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Abstract. We present a method that connects a well-established nonlinear (bilin-
ear) identification method from data in the time domain with the advantages of
neural networks (NNs). The main challenge for fitting bilinear systems is the
accurate recovery of the corresponding Markov parameters from the input and
output measurements. Afterward, a realization algorithm similar to that proposed
by Isidori can be employed. The novel step is that NNs are used here as a surro-
gate data simulator to construct input-output (i/o) data sequences from a single
experiment. Then, classical realization theory is used to build an interpretable
bilinear model that can further optimize engineering processes through robust
simulations and control design.

1 Introduction

Evolutionary phenomena can be formally described as continuous dynamical models
with partial differential equations (PDE)s. The continuous nature of these physical mod-
els is equipped with analytical results for an efficient discrete approximation in space
and in time. In particular, methods such as finite elements or finite differences bridge
the continuous analytical laws of the physical world with computational science [1]. On
the other hand, data science allows model discovery when the identification feature is
considered [2]. Quantification of these equivalences, in combination with the stochastic
nature that governs real-world applications, aims to explain the digital twin [3]. Spatial
discretization of PDEs, in many cases, results in a continuous in-time system of ordi-
nary differential equations (ODE)s that is described by the operators (F, G) and can
be approximated with Carleman linearization (e.g., bilinear system form) [4] where we
present the single-input single-output (SISO) case with the continuous operators to be
denoted with the subscript ”c.”

ΣΣΣ :

{
ẋ(t) = F(x(t))+G(x(t))u(t)

y(t) =Hx(t), x0 = 0, t ≥ 0.
Carleman−−−−−→
ΣΣΣ≈ΣΣΣ bil

ΣΣΣbil :

{
ẋ(t) = Acx(t)+Ncx(t)u(t)+Bcu(t)

y(t) = Ccx(t), x0 = 0, t ≥ 0.
(1)

If the original system has dimension n, since Carleman linearization [4] preserves
up to the quadratic term x(t)⊗ x(t)1, the dimension of the resulting bilinear system
(Ac, Nc, Bc, Cc) increases to N = n2+n.

1 ⊗: Kronecker product.
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Data-driven methods can be classified into two general classes. The first provides
prediction through regression techniques such as neural networks (NN)s from machine
learning (ML). At the same time, the second has its roots in system theory and allows
model discovery [2,5]. Generally, NNs are sensitive to parameter tuning and lack model
interpretability due to the inherent “black-box” structure [6], while the latter construct
interpretable models and can explain the hidden dynamics. ML models learn the fea-
tures by composing non-linear activation functions and utilizing mainly the backprop-
agation algorithm to adjust the network weights during training. Therefore, by using
data points for training, the prediction would be expressed as a function of these data
points (finite memory). Until recently, the ML and system identification (SI) techniques
were developed independently. But in recent years, great effort has been invested into
establishing a common ground [7].

The authors in [8] have extended the subspace realization theory from linear to
bilinear systems. For example, in applications that concern chemical processes, the
controls are flow rates, and, from the first principles, e.g., mass and heat balances, these
will appear in the system equations as products with the state variables. Therefore, the
bilinear equation has the physical formMẋ= ∑i qixi −∑m qmxm, q(inputs), x(state). The
authors of [9] could construct bilinear systems with white noise input based on an iter-
ative deterministic-stochastic subspace approach. The author in [10] uses the properties
of the linear model of the bilinear system when subjected to a constant input. Constant
inputs can transform the bilinear model to an equivalent linear model [11].

In Sect. (2), we introduce the theory of bilinear realization by explaining in detail the
data acquisition procedure to compute the bilinear Markov parameters that will enter
the bilinear Hankel matrix. Further, we present a concise algorithm that can achieve
bilinear identification, detailed by two examples. In Sect. (3), we train a neural network
with a single i/o data sequence to mimic the unknown simulator and combine it with
the bilinear realization theory. As a result, we could construct a bilinear model from a
single i/o data with slightly better fit performance compared with another state-of-the-
art bilinear SI approach. Finally, we provide the conclusion and the outlook in Sect. (4).

2 The Bilinear Realization Framework

In the case of linear systems, Ho and Kalman [12] have provided the mathematical foun-
dations for realizing linear systems from i/o data. In the nonlinear case and towards the
exact scope of identifying nonlinear systems, Isidori in [13] has extended these results
for the bilinear case, and Al Baiyat in [14] has provided an SVD-based algorithm.

Time discretization as in [15] of the single-input single-output (SISO) bilinear sys-
tem Eq. (1) with sampling time Δ t, results in fully discrete models defined at time
instances given by 0 < Δ t < 2Δ t < · · · < kΔ t, with xc(kΔ t) = xk and u(kΔ t) = uk
for k = 0, . . . ,m−1

ΣΣΣdisc :

{
xk+1 = Axk+Nxkuk+Buk,

yk = Cxk, x0 = 0.
(2)

The discrete-time system in Eq. (2) has state dimension N, so, x ∈ R
N and the oper-

ators have dimensions A,N ∈ R
N×N , B,CT ∈ R

N . We have assumed homogeneous
initial conditions and a zero feed-forward term (e.g., D= 0 term). As far as the authors
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are aware, the forward Euler scheme is the only numerical scheme that preserves the
bilinear structure in a discrete set-up with the cost of conditional stability. Moreover,
a more sophisticated scheme can exactly interpolate the continuous model at the sam-
pling points in [16] but is restricted to only a subclass of bilinear systems. Therefore, a
good choice in terms of stability is the backward Euler scheme from [15], which pre-
serves the bilinear structure asymptotically, and the transformation in Eq. (3) that leads
to the discrete system is

φ : A= (I−Δ tAc)−1, N= Δ t(I−Δ tAc)−1Nc, B= Δ t(I−Δ tAc)−1Bc, C= Cc,

ΣΣΣ c
b : (Ac,Nc,Bc,Cc)

φ−1

↔ ΣΣΣd
b : (A,N,B,C)

(3)

Definition 1. The reachability matrix Rn =
[
R1 · · · Rn

]
is defined recursively from

the following relation: R j =
[
AR j−1 NR j−1

]
, j = 2, . . .n, R1 = B.

Then, the state space of the bilinear system is spanned by the states reachable from the
origin if and only if rank(Rn) = n.

Definition 2. The observability matrix On =
[
O1 · · · On

]T
is defined recursively from

the following relation: OT
j =

[
O j−1A O j−1N

]T
, j = 2, . . .n, O1 = C.

Then the state space of the bilinear system is observable iff rank(On)= n. The following
Def. (3) will allow a concise representation of the i/o relation.

Definition 3. u j(h) =
[

u j−1(h)
u j−1(h)u(h+ j−1)

]
, j = 2, . . . , u1(h) = u(h).

Let {w1,w2, . . . ,w j, . . .} be an infinite sequence of row vectors, in which w j ∈ R
1×2 j−1

and is defined recursively as follows w j = CR j, j = 1,2, . . .;
The state response of system Eq. (2) from the state x0 = 0 at time k = 0, under a

given input function, can be expressed as:

x1 = Bu0 � R1u1(0),

x2 = AR1u1(0)+NR1u1(0)u(1)+Bu(1) � R2u2(0)+R1u1(1),

...

xk =
k

∑
j=1

R ju j(k− j), k = 1,2, . . . ;

(4)

Finally, the zero-state input-output map of system Eq. (2) after multiplication with the
vector C from the left can be written as:

yk =
k

∑
j=1

w ju j(k− j), k = 1,2, . . . ; (5)
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2.1 The Bilinear Markov Parameters

The bilinear Markov (invariant) parameters are encoded in the {w j} vectors for j ∈Z+.
These are invariant quantities of the bilinear system in connection with the input-output
relation. After making use of Def. (3), we can write⎡

⎢⎢⎢⎣
y1
y2
...
yk

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Y

=

⎡
⎢⎢⎢⎣

uT1 (0) 0 · · · 0
uT1 (1) uT2 (0) · · · 0

...
...

. . .
...

uT1 (k−1) uT2 (k−2) · · · uTk (0)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
U

·

⎡
⎢⎢⎢⎣
wT
1

wT
2
...

wT
k

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
W

, (6)

where the dimensions are: Y ∈ R
k×1, U ∈ R

k×m, and W ∈ R
m×1.

The least squares problem filled out with k time steps will remain under-determined
∀k ∈ {2,3, . . .} as long as the m = 2k − 1 bilinear Markov parameters are activated.
Thus, we must deal with the k equations and the 2k − 1 unknowns. Solving an under-
determined system is not impossible, but the solutions are infinite, and regularization
schemes cannot easily lead to identification. Therefore, one way to uniquely identify
bilinear Markov parameters and determine the solution vector W can be achieved by
solving a coupled least squares system after applying several simulations to the original
system.

To uniquely determine the (2k − 1) parameters, the column rank of the matrix U
should be complete. This can be accomplished by adding rows with more experiments
to the matrix U until the new augmented matrix Û has more rows than columns. Thus,
we need at least 2k−1 independent simulations of the original system. That is exactly
the bottleneck expected for nonlinear identification frameworks that deal with time-
domain data. Later, we will relax this condition in a novel way using NNs. Equation (7)
describes the coupled linear least squares systemwith d= 2k−1 independent simulations
that can provide the unique solution W with bilinear Markov parameters.[

Y1 · · · Yd
]T︸ ︷︷ ︸

Ŷ

=
[
U1 · · ·Ud

]T︸ ︷︷ ︸
Û

·W (7)

Hence, we repeat the simulation d times, and each time we get k equations, with

the ith simulation to be Yi =
[
y(i)1 y(i)2 · · · y(i)k

]T
and accordingly for the Ui, the real

matrix Û has dimension 2k × (2k − 1). After concatenating all the lower triangular
matrices with full column rank, the matrix Û results. To enforce that Û will also
have full column rank, one choice is to use a white input (sampled from a Gaus-
sian distribution) for the simulations. The use of a white input is widespread for
SI. Still, in that case, a careful choice of deterministic inputs can make the inver-
sion exact and recover the bilinear Markov parameters. The solution is as follows:

rank(Û) = 2k −1, so, the unique solution is: W = Û
−1
Ŷ ∈ R

2k−1. The vector W con-
tains the 2k −1 bilinear Markov parameters. A generalized Hankel matrix can be com-
puted from the bilinear Markov parameters.

2.2 The Bilinear Hankel Matrix

The bilinear Hankel matrix is the product of the observability and reachability matrices.
The bilinear Hankel matrix is denoted with Hb and is defined as the product of the
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following two infinite matrices O, R,

Hb = OR =

⎡
⎢⎢⎢⎣

C
CA
CN
...

⎤
⎥⎥⎥⎦

[
B AB NB · · · ] =

⎡
⎢⎢⎢⎣

CB CAB CNB · · ·
CAB CA2B CANB · · ·
CNB CNAB CN2B · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ (8)

Equation (8) reveals the connection with the bilinear Markov parametersW =CR that
appear in the first row ofHb. In general, the construction of the bilinear Hankel matrix
is described in [13] with the partial and completed realization theorems along with the
partitions2 S A, S N [14].

2.3 Bilinear Realization Algorithm

Input: Input-output time-domain data from a system u → ΣΣΣ? → y.
Output: A minimal bilinear system (Ar,Nr,Br,Cr) of low dimension r that ΣΣΣ r ≈ ΣΣΣ .

1. Excite the system ΣΣΣ k times with um ∼ N(μ ,σ) and collect ym, where k = 2m−1.

1st simulation [u1(1) · · ·u1(m)] → ΣΣΣ → [y1(1) · · ·y1(m)] = Y1, and U1 as in Definition 3
...

...

kth simulation [uk(1) · · ·uk(m)] → ΣΣΣ → [yk(1) · · ·yk(m)] = Yk, and Uk as in Definition 3.

2. Identify the (2m −1) bilinear Markov parameters by solving the system in (7).
3. Construct the bilinear Hankel matrix Hb and the sub-matrices S A, S N.
4. Compute [U,ΣΣΣ ,V] = SVD(Hb) and truncate w.r.t the singular values decay (r 
 n)

- the reduced/identified bilinear model (Ar,Nr,Br,Cr) is constructed

Ar = ΣΣΣ−1/2UTS AVΣΣΣ−1/2 (9)

Nr = ΣΣΣ−1/2UTS NVΣΣΣ−1/2 (10)

Br = ΣΣΣ1/2VT → 1st column (11)

Cr = UΣΣΣ1/2 → 1st row (12)

Example 1. (A toy system) Let the following bilinear system of order 2 be

A=
[
0.9 0.0
0.0 0.8

]
, N=

[
0.1 0.2
0.3 0.4

]
, B=

[
1.0
0.0

]
, C=

[
1.0
1.0

]T
. (13)

Applying the algorithm in Sect. (2.3), by choosing m= 4, we can recover 2m −1= 15
bilinear Markov parameters. The solution of the system in Eq. (7) is:

W=
[
1.0 0.9 0.4 0.81 0.33 0.36 0.22 0.729 0.273 0.297 0.183 0.324 0.18 0.198 0.118

]
2 S A = {set of Hbcolumns : from 2m to (3 ·2m−1 −1), m= 1,2, . . .},
S N = {set ofHbcolumns : from 3 ·2m−1 to (2m+1 −1), m= 1,2, . . .}.
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By reshuffling the vector W , we can form the Hb matrix and the shifted versions
S A, S N as described above. The Hankel matrix (3 rows & 7 columns are displayed)
along with the shifted versions are

{
Hb, S

A, S N
}
:={[

1.0 0.9 0.4 0.81 0.33 0.36 0.22
0.9 0.81 0.33 0.729 0.273 0.297 0.183
0.4 0.36 0.22 0.324 0.18 0.198 0.118

]
,

[
0.9 0.81 0.33
0.81 0.729 0.273
0.36 0.324 0.18

]
,

[
0.4 0.36 0.22
0.33 0.297 0.183
0.22 0.198 0.118

]}
.

In Fig. (1), the 3rd normalized singular value has reached machine precision σ3/σ1 =
5.2501e− 17, that is the criterion for choosing the order of the fitted system (which
is minimal, in this case) of the underlying bilinear system. Therefore, we construct a
bilinear model of order r = 2, and the realization obtained is equivalent to the original
(minimal) one, up to a coordinate (similarity) transformation. Other ways of construct-
ing reduced models from Hankel⊂Loewner matrices can be obtained with the CUR
(cross approximations based) decomposition scheme as in [17] (Fig. 1).

Ar =
[

0.89394 0.11305
0.0050328 0.80606

]
, Nr =

[
0.41116 −0.2281

−0.24782 0.088841

]
, Br =

[ −1.0001
−0.053577

]
, Cr =

[ −1.0001
0.0040101

]T
. (14)
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Fig. 1.On the left figure, the singular value decay of the bilinear Hankel matrix is depicted. On the
right figure, the input response uk = 1/(k+1), k= 0,1, . . . certifies that all models are equivalent.

Example 2. (The viscous Burgers’ equation example) Following [15] after spatial semi-
discretization and the Carleman linearization technique, yields a bilinear system of
dimension N = 302+30= 930. The viscosity parameter is ν = 0.1; the sampling time
is Δ t = 0.1 and with 2m−1 = 512 independent random inputs of length m = 10 each,
we construct a database of 5,120 points. Solving Eq. (7), we get the bilinear Markov
parameters, and the bilinear Hankel matrix is constructed. On the left pane of Fig. (2),
the decay of bilinear Hankel singular values captures the nonlinear nature of the Burg-
ers’ equation, while, on the other hand, the linear Hankel framework captures only the
linear minimal response. It is evident in the right pane of Fig. (2) that after using the
inverse transformation φ from (3), the reduced continuous-time bilinear model of order
r = 18 performs well, producing an error O(10−5) where at the same time the linear fit
is off (Fig. 2).
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Fig. 2. Left pane: The recommended reduced bilinear model with Δ t = 0.1 is of order
r = 18 where σ19/σ1 = 1.18 · 10−12. Right pane: u1 = (1+ cos(2πt))e−t , t ∈ [0,2.5],u2 =
2sawtooth(8πt), t ∈ [2.5,3.75],u3 = 0, it is compared with a continuous bilinear identification
method based on the Loewner framework in both frequency and time domain approaches [5,18].

3 From a Single Data Sequence to Bilinear Realization

A repetitive data assimilation simulation in the time domain is required to achieve bilin-
ear realization as in [13]. In many cases, the data from a simulated system are available
as a single i/o sequence [9]. Using the NARX-net-based model, in the case of a single
experiment, the expensive, repetitive simulations can be avoided in a real engineering
environment. These models learn from a unique data sequence and can predict the out-
put behavior under different excitations. That is precisely where the NARX-net model
architecture will play the role of a surrogate simulator. Then, by constructing an NN-
based model [19] and combining the realization theory in [13], a state-space bilinear
model can be constructed as in (2). Using a state-space model, which relies on the
classical nonlinear realization theory with many known results (especially on bilinear
systems and in the study direction of stability, approximation, and control), is beneficial
compared to the NARX.

Example 3. (Heat exchanger) The process is a liquid-saturated steam heat exchanger,
where water is heated by pressurized saturated steam through a copper tube. The input
variable is the liquid flow rate, and the output variable is the outlet liquid temperature.
The sampling time is 1(s), and the number of samples is 4,000. More details can be
found in [20], and the data set can be downloaded from the database to identify systems
(DaISy): https://homes.esat.kuleuven.be/∼tokka/daisydata.html.
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Fig. 3. Comparison and model fit of the proposed NARX-net bilinear model (15) with the sub-
space method from [9] for the same reduced order (r = 3).

https://homes.esat.kuleuven.be/~tokka/daisydata.html
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎡
⎣ 0.9164 0.09167 −0.1847

−0.2663 −0.1515 0.1232
−0.07227 0.4778 0.3571

⎤
⎦x(t)+

⎡
⎣ 0.02717 0.5169 0.5555

−0.09674 0.5467 0.5696
0.1878 −0.06846 −1.981

⎤
⎦x(t)u(t)+

+

⎡
⎣ 2.9063

2.909
−0.16088

⎤
⎦u(t)+

⎡
⎣ −1.073

−1.074
0.05938

⎤
⎦ ,

y(t) =
[−0.7852 0.7794 −0.05203

]
x(t)+96.9358, x(0) = 0, t ≥ 0.

(15)

Figure 3 illustrates the superiority of the proposed method in terms of accuracy. From
the single i/o data sequence, a neural network NN with 3-layers and 20-lags was trained
using the same training data3 as in [9] (1000 points). The trained NN was used in the
bilinear realization algorithm to generate more data, and a stable reduced bilinear model
of order r = 3 shown in Eq. (15) was successfully constructed. The original noisy data
were explained with a lower mean percentage error MPE = 0.56% compared to the
subspace method for the entire data set. Another NN architecture, s.a., the NARMAX4

belongs to a subclass of bilinear systems and will filter some nonlinear features without
achieving such a good MPE.

4 Conclusion

In conclusion, NN architectures are a superclass of NARMAX models used in the clas-
sical robust identification theory. Consequently, NN models share the same strong argu-
ment with the Carleman linearization scheme that can approximate general nonlinear
systems. Finally, NN and realization theory successfully bridge data science with com-
putational science to build reliable, interpretable nonlinear models. Different NN archi-
tectures (s.a., recurrent NNs, DeepOnets, etc.) in combination with other realization
frameworks (s.a., the Loewner framework) and for other types of nonlinearities (s.a.,
quadratic-bilinear) are left for future research endeavors.
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