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Abstract. We present a matrix-free parallel iterative solver for the Helmholtz
equation related to applications in seismic problems and study its parallel perfor-
mance. We apply Krylov subspace methods, GMRES, Bi-CGSTAB and IDR(s),
to solve the linear system obtained from a second-order finite difference dis-
cretization. The Complex Shifted Laplace Preconditioner (CSLP) is employed to
improve the convergence of Krylov solvers. The preconditioner is approximately
inverted by multigrid iterations. For parallel computing, the global domain is par-
titioned blockwise. The standard MPI library is employed for data communica-
tion. The matrix-vector multiplication and preconditioning operator are imple-
mented in a matrix-free way instead of constructing large, memory-consuming
coefficient matrices. These adjustments lead to direct improvements in terms of
memory consumption. Numerical experiments of model problems show that the
matrix-free parallel solution method has satisfactory parallel performance and
weak scalability. It allows us to solve larger problems in parallel to obtain more
accurate numerical solutions.

1 Introduction

The Helmholtz equation describes the phenomena of time-harmonic wave scattering
in the frequency domain. It is widely studied in computational electromagnetics, with
applications in seismic exploration, sonar, antennas, and medical imaging. To solve the
Helmholtz equation numerically, we discretize it and obtain a linear system Ax = b.
The linear system matrix is sparse, symmetric, non-Hermitian, and indefinite [1]. Itera-
tive methods and parallel computing are commonly considered for a large-scale linear
system resulting from a practical problem. However, the indefiniteness of the linear
system brings a great challenge to the numerical solution method, especially for large
wavenumbers. The convergence rate of many iterative solvers is affected significantly
for increasing wavenumber. Therefore, the research problem of how to solve the sys-
tems efficiently and economically, while at the same time maintaining a high accuracy
by minimizing pollution error arises in this field.

Many efforts have been made to solve the problem accurately with high perfor-
mance. Originally derived from [2], the industry standard, also known as the Complex
Shifted Laplace Preconditioner (CSLP) [3,4] does show good properties for medium
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wavenumbers. Nevertheless, the eigenvalues shift to the origin as the wavenumber
increases. These near-zero eigenvalues have an unfavorable effect on the conver-
gence speed of Krylov-based iterative solvers. Recently, a higher-order approximation
scheme to construct the deflation vectors was proposed to reach close to wavenumber-
independent convergence [5].

The development of scalable parallel Helmholtz solvers is also ongoing. One app-
roach is to parallelize existing advanced algorithms. Kononov and Riyanti [6,7] first
developed a parallel version of Bi-CGSTAB preconditioned by multigrid-based CSLP.
Gordon and Gordon [8] parallelized their so-called CARP-CG algorithm (Conjugate
Gradient acceleration of CARP) blockwise. The block-parallel CARP-CG algorithm
shows improved scalability as the wavenumber increases. Calandra et al. [9] pro-
posed a geometric two-grid preconditioner for 3D Helmholtz problems, which shows
strong scaling properties in a massively parallel setup. Another approach is the Domain
Decomposition Method (DDM), which originates from the early Schwarz Methods.
DDM, as a preconditioner mostly, has been widely used to develop parallel solution
methods for the Helmholtz problems. For comprehensive surveys, we refer the reader
to [10–14] and references therein.

This work describes parallel versions of Krylov subspace methods, such as the
Generalized minimal residual method (GMRES), Bi-CGSTAB, and IDR(s), precon-
ditioned by the multigrid-based CSLP for the Helmholtz equation. We consider the
CSLP preconditioner because it is the first and most popular method where the num-
ber of iterations scales linearly within medium wavenumbers. Based on a block-wise
domain decomposition and a matrix-free implementation, our parallel framework con-
tributes to robust parallel CSLP-preconditioned Krylov solvers for Helmholtz problems.
It is the basis for scalable parallel computing. Numerical experiments show that, com-
pared to [5,6] that assemble matrices, the matrix-free framework allows us to solve the
Helmholtz problem with a larger grid size to reduce pollution errors related to grid res-
olution. The parallel efficiency is up to 70%. Its weak scaling performance means that
a larger problem can be solved in about the same amount of time as a smaller problem
as long as the number of tasks increases proportionally.

The rest of this paper is organized as follows. Section 2 describes the mathematical
model that we will discuss. All numerical methods we use are given in Sect. 3. The
numerical performance is explored in Sect. 4. Finally, Sect. 5 contains our conclusions.

2 Mathematical Model

We will consider the following 2D Helmholtz equation on a rectangular domain Ω with
boundary Γ = ∂Ω . The Helmholtz equation reads

−Δu(x,y)− k2u(x,y) = b(x,y), on Ω (1)

supplied with Dirichlet boundary conditions u(x,y) = g(x,y) or first-order Sommerfeld

boundary conditions ∂u(x,y)
∂n − iku(x,y) = 0, on ∂Ω . i is the imaginary unit. n and g(x,y)

represent the outward normal and the given data of the boundary respectively. b(x,y) is
the source function. k is the wavenumber. The frequency is f , the speed of propagation
is c, which are related by k = 2π f

c .
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3 Numerical Methods

3.1 Discretization

Structural vertex-centered grids are used to discretize the computational domain. Sup-
pose the mesh width in x and y direction are both h. A second-order finite difference
scheme is used. The discrete Helmholtz operator Ah can be obtained by adding the diag-
onal matrix −k2Ih to the Laplacian operator −Δh, i.e. Ah = −Δh − k2Ih. Therefore, the
stencil of the discrete Helmholtz operator is

[Ah] =
1
h2

⎡
⎣

0 −1 0
−1 4− k2h2 −1
0 −1 0

⎤
⎦ (2)

In the case of the Sommerfeld radiation condition, ghost points located outside the
boundary points can be introduced for the boundary points. For instance, suppose u0, j is
a ghost point on the left of u1, j, the normal derivative can be approximated by ∂u

∂n − iku=
u0, j−u2, j

2h − iku1, j = 0. We can rewrite it as u0, j = u2, j + 2hiku1, j, which can be used in
the above computational stencil. The discretization of first-order Sommerfeld boundary
conditions will result in a complex-valued linear system.

3.2 Preconditioned Krylov Subspace Methods

Among the representative Krylov subspace methods, GMRES and Bi-CGSTAB are
suitable choices for the Helmholtz equation, as they are designed for non-singular prob-
lems. Also, the IDR(s) developed by Sonneveld and van Gijzen [17] is an efficient
alternative to Bi-CGSTAB for Helmholtz problems. Compared with full GMRES, Bi-
CGSTAB and IDR(s) have short recurrences and are easily parallelizable.

As for the preconditioner, we will focus on the CSLP due to its satisfactory perfor-
mance and easy setup. The CSLP is defined by

Mh = −Δh − (β1+β2i)k2Ih (3)

We need to compute the inverse of preconditionerMh in the preconditioned Krylov-
based algorithms. It is usually too costly to invert a preconditioner like CSLP directly.
One idea is to approximately solve the preconditioner by using the multigrid method
[4]. It is necessary to choose a proper complex shift [18], since a small complex shift
may affect the convergence of the multigrid method. In the numerical experiments of
this paper, β1 = 1,β2 = 0.5 will be used.

A multigrid method involves several components that need a careful design to
achieve excellent convergence. In this paper, damped Jacobi smoother with relaxation
ω = 0.8 is used. The so-called full weighting restriction operator and the bilinear inter-
polation operator are employed for the inter-grid transfer operations. The coarse grid
operator M2h is constructed by re-discretizing on the coarse mesh in the same way that
the operatorMh is obtained on the fine mesh. This is known as the discretization coarse
grid operator (DCG). The classical multigrid V-cycle is performed. Instead of solving
the coarse-mesh problem directly, we will solve it by full GMRES.
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Suppose a problem with N unknowns is solved by the CSLP-preconditioned Krylov
subspace method by assembling the matrices. According to the complexity analysis in
[5,19], except the variables vectors, we need extra memory to store the sparse matrix
Ah with 5N non-zero elements,Mh with 5N non-zero elements,M2h with

9N
4 , inter-grid

transfer operator Z with 9N
4 , etc. To minimize memory limitations and solve real-world

large-scale problems, we implement the preconditioned Krylov subspace methods in a
matrix-free way instead of constructing the coefficient matrices explicitly.

3.3 Matrix-Free Parallel Implementation

For the matrix-vector multiplication, like Ahuh in outer iterations,Mhuh in the smoother
and M2hu2h in the preconditioner solver, can be replaced by stencil computations. For
example, results of Ahuh can be obtained by Algorithm 1. The inter-grid transfer oper-
ations can also be performed in a matrix-free way according to the linear interpola-
tion/restriction polynomials.

Algorithm 1. Matrix-free vh = Ahuh.
1: Input array uh;
2: According to Eq. 2: ap= 4−k2h2

h2 , aw= ae= as= an= − 1
h2 ;

3: Internal grid points (i= 2 · · ·nx−1, j = 2 · · ·ny−1):
4: vh(i, j) = apu(i, j)+awu(i−1, j)+aeu(i+1, j)+asu(i, j−1)+anu(i, j+1);
5: Boundary grid points (i= 1,nx, j = 1,ny): update ap, aw, ae, as and an and compute vh(i, j);

6: Return vh.

To implement parallel computing, the standard MPI library is employed for data
communications among the processors. Based on the MPI Cartesian topology, we can
partition the computational domain blockwise. The partition is carried out between two
grid points. One layer of overlapping grid points is introduced outward at each interface
boundary to represent the adjacent grid points. In our method, the grid unknowns are
stored as an array based on the grid ordering (i, j) instead of a column vector based on
x-line lexicographic ordering.

We implement the parallel multigrid iteration based on the original global grid.
According to the relationship between the fine grid and the coarse grid, the parameters
of the coarse grid are determined by the grid parameters of the fine one. For example,
point (ic, jc) in the coarse grid corresponds to point (2ic − 1,2 jc − 1) in the fine grid.
For a V-cycle, after reaching a manually predefined coarsest grid size, the coarsening
operation will stop and solve the coarsest problem by GMRES in parallel, which may
incur some efficiency loss. In this paper, the predefined coarsest global grid size is
ncx ×ncy = 9×9 as the maximum number of processors we use is 4×4.

4 Numerical Experiments

The solver is developed in Fortran and compiled by GNU Fortran and runs on a Linux
compute node with Intel(R) Xeon(R) Gold 6152 (2.10GHz) CPUs. For outer iterations,
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the L2-norm of preconditioned relative residuals are reduced to 10−6. According to pre-
experiments, the stopping criterion for the coarse grid preconditioner solver should be
2–3 orders of magnitude smaller than the stopping criterion for the outer iteration. We
use 10−8 as the stopping criterion for the coarse grid preconditioner solver. The Wall-
ClockTime for the preconditioned Krylov-based solver to reach the stopping criterion is
denoted by tw. The speedup Sp is defined by Sp = t1

tp
, where t1 and tp are the WallClock-

Time for sequential and parallel computation, respectively. The parallel efficiency Ep is

given by EP = Sp
np ×100%, where np is the number of processors.

First, we consider a model problem (MP-1) with a point source described by the
Dirac delta function δ (x,y), imposed at the center (x0,y0) = (0.5,0.5). The wave
propagates outward from the center of the domain. Dirichlet boundary conditions are
imposed. The analytical solution for this problem is given in [15].

Compared to the analytical solutions given by [15], our parallel preconditioned
GMRES gives a fair approximation of the exact solution with relative errors (RErr.) less
than 5× 10−6. Parallel partitioning also has no effect on the results. The main differ-
ences in the amplitude of the waves are caused by the finite-difference approximation of
the Dirac function. As shown in Table 1, if we simultaneously and proportionally scale
the problem size and the number of processors (in bold), the WallClockTime almost
stays constant. It means our parallel framework has weak scalability. It indicates that a
parallel efficiency of up to 75% is satisfactory.

Table 1. Parallel performance of CSLP preconditioned GMRES for MP1 with wavenumber k =
100.

grid size np #Iter RErr tw Speedup Ep

161 × 161 1 350 1.638E−06 7.07 1.00 –

4 350 1.596E−06 2.06 3.43 85.68

321 × 321 1 348 1.476E−06 32.18 1.00 –

4 348 1.592E−06 8.10 3.97 99.34

481 × 481 1 358 4.319E−06 78.22 1.00 –

9 359 4.444E−06 9.02 8.68 96.41

641 × 641 1 339 2.000E−06 121.44 1.00 –

4 339 1.657E−06 33.75 3.60 89.97

16 339 2.158E−06 9.88 12.29 76.79

Most physical problems of geophysical seismic imaging describe a heterogeneous
medium. The so-called Wedge problem (MP-2) is a typical problem with simple hetero-
geneity. It mimics three layers with different velocities hence, different wavenumbers.
The rectangular domain Ω = [0,600]× [−1000,0] is split into three layers, where the
wave velocity c is constant within each layer but different from each other. A point
source is located at (x0,y0) = (300,0). The wavenumber is k(x,y) = 2π f

c(x,y) , where f is

the frequency. The distribution of wave velocity c(x,y) refers to [6]. First-order Som-
merfeld boundary conditions are imposed on all boundaries.
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The 2D wedge problem is used to evaluate the performance of our parallel solution
method for a simple heterogeneous medium. Besides, the matrix-free parallel frame-
work is not limited to the GMRES algorithm. All the ingredients can be directly gen-
eralized to other Krylov methods like Bi-CGSTAB and IDR(s). In Table 2 we give
the WallClockTime and the required number of matrix-vector multiplications of dif-
ferent CSLP-preconditioned Krylov methods for the wedge problem. It illustrates that
our matrix-free parallel CSLP-preconditioned method is still suitable for heterogeneous
Helmholtz problems. It still leads to satisfactory scalability if we increase the number
of processors correspondingly while refining the grid.

Table 2. MP-2: CPU time consumed by different parallel CSLP-preconditioned Krylov methods
while refining the grid, f = 40Hz. The number of matrix-vector multiplications is in parentheses.

Grid size np GMRES Bi-CGSTAB IDR(4)

385 × 641 2 25.34 (278) 6.20 (321) 6.10 (282)

769 × 1281 8 31.92 (283) 7.98 (301) 7.41 (251)

The so-called Marmousi problem [16] is a well-known benchmark problem (MP-
3). It contains 158 horizontal layers in the depth direction, making it highly heteroge-
neous, see [6] for an illustration. In our numerical experiments, first-order Sommerfeld
boundary conditions are imposed on all boundaries. The source frequency f = 40Hz,
grid size 2945×961, which indicates kh ≤ 0.54 and guarantees more than 10 grids per
wavelength. In [6], the Marmousi problem with grid size 2501× 751 has to be solved
on at least two cores due to memory limitations. The matrix-free framework allows us
to solve larger problems within even a single core.

Table 3 presents the required number of matrix-vector multiplications (denoted by
#Matvec), CPU-time, and relative speedup of different CSLP-preconditioned Krylov
methods for the Marmousi problem. One can find that a huge number of iterations are
required. GMRES has the least number of matrix-vector multiplications but requires the
most CPU time reducing the parallel efficiency to 50%. This is due to the Arnoldi pro-
cess in GMRES requiring a lot of dot product operations, which need global communi-
cation in parallel computing. IDR(4) and Bi-CGSTAB exhibit higher parallel efficiency
than GMRES. The results illustrate that the matrix-free parallel CSLP-preconditioned
method also works for the highly heterogeneous Helmholtz problems.

Table 3.MP-3: parallel performance of different parallel CSLP-preconditioned Krylov methods,
f = 40Hz, grid size 2945×961.

GMRES Bi-CGSTAB IDR(4)

np #Matvec Time(s) Sp Ep np #Matvec Time(s) Sp Ep np #Matvec Time(s) Sp Ep

1 2872 61705.58 – – 1 4124 2431.94 – – 1 4438 2881.58 – –

3 2872 21892.21 2.82 93.95 3 4435 712.34 3.41 113.80 3 4688 854.72 3.37 112.38

12 2872 10309.02 5.99 49.88 12 4513 279.09 8.71 72.61 12 4484 334.59 8.61 71.77
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5 Conclusions

In this paper, we studied a matrix-free parallel solution method using preconditioned
Krylov methods for Helmholtz problems. The Complex Shifted Laplace Preconditioner
is used, which is approximately inverted by multigrid iterations. The matrix-free parallel
framework is suitable for different Krylov methods. Numerical experiments of model
problems demonstrate the robustness, satisfactory parallel performance, and weak scal-
ability of our matrix-free parallel solution method. It allows us to solve larger problems
in parallel to obtain more accurate numerical solutions.
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