
Machine Learning Techniques to Model Highly
Nonlinear Multi-field Dynamics

Ruxandra Barbulescu1(B), Gabriela Ciuprina2, Anton Duca2, and L. Miguel Silveira3

1 INESC-ID, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
ruxi@inesc-id.pt

2 Politehnica University of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
gabriela@lmn.pub.ro, anton.duca@upb.ro

3 INESC-ID and IST Técnico Lisboa, Universidade de Lisboa, Av. Rovisco Pais 1,
1049-001 Lisbon, Portugal

lms@inesc-id.pt

Abstract. Modelling the dynamics of the membrane displacement in a microma-
chined beam fixed at both ends for different applied voltages is important for real
applications. The strong nonlinearities involved and the interaction between mul-
tiple physical fields make this task challenging for classical modelling and model
reduction approaches. In this work we search for a simplified, yet accurate, data-
driven models, based on different recurrent neural network architectures, using
only peripheral input-output information of the original system. The main goal is
to find the most suitable neural network architecture having the smallest number
of hidden units that provides low error of the minimum gap dynamics for differ-
ent applied voltages. We show that these black-box models, with only 4 hidden
units, are able to accurately reproduce the original system’s response to a variety
of different stimuli, and a strategy to make them parameter aware is proposed.

1 Introduction

Since their creation in research labs in the 1950’s, Micro-Electro-Mechanical Systems
(MEMS) and their Radio-Frequency (RF) variety have seen a wide range of applica-
tions, from sensors to switches, vehicle controls, pacemakers and even games. The
basic structure of many RF-MEMS switches is based on a beam suspended like a bridge
across a substrate, which is pulled down by a force (such as an electrostatic force) and
eventually contacts a dielectric on the substrate thus blocking the signal (Fig. 1). The
pull-in voltage and the response time are some of the most important parameters of
electrostatically-actuated MEMS switches. Both the response time and the force needed
to pull-in the membrane depend nonlinearly on its displacement and this dependence is
the result of coupled electro-mechanical-fluid systems interaction.

One of the devices synthesising this mechanism is a micromachined beam fixed
at both ends, often used as a benchmark for model reduction algorithms [1] and even
studied as a pressure sensor [2]. A physics-aware model reduction approach is proposed
in [3], where the low-order model is built by progressively adding physical phenomena.
The dynamics of the bridge benchmark is described in detail in Sect. 2. The reduced

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 125–132, 2024.
https://doi.org/10.1007/978-3-031-54517-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54517-7_14&domain=pdf
https://doi.org/10.1007/978-3-031-54517-7_14


126 R. Barbulescu et al.

model in [3] reproduces with high-fidelity the dependence between the pull-in voltage
and the membrane displacement as well as the dynamic behaviour but, in the latter case,
only a few basic input stimuli are considered in the modelling and reduction processes.

In all these approaches, the difficulty of modelling and producing simplified repre-
sentations comes from the nonlinearity of the system and the interaction of more than
one physical field. In particular, adding the air damping phenomena makes the sys-
tem highly nonlinear. Physics-awareness can be both a plus and a minus, while gaining
specificity and physical interpretation, one sacrifices generalization.

Fig. 1. The bridge benchmark (extracted from [3]).

In recent years, machine learning type models have been successfully used in vari-
ous fields to tackle strongly nonlinear problems with considerable success. In this work,
we use machine learning techniques to model the dynamics of the membrane displace-
ment in the bridge benchmark, using only input-output information of the original full-
order system. We generate data-driven, black-box models assuming no prior knowl-
edge of the original system’s structure and constitutive equations, which can further
be explained using specific interpretation techniques for neural networks [4]. We train
recurrent neural networks on datasets representing the system’s response (membrane’s
minimum gap) to different input voltage signals (different shapes and magnitudes). We
compare these architectures in terms of their properties and accuracy in reproducing
the output of the original system. We show that with a recurrent layer of only 4 hidden
units, it is possible to accurately reproduce the original system’s response to a variety of
different stimuli. We further show that we can generate parameter-aware models, which
are able to predict with fidelity the system’s behaviour for different values of specific
parameters.

2 The Bridge Benchmark Dynamics

The bridge benchmark is a polysilicon beam of length l = 610µm, width w = 40µm
and height h = 2.2µm suspended like a bridge over a silicon substrate. The initial gap
is g0 = 2.3µm. The mechanism is described by the strongly coupled 1D Euler’s beam
equation (1) and 2D Reynolds’ squeeze film damping equation (2):

EI
∂ 4 g
∂x4 −S

∂ 2 g
∂x2 = Felec −ρ

∂ 2 g
∂ t2

+Fair, (1)

div

((
1+6

λ
g

)
g3p(grad(p))

)
= 12μ

∂ (pg)
∂ t

, (2)



Machine Learning Techniques to Model Highly Nonlinear Multi-field Dynamics 127

where g(x, t) is the unknown gap (the displacement is g0 − g(pm, t), where pm is the
middle point of the membrane pm = l/2), E = 149GPa is the Young modulus, I =
wh3/12 is the inertial moment, S/(hw) = −3.7MPa is the initial stress, ρ is the mass
per unit of length

(
ρ/(hw) = 2330kg/m3

)
, Felec(x, t) = −ε0wv(t)/

(
2g2(x, t)

)
is the

electric force per unit of length (ε0 is the air permittivity), Fair =
∫ w

0 (p− pa)dy is the
damping force per unit of length, p(x,y, t) is the unknown pressure, pa = 1.013 ·105 Pa
is the environment pressure, λ = 0.064µm is the mean free path of air and μ = 1.82 ·
10−5 kg/(m · s) is the air viscosity.

Since l � w, the deflection is assumed uniform across the width. Moreover, the
deformation is symmetrical along the length of the membrane, therefore we can con-
sider as quantity of interest the middle point pm = l/2, where the gap is minimum. This
point would also be the first touching the dielectric in case the membrane is pulled down
completely. Figure 2 shows the membrane’s displacement at different moments in time
and the minimum gap for a periodic impulse.

Fig. 2. Example of membrane displacement, generated with the original code from [3]). Left:
Input – applied voltage v(t). Middle: Displacement g(x, t) at different moments in time (t in
[ms]). Right: Output – minimum gap g(pm, t) in time.

3 Neural Networks Models

Recurrent Neural Networks (RNNs) [5–7] are a family of neural networks used for pro-
cessing sequential data. Compared to their predecessors – the Feedforward Neural Net-
works (FFNNs) – the RNNs allow neurons in a given layer to form connections among
themselves, thus being particularly adept to processing sequences of values x1, ...,xt of
equal or variable length. In this work we create models based on three architectures:
the simple RNN [6], the Long Short-Term Memory (LSTM) unit [8,9] and the Gated
Recurrent Unit (GRU) [10]. The structures of their cells are presented comparatively in
Fig. 3.

In the simplest form of RNNs (Fig. 3-left), the prediction at a certain time point
ŷt depends on the hidden state of the cell at the current time point ht , which in turn
depends of the hidden state at the previous time point ht−1. In the following equations
V, W and U are matrices of weights, b and c arrays of biases and φ is an activation
function, usually the hyperbolic tangent:

ht = φ (Vxt +Uht−1 + c) , ŷt =Wht +b.



128 R. Barbulescu et al.

Fig. 3. Structure of a cell in the three architectures: simple RNN, LSTM, GRU (adapted from
[11]).

The simple RNNs however are known to suffer from various issues, a delicate one being
the vanishing gradient [12], which happens when long term components go exponen-
tially fast to norm 0, making it impossible for the model to learn the correlation between
temporally distant events. In our case, for a faithful reproduction of the dynamics, the
simulations of the original model require the use of fine time steps, leading to datasets
with long sequences. This in turn implies that the response at a given time will depend
on values which are far back in the sequence. This situation, however unavoidable, may
lead the RNN to experience difficulties in learning the data dependencies, resulting in a
model with unacceptable error (usually measured in terms of Root-Mean-Squared Error
– RMSE).

One solution to the vanishing gradient problem is the Long Short-Term Memory
(LSTM) unit [8,9]. A LSTM consists of three main gates: the input gate it ∈ (0,1)h

that controls whether the cell state is updated or not, where h is the number of hidden
units, the forget gate ft ∈ (0,1)h defining how the previous memory cell affects the cur-
rent one and the output gate ot ∈ (0,1)h, which controls how the hidden state is updated.
The usage of gates is a major difference from the simple RNNs, since besides the hidden
state ht ∈ (−1,1)h, the LSTM also outputs a cell state ct ∈ R

h to the next LSTM unit,
as shown in Fig. 3-center. The computation of the cell state is based on the candidate
cell state c̃t ∈ (−1,1)h. The vanishing gradient problem is partially solved by the LSTM
units by allowing gradients to also flow unchanged. The LSTM mechanism is described
by the following equations, where the learned parameters are the weights W∗ ∈ R

h×d

and U∗ ∈ R
h×h, and the biases b∗ ∈ R

h, where d is the number of input features:

it = σ (Wixt +Uiht−1 +bi) ,

ft = σ
(
W f xt +U fht−1 +b f

)
,

ot = σ (Woxt +Uoht−1 +bo) ,

c̃t = φ (Wcxt +Ucht−1 +bc) ,
ct = ft ◦ ct−1 + it ◦ c̃t ,
ht = ot ◦φ (ct) .

σ and φ are the logistic sigmoid and the hyperbolic tangent activation functions, respec-
tively. The operator ◦ denotes the Hadamard product (element-wise product).

A simpler unit composed of only two gates is the Gated Recurrent Unit
(GRU) [10], proposed in 2014. The GRU is described by:

zt = σ (Wzxt +Uzht−1 +bz) ,
rt = σ(Wrxt +Urht−1 +br),

ĥt = φ (Whxt +Uh (rt ◦ht−1)+bh) ,

ht = (1− zt)◦ht−1 + zt ◦ ĥt ,



Machine Learning Techniques to Model Highly Nonlinear Multi-field Dynamics 129

where the weights W∗ ∈R
h×d and the biases b∗ ∈R

h are learned parameters. The GRU
(Fig. 3-right) is only composed of two gates, the update gate zt ∈ (0,1)h and the reset
gate rt ∈ (0,1)h. The update gate controls how much of the past information needs to be
passed along to the future, while the reset gate is used to decide how much information
the model should forget. The GRU only outputs the hidden state ht ∈ R

h computed
based on the candidate hidden state ĥt ∈ (−1,1)h.

4 Results

Our first objective is, from a model reduction perspective, to find the most suitable
architecture and the smallest neural network (in terms of hidden units) that provides
good predictions. We therefore search for a nonlinear approximation F of the minimum
gap ĝ(pm, t), for different applied voltages v(t): ĝ(pm, t) =F (v(t)).

Data. We simulate the high-fidelity model from [3] described in Sect. 2 for 0.5ms, with
a time step of 5µs and different input signals to generate snapshots of the system’s
dynamical behaviour. Each snapshot contains pairs of input/output (I/O) data for 100
points, namely the input voltage’s variation in time v(t) and the membrane’s minimum
gap g(pm, t) (where pm = l/2 is the middle point of the membrane along the length),
which takes values in the range [0,2.3]µm. In the cases when the membrane is totally
pulled down, the minimum gap is set to 0 for the remaining simulation time. We use
scaled values (the gap is in µm, time is in ms), since the supervised learning uses an
absolute error metric (the RMSE – Root-Mean-Squared Error), whose very low values
might misdirect the training process.

We generate 40 snapshots, each with I/O values for 100 time moments, therefore
amounting to 4000 pairs of I/O values, and divide them into three sets of data: the
training set 50%, the validation set 25% and the test set 25%. The first two sets are
used to compute the learned parameters, then the model is evaluated against the test
set, containing data unseen before. The number of snapshots as well as their nature
were chosen as to sufficiently sample the training and test distributions. Numerical tests
showed that this choice was suitable for this benchmark.

Table 1. The average RMSE out of ten simulations, for RNN with 16 and 64 hidden units and for
LSTM and GRU with 8 and 32 hidden units, for the iteration with the smallest validation loss.

RNN-16 LSTM-8 GRU-8 RNN-64 LSTM-32 GRU-32

Training 0.0856 0.0376 0.0304 0.1728 0.0243 0. 0505

Validation 0.1335 0.0759 0.0896 0.1928 0.1781 0.1378

Implementation. The implementation is done in Python’s libraries Keras and Tensor-
flow. We use a Normalization layer that shifts and scales the inputs into a distribution
centered around 0 with standard deviation of 1, with the mean and variance adapted
to the data. For a consistent comparison, we fixed the hyperparameters for all three



130 R. Barbulescu et al.

Fig. 4. Training and validation RMSE averaged over 10 runs, for different architectures and sizes.

Fig. 5. Real (blue) and predicted (red) minimum gap for the GRU model with 8 hidden units
extracted the training, validation and test sets.

architectures to the same previously optimized values, as follows: 1) We ordered the
hyperparameters decreasingly based on their expected influence on the model’s perfor-
mance; 2) We set the most important one and so on; to set one, we kept fixed all the
other hyperparameters and trained with different values for it. For the hyperparameters
that are interdependent – for example batch size with sequence length, we did a grid
search for different combinations of these. Our search in the hyperparameters space led
to the following: the optimizer was set to Adam, the loss function is the RMSE, and the
learning rate is 0.005. We trained the models for 10000 epochs (the number of passes
of the training dataset through the algorithm), choosing the number of hidden units
(neurons in the recurrent layer) so that the total number of parameters is comparable
between models, e.g. a RNN with 16 hidden units (305 parameters) corresponds to a
LSTM with 8 (328 parameters) and a GRU with also 8 hidden units (249 parameters).

Figure 4 shows the variation of the RMSE over the epochs, comparatively. Despite
the lower complexity, the GRU performed best overall (see Table 1). In fact, with a
recurrent layer as small as 4 hidden units, the RMSE is 0.0345 µm for the training and
0.0597 µm for the validation set. Figure 5 shows examples from the three sets, the input
and the corresponding real and predicted outputs for the GRU with 8 units.



Machine Learning Techniques to Model Highly Nonlinear Multi-field Dynamics 131

Parameter-Aware Models. A second objective is parameter-awareness, i.e. the ability
of the neural network model to take into account geometrical characteristics and other
parameters of the system that impact the output. We identified three important parame-
ters: the membrane length l and width w, and the air viscosity μ . A series of potential
values for each are listed in Table 2. We are now looking for an approximation that takes
into account these parameters, of the form ĝ(pm, t) =F (v(t), l,w,μ).

Table 2. Different parameter values. The air viscosity is dependent on the temperature.

Parameter Air viscosity μ
[

kg
m·s

]
Membrane length l
[µm]

Membrane width w
[µm]

Reference value 1.82 ·10−5 (15◦) 610 40

Other values considered 1.73 ·10−5 (0◦) 590 36

1.78 ·10−5 (10◦) 600 38

1.85 ·10−5 (25◦) 620 42

1.90 ·10−5 (35◦) 630 44

Fig. 6. Predicted minimum gap for two cases with the same input and fixed membrane length and
width, but different air viscosity.

We generated new datasets containing the original 40 input-output data and random
combinations of these values in a total of 500 examples (out of 5000 possible com-
binations) divided in 300 for training, 100 for validation and 100 for test). The 500
examples took more than 30h to generate with the original code. Using this data, we
trained a GRU and re-optimized the hyperparameters.

The RMSEs obtained are of the same order of magnitude as for the previous case.
Figure 6 shows the predicted output in two cases where the input is the same, as well as
two of the parameters, the length and the width, but the air viscosity is different. The
model successfully captures the difference in the output for the different values of air
viscosity.

5 Conclusions

In this work we create data-driven models for the dynamics of the minimum gap in the
bridge benchmark, using different recurrent neural network architectures. We show that



132 R. Barbulescu et al.

a GRU layer with only 4 hidden units accurately reproduces the output for various dif-
ferent stimuli, and we further propose a strategy to make the model parameter-aware.
The main advantage of this model is the ability to accurately predict the response to
various different stimuli and for different parameters. Moreover, once the neural net-
work is trained, the prediction is done instantaneously. The source code, datasets and
results are publicly available at https://github.com/ruxandrab/beam. Our next focus is
to model the second half of the mechanism – the opening of the switch, as well as look
into physics-informed neural networks, by embedding physical constraints that would
allow both feature preservation and subsequent interpretation of the low-order models.

Acknowledgements. This work was supported by European Funds “Recovery and Resilience
Plan - Comp. 5” included in the NextGenerationEU program, under project n◦ 62 - “Respon-
sible AI” and Portuguese national funds, under projects UIDB/50021/2020, PTDC/EEI-
EEE/31140/2017.

References

1. Rewienski, M., White, J.: A trajectory piecewise-linear approach to model order reduction
and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. Comput.-
Aided Des. Integrated Circ. Syst. 22(2), 155–170 (2003)

2. Gupta, R.J., Senturia, S.D.: Pull-in time dynamics as a measure of absolute pressure. In:
Proceedings IEEE the Tenth Annual International Workshop on MEMS. An Investigation of
Micro Structures, Sensors, Actuators, Machines and Robots, pp. 290–294. IEEE (1997)

3. Ciuprina, G., Ioan, D., Lup, A.S., Silveira, L.M., Duca, A., Kraft, M.: Simplification by
pruning as a model order reduction approach for RF-MEMS switches. COMPEL- Int. J.
Comput. Math. Electr. Electron. Eng. 39(2), 511–523 (2019)

4. Ismail, A.A., Gunady, M., Bravo, H.C., Feizi, S.: Benchmarking deep learning interpretabil-
ity in time series predictions. arXiv preprint arXiv:2010.13924 (2020)

5. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
6. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating

errors. Nature 323, 533–536 (1986)
7. Werbos, P.J.: Generalization of backpropagation with application to a recurrent gas market

model. Neural Netw. 1(4), 339–356 (1988)
8. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with

LSTM. Neural Comput. 12(10), 2451–2471 (2000)
9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780

(1997)
10. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learn-

ing phrase representations using RNN encoder-decoder for statistical machine translation.
CoRR, abs/1406.1078 (2014)

11. Barbulescu, R., Mestre, G., Oliveira, A., Silveira, L.M.: Learning the dynamics of realistic
models of C. elegans nervous system with RNNs. Sci. Rep. 13(467) (2023)

12. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent
is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

https://github.com/ruxandrab/beam
http://arxiv.org/abs/2010.13924

	Machine Learning Techniques to Model Highly Nonlinear Multi-field Dynamics
	1 Introduction
	2 The Bridge Benchmark Dynamics
	3 Neural Networks Models
	4 Results
	5 Conclusions
	References


