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Abstract. The port-Hamiltonian (pH) modelling framework allows for
models that preserve essential physical properties such as energy conser-
vation or dissipative inequalities. If all subsystems are modelled as pH
systems and the inputs are related to the output in a linear manner,
the overall system can be modelled as a pH system, too, which preserves
the properties of the underlying subsystems. If the coupling is given by a
skew-symmetric matrix, as usual in many applications, the overall system
can be easily derived from the subsystems without the need of introduc-
ing dummy variables and therefore artificially increasing the complexity
of the system. Hence the framework of pH systems is especially suitable
for modelling multiphysical systems.

In this paper, we show that pH systems are a natural generaliza-
tion of Hamiltonian systems, define coupled pH systems as ordinary and
differential-algebraic equations. To highlight the suitability for electrical
engineering applications, we derive pH models for MNA network equa-
tions, electromagnetic devices and coupled systems thereof.

1 Port-Hamiltonian Systems Modelling in a Nutshell

Port-Hamiltonian (pH) systems are a generalization of Hamiltonian systems

ẋ = J · ∇H(x), x(0) = x0 (1)

with x = (p, q) consisting of generalized position q(t) ∈ R
n and momentum

p(t) ∈ R
n (where t ∈ [0, T ]), the skew-symmetric matrix J given by

J =
[

0 −I
I 0

]
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and the Hamiltonian H(x) = H(p, q) = U(p) + V (q) given as the sum of poten-
tial and kinetic energy, which maps R

n × R
n → R and is twice continuously

differentiable. The Hamiltonian flow ϕ(t;x0)), i.e., the solution of (1) at time
point t, starting at the initial value x(0) = x0, is characterized by four geometric
properties:

1. Preservation of the Hamiltonian:

d
dt

H(ϕ(t;x0)) = (∇H(ϕ(t;x0)))�J(∇H(ϕ(t;x0))) = 0.

2. Time-reversibility:
ρ ◦ ϕ(t;x0) ◦ ρ ◦ ϕ(t;x0) = x0,

with ρ(p, q) = (−p, q), which is a direct consequence of the ρ-reversibility of
the Hamiltonian flow: ρ ◦ J∇H(ϕ(t;x0))) = −J∇H(ρ ◦ ϕ(t;x0))).

3. Symplectic structure of the Hamiltonian flow:

Ψ(t)�J−1Ψ(t) = J−1, Ψ(t) := ∂ϕ(t;x0)
∂x0

,

which is a direct consequence of the skew-symmetry of J .
4. Volume-preservation:

(det Ψ(t))2 = 1,

which follows immediately from the symplectic structure in 3.

First generalization step: arbitrary skew-symmetric matrices J

If we replace in (1) J by an arbitrary skew-symmetric matrix, the Hamiltonian
is still preserved. As x will loose its characterization as generalized positions
and momenta of classical mechanics, time-reversibility will generally not hold
anymore. However, the symplectic structure of the flow still holds in the case of
a regular J , and volume preservation is still a consequence of the Hamiltonian
flow.

Second generalization step: adding dissipation to the system

Allowing the flow to become dissipative, we may generalize (1) to the dissipative
Hamiltonian system

ẋ = (J − R) · ∇H(x), x(0) = x0 (2)

with R ≥ 0 being symmetric and positive semi-definite. In this case, the flow
will neither be symplectic nor volume preserving, and the preservation of the
Hamiltonian is replaced by the dissipativity condition

d
dt

H(x(t)) = (∇H(x))�ẋ = −(∇H(x))�R∇H(x) ≤ 0

⇒ H(x(t)) = H(x0) −
∫ t

0

(∇H(x(τ)))�R∇H(x(τ)) dτ ≤ H(x0).
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Third generalization step: coupling to the environment via inputs and outputs

Allowing for inputs and outputs to couple the system to the environment, we
end up with linear pH system characterized by

ẋ = (J − R) · ∇H(x) + Bu(t), x(0) = x0,

y = B�∇H(x)

with inputs u(t) ∈ R
p, outputs y(t) ∈ R

p and port-matrices B ∈ R
n×p. The

dissipativity inequality now reads

d
dt

H(x(t)) = (∇H(x))�ẋ = −(∇H(x))�R∇H(x) + (∇H(x))�Bu(t))

= −(∇H(x))�R∇H(x) + y(t)�u(t) ≤ y(t)�u(t)

⇒ H(x(t)) = H(x0) −
∫ t

0

(∇H(x(τ)))�R∇H(x(τ)) dτ +
∫ t

0

y(τ)�u(τ)dτ

≤ H(x0) +
∫ t

0

y(τ)�u(τ)dτ.

Fourth generalization step: pH-DAE systems

Linear pH systems can be easily generalized to port-Hamiltonian differential-
algebraic equations (pH-DAEs) given by

d
dt

(Ex) = (J − R) · z(x) + Bu(t), x(0) = x0, (3a)

y = B�z(x) (3b)

with a possibly singular matrix E ∈ R
n×n and the nonlinear mapping z : Rn →

R
n fulfilling the compatibility condition E�z = ∇H. Now the dissipativity con-

dition reads

H(x(t)) = H(x0) −
∫ t

0

z(x(τ))�R∇z(x(τ)) dτ +
∫ t

0

y(τ)�u(τ) dτ

≤ H(x0) +
∫ t

0

y(τ)�u(τ) dτ.

The key point in pH modelling is the following: there is an easy way to couple
arbitrary many pH-DAE system such that the overall system is still a pH-DAE
system, which preserves a dissipativity inequality.

Let us consider r autonomous pH-DAE systems

d
dt

(Eixi) = (Ji − Ri)zi(xi) + Biui, (4a)

yi = B�
i zi(xi) (4b)
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with r Hamiltonians H1,H2, . . . , Hr and compatibility conditions E�
i zi = ∇Hi.

If the inputs and outputs fulfill a linear interconnection relation Mu + Ny = 0
for the aggregated input u = (u1, u2, . . . , ur) and output y = (y1, y2, . . . , yr),
it has been shown in [13] that one can write the aggregated system as a joint
pH-DAE system as

d
dt

⎛
⎜⎜⎝

⎡
⎢⎢⎣

E 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦

⎡
⎣x

û
ŷ

⎤
⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

J − R B 0 0
−B� 0 Im −M�

0 −Im 0 −N�

0 M N 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

z(x)
û
ŷ
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0

Im

0

⎤
⎥⎥⎦u,

y = ŷ,

with z(x)� = (z1(x1)�, z2(x2)�, . . . , zr(xr)�), new dummy variables û, ŷ and
setting X = diag(X1,X2, . . . , Xr) for X ∈ {E, J,R,B}. This coupling property
of pH-DAE systems makes the pH modelling framework well suited for multi-
physical applications.

Now, we consider external, time dependent inputs. To this end, we split the
inputs and outputs into external (bar-notation) and internal ones (hat-notation),
i.e., Biui is split into B̄iūi + B̂iûi. Then, the subsystem (4) reads

d
dt

(Eixi) = (Ji − Ri)zi(xi) + B̂iûi + B̄iūi, (5a)

ŷi = B̂�
i zi(xi), (5b)

ȳi = B̄�
i zi(xi). (5c)

For the coupling relation (of the internal quantities) û + Cŷ = 0 with a skew-
symmetric matrix C = −C� (which often arises in application), these systems
can be written as a joint pH-DAE system in condensed form [8]:

d
dt

(Ex) = (J̃ − R)z(x) + B̄ū, (6a)

ȳ = B̄�z(x) (6b)

with the condensed skew-symmetric matrix J̃ = J − B̂CB̂�. Note that in this
case all internal coupling modelled via the port-matrices B̂i has now been trans-
ferred into the off-block diagonal elements of the skew-symmetric matrix J̃ , i.e.,
−B̂CB̂�.

A systems theoretic treatment of pH systems goes back to Bernhard
Maschke and Arjan van der Schaft (see [12,14] for an overview), where
nonlinear systems governed by ordinary differential equations are treated. For
simplicity of presentation, we will (a) not follow the differential geometric path
via Dirac structures, (b) neglect a feed-through from input to output and (c)
only consider finite dimensional systems, i.e., ordinary (ODEs) and differential-
algebraic equations (DAEs), but no partial differential equations (PDEs). For
simulation, the latter are usually transformed into ODEs and DAEs by spatial
semi-discretization. For a differential geometric setting of pH systems see [15]
and an introduction into pH-PDEs see [11].
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The paper is organized as follows: In the next, section we introduce pH-DAEs,
which allow for a general nonlinear dissipative part. A pH-DAE formulation of
the modified nodal analysis (MNA) network equations is derived in Sect. 3, and
for electromagnetic devices in Sect. 4. Section 5 discusses formulations of pH
systems of coupled EM/circuit systems, which allow for monolithic as well as
weak coupling simulation approaches. Section 6 finishes with conclusions.

2 pH-DAE Systems

When dealing with applications in electrical engineering, the concept of pH mod-
elling has to be generalized to coupled differential-algebraic equations, which (a)
allow for a general nonlinear resistive part r(z) instead of a quasilinear setting
Rz as in the approach of [13] and (b) has only to be accretive on a subspace
V ⊂ R according to the constraints of the system.

A differential-algebraic equation of the form

d
dt

Ex(t) = Jz(x(t)) − r(z(x(t))) + Bu(t),

y(t) = B�z(x(t))
(7)

is called a port-Hamiltonian differential-algebraic equation (pH-DAE) [8] if the
following holds:

• E ∈ R
n×n, J ∈ R

n×n and B ∈ R
n×m, z, r : Rn → R

n.
• There exists a subspace V ⊂ R

n with the following properties:
(i) for all intervals I ⊂ R and functions u : I → R

m such that (7) has
a solution x : I → R

n, it holds z(x(t)) ∈ V for all t ∈ I.
(ii) J is skew-symmetric on V. That is, v�Jw = −w�Jv for all v, w ∈ V.
(iii) r is accretive on V. That is, v�r(v) ≥ 0 for all v ∈ V.

• There exists some function H ∈ C1(Rn,R) such that ∇H(x) = E�z(x) for
all x ∈ z−1(V).

Remark 1. a) The pH-DAE (7) system provides the usual energy balance

d
dt

H(x(t)) = −z(x(t))�r(z(x(t)))) + y(t)�u(t) ≤ y(t)�u(t).

b) pH-DAE subsystems now read

d
dt

Eixi(t) =Jizi(xi(t)) − ri

(
zi(xi(t))

)
+ Biui(t), (8a)

yi(t) =B�
i zi

(
xi(t)

)
(8b)

instead of (4), and if they are coupled by a skew-symmetric coupling relation
û + Cŷ = 0 with a skew-symmetric matrix C = −C� as before, they can be
condensed into an overall pH-DAE system

d
dt

Ex = Ĵz − r + B̄ū, (9a)

ȳ = B̄�z (9b)

with the skew-symmetric matrix Ĵ again given by Ĵ = J − B̂ĈB̂�.
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3 Electrical Networks

We consider the classical charge-/flux oriented MNA network equations [8,9]

d
dt

⎡
⎢⎢⎢⎢⎣

0 0 0 AC 0
0 0 0 0 I
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e
jL

jV

qC

φL

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 −AL −AV 0 0
A�

L 0 0 0 0
A�

V 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e
jL

jV

qC

φL

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

ARg(A�
Re)

0
0

qC − q(A�
Ce)

φL − φ(jL)

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

−AI 0
0 0
0 −I
0 0
0 0

⎤
⎥⎥⎥⎥⎦

[
ı(t)
v(t)

]

with e, jL and jV denoting node potentials and currents through flux storing
elements and voltages sources, qC and Φl charge and flux-storing elements, i(t)
and v(t) independent current and voltage sources, the resistive currents g and
the incidence matrices AC , AL, AR, AV , AI for charge- and flux storing elements,
resistive elements, voltage and current sources, and seek a formulation as a pH-
DAE system. For this, we need the following assumptions, which naturally occur
in circuit simulation, see [8]:

(a) Soundness. The circuit graph has at least one branch and is connected.
Furthermore, it contains neither V -loops nor I-cutsets. Equivalently, AV

and (AC AR AL AV )� have full column rank.
(b) Passivity. The functions q, φ and g fulfill

(i) q : RnC → RnC and φ : RnL → RnL are bijective, continuously differen-
tiable, and their Jacobians

C̃(uC) :=
dq

duC
(uC), L̃(jL) :=

dφ

djL
(jL)

are symmetric and positive definite for all uC ∈ RnC , jL ∈ RnL .
(ii) g : RnR → RnR is continuously differentiable, and its Jacobian has the

property that dg

duR
(uR) + dg

duR
(uR)� is positive definite for all uR ∈ RnR .

If q : RnC → RnC and φ : RnL → RnL fulfill these assumptions, then there exist
twice continuously differentiable and non-negative functions VC : RnC → R,
VL : RnL → R with the following property: the gradients of VC and VL are,
respectively, the inverse functions of q and φ. That is,

∀qC ∈ RnC : ∇VC(qC) = q−1(qC), ∀φL ∈ RnL : ∇VL(φL) = φ−1(φL).

With this setting, the pH-DAE MNA network equations can now be derived as
follows: we first eliminate the equation φL − φ(jL) = 0: jL = φ−1(φL); secondly,
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we replace the equation qC − q(A�
Ce) = 0 by A�

Ce − q−1(qC) = 0. We end up
with

d
dt

⎡
⎢⎢⎣

AC 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
E :=

⎡
⎢⎢⎣

qC

φL

e
jV

⎤
⎥⎥⎦

︸ ︷︷ ︸
x :=

=

⎡
⎢⎢⎣

0 −AL 0 −AV

A�
L 0 0 0
0 0 0 0

A�
V 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
J :=

⎡
⎢⎢⎣

e
φ−1(φL)
q−1(qC)

jV

⎤
⎥⎥⎦

︸ ︷︷ ︸
z(x)

−

⎡
⎢⎢⎣

ARg(A�
Re)

0
A�

Ce − q−1(qC)
0

⎤
⎥⎥⎦

︸ ︷︷ ︸
r(z(x)) :=

+

⎡
⎢⎢⎣

−AI 0
0 0
0 0
0 −I

⎤
⎥⎥⎦

︸ ︷︷ ︸
B :=

[
ı(t)
v(t)

]
︸ ︷︷ ︸
u(t) :=

,

(10)

which is a pH-DAE of type (7) with subspace V and Hamiltonian H(x) given by
H(x) = VC(qC) + VL(φL),V =

{(
e, jL, uC , jV

)� ∈ Rn
∣∣∣ A�

Ce = uC

}
.

Remark 2. a) The pH-DAE formulation shares the index properties of char-
ge/flux-oriented MNA network equations, if the assumption on soundness
and passivity hold: the index is one if, and only if, it neither contains LI-
cutsets nor CV -loops except for C-loops; otherwise it is two.

b) If r subcircuits given as pH-DAE MNA network equations are coupled via
voltage/current sources, the overall system can be written as a pH-DAE MNA
of type (10).

4 Electromagnetic Devices

In [5], the Maxwell grid equations for an electromagnetic device have been devel-
oped as a linear pH-DAE system provided that (a) the three-dimensional domain
of the device is connected, bounded and surrounded by perfectly conducting
material, (b) the permittivity ε, the permeability μ are symmetric positive def-
inite, and the conductivity σ is symmetric positive semi-definite, and (c) finite
integration technique [6] has been used for the spatial discretization with orthog-
onal staggered cells:

[
Mμ 0
0 Mε

]
d
dt

[
ĥ
ê

]
=

([
0 −C

C� 0

]
−

[
0 0
0 Mσ

])[
ĥ
ê

]
+

[
0

XS

]
û2, (11a)

ŷ2 =
[

0
XS

]� [
ĥ
ê

]
= X�

S ê. (11b)

Here C denotes the discrete curl operator, the material matrices Mε,Mμ and
Mσ represent the discretized permittivity, permeability and conductivity distri-
butions, ê is vector of the electric mesh voltages e, ĥ the vector of the magnetic
mesh voltages h, and the (dual grid facet) source current û2 as input. This
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input is allocated at positions XS . In fact, XS maps the interior mesh links onto
the exterior mesh nodes. Furthermore, the respective electric mesh voltage ŷ2
forms the output. The Hamiltonian of the electromagnetic device is given by
H1 = 1

2 (ẽ�Mεẽ + h̃�Mμh̃).

5 Coupled EM/circuit System

When coupling an electromagnetic device with an electric circuit, it remains
only to define the inputs, outputs and the coupling equation. For the circuit, the
electromagnetic device produces the current jE flowing into the network, which
is assembled at the respective nodes of the circuit via an incidence matrix AE .
Hence the circuit part reads (where we split inputs again in external inputs ı, v,
and internal ones):

d
dt

⎡
⎢⎢⎢⎢⎣

AC 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

qC

φL

e
jV

jE

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 −AL 0 −AV −AE

A�
L 0 0 0 0
0 0 0 0 0

A�
V 0 0 0 0

A�
E 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e
jL

uC

jV

jE

⎤
⎥⎥⎥⎥⎦ (12a)

−

⎡
⎢⎢⎢⎢⎣

ARg(A�
Re)

0
A�

Ce − uC

0
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

−AI 0
0 0
0 0
0 −I
0 0

⎤
⎥⎥⎥⎥⎦

[
ı(t)
v(t)

]
+

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ û1,

⎡
⎣ȳ1,1

ȳ1,2

ŷ1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

−AI 0 0
0 0 0
0 0 0
0 −I 0
0 0 1

⎤
⎥⎥⎥⎥⎦

�

·

⎡
⎢⎢⎢⎢⎣

e
jL

uC

jV

jE

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣−A�

I e
−jV

jE

⎤
⎦ (12b)

with the Hamiltonian: H2 = VC(qC) + VL(φL).
The coupling is as follows [5]: the input û1 (of the electric circuit) is given by

the voltage drop at the electromagnetic device, which reads û1 = −X�
S ẽ = −ŷ2;

on the other hand, the input û2 (of the magnetic device) is given by the current
û2 = jE = ŷ1. Overall, we get the following skew-symmetric relation between
inputs and outputs:

0 =
[
û1

û2

]
+

[
0 I

−I 0

] [
ŷ1
ŷ2

]
. (13)

As we have a system consisting of two pH-DAE systems (11) and (12) with a
skew-symmetric linear coupling condition (13), the overall system can be written
as a condensed pH-DAE system (9) with Hamiltonian H = H1+H2 and enlarged
matrices as above.
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6 Simulation Strategies

Generally, for simulating the coupled EM/circuit system numerically, two
approaches are feasible:

a) Monolithic approach. The condensed system (9) can be solved by any inte-
gration scheme suitable for index-1 and index-2 systems, depending on the
index. To preserve the dissipation inequality also on a discrete level, colloca-
tion schemes [13] and discrete gradient schemes tracing back to [7] are the
methods-of choice. This strategy is also referred to as strong coupling.

b) Monolithic multirate approach. In fact, we are facing models, where the sub-
systems can have widely separated time scales. This can create so-called mul-
tirate potential, where it is beneficial to employ schemes, which use inherent
step sizes for each subsystem. In this way, each subsystem can be sampled on
its time scale. See e.g. [2,10].

c) Weak coupling. Since the coupling equations is merely the one-to-one identifi-
cation of output and input, we can insert this. Furthermore, omitting outputs
due to external sources, we have

d
dt

⎡
⎢⎢⎢⎢⎣

AC 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

qC

φL

e
jV

jE

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 −AL 0 −AV −AE

A�
L 0 0 0 0
0 0 0 0 0

A�
V 0 0 0 0

A�
E 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e
jL

uC

jV

jE

⎤
⎥⎥⎥⎥⎦ (14a)

−

⎡
⎢⎢⎢⎢⎣

ARg(A�
Re)

0
A�

Ce − uC

0
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

−AI 0
0 0
0 0
0 −I
0 0

⎤
⎥⎥⎥⎥⎦

[
ı(t)
v(t)

]
−

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ ŷ2,

ŷ1 = jE (14b)

and [
Mμ 0
0 Mε

]
d
dt

[
h̃
ẽ

]
=

([
0 −C

C� 0

]
−

[
0 0
0 Mσ

]) [
h̃
ẽ

]
+

[
0

XS

]
ŷ1 (15a)

ŷ2 =XS ẽ. (15b)

Here dynamic iteration schemes [1] are the methods-of choice, as due to the
ODE-DAE coupling no stability constraints occur [4]. In addition, each step
of a Jacobi or Gauß-Seidel iteration scheme defines a pH-DAE system by its
own [8].
Operator splitting approaches are not generally feasible for differential-
algebraic equations, which can easily be seen for the linear pH-DAE (3a)
with z(x) = x and B = 0. A Lie-Trotter splitting approach may read

d
dt

(Ex) = Jx, x(0) = x0,

d
dt

(Ew) = −Rw. w(0) = x(T ),
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allowing for using a symplectic integrator for the first step, and a dissipative
scheme for the second one. However, the matrix pencil {E, J} or {E,R}
may be singular and thus not define a unique solution for the respective
subproblem, even if the matrix pencil {E, J − R} of the overall system is
regular. Even if this does not happen, the first problem, for example, may not
allow for a unique solution for arbitrary choices of consistent initial values.
For

E = diag(1, 0, 1), J =

⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ , R = diag(0, 1, 1), x0 =

⎡
⎣ 1

−1
0

⎤
⎦ ,

all matrix pencils {E, J − R}, {E, J} and {E,R} are regular, but the first
step yields x1 ≡ 0 �= 1.
One may overcome the problem by rewriting the DAE in terms of an under-
lying ODE and subsequent algebraic variables given by explicit evaluations.
For network equations a branch oriented loop-cutset approach is an option for
defining such a pH-DAE system, see [5]. Another way to avoid the problems
above is to follow an operator splitting based approach for dynamic iteration.
In the latter case, no stability problems occur and a monotone convergence
can be obtained [3].

7 Conclusions

Port-Hamiltionian (pH) systems provide a modelling framework which preserves
essential physical properties. It is especially suited for multiphysical applications,
as the proper coupling of pH subsystems yields an overall pH system. In elec-
trical engineering, we have shown that electrical networks and electromagnetic
devices can be written as pH systems, and coupled EM/circuit system yield cou-
pled pH systems with a skew-symmetric coupling, which can be rewritten as an
overall pH system. For simulation, a monolithic approach is suitable for the for-
mer, and weak coupling methods for the latter. There are still many unresolved
questions, such as how to adequately integrate distributed ports into the pH
system’s modeling.
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