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Abstract. A novel finite element method for the approximation of Maxwell’s
equations over hybrid two-dimensional grids is studied. The choice of appro-
priate basis functions and numerical quadrature leads to diagonal mass matrices
which allow for efficient time integration by explicit methods.On purely rectan-
gular grids, the proposed schemes coincide with well-established FIT and FDTD
methods. Additional internal degrees of freedom introduced on triangles allow
for mass-lumping without the usual constraints on the shape of these elements. A
full error analysis of the method is developed and numerical tests are presented
for illustration.

1 Introduction

The propagation of electromagnetic waves through a non-dispersive linear medium can
be described by the time-dependent Maxwell’s equations

ε∂tE+ curlH = − j, (1)

μ∂tH+ curlE = 0, (2)

together with appropriate initial and boundary conditions. Here E, H denote the elec-
tric and magnetic field intensities, ε , μ the corresponding material parameters, and j
describes the density of source and eddy currents. An efficient discretization of (1)–
(2) can be achieved by the finite difference time domain (FDTD) method or the finite
integration technique (FIT), see e.g. [14,15], and for isotropic materials and orthogonal
grids, second-order convergence can be obtained in space and time. In order to handle
complex geometries, several attempts have been made to generalize these methods to
non-orthogonal and unstructured grids; see e.g. [2,12,13] and also [3,4] for more recent
results. A rigorous error analysis of a Yee-like scheme on triangles and tetrahedra was
given in [6], and first-order convergence in space on general unstructured grids was
demonstrated theoretically and numerically.
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Scope. In this paper, we propose a novel Yee-like discretization scheme for hybrid grids
in two space dimensions, consisting of triangles and rectangles. The method is based
on a finite element approximation with mass-lumping through numerical quadrature,
which allows for a rigorous error analysis; see [5,9] for background. On rectangular
grid cells, the resulting discretization coincides with that of the FIT or FDTD method.
Following [8], additional internal degrees of freedom are introduced on triangular grid
cells, which allows us to prove discrete stability without severe restrictions on the mesh.
The lowest order approximation on two-dimensional hybrid grids is studied in detail.
The main ideas behind the construction of the method and its analysis however carry
over to three dimensions and higher-order approximations; see [7,8,11] and the discus-
sion at the end of the paper.

2 Description of the Problem

Let us start with completely specifying the model problem to be considered in the rest
of the paper. We choose ε = μ = 1 and abbreviate f = −∂t j. Moreover, we consider
the second-order form of Maxwell’s equations, i.e.,

∂ttE+ curl(curlE) = f , in Ω , (3)

n× curl(E) = 0, on ∂Ω , (4)

with simple boundary conditions. The computational domain Ω ⊆ R
2 is assumed to

be a bounded Lipschitz polygon and curlE = ∂xE2 − ∂yE1 denotes the curl of a vector
field E = (E1,E2) in two space dimensions. The above differential equations are con-
sidered on a finite time interval [0,T ], and complemented by suitable initial conditions
E(0) = E0 and ∂tE(0) = F0. The existence of a unique solution can then be established
by semi-group theory or Galerkin approximation. Solutions of (3)–(4) can further be
characterized equivalently by the variational identities

(∂ttE(t),v)+(curlE(t),curlv) = ( f (t),v), (5)

for all v ∈ H(curl,Ω) = {E ∈ L2(Ω)2 : curlE ∈ L2(Ω)} and a.a. t ∈ [0,T ]. For abbre-
viation, we write (a,b) =

∫
Ω a ·bdx for the scalar product on L2(Ω) and L2(Ω)2.

3 A Finite Element Method with Mass-Lumping

Let Th = {K} be a geometrically-conforming quasi-uniform shape-regular partition of
Ω into triangular and/or rectangular elements K. By assumption, all edges of the mesh
are of similar length and we call the size h of the longest edge the mesh size.

Finite Element Spaces. For the approximation of the field E on individual elements,
we consider local polynomial spaces defined by

V (K) =

{
N 0(K), if K is a square,

N +
0 (K) =N 0(K)+B(K), if K is a triangle.

(6)
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Here N 0(K) is the lowest order Nedelec space for triangles or rectangles [1,10], and
B(K) is a space of three quadratic functions with vanishing tangential components.
The corresponding degrees of freedom are depicted in Fig. 1, and details on the basis
functions are presented in Sect. 5.The global finite element space is finally defined by
Vh = {vh ∈ H(curl;Ω) : vh|K ∈V (K) ∀K ∈ Th}.

Fig. 1. Degrees of freedom for the space N 0(K) on the rectangle (left) and the space N +
0 (K),

introduced in [8], on the triangle (right). The three internal degrees of freedom for the bubble
functions are displayed in red and the corresponding quadrature points are depicted as blue dots.
(Color figure online)

Quadrature. We use an approximation (u,v)h :=∑K(u,v)h,K for the L2-scalar product,
with contributions obtained by numerical integration. On the triangle, we set

(u,v)h,K = |K|
3

∑
i=1

1
3 u(mK,i) · v(mK,i), (7)

where mK,i is the midpoint of the edge ei opposite to vertex i; see Fig. 1. For the rect-
angle, we proceed differently: Here we decompose (u,v) = (u1,v1)+ (u2,v2) into two
contributions for the orthogonal directions, and then use different quadrature rules for
the two contributions, i.e.

(u,v)h,K = |K|
(

2

∑
i=1

1
2u1(mK,h,i)v1(mK,h,i)+

2

∑
j=1

1
2u2(mK,v, j)v2(mK,v, j)

)

. (8)

Here mK,h,i and mK,h, j are the midpoints of the horizontal and vertical edges, respec-
tively; see again Fig. 1. For the semi-discretization of our model problem in space, we
then consider the following inexact Galerkin approximation.

Problem 1. Let Eh,0, Eh,1 ∈ Vh be given. Find Eh : [0,T ] → Vh such that

(∂ttEh(t),vh)h+(curlEh(t),curlvh) = ( f (t),vh) (9)

for all vh ∈ Vh and all t ∈ [0,T ], and such that Eh(0) = Eh,0 and ∂tEh(0) = Eh,1.

As we will indicate below, the implementation of this method leads to a diagonal mass
matrix, which allows using explicit methods for efficient time integration.



A Yee-Like Finite Element Scheme for Maxwell’s Equations 81

4 Main Results

By elementary computations, one can verify the following assertions, which ensure the
well-posedness of Problem 1 and yield a starting point for our error analysis.

Lemma 1. The quadrature rule (8) is exact for polynomials of degree k ≤ 2 on tri-
angles and for polynomials of degree k ≤ 1 on squares. Moreover, the inexact scalar
product (·, ·)h induces a norm ‖ · ‖h on Vh, which is equivalent to the L2-norm on Vh,
and consequently Problem 1 has a unique solution.

As a second ingredient, let us recall some results about polynomial interpolation.
We denote by Πh : H1(Th)2 → Vh the projection defined element-wise by

(ΠhE)|K := ΠKE|K (10)

where ΠK :H1(K)→N 0(K) is the standard interpolation operator for the lowest order
Nedelec space N (K) on both triangles and squares; see [1,10] for details. We further
denote by π0

h : L
2(Ω)→ P0(Th) the L2-orthogonal projection onto piecewise constants;

the same symbol is used for the projection of vector-valued functions.

Lemma 2. Let K ∈ Th and Πh defined as in (10). Then

‖E −ΠhE‖L2(K) ≤Ch‖E‖H1(K), (11)

‖curl(E −ΠhE)‖L2(K) ≤Ch‖curlE‖H1(K), (12)

‖E −π0
hE‖L2(K) ≤Ch‖E‖H1(K), (13)

whenever E is regular enough, with a constant C independent of h.

Having introduced all the required tools, we can now state and prove our main result.

Theorem 1. Let E and Eh denote the solutions of (5) and (9) with initial values set by
Eh(0) = ΠhE(0) and ∂tEh(0) = Πh∂tE(0). Then

‖∂t(E −Eh)‖L∞(0,T ;L2(Ω)) +‖curl(E −Eh)‖L∞(0,T ;L2(Ω)) ≤C(E,T )h

with constant C depending on the norm of E but independent of the mesh size h.

Proof. Apart from some technical details, the analysis follows by standard arguments.
For completeness and convenience of the reader, we present all the details.

Step 1. Error Splitting and Estimate for the Projection Error. We first split the
discretization error into a projection error and a discrete error component via

E −Eh = (E −ΠhE)+(ΠhE −Eh) =: −η +ψh. (14)

By the estimates of Lemma 2, we immediately obtain

‖∂tη‖L∞(0,T ;L2(Ω)) +‖curlη‖L∞(0,T ;L2(Ω))

≤Ch
(
‖∂tE‖L∞(0,T ;H1(Th)) +‖curlE‖L∞(0,T ;H1(Th))

)
,

which already covers the first error component.
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Step 2. Discrete Error Equation. By subtracting (8) from (5) with v= vh, we can see
that the discrete error ψh satisfies the identity

(∂ttψh(t),vh)h+(curlψh(t),curlvh) =
(∂ttη(t),vh)+(curlη(t),curlvh)+σh(Πh∂ttu(t),vh)

for all vh ∈ Vh and 0 ≤ t ≤ T , with quadrature error

σh(E,v) = (E,v)h − (E,v). (15)

We can further split σh(E,φ) = ∑K∈Th
σK(E,φ) into element contributions defined by

σK(E,φ) = (E,φ)h,K − (E,φ)K . Moreover, ψh(0) = ∂tψh(0) = 0, due to the choice of
initial conditions for the discrete problem.

Step 3. Estimates for the Quadrature Error. To further proceed in our analysis, we
now quantify the local quadrature error in more detail.

Lemma 3. Let E ∈ L2(Ω)2 with E|K ∈ H1(K)2 for all K ∈ Th. Then

|σK(ΠhE,φh)| ≤Ch‖E‖H1(K)‖φh‖L2(K)
for all φh ∈ Vh and all K ∈ Th with constant C independent of the element K.

Proof. Using Lemma 1, we deduce that (u0h,vh)K = (u0h,vh)h,K for all u0h ∈ P0(K)2 and
vh ∈V (K). We can then estimate the quadrature error by

|σK(Πhu,vh)| = |σK(Πhu−π0
hu,vh)| ≤ c‖Πhu−π0

hu‖L2(K)‖vh‖L2(K)
≤ c′h‖u‖H1(K)‖vh‖L2(K),

where we used the Cauchy-Schwarz inequality and the norm equivalence of Lemma 1
and the approximation properties of the projections from Lemma 2.

Step 4. Estimate for the Discrete Error. Taking vh = ∂tψh(t) as test function in the
discrete error equation and integrating from 0 to t leads to

1
2

(
‖∂tψh(t)‖2h+‖curlψh(t)‖2L2(Ω)

)
(16)

=
t
∫
0
(∂ttη(s),∂tψh(s))+(curlη(s),curl∂tψh(s))+σh(Πh∂ttu(s),∂tψh(s))ds.

The three terms can now be estimated separately. Using Cauchy-Schwarz and Young
inequalities, the first term may be bounded by

(i) ≤ ch2‖∂ttE‖2L1(0,t,H1(Th))
+ 1

4‖∂tψh‖2L∞(0,t,L2(Ω)).
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For the second term, we utilize that

(ii) =
t
∫
0
(curl(E −ΠhE),curl∂tψh))ds

= (curl(E −ΠhE)(t),curlψh(t))−
t
∫
0
(curl(∂tE −Πh∂tE),curlψh)ds

≤Ch2
(‖curlE‖2L∞(0,t;H1(Th))

+‖curl∂tE‖2L1(0,t;L2(Ω))

)
+ 1

4‖ψh‖2L∞(0,t;L2(Ω)).

The third term can finally be estimated using Lemma 3 according to

(iii) ≤ ch2‖∂ttE‖2L1(0,t,H1(Ω)) +
1
4‖∂tψh‖2L∞(0,t,L2(Ω))

Using these estimates in the inequality (16), absorbing all the terms with the test func-
tion into the left side, and taking the supremum over t ∈ [0,T ], after applying the norm
equivalence of Lemma 1 to some terms, then leads to the estimate

‖∂tψh‖2L∞(0,T ;L2(Ω)) +‖curlψh‖2L∞(0,T ;L2(Ω))

≤Ch2
(‖∂ttE‖2L1(0,T ;H1(Th))

+‖∂tE‖2L1(0,T ;H1(Th))
+‖curlE‖2L∞(0,T ;H1(Th))

)

for the discrete error component; one may also take the square root in all terms.

Step 5. The proof of the theorem is completed by applying the triangle inequality to
the error splitting in Step 1 and adding up the estimates for the projection error η and
the discrete error component ψh.

5 Implementation

For completeness of the presentation, let us briefly discuss the choice of basis func-
tions for the local finite element spaces N 0(K) and N +

0 (K) which, together with the
numerical quadrature leads to diagonal mass matrices.

Rectangle. On quadrilateral elements K, we choose the standard basis for the lowest
order Nedelec space N 0(K) = span{Φh,i,Φv,i : i = 1, . . . ,2}; see [1,10]. These func-
tions have the following properties: The function Φh,i associated to a horizontal edge
eh,i vanishes identically on the opposite horizontal edge, and Φv, j associated to for the
vertical edge ev, j vanishes on the opposite vertical edge. Hence the local mass matrix
produced by the quadrature rule (u,v)K,h for every rectangle is diagonal.

Triangle. Let {λi} be the barycentric coordinates of the element K. For every edge
ek = ei j pointing from vertex i to j, and thus opposite to k, we define the two basis
functions

ΦB
i j = λiλ j∇λk and

Φi j = λi∇λ j −λ j∇λi+αi jΦB
i j+βi jΦB

jk+ γi jΦB
ki.
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Then N +
0 (K) = span{Φ12,Φ23,Φ31,ΦB

12,ΦB
23,ΦB

31}. The bubble functions ΦB
i j have

vanishing tangential components on the edge are ek, and they vanish identically on the
two remaining edges ei, e j. The functions Φi j are modified Nedelec basis functions.
They have vanishing tangential components on the two edges ei, e j, and by appropriate
choice of the parameters αi j, βi j, γi j, their normal components on all edge midpoints
mK,i can be made zero. As a consequence, the local mass matrix produced by the scalar
product (u,v)K,h for the triangle becomes diagonal.

Summary. The global mass matrix is obtained by assembling the local mass matrices,
which are diagonal, and hence has inherits this property.

6 Numerical Illustration

We consider the computational domain Ω = Ω1 ∪Ω2 where Ω1 = (0,2)× (−1,1) and
Ω2 =

(
(2,4)×(−1,1))\B0.3(3,0), where Br(x,y) denotes the ball with radius r around

midpoint (x,y). The two subdomains are meshed by rectangles and triangles, respec-
tively. For our test problem, we consider the wave Eq. (3). The boundary ∂Ω is split
into several parts and as boundary conditions, we impose

n×E = sin(10 · t) · e−10y2 , on ∂Ωleft,

n×E = 0, on ∂Ωball,

n× curlE = 0, else.

The initial conditions are chosen as E(0) = ∂tE(0) = 0. This corresponds to a pulse
entering at the left boundary, propagating through the domain, and getting reflected
at the walls of the box and the circular inclusion. Some snapshots of the solution are
depicted in Fig. 2. Let us remark that no reflections are observed at the interface between
the two meshes. In our numerical tests, we observe linear convergence of the error in
space. This coincides with the theoretical predictions of Theorem 1, and also demon-
strates that the error estimates are sharp. Note that second-order convergence is in gen-
eral lost for Yee-like approximations on unstructured grids; also see [11].

Fig. 2. The first E1 component of the solution E = (E1,E2) at time steps t = 2.3 and t = 5 showing
the scattering at the sphere.
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8. Elmkies, A., Joly, P.: Éléments finis d’arête et condensation de masse pour les équations de
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