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Abstract. Origin-Destination (OD) Matrix Prediction is an important
part of public transportation service which aims to predict the number of
passenger demands from one region to another and capture the passen-
gers’ mobility patterns. This problem is challenging because it requires
forecasting not only the number of demands within a region, but the
origin and destination of each trip as well. To address this challenge, we
propose an effective model, ODCRN (Origin-Destination Convolution
Recurrent Network) which incorporates traffic context and bi-directional
semantic information. First, we obtain the semantic embedded features of
the region as the static traffic context by the Node2vec algorithm, and the
traffic flow of the region is counted as the dynamic traffic context. Second,
we construct two adjacency matrices which represent origin-destination
and destination-origin travel demands within urban areas respectively
based on the OD matrices of each time slot, and use the graph convolu-
tional network to aggregate traffic context information of the semantic
neighbors in both directions. Then, we use a unit constructed by GRU
and the graph convolution network to capture the spatial-temporal cor-
relations of the input data. Finally, we use those correlations and traffic
contexts to predict the OD matrix for the next time slot. Our model is
evaluated on TaxiNYC and TaxiCD datasets, and experimental results
demonstrate the superiority of our ODCRN model against the state-of-
the-art approaches.
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1 Introduction

Recently, ride-hailing applications are becoming prevalent choices for daily com-
mutes, such as Didi, UCAR, and Uber, which aim to provide passengers with
convenient ride services and improve the efficiency of public transportation. To
provide high-quality services and achieve company profits, ride-hailing platforms
need to fully understand the passenger demands in real-time, which helps avoid
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empty drives (i.e., driving without passengers). Therefore, instead of merely fore-
casting the possible number of passenger demands within a region, it is rather
important to gain knowledge of passenger demands in terms of the origin and
destination of each trip. Because the demand quantity between two regions at
different time slots also takes mining useful mobility patterns into consideration.
If Origin-Destination (OD) travel demand can be found earlier, popular destina-
tions and travel routes can be provided for travel service providers, and vehicles
can be scheduled in advance.

OD matrix prediction has received increasing attention because of its impor-
tance. Existing studies [1,14,21] predict the OD travel demand between all
regions of the city by constructing an OD matrix. As shown in Fig. 1, we regard
the urban region as a large rectangle, and then divide it into m×n regions, mak-
ing the dimension of the OD matrix in each time slot reach N × N(N = m × n).
And then form an OD matrix sequence according to a temporal order, where
M (t)

i, j in the OD matrix represents the number of trips from region ri to region rj
from time t − 1 to time t. OD matrix prediction aims to predict the OD matrix
of a future moment based on the OD matrix of multiple historical moments.

Fig. 1. Spatial neighborhood and OD matrix.

Although recent works consider combining traffic flows to utilize mobility
patterns into OD matrix prediction, it is still a challenging problem, affected by
the following aspects:

(1) Directed semantics of travel demand. There is a directed semantic
relationship between OD travel demands among urban regions. In the left dia-
gram of Fig. 2, A, B, and C represent the office region, residential region, and
residential region, respectively. During the morning rush hour, there are similar
travel demands from B to A and C to A. There are more travel demands with
A as the destination, but less travel demand with A as the origin, which indi-
cates that the semantic neighbors in the two directions between departure and
arrival of A is different in the same period. The right diagram of Fig. 2 shows
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the 10-day OD demand curves between A and B revealing a large number of taxi
demands from B to A. At the same time, due to the marginality of region B,
the demand for taxis from A to B appears to be random. This non-periodic and
non-stationary curve increases the difficulty of forecasting.

A

C

B

Fig. 2. OD spatial correlation (left) and OD flow time series (right) among different
urban regions

(2) Various Traffic Context. In the existing OD matrix prediction studies,
in addition to the number of travel demands between regions, other information,
such as the traffic context of the origin and destination regions, has not been
fully considered. Traffic context includes static traffic context information and
dynamic traffic context information. Different traffic contexts contain different
contextual information. For example, static POI information reflects the function
of the region while the dynamic traffic context of the region, such as inflow and
outflow traffic, reflects the dynamic traffic conditions of the region.

To tackle these challenges, we propose an effective model named ODCRN,
to collectively predict the OD matrix in the following time slot more accurately
and more efficiently. The primary contributions of this paper can be summarized
as follows:

(1) In order to capture the directional information of travel demand, we con-
struct two OD matrices from the origin to the destination(forward) and
from the destination to the origin(backward) to capture the forward and
backward information by bi-directional graph diffusion convolution network.
Then we combine them together to integrate the bi-directional semantic
information.

(2) We comprehensively consider static and dynamic context information by
taking POI information which reflects regional functions as static traffic
context information by establishing a bootstrap to better represent origins
and destinations, and traffic flow information between regions as dynamic
traffic context information. Then we capture the features through dynamic
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and static traffic context learning networks to collaborate with OD matrix
prediction.

(3) Extensive experiments on two open datasets, TaxiNYC and TaxiCD, demon-
strate the proposed ODCRN model outperforms baselines.

2 Preliminaries and Related Work

2.1 Definitions

We first introduce several basic concepts to formulate the OD matrix prediction
problem. We assume the target city is partitioned into subareas as regions and
regard them as graph nodes.

Definition 2-1 OD Matrix. We define an OD matrix at time slot t as a 2-
dimensional tensor Mt ∈ �

Nl×Nl , where Nl is the total number of regions in the
city. It can also be defined as Mt = {mi, j, 1 ≤ i, j ≤ Nl}, where mi, j ∈ � represents
specific figure of traffic flow from region i to region j at the time slot t. OD
Matrices Sequence is defined as a 3-dimensional tensor M = [M1, · · · ,MNt ] ∈

�Nt×Nl×Nl , where Nt is the total number of slots of historical traffic data.

Definition 2-2 Semantic Neighbors. mi, j represents the number of travels
from region vi to region vj . vi and vj are the OD semantic neighbors in this
particular travel demand. vi and vj needn’t be geographically adjacent.

Definition 2-3 Static Traffic Context. We define the traffic graph of city as
G = {V, A} where V = [v1, · · · , vNl

] and |V | = Nl. vi ∈ V is a node on the traffic
graph which represents a region in the city. 2-dimensional tensor S ∈ �Nl×F

represents the static traffic context on all regions, such as POIs and embedding
features.

Definition 2-4 Dynamic Traffic Context. We define the dynamic traffic con-
text in regions as a 3-dimensional tensor X = [X1, · · · , XNt ] ∈ �

Nt×Nl×Dt , where
the Dt represents the features’ dimension of dynamic traffic context. For exam-
ple, when we use inflow and outflow as features of context, features’ dimension
Dt = 2.

2.2 Origin-Destination Matrix Prediction

For a given time slot t, using OD matrices for the past p time slots
[Mt−p+1, · · · ,Mt ] ∈ �P×Nl×Nl, dynamic traffic contexts of every region for the
past p time slots [Xt−P+1, · · · , Xt ] ∈ �P×Nl×Dt , static traffic context of every
region S ∈ �Nl×F and adjacent matrix which represents the region’s geographic
proximity A ∈ �Nl×Nl as inputs, to predict OD matrix Mt+1 ∈ �Nl×Nl of one-time
slot in the future.
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Generally, OD Matrix prediction task [2–4] can be divided into two cate-
gories, static approaches and dynamic approaches. Static approaches [5,6] con-
sider the traffic flow as independent time slots and ignore the spatial-temporal
information by calculating the average traveling demand to predict the OD
matrix over a long period of time. Dynamic approaches [7] take the time-variant
traffichttps://www.overleaf.com/project/6424167639f3dccab22016fa flow infor-
mation under consideration so they can be used for the management of the
traffic flow and the dynamic path induction.

In recent years, an increasing number of neural network approaches, espe-
cially Graph Neural Networks (GNN) [9] have been applied to OD matrix predic-
tion tasks. Since urban transportation networks can be seen as graph structures,
GNN can naturally deal with the spatial relation of traffic flows in non-Euclidean
city traffic networks. Those approaches consider sensors as graph nodes [12], the
data at fixed time intervals as node features and the geographical proximity, dis-
tance, traffic similarity or road connectivity between sensors or regions as edges
between two nodes. Researchers such as Wang and Ke [1,14] proposed graph
embedding methods to embed the grid and combine it with LSTM to predict
the OD matrix. Multi-task learning traffic prediction approaches [15–18] were
proposed for both regional traffic flow and OD matrix prediction tasks. Liu et
al. [19] constructed station distance and similarity in traffic patterns for pre-
dicting subway OD trip traffic based on a combination of physical and virtual
approaches. Zheng et al. [1] proposed a method to predict the OD matrix via
graph convolution and Liu et al. [8] combine the spatial-temporal context to
predict taxi OD demand.

We found that they rely heavily on the construction of traffic graphs to
capture the spatial correlation of flows between geo-locations. Moreover, due
to the functional differences between locations and the real-time mobility and
variability of traffic flows, most graph neural networks fail to capture the dynamic
spatial correlations between urban locations, as well as the hierarchical spatial
correlations of both local traffic correlations and global traffic similarities.

3 The ODCRN Framework

In this section, we present the detailed architecture of the proposed model
ODCRN. As the Fig. 3 shows, the model consists of three parts. The first part
is the spatial-temporal information capture model, which is constructed by the
Bi-GDC-GRU unit based on the architecture of RNN. As Fig. 4(a) shows, each
GRU unit integrates the bi-direction diffusion graph convolution (in Fig. 4(b))
to capture the temporal and spatial correlations of the OD matrices. The other
two components are dynamic and static traffic context learning networks, which
are used to capture the traffic context features associated with each time slot
and input them as node features TCt into the Bi-GDC-GRU unit. We use CNN
with the kernel size of 1× 1 to predict the OD matrix of the next time slot Mt+1

by using the last hidden state ht in the prediction phase.
The inputs to the model include the OD matrix of the historical p time seg-

ments [Mt−p+1, · · · ,Mt ] and traffic context information for historical p time slot
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[TCt−p+1, · · · ,TCt ]. As Fig. 3 shows, the traffic context learning network module
learns regionally relevant traffic contextual information and consists of two sub-
networks, including a static context learning network and a dynamic context
learning network. We use Node2vec [20] embedding features which illustrate the
regional structural features as input of the static traffic context learning net-
work. To predict the number of passengers from one region to another region,
we use the inflows and outflows of all regions in each time slot as inputs of the
dynamic traffic context learning network.

3.1 Constructing Traffic Context from Historical Data

Fig. 3. ODCRN architecture

Static Traffic Context Learning Network Module. The attributes of the
region itself, such as POI, population and other information, affect its traffic flow
and influence its fluency as the origin or destination for commutes. We pretrain
the embedding features of each node with Node2vec algorithm as the static
traffic contexts for each node. Node embedding features represent the structural
properties of the nodes on the graph and the similarity between nodes.

After constructing the static traffic context, we use a deep neural network
DNN as a Static Context Learner (SCL) to map the static traffic context into
node hidden states as follows:

h1 = SCL (S) = DNN (S) (1)

In Eq. 1, h1∈ �Nl×F1 is the output of the static traffic context learning network
SCL and the DNN is a multi-layers deep neural network.
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Dynamic Traffic Context Learning Network Module. We count the inflow
and outflow traffic in each subarea of the city for each time segment from the his-
torical travel records. We use X = [X1, · · · , XNt ] ∈ �

NtNlDt as regional dynamic
traffic context. Since the inflow and outflow traffic of a region are affected by
adjacent regions, we use a graph convolution network as a Dynamic Context
Learner (DCL) network to capture spatial correlations. DCL maps the dynamic
traffic context of all nodes in each time slot into hidden state representations:

h2 = DCL (Xt ) = GDC (A, Xt,W) =

K∑

k=0

AkXtWk (2)

In Eq. 2, GDC denotes the graph diffusion convolution [13] operation, which
will be introduced in the following Sect. 3.2. Xt ∈ �

Nl×Dt is the dynamic traffic
context at time slot t of the input, and W is the graph convolution parameters.

For each time slot t, we combine those two types of traffic context as shown
in the Eq. 3:

TCt = SCL (S) | | DCL (Xt ) = h1 | | h2 (3)

3.2 Capturing Spatial-Temporal Correlations by Bi-GDC-GRU
Unit

We propose Bi-directional Graph Diffusion Convolution GRU (Bi-GDC-GRU)
unit to capture correlations of spatial-temporal information. Demands of differ-
ent OD travel directions might be different at the same time. For example, office
regions have more arrival demand in the morning and less departure demand.
Figure 5(a) and Fig. 5(b) show that the OD semantic neighbors departing from
and arriving at region r2 at the same time are different. Therefore, in order to
partially solve the sparsity problem of the OD matrix, we construct the semanti-
cally adjacent edges of ri in two directions(both in and out), which can aggregate
more OD semantic neighbor node information.

Specifically, for each input time t, we use the OD matrix Mt to construct
two directed weighted adjacency matrices as shown in Fig. 4(b) and Fig. 4(c) as
graphs to aggregate neighbor node information. The forward adjacency matrix
is expressed as A(t)

f
∈ �Nl×Nland the backward adjacency matrix is expressed as

A(t)
b

∈ �Nl×Nl :
A(t)
f

= Norm (Mt ) (4)

A(t)
b

= A(t)
f
.T (5)
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Fig. 4. Details of Bi-GDC-GRU unit (in Fig. 4(a)) and an example of graph information
aggregation process in Bi-GDC-GRU (in Fig. 4(b))

In Eq. 4, Norm is to normalize the OD matrix Mt to prevent the gradient explo-
sion problem after the graph convolution operation. In Eq. 5, .T is the transpose
operation. Since there is some correlations between the region set as the origin
and set as the destination, using the forward and backward adjacency matrix to
simultaneously aggregate the semantic neighbor node features on the OD pair
starting from node vi and arriving at node vi.

Fig. 5. An example of forward and backward OD matrix. Figure 5(a) shows the trip
times and directions of the four nodes. Figure 5(b) and Fig. 5(c) show the corresponding
OD matrix. The travel demand relationship from r2 to r1, r2, r3, and r4 represents as
[0,0,0,1], and the number of trips arriving at r2 is [3,0,5,4].

After constructing the forward and backward adjacency matrices, we use bi-
directional diffusion graph convolution to capture the spatial correlation between
OD pairs, as shown in Eq. 6:

h(t) =
K∑

k=0

(
A(t)
f

)k
TCtWk1 +

(
A(t)
b

)k
TCtWk2 (6)
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TCt represents the traffic context at time t, and W is the graph convolution
kernel parameter. For time t, the diffusion graph convolution of Eq. 6 is defined
as a finite number of directed diffusion processes on the graph, k is the number

of diffusions, and (A(t)
f
)

k
represents the diffusion probability to the k − th hop

neighbor. Figure 4, 5 and 6 shows the convolution process of the forward diffu-
sion graph. The central node is represented by the aggregation and summation
of the information of neighboring nodes of different hops. The diffusion proba-
bility A(t)

f
indicates the strength of the edge connection between nodes. The OD

traffic of nodes is bi-directional, and the forward and backward diffusion graph
convolution in Eq. 6 can aggregate the region as the information of multi-hop
semantic neighbor nodes in the two directions of the origin and the destination.

Fig. 6. An schematic of k-steps forward graph diffusion convolution

Then, the time correlations of the OD matrix at different moments are cap-
tured by the GRU units based on the recurrent neural network. Specifically, we
use GRU to capture the temporal correlation between OD matrices, and replace
the matrix multiplication operation in GRU with the bi-directional diffusion
graph convolution operation in Eq. 6.

r (t) = σ(Θr ∗G

[
TCt,H

(t−1)
]
+ br ) (7)

u(t) = σ
(
Θu ∗G

[
TCt,H

(t−1)
]
+ bu

)
(8)

c(t) = tanh(Θc ∗G [TCt, r
(t)

� H(t−1)
] + bc) (9)

H(t) = u(t) � H(t−1) + (1 − u(t)) � c(t) (10)

In Eq. 10, H(t) is the output of the GRU unit at time t. ∗G is the diffusion
map convolution operation represented by Eqs. (4–6). In Eq. 7, 8, and 9, Θ is
the graph convolution kernel parameter, σ is the Sigmoid activation function,
and � is the Hadamard product. The reset gate r (t) and the update gate u(t)

of the GRU unit at time t are used to control the forgetting information and
control output respectively, and the input is the traffic context TCt at the current
time t and the previous time. The hidden state H(t−1) output by the GRU unit
is concatenated and used as node features to input into the diffusion graph
convolution represented by Eq. 6. Diffusion Graph Convolution GRU units can
capture both temporal and spatial correlations.
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In the model prediction stage, we regard the hidden state output by the last
GRU unit as the input of the prediction network. Since we need to predict the
OD matrix next moment, we adopt a single-layer convolutional neural network
with a 1 × 1 convolution kernel as the prediction network, which is shown in
Eq. 11:

M̂ t+1 = Θ ∗C

(
H(t)

)
(11)

where H(t)
∈ �N×F is the hidden state output by the last GRU unit, ∗C is the

convolution operation, Θ is the convolution kernel parameter, M̂ t+1 ∈ �Nl×Nl is
the predicted OD matrix at the next moment.

3.3 Loss Function of OD Matrix Prediction

We use Mean Square Error (MSE), a common loss function in regression tasks,
to back-propagate the error and optimize the model parameters. As shown in
Eq. (4–12):

L (Wθ ) = MSE
(
Mt+1, M̂ t+1

)
=

1
Nl ∗ Nl

Nl∑

i=1

Nl∑

j=1

(
mi, j − m̂i, j

)2 (12)

Wθ are the parameters of the whole model. Mt+1, M̂t+1 ∈ �Nl×Nl are the true
and predicted values of the OD matrix at the next moment, respectively. Nl is
the total number of nodes, namely the number of regions in the city.

4 Experiment

4.1 Datasets and Evaluation Metrics

We use taxi order data from New York City and Chengdu for the experiments.
The raw data information includes boarding time, alighting time, boarding lon-
gitude, boarding latitude, alighting longitude and alighting latitude.

We divide the whole city into m × n regions. New York City is divided into
256(16 × 16) regions while Chengdu City is divided into 256(16 × 16) regions as
well. Firstly, based on the data of orders, the number of orders corresponding
to the boarding and alighting regions per hour is counted and used to construct
an OD Matrix, which is arranged in chronological order to form a sequence of
OD Matrices with a dimension of T ∗ N ∗ N, where the T is the total number of
time periods and N = m × n is the total number of regions. Specific information
on the dataset is shown in Table 1:
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Table 1. Description of Dataset

Dataset Name TaxiNYCa TaxiCDb

Data Type Taxi Order Taxi Order

City New York ChengDu

Longitude range −74.02–73.95 104.02–104.12

Latitude range 40.67–40.77 30.62-30.70

Time range 2015/1/1–2015/4/30 2016/11/1–2016/11/30

Total number of time slots 2880 720

Length of unit time period 1 h 1 h

Number of grids 16 × 16 16 × 16

Static Traffic Context
Information

Node2vec Node Embedding Node2vec Node Embedding

Dynamic Traffic Context
Information

Regional inflow/outflow Regional inflow/outflow

a https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
b https://outreach.didichuxing.com/research/opendata/

At the same time, we construct two kinds of traffic context information:

(1) Static Traffic Context Information. Using the data of orders within two
weeks, we construct the graph by using the starting grid and the ending
grid as two nodes on an edge. The number of orders is the weight of the
edge. The embedding vector for each grid was pre-trained with Node2vec.

(2) Dynamic Traffic Context Information. The number of boardings and alight-
ings corresponding to each zone per hour is counted as the inflow and outflow
of the zone.

The OD matrix prediction task uses historical data from the past 8 h (8 unit
time slots) to predict the future OD matrix of 1 h (1 time slot). The dataset
is divided in chronological order with training, validation and test set at the
ratio of 8:1:1. We evaluate the performance by two commonly used regression
task evaluation indicators, root mean square error(RMSE) and mean absolute
error(MAE).

4.2 Parameter Setting

The hyperparameters of our model are set as follows:

(1) Dimension of the Node2vec nodes embedding feature is 10. The static con-
text learning network consists of 2 layers neural network where the number
of hidden layer units in each layer is 32. The dynamic context learning net-
work is a 3 layers GDC network, and the number of units in each layer
is 32.

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://outreach.didichuxing.com/research/opendata/
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(2) The ODCRN has a total of two layers of recurrent networks, where each
recursive cell contains two layers of diffusion map convolutional networks.
The number of hidden layer cells is 32, and the number of GDC diffusion
steps is set to 2.

(3) We use Adam optimizer to train the model. The learning rate during the
training stage is 0.01 with a batch size of 128. In addition, to prevent over-
fitting, the regularization parameter is set to 0.0001 and an early stop mech-
anism is used.

4.3 Spatial-Temporal Data Preprocess

For OD matrix prediction, we use historical data from the traffic flows’ dataset
to generate static and dynamic traffic contexts as the input of traffic context,
and generate the OD matrices for the past 8 h as input of the historical OD
matrices sequence.

Fig. 7. Traffic context and OD matrix construction process

Static Traffic Context Data. According to the statistics of the start point,
end point and traveling counts between them, we use Node2vec to train the
embedding features of each region as our static traffic context, including graph
structural characteristics and node similarity.

Dynamic Traffic Context Data. As shown in Fig. 7(b), we count the inflow
and outflow of each region in hourly intervals as our dynamic traffic context
data. regions with high inflow flows tend to be the end of the commute, while
those with high outflow flows tend to be the origin of the commute.
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OD Matrices Sequence. Since inter-regional commuting takes time, the OD
matrices are also counted in hours. We first grid the data to find the semantic
neighbors of each region. Then we perform temporal statistics on the order start
and end points of each region to determine the weights of the adjacency matrix.
We regard the OD matrix as the adjacency matrix and use it as our input of the
Bi-GDC-GRU cell to capture the spatial association of OD semantic neighbors.

4.4 Comparison and Analysis of Model Prediction Accuracy

Table 2 shows the prediction results of each method on the TaxiNYC and TaxiCD
datasets. It is clear that the traditional models HA and ARIMA have poor predic-
tion results, due to the randomness of OD travel demand between some regions.
ARIMA and the historical averaging method (HA) are simple but less effec-
tive. The deep learning method ST-ResNet, which considers the trend, period,
proximity, and other temporally more relevant historical data, and deposits a
residual network to enhance the network depth, improves the prediction effect.
In contrast, as an improved version of ST-ResNet [11], MDL [15] model designs
node network and edge network branches to extract edge flow (OD) and node
flow (inflow and outflow) features respectively, and uses a multi-task learning
approach to predict both flows. But its performance is inferior to that of the
single-task ST-ResNet. MDL and ST-ResNet use three segments of historical
data as input. GEML [1] is a GNN-based OD matrix prediction model that
uses a grid embedding approach and graph convolution to aggregate informa-
tion about the semantic and geographic neighbors of OD pairs to pre-weight the
importance of neighbor nodes in the OD matrices, and adapts LSTM to capture
temporal correlations. But the model neither considers the matrix prediction
in terms of dynamic and static contextual information of the starting and end-
ing points, nor does it explicitly distinguish the direction of the edges of the
adjacency matrix.

Table 2. Comparison Results of TaxiNYC and TaxiCD

Models RMSE(NYC) MAE(NYC) RMSE(CD) MAE(CD)

HA 1.085 0.163 0.440 0.114

ARIMA 4.027 2.713 0.813 0.328

ST-ResNet 0.647 0.195 0.325 0.146

MDL 1.081 0.993 0.413 0.319

GEML 0.865 0.156 0.332 0.090

ODCRN(ours) 0.622 0.153 0.322 0.116

Among all models, ODCRN has the lowest error on the OD matrix prediction
task. The prediction performance is improved because ODCRN uses the time-
varying OD matrix as the adjacency matrix, the values of the OD matrix as the
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weights of edges, and considers both forward and backward-directed edges to
aggregate neighbor node features more effectively. In addition, ODCRN incor-
porates both static and dynamic traffic context information of each region, which
enables the traffic conditions in the region to be captured to further improve the
prediction.

4.5 Comparison of Model Complexity and Speed

We compare the number of parameters (complexity), training speed and infer-
ence speed (testing speed) of ODCRN and several deep learning-based baseline
models, where model complexity and speed are important reference metrics for
model deployment. In the OD matrix prediction task, we define the OD matrix
of the first 8 time slots with the OD matrix of the next 1 time slot representing
the labeled data as one sample. Define the speed as the number of samples that
can be processed per unit of time (samples/s).

Table 3. Comparison of the number of Parameters on the Model and Speed

Model The Number of
Trainable Parameters

Training Speed Reasoning Speed

MDL 7,694,106 81 238

ST-ResNet 7,202,579 93 323

GEML 395,264 53 138

ODCRN(ours) 108,640 108 324

As shown in Table 3, the MDL model uses multi-task learning to extract
both regional traffic flow features and OD matrix features, and each task uses
three deep convolutional networks with residual connections to extract spatial-
temporal features from three highly correlated historical data, respectively, with
the highest complexity. ST-ResNet only performs feature extraction on the OD
matrix, and the single task makes the model parametric number and speed
better.

Our ODCRN model, compared with the GEML model, is an OD matrix
prediction model with an LSTM networkwhich has a much smaller number of
parameters. For inputs at different time steps, the parameters in the LSTM
units are shared, greatly reducing the number of parameters. In contrast, since
the ODCRN model integrates both GRU and GCN, the number of parameters
in the whole model is mainly the convolutional kernel parameters in the bi-
direction diffusion graph convolution in the GRU units, which further reduces the
number of parameters compared with the serial structure of GCN and LSTM in
GEML. The design of the recurrent unit in ODCRN can capture both temporal
and spatial correlations, which improves the training and inference speed while
reducing the parameters.
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4.6 Hyperparameter Experiments

In this section, we adjust the hyperparameters in the ODCRN model and com-
pare the prediction errors of the model under different parameters. This exper-
iment adjusts the hidden status dimension of the bi-directional diffusion graph
convolution in GRU, the hidden state dimension of the static traffic context
learning network DNN, and the hidden state dimension of the dynamic traffic
context learning network GDC. The experiments are conducted by using the con-
trol variates, where one of the parameters is adjusted to observe the prediction
accuracy of the model while the other parameters remain unchanged.

In Fig. 8a(b) and Fig. 8b(b), a hidden state of 32 in the static context network
provides a better representation of spatially static information, while smaller
hidden state dimensions (16 dimensions) and larger hidden state dimensions
(128 dimensions) suffer from underfitting and overfitting problems. Finally, the
dynamic traffic context, i.e. the GDC with input features of regional inflow and
outflow traffic (2 dimensions), was adjusted for different hidden states. As shown
in Fig. 8a(c) and Fig. 8b(c), the model over-fits as the dimensionality of the GDC
hidden layer increases, indicating that the dynamic traffic context features can be
better extracted by using GDCs with low-dimensional (16-dimensional) hidden
layers at lower input feature dimensions.

(a) The Experiment on the number of Hidden Units on Dataset TaxiNYC

(b) The Experiment on the number of Hidden Units on Dataset TaxiCD

Fig. 8. The Influence of the Number of Hidden Units on Model Performance
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4.7 Ablation Experiment

We conduct extensive ablation studies to quantify the performance benefit of
each component in our model. Four variants of the ODCRN-based model are
constructed and tested as follows:

(1) W/O Static Context Learner: without inputting the static traffic context
information, i.e., Node2vec node embedding features.

(2) W/O Dynamic Context Learner: without inputting the dynamic traffic
context information, i.e., The inflow and outflow for each region at each
moment.

(3) W/O Forward GDC: removing the graph aggregation from the central node,
the forward adjacency matrix is an N × N(N = m× n) matrix from Origin to
Destination.

(4) W/O Backward GDC: removing the graph aggregation to the central node,
the backward adjacency matrix is an N × N(N = m × n) matrix from Desti-
nation to Origin.

Table 4. Results of Ablation Experiments on Dataset TaxiNYC and TaxiCD

Model Variant RMSE(NYC) MAE(NYC) RMSE(CD) MAE(CD)

w/o static context learner 0.628 0.157 0.322 0.118

w/o dynamic context learner 0.687 0.204 0.327 0.123

w/o forward GDC 0.663 0.161 0.328 0.121

w/o backward GDC 0.631 0.159 0.322 0.119

ODCRN 0.622 0.153 0.322 0.116

The results of the model ablation experiments are shown in Table 4. The
ODCRN model has the best prediction with all components retained, and the
effectiveness of each component will be described in turn as follow.

Static Context Learning Network. When the static context learning net-
work is removed, RMSE and MAE increase compared to ODCRN, which indi-
cates that adding Node2vec node embedding features helps to improve the per-
formance of the model. Since there is no POI information of the regions, we
count the starting region, the ending region, and the number of orders as the
connected edges between regions (nodes) from one month of taxi orders, so that
the constructed graph structure can reflect the community structure, and other
characteristics of a region as a popular starting or ending region has multiple
connected edges on the graph. Node2vec trains the node embedding features to
allow the OD matrix prediction model to learn the prior knowledge of nodes
which helps improve the prediction.
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Dynamic Context Learning Network. Regions with high inflow traffic tend
to be set as the endpoint in OD travel demand, while regions with high outflow
traffic tend to be set as the starting point in OD travel demand. Using the
dynamic traffic contexts of regions as the dynamic characteristics of nodes can
improve the OD matrix prediction.

Forward and Backward Diffusion Graph Convolution. Due to the reg-
ularity of commuting activities, the OD travel demand has different directions
at different moments, and departure and arrival are correlated. Therefore, using
the OD matrix with directions (forward) and its transposed DO matrix (back-
ward) to construct bidirectional edges from the target region to other regions,
and from other regions to the target region, the graph convolution learns more
effective node representations than one-way edges and is aggregated with more
information about neighbor nodes.

4.8 Comparison Experiment of Predicted Value and Actual Value

For a more intuitive view of the model predictions, we selected Region 113 and
Region 198 in the TaxiNYC dataset and plotted the predicted versus actual
value curves of OD travel demand between the two regions for a total of 10 days
from April 21, 2015 to April 30, 2015, respectively.

(a) from region 113 to region 198 (b) from region 198 to region 113

Fig. 9. Comparison between Predicted and Actual value between regions

From Fig. 9, we can see that the true values of the OD curves change irreg-
ularly with time, which shows an overall cyclical nature and a more obvious
morning and evening peak. The trend of the curve and the range of values are
different, and the demand for taxis from region 113 to region 198 is more than
the demand for taxis from region 198 to region 113, which indicates that the
travel demand between regions is asymmetric, and the forward OD matrix and
backward OD matrix we constructed aggregates the characteristics of neighbor
nodes with OD semantic relationship through a directed and weighted adjacency
matrix. The ODCRN fits the real data well and is generally consistent with the



148 J. Chang et al.

real values in terms of trend and numerical magnitude. Secondly, we can also
find from Figs. 9 that the OD curves show dramatic local fluctuations due to the
dynamic changes in taxi demand between regions. And this acyclic, randomly
changing curve increases the difficulty of prediction, so the model fails to give a
more accurate prediction in detail.

Figure 10 shows the predicted values of the OD matrix (N × N, N = 256)
compared to the true values at three different moments on April 30, 2015 at 8
am, 2 pm and 10 pm. It can be seen that the smaller number suburban regions
keep the values of the corresponding locations of the OD matrix silent due to the
sparse number of taking taxis. The OD matrix predicted by our model is close
to the real OD matrix in terms of spatial distribution and temporal variation of
ride-hirings, and can better predict the OD travel demand among urban regions.

Fig. 10. Comparison of the Predicted Value and Actual Value of OD Matrix

5 Limitation Analysis

Although the method proposed in this paper is better than the existing traffic
prediction model in terms of prediction effect, there still exist some aspects which
can be further improved.

Prediction of Non-stationary and Non-strictly Periodic Traffic Time
Series. Due to the uneven development of urban regions, differences in travel
demand, or uneven distribution of data collection devices, there are non-
stationary and non-periodic trends in the time series of some nodes, and the
prediction of such time series is more difficult than that of regular and periodi-
cally varying time series. So, a more robust and better prediction model for the
input time series is needed.
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Traffic Flow Prediction Under Abnormal Conditions. By visualizing the
prediction results, we find that the model has difficulty in achieving accurate pre-
diction for traffic flow surges or sudden decreases caused by peak hours, holidays,
extreme weather, social events, traffic accidents, etc. We consider increasing the
amount of training data, which can add external features containing the above
events, or time series anomaly detection methods to achieve more accurate pre-
diction.

6 Conclusion

In this paper we propose ODCRN, a novel model that integrates traffic con-
text and spatial-temporal information of OD matrices. We take advantage of
the bi-directional semantic information of each travel demand’s semantic neigh-
bors to capture both the inflow and outflow of one region. Then we construct
traffic context information by static and dynamic traffic contexts to coordinate
with OD matrices in the prediction task. We conduct extensive experiments in
two datasets and the results demonstrate that our method outperforms baseline
methods in terms of prediction accuracy and model complexity.

In future work, we will explore predicting traffic spikes or dips caused by rush
hours in the day, holidays, extreme weathers and social events more accurately.
Also, we will consider integrating more traffic features into the model elegantly,
which requires more experiments on model design and data mining.
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