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Abstract. We introduce a framework for data-driven model order reduction of
parameterized LTI systems with guaranteed uniform dissipativity. The strategy
casts the problem into a multivariate rational fitting scheme that formally pre-
serves the bounded realness of the model response. The formulation relies on
the solution of a semi-definite program arising from a rational parameterization
based on Bernstein polynomials. The models can be employed in system-level
simulations both in the frequency and time domain.

1 Introduction

Parameterized Reduced Order Models (pROMs) of dissipative systems are valuable
tools for enabling fast simulation and optimization of complex electrical components
depending on a number of free design parameters. These models reproduce the input-
output behavior of the underlying structure and its dependency on the parameters, mak-
ing use of a minimal set of explanatory variables. Use of pROMs drastically reduces
simulation time requirements at the system level, especially for what concerns transient
analyses.

In order to be fully exploitable within large system-level simulations, pROMs of
physically passive structures must be compliant with the dissipativity property of the
reference system for all the admissible parameters values. Even if accurate, pROMs that
do not exhibit this property may be the root cause of spurious numerical instabilities,
that compromise the validity of the results.

By restricting the focus on Linear Time-Invariant (LTI) systems, this contribution
presents a novel data-driven framework for generating pROMs that are dissipative by
construction. Differently from recent approaches based on port-Hamiltonian realiza-
tions [1,7], the proposed approach represents the model as a rational transfer function
with parameterized coefficients. Based on this structure, the model identification stage
involves the solution of a sequence of constrained convex rational fitting problems.
By representing the parameterized coefficients of the model transfer function as Bern-
stein polynomials expansions, we show that the involved infinite-dimensional frequency
domain conditions for dissipativity can be formulated as Linear Matrix Inequalities
(LMI) of finite dimension, which are enforced in polynomial time making use of robust
convex optimization solvers.
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2 Background and Notation

In the following, s will denote the Laplace variable, Sn the set of symmetric matrices
of size n. The symbol ⊗ will stand for the Kronecker product, while the superscripts
�, � and ∗ will denote transposition, hermitian transposition and complex conjugation,
respectively. The functions b�̄��

���(x),x∈ [0,1]d ⊂R
d are multivariate Bernstein polynomi-

als whose degree in each scalar variable is collected in the d-dimensional multi-index
�̄�� = (�1, . . . , �d). Accordingly, ��� is an identifier for each component of this basis andI���
is the set of admissible multi-indices spanning the basis.

2.1 Problem Statement

Our goal is to generate a pROM of a P-port dissipative LTI system depending on a set of
external (normalized) parameters ϑϑϑ ∈ Θ = [0,1]d ⊂ R

d . We assume that the equations
describing the reference system are not known in closed form, but that samples of its
parameterized input-output frequency response H̆(s,ϑϑϑ) ∈ C

P×P are made available by
real or virtual high-fidelity measurements

H̆k,m = H̆( jωk,ϑϑϑm), 1 ≤ k ≤ k̄, 1 ≤ m ≤ m̄, (1)

retrieved for fixed frequency-parameter configurations. The problem is thus to synthe-
size a small order transfer function H(s,ϑϑϑ) fitting the available samples

H( jωk,ϑϑϑm) ≈ H̃k,m, k = 1, . . . , k̄, m= 1, . . . , m̄ (2)

and at the same time preserving the dissipativity property of the underlying system.
For parameterized LTI P-port systems, dissipativity can be characterized in terms of the
associated transfer function. Given the following conditions

1. G(s,ϑϑϑ) regular for ℜ{s} > 0 ∀ϑϑϑ ∈ Θ
2. G∗(s,ϑϑϑ) = G(s∗,ϑϑϑ) ∀s ∈ C, ∀ϑϑϑ ∈ Θ
3. a. IP −G�(s,ϑϑϑ)G(s,ϑϑϑ) 
 0 for ℜ{s} > 0, ∀ϑϑϑ ∈ Θ Scattering

b. G�(s,ϑϑϑ)+G(s,ϑϑϑ) 
 0 for ℜ{s} > 0, ∀ϑϑϑ ∈ Θ Immittance

a parameterized transfer function G(s,ϑϑϑ) in immittance representation is Positive Real
(PR) if it satisfies conditions 1, 2, 3b, while a transfer function in scattering represen-
tation is Bounded Real (BR) if it satisfies 1, 2, 3a. The poles of PR or BR transfer
functions are always stable, as required by condition 1. Immittance transfer functions
are also classified as Strictly Positive Real (SPR) if they satisfy condition 1 also for
ℜ{s} = 0 and

G�( jω,ϑϑϑ)+G( jω,ϑϑϑ) � 0,∀ω ∈ {R∪∞},∀ϑϑϑ ∈ Θ (3)

in place of 3b. A SPR transfer function exhibits no poles nor zeros on the imaginary
axis [8].

Models with (S)PR or BR transfer functions are dissipative. Therefore our problem
is to obtain the model transfer function H(s,ϑϑϑ) in such a way that it fulfills (2) and that
is PR or BR, depending on the model representation.
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2.2 Model Structure

Our approach performs model generation based on model structure [5]

H(s,ϑϑϑ) =
N(s,ϑϑϑ)
D(s,ϑϑϑ)

=
∑n
i=0 ∑���∈I���

Ri,��� b
���
���(ϑϑϑ)ϕi(s)

∑n
i=0 ∑���∈I���

ri,��� b���
���(ϑϑϑ)ϕi(s)

. (4)

In the above, the rational dependence on the variable s is induced by the basis functions
ϕi(s), constructed from a set of fixed poles {q1, . . . ,qn} with ℜ{qi} < 0∀i > 0 as

⎧
⎪⎨

⎪⎩

ϕi(s) = (s−qi)−1, qi ∈ R

ϕi(s) = [(s−qi)−1+(s−q∗
i )

−1] qi ∈ C

ϕi+1(s) = j[(s−qi)−1 − (s−q∗
i )

−1] qi+1 = q∗
i ∈ C,

(5)

and ϕ0(s) = 1. Bases b���
���(ϑϑϑ) are multivariate Bernstein polynomials that parameterize

the model with respect to ϑϑϑ . Finally, ri,��� ∈ R and Ri,��� ∈ R
P×P are the unknown model

coefficients. We remark thatN andD are rational transfer functions sharing the same set
of common poles, but exhibiting different parameterized residues. Since the common
poles simplify in (4), each element ofH(s,ϑϑϑ) is actually a ratio of n-degree polynomials
of s, with parameterized coefficients. The poles of H(s,ϑϑϑ) are the parameterized zeros
of D(s,ϑϑϑ).

We will make use of the following state space realizations associated to D(s,ϑϑϑ)

D(s,ϑϑϑ) ↔ ΣD =
(

A1 B1

C1(ϑϑϑ) D1(ϑϑϑ)

)

, (6)

IPD(s,ϑϑϑ) ↔
(

IP ⊗A1 IP ⊗B1

IP ⊗C1(ϑϑϑ) IP ⊗D1(ϑϑϑ)

)

=
(

A B
C⊗(ϑϑϑ) D⊗(ϑϑϑ)

)

, (7)

where the constant matrices A1, B1 are

A1 = blkdiag{A1,i} ∈ R
n×n, B1 = [. . . ,B1,i, . . . ]� ∈ R

n, (8)

A1,i =

⎧
⎪⎨

⎪⎩

qi, qi ∈ R
[

σi ωi

−ωi σi

]

, qi = σi ± jωi ∈ C
, B1,i =

{
1, qi ∈ R
[

2 0
]
, qi = σi ± jωi ∈ C

(9)

Here, (A1,B1) is controllable and A1 is Hurwitz. The parameterized output matrices are
Bernstein polynomial expansions defined as

C1(ϑϑϑ) = ∑
���∈I���

C���
1 b

���
���(ϑϑϑ), C���

1 = [r1,���, . . . ,rn,���] ∈ R
1×n, (10)

D1(ϑϑϑ) = ∑
���∈I���

D���
1 b

���
���(ϑϑϑ), D���

1 = r0,��� ∈ R. (11)
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Defining A= IP ⊗A1 and B= IP ⊗B1 , N(s,ϑϑϑ) admits the realization

N(s,ϑϑϑ) ↔ ΣN =
(

A B
C2(ϑϑϑ) D2(ϑϑϑ)

)

(12)

C2(ϑϑϑ) = ∑
���∈I���

C���
2 b

���
���(ϑϑϑ) C���

2 ∈ R
P×nP, (13)

D2(ϑϑϑ) = ∑
���∈I���

D���
2 b

���
���(ϑϑϑ) D���

2 = R0,��� ∈ R
P×P. (14)

For any ���, C���
2 collects the entries of Ri,���, i > 0 with suitable ordering. Being ν a place-

holder for either 2 or ⊗, we define for brevity the matrices

Xν(ϑϑϑ) =
[
C�

ν (ϑϑϑ)
D�

ν (ϑϑϑ)

]
[
Cν(ϑϑϑ) Dν(ϑϑϑ)

]
= ∑

mmm∈Immm

Xmmm
ν bmmmmmm(ϑϑϑ), (15)

with m̄mm = 2�̄��. Similarly, we define the following augmented-degree representation for
the output matrices of ΣN

Y (ϑϑϑ) =
[
C�
2 (ϑϑϑ)

D�
2 (ϑϑϑ)

]

= ∑
���∈I���

[
C����
2

D����
2

]

b���
���(ϑϑϑ) = ∑

mmm∈Immm

Ymmm bmmmmmm(ϑϑϑ), (16)

which is always possible thanks to the degree elevation property of the Bernstein poly-
nomials. In the above, each Ymmm is obtained as a linear combination of the matrices
[
C���
2 D���

2

]�
, with predefined coefficients. See [2] for further details.

3 Model Dissipativity Conditions

Conditions 1, 2, 3a, 3b depend continuously on the Laplace variable and on the param-
eter vector ϑϑϑ . Verifying numerically the dissipativity of a pROM based on these condi-
tions is not feasible, as it would require checking an infinite number of constraints, one
for each fixed frequency-parameter configuration. The following theorem represents
our main result, providing sufficient conditions to assess the dissipativity of the pROM
in terms of a finite number of semidefinite constraints on the model coefficients. With-
out loss of generality, we provide the statement for models in scattering representation.
Similar results can be derived for the immitance case.

Theorem 1. Let Ω(P,Q,R) =
[
P�R+RP RQ

Q�R 0

]

. Then,

a) H(s,ϑϑϑ) in (4) is uniformly asymptotically stable over Θ if

∃L��� ∈ Sn : K
��� = Ω(A1,B1,L

���)−
[
0 C����

1
C���
1 2D���

1

]

≺ 0 ∀��� ∈ I��� (17)

b) H(s,ϑϑϑ) is uniformly Bounded Real over Θ if, additionally,

∃Pmmm ∈ SnP : Jmmm =
[

Ω(A,B,Pmmm)−Xmmm⊗ Ymmm

Ymmm� −IP

]

� 0, ∀mmm ∈ Immm. (18)
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We provide here a sketch of the proof for Theorem 1, more detailed derivations are
available in [3]. The uniform model stability condition (a) stems from enforcing the
denominator D(s,ϑϑϑ) to be SPR. In fact, the zeros of a SPR function are guaranteed sta-
ble, and since the zeros of D(s,ϑϑϑ) are the poles of H(s,ϑϑϑ), uniform stability follows.
The SPR conditions on D(s,ϑϑϑ) are written in algebraic form using a (parameterized
form of) the Kalman-Yakubovich-Popov (KYP) Lemma, which is then discretized in
the parameter space by a Bernstein polynomial expansion. A straightforward deriva-
tion leads to the sufficient condition for uniform stability expressed by (17). A similar
process is used to derive the uniform dissipativity condition in (b). The KYP lemma is
again used to eliminate dependence on frequency in condition 3a, and a Bernstein poly-
nomial expansion provides a discretized form of the corresponding parameterized LMI
condition for BR-ness. The result is the sufficient condition in (18). The key enabling
factors on which this proof is built are the model structure (4) with the associated param-
eterized state-space realizations of Sect. 2.2, and the properties of the Bernstein polyno-
mials which allow proving positivity (negativity) of a parameter-dependent matrix by
constraining the sign of its Bernstein coefficients.

4 Model Generation

In this section, we present our approach to generate dissipative pROMs in scattering
representation via semidefinite programming, exploiting the theoretical results of The-
orem 1. As in standard approaches based on model structure (4), we meet condition (2)
iteratively, enforcing a sequence of linearized approximations

Nμ( jωk,ϑϑϑm)−Dμ( jωk,ϑϑϑm)H̃k,m

Dμ−1( jωk,ϑϑϑm)
≈ 0, k = 1, . . . , k̄, m= 1, . . . , m̄, (19)

where μ = 1,2, . . . is an index for the iteration. At iteration μ , Dμ−1 is numerically
available1 so that relation (19) can be recast in matrix form as

[
Ψ μ
x Ψ μ

y
]
[
xμ

yμ

]

≈ 0 (20)

where vectors xμ , yμ collect the current numerator and denominator coefficients Ri,���

and ri,���, respectively, and Ψ μ
x and Ψ μ

y are known matrices. The approximation (20)
is then enforced in a least-squares sense. The iteration stops whenever Dμ( jω,ϑϑϑ) �
Dμ−1( jω,ϑϑϑ), so that (19) becomes equivalent to (2).

Since only the denominator variables yμ−1 are required to set up problem (20), the
iteration admits a fast implementation based on the elimination of the variables xμ , that
are computed only once convergence is met. The elimination procedure is based on
computing the QR factorization of the matrix

[
Ψ μ
x Ψ μ

y
]
, as thoroughly discussed in [6].

After the variable elimination, (20) is replaced by the smaller denominator estimation
problem

Γ μ
y yμ ≈ 0, (21)

1 We set D0( jω,ϑϑϑ) = 1 at the first iteration to initialize the denominator estimate.
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beingΓ μ
y a knownmatrix. We constrain the estimation with the stability conditions (17),

by solving the following semi-definite program

min
yμ ,L���

‖Γ μyμ‖2 subject to: Ω(A1,B1,L
���)−

[
0 C����

1
C���
1 2D

���
1

]

≺ 0 ∀��� ∈ I���, (22)

so that the resulting yμ guarantees a stable model by construction.
Problem (22) is solved repeatedly until convergence, that is practically met when

the condition

δ μ =

∥
∥yμ − yμ−1

∥
∥
2

‖yμ‖2
≤ ε (23)

holds with a user-defined small threshold ε > 0. Supposing this condition is met at
iteration μ̄ , we complete the model generation by estimating the numerator unknowns
xμ̄ . This can be done by substituting the available denominator coefficients yμ̄ in (20)
and enforcing the resulting condition

Ψ μ̄
x xμ̄ ≈ −Ψ μ̄

y yμ̄ . (24)

Since (17) holds by construction, we enforce (24) in such a way that the solution sat-
isfies (18), so that H(s,ϑϑϑ) is BR and the final model is dissipative. To this aim, we
observe that the matrices Xmmm⊗ in (18) are known, as they are defined upon the available
denominator coefficients yμ̄ . Since the terms Ymmm are obtained as linear combinations of
the numerator unknowns xμ̄ according to (16), we enforce (24) in a least-squares sense,
by solving another semi-definite program

min
xμ̄ ,Pmmm

∥
∥Ψ μ̄

x xμ̄ +Ψ μ̄
y yμ̄∥

∥
2

s.t.

[
Ω(A,B,Pmmm)−Xmmm⊗ Ymmm

Ymmm� −IP

]

� 0, ∀mmm ∈ Immm, (25)

which guarantees the bounded realness of H(s,ϑϑϑ).
We remark that since Theorem 1 provides only sufficient conditions for the ver-

ification of model dissipativity, enforcing constraints (17), (18) may introduce some
conservativity in the model generation process, by over-restricting the set of feasible
model coefficients. A systematic approach based on the degree elevation property of
the Bernstein polynomials can be used to arbitrarily reduce this conservativity, at the
price of introducing additional instrumental variables. Full details about this procedure
are available in [3].

5 A Test Case

The proposed strategy is applied to generate a dissiparive pROM of a high-speed inter-
connect link, designed as in [4]. We let the structure behavior depend on d = 2 geomet-
rical parameters related to the vertical interconnect on a Printed Circuit Board, namely
the pad radius ϑ1 ∈ [100,300] μm and the associated antipad radius ϑ2 ∈ [400,600] μm.
The dataset (1) is retrieved by performing virtual measurements of the 2×2 scattering
matrix of the structure, computed from a physics-based Maxwell equations solver in the
bandwidth [0,5] GHz. Then we generate the pROM as described in Sect. 4, fixing the
model order to n= 25. The remarkable accuracy of the resulting model is demonstrated
in Fig. 1, through a comparison with a set of validation responses (not used for training)
for different parameter configurations.
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Fig. 1. Model-data comparison for different parameter configurations.

6 Conclusions

We presented a novel data-driven approach for generating pROMs with theoretical dis-
sipativity certification. The method constrains the model training with finite dimen-
sional linear matrix inequalities that are shown to guarantee the dissipativity of the
model throughout the parameter space. Being based on convex programming, the app-
roach is fully deterministic and returns accurate and compact parameterized models.
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