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Abstract. Numerical discretization of the large-scale Maxwell’s equations leads
to an ill-conditioned linear system that is challenging to solve. The key require-
ment for successive solutions of this linear system is to choose an efficient solver.
In this work we use Perfectly Matched Layers (PML) to increase this efficiency.
PML have been widely used to truncate numerical simulations of wave equations
due to improving the accuracy of the solution instead of using absorbing bound-
ary conditions (ABCs). Here, we will develop an efficient solver by providing an
alternative use of PML as transmission conditions at the interfaces between sub-
domains in our domain decomposition method. We solve Maxwell’s equations
and assess the convergence rate of our solutions compared to the situation where
absorbing boundary conditions are chosen as transmission conditions.

1 Introduction

Maxwell’s equations need to be solved in many applications, such as medical imaging
or electromagnetic compatibility. The Finite Element Method (FEM) is widely used for
numerical modeling of these problems due to its ability to handle complex geometrical
configurations. Finite element discretization of these frequency-domain wave problems
leads to an ill-conditioned linear system with large number of unknowns. To solve this
system, the efficiency of direct solvers is limited at larger scales due to scalability prob-
lems in memory and computing time. Besides, Krylov subspace iterative solvers have
shown slow convergence. An alternative method that tackles the convergence problem
of iterative solvers is the domain decomposition method (DDM). The method relies on
a division of the computational domain into smaller subdomains, leading to subprob-
lems of smaller sizes manageable by direct solvers. One perfect candidate introduced in
[1] and then improved in [2] is the domain decomposition preconditioner which proved
to be very robust in large scale computations. However, designing an efficient domain
decomposition preconditioner is still challenging for such a system.
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In this paper, we present an efficient PML-based Schwarz-type domain decompo-
sition preconditioner with overlapping subdomains. The convergence rate of Schwarz
methods highly depends on the transmission condition on the interfaces between sub-
domains. Thus, carefully designed transmission conditions play a critical role in the
efficiency of the solver. To decrease undesired numerical reflections, one usually adds a
PML layer along the boundaries that extend a definite area to the infinity, representing
an unbounded volume, and absorbs almost all incident waves, regardless of angle of
incidence, so that the waves decay exponentially in magnitude into the PML medium
[5,6]. Specifically, using PML is essential for simulating unbounded systems such as
infinitely long waveguides or an isolated structure in an infinite vacuum region. While
the use of PMLs as boundary conditions when solving a problem in open space is quite
common, less things are known about their use as transmission conditions within a
domain decomposition algorithm. We propose to assess the performance of a one-level
domain decomposition algorithm where the transmission conditions at the boundaries
between subdomains are PML conditions, providing a better approximation to the trans-
parent boundary operator. We will investigate the convergence properties and compare
them with the more common impedance transmission conditions. In a previous work,
PML have been used successfully as transmission conditions in domain decomposi-
tion methods in geophysical applications modeled by the Helmholtz equation in [3].
The paper is organized as follows. In Sect. 2, we present mathematical model includ-
ing Maxwell’s equations, PML formulation with different stretching functions as well
as its implementation. Then, the DDM with PML-based transmission operators is intro-
duced. In Sect. 3, some numerical examples are presented to analyze the performance of
the proposed domain decomposition algorithm. Finally, conclusion is written in Sect. 4.

2 Mathematical Model

Let us consider the computational domain Ω ⊂ R
3 to be a homogeneous dielectric

medium of complex-valued electric permittivity εσ and electrical conductivity σ > 0.
Let μ0 be the permeability of free space and n be the unit outward normal to the bound-
aries ∂Ω . ω is the angular frequency and c is the wave speed. In the frequency domain,
the electric field ξ (x, t) = ℜ(E(x)eiωt) has harmonic dependence on time of angular
frequency ω , where E(x) is its complex amplitude depending on the space variable
x. Hence E(x) is a solution to the following second order time-harmonic Maxwell’s
equation

∇× (∇×E)−ω2εσ μ0E = f in Ω . (1)

Let us denote the boundary of the global domain by ∂Ω where Robin condition
(∇ ×E)×n+ iω

c n× (E×n) = 0 is imposed [4]. The Robin or impedance boundary
condition (Imp BCs) is a standard first order approximation to the far field Sommerfeld
radiation condition enabling the description of the wave behavior in a bounded domain,
while the physical domain is not bounded. The finite element discretization of Eq. (1)
is written as the following linear system

Au= b. (2)
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2.1 PML Formulation

To solve a partial differential equation (PDE) numerically, the computational domain
has to be truncated without introducing reflections. The first attempt in this regard is
absorbing boundary conditions (ABCs). The first order ABC as regular choice is Robin
condition that was mentioned earlier. Due to the limited accuracy of this method, PML
were introduced by Berenger [5] as a better alternative. PML provide non-reflecting
boundaries so that the numerical solution converges exponentially to the exact solution
in the computational domain as the thickness of the layer increases.

PML implementation is done by stretching cartesian coordinates so that stretching
is defined in a layer surrounding the computational domain [5] and Dirichlet boundary
condition can be imposed at the end of the PML layer. In this regard, we assume the
boundaries of the computational domain to be aligned with the coordinate axes. For
simplicity we will focus on truncating the problem in the x direction. Let us suppose
that the PML layer extends from the boundary of our domain of interest x = a until
x= a∗. The coordinate mapping in x direction is:

∂
∂xpml

→ 1

1− i
ω σ(x)

∂
∂x

,σ(x) =

{
0 if x< a

> 0 if a< x< a∗.
(3)

In the PML region where σ(x)> 0, The oscillating solutions turn into exponentially
decaying ones. In the rest of the region where σ(x) = 0, the wave equation is unchanged
and the solution is unchanged. In this paper we have studied two different stretching
functions σ(x) as following

σ−1(x) = 1
a∗−x (a) , σ−2(x) = 2

(a∗−x)2 (b) (4)

To truncate our computational region with a PML layer in other directions, we just
need to do the same transformations to get ∂

∂ypml
and ∂

∂ zpml
. At the corners of the com-

putational cell, we will have PML regions along two or three directions simultaneously,
but it will not generate any problem.

Implementing this mapping in the three dimensional domain requires a slight further
generalization of Eq. (1), resulting in the following definition of the curl operator to be
used in the variational formulation:

∇pml ×E=

⎡
⎢⎢⎣

∂Ez
∂ypml

− ∂Ey
∂ zpml

∂Ex
∂ zpml

− ∂Ez
∂xpml

∂Ey
∂xpml

− ∂Ex
∂ypml

⎤
⎥⎥⎦ (5)

2.2 Domain Decomposition Preconditioner

To solve our large and ill conditioned linear system (2), the use of a robust and efficient
preconditioner is necessary in a Krylov iterative solver (GMRES) [6]. A preconditioner
M−1 is a linear operator that approximates the inverse of matrix A whose cost of the
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associated matrix-vector product is much cheaper than solving the original linear sys-
tem. In this regard, we employ right preconditioning to solve (2) that will give us:

AM−1y= f, where u=M−1y (6)

This right preconditioned system benefits from a residual that is preconditioner inde-
pendent compared to the left-preconditioned variant.

As an overlapping Schwarz method, the optimized restricted additive Schwarz
(ORAS) domain decomposition preconditioner is chosen here

M−1
ORAS =

Nsub

∑
s=1

RT
s DsA

−1
s Rs (7)

where Nsub is the number of overlapping subdomains Ωs into which the domain Ω is
decomposed. Here, matrices As stem from the discretisation of local boundary value
problems on Ωs with transmission conditions at the subdomain interfaces. Let N be an
ordered set of the unknowns of the whole domain and let N =

⋃Nsub
s=1 Ns be its decomposi-

tion into the (nondisjoint) ordered subsets corresponding to the different (overlapping)
subdomains Ωs. Matrix Rs is the restriction matrix from Ω to subdomain Ωs; it is a
Ns×N Boolean matrix. RT

s is then the extension matrix from subdomain Ωs to Ω . Ds is
a Ns ×Ns diagonal matrix that gives a discrete partition of unity, i.e., ∑Nsub

s=1 R
T
s DsRs = I.

The convergence rate of this method highly depends on the choice of transmis-
sion conditions between the subdomains [7]. The optimal convergence is obtained by
imposing the Dirichlet-to Neumann (DtN) map related to the complementary of each
subdomain [8,9]. However, since the cost of computing the exact DtN is prohibitive,
low-order absorbing boundary conditions (ABCs) to approximate the DtN have been
developed. Nonetheless, these methods have limited accuracy, which led to developing
domain decomposition strategies with high order transmission conditions [10]. But the
problem with high order transmission conditions is the difficulty of their implementa-
tion. A good approximation of ABCs in terms of providing better convergence rate and
easy implementation would be to use PML on the interface boundaries of the cuboid-
shaped subdomains [11,12], that is what we consider here. In this purpose a PML layer
is added in each direction in the overlap region. Note that the width of the overlap has to
be larger than the PML layer for a good transmission of the data between subdomains.

3 Numerical Results

The performance of the proposed PML-based preconditioner for Maxwell’s equations
is studied in a 3D homogeneous domain Ω , while length of the domain in each direction
is 10 m. We have excited the z= 0 surface with plane wave incident term e(−ikz), where
k = 2π

λ , with propagation in +z direction shown in the Fig. 1. The convergence rate is
studied while there is PML or Impedance as global boundary conditions (BCs) or inter-
face conditions (ICs), which leads to four different situations reported in Table 1. The
finite element discretization is done for the first order edge elements for two different
frequencies. Let #DoF represents the number of degrees of freedom. For f = 0.5 Hz, we
have #DoF =511775 and for f = 1 Hz, we have #DoF = 2098100. The global domain is
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Fig. 1. Plane wave propagation.

decomposed into N = 100 number of cuboid-shaped subdomains, that PMl layer is set
along their interfaces with the length Lpmli.

In Table 1, simulations are done for the σ−2 stretching function and PML length
on the interfaces is shown with Lpmli = 8h where h= λ

nλ
is the mesh size and nλ is the

number of points per wavelength. In all simulations, PML length on the global boundary
is Lpml = 2λ and the overlapping layers between subdomains is changed from 2 to 8
layers in four steps. Looking at the Table 1, for f = 0.5 and considering 8 number of
overlapping layers to be larger than Lpmli, we can see while we have PML BCs and Imp
ICs, number of iterations is 21, but with PML BCs and PML ICs, this number decrease
to 16. It is while with Imp on BCs and ICs, number of iterations is 26. In this table, •
means that, solution has not converged for 200 number of iterations.

Table 1. Function σ−2. nλ = 5, Lpml = 2λ , Lpmli = 8h, c= 1, N = 100 is number of subdomains

BCs ICs f = 0.5 f = 1

2 4 6 8 2 4 6 8

Imp Imp 29 24 23 26 34 27 25 25

Imp PML 75 30 22 28 • 50 29 23

PML Imp 23 21 20 21 28 23 21 20

PML PML 65 25 18 16 • 43 25 19

To see the influence of the Lpmli, we did the simulation with smaller PML layer on
the subdomains, mentioned in Table 2, only for the case with PML as BCs and ICs.
Comparing with the equivalent row in the Table 1 for 6 and 8 overlaping layers, we see
that with larger length of PML on subdomains we have better convergence. Although
the rate of convergence has become better for lower overlapping layers, with smaller
PML length, due to the better data transmission between subdomains. Comparing the
results for the use of stretching function σ−1 instead of σ−2 is mentioned in the Table 3.
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For 2 number of overlapping layers, better number of iterations is seen with σ−1, how-
ever for higher number of overlapping layers, σ−2 results in better convergence.

Table 2. Function σ−2. nλ = 5, Lpml = 2λ , Lpmli = 4h, c= 1, N = 100

BCs ICs f = 0.5 f = 1

2 4 6 8 2 4 6 8

PML PML 59 22 18 17 183 35 30 29

Table 3. Function σ−1. nλ = 5, Lpml = 2λ , Lpmli = 8h, c= 1, N = 100

BCs ICs f = 0.5 f = 1

2 4 6 8 2 4 6 8

PML Imp 24 20 18 21 29 24 22 21

PML PML 46 28 19 17 66 35 26 21

The performance of the proposed preconditioner in a heterogeneous domain is stud-
ied in Tables 4 and 5. Here, we have defined a medium with two values of εr with the
dimension of 6.3 m in X and Y directions and 2.5 m in Z direction inside the free space
computational domain. In this experiment, rhs is chosen as a random value, Lpmli = 4h,
f = 1 Hz, stretching function is chosen as σ−2 in Table 4 and σ−1 in Table 5. Results
show, increasing value of εr increase number of iterations, but with PML interface
conditions we can have faster convergence. Comparing two tables, better performance
is obtained by σ−2 stretching function. Here we have considered maximum number
of iterations as 600. In the results, - means problem is not solved due to memory
limitation.

Table 4. Function σ−2. nλ = 5, Lpml = 2λ , f = 1.0 Hz, c= 1, N = 100.

BCs ICs εr = 4 εr = 5

2 4 6 8 2 4 6 8

PML Imp 262 207 181 168 586 425 375 326

PML PML • 249 199 160 • 514 440 311

Results are obtained on the Université Côte d’Azur’s High-Performance Computing
(HPC) center. In this HPC center, cluster is composed of 48 CPU computing nodes,
including 32 nodes with Dual Intel Xeon Gold processor, providing 40 cores per node
and 192 GB of memory and 16 nodes with 2 AMD Epyc processors, providing 32 cores
per node and 256 GB of memory.
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Table 5. Function σ−1. nλ = 5, Lpml = 2λ , f = 1.0 Hz, c= 1, N = 100.

BCs ICs εr = 4 εr = 5

2 4 6 8 2 4 6 8

PML Imp 264 207 183 - 587 427 374 -

PML PML 411 221 201 - • 402 353 -

4 Conclusions

In this work, we have developed a numerical model for an accurate and fast simula-
tion of Maxwell’s equations. To achieve this goal, the PML layer is implemented as
physical boundaries and as transmission conditions in domain decomposition precondi-
tioner for a three dimensional domain. A better convergence rate is achieved with PML
layer, compared to Impedance interface conditions. Numerical results shows that the
performance of the PML depends on a well chosen stretching function and length of
the PML. This work is a preliminary study that was inspired by a similar work done for
Helmholtz equations [13] where the results were very encouraging. More investigations
can be done in next works, like evaluating performance of the PML as interface con-
ditions for higher order edge elements or in a heterogeneous domain. Note that PML
have some limitations, for the time being it has been applied only along the straight
interfaces but variants for circular boundaries exist that can be further explored in the
context of other applications.
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