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Abstract. We present a recently developed electrical circuit formulation that
has port-Hamiltonian (pH) structure and results in a structurally amenable
differential-algebraic equation (DAE) system of index ≤ 1. Being pH assures
energy stability—the total energy of the system cannot increase. It also pro-
vides compositionality—larger pH models can be assembled from smaller ones
in a standard way that facilitates building pH models in software. Structurally
amenable and index ≤ 1 eliminate the phases of DAE index analysis and reduc-
tion, which are commonly used in circuit simulation software. Thus, standard
numerical solvers can be applied directly to integrate the DAE. In addition, it has
a known a priori block-triangular form that can be exploited for efficient numer-
ical solution. A prototype MATLAB code shows high potential for development
of this “compact port-Hamiltonian” (CpH) methodology.

1 Summary

Computer simulation of electrical circuits entails integrating systems of differential-
algebraic equations (DAEs). Our work forms a DAE of remarkably simple structure
promising faster numerics. It is a synergy of three oldish themes

• Energy-based port-Hamiltonian modelling, from ∼2000, [1–3]
• Structural analysis (SA) of circuit topology, from ∼1960, [4–7] but using ideas of

Kron dating to the 1940s, [8]
• Structural analysis of general DAEs, from 1988, [9,10]

Port-Hamiltonian (pH) is a philosophy/technology for multi-physical system mod-
elling, making energy flow central; while SA deploys combinatorial algorithms, inex-
pensive compared with the numerical ones, to reveal structure and thus speed up the
numerics—cf. reordering algorithms in solving sparse linear systems.

2 Constituents

We take the three parts of the title in turn.

“Port-Hamiltonian”. The universe runs on energy conservation across all physi-
cal domains. It is perilous for modelling to ignore this. The port-Hamiltonian (pH)
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Fig. 1. pH system.

approach [3] splits a system into an energy-
storing part S, a resistive or energy-dissipating
part R, a control or input-output part P, and
lossless energy-distributing elements D connect-
ing them, Fig. 1. Stored energy in S is described
by a Hamiltonian function H . The e , f lines are
ports where energy flows; e · f has dimension of
power. For a circuit they are voltages and currents
and D represents Kirchhoff’s laws. Multi-physics
models and numerics respecting this structure are
energy-stable, e.g. perpetual motion is excluded.

“Index ≤ 1 ”. Unlike ODEs, DAEs typically have hidden constraints found by differ-
entiating one or more equations. As an example take the simple DAE

x1 −g(t) = 0, ẋ1 − x2 = 0.

To find the solution x1 = g(t), x2 = ġ(t), one must differentiate the first equation.
An index of the DAE measures how much difficulty this causes. There are several;

we use the differentiation index [11], the largest number of times some equation must
be differentiated so the resulting equations can be solved to give an ODE.

Index > 1 DAEs typically give numerical difficulties. In practice, some index-
reduction procedure is applied to arrive at an index-1 DAE, e.g. Pantelides’s algo-
rithm [9].

Those of index ≤ 1 are solvable by standard codes e.g. DASSL [12], SUNDIALS [13],
MATLAB’s ode15i etc. Popular circuit models such as the modified nodal analysis
(MNA) [14] can give index 2. That our CpH method is of index ≤ 1 was a surprise
bonus, and as a consequence, no index reduction is necessary.

“Structurally Amenable”. A DAE is structurally amenable (S-amenable) if analysing
the sparsity pattern of its equations reveals exactly what differentiations of them are
needed. This analysis is inexpensive, only needs be done once, and when success-
ful, allows various efficient numerical methods to be used (e.g., Mattsson–Söderlind
Dummy Derivatives [15] for reducing the DAE to index ≤ 1).

The original method to find if a DAE is S-amenable is in Pantelides’s 1988 paper
[9]. We use the 2001 Pryce Σ -method [10], which is equivalent and more direct.

Consider a DAE with N equations fi = 0 in N variables x j(t) and some of their
t-derivatives. In vector form we can write it as

f (t; x and derivatives) = 0.

A sketch of the Σ -method’s steps follows.

1. Form the N×N signature matrix Σ = (σi j), where σi j is the highest derivative order
of x j in fi, or −∞ if x j is absent from fi.

2. Find suitable offsets ci ≥ 0, d j ≥ 0 with d j − ci ≥ σi j (i, j = 1, . . . ,N), and equal-
ity on some transversal, a set of N positions (i, j) with one in each row and each
column. This is a linear assignment problem, an efficiently solvable kind of linear
programming problem [16].
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3. Form the N×N system Jacobian J with Ji j = ∂ fi/∂x(d j−ci)
j , or 0 if d j − ci < 0.

4. If J is nonsingular at some arbitrary point, the DAE is S-amenable. Then the offsets
say what differentiations of equations are needed, and how to reduce the DAE to an
implicit ODE.

3 Circuit Equations

Circuits. We consider circuits made of 2-pin elements on graph edges, joined at nodes,
see e.g. [7]. Key variables are voltage drop ν over, and current ι in, an edge.

As an example, Fig. 3 shows an RLC circuit schematic as commonly drawn, with
elements V = voltage source, I = current source, R = resistor, G = conductor1, C =
capacitor, L = inductor. Figure 3 is the corresponding mathematical graph, showing
e.g. that the top ends of R,G,L2 come together at a single node (Fig. 2(a) and Fig. 2(b)).

Fig. 2. RLC circuit example. On the right the edges have been numbered 1–8, with orientations
shown, and the nodes 1–5.

In a circuit graph G, we allow multiple edges between two given nodes, but not
edges from a node to itself (which have no electrical use). G is undirected but each edge
has an orientation to say which direction of ν and ι counts as positive (switching it
doesn’t change the physics). Henceforth, we assume G is connected.

Trees. Spanning trees (just called trees in circuit literature) in the graph are key to
finding the right set of equations for the DAE. A tree T is a minimal subset of the m
edges containing a path from any of the n nodes to any other. Necessarily it contains no
cycles and has n−1 edges. The m−n+1 edges not in T are the cotree T∗.

1 A resistor with Ohm’s law written as ι = νG instead of ν = ιR.
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Fig. 3. Cycle and cutset example.

Each cotree edge specifies a fundamental
cycle—that edge, plus the unique path between
its ends via the tree. Each tree edge specifies a
fundamental cutset—removing it splits the nodes
into two nonempty subsets, the cutset is all edges
between these subsets.

In Fig. 3, with tree {5,1,2,6}, cotree edge 4
specifies fundamental cycle {1,4,5}; tree edge
2 when removed splits the nodes into {1,2,3},
{4,5}, hence the fundamental cutset of edges
between them is {2,3,7,8}.

Physics. The physical assumptions on which the DAE is constructed are:

(a) Constitutive relations. If we assume standard linear elements, these are:

(b) Kirchhoff’s voltage and current laws. Given T, it suffices to impose KVL (sum of
voltages round a cycle is 0) round the m−n+1 fundamental cycles, and KCL (sum
of currents across a cutset is 0) across the n−1 fundamental cutsets, since by linear
combination these make all possible KVL and KCL equations. E.g., the cycle and
cutset in Fig. 3 give ν4 +ν5 −ν1 = 0 and ι3 + ι2 + ι8 − ι7 = 0.

Each of the many circuit formulations combines the constitutive relations with
selected Kirchhoff equations, to get a DAE f (t,x, ẋ) = 0 in some variables x = x(t).
Methods differ in what variables are in vector x—they can be voltages, currents, capac-
itor charges and inductor fluxes—and which KVL/KCL equations are used.

4 Graph Linear Algebra

Definition 1. G’s n×m incidence matrix A has

ap j = 1, aq j = −1 if edge j is from node p to node q

and zero elsewhere.

Assuming the graph is connected we have the well known facts:

Theorem 1. A’s column space (the linear span of its columns) is the hyperplane x1 +
· · ·+xn = 0 in Rn. A set of edges is a tree if and only if the corresponding columns of A
are a basis of this column space.

Consider such a graph, its incidence matrix A, a tree T and its cotree T∗.
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Definition 2. The (m−n+1)× (n−1) Kron matrix F = ( fi j) of T holds the unique rep-
resentation of cotree columns of A as linear combinations of tree columns2:

ai = − ∑
j∈T

fi ja j, columns indexed by T, rows by T∗.

Theorem 2. Kirchhoff’s laws for the graph can be written as ιT = F�ιT∗ , νT∗ = −FνT

or equivalently [
ιT

νT∗

]
=

[
0 F�

−F 0

][
νT

ιT∗

]
(1)

where ιT, ιT∗ denote the vectors of currents on tree and cotree edges respectively, and
similarly νT,νT∗ .

A non-obvious fact [17] is that all nonzeros of the Kron matrix are −1 or 1, and
that these nonzeros encode the fundamental cycles and cutsets, with the orientation of
each edge thereon. Our example circuit graph has the following 5×8 incidence matrix
and 4×4 Kron matrix. In F for instance, the row labeled 4 encodes cycle {1,4,5}; the
column labeled 2 encodes cutset {2,3,7,8}.

A=

⎡
⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 1
0 0 0 −1 1 0 −1 0

−1 0 1 0 −1 0 0 0
0 −1 −1 0 0 1 0 0
0 0 0 0 0 −1 1 −1

⎤
⎥⎥⎥⎥⎦ , F =

1 2 5 6⎡
⎢⎣

⎤
⎥⎦

3 1 −1 0 0 C2
4 −1 0 1 0 G

7 −1 1 1 1 L2
8 0 −1 0 −1 I

V C1 R L1

(2)

5 The Compact port-Hamiltonian DAE

Circuit formulations differ in what vector x of DAE variables, and which Kirchhoff
equations they select. The CpH method in its simplest form chooses x with one x j for
each non-source edge, thus:

charge q for capacitors, flux linkage φ for inductors,
voltage ν or current ι at will for resistors,

(3)

and applies Kirchhoff’s laws in the form in Theorem 2. A circuit must be well posed,
meaning it has no cycles composed only of voltage sources and no cutsets composed
only of current sources (“no V-cycles or I-cutsets”). Otherwise, since we have ideal
circuit elements, Kirchhoff’s equations are either underdetermined or contradictory.

Circuit SA says that a well-posed circuit has a normal tree containing all voltage
sources, no current sources, and in a well defined sense the most possible capacitors
and the fewest possible inductors. For a simple proof see [18, §2.3].

Constructing the CpH DAE then comprises the following steps.

2 The − is chosen to match the notation in [7].
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1. Input: t and the DAE vector x defined in (3).
2. Evaluate the constitutive relations. Given the choice of variables (3), these make ν

and ι on each edge an explicit function of x or ẋ and (for source edges) t.
3. Substitute these ν and ι into Kirchhoff’s equations in the Kron form (1). Each such

equation “belongs” to a unique edge: e.g. each KVL equation is round a fundamental
cycle, and belongs to the cotree edge that generates this cycle.

4. Separate out equations belonging to voltage and current source edges. They give
control-output to be handled after the DAE is solved.

5. Output: the remaining equations as the DAE f (t,x, ẋ) = 0, of size N equal to the
number of non-source edges.

We have assumed simple linear RLC circuit elements above. However this con-
struction and the next theorem work more generally, for nonlinear elements and various
kinds of coupling. Thus diodes, transistors, transformers, etc. are supported.

Theorem 3. Subject to suitable passivity assumptions on the circuit elements, the CpH
DAE is port-Hamiltonian, S-amenable and index ≤ 1.

Sketch proof, showing the synergy of our three themes: see [18] for details.
Tree T being normal puts some blocks of zeros in the Kron matrix F . . . [circuit-SA]
. . . which improve the sparsity of the system Jacobian J, making it block-triangular with
three diagonal blocks [DAE-SA]

J =

⎡
⎣capacitor data

inductor data
× × resistor data

⎤
⎦ .

The passivity assumptions mean physically that no circuit element except voltage
and current sources can create energy in the system. They have the mathematical form
that certain Jacobian matrices must be positive definite. [pH]

These Jacobians enter into J’s diagonal blocks. Their positive definiteness implies
each such block is nonsingular. So J is nonsingular, proving S-amenability.

Index ≤ 1 is a by-product, and pH structure is immediate from construction. �	
For the example circuit’s F in (2), the tree that produces it is normal; the blocks of

zeros mentioned in the sketch proof are the three zeros in F’s top right corner.

6 Conclusion

For details of what is said here, and proofs, see [18]. Other circuit formulations
presented at the SCEE 2022 conference are in [20,21], of which the first is port-
Hamiltonian and the second is always index ≤ 1; but neither discusses SA-amenability.

CpH Advantages. CpH essentials are to be port-Hamiltonian and structurally
amenable. Being pH is desirable physics: pH assures energy-stability of the mathe-
matical DAE, and also of its numerical solution when suitable methods are used.

Being S-amenable is good for numerics. It makes possible, or inexpensive to imple-
ment, methods that in its absence are unavailable or expensive. Essentially equivalent
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for a DAE are that (a) it is S-amenable; (b) the Pantelides method (1988) works on it—
e.g. to find consistent initial values; and (c) the Mattsson-Söderlind dummy derivatives
method (1993) works on it—e.g. to reduce it to an implicit ODE.

Being pH is good software engineering, since pH models are compositional, i.e. can
be assembled in a standard way to make larger pH models. This suits them to languages
like Modelica, whose essence is to build systems from basic components.

Code Generation. We have implemented our theory in MATLAB, in principle support-
ing nonlinear dependent elements of the full generality in [18]. An object of a class
pHcircuit, a “part”, is specified by an incidence matrix, and type and parameters for
each edge. We build larger circuits by combining existing parts; e.g. for the circuit
in Fig. 4, the statement P = [P0, BJT]/["a4b1", "a3b2", "a1b3"]; was used to join
transistor BJT to the rest of the circuit P0 by “soldering” pins 4, 3, 1 of P0 to pins 1, 2,
3 of BJT respectively. Then we generate MATLAB code for the DAE function f (t,x, ẋ)
and use ode15i to integrate the DAE. The generated code is readable and efficient.
Generation is easily customised to make C++ or Fortran.

Acknowledgements. We thank the anonymous referees for useful comments that led us to
improve the paper. LS acknowledges support of the Berlin Mathematics Research Center
MATH+, Project AA4-5. NN acknowledges support of the Natural Sciences and Engineering
Research Council of Canada (NSERC), FRN RGPIN-2019-07054.

Appendix: Application, and Example CpH Code

Fig. 4. BJT amplifier circuit, and output.

We modelled the bipolar junction transis-
tor (BJT) amplifier circuit example from
Falaize & Hélie [19]. This shows the
CpH method going beyond the linear ele-
ments assumed in Sect. 3.

The upper part of Fig. 4 is the circuit
schematic. From the graph viewpoint,
edges IN, 9V, OUT join to the “ground”
node. We number the edges and assign
orientations as marked by red arrows.

The MATLAB code was generated
automatically, and the lower part shows
the output from solving by odei5i with
absolute and relative tolerances 10−3,
with input Vin(t) as in [19], namely zero
for 0.3 s to let a steady state be reached,
followed by a sinusoidal oscillation of
linearly increasing amplitude for 0.01 s.
It agrees to graphical accuracy with [19, Fig. 6(b)].

One could use tolerances down to around 10−12, beyond which step size failure
occurred. An upper step size limit was needed (0.005 worked), else the large steps built
up in the initial 0.3 s were liable to make the solver go from t = 0.3 to 0.31 in one step,
not noticing the changed behaviour at 0.3.
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Below is the central part of the code—constitutive relations and Kirchhoff equa-
tions, expressed in mathematical notation. The physical parameters are in lines 5–11.
The transistor is constructed on the Ebers–Moll model, of two Shockley diodes (nonlin-
ear voltage-controlled resistors) with a linear dependence between them. In the code the
diode is scalar function D on line 10; note @(. . .) . . . is how MATLAB defines anony-
mous functions. The transistor is modelled by function BJT on line 11, with 2-vector
input and output. Values αF ,αR > 1 in matrix M derive from the Ebers–Moll forward
and reverse current gains βF ,βR.

Constitutive relations for independent edges are in lines 14–20; for the dependent
transistor edges, in line 21. The Kirchhoff equations derive from the tree of edges
{1,2,3,5,7}. Setting the currents of voltage sources and voltages of current sources
to zero (lines 18–20 is a trick to simplify code generation. It makes the y’s in lines
28–30 equal minus their correct output values, hence the sign reversal at line 33.

1 function [ f ,y ] = fcnBJTamplifier(t,x, ẋ)
2 % DAE vector x= (x1, . . . ,x6)T = (qC1, qC2, iR3, iR4, vG8, vG9)T

4 % Physical parameters

5 Ci = 10−6, Co = 10−6, Rc = 270×103, Rf = 103, Vcc = −9, Iout = 0
6 td = 0.3, tmax = td +0.01,Vmax = 0.2, ω = 2π103

7 Vin = @(t)− (t− td ≥ 0)Vmax
t−td

tmax−td
sin(ω(t− td))

8 Is = 10−13, VT = 0.025, βF = 250, βR = 10, αF = 1+1/βF , αR = 1+1/βR
9 % Shockley diode D and Ebers−Moll transistor BJT

10 D= @(v) Is · (ev/VT −1) %It accepts vector input

11 M =
[

αF −1
−1 αR

]
, BJT = @(v)M ·D(v) % v=

[
v1
v2

]

13 % Constitutive relations

14 v1 =C−1
i x1 i1 = ẋ1

15 v2 =C−1
o x2 i2 = ẋ2

16 v3 = Rcx4 i3 = x4
17 v4 = Rfx3 i4 = x3
18 v5 =Vin(t) i5 = 0
19 v6 = 0 i6 = Iout
20 v7 =Vcc i7 = 0

21

[
v8
v9

]
=

[
x5
x6

] [
i8
i9

]
= BJT

([
x5
x6

])

23 % Kirchhoff laws
24 f1 = i1 + i4 − i8 − i9
25 f2 = i2 − i6
26 f3 = i3 + i4 + i6 − i8
27 f4 = v4 − v1 − v3 − v5 + v7
28 y1 = i5 + i4 − i8 − i9
29 y2 = v6 + v2 − v3 + v7
30 y3 = i7 − i4 − i6 + i8
31 f5 = v8 + v1 + v3 + v5 − v7
32 f6 = v9 + v1 + v5
33 y= −y

35 % Return: f = ( f1, . . . , f6)T and control−output y= (y1,y2,y3)T = (iV5,vI6, iV7)T
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