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Abstract. Internet of Things (IoT) is an evolving paradigm for build-
ing smart cross-industry. The data gathered from IoT devices may have
anomalies or other errors for various reasons, such as malicious activities
or sensor failures. Anomaly detection is thus in high need for guaran-
teeing trustworthy execution of IoT applications. Existing IoT anomaly
detection methods are usually built upon unsupervised methods and thus
can be inadequate when facing complex IoT data regularity. In this arti-
cle, we propose a semi-supervised approach for detecting IoT time series
anomalies based on Graph Structure Learning (GSL) using multi-layer
perceptron Graph Convolutional Networks (GCN) and the Mean Teach-
ers (MT) mechanism. The proposed model is capable of leveraging a
small amount of labeled data (1% to 10%) to achieve high detection accu-
racy. We adopt Mean Teachers to utilize unlabeled data for enhancing the
model’s detection performance. Moreover, we design a novel graph struc-
ture learning layer to adaptively capture the IoT data features among
different nodes. Experimental results clearly suggest that the proposed
model outperforms its competitors on two public IoT datasets, achieving
82.85% in terms of F1 score and 22.8% increase.

Keywords: IoT Time Series · Anomaly Detection · Graph Structure
Learning · Graph Convolutional Networks · Semi-supervised · Mean
Teachers

1 Introduction

The Internet of Things (IoT) is an emerging means that consists of collaborative
terminals and sensors connected through the Internet. The IoT can be applied
in different application domains, such as smart homes, wearable devices, smart
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cities, healthcare, agriculture, transportation, and industry. The major strength
of the IoT is that it helps to make appropriate decisions based on the data
collected by sensors, and tracks devices in a smart way.

A typical IoT environment involves a large number of interconnected sensors,
such as those found in water treatment plants, power plants, or transportation
systems. Generally, real-time data collected from these sensors are processed
and stored as IoT multivariate time series. The variables in these time series
are often interrelated; for example, in a water treatment plant, if sensor data
monitoring water flow rate exhibits anomalies, the sensor data monitoring water
pressure is also likely to show abnormalities. Due to the a mass of sensors and the
complexity of their relationships, performing anomaly detection in more intricate
and large-scale IoT systems is generally more difficult.

IoT anomaly detection [1] holds significant importance and value in modern
society. IoT devices are typically distributed across various geographical loca-
tions, monitoring a large amount of device status and operational data aids in
predicting potential failures or damages By continuously monitoring anomalies in
real-time, it becomes possible to forecast potential device failures in advance and
carry out timely maintenance, thereby reducing maintenance costs and down-
time, while enhancing equipment reliability and availability [2]. IoT systems
involve extensive data transmission and processing, often operating in resource
constrained environments (such as sensor nodes, embedded devices, etc.) [3,4].
Anomaly detection can help identify abnormal data flows, energy consumption,
and more, optimizing resource allocation and improving system efficiency and
performance [5]. IoT anomaly detection not only ensures the stability, security,
and efficiency of IoT systems but also enhances user experience, providing robust
support for data analysis and intelligent decision-making. As such, it holds cru-
cial significance and value in IoT applications. Figure 1 depicts an example of
IoT time series anomaly detection, where the highlighted red portion indicates
the detected anomaly. Notably, methods for anomaly detection in IoT data have
undergone extensive research and development, resulting in widespread explo-
ration.

The methods for anomaly detection have evolved from classical approaches
initially to machine learning and deep learning methods in recent years, achiev-
ing significant advancements. For instance, as early as 1979, Tukey [5] introduced
a statistical method for detecting anomalies in time series. In the past decade,
machine learning and deep learning methods have achieved tremendous suc-
cess in computer vision tasks, leading researchers to apply these approaches
to anomaly detection. For example, Autoregressive model (VAR) [6], Long
Short-Term Memory (LSTM) [7], Variational Autoencoder (VAE) [8], Gener-
ative Adversarial Networks (GAN) [9]. Graph Neural Networks (GNNs) have
attracted considerable attention in the realm of anomaly detection for time-series
data [10]. Their ability to capture relationships and dynamic changes within
time-series data has led to superior performance. They are capable of captur-
ing relationships and dynamic changes in time-series data. GNNs can be mainly
divided into Convolutional Graph Neural Networks (GCN), Graph Attention
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Fig. 1. A typical anomaly detection scenario of IoT time series.

Networks (GAT) [11], and Graph Neural Networks with gated updates, among
others.

Despite the achievements mentioned above, when it comes to multi-
dimensional time series anomaly detection in the context of IoT, there are still
the following difficulties and challenges: (1) The detection accuracy of unsu-
pervised methods remains insufficient; (2) Extracting and representing precise
spatiotemporal data features from complex multi-dimensional IoT time series
data is still a challenge.

To address such problems, we propose the semi-supervised Mean Teach-
ers [12] based Graph Convolutional Network Model for IoT time series anomaly
detection (MTGCN). The main contributions are summarized as follows:

• To address the challenge of data labeling difficulty, we introduce the Mean
Teachers model, which enables leveraging unlabeled data for semi-supervised
training, thereby enhancing the model’s generalization ability and perfor-
mance.

• To improve the detection accuracy of the model, we employ a multi-layer
perceptron graph convolutional network (GCN) based on adaptive graph
structure learning as the foundational framework. Compared to traditional
distance-defined graph structures, this adaptive graph structure learning
method enables us to acquire superior graph relationships, thereby boosting
the performance of our model.

• The experimental results demonstrate that this approach still outperforms
the majority of unsupervised methods in anomaly detection on two publicly
collected real-world datasets, even when using a very small amount (1%–10%)
of labeled data.

The rest of the paper is organized as follows. Section 2 reviews the existing
research on anomaly detection based. In Sect. 3, we propose the semi-supervised
model based on GSL and give a detailed description of each module. In Sect. 4,
we conduct experiments and provide experimental results and analysis. Finally,
we conclude and elaborate on future work in Sect. 5.
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2 Related Work

We briefly review anomaly detection methods for time series, including both
classical approaches and those based on machine learning and deep learning.

2.1 Classic Methods

Anomaly detection [13] is the task of finding abnormal data in the data. The
detection of anomalies in time-series data has always held a crucial position
in the field of anomaly detection. Many classical methods for anomaly detec-
tion are based on statistical techniques, while in recent years, numerous scholars
have developed machine learning-based approaches for anomaly detection. Sub-
sequently, methods based on deep neural networks have also become increasingly
popular.

There are many traditional methods for time series anomaly detection, such
as AR (AutoRegressive), MA (Moving Average), and ARMA (AutoRegressive
Moving Average). Autoregressive model (AR) [14] is one of the fundamental
models for univariate time series and is a linear model. AR model predicts a
variable’s future values by regressing on its own past values, assuming that
the relationship between past and future values is consistent over time. The
anomaly score is determined by the difference between the predicted value and
the observed value [15]. The AR model is a classic statistical method used in
time series anomaly detection. However, the AR model assumes that the data is
stationary, so using AR for time series anomaly detection requires certain data
requirements or necessitates necessary data preprocessing. The Moving Aver-
age model (MA) and AutoRegressive model (AR) are both linear models, but
they differ in that AR uses past observed values as differences, while MA uses
past residual errors as differences. The AutoRegressive Moving Average model
(ARMA) is a combination of AR and MA and is commonly used for univariate
time series.

2.2 Methods Based on Machine Learning and Deep Learning

ML-Based Methods. Different from statistical methods, the purpose of using
machine learning methods for anomaly detection is to make the most accurate
predictions or detections by inferring relationships between variables. Currently,
there are many popular machine learning anomaly detection methods such as
K-Means [16] clustering, Principal Component Analysis (PCA) [17], Isolation
Forest, Feature Bagging, and more. K-Means is one of the classical clustering
methods used for anomaly detection in machine learning. It calculates the dis-
tance between targets based on Euclidean distance [18]. The principle is to divide
the sample set into K clusters based on the distances between samples. The goal
is to have points within the same cluster as close together as possible and points
from different clusters as far apart as possible. Principal Component Analy-
sis (PCA) is a common data analysis technique often used for dimensionality
reduction in high-dimensional data. It is also employed for anomaly detection



A Novel Semi-supervised IoT Time Series AD Model Using GSL 379

by extracting the main feature components of the data. The primary steps of
PCA for anomaly detection involve reducing the dimensions and then calculat-
ing the differences between the vectors obtained after dimensionality reduction
and the original vectors. Isolation Forest [19] is an anomaly detection algorithm
that isolates anomalies by constructing binary trees and measuring the number
of steps required to isolate data points from the majority of the dataset.

DL-Based Methods. Based on deep learning, various methods have gained sig-
nificant popularity recently, such as Variational Autoencoders (VAE) [20], Gen-
erative Adversarial Networks (GAN) [21–23], Unsupervised Adversarial Train-
ing of Autoencoders (USAD) [24], LSTM-based Time Series Anomaly Detection
(LSTM-AD), and OmniAnomaly using Random Recursive Neural Networks [25].
The Variational Autoencoder (VAE) compresses input data into a code through
an encoder and then decodes the code back into the input through a decoder.
Through continuous learning, the output becomes increasingly similar to the
input. VAE can learn the latent variables in the data, allowing it to generate
entirely new samples rather than simply replicating the input data. The anomaly
score of VAE is determined by the difference between the input (original data)
and the output (reconstructed data). The primary challenge of VAE is that the
generated samples can often be blurry or less precise. This is because the genera-
tion process is random, and VAE cannot guarantee that every generated sample
is of high quality.

Generative Adversarial Networks (GANs) train the generator and the dis-
criminator in an adversarial manner, ultimately making it difficult for the dis-
criminator to distinguish the data generated by the generator. The challenge of
GANs lies in achieving Nash equilibrium during training, where sometimes it
can be accomplished using gradient descent, while in other cases, it may be
difficult to achieve. The Unsupervised Adversarial Training of Autoencoders
(USAD) combines the advantages of both autoencoders (AE) and Generative
Adversarial Networks (GAN). It achieves this by continuously training two AE
networks in an adversarial manner. Long Short-Term Memory Network for Time
Series Anomaly Detection (LSTM-AD) utilizes LSTM, which is a type of Recur-
rent Neural Network (RNN) architecture. Compared to Convolutional Neural
Networks (CNN), data in LSTM flows only forward, making it a type of feed-
forward neural network. A major issue with RNNs is the problem of vanishing
gradients, which LSTM addresses by using gated units. LSTM-AD typically
involves making predictions using Long Short-Term Memory (LSTM) networks
and then computing the prediction errors to detect anomalies. LSTM can learn
time dependencies, but learning long-term dependencies in lengthy time series
can be quite challenging. OmniAnomaly employs Random Recursive Networks
and flat normalization to generate reconstruction probabilities. This method
outperforms many deep learning approaches, but its training time is relatively
large.

The application of GNN in time series anomaly detection has been gradu-
ally attracting attention as they can capture relationships and dynamic changes
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between sequences. GNNs can be used to construct time-dependent graph struc-
tures and detect anomalous behavior by learning representations of nodes and
edges in time series.

Graph Neural Networks (GNN) use network embedding to represent net-
work nodes as low-dimensional vectors while preserving the network topology
and node information. They then perform subsequent tasks such as classifica-
tion, clustering, etc. For instance, Graph Convolutional Networks (GCN) aggre-
gate neighboring nodes’ features to represent the node’s characteristics. Other
classic graph neural networks include Graph Attention Networks (GAT), Spatio-
Temporal Graph Convolutional Networks (ST-GCN) [26], and more. GNNs have
found significant applications in time series anomaly detection. For instance, the
Graph Deviation Network (GDN) [27], based on GAT, has achieved excellent
results in anomaly detection for IoT multivariate time series. MTGNN [28],
which uses GCN, also exhibits remarkable performance in anomaly detection for
multivariate time series.

3 Proposed Framework

3.1 Architecture

The structure of MTGCN is illustrated in Fig. 2, where both the Student and
Teacher models share identical architectures. Initially, input data is divided
based on their labeling into labeled and unlabeled data. The training data for the
Student model consists of both labeled and unlabeled data, while the Teacher
model only receives unlabeled data. The graph structure learning module is
trained and updated in conjunction with the training of the Student model, con-
tinuously updating the neural network’s parameters. For the Student model, the
labeled data is processed through multiple layers of Graph Convolutional Net-
works (GCNs) to obtain output results, which are then compared with the data
labels to compute the cross-entropy loss (Cross-Entropy Loss (Crit)). Addition-
ally, the unlabeled data processed by the Student model’s GCNs is compared
with the unlabeled data processed by the Teacher model’s GCNs to compute
the mean squared error (Mean Squared Error Loss (MSE)). Finally, the Student
model’s parameters are optimized based on the combined loss (weighted sum
of Crit and MSE), while the Teacher model updates its parameters using the
parameters of the Student model.

3.2 Graph Structure Learning

Our framework for anomaly detection follows a process where, firstly, the Internet
of Things (IoT) dataset is transformed into graph-structured data. Next, we use
Graph Convolutional Networks (GCN) to learn the relationships between sensors
in this data. Finally, we employ the learned GCN for anomaly detection (Fig. 3).

In GCN, the spatial dependency between nodes is represented by the adja-
cency matrix A. However, existing methods for constructing an adjacency matrix
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Fig. 2. Overview

Fig. 3. Graph Structure Learning

for a graph typically involve computing the similarity between nodes using dis-
tance metrics like Euclidean distance. This approach can be computationally
and spatially expensive, especially for large graphs, and the effectiveness of the
adjacency matrix constructed through distance computation may not always
be optimal. To address these limitations, we propose a neural network-based
approach to learn the adjacency matrix [29].

M1 = tanh (Embedding1 (Nodenθ1) ∗ α) (1)

M2 = tanh (Embedding2 (Nodenθ2) ∗ α) (2)

A = Relu
(
α ∗ (

M1M
T
2 − M2M

T
1

))
(3)

For i = 1, 2, 3 · · · n (4)

I = argtopk (A [i, : ]) (5)

A [i,−I ] = 0 (6)
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M1 and M2 are matrices with randomly initialized parameters. Where
Embedding1 and Embedding2 represent randomly initialized node embeddings,
and Noden represents the number of nodes in the graph. θ1 and θ2 are model
parameters, and α is a hyperparameter representing network saturation. As the
relationships between sensors may not be symmetric, our adjacency matrix is
transformed non-symmetrically using Formula 3. i represents the top i edges with
the highest selected weights. Finally, we utilize the argtopk operation to sparsify
the adjacency matrix, selecting the top K edges with the highest correlations to
obtain the final adjacency matrix A [30,31].

3.3 Mean Teacher Semi-supervised Learning

Mean Teacher is an effective semi-supervised learning method that fully utilizes
unlabeled data to improve model performance. It performs exceptionally well in
scenarios with limited labeled data. In our model, we leverage the Mean Teacher
semi-supervised approach for training and detection, where a small amount (1%–
10%) of training data is labeled. The idea behind Mean Teacher is that the model
serves as both a teacher and a student. The teacher model is a replica of the
student network with the same architecture, and its parameters are exponentially
averaged from the student network. The student model learns using the targets
generated by the teacher model, and its parameters are continually updated
during training to adapt to the data.

Losscrit = Crit (SXL
, L) (7)

Lossmes = Mes (SX , TX) (8)

Loss = Losscrit + βLossmes (9)

θ
′
t = αθ

′
t−1 + (1 − α) θt (10)

SXL
represents the output of the student model for labeled data, L represents the

labels of the labeled data, SX and TX represent the outputs of the student and
teacher models for unlabeled data, respectively. The specific steps are as follows:
input the data, both labeled and unlabeled, into the student model to obtain
SXL

, SX , and TX outputs. Calculate the loss terms: Losscrit and Lossmes [32].
Finally, update the parameters of the student model based on the combined loss
using Formula 9. Then, use formula 10 to update the parameters of the teacher
model, leveraging the parameters of the updated student model.

4 Experiments

4.1 Datasets

In this paper, we utilized two sensor datasets based on a water treatment physical
testbed system: SWat (Secure Water Treatment) and WADI (Water Distribu-
tion). In both datasets, operators simulated scenarios where real-world water
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treatment plants were subjected to attacks, and the recorded anomalies repre-
sent genuine occurrences. The SWat dataset originates from a water treatment
testbed coordinated by the Public Utilities Board of Singapore (Mathur and
Tippenhauer [33]). It consists of six interlinked processes, forming a represen-
tation of a small-scale IoT system mirroring real-world scenarios. In this study,
the SWat dataset comprises data from 51 sensors, with anomalies accounting
for 12.2% of the data. On the other hand, the WADI dataset is an extension of
SWat, consisting of data from 127 sensors in total.

Fig. 4. The left (a) shows the feature representation of the WADI dataset, and the
right (b) shows the feature representation of the SWaT dataset.

Figure 4 depict the feature representations of the two datasets, revealing sig-
nificant differences in the feature distributions between them (Table 1).

Table 1. Datasets

Datasets Features Train Test Anomaly Rate

SWaT 51 36000 8992 12.2%

WADI 127 13824 3456 5.76%

The types of anomalies in time series data mainly include point anoma-
lies, contextual anomalies, long-term trend anomalies, seasonal anomalies, cyclic
anomalies, and so on. This paper focuses on the detection of point anomalies.
Point anomalies are one of the most common anomaly types in time series data
and are typically caused by sudden, unusual events, or errors. Point anomalies
can lead to one or more data points deviating significantly from the normal data
pattern. These anomalies can have a significant impact on businesses or systems,
so timely detection and handling are essential.
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4.2 Evaluation Metrics

We adopt widely-used precision (Prec), recall (Rec), and F1-Score (F1) as the
evaluation metrics for our experiments.

4.3 Experimental Setup

We implement our method in PyTorch version 1.13 with CUDA 11.6 and
PyTorch Geometric Library version 2.2.0, and train them on a server with AMD
Ryzen 7 5800H with Radeon Graphics @ 3.20 GHz and NVIDIA RTX 3070
graphics cards.

We compared machine learning and deep learning methods in our study.
For machine learning, the methods included K-Means and PCA. As for deep
learning, the compared methods were VAE, USAD, LSTM-AD, MAD GAN,
and OmniAnomaly based on Random Recursive Neural Network.

4.4 Experimental Studies

“MTGCN-0.1”, “MTGCN-0.08”... in Tables 2 and 3 respectively represent the
MTGCN model at different data annotation rates, with bold numbers indicat-
ing the maximum value in that column. In the SWaT dataset, the highest F1
score is achieved by MTGCN with a 10% data annotation rate, reaching 87.8%.
The highest Recall (Rec) score is attained by OmniAnomaly, reaching 99.9%,
while the highest Precision (Prec) score is achieved by MTGCN with a 1% data
annotation rate, reaching 99.8%. In Table 3, with a 10% data annotation rate,
MTGCN achieves a 77.9% F1 score. The highest Recall scores are obtained by
LSTM AD and USAD, reaching 8%. The highest Precision score is achieved by
MTGCN with a 10% data annotation rate, reaching 82%.

4.5 Result Analysis

Tables 2 and 3 provide the precision (Prec), recall (Rec), and F1-Score (F1) of
the MTGCN and baseline models on the SWaT dataset and WADI dataset. All
the baseline models and MTGCN perform worse on the WADI dataset compared
to the SWaT dataset. We compared classical machine learning methods and deep
learning methods, where the machine learning methods included K-Means, PCA,
and FeB, while the deep learning methods consisted of VAE, USAD, MAD GAN,
OmniAnomaly, and LSTM AD.

MTGCN achieves significantly higher F1-Scores (F1) at 10% data labeling
rate on both datasets compared to the state-of-the-art baseline models. Among
the baseline models, USAD performs the best on both datasets, achieving an
F1 of 0.812 on the SWaT dataset and an F1 of 0.634 on the WADI dataset.
MTGCN outperforms the state-of-the-art baseline models by 8.1% on the SWaT
dataset and 22.8% on the WADI dataset at 10% data labeling rate. Furthermore,
MTGCN’s performance on the SWaT dataset is 2.2% higher than the state-of-
the-art baseline models at a 4% data labeling rate, and on the WADI dataset,
it is 4.2% higher at a 5% data labeling rate.
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Table 2. Experimental Results on the SWaT Dataset.

Data Method Rec F1 Prec

SWat K-Means 0.495 0.373 0.3

PCA 0.445 0.318 0.247

FeB 0.19 0.153 0.128

VAE 0.475 0.335 0.259

USAD 0.915 0.812 0.73

MAD GAN 0.764 0.674 0.602

OmniAnomaly 0.999 0.806 0.675

LSTM AD 0.764 0.676 0.606

MTGCN-0.1 0.837 0.878 0.923

MTGCN-0.08 0.781 0.832 0.891

MTGCN-0.06 0.773 0.839 0.918

MTGCN-0.05 0.764 0.828 0.904

MTGCN-0.04 0.775 0.83 0.893

MTGCN-0.02 0.684 0.767 0.876

MTGCN-0.01 0.583 0.733 0.988

Table 3. Experimental Results on the WADI Dataset.

Data Method Rec F1 Prec

WADI K-Means 0.495 0.373 0.3

PCA 0.445 0.318 0.247

FB 0.19 0.153 0.128

VAE 0.475 0.335 0.259

USAD 0.81 0.634 0.519

MAD GAN 0.584 0.549 0.519

OmniAnomaly 0.615 0.565 0.522

LSTM AD 0.81 0.525 0.388

MTGCN-0.1 0.744 0.779 0.82

MTGCN-0.08 0.68 0.72 0.767

MTGCN-0.06 0.648 0.693 0.748

MTGCN-0.05 0.625 0.661 0.705

MTGCN-0.04 0.433 0.545 0.739

MTGCN-0.02 0.295 0.412 0.7

MTGCN-0.01 0.288 0.367 0.518
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Fig. 5. MTGCN performance on two datasets.

Figure 5 displays the experimental results of MTGCN on the SWaT dataset
and WADI dataset at different data labeling rates. Overall, the F1 scores of
MTGCN on both datasets decrease as the data labeling rate decreases. Notably,
MTGCN performs better on the SWaT dataset compared to the WADI dataset.
This suggests that MTGCN is more effective in utilizing labeled data on the
SWaT dataset, resulting in higher F1 scores, even as the amount of labeled data
decreases. However, on the WADI dataset, MTGCN’s performance suffers more
when the data labeling rate is reduced. This difference in performance between
the two datasets indicates that the characteristics and challenges of the datasets
may play a role in influencing MTGCN’s effectiveness under limited labeled data
conditions.

From Fig. 6, Among the various models evaluated on the SWat dataset, we
observe that MTGCN consistently demonstrates strong performance across dif-
ferent levels of data annotation, with F1 scores ranging from 0.878 at a 10%
annotation rate to 0.733 at a 1% annotation rate. This consistent high perfor-
mance suggests that MTGCN is particularly robust and effective in anomaly
detection tasks with varying levels of labeled data. The decreasing trend in F1
score as the annotation rate decreases is less pronounced for MTGCN compared
to other models in the list. This indicates that MTGCN has a notable advantage
in handling scenarios with limited labeled data, making it a promising choice for
anomaly detection tasks in real-world situations where labeled data may be
scarce or expensive to obtain.

Figure 7 illustrates the comparison between MTGCN and the baseline models
on the WADI dataset. From Fig. 7, it can be observed that at a data labeling
rate of 5%, MTGCN outperforms all baseline models. Additionally, at a data
labeling rate of 4%, MTGCN’s performance is only surpassed by the USAD,
MAD GAN, and OmniAnomaly baseline models.
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Fig. 6. Comparison of MTGCN on SWaT data set and baseline model.

4.6 Ablation Study

To validate the effectiveness of Graph Structure Learning (GSL), we conducted
ablation experiments and observed the changes in F1 scores on both datasets
(Fig. 8).

Table 4. Results of GSL ablation experiments on SWaT datasets.

label 0.1 0.08 0.06 0.05 0.04 0.02 0.01

MTGCN + GSL 0.878 0.832 0.839 0.828 0.83 0.767 0.733

MTGCN 0.869 0.836 0.821 0.806 0.82 0.763 0.732

From the data analysis in Table 4, it can be concluded that MTGCN, when
using Graph Structure Learning (GSL), shows an average performance improve-
ment of 1% on the SWaT dataset across all data labeling rates. The highest per-
formance improvement, reaching up to 2.7%, is observed when the data labeling
rate is 5%. From the data analysis in Table 5, it can be concluded that MTGCN,
when using Graph Structure Learning (GSL), exhibits an average performance
improvement of 4.5% on the WADI dataset across all data labeling rates. The
highest performance improvement, reaching up to 8.7%, is observed when the
data labeling rate is 5%.
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Fig. 7. Comparison of MTGCN on WADI data set and baseline model.

Table 5. Results of GSL ablation experiments on WADI datasets.

label 0.1 0.08 0.06 0.05 0.04 0.02 0.01

MTGCN + GSL 0.779 0.72 0.693 0.661 0.545 0.412 0.367

MTGCN 0.77 0.718 0.669 0.608 0.511 0.347 0.35

Fig. 8. Comparison of Ablation Experiments for GSL Learning on Two Datasets.
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5 Conclusion and Future Work

MTGCN has demonstrated its effectiveness in anomaly detection on both the
SWaT dataset and WADI dataset. Through a series of experiments and analy-
ses, the introduction of Graph Structure Learning (GSL) in the MTGCN model
has shown significant benefits. On the SWaT dataset, MTGCN outperforms all
baseline models at a data labeling rate of 4%. Notably, at a lower data label-
ing rate of 2%, MTGCN’s performance is only surpassed by the USAD and
OmniAnomaly baseline models. The experimental results reveal that MTGCN
effectively leverages the Graph Structure Learning (GSL) component, resulting
in an average performance improvement of 1% on the SWaT dataset across all
data labeling rates. The maximum performance gain of 2.7% is achieved at a
data labeling rate of 5%. This indicates that the introduction of graph structure
information significantly enhances MTGCN’s anomaly detection capabilities on
the SWaT dataset. Similarly, on the WADI dataset, MTGCN exhibits signifi-
cant performance improvements with the inclusion of Graph Structure Learning
(GSL). With an average performance gain of 4.5% across all data labeling rates,
MTGCN consistently outperforms the baseline models. At a data labeling rate of
5%, MTGCN achieves its highest performance boost of 8.7%, demonstrating its
superiority over the baseline methods. These findings emphasize the importance
of Graph Structure Learning (GSL) in enhancing MTGCN’s anomaly detection
capabilities on both datasets. MTGCN effectively utilizes graph structure infor-
mation, enabling it to adapt and excel even with limited labeled data, making it a
competitive and effective approach in practical anomaly detection scenarios. The
experimental results validate MTGCN’s superiority over baseline models and
underscore the significant role of Graph Structure Learning (GSL) in improv-
ing anomaly detection performance, establishing MTGCN as a competitive and
effective method in anomaly detection research.

In future research, we intend to attempt more datasets and explore alterna-
tive methods to adapt to Mean Teachers
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