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Abstract. We consider linear dynamical systems with a single output,
where the systems include random parameters to perform an uncer-
tainty quantification. Using the concept of polynomial chaos, a linear
stochastic Galerkin system of higher dimension with multiple outputs is
arranged. Quadratic combinations of the outputs yield approximations
of time-dependent indices in global sensitivity analysis, which indicate
the influence of each random parameter. We investigate system norms for
the quadratic outputs, because these norms generate time-independent
sensitivity measures. Numerical results are presented for a model of an
electric circuit.

1 Introduction

Mathematical modelling often yields systems of differential equations including
physical parameters. Uncertainty quantification (UQ) is required to investigate
an output of the model with respect to a variability in the parameters. A common
approach consists in the substitution of the parameters by random variables,
see [10]. In addition, a global sensitivity analysis of the random-dependent model
can be performed to characterise the importance of each random parameter.
There are variance-based indicators (first-order indices and total-effect indices)
as well as derivative-based indicators for global sensitivity analysis, see [4,5,8,9].
The resulting numerical values allow for a ranking of the parameters.

We examine linear dynamical systems composed of ordinary differential equa-
tions (ODEs) or differential-algebraic equations (DAEs). A single input or mul-
tiple inputs are induced, while a single output represents a quantity of interest
(QoI). In the random-dependent system, we expand the state/inner variables as
well as the output in the polynomial chaos (PC), see [10]. The stochastic Galerkin
method yields a larger deterministic linear dynamical system with multiple out-
puts, which represent an approximation of coefficient functions in the expansion
of the QoI. Quadratic combinations of the outputs produce approximations of
three types of indices in global sensitivity analysis: first-order, total-effect, and
derivative-based. Since the outputs depend on time, the sensitivity indices also
vary in time.
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Alternatively, we derive system norms of the stochastic Galerkin system for
each non-negative quadratic output. These system norms provide sensitivity
measures, which are independent of both time and the input. In [6,7], this strat-
egy was applied to investigate system norms associated to total-effect indices.
Now we extend the approach to first-order indices as well as derivative-based
indices. Therein, the derivative-based concept uses the L2-norm of the QoI’s
partial derivatives with respect to the parameters. All system norms are com-
putable as H∞-norms of corresponding transfer functions in frequency domain.
Finally, we illustrate results of numerical computations employing the electric
circuit of the Miller integrator.

2 Random Linear Dynamical Systems

Let a linear dynamical system be given in the form

E(p) d
dtx(t,p) = A(p)x(t) + B(p)u(t)

y(t,p) = c(p)�x(t,p)
(1)

with time t ∈ I = [0,∞). Single or multiple inputs u : I → R
nin are supplied.

The matrices A,E ∈ R
n×n, B ∈ R

n×nin , and the vector c ∈ R
n depend on

physical parameters p ∈ Π ⊆ R
q. The variables x : I × Π → R

n depend on
time as well as the parameters. A single output y : I × Π → R is observed as
a QoI. If the mass matrix E(p) is non-singular, then the system (1) consists of
ODEs. Alternatively, a singular mass matrix implies a system of DAEs. A linear
DAE system exhibits a (nilpotency) index ν ≥ 1, see [3]. We assume that the
systems (1) are asymptotically stable for all p ∈ Π. An initial value problem is
specified by x(0,p) = x0(p) with a predetermined function x0 : Π → R

n.
The parameters are often affected by uncertainties due to modelling errors or

measurement errors, for example. A common approach to model their variability
consists in replacing the parameters by independent random variables, see [10].
Consequently, the parameters become measurable functions p : Ω → Π on a
probability space (Ω,A, P ). We assume that there is a joint probability density
function ρ : Π → R. Hence the expected value of a measurable function f : Π →
R reads as

E[f ] =
∫

Ω

f(p(ω)) dP (ω) =
∫

Π

f(p) ρ(p) dp. (2)

We consider the Hilbert space

L2(Π, ρ) =
{
f : Π → R : f measurable and E[f2] < ∞}

, (3)

which is equipped with the inner product 〈f, g〉 = E[fg] for two functions f, g ∈
L2(Π, ρ) using the expected value (2). Its norm is ‖f‖L2(Π,ρ) =

√〈f, f〉.
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Let an orthonormal basis (Φi)i∈N be given, which consists of multivariate
polynomials Φi : Π → R. Without loss of generality, Φ1 ≡ 1 is the unique
polynomial of degree zero. We assume that the variables x(t, ·) as well as the
output y(t, ·) are (component-wise) functions in the space L2(Π, ρ) for each t ≥ 0.
It follows that the functions can be expanded in the polynomial chaos (PC),
see [10],

x(t,p) =
∞∑

i=1

vi(t)Φi(p) and y(t,p) =
∞∑

i=1

wi(t)Φi(p) (4)

with time-dependent coefficient functions vi : I → R
n and wi : I → R. A

truncation of the series (4) to i = 1, . . . ,m with some integer m ≥ 1 yields a
finite approximation. Typically, all basis polynomials up to some total degree d
are included. Hence the number of basis functions results to m = (d+ q)!/(d!q!).

3 Stochastic Galerkin Systems and Norms

The stochastic Galerkin method changes the random-dependent linear dynamical
system (1) into the larger deterministic linear dynamical system

Ê d
dt v̂(t) = Âv̂(t) + B̂u(t) (5)

ŵ(t) = Ĉv̂(t). (6)

The constant matrices Â, Ê ∈ R
mn×mn, B̂ ∈ R

mn×nin , Ĉ ∈ R
m×mn are derived

from A, E, B, c, respectively. The definition of the matrices can be found in [6],
for example. The state/inner variables are v̂ = (v̂�

1 , . . . , v̂�
m)�. Now the system

produces multiple outputs ŵ = (ŵ1, . . . , ŵm)� by (6). Both v̂ and ŵ include
approximations of the exact coefficients in the PC expansions (4). The induced
approximation of the random QoI in (1) becomes

ŷ(m)(t,p) =
m∑

i=1

ŵi(t)Φi(p). (7)

We assume that the stochastic Galerkin system (5) is asymptotically stable. In
the following, we always predetermine initial values v̂(0) = 0.

A non-negative quadratic output of the system (5) reads as

g(t) = ŵ(t)�M̂ŵ(t) = v̂(t)�Ĉ�M̂Ĉv̂(t) (8)

with a symmetric positive semi-definite matrix M̂ ∈ R
m×m. Let Σ(M̂) be the

system consisting of the dynamical part (5) and the quadratic output (8). Now
we employ a symmetric decomposition

M̂ = F̂�F̂ (9)
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with a matrix F̂ ∈ R
m×m, for example, using a pivoted Cholesky decomposition.

We arrange a stochastic Galerkin system Σ(F̂) consisting of (5) and the linear
outputs

ẑ(t) = F̂Ĉv̂(t). (10)
We define the system norm belonging to (5), (8) as

∥∥∥Σ(M̂)
∥∥∥

L2
= sup

u �=0

∥∥√
g
∥∥

L2[0,∞)

‖u‖L2[0,∞)

(11)

including the L2-norm in the time domain [0,∞). This norm involves the supre-
mum of the set of all inputs u ∈ L2[0,∞)\{0}. In view of (10), it follows that

∥∥∥Σ(M̂)
∥∥∥

L2
= sup

u �=0

∥∥∥F̂ŵ
∥∥∥

L2[0,∞)

‖u‖L2[0,∞)

= sup
u �=0

∥∥F̂Ĉv̂
∥∥

L2[0,∞)

‖u‖L2[0,∞)

=
∥∥∥Σ(F̂)

∥∥∥
L2

. (12)

This system norm is independent of the chosen decomposition (9).
The input-output behaviour of a linear dynamical system can be described

by a transfer function in frequency domain, see [1]. The matrix-valued transfer
function of the system (5), (10) reads as Ĥ(s) = F̂Ĉ(sÊ− Â)−1B̂ for almost all
s ∈ C. Now the system norm of Σ(F̂) in (12) coincides with the H∞-norm of this
transfer function. The H∞-norm is computable by methods of numerical linear
algebra, see [2]. If the linear stochastic Galerkin system (5) consists of ODEs
or DAEs with index ν = 1, then the finiteness of the H∞-norm is guaranteed.
Yet the H∞-norm may still be finite for DAEs of index ν ≥ 2 depending on
the definition of inputs and outputs. The following sensitivity analysis applies to
any DAE system (5), (6) with finite H∞-norm, because a system (5), (10) with
modified output inherits a finite H∞-norm.

4 Sensitivity Measures

Our aim is a global sensitivity analysis of the stochastic model (1) with respect to
the influence of the individual random parameters. In general, there are variance-
based sensitivity measures and derivative-based sensitivity measures, see [8,9].
Although the variance-based sensitivity indices originally were defined different,
we use an equivalent specification by the PC expansion as in [5].

Let V (t) be the variance of the random QoI y(t, ·) for t ≥ 0. We define the
index sets Ij , I′j ⊂ N for j = 1, . . . , q using the family of basis polynomials (Φi)i∈N

Ij = {i : Φi depends only on pj},

I
′
j = {i : Φi depends (also) on pj}.

It holds that Ij ⊂ I
′
j and 1 /∈ Ij due to Φ1 ≡ 1. Variance-based sensitivity

measures are the first-order indices

S
FO

j (t) =
SFO

j (t)
V (t)

with SFO
j (t) =

∑
i∈Ij

wi(t)2 (13)

and the total-effect indices



212 R. Pulch

S
TE

j (t) =
STE

j (t)
V (t)

with STE
j (t) =

∑
i∈I′j

wi(t)2. (14)

These real numbers satisfy 0 ≤ S
FO

j (t) ≤ S
TE

j (t) ≤ 1 for each t ≥ 0 and
j = 1, . . . , q. If it holds that V (t) = 0 for some t, then the variance-based
sensitivity indices are not defined. However, an UQ is obsolete in this case as
there is no variability.

Furthermore, we examine derivative-based indices with respect to the norm
of (3), i.e.,

SDB
j (t) =

∥∥∥ ∂y
∂pj

(t, ·)
∥∥∥2

L2(Π,ρ)
=

∫
Π

(
∂y
∂pj

(t,p)
)2

ρ(p) dp. (15)

Applying the PC expansion (4), it follows that

SDB
j (t) =

∞∑
k,�=1

ηjk�wk(t)w�(t) with ηjk� =
∫

Π

∂Φk

∂pj
(p)∂Φ�

∂pj
(p)ρ(p) dp (16)

assuming that infinite summations and integration can be interchanged.
Now the sensitivity indices SFO

j in (13), STE
j in (14), and SDB

j in (15) can be
approximated by quadratic outputs (8) of the stochastic Galerkin system (5).
Let K ⊂ N be an index set. We define the diagonal matrix

D̂(K) = diag(d1, . . . , dm) with dk =
{

1, if k ∈ K,
0, if k /∈ K.

This matrix owns the trivial symmetric factorisation D̂(K) = D̂(K)�D̂(K). On
the one hand, we obtain the variance-based indices by

SFO
j (t) ≈ ŜFO

j (t) = ŵ(t)�D̂(Ij)ŵ(t) and STE
j (t) ≈ ŜTE

j (t) = ŵ(t)�D̂(I′j)ŵ(t).

On the other hand, we arrange the symmetric matrices N̂j = (ηjk�)k,�=1,...,m

including the coefficients from (16). It can be shown that the matrices are also
positive semi-definite. Although the integrals ηjk� include the derivatives of the
basis polynomials, the majority of these integrals are zero, i.e., the matrices N̂j

are sparse. Consequently, the approximation of the derivative-based indices reads
as

SDB
j (t) ≈ ŜDB

j (t) = ŵ(t)�N̂jŵ(t).

We consider the system norms (11) with M̂j ∈ {D̂(Ij), D̂(I′j), N̂j} for j =
1, . . . , q. These system norms represent sensitivity measures μ�

1, . . . , μ
�
q for 
 ∈
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Fig. 1. Circuit diagram of Miller integrator.

{FO,TE,DB}, which are independent of time t as well as the selection of
inputs u. A standardisation yields coefficients 0 ≤ μ̃�

1, . . . , μ̃
�
q ≤ 1 with

μ̃�
1 + · · · + μ̃�

q = 1 (17)

to investigate the relative differences for the random parameters.

5 Illustrative Example

We examine the electric circuit of a Miller integrator shown in Fig. 1. A mathe-
matical model of the Miller integrator was presented in [3], which consists of a
system of n = 5 linear DAEs. The system involves q = 4 physical parameters:
two capacitances C1, C2, a conductance G, and an amplification factor A. The
index of this DAE system is ν = 2 for all (positive) parameters. Furthermore,
the DAE systems are asymptotically stable. An input voltage uin is supplied as
single input. The output voltage y = uout represents the QoI. The DAE system
can be written in the form (1). Although the system of DAEs exhibits index two,
the H∞-norm of the associated transfer function is finite.

We replace the physical parameters by independent random variables with
uniform distributions. The mean values are chosen as C̄1 = 10−10, C̄2 = 5·10−11,
Ḡ = 0.001, Ā = 2, whereas each random variable varies 20% around its mean
value. We standardise the resulting hypercuboid Π to [−1, 1]4, which changes
only the magnitude of the derivative-based indices (15), since the derivatives are
multiplied by constants in the transformation. The PC expansions (4) include
basis polynomials, which are the products of univariate Legendre polynomials.
We truncate the expansions such that all polynomials up to total degree d = 4
are included, i.e., m = 70 basis polynomials. The stochastic Galerkin method
produces a system of DAEs (5) with dimension mn = 350. This linear dynamical
system is asymptotically stable.

In [7], the Miller integrator was also used as a test example, where only the
system norms associated to the total-effect sensitivity indices were investigated.
Now we examine all cases of system norms introduced in Sect. 4. Table 1 depicts
the computed system norms with respect to the three types of sensitivity indices.
The standardised sensitivity measures satisfying (17) are illustrated in Fig. 2.
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Table 1. Sensitivity measures for random parameters in example of Miller integrator.

parameter C1 C2 G A

first-order 0.2338 0.1257 0.1015 0.3564

total-effect 0.2699 0.1717 0.1088 0.3803

derivative-based 0.5187 0.3168 0.1906 0.7074

total-effect in time 0.6485 0.1879 0.1681 1.0000
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Fig. 2. Standardised sensitivity measures from system norms for first-order indices,
total-effect indices, derivative-based indices, and from maxima of total-effect indices in
time.
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Fig. 3. Expected value (left) and standard deviation (right) of random output voltage
in electric circuit of Miller integrator.
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We perform a transient simulation of the stochastic Galerkin system for com-
parison. The two-tone signal

uin(t) = sin(2π t) sin(40π t)

is supplied as input voltage. Initial values are zero and the time interval [0, 1] is
considered. The backward differentiation formula (BDF) of order two yields a
numerical solution of this initial value problem. The outcome (7) also provides
approximations for the expected value as well as the standard deviation of the
random output voltage, demonstrated in Fig. 3. Using the approximation from
the stochastic Galerkin system, we calculate the maxima in time with respect
to (14), i.e.,

max
{
S̄ TE

j (t) = STE
j (t)/V (t) : t ∈ [δ, 1]

}
for j = 1, 2, 3, 4. (18)

The threshold δ = 10−5 > 0 is introduced, because the initial conditions imply
V (0) = 0 and thus the variance exhibits tiny values at the beginning. Table 1
and Fig. 2 also show the sensitivity measures (18).

We observe that the ranking of the random parameters agrees in all four
concepts: the amplification factor A is the most influential parameter, followed
by the two capacitances C1, C2, and the conductance G is of least importance.

6 Summary

We investigated a sensitivity analysis for linear systems of ODEs or DAEs with
respect to the influence of random variables. Three concepts were considered: two
variance-based approaches and a derivative-based approach. Each concept yields
sensitivity indices, which represent quadratic outputs of a stochastic Galerkin
system. It follows that associated sensitivity measures are computable as H∞-
norms of the system. A test example demonstrates that this sensitivity analysis
identifies a correct ranking of the random variables.
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