accuracy. We report the Prediction Synchronous Parallel method as the dis-
tributed machine learning communication method, the training time of the VGG-
11 model on the CIFAR-10 dataset is reduced by up to 19.9%, and up to 55.8%
reduction is achieved when training logistic regression on the MNIST dataset.
This is because the Prediction Synchronous Method can predict the optimal
synchronization time according to the history information, which can reduce the
synchronization relay. So that, the method proposed in this paper is better suited
for natural cluster environments where the performance varies in real-time.

Table 1. Training Time for VGG-11 model on CIFAR-10 using different methods with
75% accuracy

Bulk synchronous
parallel

Asynchronous
parallel

Stale Synchronous
Parallel

Predictive
synchronous
parallel

3 clients 4511 s 4230 s 4133 s 3756 s

6 clients 4225 s 3846 s 4033 s 3419 s

Table 2. Training Time for logistic regression on MNIST using different methods with
92% accuracy

Bulk synchronous
parallel

Asynchronous
parallel

Stale Synchronous
Parallel

Predictive
synchronous
parallel

3 clients 221 s 258 353 s 204 s

6 clients 208 s 231 s 445 s 197 s
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Training Quality
According to Figs. 5 and 6, the method proposed in this paper has better con-
vergence performance than other baselines. Although the asynchronous parallel
method has a faster speedup, it excessively utilizes the limited fault tolerance
of machine learning, resulting in inferior convergence performance compared to
our method in this paper. Moreover, while ensuring model convergence, the Pre-
dictive Synchronous Parallel method proposed in this paper has better training
speed than the bulk and stale synchronous parallel methods. Our method with
the optimal synchronization time can reduce the synchronization delay in the
bulk synchronous parallel method, solve the parameter stale problem in the asyn-
chronous parallel method, and the unreasonable delay parameters in the stale
synchronous parallel method. Therefore, regarding convergence performance, our
method is superior to the other two methods, the final model converges, and the
loss function of the Predicted Synchronous Parallel method is reduced by about
15% compared to the mainstream parametric communication method.

Fig. 5. Convergence performance of different methods trained with VGG-11 on CIFAR-
10

Fig. 6. Convergence performance of different methods trained with logistic regression
on MNIST
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Resource Usage
In Figs. 7 and 8, the utilization of network bandwidth is used as a metric to mea-
sure the utilization of computational resources. This is because computational
tasks require data transmission and communication between different nodes.
Our method exhibits a computational resource utilization rate second only to
asynchronous parallel methods. This is because our method has lower synchro-
nization latency compared to batch synchronous parallel methods and outdated
synchronous parallel methods. In contrast, asynchronous parallel methods do
not require global synchronization, resulting in higher computational resource
utilization. Compared to mainstream parameter communication methods, our
method improves computational resource utilization by 31%. As the number of
worker nodes increases, the computational resource utilization rates of batch syn-
chronous parallel methods, asynchronous parallel methods, sluggish synchronous
parallel methods, and our method all exhibit varying degrees of decline. This is
due to the increased number of worker nodes communicating with the parameter
server in the cluster network, leading to network congestion. More resources are
allocated to model transmission between worker nodes and the parameter server,
ultimately resulting in a decrease in cluster computational resource utilization.

Fig. 7. Computational resource utilization of different models trained with CIFAR-10
using VGG-11 under three and six threads

Fig. 8. Computational resource utilization of different models trained with MNIST
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5 Summary

In this paper, we propose a synchronous parallel method with parameters com-
munication prediction for distributed machine learning to solve the degraded
resource utilization problem caused by the constant delay thresholds in the stale
synchronous parallel method. It predicts the next round of training based on
the previous round of training of each node in the cluster to select the optimal
synchronization timing, thus reducing the synchronization waiting time. More-
over, the fast nodes in this method continue to train locally with local datasets
instead of stopping training while waiting synchronously, which further increases
the computational resource utilization of the cluster. The experiments show that
the method proposed in this paper has good improvements in training time,
training quality, and resource usage.
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Jelić, Slobodan I-38
Ji, Rui I-385, III-273
Jian, Wenxin I-93
Jiang, Qinkai II-437
Jiang, Xinghong I-93
Jiang, Yujie III-173
Jiao, Liang III-347
Jin, Yi I-265
Jin, Zhifeng I-187
Ju, Zixuan I-225

K
Keramidas, Giorgos I-3
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